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Abstract

The identification of people by measuring some traits of individual anatomy, physiology

or other behavioral characteristics has led to a specific research area called biometric

recognition. Several biometric technologies have been developed and successfully de-

ployed: fingerprints, face, iris, palmprints, signature. Fingerprints are the biometric

trait discussed in this Thesis because of their individuality and persistence properties,

as well as cost and maturity of products.

This Thesis is focused on improving fingerprint recognition systems considering three

important problems: fingerprint enhancement, fingerprint orientation extraction and

automatic evaluation of fingerprint algorithms. Fingerprint enhancement and fingerprint

orientation extraction can be considered as pre-processing steps to the main goal in

fingerprint recognition: the automatic comparison with other fingerprints (matching).

An effective extraction of salient fingerprint features depends on the quality of the

input fingerprint. If the quality is good, the fingerprint flow is well evident and a reliable

set of features can be extracted. If the fingerprint is very noisy, we are not able to detect

robust information: a large number of spurious features are extracted and we miss several

genuine features. Therefore, to achieve high recognition performance it is essential to

incorporate in the system a fingerprint enhancement module able to improve the quality

of noisy fingerprints, thus making the subsequent processing steps more reliable.

The goal of fingerprint orientation extraction is to compute one of the most critical

information in fingerprints, the local orientation: a feature denoting the direction of

the ridge flow at discrete positions. A precise estimation of the orientation field would

greatly simplify the estimation of other fingerprint features (singular points, minutiae)

and improve the performance of a fingerprint recognition system.

Although new developments and improvements in fingerprint recognition are contin-

uously reported, it is often difficult to understand, from the scientific literature, which

are the most effective and promising methods. In fact, scientific papers typically pro-
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pose recognition systems that integrate many modules (enhancement, feature extraction,

matching, post-processing, etc.) and therefore an automatic evaluation of fingerprint al-

gorithms is needed to isolate the contributions that determine an actual progress in the

state-of-the-art.

After a summary of state-of-the-art in fingerprint recognition, a new fingerprint en-

hancement method, which is both iterative and contextual, is proposed. This approach

detects high-quality regions in fingerprints, selectively applies contextual filtering and

iteratively expands like wildfire toward low-quality ones. The method does not require

any prior information on local orientations or frequencies. We assess the improvements

given by this algorithm over both real and synthetic fingerprints using a state-of-the-art

matcher.

The fingerprint orientation extraction is improved following two directions. First,

after the introduction of a new taxonomy of fingerprint orientation extraction methods,

several variants of baseline methods (local and global) are implemented and, pointing out

the role of pre- and post- processing, we show how to improve the extraction. Second, the

introduction of a new hybrid orientation extraction method, which follows an adaptive

scheme, allows to improve significantly the orientation extraction in noisy fingerprints.

It exploits both the local information and the experience, represented by the knowledge

of plausible fingerprint orientation structures, to compute the best orientation at discrete

points.

The lack of a publicly available framework to compare fingerprint orientation ex-

traction algorithms, motivates the introduction of a new benchmark called FOE (con-

stituted of fingerprint images, manually-marked orientation ground-truth and a metric)

along with fingerprint matching benchmarks in the FVC-onGoing framework. The suc-

cess of such online framework for the automatic evaluation of fingerprint algorithms, is

discussed by providing relevant statistics: more than 1450 algorithms submitted and two

international competitions.

ii



Acknowledgements

This Ph.D. Thesis summarizes the work carried out with the Biometric Systems Lab-

oratory (BioLab) since 2009. The BioLab is active at the University of Bologna since

1993 and is supported by Computer Science and Information Technology degree course

(Cesena) and DEIS (Department of Electronics, Computer Sciences and Systems). The

main research efforts are devoted to fingerprint/face recognition and performance eval-

uation of biometric systems. Collaborations with industrial partners ensure that the

research activities in the BioLab are linked to real applications.

Foremost, I would like to thank my two advisors Prof. Davide Maltoni and Prof.

Dario Maio for their support and guidance during the last three years I have spent at

BioLab. During these years I really benefited of their experience and advices.

During my experience at the BioLab I had the fortune to work with a great team

of researchers whose help, discussions and competence in the biometric field have con-

tributed to my scientific growth. My sincere thanks to Raffaele Cappelli, Annalisa Franco

and Matteo Ferrara.

I would like to thank my tutor Prof. Luciano Margara, director of the Computer

Science and Information Technology degree course (Cesena), for his help and for giving

me the opportunity to work in cooperation with the BioLab.

During my Ph.D. studies I had the great opportunity to meet a large number of

researchers worldwide and visit for a four month period the Prof. Anil K. Jain’s labo-

ratory at Michigan State University, USA. It was an honor to work with him and his

extraordinary group.

Last, but absolutely not least, a deep thanks goes to my parents Giovanna and

Roberto, my brother Marco and my sweet love Chiara for their continuous support.

Francesco Turroni

Cesena, December 2011

iii



iv



Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Biometric Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Biometric Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Motivation and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Novel contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Fingerprint Recognition 13

2.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Formation and Individuality . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Acquisition of Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Fingerprint Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Local Ridge Orientation . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Local Ridge Frequency . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Minutiae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Fingerprint Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Fingerprint Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Synthetic Fingerprint Generation . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Accuracy Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



CONTENTS

I Novel Enhancement Method for Fingerprints 29

3 Fingerprint Enhancement 31

3.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Enhancement with Contextual Iterative Filtering . . . . . . . . . . . . . 34

3.3 Iterative Fingerprint Enhancement . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Convolution with a Gabor filter-bank . . . . . . . . . . . . . . . . 35

3.3.2 Combined Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Homogeneity Image . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.4 Selection of the Candidates . . . . . . . . . . . . . . . . . . . . . 39

3.3.5 Enhancement of the Candidates . . . . . . . . . . . . . . . . . . . 41

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Enhancement of Synthetic Fingerprints . . . . . . . . . . . . . . . 44

3.4.2 Influence on Fingerprint Matching . . . . . . . . . . . . . . . . . . 45

II Improving the Fingerprint Orientation Extraction 49

4 Fingerprint Ridge Orientation Computation 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Ground Truth Markup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 A New Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Local Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Global Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.3 Limitations of classical methods . . . . . . . . . . . . . . . . . . . 62

4.4.4 Learning Based Models . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Orientation Extraction Improvement 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 The Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Improving the Orientation Extraction . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.2 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vi



CONTENTS

5.4.3 Acting on Polynomials Type . . . . . . . . . . . . . . . . . . . . . 79

5.4.4 Weighting Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Adaptive Orientation Extraction . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.1 Learning of plausible fingerprint structures . . . . . . . . . . . . . 85

5.6 Results on Gottschlich et al. Benchmark . . . . . . . . . . . . . . . . . . 86

5.6.1 Statistical Significance . . . . . . . . . . . . . . . . . . . . . . . . 90

III Automatic Evaluation of Fingerprint Algorithms 93

6 FVC-onGoing 95

6.1 The Fingerprint Verification Competition (FVC) . . . . . . . . . . . . . . 95

6.2 Aims and Architecture of FVC-onGoing . . . . . . . . . . . . . . . . . . 96

6.3 The New Orientation Extraction Benchmark . . . . . . . . . . . . . . . . 99

6.4 Ground Truth Markup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Performance Evaluation of Orientation Extraction Algorithms . . . . . . 101

6.6 FOE Benchmark Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 FVC-onGoing Results 109

7.1 Fingerprint Verification Competition at IJCB2011 . . . . . . . . . . . . . 109

7.1.1 Competition Benchmarks . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.2 Algorithm submission and publication . . . . . . . . . . . . . . . 110

7.2 Results of FVC-onGoing@IJCB11 . . . . . . . . . . . . . . . . . . . . . . 111

7.2.1 Results over the FV Benchmarks . . . . . . . . . . . . . . . . . . 112

7.2.2 Results over the FMISO Benchmarks . . . . . . . . . . . . . . . . 113

7.3 Fingerprint Orientation Extraction Competition at ICB2012 . . . . . . . 115

7.3.1 Competition Benchmarks . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.2 Algorithm submission and publication . . . . . . . . . . . . . . . 118

7.4 Results of FOE@ICB12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Concluding Remarks and Future Work 123

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A List of scientific publications 127

vii



List of Figures 132

List of Tables 134

References 148

viii



Chapter 1

Introduction

The identification of people by measuring some traits of individual anatomy, physiology

or other behavioral characteristics has led to a specific research area called biometric

recognition [68]. Biometric technologies provide a strong mechanism for authentication

and are still under continuous development. Their diffusion is mainly supported by

governments, forensics and law enforcement agencies with the aim of improving the

public security or in general a sense of security; in fact, the biometric identification does

not directly improve the security but acts as deterrent to illegal activities.

The application of biometrics in forensics has a long history and can be considered

as the big bang of the biometric recognition world. Alphonse Bertillon, chief of the

criminal identification division of the police department in Paris, developed and then

practiced the idea of using a number of body measurements to identify criminals in the

mid-19th century. In the twentieth century law enforcement agencies have extensively

used biometrics for security purposes. In the last years, the adoption of biometrics has

met a large increase even in general purpose applications, due mainly to a combination

of the falling cost of biometric devices, increasing sophistication of the technology and

development of biometrics as a peripheral to common computer platforms. Several bio-

metrics have been successfully developed and deployed: fingerprints, face, iris, voice and

palmprints are the most currently used.

Fingerprints are the main biometric trait discussed in this Thesis; they have been

subject of study of more than a century and besides, archaeological fingerprint carvings

and impressions (from Neolithic [94], stones [78], clay seals [78]) were founds worldwide.

This PhD Thesis is focused on three important fingerprint recognition problems:

1



1. Introduction

fingerprint orientation extraction, fingerprint enhancement and automatic evaluation of

fingerprint algorithms.

Fingerprint orientation extraction and fingerprint enhancement can be considered as

pre-processing steps to the main goal of the fingerprint recognition problem: the com-

parison with other fingerprints. More clear are the characteristics we can extract from

a fingerprint, more reliable is the output of a comparison between fingerprints (matching).

The automatic evaluation of fingerprint recognition algorithms over common databases

is very important in order to assess the performance of various algorithms and understand

the most effective and promising building block technologies.

In this introductory chapter we present the basics of biometric systems describing the

characteristics of the most common biometric traits. Fingerprints, that are the core of

this Thesis, are described in detail in the next chapter. This chapter is finished provid-

ing the motivations and goals of this Thesis, the novel contributions to the fingerprint

recognition field and describing the organization of the Thesis such that a reader can

easily navigate among chapters.

1.1 Biometric Systems

Biometric Systems are systems that use anatomical and behavioral characteristics, called

biometrics traits, to automatically recognize individuals [81] [133].

The use of such a characteristics is becoming essential in person identification solu-

tions because they represent the individual’s bodily identity and can neither be shared

nor misplaced.

The word biometrics is derived from the Greek words bios (meaning life) and metron

(meaning measurement), so biometrics traits are measurements from the living human

body.

With the word enrollment we define the act of capture the biometric characteristic

with a biometric sensor (for example a fingerprint scanner), the generation of a compact

but expressive representation of the information (feature set) and finally, the organiza-

tion of one or more feature sets into an enrollment template that will be saved in some

persistent storage.

A biometric system may be a verification system or an identification system.

2



1.1. Biometric Systems

Figure 1.1: Enrollment, Verification and Identification processes.

• A verification system authenticates a person’s identity comparing the acquired bio-

metric trait with an enrolled one. It conducts a one-to-one comparison to confirm if

the individual is who he claims to be. This system accepts or rejects the submitted

claim of identity.

• An identification system recognizes an individual by searching in a database a

match with a previously captured (enrolled) biometric reference template. It con-

ducts one-to-many comparisons to establish if the individual is present or not in

the database and if so, it returns the identifier of the enrollment reference that

matched.

In Figure 1.1 the verification and identification systems are depicted; user enrollment

which is common to both tasks is also graphically illustrated.

Depending on the application domain, a biometric system could operate either as

an on-line system or an off-line system. An on-line system requires the recognition to

be performed quickly, an immediate response is imposed and is usually fully automatic.

An off-line system does not have this requirement, a relatively longer response delay is

allowed and is usually semi-automatic.

3



1. Introduction

Figure 1.2: Classification of most common biometric traits. Fingerprint (a), Face (b),

Hand (c), Iris (d), Voice (e), Signature (f).

1.2 Biometric Characteristics

A brief introduction to the most common biometric traits is provided below.

• Fingerprint. It is the biometric trait with the most desirable properties. In fact, ev-

ery human being possesses fingers and hence fingerprints. They are very distinctive

and permanent; even if they temporarily change slightly due to cuts and bruises

on the skin, the fingerprint reappears after the finger heals. Live-scan fingerprint

scanners can easily capture high quality fingerprint images simply putting a finger

on the sensor. Fingerprints have a long history of use in forensic divisions for crim-

inal investigations and associated systems are difficult to circumvent. Fingerprint

recognition is one of the most mature biometric technologies and is suitable for a

large number of recognition applications [90].

• Face. Face is one of the most acceptable biometrics traits because it is one of the

most common methods of recognition that humans use in their daily visual inter-

actions. The acquisition is easy and non-intrusive. It is very challenging to develop

face recognition algorithms that are invariant to variations of age, expression, pose

and environment [134].

4



1.2. Biometric Characteristics

• Iris. Iris recognition is the process of recognizing a person by analyzing the pattern

of the iris. The image is typically acquired using a non-contact imaging process.

The recognition is not to be confused with another ocular-based technology, the

retina scanning. Breakthrough work to create the iris recognition algorithms re-

quired for image acquisition and one-to-many matching was pioneered by John G.

Daugman [36]. The iris recognition efficacy is rarely impeded by glasses or contact

lenses and has been shown to be extremely accurate at high resolution images.

• Hand. Some features related to the human hand are relatively invariant and pecu-

liar to an individual [62]. The acquisition requires the cooperation of the subject to

capture frontal and side view images of the palm. With appropriate devices (near-

infrared imaging) is it possible recognize also the hand or finger vein structure.

• Voice. Voice acquisition is not intrusive and as biometric trait is not expected to

be sufficiently distinctive to permit identification of a subject from a large database

of identities. The voice signal depends on the quality of the acquisition device and

is affect by factors such as a person’s health, stress and emotional state.

• Signature. The signature of a person is said to be a characteristic of an individual,

but it changes over time and is influenced by physical and emotional conditions.

Signature has been acceptable in government, legal and commercial transactions

as a method of verification for a long time.

In this Thesis we consider fingerprints because of their desiderable properties. In

the last years the need of high accuracy has motivated also the interest in multimodal

biometrics, in which several biometric traits are simultaneously used (see [68] [106] [52]

[73]), for example:

• face and fingerprint ([50] [63]);

• face, fingerprint and speech ([64]);

• face, fingerprint and hand geometry ([103] [102]);

• signature and fingerprint ([41] [42]).

5



1. Introduction

1.3 Motivation and goals

Thanks to their well-known distinctiveness and persistence, fingerprints are the most

widely used biometric characteristic. Fingerprint recognition is a complex pattern recog-

nition problem; designing algorithms capable of extracting salient features and matching

them in a robust way is quite hard.

It is a common thinking that automatic fingerprint recognition is a fully solved prob-

lem since it was one of the first applications of machine pattern recognition almost fifty

years ago. On the contrary, fingerprint recognition is still a challenging and important

pattern recognition problem. Some of the challenges are described below.

• A reliable extraction of salient fingerprint features (minutiae) depends on the qual-

ity of the input fingerprint. If the quality is good, the fingerprint flow is well evident

and a robust set of features can be extracted. If the fingerprint is very noisy, we

are not able to detect such features reliably: a large number of spurious features

are extracted and we miss several genuine features. Therefore, to achieve high

recognition performance it is essential to incorporate in the automatic system a

fingerprint enhancement module able to improve the quality of noisy fingerprints,

thus making the subsequent processing steps more reliable.

• One of the most used fingerprint features is called local fingerprint orientation

and represents the ridge flow direction at discrete positions. This feature helps

to understand the global fingerprint flow and has a critical impact on subsequent

processing steps. The orientation extraction in good quality images is an easy

problem where simple methods from the image processing literature (gradient-

based) are exploited. Reliable orientation extraction in low-quality regions is still

an open problem. Some methods have been proposed to solve this problem but

they do not allow to encode a prior knowledge about the admissible fingerprint

structures in the orientation estimation process. Only algorithms with such a prior

knowledge (i.e., encoding natural fingerprint variability), combined with the local

fingerprint quality and local orientation estimations, may achieve significant higher

accuracy on very low quality fingerprints.

• Although new developments and improvements in fingerprint recognition are con-

tinuously reported, it is often difficult to understand, from the scientific literature,

which are the most effective and promising methods. In fact, scientific papers

6



1.4. Novel contributions

typically propose recognition systems that integrate many modules (enhancement,

feature extraction, matching, post-processing, etc.) and therefore it is hard to

isolate the contributions that determine an actual progress in the state-of-the-art.

FVC is a competition organized by the Biometric System Laboratory of University

of Bologna with such an aim. After four off-line competitions, the FVC-onGoing

(on-line) has been developed only for fingerprint matching (ISO templates) and

verification (proprietary templates) algorithms. An extension to other fingerprint

problems (orientation extraction, indexing, etc.) and eventually other biometric

traits could be very useful for the community.

1.4 Novel contributions

The problem of automatic fingerprint matching has been extensively studied, but it is

still not a fully solved problem. Reliable fingerprint enhancement and feature extrac-

tion, which are addressed in this work, are fundamental pre-requisites to all fingerprint

recognition systems. The major contributions are listed below.

1. A novel fingerprint enhancement algorithm that improves the fingerprint matching

on both synthetic and real fingerprints has been developed. The algorithm selec-

tively applies contextual filtering starting from automatically-detected high-quality

regions and then iteratively expands like wildfire toward low-quality ones.

2. A new taxonomy of fingerprint orientation extraction methods has been proposed.

With a large number of experiments we show that a learning-based approach is

needed in order to deal with noisy fingerprints.

3. In very noisy fingerprints the orientation extraction is a difficult task. After a

deep analysis of the problem we show that parameter optimizations, pre- and post-

processing stages can markedly improve accuracy of the baseline methods on bad

quality fingerprints. Several algorithms (and a high number of their variations)

have been implemented and tested on a specifically designed benchmark.

4. A new hybrid fingerprint orientation extraction method has been developed to

enhance the performance of automatic fingerprint recognition systems. It follows

an adaptive scheme using both the local and learnt information.

7



1. Introduction

5. The automatic evaluation of fingerprint algorithms is fundamental to isolate the

contributions that determine an actual progress in the state-of-the-art. The FVC-

onGoing framework, a web-based automatic evaluation system of fingerprint al-

gorithms, has been extended with the introduction of a new specifically designed

benchmark area for fingerprint orientation extraction algorithms. We have cre-

ated two benchmarks containing i) good and bad quality images, 2) the manually

marked ground-truth, and 3) a metric to compare the estimated orientations with

the ground-truth.

6. The FVC-onGoing is ”on going” in the sense that a participant can submit al-

gorithms at any time and outputs recognition results using standard metrics. In

conjunction with two important international conferences on biometrics (Interna-

tional Joint Conference on Biometrics IJCB 2011 [1] held in Washington DC (USA)

and the International Conference on Biometrics ICB 2012 [4] held in New Delhi (In-

dia)), we have organized two international competitions based on the FVC-onGoing

framework. The first competition is about the fingerprint verification problem and

the second is about the fingerprint orientation extraction. Results and conclusions

are reported in this Thesis.

The research activities carried out during the Ph.D., lead to the publication of the

following scientific papers: [23], [122], [19] and [24].

1.5 Thesis organization

After an introduction on biometrics and fingerprint recognition, this work is organized in

three main parts. The first part is devoted to the fingerprint enhancement problem. We

propose a new iterative contextual method for noisy fingerprint able to enhance the image

and improve the matching. The second part describes a new classification of orientation

extraction algorithms and shows how to improve the estimation with novel approaches.

The third part is devoted to the automatic evaluation of fingerprint algorithms through

the FVC-onGoing framework and some new competitions based on it that we organized.

All these three parts include several experimental results.

This Thesis is organized according to the following chapters.

• Chapter 1 describes a general biometric recognition system analyzing and compar-

ing the most common biometric traits. It also gives the motivations, the novel

8



1.5. Thesis organization

contributions and the organization of this Thesis.

• Chapter 2 introduces at high level the fingerprint recognition problem. Starting

from an historical overview we move toward a structural analysis of fingerprints

describing the most common features (local ridge orientations, local ridge frequen-

cies, minutiae) and databases (NIST and FVC). Finally, the chapter presents some

standard performance measures adopted in fingerprint recognition systems and for

this reason used in this Thesis. The state-of-the-art of various methods is always

provided to the reader.

• Chapter 3 initially introduces the reader to the fingerprint enhancement problem.

A minutiae extraction algorithm heavily relies on the quality of the input finger-

print. If the quality is good, the ridges-valley flow is well evident and a robust

set of minutiae can be extracted. If the fingerprint is very noisy, the minutiae

extraction algorithm may detect a large number of spurious minutiae and miss

several genuine minutiae. Therefore, to achieve high recognition performance it

is essential to incorporate a fingerprint enhancement module able to improve the

quality of noisy fingerprints. After the problem description a new method based on

iterative contextual filtering is proposed and its performance is assessed through

experiments on synthetic (SFinGe) and real (FVC) fingerprints.

• Chapter 4 introduces the fingerprint orientation extraction problem. A new tax-

onomy for orientation extraction algorithm is provided and, according to some

experiments, we show the need of learning-based orientation extraction methods,

that is methods that exploit a prior knowledge of plausible fingerprint structures

to improve the estimation.

• Chapter 5 frames the baseline orientation extraction algorithms according to the

proposed taxonomy and describes new techniques able to improve the orientation

extraction in fingerprints. We implemented and tested several well know methods

and a plethora of their variants over a novel, specifically designed, benchmark, made

available in the FVC-onGoing framework (see chapter 6). Through an experimental

analysis we proved that parameter optimizations, pre- and post- processing stages

can markedly improve accuracy of the baseline methods on bad quality fingerprints.

A new hybrid orientation extraction method relying on local and learnt information

is proposed and compared with baseline methods.

9



1. Introduction

• Chapter 6 describes the FVC-onGoing framework, a web-based automatic evalua-

tion system of fingerprint algorithms. The proposed system is automatic (does not

require the human intervention), ”on going” (a participant can submit algorithms

at any time) and outputs recognition results using standard metrics. The system

is expanded through the introduction of a new benchmark area for orientation

extraction algorithms (FOE).

• Chapter 7 presents the results of two fingerprint recognition competitions organized

by the Biometric System Laboratory of the University of Bologna [2] in conjunc-

tion with the International Joint Conference on Biometrics IJCB 2011 [1] held in

Washington DC (USA) and the International Conference on Biometrics ICB 2012

[4] held in New Delhi (India).

• Chapter 8 concludes the Thesis summarizing the main results obtained and out-

lining future research directions.

The relationship among the chapters is illustrated in Figure 1.3. The three main parts

of this Thesis are highlighted with dashed lines. Chapter 1 is recommended for all readers

in order to understand the main research contributions and to have an introduction on

biometrics. A reader without a background in fingerprint recognition should absolutely

read the chapter 2 or a for a more detailed discussion the text [90]. Novel contributions

and experimental results can be found in all remaining chapters.

Some of the methods developed in this Thesis require also a background knowledge

in image processing and machine learning. A standard text on image processing is the

Gonzalez and Woods, 2002 [47]. Machine learning literature is well introduced by the

texts Duda et al. [38], C. Bishop [14], Theodoridis and Koutroumbas, 2008 [120].
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1.5. Thesis organization

Figure 1.3: Thesis Organization.
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Chapter 2

Fingerprint Recognition

The application of fingerprint based authentication systems is becoming very popular in

last years, not only at industrial or defense level but also in general purpose devices like

laptops, mouses, smart phones, pen drives. The word ”fingerprint” is usually associated

with the term ”individuality”, but the uniqueness is not formally established, it is just

an empirical observation over millions of acquired ones.

In this chapter we present a description of the fingerprint recognition problem. Start-

ing from an historical overview we move toward a structural analysis of fingerprints de-

scribing the most common features and databases. Finally, we present some standard

performance measures adopted for fingerprint recognition systems and for this reason

used in this Thesis.

2.1 Historical Overview

Despite human fingerprints have been discovered on a large number of archeological

artifacts [94][78], the milestones in fingerprint science can be summarized in the following

works:

• 1809. Thomas Bewick started using fingerprint as his trademark [78].

• 1823. Purkinje proposed the first fingerprint classification scheme based on nine

categories [94].

• 1859. William Herschel was the first european to recognize the value of fingerprints

for identification purposes. He collected fingerprints and in 1977 his fingerprinting

13



2. Fingerprint Recognition

ideas were implemented.

• 1880. Henry Fauld suggested the individuality of fingerprints based on empirical

observations [78] [94].

• 1888-1892. Sir Francis Galton conducted an extensive study on fingerprints. In

his works, he divided the fingerprints in three major classes and introduced the

concept of minutiae features for comparing fingerprints. This approach is the most

utilized in modern fingerprint recognition algorithms [45].

• 1899-1900. Edward Henry established the ”Henry-system” of fingerprint classifi-

cation. According to this system, five classes have been introduced. This scheme

was adopted in several countries. Most of the classification schemes currently used

by law enforcement agencies are variants of this scheme [39].

• 20th century. Fingerprint recognition became a standard routine in forensics.

Various techniques were developed. The FBI fingerprint division was set up in

1924 with a database of 810,000 cards. Currently, the FBI IAFIS is the largest

biometric database in the world, housing the fingerprints and criminal histories for

more than 70 million subjects, along with more than 31 million civil prints.

2.2 Formation and Individuality

Fingerprints are fully formed at about seven months of fetus development and will remain

the same throughout the person’s life (persistence property). If superficial damage occurs,

the skin will grow back in exactly the same arrangement as at birth. This is why

fingerprints are a reliable means of identification at all stages of a person’s life. They

are even one of the last features to decompose after death. Babler in [7] described

the embryologic development of epidermal ridges. A mathematical explanation for the

development of epidermal ridges on fingers can be found in [77].

The details of a person’s fingerprints are unique to them and only them (uniqueness

property). Even identical twins do not have identical fingerprints. According to the

assumption of uniqueness, different individuals have different salient features: if two

fingerprints share many common features then an expert concludes that the fingerprints

belong to the same person. The assumption of uniqueness allows forensic experts to

14



2.3. Acquisition of Fingerprints

Figure 2.1: Examples of fingerprint scanners.

offer a strong proof towards the defendant’s guilt. The fingerprint individuality is still

extensively studied [90].

2.3 Acquisition of Fingerprints

The acquisition of a fingerprint can be done off-line or on-line. In the off-line acquisition

the image is typically obtained by smearing ink on the fingertip and creating an inked

impression of the fingertip on the paper. After this procedure, the fingerprint is digitized

by an optical scanner or a high resolution camera. This kind of fingerprint is often

called rolled fingerprint. A very important kind of off-line fingerprint image is the latent

fingerprint : a partial fingerprint image lifted from a crime scene by a forensic expert.

Compared to a rolled fingerprint, the latent is most of the times of bad quality and hard

to process. In the on-line acquisition, the fingerprint is acquired by using a fingerprint

scanner without any kind of ink (see some examples in Figure 2.1). A typical fingerprint

scanner comprises:

• a sensor to read the ridge pattern on the finger surface;

• an A/D (Analog to Digital) converter to convert the signal;

• an interface module responsible for communicating with external devices.

Almost of all existing sensors belong to one of the following families: optical, solid-

state and ultrasound. These sensors are also called touch sensors. With the aim of

reducing the cost, recently another sensing method has been proposed: the sweep sensor,

where the finger is swept over the sensor (see the fourth image in Figure 2.1). This is

very common in mobile devices. A detailed description of such acquisition methods can

be found in [90].
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2. Fingerprint Recognition

(a) (b) (c)

Figure 2.2: Examples of fingerprints acquired with different techniques. A rolled fin-

gerprint (a), a latent fingerprint (b) and a fingerprint acquired with an optical scanner

(c).

The FBI - CJIS Division has defined in [113] the main parameters characterizing the

acquisition of a digital fingerprint image. In this Thesis we will consider three of them:

resolution, area and number of pixels (the rest can be found in [113] and [90]).

• Resolution: denotes the number of pixels per inch (dpi). 500dpi is the minimum

resolution for FBI-compliant scanners.

• Area: is the size of the rectangular area sensed by a fingerprint scanner and ex-

pressed in inch2.

• Number of pixels : is the number of pixels in a fingerprint image. If Res is the

resolution, h is the height of the sensing area and w the weight of the sensing area,

the number of pixels is given by Res · h×Res · w.

2.4 Fingerprint Features

The problem of representation of a fingerprint is determinant for a good recognition

system and there is a need to find efficient methods to determine salient features. After

the sensing phase with a fingerprint device, we have an image based representation, con-

stituted by pixel intensity information, which is not invariant to distortions, brightness
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2.4. Fingerprint Features

Figure 2.3: Ridges and valleys in a fingerprint image.

variations, affine transformations and requires a large amount of storage.

The available fingerprint features are organized in levels and depend particularly

on the acquisition resolution. As we can see in Figure 2.3 the most evident structural

characteristic of a fingerprint is a ”pattern” of interleaved ridges (the darker areas) and

valleys (bright areas).

At the global level a fingerprint shows a smoothed structure except in one or more

regions containing distinctive characteristics called singularities (see Figure 2.4) which

can be:

• delta (represented with the symbol ∆);

• loop (represented with the symbol ∩);

• whorl (represented with the symbol O).

17



2. Fingerprint Recognition

Figure 2.4: Singular Points.

With respect to these basic structures, in 1900 E. Henry [39] organized fingerprints in the

five main categories (or classes) showed in Figure 2.5. The ”center point” of a fingerprint

is called core and can be defined as the north most point of the innermost ridge line. If

a fingerprint does not contain loop or whorl singularities (i.e. arch category) the core is

usually defined as the point of maximum ridge curvature. With the Henry fingerprints

organization system it is possible speed up the search, especially in the case where the

available database is very large.

At the local level, the fingerprint shows local high distinctive details called minutiae

(or Galton details [45], in honor of the first observer). The American National Stan-

dards Institute (ANSI/NIST-ITL 1, [6]) considers four minutiae classes: ridge endings,

bifurcations, compound and type undetermined ; the FBI minutiae model [92] considers

only ridge endings and bifurcations. The most common minutiae types are depicted in

Figure 2.6 (left).

Increasing the acquisition resolution (at least 1000 dpi), it is possible detect small

geometric details such as ridge width, breaks, creases, scars. The most important low

level details are small points over the ridge lines called sweat pores (see Figure 2.6 right).

20-40 pores are sufficient to recognize a person, for this reason they are very coveted

by latent fingerprint examiners but, as drawback, the image quality and the acquisition

resolution have to be very high.
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2.4. Fingerprint Features

(a) Left Loop (b) Right Loop (c) Whorl (d) Arch (e) Tented Arch

Figure 2.5: Henry Fingerprint Classification.

2.4.1 Local Ridge Orientation

The local ridge orientation is one of the most important characteristics of a fingerprint

image. The orientation extraction represents a mandatory step for the most effective

fingerprint recognition algorithms. It is simple to compute if the image quality is good.

In bad images, a reliable extraction is still an open problem.

Given a fingerprint I, where the element Ix,y represents the gray-level of pixel at [x, y],

the orientation image (or directional image) is a h×w matrix D whose elements encode

the local orientation of the fingerprint ridges. Each element θi,j ∈ [0, π[, corresponding to

node [i, j] of a squared-meshed grid, is located over pixel [xi, yj] and denotes the average

orientation of the fingerprint ridges estimated in a window centered in [xi, yj].

Most of this Thesis, describes how to improve the fingerprint orientation extraction,

so a detailed description of this problem can be found in Part II, Part III and indirectly

in Part I.

2.4.2 Local Ridge Frequency

The local ridge frequency, denotes the number of ridges per unit length along a hypo-

thetical segment centered at [x, y] and orthogonal to the local ridge orientation θi,j. As

for the local ridge orientation, the frequency image F is estimated at discrete positions

and it varies considerably across different regions.

Hong et al. [53] estimate the frequency counting the average number of pixels be-

tween consecutive pixels along the direction orthogonal to the local ridge orientation.

Maio and Maltoni in [85] exploit the variation theorem to estimate the unknown fre-
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2. Fingerprint Recognition

Figure 2.6: The most common minutiae (left) and a fingerprint portion where sweat

pores are well evident (right).

quency and Chikkerur et. al in [32] use an approach based on the short-time Fourier

transform analysis.

2.4.3 Minutiae

The extraction of fingerprint minutiae is a very important task especially because most

of automatic systems are based on minutiae matching. The simpler method to ex-

tract minutiae converts the input fingerprint image in a binary image (binarization),

applies a thinning to reduce the ridges size to one pixel and then, the resulting skele-

ton image is scanned to detect the pixels corresponding to minutiae. Some examples

of binarization-based methods are [114] [93] [33] [100]. Another approach to minutiae

detection, that avoid the image binarization and thinning, is the direct gray-scale extrac-

tion. The method of Maio and Maltoni [86] is one of the most representative algorithms

belonging to this family.

After the minutia detection, a minutiae filtering step is often necessary in order to remove

spurious minutiae in very noise fingerprint regions.
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2.5. Fingerprint Matching

2.5 Fingerprint Matching

Given a couple of fingerprints, automatic fingerprint matching is the process of automat-

ically verify if the two fingerprints belong or not to the same individual. In the first case

we have a match otherwise we have a non-match.

Large intra-class variability in different acquisitions of the same finger (due for ex-

ample to displacement, rotation, overlap, variable pressure, noise non-linear distortion),

makes the fingerprint matching a difficult problem. The difficulty is even higher in case

we deal with latent fingerprints. Another type of variability that makes the problem

difficult, is the intra-class variability: fingerprints of different fingers may sometimes ap-

pear quite similar.

Hereafter, we denote the representation of the fingerprint acquired during the enroll-

ment as the template (T) and the representation of the fingerprint to be matched as the

input (I). The template is a representation of a fingerprint in terms of salient features

(minutiae type, minutiae positions, local ridge orientations, local ridge frequencies, qual-

ity) obtained after a feature extraction phase. When we talk of input image, we talk

about the pixel-based image obtained after the acquisition with a fingerprint scanner.

Fingerprint matching methods can be classified in three main families:

• Correlation-based matching. Methods belonging to this family, superimpose two

fingerprints and compute the correlation between the corresponding pixels for dif-

ferent alignments. Usually a cross-correlation measure, representing the image

similarity, is maximized between two images [90]. Due to displacements and rota-

tions the simple cross-correlation is not enough, it should be measured considering

different positions and angles.

In general the correlation is not a robust matching method because of i) non-linear

distortions that make the global structure in impressions of the same finger very

different; ii) the skin condition may significantly vary the image characteristics

(brightness, contrast, ridge thickness); iii) the computation of the cross-correlation

for different positions and angles is computationally inefficient. Correlation-based

matching computing local correlation has been proposed by [8] while, in [59] [60]

and [112], has been proposed to use a symmetric phase only filter with restricted

domain to reduce the effect of the noise. Correlation using neural networks has

been proposed in [135] while more sophisticated correlation techniques based on

advanced correlation filters can be found in [123].
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• Minutiae-based matching. Minutia matching is the most widely used method for fin-

gerprint matching. The minutiae are extracted from two fingerprints and stored in

feature vectors as points in the two-dimensional plane. The idea behind minutiae-

based matching consists of find the correct alignment between a template and the

features extracted from an input image.

A couple of minutiae are considered ”matching” is the spatial distance between

them is smaller than a spatial threshold and the direction difference between them

is smaller than an angular threshold. The fingerprint alignment is mandatory in

order to maximize the number of matching minutiae.

Automatic matchers must convert the number of matching minutiae in a similarity

score. This can be performed using a matching minutiae normalization approach

or exploiting more information like quality.

The minutia-based matching problem is extensively studied and a large number of

works have been published on this topic [101] [56]. In [90] can be found a detailed

description of the problem and references to the most recent methods.

For our matching experiments, we will use the Minutia Cylinder-Code (MCC) pro-

posed by Cappelli et al. in [17] and [18]. MCC is a novel minutiae-only represen-

tation and matching technique for fingerprint recognition. MCC relies on a robust

discretization of the neighborhood of each minutia into a 3D cell-based structure

named cylinder and provides simple but effective techniques for the computation

and consolidation of cylinder similarities to determine the global similarity between

two fingerprints. MCC is very fast and suitable to be simply coded in hardware,

due to the bit-wise nature of the matching technique; this allows its porting on

inexpensive secure platforms such as a smart-card or a system-on-a-chip.

• Non-Minutiae feature-based matching. Approaches belonging to this family do not

use the minutiae to perform matching but use some other features of the fingerprint

ridge pattern (e.g. local ridge orientation and frequency, texture, shape). The

main motivation of not using the minutiae is that their extraction is difficulty

in extremely low-quality fingerprint images; the comparison is done in term of

features extracted by the ridge pattern. The most popular technique belonging to

this family is represented by the FingerCode [66] [67] [105] [104].
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Database Description

NIST DB 4 [130]

Thousands of images scanned from rolled inked impressions on cards.
NIST DB 9 [131]

NIST DB 10 [128]

NIST DB 14 [129]

NIST DB 24 [132]
100 live video sequences from 10 individuals to study the effect of

finger rotation and plastic distortion.

NIST DB 27 [46] Latent fingerprint images of good, bad and ugly quality.

Table 2.1: NIST Databases.

Competition Num. of Databases
Size of each DB Difficulty

A:evaluation B:training Low Medium High

FVC2000 [87] 4 A: 100x8 B:10x8 DB 1 2 4 DB 3

FVC2002 [88] 4 A: 100x8 B:10x8 DB 1 2 3 4

FVC2004 [89] 4 A: 100x8 B:10x8 DB 1 2 3 4

FVC2006 [25] 4 A: 140x12 B:10x12 DB 2 4 DB 3 DB 1

Table 2.2: FVC Databases. Each database (DB1, DB2, DB3, DB4) is partitioned in two

disjoint subsets A and B: A is used for the algorithm performance evaluation, B is made

available to the participants as a development set to allow parameter tuning (training).

The notation SxT in the database size denotes S fingers and T samples per finger.

2.6 Fingerprint Databases

In the following section, we describe the fingerprint recognition databases that we use to

assess the performance of the algorithms proposed in this Thesis. Before the organization

of the first fingerprint verification competition FVC2000 [87], the only public domain

fingerprint databases were the National Institute of Standard and Technology (NIST,

[58]) databases. They constitute a good starting point for the development of automatic

fingerprint recognition systems, but are not well suited for the evaluation of algorithms

operating on live-scan mode. With the FVC campaigns ([87], [88] [89] [25]) it was possible

to track performance of state-of-the-art fingerprint matching algorithms through a fair

comparison with a common protocol.

Table 2.1 describes the main features of NIST databases while Table 2.2 describes

the main features of FVC databases.
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2.7 Synthetic Fingerprint Generation

The performance of new fingerprint recognition algorithms is usually evaluated on rela-

tively small databases. A dataset of a huge number of real fingerprints is hard to obtain

and most of the time hard to share because of privacy legislations that often protect

such personal data. These limitations make the recognition accuracy estimates highly

data dependent with poor generalization abilities on fingerprints acquired in different

environments. To overcome this problem in [22] and [90] has been proposed a synthetic

fingerprint generator able to derive datasets of arbitrary size of realistic fingerprint im-

ages.

2.8 Accuracy Measurements

A general biometric system, no matter what type of biometric trait we consider, can be

view as a pattern recognition system that offers a (usually) binary decision to a given in-

put. Let us consider for example the matcher module in a fingerprint verification system:

when a fingerprint is presented to the system we expect, after an internal processing,

a decision of the type match/non-match with a template already stored in a database.

However, due to imperfect sensing conditions (e.g., noisy fingerprint due to sensor mal-

function), alterations in the user’s biometric characteristic (e.g., cuts, scars, wet or dry

fingerprint), changes in ambient conditions and variations in the user’s interaction with

the sensor, the system may output the wrong answer.

As pattern recognition system, a biometric system inevitably makes incorrect deci-

sions, so we need a framework through which measure the system errors. The bayesian

decision theory [38] offers all we need to measure errors in biometric systems.

The response of a matcher in a generic biometric recognition system is usually a

similarity score s that measures the similarity between two biometric feature sets. The

system decision is regulated by a threshold t: pairs of feature sets generating similarity

score higher than or equal to t are called matching pairs ; whereas pairs producing scores

lower than t are called non-matching pairs. A similarity score is known as a genuine

score if it is a result of matching two biometric samples of the same user; it is known

as an impostor score if it involves comparing two biometric samples originating from

different users.

A generic biometric verification system makes two types of errors:
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Figure 2.7: False Non-Match Rate and False Match Rate for a given threshold (t) value.

• it can decide that biometric measurements from two different individuals belong

to the same one (called false match or false acceptance);

• or decide that two biometric measurements from the same person belong to two

different persons (called false non-match or false rejection).

In a biometric system, the False Match Rate (FMR) can be defined as the probability

that an impostor score exceeding the threshold t; in the same way, the False Non-Match

Rate (FNMR) may be defined as the probability that a genuine score falling below the

threshold t. Generally to evaluate the accuracy of a generic biometric system one must

collect scores produced from a number of genuine matching (called genuine distribution),

and scores generated from a number of impostor matching (called impostor distribution).

Figure 2.7 reports FMR and FNMR over genuine and impostors distributions.

It is worth noting from Figure 2.7 that FMR and FNMR are functions of the system

threshold t. If t is decreased to make the system more tolerant, the FMR increases and

FNMR decreases; vice versa, if t is raised to make the system more secure, then FMR

decreases and FNMR increases.
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Figure 2.8: False Non-Match Rate and False Match Rate curves for a given threshold t.

The Equal Error Rate, the ZeroFNMR and ZeroFMR are highlighted.

A system designer may not know in advance the particular application for which the

system may be used. So it is advisable to report system performance at all operating

points (threshold, t). The FMR and FNMR at various values of t can be summarized

using a Detection-Error Tradeoff (DET) curve that plots the FNMR against the FMR

at various threshold and provides a more direct view of the error-vs-error tradeoff (see

[90]). If we plot the FMR against 1-FNMR we obtain an other important curve called

receiver operating characteristic (ROC).

Additionally to the above distributions and curves, some ”compact” indices are also

used to summarize the accuracy of a generic biometric verification system [90]:

• Equal-Error Rate (EER) denotes the error rate at the threshold t for which FMR

and FNMR are identical (see Figure 2.8);

• ZeroFNMR is the lowest FMR at which no FNMR occur (see Figure 2.8);

• ZeroFMR is the lowest FNMR at which FMR occur (see Figure 2.8);

• FMRx is the lowest FNMR for FMR≤ 1
x
;
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2.8. Accuracy Measurements

• FNMRx is the lowest FMR for FNMR≤ 1
x
.

The real performance requirements of a biometric system are very much application

related. For example, in some forensic applications such as criminal identification, it

is the FNMR that is a major attention and not the FMR: that is, we do not want to

ignore a criminal even at the risk of manually examining a large number of potential

matches identified by the biometric system. At the other extreme, a very low FMR may

be the most important factor in a highly secure access control application, where the

primary objective is not to let in any impostors although we are concerned with the

possible inconvenience to legitimate users due to a high FNMR[90]. In the same way,

the performance estimation of a generic biometric identification system can be derived

by the error estimates in the verification mode.
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Part I

Novel Enhancement Method for

Fingerprints
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Chapter 3

Fingerprint Enhancement

A minutiae extraction algorithm heavily relies on the quality of the input fingerprint. If

the quality is good, the ridges-valley flow is well evident and a reliable set of minutiae

can be extracted. If the fingerprint is very noisy, the minutiae extraction algorithm may

detect a large number of spurious minutiae and miss several genuine minutiae. There-

fore, to achieve high recognition performance it is essential to incorporate a fingerprint

enhancement module able to improve the quality of noisy fingerprints, thus making the

subsequent processing steps more reliable.

A fingerprint image enhancement algorithm receives an input fingerprint image, ap-

plies a set of intermediate steps on the input image, and finally outputs the enhanced

image.

A fingerprint region can be assigned to one of the following three categories:

• well-defined region, where the ridge-valley flow is well defined;

• recoverable region, where ridges are corrupted by some kind of noise but the neigh-

boring regions provide some information about the underlying structure;

• unrecoverable region, where the noise is so high that the ridge-valley flow cannot

be reconstructed.

Figure 3.1 shows an example of such regions.

The goal of a fingerprint enhancement algorithm is to retain the information in well-

defined regions, improve the quality in recoverable regions and mark as unrecoverable

the remaining regions. Since the objective of a fingerprint enhancement algorithm is
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3. Fingerprint Enhancement

Figure 3.1: Fingerprint Regions. Well-defined region (a), recoverable region (b) and

unrecoverable region (c).

to improve the clarity of ridge structures of input fingerprint images to facilitate the

subsequent processing steps (ridges and minutiae extraction), a fingerprint enhancement

algorithm should not result in any spurious ridge structures. This is very important

because spurious ridges or unwanted artifacts may change the structure of input finger-

prints; as a result, the individuality may change.
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An automatic detection and classification of fingerprint regions is not an easy task;

in general, the available information like local ridge orientation, local ridge frequency,

image contrast and other local features are combined to compute a quality index: a

number that expresses the local or global fingerprint quality.

In this chapter we describe the state-of-the-art in fingerprint enhancement and pro-

vide novel solutions to this important problem. We describe a new fingerprint enhance-

ment algorithm that selectively applies contextual filtering starting from automatically-

detected high-quality regions and then iteratively expands toward low-quality ones. The

proposed algorithm does not require any prior information like local orientations or fre-

quencies. Experimental results over both real (FVC2004 and FVC2006 (see section 2.6))

and synthetic (generated by the SFinGe software (see section 2.7)) fingerprints demon-

strate the effectiveness of the proposed method.

3.1 State-of-the-art

Fingerprint enhancement methods can be divided in three groups:

• Pixel-wise. Methods exploiting pixel-wise image processing operations are the most

simpler enhancement techniques, where the pixel intensity in a given point depends

on its previous value and global parameters. Common operations include normal-

ization [53], intensity transformations, histogram processing, image subtraction,

image averaging [47]. In general, pixel-wise methods do not change the ridge-

valley flow and do not produce good fingerprint enhancement results without fur-

ther processing steps, in particular for noisy images. Good enhancement results

can be achieved exploiting pixel-wise methods as pre-processing in advanced fin-

gerprint recognition algorithms. Recent works on image normalization include [76]

and [111].

• Contextual-filtering. Methods exploiting contextual information are the most com-

mon approaches to fingerprint enhancement [90]. The context is usually represented

by local orientation, local frequency and local quality and is utilized to adapt the

filter characteristics to each specific foreground region.

The first contextual-filtering based method for enhance fingerprints was proposed

in [95] and [96]. Contextual filtering in Fourier domain was proposed by Sherlock,

Monro and Millard in [108] and [109]. One of the most used contextual filtering
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method is based on Gabor filters, as proposed by Hong et al. in [53]. Gabor filters

have both frequency-selective and orientation-selective properties and have opti-

mal joint resolution in both spatial and frequency domains. Filtering approaches

in the frequency domain or in a mixture of spatial and frequency domain have been

proposed by various authors [110] [32] [71] [54].

• Multi-resolution. This analysis has been proposed to remove noise from fingerprint

images through a decomposition and compensation technique. The image is firstly

decomposed into different frequency bands and then

– at low and intermediate frequencies bands the ridge-valley flow is cleaned and

gaps are closed;

– at high frequencies the details are preserved.

The state of the art in multi-resolution analysis is represented by [5] [55], [29], [43]

and [44].

3.2 Enhancement with Contextual Iterative Filter-

ing

The enhancement abilities with contextual methods heavily rely on a good context ex-

traction represented by the local ridge orientation, local ridge frequency and local image

quality. In noisy fingerprints it is not possible to extract a reliable context because of

poor quality regions that may introduce unwanted artifacts.

In the following sections we propose a new enhancement algorithm where contextual

filtering is applied according to an iterative scheme. To the best of our knowledge, just

a few works exist in literature on fingerprint enhancement based on iterative filtering.

Zhu and Zhang [138] proposed a top-down Fourier method that initially filters the

whole image and then divides the filtered image in smaller sub-images. Each sub-image

is similarly filtered and sub-divided until the image size is smaller than a threshold. This

approach does not provide good results if the fingerprint has fragmentary ridges with

high curvature.

Sutthiwichaiporn et al. [116] proposed an iterative filtering approach for fingerprint

enhancement using matched filters. After a preprocessing and a Signal-to-Noise-Ratio
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Figure 3.2: Flow-chart of the proposed iterative enhancement algorithm.

analysis in the spatial-frequency domain, matched filters are applied to all image blocks.

An iterative restoration process diffuses high-quality spectrum of the enhanced finger-

print into low-quality regions. The algorithm is not effective if the quality is not properly

estimated.

The basic idea of our proposed approach is to selectively apply contextual filtering

starting from high-quality region and then iteratively expanding like wildfire to low-

quality regions. If low-quality regions were aggressively enhanced at the first iterations,

wrong local contextual information would lead to a bad recovery of the ridge line struc-

ture; our strategy tries to make the contextual information more reliable at the border of

low-quality regions so that when they will be considered for enhancement, better results

can be achieved.

3.3 Iterative Fingerprint Enhancement

The flow-chart of the proposed approach, shown in figure 3.2, is composed of five main

steps: i) filter-bank convolution, ii) combined image computation, iii) homogeneity image

computation, iv) selection of the candidates and v) enhancement of the candidates. The

input of the proposed approach is a gray-scale noisy fingerprint where the ridge flow has

been segmented from the background. The output consists in a binary image. Each step

of the computation is explained in the following sections.

3.3.1 Convolution with a Gabor filter-bank

A Gabor filter is defined by a sinusoidal plane wave (the second term in Equation 3.1)

tapered by a Gaussian (the first term in Equation 3.1). The even symmetric two-
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3. Fingerprint Enhancement

Figure 3.3: A Gabor filter-bank with six orientations θ (columns) and three frequencies

f (rows).

dimensional Gabor filter has the following form:

g(x, y : θ, f) = exp
{
− 1

2

[x2θ
σ2
x

+
y2θ
σ2
y

]}
· cos(2πf · xθ) (3.1)

where θ is the orientation of the filter and [xθ, yθ] are the coordinates of [x, y] after a

clockwise rotation of the Cartesian axes by an angle of (90◦− θ). Such filter depends on

four parameters (θ, f, σx, σy) even if often it is used with σx = σy.

A Gabor filter-bank is defined as a set G = {gi,j(x, y)|i = 1..no, j = 1..nf} of Gabor

filters, where no is the number of discrete orientations {θi|i = 1..no} and nf the number

of discrete frequencies {θj|j = 1..nf}.
Let I a h × w fingerprint image, the output of the convolution between I and the

filter-bank G is a set V of no · nf images where Vi,j = [vi,jx,y], x = 1..w, y = 1..h denotes

the response image to a filter gi,j with orientation θi and frequency fj.

Typically no is set to 8 or 16 and nf in the range [1,4] (see Figure 3.3). To save

computation time in low-cost and computation-limited fingerprint systems, the filter-

bank can be pre-computed.
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3.3. Iterative Fingerprint Enhancement

3.3.2 Combined Image

The set of responses V , obtained after the convolution, is used to compute a single

combined image C = [cx,y], x = 1..w, y = 1..h, where the combination is performed

according to the max filter response:

cx,y = vl,tx,y (3.2)

where l, t = argmaxi,j|vi,jx,y| and i = 1..no, j = 1..nf .

Figures 3.5a and 3.5b show a fingerprint image and the combined image (obtained

after four iterations of the proposed algorithm), respectively. It is worth noting that

good quality regions in the combined image 3.5b are more visible than bad quality ones

and represents a point from which expand the fingerprint enhancement.

As side effect of the combination we obtain a pixel-level orientation image O =

{ox,y|x = 1..w, y = 1..h} and frequency image F = {fx,y|x = 1..w, y = 1..h}:

ox,y = θl, fx,y = ft (3.3)

The pixel-level orientation image is shown in Figure 3.5d. The orientations are mapped in

the range [0, 255] so similar colors represent similar orientations. From this representation

we can obtain a meshed-grid representation simply centering a window each s elements

in the pixel-level orientation image and then averaging (considering the double angle

representation) the orientations in the window.

A first possible alternative for the computation of 3.2 is based on the average value.

Instead of compute the combination according to the max filter response, we can compute

cx,y as

cx,y =
1

nf · no

no∑
i=0

nf∑
j=0

vi,jx,y. (3.4)

The advantage of 3.4 is that the computation time is reduced. The disadvantage is

that we cannot keep track of the filter with best response, the homogeneity image (see

next section) cannot be computed and the final quality of the enhancement is conse-

quently lower.

A second possible alternative for the computation of the combined image is first to

process each image Vi,j with a gaussian mask and then apply the 3.2. Following this

approach, the response vi,jx,y is modified as

vi,jx,y =

∑no

s=0

∑nf

t=0 v
s,t
x,y ·G

i,j
mask[s, t]∑no

s=0

∑nf

t=0G
i,j
mask[s, t]

(3.5)
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where i = 1..no, j = 1..nf and Gi,j
mask is a nf · no image such that

Gi,j
mask[s, t] = exp

(
− dφ(oi,j, os,t)

2

2σ2
o

)
· exp

(
− (fj − ft)2

2σ2
f

)
(3.6)

where dφ(oi,j, os,t) denotes a difference between angles (see next section) and σ2
o , σ

2
f are

the variances of the two gaussian functions. After the application of this gaussian filter,

the combination is obtained as in 3.2. The advantage of this approach is that each

response vi,jx,y is weighted by a gaussian function centered in [i, j]. The disadvantage of

Figure 3.4: Combination C of a set of response images V with the maximum absolute

value method. As side effect of the combination we obtain a pixel-level orientation image

O.
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this approach is that it is computationally expensive.

3.3.3 Homogeneity Image

The homogeneity image H = {hx,y|x = 1..w, y = 1..h} encodes the local ridge flow

homogeneity. In principle, except for singularity regions, ridges run smoothly across

the fingerprint pattern, and sudden changes in the orientation and frequency should not

exist. In practice, such discontinuities are determined by noise or ridge alteration such

as creases or scratches.

The homogeneity at location [x,y] is defined as:

hx,y =

∑
p,k cp,k · sp,k∑

p,k cp,k
(3.7)

where p, k = −m
2
, ..,+m

2
and sp,k is an orientation homogeneity measure computed as:

sp,k =
π

2
− |dφ(ox,y, op,k)| (3.8)

where

dφ(θ1, θ2) =


θ1 − θ2, if − π

2
≤ θ1 − θ2 < π

2

π + θ1 − θ2, if θ1 − θ2 < −π
2

π − θ1 + θ2, if θ1 − θ2 ≥ π
2

. (3.9)

Finally, H is normalized to fit its values in the range [0,1]. As shown in Figure 3.5c,

darker regions denote a low homogeneity: the ridge pattern in the combined image is

fragmentary.

The homogeneity image varies during the iterative process. At the first iterations,

in particular if the quality of the input image is low, the homogeneity image has many

dark regions, while at the end of the process most regions are bright.

3.3.4 Selection of the Candidates

Both C and H are used to select the set of candidate pixels, according to a top-ranking

criterion. The idea is to select a percentage of good quality pixels, that is pixels with

strong (positive or negative) responses to the filtering and possibly belonging to highly-

homogeneous regions.

Let P = {px,y|x = 1..w, y = 1..h} be a matrix whose elements are computed as:

px,y = cx,y · hx,y · rx,y (3.10)
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(a) (b)

(c) (d)

Figure 3.5: Original fingerprint image (a), combined image (b), homogeneity image (c)

and pixel-level orientation image (d) at the fourth iteration of the proposed algorithm.
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where R = {rx,y|x = 1..w, y = 1..h} is a selection matrix such that 0 < rx,y ≤ 1.

R controls the selection of candidate pixels in successive iterations; all rx,y values are

initialized to 1, but when a pixel Ix,y is selected then the corresponding rx,y is multiplied

by a decay constant 0 ≤ ρ < 1, in order to inhibit its selection in the successive iterations.

Elements in P are then sorted and two sets A and B, corresponding to ridges and

valleys, respectively, are determined by taking the first and last percentile γ:

A = {Ix,y|rank(px,y) ≤ γ · |P|} (3.11)

B = {Ix,y|rank(px,y) ≥ (1− γ) · |P|} (3.12)

where the function rank(·) outputs the position in the ranking of a given element

px,y and |P| represents the number of matrix items in P.

3.3.5 Enhancement of the Candidates

The enhancement is carried out with the following scheme:

∆x,y =

0, if Ix,y ∈ A

255, if Ix,y ∈ B
(3.13)

Ix,y = Ix,y · (1− ε) + ∆x,y · ε, ∀Ix,y ∈ A ∪B (3.14)

where 0 < ε ≤ 1 controls the amount of enhancement. Figure 3.6 shows an example of

selection/enhancement at a given iteration.

The algorithm continues iterating until a convergence criterion is satisfied: the max-

imum number of iterations is reached or no more low-quality regions exist in the image.

Figure 3.7 and Figure 3.8 show how a noisy fingerprint evolves with the proposed itera-

tive algorithm. Good quality regions are well detected during the first iterations. From

such regions the enhancement is propagated toward bad quality regions.

3.4 Experimental Results

To evaluate the performance of the proposed iterative fingerprint enhancement method,

we apply it on synthetic and real fingerprints. In the first case we measure the perfor-

mance according to a difference between the enhanced image and a master binary image,

in the second case using the statistics reported in section 2.8.
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(a) (b) (c)

Figure 3.6: Enhancement of the candidates and resulting image at the fourth iteration

of the proposed algorithm. The enhancement of pixels belonging to set A (a) and B (b)

is reported. The application of these masks to the fingerprint is shown in (c).

Figure 3.7: Evolution of a noisy fingerprint during the iterative enhancement process.
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Figure 3.8: Selection of candidate pixels during the enhancement of the fingerprint in

Figure 3.7. The enhancement starts from high-quality region and then iteratively ex-

pands like wildfire toward low-quality regions.
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3.4.1 Enhancement of Synthetic Fingerprints

For a sound assessment of the effectiveness of a fingerprint enhancement approach, a

dataset including both a noisy and a clean version of each fingerprint would be needed.

Unfortunately it is not possible to collect such a dataset, hence has been used a synthetic

fingerprint generation to produce a surrogate database that suit our needs.

As mentioned in section 2.7 there exists an important tool able to generate synthetic

fingerprints called SFinGe suitable to our needs. By using SFinGe [22] [90], it is possible

to generate datasets of arbitrary difficulty and, for each fingerprint, we can generate a

ground-truth consisting of:

• Foreground map (binary image that defines the external silhouette of the finger-

print).

• Local orientation image.

• Local frequency image.

• Binary image (master fingerprint without noise).

• Minutiae position and directions.

For the experiments here reported it is particularly useful the knowledge of the

ground-truth binary image, since in principle the ideal output of an effective enhance-

ment approach is a (noisy free) binary or near binary image. So the pixel-level mean

absolute difference between the enhanced image and the corresponding ground-truth bi-

nary image is an effective metric for assessing fingerprint enhancement.

A synthetic dataset of 50 medium/high noisy fingerprint with corresponding ground-

truth has been generated. Some examples of such synthetic images are shown in Figure

3.9 (first column). The images in the synthetic dataset have been enhanced with three

algorithms:

• baseline Gabor where the local orientation and frequencies are automatically esti-

mated;

• baseline Gabor with the ground-truth orientation and frequency;

• the proposed iterative method.
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Figure 3.9: Enhancement of synthetic fingerprints (first column) with the Gabor method

(third column) and the proposed iterative method (fourth column). The second column

shows the foreground regions.

The pixel-level mean absolute difference between the enhanced image and the master

fingerprint has been evaluated and the results are reported in Table 3.1.

Results show that the proposed iterative approach perform better than classical Ga-

bor enhancement and its error is not far from the Gabor + Ground-truth (orientation

and frequency) that can be considered a sort of ”oracle” method. Figure 3.9 shows the

enhancement of two synthetic fingerprints with the baseline Gabor (third column) and

the proposed method (fourth column).

3.4.2 Influence on Fingerprint Matching

The ultimate goal of fingerprint enhancement is the improvement of matching accuracy.

To assess the enhancement performance of the proposed algorithm, has been conducted
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Baseline Gabor Gabor + Ground-truth Proposed Iterative Method

33.85 28.88 30.99

Table 3.1: Mean absolute difference between the enhanced image and the master finger-

print over the synthetic DB.

Algorithm
EER(%)

FVC2004 DB2 FVC2004 DB3 FVC2006 DB2

Gabor [53] 6.569 3.640 2.325

Matched Filters [116] 7.320 3.570 -

Proposed Iterative 5.678 3.175 0.659

Table 3.2: Fingerprint verification accuracy. The proposed method is compared with

the baseline Gabor approach and the method proposed in [116] over the FVC databases

(reported in 2.6).

a quantitative analysis on the FVC2004 (DB2, DB3) and FVC2006 (DB2) databases (see

section 2.6). Three different algorithms were compared in our experiments: the pro-

posed method, the baseline Gabor [53] and the Sutthiwichaiporn’s iterative method based

on matched filters [116]. The Gabor approach has been used with the default parameters

as proposed by the authors in [53]. Matching experiments were conducted following the

FVC protocol [3] and using a state-of-the-art minutiae extractor and matcher (MCC,

[17] [18]).

Table 3.2 compares the Equal Error Rate (EER, see section 2.8 and [90]) of the

above algorithms over the benchmark datasets. Results of the iterative method based

on matched filters are those reported in [116].

It is worth noting that the proposed enhancement method improves the matching

accuracy with respect to the baseline Gabor and the Sutthiwichaiporn’s iterative method.

Figure 3.10 (first three columns) shows the enhancement of three fingerprints that belong

to the FVC2006 database using the baseline Gabor (second column) and the proposed

algorithm (third column). The restoration capabilities are very high over fingerprints

with various degradations: too dry (first fingerprint), too wet (second fingerprint) and

with a large amount of scratches and ridge breaks (third fingerprint). The fourth column

of Figure 3.10, shows the enhancement of the fingerprint 32 7 from FVC2004 DB2A (the

same example reported in [116]). This fingerprint is characterized by a wide unrecover-
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able region in the central part, but since our approach currently tries to recover the whole

fingerprint foreground area, the reconstruction in this region is bad. However, a visual

comparison with the enhanced image in [116] reveals that, outside the unrecoverable

region, our processing algorithm leads to a smaller number of false and miss minutiae.
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3. Fingerprint Enhancement

Figure 3.10: Enhancement of fingerprints with various degradations. Three fingerprints

(11 2, 21 11, 47 3) that belong to the FVC2006 DB2 database (first column) have been

enhanced using the baseline Gabor [53] (column two) and the proposed iterative method

(column three). The fourth column shows the enhancement of the 32 7 image (FVC2004

DB3) with the proposed method.
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Part II

Improving the Fingerprint

Orientation Extraction
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Chapter 4

Fingerprint Ridge Orientation

Computation

4.1 Introduction

It is well known that to develop a reliable fingerprint recognition system a robust image

enhancement and image features extraction are needed.

The fingerprint matching is defined as the recognition step where given two finger-

prints, the degree of similarity or a decision (match/not-match) is returned. A reliable

minutiae-based matching, is based on a robust fingerprint preprocessing that allows to

extract from a gray-scale image the corresponding minutiae.

The most important steps, prior the minutiae extraction process, are the local ridges

orientation estimation, local ridges frequency analysis, fingerprint segmentation and sin-

gularities extraction. Practical analysis shows that poor image quality severely affects

the recognition performance. Reliable orientation extraction in low-quality regions is

still an open problem and new approaches are often proposed in the literature. A good

orientation estimation can simplify and improve the subsequent features extraction steps.

4.2 Problem Formulation

Given a fingerprint I, where the elements Ix,y represent the gray-level of pixel at [x, y], a

fingerprint orientation image (or directional image), is a h×w matrix D whose elements
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4. Fingerprint Ridge Orientation Computation

encode the local orientation of the fingerprint ridges.

Each element θi,j ∈ [0, π[, corresponding to node [i, j] of a squared-meshed grid

(see Figure 4.1), is located over pixel [xi, yj] and denotes the average orientation of the

fingerprint ridges estimated in a window centered in [xi, yj]. The subdivision of the

input fingerprint in a squared-mesh structure is mainly motivated by a drastic reduction

of computational efforts in the estimation of the local orientations.

Let s be the step of the squared-meshed grid: the coordinates of each pixel are

[xi, yj] = [b+ s · i, b+ s · j] (4.1)

where b is a border offset expressed in pixels.

Usually an additional value ri,j is associated with each element θi,j to denote the

reliability (or consistency) of the orientation. Low values for ri,j correspond to an high

degree of uncertainty in the local orientation knowledge.

4.3 Ground Truth Markup

In a fingerprint image, the ground truth orientation image represents the true orientation

image that we would compute.

Given a fingerprint image the knowledge of the associated true orientation image is

useful for several tasks such as:

• segmentation;

• evaluation (i.e. comparisons between the ground truth image and the estimated

orientation image).

Let G be the ground truth information, which is defined as a pair (Dg, F ), where:

• Dg is the ground truth orientation image, whose elements θgi,j ∈ [0, π[ denote the

true ridge orientation at pixel [xi, yj];

• F = {(i, j)k} defines the grid nodes of the orientation elements belonging to the

fingerprint foreground.

An example of fingerprint image with the associated ground truth is reported in Figure

4.2.
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Figure 4.1: A fingerprint image and the corresponding orientation image computed over

a squared-meshed grid (s = 8). Each orientation element θi,j belongs to the open interval

[0, 180[. The length of each grid element is proportional to its reliability r.

Let D be the estimated orientation image of a given fingerprint, the comparison with

its ground-truth G = (Dg, F ) may be performed by means of the Root Mean Square

Deviation:

RMSD(D, G) =

√∑
(i,j)∈F dφ(θi,j, θ

g
i,j)

2

|F |
(4.2)

where |F | is the cardinality of set F and the difference between angles is given by

dφ(θ1, θ2) =


θ1 − θ2, if − π

2
≤ θ1 − θ2 < π

2

π + θ1 − θ2, if θ1 − θ2 < −π
2

π − θ1 + θ2, if θ1 − θ2 ≥ π
2

(4.3)

Given a dataset X of n fingerprints with the corresponding ground-truth orientation

images, the accuracy over the whole dataset X can be denoted by the Average RMSD:

AvgErr(X) =
1

n

∑
(D,G)∈X

(RMSD(D, G)) (4.4)
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Figure 4.2: A fingerprint image and the manually marked ground-truth.

Note that 4.4 equally weights extraction errors across the whole foreground; this

choice is well suited in most of the feature extraction tasks where orientations are needed

(e.g. minutiae detection). Other metrics may be more appropriate for specific tasks, such

as singularity detection, where errors close to singularities should have higher weights.

The manual markup by a human expert of the entire fingerprint is a very long task

and for a large dataset it could be impractical. In [21] has been introduced a software

tool that allows a semi-automatic markup of the local orientation through the following

procedure:

• the user selects the positions where he wants manually set the orientations;

• the tool inserts a local orientation element which is initially automatically calcu-

lated according to the Gradient based approach [9] [90];

• the user can adjust the orientation element, to visually match the true ridge ori-

entation;

• the system automatically interpolates all the other local orientations through a

Delaunay triangulation (see Figure 4.3).
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Figure 4.3: Ground-truth markup. Some local orientations are marked up by the user

(vertices of triangles on the left image); others are interpolated by the software (right

image).

Usually just few manual estimations are necessary in regions far from singular points,

where the pattern exhibits low curvature, while more inputs are needed in regions of high

curvature. Note that the markup procedure does not require the user to provide quality

estimates; however regions where the ridge pattern is totally corrupted can be excluded

from the foreground.

From now on, when we will talk about ground truth orientation image, we will refer

to the orientation image computed semi-automatically with this tool.

4.4 A New Taxonomy

Section 3.2 of [90] provides a classification of the local orientation extraction techniques

and proposes the following families:

• gradient-based approaches;

• slit- and projection- based approaches;

• estimation in the frequency domain;

• other approaches.

In [90], orientation image regularization and orientation image global modeling are

discussed apart, because of their cross-applicability. Here, in order to better frame

the existing approaches, we try to isolate the basic steps involved in the whole local

orientation estimation process; in particular we identify four sequential stages:
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• Preprocessing : this stage typically consists in an isotropic enhancement of the

fingerprint image (e.g., contrast stretching, low pass filtering, etc.). Being the

orientations still not available, this step cannot rely on orientation-based contextual

filtering. As we will see, this step is very important for low quality fingerprints. It

is worth noting that a preprocessing which is optimal for the orientation estimation

is not necessarily optimal as well for other fingerprint feature extraction steps and

therefore, after orientation extraction, it could be necessary to roll back to the

original image before further processing.

• Local analysis : each orientation θi,j is estimated, by using image information (i.e.,

pixel intensities) from a local window centered in [xi, yj]. Several different tech-

niques can be used to perform such a local analysis and to derive the orientation.

Section 4.4.1 provides more details.

• Global analysis : by arguing that orientations cannot be reliably extracted in very

noisy areas, and that a local smoothing is not effective where the signal is dom-

inated by the noise, some researchers proposed to perform a global estimation of

the orientations. The idea is to exploit information extracted from good quality

regions to recover bad quality regions. In fact, because of the limited variability

of fingerprint orientation patterns in nature, good quality orientations, even if far

from noisy regions, can help to put constraints in the estimations at problematic

places. Most of the global analysis approaches (more details are provided in the fol-

lowing sections) require an initial orientation estimation, which can be performed

through a local analysis step.

• Postprocessing : in this final stage some regularization (e.g., local smoothing, re-

laxation, etc.) can be applied to the local orientation estimates, to reduce noise

and improve results in low quality regions.

The implementation of all the above stages is not necessary, and in general only a mi-

nority of the existing approaches run across the whole sequence of steps.

4.4.1 Local Analysis

• Gradient: this is the simplest and most widely used approach for extracting local

ridge orientations [90] [100] [9] in a fingerprint image I. The gradient in a given
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point [x, y] ∈ I is a two dimensional vector

[∇x(x, y),∇y(x, y)] (4.5)

where ∇x and ∇y represent the derivatives of I in [x, y] with respect to the x

and y directions. The gradient phase angle denotes the direction of the maximum

intensity change; the direction of an hypothetical edge that crosses the region

centered in [x, y] is orthogonal to the gradient phase angle at [x, y]. Pixelwise

orientation estimations are typically obtained through convolution with derivative

operators (e.g., Sobel or Prewitt masks [47]).

This method is simple, efficient, works well for many good quality fingerprint images

but has some drawbacks:

1. computing the gradient using the classical convolution masks (Sobel or Pre-

witt) and consequently the angle θ as the arctangent of the ∇y/∇x ratio,

presents problems due to the non-linearity and discontinuity around 90 ◦;

2. the gradient is very sensitive to noise;

3. we have problems in averaging gradient estimates due to the circularity of

angles.

To solve these problems Kass and Witkin [75] proposed an elegant solution. Their

idea is to double the angles and encode an orientation estimate as a two dimensional

vector:

d = [r · cos(2θ), r · sin(2θ)] (4.6)

where r denotes the strength of the estimate and 2θ allows the gradient estimates

to be averaged.

Many orientation extraction methods have been proposed based on the above idea.

Ratha, Chen and Jain in [100] compute the dominant ridge orientation θi,j combin-

ing multiple gradient estimates within a n × n window centered in [xi, yj]. Bazen

and Gerez in [9] proposed a method based on Principal Component Analysis (PCA,

[38] [13] [14]) that computes the direction and the strength in any pixel location.

They also prove that their method provides exactly the same results as the aver-

aged square-gradient method. Donahue and Rokhlin in [37] explore the use of level

curves in image analysis. They compute curvatures by fitting concentric circles to

the tangent directions via least-squares minimization. Wang et al. in [125] and
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[127] proposed an enhanced gradient-based algorithm introducing a voting scheme

based on the reliability measure of the estimated orientations in four overlapping

blocks. A discussion on noise and orientation bias caused by the discrete operators

that approximate to the differentiation can be found in [69], where an operator

that better approximates the integration process is proposed. Finally, the use of

complex gradients was proposed by Bigün et al. in [11] and [12].

• Slit-based: the idea is to define a fixed number of reference orientations (slits) and

to select the best orientation computing a statistic over pixel gray-values along the

slits. The first slit based method was proposed in 1969 by Stock and Swonger [114].

A recent implementation was provided by Oliveira and Leite [97]: the standard de-

viation of the gray-scale of the pixels corresponding to each slit is computed and

the optimal slit is determined according to the maximum standard deviation dif-

ference between a given slit and the orthogonal one. Filterbank-based approaches

in the image domain [51], that select the orientation according to the largest filter

response, can be enclosed in this family: in fact, each filter in the bank can be

conceived as a specific slit-detector.

• Frequency domain: a local analysis in the frequency domain is performed to

extract the dominant orientation in each local window of the image. The approach

proposed in [32] is based on Short Time Fourier Transform (STFT) analysis. The

image is divided into partially overlapped blocks whose intensity values are cosine

tapered moving from the center toward the borders. For each block, the Fourier

Transform is computed and its spectrum is mapped to polar coordinates. The prob-

ability of a given orientation (within the block) is then computed as the marginal

density function by factoring out the radial components related to the frequency

of the signal.

• Tracing-based: the approach proposed in [48] traces ridge and valley lines and

builds a coherent structure of locally parallel line segments from which the local

orientation estimation is derived.
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Figure 4.4: Ridges orientation extraction with the gradient method [100] (center) and

the slit method (right, using [97])

4.4.2 Global Analysis

In low quality fingerprints the computation of local ridge orientations is a very hard task.

If the fingerprint contains creases, local scratches or cluttered noise all the previously

local-analysis-based methods output an imprecise and not-smoothed orientation image

that can lead to hard subsequent fingerprint processing steps. Methods based on global

analysis, suppose a global mathematical model for ridge orientation and can output a

smoothed orientation image. In general, these methods

1. start with the so called coarse orientation field, which is the starting noisy orien-

tation image computed with a (usually) local simple method (i.e., gradient);

2. adopt a global model to describe the fingerprint structure;

3. compute the parameters corresponding to the best-fitting model to the given coarse

orientation field (using the singular point positions and number if available);

4. reconstruct a smoothed orientation image with the computed parameters.

• Geometric models: the fingerprint global orientation is modeled through a geo-

metric function (usually defined in the complex plane). The function relies on the
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number and position of singularities and is controlled by a set of other parameters

[107] [124] [137] [136] [57]. Model fitting requires the a-priori knowledge of sin-

gularities (this can be very problematic for low quality fingerprints) and proceeds

through an optimization process.

In [107] Sherlock and Monro described a mathematical model (called Zero-Pole

Model) to synthesize a fingerprint orientation image from the position of loops and

delta alone. This method takes a loop as zero and a delta as pole in the complex

plane. In this work the authors admit that the proposed model is more suitable

to describe the ideal topology pattern rather than real cases. In fact, it does not

cover all possible fingerprints structures. This model supposes known the position

of cores zc and deltas zd. The orientation θz in a point z of the complex plane is

the sum of their influences:

θz =
1

2

[ deltas∑
i=1

arg(z − zdi)−
cores∑
j=1

arg(z − zcj)
]

(4.7)

where arg(·) returns the phase angle of the complex number.

Vizcaya and Gerhardt in [124] improved the zero-pole model using a piecewise

linear approximation around singularities to adjust the zero and pole’s behavior:

θz =
1

2

[
deltas∑
i=1

gdi

(
arg(z − zdi)

)
−

cores∑
j=1

gcj

(
arg(z − zcj)

)]
(4.8)

where g(·) are nonlinear functions that preserve the singularity at the given point.

The problem is reformulated as finding the parameters of the nonlinear functions

minimizing some measure of orientation error. The authors also proposed an opti-

mization technique to determine the model parameters starting from an estimation

of the orientation image.

These two models have some drawbacks. They are effective near the singular

points, lack of accuracy far from singular points and they are not able to deal with

arch type fingerprints (without singular points). Zhou and Gu in [137] proposed an

improved model for the orientation estimation using a rational complex function.

The idea is to represent the image plane as a complex space. The orientation in a

given point z is computed as half the argument of a complex number, output of a

rational complex function:

θz =
1

2
arg

[
f(z) · P (z)

Q(z)

]
(4.9)
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where P (z) and Q(z) are polynomial functions which respectively depend on known

cores and deltas. The idea is to find the parameters of the function f(z) chosen

from a set of functions (i.e. polynomials with a given degree) and minimize the dif-

ference between θz and the coarse orientation in z. The authors in [136] improved

their model in regions of high curvature and discontinuity.

Huckermann et al. in [57] proposed to model orientation fields of fingerprints

with quadratic differentials, parameterized by a few geometrically interpretable

parameters invariant under euclidean motions. In [35] Dass proposed an interest-

ing approach where singularities and orientations are updated in an interleaved way

during the optimization process, but the computational complexity of his method

is too high for many practical applications. Li and Yau in [74] observed that in

fingerprints the regions far from singular points have common properties that can

be exploited to develop a model able to predict the fingerprint orientation. First

they compute the coarse orientation field and its reliability, than compute a coarse

prediction model using the first order phase portrait and finally construct a poly-

nomial model to form the final predicted orientation model. An improvement of

this method was proposed in [79] and [80].

• Global approximation: the fingerprint global orientation is modeled through a

parametric function (typically a set of smoothed basis functions) independently

of the singularities. Optimal parameter values are determined by minimizing the

differences between the model orientations and corresponding estimates obtained

through local analysis. Model fitting can be limited to reasonable quality areas, to

limit the effects of unreliable local estimations. FOMFE approach [126] is based

on 2D Fourier series expansion of two nonlinear differential equations in the phase

plane. The method consider a vector V2θ = [Vc,Vs], where the entries are pairs

v= (vc, vs) and vc and vs are the phase functions of cos(2θ) and sin(2θ) (double

angle 4.6). The idea is to find the parameters of a mapping function f such that

v̇ = f(v) with f represented by a 2D Fourier expansion. The fingerprint orientation

model can be write:

Vc = P(x) ·Bc ·QT (y) (4.10)

Vs = P(x) ·Bs ·QT (y) (4.11)

where Vc and Vs are the input data, Bc and Bs are Fourier expansion coefficients
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4. Fingerprint Ridge Orientation Computation

and P(x) and Q(y) correspond to the coordinate points in the phase portrait.

The parameters α of the Fourier expansion are computed starting from the coarse

orientation field and minimizing

minα ‖Φα− b‖2 (4.12)

where Φ contains the basis expansions evaluated in each point and b is the obser-

vation vector with vc or vs. The solution of this optimization problem is obtained

in closed form. This method has a low-computational cost and can seamlessly

summarize global features, including high curvature regions around singularities.

Ram et al. technique [99] uses Legendre polynomials and a minimization approach.

They proceed by estimating the parameter vectors a and b of the Legendre expan-

sion matrix Φ through the minimization of a nonlinear functional. The computation

is performed in two steps: in the first, it roughly approximates the model’s param-

eters using a closed form solution for the least squares approximation obtaining a0

and b0, the initial solutions; in the second, the nonlinear problem

mina,b

n∑
i=1

wi

[
sin

(
1

2
arctan

Φ(pi)a
T

Φ(pi)b
T
−O(pi)

)]2
(4.13)

is solved in order to deliver the accurate parameters. In the functional pi = (x, y)

are the plane coordinates, wi are weights and O(pi) are the elements of the coarse

orientation field. The nonlinear optimization procedure can be performed using the

standard Line Search or the Levenberg-Marquard algorithm [83]. A global method

based on a two steps refinement technique has been recently proposed in [72].

4.4.3 Limitations of classical methods

The classical orientation extraction methods previously described have some limitations.

For a very noisy image the orientation extraction with methods based on local analysis is

often unsatisfactory and only the superimposition of a method based on global analysis

may provide a more effective improvement. With global analysis methods

• we often find a good smoothed solution, even if sometimes the solution can signif-

icantly deviate from the underlying orientation;
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Figure 4.5: Ridges orientation extraction for the same fingerprint in Figure 4.4 with the

FOMFE method [126] (left) and the Legendre Polynomials based method [99] (right).

• the coarse orientation field is always an orientation image computed with local

analysis methods; as result, the noise in some regions may be amplified by the

chosen approximating global model.

In order to better understand the problem we have built a new benchmark for local

orientation extraction approaches with associated orientation ground-truth and we have

implemented some of the best-known techniques in literature, including both methods

based on local windows and methods based on a global modeling of the orientation image:

gradient [100], slit-based (using the Oliveira and Leite approach [97]), FOMFE [126] and

Legendre-Polynomials-based [99]. In our analysis we do not consider geometric models

because of the dependency of these methods on the singularity position (which in our

opinion makes them less attractive).

The proposed benchmark [23] is motivated by the fact that no other benchmarks

to directly and quantitatively measure the orientation extraction accuracy are publicly
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4. Fingerprint Ridge Orientation Computation

available. The benchmark, which contain just 50 fingerprints, will be additionally ex-

tended in chapter 6 and made available to the community. So far, it consists of the

following datasets:

• Good Quality Dataset : 11 fingerprints of good quality with the corresponding ori-

entation ground truth.

• Bad Quality Dataset : 40 fingerprints of low and very-low quality with the corre-

sponding orientation ground truth.

The rationale behind the choice of these two datasets is that a good orientation ex-

traction algorithm should be able to deal with very low quality images without losing

accuracy on good quality ones.

Given a dataset X of n fingerprint images with the corresponding ground-truth ori-

entation images, the comparison between each estimated orientation image D and the

ground truth G = (Dg, F ) is performed by means of the root mean square deviation

(Equation 4.2) and the average error over the whole dataset is given by the Equation

4.4.

During the experimentation, in order to find the optimal configuration for each algo-

rithm, the key parameters have been tested in following ranges:

• window size (gradient and slit-based): [15-20] pixels;

• number of smoothing cycles (gradient and slit-based): [0-4];

• slit window size (slit Based): [5-10] pixels;

• trigonometric polynomial order (FOMFE): [2-5] (see [126]);

• Legendre Polynomial order (Legendre-Polynomials-Based): [5-8] (see [99]).

Note that the first two parameters (window size and number of smoothing cycles) have

effect on all the four algorithms since the implementation of FOMFE and Legendre-

Polynomials-Based relies on the gradient algorithm for a coarse orientation estimation.

By taking all the possible combinations of the above parameters, a total of 300

algorithms instances have been tested. Each algorithm instance has been evaluated on

the two datasets. Table 4.1 reports, for each algorithm, the set of parameter values that

allow optimal results on the Bad Quality Dataset without degrading the performance
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on the Good Quality Dataset. Table 4.2 reports the results on both datasets using such

optimal parameters.

From the results reported in Table 4.2, the following observation may be made. The

gradient based approach performs better than more complex methods on good quality

fingerprint images. In fact, the average deviation from the ground-truth on the whole

Good Quality Dataset is less than 6◦. On the other hand, on the Bad Quality Dataset

the gradient algorithm exhibits the worst accuracy, while the best result is achieved by

the slit-based approach.

In these experiments, the FOMFE and Legendre algorithms, despite their superior

approximation ability and higher complexity, do not seem able to clearly outperform the

much simpler gradient approach. In fact, while FOMFE and Legendre can satisfactorily

recover small-medium corrupted regions surrounded by reliable orientation estimations,

they often fail to recover large noisy areas especially in proximity of the foreground-

background transition.

Figure 4.6 shows an example of estimation over a portion of an image of low quality,

where the noise is not so high to make ridge lines unrecognizable. While a trained human

can quite accurately detect the true ridge line orientation over the whole image, all the

tested algorithms fail to extract the correct orientations in the bottom-left part of the

fingerprint, resulting in a RMSD higher than 30◦.

Algorithm Window Size Smooth Cycles Poly. Order Slit Size

Gradient 16 2

Slit-Based 17 2 8

FOMFE 15 2 4

Legendre 15 2 8

Table 4.1: Optimal Algorithm Parameters.

Algorithm Good Dataset Bad Dataset

Gradient 5.90◦ 22.79◦

Slit-Based 6.07◦ 18.84◦

FOMFE 5.97◦ 22.00◦

Legendre 7.16◦ 21.99◦

Table 4.2: Average errors on the two datasets using the optimal parameters.
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Figure 4.6: (a) Fingerprint image; (b) Ground truth; (c) Gradient (RMSD=32,11◦);

(d) Slit-Based (RMSD=30.42◦); (e) FOMFE (RMSD=32.00◦); (f) Legendre

(RMSD=31.91◦). For (c), (d), (e) and (f), the background shows local orientation errors

(dark areas are those in which the orientation is closest to the ground truth; light areas

are those where the error is larger).

4.4.4 Learning Based Models

According to the results reported in Table 4.2 all considered methods do not allow to

encode a prior knowledge about the admissible fingerprint structures in the orientation

estimation process. Only algorithms with such a prior knowledge (i.e., encoding natural

fingerprint variability) may achieve significant higher accuracy on very low quality fin-

gerprints. This kind of knowledge can be encoded with learning based methods.
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Methods falling in this category attempt to learn, from a dataset of fingerprint images,

the natural variability of global orientation patterns, independently of the singularities.

Active shape models [34] have been successfully used in this context by [98]. The re-

sulting method is called Active Fingerprint Ridge Orientation Model (AFROM). Given

a dataset X of n fingerprints, the learning step of the AFROM method is:

• for each fingerprint computes the coarse orientation field with a standard method

(i.e. gradient) and then computes the m coefficients of a model based method (i.e.

Legendre Polynomials Based): these parameters are organized in a n ×m matrix

P;

• the Principal Components Analysis (PCA, [38]) is applied to the set of parameters

P in order to find a linear subspace where realistic fingerprints ”reside”. According

to PCA the projection matrix U with eigenvectors and the mean vector µ are

computed;

• a vector of parameters pi can be projected in the reduced space of dimensionality

k < m and back-projected using the standard equations

di = UT (pi − µ) projection (4.14)

pi = µ+ Udi backprojection (4.15)

After the learning step, the directional image for a test fingerprint is computed finding

the best parameter vector d that allows to generate plausible structures (see Figure 4.7).

The search is performed in the subspace minimizing the following regularized empirical

risk:

mind

n∑
i=1

wi

[
sin

(
1

2
arctan

Φ(pi)a
T

Φ(pi)b
T
−O(pi)

)]2
+ λ

[
1

P (pi)
+ P (pi)

]2
(4.16)

This problem is similar to 4.13 but d is initialized to the null vector (the origin in

the original space) and a,b are computed with the projection formula. The second term

represents the squared regularizer that constraints the orientation vector to length one.

P (·) is defined as

P (pi) = Φ(pi)a
T + Φ(pi)b

T (4.17)

This learning model represents a first tentative to introduce the prior knowledge in

the fingerprint orientation estimation. The greatest drawback is due to:
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Figure 4.7: The original fingerprints space (left) and the PCA reduced subspace (right).

A parameter vector pi is projected in di, a vector lying the reduced space, in order to find

the nearest plausible fingerprint structure minimizing the penalized objective function

4.16

• the application of PCA as a training algorithm. The assumptions of linearity may

not hold, it does not account for fingerprint labels as additional knowledge and if a

fingerprint structure is not seen during the training, may not be possible converge

to the true pattern;

• good quality fingerprints are over-smoothed because of the application of a global

analysis model in the optimization.

Other attempts have been recently done by [30] using graphical models and proximity

rules.

68



Chapter 5

Orientation Extraction Improvement

5.1 Introduction

In this chapter we frame the baseline orientation extraction algorithms according to the

proposed taxonomy and describe techniques able to improve the orientation extraction

in fingerprints. We implemented and tested several well know methods and a plethora

of their variants over a novel, specifically designed, benchmark, made available in the

FVC-onGoing framework (see Part III). We proved that parameter optimizations, pre-

and post- processing stages can markedly improve accuracy of the baseline methods on

bad quality fingerprints.

5.2 Baseline Methods

In section 4.4 we defined pre-processing, local analysis, global analysis and post-processing

as the basics steps involved in the whole local orientation estimation process. Table 5.1

includes some of the best-known orientation estimation approaches and highlights their

decomposition in terms of the processing stages and method categories. It is worth not-

ing that the implementation of all the processing stages is not necessary, and only a

minority of the existing approaches run across the whole sequence of steps. To better

identify an algorithm, in the following sections we use a unique ”code” as shown in first

column of Table 5.1.

In this Thesis we have considered and implemented methods from each category, ex-

cept for: (i) the ”geometric models” category because of the dependency of these methods
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Method Category Pre-Proc. Loc. Analysis Glob. Analysis Post-Proc.

J95 [100] Gradient - Gradient - Smoothing

O07 [97] Slit-based - Slit - Smoothing

G06 [32] Frequency Domain Removed DC STFT - Smoothing

W07 [126] Global Approximation - Gradient 2D Fourier Exp. -

R10 [99] Global Approximation - Gradient Polynomial Approx. -

R09 [98] Learning-based - Gradient Polynomial Approx. ASM -

Table 5.1: Baseline Fingerprint Orientation Extraction Methods.

on the singularity position (which in our opinion makes them less attractive); (ii) the

tracing-based approach [48] which is, however, considered in section 5.6 for comparison

purposes. In choosing the methods to implement we focused on baseline methods with a

simple implementation, and/or methods made available by their authors in source code.

In this Thesis, we denote Table 5.1 algorithms as baseline algorithms.

5.3 The Benchmark

The evaluation of the improvements in orientation extraction algorithms is made possible

by the FVC-onGoing framework. In Part III, we describe a web-based automated evalu-

ation system for fingerprint recognition algorithms where tests are carried out on a set of

sequestered datasets and results are reported on-line by using well known performance

indicators and metrics.

The aim of the system is to track the advances in fingerprint recognition technolo-

gies, through continuously updated independent testing and reporting of performances

on given benchmarks.

Recently, we added a new benchmark area in the FVC-onGoing framework (FOE) in

order to assess the accuracy of fingerprint orientation extraction algorithms. This new

area contains two benchmarks (FOE-TEST and FOE-STD-1.0) and a metric (AvgErr,

see Equation 4.4) to evaluate the difference between an extracted orientation image and

the ground-truth.

For practical purposes, in the following sections we call FOE-TEST as Set A and the

FOE-STD-1.0 as Set B. More details about the benchmarks can be found in Part III.

Here we just remind that each dataset can be divided into:

• Good Quality Dataset : 10 fingerprints of good quality acquired using optical scan-
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ners with the corresponding orientation ground truth.

• Bad Quality Dataset : 50 fingerprints of low and very-low quality acquired using

optical scanners with the corresponding orientation ground truth.

Even if each set (A and B) currently contains just 50 bad quality images and 10 good

quality images, the total number of orientation estimations is 94,758 for Set A and

108,822 for Set B.

5.4 Improving the Orientation Extraction

Tables 5.3 and 5.4 show the accuracy of our implementation of baseline algorithms.

Symbols and abbreviations used in this table (and in the following ones) are listed in

Table 5.2. Each algorithm in Tables 5.3 and 5.4 has two entries (i.e., rows):

• the ”without-star” row corresponds to the default implementation of the algorithm

(i.e., where the parameter values suggested by the authors are used);

• the ”with-star” row corresponds to an optimized version of the baseline algorithm

whose parameter values have been tuned (by trial and error) on Set A (training

set).

The parameter optimization was carried out by minimizing AvgErr on the bad qual-

ity dataset, but with the constraint AvgErr < 7◦ on the good quality dataset. In both

default and optimized versions of each algorithm, pre- and post- processing stages (if

any) are those suggested by the authors, with no further optimizations.

All the global modeling methods implemented require an initial orientation image: in

this work we usually use the gradient-based local technique [100], often followed by some

amount of smoothing. Note that in the tables reporting results on global methods, this

kind of ”initial” post-processing is not reported in the ”Post-processing” column (which

always refers to the final post-processing), but in the column ”Local Analysis - Type”,

after the local technique name.

Approach R09 requires a separate dataset to learn an internal model of fingerprint

orientation distribution in nature. To this purpose, a large dataset of good quality fin-

gerprints is needed (corrupted fingerprints should be excluded from the training set to

avoid that inadmissible patterns are learnt). For this reason we selected, from NIST
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Abbreviation Meaning

Method XXX-Y XXX=method identifier Y=index of variant

s:X dir:Y Slit width (X) and number of directions (Y) in the slit-based method

Sm:AxBxC A smoothing rounds over a BxC window

RDC The DC Components are removed

Ov:X Blk:Y Overlap(X) and Block Size (Y) in the STFT method

Polyn. XX:YY
XX=polynomial type (FO =Fourier, LE = Legendre, C1 = Chebyshev type 1, C2 =

Chebyshev type 2) YY=polynomial degree

ASM Active Shape Modeling

µ Regularization parameter in learning based models

weighted:X X= Weighting scheme (S = strength, R = regularity)

IS:X Image smoothing over a squared window of size X

MF:X Median Filtering over a squared window of size X

τ :X Replacement threshold

Table 5.2: Symbols and abbreviations used in the following tables.

special database 14 [129], the 6164 (23% of the database) fingerprints with NFIQ = 1

(see [117]).

Algorithm R09 and R10 require to solve a nonlinear optimization problem with no

closed form solution. As suggested in the corresponding papers, the underlying itera-

tive minimization has been performed using the Levenberg-Marquardt algorithm [83], a

widely used choice for nonlinear least squares problems.

From Table 5.4 (last two columns) we note that:

• Slit-based and Frequency domain approaches outperform the gradient-based one

(especially on bad-quality fingerprints);

• unlike one could expect, the gain given by global-approximation and learning-based

approaches over gradient is just marginal and limited to bad quality fingerprints;

• parameter optimization over a training set (Set A) results in a performance im-

provement also on the separate test set (Set B).

Figure 5.1 shows two examples of local orientation extraction using the optimized

algorithms reported in Tables 5.3 and 5.4: the good-quality pattern (top image) is ac-

curately dealt with by local approaches (c, d, e), but not by global ones (f, g, h); on
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Method Pre-Proc.
Loc. Analysis Glob. Analysis

Post-Proc.
Type Win. Size Type Poly.

J95 - Gradient 16 - - Sm:1x3x3

J95-2 * - Gradient 41 - - Sm:1x3x3

O07 - Slit s:09 dir:16 15 - - Sm:1x3x3

O07-2 * - Slit s:10 dir:16 35 - - Sm:1x3x3

G06 RDC STFT Ov:6 Blk:12 24 - - Sm:1x3x3

G06-2 * RDC STFT Ov:1 Blk:25 27 - - Sm:1x3x3

W07 - Gradient Sm:1x3x3 16 FOMFE FO:04 -

W07-2 * - Gradient Sm:2x3x3 16 FOMFE FO:05 -

R10 - Gradient Sm:1x3x3 17 Polyn. Approx. LE:08 -

R10-2 * - Gradient Sm:2x5x5 18 Polyn. Approx. LE:09 -

R09 - Gradient Sm:1x3x3 17 Polyn. Approx. ASM µ:3e-9 LE:12 -

R09-2 * - Gradient Sm:1x5x5 16 Polyn. Approx. ASM µ:3e-10 LE:09 -

Table 5.3: Baseline algorithms with default (”without-star” rows) and optimized (”with-

star” rows) parameters. The accuracy of each algorithm is reported in Table 5.4.

Method
AvgErr Set A (degrees) AvgErr Set B (degrees)

Good Bad Good Bad

J95 5.41 22.18 6.08 22.77

J95-2 * 5.54 20.04 6.03 20.99

O07 5.24 20.50 5.74 19.67

O07-2 * 5.20 18.08 5.83 17.75

G06 4.86 19.86 5.46 18.43

G06-2 * 5.03 18.65 5.40 17.19

W07 6.03 19.60 6.15 20.63

W07-2 * 6.11 19.24 6.25 20.34

R10 5.73 20.28 6.32 20.80

R10-2 * 6.27 19.23 6.55 20.38

R09 6.85 19.64 7.73 20.51

R09-2 * 6.84 19.39 6.93 20.32

Table 5.4: Results of the algorithms described in Table 5.3.

the other hand, the bad quality pattern (bottom image) is better modeled by global

approaches.

In the following sections we show how these results can be improved by optimizing

pre- and post- processing steps and by implementing variants of existing techniques.
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Figure 5.1: Orientation extraction with baseline methods on a portion of a good and

a bad quality image. Original fingerprint image (a), ground-truth (b), gradient (c),

slit-based (d), frequency domain (e), global approximation (Legendre) (f), global ap-

proximation (FOMFE) (g), learning-based (h).
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5.4.1 Post-Processing

One or more iterations of arithmetic average over a m×m (3×3 or 5×5) square windows

Wi,j centered at [i, j] is implemented as post-processing step for each element.

As proposed by [11] and [75], an orientation estimate θi,j at [i, j] can be encoded in

the double angle representation by the vector d where di,j = ri,j · [cos(2θi,j), sin(2θi,j)]

and ri,j is a coherence value denoting the confidence in the orientation estimation (whose

computation is approach-dependent). The arithmetic average of orientations over Wi,j

is performed as follows:

di,j =
1

m2

[ ∑
p,q∈Wi,j

rp,q · cos(2θp,q),
∑

p,q∈Wi,j

rp,q · sin(2θp,q)
]

(5.1)

The benefit of orientation averaging was highlighted by several authors ([90] [9] [100]

[16]) and its efficacy in restoring small damaged areas is well recognized. However, the

extent to which post-processing can be applied (i.e., windows size, number of iterations)

without excessively over smoothing the underlying signal was still unknown.

Tables 5.5 and 5.6 show the accuracy of baseline algorithms with optimized post-

processing. In general, adding a pre- or post- processing stage could require a different

parameter setting: all the variants of baseline algorithms reported in this work under-

gone a parameter optimization on Set A.

For global analysis approaches we found that post processing is not only useless, but

often leads to a performance drop; this is not surprising since their underlying model

fitting techniques already produce smoothed results. For this reason, in Tables 5.5 and

5.6 we reported results of these approaches without any post-processing.

All the local analysis approaches seem to benefit from a quite aggressive post-processing

(1 or 2 iterations over 5× 5 windows); comparison of J95-3, O07-3 and G06-3 with the

corresponding entries in Table 5.4 (J95-2, O07-2 and G06-2) show a marked improvement

on bad quality fingerprints, without noticeably affecting accuracy on good quality ones.

Figure 5.2 shows the effect of both mild and aggressive post-processing on a bad quality

fingerprint orientation image.

5.4.2 Pre-Processing

Two types of image pre-processing have been considered:
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(a) original orientation image (b) 1 round 3x3 (c) 2 rounds 3x3

(d) 1 round 5x5 (e) 2 rounds 5x5

Figure 5.2: Effects of both mild and aggressive post-processing using 3x3 and 5x5 smooth-

ing masks on a bad quality fingerprint.
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Method Pre-Proc.
Loc. Analysis Glob. Analysis

Post-Proc.
Type Win. Size Type Poly.

J95-3 - Gradient 41 - - Sm:1x5x5

O07-3 - Slit s:9 dir:16 35 - - Sm:2x5x5

G06-3 RDC STFT Ov:1 Blk:25 27 - - Sm:2x5x5

W07-2 - Gradient Sm:2x3x3 16 FOMFE FO:05 -

R10-2 - Gradient Sm:2x5x5 18 Polyn. Approx. LE:09 -

R09-2 - Gradient Sm:1x5x5 16 Polyn. Approx. ASM µ:3e-10 LE:09 -

Table 5.5: Post-Processing + Parameter Optimization. The accuracy of each algorithm

is reported in Table 5.6.

Method
AvgErr Set A (degrees) AvgErr Set B (degrees)

Good Bad Good Bad

J95-3 5.79 19.59 6.03 20.60

O07-3 5.60 16.57 5.93 16.57

G06-3 5.25 15.65 5.30 14.71

W07-2 6.11 19.24 6.25 20.34

R10-2 6.27 19.23 6.55 20.38

R09-2 6.84 19.39 6.93 20.32

Table 5.6: Results of the algorithms described in Table 5.5.

• gaussian smoothing, which can be applied once or more times with mask of size

3× 3 or 5× 5;

• median filtering [47] over a window of size 3× 3 or 5× 5.

Both pre-processing steps help reducing noise and limiting the influence of fingerprint

pores (appearing as bright blobs inside dark ridges), whose presence at this stage can

be detrimental. The mild blurring produced as a consequence of these steps is not a

problem due to the coarse nature of information (general ridge-flow orientation) we are

looking for (see Figure 5.3).

Tables 5.7 and 5.8 highlight the effects of pre-processing. Gaussian smoothing com-

bined with median filtering allows to markedly increase accuracy of most methods, in-

cluding global-analysis-based ones. It is worth noting that, with optimal parameter

tuning and both pre- and post- processing, methods of all the categories achieve quite

close accuracy, with an error lying in the range 14-16 degrees over bad quality finger-
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Method Pre-Proc.
Loc. Analysis Glob. Analysis

Post-Proc.
Type Win. Size Type Poly.

J95-4 IS:3 Gradient 45 - - Sm:1x5x5

J95-5 IS:3 MF:3 Gradient 45 - - Sm:1x5x5

O07-4 IS:3 Slit s:9 dir:16 41 - - Sm:2x5x5

O07-5 IS:3 MF:3 Slit s:9 dir:16 41 - - Sm:2x5x5

G06-4 RDC IS:3 STFT Ov:1 Blk:25 27 - - Sm:2x5x5

G06-5 RDC IS:3 MF:3 STFT Ov:1 Blk:25 27 - - Sm:2x5x5

W07-3 IS:3 Gradient Sm:2x5x5 16 FOMFE FO:05 -

W07-4 IS:3 MF:5 Gradient Sm:2x5x5 15 FOMFE FO:05 -

R10-3 IS:3 Gradient Sm:2x5x5 20 Polyn. Approx. LE:09 -

R10-4 IS:3 MF:5 Gradient Sm:2x5x5 15 Polyn. Approx. LE:09 -

R09-3 IS:3 Gradient Sm:2x5x5 24 Polyn. Approx. ASM µ:3e-9 LE:09 -

R09-4 IS:3 MF:5 Gradient Sm:2x5x5 17 Polyn. Approx. ASM µ:3e-9 LE:09 -

Table 5.7: Pre-Processing + Post-Processing + Parameter Optimization. The accuracy

of each algorithm is reported in Table 5.8.

Method
AvgErr Set A (degrees) AvgErr Set B (degrees)

Good Bad Good Bad

J95-4 5.35 17.73 5.55 17.31

J95-5 5.24 17.14 5.43 16.36

O07-4 5.74 16.54 6.07 15.78

O07-5 5.71 16.65 6.06 15.52

G06-4 5.17 15.51 5.29 14.16

G06-5 5.14 15.46 5.29 14.00

W07-3 5.73 17.16 5.72 16.86

W07-4 5.55 15.84 5.55 14.49

R10-3 5.46 17.64 5.89 17.33

R10-4 5.69 16.15 5.92 14.99

R09-3 6.98 16.95 6.91 17.14

R09-4 6.84 15.46 6.97 14.70

Table 5.8: Results of the algorithms described in Table 5.7.

prints in Set B. The best accuracy on bad quality fingerprints is still achieved by G06-5.
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5.4. Improving the Orientation Extraction

Figure 5.3: The right column shows the effect of a median filter with a 3x3 window

applied to the two fingerprint images on the left column.

5.4.3 Acting on Polynomials Type

In this section we focus on global approximation approaches R10 and R09 and check

whether some benefits can be achieved or not by changing the polynomial type. We pro-

pose variants of both R10 and R09 by using Chebyshev polynomials instead of Legendre

ones.

The adoption of Chebyshev polynomials is supported by [82] [91], whose authors ar-

gue that Chebyshev polynomials provide better estimation of a continuous function than

Legendre ones; in particular, the partial sums of a first-kind Chebyshev expansion of a

continuous function in [1,-1] converge faster than the partial sums of an expansion in

any other orthogonal polynomial.

A variant of R10 based on Chebyshev polynomials has also been recently introduced

in [119] where a rule-based approach is implemented to locally choose between two or-

thogonal polynomials (Legendre and Chebyshev).
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Both R10 and R09 try to jointly approximate sine and cosine components of the

orientations (in the double angle notation) with linear combinations of fixed nonlinear

basis functions ϕ(x, y) [14]. The global modeling of an input orientation image D is

obtained by solving a nonlinear optimization problem defined as:

minps,pc

∑
(i,j)∈F

sin
[1

2
tan−1

(pTs ϕ(xi, yj)

pTc ϕ(xi, yj)

)
− θi,j

]2
(5.2)

where parameters ps and pc are the unknown vectors for the sine and the cosine ap-

proximation, ϕ(xi, yj) is a vector containing the set of basis functions computed at pixel

[xi, yj], θi,j is the input orientation at [i, j] in the squared-mesh grid and F denotes the

set of foreground elements.

This problem is regularized in [98] to have vectors with unit length (i.e., by adding a

positive term that penalizes solutions formed by non-unit-length vectors).

In the following we replace Legendre with Chebyshev polynomials in the definition

of ϕ(x, y). Chebyshev polynomials of the first and second kind are always orthogonal in

[-1,1] and differ in form and weight function [115]. The univariate Chebyshev polynomi-

als of the first kind ϕc1(x) and second kind ϕc2(x), whose Rodrigues representation can

be found in [91], can be efficiently computed using the recurrence relations:

Chebychev first kind Chebychev second kind

ϕc10 (x) = 1 ϕc20 (x) = 1

ϕc11 (x) = x ϕc21 (x) = 2x

ϕc1n (x) = 2x[ϕc1n−1(x)− ϕc1n−2(x)] ϕc2n (x) = 2x[ϕc2n−1(x)− ϕc2n−2(x)]

For our modeling purposes, we need bivariate polynomials: let d be the degree of the

Chebyshev polynomial, then:

ϕ(x, y) = [ϕ0,0, ϕ1,0, ϕ1,1, ϕ2,0, ϕ2,1, .., ϕd,0, .., ϕd,d] (5.3)

where ϕi,j = ϕi−j(x)β(x) · ϕj(y)β(y) and β(·) is the weighting function ( 1√
1−x2 for the

first kind and
√

1− x2 for the second kind). According to this representation, the di-

mensionality of ϕ(x, y), ps and pc is (d+ 1) + d(1 + d)/2.
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The first four rows of Tables 5.9 and 5.10 show variants of R10-4 and R09-4 where

Chebyshev polynomials of first and second kind are used, respectively. For R10-5 and

R10-6 we notice a slight improvement on both the good and bad dataset of Set B with

respect to the Legendre-based version R10-4. The benefits of these polynomials are more

evident for learning-based models R09-5 and R09-6, where, besides a moderate improve-

ment over the bad dataset, the Chebyshev variants achieve a considerable improvement

over the good dataset with respect to R09-4.

5.4.4 Weighting Schemes

In Equation 5.2 all initial orientation estimates θi,j are equally weighted during the opti-

mization. As a consequence, orientation elements in regions which are highly corrupted

by noise are trusted as orientation elements in good quality regions. A more robust

global modeling should be achieved by weighting the orientation elements according to

their quality qi,j:

minps,pc

∑
(i,j)∈F

qi,j · sin
[1

2
tan−1

(pTs ϕ(xi, yj)

pTc ϕ(xi, yj)

)
− θi,j

]2
(5.4)

A similar weighting scheme applied to the FOMFE approach was recently proposed

by [118]. In this Thesis, we tested two implementations:

• in the former, qi,j is computed as the strength in [9];

• in the latter qi,j is computed as the regularity of the orientation field as defined in

[20].

In both cases, qi,j belongs to the interval [0,1] and reaches its maximum when the corre-

sponding orientation estimate has maximum trustworthiness.

The last seven rows of Tables 5.9 and 5.10 highlight the effects of weighting. The

results show that using a strength-based weighting can lead to a slight improvement on

bad quality fingerprints (compare, for example, R09-7, R09-8 and R09-9 with R09-5 and

R09-6). At this stage the regularity-based weighting (not reported in the table) does not

seem to produce any relevant improvement.
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Method Pre-Proc.
Loc. Analysis Glob. Analysis Post-

Type Win. Size Type Poly. Proc.

R10-5 IS:3 MF:5 Gradient Sm:2x5x5 15 Polyn. Approx. C1:09 -

R10-6 IS:3 MF:5 Gradient Sm:2x5x5 16 Polyn. Approx. C2:09 -

R09-5 IS:3 MF:5 Gradient Sm:2x5x5 15 Polyn. Approx. ASM µ:3e-7 C1:09 -

R09-6 IS:3 MF:5 Gradient Sm:2x5x5 15 Polyn. Approx. ASM µ:3e-7 C2:09 -

W07-5 IS:3 MF:5 Gradient Sm:2x5x5 15 FOMFE weighted:S FO:05 -

R10-7 IS:3 MF:5 Gradient Sm:2x5x5 15 Polyn. Approx. weighted:S LE:09 -

R10-8 IS:3 MF:5 Gradient Sm:2x5x5 13 Polyn. Approx. weighted:S C1:09 -

R10-9 IS:3 MF:5 Gradient Sm:2x5x5 13 Polyn. Approx. weighted:S C2:09 -

R09-7 IS:3 MF:5 Gradient Sm:2x5x5 15 Polyn. Approx. weighted:S ASM µ:3e-9 LE:09 -

R09-8 IS:3 MF:5 Gradient Sm:2x5x5 13 Polyn. Approx. weighted:S ASM µ:3e-7 C1:09 -

R09-9 IS:3 MF:5 Gradient Sm:2x5x5 13 Polyn. Approx. weighted:S ASM µ:3e-7 C2:09 -

Table 5.9: Improvement of global approximation methods with Pre-Processing, Poly-

nomial variations and weighting. The accuracy of each algorithm is reported in Table

5.10.

Method
AvgErr Set A (degrees) AvgErr Set B (degrees)

Good Bad Good Bad

R10-5 5.19 15.93 5.48 14.47

R10-6 5.10 16.02 5.24 14.47

R09-5 6.03 15.68 5.87 14.32

R09-6 5.70 15.62 5.67 14.26

W07-5 5.49 15.78 5.59 14.37

R10-7 5.54 15.68 6.03 14.36

R10-8 5.14 15.77 5.37 14.32

R10-9 4.99 15.93 5.20 14.39

R09-7 6.66 15.48 6.60 14.10

R09-8 6.19 15.66 6.04 14.02

R09-9 5.71 15.23 5.86 14.03

Table 5.10: Results of the algorithms described in Table 5.9.

5.5 Adaptive Orientation Extraction

From Table 5.8 and Table 5.10 it can be observed that, often, an improvement on bad

quality images does not imply an improvement on good quality ones. This is particularly

true for learning-based models R09-7, R09-8 and R09-9, where improvement on bad
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5.5. Adaptive Orientation Extraction

Figure 5.4: The flow chart of the proposed hybrid orientation extraction method.

quality images comes at the expense of a slight accuracy deterioration on good quality

fingerprints. This happens because learning-based methods try to bring back a noisy

input pattern into a smoothed, previously-learned pattern: this can be useful for bad

quality images, but could lead to a too coarse approximation in good quality fingerprints

(or fingerprint regions).

Based on the above considerations, in this section we propose an adaptive approach

that tries to combine the advantages of both local and learning-based models.

The adaptive approach relies on a local method such as J95-5 or G06-5, but replaces

orientations estimated in bad quality regions with those provided by a robust learning-

based approach such as R09-8 or R09-9. A final post-processing stage (see section 5.4.1)

is implemented to smooth transition regions, thus avoiding sharp changes.

More formally, let DLoc = [θLoci,j ] be the h × w orientation image computed with a

local model, and let Q = [qi,j] be a h × w matrix denoting the element quality (e.g.,

strength or regularity).

Given a threshold τ ∈ [0, 1], let Q′ = [q′i,j] be a weighting matrix derived from Q as
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Method Pre-Proc.
Loc. Analysis Glob. Analysis Post-

Type Win. Size Type Poly. Proc.

Adaptive-1

Polyn. Approx.

IS:3 MF:5 Gradient Sm:2x5x5 τ :0.67 13 weighted:R C1:09 Sm:1x3x3

ASM µ:3e-7

Adaptive-2

Polyn. Approx.

IS:3 MF:5 Gradient Sm:2x5x5 τ :0.75 13 weighted:R C2:09 Sm:1x3x3

ASM µ:3e-7

Adaptive-3

STFT Sm:2x5x5 Polyn. Approx.

RDC IS:3 MF:3 Ov:2 Blk:25 29 weighted:R C1:09 Sm:1x3x3

τ :0.67 ASM µ:3e-7

Table 5.11: Replacement Based Methods. The accuracy of each algorithm is reported in

Table 5.12.

Method
AvgErr Set A (degrees) AvgErr Set B (degrees)

Good Bad Good Bad

Adaptive-1 4.77 14.92 5.05 13.73

Adaptive-2 4.77 14.97 5.14 13.97

Adaptive-3 5.63 14.73 5.76 13.45

Table 5.12: Results of the algorithms described in Table 5.11.

follows:

q′i,j =

1 if qi,j > τ

qi,j otherwise
(5.5)

Let DGlob = [θGlobi,j ] the orientation image (computed using DLoc as the initial orien-

tation field and a weighting scheme with weights Q′, then the output orientation image

D = [θi,j] is computed as:

θi,j =

θLoci,j if qi,j > τ

θGlobi,j otherwise
(5.6)
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A final post-processing stage with a m×m smoothing window is applied over the direc-

tional image D.

Tables 5.11 and 5.12 show some results of such an adaptive approach. The optimal

replacement threshold was determined over Set A. As expected, Adaptive-1, Adaptive-2

and Adaptive-3 allow to reduce the error on both bad quality and good quality fin-

gerprints. Figures 5.5, 5.6 and 5.7 show an example of orientation extraction with the

adaptive approach.

5.5.1 Learning of plausible fingerprint structures

The learning procedure in the proposed adaptive algorithm is based on Active Shape

Models (ASM, [34]). An ASM is a statistical model of the shape of objects developed

by Cootes and Taylor such that iteratively deform to fit to an example of the object

in a new image. The statistical model of the global shape variation is built from a

training set. The learnt model, called Point Distribution Model (PDM), is used to fit

a template to unseen occurrences. The Point Distribution Model is estimated using

the Principal Components Analysis (PCA), where the mean shape is extracted and the

directions of maximal variance are determined organizing the eigenvectors according to

the eigenvalues in descending order. The ASM algorithm deforms iteratively the mean

shape until it finds the best shape matching within the input image.

Best-practice in machine learning methods is to perform learning in a separate dataset

from that used for testing. The ASM algorithm requires a dataset to learn an internal

model of fingerprint orientation distribution in nature. In our experiments, the training

set is represented by a dataset of parameters of a global model computed over a set

of fingerprint images. To this purpose, a large dataset of good quality fingerprints is

needed (corrupted fingerprints should be excluded from the training set to avoid that

inadmissible patterns are learnt). For this reason, as in previous experiments, we selected

from NIST special database 14 [129], the 6164 (23% of the database) fingerprints with

NFIQ index quality equal to 1 (see [117]).

The ASM algorithm is applied as described in section 4.4.4 where both the reduced

dimensionality k and the regularization parameter λ are found empirically. The optimal

value for k (≤ 2n possible values) is chosen so as to explain a certain proportion p of

the variance in the training shapes. Usually the reduced dimensionality is given by the

smallest k such that
∑k

i=1 ρi ≥ p
∑2n

i=1 ρi, where ρi is the ith eigenvalue. With k = 80,

85



5. Orientation Extraction Improvement

the first eighty eigenvalues explain the 98% of the dataset. The optimal value for the

regularization parameter λ belongs to the interval [3e-6,3e-7].

5.6 Results on Gottschlich et al. Benchmark

Gottschlich et al. recently proposed in [48] a benchmark for fingerprint orientation

extraction (abbreviated with GOT in the following) which includes ground-truth infor-

mation.

They also propose to measure the error as the number of orientation estimates devi-

ating more than 15 degrees from the ground truth value. The main differences between

our proposed benchmark FOE (see Part II) and GOT are:

• Sampling. FOE adopts a uniform sampling over the fingerprint foreground area;

GOT provides ground truth data at sparse positions, typically in proximity of noisy

regions or creases/scratches.

• Training/Test sets. FOE provides separate training (A) and test (B) sets; GOT

provides only one set.

• Number of fingerprints. FOE: for each set (A, B) 10 good quality and 50 bad

quality fingerprints. GOT: 60 fingerprints.

• Number of orientation estimates. FOE: 94,758 (Set A), 108,822 (Set B). GOT:

1,782.

• Error metric. FOE: AvgErr on bad quality dataset with the constraint AvgErr <

7 degrees on good quality dataset. GOT: number of estimations with error < 15

degrees.

• Benchmark difficulty. FOE: AvgErr of the baseline method J95-2 (one of the

best known) over bad quality fingerprints Set B is 20.99◦. AvgErr of J95-2 over

GOT is 7.48◦. This implies that GOT difficulty is markedly lower than FOE (bad

quality dataset), and not much higher than FOE (good quality dataset), where

J95-2 AvgErr is 6.03◦.

Summarizing, we believe that FOE is more appropriate than GOT for orientation

extraction benchmarking because:
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5.6. Results on Gottschlich et al. Benchmark

(a) Fingerprint image (b) Gradient method (c) Regularity Map

(d) Learning method (e) Final Image

Figure 5.5: Example 1 of the Adaptive-3 algorithm.
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(a) Fingerprint image (b) Gradient method (c) Regularity Map

(d) Learning method (e) Final Image

Figure 5.6: Example 2 of the Adaptive-3 algorithm.
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(a) Fingerprint image (b) Gradient method

(c) Regularity Map (d) Learning method

(e) Final Image

Figure 5.7: Example 3 of the Adaptive-3 algorithm.
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1. it provides separate training/test datasets;

2. the total number of orientation estimates is two orders of magnitude larger;

3. the difficulty of the benchmark is much higher, thus allowing to better point out

performance differences among algorithms.

However, in order to provide more support to previous sections outcomes, it is inter-

esting to assess the performance of their algorithms also in the context of GOT.

Table 5.13 shows the performance of some considered algorithms and of the three

algorithms discussed in [48]. Besides the error metric proposed in [48], in the table we

also report the AvgErr on both FOE Set B and GOT.

The first seven rows of the table show results of some considered algorithms without

any parameter optimization for the GOT benchmark. In fact, due to the absence of a

separated training set, parameter tuning could lead to overfitting. However, since GOT

is a not so hard dataset we also report the results of two algorithms where we simply

”turned-off” the pre-processing stage.

Finally, the last three rows contain the results reported in [48]. It is worth noting

that:

• results achieved on GOT benchmark are in line with those obtained on FOE, if

we consider that GOT difficulty is closer to FOE Good dataset than FOE Bad

dataset;

• the baseline implementation of the gradient achieves a performance very close to

that reported in [48];

• the approach Adaptive-3 (with no parameter adjustment with respect to the train-

ing on FOE) outperforms other approaches, confirming to be both accurate (on

good quality fingerprints) and robust (on bad quality ones);

• performance of G06-5 and Adaptive-3 on GOT show that if the images quality is

just moderately bad, some benefits can be achieved by skipping pre-processing.

5.6.1 Statistical Significance

Through our experiments, has been proved that parameter optimizations, pre- and post-

processing stages can markedly improve accuracy of baseline methods on bad quality

90



5.6. Results on Gottschlich et al. Benchmark

Category Method
FOE Set B AvgErr (deg) GOT Num. of Estimates

Good Bad > 15◦ and AvgErr (deg)

Gradient J95-2 6.03 20.99 120 (7.48)

Gradient J95-5 5.43 16.36 99 (6.74)

Slit-based O07-5 6.06 15.52 112 (7.19)

Frequency Dom. G06-5 5.29 14.00 99 (6.44)

Global Approx. R10-8 5.37 14.32 120 (7.26)

Learning-based R09-9 5.86 14.03 109 (7.25)

Adaptive-3 5.76 13.45 76 (6.06)

Frequency Dom.(no pre-proc.) G06-5 5.30 14.71 68 (5.73)

Adaptive-3 (no pre-proc.) 5.77 14.13 63 (5.68)

Line-sensor from [48] - - 79

Gradient from [48] - - 119

Multiscale operator [48] - - 259

Table 5.13: Results on GOT benchmark.

fingerprints. For instance, on the bad quality dataset B, the accuracy of the gradient

method improves from an average error of 22.77◦ to 16.36◦, and the STFT method from

18.43◦ to 14.00◦.

It is worth noting that such results are statistically significant: in fact, the 90%

confidence intervals of the average errors (calculated with a nonparametric bootstrap

approach as in [15]) are smaller than ±0.4◦.

A novel adaptive approach combining the accuracy of local-based analysis (in good

quality regions) and the robustness of learning-based global analysis (in bad quality re-

gions) achieved the overall best performance on both FOE and GOT.

Although the FOE benchmark is the most appropriate for the evaluation of orien-

tation extraction algorithms, an indirect assessment could be also obtained by using

the different algorithms as a module of a given fingerprint verification system. Table

5.14 compares FOE accuracy with the Equal Error Rate (see section 2.8) of a baseline

fingerprint verification algorithm embedding some representative orientation extraction

algorithms. It is worth noting that high FOE accuracy corresponds to lower verification

EER (positive correlation of 94%).
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Method
AvgErr on EER on

Set B Bad Quality (degrees) FVC2006 DB2 [25] (%)

J95 22.77 0.796

J95-5 16.36 0.343

O07 19.67 0.411

O07-5 15.52 0.279

G06 18.43 0.374

G06-5 14.00 0.227

W07 20.63 0.680

W07-5 14.37 0.279

R10 20.80 0.664

R10-9 14.39 0.227

R09 20.51 0.722

R09-9 14.03 0.263

Adaptive-3 13.45 0.206

Table 5.14: FOE Accuracy vs. Fingerprint Verification Accuracy
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Part III

Automatic Evaluation of Fingerprint

Algorithms
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Chapter 6

FVC-onGoing

Although new developments and improvements in fingerprint recognition are contin-

uously reported [90], it is often difficult to understand, from the scientific literature,

which are the most effective and promising methods. In fact, scientific papers typically

propose recognition systems that integrate many modules (enhancement, feature extrac-

tion, matching, post-processing, etc.) and therefore it is hard to isolate the contributions

that determine an actual progress in the state-of-the-art.

In this chapter we introduce the FVC-onGoing, a web-based automatic evaluation

system of fingerprint algorithms. The proposed system is automatic (does not require

the human action), ”on going” (a participant can submit algorithms at any time) and

outputs recognition results using standard metrics.

After a brief introduction to the Fingerprint Verification Competition (FVC), we de-

scribe the system architecture, the existing benchmarks and we propose a new benchmark

for fingerprint orientation extraction (FOE) to be hosted in the FVC-onGoing framework.

6.1 The Fingerprint Verification Competition (FVC)

Performance evaluation is important for all biometric modalities and particularly so for

fingerprint recognition, which is receiving widespread attention for citizen identity veri-

fication and identification in large-scale applications.

Unambiguously and reliably assessing the performance of current fingerprint recog-

nition technology is mandatory for understanding its limitations and addressing future
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research.

After the success of the first four fingerprint verification competitions (FVC2000 [87],

FVC2002 [88], FVC2004 [89] and FVC2006 [25]), the Biometric System Laboratory at

University of Bologna [2] has decided to organize a new online evaluation campaign for

fingerprint recognition technologies: FVC-onGoing.

6.2 Aims and Architecture of FVC-onGoing

FVC-onGoing offers a web-based automatic evaluation of fingerprint recognition algo-

rithms on a set of sequestered datasets, reporting results using well known performance

indicators and metrics. The aim is to track the advances in fingerprint recognition

technologies, through continuously updated independent testing and reporting of perfor-

mances on given benchmarks.

The benchmark datasets does not evolve over time; in case new datasets are added

in the future, they form a different benchmark or a new version of an existing one: in

this way, only results obtained on the same data will be compared. The algorithms are

evaluated using strongly supervised approaches (see [26]), to maximize trustworthiness

of the results.

While previous FVC initiatives were organized as ”competitions”, with specific calls

and fixed time frames, FVC-onGoing is:

1. an ”on going competition” always open to new participants;

2. an evolving online repository of evaluation metrics and results.

One of the main goals of FVC-onGoing is to fully automate the main steps of the eval-

uation: participant registration, algorithm submission, performance evaluation, and re-

porting of the results. To this purpose, the Biometric System Laboratory developed a

web-based evaluation framework, whose architecture and typical workflow are shown in

Figure 6.1.

After a beta testing period, the FVC-onGoing web site [3] started accepting algo-

rithm submissions on June 22, 2009. At the time this Thesis is being written, a total of

377 participants have registered, 1492 algorithms have been evaluated and the results of

68 algorithms have been published.

Currently nine benchmarks are available on FVC-onGoing, grouped into three bench-

mark areas:
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Figure 6.1: FVC-OnGoing Architecture. The diagram shows the architecture of the

FVC-onGoing evaluation framework and an example of a typical workflow: a given

participant, after registering to the web site, submits an algorithm to one of the available

benchmarks; the algorithm (binary executable program compliant to a given protocol) is

stored in a specific repository. Each algorithm is evaluated by the Test Engine that, after

some preliminary checks, executes it on the dataset of the corresponding benchmark and

processes its outputs (e.g. matching scores) to generate all the results (e.g. EER [90],

score graphs). The participant can see the results in its ”private area” and then may

decide to publish the results in the public section of the FVC-onGoing web site.

• FV: this benchmark area contains fingerprint verification benchmarks. Fingerprint

verification consists in comparing two fingerprints to determine whether they are

impressions of the same finger or not (one-to-one comparisons). Algorithms sub-

mitted to these benchmarks are required to enroll fingerprints into proprietary or

standard templates and to compare such templates to produce a similarity score.

1. FV-TEST. A simple dataset useful to test algorithm compliancy with the

evaluation protocol.

2. FV-STD-1.0. Fingerprint images acquired in operational conditions using
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Figure 6.2: FVC-onGoing Benchmark Areas

high-quality optical scanners.

3. FV-HARD-1.0. Contains a relevant number of difficult cases (noisy images,

distorted impressions, etc.) that makes fingerprint verification more challeng-

ing.

• FMISO: this benchmark area contains fingerprint matching benchmarks using a

standard minutiae-based template format [ISO/IEC 19794-2 (2005)]. Algorithms

submitted to these benchmarks are required to compare ISO fingerprint templates

to determine whether they are impressions of the same finger or not (one-to-one

comparisons). No fingerprint enrollment (feature extraction) is required, only the

minutiae matching algorithms are evaluated by these benchmarks.

1. FMISO-TEST. A simple dataset useful to test algorithm compliancy with

the evaluation protocol.

2. FMISO-STD-1.0. ISO templates created from fingerprint images acquired

in operational conditions using high-quality optical scanners.

3. FMISO-HARD-1.0. Contains a relevant number of difficult cases (noisy

images, distorted impressions, etc.).

• STFV: this benchmark area contains fingerprint verification benchmarks for algo-

rithms relying on protected templates to enhance privacy. Algorithms submitted

to these benchmarks are required to enroll a given fingerprint into a protected tem-

plate (that is, a template from which the fingerprint features cannot be extracted)

and to compare it against a given fingerprint image.
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1. STFV-TEST. A simple dataset useful to test algorithm compliancy with the

evaluation protocol.

2. STFV-STD-1.0. Contains fingerprint images acquired in operational condi-

tions using high-quality optical scanners. Results should reflect the expected

accuracy in large-scale fingerprint-based applications.

3. STFV-HARD-1.0. Contains a relevant number of difficult cases (noisy im-

ages, distorted impressions, etc.) that makes fingerprint verification more

challenging. Results do not necessarily reflect the expected accuracy in real

applications but allow to better discriminate the performance of various fin-

gerprint recognition algorithms.

6.3 The New Orientation Extraction Benchmark

The estimation of local fingerprint orientations is a fundamental step in fingerprint anal-

ysis and recognition (e.g., it is a prerequisite for image enhancement). The Fingerprint

Orientation Extraction (FOE) benchmark area has been added to the FVC-onGoing in

order to assess the accuracy of fingerprint orientation extraction algorithms.

Algorithms submitted to this area are required to extract local orientations from fin-

gerprint images and to save them into a specific format. The extracted orientations are

compared to the ground-truth in order to assess the algorithm accuracy. The ground-

truth has been manually marked using an ad-hoc software tool (see the next section for

more details).

This new area contains two benchmarks:

• FOE-TEST. A small benchmark useful to test algorithm compliancy with the

testing protocol (results obtained on this benchmark are only visible in the par-

ticipant private area and cannot be published). Fingerprints have been acquired

using optical scanners.

• FOE-STD-1.0. Fingerprint orientation extraction benchmark on fingerprints ac-

quired using optical scanners.

The FOE-TEST benchmark is publicly available and allows participants to test algo-

rithm compliancy with the protocol and to adjust algorithm parameters. The FOE-STD-

1.0 benchmark is sequestered and can be used to assess the performance of a fingerprint
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Benchmark Scanner Type Resolution Min Image Size Max Image Size

FOE-TEST Optical 500 dpi 328x364 448x560

FOE-STD-1.0 Optical 500 dpi 328x364 448x560

Table 6.1: Main characteristics of each benchmark.

Benchmark
Good Quality Dataset Bad Quality Dataset

Or. Estimations Fingerprints Or. Estimations Fingerprints

FOE-TEST 18946 10 75812 50

FOE-STD-1.0 19260 10 89562 50

Table 6.2: Number of orientation to estimate in each benchmark.

orientation extraction algorithm.

Each of them can contains two new datasets of identical size (60 fingerprints) and

can be divided into

• Good Quality Dataset: 10 fingerprints of good quality acquired using optical scan-

ners (see figure 6.4 for some examples) with the corresponding orientation ground-

truth.

• Bad Quality Dataset: 50 fingerprints of low and very-low quality acquired using op-

tical scanners (see figure 6.5 for some examples) with the corresponding orientation

ground-truth.

With the term ”low-quality images” we mean fingerprint impressions where the nor-

mal ridge-lines flow is corrupted by bad skin conditions (i.e., cuts, scars, bruises), sensor

noise and incorrect finger pressure. All these distortions significantly affect the orienta-

tion extraction step. In spite of the large noise, a human expert can detect with good

precision the ridge-line flow in the fingerprints of figure 6.5; this is not true for existing

automatic orientation extraction algorithms. For the creation of the datasets, the finger-

print quality has been assessed by visual inspection and taking into account the NFIQ

quality index [117].

Why providing two datasets (Good and Bad) in order to evaluate orientation extrac-

tion algorithms? A good orientation extraction algorithm should be able to deal with

very low-quality images, without losing accuracy on good quality ones. Hence, a large

Good Quality Dataset is not needed, since its only purpose is to ensure that algorithms

do not over-smooth the orientations. On the other hand, a large database of bad quality
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images would be welcome. Even if the tool described in section 6.4 greatly simplifies

ground truth markup, performing this activity with the due care and precision remains

critical and time consuming.

It is worth noting that, even if each set (FOE-TEST and FOE-STD-1.0) currently

contains just 50 bad quality images and 10 good quality images, the total number of

orientation estimations is 94,758 for FOE-TEST and 108,822 for FOE-STD-1.0. The

main characteristics of each benchmark are summarized in Table 6.1 and Table 6.2.

6.4 Ground Truth Markup

For each image of both datasets, the ground-truth has been marked by a human expert

by using the software tool introduced in section 4.3. This tool allows a semi-automatic

markup of the local orientations through a few simple steps:

• the user selects the positions where he wants to manually set the orientation: for

each position the tool proposes a local orientation which the user can adjust to

visually match the true ridge orientation (Figure 6.3 top);

• the system automatically interpolates all the other local orientations through a

Delaunay triangulation (see Figure 6.3 bottom).

6.5 Performance Evaluation of Orientation Extrac-

tion Algorithms

The FOE benchmarks use the Average Root Mean Square Deviation (see Equation 4.4)

to evaluate the difference between an extracted orientation image and the ground-truth.

This statistic equally weights extraction errors across the whole foreground; this choice

is well suited in most of the feature extraction tasks where orientations are needed (e.g.

minutiae detection). Other metrics may be more appropriate for specific tasks, such as

singularity detection, where errors close to singularities should have higher weights.

Other secondary performance indicators are also reported:

• Average orientation extraction time.

• Maximum amount of memory allocated.
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Figure 6.3: FOE Ground-truth markup. Example of ground-truth markup of a finger-

print that belongs to the FOE benchmark. Some local orientations are marked up by

the user (vertices of triangles on the top image); others are interpolated by the software

(bottom image). 102



6.5. Performance Evaluation of Orientation Extraction Algorithms

Figure 6.4: Examples of Good Images.

• Orientation deviation distribution for both datasets (Histogram of the distribution

of individual orientation extraction errors).

• Average error distribution for both datasets (Histogram of the distribution of av-

erage errors over the various fingerprints).
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Figure 6.5: Examples of Bad Images.

6.6 FOE Benchmark Protocol

Algorithms submitted to the FOE Benchmark must be able to extract the orientation

image from a fingerprint.

Each participant is required to submit, for each algorithm, one executable named

Extractor.exe in the form of Win32 console application. The executable will take

the input from command-line arguments and will save the output to file into a specific
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format. The command-line syntax is:

Extractor.exe <indexfile> <outputfolder>

where:

• <indexfile> is a test file containing the file path of each fingerprint to be pro-

cessed. The first line of the file contains the number of fingerprints; each of the

following lines has the format:

<imagepath> <step> <border>

where:

– <imagepath> is the file path of the fingerprint (bitmap file format);

– <step> is the step to be used to calculate the orientation image;

– <border> is the distance from the image border in pixels: this parameter

determines the position of the top-left element.

The parameter <step> and the number of sampling points are selected in a way

that do not allow any sampling point to be closer to any of the borders than

<border> pixels. This enables an algorithm to center, at each sampling point, a

filter that extends up to <border> pixels in each direction. The participant can

assume that the border is not smaller than 14 pixels. Figure 6.6 shows an example

of such sampling.

• <outputfolder> is the path of the folder where the output files have to be saved.

For each input fingerprint, a further file with the same path and extension .fg (instead

of .bmp) is provided. This file defines which elements of the orientation image belong

to the fingerprint foreground. The algorithm is required to compute the orientation of

those elements only: the remaining elements of the orientation image can be left to zero.

The foreground file is a text file where the first line contains the number of rows and

columns of the orientation image and the remaining lines denote foreground (’1’) and

background elements (’0’). Source code to read this file format is available for download

in the FVC-onGoing website [3].

The algorithm is required to extract the orientation image from each input finger-

print and save it in the output folder to a file with the same name of the fingerprint

but extension .dirmap (instead of .bmp). The output must be saved as a binary file
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Figure 6.6: FOE Algorithm Parameters. The parameter ”Step” and the number of

sampling points are selected in a way that do not allow any sampling point to be closer

to any of the borders than ”Border” pixels.

Benchmark Max fingerprint proc. time Max AvgError on Good Images

FOE-TEST 10 seconds 7 degrees

FV-STD-1.0 10 seconds 7 degrees

Table 6.3: Execution constraints.

with a specific format: source code to save the file is provided in the download page. In

the output file, each orientation element must be stored in one byte in units of 0.703125

(180/256) degrees; for example, a byte orientation value of 128 represents 90 degrees

and a byte orientation value of 32 represents 22.5 degrees (note that a byte orientation
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Benchmark Minimum break

FOE-TEST 2 hour(s)

FOE-STD-1.0 1 day(s)

Table 6.4: Time-breaks constraints.

value of 255 is 179,296875 degrees and not 180 degrees). Each orientation angle shall be

measured increasing counter-clockwise starting from the horizontal axis to the right.

The algorithm is also required to write the file name of each processed fingerprint to

a named pipe, in order to inform the caller about its progress status.

C and C# language skeletons for Extractor.exe are available for download [3] to

reduce the participants implementation efforts. These source files perform all the nec-

essary I/O (including loading image and foreground, saving the orientation image and

writing to the named pipe).

During test execution the constraints shown in Table 6.3 will be enforced. Each al-

gorithm that violates one of the these constraints results in an execution failure and no

performance indicators are provided. The time-breaks constraints shown in Table 6.4

are enforced between two consecutive submissions to the same benchmark by the same

participant.
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Chapter 7

FVC-onGoing Results

Performance evaluation of biometric systems is fundamental to stimulate the scientific

community on challenging research topics and to monitor the advance of the state-of-

the-art in the field.

In this chapter we present the results of two fingerprint recognition competitions

organized by the Biometric System Laboratory of the University of Bologna [2] in con-

junction with the International Joint Conference on Biometrics IJCB 2011 [1] held in

Washington DC (USA) and the International Conference on Biometrics ICB 2012 [4]

held in New Delhi (India).

Considering the benchmarks difficulty, some of the algorithms submitted achieved

very good accuracies; from the results and the participant self-description of the algo-

rithms it was possible to identify the most effective and promising approaches to the

various fingerprint recognition sub-problems (e.g., enhancement, alignment, etc.).

7.1 Fingerprint Verification Competition at IJCB2011

FVC-onGoing@IJCB11 is a fingerprint verification competition organized by the Bio-

metric System Laboratory of the University of Bologna [2] in conjunction with the Inter-

national Joint Conference on Biometrics IJCB 2011 [1]. Previous testing initiatives for

fingerprint recognition systems include the former FVC competitions [87] [88] [89] [25],

and several evaluations conducted by NIST [58].

The competition was based on the FVC-onGoing framework and benchmarks [3] and

open to companies, academic research groups and independent developers. A complete
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description of the FVC-onGoing framework and benchmarks can be found in chapter 6.

7.1.1 Competition Benchmarks

The following benchmarks (whose details can be found in chapter 6) were included in

the FVC-onGoing@IJCB11 competition:

• FV-STD-1.0: Contains fingerprint images acquired in operational conditions us-

ing high-quality optical scanners.

• FV-HARD-1.0: Contains a relevant number of difficult cases (noisy images, dis-

torted impressions, etc.) that makes fingerprint verification more challenging.

• FMISO-STD-1.0: Contains ISO templates created from fingerprint images ac-

quired in operational conditions using high-quality optical scanners.

• FMISO-HARD-1.0: Contains a relevant number of difficult cases (noisy images,

distorted impressions, etc.) that makes fingerprint verification more challenging.

7.1.2 Algorithm submission and publication

Thanks to the FVC-onGoing framework, the main steps of the competition were easily

automated:

• participant registration;

• algorithm submission;

• performance evaluation;

• reporting of the results.

In order to participate in FVC-onGoing@IJCB11, an algorithm had to be submitted

to one of the benchmarks described in section 7.1.1, and be published, before May 15th,

2011, in the public section of the web site.

Figure 7.1 shows the number of submitted and published algorithms by month. It

is well evident how the IJCB11 competition (announced in late January 2011) raised

the interest of the scientific community (both from academia and industry) in FVC-

onGoing. Before the organization of the FVC-onGoing@IJCB11, 672 algorithms had
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Figure 7.1: Double bar chart with the number of submitted and published algorithms by

month. The separator between 01-2011 and 02-2011 denotes the FVC-onGoing@IJCB11

announcement.

been submitted and 40 of them had been published in 19 months (about 35.4 submissions

and 2.9 publications per month). During the four months of the IJCB competition,

512 algorithms have been submitted and 13 of them have been published (about 128.0

submissions and 6.5 publications per month).

7.2 Results of FVC-onGoing@IJCB11

To compare algorithm performances, the following indicators were measured:

• Equal Error Rate (EER);

• FMR1000: the lowest FNMR for FMR.0.1;

• FMR10000: the lowest FNMR for FMR.0.01;
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Date Participant Type Algorithm Version EER FMR1000 FMR10000

15/05/11 AA Tech. Ltd. Company EMB9200 2.3 0.176 0.188 0.303

15/05/11 UnionCommunity Company Triple M 1.1 0.418 0.859 1.977

14/05/11 IACAS1 Academic MntModel 1.0 0.293 0.512 1.209

14/05/11 YZ+BFL2 Independent MiraFinger 2.2 6.701 67.475 84.488

14/09/10 Green Bit S.p.A Company GBFRSW 1.3.2.0 0.118 0.155 0.519

25/08/10 Robert Vanak Independent SourceAFIS 1.1 3.649 7.266 10.905

20/07/09 Neurotechnology Company MM FV 3.0 0.281 0.386 0.581

15/07/09 Secuest Inc. Company STAR 1.0 1.265 2.504 4.026

24/06/09 jFinger Co. Ltd. Company JF FV V1.21a 1.618 2.872 4.545

Table 7.1: Published results on FV-STD-1.0 benchmark (percentage values) sorted by

publication date.

• Detection-Error Tradeoff (DET) curve: a plot of FMR and FNMR that reports

system performance at any possible operating point (matching threshold).

A description of such indicators can be found in 2.8.

Tables 7.1, 7.2, 7.3 and 7.4 report EER, FMR1000 and FMR10000 indicators of the

best version of all the algorithms published on the four considered benchmarks.

For each benchmark, the best result on each indicator is highlighted in bold. Figures

7.4, 7.5, 7.6 and 7.7 show DET curves of all the algorithms listed in Tables 7.1, 7.2, 7.3

and 7.4, respectively.

Figures 7.2 and 7.3 tries to categorize the algorithms based on the features they

exploit and processing stages they implement. This information is extracted from the

web-based questionnaires that participants have to fill when they submit an algorithm.

7.2.1 Results over the FV Benchmarks

From DET curves in Figures 7.4 and 7.5 it is evident that best competitors on bench-

mark FV-STD-1.0 and FV-HARD-1.0 are EMB9200-v2.3 and GBFRSW-v1.3.2.0.

By looking at the entries in Table 7.2 (and the extra data reported in [3]) for

EMB9200-v2.3 and GBFRSW-v1.3.2.0 we can conclude that for the most effective algo-

rithms:

1Institute of Automation - Chinese Academy of Sciences
2Yanbing Zhang & Bao Feng Lan
3Biometric System Laboratory - University of Bologna
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Date Participant Type Algorithm Version EER FMR1000 FMR10000

15/05/11 AA Tech. Ltd. Company EMB9200 2.3 0.700 1.247 1.817

15/05/11 UnionCommunity Company Triple M 1.1 2.021 4.420 8.447

14/05/11 IACAS1 Academic MntModel 1.0 1.257 2.795 4.436

14/09/10 Green Bit S.p.A Company GBFRSW 1.3.2.0 0.735 1.444 2.355

26/08/10 Robert Vanak Independent SourceAFIS 1.1 6.769 13.954 16.310

20/07/09 Neurotechnology Company MM FV 3.0 1.528 3.043 4.079

Table 7.2: Published results on FV-HARD-1.0 benchmark (percentage values) sorted by

publication date.

• enhancement/binarization is based on contextual filtering relying on the computa-

tion of local ridge orientation and frequency;

• fingerprint alignment mainly relies on minutiae. Using ridge geometry for align-

ment in conjunction with minutiae (see [61] [65] [84] for example) seems to help

GBFRSW-v1.3.2.0 to match good/medium quality fingerprints (FV-STD-1.0) but

not difficult cases (FV-HARD-1.0); as a side effect using ridge geometry leads to

higher matching time and larger template size;

• fingerprint matching exploits multiple features; beside minutiae, ridge count (or

local frequency) and local orientations are extensively used (see [90] for more de-

tails);

• minutiae alignment/matching is based on a two stage technique where an initial

local matching is followed by a global consolidation (see [70] [121] [40] [31]).

7.2.2 Results over the FMISO Benchmarks

From DET curves in Figures 7.6 and 7.7 it is evident that the best algorithms on bench-

marks FMISO-STD-1.0 and FMISO-HARD-1.0 are EMB9200-v2.41 and Triple M ISO-

v1.2. By looking at the entries in Figure 7.3 (and the extra data reported in [90])

for EMB9200-v2.41 and Triple M ISO-v1.2 we can conclude that for the most effective

algorithms:

• the performance of ’minutiae-only’ algorithms is very good and not far from pro-

prietary template algorithms;
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Date Participant Type Algorithm Version EER FMR1000 FMR10000

15/05/11 AA Tech. Ltd. Company EMB9200 2.41 0.234 0.292 0.444

14/05/11 IACAS1 Academic MntModel 1.0 0.380 0.505 0.819

24/03/11 UnionCommunity Company Triple M ISO 1.2 0.234 0.361 0.620

15/12/10 Suprema, Inc. Company SFCore 1.0 0.258 0.346 0.639

30/11/10 Communik8 Ltd. Company Authentik8 1.0 1.017 2.475 10.473

15/09/10 Robert Vanak Independent SourceAFIS 1.3 1.334 2.002 2.900

22/07/10 BioLab3 Academic MCC 1.1 0.570 0.884 1.331

02/04/10 id3 Semiconductors Company FM ISO 1.0 0.559 0.783 1.147

12/10/09 Tiger IT Bangladesh Company Tiger ISO 0.1 0.317 0.447 0.866

26/09/09 APRO TECH. LTD. Company APF FMISO 1.1 0.582 0.801 1.057

20/07/09 Neurotechnology Company MM FMISO 3.0 0.598 0.801 1.234

Table 7.3: Published results on FMISO-STD-1.0 benchmark (percentage values) sorted

by publication date.

Date Participant Type Algorithm Version EER FMR1000 FMR10000

15/05/11 AA Tech. Ltd. Company EMB9200 2.41 1.113 2.076 3.282

14/05/11 IACAS1 Academic MntModel 1.0 1.588 2.821 3.965

24/03/11 UnionCommunity Company Triple M ISO 1.2 1.103 3.157 7.878

15/12/10 Suprema, Inc. Company SFCore 1.0 1.407 2.697 4.570

22/07/10 BioLab3 Academic MCC 1.1 2.315 4.876 6.206

09/03/10 id3 Semiconductors Company FM ISO 1.0 2.400 4.260 6.605

26/09/09 APRO TECH. LTD. Company APF FMISO 1.1 2.552 4.581 5.963

20/07/09 Neurotechnology Company MM FMISO 3.0 2.430 4.607 6.139

Table 7.4: Published results on FMISO-HARD-1.0 benchmark (percentage values) sorted

by publication date.

• all the minutiae information, including the minutia type (i.e., bifurcation, ridge

ending or other) and the minutia quality are exploited;

• minutiae alignment/matching is based on a two stage technique where an initial

local matching is followed by a global consolidation(see [70] [121] [40] [31]).
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Figure 7.2: Characteristics of the algorithms published in FV benchmark area.

Figure 7.3: Characteristics of the algorithms published in FMISO benchmark area.

7.3 Fingerprint Orientation Extraction Competition

at ICB2012

FOE@ICB12 is a fingerprint orientation extraction competition organized by the Bio-

metric System Laboratory of the University of Bologna [2] in conjunction with the In-

ternational Conference on Biometrics ICB 2012 [4].

This is the first online competition for orientation extraction algorithms. It is based

on the FVC-onGoing framework and benchmarks [3] and open to companies, academic re-
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Figure 7.4: DET graph of the published algorithms on FV-STD-1.0 benchmark.

Figure 7.5: DET graph of the published algorithms on FV-HARD-1.0 benchmark.
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Figure 7.6: DET graph of the published algorithms on FMISO-STD-1.0 benchmark.

Figure 7.7: DET graph of the published algorithms on FMISO-HARD-1.0 benchmark.
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search groups and independent developers. A complete description of the FVC-onGoing

framework and benchmarks can be found in chapter 6.

7.3.1 Competition Benchmarks

The following benchmark (whose details can be found in chapter 6) was included in the

FOE@ICB12 competition:

• FOE-STD-1.0: Fingerprint orientation extraction benchmark on fingerprints ac-

quired using optical scanners.

The benchmark contains 60 fingerprints of good and bad quality with the corresponding

manually marked orientation ground-truth. Even if the benchmark contains just 60

fingerprints, the total number of orientation estimates is 108,822.

7.3.2 Algorithm submission and publication

The submission and publication of algorithms is easily automated thanks to the FVC-

onGoing framework. In order to participate to the competition the participant, after the

registration, had submit his algorithms according to the FOE protocol before November

21st, 2011, in the public section of the website.

7.4 Results of FOE@ICB12

To compare the algorithm performances, the AvgError indicator was measured. Such

indicator is described in Equation 4.4.

Table 7.5 reports the AvgError indicator of all algorithms published on the FOE-

STD-1.0 benchmark. By looking the table we can see that the participants to this

competition are mostly academic and independent developers. Companies in general are

more interested in matching competitions.

The best result on this benchmark has been achieved by the MXR algorithm. Un-

fortunately we do not have access to the method details, but from the form filled by

the participant before the submission we can just see that it is based on local-gradient

estimations and a parametric global model. The first version of the algorithm (1.0.1)
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Date Participant Type Algorithm Version GoodRMSD BadRMSD

22/11/11 Antheus Tech. Inc. Company AntheusOriEx 1.1.4 5.46◦ 17.06◦

18/11/11 Zengbo Xu Independent MXR 1.0.5 5.59◦ 11.36◦

08/11/11 BioLab4 Academic Adaptive-3 (Baseline) v0.2 5.93◦ 13.27◦

30/10/11 Zengbo Xu Independent MXR 1.0.1 6.15◦ 13.00◦

23/08/11 IACAS5 Academic ROF 1.0 5.39◦ 12.30◦

22/11/10 UNSW@ADFA6 Academic FOMFE 1.0 6.70◦ 21.44◦

19/07/10 BioLab4 Academic Gradient (Baseline) 1.0 5.86◦ 21.83◦

Table 7.5: Published results on FOE-STD-1.0 benchmark sorted by publication date.

obtains an AvgError of 13.00◦ on the bad quality dataset. With the adoption of a reg-

ularization approach based on scar detection (version 1.0.5) the performance is further

improved. In the competition our algorithm Adaptive-3 has been published as baseline

algorithm with the same parameters used in chapter 5 and a slight modification in the

regularization parameter µ.

The FVC-onGoing framework provides, for each algorithm published in the FOE

benchmark area, some useful distributions:

• orientation deviation distribution (Bad Quality);

• orientation deviation distribution (Good Quality);

• average error distribution (Bad Quality);

• average error distribution (Good Quality).

For each dataset (Good quality or Bad Quality):

• the orientation deviation distribution graph plots, for each specific deviation inter-

val (expressed in degrees), the number of orientation elements that deviate from the

true orientation. This distribution is computed over the whole set of orientations

to estimate and should be sharply peaked around zero degrees for an algorithm

that estimates correctly most of the orientations;

5Institute of Automation - Chinese Academy of Sciences
4Biometric System Laboratory - University of Bologna
6School of Engineering and Information Technology, UNSW@ADFA
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• the average error distribution graph plots the number of fingerprints in the dataset

with a specific average orientation error (expressed in degrees). In this graph, just

the interval [0-10] should be filled is the algorithm estimates correctly the orienta-

tions in all the provided fingerprints. This performance can be easily achieved for

good quality fingerprints, while it is a very difficult for bad quality fingerprints.

Figure 7.8 and 7.9 show the four aforementioned distributions for the Adaptive-3 and

MXR algorithms.
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(a) (b)

(c) (d)

Figure 7.8: Distributions for the Adaptive-3 algorithm. Graphs (a) and (b) plot the

orientation deviation distribution for the bad and good datasets respectively. Graphs (c)

and (d) plot the average error distribution for the bad and good datasets respectively.
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(a) (b)

(c) (d)

Figure 7.9: Distributions for the MXR algorithm. Graphs (a) and (b) plot the orientation

deviation distribution for the bad and good datasets respectively. Graphs (c) and (d)

plot the average error distribution for the bad and good datasets respectively.
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Chapter 8

Concluding Remarks and Future

Work

8.1 Conclusions

This Thesis has considered the problem of improving a fingerprint recognition system; it

is divided in three main parts covering three important aspects: the fingerprint enhance-

ment, the orientation extraction and the automatic evaluation of fingerprint algorithms.

After a summary of the state-of-the-art in fingerprint recognition methods (chapters

1 and 2), a new fingerprint enhancement method, which is both iterative and contextual,

has been proposed in chapter 3. This approach detects automatically high-quality regions

in fingerprints, and selectively applies contextual filtering starting from automatically-

detected high-quality regions and then iteratively expanding like wildfire to low-quality

ones. The proposed algorithm does not require any prior information like local orienta-

tions or frequencies. The improvements given by this algorithm have been assessed over

both real and synthetic fingerprints with a state-of-the-art matcher (MCC).

The fingerprint local orientation has been shown to be a critical feature for most of

fingerprint recognition systems. Its extraction is very difficult especially for noisy finger-

prints. The orientation extraction problem has been introduced and reviewed in chapter

4. The introduction of a new taxonomy, which includes learning-based approaches, has

been motivated by several experimental results on a new specifically-designed prelimi-

nary benchmark. The same benchmark has been further extended in chapter 6.

The fingerprint orientation extraction has been improved in chapter 5 following two
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directions. First, several variants of state-of-the-art orientation extraction methods (local

and global) have been implemented and, pointing out the role of pre- and post- process-

ing, we have improved baseline methods. Second, the introduction of a new hybrid

orientation extraction method, which follows an adaptive scheme, allowed us to improve

significantly the orientation extraction in noisy fingerprints. The proposed method is

called adaptive because it uses both the local information and the experience, repre-

sented by the knowledge of plausible fingerprint orientation structures, to compute the

best orientation in a given point. Results of an extensive testing phase are also reported.

The lack of a publicly available framework to compare fingerprint orientation extrac-

tion algorithms, has motivated (chapter 6) the creation of a new benchmark area in the

FVC-onGoing framework called FOE along with fingerprint matching benchmarks. It is

constituted of fingerprint images, orientation ground-truth and a metric. The success of

such online framework for the automatic evaluation of fingerprint algorithms, has been

discussed in chapter 7 by providing statistics on the large number of participants: more

than 1500 submitted algorithms and two international competitions.

8.2 Future Work

The work carried out in this Thesis encourages the following research directions.

• Latent Fingerprints Enhancement. Latent fingerprints (or latents) are an im-

portant source of evidence in crime scene investigation to identify and convict the

suspects. The automatic feature extraction in latent fingerprints is a challenging

problem due to their poor quality in terms of the clarity of the ridge information as

well as the overlap of the region of interest with structured noise in the background

(text, lines, stains, speckles). While a rolled fingerprint contains a large number

of minutiae, in latents this number is considerably reduced. A latent identifica-

tion algorithm should avoid the human intervention and rely on a robust feature

extraction. An example of bad quality latent fingerprint with the corresponding

rolled impression is shown in figure 8.1.

• Orientation Extraction with Deep Learning Models. Learning-based mod-

els represent a promising methodology for the fingerprint orientation extraction

problem. Among various learning paradigms, we believe that good results may

be achieved exploiting the deep learning paradigm [10]. Deep learning methods
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Figure 8.1: A latent fingerprint (left) and the corresponding rolled fingerprint (right).

Figure 8.2: Fingerprint overlapping (left) with the individual components (center, right).

aim at learning hierarchical structures of features where the features at high levels

are based on a combination of low-level features. This learning paradigm can be

defined biologically-inspired because of analogies with the architectural depth of

human brain. The learning algorithm greedily trains one level at time, exploiting

an unsupervised learning algorithm for each layer. Typical deep learning architec-

tures are the Restricted Boltzman Machine (RBM), Deep Belief Networks (DBN),

Auto-encoders and Denoising Autoencoders [49] [10]. We have conducted some

preliminary learning experiments with Denoising Autoencoders in order to build a

hierarchical structure of orientation features in fingerprints. The features are learnt

125



8. Concluding Remarks and Future Work

from the coarse orientation field of a fingerprint and its orientation ground-truth.

After the learning step, the global orientation is represented by high-level features

while local orientations represents low-level features.

• FVC-onGoing. The FVC-onGoing architecture can be improved in many ways:

i) new benchmarks, in existing benchmark areas, can be added; ii) new fingerprint

benchmark areas for other problems can be added (i.e. indexing, classification);

iii) the whole system can be extended to other biometrics like palmprints or iris.

• Separating Overlapped Fingerprints. Fingerprint overlapping is a problem

that mainly occurs in latent fingerprints lifted from crime scenes or in live-scan fin-

gerprint images when the scanner surface contains residue of preceding fingerprints.

It is desiderable to develop a method that automatically separates overlapped fin-

gerprints in their individual fingerprints such that the matching is improved. The

separation of overlapped fingerprints is a new problem and just few works have

been published on this topic [28][27]. Current methods produce results that with

noisy fingerprints are still unsatisfactory. Figure 8.2 shows an overlapping (on the

left) and the individual fingerprints (center, right) that we want to isolate.
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The author contributed to the following scientific publications during the timeframe of

his PhD:

• Raffaele Cappelli, Davide Maltoni, Francesco Turroni, ”Benchmarking Local Ori-

entation Extraction in Fingerprint Recognition”, ICPR, pp.1144-1147, 2010 20th

International Conference on Pattern Recognition, August 2010, Istanbul (Turkey).

Abstract. The computation of local orientations is a fundamental step in finger-

print recognition. Although a large number of approaches have been proposed in the

literature, no systematic quantitative evaluations have been done yet, mainly due to

the lack of proper datasets with associated ground truth information. In this paper

we propose a new benchmark (which includes two datasets and an accuracy metric)

and report preliminary results obtained by testing four well-known local orientation

extraction algorithms.

• Turroni, F.; Maltoni, D.; Cappelli, R.; Maio, D.; , ”Improving Fingerprint Orienta-

tion Extraction,” IEEE Transactions on Information Forensics and Security, vol.6,

no.3, pp.1002-1013, Sept. 2011.

Abstract. Computation of local orientations is a primary step in fingerprint recog-

nition. A large number of approaches have been proposed in the literature, but no

systematic quantitative evaluations have been done yet. We implemented and tested

several well know methods and a plethora of their variants over a novel, specifically

designed, benchmark, made available in the FVC-onGoing framework. We proved

that parameter optimizations, pre- and post-processing stages can markedly improve
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accuracy of the baseline methods on bad quality fingerprints. Finally, in this paper

we propose a novel adaptive method which selectively exploits accuracy of local-

based analysis and learning-based global methods, thus achieving the overall best

performance on a challenging dataset.

• Raffaele Cappelli, Matteo Ferrara, Davide Maltoni and Francesco Turroni, ”Fin-

gerprint Verification Competition at IJCB2011”, IJCB11, International Joint Con-

ference on Biometrics, October 2011, Washington USA.

Abstract. This paper summarizes the results of the fingerprint verification com-

petition organized in conjunction with IJCB 2011. The competition focused on

benchmarks covering both proprietary encoding and ISO template format. Con-

sidering the benchmarks difficulty, some of the algorithms submitted achieved very

good accuracy: a 0.7% EER and a 1.1% EER were obtained on two challenging

benchmarks, using proprietary and ISO template formats, respectively. Based on

the participant self-description of the best performing algorithms we tried to figure

out the most promising building-block technologies.

• Francesco Turroni, Raffaele Cappelli and Davide Maltoni, ”Fingerprint Enhance-

ment using Contextual Iterative Filtering”, ICB12, International Conference on

Biometrics, March 2012, new Delhi, India.

Abstract. The performance of Automatic Fingerprint Identification Systems (AFIS)

relies on the quality of the input fingerprints, so the enhancement of noisy images

is a critical step. We propose a new fingerprint enhancement algorithm that selec-

tively applies contextual filtering starting from automatically-detected high-quality

regions and then iteratively expanding to low-quality ones. The proposed algorithm

does not require any prior information like local orientations or frequencies. Exper-

imental results over both real (FVC2004 and FVC2006) and synthetic (generated

by the SFinGe software) fingerprints demonstrate the effectiveness of the proposed

method.
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