
ALMA MATER STUDIORUM — UNIVERSITÀ DI BOLOGNA

DEIS – Department of Electronics, Computer Science and Systems
PhD Course in Electronics, Computer Science and Telecommunications

Cycle XXIV
Scientific-disciplinary Sector: 09/H1 ING-INF/05

METAHEURISTICS FOR SEARCH PROBLEMS IN

GENOMICS
– NEW ALGORITHMS AND APPLICATIONS –

Candidate

Dott. STEFANO BENEDETTINI

Coordinator : Supervisor :

Chiar.mo Prof. Ing. LUCA BENINI Chiar.mo Prof. Ing. ANDREA ROLI

Tutor :

Chiar.mo Prof. Ing. ANTONIO NATALI

FINAL EXAMINATION YEAR 2012

iii

To my family

Stefano Benedettini, March 5, 2012

Abstract

In this thesis we made the first steps towards the systematic application of
a methodology for automatically building formal models of complex biological
systems. Such a methodology could be useful also to design artificial systems
possessing desirable properties such as robustness and evolvability. The ap-
proach we follow in this thesis is to manipulate formal models by means of
adaptive search methods called metaheuristics. In the first part of the thesis we
develop state-of-the-art hybrid metaheuristic algorithms to tackle two important
problems in genomics, namely, the Haplotype Inference by parsimony and the
Founder Sequence Reconstruction Problem. We compare our algorithms with
other effective techniques in the literature, we show strength and limitations of
our approaches to various problem formulations and, finally, we propose further
enhancements that could possibly improve the performance of our algorithms
and widen their applicability. In the second part, we concentrate on Boolean
network (BN) models of gene regulatory networks (GRNs). We detail our au-
tomatic design methodology and apply it to four use cases which correspond to
different design criteria and address some limitations of GRN modeling by BNs.
Finally, we tackle the Density Classification Problem with the aim of showing
the learning capabilities of BNs. Experimental evaluation of this methodol-
ogy shows its efficacy in producing network that meet our design criteria. Our
results, coherently to what has been found in other works, also suggest that
networks manipulated by a search process exhibit a mixture of characteristics
typical of different dynamical regimes.

v

vi

Acknowledgments

I thank Christian Blum for the helpful collaboration and for kindly providing
access to the cluster in Barcelona. I also thank Thomas Stützle for his encour-
aging advices on the Founder Sequence Reconstruction problem and for letting
me get in contact with a stimulating research environment such as IRIDIA.

I finally thank Roberto Serra and Marco Villani for providing guidance and
fruitful ideas for the work regarding Boolean networks described in the second
part of this thesis.

vii

viii

Contents

Contents ix

List of Figures xiii

List of Tables xv

Introduction xvii
Overview of the thesis . xx
Contributions . xxii

I Combinatorial biological problems 1

1 Brief Introduction to Metaheuristics 3
1.1 Preliminary definitions . 3
1.2 Trajectory Methods . 4

1.2.1 Tabu Search . 5
1.3 Population Methods . 6

1.3.1 Ant Colony Optimisation 6
1.3.2 Genetic Algorithms . 8

1.4 Conclusions and discussion . 9

2 The Haplotype Inference Problem 11
2.1 Biological introduction and motivation 11
2.2 Mathematical Formulation . 14

2.2.1 The evaluation model . 15
2.2.2 Compatibility and complementarity 15

2.3 Notable variants of the Haplotype Inference 17

3 Hybrid Metaheuristics for Haplotype Inference 21
3.1 Clark’s Rule . 21
3.2 Metaheuristic techniques for Haplotype Inference 23

3.2.1 Ant Colony Optimization 23
3.2.2 Stochastic Local Search 26
3.2.3 The hybrid algorithm . 27

3.3 Experimental analysis . 28
3.3.1 Analysis of ACO-HI+, TS and ACO⊲TS 29
3.3.2 Comparison between ACO⊲TS and rpoly 31

3.4 Instance structure analysis . 34

ix

x CONTENTS

3.5 Conclusions and discussion . 39

4 MSG Algorithm for Haplotype Inference 41
4.1 Introduction and motivations . 41
4.2 Master-slave Genetic framework 42
4.3 MSG for Haplotype Inference . 44

4.3.1 Slave algorithm . 44
4.3.2 Master algorithm . 45

4.4 Experimental Analysis . 46
4.4.1 Comparison with the Hybrid ACO 51

5 Alternativa Approaches to HIP 57
5.1 Enhancement of resolution by constraint programming techniques 57

5.1.1 Haplotype Inference with generalised haplotypes 58
5.2 Algorithm for finding cliques in compatibility graph 61

5.2.1 Preliminary definitions . 61
5.2.2 Algorithm for finding cliques in compatibility graph . . . 62

5.3 Conclusions and discussion . 63

6 The Founder Sequence Reconstruction Problem 65
6.1 Biological introduction and motivations 66
6.2 The Founder Sequence Reconstruction Problem 67
6.3 Overview of the literature . 68

6.3.1 RecBlock . 69
6.4 A Simple Constructive Heuristic With Look-Ahead 70
6.5 A Probabilistic Iterated Greedy Algorithm 72
6.6 Iterated Greedy experimental evaluation 73

6.6.1 Parameter Tuning . 74
6.6.2 Comparison with the State of the Art 76

6.7 Large neighbourhood search algorithms for the FSRP 83
6.8 Large Neighbourhood Search experimental analysis 85

6.8.1 Experimental setting . 85
6.8.2 Comparison among LNS-FSRP variants 86
6.8.3 Impact of initial solution 88
6.8.4 Impact of upper bound update 88
6.8.5 Impact of neighbourhood size 88
6.8.6 LNS-1 speed-up . 89

6.9 Comparison of LNS-1c against the state of the art 90
6.9.1 Comparison with RecBlock 91
6.9.2 Comparison against Back-and-Forth Iterated Greedy . . . 92

6.10 Conclusions and discussion . 93

II Boolean Network Design 97

7 Brief Introduction to Boolean Networks 99
7.1 Boolean networks . 99

7.1.1 Random Boolean Network model 101
7.2 Motivations of designing by metaheuristics 102
7.3 Conclusions and discussion . 104

CONTENTS xi

8 The Boolean Network Toolkit 105
8.1 Introduction and Motivations . 105

8.1.1 Available tools . 107
8.2 Software Design . 107

8.2.1 Fundamental abstractions 108
8.2.2 Simulator Architecture . 109

8.3 Use Cases . 110
8.4 Conclusions and discussion . 113

9 Designing Boolean Networks by Metaheursitics 115
9.1 Introduction . 115

9.1.1 Related work . 116
9.1.2 Methods . 117

9.2 Designing Boolean networks with prescribed attractor periods . . 119
9.2.1 Experimental settings . 120

9.3 Target state-controlled Boolean networks 126
9.3.1 Experimental setting . 127

9.4 Attractor distances in Boolean networks 133
9.4.1 Attractor similarity statistics 133
9.4.2 Experimental analysis . 135

9.5 Designing Boolean networks with maximally distant attractors . 136
9.5.1 Objective and Motivations 137
9.5.2 Experimental Analysis . 139

9.6 Density classification problem . 142
9.6.1 Experimental setting . 145
9.6.2 Results . 146

9.7 Conclusions and discussion . 152

Conclusions 155
Proposal for future research . 156

Appendices 161

A Applications of MSG to Routing Problems 163
A.1 MSG for the Capacitated Vehicle Routing Problem 163

A.1.1 Proposed algorithm and evaluation 164
A.2 MSG for the Capacitated Minimum Spanning Tree 165

A.2.1 Proposed algorithm and evaluation 166
A.3 Conclusions and discussion . 166

Bibliography 169

xii CONTENTS

List of Figures

2.1 An example of compatibility graph for a set of genotypes. 16

3.1 ACO-HI algorithm . 24
3.2 High level scheme of Tabu Search for Haplotype Inference 27
3.3 The ACO⊲TS hybrid algorithm 28
3.4 Solution value found by ACO-HI+, TS and ACO⊲TS 30
3.5 rpoly vs. ACO⊲TS on Harrower and Marchini datasets 35
3.6 rpoly vs. ACO⊲TS on datasets from [56, 73, 94] 36
3.7 rpoly vs. ACO⊲TS on Daly benchmark 37
3.8 Significant features of instance sets ACObt, ACOeq and ACOwt 38

4.1 Harrower Uniform: solution quality and running time 48
4.2 Harrower Hapmap: solution quality and running time 48
4.3 Marchini SU1: solution quality and running time 49
4.4 Marchini SU2: solution quality and running time 49
4.5 Marchini SU3: solution quality and running time 49
4.6 Marchini SU-100kb: solution quality and running time 50
4.7 HapMap CEU: solution quality and running time 51
4.8 HapMap YRI: solution quality and running time 51
4.9 HapMap JPT+CHB: solution quality and running time 51
4.10 Harrower Uniform: solution quality and running time 53
4.11 Harrower Hapmap: solution quality and running time 53
4.12 Marchini SU1: solution quality and running time 53
4.13 Marchini SU2: solution quality and running time 54
4.14 Marchini SU3: solution quality and running time 54
4.15 Marchini SU-100kb: solution quality and running time 54
4.16 HapMap CEU: solution quality and running time 55
4.17 HapMap YRI: solution quality and running time 55
4.18 HapMap JPT+CHB: solution quality and running time 55

6.1 FSRP decomposition example . 67
6.2 FSRP Iterated Greedy comparison 76
6.3 BackForth-Rnd variants comparison 77
6.4 Deviation of Best over TS . 79
6.5 Solution value differences between LNS-1, LNS-3 and LNS-maxc . 87
6.6 Execution time differences between LNS-1, LNS-3 and LNS-maxc . 87
6.7 LNS-1 and RLNS-1: relative solution value difference 88
6.8 Improvement found with neighbourhood of size k 89

xiii

xiv LIST OF FIGURES

6.9 LNS-1c and RecBlock-incomp: relative solution value difference 92
6.10 LNS-1c and RecBlock-incomp: relative solution value difference 93
6.11 LNS-1c and Iterated Greedy: relative solution value difference . . 93

7.1 BN example . 100

8.1 BooleanDynamics interface definition (extract). 110

9.1 BN training process . 118
9.2 Success ratio vs. generations (50, 100) 122
9.3 Success ratio vs. generations (500, 800) 123
9.4 Impact of mutation and crossover on search (critical) 125
9.5 Impact of mutation and crossover on search (chaotic) 126
9.6 Run length distribution related to task 2 129
9.7 Landscape autocorrelation of BNs for task 1 130
9.8 Reward function f(t; γ) . 130
9.9 Run length distribution related to task 2 131
9.10 Run length distribution related to task 3 132
9.11 Average clustering coefficient distribution. 137
9.12 Typical samples of attractor dendrograms. 138
9.13 Median of attractor distance distribution. 141
9.14 Landscape autocorrelation for RBNs with N = 21 147
9.15 Classification error . 148
9.16 Overtraining examples . 149
9.17 Average network sensitivity for optimised networks 150
9.18 Pattern distance typical trends 151
9.19 ILS vs. GA comparison . 152

List of Tables

3.1 Main features of the benchmarks. 28
3.2 Running times and times to the best solution 32
3.3 Running times and times to the best solution (averaged) 33
3.4 Efficiency of the algorithms (in percentage). 34

4.1 Parameters of the algorithms. 47
4.2 Main features of the new hard benchmarks. 48

5.1 Rules to compute g ⊖ h . 59
5.2 Rules to compute g ⊖ h with unknowns 60

6.1 Rank-based analysis . 75
6.2 Results on instances with 30 recombinants 80
6.3 Results on instances with 50 recombinants 81
6.4 Alternative computation time limits (in seconds). 82
6.5 Percentage of improvements with a smaller neighbourhood 90
6.6 Detailed results on evo instances 94
6.7 Detailed results on ms instances 95
6.8 Detailed results on random instances 95

9.1 Summary of configuration parameter 121
9.2 Distance statistics. 136
9.3 Summary of network features for N = 20. 142
9.4 Summary of network features for N > 20. 143
9.5 Summary of GA parameters. 151

A.1 CVRP experimental results . 165
A.2 CMSTP computational results 167

xv

xvi LIST OF TABLES

Introduction

One of the most important goals of the modern science and engineering re-
search is to develop methodological and analytical tools to synthesise models of
biological and artificial biologically-inspired systems. Typically, these systems
turn out to be complex, i.e., they are composed of many entities whose relations
among them are deeply non-linear. From a methodological point of view, a
purely reductionist, i.e, divide et impera, approach fails to provide an accurate
description of them. Although inherently challenging, the design of complex
systems is one of the main ambitions in scientific and engineering disciplines.
Model synthesis, identification and tuning, reverse engineering of biological and
social networks, design of self-organising artificial systems are just some of the
areas in which scientists are asked to face this issue. Such systems and models
are often designed and tuned by means of automatic procedures, some of which
can be ascribed to the class of search methods [190].

In this thesis we try address the design problem, typically in a biological
context; from a more generic point of view, we are interested in the task of
model instantiation. Before going on, it is best to define some basic concepts
so as to uniform the terminology. What we are going to give in the follow-
ing are not widespread and agreed definitions of the terms—model and model
instance—but, rather, a personal reinterpretation based on works by Kauff-
man [127, 128]. Specifically, we will find these definitions convenient when we
will later introduce the ensemble approach [128] to biological complex system
modeling. By model we mean the set of entities and relationships the scientist
puts into play that: (i) can be used to describe a class of phenomena or sys-
tems1 and; (ii) can be expressed by means of a formal language (of which we
give some examples below). For instance, example of models are mathemati-
cal ones, such as parametric systems of partial differential equations; statistical
models, such as Markov Chains and Bayesian networks; computational models,
abstract machines like finite state automata, the Turing machine, Petri nets, but
also Cellular Automata; formal calculi, such as π-calculus and λ-calculus; logi-
cal models, such as first order and propositional logics; in software engineering
many modeling languages have arisen, like the renowned UML, but also Entity-
Relationship diagrams or the simpler flowcharts. Other examples of models,
especially network models tailored to the description of gene regulatory net-
works, can be found at the end of the first section in [128]. The representation
a model provides is, inevitably, imprecise and ignores details to some degree.
Ignoring details is not a drawback per se; details can be omitted in order to
make the model simpler: Newtonian mechanics, although ignores relativistic

1What we call model for some could also go by the name of abstract model.

xvii

xviii INTRODUCTION

effects, is more than adequate for “everyday” subluminal speeds.

Model instantiation refers to the application of entities, concepts and re-
lationships defined in a model to the description of a specific system; we call
such description model instance. Let us clarify with an example. The Lotka-
Volterra equations, parametric differential equations that describe predator-prey
dynamics in biological systems, are an example of a model; on the other hand,
the description of population dynamics of rabbits and foxes in a natural reserve
is an example of model instantiation, because it entails specifying the parame-
ters of the predator-prey model valid for that particular environment. Another
example might involve one of the previously cited network models listed a the
end of section 1 in [128]. For instance, Kauffman suggests that one of the viable
models of cell dynamics could be a network with piecewise linear differential
equations (Glass networks [90]). If we wanted to use such model to describe
one particular cell type, we would have then to specify a topology and all node
activations, which in turn are parametrised equations whose parameters are,
likewise, to be determined. This distinction between model and model instance
is fundamental because, in this thesis, we are concerned with the problem of
designing model instances of particular biological systems. For every problem
studied in this thesis we, therefore, commit to a particular model; moreover,
we do not discuss the adequacy of such model with respect to its descriptive
capabilities because it is out of the scope of this thesis. For instance, in Chap-
ter 9 we do not question whether our model of choice, Boolean networks, is a
more adequate model for genetic regulatory networks (a topic which is discussed
elsewhere [202, 208, 209]) than, for example, differential equations.

We want to stress that, from a methodological point of view, synthesising
an artificial systems or instantiating a model of a (complex) system are quite
similar. Although at a first glance they may look different, since the first task
involves constructing an artifact from scratch, whilst the second has the purpose
of describing something that already exists, the scientist undertaking either
problems proceeds in the same manner. In both scenarios, the scientist defines
some kind of merit factor, i.e., the distance from a set of desired properties,
to evaluate an artifact. By artifact we mean a model instance or an artificial
system, which can be indeed described by means of an instance of a model
representing the artifact or the procedure to build it. In the case of system
modeling, the artifact is, for instance, a parametric system of partial differential
equations or a computational model (such as Boolean networks, as we will see in
this thesis); experimental observations, or some kind of prior knowledge on the
modeled system, provide, instead, the desiderata, hence the quality function.
For instance, in case of the problems tackled in Chapters 3 and 6, the quality
function is given by the genetic model, i.e., a conjecture about the behaviour
of genetic structures (genes, genotypes, haplotypes, etc.) expressed in formal
terms. In the case of a robotic system, the artifact can be a robot controller
but also the shape of the robot itself, if we think back at artificial life [139]; the
scientist then specifies, by means of a quality function, the requested observable
behaviour of its robots.

The approach we follow in this thesis is to manipulate our artifacts (model
instances) by means of adaptive search methods called metaheuristics. Briefly,
metaheuristics are approximate2 optimisation algorithms that perform a search

2Approximate means that they do not return a proof of optimality.

xix

in the “solutions space”, where a “solution” in this context is an artifact. The
solution space has a topology, meaning that there is a notion of neighborhood
and a notion of “altitude”, i.e., the value of the quality function3. As we will see
in Chapter 1, one of the main characteristic of metaheuristics is that they are
able to adapt the search process by exploiting information gathered during the
execution of the search itself. This makes metaheuristics capable of exploiting
regularities of the solution space and capable of leading the search into areas
containing high quality solutions.

Another characteristic that makes the automatic construction/tuning of
these kinds of artifacts hard is that they are complex, like the system they
try to describe. This entails that even small modifications to a parameter might
change the observable properties of the artifact, hence its quality value, in a
way that is difficult to predict (strong non-linear effects). For instance, suppose
that a model can be described by a tuple of real parameters; when dealing with
complex systems, often tuples close in the parameter space correspond to real-
isations of models far apart in the behaviour space. We will see an example of
such property when we examine the problem of synthesising Boolean networks
(BNs) in Chapter 9, in which we lack an heuristic that can tell which are the
effective modification to perform on a artifact in order to attain some modeling
goal.

As we wrote above, the quality function expresses the “goodness” of an ar-
tifact according to some model; this deep connection between quality measure
and model has an interesting implication. A model, by definition, is a sim-
plification of a real system and tractable models leave out some details from
the description of a phenomenon; this entails that an artifact that maximises
the quality function can be, at most, as accurate as the model it instantiates.
This has important practical repercussion because optimisation of the quality
function is often an intractable problem4. This consideration motivates the use
of incomplete techniques, and metaheuristics in particular. On the one hand, a
proof of optimality is not needed, therefore we can trade completeness for effi-
ciency. Moreover metaheuristics architecture is flexible, can be easily integrated
with other search techniques and modifications; this is an advantage, because it
makes it possible to accommodate refinements to the model.

As a final note, we want to stress that a methodology to automatically syn-
thesise models of complex systems can be useful for the construction of artificial
systems. The most striking characteristic that most biological complex systems
posses is that of being robust, with respect to small perturbations, and, at the
same time, evolvable. Robustness means insensibility to small random fluctu-
ations in the environment (external noise). Evolvability means being reactive
to change, that is, an evolvable system is quick to adapt to different environ-
mental conditions and carry out its goal. These properties, often sought by
system designers, are difficult to achieve in general. An approach suggested by
this thesis is to employ automatic design methodologies to synthesise artifacts
with features typical of complex biological systems. The idea is that, if we are
able to build complex artificial systems, robustness and evolvability will come
“for free”. Of course, one of the questions that this thesis proposes is how to
characterise complex systems, or in other words, how to measure complexity for

3We suppose that higher quality correspond to greater values
4For example, from the worst case computational complexity viewpoint, the problem might

be NP-hard [86].

xx INTRODUCTION

a generic system. If we were able to do so, we could indeed define a quality
function to drive our design methodology.

Overview of the thesis

This thesis will mainly deal with modeling issues in genomics. In the first part we
address two related problems, namely, the Haplotype Inference problem by Pure
Parsimony and the Founder Sequence Reconstruction Problem (FSRP), which
originate from common premises. Technical advances in sequencing of genetic
material has led to a rapid growth of available DNA sequences and haplotyped
sequences. With this large amount of information, researchers are interested de-
termining the genetic causes that affect health, common diseases (heart disease,
diabetes, cancer, etc.) and responses to drugs and environmental factors [224].
Two problems can be defined that address different but complimentary aspects
of this research. The first one is Haplotype Inference that consists in inferring
the genetic variations (i.e., differences in the genome) of diploid organisms (such
as humans) responsible for specific characteristics, such as the one listed above.
The second one is the FSRP whose objective is to study the evolutionary history
of a population of individuals given a set of their haplotyped sequences. The
goal of FSRP is to find a set of founder sequences that, through recombinations
and mutations, explains the sequences in the current population.

In the second part, we concentrate on a computational model of gene regula-
tory networks (GRNs). Briefly, a GRN is a collection of DNA segments (genes),
interpreted as nodes in the network, whose interactions, mediated by proteins,
dictates cellular behaviour. Many models have been proposed to capture the
dynamics of GRNs, ranging from differential equations to discrete and continu-
ous networks. One notable model, which is also the one studied in this thesis,
is the one of Boolean networks, first proposed by Kauffman [125].

This thesis is structured as follows.

Chapter 1 is a brief introduction to the topic of metaheuristics. It reviews
concepts such as combinatorial optimisation problem, local search, neighbour-
hood definitions etc. Its main purpose is to define common terminology used
throughout the thesis. First we present metaheuristics in general terms (Sec-
tion 1.1), then we discuss trajectory methods (Section 1.2) and population al-
gorithms (Section 1.3), such as Ant Colony Optimisation (ACO) and Genetic
Algorithms (GAs). Although it contains basic concepts, we advise the meta-
heuristic expert to at least skim through this chapter.

In Chapter 2 we first introduce the Haplotype Inference Problem: in Sec-
tion 2.1 we summarise the biological foundations of the problem and review the
literature on the subject; Section 2.2 proposes a mathematical formulation and
defines important concepts such as complementarity and compatibility graph,
all used and eventually extended in the chapters to come. We finally overview
alternative formulations of Haplotype Inference that correspond to different real-
world scenarios (Section 2.3).

In Chapter 3 we tackle Haplotype Inference and propose a hybrid meta-
heuristic which integrate ACO and Tabu Search. In Section 3.1 we describe
and discuss Clark’s Rule, a well-known greedy heuristic for Haplotype Infer-
ence, and, in particular, we point out its drawbacks. The ACO algorithm we
propose (Section 3.2.1) takes inspiration from Clark’s Rule, while, at the same

xxi

time, overcomes its deficiencies. Section 3.2.2 details instead our Tabu Search.
The hybrid is extensively tested and analysed on a large number of well-known
benchmarks (Section 3.3); in particular, in Section 3.3.2 we show the favorable
comparison with state-of-the-art techniques for Haplotype Inference by parsi-
mony. This chapter concludes with an analysis of the instance structure (Sec-
tion 3.4) in which we strive to determine what are the structural characteristics
of an instance that make it difficult for our algorithm to solve.

Chapter 4 introduces Master-Slave Genetic (MSG) framework, a GA variant
suited to combinatorial problems for which a parametrized constructive proce-
dure is available. We detail the framework in Section 4.2 and, with the aim
of demonstrating its general effectiveness and versatility, we apply it to three
hard combinatorial problems, namely, Haplotype Inference (Section 4.3), Ca-
pacitated Vehicle Routing (Section A.1) and Capacitated Minimum Spanning
Tree (Section A.2).

Chapter 5 discusses alternative approaches to Haplotype Inference and con-
sists mainly of two contributions. The first one regards an alternative model
that makes use of constraint programming techniques (Section 5.1); it is shown
that such approach can cope with the presence of unknown sites in an instance,
as opposed to the difficulties of the other metaheuristics presented in Chapter 3
and 4, based on a simpler model. The second contribution (Section 5.2) is a
clique finding algorithm in the compatibility graph of an instance.

Chapter 6 is dedicated to the description of the Founder Sequence Recon-
struction Problem and the proposed metaheuristic solver. In this chapter we
present a fast Iterated Greedy heuristic and a state-of-the-art hybrid algorithm
based on Large Neighbourhood Search (LNS) framework. Both algorithms en-
capsulate and enhance existing procedures available in the literature, thereby
showing the flexibility of metaheuristics. Sections 6.1 and 6.2 open the chapter
with biological motivations and a mathematical formulation, respectively. Af-
ter an overview of the literature (Section 6.3), we start detailing our Iterated
Greedy (Sections 6.4 and 6.5) and discuss experimental results of its application
(Section 6.6). The chapter concludes with Section 6.7, which explain our LNS
metaheuristic, and Sections 6.8 and 6.9 devoted to extensive analysis of LNS
results and its comparison with existing techniques.

Chapter 7 is a brief introduction to synchronous deterministic Boolean net-
work models. Much like we do in Chapter 1, in this chapter we establish common
terminology and concept used in the remainder of the thesis (Section 7.1). We
define the concepts of trajectory, attractor cycle and basin of attraction and dis-
cuss the implications of synchronicity and determinism. Section 7.1.1 explores
in further detail Random Boolean Networks (RBNs), a well-known specialisa-
tion of BNs which has lately garnered attention as model of GRNs. Finally,
Section 7.2 introduces and motivates our approach to biological modeling which
is rooted in the ensemble approach.

Chapter 8 presents the Boolean Network Toolkit, a Boolean network soft-
ware simulator, an important contribution developed in the making of the work
described in this thesis. The chapter opens by stating requirements of such sim-
ulator (Section 8.1) and proceeds with giving an overview of available simulation
tools (Section 8.1.1). In Section 8.2 we motivate our design choices and show
how such decisions allow us to have a piece of software which satisfies our re-
quirements and is, at the same time, flexible and extensible. Finally, Section 8.3
demonstrates some typical use cases.

xxii INTRODUCTION

Chapter 9 is devoted to the presentation of our automatic design method-
ology (Section 9.1.2) and its demonstration in four abstract use cases. In Sec-
tion 9.2 we study the problem of generating BNs with required attractor length
by means of a GA. In Section 9.3 we want to generate a Boolean networks such
that requirements on its trajectory are satisfied. Section 9.4 presents a study
on the adequateness of RBNs as models of cellular dynamics. In particular, at-
tractors in RBNs are the key elements in the models because they correspond to
cellular types. Nevertheless, one of the criticism to RBNs as models of biological
systems is that real systems are not synchronous; moreover, if we renounce to
synchronicity, not only RBNs become more difficult to analyse, but also the cell
type/attractor correspondence is not applicable any more: the very same at-
tractors found in synchronous RBNs are no longer distinguishable if a different
update scheme is used. From the experiments we discover that RBNs are char-
acterised by a landscape of similar attractors. Such landscape can potentially
change drastically under a different update strategy. In Section 9.5 we apply
our methodology to synthesise networks with a landscape of attractor as varied
as possible, according to some similarity measure, with the aim of closing this
gap between synchronous Boolean networks and biologically plausible networks.
Finally, Section 9.6 we investigate the possibility of employing BNs as learning
systems. Our aim is to train BNs to solve the Density Classification Problem
(DCP). Briefly, in this context a BN is a black-box that, we asked a question
in the form of a fixed-size binary vector, it replies whether the answer contains
more 1s or more 0s: in other terms, a BN is required to classify an input. Al-
though the tasks taken into consideration may seem abstract, they are in fact
quite challenging and represent a test bed for our methodology.

Contributions

This thesis contains contributions to the field of applied metaheuristics.

• An effective hybrid metaheuristic algorithm for tackling large-scale in-
stances of the Haplotype Inference by pure parsimony is proposed. The
algorithm is competitive with the state of the art and, in in some of the
adopted benchmarks, it proves superior with respect to solution quality
(Chapter 3).

• The MSG algorithmic framework based on GAs is introduced and appli-
cations to Haplotype Inference and graph problems are shown. MSG is a
general and flexible approach suited to problems for which a parametric
constructive heuristic is available, and, in this respect, is similar to Ant
Colony Optimisation. MSG has been successfully applied to a variety of
algorithms, namely, the Haplotype Inference by parsimony (Chapter 4),
the Capacitated Vehicle Routing Problem and the Capacitated Spanning
Tree Problem (Chapter A).
Moreover, EasyGenetic, a software library to rapidly develop MSG algo-
rithms, is briefly presented.

• A new formulation of the Haplotype Inference is suggested. This formu-
lation is different than the more familiar one presented in Chapter 2 in

xxiii

that it employs constraint optimisation techniques, which make it poten-
tially more effective on a variant of the problem that models unknown
information (Chapter 5).

• An algorithm for finding cliques in the compatibility graph is proposed
(Chapter 5).

• A hybrid state-of-the-art metaheuristic algorithm for the Founder Se-
quence Reconstruction Problem is introduced. This algorithm is based
on the Large Neighbourhood Search framework and is detailed in Chap-
ter 6.

• The Boolean Network Toolkit, an efficient and extensible open-source sim-
ulator for BNs, is described and some use cases are presented (Chapter 8).

• Four applications of our methodology to automatically design BNs with
desired properties are shown and discussed. In the last case study we are
able to synthesise a BN capable of solving the Density Classification Task,
a challenging problem for learning systems (Chapter 9).

Some of the topics treated in this thesis already led to papers appeared in
conference proceedings or journals and the related chapters have a similar con-
tent, with the exception of Chapters 5 and 8 which contain original unpublished
research.

• Journal papers:

– Battarra, M., Benedettini, S., and Roli, A. (2011). Leveraging saving-
based algorithms by master-slave genetic algorithms. Engineering
Applications of Artificial Intelligence, 24:555–566

– Roli, A., Benedettini, S., Stützle, T., and Blum, C. (2012). Large
neighbourhood search algorithms for the founder sequence recon-
struction problem. Computers & Operations Research, 39(2):213–224

• Conference papers:

– Benedettini, S., Roli, A., and Gaspero, L. (2008b). Two-level ACO
for haplotype inference under pure parsimony. In Proceedings of the
6th international conference on Ant Colony Optimization and Swarm
Intelligence, ANTS ’08, pages 179–190. Springer Berlin / Heidelberg

– Benedettini, S., Di Gaspero, L., and Roli, A. (2008a). Towards a
highly scalable hybrid metaheuristic for haplotype inference under
parsimony. Hybrid Intelligent Systems, International Conference on,
pages 702–707

– Benedettini, S., Roli, A., and Di Gaspero, L. (2009b). EasyGenetic:
A template metaprogramming framework for genetic master-slave al-
gorithms. In Stützle, T., Birattari, M., and Hoos, H., editors, Engi-
neering Stochastic Local Search Algorithms. Designing, Implementing
and Analyzing Effective Heuristics, volume 5752 of Lecture Notes in
Computer Science, pages 135–139. Springer Berlin / Heidelberg

xxiv INTRODUCTION

– Benedettini, S., Blum, C., and Roli, A. (2010). A randomized iterated
greedy algorithm for the founder sequence reconstruction problem. In
Blum, C. and Battiti, R., editors, Proceedings of the Fourth Learning
and Intelligent OptimizatioN Conference – LION 4, volume 6073 of
Lecture Notes in Computer Science, pages 37–51. Springer, Heidel-
berg, Germany

– Roli, A., Arcaroli, C., Lazzarini, M., and Benedettini, S. (2009a).
Boolean networks design by genetic algorithms. In [229], page 13

– Roli, A., Benedettini, S., Serra, R., and Villani, M. (2011a). Analysis
of attractor distances in Random Boolean networks. In Apolloni,
B., Bassis, S., Esposito, A., and Morabito, C., editors, Neural Nets
WIRN10 – Proceedings of the 20th Italian Workshop on Neural Nets,
volume 226 of Frontiers in Artificial Intelligence and Applications,
pages 201–208. IOS Press

– Benedettini, S., Roli, A., Serra, R., and Villani, M. (2011). Stochas-
tic local search to automatically design Boolean networks with max-
imally distant attractors. In Di Chio, C., Cagnoni, S., Cotta, C.,
Ebner, M., Ekárt, A., Esparcia-Alcázar, A., Merelo, J., Neri, F.,
Preuss, M., Richter, H., Togelius, J., and Yannakakis, G., editors,
Applications of Evolutionary Computation, Lecture Notes in Com-
puter Science, pages 22–31. Springer, Heidelberg, Germany

• Technical reports:

– Benedettini, S., Di Gaspero, L., and Roli, A. (2009a). Genetic master-
slave algorithm for haplotype inference by parsimony. Technical Re-
port DEIS-LIA-09-003, University of Bologna (Italy). LIA Series
no. 93

– Benedettini, S., Roli, A., and Di Gaspero, L. (2009c). Easygenetic:
A template metaprogramming framework for genetic master-slave al-
gorithms. Technical Report DEIS-LIA-09-005, University of Bologna
(Italy). LIA Series no. 95

Part I

Combinatorial biological

problems

1

Chapter 1

Brief Introduction to

Metaheuristics

The aim of this chapter is to acquaint the reader with the topic of meta-
heuristics. Metaheuristics are frameworks for developing adaptive—and usually
approximate—search algorithms for tackling hard combinatorial optimisation
problems. Examples of metaheuristics are Simulated Annealing, Tabu Search,
Iterated Local Search, Ant Colony Optimisation and Genetic Algorithms. Meta-
heuristics are a vast and thriving research area; as such, a thorough and com-
plete overview of the techniques and analytic tools in the literature would be
outside the scope of this thesis. The purpose of this chapter is to introduce ba-
sic terminology and definitions useful to comprehend the algorithms described
throughout this dissertation. The novice to the field is, thus, encouraged to
read this chapter, whilst the expert is advised to skim through it to familiarise
with the terminology.

Along with the preliminary definitions in Section 1.1, in this chapter we
present some of the metaheuristic algorithms used in this thesis; in Section 1.2,
devoted to trajectory methods, we describe Tabu Search, used primarily in
Chapter 3; Section 1.3 introduces population methods and two important appli-
cations: Ant Colony Optimisation, principally utilised in Section 3, and Genetic
Algorithms, employed in Chapters 4 and 9.

A great number of works is available in literature; for a comprehensive survey
of metaheuristics techniques we suggest [31], while for an in-depth reading we
recommend the interested reader to look into the book by Hoos and Stützle [110].

1.1 Preliminary definitions

Metaheuristics are general search strategies upon which a specific algorithm for
solving an optimisation problem can be designed. A combinatorial optimisation
problem (COP) can be defined by the following entities:

• a set of decision variables X = {x1, x2, . . . , xn} with domains {D1, D2, . . . , Dn};

• a set of constraints on the decision variables Ω;

• an objective function to be minimised f : D1 ×D2 × . . .×Dn → R
+

3

4 CHAPTER 1. BRIEF INTRODUCTION TO METAHEURISTICS

The set of all feasible assignment is called search (or solution) space and is
denoted by S = {s = 〈(x1, v1), (x2, v2), . . . , (xn, vn)〉 | vi ∈ Di ∧ s satisfies Ω}.

Metaheuristics are popular methods to undertake NP-c COPs and in some
contexts their usage provides important advantages with respect to exact tech-
niques. The most important one is that, contrarily to what complete techniques
do, they do not return a proof of optimality with the result. Looking for a
(proven) optimum of the objective function can require, in the worst case, ex-
ponential time; metaheuristic techniques trade optimality with efficiency and,
as such, are preferable to complete ones in instances where an optimality proof
is not required. Examples of such cases are the HIP in Chapter 3 and the
automatic design of Boolean networks in Chapter 9.

Metaheuristic algorithms are useful when one or more of the following con-
ditions apply:

• an optimality proof is not required;

• efficient complete techniques do not exist;

• it is imperative to find a solution within a short deadline;

• the algorithm is required to return a solution regardless the runtime limit
(any-time solver property).

Structurally, the abstract architecture of metaheuristic algorithms can be
summarised as follows. A metaheuristic is composed of two interacting levels:
a lower level and an upper level. The lower level consists of a search strat-
egy which is typically application specific and integrates heuristic information
about the problem itself. The upper level is responsible of guiding the underly-
ing search process by employing information gathered during the execution of
the lower-layer algorithm itself and stored in some kind of memory; we can say
that the upper level embodies a sort of problem-agnostic learning mechanism
that makes the whole algorithm (lower plus upper levels) adaptive. One of the
most important aspects of metaheuristic design is to carefully balance two key
conflicting properties: exploitation, or intensification, and exploration [31]. Ex-
ploitation means intensifying the search, i.e., spend more time/computational
resources, in promising areas of the solution space; exploration means diversify-
ing the solutions explored so that new areas of the search space are probed and
the algorithm does not stay confined in small areas of the solution space—or, in
an unfortunate case, even get stuck on a single local minimum without escaping.

1.2 Trajectory Methods

Trajectory methods, also known as local search or perturbative search, are search
processes that iteratively modify the current candidate solution, also called in-
cumbent solution or only incumbent, by applying move operators trying to fol-
low trajectories in the search space leading to good solutions. Local search
algorithms are usually stochastic as they involve decisions taken according to a
probabilistic distribution.

More formally, we can say that a local search, starting from an initial solu-
tion s0 ∈ S, walks a trajectory in the state space encountering each iteration

1.2. TRAJECTORY METHODS 5

t ∈ N solutions s0, s1, . . . , st. The solution returned is the best one in the tra-
jectory (sometimes can be st). The choice of the next solution to visit, or move,
is done by means of a (possibly stochastic) selection procedure of the picks a
new solution in the neighbourhood of the current one. Mathematically, a neigh-
bourhood is a function N : S ⇒ 2S which takes a solution and returns one of
the possible subset of S (indicated as 2S); notice that neighbourhood relation
does not need to be symmetric or transitive.

The neighbourhood relation coupled with the objective function imposes a
topology on the search space, or, in other words, introduces the concepts of
“being close to” and “altitude”. More precisely, the search space becomes a
search graph, that is, an oriented graph where each vertex is a solution and
there exist an edge (si, sj) if sj ∈ N (si); moreover each solution is labeled with
its value, thereby defining intuitive concepts such as “slopes” (edges that lead
to solutions with different values),“plateaus ” (close solutions with equal value)
and “valleys” (local minima, i.e., solutions s∗ such that ∀s ∈ N (s∗), s∗ < s).

From a more practical point of view, many successful metaheuristics are
based on the iterative perturbation of a current candidate solution; notable in-
stances of this scheme are Simulated Annealing and Tabu Search. The search
process starts from an initial candidate solution s0 and iteratively produces new
candidates by (slightly) perturbing the current one, until some termination cri-
terion is met (e.g., the computation time limit is reached). In other words, the
neighbourhood structure is implicitly defined by the perturbation. Different
search strategies can be defined by instantiating the two basic choices in the
scheme, i.e., the generation and the choice of the next possible candidate solu-
tion and the acceptance criterion. These search strategies have been extended
and improved, for example by adding advanced exploitation and exploration
strategies [32].

As an example of these techniques we describe Tabu Search in more detail.

1.2.1 Tabu Search

Tabu Search [91] is a local search algorithm which exhaustively explores the
neighborhood of the current solution, by trying all the possible moves, and
chooses as new solution the best among the neighbours evaluated. The pe-
culiarity of Tabu search is that the neighbourhood is restricted by forbidding
recently performed moves in order to prevent cycling. The basic idea is to utilise
a short-term memory in the form of a tabu list L which memorises the last vis-
ited solutions: a solution becomes the new incumbent only if is not contained
in L. This entails that a solution can be visited again no earlier than a number
of iterations equal to the length of L.

The basic Tabu Search method has been extended in numerous ways; for
instance, the length of the is made variable in an interval. Another possibility is
to memorise solution attributes instead of solutions; for instance, in the case of a
Knapsack problem, L could contain a list of prohibited objects so that solutions
that contain such object are forbidden from being visited. An often employed
variant is to accept tabu solutions only if they improve on the incumbent, i.e.,
they are “downhill” moves.

6 CHAPTER 1. BRIEF INTRODUCTION TO METAHEURISTICS

1.3 Population Methods

Population algorithms are a class of metaheuristics that, as opposed to tra-
jectory methods, at every iteration they manipulate a set of solutions. Some
prominent examples of population algorithms are Ant Colony Optimisation,
Genetic Algorithm. Population methods take inspiration from collective com-
plex biological phenomena: Ant Colony is inspired by the foraging behaviour of
worker ants and Genetic Algorithms from the Theory of Evolution It is impor-
tant to stress that, although these algorithms borrow ideas and also terminology
from biological sciences, they are by no means models of biological systems.

From a more formal point of view, these search strategies actually perform a
biased sampling of the search space; the parameters of the probabilistic model
used for sampling are iteratively adapted in order to concentrate the search in
promising areas of the search space. Population methods adhere to the model
based search [249] framework, which can be summarised by these three entities:

Model: a probability distribution on the space of solutions;

Sampling: a population of samples is generated;

Update: samples evaluation is used to modify the model.

In this respect, population methods are more akin to statistical methods such
as machine learning.

1.3.1 Ant Colony Optimisation

Ant Colony Optimisation [65, 220] is an algorithmic framework inspired by the
foraging behaviour of worker ants which are able to construct the shortest path
from their nest to a food source. Such behaviour is remarkable because the
ant system lacks centralised control and its participants are incapable of direct
long-range interactions (only local interactions with the environment) and are
constrained by a limited local knowledge of the environment.

Interaction is mediated by means of artifacts that actively modify the envi-
ronment. Ants are capable of depositing trails of pheromone, a chemical sub-
stance they produce, and are able to sense concentrations of pheromone left by
other workers; pheromone is also volatile and, in time, it evaporates until trails
fade away. When an ant has to decide which path to follow, it stochastically
chooses the path with higher pheromone intensity.

The interplay between ants, pheromone trails and evaporation makes it pos-
sible to have a system that “converges” to the shortest path between food and
nest. Shorter paths attract more ants which, in turn, deposit more pheromone
thereby making the trails stronger; longer paths are characterised by weak
pheromone concentrations due to evaporation and because trails are reinforced
less often: in the long run (we could say, after a transient), long paths are “for-
gotten” by the system. In a way, pheromone artifacts are a sort of long-term
distributed memory.

This kind of ant system is characterised by two opposed forces: positive and
negative feedback. Positive feedback rewards optimal choices (shorter paths
have stronger pheromone trails), whilst negative feedback (evaporation) is the
mechanism by which adaptation is achieved. For instance, depleted food sources
will not be visited anymore because trails leading to them will not be reinforced.

1.3. POPULATION METHODS 7

Algorithm 1 ACO high-level framework.

1: while termination conditions not met do
2: A ← generateSolutions()
3: pheromoneUpdate(A)
4: globalActions() {optional}
5: end while

The evolution of an ant system is typical of a complex system. Initially the
system is in equilibrium, but, thanks to random fluctuations1, equilibrium is
broken and the system converges to a stable dynamical state which minimises
system energy: the shortest path.

From an algorithmic point of view, ACO is a constructive algorithm which
exploits a pheromone model to guide the solution construction; ACO high-level
framework is depicted in Algorithm 1.

generateSolutions() repeatedly applies a constructive heuristic to obtain a
population of solutions A. The heuristic constructs a solution by making
stochastic choices based on pheromone values. From an abstract point of view,
a solution is constituted of components ci, for instances, cities to visit in the
Traveling Salesman Problem or objects in the 01-Knapsack Problem. A partial
solution sp is extended by a component ck to be picked according a probability
distribution p determined by the following formula:2

p(ck|sp) =

[ηk]α · [τk]β
∑

ci∈J(sp)

[ηi]α · [τi]β
if ck ∈ J(sp)

0 otherwise

where we denote with ηi and τi respectively the heuristic problem-specific in-
formation and the pheromone value associated to component ci. Exponents α
and β are algorithm parameters to be configured which weight the influence of
heuristic information and pheromone learning mechanism. With J(sp) we de-
note the set of solution components on which p is defined. Usually J(sp) takes
into account feasibility constraints which are dependent on the current partial
solution and, in a way, defines a sort of neighbourhood of sp; for example, in
the TSP a city must not be visited twice.

The other main component is pheromoneUpdate() which models pheromone
deposit and evaporation. When all solutions have been constructed, pheromone
values are updated according the following formula:

τi ← (1 − p) · ti +
∑

s∈A

∆τsi

where

∆τsi =

{

F (s) if ci is a component of s
0 otherwise

1In every choice an ant makes there is always a small amount of randomness.
2This is of course one of the possible instantiation of the fundamental mechanics and one

of the most natural straightforward formulations because (i) a solution component could be
in principle anything and; (ii) many variations of the p formula and the pheromone update
strategy exist.

8 CHAPTER 1. BRIEF INTRODUCTION TO METAHEURISTICS

Algorithm 2 Genetic Algorithm high-level framework.

1: P ← GenerateInitialPopulation()
2: Evaluate(P)
3: while termination conditions not met do
4: P ′ ← Crossover(P)
5: P ′′ ← Mutate(P ′)
6: Evaluate(P ′′)
7: P ← Select(P ′′,P)
8: end while

where p is the evaporation parameter, and function F is called quality function
ad satisfies f(s) < f(s′)⇒ F (s) ≥ F (s′), ∀s 6= s′. F is similar to the concept of
fitness function in the context of Genetic Algorithms.

Finally, globalActions() encompass centralised actions that go beyond the ant
metaphor, such as the execution of a local search to improve a subset of solution
or the further increase of pheromone values on those components belonging to
the best found solution.

1.3.2 Genetic Algorithms

Genetic algorithms (GAs) belongs to the broad family of evolutionary computa-
tion methods [165] and have been successfully applied as search techniques for
several decades [92, 108, 157]. Inspired by Darwin’s theory of selection and nat-
ural evolution, a GA evolves a population of candidate solutions to a problem
by iteratively selecting, recombining and modifying them. The driving force of
the algorithm is selection, that biases search toward the fittest solutions, i.e.,
those with the highest objective function value.

The general scheme of GAs is illustrated in Algorithm 2. The algorithm iter-
atively generates a new population of candidate solutions by applying operators
such as selection, mutation and recombination to the current population.

The function Evaluate(P) computes the fitness of each individual of popula-
tion P . The fitness function is positively correlated with the objective function,
that quantifies the quality of a candidate solution and it is usually normalised
in the range [0, 1].

Besides fitness function, in GAs three main aspects are subject to designer’s
intervention: solution representation, recombination operators and selection
strategy. Typically GAs do not directly manipulate solutions but rather en-
sembles (populations) of solutions representations, usually called genomes or
individuals according to the biological metaphor. Normally, solutions are en-
coded into linear genomes, i.e., lists of values, but sometimes more complex
structures are employed such as bi- or three-dimensional genomes or, in the
case of Genetic Programming [134], whole trees. The impact of solution encod-
ing in the search process, which mirrors the relationship between genotype and
phenotype in biology, is subject of study in the evolutionary algorithm commu-
nity.

Another key role is assumed by recombination operators, i.e., the ways to
generate new solutions from the current population. To parallel the genetic
metaphor, two kinds of operators are used; the first one, called crossover, takes

1.4. CONCLUSIONS AND DISCUSSION 9

a number (usually two) genomes (parents) and produces a new individual con-
taining features from both parents. The second one, called mutation, applies
a stochastic perturbation to a genome; in this respect is closer to the defini-
tion of move introduced for local search methods. Recombination operators are
repeatedly applied to the current population until an offspring population is
constructed (Line 5 of Algorithm 2).

The last aspect to examine is the selection strategy (Line 7), i.e., the al-
gorithm that chooses the individual from the current population (P) and the
offspring (P ′′) to be carried over to the next generation. Typically, selection
takes into account the fitness values of the genomes; for instance, steady-state
selection carries over only the best solutions from the union of P and P ′′. From
a biological standpoint, selection, alongside the fitness function, plays the role
of the environment that rewards the better individuals.

1.4 Conclusions and discussion

In this chapter we gave a high-level description of metaheuristic algorithms and
we introduced a common vocabulary of terms useful in chapters to come. We
examined the two classes of metaheuristic techniques, trajectory methods and
population algorithms, we pointed out their peculiarities and provided some
examples; specifically, for trajectory methods we described in more detail Tabu
Search, while for population algorithms we focused on Ant Colony Optimisation
and Genetic Algorithms.

10 CHAPTER 1. BRIEF INTRODUCTION TO METAHEURISTICS

Chapter 2

The Haplotype Inference

Problem

In this chapter we present the first of the two biological problems studied in this
thesis: the Haplotype Inference Problem. This is an introductory chapter to the
problem where we give a brief biological background (Section 2.1) and provide
a mathematical formulation (Section 2.2). Section 2.2 is particularly important
because it introduces terminology and formal aspects of the problem that will
be useful throughout the first part of this thesis, and will be further expanded
in Chapter 5. Finally, Section 2.3 summarises relevant alternative formulations
of Haplotype Inference that correspond to different real-world scenarios.

2.1 Biological introduction and motivation

The role of genetic variation and inheritance in human diseases is extremely
important, though still largely unknown [224]. To this aim, the assessment of a
full Haplotype Map of the human genome has become one of the current high
priority tasks of human genomics [223]. Diploid organisms, such as mammals,
have their genetic material arranged in pairs of chromosomes, one inherited
from the father and the other from the mother. A haplotype is one of the two
non identical copies of a chromosome of a diploid organism. The fine-grained
information conveyed by haplotypes makes it possible to perform association
studies for the genetic variants involved in diseases and the individual responses
to therapeutic agents. We know that the majority of human genome is shared
among all individuals and only a small percent accounts for all variations. Out of
this small fraction, the most important and common DNA variations considered
by biologists are the Single Nucleotide Polymorphisms (SNPs pronounced snip),
which occur when a nucleotide in the DNA sequence is replaced by another
one. In most of the cases, in a SNP site only two nucleotides occur. Within
a population, the most frequent nucleotide is called wild type, while the least
frequent is called mutant.

For example, let us consider the following strands of genome coming from
three different individuals g1, g2 and g3:

11

12 CHAPTER 2. THE HAPLOTYPE INFERENCE PROBLEM

Individual genome SNPs binary representation genotype
g1 ATTACGAGAT AGAT 0100 0220

ATTACCTGAT ACTT 0010
g2 ATTACCAGAT ACAT 0000 0002

ATTACCAGAA ACAA 0001
g3 ATTACGAGAA AGAA 0101 2222

ATTTCCTGAT TCTT 1010
wild types ACAT

mutant TGTA
They all share a common genome, except for the loci marked in boldface, which
are SNPs (only two nucleotides occur). The third column highlights the inter-
esting portion of DNA, composed only of SNPs; here, mutant sites are under-
lined. The last two columns shows the numeric representation of haplotypes and
genotypes used in the mathematical model of problem (see Section 2.2). For
convenience, the last two rows show wild and mutant nucleotides for all sites.

Technological limitations make it currently impractical to directly collect
haplotypes by experimental procedures, but it is possible to collect genotypes,
i.e., the conflation of a pair of haplotypes, in which the origins of SNPs can not be
distinguished. Moreover, instruments can easily identify whether the individual
is homozygous (i.e., the alleles are the same) or heterozygous (i.e., the alleles
are different) at a given site. Therefore, haplotypes have to be inferred from
genotypes in order to reconstruct the detailed information and trace the precise
structure of DNA variations in a population. This process is called Haplotype
Inference (also known as haplotype phasing) and the goal is to find a set of
haplotype pairs (i.e., a phasing) so that each genotype can be reconstructed by
combining a pair of haplotypes from the set.

The main methods to tackle Haplotype Inference are either combinatorial
or statistical. Both, however, being of non-experimental nature, need some
genetic model that provides some criteria for evaluating the solution returned
with respect to actual genetic plausibility. In the case of the combinatorial
methods, which are the subject of the present work, one of the most often used
criteria is pure parsimony [102]. This criterion suggests to search for the smallest
collection of distinct haplotypes that solves the Haplotype Inference problem.
This criterion is consistent with current observations in natural populations for
which the actual number of haplotypes is vastly smaller than the total number
of possible haplotypes. The adequacy of this model has already been discussed
and motivated elsewhere [56, 100, 102].

Two notable variants of the Haplotype Inference Problem take into account
unknown sites and parental relationships between individuals. In this work we
only consider the basic version of the problem, in which the full genotype in-
formation is available. Moreover we assume that there are no parental relations
among population individuals.

The solution method we present is based on a set of AI techniques called
metaheuristics (for an introduction to metaheuristics, see, e.g., [31]). In this
framework, the Haplotype Inference problem is tackled as a constrained opti-
mization problem with an objective function defined by the phasing evaluation
criterion of choice (in this work pure parsimony). This chapter and the next
are based on previous works, in which different hybrid metaheuristic methods
for the Haplotype Inferencewere presented [19, 23, 60]. Moreover, in Chapters 3
and 5 the concepts and algorithms contained in the previously cited works are

2.1. BIOLOGICAL INTRODUCTION AND MOTIVATION 13

extended. Specifically, Chapter 3 addresses two important improvements. As
far as experimental validation is concerned, we use a larger and more compre-
hensive test set including both simulated and real instances of various size and
characteristics. All experiments mentioned in [19] have been redone, as well as
the parameter configuration of our algorithms and the comparison between the
pure and the hybrid variants of the proposed metaheuristics, with longer run-
time limits. The best algorithm found in this preliminary evaluation is compared
with the state-of-the-art exact solver rpoly [95], likewise in the previously cited
papers. As a further improvement, we also perform an analysis of the instance
structure with the aim of determining the instance features which should be
taken into account for predicting which of the two approaches (i.e., our hybrid
method and rpoly) will be faster in solving the instance at hand.

Alternative approaches for solving the problem under the pure parsimony
hypothesis (HIpp) include heuristic algorithms, such as the simple greedy Clark
Rule [54] and an effective modification proposed by Marques-Silva et al. [153],
and a recent approach based on graph theoretical interpretation of the prob-
lem [232]. As far as exact methods are concerned, we mention the original
Integer Linear Programming formulation by Gusfield [102] plus a further vari-
ety of ILP models [26, 38, 44, 104, 121, 137]; Semidefinite Programming [114]
and SAT models [146, 147, 162]; algorithms based on Answer Set Programming
[72] and Pseudo-Boolean Optimization (PBO) [94, 95]. We recommend [45, 93]
for comprehensive overviews on combinatorial methods for HIpp.

At present, complete approaches, i.e., the ones that guarantee to return an
optimal solution, such as SAT-based ones, are very effective but they seem not
to be particularly adequate for large size instances. Hence, the need for approx-
imate algorithms, such as metaheuristics, that trade completeness for efficiency.
Moreover, a motivation for studying and applying approximate algorithms is
that the criteria used to evaluate the solutions provide an approximation of the
actual solution quality, therefore a proof of optimality is not particularly impor-
tant. To the best of our knowledge, besides [23, 60], the only attempt to employ
metaheuristic techniques for HIpp is a Genetic Algorithm [233]. However, also
the cited paper does not report results on real size instances.

For the sake of completeness, we mention the major statistical methods that
attempt to solve haplotype inference under different genetic models. Widely
used algorithms are based on Bayesian approach: Stephens et al. proposed
their PHASE algorithm [218] and its evolution PHASE2 [217], Niu et al. introduce
another Bayesian algorithm which makes use of Partition Ligation method and
Gibbs sampling [164] (see also [216] for a comparison). Scheet and Stephens
further elaborate on PHASE algorithm in [193] where they present fastPHASE,
which, as its name suggests, is generally faster than PHASE in large datasets.
Rastas et al. propose a combination of Bayesian methods with the Context Tree
Weighting algorithm [177]. Due to their accuracy, both PHASE and fastPHASE

are typically the term of comparison in works regarding statistical approaches
to Haplotype Inference. Other approaches include Hidden Markov Models [131,
176], the Dirichlet Process [243], Deterministic Sequential Monte Carlo [142]
and variable order Markov Chains [73, 74, 247].

Finally, we refer to [103], which is an introductory survey about statistical
and combinatorial techniques for solving Haplotype Inference under different
genetic assumptions, including, of course, parsimony, and the more recent [40],
which is primarily focused on statistical methods.

14 CHAPTER 2. THE HAPLOTYPE INFERENCE PROBLEM

2.2 Mathematical Formulation

In the Haplotype Inference problem we deal with genotypes, that is, strings of
length m that corresponds to a chromosome with m sites. In particular, not the
whole genetic sequence is considered but we focus only on SNP sites.

Each value in the genotype string belongs to the alphabet {0, 1, 2}. A posi-
tion in the genotype has value 0 (wild type) or 1 (mutant) if the corresponding
chromosome site is a homozygous site (i.e., it has that state on both copies)
or the value 2 if the chromosome site is heterozygous. We also call ambiguous
(resp. non ambiguous) those genotypes which have at least a heterozygous site
(resp. do not have heterozygous sites). A haplotype is a string of length m that
corresponds to only one copy of the chromosome (in diploid organisms) and
whose positions can assume the symbols 0 or 1.

In this variant of the problem we do not distinguish between the maternal
and paternal haplotypes, therefore, given a chromosome, we are interested in
finding an unordered pair of haplotypes that can explain the genotype according
to the following definition:

Definition 1 (Genotype resolution). Given a chromosome g, we say that the
pair of haplotypes 〈h, k〉 resolves, or explains, g, and we write g = h⊕ k, if the
following conditions hold for all sites p = 1, . . . ,m:

gp = 0 ⇒ hp = 0 ∧ kp = 0 (2.1a)

gp = 1 ⇒ hp = 1 ∧ kp = 1 (2.1b)

gp = 2 ⇒ (hp = 0 ∧ kp = 1)

∨(hp = 1 ∧ kp = 0) (2.1c)

We also say that h and k are resolvents of g.

Conditions (2.1a) and (2.1b) require that both haplotypes must have the
same value in all homozygous sites, while condition (2.1c) states that in het-
erozygous sites the haplotypes must have different values.

Observe that, according to the definition, for a single genotype string the
haplotype values at a given site are predetermined in the case of homozygous
sites, whereas there is a freedom to choose between two possibilities at het-
erozygous places. This means that for a genotype string with l heterozygous
sites there are 2l−1 possible pairs of haplotypes that resolve it. Notice that a
genotype with zero or one heterozygous sites is trivially resolved.

As an example, consider the genotype g = 0212, then the admissible pairs
of haplotypes that resolve it are 〈0110, 0011〉 and 〈0010, 0111〉.

After these preliminaries we can state the Haplotype Inference problem as
follows:

Definition 2 (Haplotype Inference problem). Given a population of n indi-
viduals, each of them represented by a genotype string gi of length m, we
are interested in finding a phasing φ, i.e., a function that maps an individ-
ual in the population to one pair of haplotypes φ : gi 7→= 〈hi, ki〉, so that
hi ⊕ ki = gi, ∀ i = 1, . . . , n. We call Hφ the set of haplotypes used in the
construction of φ, i.e., Hφ = {h1, . . . , hn, k1, . . . , kn}.

2.2. MATHEMATICAL FORMULATION 15

2.2.1 The evaluation model

From the mathematical point of view, there are many possibilities for defining
the function φ (and hence the set Hφ), since there is an exponential number of
possible haplotypes for each genotype. Therefore, a criterion should be added to
the model for evaluating solution quality with respect to some biological model.
Such criterion thus measure the biological plausibility of a solution.

A natural model of the Haplotype Inference problem is the already mentioned
pure parsimony approach that consists in searching for a solution that minimizes
the total number of distinct haplotypes used or, in other words,

min |Hφ| (2.2)

A trivial upper bound for |Hφ| is 2n in the case of all genotypes resolved by a
pair of distinct haplotypes. Observe however that, in the general case some of
the haplotypes in the set possibly resolve more than a single genotype therefore
the value |Hφ| is clearly smaller than 2n. It has been shown that the Haplotype
Inference problem under the pure parsimony hypothesis is APX-hard [137] and
therefore NP-hard.

It is important to stress, at this point, that finding a proven optimal solution
is not particularly relevant, because the criterion defining the objective function
is an approximation of an (unknown) actual quality function. Therefore, ap-
proximate approaches that are able to return solutions of a good quality, even
if not optimal, are of notable practical importance.

2.2.2 Compatibility and complementarity

Some structural properties of the problem can be captured in a graph Gc =
(G,E), in which the set of vertices coincides with the set of the genotypes and
a pair of genotypes gi, gj are connected by an edge if they are compatible, that
is, one or more common haplotypes can resolve both of them. For example, the
genotypes 2210 and 1220 are compatible, whereas genotypes 2210 and 1102 are
not compatible.

More formally, the property can be defined as follows:

Definition 3 (Genotype compatibility). Let gi and gj be two genotypes, gi
and gj are compatible if and only if, for all positions p = 1, . . . ,m, the following
conditions hold:

gip = 0 ⇒ gjp ∈ {0, 2} (2.3a)

gip = 1 ⇒ gjp ∈ {1, 2} (2.3b)

gip = 2 ⇒ gjp ∈ {0, 1, 2} (2.3c)

We express the compatibility relation by writing gi ∼ gj .

It can be verified easily that the compatibility relation is reflexive and sym-
metric, but not transitive. For example, let g1 = 1022, g2 = 2021 and g3 = 0021;
we have g1 ∼ g2 and g2 ∼ g3 but g1 6∼ g3. These two properties entail that the
compatibility relation can be modeled by a simple undirected graph Gc whose
adjacency matrix is a (0, 1)-symmetric matrix. If we disregard self-loops, the
adjacency matrix has all zeros on its main diagonal.

An example compatibility graph can be found in Figure 2.1.
A similar property can be also defined between a genotype and a haplotype:

16 CHAPTER 2. THE HAPLOTYPE INFERENCE PROBLEM

g1 : (2210212)
g2 : (2112110)
g3 : (1212122)
g4 : (1222122)
g5 : (1202201)

(a) A set of 5 genotypes

g1

g2

g3

g4

g5

(b) The corresponding compatibility graph

Figure 2.1: An example of compatibility graph for a set of genotypes.

Definition 4 (Genotype and haplotype compatibility). Let g be a genotype and
h a haplotype, g and h are compatible, and we write g ∼ h, if, for all positions
p = 1, . . . ,m, the following conditions hold:

gp = 0 ⇒ hp = 0 (2.4a)

gp = 1 ⇒ hp = 1 (2.4b)

gp = 2 ⇒ hp ∈ {0, 1} (2.4c)

In such case we can also write that h explains g.

Another useful property, which immediately comes from the resolution def-
inition, is the one of complementarity:

Proposition 1 (Haplotype complement). Given a genotype g and a haplotype
g ∼ h, there exists a unique haplotype k such that h⊕ k = g. The haplotype k
is called the complement of h with respect to g and is denoted with k = g ⊖ h.

This important property is the basis of Clark’s Rule [54] and it is also ex-
ploited in the algorithms presented in this work. As an example, considering
again the genotype g = 0212 and the haplotype h = 0110, the only haplotype k
such that g = h⊕ k is 0011.

Some notable properties can be inferred by the compatibility graph. One of
the most important is the lower bound on the number of haplotypes required.
The availability of a lower bound is of primary importance in the context of
exact methods, such as the ones cited previously, or in other techniques that
make use of bound information.

The lower bound presented in [148] involves finding the maximum indepen-
dent set of a graph.

Proposition 2 (Lower Bound). Let Gc be the compatibility graph and M be
the maximum independent set in Gc; a lower bound for the Haplotype Inference
under parsimony is:

2|M | − σ

2.3. NOTABLE VARIANTS OF THE HAPLOTYPE INFERENCE 17

where σ is the number of non ambiguous genotypes.

This bound is easily explained. The maximum independent set M in the
compatibility graph Gc is the largest set of those genotypes which are not com-
patible to each other, therefore they cannot share a haplotype in their resolu-
tions. It follows that, at least 2|M | haplotypes are required, minus one for each
non ambiguous genotype, since non ambiguous genotypes have no heterozygous
site.

Another important general property that can be exploited, especially in a
preprocessing phase, is the identification of connected components in the com-
patibility graph. Let us call C = {G1, G2, . . . , GN} the connected components
in Gc; the union

⋃

c∈C c equals the genotype set G of an instance, so C is a
partition of G. Each connected component can be solved as a separate instance
because it does not share haplotypes with other connected components. If we
denote with Hφ(Gi) (i = 1, . . . , N) the haplotype sets of a phasing for the i-th
sub-instance,

⋃

c∈C Hφ(c) is the haplotype set of a feasible phasing for the whole
instance G. A special case of independent instance is represented by isolated
nodes, i.e., genotypes that are not compatible with any other genotype. Any
feasible resolution for such genotypes is equivalent in terms of the Maximum
Parsimony criterion.

The utility of this property extends of course to any technique, beside meta-
heuristics, and will be used as a preprocessing step in all inference algorithms
presented in this thesis.

These concepts allow to avoid unnecessary checks in the determination of
the resolvents of a given genotype and, as we will see in the following sections,
the graph structure can be exploited to improve the knowledge on the problem.
Moreover, as we will point out in Section 3.4, the structure of the compatibility
graph is one determinant of the hardness of an instance.

Other useful information obtained by the compatibility graph are described
in Chapter 5.

2.3 Notable variants of the Haplotype Inference

In this last section we present some notable variants of Haplotype Inference
that can be found in the literature. From a biological point of view these
alternative formulations address real-world cases that do occur in practice. For
some formulations, the algorithms presented in this dissertation can be naturally
extended.

Parental information (Trios). When association studies are conducted, the
population taken under examinations often contains familial units [39, 119, 151].
In such cases such parental constraint must be taken into account in the problem
formulation. In the typical scenario, a population of specimen may contain one
or more trios, that is, triplets of individuals composed of two parents and a child.
In a trio, the child’s haplotypes must come from each parent. This additional
constraint makes haplotype inference easier.

For instance, suppose we have a “mother” genotype gm = 022010, a “father”
genotype gf = 012202 and a “child” genotype gc = 021220. Here is how this
additional information can be used. The child can be resolved by the following

18 CHAPTER 2. THE HAPLOTYPE INFERENCE PROBLEM

pair of haplotypes 〈0 ∗ 1 ∗ ∗0, 0 ∗ 1 ∗ ∗0〉, where ∗’s denote unknown values. If
we propagate this information to the mother we have that a possible resolution
is 〈0 ∗ 1010, 0 ∗ 0010〉 (we underline the haplotype shared with the child); if we
propagate this information to the father we have the following resolution tem-
plate 〈011 ∗ 00, 010 ∗ 01〉. Finally, we can infer that the only possible resolution
for the child is 〈001010, 011100〉, for the mother is 〈001010, 010010〉 and for the
father is 〈011100, 010001〉. If we had not parental information, we would not be
able to correctly phase such small instance.

It can be easily seen that, if three genotypes are involved in a trio, they form
a triangle in the compatibility graph.

Missing information (Unknowns). Another typical real-world challenge is
to cope with missing data [193, 217]. Sometimes the precise genotype informa-
tion might not be available for all sites. In such cases the usual formulation
of Haplotype Inference is modified to take into account unknown sites (or un-
knowns for short). Instead of dealing with ternary genotype string, Haplotype
Inference with Unknown Data is concerned with genotype strings in a quater-
nary alphabet, such as {0, 1, 2, 9}, where 9 denotes the unknown site. The intro-
duction of this new concept changes the fundamental properties of Haplotype
Inference, the most important of which is the compatibility relation. Basically,
a 9 act as a wildcard in the sense that any pair of alleles can be used to solve
an unknown site. For instance, a genotype 01090 can be resolved by any of the
following pairs: 〈01000, 01000〉, 〈01000, 01010〉, 〈01010, 01000〉, 〈01010, 01010〉.
In general, a unknown site allows for more degrees of freedom with respect to
heterozygous sites. The most remarkable difference introduced by this variant is
that the complement of haplotype h with respect to a genotype g is not unique
if g contains unknowns. For example, the complements of 01011 with respect
to 21092 are both 11000 and 11012.

Minimum entropy. This interesting variant is based on a different genetic
model than pure parsimony [100]. Haplotype Inference by Minimum Entropy,
a specialization of the more general Minimum-Entropy Set Covering Prob-
lem [105], substitutes Equation 2.2 with another formula based on Shannon
entropy. Let G be a Haplotype Inference instance and φ a feasible phasing; we
define a function coverage, denoted cvg(h, φ), as cvg(h, φ) =

∑

g∈G cg,h, where
the contribute cg,h is:

cg,h =

0 if h 6∈ φ(g)
1 if φ(g) = 〈h, k〉 ∨ h 6= k
2 if φ(g) = 〈h, h〉

Basically, the coverage function counts the occurrences, with their multiplicities,
of each haplotype in a phasing. Notice also that

∑

h∈Hφ
cvg(h, φ) = 2|G|. The

entropy of a phasing is thus:

H(φ) = −
∑

h∈Hφ

cvg(h, φ)

2|G|
log

cvg(h, φ)

2|G|

where we can interpret the quantity
cvg(h, φ)

2|G|
as the “probability” of haplotype

h.

2.3. NOTABLE VARIANTS OF THE HAPLOTYPE INFERENCE 19

Haplotype Inference by Minimum Entropy has been demonstrated to be
NP-hard [105].

20 CHAPTER 2. THE HAPLOTYPE INFERENCE PROBLEM

Chapter 3

Hybrid Metaheuristics for

Haplotype Inference

In this chapter, and in the following one, two metaheuristic techniques for tack-
ling the Haplotype Inference problem are described. The first of such techniques
is an hybrid algorithm that integrates Ant Colony Optimization, a population
based metaheuristic, with Tabu search, a stochastic local search technique. The
second one (Chapter 4) is an instance of a Master-Slave Genetic Algorithm, a
particular variation on the usual genetic algorithm framework, which borrows
its main idea from techniques such as variable fixing and large neighborhood
search.

Both algorithms draw inspiration by the so called Clark’s Rule, a determin-
istic greedy constructive procedure, which, based on complementarity (Prop-
erty 1), tries to construct a feasible phasing for a problem instance. The under-
lying idea in both algorithms is to exploit the high-level learning mechanism of
metaheuristics to guide the choices that Clark’s Rule has to make when solv-
ing an instance. This simple but important heuristic will be described in more
detail in the following section.

3.1 Clark’s Rule

Clark’s Rule is a very simple deterministic greedy heuristic first introduced
in [54]. This heuristic iteratively constructs a set H of haplotypes (a phasing
can be then easily obtained) given an ordering of the genotypes by repeated
application of the following inference rule: suppose that an unresolved genotype
g is compatible with a haplotype h in the current set H , add g ⊖ h to H and
remove g from the list of genotypes to visit.

It is important to notice that, despite Clark did not explicitly address the
haplotyping problem by maximum parsimony, Clark’s Rule intrinsically follows
a parsimonious criterion because on each iteration it tries to re-utilize haplo-
types.

This heuristic faces important problems. First of all, it needs a non-empty
haplotype set to bootstrap the search procedure. Such initial set is composed
by unambiguous genotypes—since they are identical to haplotypes—and those
haplotypes that resolve genotypes with only one heterozygous site—since their

21

22CHAPTER 3. HYBRIDMETAHEURISTICS FORHAPLOTYPE INFERENCE

resolution is unique. It is not always possible, though, to obtain an initial set be-
cause an instance might not contain such trivially solvable genotypes and, even
if it did, the haplotypes in the initial set must be compatible to at least one
other genotype in the instance, otherwise the procedure could not go any further.
For example, consider the instance G = {01210, 01012, 20120, 20112, 20212}; the
only bootstrap set, obtained by the first two genotypes, is H0 = {01010, 01110, 01011}
whose haplotypes, unfortunately, are not compatible to the remaining geno-
types. Following a similar argument, it can be concluded that Clark’s Rule
does not always manage to return a resolution for all genotypes. In these cases
Clark’s Rule could indeed be randomly seeded with a suitable haplotype; for
instance, in the previous example, we could add haplotype 00100 and let the
procedure continue.

Another problem is met whenever the partial solution H contains more than
one candidate resolvent for the current genotype as different choices at an early
stage would constrain further choices.

In the last possibility, Clark implements a tie-breaking algorithm dependent
on the genotype visiting order. Nevertheless, beside the bootstrapping prob-
lem, the correctness of the algorithm is not guaranteed and is, anyway, deeply
dependent on the supplied genotype ordering. In its work, Clark addresses the
dependence on the visiting order by running Clark’s Rule multiple times, each
time with a different ordering of genotypes 1, and keeping the solution with the
greatest number of resolved genotypes.

The problem of correctness is also analysed in [101] by Gusfield. In its
work Gusfield formulates the Maximum Resolution problem which is defined as
follows: given a genotype set, find an ordering that, when supplied to Clark’s
Rule, maximises the number of resolved genotypes. Of course, if we could answer
such question we could also determine if there is a visiting order that resolves
all genotypes in an instance. Unfortunately, Gusfield also demonstrates that
the Maximum Resolution problem is NP-hard.

Before we move on with the description of the ACO algorithm, it is worth
to notice that, with the due adjustments, Clark’s Rule could indeed become
a correct algorithm. These modifications have been already mentioned in the
text and all involve the introduction of non-determinism in the execution of
the algorithm. A similar path has been followed by Clark: in its multistart
algorithm, he essentially introduces the same amount of non-determinism, since
the genotype ordering are generated in an uninformed random manner.

There are basically three cases in which the Rule fails:

1. no haplotype in the current partial solution H can resolve an unvisited
genotype (the same case is true if no bootstrap set could be found);

2. there are more than one haplotypes in H that could solve the current
genotype (we disregard the heuristic dependant on genotype order that
Clark introduced);

3. at any iteration, there may be more than one genotype solvable by some
haplotype in the current set H .

Suggested modifications, for each case, could be respectively:

1In the metaheuristic terminology, we can say he used a random multistart.

3.2. METAHEURISTIC TECHNIQUES FOR HAPLOTYPE INFERENCE23

1. randomly pick an unvisited genotype g and a haplotype h ∼ g; add h and
g ⊖ h to H ;

2. randomly select a haplotype from the set {h | g ∼ h} where g is the current
genotype;

3. randomly select an unvisited genotype g such that ∃h ∈ H, g ∼ h.

Such stochastic version of Clark’s Rule can form the basis for more effective
haplotyping algorithms. The main intuition behind the algorithms presented in
this chapter and the next one can be summarised by the following statement:
in principle, an optimal solution could be found if an oracle were to indicate, for
each one of the cases above, the right choices. This is in general not possible,
but an iterative and adaptive search strategy could be very effective in exploring
these possibilities.

3.2 Metaheuristic techniques for Haplotype In-

ference

In previous preliminary works the problem was tackled by means of a single
metaheuristic technique [23, 60].

Although the choice of a genetic model only involves the redefinition of the
objective function, hence the quality function (see Section 3.2.1), this algorithm
is structurally biased towards the pure parsimony approach, because the lower
level genotype resolution, essentially a modified version of Clark’s Rule which
exploit the search experience, aims to re-use already selected haplotypes as we
will see further in the text.

3.2.1 Ant Colony Optimization

The Haplotype Inference problem definition makes constructive procedures very
promising. Indeed, a constructive procedure can incrementally build a set H of
haplotypes which, taken in pairs, resolve the genotypes. Such a procedure can
start from an empty set and add one or two haplotypes at a time, while it scans
the set of genotypes G. The objective is to build H as small as possible, i.e., to
find a minimal cardinality set of haplotypes that composes the phasing. To this
aim, new haplotypes should be added to H only when necessary, i.e., when no
pair of haplotypes already in H resolves the current genotype g. Essentially, the
algorithm, at its core, is a modified version of the basic Clark’s Rule which tries
to deal with all the sources of non-determinism listed previously by exploiting
the learning component of ACO.

In [23], an ant-based algorithm has been proposed, which follows the well-
renowned Ant Colony Optimization metaheuristic [65].

ACO-HI (Algorithm 3.1) is a stochastic constructive procedure that operates
on two levels: on the higher level an ACO for finding a good visiting order of
genotypes is run while on the lower level, another ACO algorithm searches for
the haplotypes to be added to Hφ. The two levels are of course coupled, as
the order in which genotypes are considered is influenced by the current set of

24CHAPTER 3. HYBRIDMETAHEURISTICS FORHAPLOTYPE INFERENCE

1: procedure ACO-HI
2: Preprocessing phase
3: while terminating conditions not met do
4: for all a ∈ A do
5: while not all genotypes are resolved do
6: g ← chooseNode(G)
7: resolve genotype g
8: end while
9: end for

10: pheromone update
11: end while

Figure 3.1: ACO-HI algorithm

haplotypes in Hφ and, conversely, a generic step in the construction of Hφ de-
pends on the previously resolved genotypes. In our implementation, termination
conditions can be a runtime limit or a maximum number of iterations.

Before applying the two-level ACO, the problem instance is preprocessed by
a procedure that eliminates replicates among genotypes and identifies discon-
nected parts in the compatibility graph that can then be treated as independent
instances as described at the end of Section 2.2.2.

Lower level: genotype resolution.

An ant a builds a solution by considering in turn each genotype g ∈ Gc (the
order is defined in the higher-level), where Gc is the compatibility graph for the
instance, and finding a resolution for it (Line 7 in Algorithm 3.1). When a new
resolvent has to be added to Hφ, the values of its heterozygous sites, either 0 or
1, are chosen on the basis of pheromone values 2 and a heuristic strategy.

This strategy constrains the possible choices of a value and aims at mini-
mizing the number of haplotypes to be added to the solution, for example by
forcing the new resolvent to be compatible with an unvisited neighbor of g in the
compatibility graph. In those sites unconstrained by the heuristic strategy, we
have a pheromone guided binary choice: the value is chosen with a probability
proportional to its pheromone value.

Excluding the case in which Hφ already contains a pair of haplotypes re-
solving g, the are three different cases to be considered for the resolution of a
genotype g in this step of the algorithm: (i) no resolving candidates in Hφ, i.e.,
6 ∃h ∈ Hφ | h ∼ g; (ii) one candidate; and (iii) more than one candidate. In the
following, we detail the procedure defined for these cases:

Case (i): A haplotype h is built by a pheromone guided construction proce-
dure, as previously described. Then, k = g ⊖ h, the complement of
h, is calculated and both are added to Hφ.

Case (ii): When one resolving candidate is already available, its complement
w.r.t. g is built and this step completed as in the previous case.

2Homozygous sites do not represent choice points as they are directly assigned because the
haplotype we are constructing must resolve g.

3.2. METAHEURISTIC TECHNIQUES FOR HAPLOTYPE INFERENCE25

Case (iii): When there are two or more candidates in the partial solution Hφ

that can resolve g (but no pair of them can resolve it), we choose
one among these haplotypes by iteratively considering each (het-
erozygous) site and applying the following procedure: if, among the
candidates, the homologous sites have different values (i.e., at least
in a pair there are both values 0 and 1) one of the two is chosen
probabilistically (using pheromone values) and all the candidates
with a different value are discarded. The procedure ends when only
one candidate, call it h, is left. Finally g ⊖ h is added to Hφ.

ACO-HI algorithm can be further improved by slightly modifying the pro-
cedure implemented for case i. In fact, since the new haplotype added to Hφ

must resolve the current genotype g, a heuristic bias toward the construction
of a haplotype that also resolves another genotype compatible with g can be
beneficial. Thus, the genotype g′ that has to be visited after g is determined
by the higher level and a haplotype is probabilistically constructed (as in the
original procedure) that not only resolves g, but also g′. In this way, haplo-
type construction is not only guided by pheromone but also by a heuristic that
avoids building a new haplotype compatible only with genotype g. We will refer
to the improved version of ACO-HI as ACO-HI+. In Section 5.2 we will examine
limitations of this selection heuristic and a possible extension.

Higher level: genotypes visiting order.

The order in which genotypes are visited has a strong influence on solution qual-
ity, therefore the higher level of the algorithm tries to learn a good genotype
visiting order. This learning mechanism is primarily guided by pheromone asso-
ciated to the edges of the compatibility graph. In this way, pairs of consecutive
genotypes in the series are learned. It would be possible to learn larger building
blocks, such as triplets, but we decided to limit the case to pairs because of
efficiency reasons.

Formally, every edge (gi, gj) of the compatibility graph is associated to a
pheromone value τij and the probability to move from node gi to node gj is
given by:

p(gi, gj) =

τij∑
l∈adj(gl)

τil
, if gj ∈ adj(gi)

1
|U| , if gj ∈ U ∧ adj(gi) = ∅

0, otherwise

(3.1)

where adj(gi) is the set of nodes adjacent to gi (i.e., the compatible genotypes)
still unresolved, and U is the set of currently unvisited genotypes not com-
patible with genotype corresponding to gi. In such a way, if gi has adjacent
unresolved nodes, then one among them is chosen according to pheromone val-
ues; otherwise, the next genotype in the sequence is chosen randomly among
the remaining unresolved genotypes.

Pheromone update.

The objective function of the problem is the cardinality of Hφ, that has to be
minimized. Therefore, as a quality function used for the reinforcement, we chose
the function F (Hφ) = 2n− |Hφ|. Pheromone is updated in the two levels with

26CHAPTER 3. HYBRIDMETAHEURISTICS FORHAPLOTYPE INFERENCE

the same evaporation parameter and quality function. The only difference is
that the solution components of the higher level are edges of the compatibility
graph, while in the lower level they are nodes representing values to assign to
haplotype sites.

3.2.2 Stochastic Local Search

In this section we describe the local search method used in our hybrid algorithm.
In [60] a stochastic local search method was proposed based on a simple

neighborhood definition and on a heuristic reduction procedure. The neigh-
borhood considered was built on the 1-Hamming move, which simply swaps
the values assigned to a given site between the two haplotypes currently re-
solving a given genotype. Even though it has shown to be quite effective, that
method presented some limits, mainly related to the fine level of granularity of
the neighborhood. Since then, the local search method has been improved by
empowering it with a more effective neighborhood definition which also exploits
some knowledge about the problem structure. This variant of the algorithm [61]
makes use of a move definition that employs a haplotype already included in
the set Hφ also for resolving other compatible genotypes.

The local search model is defined by specifying the following three entities:
the search space, the cost function and the neighborhood relation, which will be
detailed in the following.

Search space and cost function

As for the search space, we consider states composed by the resolutions g = h⊕k,
for all g ∈ G. Therefore in this representation all the genotypes are fully resolved
at each state by construction. Thus, the search space is the collection of sets φ
defined as in the problem statement.

The cost function is a measure of solution quality including components
related both to the solution evaluation criteria of choice and to heuristic infor-
mation that could guide search toward good solutions.

The component related to the evaluation criterion is an objective function
defined as the cardinality |Hφ| of the set of haplotypes employed in the resolu-
tion; in formulae:

f1(φ) = |Hφ| (3.2)

Moreover, we also include a heuristic measure related to the potential quality
of the solution. In this respect, we counted the number of incompatible sites
between each genotype/haplotype pair and the component of the cost function
is expressed by the following formula:

f2 =
∑

h∈H

∑

g∈G

m
∑

j=1

1− χ(h[j] ∼c g[j]) (3.3)

In the formula, χ denotes the truth indicator function, whose value is 1 when
the proposition in parentheses is true and 0 otherwise.

The cost function F is then the weighted sum of the two components:

F = α1f1 + α2f2 (3.4)

3.2. METAHEURISTIC TECHNIQUES FOR HAPLOTYPE INFERENCE27

1: procedure TS()
2: s← GenerateRandomInitialSolution()
3: s← Reduce(s)
4: sb ← s
5: while termination conditions not met do
6: Na(s)← {s′ ∈ N (s) | s′ does not violate the tabu condition}
7: s′ ← argmin{F (s′′) | s′′ ∈ Na(s)}
8: s← s′ {i.e., s′ replaces s}
9: if F (s) < F (sb) then

10: sb ← s
11: end if
12: end while
13: return best solution found sb

Figure 3.2: High level scheme of Tabu Search for Haplotype Inference

in which the weights α1 and α2 must be chosen for the problem at hand to
reflect the trade-offs between the different components. In our experimentation
we chose the values α1 = α2 = 1.

Neighborhood relation and search strategy

We designed a stochastic local search technique, based on the Tabu Search
metaheuristic template. The strategy is defined in Figure 3.2. The algorithm
starts with a set of randomly generated haplotypes of cardinality at most 2n,
where n is the number of genotypes. Then, a reduction procedure is called
whose aim is to reduce the number of haplotypes by exploiting the structure of
the compatibility graph. This procedure was first presented in [60] and tries to
remove from Hφ haplotypes that are not necessary to resolve some genotype.

After this preprocessing phase, the solver explores the search space by itera-
tively modifying pairs of resolving haplotypes trying to reduce the value of the
cost function F . Then, the iterative process is repeated as long as a termination
criterion is met: in our implementation, we allotted either a maximum runtime
or a combination of maximum iterations and maximum number of iterations
without improvement (idle iterations). Tabu Search explores all the neighbors
of the incumbent solution s that can be reached by applying moves that are not
in the tabu list and chooses the best neighbor (Lines 6–8). A move is tabu if it
or its inverse have been applied in the last tl iterations.

3.2.3 The hybrid algorithm

The structure of the hybrid algorithm is shown in Figure 3.3. Its structure is
relatively simple and consists in a sequential invocation of ACO and a variant
of TS, denoted by TS’, which employs the state returned by the ant-based
algorithm as the initial state of the Tabu Search (in other words, TS with
Line 2 omitted).

We also experimented with a restarting strategy, i.e., putting ACO⊲TS in a
loop and executing several searches from scratch, but we experimentally discov-
ered that its performances were in the same slot as the simple strategy presented
above.

28CHAPTER 3. HYBRIDMETAHEURISTICS FORHAPLOTYPE INFERENCE

1: procedure ACO⊲TS()
2: s← ACO()
3: s← TS’(s)
4: return s

Figure 3.3: The ACO⊲TS hybrid algorithm

N. of N. of N. of

Benchmark set instances genotypes sites

Harrower Uniform 200 10÷100 30÷50
Harrower Hapmap 24 5÷68 30÷75

Marchini SU1/SU2/SU3 100 90 171 ÷ 187
Marchini SU-100kb 29 90 18

ABCD 10 5 ÷ 50 27
ACE 10 5 ÷ 50 52
IBD 17 4 ÷ 50 103
Extra 6 50, 100 75, 100

Eronen 17 500 32
Climer 7 39, 80 5 ÷ 47
Daly 2 147, 387 103

Table 3.1: Main features of the benchmarks.

3.3 Experimental analysis

In this section we show the advantage of the hybrid algorithm with respect to
its basic components and we compare it with rpoly, the state-of-the-art exact
solver for the problem.

The algorithms have been developed in C++, exploiting the EasyLocal++

framework for the local search component [62]. The software was compiled with
the GNU g++ compiler v. 3.4.6 and tested on cluster composed of Intel Xeon
3.0GHz machines running Linux (kernel 2.6.18). All software has been compiled
with -O3 flag on.

In the following experiments we employ thirteen sets of instances, whose
features are summarized in Table 3.1:

• Harrower Uniformand Harrower Hapmapare taken from [38];

• Marchini SU1, Marchini SU2, Marchini SU3 and Marchini SU-100kb are
downloadable from http://www.stats.ox.ac.uk/~marchini/phaseoff.

html;

• ABCD, ACE, IBD, Extra are a selection of instances from their respective
instance set which have been provided by the same authors as [94];

• Eronen is a selection of instances from the dataset used in [73], which we
refer to for a complete description;

• Climer: this is the dataset labeled “Known haplotype data” from [56];

• Daly contains two instances: one is the original dataset from [58] (down-
loadable at: http://www.broadinstitute.org/archive/humgen/IBD5/

http://www.stats.ox.ac.uk/~marchini/phaseoff.html
http://www.stats.ox.ac.uk/~marchini/phaseoff.html
http://www.broadinstitute.org/archive/humgen/IBD5/haplodata.html

3.3. EXPERIMENTAL ANALYSIS 29

haplodata.html) the other is the one used in [73]; in both we considered
all missing sites as heterozygous.

All complete datasets are available at this URL3: http://apice.unibo.it/

xwiki/bin/view/HaplotypeInference/.
In order to select the parameters for the solvers we proceeded as follows.

Out of the thirteen instance set, we first identified a subset as our training set.
In this stage, we adopted as a measure of hardness of an instance the runtime
of an algorithm, given a fixed amount of maximum and idle iterations. From
preliminary sample runs, we concluded that Harrower Uniform and Harrower
Hapmap were representatives of “easy” instances while Marchini SU1, SU2, SU3
and SU-100kb were representatives of “hard” instances. This rough classifica-
tion is indeed confirmed by looking at Table 3.3. We then made 10 independent
runs of ACO⊲TS, providing 1000 idle iterations and 2000 total iterations limits
(shared between ACO-HI+ and TS components) and no timeout. For each in-
stance set, we recorded the longest execution time. Next we run the other two
pure algorithms (ACO-HI+ and TS) by setting as timeout for each instance in a
given set the aforementioned longest execution time; no limits on the number of
idle and maximum iterations were imposed. This way we could fairly compare
the three algorithms.

The other parameters were kept fixed throughout the evaluation process: 0.1
evaporation factor, 75 artificial ants (for ACO-HI+) and a variable length tabu-
list between 20 and 30 (for TS). Also, as initial solution for the TS algorithm,
we chose the one returned by the ACO algorithm after a single iteration. These
parameters have been determined after a full factorial analysis on a reduced set
of instances.

3.3.1 Analysis of ACO-HI+, TS and ACO⊲TS

The results of the analysis of the ACO-HI+, TS and ACO⊲TS algorithms are
presented in Figure 3.4 where we compare, for each training dataset, the per-
formance of our algorithms. The boxplots [83] drawn in the graphics were
calculated as follows: 1) for a dataset S and an algorithm a, we made 10 in-
dependent runs of a on every instance s ∈ S and recorded the solution value
(as per Equation 2.2, to be minimized); 2) this way, we obtained a performance
matrix Ma = d×10 matrix, where d is the cardinality of the dataset; 3) we then
computed the average on each column of Ma, i.e., we took the average across
all instances, and obtained a vector of 10 data points va. We repeated this
procedure for each algorithm a ∈ {ACO-HI+,TS,ACO⊲TS} and each training
dataset; each boxplot refers to each one of the vector va calculated at step 3.
We notice that the average took at step 3 does not bias the results because all
instances in a datasets are comparable with respect to solution value.

Table 3.2 and 3.3 report average and standard deviation of the cumulative
running time for solving all the instances of each set and on the time for each
of the algorithm to find the best solution. From Table 3.3 it can be seen that,
on average, Marchini’s datasets are actually more computationally intensive,
while Harrower’s datasets do not require a similar computational effort since the
algorithms have shorter runtimes. Table 3.4 similarly summarizes the efficiency

3We thank Ana Sofia Graça and Inês Lynce for kindly providing us their instances and
solvers; we also thank Ian M. Harrower and Sharlee Climer for sending us their datasets.

http://www.broadinstitute.org/archive/humgen/IBD5/haplodata.html
http://apice.unibo.it/xwiki/bin/view/HaplotypeInference/
http://apice.unibo.it/xwiki/bin/view/HaplotypeInference/

30CHAPTER 3. HYBRIDMETAHEURISTICS FORHAPLOTYPE INFERENCE

13
.4

5
13

.5
0

13
.5

5
13

.6
0

ACO-HI+ TS ACO⊲TS

(a) Harrower Uniform

15
.2

0
15

.3
0

15
.4

0

ACO-HI+ TS ACO⊲TS

(b) Harrower Hapmap

12
2

12
4

12
6

12
8

13
0

ACO-HI+ TS ACO⊲TS

(c) Marchini SU1

15
0

15
2

15
4

15
6

ACO-HI+ TS ACO⊲TS

(d) Marchini SU2

14
6

14
8

15
0

15
2

ACO-HI+ TS ACO⊲TS

(e) Marchini SU3

36
.0

36
.2

36
.4

36
.6

36
.8

37
.0

ACO-HI+ TS ACO⊲TS

(f) Marchini SU-100kb

Figure 3.4: Solution value found by ACO-HI+, TS and ACO⊲TS (on the y-axis
is reported the average number of haplotypes over all the instance set).

3.3. EXPERIMENTAL ANALYSIS 31

of each algorithm, measured as the ratio—expressed in percentage—between
the time to find the best solution and total running time.

Data in Figure 3.4 clearly show that ACO⊲TS is almost always superior to
the plain local search and statistically indistinguishable from ACO-HI+, except
in one single instance set, namely Marchini SU-100kb, while ACO⊲TS system-
atically dominates the other algorithms.

The results also demonstrate that the hybrid algorithm, and the pure ver-
sions as well, is very stable with respect to solution value, that is, despite
ACO⊲TS being a stochastic algorithm, different realizations have a high proba-
bility to return solutions whose values fall in a small interval.

Experimental results show that even the proposed coarse integration of the
two basic algorithms improves solution quality. This can be explained by the fact
that, in general, population algorithms are good at finding promising areas in the
search space, rapidly improving the solution in the early stages of the search.
On the opposite side, they are not able to explore promising areas, that is,
intensifying around good solutions, which, instead, is one of the characteristics
of local search algorithms. This is also witnessed by the different efficiency
figures reported in Table 3.4. Moreover it can be stressed that, with this set
of parameters, the hybrid algorithm compares favorably against the pure ACO
for what running times are concerned, in fact, not only it is faster, but also has
comparable time-to-solution and a higher efficiency.

Marchini SU-100kb instance set exhibit an unusual phenomenon: in those
instances the ACO-HI+ algorithm is dominated even by the pure local search.
This behavior is due to the particular structure of the instances—we conjecture
that is due to the sparseness of their compatibility graph.

To conclude, this is an example that shows how much a hybrid approach
could be particularly useful in general, since each component compensates for
each other weaknesses.

3.3.2 Comparison between ACO⊲TS and rpoly

In the second phase of the experimentation process we compare ACO⊲TS with
the latest version of rpoly, namely 1.2.1 at the time of this writing, the state-
of-the-art exact method for the problem. rpoly [94] is a Pseudo Boolean Op-
timisation (PBO) model of the Haplotype Inference by Pure Parsimony that
is based on the integer programming formulation PolyIP [37]. PolyIP is a 0-
1 integer programming formulation (i.e., variables have domain {0, 1} and all
constraints and the objective function are linear with integer coefficient), there-
fore is automatically a PBO model. What rpoly basically does is to take the
PolyIP model of an instance and optimise it by reducing the formulation, adding
symmetry breaking constraints and also integrating a lower bound [96]. The re-
sulting model is finally passed to a standard PBO solver (MiniSAT+ [69] in the
current implementation). In addition, since its latest release, rpoly can be run
as an incomplete anytime solver by setting a runtime limit: in the allotted time
span, either it finds the optimum or it returns an approximated solution.

Like many problems in the field of bioinformatics, Haplotype Inference is not
time-critical: high accuracy and solution quality is much more valuable than a
fast-computed solution. That said, we decided to give the competing algorithms
a large amount of time to solve each instance.

3
2
C
H
A
P
T
E
R
3
.
H
Y
B
R
ID

M
E
T
A
H
E
U
R
IS
T
IC

S
F
O
R
H
A
P
L
O
T
Y
P
E
IN

F
E
R
E
N
C
E

ACO-HI
+

TS ACO⊲TS

Instance set running time time to best running time time to best running time time to best

Marchini SU1 8835.5 (101.943) 1609.9 (191.044) 1182.2 (20.069) 1181.0 (20.020) 5667.6 (88.565) 1693.3 (99.522)
Marchini SU2 4046.1 (35.478) 733.6 (56.826) 21.4 (3.040) 21.0 (2.933) 3258.3 (25.679) 572.6 (40.098)
Marchini SU3 7587.9 (122.346) 1208.0 (165.636) 715.6 (45.844) 714.8 (46.151) 4529.3 (79.467) 1268.0 (100.410)
Marchini SU-100kb 4954.6 (107.687) 923.9 (245.572) 1331.1 (118.686) 1331.1 (118.686) 3142.7 (93.112) 1059.5 (93.865)

Harrower Uniform 8864.6 (11.191) 232.5 (29.817) 800.9 (8.514) 800.7 (8.521) 4788.4 (30.345) 552.0 (34.880)
Harrower Hapmap 742.7 (2.283) 25.4 (26.834) 178.1 (27.142) 178.1 (27.142) 449.8 (15.542) 89.7 (15.324)

Table 3.2: Cumulative running times and cumulative times to the best solution found by the algorithms (in seconds of CPU time).

3
.3
.

E
X
P
E
R
IM

E
N
T
A
L
A
N
A
L
Y
S
IS

3
3

ACO-HI+ TS ACO⊲TS
Instance set running time time to best running time time to best running time time to best
Marchini SU1 88.4 (1.019) 16.1 (1.910) 11.8 (0.201) 11.8 (0.200) 56.7 (0.886) 16.9 (0.995)
Marchini SU2 40.5 (0.355) 7.3 (0.568) 0.2 (0.030) 0.2 (0.029) 32.6 (0.257) 5.7 (0.401)
Marchini SU3 75.9 (1.223) 12.1 (1.656) 7.2 (0.458) 7.1 (0.462) 45.3 (0.795) 12.7 (1.004)
Marchini SU-100kb 170.8 (3.713) 31.9 (8.468) 45.9 (4.093) 45.9 (4.093) 108.4 (3.211) 36.5 (3.237)
Harrower Uniform 44.3 (0.056) 1.2 (0.149) 4.0 (0.043) 4.0 (0.043) 23.9 (0.152) 2.8 (0.174)
Harrower Hapmap 30.9 (0.095) 1.1 (1.118) 7.4 (1.131) 7.4 (1.131) 18.7 (0.648) 3.7 (0.638)

Table 3.3: Cumulative running times and cumulative times to the best solution found by the algorithms (in seconds of CPU time) averaged
on the number of instances per set.

34CHAPTER 3. HYBRIDMETAHEURISTICS FORHAPLOTYPE INFERENCE

Instance set ACO-HI+ TS ACO⊲TS
Harrower Uniform 2.6% (0.3%) 99.7% (0.009%) 11.5% (0.7%)
Harrower Hapmap 3.4% (3.6%) 97.1% (0.3%) 19.9% (2.7%)
Marchini SU1 18.2% (2.0%) 99.7% (0.009%) 29.9% (1.3%)
Marchini SU2 18.1% (1.4%) 97.1% (0.3%) 17.6% (1.1%)
Marchini SU3 15.9% (1.9%) 99.5% (0.03%) 28.0% (1.7%)
Marchini SU-100kb 18.6% (4.5%) 99.9% (0.002%) 33.7% (2.0%)

Table 3.4: Efficiency of the algorithms (in percentage).

As for the experimental setup of rpoly, we set a 16 hours timeout for
each instance, amount determined after sample runs on the whole benchmark.
The parameters of the hybrid algorithm were set as in the previous training
experiments, and we assigned a maximum runtime of 96 minutes.

In order to fairly compare ACO⊲TS against the complete algorithm, we run
it 10 times on each instance and then we took the best solution. To sum up, we
compared the anytime version of rpoly with a 16 hours timeout against the
best solution returned by our ACO⊲TS in 10 runs of 96 minutes each. In the end,
both algorithms have a runtime budget of 16 hours for each instance. Results on
these experiments are shown in the scatter plots pictured in Figures 3.5, 3.6, 3.7;
the solution quality returned by ACO⊲TS is plotted on the y-axis while in the
x-axis is plotted the solution value returned by rpoly. This way, a dot above
(resp. below) the diagonal line means that the solution found by ACO⊲TS is
worse (resp. better) than the one obtained by rpoly.

These results show that rpoly and ACO⊲TS are equally capable of solving
to optimality the instances in Harrower Uniform, Harrower Hapmap, Extra,
ABCD, IBD and Climer datasets. Only in ACE dataset ACO⊲TS cannot solve
two instances to optimality. The results show that rpoly is also very effective
on bigger datasets, namely Marchini’s. On Marchini SU1 and Marchini SU3,
ACO⊲TS is almost as good as rpoly, while in Marchini SU2 rpoly seems
slightly superior. On the other hand, ACO⊲TS is clearly superior to rpoly in
Marchini SU-100kb as far as solution value is concerned since the ACO⊲TS can
either find the optimum whenever rpoly does, or a better solution if rpoly

does not. It is interesting to notice that in six Marchini SU-100kb instances and
three Marchini SU3 instances rpoly yields a far worse solution than ACO⊲TS
because it cannot reach the optimum.4 Likewise, on large-size instances such as
Eronen and Daly, the ACO⊲TS algorithm is particularly effective as it always
dominates rpoly.

We can conclude that rpoly is adequate for small-to-moderate-size in-
stances, while the ACO⊲TS is comparable to rpoly on the easiest datasets
and seems the only viable option for large size problems.

3.4 Instance structure analysis

The two solvers rpoly and ACO⊲TS clearly exhibit a qualitatively different
behavior on different instances also in the same instance set, therefore it is very

4We recall that we run the anytime version of rpoly, so the optimality is not guaranteed.

3.4. INSTANCE STRUCTURE ANALYSIS 35

0 5 10 15 20 25 300

5

10

15

20

25

30

(a) Harrower Uniform

0 5 10 15 20 25 30 35 40 450

5

10

15

20

25

30

35

40

45

(b) Harrower Hapmap

40 60 80 100 120 140 160 18040

60

80

100

120

140

160

180

(c) Marchini SU1

120 130 140 150 160 170 180120

130

140

150

160

170

180

(d) Marchini SU2

80 100 120 140 160 18080

100

120

140

160

180

(e) Marchini SU3

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

(f) Marchini SU-100kb

Figure 3.5: Comparison of solution value rpoly (x-axis) vs. ACO⊲TS (y-axis)
on Harrower and Marchini datasets.

36CHAPTER 3. HYBRIDMETAHEURISTICS FORHAPLOTYPE INFERENCE

6 8 10 12 14 16 18 20 22 246

8

10

12

14

16

18

20

22

24

(a) ABCD

0 10 20 30 40 50 600

10

20

30

40

50

60

(b) IBD

6 7 8 9 10 11 12 136

7

8

9

10

11

12

13

(c) ACE

20 25 30 35 40 4520

25

30

35

40

45

(d) Extra

0 200 400 600 800 10000

200

400

600

800

1000

(e) Eronen

5 10 15 20 25 305

10

15

20

25

30

(f) Climer

Figure 3.6: Comparison of solution value rpoly (x-axis) vs. ACO⊲TS (y-axis)
on datasets from [56, 73, 94].

3.4. INSTANCE STRUCTURE ANALYSIS 37

150 200 250 300 350 400 450 500 550 600150

200

250

300

350

400

450

500

550

600

(a) Daly

Figure 3.7: Comparison of solution value rpoly (x-axis) vs. ACO⊲TS (y-axis)
on Daly benchmark.

important to study what features are most responsible for instance hardness.
In our analysis, we partitioned the whole set of instances in three classes—
ACObt, ACOeq and ACOwt—composed of the instances for which ACO⊲TS
returns a solution better than, equal to or worse than that returned by rpoly,
respectively.

For a Haplotype Inference instance several features can be considered, such
as the number of genotypes, sites, heterozygous sites and also characteristics of
the compatibility graph. We selected the following 16 features:

• number of genotypes;

• number of sites;

• statistics on the number of heterozygous sites: min, max, 1st and 3rd
quartile, mean and median (6 features);

• number of edges in the compatibility graph;

• statistics on the compatibility graph vertex degree: min, max, 1st and 3rd
quartile, mean and median (6 features);

• Fiedler value (λ2) of the compatibility graph. λ2 is the second smallest
nonzero eigenvalue of the graph Laplacian matrix and provides informa-
tion on the size of any graph cut [79].

Our conjecture is that the origins of the performance difference between
ACO⊲TS and rpoly are very likely to be found where the combinatorial nature
of the problem arises, that is, in some features related with the connectivity
of the compatibility graph, such as the number of edges or the vertex degree.
Boxplots in Figure 3.8 show a compact view of the distributions of the main
features listed above.

From the boxplots, we can observe a common pattern: the sets ACObt and
ACOwt can be separated—with some exceptions—by looking at graph features,

38CHAPTER 3. HYBRIDMETAHEURISTICS FORHAPLOTYPE INFERENCE

ACObt ACOeq ACOwt

0
50

10
0

15
0

Median degree

ACObt ACOeq ACOwt
0

50
00

10
00

0
20

00
0

30
00

0

Number of edges

ACObt ACOeq ACOwt

0
10

20
30

40
50

60
70

Median number of heterozigous sites

ACObt ACOeq ACOwt

0
5

10
15

Fiedler value

ACObt ACOeq ACOwt

0
10

00
0

20
00

0
30

00
0

40
00

0

Number of sites times number of genotypes

Figure 3.8: Boxplots of the distributions of the most significant features for the
instances in the sets ACObt, ACOeq and ACOwt.

3.5. CONCLUSIONS AND DISCUSSION 39

while the instance size (computed as the number of genotypes times the number
of sites) does not discriminate very well—though, by looking separately at num-
ber of genotypes and number of sites the distinction is less unclear. Conversely,
the distribution of the features in the instances composing the set ACOeq seems
to be highly spread along all the range, therefore it is not possible to clearly dis-
criminate among the three classes on the basis of a single feature. Nevertheless,
the sharp separation between ACObt and ACOwt makes it possible to extract
some interesting pieces of information about the relation between instance struc-
ture and algorithm performance. The most notable difference between the sets
ACObt and ACOwt is that the compatibility graph associated to instances in
ACObt is much more dense than for ACOwt, because the degree, the number
of edges and the Fiedler value are much higher in ACObt than in ACOwt. This
could probably be explained by the fact that the SAT instance generated for
rpoly increases with the number of compatibility relations between genotypes.
Moreover, the median number of heterozygous sites is much lower in ACObt
than in ACOwt: in this case, the lower the number of heterozygous sites per
genotypes, the better ACO⊲TS performs. An explanation for this phenomenon
could be that the ACO part of ACO⊲TS might not explore effectively the space
of possible assignments for each genotype.

A more detailed analysis on the relation between compatibility graph fea-
tures and algorithm performance should be undertaken in order to clearly iden-
tify the most discriminant feature. Furthermore, it would be of practical rel-
evance to be able to choose the most appropriate solver, between rpoly and
our hybrid metaheuristic, on the basis of instance features. In this way, a quick
test on some significant instance features can be used to select the solver that
is more likely to perform better on that particular instance. This idea has been
already applied in the context of combinatorial optimization problems, also ex-
ploiting machine learning techniques [42, 99, 141]. For example, it is possible
to employ a machine learning technique to infer a decision tree, i.e., a set of
rules or a more advanced classification method such as AdaBoost [82], to have
a prediction of the class the instance will belong to.

3.5 Conclusions and discussion

We have shown the effectiveness of the approach of hybridizing an Ant Colony
Optimization and a Stochastic Local Search metaheuristic for solving the Haplo-
type Inference problem under the pure parsimony criterion. The hybrid ACO⊲TS
algorithm improves the performance of its basic components and is very ef-
fective, especially on real-world large-size instances coming from the HapMap
project. Moreover, the hybrid algorithm is able to compare favorably against
the state-of-the-art solver for this problem.

Unfortunately, this approach cannot be extended to tackle instances with
unknown without a major reformulation of the algorithm. As written in Sec-
tion 2.3, the presence of unknowns radically changes the complementarity prop-
erty, which is the basis of Clark’s Rule and, hence, of the ACO algorithm.
A possible solution to the problem of unknowns that still uses familiar, but
different, notions, such as compatibility and complementarity, is the topic of
Chapter 5. One could of course try to apply these algorithms to an instance
with unknowns by substituting every missing site with a heterozygous site. This

40CHAPTER 3. HYBRIDMETAHEURISTICS FORHAPLOTYPE INFERENCE

operation, though, adds constraints to the problem and the solution returned
by an algorithm, although feasible, will not likely be optimal.

For what the ACO component is concerned, this algorithm can be also seam-
lessly applied to the minimum entropy formulation; it suffices only to change the
objective function, and consequently the quality function. It has to be noticed
that the behaviour of lower level resolution (Section 3.2.1) is naturally geared
towards parsimony so the performances of the algorithm might not be as good.
Of course, from an engineering point of view, this algorithm is also modular
in nature, so it is possible to replace the current lower level resolution with a
procedure more suited to minimum entropy.

Chapter 4

Genetic Master-Slave

Algorithm for Haplotype

Inference by Parsimony

In this chapter, we introduce a general framework of a hybrid metaheuristic
technique called “Master-Slave Genetic” algorithm (MSG). We will show how
this framework can be successfully applied to a wide variety of combinatorial
optimization problems for which a parametrized constructive procedure is avail-
able. We will see how the MSG can be used to enhance a constructive heuristic,
similarly to what we did in Chapter 3 with the ACO algorithm, and we will
describe its application to the Haplotype Inference by Pure Parsimony. In addi-
tion, with the aim of showing the generality of this approach, we also present the
results of the application of the MSG to two graph-related problems, namely,
the Capacitated Vehicle Routing Problem (CVRP) [55] and the Capacitated
Minimum Spanning Tree Problem (CMSTP) [75].

Our formulation of MSG has been introduced in [20, 21] along with an appli-
cation to Haplotype Inference. CVRP and CMSTP have been object of study
in [14], where an effective MSG algorithm is proposed.

4.1 Introduction and motivations

In what follows, we present a “Master-Slave Genetic” algorithm (MSG) able to
improve the performance of existing constructive heuristics in a more general
setting. The MSG can be seen as a “two-level genetic algorithm‘” (TLG), where
TLGs represent a broad category of metaheuristics sharing a common design
principle. In a MSG algorithm, the problem resolution is decomposed into two
interacting stages, in which the first stage consists of a genetic algorithm.

TLG algorithms are widely adopted and their paradigm is interpreted in
different ways. For example, in [49] a TLG to solve a site allocation problem
is proposed, in which a genetic algorithm defines first the location decisions,
then an LP solver provides the corresponding flow assignment. A similar idea
is employed for an allocation problem in [70], and in a flow interception prob-
lem [245]. TLGs are used in a different spirit in [87] for the Unit Commitment

41

42 CHAPTER 4. MSG ALGORITHM FOR HAPLOTYPE INFERENCE

problem. A GA generates a solution (chromosome) for a relaxed problem, which
is then repaired by a second algorithm. A TLG for the Joint Product Family
Platform Selection and Design problem is has been also presented [130].

On the other hand, several works [136, 192, 207], interpret the TLG paradigm
in the same way as in our contribution. The solution construction is decomposed
into two stages: a high-level GA produces first a permutation of elements in a
set (chromosome), then, given the chromosome information, a lower-level solver
computes and evaluates the solution value. This value is then returned to the
GA, so as to perform selection.

Even if our method is similar to the ones presented in the previous cited
works, there is one major innovation: instead of devising an ad-hoc lower-level
heuristic, we use and enhance an existing constructive procedure. For Haplotype
Inference, the proposed algorithm is once again based on a deterministic variant
of Clark’s Rule whose parameter is the genotype ordering. The algorithms for
the graph problems are instead built upon the concept of saving heuristics,
deterministic constructive algorithms whose behaviour depend on an input list
of merge operations which, essentially, determines the final feasible solution.

The remainder of this thesis is structured as follows. Section 4.2 is devoted
to the description of the MSG; Section 4.3 describe our MSG algorithm for
Haplotype Inference by Pure Parsimony; Section 4.4 reports the results about
the experiments on the haplotyping problem. Since this dissertation is mainly
focused on biological applications, the discussion about the two graph problems
is concern of the last two Sections A.1 and A.2, whose scope is limited to a brief
introduction to the new problems and a summary of the experiments. Further
details and results are available in a separate work [14].

4.2 Master-slave Genetic framework

This section introduces the MSG framework in general terms.

Algorithm 3 Master-slave high-level framework

1: P ← buildInitialPopulation(n) {set of n individuals}
2: evaluate(P)
3: while terminating conditions not met do
4: P ′ ← applyGeneticOperators(P) {operators depend on individual repre-

sentation}
5: evaluate(P ′) {use slave algorithm}
6: P ← populationUpdate(n, P , P ′)
7: end while
8: return min(P)

The core idea of our MSG lays in the possibility of splitting the solution
construction in two nested phases. In the first phase, the parameters of a solu-
tion construction procedure are set by a master solver and in the second phase
the solution is actually built by a slave solver. For example, for combinatorial
problems there can be constructive procedures based on: the sequence of ob-
jects to be included in the solution and/or the decisions to be taken, the set of
preassigned variables or the set of hard constraints to be fulfilled.

4.2. MASTER-SLAVE GENETIC FRAMEWORK 43

In a sense, the problem is decomposed into two, interdependent, sub-problems.
The solution to the first problem is an input for the second, that actually con-
structs a solution. In our TLG framework, the first algorithm is a genetic
algorithm, while the second is a problem-specific heuristic. We can say that, in
a way, the master explores a search space of “parameters”: the objective value
of the points in this space is the value of the solution returned by the slave.

From an implementation point of view two things can be further noted. From
an algorithm design perspective, the main advantage of partitioning a problem
into master and slave is a clearer separation of concerns, which helps design
a more extensible algorithm and allows a simple and neat implementation. In
addition to that, an MSG algorithm lends itself to parallel implementations as
it is, at its core, a genetic algorithm. The slave algorithm could be executed on
different processors, up to one for each offspring to be evaluated. This would
save up most of the computing time, because the evaluation of the fitness is the
most time consuming task in MSG.

After having fleshed out the its general characteristics, we see that, in order
to use the MSG framework, the problem-specific design choices amount to de-
ciding a constructive for the slave and the master’s relevant components (genetic
operators, update strategy and so on).

Software Frameworks for MSG. From a programmer’s perspective, a MSG
algorithm can be easily implemented on top of an existing genetic algorithm
framework library in a straightforward way, as was pointed out at the end of
the previous section. Every software library that facilitates genetic algorithm
development provides, in fact, some way to define a problem-specific fitness
function; that hook can be utilised to implement the desired slave procedure.

Though many software frameworks are available 1, we felt the need to have
a tool better suited to our needs. As part of the work presented in the fol-
lowing sections, we implemented ourselves a C++ software framework, called
EasyGenetic [17], to ease the development of MSG algorithms. The main dif-
ference between EasyGenetic and other popular evolutionary algorithm frame-
works, such as ParadisEO [41], galib [231] or ECJ [68], is that it is heavily based
on template metaprogramming techniques 2 to eliminate runtime abstraction
penalties and to allow more flexibility in design.

Many GA frameworks provide typical chromosome representations, typi-
cally one- or two-dimensional numeric arrays; other frameworks also include
tree-based chromosomes for genetic programming. In EasyGenetic we take
a different standpoint. Inspired by another software framework, spGAL [215],
EasyGenetic is designed to encourage the programmer to write reusable generic
code. “Generic” in this context means that every component abstracts away
from the actual implementation of the chromosome. Chromosomes can thus be
as simple as bitstrings or as complex as trees, graphs or totally different objects
altogether. The only constraints between algorithm components (recombina-
tion operators, selection strategy and so on) and chromosomes is represented
by concepts. Concepts are specifications of structural interfaces, as opposed
to the usual definition of interface found in mainstream OOP languages, such

1At the time of the writing, there are 284 projects on SourceForge [214] categorised under
“Genetic Algorithm”, 88 of which are written in C++, our language of choice.

2ParadisEO makes use of design patterns based on template instantiation, but it does not
exploit metaprogramming techniques.

44 CHAPTER 4. MSG ALGORITHM FOR HAPLOTYPE INFERENCE

as Java, and are of fundamental importance in writing generic functions [98].
Concepts are a way to specify structural subtyping, that is, a form of subtyp-
ing that is roughly based on which operations a type provides. As opposed to
nominal subtyping, where the programmer must explicitly state the subtype
relation, concepts allow for a more “open” form of subtyping: every type that
meet a concept’s requirements can be automatically used, without programmer
intervention, wherever an object of that particular concept is required. For in-
stance, a sorting function might require that the objects it sorts all implement
a comparison operator. A similar form of subtyping, popular among dynami-
cal languages, is called Duck typing [67], with the main difference that struc-
tural subtyping with concepts is enforced at compile-time, while Duck typing
is checked at run-time. With concepts and metaprogramming, we are able to
have a great deal of expressiveness without sacrificing compile-time checks and
runtime efficiency. For example, EasyGenetic can support crossover operators
that take an arbitrary number of parent chromosomes, say n, and, contemporar-
ily, are naturally implemented by a simple functions with n arguments. Other
frameworks, instead, allow only a fixed number of recombinants, typically one
(asexual crossover) or two (sexual crossover) [231].

Further information on EasyGenetic is available in [21, 22].

4.3 MSG for Haplotype Inference

Like we previously did in Chapter 3, we enhance a parametrized constructive
by means of a metaheuristic. Yet again, our choice falls on Clark’s Rule. In this
section we first describe a deterministic variation to Clark’s Rule (Section 4.3.1),
which will take the role of our slave procedure, and then we detail the implemen-
tation of the master component (Section 4.3.2), a steady-state genetic algorithm,
by describing its characteristics.

As usual, a preprocessing step is applied beforehand and the input instance
is partitioned into independent sub-instances (see Section 2.2.2).

4.3.1 Slave algorithm

Here we describe the Clark’s Rule-based slave algorithm. The constructive is
a deterministic procedure, similar to the lower level ACO algorithm presented
in Section 3.2.1, which depends solely on the genotype visiting order (formally
a permutation) supplied by the master. The choice of a deterministic slave
procedure has one major advantage over a stochastic one because the evaluation
of the solution returned by the master, i.e., a permutation of genotypes, has a
unique evaluation. In case of a stochastic algorithm for the slave, solution
quality would be a stochastic variable and one would need to estimate it, for
example by taking the average of a sample population. This issue can be tackled
by using techniques adopted for algorithms tackling stochastic problems [28].

The algorithm starts from the first genotype of the permutation π supplied
by the master. At each step, the visited genotype is removed from π. The
procedure then deterministically chooses a number of haplotypes to be included
in the partial solution H . During haplotype selection the three possible sce-
narios that could arise are the ones already mentioned in Section 3.2.1. Save
for the trivial case in which H already contains a pair of haplotypes resolving

4.3. MSG FOR HAPLOTYPE INFERENCE 45

the current genotype g, there are three different possibilities: (i) no resolving
candidates in Hφ; (ii) one candidate; and (iii) more than one candidate. In
each case, haplotype selection works as follows:

Case (i): Scanning π from the left, the first non-visited genotype g′ ∼ g is
taken and, deterministically, a haplotype h that solves both g′ and
g is computed. If no such g′ exists, h is equal to the string g with
its ambiguous sites set to 0. h and g ⊖ h are added to the partial
solution.

Case (ii): When only one resolvent candidate h is available in H , g ⊖ h is
added to the partial solution. This is a straightforward application
of complementarity.

Case (iii): When more than one candidate is present in H , the procedure
chooses deterministically from these using a heuristic similar to case
(i). Let H ′ be this set of candidates: the procedure searches in π
for the first unvisited genotype g′ ∼ g, and chooses first haplotype
in lexicographical order from H ′ that explains both. In case no such
haplotype exist, the next compatible genotype in the permutation
is tried. If the whole permutation is scanned and no haplotype was
selected, the choice of whatever haplotype in H ′ would not affect
the future behaviour of the heuristic 3 and the first haplotype in
lexicographical order is thus chosen.

The algorithm stops when all genotypes have been visited.
In order to deterministically build a haplotype that resolves two compatible

genotypes g and g′, we can use the following method (compare with Section 3.2.1
where lower-level genotype resolution is guided by pheromone values). First the
conflation c of g and g′ is calculated according to these rules:

gp = 0 ∨ g′p = 0 ⇒ cp = 0 (4.1a)

gp = 1 ∨ g′p = 1 ⇒ cp = 1 (4.1b)

gp = 2 ∧ g′p = 2 ⇒ cp = 2 (4.1c)

for all p = 1, . . . ,m, where m is the genotype length. All remaining heterozygous
sites in c are subsequently set to 0.

4.3.2 Master algorithm

As we wrote previously, in order to use the constructive heuristic à la Clark in
Section 4.3.1, we have to provide an effective genotype resolution order. Learn-
ing such ordering is, ultimately, the objective of the master. The proposed
version of the MSG uses a master genetic algorithm to compute a permutation
of genotypes.

To fully define a genetic algorithm, one has to specify:

• the chromosome structure;

• a selection procedure;

3In such a case all haplotypes in H would be incompatible with all unvisited genotypes.

46 CHAPTER 4. MSG ALGORITHM FOR HAPLOTYPE INFERENCE

• a population update procedure;

• genetic operators and how they are applied to the population;

• an evaluation criterion for assigning fitness to the individuals;

• an initialization step to generate an initial population.

In the rest of this chapter we will call “individuals” or “chromosomes” the
entities manipulated by the genetic algorithm so as to avoid possible confusion
with the genotype strings which make up a Haplotype Inference instance.

An individual represents a single permutation of genotypes, that is, a geno-
type ordering. That ordering is crucial for the slave procedure to compute a
good solution. The initial population is randomly generated. The evaluation
criterion is provided by the slave algorithm, that builds a solution and computes
its cardinality. The fitness function, higher for fitter individuals, is equal to the
quality function defined in Section 3.2.1 for the ACO. The selection procedure
is a standard roulette-wheel, in which individuals are taken for mating with a
probability proportional to their respective fitness values. As for population
update, we chose to implement a steady-state genetic algorithm. Concerning
genetic operators, we adopted the usual definition of crossover and mutation for
permutations of length n, which are detailed in the following.

Mutation: the mutation of an individual encoded as a permutation simply
involves a random swap of two elements. The average number of swaps
that can be performed on each chromosome is an algorithm parameter,
called mutation rate or mr for short.

Crossover: first a random point-cut is chosen and the permutations p, q are
split into two sub-sequences (p1, p2), (q1, q2). Then the new permutations
p′ and q′ are constructed in this way4: at first p′ = p1, then all the elements
of q2 which are not in p1 are orderly appended to p′; if the length of p′

is still less than n, the procedure keeps appending elements to p′ taken
from sub-sequence q1 if the given elements are not already present in p1.
Crossover operator is always applied.

4.4 Experimental Analysis

To investigate the performance variance with respect to parameter values and
to measure the contribution of the learning component of the genetic algorithm,
we have run four different versions of the algorithm:

ga: the plain master-slave genetic algorithm;

ga+: the master-slave genetic with increased computational resources;

gano: the ga version of the algorithm, but with learning component disabled;

ga⊲TS : is the ga hybridized with the local search procedure introduced in
Section 3.2.2 (see below).

4We take into account only the construction of p′, since the other is symmetrical.

4.4. EXPERIMENTAL ANALYSIS 47

The parameters of ga have been tuned by means of a full-factorial anal-
ysis on a restricted number of instances and the best candidate according to
the the average solution quality has been selected. To estimate the improve-
ments achievable with a larger amount of computational resources, ga+ was also
tested: this version runs with twice the population size and idle iterations with
respect to ga. The impact of the GA learning mechanism on search has also
been evaluated by running ga with the selection operator disabled (mr = 0
and no crossover); the resulting algorithm, gano, thus performs a large number
of independent runs of the constructive procedure. Finally, we combined the
master-slave constructive procedure with a local search post-optimization. As
explained previously in Section 3.2.3, for ga⊲TS we chose to have a simple in-
tegration to better asses the contribution to solution quality of each algorithm.
For this reason, the two algorithms have been serialized: first the master-slave is
run and the best solution returned is passed to the local search as initial state.
In Table 4.1 the main parameters of the algorithms are summarized. Each gen-
eration offspring size is equal to population size. In case of ga⊲TS, maximum
iterations and maximum idle iterations parameter are the same for both the GA
and the local search.

Variant mr pop. size max iter. max idle iter.

ga 1 100 500 100
ga+ 1 200 500 200
gano 0 100 500 100
ga⊲TS 1 100 500 100

Table 4.1: Parameters of the algorithms.

We will first present the comparison among the variants of the master-slave
solver. Then, in Subsection 4.4.1, we will show the results of the comparison of
the master-slave solver against our ACO introduced in Chapter 3.

The algorithms have been tested on the same well known benchmarks for
Haplotype Inference used previously in Section 3.3.1, namely, Harrower Hapmap,
Harrower Uniform, Marchini SU1, Marchini SU2, Marchini SU3 and Marchini
SU-100kb (their main characteristics can be looked up in Table 3.1). Further-
more, in a second experimental phase, we also performed experiments on new
test sets, in order to measure the scalability of this new MSG algorithm with
respect to the ACO hybrid. This new benchmark is composed by three test sets,
namely HapMap CEU, HapMap YRI and HapMap JPT+CHB, which contain
large-size instances extracted from real HapMap data. 5 Their characteristics
are also summarized in Table 4.2. Although these benchmarks are not biologi-
cally plausible, they proved to be particularly difficult and are therefore suited
to the objective of this experimental stage. This second experimental phase
corresponds indeed to a validation of previous results, because algorithms were
not tuned for these new instance sets [27].

The algorithms in the MSG framework have been developed in C++; the
software was compiled with the GNU g++ compiler v. 4.1.3 (-O3 optimisation
enabled) and tested on a Intel Pentium 4 3.0GHz machine running Ubuntu 7.10

5Datasets are downloadable from http://apice.unibo.it/xwiki/bin/view/

HaplotypeInference/JHCR_2009/.

http://apice.unibo.it/xwiki/bin/view/HaplotypeInference/JHCR_2009/
http://apice.unibo.it/xwiki/bin/view/HaplotypeInference/JHCR_2009/

48 CHAPTER 4. MSG ALGORITHM FOR HAPLOTYPE INFERENCE

Benchmark set N. of N. of N. of

inst. geno. sites

HapMap CEU 25 90 200
HapMap YRI 25 90 200
HapMap JPT+CHB 24 90 200

Table 4.2: Main features of the new hard benchmarks.

ga+ ga �TS ga gano2
6
8
0

2
7
0
0

2
7
2
0

2
7
4
0

2
7
6
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

Harrower Uniform

ga+ ga �TS ga gano1
0
0

2
0
0

3
0
0

4
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

Harrower Uniform

Figure 4.1: Harrower Uniform: algorithms comparison in terms of solution qual-
ity (left) and running time (right) summed-up over all the set instances.

ga+ ga �TS ga gano

3
6
5

3
6
6

3
6
7

3
6
8

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

Harrower Hapmap

ga+ ga �TS ga gano

1
0

3
0

5
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

Harrower Hapmap

Figure 4.2: Harrower Hapmap: algorithms comparison in terms of solution
quality (left) and running time (right) summed-up over all the set instances.

(kernel 2.6.22).

The aim of the experimental analysis is to compare the overall performance
of the algorithms in terms of solution quality and execution time on each in-
stance set. This analysis should answer two main questions: (a) does the genetic
machinery, i.e., the learning mechanism of GA, improve the heuristic construc-
tion? And (b) is there any advantage in terms of solution quality or time in
using this master-slave approach for Haplotype Inference?

The experimental analysis is composed of two parts: in the first we compared
solution quality and running time on each complete instance set. The result
of this analysis makes it possible to compare the global performance of each
algorithm and then observe advantages and disadvantages of them. Results of

4.4. EXPERIMENTAL ANALYSIS 49

ga+ ga �TS ga gano

0
2
0

4
0

6
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

+1.229e4 Marchini SU1

ga+ ga �TS ga gano

1
0
0

2
0
0

3
0
0

4
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

Marchini SU1

Figure 4.3: Marchini SU1: algorithms comparison in terms of solution quality
(left) and running time (right) summed-up over all the set instances.

ga+ ga �TS ga gano

0
1
0

2
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

+1.542e4 Marchini SU2

ga+ ga �TS ga gano5
0

1
5
0

2
5
0

3
5
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

Marchini SU2

Figure 4.4: Marchini SU2: algorithms comparison in terms of solution quality
(left) and running time (right) summed-up over all the set instances.

ga+ ga �TS ga gano1
4
6
8
0

1
4
7
2
0

1
4
7
6
0

1
4
8
0
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

Marchini SU3

ga+ ga 	TS ga gano5
0

1
5
0

2
5
0

3
5
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

Marchini SU3

Figure 4.5: Marchini SU3: algorithms comparison in terms of solution quality
(left) and running time (right) summed-up over all the set instances.

this comparisons are shown with boxplots. We also compared the algorithms
pairwise and applied a Wilcoxon paired test [57] for assessing the superiority of
one algorithm over the other in terms of solution quality. This test is applied
on each instance set and compares algorithms instance-wise. The results of this

50 CHAPTER 4. MSG ALGORITHM FOR HAPLOTYPE INFERENCE

ga+ ga
TS ga gano1
0
4
0

1
0
6
0

1
0
8
0

1
1
0
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

Marchini SU-100kb

ga+ ga �TS ga gano5
0

1
5
0

2
5
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

Marchini SU-100kb

Figure 4.6: Marchini SU-100kb: algorithms comparison in terms of solution
quality (left) and running time (right) summed-up over all the set instances.

analysis confirm the ones of the boxplot analysis.

In Figures 4.1–4.6, boxplots relative to solution quality (left) and running
times (right) are drawn. The plots represent statistics of ten independent runs
of the algorithms on all the instances of each set. Since our goal is to evaluate
algorithm performance on each entire set of instance—and instances of each set
are homogeneous—values shown are sums of solution values and running time
on all the instances.

Boxplots are drawn with notches, which make it possible to assert when the
medians of any two distributions are statistically different: if the notches of two
boxplots do not overlap then there is statistical evidence that the two medians
differ [47].

If we consider ga and gano graphics show that the learning component has
a remarkable positive impact on solution quality while the cost in terms of
computational resources is negligible. This answers question (a) and proves
that a simple constructive procedure can benefit from a careful selection of
genotype resolution order.

In general, all solvers (except for gano) have the desirable property of being
stable: although they are stochastic algorithms, the distribution of the solution
values is rather packed around the mean and even zero for Harrower Hapmap.

As for solvers ga+ and ga⊲TS their results in term of solution quality are
superior to ga, even though the improvement is rather limited and, for what ga+

is concerned, its execution times is considerably higher than that of ga. On the
contrary, ga⊲TS is not as slower than gaas ga+, meaning that the contribution
of Tabu Search to the runtime figures is limited.

Results on the new three instance sets, whose boxplots are depicted in Fig-
ures 4.7–4.9, are particularly meaningful as they confirm the same relation
among the algorithms on a (hard) validation set. Moreover, it is worthwhile
to note that these results emphasize the effectiveness of the learning component
that considerably leverages the performance of the constructive heuristic, thus
providing an answer to question (b).

4.4. EXPERIMENTAL ANALYSIS 51

ga+ ga �TS ga gano2
7
2
0

2
7
3
0

2
7
4
0

2
7
5
0

2
7
6
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

CEU

ga+ ga TS ga gano

2
0
0

4
0
0

6
0
0

8
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

CEU

Figure 4.7: HapMap CEU: algorithms comparison in terms of solution quality
(left) and running time (right) summed-up over all the set instances.

ga+ ga �TS ga gano2
9
8
0

3
0
0
0

3
0
2
0

3
0
4
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

YRI

ga+ ga �TS ga gano

0
2
0
0

4
0
0

6
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

YRI

Figure 4.8: HapMap YRI: algorithms comparison in terms of solution quality
(left) and running time (right) summed-up over all the set instances.

ga+ ga �TS ga gano

2
6
6
0

2
6
7
0

2
6
8
0

2
6
9
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

JPT+CHB

ga+ ga �TS ga gano1
0
0

3
0
0

5
0
0

7
0
0

9
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

JPT+CHB

Figure 4.9: HapMap JPT+CHB: algorithms comparison in terms of solution
quality (left) and running time (right) summed-up over all the set instances.

4.4.1 Comparison with the Hybrid ACO

To assess the overall performance of the master-slave algorithm, we compared ga,
ga+and ga⊲TS with the hybrid solver described in Chapter 3, namely ACO⊲TS.

52 CHAPTER 4. MSG ALGORITHM FOR HAPLOTYPE INFERENCE

ACO⊲TS was run with the same parameter settings reported in Section 3.3 and
a limit on both total iterations and idle iterations of, respectively, 500 and 100.
In Figures 4.10–4.18 the boxplots represent the statistics of the four algorithms
w.r.t. solution quality and running time. We observe that the overall solution
quality returned by our master-solver is slightly lower than that of the hybrid
solver, but the execution time is remarkably shorter meaning that our MSG is
solid choice for a fast upper bound procedure.

In order to show the effectiveness and generality of our MSG, we also present
the results attained by the technique applied to two hard combinatorial graph-
related problems, namely, the Capacitated Vehicle Routing Problem (Section A.1)
and the Capacitated Minimum Spanning Tree (Section A.2). Material in both
sections is taken from [14]. Since these applications are not related to genomics
or biology in general, their discussion is delayed to Chapter A in the appendix.

4.4. EXPERIMENTAL ANALYSIS 53

ga �TS ACO �TS ga+ ga

0
2

4
6

8
so

lu
ti

o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

+2.689e3 Harrower Uniform

ga �TS ACO �TS ga+ ga0
4
0
0

8
0
0

1
2
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

Harrower Uniform

Figure 4.10: Harrower Uniform: algorithms comparison in terms of solution
quality (left) and running time (right) summed-up over all the set instances.

ga �TS ACO �TS ga+ ga

3
6
5
.0

3
6
5
.4

3
6
5
.8

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

Harrower Hapmap

ga �TS ACO �TS ga+ ga0
4
0

8
0

1
2
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

Harrower Hapmap

Figure 4.11: Harrower Hapmap: algorithms comparison in terms of solution
quality (left) and running time (right) summed-up over all the set instances.

ga �TS ACO �TS ga+ ga

1
2
0
5
0

1
2
1
5
0

1
2
2
5
0

1
2
3
5
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

Marchini SU1

ga �TS ACO �TS ga+ ga

0
4
0
0

8
0
0

1
2
0
0

1
6
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

Marchini SU1

Figure 4.12: Marchini SU1: algorithms comparison in terms of solution quality
(left) and running time (right) summed-up over all the set instances.

54 CHAPTER 4. MSG ALGORITHM FOR HAPLOTYPE INFERENCE

ga �TS ACO �TS ga+ ga

1
4
9
0
0

1
5
1
0
0

1
5
3
0
0

1
5
5
0
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

Marchini SU2

ga �TS ACO �TS ga+ ga0
2
0
0

4
0
0

6
0
0

8
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

Marchini SU2

Figure 4.13: Marchini SU2: algorithms comparison in terms of solution quality
(left) and running time (right) summed-up over all the set instances.

ga �TS ACO �TS ga+ ga

1
4
5
8
0

1
4
6
2
0

1
4
6
6
0

1
4
7
0
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

Marchini SU3

ga �TS ACO �TS ga+ ga0
4
0
0

8
0
0

1
2
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

Marchini SU3

Figure 4.14: Marchini SU3: algorithms comparison in terms of solution quality
(left) and running time (right) summed-up over all the set instances.

ga �TS ACO �TS ga+ ga

1
0
4
8

1
0
5
2

1
0
5
6

1
0
6
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

Marchini SU-100kb

ga �TS ACO �TS ga+ ga0
4
0
0

8
0
0

1
2
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

Marchini SU-100kb

Figure 4.15: Marchini SU-100kb: algorithms comparison in terms of solution
quality (left) and running time (right) summed-up over all the set instances.

4.4. EXPERIMENTAL ANALYSIS 55

ga �TS ACO �TS ga+ ga2
6
8
0

2
7
0
0

2
7
2
0

2
7
4
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

CEU

ga �TS ACO �TS ga+ ga0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

CEU

Figure 4.16: HapMap CEU: algorithms comparison in terms of solution quality
(left) and running time (right) summed-up over all the set instances.

ga TS ACO TS ga+ ga2
9
2
0

2
9
4
0

2
9
6
0

2
9
8
0

3
0
0
0

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

YRI

ga !TS ACO !TS ga+ ga0
1
0
0
0

2
0
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

YRI

Figure 4.17: HapMap YRI: algorithms comparison in terms of solution quality
(left) and running time (right) summed-up over all the set instances.

ga "TS ACO "TS ga+ ga

2
6
4
5

2
6
5
5

2
6
6
5

so
lu

ti
o
n
 v

a
lu

e
s

(s
u
m

m
e
d
)

JPT+CHB

ga #TS ACO #TS ga+ ga0
1
0
0
0

2
0
0
0

3
0
0
0

ti
m

e
s

in
 s

e
co

n
d
s

(s
u
m

m
e
d
)

JPT+CHB

Figure 4.18: HapMap JPT+CHB: algorithms comparison in terms of solution
quality (left) and running time (right) summed-up over all the set instances.

56 CHAPTER 4. MSG ALGORITHM FOR HAPLOTYPE INFERENCE

Chapter 5

Alternative Approaches to

the Haplotype Inference

Problem

In this chapter we introduce two original contribution to the Haplotype Infer-
ence.

In Section 5.1 we try to address one drawback of the metaheuristic ap-
proaches presented in previous chapters and will discuss a more general resolu-
tion framework for haplotype inference, which is based on an extended version
of the compatibility rule. This approach, which makes use of some constraint
programming (CP) techniques, is particularly suited to solving instances with
unknown sites. The possibility of integrating CP and metaheuristics has already
been fruitfully explored in the literature [155, 156]; for this reason we think that
this approach might be attractive over other non-CP approach.

Section 5.2 is devoted to the description of an algorithm that aims to re-
turn a set of haplotypes whose elements are compatible to as many genotypes
as possible. This haplotype set could indeed represent an important piece of
heuristic information in constructive procedures that tackle not only Maximum
Parsimony, but also Minimum Entropy. This algorithm is based on solving the
Maximum Clique problem on the compatibility graph of an instance. We also
recall that a related problem, the Maximum Independent Set, is the basis for a
lower bound for the Haplotype Inference.

Both contributions have been implemented in working software prototypes.
Although preliminary test have been conducted that confirm the correctness of
the approaches, we are not going to present any experimental data. Further
development is subject of ongoing work.

5.1 Enhancement of resolution by constraint pro-

gramming techniques

The metaheuristic algorithm proposed in Chapters 3 and 4 both relied on Clark’s
Rule. The algorithmic framework makes it so that the experience accumulated
during the search process is used to guide the resolution of a genotype by in-

57

58 CHAPTER 5. ALTERNATIVA APPROACHES TO HIP

cluding in the partial solution a haplotype likely to be used in the future to
resolve other genotypes. This was made to address the ambiguity that would
arise when applying Clark’s Rule on a genotype that is compatible with more
than one haplotype in the current partial solution. In such cases, bad deci-
sions would cripple further search or would prevent the search to find a feasible
solution. Exploitation of metaheuristic approaches indeed mitigates these prob-
lem, but still poor early decisions could severely impact the quality of the final
solution by constraining later choices.

In this section, we extend the algorithmic framework we presented in previ-
ous chapters by borrowing some ideas from constraint programming techniques.
We also introduce the concept of generalised haplotype and we show how this
new conceptual framework can address some drawbacks of the discussed meta-
heuristics.

Problems of early commitment. Up to now, the algorithmic framework
which underlies all metaheuristics for Haplotype Inference described in this dis-
sertation can be summarised as follows: 1. Clark’s Rule, or a variant thereof,
is applied to each genotype, and 2. a high-level adaptive procedure selects each
time which genotype to solve. The biggest problem with this approach is that
the application of Clark’s Rule, which is essentially the definition of complemen-
tarity, is too restrictive: every time the complementarity definition is applied,
a phasing for a genotype is generated and that choice cannot ever be retracted.
This approach places uselessly stringent constraints that limit future choices
performed by the search procedure.

For instance, let us consider two genotypes g1 = 0120222 and g2 = 0222012;
if we want to resolve g1 a myopic constructive would generate a random pair of
haplotypes, but we could miss the opportunity to add to the current solution
a haplotype also compatible to g2: haplotypes such as 0110110 or 0100001
are obviously bad choices. We could search, as shown in Section 3.2.1, for all
haplotypes compatible to g1 and g2, like h1 = 0100011 or h2 = 0110010; but
then we might have to solve a third genotype g3 = 0100012 and only h1 seems
to be the most parsimonious choice because is compatible to g1, g2 and g3 as
well.

This small example demonstrate the danger of early commitment. What
we would like to do is to have the possibility to include both h1 and h2 in the
solution and then to settle for one of them only when the need arises (in the
example, when we resolve g3). We show how we can do it in a reliable way by
introducing generalised haplotypes.

5.1.1 Haplotype Inference with generalised haplotypes

Informally, a generalised haplotype represents a set of (ordinary) haplotypes.
More formally, a generalised haplotype is a vector containing zeros, ones or
binary variables. A generalised haplotypes like 01xy0 represents the haplotype
set {01000, 01010, 01100, 01110} obtained by instantiating x and y in all possible
ways.

The compatibility relation is an extension of the one in Section 2.2.2. What
we basically do is to make a variable compatible to any site, be it homozygous
(0 or 1) or heterozygous (2); for instance, 01xy0 is compatible to 02020 and

5.1. ENHANCEMENTOF RESOLUTIONBY CONSTRAINT PROGRAMMINGTECHNIQUES59

0 1 2
0 0 — 1
1 — 1 0
x 0 and set x = 0 1 and set x = 1 y and post constraint x 6= y

Table 5.1: Rules to compute g ⊖ h. The first row indicates the genotype value
at the i-th site, the first column indicates the i-th site of h; x is a generic binary
variable in h, while y generically refers to a newly created binary variable. Each
table entry contains the value at site i of the new haplotype g ⊖ h (entries
marked with ‘—’ correspond to impossible cases). When variables are involved
an action is also specified.

22010. This is a natural consequence of the fact that a generalised haplotype
represents, in fact, a set of haplotypes.

The complementarity property, instead, is radically different. Basically,
when we compute g⊖h, where h is a generalised haplotype, we want to construct
a generalised haplotype h such that for every possible complete assignment of
all variables in h, h is such that h⊕h = g. By enforcing the rules summarised in
Table 5.1 we attain this objective. For each position i in haplotype h we com-
pute the corresponding element of h according to the rules in Table 5.1. When
the i-th site in h is either 0 or 1, we have the same inference rule as for the
ordinary complementary. When the i-th site is a variable, generically indicated
with x in the table, we introduce a new variable, generically indicated with y in
the table, used nowhere else in the algorithm and execute an action according
to the rules stated in the bottom row of Table 5.1; such variable becomes the
i-th element of h.

In an eventual algorithm, these relations can be easily implemented in prac-
tice by constraint programming facilities. Notice also that, computationally
speaking, the complement operation has now side effects on the state of the
algorithm.

Let us review the previous example utilising generalised haplotypes. We
solve g1 = 0120222, g2 = 0222012 and g3 = 0100012 in this order. To solve g1
we build haplotype h1 = 01x10x2x3x4 and, by complementarity, we calculate
h1 = g1⊖h1 = 01y10y2y3y4 where xi 6= yi, i = 1, 2, 3, 4. Then we resolve g2 with,
say h1 (the outcome would be identical if we used h1); the computation of g2⊖h1

yields h2 = 00z1101z2 and, as side effect, posts constraint z1 6= x1 ∧ z2 6= x4

and sets x2 ← 0, x3 ← 1; by constraint propagation now h1 = 01x1001x4

and h1 = 01y1010y4. We can now use h1 (or h1) to solve g3: we compute
h3 = g3 ⊖ h1 = 010001w1, post x4 6= w1 and set x1 ← 0; after propagation,
h1 = 010001x4, h2 = 001101z2, h1 = 011010y4. Notice that now it is impossible
to obtain a solution with more than 4 haplotypes regardless of the genotype
visiting order.

This example shows that if we employ generalised haplotypes, we have to
take into account that every time a complement is calculated, variable values
are possibly updated and new constraints might be posted. In the end, the
solution returned is not just a set of ordinary haplotypes: it is, instead, a set
of generalised haplotypes and the corresponding constraints among them; it
might also contain unassigned variables. This is a major difference between
this approach and one based on ordinary haplotypes: the solution returned by

60 CHAPTER 5. ALTERNATIVA APPROACHES TO HIP

0 1 2 9
0 0 — 1 y
1 — 1 0 y
x 0 and set x = 0 1 and set x = 1 y and post constraint x 6= y y

Table 5.2: Rules to compute g⊖h when g contains unknowns (9). Symbols and
interpretation are explained in Table 5.1 and related paragraph.

an algorithm, which we can call generalised phasing, constitutes, in fact, a set
of phasing obtained by instantiating unassigned variables in all possible ways.
This can be practically very useful in algorithm integration. Different phasings
could be produced according to diverse criteria like, for instance, the most likely
with respect to a statistical model, or the optimal according to some secondary
objective function, like Minimum Entropy.

It has not been demonstrated, though, that all phasings implicitly described
by a generalised phasing are equivalent with respect to parsimony (i.e., contain
the same number of haplotypes). This is particularly relevant in the event one
wants to utilise generalised haplotypes in a multiobjective optimisation problem.

Generalised haplotypes and unknowns. An important limitation of al-
gorithms based on the ordinary complementarity definition is their inability to
effectively cope with unknowns. The reason is that when unknowns are involved
haplotype complement does not yield a unique result anymore (see Section 2.3).
If we introduce generalised haplotypes the problem is automatically solved: we
only need to slightly change complementarity rules in Table 5.1. Specifically,
we add a single column to take into account unknown sites. Table 5.2 shows
the new definitions which can be summarised as follows: the complement of an
haplotype site of any kind with respect an unknown site is a fresh variable.

Use case: Master-slave genetic with generalised haplotypes

.

Let us now reinterpret our master-slave algorithm from Section 4.3 using
generalised haplotypes. The bulk of the algorithm is essentially the same: we
still have a master genetic and a slave algorithms. The adoption of generalised
haplotypes, fundamentally, changes the definition of complementarity, so the
only real modification is limited to the slave (see Section 4.3.1) with enacts
the genotype resolution. Let us review the three scenarios that the algorithm
encounters when resolving a genotype, i.e., (i) no resolving candidates in the
current partial solution; (ii) one candidate; and (iii) more than one candidate.
Here the compatibility relation is the one for generalised haplotypes of course.

Case (i): A new generalised haplotype h is built: just substitute every 2 in g
with a fresh binary variable. Afterwards, compute h = g ⊖ h and
add both h and h to the current partial solution.

Case (ii): Let h be the only candidate; compute h = g ⊖ h and add it to the
current partial solution.

5.2. ALGORITHM FOR FINDING CLIQUES IN COMPATIBILITYGRAPH61

Case (iii): A candidate haplotype is chosen with the same deterministic strat-
egy described in Section 4.3.1. Its complement is calculated and
added to the current partial solution.

Since we could not demonstrate whether all possible instantiation of the
generalised phasing returned by the slave are equivalent, we also have to take
into account the problem of evaluation. A possible solution is to take the values
of random instantiations of the generalised phasing and compute a statistic, like
the median or average, which will become our fitness value.

5.2 Algorithm for finding cliques in compatibil-

ity graph

We can learn one last thing from the running example introduced in the previous
section. We report it for reference: find a maximally parsimonious phasing
for g1 = 0120222, g2 = 0222012, g3 = 0100012. When we were examining
the resolution of g1, we showed how a wrong choice of haplotype can lead to
suboptimal solutions. One could also attempt to implement a heuristic that
tries to resolve g1 with a haplotype that is also compatible to a neighbor of g1
in the compatibility graph. Indeed, this heuristic choice is performed by both
algorithms presented in this thesis (see lower level resolution in Section 3.2.1 and
the slave procedure in Section 4.3.1). Nevertheless, a suboptimal selection could
still be performed; for instance, if we picked haplotype 0110011—compatible to
both g1 and g2—the final solution would have cardinality 5 instead of 4. We
certainly could extend this heuristic to include not only couples of compatible
genotypes, but triplets; notice that such triplets correspond to triangles, or 3-
cliques, in the compatibility graph. If we iterate this reasoning, it appears that
it is convenient to find haplotypes compatible to all genotypes that form a clique
in the compatibility graph.

To this aim, in this section we delineate an algorithm that finds all cliques
in a compatibility graph and the set of haplotypes compatible to all genotypes
in each clique.

To further stress the importance of finding cliques in the compatibility graph,
we point out that a solution with value k+1 can be easily found for a k-clique of
genotypes. Such solution would have a single haplotype with coverage k and k
haplotypes with coverage 1 (for the definition of coverage see Section 2.3). This
consideration might be important for tackling Haplotype Inference by Minimum
Entropy. Moreover, finding haplotypes that resolve a whole clique could be an
effective way to bootstrap Clark’s Rule (Section 3.1).

5.2.1 Preliminary definitions

It is useful to introduce the concept of schema, taken straight from genetic al-
gorithms, because it helps to generalise properties of haplotypes and genotypes.
A schema s is a string in the alphabet Σ = {0, 1, ∗} where ∗ is called wild-
card. A m-length schema compactly represent binary strings of length m: if
we instantiate in every possible way all wildcards in a schema, we obtain all
strings it represents. The number of string a schema s represents is 2w(s) where

62 CHAPTER 5. ALTERNATIVA APPROACHES TO HIP

w(s) is the number of wildcards. For example, schema s = 10 ∗ ∗11 compactly
represents the set {100011, 100111, 101011, 101111}.

The resemblance of schemata to genotypes is clear: if we replace wildcards
with 2’s we can transform a schema in a genotype and vice-versa. Interestingly,
a genotype is a compact representation of the set of haplotypes that can resolve
it. Because of this property we can interchangeably use schemata and genotypes.
In a similar way, a schema without wildcards is isomorphic to a haplotype.

As well as we did for genotypes, we can introduce compatibility between
schemata, whose definitions is the same as Definition 3, just replacing 2’s with
wildcards. If we identify schemata as the sets they represent, we can say that
two schemata are compatible if their set intersection is non-empty. We still write
s1 ∼ s2 to indicate compatibility. For example, these schemata are compatible
{01 ∗ ∗0∗, ∗101 ∗ 0, 0 ∗ ∗10∗}, while these are not {01 ∗ 10, 0 ∗ 1 ∗ 1}.

Since schemata represent sets, it is useful to introduce an intersection op-
eration. Schema intersection is defined only if operands are compatible and its
definition is straightforward: the intersection of two compatible schemata s1
and s2, indicated as s1 ∩ s2, is a schema whose i-th element is 0 (resp. 1) if the
corresponding element in s1 or s2 is 0 (resp. 1), otherwise its a wildcard. 1 For
example, 01 ∗ 1 ∗ ∗ ∩ ∗101∗ = 0101∗.

5.2.2 Algorithm for finding cliques in compatibility graph

The algorithm we are about to presents is able to find all cliques in a compati-
bility graph and, contemporarily, the haplotypes compatible to all genotypes in
such cliques.

The rationale behind the algorithm is simple. Suppose that we have a com-
patibility graph Gc; the idea is to construct another undirected graph G′c whose
vertices are schemata obtained in the following way: for every edge (gi, gj) ∈ Gc,
a vertex s′ in G′c is gi ∩ gj .2 Now every vertex in G′c corresponds to a set of hap-
lotypes that solve both gi and gj. In addition, G′c has an edge (s′i, s

′
j) iff s′i ∼ s′j :

practically G′c is a higher-order compatibility graph. If we iterate this procedure,
we obtain compatibility graph of further higher orders whose vertices represent
sets of haplotypes compatible to potentially many genotypes.

In the following we formalise the algorithm, demonstrate that converges and
that finds all cliques in the compatibility graph.

Description of the algorithm. Let G = {g1, . . . , gn} be a genotype set. The
initial step of our algorithm (iteration l = 1) consists in building an auxiliary
graph data structure G1s

3 which is a variant of the compatibility graph Gc: its
vertices are the schemata {s11, . . . , s

1
n}, each one corresponding to its homologous

genotype gi, it has an edge (s1i , s
1
j) iff s1i ∼ s1j and each vertex is associated to

a set σ(s1i) = {gi}. The generic step at the l + 1-th iteration is described in
what follows. Let Gls be our graph data structure built at the previous iteration.
If Gls contains only isolated vertices (every vertex has degree 0) the algorithm
stops; otherwise produces a new graph Gl+1

s and continues. Gl+1
s has a vertex

sl+1 = sli ∩ slj for every edge (sli, s
l
j) ∈ G

l
s (duplicates are eliminated) whose

1Compatibility prerequisite excludes cases where an operand has a 0 and the other a 1 in
the i-th position.

2Here genotypes are interpreted as schemata.
3In the following description, superscripts denote iteration counters.

5.3. CONCLUSIONS AND DISCUSSION 63

associated set is σ(sl+1) = σ(sli) ∪ σ(slj). G
l+1
s has also an edge (sl+1

i , sl+1
j) iff

sl+1
i ∼ sl+1

j .

The algorithm returns a list of L graphs G1s , . . . ,G
L
s one for each iteration

performed.

Cliques and haplotypes. By construction, zero-degree vertices in any Gls, 1 ≤
l ≤ L correspond to maximal cliques in the compatibility graph. Let us call sl

one of these vertices; σ(sl) contains the genotypes in the clique and |σ(sl)| is,
of course, its order; in addition, the set described by sl contains all haplotypes
that are compatible to the genotypes in σ(sl). Finally, GLs is a graph whose
vertices have null degree; its vertices correspond to maximum cliques on G1s (or
Gc which is the same).

Termination and complexity. The algorithm does not diverge because the
genotype set G is finite: during an iteration the algorithm calculates, at most,
a set σ(·), and therefore a vertex, for every non-empty subset of G. The num-
ber of vertices computed is thus bounded from above by 2|G| − 1. Moreover,
the algorithm does indeed converge. By construction, GLs contains, in fact, a
vertex for every maximum clique in Gc: since cliques are finite in number and
their order is finite, the algorithm must converge. The complexity of the algo-
rithm is, in the worst case, exponential (of course this algorithm can solve the
NP-complete Maximum Clique Problem which has worst-case exponential com-
plexity). A worst-case instance can be generated this way: G = {g1, g2, . . . , gn}
where genotype gi has only heterozygous sites except the i-th which is a 0; this
way we obtain a complete graph and exponentially many cliques.

5.3 Conclusions and discussion

In this chapter we described two novel approaches to the Haplotype Inference
problem that have the potential to improve the performance of the metaheuris-
tics described in previous chapters. In Section 5.1 we provided an extension to
the plain binary haplotype model that integrates CP techniques. This model,
based on generalised haplotypes, addresses the restrictiveness of early commit-
ment and the inadequacy of the usual definition of complementarity when deal-
ing with unknowns. Section 5.2 presents a worst-case exponential algorithm
able to find all cliques in the compatibility graph of an instance. Such cliques
correspond to (ordinary) haplotypes which have high coverage and therefore can
represent a good starting point for constructive techniques, which include also
the simple Clark’s Rule. Although this algorithm is exponential, we conjecture
that it has much lower complexity in typical, real-world cases.

64 CHAPTER 5. ALTERNATIVA APPROACHES TO HIP

Chapter 6

The Founder Sequence

Reconstruction Problem

In this chapter we introduce a new problem in computational genomics called
Founder Sequence Reconstruction (FSRP). This problem is related to Haplo-
type Inference and represents, as we will see, a natural next step in association
studies.

Similarly to what we did in previous chapters for the Haplotype Inference
Problem, we formulate the FSRP as a combinatorial optimization problem which
takes into account, by imposing suitable constraints and objective function, a
particular genetic model.

In this chapter we will present two local search algorithms. The first one
belongs to the family of Iterated Greedy algorithm while the second is an ex-
ample of Large Neighbourhood Search metaheuristic. The two algorithms have
been designed with different goals in mind. The former is simpler and able to
return good solutions in limited time even for large-scale instances, but does
not return high quality solution even in long runtimes. The latter, on the other
hand, is more complex and sophisticated, but is often capable to find the opti-
mum; moreover, if given enough time, is also able to return a provably optimal
solution because it converges to a complete search. A promising idea could be
to construct a good starting solution for the Large Neighbourhood Search with
the former, faster Iterated Greedy. This happens to be a winning approach here
because, as we will see, this last algorithm’s behaviour is dependent on the ini-
tial solution quality; specifically there is statistical positive correlation between
the initial and final solution values.

A common characteristic that both algorithms share with the other meta-
heuristics described in previous chapters, is that they embed and enhance ex-
isting procedures; specifically, the Iterated Greedy improves a stochastic greedy
constructive, while the Large Neighbourhood Search exploits and enriches a
complete solver. On a final note, these are two examples of the effectiveness of
metaheuristics, whose capability of integrating different techniques is an impor-
tant asset.

This chapter is principally based on material from the works by Benedettini
et al. [18] (Sections 6.4 and 6.5 which present the Iterated Greedy algorithm and
Section 6.6 with their experimental evaluation) and Roli et al. [184] (Sections 6.7

65

66CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

describes the Large Neighbourhood Search algorithm while Sections 6.8 and 6.9
are dedicated to its empirical evaluation).

6.1 Biological introduction and motivations

In recent years, the availability of biological data has rapidly increased as a con-
sequence of technical advances in sequencing genetic material, such as DNA and
haplotyped data. Given a sample of sequences from a population of individuals,
researchers may try to study the evolutionary history of the population. If the
population under study has evolved from a relatively small number of founder
ancestors, the evolutionary history can be studied by trying to reconstruct the
sample sequences as fragments from the set of founder sequences. The genetic
material of the population individuals is the result of recombination and muta-
tion of their founders. Many findings from biological studies support the validity
of this model, as, for example, the fact that the ‘Ferroplasma type II genome
seems to be a composite from three ancestral strains that have undergone ho-
mologous recombination to form a large population of mosaic genomes’ (quoted
from [225]). The main issue is that the number of founder sequences, as well
as the founder sequences themselves, are generally unknown. A combinatorial
optimisation problem can be defined such that its solutions are biologically plau-
sible founder sequences, provided that assumptions on the evolutionary model
are formulated. This problem is called the Founder Sequence Reconstruction
Problem (FSRP) [227].

From this description, the FSRP can be regarded as a “natural continuation”
of the Haplotype Inference in association studies. Indeed one can gather geno-
type data from a population, run a Haplotype Inference algorithm and then,
after having obtained a biologically acceptable phasing, apply a reconstruction
algorithm to compute a small set of ancestors.

Besides its origins in evolutionary biology, the problem is a hard combinato-
rial optimisation problem and it is of interest per sé, as it constitutes a challenge
for current optimisation techniques.

In the literature, several techniques have been proposed to tackle this prob-
lem, such as dynamic programming, tree-search and metaheuristics. In this
thesis, we present and analyse two algorithms for the FSRP: a fast randomised
Iterated Greedy and a state-of-the-art hybrid algorithm that is based on the
Large Neighbourhood Search framework. The former improves upon the simple
constructive heuristic proposed in [185] in two ways: first, it incorporates look-
ahead techniques into the constructive; secondly, it embeds the constructive into
the Iterated Greedy framework [219], which is a generic metaheuristic based on
the construction and partial destruction of solutions.

The latter performs a local search in which neighbourhoods have exponen-
tial size in the founder sequence length; the neighbourhoods are exhaustively
explored by means of an efficient tree-search technique. Several variants of this
hybrid search strategy are designed and compared on three benchmark sets.
The best variant is compared to the state-of-the-art techniques and shown to
achieve better performance.

This chapter is structured as follows. In Section 6.2, we formally introduce
the problem. Next, we briefly survey previous and related work in Section 6.3.
The following three sections are devoted to the Iterated Greedy algorithm: Sec-

6.2. THE FOUNDER SEQUENCE RECONSTRUCTION PROBLEM 67

Set of recombinants C Set of founders F Decomposition

01001000 01101110 (a) a a|b|a a|c c c

00111000 10010011 (b) a|c c c c c c c

10011100 10111000 (c) b b b b|a a|c c

10111010 c c c c c c|a a

01101110 a a a a a a a a

10110011 c c c c|b b b b

Figure 6.1: On the left, a set of six recombinants in matrix form is shown. As-
suming that the number of founders is fixed to 3, a valid solution as a matrix
of three founders is shown in the centre. Denoting the first founder by a, the
second founder by b, and the third one by c, on the right a decomposition of the
recombinants matrix into fragments taken from the founders is shown. Break-
points are marked by vertical lines. This is a decomposition with 8 breakpoints,
which is the minimum value for this instance.

tion 6.4 details the constructive look-ahead procedure embedded in the Iterated
Greedy; Section 6.5 introduces the Iterated Greedy framework itself in general
terms and its application to the FSRP; Section 6.6 is dedicated to parameter
configuration and experimental evaluation. The remaining sections address the
Large Neighbourhood Search algorithm. In Section 6.7, we describe the Large
Neighbourhood Search family of algorithms we designed and implemented; the
experimental comparison among them is discussed in Section 6.8. In Section 6.9,
the best of our Large Neighbourhood Search metaheuristic is compared with the
state of the art.

6.2 The Founder Sequence Reconstruction Prob-

lem

The FSRP can be defined as follows. Given is a set of n recombinants C =
{C1, . . . , Cn}; each recombinant Ci is a string of length m over a given alphabet
Σ, i.e., Ci = ci1ci2 . . . cim with cij ∈ Σ. In this work, we will consider a typical
biological application where the recombinants are haplotyped sequences and,
hence, Σ = {0, 1}. The symbols 0 and 1 encode the most common allele of
the haplotype site (wild-type) and its most frequent variation in a population
(mutant), respectively.

A candidate solution to the problem consists of a set of kf founders F =
{F1, . . . , Fkf }. Each founder Fi is a string of length m over the alphabet Σ:
Fi = fi1fi2 . . . fim with fij ∈ Σ ∀ j. A candidate solution F is a valid solution
if the set of recombinants C can be reconstructed from F . This is the case
when each Ci ∈ C can be decomposed into a sequence of pi ≤ m fragments
(i.e., strings) Fri1Fri2 . . . F ripi , such that each fragment Frij appears at the
same position in at least one of the founders. Hereby, a decomposition with
respect to a valid solution is called reduced if two consecutive fragments do not
appear in the same founder. Moreover, for each valid solution F we can derive
in O(n · m · kf) time (see [240]) a so-called minimal decomposition. This is

68CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

a decomposition where
∑n

i=1 pi − m is minimal. In the following we call this
number the objective function value of F and denote it by f(F). In biological
terms, f(F) is called the number of breakpoints of C with respect to F .

The optimisation goal considered in this dissertation is to find a valid so-
lution F∗ that, given a fixed number of founders kf , minimises the number of
breakpoints. For an example, see Figure 6.1.

The FSRP was first proposed by Ukkonen [227] and the problem is proven
to be NP-hard [29, 178] for kf > 2.

6.3 Overview of the literature

This section provides an overview of the scientific literature on the FSRP. First
we discuss the methods devised to tackle the FSRP. Subsequently, other problem
variants will be mentioned. Particular relevance will be given to RecBlock

because of its strong connection to the algorithms we present in this work.
Another closely related approach is discussed in [185] in which a Tabu Search
method is proposed.

An algorithm based on dynamic programming was first proposed by Ukko-
nen [227]. However, this method is not efficient when the number of founders
and the number or length of recombinants is high. Another dynamic program-
ming algorithm was introduced by Rastas and Ukkonen [178]. Lyngsø and
Song [149] have proposed a Branch-and-Bound algorithm. Although promising,
this method has been evaluated only on a limited test set composed of rather
small instances.

Wu and Gusfield have proposed a constructive tree-search algorithm [240]—
henceforth referred to as RecBlock—which can be run as an exact or in-
complete method. A more detailed explanation of RecBlock is provided in
Section 6.3.1.

Many authors have provided contributions to upper and lower bound compu-
tations. Meyers and Griffiths have developed the Rh and Rs lower bounds [161],
which are tighter than the one introduced by Hudson and Kaplan [116]. Nev-
ertheless, they have worst case exponential and super-exponential complexity,
respectively [8]. In the same paper, Meyers and Griffiths presented a general
framework, called composite method. It exploits local bound information, i.e.,
a bound on a subset of contiguous columns in a recombinant matrix, in order
to obtain a possibly better overall bound estimation. Bafna and Bansal suggest
a lower bound computable in O(n · m2) time [8]. Song et al. further elab-
orate on Meyers and Griffiths bound and propose improved lower and upper
bounds [213]. In another work, Wu [239] developed an analytical upper bound
which corresponds to an estimation of the minimum number of breakpoints in-
dependent of the particular recombinant set. This estimation is a function of
only n and m.

The FSRP is widely studied and it is related to a number of other problems.
El-Mabrouk and Labuda [71] focus on a much simpler and tractable reconstruc-
tion problem: given a founder set and a recombinant, they want to find a min-
imal decomposition for the recombinant. A similar problem, called Haplotype
Colouring, has been introduced by Schwartz et al. [195]. Given a recombinant
matrix, a partition of contiguous sites, called blocks, is identified according to
some rule and each recombinant is subdivided accordingly into haplotype sub-

6.3. OVERVIEW OF THE LITERATURE 69

strings. The objective is to assign, for each block, a different colour to the
distinct haplotype substrings in a block, such that the total number of colour
switches between two contiguous haplotype substrings in the same recombinant
is minimal. This problem of colouring each block can be encoded into an in-
stance of the weighted bipartite matching problem. Haplotype Colouring can
be solved to optimality by a O(m · n2 · logn) algorithm.

The FSRP formulation we employ in this work is based on the assumption
that, during the genetic evolution of the initial population of founders, muta-
tion events are unlikely to occur. Rastas and Ukkonen generalise the FSRP by
introducing a different objective function that takes into account point muta-
tion [178], namely f(F) + c · g(F) where c > 0 is a constant. This new objective
function is the sum of two contributions: f(F) denotes the sum of the number
of breakpoints across all recombinant sequences (i.e., the objective function we
introduced in Section 6.2), while g(F) is the total number of point mutations.
However, evolutionary biology researchers usually neglect mutations, as they
are rare events. Therefore, in this work we focus on the version of the problem
without mutation, which is equivalent to the generalised version if c is set to a
very large value.

Zhang et al. [248] present a problem closely related to the FSRP called the
Minimum Mosaic Problem. This problem aims at finding a minimum mosaic,
i.e., a block partitioning of a recombinant set such that each block is compatible
according to the Four Gamete Test [116] and the number of blocks is minimised.
Differently from the FSRP, this problem does not rely on the existence of a
founder set. This mosaic structure so obtained provides a good estimation of
the minimum number of recombination events (and their location) required to
generate the existing haplotypes in the population, i.e., a lower bound for the
FSRP.

6.3.1 RecBlock

RecBlock is a tree-search based technique for the FSRP. It follows a construc-
tive breadth-first search strategy starting from an empty solution. Each node
νl at depth l in the search tree represents a feasible partial solution Fl up to the
l-th site, i.e., a kf × l founder matrix. As a consequence, complete solutions are
at a tree depth equal to m. In other words, RecBlock fills a founder matrix
column by column from left to right. Each node νl is labelled with the number
of breakpoints in the minimal decomposition of Cl, the problem instance up to
site l, with respect to the associated founder matrix Fl. We will denote this
number by BP (νl). In the following, ν will interchangeably refer either to a
node of the search tree or to the (partial) solution associated to ν.

In order to prune the search tree that would result from a näıve enumera-
tion, RecBlock exploits symmetry breaking, bounding and dominance rules.
Symmetry breaking relates to the fact that, in a solution to a FSRP instance,
the founder sequence order is irrelevant. That is, any permutation of the or-
der of the founders represents the same solution. Therefore, RecBlock con-
structs only solutions whose founders are sorted lexicographically. Bounding
follows the usual procedure of classical Branch-and-Bound algorithms: a node
is not expanded any further if its lower bound is greater than a known upper
bound. The initial upper bound is obtained by running the incomplete version
of RecBlock (explained below); the lower bound employed is computed by

70CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

the composite bound method [161]. The authors of RecBlock state that this
bounding strategy is not very effective because the composite lower bound is
not very tight. Much more effective is to prune dominated nodes. Let us con-
sider two nodes at level l, νjl and νhl : if BP (νjl)−BP (νhl) ≥ n, then node νjl is
dominated by νhl and can be pruned. The reason is that any completion of the

partial solution νjl can be obtained starting from νhl with the introduction of at
most n breakpoints. This pruning criterion can be sharpened by computing the
number n′ of common founders between the decompositions of Cl corresponding
to nodes νjl and νhl and pruning νjl in case BP (νjl)−BP (νhl) ≥ n−n′. Further
details about this pruning mechanism can be found in [240].

RecBlock can also perform an incomplete search, in which nodes are
pruned by applying a heuristic criterion. This heuristic is based on a score
computed as the number of breakpoints in the partial solution associated to
a node. The nodes that have a score that differs from the score of the cur-
rent best node by more than a given threshold are discarded. In addition, the
maximum number of search paths along the tree can also be limited. The re-
sulting algorithm performs a breadth-first search limited to a part of the whole
search tree and returns one solution—not proven to be optimal—only when this
partial tree has been completely explored. The advantage of this version of
RecBlock (henceforth called RecBlock-incomp) is that a feasible solution
can be returned also to some large-size instances that are beyond reach for the
complete version; on the other side, it has the disadvantage that it still might
require extremely high execution times to return a solution and it is not able to
improve the solution returned if more time is available.

RecBlock can be also perform an more lightweight incomplete search than
the one executed by the RecBlock-incomp version. We call this version of
RecBlock RecBlock-D0C1—the label is due to the command arguments
passed to RecBlock executable, i.e., -D0 -C1—and essentially is a greedy con-
structive. RecBlock-D0C1 fills empty columns in a partial solution one after
the other in a greedy fashion, that is, by choosing among all possible feasible
binary strings of length kf the one that minimises the current number of break-
points. As we will see in Section 6.6.2, this version is very fast but returns poor
quality solutions.

6.4 A Simple Constructive Heuristic With Look-

Ahead

In the following we outline a randomized version of the simple constructive
heuristic proposed in [185] extended by a look-ahead technique. This algo-
rithm, which can be applied in a multi-start fashion as shown in Algorithm 4,
is henceforth denoted by Greedy. In the following we explain in detail the
working of function ComputeRandomizedSolution(). Note that throughout the
presentation of our algorithms, the set of recombinants C is regarded a matrix
with n rows and m columns. In the same way, a solution F is a matrix with kf
rows and m columns.

Initialization and filling of the first column. The solution construction
process starts by filling the first column of F , which is done as follows. First, the

6.4. A SIMPLE CONSTRUCTIVE HEURISTIC WITH LOOK-AHEAD 71

Algorithm 4 Greedy

1: input: nt ≥ 1, lh ≥ 1, rnd ∈ [0, 1]
2: F ← ConstructRandomizedSolution()
3: while termination conditions not met do
4: F ′ ← ConstructRandomizedSolution()
5: if f(F ′) < f(F) then F ← F ′ endif
6: end while
7: output: F

fraction p of 0-entries in the first column of C is derived. Then, two counters are
introduced; counter n0 for the 0-entries in the first column of F , and counter n1

for the 1-entries in the first column of F . Both counters are initialized to 1 to
ensure at least one 0-entry, respectively one 1-entry. Finally, a random number
q from [0, 1] is drawn k − 2 times. In case q ≤ p counter n0 is incremented,
n1 otherwise. The first column is then composed of n0 0-entries, followed by
n1 1-entries. After filling the first column, some data structures are initialized.
For each row i of C a variable cpi is kept that stores the position of the last
breakpoint. These variables are initialized to 0, because no breakpoint exists
yet. More specifically, cpi = 0, for i = 1, . . . , n. Moreover, a variable repi is
kept that stores the index of the founder that represents row i of C after the
last breakpoint cpi. For all rows of C with a 0-entry in the first column this
variable is initialized to 0, while for each row of C with a 1-entry the respective
variable is initialized to n0 + 1, that is, the first row of F with a 1-entry in the
first column. More specifically, repi = 0 if ci = 0, and repi = n0 + 1 otherwise.

Filling of a column. After filling the first column of F and the initialization
of the data structures, solution F is completed iteratively by filling one column
after another. In the following we first outline the mechanism without look-
ahead procedure. Let us assume that the first j − 1 columns are already filled,
and let us denote the corresponding partial solution by F j−1

1 . Accordingly, the
current column to be filled is column j. The positions of column j are filled one
after the other, starting from row 1. To fill position fij , let n0 be the number of
rows of C that are represented by founder i and that have a 0-entry in position
j. More specifically, n0 is the number of rows r of C with repr = i and crj = 0.
Correspondingly, n1 is the number of rows r of C with repr = i and crj = 1.
The actual setting of fij depends on parameter rnd ∈ [0, 1] that determines the
amount of stochasticity that is introduced into solution construction. A random
number q is drawn uniformly at random from [0, 1]. If q < rnd, fij is set to 1
with probability n1

n1+n0
, and to 0 otherwise. If q ≥ rnd, fij is set to 1 in case

n1 > n0, and fij = 0 in case n0 > n1. Otherwise (that is, in case n0 = n1)
a value for fij is chosen uniformly at random. This means that, even when
rnd = 0, there is still some randomness in the solution construction, introduced
by cases where n0 = n1.

If, after assigning a value to fij , row i can not be represented anymore by its
current representative, one may try to change its representative by an equally
good one. In case fij = 0, this concerns all rows r of C with repr = i and crj = 1;
similarly in case fij = 1. For all these rows r of C a new representing founder
l (where i < l ≤ k) that can equally represent r starting from breakpoint cpr

72CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

Algorithm 5 General Iterated Greedy algorithmic framework

1: s← GenerateInitialSolution()
2: while termination conditions not met do
3: sp ← Destruction(s)
4: s′ ← Construction(sp)
5: s← AcceptanceCriterion(s, s′)
6: end while
7: output: best solution found

is searched, that is, a row l in F (where i < l ≤ k) such that crs = fls, for all
s = cpr, . . . , j − 1. In case such a founder l can be found, repr is set to 1, and
the search for an alternative representative for row r is stopped.

As a last step, after filling all the positions of column j, the variables cpr
and repr must be updated for all rows r of C for which freprj 6= crj . In such a
case, the founder i with the minimum l such that crs = fis, for all s = l, . . . , j
must be determined. After identifying such a founder i, cpr is set to 1, and repr
is set to i.

For further reference, let us call this column-filling heuristic Rgreedy.

Look-ahead variant. The look-ahead variant of Greedy depends on param-
eters nt (the number of trials) and lh (the look-ahead size). Let us assume that
a partial solution F j−1

1 is given, which means that column j must be filled. For
that purpose, nt matrices {J1, J2, . . . , Jnt} each one composed of kf rows and
min{lh,m− j} columns are generated by repeatedly applying Rgreedy. Note
that each matrix Ji represents a possible extension of F j−1

1 by min{lh,m− j}
columns. For each matrix Ji the optimal number of breakpoints bpsi obtained by
appending Ji to the partial solution F j−1

1 is computed. Let I = arg min{bpsi}.

The column to be appended to the partial solution F j−1
1 is then selected to be

the first column of JI .

6.5 A Probabilistic Iterated Greedy Algorithm

Several examples from the literature have shown that constructive heuristics
may be improved by a simple metaheuristic framework known as an Iterated
Greedy (IG) algorithm; see, for example, [188, 189, 219]). An IG algorithm
starts with a complete solution. While some termination conditions are not
met, it iteratively alternates between partial destruction of the incumbent so-
lution (destruction phase) and re-construction of the resulting partial solution
in order to obtain again a complete solution (construction phase). The general
pseudo-code is provided in Algorithm 5.

The idea for our IG algorithm for the FSRP is based on the fact that solutions
to a problem instance can be constructed from left to right, as explained in
the previous section, but also from right to left: this is an intrinsic property
(symmetry) of the FSRP. Based on this idea we developed the IG algorithm
that is pseudo-coded in Algorithm 6 and henceforth denoted by BackForth.
In the following, the details of this algorithm are explained in depth.

6.6. ITERATED GREEDY EXPERIMENTAL EVALUATION 73

Algorithm 6 BackForth: An Iterated Greedy for the FSRP

1: input: nt ≥ 1, lh ≥ 1, rnd ∈ [0, 1], d ∈ [0, 0.5], r ≥ 1
2: F ← ConstructRandomizedSolution()
3: right← true

4: while termination conditions not met do
5: count = 0
6: improved = false

7: while count < r and improved = false do
8: dc = ⌊d ·m⌋
9: while dc ≤ ⌊(1− d) ·m⌋ and improved = false do

10: Fp ← Destruction(F , dc, right)
11: F ′ ← ReconstructRandomizedSolution(Fp, dc, right)
12: if f(F ′) < f(F) then F ← F ′, improved← true endif
13: dc ← dc + 1
14: end while
15: count← count + 1
16: end while
17: right← not right
18: end while
19: output: F

Function ConstructRandomizedSolution() uses the constructive heuristic out-
lined in Section 6.4 for generating an initial solution from left to right, that is, it
generates an initial column and then completes a feasible solution by applying
Rgreedy. In the main loop, the algorithm tries to improve upon the current
solution F either by removing columns from the right, or by removing columns
from the left. This is done in function Destruction(F , dc, right), where right is
a Boolean variable that controls the switch between both variants. More specif-
ically, when right = true columns are removed from the right hand side, and
from the left hand side otherwise. The number of columns that are removed in
function Destruction(F , dc, right) is controlled by a parameter d ∈ [0, 0.5]. The
actual number dc of columns to be removed is first set to ⌊d ·m⌋. If this does
not prove to be successful, dc is incremented until an upper limit of ⌊(1−d) ·m⌋
is reached. This procedure is repeated at most r ≥ 1 times, where r is another
parameter of the algorithm. The usage of function Destruction(F , dc, right) pro-
duces a partial solution Fp. Commencing from this partial solution, function
ReconstructRandomizedSolution(Fp, dc, right) produces a complete solution F ′,
employing the constructive heuristic Rgreedy outlined in Section 6.4. In case
the newly produced solution is better than the current solution, variable right
flips and the algorithm tries to improve the current solution from the other side.

6.6 Iterated Greedy experimental evaluation

Algorithms Greedy and BackForth were implemented in C++, compiled
with GCC 3.4.6 and options -O3 -fno-rtti -fno-exceptions enabled. All
experiments were performed on a cluster composed of dual core 2GHz Intel
XeonTM processors with 6Gb of cache and 8Gb of RAM. As it is useful to dis-
tinguish between the randomized algorithm versions (that is, when rnd > 0) and

74CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

the quasi-deterministic algorithm versions (that is, when rnd = 0) we henceforth
refer to the randomized versions as Greedy-Rnd, respectively BackForth-

Rnd. Before we present a comparison of our algorithms to the state of the art,
we first report on experiments that we performed in order to find a suitable
parameter setting.

6.6.1 Parameter Tuning

For our experimentation we used the same benchmark set as introduced in [185].
This set is composed of randomly generated instances with n ∈ {30, 50} recombi-
nants and m ∈ {2n, 3n, 5n} sites. More specifically, the benchmark set consists
of five instances per combination of n and m. The generated instances are
valid and not reducible, that is, no columns can be removed without affecting
the optimal solution. Concerning our four algorithm types, that is, Greedy,
Greedy-Rnd, BackForth, and BackForth-Rnd, we need to determine the
best parameter values for each algorithm type. Moreover, we would like to infer
how a certain parameter affects the behaviour of an algorithm type. From now
on we refer to an algorithm type coupled with a specific parameter setting as
an algorithm instantiation.

In the following we remind the reader about the relevant parameters of the
different algorithms. First, all algorithms need a value for 1. the number of trials
(nt), 2. the look-ahead size (lh), 3. and the amount of randomness used in the
solution construction (rnd). In addition, BackForth and BackForth-Rnd

algorithms requires a setting for parameters d (which controls the number of
columns to be removed in the destruction phase) and r (the number of rounds for
trying to improve the incumbent solution). Regarding nt and lh, we tested the
following combinations: (1, 1), (5, 1), (5, 2), (5, 5), (10, 1), (10, 2), (10, 5). The
amount of randomness, rnd, may be selected from {0.0, 0.01, 0.1, 0.2}. For what
concerns parameter d we allowed the following settings: d ∈ {0.1, 0.25, 0.4}.
Finally, parameter r was set to 5 after initial experiments. These options result
in 72 different algorithm instantiations. For the tuning experiments we selected
12 problem instances, one for each combination of n and m, as a training set. We
applied each algorithm instantiation 10 times to each instance of the training
set, for kf ∈ {3, 5, 7, 10}. For kf = 3 we excluded the combinations of with
nt > 5 since the number of possible columns for a 3-founder solution is six. For
each run we used a computation time limit of 50 seconds for the instances with
30 founders, and a computation time limit of 100 seconds for the ones with 50
founders.

For analyzing the results we employed a rank-based procedure as described in
the following. In order to study whether the relative performance of the different
algorithm instantiations depends on the number kf of founders, we performed
the same analysis for each number of founders. For each problem instance we
computed the average over the 10 applications of each algorithm instantiation.
Then, for each problem instance, we ordered the 72 algorithm instantiations ac-
cording to the average they achieved, that is, the algorithm instantiation with
the best average obtains rank 1, etc. Ties were given the same rank. Then, for
each algorithm instantiation we computed the average rank by averaging over
all instances of the training set. Afterwards, the 72 algorithm instantiations
were ordered according to their average rank. This approach is particularly
useful when dealing with problem instances where the objective function val-

6.6. ITERATED GREEDY EXPERIMENTAL EVALUATION 75

Table 6.1: Rank-based analysis of the tuning experiments. The results are
presented separately for each different number kf of founders.

(a) Ranking for kf = 3.

Rank Average rank Algorithm type nt lh d rnd

1 1.167 BackForth-Rnd 5 1 0.1 0.2
30 32.667 BackForth 5 5 0.1
43 39.833 Greedy-Rnd 5 5 0.1
44 40.167 Greedy 5 5

(b) Ranking for kf = 5.

Rank Average rank Algorithm type nt lh d rnd

1 1.500 BackForth-Rnd 10 1 0.1 0.2
40 37.000 BackForth 10 5 0.1
72 60.000 Greedy-Rnd 10 5 0.01
74 61.333 Greedy 10 5

(c) Ranking for kf = 7.

Rank Average rank Algorithm type nt lh d rnd

1 1.667 BackForth-Rnd 10 1 0.1 0.2
17 18.167 BackForth 10 5 0.4
68 53.000 Greedy-Rnd 10 5 0.1
70 54.167 Greedy 10 5

(d) Ranking for kf = 10.

Rank Average rank Algorithm type nt lh d rnd

1 3.167 BackForth-Rnd 10 1 0.1 0.2
3 6.833 BackForth 10 2 0.1
64 50.833 Greedy 10 2
67 51.667 Greedy-Rnd 10 5 0.01

ues are in different scales, like in our case. In Table 6.1 for each algorithm
type (that is, Greedy, Greedy-Rnd, BackForth, and BackForth-Rnd)
and each founder we report 1. the position of the first occurrence in the final
ranking of the algorithm instantiations, 2. its average ranking on all problem
instances, and 3. its description consisting of algorithm type and relevant pa-
rameter settings. These figures clearly demonstrate that the best performing
algorithm instance, on average, is BackForth-Rnd with nt = 10 (5 in case
k = 3), lh = 1, d = 0.1, and rnd = 0.2. In other words, the iterated greedy
algorithm has clear advantages over the multi-start heuristic. Moreover, when
algorithm BackForth is concerned, randomness is much more useful than in
the case of algorithm Greedy.

In order to show also the qualitative difference between the four algorithms
shown in Table 6.1, we compare the average solution qualities they achieved in
Figure 6.2. This is done as follows. For each of the 10 applications we summed
up the result achieved on all problem instances from the test set. This provides
us with 10 values for each of the four algorithm instantiations. These 10 values
are shown in the form of boxplots for each algorithm instantiation. The graphics

76CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

BackForth BackForth$Rnd Greedy Greedy$Rnd1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

(a) Comparison for kf = 3

BackForth BackForth%Rnd Greedy Greedy%Rnd1375

1380

1385

1390

1395

1400

1405

1410

1415

1420

(b) Comparison for kf = 5

BackForth BackForth&Rnd Greedy Greedy&Rnd1145

1150

1155

1160

1165

1170

1175

1180

(c) Comparison for kf = 7

BackForth BackForth'Rnd Greedy Greedy'Rnd945

950

955

960

965

970

(d) Comparison for kf = 10

Figure 6.2: A comparison regarding the solution quality of the best algorithm
instantiations of the four algorithm types.

clearly support the conclusions that we have drawn from the results of Table 6.1.
Finally, note that the best algorithm instantiation in the comparison does

not use look-ahead (that is, lh = 1). This seems counter-intuitive at first,
especially because the best performing algorithm instantiations of the other
three algorithm types all use a look-ahead value greater than one. The reason
seems that, given a limited amount of time, instead of looking ahead it is better
to explore as many solutions as possible. The graphics of Figure 6.3 support
this claim. Boxplots show the performance of the best instance of BackForth-

Rnd on the whole training set over the 10 runs when varying the values of the
(nt, lh) parameters. The y-axis reports the average solution value. As shown
in the graphics, incrementing the look-ahead is detrimental to the algorithm
performance, while incrementing the number of trials is beneficial. When kf =
10 this phenomenon can also be observed for other algorithm instantiations as
shown in Table 6.1d.

6.6.2 Comparison with the State of the Art

We tested the best algorithm instantiation as determined by the parameter tun-
ing phase—henceforth denoted by Best—against all techniques used in [185].
For consistency reasons we maintain the same algorithm notifiers in the result

6.6. ITERATED GREEDY EXPERIMENTAL EVALUATION 77

(1, 1) (5, 1) (5, 2) (5, 5)
(nt, lh)

1970

1980

1990

2000

2010

2020

(a) Performance for kf = 3

(10, 1) (10, 2) (10, 5) (1, 1) (5, 1) (5, 2) (5, 5)
(nt, lh)

1380

1400

1420

1440

1460

(b) Performance for kf = 5

(10, 1) (10, 2) (10, 5) (1, 1) (5, 1) (5, 2) (5, 5)
(nt, lh)

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

(c) Performance for kf = 7

(10, 1) (10, 2) (10, 5) (1, 1) (5, 1) (5, 2) (5, 5)
(nt, lh)

940

950

960

970

980

990

1000

1010

1020

1030

(d) Performance for kf = 10

Figure 6.3: A comparison of algorithm instantiations of BackForth-Rnd with
varying values of nt and lh.

tables as used in [185]. This means that heuristic actually refers to Greedy with
nt = 1, lh = 1, and rnd = 0. Moreover, TS refers to the tabu search presented
in [185]. The remaining algorithms are three variants of RecBlock: 1. com-
plete version (RecBlock-comp), 2. incomplete variant (RecBlock-incomp),
and 3. the lightest heuristic version (RecBlock-D0C1).

Remember that the benchmark set consists of 60 problem instances as out-
lined at the beginning of Section 6.6.1. Each instance was considered in com-
bination with different numbers of founders, more specifically, we considered
kf ∈ {3, . . . , 10}. Then, as a first experiment we applied Best for one hour to
each combination of an instance and a founder number kf exactly once. Results
are summarized in Tables 6.2 and 6.3 in which the average solution qualities
and the corresponding standard deviations are reported. Statistics are taken
over the five instances per combination of the number of recombinants (n) and
sites (m). Note that the results in [185] were also obtained with a computation
time limit of one hour for each run. Even though the results from [185] were
obtained on different processors, they are comparable because the processors
have a similar speed.1

1Consider that all algorithms implemented in this paper are single-threaded and do not
take advantage of parallel architectures; for what RAM is concerned, the algorithms in this

78CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

The results show that our algorithm achieves, in each case, a better perfor-
mance than RecBlock-D0C1, heuristic, and TS. This is remarkable, because
TS is build upon a sophisticated neighborhood structure, whereas our random-
ized iterated greedy algorithm is very un-sophisticated in comparison. For what
concerns the comparison to rec-exact and RecBlock-incomp, our algorithm is
generally inferior. However, rec-exact and RecBlock-incomp fail rather soon
(that is, with growing problem size) to produce any solution within the allotted
time of one CPU hour.

In order to study the development of the solution quality obtained by our
algorithm over time, we run the algorithm also with other computation time
limits. In particular, we were interested in the behaviour of our algorithm
when computation time limits are much more restrictive. Table 6.4 shows three
additional computation time limits that we used. The resulting algorithm in-
stantiations are denoted by Best I, Best II, and Best III. In Figure 6.4 we
show the results in the following form. Results are averaged over all instances
with the same number of recombinants. For each different founder number we
show the results of the Best with the four different computation time limits in
terms of the percent deviation with respect to the results achieved by TS. First,
it is interesting to note that in all cases the percent deviation is positive, which
means that with all tested computation time limits our algorithm is better than
TS. This is especially remarkable for the shortest computation time limits of 50
seconds per run for instances with 30 recombinants and 100 seconds per run for
instances with 50 recombinants. Finally, as expected, the graphics show clearly
that our algorithm improves with growing computation time limits.

On the negative side, the obtained solution quality does not improve impres-
sively over time. Therefore we conclude that, although Best is a valuable and
scalable heuristic, it does not take the best possible advantage of larger time
limits. That would suggest that our algorithm is especially suited either as a
fast heuristic upper bound on medium- and large-sized problem instances or as
an improvement step in the context of some population-based metaheuristic,
such as a memetic algorithm or ant colony optimization.

These hypotheses are indeed true and the statistical analysis performed in
Section 6.9.2 confirm that. This is the main reason why we combined our
Iterated Greedy with a more sophisticated learning-based method; this way, as
we will see in further sections, larger running times can be exploited much more
beneficially.

paper use less than 5MB.

6.6. ITERATED GREEDY EXPERIMENTAL EVALUATION 79

3 4 5 6 7 8 9 100

1

2

3

4

5

6
Best I

Best II

Best III

Best

(a) Instances with n = 30

3 4 5 6 7 8 9 100.0

0.5

1.0

1.5

2.0

2.5

3.0
Best I

Best II

Best III

Best

(b) Instances with n = 50

Figure 6.4: The y-axis shows the percent deviation of algorithms Best I, Best

II, Best III, and Best over TS. Results are averaged over the instances with
the same number of recombinants. The x-axis ranges over different numbers of
founders.

8
0
C
H
A
P
T
E
R
6
.
T
H
E
F
O
U
N
D
E
R
S
E
Q
U
E
N
C
E
R
E
C
O
N
S
T
R
U
C
T
IO

N
P
R
O
B
L
E
M

T
a
b

le
6
.2

:
R

esu
lts

fo
r

in
sta

n
ces

w
ith

3
0

reco
m

b
in

a
n
ts.

R
esu

lts
a
re

av
era

g
ed

ov
er

5
ra

n
d

o
m

in
sta

n
ces.

T
h

e
sy

m
b

o
l

‘—
’

in
d

ica
tes

th
a
t

n
o

so
lu

tio
n

w
a
s

retu
rn

ed
.

S
ta

n
d

a
rd

d
ev

ia
tio

n
s

a
re

rep
o
rted

in
b

ra
ck

ets;
low

est
en

tries
a
re

h
ig

h
lig

h
ted

in
b

o
ld

fa
ce.

30 recombinants
sites , founders RecBlock-comp RecBlock-incomp RecBlock-D0C1 heuristic TS Best

60 , 3 573.8 (12.38) 579.4 (11.5) 604 (16.11) 594.2 (13.08) 583 (11.79) 574.6 (11.52)
60 , 4 445.4 (5.59) 450.2 (6.53) 494.2 (18.27) 479.6 (9.18) 459.6 (7.5) 448.2 (5.34)
60 , 5 — 385.2 (7.85) 425.4 (10.06) 412.2 (8.87) 395.8 (9.36) 384.6 (7.42)
60 , 6 — 340.6 (5.18) 383.6 (5.13) 367.6 (6.88) 352 (6.6) 339.6 (6.34)
60 , 7 — 303.6 (5.64) 353.8 (10.06) 335.2 (7.22) 318.2 (6.76) 306.6 (4.76)
60 , 8 — 274.6 (3.71) 331 (8.75) 311.6 (5.77) 291.2 (4.38) 281.8 (4.53)
60 , 9 — — 307.4 (10.29) 288.6 (6.47) 270.4 (4.51) 258.8 (6.49)
60 , 10 — — 294 (9) 268.4 (4.56) 251.8 (4.32) 237.8 (5.71)
90 , 3 877.2 (2.95) 885.2 (3.96) 917.8 (12.83) 910.8 (8.01) 892 (4.58) 879.6 (1.50)
90 , 4 684.2 (3.27) 689.4 (4.34) 749.4 (5.81) 741.6 (7.16) 711.8 (4.02) 690.0 (3.63)
90 , 5 — 596.2 (4.49) 653 (14.23) 645.6 (3.21) 618.6 (3.78) 600.2 (4.79)
90 , 6 — 525 (2.45) 584.2 (7.85) 580.2 (4.32) 552.8 (4.76) 532.8 (3.19)
90 , 7 — 469.4 (3.91) 542 (22.29) 529.8 (6.76) 500.4 (4.16) 482.4 (3.44)
90 , 8 — 424.4 (2.7) 498.8 (17.47) 491 (4) 461.2 (2.17) 444.4 (1.36)
90 , 9 — — 469.8 (6.1) 456.2 (4.92) 427.8 (3.9) 409.2 (2.40)
90 , 10 — — 438.2 (7.05) 427 (4.85) 398.8 (3.35) 377.6 (3.38)
150 , 3 1468.8 (21.7) 1482.6 (17.87) 1533.4 (16.46) 1529 (16.12) 1500.6 (18.65) 1480.0 (18.74)
150 , 4 1140.4 (9.42) 1154.4 (5.18) 1249 (18.72) 1253.2 (12.77) 1200.8 (10.76) 1157.6 (9.09)
150 , 5 — 991.6 (8.2) 1083.8 (20.68) 1090.8 (9.88) 1041.6 (10.78) 1005.8 (7.03)
150 , 6 — 876.2 (6.26) 971.2 (3.49) 980 (4.8) 932 (9.14) 899.4 (5.92)
150 , 7 — — 888.8 (12.03) 897 (4.47) 848.2 (6.42) 817.8 (3.43)
150 , 8 — — 819.2 (5.36) 831.8 (4.6) 783.2 (4.71) 748.2 (5.42)
150 , 9 — — 770.2 (12.64) 773 (3.39) 727.6 (3.71) 700.6 (4.76)
150 , 10 — — 715.2 (9.52) 724.8 (2.68) 676.6 (3.78) 646.6 (4.59)

6
.6
.

IT
E
R
A
T
E
D

G
R
E
E
D
Y

E
X
P
E
R
IM

E
N
T
A
L
E
V
A
L
U
A
T
IO

N
8
1

T
a
b

le
6
.3

:
R

esu
lts

fo
r

in
sta

n
ces

w
ith

5
0

reco
m

b
in

a
n
ts.

R
esu

lts
a
re

av
era

g
ed

ov
er

5
ra

n
d

o
m

in
sta

n
ces.

T
h

e
sy

m
b

o
l

‘—
’

in
d

ica
tes

th
a
t

n
o

so
lu

tio
n

w
a
s

retu
rn

ed
.

S
ta

n
d

a
rd

d
ev

ia
tio

n
s

a
re

rep
o
rted

in
b

ra
ck

ets.

50 recombinants
sites , founders RecBlock-comp RecBlock-incomp RecBlock-D0C1 heuristic TS Best

100 , 3 1765.4 (16.96) 1784.4 (14.64) 1837.8 (31.03) 1821.2 (18.02) 1789 (15.18) 1775.0 (14.57)
100 , 4 1377.6 (10.88) 1392.2 (9.39) 1481.8 (24.63) 1483.8 (8.23) 1425.2 (13.95) 1388.8 (11.23)
100 , 5 — 1225.2 (14.72) 1305 (17.36) 1301.2 (15.06) 1260.6 (14.43) 1232.2 (10.61)
100 , 6 — 1095.8 (13.92) 1177.6 (12.16) 1188.4 (15.08) 1140.2 (11.21) 1115.6 (12.67)
100 , 7 — 997.8 (10.99) 1087.8 (15.9) 1101.4 (9.89) 1049.4 (9.13) 1027.6 (10.33)
100 , 8 — 920.4 (9.71) 1026.8 (6.3) 1034.8 (9.78) 976 (9.62) 960.4 (9.54)
100 , 9 — — 963.8 (14.82) 976.2 (13.59) 915 (11.73) 897.0 (6.03)
100 , 10 — — 918.8 (6.76) 928.4 (10.64) 868 (8.34) 851.2 (3.49)
150 , 3 2631.2 (22.88) 2660.6 (22.74) 2740.8 (29.3) 2722.6 (23.99) 2677.4 (23.56) 2647.6 (22.92)
150 , 4 2056.8 (5.72) 2078.8 (6.91) 2194.2 (26.48) 2240.6 (6.88) 2148.2 (8.41) 2091.6 (10.48)
150 , 5 — 1823.2 (8.32) 1936.8 (12.74) 1965 (9.46) 1894.8 (8.35) 1857.2 (9.02)
150 , 6 — 1635.8 (12.85) 1759.6 (9.66) 1794.8 (6.8) 1717.8 (7.16) 1683.2 (12.67)
150 , 7 — 1493.2 (11.19) 1644 (12.53) 1668 (9.22) 1578.8 (10.18) 1554.4 (8.01)
150 , 8 — — 1528.8 (13.24) 1562.8 (10.01) 1475.2 (10.96) 1450.4 (5.12)
150 , 9 — — 1443.8 (6.69) 1479.2 (14.74) 1386 (8.86) 1365.6 (7.91)
150 , 10 — — 1376.8 (15.59) 1403.2 (11.56) 1314.8 (5.81) 1299.0 (6.03)
250 , 3 4421 (22.06) 4466.2 (20.46) 4597.8 (33.69) 4601.6 (15.53) 4514.8 (11.95) 4475.8 (18.48)
250 , 4 3448.67 (4.73) 3490.8 (10.76) 3728.8 (8.53) 3813.6 (7.54) 3634.2 (13.88) 3542.6 (15.29)
250 , 5 — 3071.4 (15.98) 3258.4 (33.25) 3344 (21.12) 3218.8 (11.69) 3151.6 (22.97)
250 , 6 — 2754.4 (14.17) 2967.8 (24.77) 3046.8 (11.37) 2915.8 (17.31) 2864.2 (21.39)
250 , 7 — 2510.6 (9.4) 2735.6 (20.89) 2832 (13.82) 2686.6 (11.8) 2643.6 (11.46)
250 , 8 — — 2570.6 (22.06) 2648.8 (17.77) 2504.8 (12.93) 2472.6 (10.09)
250 , 9 — — 2422 (30.24) 2505.8 (14.79) 2358 (9.67) 2324.8 (10.36)
250 , 10 — — 2304.4 (28.06) 2378.8 (7.22) 2237.2 (7.6) 2203.8 (5.49)

82CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

Table 6.4: Alternative computation time limits (in seconds).

Number of Notifier
recombinants Best I Best II Best III

30 50 100 180
50 100 200 600

6.7. LARGE NEIGHBOURHOOD SEARCH ALGORITHMS FORTHE FSRP83

Algorithm 7 High level algorithm of LNS for the FSRP

1: F ← BuildInitialSolution()
2: while termination condition not met do
3: Ifree ← ChooseFounders()
4: F ′ ← RecBlock(F|Ifree

) {Solve the instance restricted to the set of free
founders}

5: if f(F ′) < f(F) then
6: F ← F ′

7: end if
8: end while
9: output: best solution found F

6.7 Large neighbourhood search algorithms for

the FSRP

The method that we propose is a hybrid metaheuristic [30] based on the Large
Neighbourhood Search framework. Large Neighbourhood Search (LNS) is a
search strategy consisting in a local search that uses a complete method for
exploring a—typically very large—neighbourhood. LNS tries to combine the
advantage of a large neighbourhood, that usually enhances the explorative ca-
pabilities of local search, with an exhaustive tree-search exploration which is
faster than enumeration. This kind of search strategy has been successfully ap-
plied in several contexts [2, 7, 52, 174, 206]. We designed a family of algorithms
based on the LNS framework which employ RecBlock [240] as sub-solver. In
fact, RecBlock is rather efficient for a small number of founders and our aim
was to exploit this fact for a method capable of tackling large-size instances.
We first illustrate the high level search strategy we designed (Algorithm 7) and
we subsequently detail the variants we implemented (Algorithm 8).

An initial solution is built by means of any constructive procedure (Line 1
of Algorithm 7), then a local search with large neighbourhoods is performed.
Let I be the set of indices of founders in F . The neighbourhood is composed
of all feasible assignments to a selected set of founders corresponding to indices
Ifree ⊆ I (Line 3), while the other founders corresponding to indices I \Ifree are
kept fixed; this neighbourhood is exhaustively explored by RecBlock (Line 4).
For this purpose, we modified RecBlock so as to have the algorithm searching
only among the configurations of kf = |I| founders in which |I \ Ifree| founders
are fixed. If the chosen neighbouring solution has a lower number of breakpoints
than the current one, it becomes the new current solution, in the spirit of a first
improvement local search (Lines 5–7) of Algorithm 7. This strategy shares also
analogies with IG [110] and Forget and Extend [43], in that it partially destroys
and reconstructs the solution.

Depending on the instantiation of the function ChooseFounders(), different
versions of Algorithm 7 can be defined. We implemented several variants of the
algorithm, which share the idea of increasing the number of unassigned founders
whenever either all the combinations have been explored or no solution improve-
ments are found for a given number of examined neighbours. We remark that
the idea of enlarging the neighbourhood whenever diversification is needed is
similar to that characterising Variable Neighbourhood Descent [106]. In our LNS

84CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

Algorithm 8 LNS-FSRP algorithm

1: Set parameters kmin, kmax, maxCombinations
2: F ← BuildInitialSolution()
3: k ← kmin
4: i← 1
5: while k ≤ kmax ∧ maximum time not expired do
6: if not all k-combinations of kf founders explored ∧ i ≤

maxCombinations then
7: Ifree ← NextCombination(k, kf)
8: F ′ ← RecBlock(F|Ifree

)
9: i← i + 1

10: if f(F ′) < f(F) then
11: F ← F ′

12: k ← kmin
13: i← 1
14: end if
15: else
16: k ← k + 1
17: i← 1
18: end if
19: end while
20: output: best solution found F

algorithm, the neighbourhood size is controlled by the number k of founders to
which the search is restricted. The high-level parametrised algorithm describing
our family of algorithms is detailed in Algorithm 8.

The algorithm has three main parameters: kmin and kmax, which denote the
minimum (resp. maximum) number of founders to be chosen, and maxCombinations,
which denotes the maximum number of k-combinations of founders that are con-
sidered before incrementing k. The indices of a new k-combination of founders
are returned by the function NextCombination(k, kf). The neighbourhood is ex-
amined in random order, i.e., the combinations of indices are randomly picked
from the set without replacement.

The search is stopped when either k > kmax or the maximum computation
time allotted is expired. The time check is also performed inside the modified
version of RecBlock, so as to guarantee that the solution returned is found
within the time limit.

Depending on the values of the parameters, different variants of LNS-FSRP
can be obtained. The ones that we tested are the following:

• LNS-1: kmin = 1, kmax = kf , maxCombinations =∞

• LNS-3: kmin = 3, kmax = kf , maxCombinations =∞

• LNS-maxc: kmin = 1, kmax = kf , maxCombinations = 10

LNS-1 and LNS-3 differ in the minimum number of founders considered for
defining the neighbourhood. The advantage of LNS-3 over LNS-1 could be to
start the search with a neighbourhood that makes it possible to achieve a good

6.8. LARGE NEIGHBOURHOOD SEARCH EXPERIMENTAL ANALYSIS85

balance between diversification and efficiency, because RecBlock has proven to
be quite fast in solving instances with 3 founders. Note that the neighbourhoods
can be explored exhaustively, because maxCombinations =∞. Therefore, if no
time limit is imposed, LNS-1 and LNS-3 both converge to a RecBlock search
on the whole set of kf founders; therefore, in principle, they are complete.
As it will be shown in Section 6.9, this search strategy has the advantage of
finding very good—or even optimal solutions—much faster than when running
RecBlock directly in its full version; moreover, it finds good solutions to large-
size instances, which are not solved be RecBlock. LNS-maxc differs from the
previous algorithms in that it only performs a limited number of neighbourhood
explorations; the rationale behind this strategy is that it could be beneficial,
especially for large-size instances, to sample the k-combinations rather than
enumerating all of them. maxCombinations is a parameter of the algorithm
and it should be set after a parameter tuning process. This parameter was set
to 10, because this value is the minimum number that enables the algorithm to
exhaustively explore the neighbourhood of size one in the cases in which kf = 10,
thus achieving a good trade-off between intensification and diversification across
all the instances.

All three algorithms have the property of being anytime algorithms, because
they progressively return improved solutions.

The initial solution can be provided by a dedicated constructive heuristic or
it can be a random solution. In our algorithms we feed the LNS algorithm with
a solution generated by the best out of the four algorithms, henceforth called
B&F IG (Bestwould be a misleading label in the incoming algorithm tuning
stage), coming from parameter configuration described in Section 6.6.1.

A possible improvement over the algorithms described above consists in ex-
ploiting the pruning capability of RecBlock when an upper bound (UB) is
provided. Indeed, each time a new best solution is found, this value can be
provided to RecBlock for pruning the search tree. The effect of the use of this
UB update will be discussed in Section 6.8.

6.8 Large Neighbourhood Search experimental

analysis

In this section, we first introduce the test instances. Subsequently, we experi-
mentally compare the LNS variants. The best of these algorithms is compared
to the current state-of-the-art method, RecBlock, and also to the B&F IG
itself.

6.8.1 Experimental setting

The algorithms have been implemented in C++, compiled with GCC 3.4.6, op-
tions -O3 -fno-rtti -fno-exceptions enabled, and run on a cluster equipped
with dual core Intel XeonTM 3GHz processors, 6MB of cache and 8GB of RAM.
Since a short computation time is not a requirement for the FSRP, the maxi-
mum CPU time allotted for each algorithm was 3 days (72 hours). Whenever
B&F IG was chosen for providing the initial solution, it was run for 50 seconds
in the case of 30 recombinants and 100 seconds for instances with 50 recombi-

86CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

nants (confront with Best I runtime settings from Table 6.4). The whole set of
experiments required about 4 years of CPU time.

Algorithms are compared on the basis of solution quality and, in case of ties,
the computation time at which the best solution of a run was found.

The benchmark instance set used in this study comprises three sets: random,
ms and evo. The random set has been used also in previous works [185].A random
instance is generated by assigning value 0 or 1 to each recombinant’s site with
probability equal to 0.5. All instances of the set random are valid and not
reducible. Random instances have the disadvantage of not being particularly
significant as benchmark for real-world problems. To compare the algorithms on
instances of varying size with a structure similar to that of real-world instances,
we generated two further sets based on evolutionary models. In fact, apart from
the random instance set, in previous works only small-size real-world instances
have been used. The first set is produced with the Hudson generator [115] that
simulates genetic samples under neutral models. The second one is generated by
simulating a simple neutral evolutionary process by iteratively applying a one-
point crossover to an initial population of founders. Besides the number of sites
(m), founders (k0) and recombinants (n), the parameters of the evo generated
instances are the crossover probability (cxp) and the growth factor (α). As
long as the current population’s size popsize is less than n, a new population of
size ⌊α · popsize⌋ is generated by iteratively picking two individuals at random,
producing two individuals by applying the crossover—with probability cxp—
and inserting in the population randomly one of the two new individuals. The
evo benchmark set was generated with k0 = 10, α = 2, cxp = 0.8. All instances
in the ms and evo sets are valid and not reducible. Each set contains instances
with n recombinants of length m, where n ∈ {30, 50} and m ∈ {2n, 3n, 5n}. In
previous works, values of kf up to 5 were considered. With the aim of analysing
the scaling behaviour of the algorithms, we considered values of founders up to
10. The instances used are available as online additional material [183].

It is important to observe that our techniques are stochastic, therefore they
might return a different solution at each run. However, in our experiments,
we evaluate each algorithm only once on a benchmark instance. We do so
to avoid too high computation times that would be incurred by more than a
single trial per instance. Moreover, it is known that for a fixed number N of
runs the minimal variance estimation is achieved by running an algorithm once
on N instances, instead of running it more than once on a smaller subset of
instances [27]. In the comparisons which follow, whenever we need to assess
the statistical significance of the results, we apply the non-parametric paired
Wilcoxon test for the equality of two medians [57].

6.8.2 Comparison among LNS-FSRP variants

We first compare algorithms LNS-1, LNS-3 and LNS-maxc. In order to save com-
putation time, while keeping at the same time a wide spectrum of test cases, the
problem instances are solved with kf ∈ {5, 7, 9}; therefore, the algorithms were
run on 54 cases (a case is an instance with a given kf). Since solution values and
execution times can be on different scale across the test cases, we compared the
three algorithms on the basis of their relative difference per instance, computed
with respect to the minimum among the three values. Let us denote by sol(A)
the solution value returned by algorithm A and let solmin be the minimum

6.8. LARGE NEIGHBOURHOOD SEARCH EXPERIMENTAL ANALYSIS87

−1.0 −0.5 0.0 0.5 1.0

evo instances

LNS−1

LNS−3

LNS−maxc

Relative solution value difference
0.000 0.010 0.020 0.030

ms instances

LNS−1

LNS−3

LNS−maxc

Relative solution value difference
0.00 0.02 0.04 0.06

rnd instances

LNS−1

LNS−3

LNS−maxc

Relative solution value difference

Figure 6.5: Boxplot of solution value differences between LNS-1, LNS-3 and
LNS-maxc.

0 20 40 60 80

evo instances

LNS−1

LNS−3

LNS−maxc

Relative time difference
0 100 200 300

ms instances

LNS−1

LNS−3

LNS−maxc

Relative time difference
0 100 200 300

rnd instances

LNS−1

LNS−3

LNS−maxc

Relative time difference

Figure 6.6: Boxplot of execution time differences between LNS-1, LNS-3 and
LNS-maxc.

value found by the algorithms involved in the comparison. The relative solution
value difference of algorithm A is computed as (sol(A)− solmin)/solmin. Rela-
tive time differences are computed in an analogous way to the relative solution
value differences. Boxplots of the relative solution value and the relative time
differences are drawn in Figure 6.5 and Figure 6.6, respectively. Each boxplot
graphically summarises statistics on the relative difference values attained by
an algorithm across all the test cases. The bold line denotes the median value,
while the leftmost and rightmost sides of the rectangle denote the 1st and 3rd
quartile of the distribution, respectively.2

The results of this comparison show that the algorithms perform similarly,
but that LNS-1 is superior to the other two algorithms as it is statistically
confirmed by the Wilcoxon test: LNS-1 is significantly better than the other
two competitors on random instances with respect to solution value and on evo

and ms instance sets with respect to run time. No statistical difference is found
in the other cases.

Before discussing the experimental results of the comparison against the
state of the art, we present some further analysis on the behaviour of LNS-1

by studying the impact of the initial solution and of a dynamic upper bound
update. Furthermore, we analyse the impact of neighbourhood size on the

2For more details on boxplots, we refer the reader to [84].

88CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

0.00 0.02 0.04 0.06 0.08

evo instances

LNS−1

RLNS−1

Relative solution value difference
0.00 0.02 0.04 0.06 0.08

ms instances

LNS−1

RLNS−1

Relative solution value difference
0.000 0.005 0.010 0.015 0.020 0.025

rnd instances

LNS−1

RLNS−1

Relative solution value difference

Figure 6.7: Boxplot of relative solution value difference between LNS-1, which
is initialised by B&F IG, and RLNS-1, which is initialised by a random solution.

search. Finally, we present an improvement of the algorithm based on a speed-
up mechanism.

6.8.3 Impact of initial solution

The algorithm we implemented starts the search from a greedy constructed so-
lution provided by B&F IG. We also run experiments to assess the actual impact
of a heuristic solution with respect to a random initial one. The corresponding
algorithm is named RLNS-1. A summary of the statistics concerning the relative
improvement of LNS-1 over RLNS-1 is shown in Figure 6.7. Except for the case
of the evo instances, in which no statistically significant difference is found,
starting from an initial solution provided by B&F IG enables the algorithm to
find a better solution than starting from randomly generated founder sequences.

6.8.4 Impact of upper bound update

The complete algorithm RecBlock used in Line 8 of Algorithm 8 accepts as
input also an upper bound value on the solution. This piece of information is
used to prune the search tree during the solution process. Since we use itera-
tively RecBlock during the search, it might be beneficial to update the upper
bound every time a new best solution is found. We implemented this variant
of LNS-1 and found no evidence for an advantage of using UB information over
not using it, neither in solution quality nor in execution time.

6.8.5 Impact of neighbourhood size

During the runs of the algorithm, we recorded the neighbourhood size at which
a new best solution was found, so as to estimate the impact of neighbour-
hood size on the search process. Data were collected on all instances and for
kf ∈ {5, 6, 7, 8, 9, 10}. Histograms reporting the frequency of improvements with

6.8. LARGE NEIGHBOURHOOD SEARCH EXPERIMENTAL ANALYSIS89

1 2 3 4 5

evo instances

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

D
en

si
ty

k

1 2 3 4 5

ms instances

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

D
en

si
ty

k

1 2 3 4 5

rnd instances

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

D
en

si
ty

k

Figure 6.8: Histograms showing the fraction of times an improvement is found
with neighbourhood of size k.

specific values of k for LNS-1 are drawn in Figure 6.8. As it can be observed,
most improvements are found for neighbourhood sizes of 1 and 2; however, a
significant fraction of improvements is achieved with k equal to 3 and 4. Neigh-
bourhoods corresponding to k up to size 5 were used by the algorithm. This
analysis shows that neighbourhoods larger than 2 have to be considered in order
to have a method with high performance. One may observe that for kf ≤ 2 the
problem has a polynomial time worst case complexity and a dedicated polyno-
mial time algorithm could be used instead of RecBlock. However, RecBlock

is very fast also in this case because it exploits the constraints imposed by the
fixed founder values to efficiently explore the search tree corresponding to the
sub-problem restricted to assigning k founders. An ad hoc algorithm designed
to solve efficiently the sub-problems with kf ≤ 2 could anyway make the overall
technique more efficient.

Another insightful piece of information is given by the percentage of cases in
which an improvement is achieved with a neighbourhood size smaller than that
of the one for which the last improvement was achieved, i.e., after resetting k to
kmin (see Line 12 in Algorithm 8). This analysis shows the utility of varying the
neighbourhood size during the search. Table 6.5 reports the percentage of times
such an event occurred for each instance class. The value pij in row i and column
j means that an improvement with k = j has been achieved pij% of times after
an improvement attained with k = i. As we can note, a significant percentage
of improvements has been achieved by moving to a smaller neighbourhood.

6.8.6 LNS-1 speed-up

The algorithm LNS-1 can be improved by adding a caching mechanism that
makes it possible to avoid revisiting neighbourhoods included in previously ex-
plored ones. The possibility of revisiting (part of) a same neighbourhood arises
when an improvement is found for a given set Iµ of µ founder indices: in the next
iteration k is reset to 1 and the search continues by exploring neighbourhoods
of size 1. All solutions that can be obtained by exploring sequences of founders
whose indices are in a set I ′ ⊆ Iµ are provably not better than the current
best solution, because the neighbourhood exploration is complete. Therefore,
computation time can be saved by avoiding exploring subsets of already con-

90CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

Table 6.5: Percentage of improvements achieved with a smaller neighbourhood
w.r.t. the last improvement. The value pij in the matrix means that, after an
improvement achieved with a neighbourhood i, a further improvement has been
achieved with a neighbourhood of size j < i in pij% of the cases.

evo instances
1 2 3

2 4.6 − −
3 7.1 7.1 −
4 0 0 0
5 0 0 33.3

ms instances
1 2 3

2 6.9 − −
3 0 24.4 −
4 0 21.4 7.1

random instances
1 2 3

2 23.7 − −
3 1.5 46.1 −
4 11.1 5.6 0

sidered founders. Since the neighbourhoods are scanned in a random order, for
every k ≤ µ a subset of an already explored set of founders can be visited with
probability

(

µ
k

)

/
(

kf
k

)

. We implemented a caching mechanism based on recording
the index set I∗ of the last visited founders that led to a solution improvement:
as long as no improvement is found, before exploring a neighbourhood, we check
whether it consists of founders with indices all included in I∗. The set I∗ is
updated whenever a solution improvement is found.

We compared the performance of simple LNS-1 against that equipped with
the caching mechanism, named LNS-1c. The introduced variant only affects
execution time, because it does not perturb the search process. Therefore,
no difference whatsoever is expected—nor has it been found—with respect to
solution quality. Results show that LNS-1c can be up to 15% faster than LNS-1.
The average speed-up attained on evo instances is 2%, with a maximum of
6%. Conversely, for ms and random instances the improvement is more evident,
amounting on average to 4% for both sets, with a maximum of 14% and 15%,
respectively. Hence, LNS-1c is the variant we use for the comparison against
the state of the art.

6.9 Comparison of LNS-1c against the state of

the art

In this section, we compare LNS-1c with the state-of-the-art algorithms Rec-

Block (both complete and incomplete versions) and B&F IG. Tables 6.6, 6.7
and 6.8 report the results of LNS-1c, RecBlock-comp, RecBlock-incomp
and B&F IG on the three benchmark sets.

Instances were solved with kf ∈ {5, 6, 7, 8, 9, 10}. Therefore, the algorithms
are compared on a set composed of 108 cases. The total time allotted to the
methods was 3 days (including initial solution’s computation time) for each run.
The best solution value returned is highlighted in boldface; in case of ties, the
shortest time is also marked.

6.9. COMPARISON OF LNS-1C AGAINST THE STATE OF THE ART 91

6.9.1 Comparison with RecBlock

We compared LNS-1c with RecBlock with the latter both run as a complete
(RecBlock-comp) and incomplete algorithm (RecBlock-incomp). In our
experiments, we run the default incomplete variant of RecBlock. We chose
not to include RecBlock-D0C1 version in our comparison because, as can
be clearly seen in Tables 6.2 and 6.3, this variant returns poor solutions. Rec-

Block-D0C1 is meant to run fast, but in our comparisons we are more interested
in high solution quality and time limit is not the limiting factor. Indeed, each
run of the plain version of RecBlock is composed of two parts: in the first,
the algorithm is run in an incomplete version and its solution is used as upper
bound provided to the complete version. As observed in initial experiments,
the default parameter setting is the one that enables RecBlock-incomp to
attain a very good trade-off between solution quality and execution time. A
careful parameter tuning could improve the performance of RecBlock-incomp
on specific instances or restricted classes of instances; nevertheless, an automatic
parameter tuning for RecBlock would require a high amount of computation
time and the resulting algorithm would anyway not be guaranteed to find a
solution in the allowed time limit. In fact, we would like to emphasise that the
strength of RecBlock lies in its efficient tree exploration, rather than in its
capabilities as heuristic algorithm.

Results from Tables 6.6, 6.7 and 6.8 show that many instances could not be
solved by RecBlock-comp within the time limit of 3 CPU days. RecBlock-
comp could solve only 33 out of 108 cases. Notably, in all the 33 cases, LNS-1c
found the same solution value RecBlock-comp found, which is the optimal
solution. Furthermore, also the performance in terms of computation time is
strongly in favour of LNS-1c. Indeed, only in 6 cases out of 33 RecBlock-comp
is faster than LNS-1c. The Wilcoxon test confirms this hypothesis.

RecBlock-incomp returned a feasible solution in 90 out of 108 cases; we
can observe that the cases in which no solution was returned are the ones with
9 or 10 founders. We compared the solution quality returned by the algorithms
on the restricted set of cases in which a feasible solution was returned by Rec-

Block-incomp. Aggregate results are shown as boxplots of relative solution
value difference in Figure 6.9.

LNS-1c returns better results than RecBlock-incomp in all evo and ms

instances, except for a single case in the ms set. In these test sets, LNS-1c

returns significantly better solutions than RecBlock-incomp, with differences
of up to 15%, and a median value of around 6%. Results on random instances
are less clear, as LNS-1c returns better results in 18 out of 33 cases and has a
lower median, but the Wilcoxon test does not reject the null hypothesis of equal
performance.

A further comparison between LNS-1c and RecBlock-incomp can be done
in terms of quality with respect to time, similarly to what is done with run time
distributions [110]. Nevertheless, RecBlock-incomp does not return a series of
solutions during time, but just one; in fact, it requires a finite time for returning
one result at the end of the exploration of a heuristically pruned search tree and
it does not exploit longer execution times. Therefore, run time distributions
can not be computed. Instead, for each instance, we stored the results returned
by LNS-1c in the time RecBlock-incomp found a feasible solution to the in-
stance. Results are shown in Figure 6.10, while detailed results can be found

92CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

0.00 0.05 0.10 0.15

evo instances

LNS−1c

Rcbk_i

Relative solution value difference
0.00 0.04 0.08 0.12

ms instances

LNS−1c

Rcbk_i

Relative solution value difference
0.00 0.01 0.02 0.03 0.04

rnd instances

LNS−1c

Rcbk_i

Relative solution value difference

Figure 6.9: Boxplot of relative solution value difference between LNS-1c and
RecBlock-incomp (labelled as Rcbk i in the graphics).

in [183]. We can note that LNS-1c is superior to RecBlock-incomp on both
evo and ms instances, with an average improvement of 4% and 5%, respectively.
Conversely, on random instances RecBlock-incomp returns better solutions,
with an average improvement of 3% over LNS-1c. The performance of LNS-1c
on random instances could be improved by substituting RecBlock-comp with
RecBlock-incomp in the neighbourhood exploration of LNS-1c and limiting
the maximum number of neighbours visited (maxCombinations parameter).
Thus, the time spent in exploring a neighbour is considerably reduced, espe-
cially when kf is large, and more steps of local search can be performed. We
implemented such a variant and the results show that the average gap to Rec-

Block-incomp is halved. However, it is important to remark that providing
solutions to the FSRP in short execution times is not a requirement and, as
from the results we have discussed before, LNS-1c is able to return better solu-
tions on average by exploiting the whole computation time allotted. Moreover,
the evo and ms instances are generated according to biological models and are
realistic, in the sense that a real-world instance would very likely have a similar
structure. On the contrary, random instances are a purely artificial testbed and
are meaningless with respect to biological applications.

6.9.2 Comparison against Back-and-Forth Iterated Greedy

We also compared LNS-1c with B&F IG, that attained good results on large-size
random instances, as shown in Section 6.6.2.

The timeout for B&F IG was set to 3 days for each case, as in the previous
comparisons. As it can be seen from boxplots in Figure 6.11, LNS-1c attains
considerably better results than B&F IG. LNS-1c finds better solutions than
B&F IG most of the times: this concerns 25 cases from evo and 35 cases from
both ms and random. In the few remaining cases, B&F IG returns results of the
same quality as LNS-1c, except for one case in the random set, in which it finds
a better solution—one unit lower than that returned by LNS-1c. These results

6.10. CONCLUSIONS AND DISCUSSION 93

0.00 0.05 0.10 0.15

evo instances

LNS−1c

Rcbk_i

Relative solution value difference

0.00 0.02 0.04 0.06 0.08

ms instances

LNS−1c

Rcbk_i

Relative solution value difference

0.00 0.01 0.02 0.03 0.04 0.05

rnd instances

LNS−1c

Rcbk_i

Relative solution value difference

Figure 6.10: Boxplot of relative solution value difference between LNS-1c and
RecBlock-incomp within the time required by RecBlock-incomp (labelled
as Rcbk i in the graphics).

0.00 0.04 0.08 0.12

evo instances

LNS−1c

B&F IG

Relative solution value difference
0.00 0.02 0.04 0.06 0.08

ms instances

LNS−1c

B&F IG

Relative solution value difference
0.00 0.01 0.02 0.03 0.04 0.05

rnd instances

LNS−1c

B&F IG

Relative solution value difference

Figure 6.11: Boxplot of relative solution value difference between LNS-1c and
Iterated Greedy.

show that LNS-1c can indeed considerably improve the initial solution provided
by B&F IG and that it is far more efficient, because it can successfully exploit
the available computation time.

6.10 Conclusions and discussion

In this chapter, we have described LNS algorithms we designed for tackling
large-size instances of the FSRP. The algorithms exploit RecBlock, a state-
of-the-art complete technique for this problem. The best algorithm, named
LNS-1c, performs a local search in which a move consists in reassigning the
values of one or more founders. Given a founder matrix, its neighbours of rank
k are all the founder matrices differing in k founders. The exploration of such
large neighbourhoods is performed by RecBlock, that returns the provably
best founder configuration among all the ones in the neighbourhood. LNS-1c

94CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

achieves a performance considerably better than that of the current state-of-the-
art methods. The algorithm also combines the property of being anytime solvers
with that of completeness, if time is not limited. The experimental analysis has
been performed on three sets of instances: evo, ms and random. evo and ms

instances are created according to evolutionary models, so as to have realistic
instances of variable size, whilst random instances have been considered just
for comparison with previous works, being not meaningful from a biological
perspective. Indeed, real-world instances are very likely to be far from random.

Further variants of LNS could be designed and embedded into higher level
techniques, such as Iterated Local Search and Memetic Algorithms. Future work
is also planned for tackling variants of the FSRP, such as the ones including
mutation, noise and missing values. Furthermore, other variants including ad-
ditional biological constraints, e.g., evenly distributed breakpoints or maximal
number of breakpoints per recombinant, can be tackled.

Table 6.6: Detailed results of LNS-1c, RecBlock-comp, RecBlock-incomp
and B&F IG on the evo instances.

number of LNS-1c RecBlock-comp RecBlock-incomp B&F IG

founders value time (s) value time (s) value time (s) value time (s)

evo-30 60

5 145 4 145 87 152 4 145 4

6 94 53 94 1205 97 28 94 96
7 65 86 65 14555 68 225 66 32
8 45 353 45 21288 47 1354 47 7
9 36 51 — — 39 16704 36 200
10 28 1 — — — — 28 1

evo-30 90

5 203 60 203 153 210 6 204 3478
6 118 52 118 1508 128 39 118 2932
7 69 19 69 15484 75 293 69 19

8 43 3 43 4316 47 2285 43 3

9 35 69 35 33399 37 27359 37 3
10 31 28 — — — — 31 21

evo-30 150

5 381 893 381 287 392 16 388 44436
6 230 72 230 3066 244 65 234 88
7 131 56 131 23034 138 501 133 5067
8 63 59 63 104006 70 5650 64 566
9 39 1 39 43334 40 40989 39 1

10 35 12 — — — — 35 7

evo-50 100

5 368 145 368 448 394 13 371 143
6 250 113 250 9976 263 67 255 14419
7 174 14706 174 250975 198 357 180 28460
8 124 149 — — 139 5084 132 102223
9 99 2507 — — 114 36290 104 933
10 83 3696 — — — — 84 17557

evo-50 150

5 522 132 522 382 553 19 528 191564
6 319 109 319 10228 341 124 320 96282
7 205 4 205 88294 207 606 205 4

8 135 169 — — 141 4695 138 12871
9 101 108 — — 107 48300 102 77
10 82 291 — — — — 85 201

evo-50 250

5 1126 3060 1126 1604 1182 107 1160 9574
6 726 1060 726 25095 744 262 752 144651
7 450 259 — — 466 1397 465 63669
8 258 603 — — 291 14324 270 8746
9 141 12100 — — 159 177159 156 3599
10 83 275 — — — — 93 78290

6.10. CONCLUSIONS AND DISCUSSION 95

number of LNS-1c RecBlock-comp RecBlock-incomp B&F IG

founders value time (s) value time (s) value time (s) value time (s)

Table 6.7: Detailed results of LNS-1c, RecBlock-comp, RecBlock-incomp
and B&F IG on the ms instances.

number of LNS-1c RecBlock-comp RecBlock-incomp B&F IG
founders value time (s) value time (s) value time (s) value time (s)

ms-30 60

5 124 209 124 5368 130 8 126 128
6 100 98859 — — 105 57 104 176786
7 81 17273 — — 85 409 83 16
8 70 54798 — — 76 6591 71 93
9 60 2002 — — 65 72924 61 2406
10 50 38579 — — — — 50 21576

ms-30 90

5 167 747 167 2095 175 8 175 98780
6 136 768 136 163768 140 60 141 30
7 114 30934 — — 119 570 117 225805
8 97 126402 — — 102 8495 102 117982
9 85 216 — — 83 226474 88 75
10 74 1648 — — — — 77 6520

ms-30 150

5 251 4986 251 1805 271 14 270 1412
6 189 1421 189 90048 204 93 203 43967
7 153 25361 — — 159 1481 159 27490
8 125 7590 — — 135 11381 133 8723
9 103 106022 — — — — 109 116217
10 88 22794 — — — — 92 33269

ms-50 100

5 310 2192 310 166497 347 14 323 20093
6 251 18039 — — 286 150 266 146944
7 212 442 — — 220 1572 223 1739
8 178 51495 — — 188 13538 187 2585
9 155 38758 — — 163 218293 163 104530
10 137 30080 — — — — 141 14612

ms-50 150

5 429 48449 429 27077 453 35 468 2177
6 346 26957 — — 376 114 368 24719
7 286 1958 — — 312 1049 300 110129
8 241 130741 — — 257 12294 254 11687
9 203 170493 — — — — 212 35375
10 174 8253 — — — — 183 250919

ms-50 250

5 613 2171 613 18235 649 84 646 251801
6 479 48013 — — 516 364 515 6793
7 396 16430 — — 433 6383 418 212274
8 336 23916 — — 360 28984 363 15497
9 283 243608 — — — — 306 250687
10 248 7413 — — — — 268 1906

Table 6.8: Detailed results of LNS-1c, RecBlock-comp, RecBlock-incomp
and B&F IG on the random instances.

number of LNS-1c RecBlock-comp RecBlock-incomp B&F IG
founders value time (s) value time (s) value time (s) value time (s)

random-30 60

5 372 48427 372 38490 376 5 376 637
6 324 44255 — — 333 30 327 214250
7 293 906 — — 295 232 294 179134
8 268 96096 — — 270 1482 270 185210
9 246 175659 — — 245 7502 249 120582
10 229 190559 — — 225 181678 230 2605

96CHAPTER 6. THE FOUNDER SEQUENCERECONSTRUCTION PROBLEM

number of LNS-1c RecBlock-comp RecBlock-incomp B&F IG

founders value time (s) value time (s) value time (s) value time (s)

random-30 90

5 585 72903 585 58301 594 7 595 177509
6 516 179754 — — 526 63 527 24720
7 472 55418 — — 469 383 477 184758
8 426 107173 — — 426 2437 441 92253
9 399 12679 — — 389 13334 406 174833
10 370 244167 — — 356 108248 369 55441

random-30 150

5 976 134777 976 169057 986 24 1000 35683
6 865 216875 — — 876 106 890 8264
7 778 140918 — — 781 499 812 96348
8 710 250463 — — 713 4044 736 7448
9 666 87405 — — 648 35617 685 76775
10 619 21046 — — — — 639 136143

random-50 100

5 1213 65968 — — 1226 18 1226 47222
6 1097 60881 — — 1108 63 1115 164682
7 1009 8769 — — 1000 405 1024 31644
8 928 44145 — — 927 2836 948 164238
9 875 113792 — — 862 17875 892 109557
10 830 221118 — — 804 167759 849 81393

random-50 150

5 1800 195873 — — 1815 23 1838 191857
6 1622 144474 — — 1626 138 1673 59084
7 1484 221180 — — 1490 783 1544 148594
8 1385 85140 — — 1381 3353 1446 92349
9 1302 222181 — — 1280 26654 1351 256516
10 1240 244166 — — — — 1285 196005

random-50 250

5 3043 101246 — — 3074 117 3126 102337
6 2725 172785 — — 2751 290 2845 110523
7 2508 251951 — — 2512 1352 2628 119105
8 2330 176486 — — 2320 5698 2455 104077
9 2204 244380 — — 2161 46765 2318 180631
10 2097 257557 — — — — 2194 205293

Part II

Boolean Network Design

97

Chapter 7

Brief Introduction to

Boolean Networks

In this chapter we formally introduce Boolean Networks (BNs), a model born as
a mathematical tool to study Gene Regulatory Networks (GRNs) and complex
systems in general, which lately garnered much attention. The literature on
BNs is vast and branches into statistical physics, dynamical system theory,
chaos theory, control theory, information theory and also bioinformatics. Lately,
BNs have also been subject of investigation as to their applicability as robot
controllers [34].

This chapter offers a brief overview of the concepts relevant to this thesis
and will point out basic definitions and terminology; finally in Section 7.2, we
introduce and motivate the use of BN and metaheuristics in the context of the
ensemble approach, which studies GRN models from the perspective of com-
plex system biology. Our aim is to eventually formulate a methodology to au-
tomatically build models of dynamical (complex) systems which satisfy certain
constraints and objectives. These constraints and objectives allow us to define
a combinatorial optimisation problem which will be tackled by metaheuristic
algorithms.

7.1 Boolean networks

BNs have been firstly introduced by Kauffman [125, 127] and subsequently re-
ceived considerable attention in the composite community of complex systems.
Recent advances in this research field can be mainly found in works addressing
themes in GRNs or investigating properties of BNs themselves [4, 5, 80, 179,
201].

A BN is a discrete-state and discrete-time dynamical system whose structure
is defined by a directed graph of N node1, each associated to a Boolean variable
xi ∈ {0, 1}, i = 1, . . . , N , and a Boolean function fi(xi1 , . . . , xiKi

), called node

transition function2, where Ki is the number of inputs of node i. The arguments
of the Boolean function fi are the values of the nodes whose outgoing edges are

1In this part, we prefer the terminology “node” as opposed to “vertex” because it is more
common in this area of research.

2For the sake of brevity, we will often omit “transition”.

99

100 CHAPTER 7. BRIEF INTRODUCTION TO BOOLEAN NETWORKS

X 1

X 2

X 3

AND

OR

OR

(a) A BN with three nodes

100

011110

101

111

001 010

000

(b) State space

Figure 7.1: An example of a BN with three nodes 7.1a and its corresponding
state space under synchronous and deterministic update 7.1b. The network has
three attractors: two fixed points, (0, 0, 0) and (1, 1, 1), and a cycle of period 2,
{(0, 0, 1), (0, 1, 0)}.

connected to node i (see Figure 7.1a). Notice that, contrarily to what happens
for graph, edges going into a node are ordered. The state s ∈ {0, 1}N of the
system at time t, t ∈ N, is defined by the vector of the N Boolean variable
values at time t, therefore, s(t) ≡ (x1(t), . . . , xN (t)).

The most studied BN models are characterised by having a synchronous
dynamics—i.e., nodes update their states at the same instant in parallel—
and deterministic functions (see Figure 7.1b). In this thesis we consider only
this kind of networks (which we simply call “Boolean networks” omitting syn-
chronous and deterministic). However, many variants exist, including asyn-
chronous and probabilistic update rules [88, 208].

State and configuration spaces. BN models’ dynamics can be studied by
means of usual dynamical systems methods [11, 204], hence the usage of con-
cepts such as state (or phase) space, trajectories, attractors and basins of attrac-
tion. Note that we make a distinction between “configuration space” and “state
space” notions. The configuration space is the set of states the network can
assume, namely, {0, 1}N ; in this space any kind of distance could be defined,
but, in practice, the notion of Hamming distance is employed. Under Hamming
distance, we can say that two states are neighbors, in the configuration space,
if their distance is 1; this entails that the configuration space is an hypercube.
On the contrary, the state space of a BN is, in general, a directed graph (an
example is depicted in Figure 7.1b), therefore the state space notion emphasises
the dynamic aspect of a network. In addition, the neighborhood definition is to-
tally different between the spaces: in the configuration space we have Hamming
neighborhood so, for instance, state vectors such 000 and 001 are neighbors; in
the state space of the network in Figure 7.1a, such states are not neighbors3.
The fact that BN dynamics is synchronous and deterministic has important
repercussions on the topology of the state space. Specifically, every vertex in
the state space graph has exactly one successor, or, in other words, out-degree

3They belong, in fact to two different basins of attractions (see below).

7.1. BOOLEAN NETWORKS 101

equal to 1; on the other hand, in-degree is not constant and can be as low as 0
in case of garden-of-Eden states.

Trajectories and attractors. Given this setting, a BN is a discrete map
F : {0, 1}N → {0, 1}N and st+1 = F (st). Network trajectories in the N -
dimensional configuration space are sequences of states s, F (s), F 2(s), By
determinism, we have that trajectories do not cross. Since {0, 1}N is finite and
the dynamics is deterministic, every trajectory eventually enters a (possibly
degenerate) cycle. In other terms, every trajectory is composed of a transient,
possibly empty, followed by an attractor, that is a cycle of period, or length,
l ∈ {1, . . . , 2N}. Attractors of period 1 are also known as fixed points. The set
of attractors (i.e., cycles in the state space graph) is called attractor landscape.
Another important related concept is that of basins of attraction. The set of
states Bi from which an attractor Ai can be reached is called basin of attraction
of Ai. We also define the quantity wi = |Bi|

2N called relative basin weight, and
will be used in the remainder of the thesis. Basins of attraction of synchronous
and deterministic BNs partition the configuration space.

Another topological property of the state space that descends from BN de-
terminism is that every attractors state is the root of a directed tree whose
branches are transients and whose leaves are garden of Eden states.

7.1.1 Random Boolean Network model

A special category of BNs that has received particular attention is that of RBNs,
which can capture relevant phenomena in genetic and cellular mechanisms and
complex systems in general. Recent advances in this research field, along with
efficient mathematical and experimental methods and tools for analysing BN
dynamics, can be mainly found in works addressing issues in GRNs or inves-
tigating properties of BN models [4, 80, 179, 201]. For instance, attractors of
RBNs have assumed a notable relevance because they can be interpreted as cel-
lular types [113] in GRN models. This interpretation has recently been extended
by considering sets of attractors, the so-called Threshold Ergodic Sets (TESθ),
instead of single attractors [198, 228]. This extension provides support to the
usefulness of RBNs as GRN models, as it makes it possible also to model cell
differentiation dynamics.

RBNs are generated by choosing at random K inputs per node and by defin-
ing the Boolean functions by assigning to each entry of the truth tables a 1 with
probability p and a 0 with probability 1− p. Parameter p is called homogeneity
or bias. Depending on the values of K and p the dynamics of RBNs is called
either ordered or chaotic. This distinction is based essentially on the stability
of the dynamical attractors with respect to small perturbations: in the case of
ordered systems the majority of nodes in the attractor is frozen and small pertur-
bations usually die out, whilst in disordered ones attractor cycles are very long
and the system is extremely sensitive to small perturbations, that is, slightly
different initial conditions lead to divergent trajectories in the state space. To
put it other words, ordered RBN systems usually have fairly regular basins on
attraction, so that two nearby states4 often evolve to the same attractor, while
in disordered systems they often go to different attractors. This behaviour is

4According to the Hamming distance.

102 CHAPTER 7. BRIEF INTRODUCTION TO BOOLEAN NETWORKS

reminiscent of the “butterfly effect” and this provides a reason why disordered
RBNs are often called “chaotic” (in spite of the fact that, since the attractors
are cycles, the term pseudo-chaotic would be more appropriate).

RBNs temporal evolution undergo a second order phase transition between
order and chaos, governed by the following relation between K and p:

Kc = [2pc(1− pc)]
−1

where the subscript c denotes the critical values [59]. Networks along the criti-
cal line show equilibrium between robustness and adaptiveness [4]; due to this
property, RBNs are supposed to be plausible models of the living systems organ-
isation on the basis of heuristic arguments which can be summarised as follows.
Biological systems need a certain level of stability, in order not to be disrupted
by fluctuations which can take place either in the system or in the environment,
and they need at the same time to provide flexible responses to changes in the
environment. While a chaotic system would be poor at satisfying the first need,
a system deeply in the ordered region would fail to meet the second require-
ment. Recent results support the view that biological GRNs operate close to
the critical region [9, 201, 211].

An important concept in system dynamics is that of Lyapunov exponent. For
dynamical systems, the Lyapunov exponent characterises the rate of separation
of two trajectories starting from two initial condition, s0 and s′0, distant, under
some distance definition, an infinitesimal δ from each other. For a dynamical
system with Lyapunov exponent λ we have that, in the limit t → ∞, the
distance between two trajectories grows as eλtδ. It is known that, for RBNs,
the Lyapunov exponent λ can be analytically calculated as follows: λ = log ξ =
log[2p(1− p)K] (equation 27 in [145]). If we substitute a bias p in the previous
equation, we obtain networks in chaotic (λ > 0), critical (λ = 0) and ordered
(λ < 0) regimes, respectively.

A useful related notion to analyse the dynamics of RBNs is the (average)
network sensitivity, calculated by taking the average of all node function average
sensitivities [129]. The average sensitivity of a Boolean function f(x), where x
is a Boolean vector, is the average number of 1-Hamming neighbours x′ of x—
that is, x and x′ differ in only one position—such that f(x′) 6= f(x). More
formally, the sensitivity sf of a K-variable Boolean function f measures how
sensitive f is to a change in its inputs, and is calculated as follows. Let us
define sf (x) = |{x′ | f(x′) 6= f(x) ∧ dH(x, x′) = 1}| where x ∈ {0, 1}K and

dH is the Hamming distance. The sensitivity is thus sf =
1

2K
∑

x∈{0,1}K

sf (x).

It has been shown that network sensitivity is closely related to the notion of
Lyapunov exponent [210]. This is an important measure because it allows one
to determine the dynamical regime of a RBN just by looking at its functions.

7.2 Motivations of designing by metaheuristics

The interest of BNs as GRN models relies primarily in the fact that some classes
of BNs statistically reproduce some characteristics of real cells. For example,
it has been shown that single gene knock-out experiments can be simulated
in RBNs [203]. Reproducing statistical properties of real cells through specific
classes of GRNs is a complex systems biology approach [123]. A specific research

7.2. MOTIVATIONS OF DESIGNING BY METAHEURISTICS 103

stream in this area is the ensemble approach [128], that aims at finding classes
of GRN models which match statistical features of genes, such as the number
of cell types of an organism or cell dynamics in case of perturbation. Currently,
modern biotechnology tools, such as DNA microarrays, make it possible to
gather a huge amount of biological data, therefore the approach of complex
systems biology can be applied even more effectively than in the past.

Our long-term research goal is to develop tools and methodology for auto-
matically designing GRNs meeting given requirements. This methodology can
make it possible to address the problem of designing GRNs with specific dy-
namic behaviour (e.g., problems in reverse engineering GRNs) and to achieve
advancements in specific research lines following the ensemble approach and
complex systems biology in general.

A first proposal of such method is detailed in Section 9.1.2 of which we give
now only a brief overview. Our methodology consists of transforming the design
problem into an optimisation problem. Suppose that we want to study a class
of systems with the ensemble approach and also suppose that systems in such
class have a certain set of statistical features in some feature space F . What
we want is to search in the space of BNs for an ensemble of networks that have
features similar, i.e., close according to a distance measure in F , to the one
characterising the system studied. This similarity condition provides us with
an objective function. Our combinatorial formulation can be further enriched
by adding constraints, i.e., additional characteristics that all BNs should have,
which can come from heuristic knowledge. As an abstract example, we could ask
to limit our search to BNs whose node functions satisfy some conditions. After
having defined a (constrained) combinatorial optimisation problem, we can then
apply a generic metaheuristic search. In our current model, the metaheuristic
searches in the Boolean function space, but other options are, of course, possible.
We are also not limited to one particular metaheuristic: in Chapter 9 we review
case studies that employ both local searches and population methods.

An important aspect of this methodology is worth noticing. Defining an
objective function entails performing one or more simulations of a network and
gathering statistical data. This has two important repercussions on the practical
side:

1. repeated simulations of a network might be extremely computationally
expensive. For instance, suppose one wants networks possessing a pe-
culiar attractor structure: that necessitate the sampling of the attractor
landscape. Suppose now that the search encounters a chaotic network,
characterised, as we know, by long attractors; but the longer the attrac-
tor the longer the simulation lasts. In the end, the evaluation of chaotic
network for this specific task might be prohibitive.

2. Since BNs are complex systems, it is difficult or plainly impossible to
implement a speed-up technique typical of local search algorithms, that
is, delta evaluation. Usually, a move changes only a small part of a solution
and in many problems (for instance, the Travelling Salesman Problem) it
is possible to calculate the value of a neighboring solution by adding a
delta (positive or negative) to the value of the current solution. Given the
non-linear dependencies between network nodes, it is difficult to predict
the effect on the objective function of a small change: every new solution
(i.e., BN) encountered, thus, has to be simulated.

104 CHAPTER 7. BRIEF INTRODUCTION TO BOOLEAN NETWORKS

In our opinion the application of metaheuristics to this topic can be fruitful
for the following reasons:

• the object to model is typically a complex system: the relationships be-
tween its components are often difficult to model directly or simply un-
known, and a reductionist approach alone is not able to cope with com-
plexity. As we wrote in Chapter 1, the upper-level algorithm that char-
acterises the architecture of metaheuristics is, in fact, a learning method
that guides the underlying search. This advantage can be exploited to ef-
fectively explore the search space because the algorithm is able to “learn”
the relations between components of a complex system.

• Metaheuristics are a flexible framework which can be extended in multiple
ways: one can, for example, integrate problem specific knowledge or hy-
bridise several techniques. Integration is not limited to search algorithms
alone: we believe that machine learning methods can also prove useful.

• Metaheuristic trade optimality for efficiency. As also written at the end of
Section 2.2.1 and restated in Section 9.1.2, we do not aim to solve a prob-
lem to optimality because the objective function is inherently inaccurate
and has more the role of a guide to the search process.

As we will discuss in the following chapter, application of metaheuristics to
the design problems requires us to have appropriate software tools, for both
network simulation and analysis.

7.3 Conclusions and discussion

In this section we introduced BNs as computational models to study system bi-
ology; we gave an overview of the terminology and illustrated the main concepts
used throughout this thesis. In Section 7.1.1, we discussed in more detail Ran-
dom Boolean Networks, computational objects that proved useful to modelers
to describe certain biological organisms and phenomena. We concluded with
Section 7.2, where we introduced the ensemble approach as the main motiva-
tion of our automatic design framework by metaheuristics, and we anticipated
elements of the design methodology itself, to be fully described in Section 9.1.2.

Chapter 8

The Boolean Network

Toolkit

In this chapter we describe our effort to design and implement a flexible and
efficient Boolean network simulator. This simulator, called Boolean Network
Toolkit, is the software we extensively used to realise all our simulations and
analyses reported in Chapter 9. Boolean Network Toolkit is open source and
freely available [16].

8.1 Introduction and Motivations

In this section we discuss the desiderata of a hypothetical BN simulator and we
give a brief overview of available tools in the research community.

Leveraging a stochastic search to the automatic design of BNs entails that
such an algorithm has to explore an enormous search space. In the simplest and
most straightforward application, this search space is populated with BNs. Of
course we could define a search space whose elements are models of BNs; for
instance, we could establish that a point in the search space is a tuple 〈N, k, p〉
that completely defines a family of Random Boolean Networks. In a sense, this
is a typical choice in the domain of Genetic Algorithms, where there can some
degree of indirection between the actual solution of a problem (the phenotype)
and its representation (the genotype). If we limit ourselves, as we will actually
do in the case studies examined in Chapter 9, to the most direct representation
that maps a point in the search space to a single BN instance, we have an
exponentially large space. For example, a space inhabited by networks with
N = 20 nodes and fixed topology with constant in-degree K = 2, would contain
1620 networks, that is, all the possible ways of assigning one of the Boolean

functions of 2 inputs (in total 22
K

, hence 16) to each of the 20 nodes. Oftentimes
we lack an effective heuristic to explore the search space, with respect to some
objective function, or, equivalently, a prior probability distribution that could
help the search process. As a counterexample, we know that if we hypothetically
searched for networks with very long transients, we could sample the space of
chaotic RBN which are likely to have such a feature (see Section 7.1.1).

It appears clear that, in order to explore such a large search space effectively,
we both need sophisticated search algorithms and an efficient simulator. Indeed

105

106 CHAPTER 8. THE BOOLEAN NETWORK TOOLKIT

our search method will likely have to sample the search space many times and
each of these samples, a BN, will have to be evaluated, i.e., simulated, and,
likely, the simulation will be the most computationally expensive operation. As
a matter of fact, this is the case in the applications studied in Chapter 9.

Efficiency is not only the main concern of our simulator. From a practi-
cal point of view, it is hard and time consuming to design and program good
metaheuristic algorithm. For this reason, third party libraries are very valuable
to the practitioner; for example, in Chapter 4 we mentioned that many GA
libraries exist and we made use ourselves of the EasyLocal++ framework in
Chapters 3 and 4. Being able to integrate our simulator with metaheuristic
software libraries is thus a major prerequisite.

Other important aspects are that of modularity and flexibility. Our simulator
should be flexible enough to allow the researcher to quickly set up experiments
of different kind which go beyond the usual basic tasks, like computing a BN’s
trajectory or finding a set of attractors. For instance, the experiment described
in [198] to find threshold ergodic sets is rather complex and requires a high
degree of customisability; our simulator should provide all that.

As a further prerequisite, our simulator should not also be limited to syn-
chronous BNs: our methodology (fully described in Section 9.1.2) is indepen-
dent of the underlying network model and several different update schemes are
available that might be worth investigating (some of which are reported in Sec-
tion 7.1). Moreover, in a future, we might need to experiment with models
alternative to ordinary BNs. It is natural to think that, a well-engineered sim-
ulator is capable of handling not only deterministic BNs, but also other slightly
different models of networks: indeed this is a prerequisite of our hypotheti-
cal simulator, albeit a minor one. We do not aim, though, to a too generic
piece of software: our simulator’s main area of applicability should be that of
discrete-time network models for biology, typically genetic regulatory networks.
We could in principle simulate other network models, like Artificial Neural Net-
works (ANN), but that would be beyond the scope of the simulator, and, in
particular, many ad hoc tools for ANN are available, which are both efficient
and feature-rich.

After this informal discussion, we can now summarise our requirements for
such a simulator software that will be the driving design principles of the Boolean
Network Toolkit, as shown in Section 8.2.

Flexibility. The simulator should allow the researcher to implement different
kinds of experiments in diverse contexts and under different constraints. It
should also provide a way to easily modify a BN, a fundamental operation
required by local search metaheuristics.

Ease of integration. The simulator is going to be integrated with other soft-
ware libraries, typically written in C++ for greater efficiency.

Free and Open Source Software. We strive to maintain our software free
so as to foster adoption and extension.

Modularity and separation of concerns. Should be able to support differ-
ent BN update schemes and possibly different network models. Also, mod-
ularity is a key to achieve flexibility by allowing the researcher to modify
and extend the tool itself.

8.2. SOFTWARE DESIGN 107

Efficiency. The simulator should be as efficient as possible.

8.1.1 Available tools

In this section a brief overview of available simulation tools for BN models is
given.

There are a number of software applications for experimenting with BNs.
Unfortunately, none of them fully satisfies the stated prerequisites. Some of
them are too narrow in scope, inefficient or difficult to integrate. Many tools
also come with an extensive graphical user interface which, although beneficial
in some cases, is not really needed in our specific application. Often, the GUI is
the only way to interact with the simulator while, on the contrary, we want to be
able to run our simulators off-line. Good design principles (like MVC) promote
separation of concern so that application business logic and presentation are
clearly separated and, thus, loosely coupled; for this reason, Boolean Network
Toolkit does not come with a GUI environment, which can, of course, be added
at a later stage without changing the core of the simulator.

There are two pieces of software written in Python: one is BNSim [33], a fairly
simple BN simulator rather limited in scope, the other is BooleanNet [3, 120]
which, on the contrary, supports several update schemes including piece wise dif-
ferential equation updates. Two libraries roughly equivalent to BooleanNet are
Random Boolean Network Toolbox [196], a library written in MATLAB, and
BoolNet [159, 160], an R package. Boolean Network Modeler [63] is an appli-
cation written in C# that provides a graphical interface to design and analyse
BNs. Another interactive graphical tool is NetBuilder [235], a piece of soft-
ware, written in Microsoft Visual C++, capable of simulating networks driven
by several update functions, such as Boolean functions but also differential
equations. A Python version, called NetBuilder’ is also available [194]. An-
other interactive graphics software for researching discrete dynamical networks
is DDLab [241, 242]; this application is oriented towards the study of Boolean
models and offers an extensive array of analytical tool and visualisation dia-
grams. One last simulator worth of notice is RBNLab [89], written in Java, that
simulates RBNs under several update schemes.

8.2 Software Design

This section briefly explains the design choices made to implement the Boolean
Network Toolkit. First we will introduce the key abstractions in the simulator
pertinent to BNs. Afterwards, we describe the architecture of the simulator and
we will see how these abstractions can be extended to encompass different kinds
of update schemes and possibly new network models.

The requirements listed at the end of Section 8.1 push us to choose C++

as our implementation language; the main programming paradigm adopted is,
therefore, Object Oriented, but, as we will see, we will also employ elements of
functional programming.

In this part we also show C++ code to exemplify some important concepts; we
have to warn the reader that such code does not exactly correspond to what is
available in the simulator: names may differ and low-level details are removed,
but the overall “feeling” is maintained.

108 CHAPTER 8. THE BOOLEAN NETWORK TOOLKIT

8.2.1 Fundamental abstractions

The main abstraction to design is that of synchronous BN. In the Object Ori-
ented paradigm, it would be intuitive to model a BN as a mutable object com-
posed of a state vector and a topology. On the other hand, such abstraction is
rather distant to the original mathematical concept that sees BNs as discrete
maps, i.e., functions. In formal term (see Chapter 7), a BN is a function F that
maps the current state to the next state st+1 = F (st). Notice that the form of
F is neither dependent on the state nor the time parameter. Moreover, from a
computational point of view, a function is an immutable object. The functional
programming paradigm is the preferred approach to model BNs in the Boolean
Network Toolkit.

The most basic simulation task is to evolve a BN a certain number m of
steps starting from initial condition s0. With a functional approach this is
straightforward. Formally we just need to take the first m elements from the
sequence F i(s0), i ∈ N; what we need is a way to lazily1 represent such sequence,
or, in computer science parlance, a stream. Lazily evaluated sequences, such as
lists, are typically available in all major functional programming languages, such
as Scheme, Haskell, but also Python and many others. C++ does not directly
support streams, but they can be implemented by means of objects (see, for
instance, the Iterator Pattern in GoF [85] for a similar concept and iterator
implementations in all mainstream OO programming languages, such as Java
and C#; in particular, see also C# generators [237] and the yield keyword).

Almost all computational tasks on BNs involve computing a trajectory,
therefore the concept of stream, or lazy list, is pervasive in the simulator. Such
abstraction is fundamental because, as we will see, it allows us to easily decom-
pose complex experiments on BNs into simpler and reusable components.

With a trajectory, it is easy to find an attractor: it is sufficient to apply one
of the well-known cycle finding algorithms. In the Boolean Network Toolkit we
implemented two algorithms. One is a näıve search that memorises every state
encountered and looks for repeated values. This algorithm does not scale well,
in terms of both time and space complexity, with long transients, therefore we
also provide an alternative, Brent’s cycle detection algorithm [36] (see also [133,
236]), which scales much better for long transients (chaotic RBNs, for instance),
but is slower for short sequences. Finding an attractor starting from an initial
condition can be in turn interpreted as a higher-order function which takes a
BN (a function in our interpretation), an initial state and returns an attractor
object. Let us write the type of such function as State→ Attractor.

Now that we have encapsulated the computation of an attractor into a func-
tion, we can easily calculate a set of attractors starting from a sequence of initial
conditions. To do so we can use another important higher-order function on lists
called map, that, roughly, is an abstraction of a ‘for’ cycle. map is a function
that takes a function from a type A to another type B (A → B for short), a
list of element of type A ([A] for short) and returns a list of elements of type
B (in symbols map : (A → B), [A] → [B]). If we combine a cycle detection
strategy with this map abstraction, it is easy to obtain a function that takes a
stream of states and returns a stream of attractors.2 If we partially apply map

to a cycle detector, such as a hypothetical brentAlgorithm, we have a function

1Lazy roughly means “computed on demand”.
2Remember that in the functional world, lists are lazy.

8.2. SOFTWARE DESIGN 109

[State]→ [Attractor] from (stream of) states to (stream of) attractors.

Implementation of streams. The stream abstraction is encapsulated in C++

objects, which, in C++ terminology, are called ranges, fundamental concepts in
the STL [205]. Ranges expose the same interface as commonly used STL con-
tainers, such as std::vectors and std::sets, namely, they provide methods
to get a pair of iterators, one pointing to the beginning of the range (method
begin()) and the other pointing to the end (method end()). Of course, in
case of infinite ranges, like, for instance trajectories of BNs, the end iterator is
simply a dummy object and does not point to anything meaningful. The im-
plementation choices in the Boolean Network Toolkit make the aforementioned
abstraction of stream interoperable with a large variety of algorithms already
available in C++ and, above all, the STL itself. For example, it is easy to print
to standard output a range of attractors using familiar STL idioms, provided
that an attractor is a printable object, as actually is in the Boolean Network
Toolkit.

Drawing inspiration by the Boost Range Library [35], ranges can be easily
composed together with small effort and convenient syntax. Every range defines,
in fact, an operator ‘|’ (pipe) which takes as first operand a range and as second
operand a function; the semantics of pipe is the same as the map function.3

8.2.2 Simulator Architecture

In this section we give an overview of the simulator structure.
The main entity in the simulator is, of course, the BN. The principal de-

sign choice that can help us to achieve good modularity and flexibility is illus-
trated in the following. In the Boolean Network Toolkit network state, dynamics
and topology are separate concepts. Network state can be any indexable data
structure whose elements are Booleans, but in principle also integers or double
precision floats depending on the domain of node values; this is a crucial char-
acteristic if we want to extend the simulator with other network models. For
BNs we employ the compact bitset structure provided by the Boost Dynamic
Bitset Library.

Network topology is a stateless entity, structurally represented by a directed
graph data structure whose nodes, indexed by integers, containing their update
function. A network topology exposes methods to access its graph structure
and, most importantly, it provides a method to compute the next value of a
node given the current state vector. In order to implement network topology,
we use the excellent Boost Graph Library [212].

Network dynamics is an entity that realises a particular node update scheme
and is, of course, coupled to network topology. Objects that realise node update
algorithms for Boolean networks implement the interface BooleanDynamics,
whose definition is given in Listing 8.1. It can be noted that the definition
of BooleanDynamics is equivalent to the interpretation of BN we gave in Sec-
tion 8.2.1, namely, an object that takes a state vector and returns another state
vector.

A use-case example of this architecture is given below:

3More precisely, the correct C++ type for the second operand would be function pointer or
functor.

110 CHAPTER 8. THE BOOLEAN NETWORK TOOLKIT

1 class BooleanDynamics {
2 virtual State update (State s) = 0 ; // a func t ion Sta t e −> Stat e
3 }

Figure 8.1: BooleanDynamics interface definition (extract).

1 BooleanNetwork bn = // read BN from f i l e
2 BooleanDynamics ∗ dyn = synchronous dynamics (bn) ; // ge t an

updater
3 State s0 = // an i n i t i a l s t a t e vec tor
4 State s = (∗dyn) (s0) ; // s t a t e at t=1
5 s = (∗dyn) (s) ; // s t a t e at t=2
6 s = (∗dyn) (s) ; // s t a t e at t=3
7 BrentCycleFinder f i n d e r (dyn) ;

where finder is a function object, implementing Brent’s cycle detection algo-
rithm, that takes a state vector and returns an attractor. Notice that neither
BooleanNetwork or BooleanDynamics are stateful objects and that network
state is externally maintained. This way, we are able to run several network
evolutions in parallel without copying the same topology over and over.

Following good programming practices, a simulator user is encouraged to
encapsulate its code into generic and reusable abstractions, such as classes or
functions. Whenever a researcher writes an experiment in the Boolean Network
Toolkit, he is advised to extend the simulator and to make its code available
to others; this is one of the motivations why the simulator is open source soft-
ware. For instance, all use cases illustrated in Section 8.3, are actually snippets
taken from the source code itself, stripped of minor details, which have been
encapsulated into generic functions for easy reuse.

8.3 Use Cases

In this section we show some use cases that demonstrate the programming style
of the Boolean Network Toolkit.

Attractor set. Let us start with finding a set of attractors in an N node
network starting from m random initial conditions. Implementation is in the
following snippet:

1 RandomStateGen s t a t e s (N, m) ;
2 BooleanNetwork bn = // read BN from f i l e
3 BooleanDynamics ∗ dyn = synchronous dynamics (bn) ; // ge t an

updater
4 NaiveFinder f i n d e r (dyn) ;
5 AttractorRange ar = s t a t e s | f i n d e r ;
6 std : : set<Attractor> a t t r a c t o r s (ar . begin () , ar . end ()) ;

8.3. USE CASES 111

where RandomStateGen is a range that yields m random Boolean vectors and
NaiveFinder is a function object that implements the näıve cycle detection
algorithm. In Line 5 we show how new ranges can be constructed by using the
pipe operator and, in Line 6, we demonstrate how ranges interoperate with STL
classes. We also notice that Attractor objects provide a comparison operator,
so they can be inserted into sets.

We can also print the set of attractors using standard STL facilities:

1 std : : copy (ar . begin () , ar . end () , // f o r a l l e lements in range
2 std : : o s t r eam i t e r a to r<Attractor >(std : : cout , // pr i n t them to

s tdout
3 ”\n”) // separat ed by a newl ine
4) ;

Basins of attraction. A small extension to the previous use case is to enu-
merate the whole configuration space of a network and count the multiplicity
of each attractor4, so that we obtain their basin size. To do so, we use a
std::map to count the occurrences and a StateEnumerator object, a range,
like RandomStateGen, which yields all state vectors of a certain dimension N .

1 StateEnumerator a l l S t a t e s (N) ;
2 BooleanNetwork bn = // read BN from f i l e
3 BooleanDynamics ∗ dyn = synchronous dynamics (bn) ; // ge t an

updater
4 NaiveFinder f i n d e r (dyn) ;
5 AttractorRange ar = a l l S t a t e s | f i n d e r ;
6 std : : map<Attractor , int> m;
7 for (AttractorRange : : i t e r a t o r i t = ar . begin () ; i t != ar . end () ; ++

i t) {
8 i f (m. count (∗ i t) == 0) // new a t t r a c t o r
9 m[∗ i t] = 1 ; // a l s o i n s e r t s a t t r a c t o r in to m

10 else

11 m[∗ i t] += 1 ; // increment occurrences
12 }

where the C++ programmer can recognise the familiar STL iteration idiom. We
also recall that in the first case of the if statement (Line 9), the attractor pointed
by iterator it is also inserted into the map. In the end, map m contains, for
each attractor, the number of states in its basin.

If we make use of the Counter class provided by the toolkit, we can further
shorten our code. Counter is a data structure, halfway between a set and a
map, that serves the same purpose as our map m in the snippet above: it keeps
a counter of all objects inserted, attractors in our case, but, in fact, it stores a
unique copy of each object. A Counter can be constructed with a range object:
the semantics is to scan the whole range and insert into the newly created
Counter all objects in the range. The resulting code is the following:

1 StateEnumerator a l l S t a t e s (N) ;
2 BooleanNetwork bn = // read BN from f i l e
3 BooleanDynamics ∗ dyn = synchronous dynamics (bn) ; // ob ta in an

updater

4Of course, such experiment is feasible only for small networks.

112 CHAPTER 8. THE BOOLEAN NETWORK TOOLKIT

4 NaiveFinder f i n d e r (dyn) ;
5 AttractorRange ar = a l l S t a t e s | f i n d e r ;
6 Counter<Attractor> c (ar) ;

Like in the previous version, if we iterate on Counter we get all attractors with
their respective basin sizes.

Derrida plot. A useful mathematical tool to analyse BN dynamics is the
Derrida plot [59], which is a graphical way to visualise the sensitivity of a net-
work to perturbation, namely, bit-flips in its state. Intuitively, the Derrida plot
depicts the qualitative response of a network when h of its nodes are flipped,
∀h ∈ 0, 1, . . .N . More formally, the Derrida plot associates to each perturbation
strength h ∈ 0, 1, . . .N , reported in the x-axis, a quantity d ∈ [0, N], reported
in the y-axis. This quantity d is the average across all network states s of
dH(F (s), F (s′)), where F is the map associated to a BN, dH is the Hamming
distance and s′ is a perturbed version of s, specifically, dH(s, s′) = h. Some ver-
sions of the Derrida plot report h and d normalised by the number of nodes N
so that 0 ≤ h, d ≤ 1. One remarkable property of Derrida plots is that the slope
at the origin of the Derrida curve is equal to average network sensitivity [129].

The brute-force computation of a Derrida plot is, of course, prohibitive for
all but the smallest networks. Nevertheless, we can resort to approximation
and, for each data point in the plot, take the average on a sample of network
states. Let us show ho we can employ the Boolean Network Toolkit to calculate
the data points in a Derrida plot, supposing that we set the number of sample
for each data point to M .

1 BooleanNetwork bn = // read BN from f i l e
2 BooleanDynamics ∗ dyn = synchronous dynamics (bn) ; // ge t an

updater
3 std : : vector<double> de r r i da (N) ;
4 for (int x = 0 ; x < N; ++x) {
5 std : : vector<int> d i s t ance s (M) ;
6 for (int i = 0 ; i < M; ++i) {
7 State s = random state (N) ;
8 State sPrime = random f l i ps (s , x) ; // x random f l i p s
9 State s1 = (∗dyn) (s) ;

10 State sPrime1 = (∗dyn) (sPrime) ;
11 d i s t ance s [i] = hamming distance (s1 , sPrime1) ;
12 }
13 de r r i da [x] = average (d i s t ance s) ;
14 }

Aside from average, all other functions are implemented in the toolkit; specif-
ically, random state generates a state vector whose element have value 1 with
probability 0.5 while random flips returns a state with x randomly chosen bits
flipped (hamming distance has intuitive meaning). This shows how the toolkit
can be easily extended with new experiments. As a matter of fact, all use cases
presented in this section are already implemented in the toolkit by ready-to-use
functions.

8.4. CONCLUSIONS AND DISCUSSION 113

8.4 Conclusions and discussion

In this section we motivated the need of a robust, flexible and efficient BN sim-
ulator software and introduced the Boolean Network Toolkit, a free open-source
BN simulator. We gave an overview of its design principles and commented
its modular and extensible architecture. Finally, we presented some use cases,
taken directly from the source code.

The Boolean Network Toolkit is actively used and maintained and a couple of
important extensions are also planned. Having encapsulated network dynamics
in a class allows us to freely define different update schemes without modifying
other code. It is sufficient to implement the interface in Listing 8.1 for all update
schemes desired. Although not currently available, implementations of different
update strategies, such as asynchronous and random, are on their way. Another
extension regard the integration of other network types, in particular, we plan on
adding two alternative BN models, namely, Boolean Threshold Networks [107,
180] and Glass Networks [124].

114 CHAPTER 8. THE BOOLEAN NETWORK TOOLKIT

Chapter 9

Designing Boolean

Networks by Metaheursitics

The main objective of this this part of the thesis is to outline a methodology
capable of automatically designing Boolean networks given a set of desiderata.
For example, this set of desiderata can be a collection of conditions on the
attractor landscape, such as the number of such attractors, the distribution
of their period or their basin structure. These requirements are appropriate
in the context of the ensemble approach, where we want statistical real-world
features of a system (eg., number of cell types) to closely mirror model features
(eg., number of attractors) of a family of Boolean networks. Other kinds of
desiderata may involve the fulfilment of some static goal. For instance, we will
see how in Section 9.3 we will ask for BNs that can reach in a certain time a
specific target state. In one last kind of scenario, we might instead utilise a BN
as a black-box learning system that, when asked a question, suitably codified as
a Boolean vector, it is able to give a meaningful answer. This chapter presents
one problem for each scenario described so far.

9.1 Introduction

As written in Chapter 7, BNs have been mainly considered as GRN models,
enabling researchers to achieve prominent results in the field of complex systems
biology [4, 199, 202, 208]. Nevertheless, in spite of their similarities with neural
networks, their potential as adaptive task-focused systems has not yet been
fully investigated and exploited. In this section, we first summarise the works
in the literature that concern training or automatically design BNs; then, we
illustrate our method and describe four applications. Although they may seem
quite abstract, the case studies we are going to present are fundamental as a
way to test the applicability of our methodology to the ensemble approach.
We know that in the ensemble approach we are interested not in the specific
details of some real biological system, but rather in their statistical features
(see Section 7.2). The abstract properties we require from resulting BNs do
not depend on a specific model or real-world experimental data, and allow us
to test the ensemble approach in a generic setting. Moreover we recognise
that cellular systems exhibit dynamical characteristics, such as evolvability and

115

116CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

insensitivity to small external perturbations, that are desirable when designing
artificial systems. A methodology that automatises the construction of models
of biological systems could, thus, be useful also in the design of robust and
adaptive software systems.

The first one is the problem of designing networks with a prescribed attrac-
tor length (Section 9.2); this is more an introductory application that aims to
illustrate in a concrete case study our methodology and outlines some difficulties
we had to address. In Section 9.3 we tackle the problem of controlling a BN’s
trajectory to match a target state; this problem can be a stepping stone in the
application of BNs as controllers and exemplifies the application of analytical
tools typical of the metaheuristic domain, such as runtime distribution and land-
scape autocorrelation analyses.1 Sections 9.4 and 9.5 are respectively devoted
to the analysis of the landscape of attractors in RBNs with respect to similarity
metrics, and to the automatic design of BNs with maximally dissimilar attrac-
tors. Finally, Section 9.6 takes on the Density Classification Problem, a task
previously applied in the cellular automata domain, with the aim of showing
the learning capabilities of BNs.

9.1.1 Related work

The first work concerning BNs as learning systems has been presented by Patar-
nello and Carnevali [173] who trained, by means of Simulated Annealing [132],
a feed-forward Boolean network to perform binary additions. A study on the
automatic design of BNs appeared the same year and was proposed by Kauff-
man [126]. The goal of the work was to generate networks whose attractors
matched a prescribed target state. The algorithm proposed is a sort of genetic
algorithm with only a mutation operator (no crossover) that could either ran-
domly rewire a connection or flip a bit in a function’s truth table, and extreme
selection pressure: once a fitter individual was found it would replace the whole
population. In a sense it is similar to a stochastic ascent local search. Lemke
et al. extend this scenario [140] in that they require a network to match a
target cycle. In this work a full-fledged genetic algorithm (with crossover) is
employed. Another evolutionary approach is adopted by Easmaeili and Jacob
in [76], where they require a population of RBNs to maximise a fitness function
defined by a combination of several feature like network sensitivity, number of
attractors and basin entropy. In their algorithm, a network can undergo changes
in both functions and topology. Notably, mutation operator was allowed to add
or delete a node. Their study is limited to networks of small size (N ≤ 10).

Several works addressing evolution of robust BNs have been proposed by
Drossel and others. In these works, robustness is intended as the capacity of
a network to return to the same attractor after a random flip occurs in one of
its nodes. Various search strategies have been employed and will be outlined in
the following. In [221] the authors applied a stochastic ascent (called “adaptive
walk” in the paper) to networks with canalising functions; the move operator
could rewire a connection or replace a function with a canalising one. The next
three contributions revisited and extended this last paper, with the same goals
of finding robust networks. Mihaljev [158], instead of a local search, proposes

1Data collected in Section 9.3 are reproduced from Mattia Manfroni’s master thesis [150],
with his permission. Data are included in this dissertation because they are subject of further
discussion which arise from the search space analyses performed.

9.1. INTRODUCTION 117

a genetic algorithm whose mutation operator is the move procedure described
above. Fretter [81] studies the dynamical properties of evolved networks with
any functions, not only canalising ones. Szejika [222] extends her previous
work and this time investigates the behaviour of evolved networks with Boolean
threshold functions. In a work by Espinosa-Soto and Wagner [77], populations
of random Boolean threshold networks (a special case of RBNs) are evolved, by
means of a genetic algorithm, to investigate the relationship between modular-
ity and evolvability of GRNs. The actual algorithm utilised is a simple genetic
algorithm with constant size population, no crossover and a mutation operator
capable of modifying edge weights in the topology graph. Finally, we mention
a work in which probabilistic BNs are trained so as to learn the equality func-
tion [64].

To summarise, the techniques proposed in the literature to train a BN be-
long to either of two families: local searches (stochastic ascent and variants,
Simulated Annealing, etc.) and Genetic Algorithms (with variants in the ge-
netic operators). The methods used are quite simple and might not be effective
in tackling hard learning tasks. Indeed, the goals addressed in the literature are
mainly concerned with investigating phenomena in evolutionary biology, rather
than tasks in machine intelligence. We believe that the recent advances in en-
gineering stochastic local search can be fruitfully applied also in the task of
training and designing BNs. In this paper, we show that advanced local search
strategies, as well as algorithm engineering and analysis, enable us to design
BNs for accomplishing difficult learning tasks.

9.1.2 Methods

The paradigm we adopt in this work is that of supervised learning. We suppose
it is possible to define an objective function that evaluates the performance of
a network with respect to a given task to be accomplished. Besides the objec-
tive function, the learning process requires that some parameters of the system
can be subjected to variations according to a learning algorithm. Since there
are no dedicated algorithms for general BNs, we formulate the learning process
into an optimisation problem. A prominent example of this approach is that of
evolutionary robotics, in which evolutionary computation techniques are used
for designing robots controlled by neural networks [165]. In this perspective,
the learning process of a BN can be modeled as a combinatorial optimisation
problem by properly defining the set of decision variables, constraints and the
objective function. We should also remark that, always in the context of evo-
lutionary robotics, the objective function is rather a guide to the underlying
solving procedure than an actual measure of the quality of a solution (which, in
fact, might not be precisely measurable).

In our approach, which is illustrated in Figure 9.1, the metaheuristic al-
gorithm manipulates the decision variables which encode the node transition
functions of a BN. A complete assignment to those variables defines an instance
of a BN. This network is then simulated and evaluated according to the spe-
cific target requirements. A specific software component is devoted to evaluate
the BN and returns an objective function value to the metaheuristic algorithm,
that, in turn, proceeds with the search. Therefore, the evaluation provides the
feedback used in the learning process.

118CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

target

requirementsevaluatorsimulation

objective function

Boolean

Network

value

metaheuristic
network model

Figure 9.1: Scheme of the process for training a BN. The BN is simulated and
its behaviour is compared to the desired one defined by specific requirements.
The evaluator component provides a feedback to the metaheuristic, which ma-
nipulates the BN parameters.

In this thesis we investigate the topic of automatic design by employing
population-based metaheuristics and trajectory methods. Specifically, Genetic
Algorithms are the metaheuristic of choice for the design of BNs with desired
attractor periods (Section 9.2). GAs will also be used as term of comparison in
the last task studied, the Density Classification Problem in Section 9.6.

In all other problems under consideration, a specific metaheuristic has been
used, namely Iterated Local Search (ILS), which extends the basic perturbative
search. ILS is a well-known algorithmic framework, illustrated in Algorithm 9,
successfully applied to many hard combinatorial optimisation problems [53, 144].
ILS makes it possible to combine the efficiency of local search with the capa-
bility of escaping from the basin of attraction of local optima. ILS applies an
embedded stochastic local search method (Line 6) to an initial solution until
it finds a local optimum; then it perturbs the solution (Line 5) and it restarts
local search.

Algorithm 9 Iterated Local Search high-level framework.

1: input: a local search

2: s← generateInitialSolution()
3: sbest ← localSearch(s)
4: while termination conditions not met do
5: s′ ← perturbation(sbest)
6: s′ls ← localSearch(s′)
7: sbest ← acceptanceCriterion(sbest, s

′
ls)

8: end while
9: return sbest

In this work we implemented the following choices to instantiate the ILS
framework.

Acceptance criterion: accept a new solution if it is better than the current
best one.

Perturbation: for each node function a random flip in the truth table is per-
formed. This choice makes ILS not too close to random restart, while

9.2. DESIGNING BOOLEANNETWORKSWITH PRESCRIBEDATTRACTOR PERIODS119

keeping the perturbation computationally fast and easy to implement. As
a drawback, local search moves can undo such perturbation, albeit un-
likely.

The last component to be defined is the embedded local search procedure.
We opted for Stochastic Descent (SD), a very basic search strategy, which,
despite its simplicity, proved to be very effective. SD is a problem-independent
local search algorithm whose pseudo-code is shown in Algorithm 10.

Algorithm 10 Stochastic Descent.

1: input: a solution s, an objective function F , a neighbour defi-

nition N
2: sbest ← s
3: ν ← N (sbest)
4: repeat
5: randomly pick a neighbour s0 ∈ N without replacement
6: if F (s0) < F (sbest) then
7: sbest ← s0
8: ν ← N (sbest)
9: else

10: ν ← ν \ s0
11: end if
12: until timeout or ν = ∅
13: return sbest

In order to apply this algorithm to our task, we need to instantiate its
problem-dependent components: the solution representation, that is, a state in
the search space, the objective function and a suitable neighbour definition.

Search state: a search state is a BN.

Initial solution: a Random BN with defined N , K and bias p.

Neighbour definition: this component defines the modification, or move, per-
formed on the current solution. For the experiments described through-
out the chapter, the move used behaves as follows: first we randomly
choose a node function, then we flip a bit in its truth table. The pair
〈node, truth table position〉 is uniformly sampled without replacement.

It should be noted that this definition of move does not dramatically change
the network functions, therefore, a network in some dynamical regime has, with
high probability, neighbours in the same regime.

The objective function depends on the specific task to be accomplished,
therefore it will be described separately for each case study presented. In the
problems that will be discussed, the goal of the search is to minimise the objec-
tive function, which can thus be considered as an error or a distance function.

9.2 Designing Boolean networks with prescribed

attractor periods

120CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

In this section the first case study concerning automatic design of Boolean net-
works is presented. Our goal is to investigate the possibility of evolving BNs by
GAs so as to obtain a network able to reach an attractor of a desired period with
a trajectory starting from a given initial state s0. This represents just one of
numerous examples of requirements we may want a BN to satisfy. Nevertheless,
since attractor length depends on the main properties of BNs, this goal enables
us to address some of the relevant issues in BN design. The questions that we
want to address are the following:

a) Is it possible to guide evolution in such a way to succeed in the goal?
What is the probability of reaching the target? (I.e., how robust is the
automatic design procedure?)

b) Are there differences across network parameters? Are there networks that
are easier to evolve?

c) Which are the most difficult or the easiest targets to be reached?

d) What is the influence of GA parameters?

In the remainder of this section we detail the experimental settings and
report and discuss the experimental results.

This section present the work of a study published on the proceedings of the
11th conference of the Italian Association for Artificial Intelligence (AI*IA) [181].

9.2.1 Experimental settings

Experiments are run with networks of N = 100 nodes and K = 3. This value for
connectivity is the minimum such that it is possible, by choosing an appropriate
bias, to have an initial populations of RBNs from the three regimes: ordered,
critical and chaotic. The initial state is randomly sampled in the space and
the target attractor lengths are 1, 10, 50, 100, 500, 800. Networks composing
the initial population are constructed according the RBN model: inputs are
randomly assigned, without self-loops in the topology; Boolean functions are
defined by assigning truth values biased by homogeneity values p equal to 0.85
(ordered), 0.788675 (critical) and 0.5 (chaotic), in three different experiment se-
ries, respectively. However, Boolean functions homogeneity of single individuals
can change during evolution because the initial distribution of 1s and 0s can be
changed by the genetic operators.

According to the guideline in Section 4.3.2, we specify the characteristics of
this GA implementation.

Chromosome structure. The individuals of the GA are encoded as a tuple
of N truth-tables, i.e., binary vectors of size 2K , each defining the Boolean
function of a node. Thus, only node transition functions of a network are
evolved and the topology is kept constant during the evolutionary process.

Recombination operators. The recombination operators are the well-known
one-point crossover and the single-variable flip mutation. Both operators
are applied to each element of the chromosome with probability mr/N
(mutation) and cr/N (crossover). Mutation and crossover rates, respec-
tively mr and cr, are reported in Table 9.1.

9.2. DESIGNING BOOLEANNETWORKSWITH PRESCRIBEDATTRACTOR PERIODS121

Table 9.1: Summary of experimental parameter values. All possible combina-
tions of the values reported have been tested.

N K p
attractor population number of mutation / crossover number of
length size generations rate runs

100 3

1

80 200 100

10
0.5 50 0.5 / 0.9

0.788675 100 0.5 / 0.0
0.85 500 0.1 / 0.9

800

Fitness function. The fitness function of a network n is defined as F (n) =
(1+ |l− lt|)−1, where l is the length of the attractor the individual network
reached and lt is the target length. For efficiency reasons, the temporal
evolution of each network is simulated for at most 1000 steps: if an at-
tractor is not reached in this limit, a fitness value of 0 is returned.

Population update. Each generation, a new offspring population of the same
size as the original population is generated. We select the best individuals
according the steady-state strategy.

The remaining parameters of the GA have been chosen as reported in Table 9.1,
in which a summary of experimental parameter values is provided. All possible
combinations of the values reported have been tested.

BNs have been simulated with the Boolean Network Toolkit and the GA has
been implemented with GAUL [1].2 All experiments have been performed on a
2.4 GHz Intel Core 2 Quad with 4MB of cache and 2GB of RAM, running with
Linux Ubuntu 8.10.

Performance comparison

We first discuss the results concerning the performance of each class of networks,
addressing questions (a), (b) and (c). The first notable observation is that for
all target attractor lengths and for all initial network classes, the GA could find
at least one network with maximal fitness in the 100 independent runs. This
result means that all three classes of networks can be evolved to successfully
reach the target. To assess the robustness of the process, we compare the
fraction of successful runs at each generation of the algorithm, i.e., we estimate
the success probability at generation t, defined as the probability that a network
with maximal fitness is found at generation t′ ≤ t. The corresponding plots
are depicted in Figures 9.2 and 9.3. Results for attractor lengths of 1 and 10
are omitted, because the fraction of runs achieving maximal fitness reaches the
100% right in the initial population or after few generations.

We first note that the performance achieved with initially ordered networks
is considerably lower than that of critical and chaotic ones. This can be ascribed
to the fact that ordered networks are not very likely to have long attractors.
Anyway, the search process performed by the GA is still able to find a network
with the desired attractor length. The case of critical and chaotic networks

2We could not employ EasyGenetic because this study was made before a functional version
of our framework was available.

122CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Target attractor length = 50

Generation

S
uc

ce
ss

 r
at

io

ordered
critical
chaotic

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Target attractor length = 100

Generation

S
uc

ce
ss

 r
at

io

ordered
critical
chaotic

Figure 9.2: Success ratio vs. generations. The comparison is made among the
three initial network classes. Target attractor lengths equal to 50 and 100.

9.2. DESIGNING BOOLEANNETWORKSWITH PRESCRIBEDATTRACTOR PERIODS123

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Target attractor length = 500

Generation

S
uc

ce
ss

 r
at

io

ordered
critical
chaotic

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Target attractor length = 800

Generation

S
uc

ce
ss

 r
at

io

ordered
critical
chaotic

Figure 9.3: Success ratio vs. generations. The comparison is made among the
three initial network classes. Target attractor lengths equal to 500 and 800.

124CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

has some subtleties which deserve to be outlined. First of all, we observe that
the success ratio decreases as the attractor length increases. Moreover, in most
cases critical networks dominate or are almost equivalent to chaotic ones, while
for target attractor length equal to 100, initial chaotic networks seems to pro-
vide a better start to the GA. Both the phenomena can be explained by the
combination of two factors. First: the cutoff imposed on simulation steps limits
from above the networks attractor length, hence making it difficult to evolve
networks with an attractor of length comparable with the maximal number of
simulation steps because, if an attractor is not found, the corresponding fitness
value is zero. Second: critical networks have usually many attractors, but of
small length compared to attractor periods of chaotic networks, that can be
exponential in the number of nodes. In a survey experimental analysis, we ob-
served that for networks with 100 nodes and a maximal number of simulation
steps of 1000, the median attractor length for critical networks is 6, while for
chaotic ones is 130. Therefore, for a target length of 100, the fitness of indi-
viduals composing the initial population is likely to be higher in the case of
chaotic networks than in critical ones. However, it is worth to be noted that
critical networks can be anyway evolved to reach long attractors, despite their
handicap in the initial population’s fitness. This could be a further evidence of
their tendency of maximising adaptiveness.

The study of the search space, that would provide insight into problem
hardness, is introduced and partially addressed in Sections 9.3, but, overall, is
still subject of ongoing work.

Influence of GA parameters

The influence of mutation and crossover on search performance can shed light
on the evolution characteristics of the different initial population classes and can
answer question (d). Figures 9.4, 9.5 show a typical case3 of algorithm perfor-
mance in the three examined cases of mutation and crossover rates. From the
plots we observe that the synergy of both mutation and crossover are crucial for
the evolution of initially ordered and critical networks. Conversely, for chaotic
networks, mutation is much more important than crossover.

In these experiments, we have shown that it is possible to evolve ensembles
of networks with a desired attractor length regardless of the dynamical class of
the initial networks. It would be possible, of course, to experiment with other
targets, such as specific patterns in the attractors and combinations thereof,
aiming at the design of networks with a desired landscape of attractors, each
with a specific characteristic. Although in this dissertation we do not directly
address this problem in general terms, a similar task is tackled in Section 9.6,
since, as we will see, we ask for networks with structured basins of attraction
and attractors with specific characteristics.

Another possible extension could involve the relaxation of the constraint of
keeping constant the initial state, thus moving to stochastic search problems.
We also notice that in this case the evaluation would be more complicated
because, since would be dealing with a stochastic object, we would need to
calculate a meaningful statistics (confront the beginning of Section 4.3.1) to
obtain a fitness value. Such statistics usually involve a large number of samples

3Target attractor length equal to 100.

9.2. DESIGNING BOOLEANNETWORKSWITH PRESCRIBEDATTRACTOR PERIODS125

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ordered networks

Generation

S
uc

ce
ss

 r
at

io

mutation & cx
low mutation
only mutation

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Critical networks

Generation

S
uc

ce
ss

 r
at

io

mutation & cx
low mutation
only mutation

Figure 9.4: Comparison of the impact of mutation and crossover on search per-
formance. The case of ordered and critical initial network classes are reported.

126CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chaotic networks

Generation

S
uc

ce
ss

 r
at

io

mutation & cx
low mutation
only mutation

Figure 9.5: Comparison of the impact of mutation and crossover on search
performance. The case of initial chaotic network class is reported.

from the configuration space and therefore a large number of simulations. This
poses a heavy computational burden on the experiments. Moreover, it is difficult
to determine whether such statistics is accurate since in all but the most trivial
cases, the configuration space is remarkably undersampled. This is the typical
scenario in the experiments that follow.

As a final remark, in this preliminary case study, we faced many interesting
questions regarding the search process worth investigating, such as: (1) the re-
lationship between search space and network characteristics, primarily topology
and initial dynamical class. For instance, it would also be interesting to witness
a correlation, or a lack thereof, between the dynamical class of the networks in
the initial population and the specific target. We could find, for example, that
seeding the algorithm with critical networks, as opposed to chaotic ones, could
favor the search on a particular target, or, on the contrary, our GA is efficient
enough for a wide range of targets. (2) The characterisation of the networks
obtained at the end of the search process, specifically, which measures should
we adopt to describe such networks since they were definitely not generated
according to the RBN model but, on the contrary, have been subject of an
evolutionary process. A possible answer is given at the end of Section 9.5.

9.3 Target state-controlled Boolean networks

In this section, we describe the experiments in which we train a BN in such
a way that some requirements on its trajectory are fulfilled. The problem of

9.3. TARGET STATE-CONTROLLED BOOLEAN NETWORKS 127

designing a dynamical system such that its trajectory in the state space satisfies
specific constraints is a typical control problem. The general problem of network
controllability has been studied in [143] with one important difference. In the
paper a system is controllable if there exist a sequence of inputs values that
drives the system from any initial state to any desired target state in finite
time, which is a much stronger requirement than the one we consider in this
section. Controllability of Boolean networks has also been extensively studied
by Cheng et al. [50, 51].

In the case of BNs, which exhibit in general complex dynamics, this task
we tackle is not trivial for an automatic procedure, because an assignment of
Boolean functions has to be found such that the resulting BN dynamics fulfils
the requirements. This problem has been chosen with the aim of assessing the
effectiveness of our approach. In fact, for a BN with N nodes and K inputs per

node, the whole search space has a cardinality of 22
KN .

In this section, we are concerned with tasks in which a target state has to be
reached, subject to additional constraints. Given are an initial state s0, a target
state ŝ and a number of network simulation steps T . The goal is to design a BN
such that the trajectory in the state space with origin in s0 reaches the target
state ŝ in one of the following conditions:

1. the target state ŝ is reached in a number of steps less than or equal to T ;

2. the target state ŝ is reached for the first time at step t, such that t ∈ [z, T],
0 < z < T , where z is a parameter of the problem;

3. as point 2, but with the additional requirement that the target state is a
fixed point.

Experiments and data presented in this section are reproduced from Mattia
Manfroni’s master thesis [150] because they are matter of further discussions
which arise from the search space analyses performed.

9.3.1 Experimental setting

The BNs used for this task have N = 100 nodes and K = 3 distinct inputs
per node (no self-connections). The connections of the networks are randomly
generated as per RBN model. The initial Boolean functions are also randomly
generated with bias p ∈ {0.5, 0.788675, 0.85} correspond to chaotic, critical and
ordered regimes, respectively. For each value of p, 30 RBNs have been gener-
ated.The initial state s0 of each BN is generated according to a uniform dis-
tribution over the whole state space. The target state ŝ is likewise randomly
generated.

The metaheuristic search used for designing the BN is ILS, which has been
described in Section 9.1.2 with a slight variation in the move definition. Since
the goal, in all the three cases, consists in matching a given target state, the
neighbourhood of the current solution can be sampled with a heuristic bias, try-
ing to focus the search on promising neighbours of the current solution. To this
aim, the node function to be changed is chosen among the ones corresponding
to nodes whose values do not match the target state. The rationale behind this
heuristic is that of “repair algorithms”, in which local search moves only af-
fect the parts of the current solution that contribute to increasing the objective
function (to be minimised).

128CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

For each experiment, 100000 iterations of the optimisation algorithm have
been executed. Each iteration corresponds to a simulation of the respective BN
trajectory lasting T steps, with T = 1000 (i.e., 1000 BN state updates).

Task 1: reaching a target state

The goal of this case study is to train a BN in such a way that its trajectory
reaches a given a target state ŝ at least once within the temporal left-open
interval]0, T]. The evaluation of a BN is done on the basis of the evolution
time step in which the BN presents the largest number of Boolean variables
matching the target state. Let u(t) be the function returning the number of
Boolean variables matching the target state at each simulation step t, with t
belonging to the left-open interval]0, T]; the objective function, to be minimised,
can be described as follows:

min
t∈]0,T]

(

1−
u(t)

N

)

.

To assess the robustness of the process, we compute the fraction of successful
runs at each iteration of the algorithm, i.e., we estimate the success probability
at iteration t, defined as the probability that a network with minimal objective
function is found at generation t′ ≤ t. This kind of statistic is also known as
run length distribution [110]. The results obtained are shown in Figure 9.6. We
first note that all the BNs with initial bias p = 0.85 reach the goal within 80000
iterations of the optimisation algorithm. Also BNs initially in critical regime
present good performances, whereas only 10% of chaotic BNs reaches the goal.
A reason for explaining this phenomenon could be related with the properties
of the initial networks. BNs generated with p = 0.85 are very likely to be or-
dered, therefore small changes in their Boolean functions correspond to small
variations in the objective function. Conversely, most of the BNs generated
with p = 0.5 behave chaotically; slightly differing chaotic networks have a very
different behaviour, similarly to what we have described in Section 7.1.1 con-
cerning perturbations in the initial state of RBNs. Therefore, the initial search
space is smooth in the case of ordered networks, whilst it is rather rugged for
chaotic ones. The difference in the performance of the learning algorithm when
starting from ordered vs. critical networks4 can be ascribed to the fact that
critical BNs are known to exhibit a mixture of characteristics typical of ordered
and chaotic BNs (see also Section 9.4 for a further example). This conjecture
on the ruggedness of the search landscape can be tested by estimating the au-
tocorrelation of the landscape. Smooth landscapes are characterised by high
autocorrelation, while rugged ones have low autocorrelation [112]. The auto-
correlation of a series G = (g1, . . . , gm) of objective function values is computed
as

r =

∑m−1
k=1 (gk − g) · (gk+1 − g)

∑m

k=1 (gk − g)2
,

where g is the average value of the series. This definition refers to the autocor-
relation of length one, i.e., that corresponding to series generated by sampling
1-Hamming neighbouring states in the search space. For each network’s dynamic
class we computed the empirical autocorrelation of 1000 time series obtained by

4generated with p = 0.788675

9.3. TARGET STATE-CONTROLLED BOOLEAN NETWORKS 129

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iterations

S
uc

ce
ss

 r
at

io

chaotic
critical
ordered

Figure 9.6: Run length distribution related to task 1: reaching a target state.

collecting the objective function values along a random walk of 100 steps start-
ing from 30 randomly generated initial candidate networks for each value of p.
The boxplots in Figure 9.7 summarise the statistics of the values of autocorre-
lation in the three dynamical regimes. We note that the landscape of ordered
and critical networks is highly correlated (r ≈ 0.9), whilst the one of chaotic
networks is not (r ≈ 0.4). This result supports our hypothesis for explaining
the different performance across network’s dynamical regime. It is important
to stress that our finding shows that the very reason for a different behaviour
is to be ascribed to the combination of two factors: the dynamical regime and
the objective function used in the learning task. As we will see in Section 9.6,
the objective function may be a crucial factor in inducing different landscape
correlation properties.

Task 2: reaching a target state within a given time window

The goal of this second case study is to design a BN whose trajectory reaches
a given a target state ŝ at least once within the temporal interval [z, T], but
not before z, with z ∈]0, T]. In this case, the objective function should be
defined with care. Indeed, it is important that the function not only reaches its
minimum if the constraint on the trajectory is reached, but it should also guide
the search toward the satisfaction of such constraint. Therefore, we assign a
certain reward also to those BNs whose trajectory reaches a state either almost
congruent to the target one or a certain number of simulation steps τ before z.
To implement this reward rule, we define a family of functions f(t; γ) on the
interval [0, T] as follows:

f(t; γ) =

0 t < z − τ

1−
∣

∣

t−z
τ

∣

∣

γ
z − τ ≤ t ≤ z

1 t > z
.

The function f(t; γ) is plotted in Figure 9.8: note that BN states before z can
be rewarded in diverse ways, depending on the value of parameters γ and τ . Let
u(t) be the function returning the number of nodes matching the target state

130CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

Ordered Critical Chaotic(0.2
0.0
0.2
0.4
0.6
0.8
1.0

La
nd

sc
ap

e
au

to
co

rr
el

at
io

n

Figure 9.7: Distribution of autocorrelation r of the landscapes corresponding to
networks in different dynamical regimes.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BN simulation steps
0 z−τ z T

f(
t;γ

)

Figure 9.8: Function f(t; γ) used to assign a reward to partially successful BNs.
In the figure, the function with γ = 2 is plotted.

at each simulation step t, with t ∈]0, T], the objective function can be described
as follows:

{

1 if u(t)
N

= 1, t ∈]0, z − τ]

1− f(t; γ)u(t)
N

otherwise
. (9.1)

Note that this objective function does not reward at all those BNs whose tra-
jectory reaches the target state before z − τ .

In Figure 9.9, we show the results attained with z = 500 and adopting the
following parameter setting: τ = 10 and γ = 2. Analogous results have been
obtained with z = 50 and z = 100, the case of z = 500 being the hardest

9.3. TARGET STATE-CONTROLLED BOOLEAN NETWORKS 131

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iterations

S
uc

ce
ss

 r
at

io

chaotic
critical
ordered

Figure 9.9: Run length distribution related to task 2: reaching a target state
within a given time window.

for the learning process. In addition, different values of τ and γ have been
tested (τ ∈ {10, 20, 50, 100} and γ ∈ {0.5, 1, 2}) and no statistically significant
difference was observed.5

The performances attained in this task are qualitatively the same as for the
previous case study, even if the overall performance is lower with respect to the
previous case. This is not surprising, as this task is rather more difficult than
the previous one. Also for this task we computed the empirical autocorrelation
of the search landscape and we obtained the same qualitative results as in the
previous case.

Task 3: reaching a fixed point target state within a given time window

The goal of this third case study is the same as the previous one, with a further
constraint: when a BN trajectory reaches the target state, then such state
must be kept. In other words, the target state must be a BN fixed point.
As in the previous case study, we assign a certain reward also to those BNs
whose trajectory reaches a state either almost congruent to the target one or a
certain number of simulation steps τ before z. At each network evaluation, let
z′ ∈ [z− τ, T] be the simulation step corresponding to the state with the largest
number of Boolean variables congruent to the target state. To verify that BN
state in z′ is a fixed point of the BN, it is enough to check if the state at z′ +1 is
equal to the one in z′. If this occurs, then we can assert that the BN trajectory
has reached a fixed point. This statement is valid because we are considering
BNs with deterministic dynamics and synchronous state updates.

Analysing the requirements, two different main features can be noticed: first
of all, the network has to reach the target state, but not before z−τ . To evaluate
this aspect, we can use the same objective function as in the previous case study,
which is defined by Equation 9.1. The second issue consists in making the target
state a fixed point for the BN. A way to merge these two aspects is to define an

5We applied both the χ2 test and the Fisher’s test [57] to the success percentages and the
null hypothesis (i.e., equal distributions) could not be rejected.

132CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iterations

S
uc

ce
ss

 r
at

io

chaotic
critical
ordered

Figure 9.10: Run length distribution related to task 3: reaching a fixed point
target state within a given time window.

objective function based on a weighted mean, as follows:

{

1 if u(t)
N

= 1, t ∈]0, z − τ]
αx(z′) + (1− α)y(z′) otherwise

.

where x(z′) is defined by Equation 9.1 and y(z′) is a function that compares the
BN states in z′ and z′ +1, returning the ratio between number of not congruent
Boolean variables and the total number of BN nodes. Thus, when y(z′) = 0,
the BN state in z′ represents a fixed point for the BN.

Different values for α account for different relative importance between
reaching the target state and keeping it. We tried several values of this parameter—
α ∈ {0.25, 0.5, 0.75}—to estimate its impact on the optimisation process. We
noticed that small values of α (i.e., α ≤ 0.5) lead to a slightly better perfor-
mance than the one attained with α = 0.75. In Figure 9.10, we show the results
obtained with α = 0.5 and other parameters set to the same values as the results
showed for the previous case study. We can note that the overall performance
is better than in the previous case. We conjecture that the behaviour of the
local search is positively affected by the introduction of the objective function
component accounting for the fixed point constraint. In fact, once a BN is tuned
such that a fixed point is reached, it is not hard to further change the Boolean
functions so as to match the target state. This conjecture finds an independent
support in a recent work in evolutionary robotics [34].

The next two sections are part of a study of attractor features of the classic
RBN model. In Section 9.4 we present an experimental study in which we show
relevant statistical features of the similarity among attractors in RBNs. This
research will point out a limitation of RBNs when used as models of real GRNs,
a limitation that, specifically, is tied to the synchronous update scheme and to
the high similarity between attractors. In Section 9.5 we will instead apply our
methodology to partially overcome this limitation; our aim will be, in fact, to
engineer networks with an attractor landscape as varied as possible.

9.4. ATTRACTOR DISTANCES IN BOOLEAN NETWORKS 133

9.4 Attractor distances in Boolean networks

A prominent feature that can be considered in the ensemble approach is the
distribution in distances between gene expression levels in different types of cells.
In Section 7.1.1 we anticipated that attractors in RBNs can be made correspond
to cellular types [127], a conjecture further refined in terms of threshold ergodic
sets [198, 228]. This extension provides support to the effectiveness of RBNs
as genetic regulatory network models, as it makes it possible also to model cell
differentiation dynamics. In order to test this conjecture, two issues have to be
addressed: first, the properties of RBN attractors have to be studied; second,
these properties have to be compared with the ones of cellular types. In this
thesis, we aim at providing a contribution to the first issue by studying the
statistics of distances between attractors in random Boolean networks.

This section is based on a paper by Roli et al. [182].

9.4.1 Attractor similarity statistics

In real cells, each type is characterised by a specific pattern of gene expression
levels which can be represented as real number vectors of size N , where N is
the number of genes. On the model side, we can make the hypothesis that
each attractor of a BN represents a cell type. Statistics and, possibly, other
kinds of information on the distances between attractors can be computed and
then compared against equivalent statistics on gene expression levels in real cell
types, so as to test to what extent the class of RBNs capture relevant properties
of ensembles of real cells.6

In this section, we introduce the distance measures we defined over the at-
tractors, along with the statistics and properties we analysed.

Attractor distance measures

We defined and studied three different distances among BN attractors, namely
Minimum Hamming (MHD), Euclidean and pseudo-Hamming. The first one
is defined upon the states composing the attractors, while the other two are
defined upon the average values of BN nodes in each attractor.

Minimum Hamming distance (Definition 5) measures the minimum number
of node values that should be changed in order to let the network’s trajectory
jump from an attractor directly to another one.

Definition 5 (Minimum Hamming (MHD)). Let Ai and Aj two attractors of
a Boolean network, their Minimum Hamming distance is:

dMHD(Ai, Aj) = min{dH(s, s′) | s ∈ Ai, s
′ ∈ Aj)}

where dH(s, s′) is the Hamming distance between states s and s′.

It is important to observe that this distance does not depend on the net-
work dynamics in the state space, as it simply considers the Hamming distance
between states independently of the state space trajectory. Measures which
depend on the actual state space topology can be also defined.

6The hypothesis of the correspondence between attractors and cell types is therefore oper-
ational, rather than ontological.

134CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

The following distances are defined over real vectors V (Ai) = 〈v1, . . . , vn〉,
each one computed for a given attractor Ai. Elements vj (j = 1, . . . , n) are
computed by averaging the values assumed by variable xj along the attractor,
i.e., by computing the fraction of times a Boolean variable assumes value 1
along the attractor, or, in other words, computing the time average of its values
along the attractor (see also Section 9.6 for a similar application). In formulas:

given attractor A = (s(1), . . . , s(τ)) of period τ , with s(h) = 〈x
(h)
1 , . . . , x

(h)
n 〉, h =

1, . . . , τ , each element vj of vector V (A) is computed as: vj = 1
τ

∑τ

h=1 x
(h)
j .

It has to be noted that this mapping between attractors and vectors of real
numbers makes it possible to establish a simple yet direct semantics of a BN
attractor as a gene expression level array [201].

A straightforward way of measuring the distance between two real valued
vectors is to compute their Euclidean distance. This distance induces naturally
a distance over attractors:

dEucl(Ai, Aj) = dEucl(Vi, Vj) =

√

√

√

√

n
∑

l=1

(vil − vjl)2

The Euclidean distance might smooth the differences between expression vec-
tors, thus making it hard to distinguish between attractors of different length. In
fact, attractor cycles of very different length might be mapped onto real valued
vectors whose Euclidean distance is very small. For this reason, we introduced
a distance that is computed by summing up the number of homologous vector
entries which are different, and we call it pseudo-Hamming distance.

Definition 6 (pseudo-Hamming). Let Ai and Aj two attractors of a Boolean
network, their pseudo-Hamming distance is:

dψH(Ai, Aj) = dψH(Vi, Vj) =

n
∑

l=1

1− δ(vil − vjl),where δ(x, y) =

{

1 if x = y
0 otherwise

Attractors clustering

Given the attractors of a BN network, a distance matrix can be constructed
according to the distances previously defined. Besides computing the main
statistical parameters of such data, distance matrices have been also used in
two kinds of analysis: (i) distribution in (weighted) clustering coefficient; and
(ii) attractor dendrograms.7

Clustering Coefficient. The clustering coefficient Ci of a vertex i in a graph
provides an estimation of the how much its neighbours tend to form a complete
graph. For a non-weighted graph, the clustering coefficient Ci is equal to its
maximum value 1 if neighbours of i form a complete graph, while it is 0 if
neighbours of i are disconnected. The average of vertex clustering coefficient
provides an estimation of how much a graph is characterised by clusters of
vertices. Formally, a network clustering coefficient is:

C =
1

N

N
∑

i=1

Ci, Ci =
ni
gi

7Preliminary results have been published in [187].

9.4. ATTRACTOR DISTANCES IN BOOLEAN NETWORKS 135

where ni is the number of edges between neighbours of vertex i and gi the
maximum possible number of edges between them. It is also possible to extend
the clustering coefficient definition to weighted graphs [246]; in this case, the
greater the edge weight, the stronger is the intensity of the connection between
the two vertices. Values used for computing this measure are taken from a
network adjacency matrix A = (aij), where an element aij corresponds to the
weight of the edge which has its tail in i and its head in j; aij = 0 if i = j or
edge (i, j) is not present. In formulas:

ni =
1

2

∑

u6=i

∑

{v | v 6=i,v 6=u}

aiuauvavi , gi =
1

2
((
∑

u6=i

aiu)2 −
∑

u6=i

a2iu)

In our analysis, the weight of an edge that connects two vertices (attractors) is
the (normalised) reciprocal of the distance between the attractors.

Dendrograms. A network attractor distance matrix can be also used to
graphically represent clustered distribution of attractors. For each network,
a dendrogram has been generated, which represents in a single data structure
all the possible clusters of the elements in a set. Attractor dendrogram analysis
yields a graphical representation of the tendency of the attractors to gather into
clusters. The results we present are based on dendrograms constructed using
‘single-link’ algorithm [122].

9.4.2 Experimental analysis

In this section, we present the results of the experimental analysis performed. As
usual, for all simulations we used the Boolean Network Toolkit. We analysed
the main statistical parameters of the distances between attractors in RBNs
with 70 nodes,8 k = 3 and bias values such that the networks are in ordered
(p = 0.85), chaotic (p = 0.5) and critical (p = 0.788675) phases. For each
parameter configuration, 50 independent RBN realisations have been generated.
Each network dynamics has been simulated for at most 106 steps, starting from
105 initial states picked uniformly at random in order to sample attractor cycles.

Distance measures statistics

A first analysis concerns the main statistical parameters of the distance ma-
trices. Table 9.2 shows the minimum, maximum, mean, median, 1st and 3rd

quartile values of such quantities. We can observe that the maximal distances,
independently of the actual definition used, are in chaotic networks. Moreover,
also the mean and median values of attractor distance in chaotic networks are
considerably higher than those of critical and ordered networks. The differences
between the last two classes are smaller than those with respect to chaotic ones,
even though critical networks show a larger spread in values and higher average
values.9 It is remarkable to observe that the qualitative pattern is the same,
independently of the distance measure.

8Networks’ size was constrained by the very large computational time required for simu-
lating chaotic networks of larger size.

9An exception to this observation is the median of the Euclidean distance, but differences
are very small and not significant.

136CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

Table 9.2: Distance statistics.

(a) Minimum Hamming distance

Bias Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5 1 5 9 9.03 12 29

0.788675 1 1 4 4.62 7 24
0.85 1 1 2 3.86 5 18

(b) Euclidean distance between activation vectors

Bias Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5 0.00 0.43 0.90 1.23 1.80 4.77

0.788675 0.00 0.36 1.23 1.18 1.74 4.69
0.85 0.00 0.67 1.16 1.36 1.88 4.24

(c) Pseudo-Hamming distance between activation vectors

Bias Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5 0 66 68 63.44 70 70

0.788675 0 3 12 13.61 22 51
0.85 0 3 8 8.35 10 27

Attractors clustering

In Figures 9.11a, 9.11b and 9.11c, the histogram of the average clustering coeffi-
cient distribution is plotted for chaotic, critical and ordered RBNs, respectively.
The distance measure considered is the MHD, but qualitatively analogous re-
sults have obtained also with the other distance measures. The pattern emerging
from the histograms is not surprising: chaotic network attractors have a very
low tendency of forming clusters, while in critical and ordered networks, attrac-
tors are clearly clustered. It is interesting to note that critical networks seem
to exhibit a pattern that is a mixture of the chaotic and ordered ones, because
the clustering coefficient distribution spans, with significant values, across the
whole range.

A similar picture emerges from the dendrograms, which graphically capture
the clusters emerging among attractors. In Figures 9.12a, 9.12b and 9.12c, typ-
ical cases of dendrograms for chaotic, critical and ordered BNs are respectively
plotted.

9.5 Designing Boolean networks with maximally

distant attractors

In this section, a natural continuation of the previous one, we are concerned
with the problem of designing BNs exhibiting a set of attractors (i.e., long term
behaviour patterns) as much diversified as possible.

This section is based on a work by Benedettini et al. [24].

9.5. DESIGNING BOOLEANNETWORKSWITHMAXIMALLY DISTANT ATTRACTORS137

p = 0.5

Clustering coefficient

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

(a) Chaotic RBNs

p = 0.788675

Clustering coefficient
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

(b) Critical RBNs

p = 0.85

Clustering coefficient

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

(c) Ordered RBNs

Figure 9.11: Average clustering coefficient distribution.

9.5.1 Objective and Motivations

As previously remarked, RBN models of genetic regulatory networks make ex-
tensive use of attractors. Nevertheless, as pointed out at the end of Section 9.4,
the attractor set in synchronous and deterministic RBNs is very likely to con-
tain attractors which differ for just a few values. These very same attractors are
no longer distinguishable if a different update scheme is used, such as delayed
update [97]. Therefore, synchronous and deterministic update could generate
spurious attractors, which are meaningless from a biological perspective. How-
ever, most of the results in literature achieved so far assume this update scheme,
which makes the dynamics of the network easy to analyse, both empirically and
theoretically. In the following, by employing the methodology outlined in Sec-
tion 9.1.2, we aim at designing synchronous and deterministic BNs in which
attractors are as much different as possible so as to close the gap between RBNs

138CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS
A

13
−

24

A
12

−
60

A
9−

21
8

A
11

−
18

A
10

−
88

A
8−

26
0

A
2−

11
54

A
7−

46
0

A
6−

49
26

A
5−

71
80

A
3−

52
94

0

A
1−

45
71

8

A
4−

59
68

6

1
2

3
4

5
6

7

p = 0.5

H
ei

gh
t

(a) Chaotic RBNs

A
8−

12

A
6−

12

A
7−

12

A
3−

12

A
4−

12

A
5−

26

A
9−

10

A
15

−
6

A
18

−
6

A
17

−
12

A
20

−
6

A
19

−
6

A
13

−
6

A
14

−
6

A
21

−
12

A
16

−
6

A
22

−
6

A
11

−
6

A
12

−
6

A
1−

6

A
10

−
6

A
2−

6

1
2

3
4

5
6

7

p = 0.788675

H
ei

gh
t

(b) Critical RBNs

A
4−

4

A
3−

20

A
1−

20

A
2−

20

1

p = 0.85

H
ei

gh
t

(c) Ordered RBNs

Figure 9.12: Typical samples of attractor dendrograms.

and more biologically plausible BNs. The possibility of designing such networks
would also enable us to contrast their characteristics against those of RBNs, in
the spirit of the ensemble approach.

Informally, our objective is to automatically design a BN whose attractors
are as much different from each other as possible. In order to formalise this
requirement, we need a definition of similarity. Toward this aim, we choose
the Minimum Hamming distance between attractors as stated in Definition 5
in Section 9.4.1. We recall that MHD represents the minimum number of bit
flips required to directly bring the dynamical state of a BN from attractor A to
attractor B, or vice versa. We chose such measure because of its possible bio-
logical relevance; if we interpret attractors as cell type and bit flips as external
noise 10, we can say that the probability by which an external, possibly harmful,
perturbation switches a cell (BN) from type (attractor) A to type B is roughly
inversely proportional to dMHD(A,B), or equivalently, their dissimilarity. More-
over, the conclusions drawn in Section 9.4 allow us to say that, to some extent,
the results presented in this section are independent of the distance chosen.
Experiments in Section 9.5.2 show that attractor distance distribution strongly
depends on network dynamical regime and that different distance definitions

10An interpretation also consistent with the work by Serra et al. [198].

9.5. DESIGNING BOOLEANNETWORKSWITHMAXIMALLY DISTANT ATTRACTORS139

give rise to attractor distance distributions with similar statistical properties.
To be able to use our methodology, we have to define an objective function.

For reasons explained later, we choose as our objective function the expected
MHD between attractors, defined below.

Definition 7. Expected Minimum Hamming distance between attractors. Let
{A1, A2, . . . , Ah} be the attractor set of a BN with (relative) basin weights
{w1, w2, . . . , wh}. The expected MHD is:

Ed =

h
∑

i=1

h
∑

j=1

wiwjd(Ai, Aj) = 2

h
∑

i=1

h
∑

j=i+1

wiwjd(Ai, Aj)

This gives the expected MHD between two randomly sampled attractors.
It is important to observe that the attractor landscape of an optimal network
which maximises this objective function consists in two complimentary fixed
points with basin weights equal to 0.5.

The expected MHD is difficult to compute except for the smallest networks
because it requires the complete enumeration of the attractors of a network
along with their basin weights, therefore we resort to approximation in order to
improve the efficiency of the search. We use a Monte Carlo method to estimate
the attractor set of a network and their basin weights. We start from m random
initial states S = {s1, . . . , sm} for the network. For each state we evolve the
network up to an attractor and we collect the attractors found {A1, A2, . . . , Ah}.
If we denote with Si ⊆ S the states from which the network reaches attractor
Ai, the approximate basin weight ŵi of an attractor Ai is |Si|

m
. By applying the

formula in Definition 7, we have an approximation Êd for the expected MHD.
In our experiments, we choose m = 104 random initial conditions.

Since we resort to random sampling, we incur in the problem first mentioned
in Section 4.3.1 and restated at the end of Section 9.2: in order to measure the
quality of a solution, we have to make an accurate estimation of its value across
an adequate number of sample. To this aim, we decided to introduce weights
in the distance definition in order to penalise attractors with a small basin size
for both biological and practical motivations. Biologically, an attractor with
a small basin corresponds to a rare event very unlikely to occur. Practically,
this choice makes network evaluation much more robust because it reduces the
variance of objective function estimation.

We conclude by saying that we also performed preliminary experiments both
utilising average and median of attractor distance distribution as objective func-
tion, but with unsatisfying results.

9.5.2 Experimental Analysis

Experiments have been carried out starting from initial RBNs from differ-
ent dynamical classes. In total, we generated 300 networks used as initial
solutions: (i) 100 RBNs with K = 3 and N = 20, 30, 70, 200 nodes, bias
p = 0.211324, 0.788675 (critical ensemble); (ii) 100 RBNs with K = 3 and
N = 20 nodes, bias p = 0.15, 0.85 (ordered ensemble); (iii) 100 RBNs with
K = 3 and N = 20 nodes, bias p = 0.5 (chaotic ensemble). It is known that
chaotic networks have average attractor period that scales exponentially with
system size [13]. This makes the simulation of chaotic networks much more

140CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

computationally expensive than for networks in ordered or critical regimes. If
local search comes across a region of search space inhabited by chaotic networks,
it will probably spend a great deal of available computation time, if not all. As
already pointed out in Section 9.1.2, the single bit flip move implemented by
Stochastic Ascent makes it so that that chaotic networks have, with high prob-
ability, chaotic neighbours; therefore, local search might not escape from that
region and get stuck until time runs out. This issue could be partially addressed
by imposing an upper bound on the number of simulation steps thereby drawing
the exploration away from chaotic networks. We did not choose to implement
such a constraint because we wanted to observe the behaviour of our algorithm
in an un-biased environment. In the end, we decided to run experiments start-
ing from networks in chaotic regime only for N = 20, in which simulation is still
manageable. It is, of course, still possible that chaotic networks appear during
search. Furthermore for N > 20 we start only from critical RBNs because sev-
eral biological systems have been shown to operate in critical regime [10, 166].

In order to estimate the effectiveness of our method, we compare it against
a simple Random Walk (RW) heuristic as a baseline. RW is the same procedure
as SA with the only difference that moves are always accepted. This comparison
is useful to roughly assess the benefits of a more sophisticated exploration of
the huge network search space over an uninformed random walk.

We implemented our local search in C++ and employed the Boolean Network
Toolkit as usual to implement function evaluation. Our program was compiled
with gcc 4.4.0 with -O3 optimisation. We executed the algorithm once for every
network with a runtime limit of 7 hours. Experiments were performed on a
cluster composed of quad core 2.33GHz Intel XeonTM processors with 12Mb of
cache, 8Gb of RAM and running Cluster Rocks 5.3.11

Analysis of designed networks

In the following, we illustrate the results achieved and we characterise the re-
sulting networks from a dynamical point of view. The following analyses have
been carried out for both initial and optimised networks. We simulated each
network up to an attractor starting from 105 initial conditions picked uniformly
at random and gathered the following data: distribution of the MHD between
attractors, attractor periods, number of attractors and average network sensi-
tivity. Such analysis is infeasible for chaotic networks with N = 200 due to
computational difficulties. For such networks we limited ourselves to 104 sam-
ples and a subset of 20 RBNs. In the following, we compare the networks from
the initial ensembles against the optimised networks returned by RW and ILS.
For each network, we computed the median of the distribution of the MHD
between attractors; the distributions of these values are summarised in the box-
plots of Figure 9.13: in the top row there are networks with N = 20, in the
bottom row networks with N > 20. Since the notches of the boxplots do not
overlap, we can conclude that, with 95% confidence, the true medians of the
distributions do differ [46]: ILS outperforms RW on all test cases.12

The dynamical analysis of optimised network is not a trivial task. As antic-
ipated in Section 9.2, networks which undergo an evolutionary process exhibit

11http://www.rocksclusters.org
12We recall that these evaluations are based on random sampling.

http://www.rocksclusters.org

9.5. DESIGNING BOOLEANNETWORKSWITHMAXIMALLY DISTANT ATTRACTORS141

Figure 9.13: Median of attractor distance distribution.

(a) 20 nodes, ordered (b) 20 nodes, critical (c) 20 nodes, chaotic

(d) 30 nodes (e) 70 nodes (f) 200 nodes

features from all dynamical classes and single measures, such as sensitivity, ca-
pable to classify a RBN, fail to fully capture the dynamical properties of evolved
networks (see also [81]). We show that this is the case also for our experiments.
The next tables summarises the distribution of attractor period, number of
attractors and sensitivity for optimised and initial networks. Column headers
report minimum, average, median, standard deviation and maximum. Table 9.3
compares networks with N = 20; initial RBNs belong to all dynamical regimes.
Table 9.4 compares side-by-side chaotic and critical RBNs against optimised
networks for N > 20. We can observe that the sensitivity of final networks is
almost always greater than 1. A possible explanation is that, as the number of
inputs increases, the fraction of functions with unitary sensitivity decreases [25].
For this reason, the search space explored by our local search has a lower den-
sity of network with sensitivity close to one. Although sensitivity is greater than
one, that does not alone suffice to conclude that the resulting networks are in
chaotic regime: the distribution of other measures is, in fact, different than that
of chaotic RBNs, as shown in Tables 9.3 and 9.4. The most remarkable mea-
sure is attractor period: optimised networks have much shorter attractors than
chaotic RBNs. This was indeed expected, because it is a direct consequence of
the chosen objective function: an attractor with short period has less chances
to have states close to those belonging to another attractor. Also, the number
of attractors is slightly greater. En passant, we observe that the combination of
these two properties (short cycles and high number of attractors) is typical of
critical BNs.

Regarding the behaviour of the local search itself, in our tests we found that
many ILS iteration were performed for small networks while only a few were
performed for the largest networks. An ILS iteration is a succession of an inten-
sification phase (embedded local search) and a diversification phase (perturba-
tion). The explanation is that smaller networks not only require less simulation
time to evaluate the objective function, but have also smaller neighbourhoods.

142CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

Table 9.3: Summary of network features for N = 20.

Class Measure
Original RBNs Optimised networks

min µ median σ max min µ median σ max

Ordered

Period 1 2 1 2 12 1 1 1 0 5
N. of Attr. 1 1 1 0 5 2 3 3 1 11
Sensitivity 0.44 0.78 0.77 0.14 1.11 1.25 1.43 1.44 0.09 1.60

Critical

Period 1 3 3 3 35 1 1 1 0 4
N. of Attr. 1 2 2 2 12 2 3 3 1 9
Sensitivity 0.69 1.00 1.01 0.13 1.31 1.20 1.44 1.45 0.09 1.66

Chaotic

Period 1 8 4 11 66 1 1 1 0 3
N. of Attr. 1 4 3 2 14 2 3 3 1 8
Sensitivity 1.26 1.48 1.48 0.10 1.73 1.21 1.44 1.43 0.09 1.76

In a small neighbourhood it is less likely for SA to find an improvement, there-
fore the perturbation has higher chances to be applied more than once in the
given time limits.

9.6 Density classification problem

In this section we take on the problem of training BNs to solve a classification
problem. We know that cell behaviour can change in response to variation in the
concentration of nutrients or other chemical substances: the cell adapts its own
internal dynamics in reaction to different condition in the environment. From
an abstract point of view, we can say that a cell is able to solve a classification
problem, where the environmental conditions represent the example to classify
and the resulting cell dynamical behaviour is the response. Since BNs are used
to describe GRN behaviour, it is natural to ask whether BNs are able to learn
how to perform an analogous function. In this section we focus on a particular
classification problem (the Density Classification Problem, described below) and
we ask whether it is possible to design a BN that, when subject to different
initial conditions (corresponding to external stimuli in the case of real cells), it
responds with a specific dynamical behaviour, i.e., attractor.

The Density Classification Problem (DCP), also known as Density Classi-
fication Task, first introduced by Packard, is a simple counting problem [171]
born within the area of cellular automata (CA), as paradigmatic example of a
problem hardly solvable for decentralised systems. Informally, it requires that
a binary CA (or more generally a discrete dynamical system—DDS) recognise
whether an initial binary string contains more 0s or more 1s. In its original
formulation, the nodes (or cells) are arranged in a one dimensional torus and
can interact only with the neighbouring ones. The problem is that of designing
simple rules, governing the dynamics of each node, in such a way that the sys-
tem is driven to a uniform state consisting of all 1s, if the initial configuration
contains more 1s, or all 0s otherwise. In other words, the convergence of the
DDS should decide whether the initial density of 1s is greater or lower than 1

2 .
Although the assignment might look trivial, it is a challenging problem

and it is known for having no exact solution in the case of deterministic one-
dimensional CA [138]. The origin of this difficulty is very intriguing and comes

9
.6
.

D
E
N
S
IT

Y
C
L
A
S
S
IF

IC
A
T
IO

N
P
R
O
B
L
E
M

1
4
3

Table 9.4: Summary of network features for N > 20.

N Measure
Chaotic RBNs Critical RBNs Optimised networks

min µ median σ max min µ median σ max min µ median σ max

30
Period 1 18 6 36 335 1 3 2 3 20 1 1 1 1 9

N. of Attr. 1 4 4 3 15 1 3 2 4 37 2 6 6 3 22
Sensitivity 1.29 1.50 1.49 0.09 1.75 0.78 1.01 1.01 0.10 1.27 1.31 1.46 1.46 0.07 1.63

70
Period 1 1072 51 4426 79050 1 7 4 10 134 1 3 2 4 51

N. of Attr. 1 6 6 2 14 1 4 2 4 28 2 9 9 5 31
Sensitivity 1.38 1.50 1.50 0.05 1.61 0.87 1.01 1.01 0.06 1.14 1.06 1.33 1.34 0.11 1.57

200
Period 1 6.8E5 1.4E5 1.2E6 7.6E6 1 15 8 26 726 1 13 6 110 4445

N. of Attr. 2 4 4 1 9 1 23 3 96 878 2 19 12 21 130
Sensitivity 1.39 1.47 1.47 0.03 1.53 0.90 1.00 1.00 0.04 1.09 1.00 1.19 1.19 0.06 1.38

144CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

from the impossibility to centralise the information or to use counting tech-
niques: the convergence to a global uniform state should be obtained by using
only local decisions, i.e., by using just the information available in time within
the close neighbours of a node. Given these difficulties, various modifications
to the classical problem have been proposed, including stochastic CA, CA with
memory, CA with different rules succeeding in time (see [78] and references
cited therein). Interestingly, some authors directly investigated the dichotomy
between the local nature of the CA and the global requirements of the related
DCP by allowing the presence of long range connections within the links of
the otherwise local neighbourhood [154, 197, 226, 234]. In particular, it can be
shown that the simple majority rule applied on random topologies outperforms
all human or artificially-evolved rules running on an ordered lattice [154, 197];
a performance gap that increases with the number of nodes [154]. The majority
rule states that the value of a CA cell at time t+ 1 is 0 (resp. 1) if the majority
of its neighbours has value 0 (resp. 1) at time t.

These last two cited studies demonstrate that RBNs can effectively deal with
the DCP. Our aim in this section is that of demonstrating that learning RBNs
are flexible objects, able to attain a performance comparable to a hard-to-match
benchmark such as the majority rule. Therefore, we will not use extremely large
neighbourhoods or network sizes, but rather we will focus our attention to the
learning process itself, leaving scaling issues to further work.

In order to define the learning processes, we divide the nodes of a BN into
three (possibly overlapping) groups: input nodes, output nodes and hidden
nodes13. Of course, this separation is not sufficient to completely specify the
overall learning scheme since there are many details regarding topology and
node dynamics to be addressed. For instance, input nodes could maintain their
initial values (this is the typical case in neural networks) or could evolve in time
according to the typical BN dynamics; output nodes could have or not have
feedbacks on the hidden/input nodes; moreover (see [6] and below), it is not
clear what is the influence on the final attractors of the initial conditions of
hidden and output nodes. A possibility, explored in previous studies [6, 186],
consists in partitioning network nodes into input, hidden and output nodes. In
this setting, the value of input nodes is externally imposed and does not change
during network evolution, whereas hidden and output nodes are driven, as usual,
by their transition functions. Nevertheless, in [6] it is also shown that different
initial settings of hidden and output nodes typically lead to different attractors,
making the analysis of the network’s answer difficult. For the DCP we opt
for an easier choice; we establish that: 1. all network nodes are input nodes;
2. all nodes are also output nodes (i.e., the state of each node contributes to
the final answer); 3. there are no hidden nodes (it follows from the previous two
conditions). This way there none of the nodes requires a special characterisation
and the initial conditions are well defined. The correct answers can also be
uniquely identified by two state vectors composed by all zeroes and all ones.
Finally, and coherently with the Boolean nature of BNs, in order to correctly
interpret oscillating asymptotic states it is enough to compute the time averages
for each node, assigning “0” to the averages lower than 0.5 and “1” otherwise.

In this paper we use two groups of RBNs having respectively 11 and 21 nodes

13Although this categorisation is reminiscent of the distinction between input, hidden and
output layers in neural networks, we have to remember that the topology of a Boolean network
could be in principle any graph without any clear separation of node into “layers”.

9.6. DENSITY CLASSIFICATION PROBLEM 145

(odd numbers, as usual in the DCP, in order to avoid ambiguous situations where
0s and 1s are equally present), each with connectivity K = 3: this choice makes
the formation and detection of local majorities possible. We create a training
and a testing set for each N ∈ {11, 21}, assembled in order to uniformly sample
the whole range of the density possibilities in initial condition vectors. Thus,
in the training set, if N is the number of nodes, we have N vectors having one
component set to 1 and the others set to 0, N vectors having two components
set to 1 and the others set to 0, etc., up to N vectors having N − 1 components
set to 1 and the other one set to 0. To that, we add N vectors having all
components set to 1 and N vectors having all components set to 0, for a total
of N(N + 1) examples. This last addition emphasises the importance of giving
a correct answer when the example coincide with one of the targets. The test
set is similar, but lacks the first two and the last two series of the training set,
in order to avoid useless reiterations of fitness evaluation. Therefore, the set is
composed of N(N − 3) samples.

In order to employ a BN as a classifier, we need to specify some kind of
procedure, a classification function, that maps an example to a class. In the
following we detail such procedure. A network assigns examples to classes by
following these steps. Let’s call these classes σ0 (majority of zeroes) and σ1

(majority of ones). Given an example s, a network is evolved up to an attractor
starting from an initial condition s; the temporal average of the attractor is
computed and then the resulting vector is binarised with threshold 0.5, that
is, values are rounded to the nearest integer:14 a binary vector is so obtained
(confront the distance definitions in Section 9.4.1). If this vector contains more
zeroes than ones (respectively, more ones than zeroes) the network assigns s to
σ0 class (resp., σ1 class).

9.6.1 Experimental setting

We carried out our experiments starting from networks generated according to
the classical RBN model, i.e., with constant input connectivity K = 3 and
given function bias p (see below), with N ∈ {11, 21} nodes. BNs are labelled as
critical, ordered or chaotic according to the function bias values used to generate
them. Details on network parameters are given in the following:

Critical ensemble: for each number of nodes N ∈ {11, 21} and for each func-
tion bias p ∈ {0.211324, 0.788675} we generated 50 networks for a total of
200 RBNs.

Ordered ensemble: for each number of nodes N ∈ {11, 21} and for each func-
tion bias p ∈ {0.15, 0.85} we generated 50 networks for a total of 200
RBNs.

Chaotic ensemble: for each number of nodes N ∈ {11, 21} we generated 100
networks with function bias p = 0.5 for a total of 200 RBNs.

These networks are the initial solutions in our local search algorithm and will
be collectively referred to as initial set.

The local search used for training the BNs is ILS, described in Section 9.1.2.
After preliminary experiments on a randomly selected subset of networks, we

14Values equal to 0.5 are rounded to 1.

146CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

determined the termination criterion for the local search, which is also the only
parameter to configure. We decided to stop our ILS algorithm after 150000
networks have been evaluated. Within this limit, we observed that the local
search reaches stagnation. At each improvement over the previous incumbent—
i.e., the currently best found solution—we recorded the node functions of the
new best solution.15

The objective function evaluates a BN classifier on the training examples.
The objective function is to be minimised and has values in the [0, 1] interval.
The evaluation process is remarkably similar to the definition of classification
function given at the end of paragraph 9.6, up to the computation of the binary
vector: we initialise the network to be evaluated with an example s, we evolve
it to an attractor A, we compute the temporal average of A and binarise it with
threshold 0.5 obtaining a Boolean vector v. The contribution of s ∈ {0, 1}N to
the objective function is the following: if s belongs to σ0 (resp., σ1) the objective

function value is
wh(v)

N
(resp.,

N − wh(v)

N
), where wh(v) is the Hamming weight

of vector v—i.e., the number of ‘1’ entries—and N is the network size. The
contributes of all training examples is added up and divided by the number of
examples seen. Notice that this definition entails that if the objective function is
0 then the BN classifier correctly classifies all examples in the training set. The
converse however is not true: a BN might correctly classify all training examples
even if its objective function is greater than zero. This definition of objective
function rewards answers v different than the admissible ones (vectors of all
zeroes and ones); this was done in order to better guide the search process and
avoid the presence of large plateaus in the search space due to a (excessively)
strict objective function. Suppose that, for example, a network, presented with
the example s = 0111010 ∈ sigma1, answers v = 11011016; the answer is “close
enough” to the correct one 1111111 so the network should be rewarded.

In order to measure the classifying capabilities of the optimised networks, we
compared them to BNs with a very specific structure. We thus generated a new
ensemble, labelled benchmark set, whose networks have random topology, input
connectivity equal to 3 and whose node functions are all equal to the Boolean
majority function on three inputs. The benchmark set contains 100 BNs with
N = 11 nodes and 100 BNs with N = 21 nodes.

9.6.2 Results

In this section we outline the analysis performed on data gathered from the
experiments. We perform two kinds of analysis. First, we assess the classi-
fication error of our optimised networks and we compare it with the BNs in
the benchmark set (Section 9.6.2). Secondly, we analyse the network generated
during the search process and show to what extent selected network features
are affected by the optimisation algorithm (Section 9.6.2). Finally, we compare
the performance of our ILS with a genetic algorithm (Section 9.6.2).

15We recall that the local search move does not change network topology.
16We assume that v is the binarised temporal average of some attractor; this is not relevant

to the aims of this example.

9.6. DENSITY CLASSIFICATION PROBLEM 147

Critical Ordered Chaotic)0.2
0.0
0.2
0.4
0.6
0.8
1.0

La
nd

sc
ap

e
au

to
co

rr
el

at
io

n

Figure 9.14: Distribution of landscape autocorrelation r for RBNs with N = 21
in different dynamical classes.

Performance analysis

The performance of the optimised networks is measured by the classification
error, that is, the fraction of misclassified examples.

Figure 9.15 depicts the distributions of the classification error on the test set.
These graphics compare the networks in the benchmark set (leftmost boxplot)
with the classifiers generated by our metaheuristic starting from networks in
the critical (second boxplot), ordered (third boxplot) and chaotic (last boxplot)
ensembles. Performances of optimised networks do not significantly differ if the
local search starts from either ensemble, although the distribution of the error
for the chaotic ensemble has the lowest minimum (for N = 11 it ties the mini-
mum on the ordered networks). We analysed the autocorrelation of the search
landscapes, as done in Section 9.3. The boxplots showing the main statistics of
the estimated autocorrelation of the landscapes in the three dynamical regimes
are depicted in Figure 9.14. As in the previous test case, the autocorrelation
of the landscape corresponding to ordered and critical BNs is higher than that
of chaotic BNs. Nevertheless, the median autocorrelation coefficient r is rather
low, ranging in [0.4, 0.6] across all dynamical regimes. In addition, both the
difference among the medians is quite low and the extreme values span across
wide, overlapping, ranges. This result explains why, in this case study, we do
not observe a difference across network’s dynamical regimes as striking as in the
case discussed in Section 9.3.

The remarkable performance gap between the benchmark and ILS observed
when going from 11 to 21 nodes, can be explained by the fact that, as previously
noted, the majority rule cannot be improved and its classification performance
increases with the number of nodes [138, 154]. As a matter of fact, Figure 9.15
shows that performances attained by ILS with both network sizes are similar
(the median for N = 11 is actually slightly lower).

It is also important to mention that even this optimisation scheme might be
subject to overtraining. In this context, overtraining means that the network
returned by our local search might not be the classifier that achieves the smallest
classification error on the test set. Figure 9.16 shows two typical examples of
overtraining. These graphics depict the classification error on both training and

148CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

Majority Critical Ordered Chaotic0.00

0.05

0.10

0.15

0.20

0.25

Cl
as

si
fic

at
io

n
er

ro
r

(a) N = 11

Majority Critical Ordered Chaotic0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Cl
as

si
fic

at
io

n
er

ro
r

(b) N = 21

Figure 9.15: Comparison of optimised networks against benchmark networks.
Boxplots show distribution of classification error (fraction of misclassified ex-
amples) on the test set.

test sets attained by the current best network for every iteration of the local
search. The training error curve is non increasing, as expected, while the test
error curve has a global minimum before the local search reaches its locally
optimal solution.

For this reason, for every algorithm execution we kept track of all the net-
works generated whenever a new local optimum was found; that way we could
choose the BN which minimises the classification error on the test set.

Analysis of learning process

In the following, we analyse statistical properties of the networks generated
by the search process. Specifically, we compare the initial networks in each
ensemble with the best classifiers returned by our local search, i.e., the best
BNs that achieve the smallest error on the test set (henceforth referred to as
“optimised networks”).

The comparison is performed on the following network measures: number
of attractors, average attractor period, average network sensitivity and pattern
distance. In order to calculate the former two measures, we simulate a network
up to an attractor starting from all the possible initial conditions.

The pattern distance measures the average similarity of the node functions
to the Boolean majority function and is computed as follows. Let us denote with
vi ∈ {0, 1}8 the truth table of the i-th node transition function; we compute

the average over all nodes v =
1

N

∑N

i=0 vi. We obtain a new binary vector

π ∈ {0, 1}N by rounding v to the nearest integer (0.5 is rounded to 1). We
finally compute the Hamming distance of π to (0, 0, 0, 1, 0, 1, 1, 1), which is the
truth table of the Boolean majority function of three inputs. Notice that a
pattern distance equal to 0 does not imply that all network functions match the
majority rule.

9.6. DENSITY CLASSIFICATION PROBLEM 149

100 101 102 103 104 105 106

Iteration counter

0.0
0.1
0.2
0.3
0.4
0.5

Cl
as

si
fic

at
io

n
er

ro
r

Training set
Test set

(a) Network 58

100 101 102 103 104 105 106

Iteration counter

0.0

0.1

0.2

0.3

0.4

0.5

Cl
as

si
fic

at
io

n
er

ro
r

Training set
Test set

(b) Network 20

Figure 9.16: Example of overtraining on two BNs in the critical ensemble, N =
11. Dashed and continuous line show the classification error on the training
examples and on the testing examples respectively.

Sensitivities of the optimised networks have similar characteristics regard-
less of the dynamical regime of the initial networks (Figure 9.17). This is a
further explanation why the distributions of the classification error depicted in
Figure 9.15 do no significantly differ from one another. However, the distribu-
tion of the number of attractors of optimised networks and their average periods
(not shown) just slightly differ. This observation needs more detailed consider-
ations. Optimised networks have a sensitivity of about 1.3 regardless of both
initial dynamical state and number of nodes. Yet again, we have an experi-
mental confirmation of the fact that networks which undergo an optimisation
process could exhibit features from all dynamical classes These issues need more
extended analyses and will be investigated in further work.

Figure 9.18 illustrates the evolution of the pattern distance throughout the
search process. The y-axis represents the pattern distance averaged over a net-
work ensemble and the x-axis represents the iteration index. Each data point
(i, d) is obtained by calculating the pattern distance d on the incumbent solution
at iteration i and averaging over all networks in the ensemble, thereby obtain-
ing d (we show only two examples, since the curves of all the other cases are
substantially identical). These graphics further remark that optimised networks
have similar characteristics. Specifically, they show that the search process is
drawn towards networks with functions similar to the majority rule.

Comparison with a genetic algorithm

Since the search landscape of the DCP is not highly correlated, a Genetic Al-
gorithm (GA) could attain a better performance because of its capability of
sampling wide areas of the search space. Therefore, we repeated the previ-
ous experiments by plugging a GA as the optimisation component inside the
training algorithm. Furthermore, by these further tests, we can also address
the question as to whether the results presented in Section 9.6.2 depend on the

150CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

Critical Ordered Chaotic
1.0
1.1
1.2
1.3
1.4
1.5
1.6

Se
ns

iti
vi
ty

(a) N = 11

Critical Ordered Chaotic

1.2

1.3

1.4

1.5

Se
ns

iti
vi
ty

(b) N = 21

Figure 9.17: Distribution of average network sensitivity for optimised networks.

search algorithm used.
Coherently with all other experiments described in this chapter, our genetic

algorithm does not modify the network topology: all solutions in the populations
share the same topology, which is kept fixed throughout the search procedure.
The individuals of the candidate solution population in the GA are represented
by genomes, whose structure is rather similar to the one used in Section 9.2.
Formally, a genome is a vector 〈f1, f2, . . . , fN 〉 of N genes. A gene is a truth
table fi ∈ {0, 1}8 which defines the i-th node transition function. The offspring
of the current population is built by generating new individuals by means of
two genetic operators, i.e., crossover and mutation. The crossover operator
is a standard two-parents one-point crossover. This operator is applied with
probability pcross. If crossover is not applied, the two parents are simply cloned.
Contrarily to what we did in Section 9.2, crossover does not modify the single
truth-table of a function, but, instead, it operates on the whole genome. As for
mutation, we experimented with two ad hoc operators. The first one, labelled
X-flip, randomly picks X bits in a truth table and negates them. The second
operator, labelled node-function, replaces a gene with another randomly chosen
K-variable Boolean function.17 Both operations are applied to all N genes
with probability pmut, meaning that, on average, N · pmut genes are changed.
We implemented a steady-state genetic algorithm solver with population size
of 100 genomes and roulette wheel selection. Population overlap for the steady
state is 50% meaning that at each generation an offspring of 50% population
size genomes is generated and added to the current population. Afterwards,
the current population is shrunk back to the initial size by removing the worst
genomes.

We tested several algorithm configurations which differed in mutation oper-
ator (1-flip, 2-flip and node-function), mutation probability pmut and crossover
probability pcross for a total of 12 configurations (see Table 9.5 for a sum-
mary). The reason we chose such extreme values for pcross was to verify whether

17This last operator works only with topologies with constant in-degree, which is the case
in our experiments.

9.6. DENSITY CLASSIFICATION PROBLEM 151

100 101 102 103 104 105 106

Iteration counter

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Pa
tt

er
n

di
st

an
ce

(a) Critical ensemble N = 11

100 101 102 103 104 105 106

Iteration counter

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Pa
tt

er
n

di
st

an
ce

(b) Chaotic ensemble N = 21

Figure 9.18: Examples of typical pattern distance trend for optimised networks.
Each data point represents the pattern distance value averaged on all optimised
networks in 9.18a (a) the critical ensemble (N = 11) and 9.18b (b) the chaotic
ensemble (N = 21).

Name Values

Mutation operator 1-flip, 2-flip, node-function
Mutation probability 0.1, 0.2
Crossover probability 0.1, 0.9

Table 9.5: Summary of GA parameters.

crossover introduced a too disruptive change in the network structures so as to
degrade GA’s performances, like we did in Section 9.2. As for mutation op-
erators are concerned, we chose 1- and 2-flip mutations because their effect
on a BN is comparable to the application of (a small number of) local search
moves. On the other hand, we chose an operator such as node-function because
we wanted to test the effect of a more radical modification in a BN struc-
ture. For the sake of brevity, we will refer to a configuration with a triple
(mutation operator, pmut, pcross). Each configuration was evaluated 30 times
for each dynamical class. For each algorithm evaluation, the initial population
was initialised with 100 RBNs, all sharing the same topology, generated with
appropriate bias depending on the dynamical class (see the beginning of Sec-
tion 9.6.1). We terminated each algorithm run after 150000 objective function
evaluations, the same termination condition used for ILS.

We performed a full factorial analysis of the configuration space and we
subsequently applied a Mann-Whitney test [57], with a significance level equal
to 0.05, to all pairs of algorithm configurations in order to obtain the best for
each dynamical class of the initial networks. The test is able to identify two
configuration, namely (node-function, 0.1, 0.9) and (node-function, 0.1, 0.1), that
are significantly better than the others. This result holds true for all dynamical
classes. Since these configurations are not distinguishable by the statistical test,
we select the first one as the competitor against ILS.

152CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

Critical Ordered Chaotic Critical Ordered Chaotic0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22

Cl
as

si
fic

at
io

n
er

ro
r ILS GA

Figure 9.19: Comparison between ILS and GA performance. Graphics report
the classification error distribution on the test set. Experimental setting consists
of 300 RBNS with 21 nodes from each dynamical class.

Figure 9.19 compares the performance of the selected GA configuration
(node-function, 0.1, 0.9) (rightmost boxplots) with our ILS (leftmost boxplots)
for all dynamical classes. The comparison was performed on the same set of 300
RBNs with 21 nodes introduced in Section 9.6.1.

First of all, we observe that the GA attains results which do not qualita-
tively differ from those obtained by ILS, because differences among the three
dynamical classes are rather small. However, the overall performance of the
GA is significantly lower18 than that of ILS, since notches of boxplot associated
to ILS do not overlap to those related to the GA [48]. This result might seem
counterintuitive, given the low correlation of the search landscape. Nevertheless,
we should remark that the values of autocorrelation we computed span across
a wide range, therefore ILS can take advantage of its fully exploration of the
neighbourhood and find paths towards improving solutions which are not easily
found by the sampling process of the GA.

9.7 Conclusions and discussion

BNs have been mainly considered as GRN models and are the subject of notable
works in the complex systems biology literature. Nevertheless, in spite of their
similarities with neural networks, their potential as learning systems has not yet
been fully investigated and exploited.

In this work we use BNs as flexible objects, which can evolve by means of
suitable optimisation processes, to deal with four notable issues: (1) the problem
of generating a family of BNs with a desired attractor period; (2) the task of
controlling the BN’s trajectory to match a target state; (3) the automatic design
of BNs with maximally distant attractors; and (4) the Density Classification
Problem. The tasks have different characteristics which have repercussions on
the search itself: in fact, the initial dynamical regime could facilitate or slow

18with 95% confidence

9.7. CONCLUSIONS AND DISCUSSION 153

down the learning process (as in the case of the matching task), or could have
no particular consequences (as in the Density Classification Problem). The
optimisations starting from critical BNs do not show performances higher than
those starting from different dynamical regimes. This is very likely to be a
consequence of the static nature of the proposed tasks, that have not time
dependent assignments: in these cases, there are no particular reasons that can
favour critical systems with respect more ordered or chaotic ones. We found
that the reason for the differences we observed in the performances is to be
found in the autocorrelation of the search landscape, which depends on both
the dynamical class and the objective function (plus the neighbourhood relation
used in the local search). As a further observation, we can note that in all cases
BNs successfully deal with the proposed challenges, revealing flexibility.

Further work will address the still open questions, such as: the interaction
between the neighbourhood definition (that is, the allowed moves of the meta-
heuristic algorithms) and the possibility of shaping the dynamical regime of
these nets, by involving, not only the functions expressed by each single net-
works’ node, but also more global network properties as, for instance, their
connectivity distribution, modularity and assortativity.

Results confirm that BNs that undergo an evolutionary process exhibit a
mixture of characteristics from different dynamical classes. It follows that an-
other important open issue worthwhile to pursue is how to characterise the
dynamical behaviour of ensembles of optimised networks. We believe that this
could be achieved by measuring several quantities in a BN besides the ones
already mentioned, such as basin entropy [135], coherency [238], Lempel-Ziv
complexity [211], Normalised Compression Distance [166] and mutual informa-
tion [179]. It is also possible extend known tools, like in [81], where generalised
and modified Derrida plots are defined. The endeavor of finding new measures
that better characterise BN can be fruitful also to the study of complex dy-
namical systems; in the context of ensemble approach, of particular interest are
those measures not tied to a specific model, such as the last three which come
from information theory, because they would enlarge its applicability.

Although control theory offers mathematical tools for steering simple engi-
neered and natural systems towards a desired state, a framework to control com-
plex self-organised systems is still lacking (of course the work by Barabasi [143]
provides strong theoretical arguments, but so far no experimental evidence has
been presented as to whether the theory of driver nodes is effective also for
non-linear complex systems). BNs and the already present knowledge on their
dynamical behaviour could help in this enterprise, and allow in such a way
the design of specialised learning systems, able to dynamically shape their own
learning capabilities in relation to the characteristics of the problem and of the
search space.

154CHAPTER 9. DESIGNING BOOLEANNETWORKSBYMETAHEURSITICS

Conclusions

In this thesis we described and applied a metaheuristic-based approach for auto-
matically building models of complex biological systems. Such a methodology,
which recasts our modeling problem at hand into an optimisation problem and
solves it, could be also useful to design artificial systems possessing desirable
properties such as robustness and evolvability. Although this methodology is not
new in general, we demonstrated its successfulness in solving modeling problems
in bioinformatics (Chapters 3, 4 and 6) and complex system biology (Chapter 9).

In the first part of the thesis we showed hybrid metaheuristic algorithms
which constitute the current state of the art solvers for the Haplotype Inference
by parsimony and the Founder Sequence Reconstruction Problem. In particular,
we would like to underline the interplay of exact and approximate techniques has
proved particularly effective, as shown in Chapter 6. We described different for-
mulations of the problems and proposed several enhancements. Regarding Hap-
lotype Inference, the new constraint programming-based approach we suggested
eliminates all the drawbacks of the application of our hybrid and Master-Slave
algorithms to Haplotype Inference with missing data. Moreover, Section 5.2
presents a clique finding algorithm potentially useful to compute bounds for
the problem or good heuristic initial solutions for Haplotype Inference under
either parsimony or minimum entropy hypotheses. An important contribution
derived from the research on Haplotype Inference is also the Master-Slave ap-
proach described in Chapter 4, which proved to be useful in different contexts
besides genomics. Regarding FSRP, we designed and tested several LNS variants
and speed-ups (Section 6.8). Our LNS algorithm turned out to be superior to
plain exact techniques—RecBlock—with the additional advantages of being
(i) anytime solvers and; (ii) complete (i.e., they return a proof of optimality) if
enough time is provided. Finally, we thoroughly compared our metaheuristics
with the best available combinatorial algorithms to date on extensive bench-
marks of real-world and simulated instances.

One of the main open question that deserves more investigation is how to
characterise complexity. As shown in Chapter 7, if we limit ourselves to RBNs it
is possible to define analytical measures that describe their qualitative dynami-
cal behaviour. Specifically, we recall that computing the Lyapunov exponent of
a RBN simply amounts to calculating the average network sensitivity; we also
notice that computing such measure does not involve expensive simulations or
calculations. If we are able to classify a RBN dynamics, theoretical studies also
provide us with useful information, such as the growth of attractors with the
number of nodes [66, 191] or the formation of avalanches [175]. Nevertheless,
Chapter 9 presents examples about the fact that networks undergoing an evolu-
tionary process exhibit a mixture of characteristics typical of RBNs in different

155

156 CONCLUSIONS

dynamical regimes. So, for instance, resulting networks from experiments in
Section 9.5 are characterised by high sensitivity (typical of chaotic RBNs) and
high number of attractors with short periods (typical of critical RBNs). We
conjecture that this can be the result of the interplay between the search pro-
cess and the objective function, although the precise causal relation still eludes
us. To accomplish this task of characterising BN dynamics, many options are
available, some of which are presented in Section 9.7. In particular we would
like to focus the attention towards measures based on information theoretical
concepts because their applicability is general and, in a future, may be used for
different models in additions to BNs. This is particularly important in the con-
text of the ensemble approach. The ensemble approach establishes that a model
is an accurate description of a phenomenon on the basis of statistical properties
of the real system and the model. A property definable and measurable on both
the real system and its model would be indeed very useful. As a counterexam-
ple, network sensitivity provides useful information on RBN dynamics, but it
is hardly definable on GRNs, i.e., on the systems we try to model with RBNs;
on the contrary, a statistical property such as avalanche distribution has wider
applicability and can be defined on both RBNs and GRNs [202].

Throughout the thesis, we have taken into account only deterministic prob-
lems. Although the evaluation of BN models of Chapter 9 made use of sampling,
the desiderata we demanded of our networks were completely deterministic and
static in nature, and the apparent stochasticity was due to technical limitations
than to inherent properties of the task. A natural extension of this work would
be to tackle stochastic problems, or, in the more general vision of this thesis,
the automatic generation of stochastic models. For instance, any procedure that
configures the parameters of an optimisation algorithm can fit in this scenario.

From a methodological point of view, one could argue that metaheuristics
can be substituted by machine learning techniques, but it is important to notice
that metaheuristic and machine learning approaches can be, in fact, compli-
mentary. In an abstract scenario, a metaheuristic could learn, for example, the
structure of a Bayesian network and a machine learning technique can fit its
parameters to a set of samples. Moreover, pattern recognition techniques can
indeed be useful for the ensemble approach, since it basically is a statistical
method.

As a final remark, we would like to draw the attention to a recent trend in the
field of optimisation that has many common characteristics to the methodology
we exploited. The idea of “Programming by Optimisation” originates from
the research on parameter configuration of stochastic algorithms and consists
in applying automated procedures to build optimal solvers for the problem at
hand (see [111, 117, 118, 163, 244]. The solution space searched by these “meta-
solvers” is typically quite large and the relationships between its element are
often non-linear. The strikingly similarities make us think that in the future
this approach to design will be more and more widespread.

Proposal for future research

The research presented in this thesis can be extended in numerous ways. In
this section we present some potentially fruitful continuations of the studies
described in each chapter.

CONCLUSIONS 157

For what Haplotype Inference is concerned, we are going to thoroughly test
our metaheuristics with other formulations of the problem, mainly those with
trios and unknowns. Extension to trios should require localised modification to
complementarity in order to take into account the extra familiar relationship.
The case of unknowns, as we wrote at the end of Chapter 3, might be more
difficult to treat, because, as opposed to trios, unknown sites add degrees of
freedom and not additional constraints. Instead of tweaking our algorithms to
take into account unknowns, the most convenient way is to adopt the refined
model of haplotype described in Chapter 5.

The contributions in Chapter 5 can potentially be useful in a variety of cases.
A future research direction will consist in studying the effectiveness of the clique
finding algorithm for HIP and the generalised haplotype model. At first we will
limit ourselves to redefine metaheuristic algorithms we proposed in this thesis,
namely, the ACO in Chapter 2 and the MSG in Chapter 4. This will be done in
order to determine whether the simple application of a different, more sophis-
ticated haplotype model can be beneficial. Moreover, it is worthwhile to test if
application of generalised haplotypes can improve solution quality in the case
of unknowns. At a later stage, we will design ad hoc metaheuristic algorithms
tailored to the generalised haplotype model; in particular, we aim to extend the
constraint programming facility supporting this model by including trio rela-
tions. The clique finding algorithm in Section 5.2 will be the object of further
experimental search. First of all, it is necessary to measure its complexity in the
typical case; to do so, an appropriate benchmark should be defined, containing
different kinds of instances, both real-world and simulated. Secondly, we aim
to determine the effectiveness of such algorithm as heuristic guide: this algo-
rithm guarantees to find the haplotypes with maximum coverage; this property
could indeed be further exploited in an heuristic for maximum parsimony or
even minimum entropy formulation. For instance, an algorithm could take the
set of haplotypes with maximum coverage and, by application of Clark’s Rule,
construct a feasible solution; afterwards, a local search algorithm could be run
to iteratively improve such solution.

We will continue to maintain and work on EasyGenetic library. Thanks to
the advantages of generic programming, it is possible to seamlessly integrate a
variety of genetic operators and population update strategies. We also consider
the possibility of supporting open source technologies for parallel programming,
such as OpenMP [167, 170].

Although we managed to design the state-of-the-art algorithm, the research
on FSRP can be still carried on. The algorithm we proposed is modular and
independent of its embedded solver. A first thing that could be easily looked into
is substituting RecBlock with another ad hoc procedure especially tailored
for solving the kf = 1 and kf = 2 case, as suggested in Section 6.8.5. Another
important step to undertake is to test the validity of FSRP against real biological
data. The long term target would be, then, to apply in sequence a Haplotype
Inference algorithm followed by our FSRP solver and assess the plausibility of
the produced solution. From there, one could modify either algorithm to take
into account a more precise genetic model. From a more abstract point of view,
it is interesting to study also different objective functions for the FSRP, in
particular, the one that allows for single-site mutations [178].

We plan on continuing the work on the Boolean Network Toolkit and to
extend the simulator in various directions. First of all, we will implement differ-

158 CONCLUSIONS

ent update schemes, such as random update and asynchronous update. Other
scheduled extensions include support for other network models, in particular,
Threshold BNs and Glass networks. Also, a more flexible interface to manip-
ulate networks and network topologies is in the making. This interface could,
for example, facilitate the construction of coupled interconnected BNs arranged
in a lattice structure, reminiscent of a cellular tissue [200, 230], or forming hi-
erarchies [152]. Of course, as our research on BNs develops, the experiments
performed on the Boolean Network Toolkit will be incorporated into the source
code and made available to the community.

Chapter 9 demonstrated that our method proved successful on a variety of
cases. A promising line of research would be to apply our method to specific
models of cellular dynamics. One of the more recent works in this regard, is
the one by Serra et al. [12, 198, 228]. The main idea is that a cell type is not
represented by a single attractor but, instead, by a set of attractors, which is
stable under a certain level of external noise, represented by a single flip of a
node. Flips are only allowed to happen when a BN has reached a stable state;
after noise is applied, the network goes through a transient and relaxes into
an attractor. For each attractor Ai in the state space and for all its states
sj ∈ Ai, a single bitflip is applied to every node; the attractor Aj which the
BN goes to is recorded into an adjacency matrix (cij), which, in the end, will

contain the occurrences of all transitions Ai → Aj . If we normalise every row ci,
we can interpret the resulting matrix (pij)

19 as a transition matrix20 where pij
represents the probability by which the BN goes from steady state Ai to steady
state Aj under random external noise. (pij) can be graphically represented by a
weighted directed graph. We can then define a probability threshold θ inversely
proportional to the noise level.21 If we remove all edges with weight less than
θ, we disconnect parts of the transition graphs. This allows us to define the key
concept of Threshold Ergodic Set (TES), i.e., strongly connected components in
the transition graph, which in our model represent a cell type. As we gradually
increase the threshold from 0—when we have only one TES, i.e., a totipotent
cell—more TESs start to appear; in particular, TESs with lower θ subdivide
into TESs with higher θ. Increased cell differentiation is thus tied to changes in
the threshold theta (and therefore in the noise level). This hierarchy of TESs
can be represented by a tree.

It is of practical importance finding BNs whose hierarchy of TESs correspond
to differentiation diagrams of real cells. From an experimental point of view,
this is a challenging problem for two main reasons. First of all, its simulation
is far from trivial: one has to sample a BN’s attractor landscape, perturb the
attractors and recursively construct a transition graph. Secondly, and perhaps
more importantly, it is extremely difficult to define a suitable objective function,
mostly because it is hard to translate in a formula such complex requirements
on (hierarchies of) TESs. We recall that an objective function has the goal of
guiding the algorithm in its search for the best solution; if an objective function
creates a search space topology with large plateaus or a uncorrelated landscape,
the search algorithm is not effective.

Section 9.6 showed that it is possible to train a Boolean network classifier.

19Such matrix is called right stochastic matrix.
20Notice the analogy with Markov Chains with finite state spaces.
21Intuitively, the rarer a transition the higher the noise level needed to trigger it.

CONCLUSIONS 159

In this respect, we aim to continue the investigation of the capabilities of BNs
al learning systems by tackling different classification problems.

160 CONCLUSIONS

Appendices

161

Appendix A

Applications of MSG

Framework to Routing

Problems

In this chapter we present the results attained by our MSG technique de-
scribed in Chapter 4. We apply an MSG algorithm to two hard combinatorial
graph-related problems, namely, the Capacitated Vehicle Routing Problem (Sec-
tion A.1) and the Capacitated Minimum Spanning Tree (Section A.2). Material
in both sections is taken from [14].

A.1 MSG for the Capacitated Vehicle Routing

Problem

As a first non-biological case study, we show the development of a MSG algo-
rithm for the Capacitated Vehicle Routing Problem (CVRP). This problem is
highly relevant in operations research and logistics and it is known to be a hard
combinatorial optimization problem [15].

A graph G(V,E) is given, where V is the vertex set and E is the edge set. The
vertex 0 is the depot, such as the special vertex in which an unlimited number
of vehicles of capacity Q are located. The vertices V \ {0} are the customers
and with demands qi, i ∈ V \ {0}. Each customer has to be visited exactly
once. A routing cost cij ≥ 0 is associated to each edge (i, j) ∈ E. We define
a route, as the tour a vehicle performs starting from the depot and servicing a
set of customers. A route is feasible if the sum of the customer demands does
not exceed the vehicle capacity Q. The CVRP consists of determining a set of
feasible routes with minimum total routing cost, in which the demand of each
customer is satisfied.

Our master-slave algorithm is a generalization of the Clarke-Wright saving
heuristic first proposed in [55] and further refined in [169]. The main components
of a Clarke-Wright heuristic are a list of pairs of customers, called merge list,
and a deterministic constructive procedure which, starting from an infeasible
disaggregated solution made of one route for each client node, iteratively picks
the first pair of customers from the list and possibly merges two routes if some

163

164 APPENDIX A. APPLICATIONS OF MSG TO ROUTING PROBLEMS

feasibility conditions are satisfied. The key idea is thus to order the saving
list according to a heuristic function, called saving function, on the pairs of
customers. The saving function is crucial because it determines the ordering of
the elements in the merge list.

It is easy now to recognize the main ingredients for a master-slave algorithm.
From this perspective, a merge list is but an input to a deterministic slave
procedure which returns a set of routes.

In [169] has been proposed a saving function which takes into account three
different components weighted by three coefficients whose values are taken in
the cube [0, 2]3. An good, but possibly not optimal, configuration has been
found through repeated evaluation of the algorithm. In a similar vein, our
MSG takes a population of merge lists and, by exploiting the adaptive search
of genetic algorithms, iteration after iteration produces “better” merge lists. Of
course, in this context, “better” means “merge lists with higher fitness”, that is,
merge lists that, when provided as inputs to the slave procedure, return low-cost
solutions.

A.1.1 Proposed algorithm and evaluation

In this section we describe the best MSG algorithm instance for the CVRP,
labelled Split.200.9.25%, out of the 36 possible variants studied in [14] after
extensive parameter tuning.

Following the guideline outlined in 4.3.2, we describe the characteristics of
Split.200.9.25% starting with chromosome structure. In this algorithm an indi-
vidual should represent the ordering of the merge list, therefore, a chromosome
is structurally a permutation of indices. By applying a chromosome/permuta-
tion to a reference merge list, computed once at the beginning of the algorithm
and kept constant throughout the search, we obtain an ordered merge list to be
fed to the slave. The reference merge list is ordered using the saving function
proposed in [55]. The initial population is composed by 10% identical permu-
tations and 90% random permutations in order to provide adequate diversifi-
cation in the population and guarantee that a fraction of initial chromosomes
has good fitness. Population has constant size of 200 individuals and every it-
eration an offspring of 200 more chromosomes is generated. We implemented
an ad-hoc variation of the recombination operators for permutations described
in Section 4.3.2: crossover and mutation are performed separately on the head
of the chromosome (i.e., 25% of the whole) and on the tail (i.e., the remaining
75% of the whole). Crossover is always applied; mutation operator performs,
on average, mr = 9 swaps within head and tail. Roulette-wheel was chosen as
selection strategy and population update is steady-state.

In order to test the performance of our MSG algorithm, we considered the
same test instances as in [169], that consist of a well known benchmark set for
the CVRP. Table A.1 reports the computational results obtained on each test
set (namely A, B, P, E and CMT), by Split.200.9.25% and a randomized mul-
tistart algorithm (Multistart-cvrp). The randomized multistart algorithm
consists of a multistart implementation of the algorithm by Öncan et al. [169],
in which the parameters of the saving function are randomly selected within
the interval [0, 5]. The randomized multistart algorithm is iterated as long as
the time limit is reached. Split.200.9.25% was run 5 times considering two
time limits: 1 minute and 5 minutes for each instance, for a total runtime bud-

A.2. MSG FOR THE CAPACITATED MINIMUM SPANNING TREE 165

Table A.1: CVRP experimental results. Entries are the average percentage
deviations from the best known solutions.

5 minutes 25 minutes
Split.200.9.25% Multistart-cvrp Split.200.9.25% Multistart-cvrp

A 0.286 (0.448) 2.048 (1.150) 0.278 (0.431) 2.032 (1.160)
B 0.292 (0.659) 1.746 (1.051) 0.288 (0.660) 1.733 (1.037)
P 0.411 (0.421) 2.910 (2.290) 0.411 (0.421) 2.896 (2.288)
E 0.521 (0.625) 2.113 (1.837) 0.432 (0.620) 1.777 (1.445)
CMT 1.641 (1.498) 3.541 (2.138) 1.362 (1.246) 3.392 (2.172)
Avg. 0.630 (0.730) 2.472 (1.693) 0.554 (0.676) 2.366 (1.620)

get of 5 and 25 minutes respectively. In order to provide a fair comparison,
Multistart-cvrp was allotted the same time limits, i.e., 5 and 25 minutes.

Although the multistart algorithm does not represent the state-of-the-art,
this comparison is useful to empirically measure the effectiveness and contri-
bution of the master algorithm to the search. This comparison assesses the
effectiveness of the genetic learning mechanism with respect to a randomized
search. Results show that MSG effectively enhances a saving heuristic better
than a randomized search and that the solutions returned are closer to the best
known results. For each algorithm and computing time, the first column in
the table (denoted by the name of the adopted algorithm) report the average
percentage deviation with respect to the best known solution values in the lit-
erature. The second column reports in parenthesis the standard deviation. The
last line of the table reports the column averages.

A.2 MSG for the Capacitated Minimum Span-

ning Tree

The second non biological problem studied, the Capacitated Minimum Spanning
Tree (CMSTP) [172], is closely related to the CVRP both in its definition and
its resolution strategy. Let us consider an undirected graph G = (V,E), where
V = {0, . . . , n} is the vertex set and E = {(i, j) | i, j ∈ V } is the edge set.
Vertex 0 is the root, whereas the remaining vertices i ∈ V \ {0} have a non
negative demands di. Each edge (i, j) ∈ E is associated with a non-negative
cost cij and the edges incident with the root are called gates. The CMSTP calls
for the determination of a minimum cost spanning tree such that the demand
served on each subtree linked to the root through a gate does not exceed a given
maximum capacity Q.

Likewise the CVRP, a constructive heuristic is available. The Esau-Williams
algorithm (EW) is the first method proposed in the literature to solve the CM-
STP and it is a constructive saving-based heuristic essentially identical to the
well-known Clarke and Wright algorithm mentioned in Section A.1: both algo-
rithms, in fact, receive as input an merge list ordered according some saving
function. The only difference between the two is the definition of merge action,
since the CMSTP requires to build a set of trees and not cycles.

166 APPENDIX A. APPLICATIONS OF MSG TO ROUTING PROBLEMS

A.2.1 Proposed algorithm and evaluation

The proposed algorithm belongs to the same family of MSG as Split.200.9.25%.
Like in the previous case, we describe only the best MSG algorithm configura-
tion, obtained after comparing 36 algorithm instances (see [14] for a statistical
proof), which we call Params.200.9.3. The algorithm is remarkably similar to
the one described in Section A.1.1 with some differences outlined in the follow-
ing. Chromosome structure is again a permutation of indices, but we implement
the permutation-specific recombination operators described in Section 4.3.2 in-
stead of custom variants as we did for the CVRP. Crossover probability is 1.0
and mutation rate is 9.

The biggest difference is the population initialization method. Instead of
generating random permutations, we rely on an effective heuristic to generate
orderings of the reference merge list. We consider the three-parameter saving
function by Öncan et al. [168]: for every initial chromosome, we randomly
choose a triplet of parameter in the cube [0, 3]3 and compute the saving values
of each merge in the merge list; afterwards we sort the merge list according the
saving value; finally, by comparing the sorted merge list to the reference one,
we obtain a permutation of indices which is our initial chromosome. Population
size is again constantly set to 200. Each generation 200 new individual are
generated.

Algorithm evaluation was carried out on the same set of instances as in [168],
namely tc40, te40, tc80, te80, cm50, cm100 and cm200, where the number
denotes maximum capacity Q and the letters denote topological properties of
instance graphs. Params.200.9.3 is compared once again to a random multistart
implementation, Multistart-cmst, which repeatedly runs the heuristic by
Öncan [168], each time with random parameters uniformly sampled in the cube
[0, 5]3. Params.200.9.3 was run 5 times each instance against two time limits of
1 and 5 minutes; totally, it spent 5, or 25, minutes on each instance. In order to
provide fair evaluation, Multistart-cmst was executed for 5 and 25 minutes
per instance. Table A.2 reports the average percentage deviations from the best
known solutions (in parentheses) and the average standard deviations across all
instance sets. Moreover, the last line of the table displays the column averages.

A.3 Conclusions and discussion

We have presented a master-slave approach to three different hard combinato-
rial problems: Haplotype Inference by Maximum Parsimony, Capacitated Ve-
hicle Routing and Capacitated Minimum Spanning Tree problems. The master
searches in the space of parameters used by the slave to build a solution. We have
implemented the master as a genetic algorithm and the slave as an adaptation
of a deterministic constructive procedure readily available from the literature.
Results show that the approach is very efficient and reaches a good balance
between solution quality and running time.

The approach is general and the algorithm can be extended in several di-
rections. First of all, different procedures for implementing the slave can be
adopted, especially stochastic ones, even though they require a more complex
solution quality estimation. Besides extending the slave, also the algorithm
implemented by the master can be changed. For example, other population-

A.3. CONCLUSIONS AND DISCUSSION 167

Table A.2: CMSTP computational results. Parenthesised entries are the average
percentage deviations from the best known solutions.

5 minutes 25 minutes
Params.200.9.3 Multistart-cmst Params.200.9.3 Multistart-cmst

tc40Q3 0.105 (0.151) 1.384 (0.614) 0.028 (0.056) 1.384 (0.614)
tc40Q5 0.643 (0.464) 1.527 (0.271) 0.643 (0.464) 1.527 (0.271)
tc40Q10 0.000 (0.000) 0.320 (0.640) 0.000 (0.000) 0.320 (0.640)
tc80Q5 3.381 (0.808) 4.164 (0.855) 2.667 (0.852) 4.001 (0.610)
tc80Q10 1.963 (0.999) 2.959 (0.919) 1.387 (0.884) 2.890 (0.836)
tc80Q20 0.710 (0.620) 0.766 (0.969) 0.71 (0.620) 0.766 (0.969)
te40Q3 -0.036 (0.072) 0.780 (0.516) -0.036 (0.072) 0.780 (0.516)
te40Q5 0.318 (0.399) 2.354 (0.755) 0.217 (0.434) 2.354 (0.755)
te40Q10 0.584 (0.657) 2.628 (1.709) 0.584 (0.657) 2.628 (1.709)
te80Q5 0.771 (0.400) 1.303 (0.564) 0.544 (0.371) 1.248 (0.544)
te80Q10 2.578 (0.501) 3.764 (0.825) 2.161 (0.229) 3.715 (0.864)
te80Q20 1.093 (1.224) 3.711 (2.418) 0.790 (1.116) 3.549 (2.356)
cm50Q200 0.567 (0.633) 1.819 (1.272) 0.546 (0.650) 1.819 (1.272)
cm50Q400 1.271 (0.835) 2.862 (0.888) 1.138 (0.778) 2.862 (0.888)
cm50Q800 1.883 (0.903) 2.997 (1.510) 1.605 (0.840) 2.997 (1.510)
cm100Q200 14.888 (1.814) 20.043 (2.424) 11.918 (1.764) 19.438 (3.068)
cm100Q400 6.017 (1.291) 8.908 (1.744) 5.297 (1.315) 7.649 (0.806)
cm100Q800 1.101 (0.480) 1.977 (1.170) 0.986 (0.522) 1.759 (0.868)
cm200Q200 27.005 (2.485) 25.441 (3.056) 22.36 (1.675) 24.863 (2.716)
cm200Q400 20.475 (4.415) 21.281 (4.272) 15.173 (3.454) 19.062 (3.803)
cm200Q800 8.837 (2.573) 8.453 (3.450) 4.756 (1.758) 7.274 (2.769)

Avg. 4.484 (1.034) 5.688 (1.469) 3.499 (0.881) 5.375 (1.352)

168 APPENDIX A. APPLICATIONS OF MSG TO ROUTING PROBLEMS

based metaheuristics can be chosen, such as Ant colony optimization [65] or
also stochastic local search techniques [110] can be tested. Furthermore, the
approach could also be improved by adding a mechanism such as the one used
in Benders decomposition techniques [109], in which the slave return the master
a set of constraints to reduce the search space.

Bibliography

[1] Adcock, S. (2011). GAUL: Genetic algorithm utility library. http://gaul.
sourceforge.net/. Viewed: November 2011.

[2] Ahuja, R., Ergun, Ö., Orlin, J., and Punnen, A. (2002). A survey of very
large-scale neighborhood search techniques. Discrete Applied Mathematics,
123:75–102.

[3] Albert, I., Thakar, J., Li, S., Zhang, R., and Albert, R. (2008). Boolean
network simulations for life scientists. Source Code for Biology and Medicine,
3(1):16.

[4] Aldana, M., Balleza, E., Kauffman, S., and Resendiz, O. (2007). Robust-
ness and evolvability in genetic regulatory networks. Journal of Theoretical
Biology, 245:433–448.

[5] Aldana, M., Coppersmith, S., and Kadanoff, L. (2003). Boolean dynamics
with random couplings. In Kaplan, E., Marsden, J., and Sreenivasan, K.,
editors, Perspectives and Problems in Nonlinear Science. A celebratory vol-
ume in honor of Lawrence Sirovich, Springer Applied Mathematical Sciences
Series, pages 23–90. Springer, Heidelberg, Germany.

[6] Ansaloni, L., Villani, M., and Serra, R. (2009). Dynamical critical systems
for information processing: a preliminary study. In [229].

[7] Applegate, D. and Cook, W. (1991). A computational study of the job-shop
scheduling problem. ORSA Journal on Computing, 3(2):149–156.

[8] Bafna, V. and Bansal, V. (2004). The number of recombination events in a
sample history: Conflict graph and lower bounds. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 1:78–90.

[9] Balleza, E., Alvarez-Buylla, E., Chaos, A., Kauffman, S., Shmulevich, I.,
and Aldana, M. (2008a). Critical dynamics in genetic regulatory networks:
Examples from four kingdoms. PLoS ONE, 3(6):e2456.

[10] Balleza, E., Alvarez-Buylla, E., Chaos, A., Kauffman, S., Shmulevich, I.,
and Aldana, M. (2008b). Critical dynamics in genetic regulatory networks:
Examples from four kingdoms. PLoS ONE, 3(6):e2456.

[11] Bar–Yam, Y. (1997). Dynamics of Complex Systems. Studies in nonlinear-
ity. Addison–Wesley, Reading, MA.

169

http://gaul.sourceforge.net/
http://gaul.sourceforge.net/

170 BIBLIOGRAPHY

[12] Barbieri, A., Villani, M., Serra, R., Kauffman, S., and Colacci, A. (2009).
Extended notion of attractors in noisy random Boolean networks. In [229].

[13] Bastolla, U. and Parisi, G. (1996). Closing probabilities in the Kauffman
model: An annealed computation. Physica D, 98:1–25.

[14] Battarra, M., Benedettini, S., and Roli, A. (2011). Leveraging saving-based
algorithms by master-slave genetic algorithms. Engineering Applications of
Artificial Intelligence, 24:555–566.

[15] Battarra, M., Golden, B., and Vigo, D. (2008). Tuning a parametric Clarke–
Wright heuristic via a genetic algorithm. Journal of the Operations Research
Society, 59:1568–1572.

[16] Benedettini, S. (2011a). The Boolean Network Toolkit. Available at:
http://booleannetwork.sourceforge.net. Viewed: November 2011.

[17] Benedettini, S. (2011b). EasyGenetic. Viewed: 11-Nov-2011.

[18] Benedettini, S., Blum, C., and Roli, A. (2010). A randomized iterated
greedy algorithm for the founder sequence reconstruction problem. In Blum,
C. and Battiti, R., editors, Proceedings of the Fourth Learning and Intelli-
gent OptimizatioN Conference – LION 4, volume 6073 of Lecture Notes in
Computer Science, pages 37–51. Springer, Heidelberg, Germany.

[19] Benedettini, S., Di Gaspero, L., and Roli, A. (2008a). Towards a highly
scalable hybrid metaheuristic for haplotype inference under parsimony. Hy-
brid Intelligent Systems, International Conference on, pages 702–707.

[20] Benedettini, S., Di Gaspero, L., and Roli, A. (2009a). Genetic master-slave
algorithm for haplotype inference by parsimony. Technical Report DEIS-LIA-
09-003, University of Bologna (Italy). LIA Series no. 93.

[21] Benedettini, S., Roli, A., and Di Gaspero, L. (2009b). EasyGenetic: A
template metaprogramming framework for genetic master-slave algorithms.
In Stützle, T., Birattari, M., and Hoos, H., editors, Engineering Stochastic
Local Search Algorithms. Designing, Implementing and Analyzing Effective
Heuristics, volume 5752 of Lecture Notes in Computer Science, pages 135–
139. Springer Berlin / Heidelberg.

[22] Benedettini, S., Roli, A., and Di Gaspero, L. (2009c). Easygenetic: A
template metaprogramming framework for genetic master-slave algorithms.
Technical Report DEIS-LIA-09-005, University of Bologna (Italy). LIA Series
no. 95.

[23] Benedettini, S., Roli, A., and Gaspero, L. (2008b). Two-level ACO for hap-
lotype inference under pure parsimony. In Proceedings of the 6th international
conference on Ant Colony Optimization and Swarm Intelligence, ANTS ’08,
pages 179–190. Springer Berlin / Heidelberg.

[24] Benedettini, S., Roli, A., Serra, R., and Villani, M. (2011). Stochastic lo-
cal search to automatically design Boolean networks with maximally distant
attractors. In Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A.,
Esparcia-Alcázar, A., Merelo, J., Neri, F., Preuss, M., Richter, H., Togelius,

http://booleannetwork.sourceforge.net

BIBLIOGRAPHY 171

J., and Yannakakis, G., editors, Applications of Evolutionary Computation,
Lecture Notes in Computer Science, pages 22–31. Springer, Heidelberg, Ger-
many.

[25] Bernasconi, A. and Codenotti, B. (1993). Sensitivity of Boolean functions,
harmonic analysis, and circuit complexity. Technical report, International
Computer Science Institute, Berkley, CA.

[26] Bertolazzi, P., Godi, A., Labbé, M., and Tininini, L. (2008). Solving hap-
lotyping inference parsimony problem using a new basic polynomial formula-
tion. Comput. Math. Appl., 55(5):900–911.

[27] Birattari, M. (2009). Tuning Metaheuristics: A Machine Learning Perspec-
tive, volume 197 of Studies in Computational Intelligence. Springer, Heidel-
berg, Germany.

[28] Birattari, M., Balaprakash, P., Stützle, T., and Dorigo, M. (2008).
Estimation-based local search for stochastic combinatorial optimization us-
ing delta evaluations: A case study on the probabilistic traveling salesman
problem. INFORMS Journal on Computing, 20(4).

[29] Blin, G., Rizzi, R., Sikora, F., and Vialette, S. (2011). Minimum mosaic
inference of a set of recombinants. In Potanin, A. and Viglas, T., editors,
Proceedings of 17th Computing: the Australasian Theory Symposium – CATS
2011, CRPIT.

[30] Blum, C., Blesa, M., Roli, A., and Sampels, M., editors (2008). Hybrid
Metaheuristics: An Emerging Approach to Optimization, volume 114 of Stud-
ies in Computational Intelligence. Springer, Heidelberg, Germany.

[31] Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial opti-
mization: Overview and conceptual comparison. ACM Computing Surveys,
35(3):268–308.

[32] Blum, C.and Blesa Aguilera, M. J. and Roli, A.and Sampels, M., editors
(2008). Hybrid Metaheuristics – An Emerging Approach to Optimization,
volume 114 of Studies in Computational Intelligence. Springer.

[33] bnsim (2011). BNSim. http://code.google.com/p/bnsim/. Viewed:
November 2011.

[34] Bongard, J. C. (2011). Spontaneous evolution of structural modularity in
robot neural network controllers. In Proceedings of the 13th annual conference
on Genetic and evolutionary computation, GECCO ’11, pages 251–258, New
York, NY, USA. ACM.

[35] boost (2011). Boost C++ libraries. http://www.boost.org/. Viewed:
November 2011.

[36] Brent, R. P. (1980). An improved monte carlo factorization algorithm. BIT
Numerical Mathematics, 20:176–184.

http://code.google.com/p/bnsim/
http://www.boost.org/

172 BIBLIOGRAPHY

[37] Brown, D. and Harrower, I. (2004). A new integer programming formulation
for the pure parsimony problem in haplotype analysis. In Jonassen, I. and
Kim, J., editors, Algorithms in Bioinformatics, volume 3240 of Lecture Notes
in Computer Science, pages 254–265. Springer Berlin / Heidelberg.

[38] Brown, D. G. and Harrower, I. M. (2006). Integer programming approaches
to haplotype inference by pure parsimony. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 3(2):141–154.

[39] Browning, B. L. and Browning, S. R. (2009). A unified approach to geno-
type imputation and haplotype-phase inference for large data sets of trios and
unrelated individuals. The American Journal of Human Genetics, 84(2):210–
223.

[40] Browning, S. R. and Browning, B. L. (2011). Haplotype phasing: existing
methods and new developments. Nature Reviews Genetics, 12(10):703–714.

[41] Cahon, S., Melab, N., and Talbi, E.-G. (2004). ParadisEO: A framework
for the reusable design of parallel and distributed metaheuristics. Journal of
Heuristics, 10(3):357–380.

[42] Carchrae, T. and Beck, J. (2005). Applying machine learning to low-
knowledge control of optimization algorithms. Computational Intelligence,
21(4):372–387.

[43] Caseau, Y. and Laburthe, F. (1999). Effective forget-and-extend heuristics
for scheduling problems. In Focacci, F., Lodi, A., Milano, M., and Vigo, D.,
editors, Electronic Proceedings of the Int. Workshop on Integration of AI and
OR techniques in Constraint Programming for Combinatorial Optimization
Problems – CPAIOR 1999.

[44] Catanzaro, D., Godi, A., and Labbé, M. (2010). A class representative
model for pure parsimony haplotyping. INFORMS Journal on Computing,
22:195–209.

[45] Catanzaro, D. and Labbé, M. (2009). The pure parsimony haplotyping
problem: overview and computational advances. International Transactions
in Operational Research, 16(5):561–584.

[46] Chambers, J. (1983). Graphical Methods for Data Analysis. Springer,
Berlin, Germany.

[47] Chambers, J., Cleveland, W., Kleiner, B., and Tukey, P. (1983). Graphical
Methods for Data Analysis. Wadsworth & Brooks/Cole.

[48] Chambers, J. M. and Cleveland, W.S. and Kleiner, B. and Tukey, P.A.
(1983). Graphical Methods for Data Analysis. Chapman and Hall, New York.

[49] Chau, K. W. (2004). A two-stage dynamic model on allocation of construc-
tion facilities with genetic algorithm. Automation in Construction, 13:481–
490.

[50] Cheng, D. and Qi, H. (2009). Controllability and observability of boolean
control networks. Automatica, 45(7):1659–1667.

BIBLIOGRAPHY 173

[51] Cheng, D., Qi, H., and Li, Z. (2011). Analysis and Control of Boolean
Networks: A Semi-tensor Product Approach. Communications and Control
Engineering. Springer.

[52] Chiarandini, M., Dumitrescu, I., and Stützle, T. (2008). Very large-scale
neighborhood search: Overview and case studies on coloring problems. In
[30], pages 117–150.

[53] Chiarandini, M. and Stützle, T. (2002). An application of iterated local
search to graph coloring problem. In Johnson, D. S., Mehrotra, A., and Trick,
M., editors, Proceedings of the Computational Symposium on Graph Coloring
and its Generalizations, pages 112–125.

[54] Clark, A. G. (1990). Inference of haplotypes from PCR-amplified samples
of diploid populations. Molecular Biology and Evolution, 7:111–122.

[55] Clarke, G. and Wright, J. W. (1964). Scheduling of Vehicles from a Central
Depot to a Number of Delivery Points. Operations Research, 12:568–581.

[56] Climer, S., Jäger, G., Templeton, A. R., and Zhang, W. (2009). How frugal
is mother nature with haplotypes? Bioinformatics, 25(1):68–74.

[57] Conover, W. (1999). Practical Nonparametric Statistics. John Wiley &
Sons, Hoboken, NJ, USA, 3rd edition.

[58] Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J., and Lander, E. S.
(2001). High-resolution haplotype structure in the human genome. Nature
Genetics, 29:229–232.

[59] Derrida, B. and Pomeau, Y. (1986). Random networks of automata: a
simple annealed approximation. Europhysics Letters, 1(2):45–49.

[60] Di Gaspero, L. and Roli, A. (2008). Stochastic local search for large-scale
instances of the haplotype inference problem by pure parsimony. Journal of
Algorithms: Algorithms in Logic, Informatics and Cognition, 63(1–3):55–69.

[61] Di Gaspero, L. and Roli, A. (2009). Flexible stochastic local search for hap-
lotype inference. In Selman, B., Battiti, R., and Stützle, T., editors, Learning
and Intelligent Optimization - Third International Conference, LION 2009,
volume 5851 of Lecture Notes in Computer Science, pages 74–88. Springer
Berlin / Heidelberg.

[62] Di Gaspero, L. and Schaerf, A. (2003). EasyLocal++: An object-
oriented framework for flexible design of local search algorithms. Software:
Practice and Experience, 33(8):733–765.

[63] Doman, C. (2008). Boolean Network Modeler. http://www.rustyspigot.
com/software/BooleanNetwork/. Viewed: November 2011.

[64] Dorigo, M. (1994). Learning by probabilistic Boolean networks. In Proceed-
ings of World Congress on Computational Intelligence – IEEE International
Conference on Neural Networks, pages 887–891, Orlando, Florida.

[65] Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. MIT Press,
Cambridge, MA, USA.

http://www.rustyspigot.com/software/BooleanNetwork/
http://www.rustyspigot.com/software/BooleanNetwork/

174 BIBLIOGRAPHY

[66] Drossel, B. (2005). Number of attractors in random Boolean networks.
Physcal Review E, 72:016110.

[67] ducktype (2011). Duck typing Wikipedia page. Viewed: 11-Nov-2011.

[68] EClab (2011). Viewed: 11-Nov-2011.

[69] Eén, N. and Sörensson, N. (2006). Translating pseudo-boolean constraints
into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2:1–
26.

[70] El-Araby, E. E., Yorino, N., and Sasaki, H. (2003). A two level hybrid
ga/slp for facts allocation problem considering voltage security. International
Journal of Electrical Power & Energy Systems, 25:327–335.

[71] El-Mabrouk, N. and Labuda, D. (2004). Haplotypes histories as pathways
of recombinations. Bioinformatics, 20(12):1836–1841.

[72] Erdem, E. and Türe, F. (2008). Efficient haplotype inference with answer
set programming. In AAAI’08: Proceedings of the 23rd national conference
on Artificial intelligence, pages 436–441. AAAI Press.

[73] Eronen, L., Geerts, F., and Toivonen, H. (2004). A markov chain approach
to reconstruction of long haplotypes. In Pacific Symposium on Biocomputing.
World Scientific, pages 104–115.

[74] Eronen, L., Geerts, F., and Toivonen, H. (2006). Haplorec: efficient
and accurate large-scale reconstruction of haplotypes. BMC Bioinformatics,
7(1):542.

[75] Esau, L. R. and Williams, K. C. (1966). On teleprocessing system design.
IBM Systems Journal, 5:142–147.

[76] Esmaeili, A. and Jacob, C. (2008). Evolution of discrete gene regulatory
models. In Keijzer, M., editor, Proceedings of GECCO’08 – Genetic and
Evolutionary Computation Conference, pages 307–314, Atlanta, GA.

[77] Espinosa-Soto, C. and Wagner, A. (2010). Specialization can drive the
evolution of modularity. PLoS Comput Biol, 6(3):e1000719+.

[78] Fates, N. (2011). Stochastic cellular automata solve the density classifica-
tion problem with an arbitrary precision. In Proceedings of the Symposium
on Theoretical Aspects of Computer Science – STACS 2011, Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 284–295.

[79] Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathe-
matical Journal, 23(2):298–305.

[80] Fretter, C. and Drossel, B. (2008). Response of Boolean networks to per-
turbations. European Physical Journal B, 62:365–371.

[81] Fretter, C., Szejka, A., and Drossel, B. (2009). Perturbation propaga-
tion in random and evolved Boolean networks. New Journal of Physics,
11(3):033005:1–13.

BIBLIOGRAPHY 175

[82] Freund, Y. and Schapire, R. (1997). A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1):119–139.

[83] Frigge, M., Hoaglin, D., and Iglewicz, B. (1989a). Some implementations
of the boxplot. The American Statistician, 43(1):50–54.

[84] Frigge, M., Hoaglin, D., and Iglewicz, B. (1989b). Some implementations
of the boxplot. The American Statistician, 43(1):50–54.

[85] Gamma, E., Johnson, R., Helm, R., and Vlissides, J. (1994). Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

[86] Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA.

[87] Georgopoulou, C. A. and Giannakoglou, K. C. (2009). Two-level, two-
objective evolutionary algorithms for solving unit commitment problems. Ap-
plied Energy, 86:1229–1239.

[88] Gershenson, C. (2004). Introduction to random Boolean networks. In Be-
dau, M., Husbands, P., Hutton, T., Kumar, S., and Suzuki, H., editors, Work-
shop and Tutorial Proceedings, Ninth International Conference on the Sim-
ulation and Synthesis of Living Systems (ALife IX), pages 160–173, Boston,
MA.

[89] Gershenson, C. (2011). RBNLab. http://sourceforge.net/projects/

rbn/. Viewed: November 2011.

[90] Glass, L. and Hill, C. (1998). Ordered and disordered dynamics in random
networks. Europhysics Letters, 41(6):599–604.

[91] Glover, F. W. and Laguna, M. (1997). Tabu Search. Kluwer Academic
Publishers, Norwell, MA, USA.

[92] Goldberg, D. (1989). Genetic algorithms in search, optimization and ma-
chine learning. Addison–Wesley, Reading, MA.

[93] Graça, A., Lynce, I., Marques-Silva, J. a., and Oliveira, A. L. (2010). Hap-
lotype Inference by Pure Parsimony: A Survey. Journal of Computational
Biology, 17(8):969–992.

[94] Graça, A., Marques-Silva, J., Lynce, I., and Oliveira, A. L. (2007). Ef-
ficient haplotype inference with pseudo-boolean optimization. In Anai, H.,
Horimoto, K., and Kutsia, T., editors, Algebraic Biology, Second Interna-
tional Conference, AB 2007, Castle of Hagenberg, Austria, July 2-4, 2007,
Proceedings, volume 4545 of Lecture Notes in Computer Science, pages 125–
139. Springer Berlin / Heidelberg, Berlin-Heidelberg, Germany.

[95] Graça, A., Marques-Silva, J., Lynce, I., and Oliveira, A. L. (2011). Hap-
lotype inference with pseudo-boolean optimization. Annals of Operations
Research, 184:137–162.

http://sourceforge.net/projects/rbn/
http://sourceforge.net/projects/rbn/

176 BIBLIOGRAPHY

[96] Graça, A., Marques-Silva, J. a., Lynce, I., and Oliveira, A. L. (2008). Effi-
cient haplotype inference with combined cp and or techniques. In Perron, L.
and Trick, M., editors, Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, volume 5015 of Lec-
ture Notes in Computer Science, pages 308–312. Springer Berlin / Heidelberg.

[97] Graudenzi, A. and Serra, R. (2008). A new model of genetic network: the
gene protein boolean network. In Serra, R., Villani, M., and Poli, I., editors,
Artificial life and evolutionary computation – Proceedings of WIVACE 2008,
pages 283–291. World Scientific Publishing, Singapore.

[98] Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Dos Reis, G., and Lumsdaine,
A. (2006). Concepts: linguistic support for generic programming in c++.
SIGPLAN Not., 41:291–310.

[99] Guerri, A. and Milano, M. (2004). Learning techniques for automatic al-
gorithm portfolio selection. In Proceedings of the 16th Eureopean Conference
on Artificial Intelligence, (ECAI 2004), pages 475–479. IOS Press.

[100] Gusev, A., Pasaniuc, B., and Mandoiu, I. (2008). Highly scalable geno-
type phasing by entropy minimization. IEEE/ACM Trans. on Computational
Biology and Bioinformatics, 5(2):252–261.

[101] Gusfield, D. (2001). Inference of haplotypes from sample diploid popula-
tions: complexity and algorithms. Journal of Computational Biology, 8:305–
323.

[102] Gusfield, D. (2003). Haplotype inference by pure parsimony. In Baeza-
Yates, R. A., Chávez, E., and Crochemore, M., editors, Combinatorial Pattern
Matching (CPM 2003), Proceedings of the 14th Annual Symposium, volume
2676 of Lecture Notes in Computer Science, pages 144–155, Berlin-Heidelberg,
Germany. Springer Berlin / Heidelberg.

[103] Halldórsson, B., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., and
Istrail, S. (2004). A survey of computational methods for determining haplo-
types. In Lecture Notes in Computer Science (2983): Computational Methods
for SNPs and Haplotype Inference, pages 26–47. Springer.

[104] Halldórsson, B. V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S.,
and Istrail, S. (2002). A survey of computational methods for determining
haplotypes. In Istrail, S., Waterman, M. S., and Clark, A. G., editors, Com-
putational Methods for SNPs and Haplotype Inference, volume 2983 of Lec-
ture Notes in Computer Science, pages 26–47, Berlin-Heidelberg, Germany.
Springer Berlin / Heidelberg.

[105] Halperin, E. and Karp, R. M. (2005). The minimum-entropy set cover
problem. Theoretical Computer Science, 348:240–250.

[106] Hansen, P. and Mladenović, N. (2001). Variable neighborhood search:
Principles and applications. European Journal of Operational Research,
130:449–467.

BIBLIOGRAPHY 177

[107] Heckel, R., Schober, S., and Bossert, M. (2010). On random boolean
threshold networks. In Source and Channel Coding (SCC), 2010 International
ITG Conference on, pages 1–6.

[108] Holland, J. (1975). Adaption in natural and artificial systems. The Uni-
versity of Michigan Press, Ann Harbor, MI.

[109] Hooker, J. (2007). Integrated Methods for Optimization. Operations Re-
search & Management Science. Springer.

[110] Hoos, H. and Stützle, T. (2005). Stochastic Local Search Foundations and
Applications. Morgan Kaufmann Publishers, San Francisco, CA (USA).

[111] Hoos, H. H. (2009). Programming by optimisation: Computer-aided de-
sign of high-performance algorithms.

[112] Hordijk, W. (1996). A measure of landscapes. Evolutionary Computation,
4:335–360.

[113] Huang, S. and Ingber, D. (2006,2007). A non-genetic basis for cancer
progression and metastasis: Self-organizing attractors in cell regulatory net-
works. Breast Disease, 26:27–54.

[114] Huang, Y. T., Chao, K. M., and Chen, T. (2005). An approximation
algorithm for haplotype inference by maximum parsimony. Journal of Com-
putational Biology, 12(10):1261–1274.

[115] Hudson, R. (2002). Generating samples under a Wright-Fisher neutral
model of genetic variation. Bioinformatics, 18:337–338.

[116] Hudson, R. and Kaplan, N. (1985). Statistical properties of the number of
recombination events in the history of a sample of dna sequences. Genetics,
111:147–164.

[117] Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2010). Automated con-
figuration of mixed integer programming solvers. In Lodi, A., Milano, M.,
and Toth, P., editors, CPAIOR, volume 6140 of Lecture Notes in Computer
Science, pages 186–202. Springer.

[118] Hutter, F., Hoos, H. H., Leyton-Brown, K., and Sẗtzle, T. (2009).
ParamILS: An automatic algorithm configuration framework. J. Artif. In-
tell. Res. (JAIR), 36:267–306.

[119] Iliadis, A., Watkinson, J., Anastassiou, D., and Wang, X. (2010). A
haplotype inference algorithm for trios based on deterministic sampling. BMC
Genetics, 11(1):78.

[120] Istvan, A. (2011). BooleanNet. http://code.google.com/p/

booleannet/. Viewed: November 2011.

[121] Jager, G., Climer, S., and Zhang, W. (2009). Complete parsimony hap-
lotype inference problem and algorithms. volume 5757 of Lecture Notes in
Computer Science, pages 337–348. Springer Berlin / Heidelberg.

http://code.google.com/p/booleannet/
http://code.google.com/p/booleannet/

178 BIBLIOGRAPHY

[122] Jain, A., Murty, M., and Flynn, P. (1999). Data clustering: A review.
ACM Computing Surveys, 31(3):264–323.

[123] Kaneko, K. (2006). Life: An Introduction to Complex System Biology.
Springer, Berlin, Germany.

[124] Kappler, K., Edwards, R., and Glass, L. (2003). Dynamics in high-
dimensional model gene networks. Signal Processing, 83:789–798.

[125] Kauffman, S. (1969). Metabolic stability and epigenesis in randomly con-
structed genetic nets. Journal of Theoretical Biology, 22:437–467.

[126] Kauffman, S. (1986). Adaptive automata based on Darwinian selection.
Physica D, 22:68–82.

[127] Kauffman, S. (1993). The Origins of Order: Self-Organization and Selec-
tion in Evolution. Oxford University Press, UK.

[128] Kauffman, S. (2004). A proposal for using the ensemble approach to under-
stand genetic regulatory networks. Journal of Theoretical Biology, 230:581–
590.

[129] Kesseli, J., Rämö, P., and Yli-Harja, O. (2005). On spectral techniques
in analysis of Boolean networks. Physica D: Nonlinear Phenomena, 206(1-
2):49–61.

[130] Khajavirad, A., Michalek, J., and Simpson, T. (2009). An efficient decom-
posed multiobjective genetic algorithm for solving the joint product platform
selection and product family design problem with generalized commonality.
Structural and Multidisciplinary Optimization, 39:187–201.

[131] Kimmel, G. and Shamir, R. (2005). A block-free hidden markov model for
genotypes and its application to disease association. Journal of Computational
Biology, 12:1243–1260.

[132] Kirkpartick, S., Gelatt, C., and Vecchi, M. (1983). Optimization by sim-
ulated annealing. Science, 220(4598):671–680.

[133] Knuth, D. (1998). The Art Of Computer Programming, Volume 2:
Seminumerical Algorithms, 3/E. Pearson Education.

[134] Koza, J. R. (1992). Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection (Complex Adaptive Systems). The MIT
Press, 1 edition.

[135] Krawitz, P. and Shmulevich, I. (2007). Basin entropy in Boolean network
ensembles. Phys. Rev. Lett., 98(15):158701:1–4.

[136] Lacomme, P., Prins, C., and Ramdane-Cherif, W. (2005). Evolutionary
algorithms for periodic arc routing problems. European Journal of Operational
Research, 165:535–553.

[137] Lancia, G., Pinotti, M. C., and Rizzi, R. (2004). Haplotyping populations
by pure parsimony: Complexity of exact and approximation algorithms. IN-
FORMS Journal on Computing, 16(4):348–359.

BIBLIOGRAPHY 179

[138] Land, M. and Belew, R. K. (1995). No perfect two-state cellular automata
for density classification exists. Physical Review Letters, 74(25):5148–5150.

[139] Langton, C. G. (1989). Artificial life: the proceedings of an Interdisci-
plinary Workshop on the Synthesis and Simulation of Living Systems, held
September, 1987, in Los Alamos, New Mexico. Santa Fé Institute studies in
the sciences of complexity. Addison-Wesley.

[140] Lemke, N., Mombach, J., and Bodmann, B. (2001). A numerical investi-
gation of adaptation in populations of random Boolean networks. Physica A,
301:589–600.

[141] Leyton-Brown, K., Nudelman, E., and Shoham, Y. (2006). Empirical
Hardness Models for Combinatorial Auctions, chapter 19, pages 479–504.
MIT Press, Cambridge, MA, USA.

[142] Liang, K. and Wang, X. (2008). A deterministic sequential monte carlo
method for haplotype inference. IEEE Journal of Selected Topics in Signal
Processing, 2:322–331.

[143] Liu, Y.-Y., Slotine, J.-J., and Barabasi, A.-L. (2011). Controllability of
complex networks. Nature, 473(7346):167–173.

[144] Lourenço, H., Martin, O., and Stützle, T. (2003). Iterated local search.
In Glover, F. and Kochenberger, G., editors, Handbook of Metaheuristics,
volume 57 of International Series in Operations Research & Management
Science, pages 320–353. Springer, New York, NY, New York, NY.

[145] Luque, B. and Solé, R. (2000). Lyapunov exponents in random Boolean
networks. Physica A-statistical Mechanics and Its Applications, 284:33–45.

[146] Lynce, I. and Marques-Silva, J. (2006a). Efficient haplotype inference
with boolean satisfiability. In Proceedings of the 21st National Conference on
Artificial Intelligence and the Eighteenth Innovative Applications of Artificial
Intelligence Conference, Menlo Park, CA, USA. AAAI Press.

[147] Lynce, I. and Marques-Silva, J. (2006b). SAT in bioinformatics: Making
the case with haplotype inference. In Biere, A. and Gomes, C. P., editors,
SAT, volume 4121 of Lecture Notes in Computer Science, pages 136–141.
Springer Berlin / Heidelberg.

[148] Lynce, I., Marques-Silva, J. a., and Prestwich, S. (2008). Boosting haplo-
type inference with local search. Constraints, 13:155–179.

[149] Lyngsø R. and Song, Y. (2005). Minimum recombination histories by
branch and bound. In Casadio, R. and Myers, G., editors, Proceedings of the
5th Workshop on Algorithms in Bioinformatics – WABI 2005, volume 3692
of Lecture Notes in Computer Science, pages 239–250. Springer, Heidelberg,
Germany.

[150] Manfroni, M. (2011). Towards Boolean network design for robotics appli-
cations. Master’s thesis, University of Bologna, Second Faculty of Engineer-
ing.

180 BIBLIOGRAPHY

[151] Marchini, J., Cutler, D., Patterson, N., Stephens, M., Eskin, E., Halperin,
E., Lin, S., Qin, Z. S., Munro, H. M., Abecasis, G. R., Donnelly, P., and In-
ternational HapMap Consortium (2006). A comparison of phasing algorithms
for trios and unrelated individuals. American Journal of Human Genetics,
78:437–450.

[152] Markert, E. K., Baas, N., Levine, A. J., and Vazquez, A. (2010). Higher
order Boolean networks as models of cell state dynamics. Journal of Theo-
retical Biology, 264(3):945–951.

[153] Marques-Silva, J., Lynce, I., Graça, A., and Oliveira, A. L. (2007). Ef-
ficient and tight upper bounds for haplotype inference by pure parsimony
using delayed haplotype selection. In Neves, J., Santos, M., and Machado,
J., editors, Progress in Artificial Intelligence, volume 4874 of Lecture Notes
in Computer Science, pages 621–632. Springer Berlin / Heidelberg.

[154] Mesot, B. and Teuscher, C. (2005). Deducing local rules for solving global
tasks with random Boolean networks. Physica D, 211:88–106.

[155] Meyer, B. (2008). Hybrids of constructive metaheuristics and constraint
programming: A case study with aco. In Blum, C., Aguilera, M., Roli, A.,
and Sampels, M., editors, Hybrid Metaheuristics, volume 114 of Studies in
Computational Intelligence, pages 151–183. Springer Berlin / Heidelberg.

[156] Meyer, B. and Ernst, A. (2004). Integrating ACO and constraint propaga-
tion. In Dorigo, M., Birattari, M., Blum, C., Luca, Mondada, F., and Stützle,
T., editors, Ant Colony, Optimization and Swarm Intelligence: 4th Interna-
tional Workshop, ANTS 2004, volume 3172 of Lecture Notes in Computer
Science, pages 166–177. Springer Verlag GmbH.

[157] Micha lewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolu-
tion Programs. Springer, Heidelberg, Germany.

[158] Mihaljev, T. and Drossel, B. (2009). Evolution of a population of random
Boolean networks. The European Physical Journal B - Condensed Matter and
Complex Systems, 67:259–267.

[159] Müssel, C., Hopfensitz, M., and Kestler, H. A. (2010). BoolNet–an R pack-
age for generation, reconstruction and analysis of Boolean networks. Bioin-
formatics (Oxford, England), 26(10):1378–1380.

[160] Müssel, C., Hopfensitz, M., and Kestler, H. A. (2011). Bool-
Net. http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/

boolnet/. Viewed: November 2011.

[161] Myers, S. and Griffiths, R. (2003). Bounds on the minimum number of
recombination events in a sample history. Genetics, 163(1):375–394.

[162] Neigenfind, J., Gyetvai, G., Basekow, R., Diehl, S., Achenbach, U., Geb-
hardt, C., Selbig, J., and Kersten, B. (2008). Haplotype inference from un-
phased snp data in heterozygous polyploids based on sat. BMC Genomics,
9:1–26.

http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/boolnet/
http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/boolnet/

BIBLIOGRAPHY 181

[163] Nell, C., Fawcett, C., Hoos, H. H., and Leyton-Brown, K. (2011). HAL: A
framework for the automated analysis and design of high-performance algo-
rithms. In Coello Coello, C. A., editor, LION, volume 6683 of Lecture Notes
in Computer Science, pages 600–615. Springer.

[164] Niu, T., Qin, Z. S., Xu, X., and Liu, J. S. (2002). Bayesian haplotype
inference for multiple linked single-nucleotide polymorphisms. The American
Journal of Human Genetics, 70(1):157–169.

[165] Nolfi, S. and Floreano, D. (2000). Evolutionary robotics. The MIT Press,
Cambridge, MA.

[166] Nykter, M., Price, N., Aldana, M., Ramsey, S., Kauffman, S., Hood, L.,
Yli-Harja, O., and Shmulevich, I. (2008). Gene expression dynamics in the
macrophage exhibit criticality. In Proceedings of the National Academy of
Sciences, USA, volume 105, pages 1897–1900.

[167] omp (2011). The openmp api specification for parallel programming.
Viewed: November 2011.

[168] Öncan, T. and Altınel, I. K. (2009). Parametric enhancements of the
Esau-Williams heuristic for the capacitated minimum spanning tree problem.
Journal of the Operational Research Society, 60:259–267.

[169] Öncan, T. and Altınel, K. (2005). A new enhancement of the Clarke and
Wright savings heuristic for the capacitated vehicle routing problem. Journal
of the Operational Research Society, 56:954–961.

[170] OpenMP Architecture Review Board (2008). Openmp application pro-
gram interface. Specification.

[171] Packard, N. (1988). Adaptation toward the edge of chaos. In Kelso,
J., Mandell, A., and Shlesinger, M., editors, Dynamic Patterns in Complex
Systems, pages 293–301. World Scientific, Singapore.

[172] Papadimitriou, C. (1978). The complexity of the capacitated tree problem.
Networks, 8:217–230.

[173] Patarnello, S. and Carnevali, P. (1986). Learning networks of neuron with
Boolean logic. Europhysics Letters, 4(4):503–508.

[174] Perron, L., Shaw, P., and Furnon, V. (2004). Propagation guided large
neighborhood search. In Wallace, M., editor, Principles and Practice of Con-
straint Programming – CP 2004, volume 3258 of Lecture Notes in Computer
Science, pages 468–481. Springer, Heidelberg, Germany.

[175] Rämö, P., Kesseli, J., and Yli-Harja, O. (2006). Perturbation avalanches
and criticality in gene regulatory networks. Journal of Theoretical Biology,
242(1):164–170.

[176] Rastas, P., Koivisto, M., Mannila, H., and Ukkonen, E. (2005). A hidden
markov technique for haplotype reconstruction. In WABI. Volume 3692 of
Lecture Notes in Computer Science, pages 140–151. Springer.

182 BIBLIOGRAPHY

[177] Rastas, P., Kollin, J., and Koivisto, M. (2008). Fast bayesian haplotype
inference via context tree weighting. In Proceedings of the 8th international
workshop on Algorithms in Bioinformatics, WABI ’08, pages 259–270, Berlin,
Heidelberg. Springer Berlin / Heidelberg.

[178] Rastas, P. and Ukkonen, E. (2007). Haplotype inference via hierarchical
genotype parsing. In Giancarlo, R. and Hannenhalli, S., editors, Proceedings
of the 7th Workshop on Algorithms in Bioinformatics – WABI2007, volume
4645 of Lecture Notes in Computer Science, pages 85–97. Springer, Heidel-
berg, Germany.

[179] Ribeiro, A., Kauffman, S., Lloyd-Price, J., Samuelsson, B., and Socolar,
J. (2008). Mutual information in random Boolean models of regulatory net-
works. Physical Review E, 77:011901:1–10.

[180] Rohlf, T. and Bornholdt, S. (2002). Criticality in random threshold net-
works: annealed approximation and beyond. Physica A: Statistical Mechanics
and its Applications, 310(1-2):245–259.

[181] Roli, A., Arcaroli, C., Lazzarini, M., and Benedettini, S. (2009a). Boolean
networks design by genetic algorithms. In [229], page 13.

[182] Roli, A., Benedettini, S., Serra, R., and Villani, M. (2011a). Analysis of
attractor distances in Random Boolean networks. In Apolloni, B., Bassis, S.,
Esposito, A., and Morabito, C., editors, Neural Nets WIRN10 – Proceedings
of the 20th Italian Workshop on Neural Nets, volume 226 of Frontiers in
Artificial Intelligence and Applications, pages 201–208. IOS Press.

[183] Roli, A., Benedettini, S., Stützle, T., and Blum, C. (2010). Additional ma-
terial to the paper ‘Large Neighbourhood Search Algorithms for the Founder
Sequences Reconstruction Problem’. Available at www.lia.deis.unibo.it/

~aro/research/fsrp/.

[184] Roli, A., Benedettini, S., Stützle, T., and Blum, C. (2012). Large neigh-
bourhood search algorithms for the founder sequence reconstruction problem.
Computers & Operations Research, 39(2):213–224.

[185] Roli, A. and Blum, C. (2009). Tabu search for the founder sequence recon-
struction problem: A preliminary study. In Omatu, S., Rocha, M., Bravo, J.,
Fernández-Riverola, F., Corchado, E., Bustillo, A., and Corchado, J., editors,
Proceedings of the 3rd International Workshop on Practical Applications of
Computational Biology and Bioinformatics – IWPACBB’09, volume 5518 of
Lecture Notes in Computer Science, pages 1035–1042. Springer, Heidelberg,
Germany.

[186] Roli, A., Manfroni, M., Pinciroli, C., and Birattari, M. (2011b). On the
design of Boolean network robots. In Di Chio, C., Cagnoni, S., Cotta, C.,
Ebner, M., Ekárt, A., Esparcia-Alcázar, A., Merelo, J., Neri, F., Preuss, M.,
Richter, H., Togelius, J., and Yannakakis, G., editors, Applications of Evo-
lutionary Computation, volume 6624 of Lecture Notes in Computer Science,
pages 43–52. Springer, Heidelberg, Germany.

www.lia.deis.unibo.it/~{}aro/research/fsrp/
www.lia.deis.unibo.it/~{}aro/research/fsrp/

BIBLIOGRAPHY 183

[187] Roli, A., Serra, R., and Benedettini, S. (2009b). Clustering di attrattori
di reti Booleane casuali. In Modelli, sistemi e applicazioni di Vita Artificiale
e Computazione Evolutiva – WIVACE 2009, pages 167–176. Fridericiana ed-
itrice.

[188] Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy al-
gorithm for the permutation flowshop scheduling problem. European Journal
of Operational Research, 177(3):2033–2049.

[189] Ruiz, R. and Stützle, T. (2008). An iterated greedy heuristic for the se-
quence dependent setup times flowshop problem with makespan and weighted
tardiness objectives. European Journal of Operational Research, 187(3):1143–
1159.

[190] Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, Upper Saddle River, NJ, 3rd edition.

[191] Samuelsson, B. and Troein, C. (2005). Random maps and attractors in
random boolean networks. Physcal Review E, 72:046112.

[192] Santiago-Mozos, R., Salcedo-Sanz, S., DePrado-Cumplido, M., and
Bousoňo-Calzón, C. (2005). A two-phase heuristic evolutionary algorithm
for personalizing course timetables: a case study in a spanish university.
Computers & Operations Research, 32:1761–1776.

[193] Scheet, P. and Stephens, M. (2006). A fast and flexible statistical model
for large-scale population genotype data: Applications to inferring missing
genotypes and haplotypic phase. The American Journal of Human Genetics,
78(4):629–644.

[194] Schilstra, M., Wegner, K., and Block, Marceland Egri-Nagy, A. (2011).
NetBuilder’. http://strc.herts.ac.uk/bio/maria/Apostrophe/index.

htm. Viewed: November 2011.

[195] Schwartz, R., Clark, A., and Istrail, S. (2002). Methods for inferring block-
wise ancestral history from haploid sequences. In Guigó, R. and Gusfield,
D., editors, Algorithms in Bioinformatics, volume 2452 of Lecture Notes in
Computer Science, pages 44–59. Springer, Heidelberg, Germany.

[196] Schwarzer, C. (2003). Random Boolean Network Toolbox. http://www.

mathworks.com/matlabcentral/fileexchange/3231. Viewed: November
2011.

[197] Serra, R. and Villani, M. (2002). Perturbing the regular topology of cellu-
lar automata: implications for the dynamics. In Chopard, B., Tomassini, M.,
and Bandini, S., editors, Cellular Automata, 5th International Conference
on Cellular Automata for Research and Industry – ACRI 2002, volume 2493
of Lecture Notes in Computer Science, pages 168–177. Springer, Heidelberg,
Germany.

[198] Serra, R., Villani, M., Barbieri, A., Kauffman, S., and Colacci, A. (2010a).
On the dynamics of random Boolean networks subject to noise: attractors,
ergodic sets and cell types. Journal of Theoretical Biology, 265(2):185–193.

http://strc.herts.ac.uk/bio/maria/Apostrophe/index.htm
http://strc.herts.ac.uk/bio/maria/Apostrophe/index.htm
http://www.mathworks.com/matlabcentral/fileexchange/3231
http://www.mathworks.com/matlabcentral/fileexchange/3231

184 BIBLIOGRAPHY

[199] Serra, R., Villani, M., Barbieri, A., Kauffman, S., and Colacci, A. (2010b).
On the dynamics of random Boolean networks subject to noise: Attractors,
ergodic sets and cell types. Journal of Theoretical Biology, 265(2):185–193.

[200] Serra, R., Villani, M., Damiani, C., Graudenzi, A., and Colacci, A. (2008).
The diffusion of perturbations in a model of coupled random boolean net-
works. In Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., and
Bandini, S., editors, Cellular Automata, volume 5191 of Lecture Notes in
Computer Science, pages 315–322. Springer Berlin / Heidelberg.

[201] Serra, R., Villani, M., Graudenzi, A., and Kauffman, S. (2007). Why
a simple model of genetic regulatory networks describes the distribution of
avalanches in gene expression data. Journal of Theoretical Biology, 246:449–
460.

[202] Serra, R., Villani, M., and Semeria, A. (2004a). Genetic network models
and statistical properties of gene expression data in knock-out experiments.
Journal of Theoretical Biology, 227:149–157.

[203] Serra, R., Villani, M., and Semeria, A. (2004b). Genetic network models
and statistical properties of gene expression data in knock-out experiments.
Journal of Theoretical Biology, 227:149–157.

[204] Serra, R. and Zanarini, G. (1990). Complex Systems and Cognitive Pro-
cesses. Springer, Heidelberg, Germany.

[205] SGI (2011). Standard Template Library programmer’s guide. http://

www.sgi.com/tech/stl/stl_introduction.html. Viewed: November 2011.

[206] Shaw, P. (1998). Using constraint programming and local search methods
to solve vehicle routing problems. In Maher, M. and Puget, J.-F., editors,
Principle and Practice of Constraint Programming – CP98, volume 1520 of
Lecture Notes in Computer Science, pages 417–431. Springer, Heidelberg,
Germany.

[207] Shestak, V., Chong, E. K. P., Siegel, H. J., Maciejewski, A. A., Benmo-
hamed, L., Wang, I.-J., and Daley, R. (2008). A hybrid branch-and-bound
and evolutionary approach for allocating strings of applications to hetero-
geneous distributed computing systems. Journal of Parallel and Distributed
Computing, 68:410–426.

[208] Shmulevich, I. and Dougherty, E. (2009). Probabilistic Boolean Networks:
The Modeling and Control of Gene Regulatory Networks. SIAM, Philadelphia,
PA.

[209] Shmulevich, I., Dougherty, E. R., Kim, S., and Zhang, W. (2002). Proba-
bilistic Boolean networks: a rule-based uncertainty model for gene regulatory
networks. Bioinformatics, 18(2):261–274.

[210] Shmulevich, I. and Kauffman, S. (2004). Activities and sensitivities in
Boolean network models. Physical Review Letters, 93(4):048701:1–10.

[211] Shmulevich, I., Kauffman, S., and Aldana, M. (2005). Eukaryotic cells are
dynamically ordered or critical but not chaotic. Proceedings of the National
Academy of Sciences of the United States of America, 102(38):13439–13444.

http://www.sgi.com/tech/stl/stl_introduction.html
http://www.sgi.com/tech/stl/stl_introduction.html

BIBLIOGRAPHY 185

[212] Siek, J. G., Lee, L.-Q., and Lumsdaine, A. (2002). The Boost Graph Li-
brary: user guide and reference manual. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

[213] Song, Y., Wu, Y., and Gusfield, D. (2005). Efficient computation of close
lower and upper bounds on the minimum number of recombinations in bio-
logical sequence evolution. Bioinformatics, 21(suppl 1):413–422.

[214] sourceforge (2011). SourceForge code repository. Online; accessed 11-Nov-
2011.

[215] spgal (2007). spGAL. Viewed: 11-Nov-2011.

[216] Stephens, M. and Donnelly, P. (2003). A comparison of bayesian methods
for haplotype reconstruction from population genotype data. The American
Journal of Human Genetics, 73(5):1162–1169.

[217] Stephens, M. and Scheet, P. (2005). Accounting for decay of linkage dis-
equilibrium in haplotype inference and missing-data imputation. The Amer-
ican Journal of Human Genetics, 76(3):449–462.

[218] Stephens, M., Smith, N. J., and Donnelly, P. (2001). A new statistical
method for haplotype reconstruction from population data. The American
Journal of Human Genetics, 68(4):978–989.

[219] Stützle, T. (2006). Iterated local search for the quadratic assignment
problem. European Journal of Operational Research, 174(3):1519–1539.

[220] Stützle, T., López-Ibáñez, M., Dorigo, M., Cochran, J. J., Cox, L. A., Ke-
skinocak, P., Kharoufeh, J. P., and Smith, J. C. (2011). A Concise Overview
of Applications of Ant Colony Optimization. John Wiley & Sons, Inc.

[221] Szejka, A. and Drossel, B. (2007). Evolution of canalizing Boolean net-
works. European Physical Journal B, 56:373–380.

[222] Szejka, A. and Drossel, B. (2010). Evolution of Boolean networks under
selection for a robust response to external inputs yields an extensive neutral
space. Phys. Rev. E, 81(2):021908:1–9.

[223] The International HapMap Consortium (2003). The international
HapMap project. Nature, 426:789–796.

[224] The International HapMap Consortium (2005). A haplotype map of the
human genome. Nature, 437:1299–1320.

[225] Thyson, G., Chapman, J., Hugenholtz, P., Allen, E., Ram, R., Richardson,
P., Solovyev, V., Rubin, E., Rokhsar, D., and Banfield, J. (2004). Community
structure and metabolism through reconstruction of microbial genomes from
the environment. Nature, 428:37–43.

[226] Tomassini, M., Giacobini, M., and Darabos, C. (2004). Evolution of small-
world networks of automata for computation. In Yao, X., Burke, E., Lozano,
J., Smith, J., Merelo-Guervós, J., Bullinaria, J., Rowe, J., Tino, P., Kabán,
A., and Schwefel, H.-P., editors, Proceedings of Parallel ProblemSolving from
Nature – PPSN 2004, volume 3242 of Lecture Notes in Computer Science,
pages 672–681. Springer, Heidelberg, Germany.

186 BIBLIOGRAPHY

[227] Ukkonen, E. (2002). Finding founder sequences from a set of recombinants.
In Guigó, R. and Gusfield, D., editors, Proceedings of the 2nd Workshop on
Algorithms in Bioinformatics – WABI 2002, volume 2452 of Lecture Notes in
Computer Science, pages 277–286. Springer, Heidelberg, Germany.

[228] Villani, M., Barbieri, A., and Serra, R. (2011). A dynamical model of
genetic networks for cell differentiation. PLoS ONE, 6(3):e17703.

[229] Villani, M. and Cagnoni, S., editors (2009). Proceedings of CEEI 2009 -
Workshop on complexity, evolution and emergent intelligence, Reggio Emilia,
Italy.

[230] Villani, M., Serra, R., Ingrami, P., and Kauffman, S. (2006). Coupled ran-
dom boolean network forming an artificial tissue. In El Yacoubi, S., Chopard,
B., and Bandini, S., editors, Cellular Automata, volume 4173 of Lecture Notes
in Computer Science, pages 548–556. Springer Berlin / Heidelberg.

[231] Wall, M. (2011). GAlib – A C++ Library of Genetic Algorithm Compo-
nents. Viewed: 11-Nov-2011.

[232] Wang, I.-L. and Yang, H.-E. (2011). Haplotyping populations by pure
parsimony based on compatible genotypes and greedy heuristics. Applied
Mathematics and Computation, 217(23):9798–9809.

[233] Wang, R.-S., Zhang, X.-S., and Sheng, L. (2005). Haplotype inference
by pure parsimony via genetic algorithm. In Zhang, X.-S., Liu, D.-G., and
Wu, L.-Y., editors, Operations Research and Its Applications: the Fifth In-
ternational Symposium (ISORA’05), Tibet, China, August 8–13, volume 5 of
Lecture Notes in Operations Research, pages 308–318. Beijing World Publish-
ing Corporation, Beijing, People Republic of China.

[234] Watts, D. (1999). Small worlds: the dynamics of networks between order
and randomness. Princeton University Press, Princeton, NJ.

[235] Wegner, K., Robinson, M., Egri-Nagy, A., Knabe, J., Nehaniv, C., and
Schilstra, M. (2006). NetBuilder. http://strc.herts.ac.uk/bio/maria/

NetBuilder/index.html. Viewed: November 2011.

[236] Wikipedia (2011a). Cycle detection. http://en.wikipedia.org/wiki/

Cycle_detection. Viewed: November 2011.

[237] Wikipedia (2011b). Generator (computer programming). http://en.

wikipedia.org/wiki/Generator_%28computer_programming%29. Viewed:
November 2011.

[238] Willadsen, K., Triesch, J., and Wiles, J. (2008). Understanding robust-
ness in random Boolean networks. In Bullock, S., Noble, J., Watson, R., and
Bedau, M. A., editors, Artificial Life XI: Proceedings of the Eleventh Interna-
tional Conference on the Simulation and Synthesis of Living Systems, pages
694–701, Cambridge, MA. MIT Press.

[239] Wu, Y. (2009). An analytical upper bound on the minimum number of
recombinations in the history of SNP sequences in populations. Information
Processing Letters, 109(9):427–431.

http://strc.herts.ac.uk/bio/maria/NetBuilder/index.html
http://strc.herts.ac.uk/bio/maria/NetBuilder/index.html
http://en.wikipedia.org/wiki/Cycle_detection
http://en.wikipedia.org/wiki/Cycle_detection
http://en.wikipedia.org/wiki/Generator_%28computer_programming%29
http://en.wikipedia.org/wiki/Generator_%28computer_programming%29

BIBLIOGRAPHY 187

[240] Wu, Y. and Gusfield, D. (2008). Improved algorithms for inferring the
minimum mosaic of a set of recombinants. In Ma, B. and Zhang, K., editors,
Proceedings of the 18th Annual Symposium on Combinatorial Pattern Match-
ing – CPM 2007, volume 4580 of Lecture Notes in Computer Science, pages
150–161. Springer, Heidelberg, Germany.

[241] Wuensche, A. (2011a). DDLab. http://www.informatics.sussex.ac.

uk/users/andywu/ddlab.html. Viewed: November 2011.

[242] Wuensche, A. (2011b). Exploring Discrete Dynamics. Luniver Press.

[243] Xing, E. P., Jordan, M. I., and Sharan, R. (2007). Bayesian haplo-
type inference via the dirichlet process. Journal of Computational Biology,
14(3):267–284.

[244] Xu, L., Hoos, H., and Leyton-Brown, K. (2010). Hydra: Automatically
configuring algorithms for portfolio-based selection. In Fox, M. and Poole,
D., editors, AAAI. AAAI Press.

[245] Yang, J., Zhang, M., He, B., and Yang, C. (2009). Bi-level program-
ming model and hybrid genetic algorithm for flow interception problem with
customer choice. Computers & Mathematics with Applications, 57:1985–1994.

[246] Zhang, B. and Horvath, S. (2005). A general framework for weighted
gene co-expression network analysis. Statistical Applications in Genetics and
Molecular Biology, 4(1).

[247] Zhang, J.-H., Wu, L.-Y., Chen, J., and Zhang, X.-S. (2008). A fast hap-
lotype inference method for large population genotype data. Computational
Statistics & Data Analysis, 52(11):4891–4902.

[248] Zhang, Q., Wang, W., McMillan, L., De Villena, F.-M., and Threadgill,
D. (2009). Inferring genome-wide mosaic structure. Bioinformatics, pages
150–161.

[249] Zlochin, M., Birattari, M., Meuleau, N., and Dorigo, M. (2004). Model-
based search for combinatorial optimization: A critical survey. Annals of
Operations Research, 131(1–4):373–395.

http://www.informatics.sussex.ac.uk/users/andywu/ddlab.html
http://www.informatics.sussex.ac.uk/users/andywu/ddlab.html

	Contents
	List of Figures
	List of Tables
	Introduction
	Overview of the thesis
	Contributions

	I Combinatorial biological problems
	Brief Introduction to Metaheuristics
	Preliminary definitions
	Trajectory Methods
	Tabu Search

	Population Methods
	Ant Colony Optimisation
	Genetic Algorithms

	Conclusions and discussion

	The Haplotype Inference Problem
	Biological introduction and motivation
	Mathematical Formulation
	The evaluation model
	Compatibility and complementarity

	Notable variants of the Haplotype Inference

	Hybrid Metaheuristics for Haplotype Inference
	Clark's Rule
	Metaheuristic techniques for Haplotype Inference
	Ant Colony Optimization
	Stochastic Local Search
	The hybrid algorithm

	Experimental analysis
	Analysis of ACO-HI+, TS and ACOTS
	Comparison between ACOTS and rpoly

	Instance structure analysis
	Conclusions and discussion

	MSG Algorithm for Haplotype Inference
	Introduction and motivations
	Master-slave Genetic framework
	MSG for Haplotype Inference
	Slave algorithm
	Master algorithm

	Experimental Analysis
	Comparison with the Hybrid ACO

	Alternativa Approaches to HIP
	Enhancement of resolution by constraint programming techniques
	Haplotype Inference with generalised haplotypes

	Algorithm for finding cliques in compatibility graph
	Preliminary definitions
	Algorithm for finding cliques in compatibility graph

	Conclusions and discussion

	The Founder Sequence Reconstruction Problem
	Biological introduction and motivations
	The Founder Sequence Reconstruction Problem
	Overview of the literature
	RecBlock

	A Simple Constructive Heuristic With Look-Ahead
	A Probabilistic Iterated Greedy Algorithm
	Iterated Greedy experimental evaluation
	Parameter Tuning
	Comparison with the State of the Art

	Large neighbourhood search algorithms for the FSRP
	Large Neighbourhood Search experimental analysis
	Experimental setting
	Comparison among LNS-FSRP variants
	Impact of initial solution
	Impact of upper bound update
	Impact of neighbourhood size
	LNS-1 speed-up

	Comparison of LNS-1c against the state of the art
	Comparison with RecBlock
	Comparison against Back-and-Forth Iterated Greedy

	Conclusions and discussion

	II Boolean Network Design
	Brief Introduction to Boolean Networks
	Boolean networks
	Random Boolean Network model

	Motivations of designing by metaheuristics
	Conclusions and discussion

	The Boolean Network Toolkit
	Introduction and Motivations
	Available tools

	Software Design
	Fundamental abstractions
	Simulator Architecture

	Use Cases
	Conclusions and discussion

	Designing Boolean Networks by Metaheursitics
	Introduction
	Related work
	Methods

	Designing Boolean networks with prescribed attractor periods
	Experimental settings

	Target state-controlled Boolean networks
	Experimental setting

	Attractor distances in Boolean networks
	Attractor similarity statistics
	Experimental analysis

	Designing Boolean networks with maximally distant attractors
	Objective and Motivations
	Experimental Analysis

	Density classification problem
	Experimental setting
	Results

	Conclusions and discussion

	Conclusions
	Proposal for future research
	Appendices
	Applications of MSG to Routing Problems
	MSG for the Capacitated Vehicle Routing Problem
	Proposed algorithm and evaluation

	MSG for the Capacitated Minimum Spanning Tree
	Proposed algorithm and evaluation

	Conclusions and discussion

	Bibliography

