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Thesis Overview 
 

Background 

 

The surface electrocardiogram (ECG) is the recording of voltage variations on the body 

surface, generated by the action potentials of the excitable cardiac cells. The heartbeat in the 

ECG displays a series of wavefronts whose morphology and timing convey information 

which is used for the identification of electrical abnormalities and the diagnosis of abnormal 

cardiac rhythms. 

Electrical abnormalities (arrhythmias) may be grouped in two main categories: those 

which make the heart pump too slowly (bradycardia), and those with make the heart pump 

too quickly (tachycardia). The electrical impulse may also be interrupted causing conduction 

blockages, or generated outside the natural pacemaker, the sinoatrial node, generating ectopic 

beats. In some cases, the electrical impulse can also break down into separate wavefronts 

which circulate quasi-randomly over the cardiac muscle (myocardium), a phenomenon 

known as fibrillation.  

However, the clinical use of the ECG extends beyond arrhythmias identification. It can 

reveal metabolic abnormalities of the myocardium, the most medically relevant being 

ischemia, a condition in which part of the cardiac tissue is not adequately supplied with 

oxygen, due to insufficient blood flow, often caused by disease of the coronary arteries. Other 

metabolic abnormalities which cause characteristic changes in the ECG include impaired 

serum concentration of electrolytes (potassium, calcium, magnesium). Therapeutic drugs can 

also alter the appearance of the ECG. Lastly, the ECG can reveal abnormalities of the 

geometry of the heart, such as the enlargement of a portion of the myocardium (hypertrophy), 

or the presence of a region of dead and scarred cells (infarction). 

Complementary to the analysis of ECG morphology, is that of temporal changes of ECG 

characteristics, such as the inter-beat interval (IBI). Fluctuations in heart rate reflect 

autonomic modulation and have prognostic significance in pathological states. The analysis 

of heart rate variability (HRV) has been proposed in the assessment of the autonomic 

function, in risk quantification in a wide variety of cardiac and non-cardiac disorders such as 

stroke, multiple sclerosis, end stage renal disease, neonatal distress, diabetes mellitus, 

myocardial infarction (MI), and congestive heart failure. In particular, HRV analysis has been 

applied to post MI risk stratification assessment. Recent studies have also suggested that 

HRV can be used to measure physiological changes in a number of psychiatric illnesses such 

as major depression, generalized anxiety disorder, schizophrenia, panic disorder and post-

traumatic stress disorder. 

Moreover, in recent years, the interest for HRV analysis has extended from clinical 

practice and research to cognitive psychophysiology. Several studies have related short-term 

HRV to memory performance, mental workload and sustained attention. 

The development and advancement of signal processing technologies over the past 

decades has made it possible to automate operations such as heartbeat detection and 
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classification, time markers (fiducial points) placement in the ECG, intervals and amplitude 

measurements, relieving physicians and healthcare operators in general from time-consuming 

and tedious work, improving efficiency and reliability by reducing inter-operator variability, 

and increasing repeatability of measurements. 

However, in spite of being a relatively old field, many key challenges remain in ECG 

signal processing today, such as reliable measurements of critical intervals, reliable artifact 

detection in ambulatory monitoring, in-band signal filtering (source separation), and non-

linear, non-stationary dynamics management.  

 

Aim 

 

The aim of this PhD thesis was to analyze the variability of surface ECG derived rhythms 

at two different time scales: the discrete-event time scale, typical of beat-by-beat extracted 

features, and the ―continuous‖ time scale of separated (in-band filtered) sources in the ECG, 

in selected scenarios relevant to psychophysiological and clinical research, respectively. 

In the first case, the discrete event series (DES) of IBI was considered. HRV analysis was 

carried out in the time, frequency, and joint time-frequency domain, complemented by non-

linear dynamics analysis, with the goal of assessing psychophysiological workload in 

response to working memory engaging tasks. This work was part of the project: ―Cognitive 

Adaptive Man-Machine Interface‖ (CAMMI) supported by ARTEMIS JTI initiative of the 

European Union, EU-JTI grant No. 100008. 

In the second case, the atrial activation signal (AA) from atrial fibrillation (AF) 

recordings was considered. The signal was estimated from body surface potential maps 

(BSPM). The goal was to analyze the temporal variability of spatial organization 

(complexity) and spectral distribution of AF, to propose an automatic implementation of the 

analysis, and to assess the applicability to reduced lead-sets, to potentially support clinical 

decision making in AF ablation therapy. 

 

Results 

 

Variability analysis of discrete event series 

 

Psycho-physiological workload (PPW) in response to a memory search task (Sternberg 

1966) in healthy young subjects was assessed by means of regularity and joint time-

frequency analyses of non stationary heart rate variability.  

In fourteen healthy young subjects PPW was assessed by means of standard HRV indices 

complemented with joint time-frequency and regularity analyses of the inter-beat interval 

(IBI) series. A superior ability of regularity index (SampEn) in discriminating performance 

(task execution) from rest; and instantaneous energy variability (IEVLF+HF) in discriminating 

difficult tasks from other sessions (rest and easy tasks) was shown, suggesting a potential use 

of the proposed indices in discriminating PPW levels in response to varying task difficulty. 
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Variability analysis of wavefront patterns 

 

A novel source-cancellation method based on morphology clustering of the ventricular 

depolarization interval (QRS-T segment) was proposed for the estimation of the atrial 

activation wavefront in AF. The proposed method showed significant improvement in 

ventricular activity cancellation with respect to established single-lead approaches in BSPM 

recordings, and reliable estimation of AF dominant frequency (DF). In a study on 14 

persistent AF recordings of BSPM, it was compared to established blind source separation 

methods showing no significant differences in DF estimation, while preserving the 

characteristic spatial resolution of single-lead approaches. 

The analysis of variability was extended beyond DF estimation. Combined analysis of 

spatial complexity, temporal and spectral variability of atrial activation during AF was 

presented for BSPM recordings, based on a fully automated procedure, built on wavelet-

transform based ECG delineation and principal component analysis (PCA).  

In 21 patients with persistent AF, it was shown that higher spectral concentration (SC) 

was associated with reduced temporal variability of spectral distribution. This finding 

suggests that with higher values of SC, a shorter observation time is required to collect 

spectral distribution, from which the dominant atrial fibrillatory rate (a recognized index of 

average atrial refractoriness) can be calculated. This could be time and cost effective in 

clinical decision-making in AF treatment. Moreover, it was shown that the results were not 

affected by the reduction of the number of leads, down to as few as 10 body surface potential 

maps (BSPM). This may suggest that a simplified setup could also be considered, further 

reducing the cost of the BSPM acquisition protocol or that the methods could be applied 

equally to standard 12-lead ECG. 

 

Online signal processing: automatic assessment of signal quality 

 

An algorithm for the automatic assessment of ambulatory ECG recording quality, based 

on single-condition decision rule (SCDR) classification, was presented. Its performance in 

binary classification (‗acceptable‘ vs. ‗unacceptable‘ recording quality for diagnostic 

interpretation) was assessed on a standard database of 998 records and compared to 

established supervised-learning classifiers (k-nearest neighbor, probabilistic neural network). 

After preliminary processing (pacemaker filtering, beat detection), fundamental features for 

signal quality assessment (baseline drift, flat line, QRS-artifact, spurious spikes, amplitude 

stepwise changes, noise) were extracted from joint time-frequency analysis, and used for 

classification. 

The proposed method showed high accuracy (Sc) in automatic classification of short 12-

leads ambulatory ECG recordings (Sc=92.36%, for balanced training set of 200 records 

(TS1); 93.40%, for unbalanced training set of 498 records (TS2)), higher than the best-

performing supervised-learning classifier (85.34%, for TS1; 92.20%, for TS2), in spite of its 

simple logic. The ability to provide additional information (rejection reason) to the 

classification output, suggests the proposed method may be a useful tool in automatic quality 

assessment of 12-leads ambulatory ECG recordings. 
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Online signal processing: automatic electrocardiogram delineation 

 

A wavelet-based ECG delineation algorithm was presented, designed for online 32-bit 

integer linear algebra processing, with shift/add operations replacing multiplications and 

divisions. The QRS detector achieved excellent performance on the standard MIT-BIH 

Arrhythmia database (Se=99.77%, P
+
=99.86%, 109010 annotated beats) and on the European 

ST-T Database, (Se=99.81%, P
+
=99.56%, 788050 annotated beats). 

The proposed algorithm also exhibited very good accuracy in P, QRS, T delineation on 

the standard QT Database, where the mean error between automatic and manual annotations 

was lower than 1.5 samples for all the characteristic points, and the associated average 

standard deviations were comparable to the ones reported from previous methods. Reliability 

and accuracy were close to the highest among the ones obtained in other studies, in spite of a 

simplified structure built on integer linear algebra which makes the proposed algorithm a 

suitable candidate for online QRS detection and ECG delineation under strict power 

constraints and limited computational resources, such as in wearable devices for long-term 

non-diagnostic ambulatory monitoring. 
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Outline  
 

This thesis focuses on the analysis of variability of discrete event time series and 

wavefront patterns in the surface electrocardiogram. The presentation of the work is 

structured in three parts (Part I: Chapters 1-3; Part II: Chapters 4-7; Part III: Chapters 8-10) as 

illustrated in Figure O.1.  

 
 

Figure O.1 Block diagram illustrating thesis outline.  

 

Part I provides a general overview of the anatomy, physiology and electrophysiology of 

the heart (Chapter 1); and introduces the background and rationale of surface 

electrocardiogram derived rhythms (Chapters 2-3). Emphasis is given in Chapter 2 to the 

inter-beat interval (discrete event) and the relevance of its variability in psychophysiological 

and clinical research; and in Chapter 3 to the atrial activation signal (continuous wavefront) 

and the clinical interest of the dominant frequency in atrial fibrillation. 

Part II presents the analysis of inter-beat interval (or inversely, heart rate) variability in 

mental workload assessment, in a memory search task. As ECG artifacts represent a major 

concern in ambulatory settings, the topic was addressed by a specific study on automatic 

quality assessment of ambulatory ECG recordings, presented in Chapter 4. Experimental 

setup for data acquisition is presented in Chapter 5, together with the software architecture of 
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a real-time monitor specifically designed for data acquisition, visualization, processing and 

storage. In Chapters 6-7 the analysis of heart rate variability is presented. Established 

methods are compared (Chapter 6) on experimental data, and a novel approach based on 

nonlinear dynamics indices and joint time-frequency distribution of inter-beat interval 

variability is presented (Chapter 7).     

Part III presents the analysis of the atrial activation signal (continuous wavefront) in 

atrial fibrillation, with emphasis on original contributions. In Chapter 8 a novel method for 

online electrocardiogram delineation based on wavelet-transforms and 32-bit integer linear 

algebra is presented. In Chapter 9 a novel method for the estimation of the atrial signal and 

the dominant fibrillatory rate based on surface electrocardiogram is presented. In Chapter 10 

the analysis of temporal variability of spatial complexity and spectral distribution in body 

surface potential maps is presented, based on a novel approach built on the automatic 

delineation method introduced in Chapter 8. Emphasis is given to the novel finding of linear 

correlation between spectral concentration and temporal regularity of spectral distribution. 
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This part presents a general overview of the anatomy, physiology and electrophysiology 

of the heart (Chapter 1); and introduces the background and rationale of surface 

electrocardiogram derived rhythms (Chapters 2-3). Emphasis is given in Chapter 2 to the 

inter-beat interval (discrete event) and the relevance of its variability in psychophysiological 

and clinical research; and in Chapter 3 to the atrial activation signal (continuous wavefront) 

and the clinical interest of the dominant frequency in atrial fibrillation. 
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Chapter 1: Anatomy and physiology background 
 

 

1.1 Anatomy and Physiology of the heart 

 

The heart is composed of three major types of cardiac muscle: atrial muscle, ventricular 

muscle and specialized excitatory and conductive muscle fibers. The atrial and ventricular 

muscles are striated and contract in a similar way as the skeletal muscle, except the duration 

of contraction, which is much longer. Conversely, the specialized excitatory and conductive 

fibers contract only feebly because they contain few contractile fibrils. 

Cardiac muscle fibers consist of individual cells arranged in a latticework, connected in 

series by intercalated disks. Electrical conductance through the intercalated disks is very high 

forming permeable communicating junctions (gap junctions) that allow almost free diffusion 

of ions. Thus, the cardiac muscle can be viewed as a syncytium of many cells such that when 

an action potential is generated in one cell it propagates to all the others. The heart is actually 

composed of two syncytiums: the atrial syncytium that constitutes the walls of the two atria, 

and the ventricular syncytium that constitutes the walls of the two ventricles. This division 

allows the atria to contract a short time ahead of the ventricles, thus improving ventricular 

filling and heart pumping effectiveness. 

Figure 1.1 shows the anatomy of the heart. Venous blood enters the right atrium of the 

heart through the superior and inferior vena cava. The right atrium has a relatively thin 

muscular wall and easily expands as blood fills it. Because of its high compliance, the right 

atrium pressure is normally very low (0-3 mmHg). Blood passes from the right atrium to the 

right ventricle through the tricuspid valve. The free wall of the right ventricle is thinner than 

the left ventricle, and anatomically it wraps itself around part of the larger and thicker left 

ventricle.  The right ventricular wall, however, is thicker than the right atrium, so that when it 

contracts, it can develop considerably higher pressure (approximately 25 mmHg). As the 

right ventricle contracts, blood flows across an open semilunar pulmonary valve, and enters 

the pulmonary artery that conveys blood to the lungs where exchange of oxygen and carbon 

dioxide occurs. Oxygenated blood returns to the heart from the lungs through four pulmonary 

veins that enter the left atrium. This chamber is similar to the right atrium in that it is highly 

compliant, although the blood pressure in the left atrium is higher (6-10 mmHg). Blood flows 

from the left atrium across the mitral valve into the left ventricle. The left ventricular wall is 

very thick so that it can generate high pressures when it contracts (normally approximately 

120 mmHg at rest). When the left ventricle contracts, blood is pumped through the semilunar 

aortic valve into the aorta, which then delivers blood to the arterial systemic circulation. 

The tricuspid and mitral valves have fibrous strands (chordae tendineae) on their leaflets 

that attach to papillary muscles located on the respective ventricular walls. The papillary 

muscles contract during ventricular contraction and generate tension on the valve leaflets via 

the chordae tendineae to prevent the valves from bulging back into the atria reducing 
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pumping effectiveness. The pulmonary and aortic semilunar valves do not have analogous 

attachments. 

 

  

Figure 1.1 Anatomy of the heart. (From: www.biologycorner.com) 

 

 

1.2 Electrical system of the heart 

 

The specialized excitatory and conductive system of the heart that controls cardiac 

contractions is shown in Figure 1.2. The sinus node (also called sinoatrial or SA node) is a 

small strip of specialized muscle cells of few square millimeters, located in the superior 

posterolateral wall of the right atrium, lateral to the opening of the superior vena cava. The 

SA node is the site where the rhythmical impulse is generated. The sinus nodal fibers connect 

directly with the atrial muscle fibers, so that any action potential initiated in the sinus node 

spreads immediately into the atrial muscle wall. The conduction speed is approximately 0.3 

m/s in most atrial muscle, although it increases to approximately 1 m/s in the anterior, middle 

and posterior intermodal pathways that are characterized by specialized conduction fibers.  

The conductive system is organized so that the electrical impulse does not travel from the 

atria into the ventricles too rapidly. This delay of approximately 90 ms is operated by the 

atrioventricular (AV) node, located in the posterior wall of the right atrium adjacent to the 

opening of the coronary sinus. It allows the atria to empty the blood content into the 

ventricles before ventricular contraction begins. 
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Figure 1.2 Electrical conduction system of the heart. (From: C.L. Stanfield, ―Principles of 

human physiology‖ 2011) 

 

The impulse then propagates to the AV bundle, encountering another delay of 

approximately 40 ms. The total delay (approximately 130 ms) adds up to the propagation 

time between SA and AV node, that is approximately 30 ms, before the impulse reaches the 

ventricles. The AV bundle merges into the left and right branches of the Purkinje fibers 

which conduct the electrical impulse to all parts of the ventricles. These are very large fibers, 

even larger than the ventricular muscle fibers, and transmit the impulse at 1.5 – 4.0 m/s, 

namely up to 6 times higher than in the ventricular muscle fibers. This allows almost 

immediate transmission of the impulse throughout the entire remainder of the ventricular 

muscle. The Purkinje fibers also have very few myofibrils, which means they only feebly 

contract during the course of impulse transmission. 

A special characteristic of the AV bundle is the inability, in normal conditions, of action 

potentials to travel backwards in the bundle from the ventricles to the atria. This prevents re-

entry of cardiac impulses, as the AV bundle is the only way the impulse can propagate from 

the atria to the ventricles, as the atrial muscle is separated from the ventricular muscle by a 

continuous fibrous barrier, which acts as insulator. 
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1.2.1 Action Potential 

 

Pacemaker nodal cells 

Cells within the sinoatrial (SA) node are the primary pacemaker of the heart. These cells 

generate regular, spontaneous action potentials in a cyclic self-sustained mechanism.  

The action potential of the SA nodal cells may be divided into three phases, as shown in 

Figure 1.3. Phase 4 is the spontaneous depolarization that triggers the action potential once 

the membrane reaches a threshold-voltage of approximately -40 mV. Phase 0 is the 

depolarization phase of the action potential, followed by phase 3 of repolarization. Once the 

cell is completely repolarized at about -60 mV, the cycle is spontaneously repeated. The 

changes in membrane potential are brought about by ions flow, principally Ca++ and 

potassium (K+), and to a lesser extent Na+, across the membrane through ion channels that 

open and close at different times during the action potential. When a channel is opened, there 

is increased electrical conductance. Conversely, closure of ion channels causes ion 

conductance to decrease. As ions flow through open channels, they generate electrical 

currents that change the membrane potential.  

 

 

 
 

Figure 1.3 Action potential of the sinoatrial node cells of the heart. (From: ―Cardiovascular 

physiology concepts‖, www.cvphysiology.com) 

 

At the end of repolarization, when the membrane potential is very low (about -60 mV), 

slow ion channels open allowing inward oriented (depolarizing) Na+ currents (If). As the 

membrane potential reaches about -50 mV, a T-type Ca++ channel opens. The inward 

directed Ca++ currents further depolarize the cell. As the membrane continues to depolarize 

to about -40 mV, a second Ca++ channel opens. These are the so-called long-lasting, or L-

type Ca++ channels. Opening of these channels causes more Ca++ to enter the cell and to 

further depolarize the cell until an action potential threshold of approximately -40 mV is 

reached. Phase 0 depolarization is primarily caused by increased Ca++ conductance through 

the L-type Ca++ channels that began to open toward the end of phase 4. Na+ and Ca++ 
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currents through the T-type Ca++ channels decline during this phase as their respective 

channels close. Because the movement of  Ca++ through these channels into the cell is not 

rapid, the rate of depolarization (slope of phase 0) is much slower than found in other cardiac 

cells (e.g. Purkinje cells). Repolarization occurs (phase 3) as K+ channels open, thereby 

increasing the outward oriented K+ current. At the same time, the L-type Ca++ channels 

become inactivated and close, which decreases calcium conductance and the inward 

depolarizing Ca++ currents.  

The action potential pattern described for SA cells is similar to that of atrioventricular (AV) 

cells, determined primarily by changes in slow Ca++ and K+ currents. 

 

Non-pacemaker cardiomyocites 

Atrial myocytes, ventricular myocytes and Purkinje cells exhibit different behavior in 

action potential generation, with respect to the SA and AV cells (pacemaker cells). Unlike 

pacemaker nodal cells, non-pacemaker ones have a distinguishable resting membrane 

potential (phase 4) that remains near the equilibrium potential  for K+, as shown in Figure 

1.4.  

 

 

 

Figure 1.4 Non-pacemaker cardiomyocite action potential. (From: ―Cardiovascular 

physiology concepts‖, www.cvphysiology.com) 

 

The resting membrane potential is very low (about -90 mV) due to K+ outward directed 

currents which increase electro-negativity of the cell. At this stage, fast Na+ channels and (L-

type) slow Ca++ channels are closed. When these cells are rapidly depolarized to a threshold 

voltage of about -70 mV, there is a rapid depolarization (phase 0) that is caused by a transient 

increase in fast Na+ channel conductance. This rapidly increases the inward directed Na+ 

currents (INa). On the other hand, K+ conductance and currents fall as potassium channels 

close. Phase 1 represents an initial repolarization that is caused by the opening of a special 

type of transient K+ channel (Kto), which causes a transient, hyperpolarizing outward 
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oriented K+ current (IKto). However, because of the large increase in slow inward calcium 

current occurring at the same time and the transient nature of IKto, the repolarization is 

delayed and there is a plateau phase in the action potential (phase 2). This calcium inflow is 

governed by long-lasting (L-type) calcium channels that open when the membrane potential 

depolarizes to about -40 mV. This plateau phase differentiates cardiac cells from neural and 

skeletal muscular cells where the action potential is much shorter. Repolarization (phase 3) 

occurs when potassium conductance and IK increase, along with the inactivation of Ca++ 

channels.  

Once an action potential is initiated, there is a period of time comprising phases 0, 1, 2, and 

part of phase 3 in which a new action potential may not be initiated. This phenomenon is 

known as absolute refractory period (ARP) of the cell. During this period, stimulation of the 

cell by an adjacent cell undergoing depolarization does not trigger a new action potential. 

 

1.2.2 Rhythmic excitation of the SA node 

 

The SA node is characterized by intrinsic automaticity, a spontaneous pacemaker activity 

occurring at a rate of 100-110 action potentials per minute, in normal conditions. However, 

the firing rate of the SA node is subject to intrinsic and extrinsic controls. Intrinsic control is 

mediated by the stretch-sensor nature of the pacemaker cells of the SA node. Increased 

venous return increases preload (right atrial pressure), which causes the right atrial wall to 

expand, stretching the SA cells. The SA cells respond by increasing their firing rate, which in 

turn increases the heart rate and consequently the cardiac output. This mechanism contrasts 

blood pooling in the atrial chamber. 

On the other hand, the extrinsic mechanism is controlled by the autonomic nervous 

system. The SA node is innervated by sympathetic and parasympathetic fibers. The 

parasympathetic innervations, by the left and right branches of the vagus nerve, is 

predominant. The parasympathetic tone reduces the resting heart rate to 60-80 beats/min.  

Vagal activation, which releases acetylcholine (ACh) onto the SA node, decreases pacemaker 

rate by increasing the conductance of K+ channels and decreasing that of Ca++ and Na+ 

channels.  These ionic conductance changes decrease the slope of phase 4 of the action 

potential shown in Figure 1.3, thereby increasing the time required to reach the threshold 

potential. Vagal activity also hyperpolarizes the pacemaker cell during Phase 4, which results 

in a longer time to reach the threshold potential. 

Parasympathetic stimulation also decreases the excitability of the AV junctional fibers 

between atrial musculature and the AV node, thereby slowing transmission of the cardiac 

impulse into the ventricles. 

On the other hand, sympathetic stimulation increases the rate of SA nodal discharge, the 

speed of conduction of the electrical impulse, as well as the excitability of all regions of the 

heart. In addition, sympathetic stimulation is also capable of increasing the strength of 

contraction of the heart muscle. To increase heart rate, the autonomic nervous system 

increases sympathetic outflow to the SA node, with concurrent inhibition of vagal tone. 

Inhibition of vagal tone is necessary for the sympathetic nerves to increase heart rate because 

vagal influences inhibit the action of sympathetic nerve activity. Sympathetic activation, 
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which releases NE, increases pacemaker rate by decreasing K+ conductance and increasing 

that of Ca++ and Na+.  These changes increase the slope of phase 4 (shown in Figure 1.3) so 

that the pacemaker potential more rapidly reaches the threshold for action potential 

generation. 

The SA pacemaker activity is also altered by hormones. Circulating EP causes 

tachycardia by a mechanism similar to NE released by sympathetic nerves. Also, changes in 

the serum concentration of ions, particularly potassium, can cause changes in SA nodal firing 

rate. Hyperkalemia induces bradycardia or can even stop SA nodal firing.  Hypokalemia 

increases the rate of phase 4 depolarization and causes tachycardia. Cellular hypoxia, usually 

due to ischemia, is another cause of alteration of SA discharge rate. With increasing severity 

it induces bradycardia which can degenerate into a complete stop of the SA pacemaker 

activity. 

Various antiarrhythmic drugs also affect SA nodal rhythm. Calcium-channel blockers, for 

example, cause bradycardia by inhibiting the slow inward Ca++ currents during phase 4 and 

phase 0 (shown in Figure 1.3).  Drugs affecting autonomic control or autonomic receptors 

(e.g., beta-blockers, muscarinic antagonists) directly or indirectly alter pacemaker activity. 

Digitalis causes bradycardia by increasing parasympathetic (vagal) activity on the SA node. 

 

1.2.3 The electrocardiogram 

 

The electrical currents generated by the depolarization and repolarization process of 

cardiac cells spread throughout the body. This electrical activity can be measured by an array 

of electrodes placed on the body surface. The recorded tracing is called electrocardiogram 

(ECG, or EKG).  A typical normal ECG tracing is shown in Figure 1.5.   

The different waves that comprise the ECG represent the sequence of depolarization and 

repolarization of the atria and ventricles. The ECG shown in the figure is recorded at a speed 

of 25 mm/sec, and the voltages are calibrated so that 1 mV = 10 mm in the vertical direction. 

Therefore, each small 1-mm square represents 40 ms in time and 0.1 mV in voltage. Because 

the recording speed is standardized, the heart rate may be calculated from the intervals 

between different waves. 

The P wave represents the depolarization that spreads from the SA node throughout the 

atria, and is usually 80-100 ms in duration.  The brief isoelectric period after the P wave 

represents the time in which the impulse travels through the AV node (where the conduction 

velocity is greatly reduced) and the bundle of His. Atrial rate can be calculated by 

determining the time interval between P waves. The period of time from the onset of the P 

wave to the beginning of the QRS complex is termed PR interval, which normally ranges 

from 120 ms to 200 ms in duration. This interval represents the time between the onset of 

atrial depolarization and the onset of ventricular depolarization.  

The QRS complex represents ventricular depolarization. Ventricular rate can be 

calculated by determining the time interval between QRS complexes. The duration of the 

QRS complex is normally 60 to 100 ms. This relatively short duration indicates that 

ventricular depolarization normally occurs very rapidly. If the QRS complex is prolonged 

100 ms, conduction is impaired within the ventricles. This can occur with bundle branch 
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blocks or whenever a ventricular focus (abnormal or ―ectopic‖ pacemaker site) takes over the 

role of pacemaker. Such an ectopic focus nearly always results in impulses being conducted 

over slower pathways within the heart, thereby increasing the time for depolarization and the 

duration of the QRS complex. The shape of the QRS changes depending on which recording 

electrodes are used. The shape will also change when there is abnormal conduction of 

electrical impulses within the ventricles.  

The ST segment is the isoelectric period following the QRS complex. It is the time at 

which the entire ventricle is depolarized, roughly corresponding to the plateau phase of the 

ventricular action potential (Figure 1.4). The ST segment is important in the diagnosis of 

ventricular ischemia or hypoxia because under those conditions, the ST segment can become 

either depressed or elevated. 

The T wave represents ventricular repolarization. It is longer in duration than 

depolarization since the repolarization wave propagates at lower speed than the 

depolarization wave). Sometimes a small wave may be seen following the T wave (not shown 

in Figure 1.5) with the same polarity. This wave represents the last remnants of ventricular 

repolarization. 

 

 
Figure 1.5 Typical electrocardiogram from normal sinus rhythm. (From: ―Cardiovascular 

physiology concepts‖, www.cvphysiology.com) 

 

There is no distinctly visible wave representing atrial repolarization in the ECG because it 

occurs during ventricular depolarization. Because the wave of atrial repolarization is 

relatively small in amplitude, it is masked by the much larger ventricular-generated QRS 

complex. 

ECG tracings recorded simultaneously from different electrodes placed on the body 

produce different characteristic waveforms. 
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1.2.3.1  ECG lead configurations 

 

The ECG is recorded by means of electrodes placed on the body surface. In clinical 

practice, where the ECG is used for diagnostic purposes, a fundamental requirement is to 

define a universal protocol which standardizes the number of leads and their placement on the 

body. The twelve-leads ECG is the worldwide accepted standard for the purpose. It consists 

of ten electrodes: six precordial electrodes (V1,…, V6) and four limb electrodes. Correct 

precordial leads placement is illustrated in Figure 1.6, showing the anterior view on the 

frontal plane of the torso. The four limb leads, placed on the left wrist, right wrist, left leg and 

right leg, as shown in Figure 1.7, represent the original leads setting proposed by Dutch 

physiologist Willem Einthoven in the early 20
th

 century. 

The standard twelve-leads ECG protocol was defined for resting acquisitions, that is, for 

recording conditions in which the subject would lie supine, quietly and refraining from 

uttering, to minimize the presence of artifacts on the ECG recording. However, in ECG 

monitoring, sources of artifact such as electrode motion and skeletal muscle activity (EMG) 

are present and remarkable. Excessive artifacts have made it impractical to use the standard 

twelve-lead ECG with distal limb leads (standard-limb) when monitoring. The Mason-Likar 

modification of the standard twelve-lead ECG is commonly used for ECG monitoring. The 

Mason-Likar system uses all the conventional precordial electrode sites, but the limb 

electrodes are connected to sites on the anterior part of the torso instead of to distal limb sites. 

Repositioning the recording electrodes to only torso sites achieves the goal of reducing 

artifacts but requires the same number of electrodes (ten) as does the standard system. An 

alternative to the Mason-Likar system is to use only 3 to 5 electrodes (Welinder et al., 2004).  

 

 

 

Figure 1.6 ECG electrodes placement: chest electrodes. (From: The University of 

Nottingham, Division of Nursing. www.nottingham.ac.uk) 
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Figure 1.7 ECG electrodes placement: limb electrodes. (From: The University of 

Nottingham, Division of Nursing. www.nottingham.ac.uk) 

 

 

 

 

Figure 1.8 Body surface potential map. (Courtesy of Regional Medical Physics Department, 

Freeman Hospital, Newcastle upon Tyne, UK) 
 

In general, the number of electrodes attached to the body surface depends on the type of 

clinical information desired. It is usually sufficient to use a few electrodes when only heart 
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rhythm is being studied, whereas ten electrodes are typically used when information on 

waveform morphology is required. Much denser spatial sampling of the body surface can be 

achieved by employing a recording technique known as "body surface potential mapping" 

(BSPM), in which an array of tens to hundreds of electrodes is attached to the torso (Figure 

1.8). The signals recorded with such an electrode array can be used to produce a sequence of 

"electrical images" which offer a more detailed view of the spatiotemporal potential 

distribution over the body surface, with respect to the twelve-leads ECG. For example, an 

electrical image may capture the presence of local large gradients in potential which would be 

missed when too sparse spatial sampling is used (Sörnmo and Laguna, 2005). 

 

1.3 The autonomic nervous system  

 

The autonomic nervous system (ANS) controls most visceral functions of the body. It 

contributes to the control of arterial pressure, gastrointestinal motility and secretion, urinary 

bladder emptying, sweating and body temperature.  

One characteristic of the ANS is the rapidity and intensity with which it can change 

visceral functions: it can increase the heart rate twofold in 3 to 5 seconds, and it can double 

the arterial pressure in 10 to 15 seconds. 

The ANS is activated mainly by centers located in the spinal cord, brain stem and 

hypothalamus (Figure 1.9). Also, portions of the cerebral cortex, especially of the limbic 

cortex, can transmit impulses to the lower centers and influence ANS control. 

The ANS also operates by means of visceral reflexes. That is, subconscious sensory 

signals from a visceral organ can enter the autonomic ganglia, the brainstem, or 

hypothalamus and return subconscious reflex responses directly back to the visceral organ to 

control its activities. The efferent autonomic signals are transmitted to the various organs of 

the body through two major subdivisions: the sympathetic and the parasympathetic nervous 

system. Figure 1.9 shows the general organization of the ANS. The sympathetic nerve fibers 

originate in the spinal cord, between segments T1 and L2, and pass first into the sympathetic 

chain and then to the target tissue and organs. The sympathetic pathway from the spinal cord 

to any target tissue or organ is composed of two neurons: a preganglionic neuron and a 

postganglionic neuron. Immediately after the spinal nerve leaves the spinal canal, the 

preganglionic sympathetic fibers leave the nerve and pass through a white ramus into one of 

the ganglia of the sympathetic chain. Then the course of the fibers can either synapse with 

postganglionic neurons in the ganglion that it enters, or progress in the chain and synapse in 

one of the other ganglia in the chain, or it can pass through the chain and through one of the 

sympathetic nerves radiating outward, finally synapsing in a peripheral sympathetic ganglion. 

The postganglionic neuron thus originates either in one of the sympathetic chain ganglia or in 

one of the peripheral sympathetic ganglia. 

The general organization of the parasympathetic nervous system is shown in Figure 1.9. 

Parasympathetic fibers leave the central nervous system through cranial nerves III, VII, IX 

and X, and additional parasympathetic leave the lowermost part of the spinal cord through the 

second and third sacral spinal nerves and occasionally through the first and fourth sacral 

nerves. About 75% of all parasympathetic fibers are in the vagus nerves (cranial nerve X), 
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passing to the entire thoracic and abdominal regions of the body. The vagus nerves, also 

referred to as vagi, supply parasympathetic nerves to the heart, lungs, esophagus, stomach, 

entire small intestine, proximal half of the colon, liver, gallbladder, pancreas and upper 

portions of the ureters. Parasympathetic fibers in the third cranial nerve innervate the 

papillary sphincters and ciliary muscles of the eye. Fibers from the seventh cranial nerve pass 

to the lacrimal, nasal, and submandibular glands. And fibers of the ninth cranial nerve 

innervate the parotid gland. The sacral parasympathetic fibers distribute to the descending 

colon, rectum, urinary bladder, lower portions of the ureters, and external genitalia. The 

parasympathetic system, like the sympathetic, has both preganglionic and postganglionic 

neurons. However, in general, parasympathetic preganglionic fibers pass uninterrupted all the 

way to the target organ. In the wall of the organ are located the postganglionic neurons. The 

preganglionic fibers synapse with these, and very short postganglionic fibers leave the 

neurons to innervate the tissues of the organ.  

The sympathetic and parasympathetic fibers secrete mainly one of two synaptic 

transmitter substances: ACh and norepinephrine (NE). Fibers of the first type are called 

cholinergic, fibers of the second type adrenergic. All preganglionic neurons are cholinergic, 

in both the sympathetic and parasympathetic systems. On the other hand, most of the 

postganglionic neurons of the sympathetic system are adrenergic, while most of the 

parasympathetic postganglionic neurons are cholinergic.  

ACh activates mainly two types of receptors called muscarinic and nicotinic. Muscarinic 

receptors are located on all effectors cells stimulated by the postganglionic neurons of the 

parasympathetic nervous system as well as on those stimulated by the postganglionic 

cholinergic neurons of the sympathetic system. Nicotinic receptors are located at the synapses 

between the preganglionic and postganglionic neurons of both the sympathetic and 

parasympathetic systems.  

There are also two types of adrenergic receptors: alpha receptors and beta receptors. The 

beta receptors are in turn divided into beta-1 and beta-2, and alpha receptors into alpha-1 and 

alpha-2, although the alpha receptors subdivision is less distinct. NE and epinephrine (EP) 

are secreted into the blood by the adrenal medulla. NE excites alpha receptors to a greater 

extent than beta receptors. Conversely, EP excites both types approximately equally.  

Certain alpha functions are excitatory while others are inhibitory, as for beta functions. 

As a consequence, the sympathetic system cause excitatory effects in some organs and 

inhibitory effects in others. This behavior is also observed in the parasympathetic system.  

When the sympathetic stimulation excites a particular organ, parasympathetic stimulation 

sometimes inhibits it, demonstrating that the two systems occasionally act reciprocally to 

each other. But most organs are dominantly controlled by one of the two systems. 

Sympathetic stimulation of the heart generally increases the overall activity of the 

myocardium. This is accomplished by increasing both the rate (positive chronotropy) and the 

force of contraction (positive inotropy). Parasympathetic stimulation causes mainly the 

opposite effects. However, parasympathetic innervation of the heart is mainly concentrated in 

the SA and AV nodes, whereas the sympathetic is distributed across the cardiac muscle.     

Most systemic blood vessels, especially those in the abdominal viscera and the skin of the 

limbs, are constricted by sympathetic stimulation. Parasympathetic stimulation has almost no 

effect on most blood vessels. 
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The arterial blood pressure is determined by two factors: propulsion of blood by the heart 

and resistance to flow through the vessels. Sympathetic stimulation increases both propulsion 

and resistance, which generally causes a marked acute increase in arterial pressure but very 

often very little change in long term pressure unless the sympathetic system stimulates the 

kidneys to retain salt and water at the same time. Conversely, moderate parasympathetic 

stimulation decreases the pumping by the heart but has virtually no effect on peripheral 

resistance. The usual effect is a slight decrease in blood pressure, although very strong 

stimulation can cause a transient drop of blood pressure.   

  

 
Figure 1.9 The autonomic nervous system. ANS = autonomic nervous system; ALS = 

anterolateral system; NTS = nucleus tractus solitarius (From: Stanfield CL, ―Principles of 

human physiology‖ 2011) 

 

Stimulation of the sympathetic nerves to the adrenal medullae causes large quantities of 

EP and NE to be released into the circulating blood. The two hormones have almost the same 

effects on the different organs as those caused by direct sympathetic stimulation, except that 

the effects last 5 to 10 times longer, due to the slow removal process of these hormones 

which requires 1 to 3 minutes. The effects of circulating NE include constriction of nearly all 

the blood vessels of the body, inhibition of the gastrointestinal tract, pupil dilation and 
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increased activity of the heart. As a result of circulating NE, the total peripheral resistance is 

strongly increased together with the arterial blood pressure. EP causes almost the same 

effects except it has greater effect in stimulating beta receptors and cardiac activity, while 

causing only weak constriction of blood vessels in the muscles.   

 

 

 

 
 

Figure 1.10 General organization of the autonomic nervous system. (From: Klabunde RE, 

―Cardiovascular Pharmacology concepts‖, www.cvpharmacology.com) 

 

Normally, the sympathetic and parasympathetic systems are continually active, and the 

basal rates of activity are known as sympathetic tone and parasympathetic tone, respectively. 

Figure 1.10 shows the general structure of pre- and post-ganglionic neurons of the 

sympathetic and parasympathetic efferent pathways of the ANS. 
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1.3.1 The baroreceptor reflex 

 

Arterial blood pressure is normally regulated within a narrow range, with a mean value 

typically ranging from 85 to 100 mmHg in adults. Arterial pressure homeostasis is crucial to 

ensure adequate blood flow to organs throughout the body. This is accomplished by negative 

feedback systems incorporating pressure sensors (baroreceptors) that sense the arterial 

pressure. The most important arterial baroreceptors are located in the carotid sinus, at the 

bifurcation of external and internal carotids, and in the aortic arch (Figure 1.11). These 

receptors respond to stretching of the arterial wall so that if arterial pressure suddenly rises, 

the walls of these vessels passively expand, causing the receptors to increase their firing rate. 

Conversely, if arterial blood pressure falls, decreased stretch of the arterial wall leads to a 

decreased firing rate of the receptors. The carotid sinus baroreceptors are innervated by the 

sinus nerve of Hering, a branch of the glossopharyngeal nerve (IX cranial nerve). The 

glossopharyngeal nerve synapses in the nucleus tractus solitarius (NTS) located in the 

medulla of the brainstem.  

  

 

 

 

Figure 1.11 Role of the autonomic nervous system in the baroreceptor reflex. (From: 

http://phgy210.wikispaces.com, Copyright © The McGraw-Hill Companies, Inc.) 

 

The aortic arch baroreceptors are innervated by the aortic nerve, which then combines 

with the vagus nerve (X cranial nerve) traveling to the NTS. The NTS modulates the activity 

of sympathetic and parasympathetic (vagal) neurons in the medulla, which in turn regulate 

the autonomic control of the heart and blood vessels.  

Of these two arterial baroreceptors sites, the carotid sinus is quantitatively the most 

important for regulating arterial pressure. The carotid sinus receptors respond to pressures 
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ranging from 60-180 mmHg (Figure 1.11). Receptors within the aortic arch have a higher 

threshold pressure and are less sensitive than the carotid sinus receptors. Baroreceptors are 

also sensitive to the mean pressure value. That is, at a given mean arterial pressure, 

decreasing the pulse pressure (systolic minus diastolic pressure) decreases the baroreceptor 

firing rate. 

Maximal carotid sinus sensitivity occurs near the normal mean arterial pressure so that 

even small changes in arterial pressure around the "set point" dramatically alter receptor 

firing rate in a feedback mechanism which attempts to restore the set point. A decrease in 

arterial pressure (mean, pulse or both) results in decreased baroreceptor firing. The 

"cardiovascular center" within the medulla responds by increasing the sympathetic outflow 

and decreasing the parasympathetic (vagal) outflow. Under normal physiological conditions, 

baroreceptor firing exerts a tonic inhibitory influence on the sympathetic outflow from the 

medulla. Therefore, acute hypotension results in a dramatic reduction of sympathetic 

inhibition within the medulla, so that sympathetic tone increases. These autonomic changes 

cause vasoconstriction (increased peripheral vascular resistance), tachycardia and increase in 

the force of cardiac contraction. The latter two changes increase the cardiac output, while the 

increases in cardiac output and peripheral resistance contribute to the restoration of the 

systemic arterial pressure. 

Baroreceptors, however, adapt to chronic changes in arterial pressure. For example, if arterial 

pressure suddenly falls when a person stands, the baroreceptor firing rate will decrease; 

however, after a period of time, the firing returns to near normal levels as the receptors adapt 

to the lower pressure. Therefore, the long-term regulation of arterial pressure requires 

activation of other mechanisms (primarily hormonal and renal) to maintain normal arterial 

blood pressure (Klabunde, 2011). 

 

 
Figure 1.12 Carotid sinus fibers firing rate as a function of mean arterial blood pressure. 

(From: R.E. Klabunde, ―Cardiovascular Physiology Concepts‖. www.cvphysiology.com) 

 

1.3.2 The Bainbridge reflex 

 

The Bainbridge reflex describes an increase in heart rate due to an increase in right atrial 

or central venous pressure via stretch receptors (mechanoreceptors) located in the right atrial 

wall and junctions of the venae cavae.  
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When the right atrial pressure increases, the heart rate also increases in an attempt to 

maintain homeostasis of blood filling of the cardiac chambers.  A small part of this increase 

is caused by a direct effect of the increased atrial volume which causes the atrial wall to 

stretch, which in turn causes the pacemaker cells of the SA node to increase their firing rate. 

Direct stretch can increase the heart rate as much as 15%.`An additional 40-60%  increase  is 

caused by a nervous reflex known as Bainbridge reflex, named after British physician Francis 

Arthur Bainbridge who first described it in 1914. Mechanoreceptors are stimulated by the 

increase in atrial pressure caused by increased venous return. They elicit the Bainbridge 

reflex by transmitting afferent signals through the vagus nerves to the medulla of the brain. A 

parasympathetic inhibitory response is generated which increases sympathetic outflow 

causing the heart rate and contractility to increase. Thus, the Bainbridge reflex helps prevent 

blood pooling in the atria. The changes in the heart rate, however, are dependent on the 

underlying rate prior to stimulation; thus, relatively fast heart rates are less sensitive to further 

increases (Guyton and Hall, 2001; Modak, 2008). 

The Bainbridge reflex and the baroreceptor reflex act in a reciprocal way: the increase in 

heart rate caused by the Bainbridge reflex is followed by an increase in arterial pressure, 

which stimulates the baroreceptors of the carotid sinus and aortic arch, which in turn trigger 

the baroreflex mechanism to decrease heart rate.  

 

1.3.3 The respiratory sinus arrhythmia 

 

The respiration-related modulation of heart rate, characterized by tachycardia during 

inspiration and bradycardia during expiration, is known as respiratory sinus arrhythmia 

(RSA).  

During inspiration, the thoracic pressure decreases causing an increase of venous return 

due to hydrostatic gradient. Increased atrial filling causes the atrial wall to stretch, triggering 

the Bainbridge reflex. As a result the heart rate increases. However, increased cardiac filling 

also elicits an increase in the stroke volume (Frank-Starling mechanism) and blood pressure. 

This activates the baroreflex that opposes the increase in heart rate (tachycardia) caused by 

the Bainbridge reflex. Thus, the baroreceptor reflex limits the respiratory sinus arrhythmia. 

During expiration the opposite phenomenon occurs: the venous return is decreased and 

the decreased right atrial pressure inhibits the Bainbridge reflex, the force of cardiac 

contraction and stroke volume are reduced due to reduced filling, and the baroreflex 

mechanism causes the heart rate to be reduced (bradycardia).    

The intensity (amplitude) of respiratory sinus arrhythmia can be seen as the balance of the 

Bainbridge reflex and the baroreceptor reflex (Stauss, Physionet.org). 
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Chapter 2: Heart rate variability 
 

 

2.1 Heart rate variability background 

 

During normal sinus rhythm, the heart rate varies from beat to beat. Heart rate variability 

(HRV) results from the dynamic interplay between the multiple physiologic mechanisms that 

regulate the instantaneous heart rate (IHR), or conversely, the instantaneous inter-beat 

interval (IBI). Short-term IHR oscillations reflect changes in the relative balance between the 

sympathetic and parasympathetic branches of the ANS, known as the sympathovagal balance.  

Measurement of HRV first requires detection of each heart beat. For the purpose of 

assessing autonomic regulatory effects on HR, the most accurate time marker (fiducial point) 

is the onset of atrial depolarization, namely the P wave onset. Unfortunately, the amplitude of 

the P wave is generally low, which makes it often difficult to detect, especially in noisy 

signals. Conversely, the R wave is easy to detect and label with a fiducial point. The exact 

location of this marker is usually defined to be either the highest (or lowest) point, the QRS 

onset, or the QRS center of mass. Furthermore, the competing effects of the ANS branches 

lead to subtle changes in the features within the heartbeat (Clifford et al. 2006). For instance, 

an increased sympathetic stimulation of the SA node (during physical exercise, for example) 

will lead to an increased local heart rate, and an associated shortening of the PR interval, QT 

interval, QRS width, and T wave. Since the magnitude of the beat-to-beat modulation of the 

PR interval is correlated with, and much less significant than that of the RR interval (due to 

modulation of AV nodal conduction), and the R peak is well defined and easy to locate, the 

RR-interval (of normal sinus rhythm beats) is generally preferred. However, the sensitivity of 

the spectral HRV metrics to sampling frequencies below 1 KHz indicates that even small 

differences may have a significant effect for such metrics under certain circumstances 

(Clifford et al. 2006). 

An RR-interval series (tachogram) recorded over a time window of at least 5 minutes is 

typically characterized by a power spectral density distribution exhibiting two dominant 

peaks: one in the low frequency (LF) range (0.04–0.15 Hz) and one in the high frequency 

(HF) region (0.15–0.4 Hz). In general, the activity in the HF band is thought to reflect 

parasympathetic activity at the SA node. Since respiration is a parasympathetically mediated 

activity (through the vagal nerve), a peak corresponding to the rate of respiration can often be 

observed in this frequency band, caused by RSA. However, not all the parasympathetic 

activity is due to respiration. Furthermore, the respiratory rate may drop below the (generally 

accepted) lower bound of the HF region and therefore confound measures in the LF region. 

The LF region is generally thought to reflect sympathetically mediated activity, mainly 

related to blood pressure homeostasis, through the baroreceptors reflex. Activity in bands 

lower than the LF region are less well understood but seem to be related to thermoregulation, 

neurohormonal regulation, and circadian variations such as postural and behavioral changes. 
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Many metrics for evaluating HRV have been described in the literature, together with 

their varying successes for discerning particular clinical problems. In general, HRV metrics 

can be broken down into either statistical time-based metrics or frequency-based metrics that 

evaluate power, or ratios of power, in certain spectral bands. Furthermore, most metrics are 

calculated either on a short time scale (often about 5 minutes) or over very long periods of 

time (usually 24 hours). 

 

2.2 Clinical relevance of HRV 

 

There is growing evidence for the role of the ANS in a wide range of somatic and mental 

diseases. The two major branches of the ANS, namely the sympathetic system, associated 

with energy mobilization, and the parasympathetic system, associated with vegetative and 

restorative functions, are in dynamic balance. When this changes into a static imbalance, for 

example, under environmental pressures, the organism becomes vulnerable to pathology. 

Modern conceptions of organism function based on complexity theory hold that organism 

stability, adaptability, and health are maintained through variability in the dynamic 

relationship among system elements (Thayer and Sternberg, 2006). Patterns of organized 

variability are preserved to cope with constantly changing environmental demands. 

Consequentially, optimal system functioning requires flexible regulation of local energy 

expenditure. In contrast, rigid regularity is associated with mortality, morbidity, and ill 

health. A corollary of this view is that autonomic imbalance, in which one branch of the ANS 

dominates over the other, is associated with a lack of dynamic flexibility and health. 

Empirically, there is a large body of evidence to suggest that autonomic imbalance, in which 

typically the sympathetic system is hyperactive and the parasympathetic system is 

hypoactive, is associated with various pathological conditions (Brook and Julius, 2000). In 

particular, when the sympathetic branch dominates for long periods of time, the energy 

demands on the system become excessive and ultimately cannot be met. 

When both cardiac vagal (the primary parasympathetic nerve) and sympathetic inputs are 

blocked pharmacologically (for example, with atropine plus propranolol, the so-called 

double blockade), intrinsic HR is higher than the normal value at rest. This fact supports the 

idea that the heart is under tonic inhibitory control by parasympathetic influences. Thus, 

resting cardiac autonomic balance favors energy conservation by means of parasympathetic 

dominance over sympathetic influences. In addition, the HR time series is characterized by 

considerable beat-to-beat variability (HRV), which also implicates vagal dominance, as the 

sympathetic influence on the heart is too slow to produce rapid beat-to-beat changes. Low 

HRV is associated with increased risk of all-cause mortality, and has been proposed as a 

marker for disease. 

Several structural and functional alterations of the cardiovascular system that are 

frequently found in hypertensive individuals may increase their cardiovascular risk beyond 

that induced by the blood pressure (BP) elevation alone. Electrocardiographic evidence of left 

ventricular hypertrophy (LVH) and strain are associated with increased morbidity and 

mortality. HRV is significantly reduced in patients with LVH secondary to hypertension or 
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aortic valve disease (Acharya et al., 2006), in particular a reduction in baroreflex sensitivity 

is observed in cardiac LVH.  

In one of the first studies (Kleiger et al., 1987) to investigate the relationship between 

indices of HRV and mortality, it was shown in almost 900 post-myocardial infarction (MI) 

patients that HRV was a significant independent predictor of mortality in this high risk group. 

Numerous studies (Acharya et al., 2006; Carney et al., 2004; Carney et al., 2005) have since 

supported the notion that decreased vagal activity, as indexed by HRV, predicts mortality in 

high risk as well as low risk populations. 

Low HRV has also been shown to be associated with diabetes mellitus, and decreased 

HRV has been shown to precede evidence of disease provided by standard clinical tests 

(Pfeifer et al., 1982; Singh et al., 2000; Villareal et al., 2002; Thayer and Sternberg, 2006). 

Autonomic function tests conducted on patients with chronic renal failure, reveal a 

predominant impairment of the parasympathetic nervous system (Zoccali et al., 1982), while 

spectral analysis exhibits a strong reduction in the HR power spectrum at all frequency ranges 

(Axelrod et al., 1987).  

Studies have shown that smokers have increased sympathetic and reduced vagal activity 

as measured by HRV analysis (Acharya et al., 2006). HRV also appears to decrease with the 

acute ingestion of alcohol, suggesting parasympathetic withdrawal. (Malpas et al., 1991) 

have demonstrated vagal neuropathy in men with chronic alcohol dependence using 24 h 

HRV analysis. 

Recent work has suggested that HRV can be used to measure physiological changes in a 

number of psychiatric illnesses such as major depression, generalized anxiety disorder, 

schizophrenia, panic disorder (PD), and posttraumatic stress disorder (PTSD). Exposure to 

extreme traumatic events may lead to persistent behavioral and physiological abnormalities, 

which are recognized as the clinical syndrome of post-traumatic stress disorder (PTSD), 

characterized by vivid intrusive re-experiencing of the traumatic event ‗flashbacks‘, and 

extreme anxiety and avoidance upon exposure to stimuli resembling the event. This 

syndrome is accompanied by changes under two distinct conditions: a basal condition of 

partial hyper-arousal, associated with increased heart rate and blood pressure, and a state of 

further stimulation on exposure to stress-related cues (Cohen et al., 2000).  

Panic disorder (PD), a syndrome characterized by spontaneous panic attacks involving 

intense anxiety and fear of losing control, together with autonomic symptoms such as 

palpitations, hyperventilation, tremor and dizziness, has also been studied by means of HRV. 

Evidence has been found of sympathetic dysregulation in PD, characterized by significantly 

increased LF and marginally increased HR (Friedman and Thayer, 1998).  

 

2.3 HRV in psychophysiological research 

 

HRV has been used to assess interventions that might impact sympathetic–

parasympathetic balance in conditions not associated with cardiac disease or autonomic 

neuropathy (Fu et al., 2006; Paul-Labrador et al., 2006). Numerous studies have reported 

evidence that HRV is sensitive to changes in mental effort (Mulder and Mulder, 1981; 

Aasman et al., 1987; Jorna, 1992; Veltman and Gaillard, 1993). With an increase in mental 
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effort, there is a decrease in power around 0.10 Hz, in what some authors referred to as the 

mid-frequency band, 0.07–0.14 Hz (Jorna, 1992). This is now commonly known as the low 

frequency band, 0.04–0.15 Hz (Task Force of the European Society of Cardiology, 1996). 

The underlying mechanism may be due to increased sympathetic activation or the subjects‘ 

pattern of breathing (Althaus et al., 1998). In other studies, apart from a strong inverse 

relationship between mental effort and HRV power, mean RR interval appears to be the most 

sensitive measure (Capa et al., 2008; De Rivecourt et al., 2008; Henelius et al., 2009; 

Weippert et al., 2009). While HRV has useful applications both clinically and as an 

autonomic measure in physiological research, the inter-subject variability of HRV measures 

is rather high (Gerritsen et al., 2003; Pinna et al., 2007). Thus, it is difficult to generalize the 

results from any one given study to others with subjects of different demographic 

characteristics. Additionally, the within-subject reliability of HRV measures remains unclear 

(Mukherjee et al., 2011). The degree of reproducibility of HRV measurements from short-

term recordings in healthy people is inconsistent and can at best be considered moderate 

(Pinna et al., 2007; Sandercock et al., 2005), except under highly controlled resting 

conditions (Melanson, 2000). Studies of reliability of HRV parameters during mental effort 

tasks is lacking in the literature. 

 

2.4 Measures of HRV 

 

2.4.1 Time domain measures of HRV 

 

For the purpose of assessing autonomic regulatory effects on HR, the most appropriate 

approach would ideally detect the occurrence of sinus nodal events or P waves. In practice, 

this is technically difficult in surface ECG, so HRV measurement is usually based on the 

sequence of RR intervals. This practice neglects the potential presence of fluctuations in PR 

interval due to modulation of AV nodal conduction. Premature ventricular contractions 

(PVC) and premature atrial contractions (PAC) represent additional confounders in assessing 

autonomic regulation of HR. Removal of the effects of PVCs and PACs requires careful 

attention. 

A straightforward and useful metric of HRV, termed the SDNN, is the standard deviation 

of all normal RR intervals (those measured between consecutive sinus beats). The SDNN 

may be easily calculated from a 24-hour Holter monitor. SDNN is typically measured over 24 

hours and reported in units of milliseconds. Results derived from shorter (or longer) periods 

should not be compared to values for the accepted normal range, which are based on 24-hour 

records. This is because HRV is not a weak-sense stationary process, i.e., a process in which 

the mean and variance are independent of record length. Two variants of the SDNN, created 

by dividing the 24-hour monitoring period into 5-minute segments, are the SDNN index and 

the SDANN index (both with units in ms). The SDNN index is the mean of all the 5-minute 

standard deviations of NN (normal RR) intervals during the 24-hour period (i.e., the mean of 

288 NN standard deviations), while the SDANN index is the standard deviation of all the 5-

minute NN interval means (i.e., the standard deviation of 288 NN means). 



Part I – Chapter 2 41 

The HRV indices discussed so far are called time domain measures because they are 

based on the time-series of normal RR intervals. Other time domain indices are the RMSSD 

and the pNN50. The RMSSD, or the root-mean-square successive difference, calculates the 

square root of the mean of the squared differences between successive NN intervals over 24 

hours. The pNN50 calculates the percentage of differences between successive NN intervals 

over 24 hours that are greater than 50 ms. Both of these indices measure short-term variation 

in the NN interval because they are entirely based on comparisons between successive beats. 

Of note, all the HRV indices described above, except pNN50, have units of time and thus, 

strictly speaking, are measures of variability in RR interval (inter-beat interval), not HR. HR 

and RR interval are reciprocals of each other, or to be exact, HR = 60,000/RR, where HR is 

expressed in units of beats per minute (bpm), and RR in units of time. Fluctuations in RR 

interval and HR are closely related, but not in a linear way, since the reciprocal is not a linear 

operation. Time domain measurements are traditionally calculated from the RR (or NN) 

interval sequence, even though instantaneous HR may be more closely tied to autonomic tone 

and, therefore, have greater physiological significance than RR interval. 

 

2.4.5 Frequency domain measures of HRV 

 

Additional insight into the nature of HR fluctuations may be gained by analyzing the 

fluctuations in the frequency domain. HRV may be broken into the frequency components 

that compose the overall variability. The RR series (also referred to as inter-beat interval 

(IBI) series) is preliminarily evenly resampled, typically at a sampling rate of 4 Hz or higher, 

to allow further processing based on traditional non-parametric estimation of power spectral 

density (PSD) based on Welch periodogram (Welch, 1967). Alternatively, PSD may be 

estimated by means of Lomb-Scargle‘s periodogram (LSP) (Lomb, 1976; Scargle, 1982) 

which does not require resampling. However, this method is based on the least-square fitting 

of sine waves to the data, with the underlying assumption that noise is normally distributed 

(Schimmel, 2001), which is questionable in RR series analysis of variability. Moreover, the 

accuracy of the estimates of the higher frequencies in LSP is a function of the number of RR 

intervals that exist with a value corresponding to the spectral region of interest (Clifford et 

al., 2006). For instance, tachograms with no RR intervals shorter than 1.25s (IHR < 48 bpm) 

can still be analyzed, but there is no power contribution at 0.4 Hz, indicating the undesirable 

effect of data-dependent frequency resolution. 

PVCs and PACs have a particularly insidious effect on the power spectral density (PSD) 

distribution. If they are not corrected on the time series, the effect of a sudden brief change in 

RR interval (or HR) is to add substantial power density at all frequencies, often masking the 

true variability that is being assessed. On the other hand, if the RR intervals corresponding to 

the ectopic beats are simply deleted, then individual frequency components become altered 

because the deletion of time advances the phase, by a different amount at each frequency. 

This has the effect of reducing the calculated power density at some frequency components 

and augmenting it at others. A simple solution to this problem is to replace the RR intervals 

affected by an ectopic beat with the same number of RR intervals of value equal to the mean 

of those replaced (Bilchick and Berger, 2006).  
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The PSD is usually integrated within specific frequency bands, since fluctuations within 

each band are mediated by specific physiologic mechanisms (illustrated in sections 2.1 

through 2.3). The low frequency (LF) band (0.04–0.15 Hz) is related to both sympathetic and 

parasympathetic modulation, and the high frequency (HF) band (0.15–0.40 Hz) is governed 

almost exclusively by parasympathetic effects (Akselrod et al., 1981). The ratio of LF to HF 

power is often used as a metric of sympathetic—parasympathetic balance.  

 

2.4.6 Nonlinear measures of HRV 

 

Although time and frequency domain measures of HRV quantify variability on various 

time scales, nonlinear HRV measures attempt to quantify the structure or complexity of the 

RR interval time series. For example, a random series of RR intervals, a normal series of RR 

intervals and a totally periodic series of RR intervals might have the exact same SDNN, but 

their underlying ―organization‖ would be completely different. A large number of nonlinear 

measures of HRV have been studied, the most commonly used include the power law slope, 

indices from the Poincaré plot, fractal dimension, detrended fluctuation analysis, largest 

Lyapunov exponent, sample entropy. 

Power law slope 

In normal sinus rhythm, spectral power, measured over 24 hours, shows a progressive, 

exponential increase in amplitude with decreasing frequency. This relationship can also be 

plotted as the log of power (Y axis) versus the log of frequency (X axis), which transforms 

the exponential curve to a line whose slope can be estimated. In a log-log plot, the power law 

slope between 10
−2

 and 10
−4

 Hz is linear with a negative slope, and reflects the degree to 

which the structure of the RR interval time series is self-similar over a scale of minutes to 

hours. Decreased power law slope has been shown to be a marker for increased risk of 

mortality after myocardial infarction (Kleiger et al., 2005). 

Poincaré plot 

The Poincaré plot is the most commonly used non-linear estimator of HRV function 

(Mukherjee et al., 2011). In this two-dimensional representation, each RR interval is plotted 

against the previous one. After fitting an ellipse and plotting two axes (perpendicular to each 

other) to the points, one can calculate the standard deviation of the distance of the points from 

each axis. The SD1 (minor axis) value reflects short-term variability while SD2 (major axis) 

reflects long-term variability.  

HRV in risk stratification analysis generally requires that the RR interval time series be 

plotted for an entire 24 hours Holter recording. However, plots of shorter periods, e.g. hours, 

can reveal details which are obscured in a 24-hour plot which involves a considerable amount 

of datapoints (Kleiger et al., 2005).  

Recent studies have suggested that Poincaré plots may also be valid markers for mental 

stress analysis in psychophysiological research (Mukherjee et al., 2011). It is of considerable 

interest and benefit to see if these results are reproducible in short-term HRV, which is 

critical for studying cardiovascular autonomic changes in healthy subjects. Shorter time series 

analysis techniques are desirable because many human psychophysiological studies under 
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controlled lab conditions are limited in how long they can be optimally maintained 

(Mukherjee et al., 2011).  

Fractal dimension 

Fractal dimension (FD) is a geometric approach to measure self-similarity in a time series 

and is suited to measure complex fluctuations with statistical properties observed in the RR 

series. FD was significantly reduced in schizophrenia patients compared to controls (Bar et 

al., 2007) and was relatively independent of heart rate. In patients with stroke involving 

multiple cerebral vascular territories, FD was a useful measure to distinguish between 

different lesion severity and from controls (D‘Addio et al., 2009).  

Detrended fluctuation analysis 

Detrended fluctuation analysis (DFA) is another measure to quantify the fractal scaling 

properties of the short-term RR series. The root-mean-square fluctuation of an integrated and 

detrended time-series is measured at different scales. The fluctuations are characterized by a 

scaling exponent which is the slope of the line relating to log of the fluctuation on a log scale. 

DFA is significantly diminished in participants with major depressive disorder when 

compared to controls (Schulz et al., 2010). 

Scaling exponent α1, computed from DFA on a scale of 3–11 beats (Kleiger et al., 2005), 

is a measure of the degree to which the RR interval pattern is random at one extreme, or 

correlated at the other. A totally random RR interval pattern has a value for α1 of 0.5, whereas 

a totally correlated pattern of RR intervals, i.e., one that is totally periodic, has a value of 1.5. 

α1 is usually repeatedly measured within a period of 1000 RR intervals and then averaged. 

Normal values are about 1.05. Decreased values for α1 are strong predictors of outcome after 

MI. Another measure, α2 can be computed in a similar way on a scale of 12–20 RR intervals. 

α2, however, has not proved to be especially useful in risk stratification (Kleiger et al., 2005). 

Largest Lyapunov exponent 

Lyapunov exponent is a simple non-linear measure of how fast two initially nearby points 

on a trajectory will diverge from each other as the system evolves, and a positive Lyapunov 

exponent is a strong indicator of chaos. Even though an m dimensional system has multiple 

Lyapunov exponents, the largest Lyapunov exponent (LLE) is sufficient to represent the 

whole system (Mukherjee et al., 2011). Recent studies have shown LLE is good indicator of 

anxiety and mental stress and is sensitive to the effect of cardioinhibitory tricyclic 

antidepressants (Yeragani et al., 2004; Yeragani and Rao, 2003). 

Sample entropy 

Entropy measures express the degree of randomness in the cardiovascular system. In 

healthy people, the tachogram would show high entropy. In the case of low entropy systems, 

the tachogram would be ordered and repetitive, showing low variability. Sample entropy 

(SampEn) is a regularity statistic that quantifies the unpredictability of fluctuations in the RR 

series. Entropy decreases in various medical conditions like schizophrenia (Bar et al., 2007), 

major depressive disorder (Schulz et al., 2010), cardiovascular diseases, and autonomic 

neuropathy (Khandoker et al., 2010). Lempel–Ziv complexity (LZ) is another entropy metric 
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used to measure the inherent complexity of discrete time physiologic signals. A more 

dynamic and robust system has a higher complexity measure (Mukherjee et al., 2011). 
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Chapter 3: Atrial fibrillation 
 

 

3.1 Atrial fibrillation overview 

 

Atrial fibrillation (AF) is the most common sustained arrhythmia in humans, causing an 

increasing number of complications and deaths (Schotten et al., 2011). Electrocardiogram 

(ECG)-based surveys suggest that approximately 1% of the total population is affected 

(Kannel et al., 1998). Overall, 20–25% of all ischemic strokes are caused by AF (Miyasaka et 

al., 2005), and AF-related strokes are more severe than strokes of other origin. The 

importance of cardio-embolic stroke in AF patients is highlighted by the fact that adequate 

anticoagulation in patients with AF can prevent strokes and reduce mortality in patients at 

increased risk of stroke (Connolly et al., 2009; Hart et al., 1999). The number of patients with 

AF is likely to double or triple within the next two to three decades (Hobbs et al., 2005). 

Numerous clinical conditions are associated with an increased incidence of AF. Most of 

them contribute to a gradual and progressive process of atrial remodeling characterized by 

changes in ion channel function, Ca
++

 homeostasis, and atrial structure such as cellular 

hypertrophy, activation of fibroblasts, and tissue fibrosis. These alterations may both favor 

the occurrence of ―triggers‖ for AF that initiate the arrhythmia and enhance the formation of 

a substrate for AF that promotes its perpetuation. 

Little is known about the mechanisms or clinical conditions that initiate episodes of the 

arrhythmia. A considerable portion of patients with lone AF suffer from ―focal AF‖ that is 

initiated by triggers that can be localized to preferential sites, mainly the pulmonary veins 

(PVs). Stretch-activated or catecholamine-dependent automaticity, as well as abnormal 

calcium handling, have been suggested as mechanisms causing AF in focal AF patients 

(Schotten et al., 2011). 

 

3.2 Atrial electrophysiology 

 

The predominant shape of atrial myocytes‘ action potential is triangular with a gradual 

repolarization phase as shown in Figure 3.1. If a plateau is present, it is less pronounced than 

in ventricular myocytes. As in ventricular myocytes, the main depolarizing currents are the 

rapidly activating and inactivating Na
+
-current (INa) and the L-type Ca

++
 current (ICaL), 

characterized by slower kinetics. The differences in action potential morphology between 

atria and ventricles are mainly caused by differences in ion channel current density and 

kinetics of repolarizing currents.  

The membrane resistance of atrial myocytes at rest is relatively high, and thus less 

depolarizing current is required to reach the action potential threshold, making atrial 

myocytes inherently more excitable. Within the atria, considerable regional variation in 

action potential morphology exists. PV myocytes differ from left atrial myocytes, with a 

more depolarized resting membrane potential, lower upstroke velocity, and shorter action 
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potential. In some areas, like the crista terminalis (the junction between the right atrium and 

the right auricle shown in Figure 3.2), the epicardium has shorter atrial action potential 

duration (APD) than the endocardium. These cells in the crista terminalis and Bachmann‘s 

bundle may form specialized rapidly conducting tracts within the atrium. 

 

 
Figure 3.1 Regional Difference in Ionic Current Contribution to action potential (From: 

Ehrlich, JR et al. J Am Coll Cardiol 2008; 51:787-792) 

 

3.2.1 Electrophysiological basis of PV ectopy 

 

In humans, paroxysms of AF often originate in the myocardial sleeves of the PVs. 

However, the PVs in the adult heart consist mainly of myocytes morphologically very similar 

to normal atrial myocytes, and the contribution of scattered abnormal cell types with possible 

pacemaking properties remains to be established (Schotten et al., 2011).  

Apart from differences in cellular electrophysiology, the PV area also shows salient 

features in gross anatomy and fiber geometry. In patients, there may be a relation between PV 

structure and the presence of AF. In a recent study (Kholova and Kautzner, 2004) the 

superior PVs had longer and thicker sleeves in AF patients. Guerra and co-workers (Guerra et 

al., 2003) specifically linked areas of PV wall thickening to high-frequency potentials and the 

origin of ectopic beats. Moreover, in a study by Hassink  and co-workers (Hassink et al., 

2003) PVs in AF patients also showed more fibrosis and discontinuities. 



Part I – Chapter 3 51 

In addition to the PVs, arrhythmic activity may also originate from ―myocardial sleeves‖ 

in other atrial regions, such as myocardial extensions in the atrioventricular valves and 

coronary sinus. 

 

 
Figure 3.2 Frontal interior view of the heart (From: www.wikipedia.org, non copyrighted) 

 

3.3 Excitation-contraction coupling 

 

Excitation-contraction coupling is initiated by depolarization of the cell membrane by an 

action potential that triggers opening of voltage-dependent L-type Ca
++

 channels. Influx of 

Ca
++

 triggers the release of Ca
++

 from the sarcoplasmic reticulum in a process called Ca
++

-

induced Ca
++

 release. Ca
++

 binds to troponin C activating the actin-myosin filaments, and the 

myocyte starts to contract. Relaxation is initiated by a decline of the Ca++ concentration in 

the cytosol mainly by re-sequestration of Ca
++

 into the sarcoplasmic reticulum and extrusion 

to the extracellular space (Schotten et al., 2011). 

 

 

3.4 Elementary proarrhythmic mechanisms during atrial fibrillation 

 

Elementary proarrhythmic mechanisms in AF may be categorized in enhanced 

automaticity and triggered activity (Schotten et al., 2011). The first occurs when myocytes 

possessing pacemaker activity increase their rate of spontaneous discharge. Enhanced 

http://upload.wikimedia.org/wikipedia/commons/6/6c/Gray493.png
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automaticity can be due to a lowered threshold of the action potential upstroke (phase 0), a 

less negative maximal diastolic potential, or an increase in the slope of spontaneous diastolic 

depolarization (phase 4). However, there is little evidence for the existence of enhanced 

automaticity as a proarrhythmic mechanism during AF. 

 

 

 

 

 
Figure 3.3 Cellular proarrhythmic mechanisms in the atria. A: schematic illustration of 

delayed (DAD) and early afterdepolarizations (EAD). Both forms of triggered activity can 

elicit single or runs of action potentials (AP). B: comparison of the mechanism of DAD and 

late phase 3 EAD (From: Schotten U et al., Physiol Rev 2011; 91:265-325) 

 

Triggered activity arises from membrane oscillations following normal action potentials 

(i.e., the trigger). If such membrane oscillations reach threshold of depolarizing currents, they 

can provoke new action potentials. Under certain circumstances, such triggered responses can 

in turn elicit new action potentials, resulting in self-sustaining runs of triggered activity 
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(Figure 3.3). Depending on when the membrane oscillation occurs, ―early‖ and ―delayed‖ 

afterdepolarizations are distinguished. 

Delayed afterdepolarizations (DADs) are membrane potential oscillations occurring after 

full repolarization of the triggering action potential. DADs are favored by conditions 

producing Ca
++

 overload, like ischemia, β-adrenergic stimulation, low extracellular K 

concentration, and tachycardia (Coetzee and Opie, 1987; Katra and Laurita, 2005). 

Early afterdepolarizations (EADs) are membrane oscillations occurring during phase 2 or 

3 of the action potential. They occur in the presence of action potential prolongation. During 

the prolonged action potentials, ―Ca
++

 window currents‖ may get activated producing a new 

action potential upstroke (Minget et al., 1994). Another mechanism likely involved in EADs 

occurring during β–adrenergic stimulation is spontaneous release of Ca
++

 from the 

sarcoplasmic reticulum due to elevated cytosolic Ca
++

 concentrations (Volders et al., 1997). 

In most cases, EADs occur in bradycardia while DADs are more likely to occur during 

tachycardia or rapid pacing. 

 

3.5 Mechanisms of reentry 

 

In the late 1950s, computer models of AF demonstrated that, based on simple 

assumptions regarding refractoriness and conduction velocity, reentrant wavelets might 

wander through an excitable medium in a seemingly chaotic pattern (Moe and Abildskov, 

1959). According to Moe‘s ―multiple wavelet hypothesis,‖ fibrillation wavefronts 

continuously undergo wavefront-wave tail interactions resulting in wave break and 

generation of new wavefronts. On the other hand, block, collision, and fusion of wavefronts 

will tend to reduce their number. As long as the number of wavefronts does not decline below 

a critical level, multiple wavelets will be capable to sustain the arrhythmia (Moe, 1968; Moe 

et al., 1964). Factors increasing the stability of the fibrillation process include shortening of 

the refractory period, increased heterogeneity of refractoriness, slowing of conduction, and an 

increase of the tissue mass. In contrast, prolongation of refractoriness, enhancement of 

conduction velocity, and reduction of the available substrate will reduce the number of 

wavefronts until the arrhythmia ceases. 

For a long time, reentry of excitation wavefronts was considered the main mechanism of 

AF. However, the discovery of localized sources of paroxysmal AF originating from the PVs 

(Haissaguerre et al., 1998) has renewed the interest in ―focal‖ sources of AF. Both cellular 

proarrhythmic mechanisms, like automaticity or triggered activity, and reentrant mechanisms 

might underlie these phenomena. The relative contribution of these distinct mechanisms, 

however, is likely to vary between individual patients and cannot be fully determined at 

present (Schotten et al., 2011). Moreover, it has recently been suggested that the multiple 

wavelet hypothesis would actually not exclude the coexistence of local sources of AF 

(Vaquero et al., 2008), as in certain substrates, stable rotors may act as a source of multiple 

wavelets. 
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3.6 Atrial remodeling in AF 

 

Ion channel remodeling and shortening of refractoriness occur in AF patients. Paroxysms 

of AF often tend to become longer with time, ultimately leading to persistent AF. Several 

clinical studies have shown that atrial APD in AF patients is shorter than in patients in sinus 

rhythm (Attuel et al., 1982; Boutjdir et al., 1986; Daoud et al., 1996; Franz et al., 1997; Yu et 

al., 1999). In addition to atrial effective refractory period (AERP) shortening, AF patients 

show a loss of rate adaptation of the AERP (Attuel et al., 1982; Boutjdir et al., 1986; Franz et 

al., 1997). Some studies have also reported an increased AERP dispersion (Michelucci et al., 

1982; Misier et al., 1992). 

Often, AF can be cardioverted by agents that prolong the atrial APD. This indicates that a 

prolongation of the AERP is antiarrhythmic but does not show to which extent the AERP 

shortening contributes to AF stability. The exact time course of electrical remodeling during 

AF in humans is unknown, but in animal models it is complete within at most a few days. 

The limited efficacy of ion channel blockers in the treatment of chronic AF indicates that 

other processes occurring more slowly than electrical remodeling contribute to the stability of 

AF in many patients (Schotten et al., 2011). 

Alterations in atrial tissue structure likely contribute to the high susceptibility to the 

arrhythmia in patients with AF. However, the majority of chronic AF patients is of advanced 

age or suffers from structural heart disease. Of the various aspects of atrial structural 

remodeling in these patients, the consequences of fibrosis, myocyte hypertrophy, and altered 

connexin (the protein structure forming the atrial gap junctions) distribution have been 

studied extensively. 

Atrial fibrosis is thought to be one of the most important factors in the formation of a 

substrate for AF. Atrial fibrosis has been observed in biopsies from patients with AF as well 

as in patients with specific risk factors for AF, such as valvular disease, rheumatic heart 

disease, dilated and hypertrophic cardiomyopathy, and advanced age (Schotten et al., 2011). 

Myocytes are organized in bundles, in which strands of myocytes can be separated from each 

other by fibrous tissue. Structural remodeling due to heart disease is often associated with 

fibrosis and an increased transverse fiber separation. 

Another relevant factor for atrial conduction may be altered connexin expression. In the 

working myocardium, conduction velocity is higher in the longitudinal than in the transverse 

direction. In the transverse direction, a propagating wavefront has to cross more cell-to-cell 

boundaries within a given distance. Several studies have reported alterations in connexin 

expressions in patients with AF, but the observations are not consistent (Schotten et al. 2011). 

Moreover, some aspects of the atrial architecture itself, apart from pathological structural 

changes, may play a role in creating a substrate for AF. Based on anatomical and histological 

studies of the atria, areas with strong preferential fiber orientation include the crista 

terminalis, the bundle of Bachmann, and the area in between the PVs. With the intrinsic 

anisotropy of these regions, structural remodeling may readily lead to dissociated conduction 

patterns. One of the challenges ahead is to link the various conduction patterns during AF to 

the underlying tissue architecture and pathological changes to elucidate the electro-

pathological substrate for perpetuation of AF (Schotten et al., 2011). 
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3.7 Assessment of the AF substrate by fibrillation electrogram analysis 

 

As described earlier, alterations in myocyte electrophysiology and tissue structure can 

create a substrate for AF. Thus more specific treatment strategies require diagnostic tools that 

allow assessment of the nature and severity of the AF substrate in patients. A simple 

electrocardiographic measure, ―coarse‖ versus ―fine‖ AF, does not correlate well with atrial 

size (Bollmann et al., 2001; Waggoner et al., 1976), heart disease etiology (Morganroth et 

al., 1979), or average AF cycle length (Pehrson et al., 1998), although it may be indicative of 

thromboembolic risk (Yamamoto et al., 2005). However, the dominant atrial cycle length 

determined from surface lead V1 by Fast Fourier Transform does reflect a spatial average of 

the AF cycle length in the right atrium (Holm et al., 1998; Husser et al., 2007b, Pehrson et 

al., 1998). In patients with new-onset AF, the dominant atrial cycle length was higher with 

increasing age, increased with AF duration, and was lower in patients who cardioverted 

spontaneously within the subsequent 24 h (Husser et al., 2007a). At present, the most 

extensive information on the AF substrate in humans has come from studies that have 

investigated atrial electrograms recorded in patients with AF. The distribution of dominant 

frequencies, fractionation of electrograms, and direct mapping of conduction patterns are the 

main analysis techniques used. 

Dominant frequency analysis is a relatively simple and time-efficient method for 

determining the AF cycle length. Power spectral density is analyzed for recorded electrogram 

signals. The dominant frequency is the highest peak in the PSD spectrum (Ng and 

Goldberger, 2007). In principle, a relatively high dominant frequency may be caused by a 

rapid ectopic focus, dissociated conduction, a reentrant circuit or even an artifact. Dominant 

frequency analysis often correlates well with the AF cycle length, but it is sensitive to the 

signal quality, recording method (unipolar vs. bipolar), and electrogram fractionation (Ng et 

al., 2007).   
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Part II 
 

 

 

This part presents the analysis of inter-beat interval (or inversely, heart rate) variability in 

mental workload assessment, in a memory search task. As ECG artifacts represent a major 

concern in ambulatory settings, the topic was addressed by a specific study on automatic 

quality assessment of ambulatory ECG recordings, presented in Chapter 4 . Experimental 

setup for data acquisition is presented in Chapter 5, together with the software architecture of 

a real-time monitor specifically designed for data acquisition, visualization, processing and 

storage. In Chapters 6-7 the analysis of heart rate variability is presented. Established 

methods are compared (Chapter 6) on experimental data, and a novel approach based on 

performance indices and joint time-frequency distribution of inter-beat interval variability is 

presented (Chapter 7). 

 

 

Scientific work: 

 

Chapter 4: 

Langley P, Di Marco LY, King S, Di Maria C, Duan W, Bojarnejad M, Wang K, 

Zheng D, Allen J, Murray A. An algorithm for assessment of ECG quality acquired 

via mobile telephone. Comput Cardiol 2011; 38:281−284 

 

Chapter 6: 

Di Marco LY, Sottile R, Chiari L. Time-Frequency analysis of cardio-respiratory 

response to mental task execution. Comput Cardiol 2010;37:753−756. 
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Chapter 4: Automatic assessment of ambulatory ECG recording quality 

 

 

4.1 Introduction 

 

The acquisition of the ECG in ambulatory settings, namely in conditions in which 

subjects are allowed to move and perform the ordinary activities of the daily life, presents 

additional challenges with respect to the clinical setting where subjects undergoing ECG 

recordings lie supine in comfortable and quiet conditions. 

One major problem is the high level of in-band noise encountered (usually muscle- or 

movement-related). Another problem in ambulatory recordings, especially for long term 

monitoring, is the degradation in electrode contact over time, leading to a lower signal-to-

noise ratio (Clifford et al., 2006). Moreover, ambulatory recordings are generally performed 

away from the hospital environment, by operators that may not be specifically or adequately 

trained. As a consequence, key aspects such as electrodes placement (location and contact 

stability) and signal quality (compliance with ECG diagnostic interpretation requirements) 

are often overlooked. 

In recent years, the evolution of mobile technologies has substantially enhanced the 

potential of small, lightweight, and power efficient handheld devices (Chaudhuri et al., 2009; 

Klug et al., 2010; Langley et al., 2011; Romero, 2010). The computational resources 

available on mobile platforms have increased dramatically, allowing a considerable amount 

of signal processing to be implemented onboard. The post-processing generally required for 

typically noisy ambulatory recordings, can be integrated in the software application running 

on the mobile device. 

Of great interest is the possibility to automatically process and determine the quality of 

the recorded ECG for the specific purpose of the application, whether it be a simple heart rate 

monitor or the diagnostic interpretation of the ECG signal. 

 

4.2 Noise sources in ambulatory ECG 

 

Noise and artifacts affecting the ECG can occur within the frequency band of interest and 

can manifest with similar morphologies as the ECG itself, making it a challenging task to 

separate the signal from the undesired contaminants. The most common undesired sources of 

ECG corruption include: 

Power line interference: 50 Hz mains noise (or 60 Hz in some Countries) with an 

amplitude of up to 50% of full scale deflection (peak-to-peak ECG amplitude); 

Electrode contact noise: loss of contact between the electrode and the skin manifesting as 

sharp changes with full scale saturation on the ECG (usually due to an electrode being nearly 

or completely pulled off); 
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Patient–electrode motion artifacts: movement of the electrode on the skin, leading to 

impedance variations between the electrode and skin, usually manifesting as rapid baseline 

jumps or complete saturation of the ECG for up to 0.5 s; 

Electromyographic (EMG) noise: electrical activity due to muscle contractions in the 

frequency range between 0 and 10 KHz; 

Baseline wander: usually from respiration at frequencies between 0.15 and 0.3 Hz, or 

electrode contact degradation. 

Although each of these contaminants can be reduced by careful and experienced use of 

the devices and experimental setup, it is impossible to remove them completely. Therefore, it 

is important to quantify the nature of the noise in a particular data set and choose an 

appropriate algorithm for post-processing, with the goal of increasing the signal-to-noise ratio 

(Clifford et al., 2006). 

 

4.3 Methods 

 

4.3.1 Database 

 

In this study the training set A (SetA) database of Physionet‘s Challenge 2011 was used. 

The database consisted in 998 ambulatory recordings of 12-leads ECG (sampled at Fs=500 

samples/s, with amplitude resolution of 5µV, 16-bit/sample), each of 10 s duration. The 

recordings were classified by trained personnel in two categories: ‗acceptable‘ quality (773 

recordings) and ‗unacceptable‘ quality (225 recordings), based on subjective, undisclosed 

criteria.  

Two training sets (TS1, TS2) were extracted from the dataset SetA, as shown in Table 4.1. 

The first was created by randomly selecting 100 ‗acceptable‘ and 100 ‗unacceptable‘ records 

(TS1), so that there were an equal number of recordings in each classification category. The 

second was created by randomly selecting 50% of the ‗acceptable‘ and ‗unacceptable‘ 

records (TS2), so that the training set maintained the balance between 'acceptable' and 

'unacceptable' recordings of the complete data set. 

 

Table 4.1 – Training and Test Sets 

Set # Acceptable Records # Unacceptable Records Total 

TS1 100 100 200 

TS2 386 112 498 

XS1 673 125 798 

XS2 387 113 500 

SetA 773 225 998 

 

Consequently, two test sets were defined (XS1, XS2) as the remaining records after 

extracting TS1, TS2 from SetA. 
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4.3.2 Algorithm overview 

 

The algorithm comprised two stages: 1) noise and artifact quantification; and 2) 

classification based on a single condition decision rule.  The first stage computed meaningful 

parameters in signal quality determination and included baseline drift, constant amplitude 

(flat line), QRS-band noise, high frequency noise (spurious spikes), non-ECG noise (white 

noise), amplitude step-wise changes and saturation, and low-amplitude signals.  Detection of 

pacemaker spikes and QRS complexes are pre-requisites. The second stage assigned the 

binary decision 'Acceptable' or 'Unacceptable' according to pre-determined thresholds for 

noise and artifact measured in stage 1. 

The block diagram of the algorithm‘s architecture is illustrated in Figure 4.1. 

 

 
Figure 4.1 Block diagram of the algorithm. For each lead, the ECG is filtered for pace-maker 

removal and further processed for beat detection and spectral analysis. Features F1,…, F4 are 

extracted from joint time-frequency analysis, feature F5 from the detected QRS complexes. 

The classification stage comprises a series of single-condition decision rules (Cj) that 

compares the extracted features to condition specific thresholds (THRCj). 

 

4.3.2.1 Noise and artifact measurement 

 

This section describes the methods used to quantify the noise and artifact characteristics 

present in the ECG. For each individual lead, four features (F1, F2, F3, F4) were calculated 
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from the joint-time frequency (JTF) analysis of the raw ECG signal, and one (F5) from he 

detected QRS complexes.  

JTF representation of the temporal-spectral distribution of the ECG energy was estimated by 

the non-parametric method based on Short-time Fourier transform (STFT) spectrogram (Fast-

Fourier Transform (FFT) computed over 2048 samples sliding windows (approximately 4 s), 

with 80% overlap, yielding a frequency resolution of 0.24 Hz).  

For a given frequency band of interest ΔF=[fL, fH], the time marginal of the energy 

distribution EΔF(t) is calculated as: 
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 where S(f, t) is the spectrogram estimated for the frequency value f, at the time instant t. 

Similarly, for a given time interval ΔT=[t1, t2], the frequency marginal PΔT(f) of the energy 

distribution in the time interval is defined as: 
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The following features are calculated in each individual lead. 

 

F1) Low-frequency time marginal energy (ELF): defined as the peak value of EΔF(t) in the 

frequency band [0, 0.5] Hz: 
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High values of this parameter indicate the presence of prominent baseline drift or constant 

amplitude level (―flat line‖) in the original ECG signal. 

 

F2) QRS-band time marginal energy (EQRS): defined as the peak value of EΔF(t) in the 

characteristic frequency band of the QRS complex (5-25 Hz): 
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QRS                       (4.4) 

 

Very high values of this parameter indicate the presence of QRS-artifacts in the original 

ECG signal. 

 

F3) High-frequency time marginal energy (EHF): defined as the peak value of EΔF(t) in the 

frequency band above 100 Hz: 
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High values of this parameter indicate the presence of spurious spikes in the original ECG 

signal. 

 

F4) Very high frequency (VHF) frequency marginal (power) (PVHF): defined as the 

median value in the frequency band above 150 Hz of normalized PΔT(f), over the entire 

recording (ΔT=10 s): 
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High values of this parameter indicate the presence of non-ECG noise (e.g. white noise), 

whereas extremely low values indicate the presence of isolated saturation with step-wise 

amplitude changes in the original ECG signal.  

 

F5) QRS amplitude (QRS-A): defined as the median value of the peak-to-nadir amplitude 

difference of the QRS complexes detected. 

 

4.3.2.2 Pacemaker filter and beat detection 

 

As a pre-requisite for QRS amplitude assessment it was necessary to perform QRS 

detection and to detect and remove pace-maker artifact.  

Pace-maker spike detection was accomplished using a sliding window (w) of 1s (50% 

overlap). The maximum absolute value of the first derivative D1l(w) was calculated for each 

window. The median value M{D1l(w)} was stored for each lead. The lead exhibiting the 

highest M{D1l(w)} was selected for isolated spikes detection. Spikes whose amplitude was 

greater than a fixed threshold of 100µV/sample, whose duration did not exceed 10 ms, and 

not surrounded by others within a window of 250 ms on each side, were considered as pace-

maker artifact. Pace-maker artifact was removed so that for each detected spike, the 20 ms 

interval centered around the spike peak was assigned a constant value equal to the average 

amplitude within the window. 

Beat detection was computed with the QRS detection algorithm proposed by Pan and 

Tompkins (Pan and Tompkins, 1985) on the lead whose windowed kurtosis (median kurtosis 

value over a sliding window of 2 s, 50% overlap) was the highest, and the ECG peak-to-nadir 

amplitude difference did not exceed a threshold of 5 mV. For each detected beat, the fiducial 

point was set to the dominant peak of the QRS complex. 

Figure 4.2 shows examples of pacemaker filtering and beat detection. Pacemaker filtering 

(rejection) is crucial for QRS amplitude determination: if pacemaker spikes are not filtered 

out properly, the beat detection algorithm can be misled and pacemaker spikes considered as 

QRS complexes, thereby altering QRS amplitude calculation. 
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Figure 4.2 Examples of pace-maker filtering. Original ECG precordial lead V5 (top panels) 

and filtered signals after pacemaker (PM) rejection (bottom panels). Dotted vertical lines in 

bottom panels indicate QRS fiducial point of each detected beat (beat detection is performed 

after PM removal). 

 

4.3.2.3 Classification based on single-condition decision rule 

 

Unlike supervised learning classification algorithms a heuristic approach based on 

cascaded single-condition decision rules (SCDR) offers the potential advantage of providing 

additional information to the user, yielding not only a classification result (e.g. ‗acceptable‘ 

vs. ‗unacceptable‘) but also a ―rejection reason‖ for recordings classified as ‗unacceptable‘. 

The advantage of such a method would be the possibility for the user to take action in 

correcting the measurement problem (e.g. verifying electrode contact, stabilizing patient 

posture).  The SCDR classification algorithm consisted of the cascaded verification of single 

conditions (Cj) as illustrated in figure 1.  The condition rules (Figure 4.1) are tested for each 

single lead. A 12-by-6 condition matrix MC is defined, to account for six conditions, tested 

for all twelve leads. The six conditions can be described as follows: 

C1: Is ELF greater than a threshold THRC1? If yes, set to logical ―1‖ the corresponding bit 

in the condition matrix: MC(ld, 1) = 1, where ld =1,…,12 is the lead index. . This condition 

aims to detect the presence of baseline drift or constant amplitude (―flat line‖) in the ECG 

signal.  

C2: Is EQRS greater than a threshold THRC2? If yes, set MC(ld, 2) = 1. This condition aims 

to detect the presence of QRS artifacts in the ECG signal. 

C3: Is EHF greater than a threshold THRC3? If yes, set MC(ld, 3) = 1. This condition aims 

to detect the presence of bursts of sharp, spurious spikes in the ECG signal. 
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C4-A: Is PVHF greater than a threshold THRC4-A? If yes, set MC(ld, 4) = 1. This condition 

aims to detect the presence of non-ECG noise (e.g. white noise) in the original ECG signal. 

C4-B: Is PVHF smaller than a threshold THRC4-B? If yes, set MC(ld, 5) = 1. This condition 

aims to detect the presence of isolated saturation with step-wise amplitude changes in the 

original ECG signal. 

C5: Is QRS-A smaller than a threshold THRC5? If yes, set MC(ld, 6) = 1. This condition 

aims to detect unreadable ECG. 

 

4.3.2.4 Determination of thresholds for classification  

 

Each condition rule required the specification of a threshold for determining the 

classification outcome.   

For a given condition C, the number of true positives TPC (and true positive rate TPRc) 

depends on the threshold value THRC and the number of leads NL (=1,…12) the condition is 

satisfied for: 
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               (4.8) 

 

Analogous definition can be given for false positives: 
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             (4.9) 

 

The search for the optimal threshold THR and number of leads NL in which the condition 

must be satisfied in order to classify the recording as ‗unacceptable‘ can be seen as a bi-

dimensional optimization problem, where the goal is to maximize sensitivity (TPRC), setting 

an upper bound of 1% for false positive rate (FPRC):  

 

 %1),(:),(maxarg),(  THRNLFPRTHRNLTPRTHRNL CCOPT            (4.10) 

 

The range for the two independent variables (THRC, NL) is defined heuristically: 

NL=1,…,12; THRC=min(Fj),…, max(Fj), where Fj is the feature under consideration for the 

given condition, and min(Fj), max(Fj) are calculated across all leads, across all records in 

training set.   

 

4.3.2.5 Supervised learning training set 

 

For each supervised-learning method, the classifier was trained on a subset of TSA 

containing M/2 recordings (M=200, 400) randomly drawn from the ‗Acceptable‘ set, and M/2 
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recordings from the ‗Unacceptable‘ set. The choice of balanced training was made to 

compensate the substantial difference in size of the two groups of records in TSA: 773 

‗Acceptable‘ and only 225 ‗Unacceptable‘ records. The disadvantage of this choice is a sub-

optimal fit of the classifier on the full data set, while the advantage is a stricter test of the 

generalization ability of the classifier.  

 

4.3.3 Supervised-learning classifiers 

 

Two supervised-learning classification (SLC) methods suitable for binary classification 

problems were considered for comparison with the proposed algorithm: k-nearest neighbor 

(KNN) and probabilistic neural network (PNN). 

For KNN, the Euclidean distance metrics was adopted, the number of nearest neighbors 

was set to one (K=1), and the ―majority rule‖ was used for classification (i.e. a sample point 

was assigned to the class the majority of the K nearest neighbors were from).   

PNN consisted in a 2-layer feed-forward neural network with a radial basis hidden layer 

and a competition layer yielding a NOx1 output vector (NO=2 for binary classification), where 

the only element set to ‗1‘ (the others set to ‗0‘) indicated the class the input most probably 

belongs to. 

For each classifier, the feature space size was given by the number of leads (twelve) 

multiplied by the number of individual lead features (five). For the two SLCs, principal 

component analysis (PCA) was applied to reduce the feature space dimension. To compute 

PCA, the features (i.e. input variables) were preliminarily standardized (zero-meaned and 

normalized to standard deviation) to compensate the magnitude difference between variables. 

The number of principal components (PCs) to be used for classification was chosen such that 

the cumulative variance would be grater or equal to 95%.  Accuracy of the SLC algorithms 

for full and reduced (through PCA) feature space dimension were calculated and compared to 

the accuracy of the SCDR algorithm. 

 

4.4 Results 

 

4.4.1 Optimal thresholds 

 

Table 4.2 summarizes the optimal thresholds that were identified for each condition. For 

each threshold (condition), TPR and FPR are calculated considering the given condition as 

the only one used for classification. As a corollary of (4.10), FPR ≤ 1% for all thresholds. 

 

4.4.2 Classification accuracy 

 

Table 4.3 compares the performance of the three methods (SCDR and two SLCs) on the 

test sets XS1, XS2 after being trained on TS1, TS2, respectively. The score (Sc) is the accuracy 

defined as the percentage of correct classifications. For the supervised learning classifiers 
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(KN, PNN), the performance after PCA-based reduction of the feature set is also reported. 

Only a slight reduction in accuracy is visible in spite of a considerable reduction of the input 

parameter space: from 12x5 to the number of principal components (#PCs) required to 

account for 95% of cumulative variance (#PCs was 13 for TS1, 16 for TS2).  

 

Table 4.2 – Individual Conditions Performance for selected thresholds on training sets 

Training 

Set 

Feature Condition Threshold Value  #leads 
(a)

 TPR [%] FPR [%] 

 

 

 

TS1 

F1 C1 5.0 V
2
 1 71.0 1.0 

F2 C2 4.0 V
2
 1 26.0 1.0 

F3 C3 0.1 V
2
 1 26.0 1.0 

F4 C4-A -23 dB 1 29.0 1.0 

 C4-B -72 dB 1 61.0 1.0 

F5 C5 0.1 mV 1 65.0 1.0 

 

 

 

TS2 

F1 C1 2.0 V
2
 2 45.5 0.3 

F2 C2 1.0 V
2
 2 16.1 0.3 

F3 C3 1.3 V
2
 1 13.4 0.8 

F4 C4-A -25 dB 1 35.7 0.8 

 C4-B -76 dB 1 44.6 0.8 

F5 C5 0.1 mV 2 49.1 0.0 
(a) 

Number of leads for which the condition must be satisfied, in order to classify the record as ‗unacceptable‘ on 

the ground of that condition‘ 
 

Table 4.3 – Comparison of Performance of SCDR vs. Supervised Learning Classifiers 

Training / Test Set Method #FN #FP Score [%] 

TS1 / XS1 SCDR 17 44 92.36 

 KNN 27 90 85.34 

 KNN-PCA
(a)

 29 97 84.21 

 PNN 57 79 82.96 

 PNN-PCA
(a)

 52 89 82.33 

TS2 / XS2 SCDR 21 12 93.40 

 KNN 29 10 92.20 

 KNN-PCA
(b)

 30 19 90.20 

 PNN 55 8 87.35 

 PNN-PCA
(b)

 51 16 86.55 
(a)

 #PCs=13 (accounting for 95% cumulative variance) 
(b)

 #PCs=16 (accounting for 95% cumulative variance) 

FN: false negative. FP: false positive. TS1: training set 1; TS2: training set 2. SCDR: single condition decision 

rule algorithm; KNN: K-nearest neighbor; KNN-PCA: KNN with principal component analysis; PNN: 

probabilistic neural network; PNN-PCA: PNN with principal component analysis. 
 

4.4.3 Examples 

 

In this section, examples of processing output are presented for the SCDR algorithm 

using the thresholds defined for TS2. 

 In Figure 4.3 an example of good quality ECG signal is shown, together with the time 

marginal distribution (panels in central row) from which features F1 (left), F2 (middle), F3 

(right) are calculated (as peak value), respectively. It can be seen that all three features are 
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well below the respective threshold (Table 4.2). QRS amplitude is satisfactory, being greater 

than the 0.1 mV threshold. The bottom panel shows the normalized (with respect to the peak 

value) frequency marginal in logarithmic scale.   

 

 
Figure 4.3 Raw ECG signal (top panel) from ‗acceptable‘ record #1005639, time marginals 

(central row) from which F1, F2, F3 (left to right) are calculated: LF energy in 0-0.5 Hz (left), 

QRS-band energy in 5-25 Hz (middle), HF energy in 100-250 Hz (right), and frequency 

marginal (bottom row) from which F4 is calculated.   
 

 

 

 
Figure 4.4 Raw ECG signal (top panel) from ‗unacceptable‘ record #1030943, time 

marginals (central row) from which F1, F2, F3 (left to right) are calculated: LF energy in 0-0.5 

Hz (left), QRS-band energy in 5-25 Hz (middle), HF energy in 100-250 Hz (right), and 

frequency marginal (bottom row) from which F4 is calculated.   
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In Figure 4.4 an example of ‗unacceptable‘ ECG signal is shown. It can be seen that the 

peak value of LF energy, QRS-band energy (features F1 and F2, respectively) are above 

threshold (Table 4.2), indicating the concurrent presence of ―flat line‖ and QRS artifact 

(presence of in-band noise in QRS band). 

From the bottom panel - showing normalized frequency marginal (power) - it can be seen 

that VHF power (F4) attenuation (tested in condition C4-B) is above threshold, indicating the 

presence of saturation (step-wise amplitude changes). The record is correctly marked 

‗unacceptable‘. 

Figure 4.5 shows an example of very noisy ECG signal. It can be seen that the time 

marginal energy (central row of panels) is below threshold (Table 4.2) for all three features 

F1, F2, F3 (left to right panels). However, VHF power attenuation is above threshold 

(condition C4-A is met) indicating the presence of ―non-ECG‖ noise (e.g. white noise). 

 

 
Figure 4.5 Raw ECG signal (top panel) from ‗unacceptable‘ record #1101829, time 

marginals (central row) from which F1, F2, F3 (left to right) are calculated: LF energy in 0-0.5 

Hz (left), QRS-band energy in 5-25 Hz (middle), HF energy in 100-250 Hz (right), and 

frequency marginal (bottom row) from which F4 is calculated.  Condition C4-A is met. 

 

The record is correctly marked ‗unacceptable‘. It shall be noted that condition C5 (low 

QRS amplitude) is also met for lead III shown in this figure; however, as shown in Table 4.2, 

condition C5 must be satisfied at least in two leads for the record to be rejected on the basis of 

this condition). 

Figure 4.6 shows an example of poor quality ECG signal. It can be seen that the time 

marginal energy (central row of panels) is above threshold (Table 4.2) for F1 (left) and F2 

(middle) indicating the presence of baseline drift and QRS artifact (noise in QRS band). In 

the bottom panel, isolated peaks at 60 Hz and higher harmonics are visible, indicating the 

presence of mains interference. 
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Figure 4.6 Raw ECG signal (top panel) from ‗unacceptable‘ record #1105115, time 

marginals (central row) from which F1, F2, F3 (left to right) are calculated: LF energy in 0-0.5 

Hz (left), QRS-band energy in 5-25 Hz (middle), HF energy in 100-250 Hz (right), and 

frequency marginal (bottom row) from which F4 is calculated. 

 

 

 
Figure 4.7 Example of ―unacceptable‖ record (#1034914) correctly classified by the 

algorithm. Flat line (condition C1) is present in V1, V2 (constant amplitude of -80 mV), ―non-

ECG‖ noise (condition C4-A) in V4, V5).  

 

Figure 4.7 shows an example of ‗unacceptable‘ record correctly classified by the 

algorithm, which indicates flat line (condition C1 met in V1, V2), ―non-ECG‖ noise 

(condition C4-A met in V4, V5), and saturation (condition C4-B met in V1, V2). 

Figure 4.8 shows an example of ‗acceptable‘ record erroneously classified as 

‗unacceptable‘ (false positive) by the algorithm, which indicates flat line (condition C1 met in 

V4, V5) and saturation (condition C4-B met in V4). 
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Figure 4.8 Example of ―acceptable‖ record (#1548723) erroneously classified as 

―unacceptable‖ by the algorithm due to saturation (step-wise changes) (condition C4-B in V4). 

 

 

4.5 Discussion 

 

 In this study an algorithm for automatic classification of ECG quality in short 12-leads 

ECG ambulatory recordings was presented. Based on preliminary processing (pacemaker 

filtering, beat detection and QRS amplitude detection), and extraction from JTF analysis of 

fundamental parameters for signal quality assessment (baseline drift, constant amplitude (flat 

line), noise in QRS band, spurious spikes, ―non-ECG‖ noise (white noise), saturation (step-

wise amplitude changes)), an adequate set of features was defined and used for classification. 

Two supervised-learning classifiers (based on k-nearest neighbor and probabilistic neural 

network), and a single-condition decision rule classifier were implemented to classify ECG 

recording quality as either ‗acceptable‘ or ‗unacceptable‘ for diagnostic interpretation. Their 

performance was assessed on a standard database containing 998 ambulatory ECG recordings 

(Physionet Challenge 2011, Test Set A) from which two random training sets (balanced, and 

unbalanced) were extracted and the remaining records used as test set. 

SCDR showed higher accuracy than KNN (which exhibited the best performance of the 

two SLCs) both in test set XS1 (Sc(SCDR)=92.36% vs. Sc(KNN)=85.34%) and SX2 

(Sc(SCDR)=93.40% vs. Sc(KNN)=92.20%). As expected, the performance of SLCs 

increased with increasing training set size (at the cost of increased complexity of the 

classifier). On the other hand, reduction of the feature space dimension by PCA showed 

moderate SLC performance decrease in spite of a substantial reduction of space dimension 

(form 60 to 13 in TS1, to 16 in TS2). However, in spite of a larger feature space dimension, 

SCDR offers the advantage of combining higher performance to the ability to provide 

additional information to the classification output (i.e. reason for rejection). Due to the 

flexible structure of the algorithm, new features could also be added to improve detection of 
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ECG contaminants, as well as ―quality warnings‖ (e..g. conditions C1,..,C5 close to being met 

(features close to threshold); mains interference detection by power peaks at characteristic 

frequencies (Figure 4.6)). On the other hand, SLC classifiers suffer from lack of physical 

interpretability of the model (weight coefficients of the radial basis layer in PNN; neighbor 

points in KNN).      

SCRD is based on heuristic rules, exploiting established and simple processing methods. 

The joint time-frequency analysis is based on FFT computation which is widely available in 

high performance, low power-budget, digital signal processing (DSP) co-processors, as well 

as application programming interfaces (API). 

Moreover, the JTF analysis used in this study offers the possibility to compute additional 

parameters to characterize the temporal evolution of the ECG signal. For instance, in addition 

to features indicating the energy of the given contaminant (baseline drift, step-wise amplitude 

changes etc.), it could also be detected ―when‖ in time the given phenomenon occurs. This 

may be of interest for long recordings (such as in Holter monitoring) in which visual 

inspection of the data is prohibitive. 

In conclusion, the single condition classifier proposed in this study, based on an intuitive 

and flexible scheme in which specific (and practical) conditions are tested individually, 

showed high accuracy in automatic classification of short 12-leads ambulatory ECG 

recordings, in spite of its simple logic. The ability to provide additional information (rejection 

reason) to the classification output, suggests the proposed method may be a useful tool in 

automatic quality assessment of 12-leads ambulatory ECG recordings. 
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Chapter 5: Design and implementation of a real-time polygraphic 

ambulatory monitor 

 

 

5.1 Overview 

 

This chapter presents the architecture of a real-time polygraphic ambulatory monitor 

designed for the acquisition and processing of cardiovascular and respiratory signals such as 

ECG, photoplethysmogram, respiratory effort, and skin conductance (galvanic skin 

response). 

The architecture of the cardiovascular-respiratory (CVR) monitor is designed for the 

integration in a closed-loop system of adaptive man-machine interface (MMI), as shown in 

the block diagram of Figure 5.1. 

 
Figure 5.1 Adaptive MMI block diagram. The CVR monitor acquires and processes 

biosignals in real-time and feeds parameters (biofeedback) to the Cognitive Monitor, which 

classifies workload and sends its output to the Workload Mitigator, which selects the proper 

mitigation strategy for the adaptive MMI.  

 

The CVR monitor generates a vector of synchronous parameters, with is updated at 

discrete time intervals. The output vector is fed (biofeedback) to the Cognitive Monitor, 
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which integrates inputs from multiple devices (in the general case) and classifies the 

operator‘s mental workload. The output is fed to the Workload Mitigator sub-system which 

selects the proper mitigation strategy for the adaptive MMI. 

The CVR monitor  was developed as part of the ―Cognitive adaptive man-machine 

interface‖ (CAMMI) project supported by ARTEMIS JTI initiative of the European Union, 

EU-JTI grant No. 100008. 

 

5.2 Front-end device 

 

For ambulatory monitoring of relevant physiological signals in a non-clinical setting, a 

commercial polygraphic front-end device was adopted. The multi-purpose ambulatory 

polygraph gMOBIlab+™ by g.tec® (g.tec medical engineering GmbH) was chosen among 

off-the-shelf solutions available on the market. The device acquires and transmits wirelessly 

the raw data in real-time, to a host computer (PC or laptop). Up to eight different 

physiological signals can be acquired simultaneously, at a sample rate of 256 samples/s, with 

16-bit A/D conversion. 

 

 
Figure 5.2 Scheme of signal acquisition in the ambulatory setting used in this work. 

 

Preliminary tests on the full set of available signals, namely ECG, respiratory effort (by 

means of a strap-belt), finger and ear photoplethysmogram (PPG), galvanic skin response 
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(GSR), were carried out with the purpose of assessing signal quality in actual experimental 

settings. A schematic representation of the acquisition system is given in Figure 5.2. The 

front-end device is shown in Figure 5.3. 

 

 

 
Figure 5.3 The front-end device: gMOBIlab+™ by g.tec® (g.tec medical engineering 

GmbH) with ECG/EMG patient cable. The device transfers the raw samples in real-time via 

Bluetooth to a host computer (PC or laptop).   

 

5.3 Software architecture of the polygraphic monitor 

 

The software architecture of the CVR monitor was designed in C++ Language (Microsoft 

Visual Studio 2008™), to run on a host PC or laptop, on a Windows XP Professional™ 

platform. A multithread structure was implemented for real-time acquisition and processing 

of the raw data stream. The acquisition thread fed the raw data to the processing thread by 

means of a buffered first-in-first-out queue. 

The block diagram of the signal processing is illustrated in Figure 5.4.  

The single lead ECG signal was processed for beat detection (QRS detection) by means 

of a modified version of the open source library developed by Hamilton (Hamilton, 2002) 

inspired by Pan and Tompkins (Pan and Tompkins, 1985), which was adapted to process the 

input data stream in real-time. The PPG signal was acquired at two different sites (earlobe 

and finger). It was processed for real-time pulse detection by means of a proprietary 

algorithm based on a maximum slope and adaptive threshold approach, as illustrated in 

Figure 5.5. 
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Figure 5.4 Scheme of signal processing flow in CVR monitor. ECG: electrocardiogram, 

PPG: photoplethysmogram, GSR: galvanic skin response. 

 

The unevenly sampled tachogram of the RR-interval (pulse onset) time series of the ECG 

(PPG), was evenly resampled online by means of the algorithm proposed by Berger and 

coworkers (Berger et al., 1986). Time domain statistical indices of HRV and frequency 

domain indices were computed according to the standards of measurement (Task Force of the 

European Society of Cardiology, 1996). In particular short term HRV was calculated over a 

sliding 5-min window. Indices SDNN, RMSSD, pNN50, mean RR, were computed in the 

time domain, and LF, HF, LF-HF ratio, in the frequency domain. HRV indices were updated 

every 10 s. 

 

5.3.1 Real-time visualization 

 

Figure 5.6 shows a screen shot of the CVR monitor‘s user-interface. In a dedicated 

rectangular screen area spanning approximately 8 s of data, the CVR monitor displayed the 

acquired signals (up to eight traces) in real-time, synchronously, at a custom sweep-speed of 

32 mm/s. The traces were scaled vertically according to the respective amplitude resolution, 

to account for a physiological range. The vertical raster displayed the most recent data 

advancing left to right, and wrapped around at the end of the screen. 
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Figure 5.5 Photoplethysmogram (PPG) pulse detection algorithm: block diagram (left) with 

intermediate output samples (figure boxes), and state machine of adaptive threshold (right). 

 

Below the traces area, a grid of read-only boxes displayed HRV indices, updated every 10 

s, calculated over the most recent 5 min.  

Beat (pulse) detection was computed and displayed for ECG (PPG). The beat detection 

library also computed beat classification, which was exploited for online detection of 

abnormal beats (e.g. premature supra-ventricular or ventricular contractions) and noisy 

signals causing misdetections (artifacts). Detected beats were marked in green (normal sinus 

rhythm) or red (abnormal beats). 

 

5.3.2 Raw data export 

 

The acquired raw data were stored to ASCII text files according to a custom defined 

protocol, in parallel to real-time processing. For those signals with fiducial points (i.e. R-

wave time stamp in ECG, pulse-onset time stamp in PPG), the raw data were saved together 

with the (synchronized) time markers of the fiducial point. 

This protocol allowed external access and processing of the raw data (e.g. MATLAB®, 

The Mathworks, Inc.) for algorithm validation purposes or further analysis, and preparation 

of scientific presentations. 
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5.3.3 Raw data replay 

 

The raw data storage protocol also allowed re-playing of the data. The CVR monitor 

could run in ―read from file‖ mode to re-acquire the data and process them. The scope 

separation semantics was implemented by multithreading. This feature was useful when the 

in the assessment of different real-time algorithms on the same data (or in debugging an 

existing algorithm).   

 

 

 

Figure 5.6 Screen shot of CVR Monitor. ECG (silver), finger-PPG (yellow), Respiratory 

effort (pink), GSR (orange) traces are displayed. The parameter boxes show HRV indices 

(updated every 10 s, computed over the last 5 min). Marked power-line coupling (50 Hz) is 

visible on respiratory effort signal. 
 

5.4 Integration in distributed architecture 

 

The CVR monitor was designed for flexible integration into a closed-loop adaptive MMI 

architecture. Exploiting the features of multicast networking, which allow distributed 

processes to communicate in a platform-independent way, two different topologies were 

considered. 

In the first topology (Figure 5.7) a single multicast channel for parameter vector 

transmission was implemented (Processed Data Multicast). Distributed processes (CVR 

monitor, Cognitive Monitor, Display, Data Storage) transmitted to or received from the 

multicast channel, independently of each other. A command channel was also available for 

processes synchronization. In this configuration, the CVR monitor was lumped in a single 

process. 
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In the second topology (Figure 5.8) the CVR monitor was distributed into separate 

processes, implementing acquisition (Acq DLL) and processing (Proc DLL) by means of the 

same libraries of the single process architecture shown in Figure 5.7. In this configuration the 

raw data was accessible to other processes.  

 

 

 
Figure 5.7 CVR monitor integration: distributed architecture over multicast network. The 

CVR monitor is lumped in a single process. 

 

Figure 5.9 illustrates the formal protocol designed for multicast communication in the 

distributed processes architecture shown in Figure 5.8. The multicast packet consisted of a 

header which contained the channel identifier, the protocol version (for cross-version 

compatibility), the time stamp (for packet synchronization and sequencing) and an additional 

field indicating the number of samples (raw data multicast channel), the process identifier 

(processed data multicast channel), the command identifier (command multicast channel). 
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Figure 5.8 CVR monitor integration: distributed architecture over multicast network. The 

CVR monitor is distributed into separate processes (acquisition, processing), raw data are 

accessible to other processes. 
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Figure 5.9 Multicast communication protocol designed for the distributed processes topology 

shown in Figure 5.8. 
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Chapter 6: Time-frequency analysis of cardio-respiratory response to 

mental task execution 

 

 

Abstract 

 

Heart rate, heart rate variability (HRV), and respiratory effort have been proposed in 

numerous studies with the goal of correlating physiological parameters with mental 

workload. 

Aim of this study was to analyze the cardio-respiratory response to a mental task 

(Sternberg Task) from a single lead ambulatory ECG recording, in healthy subjects. Under no 

assumptions on stationarity, HRV was analyzed in the time-frequency domain by means of 

the Hilbert-Huang Transform (HHT). A surrogate respiratory signal was also extracted from 

the ECG recording, by means of an established principal component analysis (PCA) based 

method, and its spectrum was analyzed. 

A sharp decrease in low frequency (LF) components of HRV during the execution of the 

mental task with respect to the resting intervals was generally observed. In some subjects, an 

increase in the peak-power respiratory rate was also observed during task execution. 

 

6.1 Introduction 

 

Heart rate and heart rate variability (HRV) have been proposed in numerous studies 

(Nickel  and Nachreiner, 2003; Takahashi, 2009) in neuroergonomics with the goal of 

detecting physiological parameters correlating with mental workload. Studies (Backs and 

Seljos, 1994; Kotani et al., 2007) have also shown the role of the respiratory signal (breathing 

rate and depth) in characterizing the physiological response to mental workload.  

To limit the obtrusiveness of measurements, the electrocardiogram (ECG) is recorded by 

means of a single lead ambulatory setup. Based on this assumption, aim of this study was to 

analyze the cardio-respiratory response to mental workload induced by Sternberg‘s high-

speed memory scanning task (Sternberg, 1966), relying only on a single lead ECG recording. 

In the analysis of mental workload, frequency domain parameters of HRV such as low 

frequency (LF: 0.04-0.15 Hz) power are generally used, though stationarity verification is 

often overlooked. In this study a time-frequency analysis of HRV requiring no assumptions 

on stationarity was adopted: the Hilbert-Huang Transform (HHT). Results were then 

compared with the power spectral density (PSD) estimate based on Welch periodogram.  

A surrogate respiratory signal (SRS) was extracted from the ECG by means of the 

principal component analysis (PCA) based method proposed in (Langley et al., 2010), and its 

spectrum was computed in the range 0-0.5 Hz for respiratory rate and power estimation. 
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6.2 Methods 

 

6.2.1 Data acquisition 

 

Fourteen healthy subjects, aged 29 ± 6, participated in this study. The experimental 

protocol was approved by the ethical committee of the Department of Electronics, Computer 

Science and Systems of the University of Bologna. All participants provided informed 

consent before undergoing the experiment. 

The ECG was continuously recorded while subjects were sitting at the desk, performing 

four sessions of modified Sternberg memory-scanning task (Sternberg, 1966). Each session 

consisted in 90 trials. For each a memory set of digits was displayed on the screen for 1500 

ms, followed by a screen blank of 500 ms after which a probe symbol would appear, 

prompting subjects to judge whether the symbol was part of the original set. Response 

timeout was set to 1500 ms.  

Two difficulty levels were defined: easy, for memory sets of three items, difficult, for 

memory sets of eight items. Sessions were presented in the order: easy-difficult-difficult-

easy, each one taking approximately 04:20 (mm:ss) and followed by a short rest. Recording 

duration was fixed (31:00) for all subjects, as well as the start time for the four sessions 

(03:00, 10:00, 17:00, 24:00).  

The ECG was acquired from a modified lead two (MLII) single-lead setup. Data were 

acquired using g.Tec gMOBILab+ ™ . The ECG signal was sampled at 256 samples/s, 16 

bits/sample, with an amplitude resolution of 0.19 µV. Reaction time and error rate were 

recorded for analysis. 

 

6.2.2 Time-frequency HRV analysis 

 

To assess HRV without introducing any assumptions on stationarity of the inter-beat 

interval series, HHT was used. Empirical mode decomposition (EMD) into intrinsic mode 

functions (IMF) was carried out according to (Huang et al., 1998). The convergence criterion 

adopted for the j-th IMF was: 
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where T is the duration of the input time-series, hj(k) is the j-th IMF at the k-th  iteration of 

the sifting process. 

The evenly resampled inter-beat interval series (tachogram), can be expressed as: 
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where n is the number of empirical modes the input series is decomposed into, and rn is the 

residual, which can either be a mean trend or a constant. 

After performing the Hilbert Transform on each IMF, the input series can be expressed 

as: 
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where aj and ωj are the instantaneous amplitude and frequency, respectively. The residual rn 

may be discarded (Huang et al., 1998). 

The expression in (6.3) may be interpreted as a generalized Fourier expansion, where 

amplitude and phase coefficients are time-varying. 

The HHT amplitude spectrum was approximated in this study by evenly discretizing the 

instantaneous frequency and the time axes and by computing for each square of the grid the 

sum of the magnitude squared (energy spectrum) of all IMFs contributions. The discretization 

criterion can be summarized as: 
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where E(i,j) is the energy of the (i,j)-th element of the discretized time-frequency grid, IMFk 

is the k-th IMF, and indices k, ω, t range in [1,n], [fj , fj+ ΔF], [ti , ti+ ΔT], respectively, while 

ΔT is the discrete time and ΔF the discrete frequency axis resolution.  

The discrete approximation of the HHT marginal spectrum (HHT-MS) is derived from 

(6.4) by assigning the interval [ti , ti+ ΔT] to a constant value. 

 

 

6.2.3 Frequency domain HRV analysis  

 

Traditional HRV spectral analysis was also carried out as per (Task Force of the 

European Society of Cardiology, 1996). Welch periodogram was used (arbitrarily) assuming 

wide sense stationarity of the input data. The inter-beat interval series was evenly resampled 

at 4 Hz. A 96 s sliding window with 50% overlap was used for computation of PSD of the 

tachogram. Only low (LF: 0.04-0.15 Hz) and high (HF: 0.15-0.40 Hz) frequency bands were 

considered for power computation. 

 

6.2.4 Surrogate respiratory signal  analysis  

 

Beat detection on the raw ECG data was performed by means of the open-source 

algorithm proposed in (Hamilton, 2002). 

The PCA-based method proposed in (Langley et al., 2010) was then adopted for SRS 

extraction.  
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Preliminary low-pass filtering (6
th

 order Butterworth, cut-off frequency of 35 Hz) on the 

ECG signal was performed to reduce the impact of muscular noise and power-line coupling 

which was empirically found to affect PCA results severely. Also accurate R-peak 

localization for each beat was performed. A window of 50 ms preceding the R peak and 60 

ms following it was used, thus P and T wave were left out (only normal sinus rhythm beats 

were found in all recordings). SRS was extracted from the first principal component 

coefficient series (PC1) over a 96 s sliding window (as for HRV) by converting the beat 

index of each PC1 coefficient into the R-peak time of the corresponding beat. This unevenly 

sampled time series was evenly resampled at a sampling frequency of 4 Hz. Figure 6.1 shows 

an example of R-peak aligned beats for PCA computation and the extracted SRS. 

 
Figure 6.1 Superimposition of consecutive QRS complexes (left) and SRS extracted from 

PC1 coefficients  (right). 

 

6.3 Results 

 

6.3.1 HRV 

 

Regardless of the task difficulty level, a marked decrease of LF during task execution 

with respect to the resting intervals was observed in most subjects. 

Figure 6.2 shows a typical PSD spectrum and the evolution of the corresponding LF, HF 

components of HRV. Figure 6.3 represents the HHT energy spectrum for the same subject.  

In the Fourier representation, the existence of energy at a frequency ω means that a 

component persisted through the time span of the data, whereas in HHT the existence of 

energy at ω means only that, in the whole time span of the data, there is a higher likelihood 

for such wave to have appeared locally. In spite of this conceptual difference, normalized 

PSD-LF power and HHT-LF energy exhibit remarkably similar pattern over time, as shown 

in Figures 6.2 and 6.3. 
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Figure 6.2 PSD computed over 96 s sliding window (left), and normalized LF, HF evolution 

(right). EAS=Easy task, DIFF=Difficult task. 

 

 
Figure 6.3 HHT energy spectrum computed over the entire recording (left), and normalized 

LF, HF energy evolution (right). EAS=Easy task, DIFF=Difficult task. 

 

Table 6.1. PSD vs. HHT linear regression for LF and HF 

 Normalized LF Normalized HF 

Subject  r
2 

RMSE r
2
 RMSE 

S1  0.90 0.07 0.62 0.15 

S2 0.69 0.13 0.46 0.14 

S3 0.73 0.15 0.23 0.18 

S4 0.44 0.17 0.48 0.16 

S5 0.70 0.14 0.58 0.14 

S6 0.38 0.17 0.54 0.17 

S7 0.68 0.12 0.54 0.13 

S8 0.79 0.10 0.82 0.10 

S9 0.66 0.17 0.56 0.14 

S10 0.42 0.17 0.62 0.10 

S11 0.59 0.17 0.69 0.10 

S12 0.37 0.18 0.91 0.05 

S13 0.75 0.12 0.49 0.14 

S14 0.74 0.12 0.15 0.18 
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Table 6.1 shows linear regression of PSD-LF and HHT-LF components and of PSD-HF 

and HHT-HF, for all 14 subjects. 

 

 

6.3.1 Surrogate respiratory signal 

 

Figure 6.4 shows PSD evolution over a 96s sliding window (50% overlap) for one 

subject.  

 
Figure 6.4 Overlapped PSD spectra of SRS, each one computed over a sliding 96 s window 

(left), and time-frequency PSD plot (right). EAS=Easy task, DIFF=Difficult task. 

 
Figure 6.5 Overlapped HHT marginal energy spectra of SRS, each one computed over a 

sliding 96 s window (left), and HHT energy spectrum (right). EAS=Easy task, 

DIFF=Difficult task. 

 

A dominant respiratory rate between 0.25 Hz and 0.35 Hz (15 rpm and 20 rpm, 

respectively) can be observed. In proximity of the start of the 2
nd

, 3
rd

 and 4
th

 task a transient 

lower frequency component (0.15-0.20 Hz) with higher power is also noticeable. Figure 6.5 

shows HHT approach to the SRS of the same subject. 

A large spread in respiratory rate can be observed and the low frequency-high power 

phenomenon is not evident except for the 3
rd

 task start. 
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6.4 Discussion and conclusions 

 

HRV and SRS from a single lead ambulatory ECG recording were analyzed with the goal 

of characterizing the cardio-respiratory response to a mental task in healthy subjects. A time-

frequency approach was used for HRV analysis based on HHT, making no assumptions on 

inter-beat series stationarity. Results were then compared to traditional PSD-based frequency 

domain analysis. A sharp decrease in LF was found in most subjects during task execution 

with respect to the resting intervals, as shown in Figure 6.2 and 6.3. A remarkable correlation 

in PSD power and HHT energy time evolution was found for normalized LF in most subjects 

(r
2
=0.63±0.17), as shown in Table 6.1. Normalized HF component showed slightly lower 

correlation (r
2
=0.54±0.20). Average reaction time was significantly higher (p<0.05) for all 

subjects in the difficult tasks with respect to the easy, also error rate was higher. The 

difficulty level of the task could not be observed from LF evolution, except for one subject 

where the LF peak was higher for the two difficult tasks. 

Respiratory rate and power were analyzed by means of SRS from an established PCA-

based method. A frequency domain analysis based on PSD showed a dominant respiratory 

rate between 0.20 Hz and 0.35 Hz (12 rpm and 20 rpm, respectively) in most subjects, which 

in some cases was associated with a transient lower frequency component (0.15-0.20 Hz) 

with higher power in proximity of the task start, as shown in figure 6.4. HHT approach to the 

SRS was also adopted to account for non-stationarity in SRS. A large spread in respiratory 

rate was generally observed and the low frequency-high power phenomenon was not evident 

as in PSD approach, except in few cases. However, SRS frequency and time-frequency 

behavior was found sensitive to the PCA component choice, to R-peak alignment, to the time 

window of the ECG segments (i.e. the portion of the heart beat) considered for PCA, to 

muscular and power-line noise on the ECG signal, and perhaps to the subjective respiratory 

mechanics. 

In conclusion, HRV analysis in the time-frequency domain and in the frequency domain 

lead to similar results in terms of normalized LF and HF components, the first being more 

evident and also the most relevant to the characterization of the cardio-respiratory response to 

a mental task in healthy subjects. On the other hand, SRS analysis requires further 

investigation as the results are potentially affected by numerous factors. 

 

  



Part II – Chapter 6 94 

References 

 

Backs RW, Seljos KA. Metabolic and cardiorespiratory measures of mental effort: the effects 

of level of difficulty in a working memory task. Int J Psychophysiol 1994; 16(1):57–

68. 

Hamilton P. Open source ECG analysis. Comp Cardiol 2002;29:101–104. 

Huang, NE, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for 

Nonlinear and Non-Stationary Time Series Analysis. Proc R Soc Lond A 1998; 

454:903–995. 

Kotani K, Takamasu K, Tachibana M. Respiratory-phase domain analysis of heart rate 

variability can accurately estimate cardiac vagal activity during a mental arithmetic 

task. Methods Inf Med 2007; 46(3):376–85. 

Langley P, Bowers EJ, Murray A. Principal Component Analysis as a Tool for Analyzing 

Beat-to-Beat Changes in ECG Features: Application to ECG-Derived Respiration. 

IEEE Trans Biomed Eng 2010; 57(4): 821–829. 

Nickel P, Nachreiner F. Sensitivity and diagnosticity of the 0.1-Hz component of heart rate 

variability as an indicator of mental workload. Hum Factors 2003; 45(4):575–90. 

Sternberg S. High-speed scanning in human memory. Science 1966; 153(3736): 652–654. 

Takahashi M. Heart rate variability in occupational health --a systematic review. Ind Health 

2009; 47(6):589–602. 

Task Force of the European Society of Cardiology and the North American Society of Pacing 

and Electrophysiology. Heart rate variability: standards of measurement, 

physiological interpretation and clinical use. Circulation 1996; 93:1043–1065. 

 

  



Part II – Chapter 7 95 

Chapter 7: Regularity and joint time-frequency analyses of non stationary 

heart rate variability in the assessment of psycho-physiological workload 

induced by memory search task 

 

 

Abstract 

 

Short-term heart rate variability (HRV) has been proposed as qualitative indicator of 

psycho-physiological workload (PPW) in response to a mental task. Most specific HRV 

indices are computed from frequency-domain analysis, assuming weak-sense stationarity of 

the inter-beat interval (IBI) series. 

The aim of this study was to investigate the contribution of regularity and joint time-

frequency analyses of non-stationary IBI series, in the assessment of PPW induced by a high-

speed memory scanning task, with the goal of discriminating task difficulty levels. 

Instantaneous energy (IE) of the IBI series and its variance (IEV) were computed based 

on smoothed pseudo Wigner-Ville distribution, together with standard HRV indices. IBI 

series regularity was assessed by sample entropy (SampEn). 

A single lead electrocardiogram was recorded from fourteen healthy subjects (age 29 ± 6) 

during rest (4 minutes) followed by four sessions (4:30 minutes each) of modified 

Sternberg‘s high-speed memory scanning task (SST) in the sequence: easy-difficult-difficult-

easy.  

Error rate was significantly different between easy and difficult tasks (p<0.05). SampEn 

discriminated between performance (task) and rest (p<0.05). Only IEV discriminated 

difficult tasks from other sessions (rest, easy tasks) (p<0.05). The results suggest superior 

ability of SampEn and IEV compared to standard HRV indices in discriminating difficulty 

level of SST. 

 

7.1 Introduction 

 

Heart rate variability (HRV) analysis is an established method (Task Force, 1996) for the 

assessment of the autonomic nervous system (ANS) regulation of the heart rhythm. Measures 

of HRV have been employed in numerous studies ranging from clinical investigations on 

autonomic function and cardiovascular risks, to psychophysiological research on mental 

workload and cognitive behavior (Berntson et al., 1997; Task Force, 1996; Mathewson et al., 

2010; Mukherjee et al., 2011; Mulder et al., 2000). The non-invasive nature of HRV analysis 

has contributed to its application to research fields extending beyond clinical interest, making 

it a powerful tool for the assessment of the relationships between psychological and 

physiological processes.  

In recent years, particular interest has been devoted to the assessment and quantification 

of psycho-physiological workload (PPW) associated to task performance in the work 
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environment, with the goal of promoting safety and productivity (Henelius et al., 2009; 

Hjortskov et al., 2004).  

HRV linear indices in the time-domain and frequency-domain have extensively been 

studied for the purpose. Power of HRV in the low frequency band (LF: 0.04-0.15 Hz) has 

been reported to reflect increasing mental effort in response to mental tasks involving 

working memory, such as mental arithmetic, memory search, and planning (Aasman et al., 

1987; Fairclough and Roberts, 2011; Mulder et al., 2000; Redondo and Del Valle-Inclán, 

1992), suggesting increasing attenuation of the baroreflex loop in response to increasing 

cognitive challenge induced by attention demand.    

General studies on HRV, however, support the relevance of nonlinear analysis (Parlitz et 

al., 2011; Pincus and Goldberger, 1994; Scumacher, 2004; Signorini et al., 2011; Task Force, 

1996) with the goal of quantifying complex dynamics in the multi-factorial regulation of the 

heart rhythm, which may not be described by linear analysis. To the best of our knowledge, 

to date only one study has been presented (Mukherjee et al., 2011) on short term nonlinear 

analysis of HRV in mental effort assessment. 

Moreover, traditional frequency-domain analysis of HRV employs Fourier-based, non-

parametric estimation of power spectral density (PSD) of the inter-beat interval series (IBI 

series), which relies on the implicit assumption of data stationarity. To overcome this 

limitation, time-frequency techniques have been proposed (Choi and Williams, 1989; Cohen, 

1989) and applied to the analysis of cardiovascular time series (Bailòn et al., 2011a; Bailòn et 

al., 2011b; Pola et al., 1996), providing the ability to locate subtle transient fluctuations.  

The aims of this study were to: i) assess wide-sense stationarity (WSS) of the inter-beat 

interval (IBI) series in response to a high-speed memory scanning task in healthy young 

subjects; ii) assess the contribution of time-domain regularity and joint time-frequency (JTF) 

analyses of IBI-series in discriminating between performance (task execution) and rest, as 

well as between easy and difficult tasks; iii) compare the proposed methods with standard 

HRV.  

The memory search task employed in this study was a modified version of the well-

known Sternberg‘s secondary task (SST) (Sternberg, 1966). 

 

7.2 Methods 

 

7.2.1 Data Acquisition  

 

Fourteen healthy subjects, aged 29 ± 6, participated in this study. The experimental 

protocol was approved by the ethical committee of the University of Bologna. All 

participants provided informed consent before undergoing the experiment. 

The electrocardiogram (ECG) was continuously recorded while subjects were sitting at 

the desk, performing four sessions of the modified Sternberg memory-scanning task 

(Sternberg, 1966). Each session consisted in 90 trials. For each trial a memory set of n digits 

was displayed on the screen for 1500 ms, followed by a screen blank of 500 ms after which a 

probe symbol would appear for 1000 ms, prompting subjects to judge whether the symbol 
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was part of the original set. Response timeout was set to 1500 ms following the probe‘s 

appearance. 

Two difficulty levels were defined: easy, for memory sets of n = 3 digits; difficult, for 

memory sets of n = 8 digits. After a resting period (baseline) of 4 minutes (BL), tasks (T1,…, 

T4) were presented in the order: easy-difficult-difficult-easy, each one taking approximately 

04:30 (mm:ss) and followed by a short rest. Recording duration was fixed (31:00) for all 

subjects, as well as the relative start time for the four tasks (04:00, 11:00, 18:00, 25:00). 

A custom software application was used for the presentation of stimuli. It was run on an 

Intel® Core™ 2 Duo P8400 (2.26 GHz) laptop PC, equipped with GNU/Linux® OS. Stimuli 

were presented to the subjects on a 19‖ external monitor (output device). User response was 

recorded by an optical USB mouse, whose left- and right- buttons were mapped to match the 

―yes‖ and ―no‖ responses, respectively (input device). 

A single lead ECG signal in a modified lead two (MLII) setup was acquired using g.Tec 

gMOBILab+ ™. The pass-band of the ECG front-end was (0.5 – 100 Hz), the digitalized 

ECG was sampled at 256 samples/s, 16 bits/sample, with an amplitude resolution of 0.19 μV.   

The ECG signal was processed off-line for beat detection and classification, by means of 

an established method (Hamilton, 2002). No abnormal (arrhythmic) beats were detected by 

the algorithm. The ECG signals were also visually inspected to verify that no abnormal beats 

were present. 

Reaction time (RT), defined as the time interval between the presentation of the probe 

and the subject‘s response, and error rate (ER), defined as the percentage of incorrect and 

missing answers, were recorded for each trial, for all tasks. 

 

7.2.2 Stationarity test 

 

The weak-sense stationarity of the IBI series, namely the stability of the expected value 

and variance over time, was tested according to a criterion inspired by the one proposed for 

HRV analysis by Porta and coworkers (Porta et al., 2004). Briefly, the IBI series of each 

session (BL, T1,…, T4) was considered individually. The first order trend was removed from 

the data. Assuming the generic session contained NBS beats, NBS-L+1 ordered sequences of L 

beats each could be constructed, such that IBIL(i) = (IBI(i),IBI(i+1),…,IBI(i+L-1)) was the 

generic sequence starting at the ith sample. Kolmogorov-Smirnov (KS) goodness-of-fit test 

was used to assess the normality of the distribution (p<0.05) of each sequence. If the null 

hypothesis was rejected, the data was log-transformed and the KS test repeated. If the null 

hypothesis was rejected again, the test was replaced by the Kruskal-Wallis rank-sum test 

(KW), with equal significance level (α=0.05). The number (NN) of sequences satisfying the 

null hypothesis of normally distributed data was stored. If NN was greater than a fixed 

threshold M, the null hypotheses of stable (i.e. not significantly varying over time) mean and 

variance were tested by the one-way analysis of variance (ANOVA) and the Bartlett‘s test, 

respectively; otherwise the KW and Levene test were used, respectively. In the first case, NN 

(>M) sequences were used; in the second, all available sequences were used for statistical 

analysis. This choice differs from the implementation presented in previous works (Porta et 

al., 2004; Magagnin et al., 2011), where only M randomly selected sequences were used. In 
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this study L=50, M=8 were used, as in (Porta et al., 2004; Magagnin et al., 2011). For each 

session of each recording, the WSS condition was assessed. 

 

7.2.3 Time-domain HRV analysis 

 

The standard time-domain statistical indices of HRV were computed: mean-IBI, standard 

deviation of normal-to-normal intervals (SDNN), square root of the mean squared differences 

of successive normal-to-normal intervals (RMSSD). Established nonlinear indices from the 

Poincaré phase-space plot were also computed, namely the standard deviation of the width-

histogram (SD1) and the standard deviation of the length-histogram (SD2), quantifying short-

term and long-term variability of the IBI series, respectively. Sample entropy (SampEn) was 

calculated for nonlinear analysis of data regularity. 

SampEn quantifies the degree of complexity of the IBI series (Richman and Moorman, 

2000). For the calculation of SampEn, the original time series IBI(i), i = 1,..., N, is considered 

and vector sequences of size m, u(1) through u(N−m+1), defined by u(i) = {IBI(i),..., 

IBI(i+m−1)} are constructed. The vectors length m, is known as the embedding dimension. 

The constructed vectors represent m consecutive IBIs starting from the ith point. The distance 

d[u(i), u(j)] between vectors u(i) and u(j) is defined as d[u(i), u(j)] = max{|u(i + k) – u(j + 

k)|, 0 ≤ k ≤ m − 1}. The probability of finding another vector within distance r from the 

template vector u(i) is estimated by: C
m

i(r) = {number of j ≠ i, j ≤ N-m+1, such that d[u(i), 

u(j)] ≤ r}/(N-m+1). Defining: 
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as the average probability, sample entropy can be written as: 

 

)](/)(ln[),,( 1 rrNrmSampEn mm            (7.2) 

 

Generally, the higher is the value of SampEn, the higher is the complexity (or irregularity) 

of the data series (RR-interval series). 

 

7.2.4 Frequency-domain HRV analysis 

 

Welch periodogram was used (arbitrarily) assuming wide sense stationarity of the input 

data. The IBI series was evenly resampled by cubic spline interpolation, at 4 Hz. Power 

spectral density (PSD) was estimated by Welch periodogram for each session separately: BL, 

T1,.., T4. Low frequency (LF) power (PLF: 0.04-0.15 Hz), high frequency (HF) power (PHF) 

in the frequency band between the standard lower bound (0.15 Hz) and half the average heart 

rate (i.e. the highest frequency with physiological meaning) as in (Bailòn et al. 2011b), 
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PLF/PHF ratio, and total power in the low and high frequency bands combined together 

(PLF+HF) were computed from the estimated PSD. 

 

7.2.5 Time-frequency HRV analysis 

 

To assess HRV without assuming stationarity of the IBI series, an established well 

recognized method (Bailòn et al., 2011a; Bailòn et al., 2011b ; Jasson et al., 1997; Pola et al., 

1996) based on the smoothed pseudo Wigner-Ville distribution (SPWVD) was used.  

SPWVD is a member of the Cohen‘s class of time-frequency joint distributions (Cohen, 

1989). For a band-limited discrete-time real valued signal x(n) whose analytic signal is 

expressed as: z(n) = x(n) + jH[x(n)], where H[] is the Hilbert transform operator, SPWVD 

can be computed as: 
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where |h(k)|
2
 and g(q) are the frequency- and time- smoothing windows, of length 2K-1 

and 2N-1, respectively; n is the discrete time instant, m/M is the discrete normalized 

frequency, m = -M+1, ...., M. In actual implementations, the smoothing windows shapes are 

chosen empirically as trade-off values between conflicting requirements, mainly concerning 

the so-called ―cross terms‖ consisting in undesirable frequency components generated by the 

autocorrelation product in (3). In the present study, a rectangular frequency-smoothing 

window (K=32) was used. The time-smoothing window was chosen according to (Bailòn et 

al., 2011a), namely an exponential window (N=21) with damping factor γ=1/64 samples
-1

. 

The signal x(n) is the evenly resampled (4 Hz) IBI series. By definition, the analytic signal 

z(n) preserves the spectral content of the original signal x(n) (Choi and Williams, 1989; Pola 

et al., 1996), hence Wz represents the energy distribution, with respect to time and frequency, 

of the IBI series. 

The instantaneous energy in the LF band (IELF) at time instant n was calculated according 

to (Bailòn et al., 2011a; Bailòn et al., 2011b) as: 
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where m1, m2 are the discrete frequency indices corresponding to the lower (0.04 Hz) and 

upper (0.15 Hz) boundaries of the LF frequency band. In a similar way the instantaneous 

energy in the HF band (IEHF) was computed. In this study the HF band was assumed to range 

between 0.15 Hz and half the mean heart rate. 

The total power in the frequency band spanning LF and HF (IELF+HF) representing a 

measure of the total short-term variability was computed by summing IELF and IEHF 

computed by (7.4).  
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For each session (BL, T1,...,T4) the instantaneous energy variability (IEV) was calculated 

as variance of the instantaneous energy in the given frequency band: e.g. for the LF band 

IEVLF = Var(IELF). Similarly, the mean instantaneous energy (IEM) was calculated, for each 

session, in the frequency bands of interest. 

 

7.2.6 Statistical analysis 

 

The null hypothesis of normally distributed data was tested according to the Lilliefors 

test, with a significance level of 0.05. If the null hypothesis was rejected, the data distribution 

was log-transformed and the normality test repeated. Subsequently, analysis of variance 

(ANOVA) was performed on all parameters individually.  

Post-hoc analysis for multiple comparisons was then performed according to Tukey-

Kramer honestly significant differences (HSD) criterion, to determine significant differences 

among groups, with a significance level of 0.05. 

The linear relationship between HRV parameters and RT is assessed by Pearson‘s 

correlation, with a significance level of 0.05. 

 

7.3 Results 

 

7.3.1 Sternberg Task 

 

Analysis of variance of ER showed significant differences among groups (p<0.001). Post 

hoc analysis by TK test showed a significant difference (α=0.05) in ER between difficult (T2, 

T3) and easy (T1, T4) tasks. The results are summarized in Table 7.1. The reported p values 

refer to ANOVA, indicating confidence level in rejecting the null hypothesis of all sessions 

(BL, T1,…, T4) having the same mean. 

 

Table 7.1 Performance indices ANOVA 

Parameter Mean(SE)  

BL T1 T2 T3 T4 p value 

ER [%] N/A 4(1) 19(2)
(*)

 23(2)
(*)

 2(1) p<0.001 

N/A: not applicable  
(*)

 significantly different (TK test, α=0.05) with respect to easy tasks. 

 

7.3.2 Data stationarity 

 

The WSS test rejected the null hypothesis of stable mean and variance within the given 

session. This result was obtained for all sessions (BL, T1,…,T4), for all recordings. Figure 

7.1 shows an example of the IBI series for a generic recording. 
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Figure 7.1 Example of IBI series. The de-trended IBI series is shown for each of the five 

sessions (BL, T1,..,T4) for a randomly chosen recording. The WSS condition was not 

satisfied (p>0.05). 

 

7.3.3 HRV analysis 

 

Table 7.2 summarizes ANOVA of all variability indices. The reported p values refer to 

ANOVA, indicating confidence level in rejecting the null hypothesis of all sessions having 

the same mean for the given parameter (row of table). Post hoc analysis was computed on 

parameters showing significant differences among sessions. Indices and ranges for multiple 

comparisons (RMC) are shown in Figure 7.2 and Figure 7.3. Dotted vertical lines mark the 

boundaries (95% C.I.) of baseline variability (BLV). Sessions whose RMC lies outside BLV 

are significantly different from BL. 

A significant difference in the groups mean was observed for indices SDNN, SD2, PLF, 

SampEn, IEVLF, IEVLF+HF across the five sessions (BL, T1,…,T4). Post hoc analysis (TK 

HSD test) showed that SampEn was able to discriminate between SST performance 

(T1,…,T4) and rest (BL) (Table 7.2 and Figure 7.2). Other indices (SDNN, SD2, PLF, IEVLF, 

IEVLF+HF) were able to discriminate some tasks from baseline, but not all. Index IEVLF+HF 

was able to discriminate difficult tasks from the other sessions (Table 7.2 and Figure 7.3). 

However no indices were able to discriminate easy from difficult tasks (i.e. difficulty level) 

as shown in Figure 7.2 and Figure 7.3 by overlapping RMC of easy and difficult tasks. 

SampEn reported in this section was computed for an embedding dimension m=4, 

although other values (m=3,…,5) were also tested and lead to similar results.  
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Table 7.2 HRV indices ANOVA 

Parameter Mean(SE)  

BL T1 T2 T3 T4 p value 

Mean-IBI[ms] 1012(42) 1002(46) 973(42) 988(39) 1011(35) N.S. 

SDNN [ms] 73(5) 59(5) 48(4) Δ 48(4) Δ 54(5) Δ p<0.005 

RMSSD [ms]
 (a)

 1.59(0.06) 1.56(0.07) 1.49(0.06) 1.51(0.06) 1.56(0.06) N.S. 

SD1 [ms]
 (a)

 1.44(0.06) 1.41(0.07) 1.34(0.06) 1.36(0.06) 1.41(0.06) N.S. 

SD2 [ms] 97(6) 76(6) 62(4) Δ 62(4) Δ 70(6) Δ p<0.001 

PLF [ms
2
] 

(a)
 2.90(0.08) 2.55(0.09) 2.46(0.10) Δ 2.56(0.09) 2.58(0.10) p<0.05 

PHF [ms
2
] 

(a)
 2.67(0.12) 2.56(0.13) 2.40(0.12) 2.45(0.11) 2.52(0.12) N.S. 

PLF+HF [ms
2
] 

(a)
 3.15(0.08) 2.93(0.10) 2.78(0.10) 2.85(0.09) 2.90(0.10) N.S. 

PLF/PHF [a.u.] 2.38(0.49) 1.73(0.43) 1.75(0.37) 1.74(0.31) 1.63(0.29) N.S. 

SampEn [a.u.] 1.74(0.12) 1.08(0.13) Δ 1.06(0.12) Δ 1.07(0.09) Δ 1.13(0.10) Δ p<0.001 

IEVLF [a.u.] 
(a)

 11.03(0.15) 10.31(0.17) Δ  10.24(0.18) Δ 10.26(0.15) Δ 10.41(0.17) p<0.01 

IEVHF [a.u.] 
(a)

 10.09(0.24) 9.76(0.24) 9.57(0.18) 9.56(0.21) 9.78(0.22) N.S. 

IEVLF+HF [a.u.] 
(a)

 11.21(0.15) 10.65(0.18)  10.49(0.18) Δ 10.53(0.15) Δ 10.70(0.18) p<0.05 

IEMLF/ IEMHF [a.u.] 
(a)

 3.00(0.52) 1.77(0.34) 1.75(0.34) 1.96(0.37) 1.88(0.30) N.S. 

(a)
 distribution log-transformed 

Δ
 significantly different from baseline (TK HSD test, p<0.05) 

 

 
Figure 7.2 Variability of time indices. Time-domain parameters and range for multiple 

comparisons (RMC) are shown. Dotted vertical lines mark the boundaries (95% C.I.) of 

baseline variability. Sessions whose RMC do not overlap are significantly different. SampEn 

discriminates (any) task from baseline. 
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Figure 7.3 Variability of frequency and time-frequency indices. Frequency-domain 

parameters and range for multiple comparisons (RMC) are shown. Dotted vertical lines mark 

the boundaries (95% C.I.) of baseline variability. Sessions whose RMC do not overlap are 

significantly different. IEVLF+HF is significantly different in difficult tasks (T2, T3) with 

respect to other sessions (BL, T1, T4). 
 

 

 

Figure 7.4 Temporal evolution of instantaneous energy and performance indices. Example of 

temporal evolution of instantaneous energy (IE), reaction time (RT) and answer (C: correct, 

W: wrong, M: missing) for the four tasks (T1,…,T4). 
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7.3.3 Time-frequency HRV analysis 

 

Figure 7.4 shows an example of temporal evolution of IE and associated RT and answer (C: 

correct, W: wrong, M: missing) for all trials, for the four tasks. RT is bounded to 1500 ms by 

the protocol. The difficult tasks (T2, T3) show increased ER and decreased IEV with respect 

to the easy tasks. 

 

7.4 Discussion 

 

In the present study, the contribution of regularity and joint time-frequency analyses of 

non-stationary HRV in discriminating between performance (SST task execution) and rest 

was assessed and compared to the standard HRV (Task Force, 1996) approach. 

Preliminary assessment of weak-sense stationarity of the (first order de-trended) IBI 

series was performed on individual sessions (BL, T1,…,T4) of each recording. The WSS 

condition was not met, in any recordings, suggesting that time-frequency methods not relying 

on data stationarity could exhibit improved ability in discriminating baseline from task 

execution.   

To verify actual difference in task difficulty level (SST easy vs. SST difficult), ER was 

adopted as performance index. ER was found significantly different in difficult tasks with 

respect to the easy ones (TK HSD, p<0.05).  

Post hoc multiple comparisons analysis of the time-domain indices showed that only 

regularity index SampEn was able to discriminate (p<0.05) SST task execution 

(performance) from baseline (rest). This parameter quantifies the degree of complexity of the 

IBI series. Lower values of SampEn indicate increased regularity (decreased complexity). To 

the authors‘ knowledge, no studies have been presented in literature using SampEn in short-

term HRV analysis of cognitive effort in response to memory search tasks. 

A recent work (Vuksanović and Gal, 2007) on arithmetic mental stress with verbalization 

in which a similar experimental setting (age range of participants, task duration) was used, 

SampEn was also found lower during mental task execution with respect to the resting stage 

preceding the task performance.  

However, in the present study, the significant decrease in SampEn during task execution 

indicating increased regularity of the IBI series, was not reflected by a significant decrease in 

the total power (PLF+HF), suggesting the superior ability of the time-domain non linear index 

in discriminating performance from rest. 

Long-term variability indices (SDNN, SD2) were able to discriminate tasks following the 

first (T2, T3, T4). The significant decrease in ―slow variability‖ indices (SDNN, SD2) during 

SST task performance appears to be consistent with previous work in which a memory 

scanning task was used (Redondo and Del Valle-Inclán, 1992). However, standard HRV 

frequency-domain indices (PLF, PHF, PLF/PHF) did not show the discrimination ability of the 

time-domain indices. PLF was reduced during task execution (Figure 7.3) in accordance to 

previous findings (Mulder et al., 2000; Nickel and Nachreiner, 2003) but not significantly.  

In Figure 7.3, frequency-domain indices of standard HRV (left column) are compared to 

those from the time-frequency domain (right column). In the LF band (0.04-0.15 Hz), IEVLF 
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was able to discriminate three tasks (T1,T2,T3) from baseline, whereas PLF could only 

discriminate one (T2). Unlike any indices from standard HRV, index IEVLF+HF was able to 

discriminate difficult tasks from other sessions (baseline and easy tasks). 

It shall be noted that, given the short duration of the sessions (less than 5 min), the 

LF+HF frequency band (from 0.04 Hz to half the mean heart rate) comprises the entire 

frequency band of interest. Hence, IEVLF+HF  represents a measure of ―global‖ variability of 

the energy distribution of the IBI series.  

However, none of the above indices were able to discriminate task difficulty, consistently 

with previous work (Nickel and Nachreiner, 2003).  

 

7.5 Conclusions 

 

In this study psychophysiological workload in response to a high-speed memory scanning 

task (Sternberg, 1966) in healthy young subjects was assessed by means of standard HRV 

indices complemented with joint time-frequency and regularity analyses of the IBI-series.  

A superior ability of regularity index (SampEn) in discriminating performance (task 

execution) from rest; and instantaneous energy variability (IEVLF+HF) in discriminating 

difficult tasks from other sessions (rest and easy tasks) was shown in non-stationary IBI 

series, suggesting a potential use of the proposed indices in discriminating PPW levels in 

response to varying SST difficulty. However, replication on a larger dataset is required to 

confirm the validity of the proposed method. 
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Part III 
 

 

 

This part presents the analysis of the atrial activation signal (continuous wavefront) in 

atrial fibrillation, with emphasis on original contributions. In Chapter 8 a novel method for 

online electrocardiogram delineation based on wavelet-transforms and 32-bit integer linear 

algebra is presented. In Chapter 9 a novel method for the estimation of the atrial signal and 

the dominant fibrillatory rate based on surface electrocardiogram is presented. In Chapter 10 

the analysis of temporal variability of spatial complexity and spectral distribution in body 

surface potential maps is presented, based on a novel approach built on the automatic 

delineation method introduced in Chapter 8. Emphasis is given to the novel finding of linear 

correlation between spectral concentration and temporal regularity of spectral distribution.   

 

 

Scientific work: 

 

Chapter 8: 

Di Marco LY and Chiari L. A wavelet-based ECG delineation algorithm for 32-bit 

integer online processing. Biomed Eng Online 2011 Apr 3;10:23. 

 

Chapter 9: 

Di Marco LY, King S, Bourke JP, Chiari L, Murray A, Langley P. Time-frequency 

analysis of atrial fibrillation comparing morphology-clustering based QRS-T 

cancellation with blind source separation in multi-lead surface ECG recordings. Comp 

Cardiol 2011; 38:269−272. 

 

Chapter 10: 

Di Marco LY, Bourke JP, Langley P. Spatial complexity and spectral distribution 

variability of atrial activity in surface ECG recordings of atrial fibrillation. Med Biol 

Eng Comp [in press] 
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Chapter 8: A wavelet-based ECG delineation algorithm for 32-bit integer 

online processing  

 

 

Abstract  

 

Since the first well-known electrocardiogram (ECG) delineator based on Wavelet 

Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted 

to the exploitation of this promising method. Its ability to reliably delineate the major 

waveform components (P, Q and mono- or bi-phasic T wave) would make it a suitable 

candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous 

implementations of this method adopt non-linear operators such as root mean square (RMS) 

or floating point algebra, which are computationally demanding.  

This paper presents a 32-bit integer, linear algebra advanced approach to online QRS 

detection and P-Q-T waves delineation of a single lead ECG signal, based on WT.  

The QRS detector performance was validated on the MIT-BIH Arrhythmia Database 

(sensitivity Se=99.77%, positive predictive value  P+=99.86%, on 109010 annotated beats) 

and on the European ST-T Database (Se=99.81%, P+=99.56%, on 788050 annotated beats). 

The ECG delineator was validated on the QT Database, showing a mean error between 

manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, 

P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation 

comparable to other established methods. 

The proposed algorithm exhibits reliable QRS detection as well as accurate ECG 

delineation, in spite of a simple structure built on integer linear algebra. 

 

8.1 Introduction 

 

The electrocardiogram (ECG) is the recording of the electrical activity of the heart by 

means of electrodes placed on the body surface. It is the most commonly used non-invasive 

test in primary care for heart rate and rhythm-related abnormalities detection (Fairweather et 

al., 2007; Hooper et al., 2001). In recent years the interest for the ECG signal analysis has 

extended from clinical practice and research to disciplines such as cognitive 

psychophysiology (Causse et al., 2010; Healey and Picard, 2005), physical training (Corrado 

et al., 2010; Higgins, 2008) and rehabilitation (Mutikainen et al., 2009).  

Many non-diagnostic applications do not require the full 12-lead setup of clinical ECG, 

employing a limited number of electrodes. In some cases a single lead setup, requiring only 

three electrodes, is sufficient. Such applications focus on ambulatory ECG monitoring, 

namely in unconstrained conditions, in which subjects perform normal activities as in their 
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daily life (Bowers et al., 2008; Figueiredo et al., 2010; Healey and Picard, 2005; Porges and 

Byrne, 1992). 

Ambulatory ECG analysis requires processing of signals which are affected by 

considerable noise, mainly caused by electrode motion and muscular activity, more 

prominently than in resting ECG recordings, and by power-line coupling. Moreover, 

emerging wearable technologies for ambulatory ECG monitoring have limited processing 

resources and low power budget. 

Clinical information on the cardiac beat is carried by the waveforms appearing on the 

electrocardiogram, namely: QRS-complex and P, T, U, waves. Their amplitudes and relative 

time intervals provide insight on heart rhythm abnormalities and heart disease such as 

ischemia and myocardial infarction. Electrocardiogram delineation is the automatic process 

of determining such amplitudes and time intervals.  

 Performing an accurate delineation is quite a challenging task, for many reasons. For 

example, the P wave is characterized by low amplitude and may be masked by electrode 

motion or by muscular noise. The P and T waves may be biphasic, which increases the 

difficulty to accurately determine their onset or offset. Moreover, some arrhythmic beats may 

not contain all the standard ECG waves, for example the P wave may be missing, while in 

accelerated heart rate patterns, it might be partially overlapped to the T wave of the previous 

beat. 

The first stage of ECG delineation is devoted to detecting the QRS-complex, which in 

most cases is the most pronounced wave of the heart cycle. Subsequent processing locates P, 

QRS-complex and T waves fiducial points (onset, peak, offset). 

The cyclic nature of the ECG signal and its spectral components, which mainly appear in 

well-known and distinguishable frequency bands, make ECG a suitable candidate for multi-

resolution decomposition by means of wavelet transforms  (Mallat, 1989; Mallat and Zhong, 

1992). Methods based on wavelet transforms have been proposed by numerous authors 

(Addison, 2005; Boichat et al., 2009; Ghaffari et al., 2009; Martinez et al., 2004; 

Sivannarayana and Reddy, 1999; Sovilj et al., 2004), building on the first well-known ECG 

delineator proposed by Li and coworkers (Li et al., 1995). 

Unfortunately, most of these ECG delineation algorithms adopt non-linear operators such 

as root mean square (RMS) or floating point algebra, which are computationally demanding. 

The work by Sovilj and coworkers (Sovilj et al., 2004) presents a real-time implementation of 

QRS detection and P wave delineation, though no validation on standard databases is 

provided, nor is the P wave delineation criterion explained. In (Bahoura, 1997) a WT-based 

algorithm for real-time QRS detection and ECG delineation is presented, though no 

validation is reported on delineation, and the total number of annotated beats used in the 

validation of QRS detection does not match the record-by-record count, as noted in (Martinez 

et al., 2004). 

The work by Boichat and coworkers (Boichat et al., 2009) presents a real-time 

implementation of the offline method proposed in (Martinez et al., 2004), though no 

validation on arrhythmia databases (such as the MIT-BIH Arrhythmia Database) is provided. 

The delineation of QRS onset and QRS offset in (Boichat et al., 2009) is performed on WT 

detail coefficients at scale 2
4
, namely on the output of a pass-band FIR filter with a 3dB band 

of 4.1-13.5 Hz. Moreover, the criterion adopted for the validation of the delineation algorithm 
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is based on a 320 ms window, which exceeds the maximum tolerance (150 ms) for QRS 

detection accuracy allowed by the ANSI/AAMI-EC57:1998 standard.  

This paper presents a wavelet-based algorithm for single lead QRS detection and ECG 

delineation of P wave, QRS-complex and T wave, under the algorithmic constraint of 32-bit 

integer linear algebra online processing and compliance with ANSI/AAMI-EC57:1998 

requirements on QRS detection accuracy. The algorithm was validated on MIT-BIH 

Arrhythmia Database (MITDB), the European ST-T Database (EDB), and QT Database 

(QTDB), available from Physionet.  

 

8.2 Methods 

 

8.2.1 Wavelet Transform 

 

The general theory on wavelet transforms for multi-resolution analysis is described in 

detail in (Mallat, 1989; Mallat, 1989; Mallat and Zhong, 1992) and its application to ECG 

signal delineation is presented in (Li et al., 1995; Martinez et al., 2004) while a review is 

given in (Addison, 2005).  

With reference to the family of spline functions of degree 2r+2 proposed in (Mallat and 

Zhong, 1992) for the smoothing function θ(t), in this study the 8
th

 degree (r=3) was adopted. 

Its Fourier transform is expressed in (8.1.1) and the Fourier transform of the wavelet function 

is expressed in (8.1.2). 
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Unlike previous studies (Bahoura et al., 1997; Boichat et al., 2009; Ghaffari et al., 2009; 

Li et al., 1995; Martinez et al., 2004; Sovilj et al., 2004) where a cubic spline smoothing 

function θ(t) (r=1) was used, in this study a higher value of r was adopted to reduce the width 

of the compact support and the pass-band of the equivalent filter for scales higher than 2
1
, to 

improve frequency band separation across scales. However, the number of filter taps 

increases with r, therefore a tradeoff should be determined between computational effort and 

delineation performance. 

Figure 8.1 shows the smoothing function θ(t) and wavelet function ψ(t) for r=1 and r=3. 

The compact support of the smoothing (scaling) function decreases in width as r increases. 

The low-pass filter H and high-pass filter G derived from (8.1.1) and (8.1.2) can be 
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expressed as: 
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whose finite impulse response hn and gn are given by the coefficients reported in Table 8.1. 

 
Figure 8.1 Smoothing function and wavelet function. Smoothing function θ(t) (left) and 

wavelet function ψ(t) (right), for r=1 (dotted line) and r=3 (solid line). 

 

Table 8.1  – Wavelet Filters Impulse Response 

N hn gn 

-2 1/128  

-1 7/128  

0 21/128 -2 

1 35/128 2 

2 35/128  

3 21/128  

4 7/128  

5 1/128  

 

It shall be noted that hn is symmetrical and of even length, representing a linear phase 

low-pass FIR filter, while gn is anti-symmetrical of even length, representing a linear phase 

high-pass FIR filter. 

The frequency response for the filter bank generalized for any given scale can be written 

as: 
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The filter bank structure is illustrated in Figure 8.2. 
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Figure 8.2 DWT filter bank. Filter bank implementation of biorthogonal dyadic wavelet 

transform without decimation (algorithme à trous). d
k

n is the detail coefficient series for scale 

2
k
. Inspired by (Martinez et al., 2004). 

 

The frequency response of the equivalent filters Qk in (8.3) is displayed in Figure 8.3 for 

the first four scales, for r=1 (cubic spline smoothing function) and r=3 (8
th

 order spline 

smoothing function). For any given scale 2
k
, Qk pass-band narrows with increasing r, 

improving frequency separation of the filter bank across scales. 

 
Figure 8.3 Equivalent filters magnitude response. Equivalent Filters Qk  magnitude response, 

for different scales 2
k
, for r=1 (dotted line) and r=3 (solid line). Sample frequency Fs = 250 

samples/s. 
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The group delay of the equivalent filter Qk must be accounted for in multi-scale analysis 

of discrete wavelet transform (DWT) coefficients. To match zero-crossings (and their relative 

modulus-maxima) across different scales, DWT coefficients must be aligned temporally.  

The group delay of Qk at scale 2
k
, k >1, is given by: 

 

k

Gg

k

l

l

Hg

k

g ,

1

1

,  




                    (8.4.1) 

 

where: 

 
2

, 23  ll

Hg                   (8.4.2) 

 

is the group delay of the low-pass filter at scale 2
l
 , and 

 
2

, 2  kk

Gg                    (8.4.3) 

 

is the group delay of the high-pass filter at scale 2
k
. 

According to (Clifford et al., 2006; Pan and Tompkins, 1985), the energy of the main 

waveforms composing the ECG, namely QRS-complex, P and T waves, lies within a limited 

frequency range. As a consequence, a limited number of scales is required for ECG 

delineation. Table 8.2 summarizes the cutoff frequencies of Qk filters for the scales of 

interest, for r=1 and r=3. 

 

Table 8.2 – Wavelet Filters Bandwidth 

Scale 

2
k
 

Bandwidth [Hz] (*) 

Cubic Spline θ(t) (r=1) 

Bandwidth [Hz] (*) 

8
th

 order Spline θ(t) (r=3) 

k = 1 62.50 – 125.00 62.50 – 125.00 

k = 2 18.02 – 58.60 13.12 – 43.55 

k = 3 8.36 – 27.46 5.98 – 19.99 

k = 4 4.11 – 13.52
 

2.93 – 9.80
 

(*) 3 dB cut-off 

 

8.2.2 Description of the Algorithm 

 

The raw ECG signal is assumed to be sampled at 250 samples/s. The databases used for 

validation contain records of ECG data stored at 12-bit/sample. Therefore, to prevent 

overflow in a (signed) integer implementation of the low-pass filter adopted in the filter bank, 

16-bit integer capacity is not sufficient. This constitutes the only reason for adopting a 32-bit 

instead of 16-bit implementation. However, a 32-bit implementation also complies with input 

signals (raw ECG data) with a sample resolution up to 24-bit/sample. Most, if not all, 

commercially available ECG front-end devices currently fall within this category. In order to 

comply with the largest set of such devices on the market, no assumptions are made on the 

amplitude resolution (typically expressed in units of µV) 
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The DWT properties which the proposed method is based on are well described in (Li et 

al., 1995; Martinez et al., 2004). Based on the properties of the filter bank (8.2), the zero-

crossings of the DWT coefficients d
k
n correspond to the local maxima or minima of the 

smoothed input signal at different scales, and the maximum absolute values of d
k
n are 

associated with maximum slopes in the filtered signal (Martinez et al., 2004). 

Figure 8.4 shows DWT detail coefficients computed by the present algorithm, for actual 

ECG signals (record 108 and 208, from MITDB). 

 

Figure 8.4 ECG signal and DWT decomposition. Examples of ECG signals from MITDB 

records (resampled at Fs=250 samples/s) MITDB:108 (left), MITDB:208 (right), and DWT 

detail coefficient d
k
n at scales 2

1
 through 2

5
. 

 

At a sampling frequency of 250 samples/s, the spectral content of the ECG signal mainly 

falls within the first five scales of the filter bank (8.2). In particular, the QRS-complex is 

prominent at scales 2
2
 

 
and 2

3
 while its energy decreases at increasing scales and becomes 

very low at scales higher than 2
4
, while P shows high energy at scale 2

3
 which decreases at 

higher ones. At scales 2
3
 through 2

5
 T wave has high energy, though at scale 2

5
 the baseline 

drift, including respiration effects, becomes prominent. For this reason, scale 2
5
 is not 

considered in this study. At scales 2
1
 and 2

2
 small peaks in Q and S waves may show zero-

crossings though at such low scales, especially scale 2
1
, muscular noise and power-line 

coupling may appear.  

Using the information of local maxima, minima and zero-crossing at the scales of interest, 

the algorithm identifies for each beat the significant points of the ECG in the following steps: 

1) detection of the QRS-complex; 2) QRS-complex delineation (onset, offset); 3) P wave 

delineation (onset, peak, offset); 4) T wave delineation (peak, offset) of the previous beat. 

Figure 8.5 displays the flow chart of the state machine for online parsing of detail coefficients 

d
2

n, for QRS detection. Unlike previous works (Li et al., 1995; Martinez et al., 2004), for 

QRS detection only two scales (2
2
, 2

3
) are processed.  
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Figure 8.5 ECG delineation state machine. State Machine flow chart for online ECG 

delineation. The zero-corssing nZ with the largest modulus-maxima pair amplitude AMMp(nZ) 

is detected within ΔWQRS (250 ms) at scale 2
2
. Detail coefficients d

k
n at scales 2

2
 and 2

3
 are 

parsed for the verification of QRS candidates according to the QRS-detection decision rule. 

After QRS-complex detection, the delineation process delineates in the order: the QRS-

complex, the P wave, and the T wave. 

 

The algorithm proposed in this work was intended for online processing, therefore it is 

causal: at discrete time Ti, only ECG samples at Tk ≤ Ti  are assumed to be available. 

To comply with low power budget constraints, the algorithm does not perform back-

search for missed beats. The drawback is a decrease in sensitivity; the advantage is a decrease 

in storage memory and processing time. A memory buffer of 1 s for WT coefficients is 

sufficient for QRS detection, whereas the required storage size increases (depending on the 

inter-beat interval duration, in general no more than 1.5 s) for computing delineation of the T 

wave of the previous beat.  

 

 

 QRS detection 

For each beat, the QRS-complex is detected using wavelet detail coefficients d
k
n at scales 

2
2
 and 2

3
. As shown in Figure 8.5, only scale 2

2
 is parsed for zero-crossings. When a zero-

crossing is detected, the adjacent modulus-maxima pair MMp(nZ) is determined and the 

associated amplitude AMMp(nZ), defined as the difference between the positive maximum and 

negative minimum detail coefficients, is computed. The zero-crossing is stored and an 
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observation window ΔWQRS of 250 ms is initialized: if a new zero-crossing nZ
*
 is detected 

within this window such that AMMp(nZ
*
) > AMMp(nZ), the window is reset and nZ

*
  is stored, 

replacing nZ, as shown in Figure 8.5. The process is repeated until a full window elapses 

without new candidates. The zero-crossing nZ represents the QRS-candidate. The QRS-

detection decision rule is defined as follows: a window of 200 ms centred around nZ is 

considered, and the maximum-minimum difference Δd
2
n(nZ) of detail coefficients within such 

window, at scale 2
2
, is computed: 
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where ΔW represents a time interval of 100 ms. The following condition is then tested: 
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n
n
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where ε
2

QRS is an empirically determined threshold computed as follows: 
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where the summation encompasses the N (=4) most recent QRS-candidates that satisfied 

(8.5.2). Under the assumption that the time distance between two consecutive beats is 

generally not longer than 2 s (corresponding to a heart rate of 30 beats/min), it takes not more 

than 8 s to collect N (=4) confirmed candidates. For this reason, a learning period of 8 s is 

allowed before the algorithm outputs any detected beats. 

If (8.5.2) is met, the decision process proceeds to the next step considering scale 2
3
: 
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3 QRSdn
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where ε
3

QRS is an empirically determined threshold computed as in (8.5.3), for scale 2
3
. It 

shall be noted that, in (8.5.4), n spans the same window as in (8.5.1). Coefficients across 

different scales are time-aligned by accounting for the group delay computed in (8.4.1). 

If (8.5.2) and (8.5.5) are met, the QRS-candidate is confirmed, thresholds ε
2

QRS and ε
3

QRS are 

updated. Then, if the learning period is expired, the zero-crossing is marked as the local peak 

of a QRS-complex, and the algorithm proceeds for the delineation of P, QRS, T waves.. It 

shall be noted that thresholds ε
2

QRS and ε
3

QRS are initialized to zero and iteratively adapt to 

QRS candidates. At the early stages of this process, QRS misdetections (false positives) are 

likely to occur. To prevent this, the algorithm does not output any detected QRS complexes 

until the learning period has expired. A learning period of 8 s is generally sufficient, although 
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there may be extreme conditions such as lead-fail, cardiac arrest, poor signal-to-noise ratio, in 

which a longer time is required. 

 

 QRS delineation 

QRS delineation is performed at scale 2
2
. After detecting the QRS-complex, the QRS 

onset fiducial point is determined starting from the position npre of the modulus maximum 

preceding the zero-crossing nZ of the QRS-complex at scale 2
2
.  

The following thresholds are defined, based on local d
2

n coefficient values: 
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where npost is the sample index of the modulus maximum following nZ. The delineation 

algorithm searches back from npre for negative minima or positive maxima, and stores the 

first crossing of the threshold  ε
2

Qon, I to be assigned to QRS onset in case no modulus maxima 

are found within a fixed size window of 120 ms preceding npre.  

The algorithm stops when a modulus maximum is detected whose amplitude is lower than 

the threshold ε
2

Qon,II, or the end of the search window has been reached. If at least one 

modulus maximum is found, a new threshold is defined:  
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where nleft is the sample index at which d
2

n has its left-most modulus maximum. The 

algorithm searches back from nleft until the first crossing of the new threshold ε
2

Qon,III or the 

end of the fixed-size window is reached. The value is assigned to QRS onset. The 

symmetrical criterion is adopted for the determination of QRS offset, starting from the 

position npost of the modulus maximum following the zero-crossing nZ. The threshold used for 

QRS offset delineation are: 
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where nright is the sample index of the right-most modulus maximum following npost whose 

amplitude exceeds threshold ε
2

Qoff,II. 



Part III – Chapter 8 121 

Figure 8.6 shows examples of different QRS morphologies from QTDB records, the 

related manual annotations and the automatic delineation markers. 

 

Figure 8.6 Delineation of QRS morphologies.  Examples of various QRS morphologies from 

QTDB records, with manual annotations (top) and delineated characteristic points (bottom): 

QRS onset, dominant QRS peak, QRS offset. 
 

 

 P wave delineation 

P wave delineation is performed at scale 2
3
. Mono- and bi-phasic P waves are handled. 

After delineating the QRS-complex, the algorithm searches back from QRS onset on scale 2
3
 

for the P wave. A fixed-size window whose length is chosen to be the shortest between 300 

ms and half the last inter-beat interval is used for the search. Within this window, all zero-

crossings are stored. The zero-crossing search is limited to a sub-portion of the window 

excluding the first (left-most) 100 ms which are only used for determining P onset. The zero 

crossing nZ with maximizes AMMp(nZ) is marked as P wave dominant peak. To determine the 

mono- bi-phasic morphology of the P wave, specific conditions are tested: 

 

333 2
2

1
postnprenpostn ddd                              (8.6.1) 

 

where |d
3

n pre| is the modulus maximum preceding the zero-crossing nZ, at scale 2
3
, and |d

3
n 

post| is the modulus maximum following nZ. If (8.6.1) is verified, and a zero-crossing n
L

Z 

preceding nZ is available within a distance of 100 ms, (8.6.1) is tested also for n
L

Z. If such 

condition is verified, the following is also tested:  
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If (8.6.1) and (8.6.2.1) are verified for n
L

Z, the P wave is considered to be bi-phasic and 

npre is defined as the sample corresponding to the left-most modulus maximum of MMp(n
L

Z) 

otherwise npre is defined as the sample corresponding to the left-most modulus maximum of 

MMp(nZ). 

The same procedure is adopted in the search of n
R

Z following nZ within a distance of 100 

ms. If (8.6.1) is verified for n
R

Z
 
the following condition is tested: 

 

)(
4

3
)( ZMMp

R

ZMMp nAnA                           (8.6.2.2) 

 

If (8.6.1) and (8.6.2.2) are verified for n
R

Z, the P wave is considered to be bi-phasic and 

npost is defined as the sample corresponding to the right-most modulus maximum of 

MMp(n
R

Z) otherwise npost is defined as the sample corresponding to the right-most modulus 

maximum of MMp(nZ). 

The sample npre becomes the starting point for searching back the first crossing of a 

threshold: 
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Figure 8.7 Delineation of P wave. Examples of P waves from QTDB records, with manual 

annotations (top) and delineated characteristic points (bottom): P onset, dominant P peak, P 

offset. (a) absent P wave, (b) positive P wave, (c) bi-phasic P wave. 
 

If such crossing point is found within the search window, it is assigned to P onset. 

The algorithm then searches for P offset, namely the estimated end of P, adopting the same 

procedure described for P onset. The threshold adopted is: 
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If P onset, peak and offset are found within the search window, P wave delineation result is 

positive, otherwise the algorithm declares that P wave could not be delineated for the given 

beat. Figure 8.7 shows examples of P morphologies from QTDB records, the related manual 

annotations and the automatic delineation markers. 

 

T wave delineation 

T wave delineation is performed at scale 2
3
. The following possible morphologies are 

handled: positive (+), negative (-), biphasic (+/- or -/+), upward and downward. At each 

identified QRS-complex, T wave is delineated for the previous beat. The search is done over 

a window defined as: 
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where nQRS off (i-1) denotes the sample of the QRS offset of the previous beat (assuming ith 

beat is the latest detected). The T wave dominant peak is searched within a sub-window of 

ΔWT: 
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Within ΔWT PK all zero-crossings are stored. A zero-crossing nZ is considered to have a 

positive (negative) slope if the first non-zero detail coefficient preceding nZ is negative 

(positive), and the first non-zero detail coefficient following nZ is positive (negative). For 

zero-crossings nZ with negative (positive) slopes, the maximum (minimum) value Mn pre of 

positive (negative) d
3

n coefficients preceding nZ is stored, together with the minimum 

(maximum) value Mn post of negative (positive) d
3

n coefficients following nZ. The absolute 

value of the difference ΔMM(nZ) between Mn pre and Mn post is computed and the zero-crossing 

nZ with the highest value is considered. If an adjacent zero-crossing n
L

Z to the left of nZ exists 

and the following condition is met: 
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then n
L

Z is marked as T wave dominant peak Tpk, nZ  is marked as the end Toff of the dominant 

wave (i.e. the wave whose peak is surrounded by the largest slopes), and the bi-phasic T 

wave end Tend is searched to the right of npost following nZ. Tend is then assigned to the first 

sample for which d
3

n falls below a threshold ε
3

Tend defined as: 
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If n
L

Z does not exist or (8.7.3) is not verified, nZ is marked as Tpk , and the search proceeds 

to the right of npost following nZ. Toff is assigned to the first sample for which d
3

n falls below a 

threshold ε
3

Toff, defined as: 
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where npost refers to nZ. If an adjacent zero-crossing n
R

Z exists to the right of nZ, such that: 
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the T wave is considered to be bi-phasic and Tend is defined as the first sample for which d
3

n 

falls below the threshold in (8.4) where npost now refers to n
R

Z. 

Figure 8.8 shows examples of various T wave morphologies from QTDB records, the 

related manual annotations and the automatic delineation markers.   

 

Figure 8.8 Delineation of T wave. Examples of T waves from QTDB records, with manual 

annotations (top) and delineated characteristic points (bottom): dominant T peak, dominant T 

offset, T end. (a) positive T wave, (b) negative T wave, (c) upward T wave, (d) downward T 

wave, (e) and (f) bi-phasic T wave. 
 

8.2.3 Validation 

 

The QRS detection algorithm was validated on manually annotated ECG databases, 

namely the MIT-BIH Arrhythmia Database (MITDB) and the European ST-T Database 
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(EDB), whereas the P-QRS-T delineation algorithm was validated on the QT Database 

(QTDB).  

The MITDB database includes a selection of Holter recordings covering a broad spectrum 

of arrhythmias. 

The EDB database contains annotated excerpts of ambulatory ECG recordings with a 

representative selection of ECG abnormalities including ST segment displacement and 

cardiac axis shifts.   

The QTDB database contains records from MITDB and EDB, and from several other 

databases (Normal Sinus Rhythm, ST Change, Supraventricular Arrhythmia, Sudden Death, 

Long Term Recordings). This database was created for validation of waveform boundaries 

and contains annotations by cardiologists for at least 30 beats per record, including QRS-

complex, P, T, U waves delineation.  

For the QRS detector validation on MITDB and EDB, the first ECG channel was used 

and, for MITDB only, raw data were resampled at 250 samples/s before processing. 

For the validation on QTDB, reference annotations of first cardiologist (q1c files from 

QTDB) were used in this work. Records from this database are sampled at 250 samples/s, 

therefore no resampling was required. 

Table 8.3 summarizes the databases used for validation. 

 

Table 8.3 – Databases used for validation 

Database #Annotated Beats Records Record Duration 

MITDB 109010 48 30 min 

EDB 788050 90 120 min 

QTDB 3622 105 15 min 

 

To assess QRS detection performance, sensitivity (Se) and positive predictive value (P
+
) 

were calculated: Se = TP/(TP+FN) where TP is the total number of true positives identified in 

the given record, FN is the total number of false negatives; P
+
 = TP/(TP+FP) where FP is the 

total number of false positives. 

A true positive is achieved when the time difference between the given annotated beat 

and the detected beat is not greater than 150 ms, in compliance with ANSI/AAMI-EC57:1998 

standard. 

For the validation of ECG delineation on QTDB, the metrics proposed in (Boichat et al., 

2009; Martinez et al., 2004) were adopted, where m is the mean value of the errors intended 

as the time difference between automatic and reference annotation, for all annotations, and s 

is the average standard deviation of the error, calculated by averaging the intra-recording 

standard deviations.  

For each fiducial point delineation, the ECG channel with least error was chosen, as in 

(Boichat et al., 2009; Martinez et al., 2004). Sensitivity was calculated for each characteristic 

point, for P wave, T wave and QRS-complex, separately. For T wave, manual annotations T-

peak and T-offset, are matched to Tpk an Toff as defined in the delineation method, 

respectively. 

A true positive is achieved when the wave is annotated and the delineation process detects 

the presence of such wave within a time distance not greater than 150 ms. In (Boichat et al., 
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2009) a window of 320 ms is used, in (Martinez et al., 2004) the window size is not reported. 

A false positive occurs when the delineation process locates a characteristic point which was 

not annotated. A false negative is considered when the delineation process fails to locate the 

annotated fiducial point within the above mentioned tolerance of 150 ms. Positive predictive 

value could not be calculated, as noted in (Martinez et al., 2004): when there is no annotation 

it is not possible to determine whether the cardiologist considered that there was no 

waveform to annotate or was not confident in annotating it (perhaps because of the noise 

level). Nevertheless, for points other than the QRS delineation, P
+
 was calculated under the 

assumption that an absent mark in the annotated beat means that there is no waveform. As a 

result, the calculated P
+
 can be interpreted as a lower limit (P

+

min) of the actual one.  

 

8.3 Results  

 

8.3.1 QRS detection 

 

Table 8.4 and Table 8.5 show the QRS detector performance on MITDB and EDB 

databases, respectively. Results are compared to previous studies. As in (Martinez et al., 

2004) segments with ventricular flutter in record 207 of MITDB (for an overall length of 

approximately 2 min 20 s) and those marked as unreadable (in the pertaining annotation file) 

in EDB, were excluded. 

 

Table 8.4 – Comparison of QRS Detection Performance (First ECG Channel of MITDB) 

QRS Detector # annotations FP FN Se [%] P
+
 [%] 

This work 109010 148 252 99.77 99.86 

Martinez et al., 2004 109428 153 220 99.80 99.86 

Ghaffari et al., 2009 109428 129 101 99.91 99.88 

Aristotle (Moody and Mark, 1982) 109428 94 1861 98.30 99.91 

Li et al., 1995 104182 (*) 65 112 99.89 99.94 

Afonso et al., 1999 90909 406 374 99.59 99.56 

Bahoura et al., 1997 109809 (*) 135 184 99.83 99.88 

Lee et al., 1996 109481 137 335 99.69 99.88 

Hamilton and Tompkins, 1986 109267 248 340 99.69 99.77 

Pan and Tompkins, 1985 109809 (*) 507 277 99.75 99.54 

Poli et al., 1995 109963 545 441 99.60 99.50 

Moraes et al., 2002 N/R N/R N/R 99.22 99.73 

Hamilton, 2002 N/R N/R N/R 99.80 99.80 

Inspired by (Martinez et al., 2004), Table 2 

(*) a discrepancy was found in the original publication between reported total and record-by-record count 

N/R: not reported 
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Table 8.5 – Comparison of QRS Detection Performance on the European ST-T Database 

(EDB) 

QRS Detector # annotations FP FN Se [%] P
+
 [%] 

This work 788050 3511 1483 99.81 99.56 

Martinez et al., 2004 787103 4077 3044 99.61 99.48 

Aristotle  

(Moody and Mark, 1982) 

787103 10405 38635 95.09 98.63 

Inspired by (Martinez et al., 2004), Table 2 

 

8.3.2 ECG delineation 

 

ECG delineation results are shown in Table 8.6, where they are also compared to the ones 

obtained in previous studies.  

 

Table 8.6 – Comparison of Delineation Performance with Published Methods (QT Database) 

Method Param P onset P peak P offset QRS 

onset 

QRS 

offset 

T peak T offset 

 # annot 3194 3194 3194 3623 3623 3542 3542 

This work Se [%] 

P+
min [%] 

m ± s 

98.15 

91.00 

-4.5±13.4 

98.15 

91.00 

-4.7±9.7 

98.15 

91.00 

-2.5±13.0 

100 

N/A 

-5.1±7.2 

100 

N/A 

0.9±8.7 

99.72 

97.76 

-0.3±12.8 

99.77 

97.76 

1.3±18.6 

Martinez et al., 

2004 

Se [%] 

P+
min [%] 

m ± s 

98.87 

91.03 

2.0±14.8 

98.87 

91.03 

3.6±13.2 

98.75 

91.03 

1.9±12.8 

99.97 

N/A 

4.6±7.7 

99.97 

N/A 

0.8±8.7 

99.77 

97.79 

0.2±13.9 

99.77 

97.79 

-1.6±18.1 

Laguna et al., 

1994 

Se [%] 

P+
min[%] 

m ± s 

97.70 

91.17 

14.0±13.3 

97.70 

91.17 

4.8±10.6 

97.70 

91.17 

-0.1±12.3 

99.92 

N/A 

-3.6±8.6 

99.92 

N/A 

-1.1±8.3 

99.00 

97.74 

-7.2±14.3 

99.00 

97.71 

13.5±27.0 

Boichat et al., 

2009 (*) 

Se [%]       

P+
min [%] 

m ± s 

99.87 

91.98 

8.6±11.2 

99.87 

92.46 

10.1±8.9 

99.91 

91.70 

0.9±10.1 

99.97 

98.61 

3.4±7.0 

99.97 

98.72 

3.5±8.3 

99.97 

98.91 

3.7±13.0 

99.97 

98.50 

-2.4±16.9 

2σCSE 

Tolerance [24] 

 10.2 - 12.7 6.5 11.6 - 30.6 

Partially inspired by (Martinez et al., 2004), Table 3 

(*) 16-bit integer implementation. No. annotations not reported. Se and P
+

min use 320 ms window 

N/A: not applicable, N/R: not reported 

 

The results reported by (Ghaffari et al., 2009) are not included in the table because the 

number of leads used for detection was not stated, nor was the number of annotated beats; it 

is also unclear the extent to which the authors used third party annotations for validation of 

their algorithm on the QT Database. The accepted two-standard-deviations 2σCSE tolerance, 

defined by the Common Standards for Electrocardiography (CSE) working party in (The CSE 

Working Party, 1985) based on measurements made on different experts annotations, is also 

reported in the bottom row of the table. Table 8.7 shows inter-cardiologist annotations 

variability calculated on the QTDB records that were annotated by two different 

cardiologists. Unfortunately, only eleven records include double annotations, and only for 

QRS and T wave, not for P wave. 
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Table 8.7 – Inter-Cardiologist Annotation Variability on QTDB  (Annotation Files: q1c vs. 

q2c) 

 # matched  

Annotations 

Mean Error ± SD  

[ms] 

Q onset 360 -3.12 ± 14.06 

T peak 359 -0.28 ± 26.24 

T offset 359 -2.99 ± 39.60 

 

 

8.4 Discussion  

 

The proposed algorithm performs online QRS detection as well as P, QRS, T waves 

delineation. Unlike previous DWT based methods (Boichat et al., 2009; Li et al., 1995; 

Martinez et al., 2004), the present only uses two scales (2
2
, 2

3
), for both QRS detection and 

ECG delineation. The QRS detection showed an excellent performance on the MIT-BIH 

Arrhythmia Database, achieving a sensitivity of 99.77% and a positive predictive value of 

99.86% on 109010 annotated beats, and on the European ST-T Database, achieving a 

sensitivity of 99.81% and a positive predictive value of 99.56% on 788050 annotated beats. 

Sensitivity and positive predictive value reported for the ST-T database are the highest 

among previous works, as shown in Table 8.5.   

The validation on the QT Database showed very good performance in P, QRS, T waves 

delineation. The mean error (m) and the average standard deviation (s) were comparable to 

the ones obtained by other WT-based delineators, as shown in Table 8.6. Mean error (m) was 

lower than 6 ms (1.5 samples, at Fs=250 samples/s) for all characteristic points, whereas the 

average standard deviation (s) was around 8 ms (2 samples) for QRS delineation, and 12 ms 

(3 samples) for P wave and T peak delineation. Relatively high values of s in T wave 

delineation are present in all algorithms, and may be caused by the difficulty in determining 

the exact fiducial points as confirmed by the large inter-cardiologist annotation variability, 

especially for T offset as shown in Table 8.7. 

Comparing the average standard deviation (s) with the 2σCSE tolerances, the condition s < 

σCSE (referred to in (Martinez et al., 2004) as ―strict criterion‖) is met for P peak, QRS offset, 

T offset, whereas the condition s < 2σCSE (referred to in (Martinez et al., 2004) as ―loose 

criterion‖) is not met for any of the characteristic points. However, the ―strict criterion‖ is not 

met by any methods, as shown in Table 8.6. 

Sensitivity and positive predictive value of the ECG delineator for P, QRS, T waves were 

comparable to the values reported by others, as shown in Table 8.6. However, it shall be 

noted that the width of the search window adopted in the computation of true positives (TP) 

is not the same for all methods. In (Martinez et al., 2004) the window width was not reported, 

in (Boichat et al., 2009) it was set to 320 ms. In the present work, the window width was set 

to 150 ms. As a result, Se sand P
+

min may not be comparable across different methods.   

Previous DWT-based methods (Boichat et al., 2009; Martinez et al., 2004) compute the 

adaptive thresholds in QRS detection ε
k
QRS based on the root mean square (RMS) of d

k
n 

coefficients at the scales of interest. In (Martinez et al., 2004) RMS is computed over N=2
16
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samples excerpts, for the first three scales (2
1
, 2

2
, 2

3
). In (Boichat et al., 2009) RMS is 

emulated over N=2
9
 samples excerpts for the first four scales. RMS is computationally 

demanding, as it requires squaring and summing N coefficients and calculating a square root. 

Although the square root was emulated in (Boichat et al., 2009), a considerable amount of 

computations is required for squaring large data excerpts. In the present method, which uses 

only two scales, all thresholds are calculated from few (local) coefficients, which 

dramatically reduces the computational effort. In particular, the computation of ε
2

QRS by 

(8.5.3) only requires N=4 data-points, compared to N=2
9
 in (Boichat et al., 2009) and N=2

16
 

in (Martinez et al., 2004), and this computation does not require squaring as in RMS. This 

observation also applies to ε
3

QRS. Moreover, all thresholds are expressed in the linear form of 

(A·v)/2
B
, where v is an integer variable (or the sum of integer variables),  A and B are positive 

constant integer values. Thus all thresholds can be computed by elementary shift and add 

operations.  

The ECG data used in this work were either originally sampled at 250 samples/s or 

resampled accordingly. Although many ECG front-end devices currently on the market offer 

data streams at 250 samples/s or 256 samples/s, there may be devices that provide a fixed 

sample rate which is significantly different from 250 samples/s. In order to preserve an 

integer linear algebra implementation in these cases, depending on the sample rate different 

scales of the DWT filter bank (8.2) may be used, or the filter bank itself may need to be 

redesigned, either by using a different order of the spline smoothing function θ(t), or different 

scaling and wavelet functions. 

 

8.5 Conclusions  

 

In this paper, a WT-based single-lead ECG delineation algorithm, designed for online 32-

bit integer linear algebra processing, with shift/add operations replacing multiplications and 

divisions, was presented. The algorithm complies with a sample resolution up to 24-

bit/sample without any assumptions on the amplitude resolution of the ECG signal. 

The algorithm detects the QRS-complex, delineates the onset, peak, and offset of the 

mono- or bi-phasic P wave, the onset and offset of the QRS-complex, the dominant peak and 

offset of the mono- or bi-phasic T wave.  

The QRS detector achieved excellent performance on the MIT-BIH Arrhythmia database 

(Se=99.77%, P
+
=99.86%, 109010 annotated beats) and on the European ST-T Database, 

(Se=99.81%, P
+
=99.56%, 788050 annotated beats). 

The proposed algorithm also exhibited very good accuracy in P, QRS, T delineator on QT 

Database, where the mean error between automatic and manual annotations was lower than 

1.5 samples for all the characteristic points, and the associated average standard deviations 

were comparable to the ones reported from previous methods. However, the QTDB database 

contains a limited number of annotations, which makes the validation of an automatic ECG 

delineator not comprehensive.  

Based on the results achieved on standard databases, the proposed algorithm exhibits 

reliable QRS detection as well as accurate ECG delineation. Reliability and accuracy are 

close to the highest among the ones obtained in other studies, in spite of a simplified structure 
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built on integer linear algebra which makes the proposed algorithm a suitable candidate for 

online QRS detection and ECG delineation under strict power constraints and limited 

computational resources, such as in wearable devices for long-term non-diagnostic 

ambulatory monitoring. 
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Chapter 9: Time-frequency Analysis of Atrial Fibrillation Comparing 

Morphology-clustering Based QRS-T Cancellation with Blind Source 

Separation in Multi-lead Surface ECG Recordings 

 

 

Abstract 

 

To separate the atrial (AA) from the ventricular (VA) electrical activity in surface ECG 

recordings of atrial fibrillation (AF), various methods have been proposed, such as QRS-T 

cancellation by beat-averaged template subtraction, and blind source separation (BSS). 

Although QRS-T cancellation is computationally more efficient than BSS, and allows the 

preservation of spatial information, it is sensitive to morphology changes, which produce 

large residuals in AA, biasing the frequency analysis. 

Aim of this study was: (i) to propose an improved approach to VA cancellation based on 

k-means morphology clustering (MC); (ii) to validate its ability to estimate AF dominant 

frequency (DF) on a standard database with intra-cardiac and surface ECG recordings 

(IAFDB, Physionet.org); (iii) to compare the temporal evolution of the spectral content of 

MC-estimated AA (MC-AA) with the one obtained from a reference BSS method based on 

Independent component analysis (ICA) and second-order blind identification (SOBI), in 14 

body surface potential map (BSPM) recordings. 

QRS-T amplitude in MC-AA was significantly lower (p<0.001) than in ECG (in closest 

BSPM channel to V1). 

The validation on IAFDB showed no significant difference in DF estimation (p=0.546) in 

17 recordings. Also no significant difference in DF estimation (p=0.208) with respect to the 

reference BSS method was observed.  

The proposed QRS-T cancellation method effectively suppresses VA and accurately 

estimates DF compared to an established BSS method. 

 

9.1 Introduction 

 

Atrial fibrillation (AF) is a common cardiac arrhythmia affecting between 2% and 10% of 

people over 50 years of age (Fuster et al., 2001). AF is a major cause of morbidity and 

mortality in the elderly population where the risk of stroke is five times higher (Langley et 

al., 2006). For this reason an increasing clinical research interest has been devoted to AF in 

recent years (Bollmann et al. 2006; Rieta et al., 2004). 

Methods reported in literature to cancel VA from the ECG involve direct suppression of 

the QRS complex and the T-wave by subtracting a fixed template obtained by averaging 

consecutive beats (BA). It relies on the fact that AF is uncoupled to the ventricular activity, 

thus subtracting an averaged QRS-T segment from the ECG produces a residual signal which 

closely represents AF (Bollmann et al., 2006; Langley et al., 2006; Stridh and Sörnmo, 
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2001). Unfortunately, since average beat subtraction is performed on individual leads, this 

process is sensitive to alterations in the electrical axis, which produces large QRS-related 

residuals in AA (Bollmann et al., 2006) which in turn affect its spectral content. Another 

approach to AA extraction is based on the hypothesis that AA and VA originate from 

statistically separable sources (Bollmann et al., 2006; Langley et al., 2006), which may be 

treated by blind source separation (BSS) methods, when multi-lead surface ECG recordings 

are available. Independent component analysis (ICA) has successfully been adopted 

(Bollmann et al., 2006; Rieta et al., 2004) and improved with second order blind 

identification (SOBI) (Castells et al., 2005), as well as principal component analysis (PCA) 

(Langley et al., 2006). 

A recording length of at least 10 s is required for adequate computation of the average 

beat in QRS-T cancellation, whereas the recording length can be shorter in BSS (Bollmann et 

al., 2006). However, BSS only allows the derivation of a global atrial signal with 

contributions from all leads, which limits its spatial resolution (Bollmann et al., 2006). On the 

other hand, QRS-T cancellation is computationally more efficient than BSS, and allows the 

preservation of spatial information from individual leads. 

The aim of this study is  threefold: (i) to propose an improved approach to VA 

cancellation based on a k-means morphology clustering criterion; (ii) to validate its ability to 

estimate DF on a standard database with simultaneous intra-cardiac and surface ECG 

recordings (Intracardiac Atrial Fibrillation Database, Physionet.org); (iii) to compare the 

temporal evolution of the spectral content of MC estimated AA (MC-AA) with the one 

obtained from a reference BSS method based on ICA-SOBI (ICA-AA), in 14 body surface 

potential map (BSPM) recordings. 

 

 

9.2 Methods 

 

9.2.1 Data acquisition 

 

Fourteen recordings of 67-lead surface ECG (64-thoracic, three bipolar limb leads) from 

fourteen male patients with AF (age 60±9 years) were considered for this study, each 3 

minutes in duration. 

The surface ECG data were recorded by Biosemi ActiveTwo™ (Biosemi, Amsterdam, 

NL) at a sampling rate of 2048 samples/s, 24-bit/sample.  

 

9.2.2 ECG processing 

 

The ECG signal was processed offline in MATLAB® (The Mathworks, Natick, 

Massachusetts, USA).  
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The ECG was band-pass filtered (3-dB pass-band: 0.5-100 Hz) and then down-sampled to 

250 samples/s for beat detection. An established discrete-wavelet transform based method (Di 

Marco and Chiari, 2011) was used for beat detection. 

 

9.2.3 QRS-T clustering 

 

For the ith detected beat, a QRS-T window was defined as: 

 

})(),({)(

)()(

)()(

21

12

440

801

iTiTiW

RRQTciTiT

QTc

iQRSiT

QRST

MEANREF

REF

PK









         (9.1) 

 

where QRSPK(i) is the fiducial point (i.e. dominant peak) of the ith beat,  Δ80 is a time delta of 

80 ms, QTcREF is an empirical reference value of QTc (Bazett) set to 440 ms, and RRMEAN is 

the mean RR interval duration (in units of seconds) of the entire recording.  

A QRS-T collection matrix B can be constructed, whose columns are the ECG samples of 

WQRST(i), i=1,...,M, where M is the number of detected beats. 

Rows of B  are treated as N observations of an M-dimensional variable. k-means 

clustering is performed using correlation distance: dCORR(xn, xm) = 1 – ρ(xn, xm) as 

dissimilarity criterion. Collected beats are grouped according to the dissimilarity metrics to 

form the columns of the starting guess matrix to initialize the k-means clustering process. 

 

9.2.4 Blind source separation 

 

An extensive description of the ICA-SOBI approach to BSS of AA is given in (Castells et 

al., 2005). 

In the present study a subset of 14 channels was chosen from the anterior BSPM map as 

sensor variables for ICA-SOBI, including the top-central portion of the right-anterior torso, as 

shown in Figure 9.1. This choice includes CH15 (closest to V1 in 12-lead ECG) where the 

atrial activity is prominent. ICA (JADE implementation) and subsequent SOBI were then 

performed, as suggested in (Castells et al., 2005). Spectral concentration (SC) was adopted to 

select the source representing AA (source with highest SC): 
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where Sk is the kth estimated source, ΓSk is the power spectral density (PSD) of the kth source, 

fP is the peak frequency in the frequency band of AF: 3.5 – 10 Hz, namely DF. 

 

9.2.5 Time-frequency analysis of AA 

 

The AA signal (MC-AA and ICA-AA) was divided into consecutive non-overlapping 20 s 

windows and PSD (Welch periodogram, Hamming window, 50% overlap, frequency 

resolution: 0.24 Hz) was computed for each. 

 

Figure 9.1 32-channel anterior view of BSPM. Dotted region indicates chest electrodes used 

for ICA.  
 

 

9.2.6 Validation on standard database 

 

The Intracardiac Atrial Fibrillation Database (IAFDB) from Physionet 

(www.physionet.org) was adopted for validation of MC estimation of DF. 

Recordings whose intracardiac signals would allow reliable peak-detection were 

considered (n=17). Each recording was divided into consecutive non-overlapping 20 s 

windows. For each, MC-AA was extracted from lead V1 and DF estimated as the dominant 

peak frequency of PSD. The actual atrial fibrillatory rate (AAFR) was calculated as the 

inverse of the mean interval between consecutive peaks within the 20 s window. 
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9.3 Results 

 

9.3.1 VA cancellation  

 

Figure 9.2 shows MC compared to BA in VA cancellation. 

 

 

Figure 9.2 MC (top panels) compared to BA in VA cancellation. 
 

 

Table 9.1 – VA cancellation: comparison of MC and BA. 

  AA QRS-T Amplitude [µV]  

#Rec #Cluster MC BA p value 

r1 17 224(98) 307(113) p<0.001 

r2 1 250(185) 244(180) N.S. 

r3 4 617(432) 708(120) p<0.001 

r4 1 192(86) 195(84) N.S. 

r5 1 274(183) 276(190) N.S. 

r6 5 141(123) 193(1167) p<0.001 

r7 11 424(492) 424(489) N.S. 

r8 11 161(60) 196(70) p<0.001 

r9 11 280(115) 349(160) p<0.001 

r10 1 224(199) 226(194) N.S. 

r11 1 326(265) 327(266) N.S. 

r12 1 262(226) 267(233) N.S. 

r13 3 302(111) 335(102) p<0.001 

r14 5 543(333) 610(507) p<0.01 

N.S. = not significant 
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Table 9.1 shows comparison between MC and BA in QRS-T cancellation (Median(inter-

quartile range) is reported). In all cases for which multiple templates were generated (rows 

with #Cluster>1) there was a significant improvement (Wilcoxon rank-sum test (WRT), 

α=0.05) in QRS-T cancellation in MC with respect to BA. 

Table 9.2 shows cumulative data analysis of QRS-T amplitude in MC-AA with respect to 

ECG in CH15. MC significantly reduces QRS-T amplitude with respect to ECG, though the 

ECG amplitude in the TQ segment remains significantly higher than that of MC-AA in the 

QRS-T, indicating that MC does not ―over-cancel‖. 

 

Table 9.2 – QRS-T cancellation: cumulative data analysis 

Amplitude [µV]    

QRS-T 

MC 

QRS-T 

ECG 

p value TQ 

ECG 

p value 

260(223) 1239(1096) p<0.001 194(188) p<0.001 

 

 

9.3.2 DF estimation 

 

DF estimation difference (ΔDF) is shown in Table 9.3 (Median(inter-quartile range) is 

reported). Statistical analysis (WRT, α=0.05) is presented for the two datasets: standard 

database (IAFDB) and experimental data (14 BSPM recordings). To compare DF estimation 

to ICA, MC-AA from the lead maximizing SC was selected. In both datasets the median 

value of ΔDF is below the frequency resolution (0.24 Hz) used in PSD computation. 

 

Table 9.3 – DF Estimation. Median(inter-quartile range) 

 ΔDF [Hz]  

 MC vs. AAFR p value 

IAFDB 0.03(0.37) N.S.(p=0.546) 

 MC vs. ICA  

14 Recordings 0.00(0.49) N.S.(p=0.208) 

N.S. = not significant 

 

 

9.3.3 Time-frequency analysis  

 

Figure 9.3 shows an example of PSD evolution for recordings r1 through  r4. 

Figure 9.4 shows an example of the spatio-temporal evolution of PSD for recording r. SC 

is higher (DF most prominent) in the right side of the torso. 

Table 9.4 shows statistical analysis (WRT, α=0.05) of SC for the two methods 

(Median(inter-quartile range) reported). SC in ICA is significantly different (higher) from 

MC in 7 of 14 recordings, which according to (Castells et al., 2005) may indicate higher 

performance (reliability) in the extraction of AA. 
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Figure 9.3 Normalized PSD temporal evolution of MC-AA (top panels) and ICA-AA. 

 

 

 

Figure 9.4 Spatio-temporal evolution of normalized PSD for recording r1, for the first 30 

BSPM channels (following the order displayed in Figure 9.1). 
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Table 9.4 – SC: comparison of MC and ICA. 

 SC [%]  

#Rec MC ICA p value 

1 57.5(6.4) 80.9(4.7) p<0.01 

2 58.8(3.9) 70.5(8.0) p<0.01 

3 61.7(9.0) 67.8(11.2) N.S. 

4 30.4(8.3) 61.6(5.9) p<0.005 

5 63.7(6.3) 60.7(16.4) N.S. 

6 53.2(7.9) 60.5(6.9) N.S. 

7 40.1(4.5) 56.0(23.7) N.S. 

8 48.7(9.0) 55.3(9.3) N.S. 

9 31.2(9.4) 51.9(6.2) p<0.01 

10 34.3(4.4) 43.5(6.2) p<0.01 

11 29.6(9.9) 38.0(6.6) p<0.01 

12 30.2(9.1) 33.0(3.6) N.S. 

13 20.3(3.3) 32.0(4.6) p<0.01 

14 28.4(4.3) 29.3(6.2) N.S. 

Average 39.5(27.2) 54.4(26.6) p<0.001 

 

  

9.4 Discussion and conclusions 

 

A multi-template clustering based approach to VA cancellation (MC) was presented. The 

proposed method showed significant improvement (p<0.001) in VA cancellation with respect 

to ―beat-averaging‖ approach in BSPM recordings for which multiple templates were 

generated (no significant difference in the others). 

The validation on a standard database (IAFDB, Physionet) showed no significant 

difference in DF estimation (p=0.546) in 17 recordings. 

The proposed method also showed no significant difference in DF estimation with respect 

to ICA in BSPM recordings (p=0.208) in spite of significantly lower SC (p<0.001). However, 

replication on a larger dataset (including multifocal ectopies) is required to confirm these 

results. 

VA cancellation by MC allows spatial localization of time-frequency distribution of DF, 

as shown in Figure 9.4 where frontal-right channels exhibit a marked DF pattern. This degree 

of spatial resolution may only be achieved by single-lead source cancellation methods, which 

on the other hand suffer from VA residuals, as shown by significantly lower SC with respect 

to BSS methods. 
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Chapter 10: Spatial complexity and spectral distribution variability of 

atrial activity in surface ECG recordings of atrial fibrillation 

 

 

Abstract 

 

Considerable research effort has been devoted to the estimation of the degree of 

organization of atrial fibrillation (AF), to potentially support clinical decision making.  

The aims of this study were to: i) analyse the temporal variability of spatial organization 

(complexity) and spectral distribution of AF in body surface potential maps (BSPM), 

proposing an automated implementation of the analysis; ii) assess the applicability to reduced 

lead-sets. 

Twenty one persistent AF recordings of three minutes each (64 BSPM: 32 anterior, 32 

posterior) were analysed. The relationship between spatial organisation (C) and its variability 

(CV) was quantified on automatically delineated TQ segments. The relationship between 

spectral concentration (SC) and spectral variability (SV) was quantified on the atrial activity 

(AA) extracted using principal component analysis. Three different lead-sets: 64, 32 anterior, 

and 10 anterior channels were considered. 

Significant (p<0.001) correlation (ρ) was found: ρ(CV, C) ≥ 0.80, ρ(SC, SV) ≤ -0.83 for 

all lead-sets. The results suggest that a higher degree of spatial organization is associated with 

reduced variability of spatial organization over time, and lower spectral variability associated 

with more prominent spectral peak in the AF frequency band (4-10 Hz). 

 

10.1 Introduction 

 

During atrial fibrillation (AF), uncoordinated electrical wavefront patterns propagate 

through the atria, resulting in an irregular heart rhythm disturbance characterized by the lack 

of relationship between consecutive beats (Bonizzi et al., 2010; Sih et al., 1999). A long-

standing hypothesis on the aetiology of this phenomenon was introduced in the early 1960s 

by Moe and co-workers (Moe and Abildskov, 1959; Moe et al., 1964) who proposed the 

―multiple wavelet‖ theory, postulating that the persistence of atrial fibrillation depends on the 

average number of re-entering wavelets in the atria. According to this theory, the number of 

circulating wavelets is inversely related to the probability of their spontaneous and 

simultaneous termination, and directly related to the likelihood of AF persistence (Moe and 

Abildskov, 1959; Moe et al., 1964; Wijffels et al., 1995). Konings and co-workers
 
(Konings 

et al., 1994) classified patterns of human right atrial activation during electrically-induced AF 

in three categories, based on the complexity of atrial activation. Increasing AF frequency and 

irregularity was associated with increasing incidence of continuous electrical activity and re-

entry. Further studies on intra-atrial electrograms in humans have provided evidence that 

atrial activation in AF is not entirely random (Censi et al., 2000; Gerstenfeld et al., 2000; 
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Richter et al., 2011). Gerstenfeld and co-workers (Gerstenfeld et al., 2000) have 

demonstrated the tendency for wave fronts to follow paths of previous excitation leading to 

transient similarities in the direction of wave propagation. Censi and co-workers
 
(Censi et al., 

2000) detected spatiotemporal recurrent patterns in bipolar intra-atrial electrograms 

recordings from 19 subjects with chronic AF, suggesting that during AF a certain degree of 

local organization may exist, caused by deterministic mechanisms of activation. Richter and 

co-workers
 
(Richter et al., 2011) identified propagation patterns in intracardiac signals 

recorded during AF using partial directed coherence, a method that evaluates directional 

coupling between multiple signals in the frequency domain.  

As a corollary to the wavelet theory, these findings suggest the presence of local 

organization, inversely related to the number of re-entering wavelets wandering throughout 

the atrial tissue, and directly related to the likelihood of AF spontaneous termination (Alcaraz 

and Rieta, 2010; Sih et al., 1999). 

Motivated by the potential clinical relevance in their support to AF treatment, further 

studies have been conducted in recent years with the goal of providing automatic algorithms 

for computer-aided evaluation of local organization of atrial activation in AF. Alcaraz and 

Rieta
 
(Alcaraz and Rieta, 2009; Alcaraz and Rieta, 2010) proposed the use of sample entropy 

(SampEn) a non-linear regularity index to assess AF organization non-invasively from the 

electrocardiogram (ECG). 

Konings and co-workers (Konings et al., 1994) showed a
 
positive correlation between 

atrial activation complexity and fibrillatory rate from intra-cardiac recordings. Bollman and 

co-workers
 
(Bollmann et al., 2006) suggested that analysis of non-invasively estimated atrial 

activity (AA) signals can be exploited, as the fibrillatory frequency of the AA is inversely 

related to the length of the averaged atrial fibrillatory cycle, and can be viewed as an index of 

average atrial refractoriness and AF organization. Asano and co-workers (Asano et al., 1992) 

induced AF in patients undergoing an electrophysiological study and reported a significantly 

lower fibrillatory frequency in those where AF terminated spontaneously with respect to the 

others. 

To complement the analysis of organized patterns in AF, alongside the temporal and 

spectral characterization, studies have addressed the spatial organization (or complexity). 

Adopting principal component analysis (PCA) as a measurement of spatial organisation on 

bipolar intra-cardiac recordings, Faes and co-workers
 
(Faes et al., 2001) found that atrial 

activation in AF could be described by a reduced number of principal components for more 

organized AA.  Also based on PCA, Bonizzi and co-workers
 
(Bonizzi et al., 2010) recently 

proposed an automated non-invasive method for the assessment of the spatio-temporal 

organization of AA during AF, utilizing body surface potential maps (BSPM).  In addition to 

its use as a measure of spatial organisation, PCA has also been validated as a tool to extract 

AA from the ECG (Langley et al., 2006; Raine et al., 2004; Raine et al., 2005). Another well 

established source separation approach to atrial signal extraction from surface ECG is based 

on independent component analysis (ICA) (Castells et al., 2005). However, both ICA and 

PCA approaches separate the atrial from ventricular source signals, and have been shown to 

produce similar performance (Langley et al., 2006) in spite of substantially different modes 

of processing the ECG signal (Bollmann et al., 2006).  
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The aims of this study were to: i) analyse the variability of spatial organization 

(complexity) and spectral distribution of AF in BSPM, proposing an automated 

implementation of the analysis; ii) assess the applicability to reduced lead-sets, with the goal 

of potentially supporting clinical decision making in AF treatment. 

 

10.2 Methods 

 

10.2.1 Data recordings 

 

Twenty one non-invasive surface ECG recordings of AF (AF1... AF21), of three minutes 

each (64 BSPM: 32 anterior, 32 posterior), from twenty one patients (Age: 57±11) were 

considered for this study. All participants gave informed consent. The study was granted 

ethical approval by the NHS Research Ethics Committee, and was conducted in accordance 

with the ethical standards stated in the 1964 Declaration of Helsinki. 

 

10.2.2 Body surface potential maps 

 

The electrode map adopted for BSPM is shown in Figure 10.1. The horizontal inter-

electrode distance was 6 cm, the vertical was 5 cm. 

The BSPM also included limb-electrodes indicated in Figure 10.1 with the standard 

labeling (LA, RA, LL, RL). The ECG was acquired at a sample rate of 2048 samples/s, 24 

bit/sample, with a sample resolution of 0.03 µV/LSB and pass-band of 0.05–500 Hz. 

 

10.2.3 Pre-processing 

 

The Wilson‘s central terminal (WCT) potential was calculated from the BSPM limb-

electrodes and subtracted from the chest electrode potentials, to obtain 64 BSPM chest leads 

(anterior: CH1... CH32, posterior: CH33... CH64). The ECG recordings were band-pass 

filtered to a 3dB cut-off pass-band of 0.5–100 Hz to reduce baseline wander effects (lower 

cut-off frequency) and high frequency noise such as myoelectric artifacts, and down-sampled 

to FS = 250 samples/s to comply with the ECG delineation algorithm described in the 

following section. 

Three lead-sets were considered, with the goal of evaluating the feasibility of the analysis 

on reduced sets: 64 BSPM channels (LS1), 32 BSPM anterior leads (LS2), and a subset of 10 

leads (LS3) consisting of three bipolar limb leads (―modified‖ Lead I, II, III), three augmented 

limb leads (aVR, aVF, aVL) and four chest leads (CH15, CH21, CH28, CH32: close to V1, 

V2, V4, V5, respectively), as shown in Figure 10.1. Lead-set LS3 was intended as the closest 

approximation to the standard 12-leads ECG that the available electrodes would allow. 
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Figure 10.1 Body surface potential map layout: chest anterior (left) and posterior (right) 

view. Dashed shape delimits subset of chest leads used in LS3. Channel 15 of anterior view 

(close to V1 position) and channel 32 (close to V5 position) are shaded. LA = left arm, RA = 

right arm, LL = left leg, RL = right leg. 

 

 

10.2.4 Principal component analysis 

 

PCA has been applied in recent years for the analysis of organization of atrial activation 

through the measurement of the cumulative variance of the PCs (Bonizzi et al., 2010; Faes et 

al., 2001). Furthermore, PCA is also a method of extracting the AA by suppression of the 

ventricular activity, allowing analysis of the continuous atrial component of the ECG 

(Bollmann et al., 2006; Langley et al., 2006; Raine et al., 2004; Raine et al., 2005).  In the 

present study we exploited both these applications of PCA: firstly to quantify AF 

organization in TQ sections of the ECG where the AA can be readily seen without obscuring 

ventricular activity; and secondly, to extract the continuous AA from which subsequent 

spectral variability analysis was undertaken. 

PCA is based on an orthogonal linear transformation of N observations of M random 

variables (N≥M), resulting in uncorrelated output variables, namely the principal 

components, which are ordered in descending order of variance. 

Considering N consecutive time samples (observations) for a generic set of M (<N) leads 

l1....lM, the vector X
(lj)

 = [Xlj (1) .... Xlj (N)]
T
 where [·]

T
 is the transpose operator, for lead lj, 

j=1... M, can be viewed as N observations of a random process, which may be assumed to 

have zero-mean without loss of generality. PCA transformation may be written as: 
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where PCi is the ith principal component, k is the time sample index (k=1,... N), A is an MxM 

orthogonal matrix whose rows are the eigenvectors of the (estimated) covariance matrix RX = 

E[X·X
T
], where E[·] is the expected value operator, and X = [X

(l1)
 ... X

(lM)
] is the NxM 

observation matrix of the random process. 

 
Figure 10.2 Block diagram of the automated process generating the indices. XTQ, and XECG 

are the NTQxM, and NECGxM observation matrices generated by the time windowing process 

every 10 s. PCA output indices: C=spatial complexity, CV=spatial complexity variability, 

SV=temporal variability of spectral distribution, SC=spectral concentration. 

 

The fraction of variability vk (cumulative variance) expressed by the first k eigenvectors is 

given by: 
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where λi is the ith eigenvalue of the (estimated) covariance matrix RX. 

In the present work, application of PCA had two specific objectives: 1) to measure the 

spatial complexity of the AA from TQ segments of the ECG (PCA-TQ), and 2) to extract the 
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continuous AA from the ECG for spectral variability analysis (PCA-ECG), as shown in 

Figure 10.2. 

 

 

10.2.4.1 PCA-TQ 

 

The PCA-TQ computation consisted of the following steps: 

i) ECG delineation: beat detection and time stamp of the fiducial points (T wave end and 

QRS onset) were automatically annotated for each beat by means of an established discrete-

wavelet transform (DWT) based algorithm
 
(Di Marco and Chiari, 2011) for single-lead ECG, 

adopting CH32 for LS1, LS2, and ―modified‖ Lead II for LS3. The reason for selecting the TQ 

interval is that it represents the portion of the ECG where the atrial activation is most visible, 

unobscured by the ventricular activity (Bonizzi et al., 2010). Note that the delineation 

algorithm provided a beat-by-beat estimation of the TQ segment length, which varied 

according to the instantaneous heart rate, thus maximising the available AA within the TQ 

segment. 

ii) Time windowing: The recording length of 180 s was divided into NW (=18) consecutive 

non-overlapping 10 s windows. The window length of 10 s proposed by Bonizzi and co-

workers
 
(Bonizzi et al., 2010) was adopted, as a trade-off between number of collected beats 

and data stationarity. For each 10 s window, TQ segments of consecutive beats were 

connected together to form the TQ series. Fig. 3 illustrates construction of the TQ series. The 

NTQxM observation matrix XTQ of the TQ series was generated for each window, where NTQ is 

the number of time samples composing the TQ series, and M is the number of leads in the 

selected lead-set. 

 

iii) PCA computation: PCA was computed for every instance of XTQ, namely every 10 

seconds. Indices computed based on PCA are described in the following section. 

It shall be noted, that this entire process does not involve spectral computation, which 

would lack physical meaning as the TQ series generation (TQ segment concatenation of 

consecutive beats) generates temporal gaps. 

 

10.2.4.2 PCA-ECG 

 

The PCA-ECG computation was performed in parallel to the above described PCA-TQ, 

with the goal of separating AA from ventricular activity (Bollmann et al., 2006; Langley et 

al., 2006; Raine et al., 2004; Raine et al., 2005) by transforming the ECG signal as a whole 

(i.e. preserving temporal consistency). For each 10 s window, PCA was applied to the 

NECGxM observation matrix XECG, where NECG is the number of time samples in the ECG 

signal, and M was the number of leads in the selected lead-set. It shall be noted that NECG = 

10·FS > NTQ.  Spectral analysis was performed on the continuous AA extracted by this 

method as described in section 10.2.7. 
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Figure 10.3 ECG delineation (top panel) on an arbitrary portion of recording AF1, TQ 

segments collected from CH15 (central panel) and TQ series generated by connecting 

consecutive TQ segments (lower panel). Dashed-dotted lines indicate QRS onset, dotted lines 

indicate T wave offset. 

 

 

10.2.5 Spatial complexity 

 

PCA offers the benefit of the intuitive concept of spatial distribution of variance of the 

signal being analyzed. It is therefore reasonable, as noted in previous studies (Bonizzi et al., 

2010; Faes et al., 2001), to quantify spatial complexity in terms of PCA ability to concentrate 

the original information of the atrial activation signal in only k components (k<M), based on 

the assumption that in AF a more organized AA is reflected in a lower number of principal 

components (PCs) needed to describe its variance. An index C was defined accordingly, to 

quantify the spatial complexity of PCA-TQ representation of the XTQ observation matrix. C 

was defined as the percentage residual cumulative variance of the first three PCs: 
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where λi is the ith eigenvalue of PCA-TQ. C indicates the residual variance which is not 

expressed by the first three PCs. It represents the degree of local complexity of the random 

process (XTQ observation matrix), with higher values indicating higher degree of complexity. 

By definition, C ranges from 0 to 100. 
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10.2.6 Variability of spatial complexity 

 

Spatial complexity variability was quantified in terms of deviation of the spatial 

complexity index over time. Mathematically, a new index CV was defined as: 

 

)(CSDCV                                        (10.4) 

 

where SD(·) is the standard deviation operator. Lower values of CV indicate a higher degree 

of persistence of the spatial complexity (organization) over time.  

 

10.2.7 Spectral concentration and variability 

 

Spectral variability was quantified in terms of deviation of the power spectral distribution 

from an average template. Considering the M PCs available from PCA-ECG, power spectral 

density (PSDAF) was estimated for each, in the frequency band of interest for AF (4–10 Hz) 

(Bollmann et al., 2006; Raine et al., 2004). For PSDAF computation the input signal was 

preliminarily (first-order) detrended and zero-meaned. Welch periodogram was then applied, 

with Hamming windowing. Defining ηk(i) as the PSDAF of the kth PC computed for the ith 10 

s window, the following templates were calculated: 
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where η
k
T is the PSDAF template for the kth PC, i (=1,..., NW) is the 10 s window index. 

Considering the definition of spectral concentration by Castells and co-workers (Castells et 

al., 2005), the following was computed: 
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where fP is the peak frequency of η
k
T in the 4–10 Hz band, and fmin is defined as the lowest 

value between 4 Hz and fP – 1Hz. SC is a measure of the focus of the spectral power within a 

narrow band around the dominant AF frequency.  Considering the case of AF with highly 

stable re-entrant circuit, SC will be high. Conversely, in the case of AF with meandering or 

multiple and changing re-entrant circuits, SC would be comparatively low. As such SC can 

be regarded as a measure of stability of AF spectral components.  
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A spectral variability index (SV) quantifying temporal variability of spectral distribution 

was defined as: 
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where RMSE(·) is the root-mean-square operator, SD(·) is the standard deviation, i (=1,..., NW) 

is the window index, K is the index of the PC whose PSDAF has the highest spectral 

concentration (i.e. the most prominent peak), and η
K

T is the PSDAF template obtained by 

averaging all ηK(i).  

Lower values of SV indicate a higher degree of temporal persistence of the spectral 

morphology in the band of interest.  

A different approach was proposed for ―stationarity‖ analysis by Bonizzi and co-workers 

(Bonizzi et al., 2010), intended as a measure of repeatability of PCA representation over the 

sliding time-window. Our approach avoids the potential bias introduced by the (somehow 

arbitrary) choice of a reference window. 

 

10.2.8 Statistical analysis 

 

The following statistical analysis was undertaken:  

I) Spatial complexity and variability of spatial complexity: analysis of variance was done 

according to the Kruskal-Wallis test (α=0.05) to compare spatial complexity (C) and 

variability of spatial complexity (CV) of atrial activation. 

II) Temporal variability of spectral distribution and spectral concentration: linear 

correlation between temporal variability of the power spectral density distribution (SV) and 

the related spectral concentration SC was computed. 

A significance level of α=0.05 was adopted for the null hypothesis test of non-zero 

correlation between two samples (two-tail test).  

 

10.3 Results 

 

Table 10.1 shows Pearson‘s linear correlation between indices. A significant direct 

correlation (ρ(CV, C) ≥ 0.80, p<0.001) was observed between spatial complexity (C) and its 

variability (CV) suggesting that reduced complexity may be associated with higher degree of 

temporal stability of spatial organisation. Correlation strength is maintained with decreasing 

number of leads M (from LS1 to LS3). 

A significant inverse correlation (ρ(SC, SV) ≤ -0.83, p<0.001) was observed between 

spectral variability index (SV) and spectral concentration (SC), indicating an inverse 

relationship between the prominence of the dominant AF frequency (DF) and the temporal 

variability of the spectral distribution in the AF frequency range. In other words, a more 
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pronounced AF frequency peak was associated with a more temporally stable spectral 

distribution. Figure 10.4 shows linear regression for the indices pairs presented in Table 10.1. 

 
Figure 10.4 Linear correlation between spatial complexity (C) and spatial complexity 

variability (CV) for all lead-sets (panels a-c); between spectral variability (SV) and spectral 

concentration (SC) (panels d-f). All indices are dimensionless. 

 

Table 10.1 – Linear correlation between indices (two-tail test). 

Lead-set ρCV,C ρSC,SV 

LS1 0.80 (p<0.001) -0.88 (p<0.001) 

LS2 0.91 (p<0.001) -0.84 (p<0.001) 

LS3 0.86 (p<0.001) -0.83 (p<0.001) 

Abbreviations: C=spatial complexity, CV= variability of spatial complexity, SV=temporal variability of spectral 

distribution, SC=spectral concentration. 

 

In Figure 10.5 contrasting cases of  lowest vs. highest spatial complexity (panels a-c) and 

temporal spectral variability (panels d-f), for lead set LS1 are shown. Extreme values of C and 

SV are highlighted in top panels. Panel b (c) shows an arbitrary strip of 4 s of the TQ series 

from the recording with lowest (highest) spatial complexity for all 64 channels 

simultaneously (C, CV are computed from PCA-TQ, as illustrated in Figure 10.2). Panel e (f) 

shows an arbitrary strip of 4 s of ECG from the recording with lowest (highest) spectral 

variability (SC, SV are computed from PCA-ECG, as illustrated in Figure 10.2). 



Part III – Chapter 10 153 

 
Figure 10.5 Contrasting cases of  lowest vs. highest spatial complexity (panels a-c) and 

temporal spectral variability (panels d-f), for lead set LS1. Circle-dot highlight  on top panels 

shows extrema of C and SV. Panel b (c) shows an arbitrary strip of 4 s of the TQ series from 

the recording with lowest (highest) spatial complexity for all 64 channels simultaneously 

(overlapped traces). Panel e (f) shows an arbitrary strip of 4 s of of ECG from the recording 

with lowest (highest) spectral variability. 

 

 

10.4 Discussion 

 

The first aim of the present study was to analyze the variability of spatial organization 

(complexity) and spectral distribution of AF in BSPM, proposing an automated method for 

the analysis. A DWT-based ECG delineation algorithm
 
(Di Marco and Chiari, 2011) was 

adopted for the purpose, to automatically generate the TQ time-series for spatial organization 

analysis. 

Significant direct correlation (p<0.001) between spatial complexity (C) and its variability 

(CV) was found (Table 10.1) suggesting that higher spatial organization may be associated 

with more temporally stable atrial activation pattern, in accordance with the wavelet theory of 

AA in AF (Konings et al. 1994; Moe and Abildskov, 1959; Moe et al., 1964; Wijffels et al., 

1995).  

A strong inverse correlation (p<0.001) between temporal variability of the PSD spectrum 

in the AF band of interest (SV) and spectral concentration (SC) was also observed, suggesting 

that higher temporal persistence (regularity) of spectral distribution in the AF band may be 

associated with a more pronounced dominant fibrillatory frequency. To the authors‘ 

knowledge this is the first contribution to the quantification of such relationship in AF from 

surface ECG recordings. 

The second aim was to assess the applicability of the proposed analysis to a reduced set of 

BSPM signals. Decreasing the number of leads M (i.e. the number of PCs) from 64 (32 

anterior, 32 posterior channels) to 32 (anterior) improved correlation between spatial 
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complexity (C) and spatial complexity variability (CV) as shown in Table 10.1 and Figure 

10.4. This may be due to the position of the posterior electrodes which are farther away from 

the heart, and consequently less sensitive to the low amplitude atrial activity signal. 

Moreover, BSPM signals from posterior electrodes are also sensitive to slight body motion of 

the patient lying supine on the bed. Combined together, these two factors may suggest that 

posterior channels do not contribute to PCA analysis of spatial complexity, rather they act as 

source of noise. 

Decreasing M to the lowest value (M=10) in LS3, dramatically reduced the range of values 

of C and CV, as would be expected due to the decreased number of PCs. However, the strong 

correlation between C and CV was preserved, showing that the relationship persisted with the 

selected channels. 

Correlation between spectral variability (SV) and spectral concentration (SC) was also not 

affected by decreasing M, as shown in Table 10.1 and Figure 10.4, suggesting that spectral 

information is preserved in the available PCs. Hence lead-set LS3 may still carry spatial and 

spectral variability information in spite of a reduced number of leads.  

In conclusion, in this work, higher spectral concentration (SC) was associated with 

reduced temporal variability of spectral distribution (SV). This may indicate that with higher 

values of SC, a shorter observation time is required to collect spectral distribution, from 

which the dominant atrial fibrillatory rate (a recognized index of average atrial refractoriness) 

can be calculated. This could be time and cost effective in clinical decision-making in AF 

treatment. 

Moreover, it was shown that the results are not affected by the reduction of the number of 

leads (M), down to as few as 10 BSPM (LS3). This may suggest that a simplified setup could 

also be considered, further reducing the cost of the BSPM acquisition protocol or that the 

methods could be applied equally to standard 12-lead ECG.  

Lastly, reduced complexity (C) was associated with reduced complexity variability (CV) 

for all lead-sets, indicating that lower complexity AF cases might require shorter observation 

time for complexity index calculation. However, replication on a larger dataset would be 

necessary to validate the proposed indices. 
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Conclusions 

 

The aim of this PhD thesis was to analyze the variability of surface ECG derived rhythms, 

at two different time scales: the discrete-event time scale, typical of beat-by-beat extracted 

features, and the ―continuous‖ time scale of separated (in-band filtered) sources in the ECG, 

in selected scenarios relevant to psychophysiological and clinical research, respectively. 

 

Variability analysis of discrete event series: the discrete event series (DES) of inter-beat 

interval (IBI) was considered. Heart rate variability (HRV) analysis was carried out in the 

time, frequency, and joint time-frequency domain, complemented by non-linear dynamics 

analysis, with the goal of assessing psychophysiological workload (PPW) in response to 

working memory engaging tasks.  

A superior ability of regularity index (SampEn) in discriminating performance (task 

execution) from rest; and instantaneous energy variability (IEVLF+HF) in discriminating 

difficult tasks from other sessions (rest and easy tasks) was shown in fourteen healthy young 

subjects, with respect to traditional HRV analysis, suggesting a potential use of the proposed 

indices in discriminating PPW levels in response to varying memory-search task difficulty. 

 

Variability analysis of wavefront patterns: the atrial activation signal (AA) from atrial 

fibrillation (AF) recordings was considered. The signal was estimated from 64-channels body 

surface potential maps (BSPM). The goal was to analyze the temporal variability of spatial 

organization (complexity) and spectral distribution of AF, to propose an automatic 

implementation of the analysis, and to assess the applicability to reduced lead-sets, to 

potentially support clinical decision making in AF ablation therapy. 

A novel source-cancellation method based on morphology clustering of the ventricular 

depolarization interval (QRS-T segment) was proposed for the estimation of the atrial 

activation wavefront in AF. A significant improvement in ventricular activity cancellation 

was shown with respect to established single-lead approaches in BSPM recordings, together 

with a reliable estimation of AF dominant frequency (DF).  

Combined analysis of spatial complexity and spectral variability of atrial activation 

during AF was presented for BSPM recordings, based on a fully automated procedure. It was 

shown in twenty one patients with persistent AF that higher spectral concentration (SC) was 

associated with reduced temporal variability of spectral distribution. This finding suggests 

that with higher values of SC, a shorter observation time is required to collect spectral 

distribution, from which the dominant atrial fibrillatory rate (a recognized index of average 

atrial refractoriness) can be calculated. This could be time and cost effective in clinical 

decision-making in AF treatment. Moreover, it was shown that the results were not affected 

by the reduction of the number of leads, down to as few as 10 body surface potential maps 

(BSPM). This may suggest that a simplified setup could also be considered, further reducing 

the cost of the BSPM acquisition protocol or that the methods could be applied equally to 

standard 12-lead ECG. 
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In designing the methods for the two main objectives of the thesis, an online approach to 

signal processing was kept as general guideline, with the goal of contributing to real-world 

applicability of the proposed methods.  

In this regard, an algorithm for automatic assessment of ambulatory ECG signal quality, 

and an automatic ECG delineation algorithm were designed and validated. 

 

Automatic assessment of ambulatory ECG signal quality. An algorithm for the automatic 

assessment of ambulatory ECG recording quality, based on single-condition decision rule 

(SCDR) classification, was presented. Its performance in binary classification (‗acceptable‘ 

vs. ‗unacceptable‘ recording quality for diagnostic interpretation) was assessed on a standard 

database and compared to established supervised-learning classifiers (k-nearest neighbor, 

probabilistic neural network).  

The proposed method showed high accuracy (Sc) in automatic classification of short 12-

leads ambulatory ECG recordings (Sc=92.36%, for balanced training set; 93.40%, for 

unbalanced training set), higher than the best-performing supervised-learning classifier, in 

spite of its simple logic. The ability to provide additional information (rejection reason) to the 

classification output, suggests the proposed method may be a useful tool in automatic quality 

assessment of 12-leads ambulatory ECG recordings. 

 

Automatic electrocardiogram delineation. A wavelet-based ECG delineation algorithm 

was presented, designed for online 32-bit integer linear algebra processing, with shift/add 

operations replacing multiplications and divisions. The QRS detector achieved excellent 

performance on standard databases (MIT-BIH Arrhythmia database, European ST-T 

Database), and very good accuracy in P, QRS, T delineation on the standard QT Database. 

Reliability and accuracy were close to the highest among the ones obtained in other studies, 

in spite of a simplified structure built on integer linear algebra which makes the proposed 

algorithm a suitable candidate for online QRS detection and ECG delineation under strict 

power constraints and limited computational resources, such as in wearable devices for long-

term non-diagnostic ambulatory monitoring. 
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