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PREFACE 

 

The present thesis work has been developed towards the direction of providing an objective 

method finalized to the definition of food quality, by identification of suitable chemical 

parameters among a wide range of choices. Since foodstuffs are complex mixtures of 

substances with a large dynamic range of concentrations, it is restrictive to give importance 

to a limited number of nutrients in the definition of quality. In fact, whatever is the preferred 

choice, arbitrariness is introduced in the weight that is attributed to every parameter, 

selected on the only basis of the current knowledge and on the available instrumentations. 

Spectroscopies earn, from this point of view, notable success because they are able to give, 

in only one shot, a picture enough general of the chemical composition of foods. The limits 

of their widespread application are set by the fact that the most promising of them, e.g. 

Nuclear Magnetic Resonance, is also the least sensitive instrumental technique available to 

the analysts. However, as the limits of sensitivity are gradually going to diminish with the 

advent of cryoprobes, the attractiveness of NMR is raising more and more, also in virtue of 

the fact that such a defect is however compensated by the wealth of information. Many 

chemical parameters are deducible, at once, from a single NMR spectrum, otherwise 

obtainable with a long series of alternative analysis. In literature, indeed, the articles that 

describe one-shot polyvalent analysis of foods are largely proliferated in the last decade. 

Since the information becomes more complex and overwhelming, it is more and more 

pressing the necessity to individuate statistic methods able to extract the useful information 

and to discard the useless data. Often, the statement “too much information means noise” is 

expressed to underline the difficulty to find discriminant features among plenty of data. The 

research work carried out during the three years of this thesis is an example of symbiotic 

integration between instrumental and multivariate analyses, the former giving spectra to be 

transformed in vectors of long sequence of numbers, the latter extracting from such strings 

the parameters necessary to objectively depict the quality of foods. The case study is 

focused on the definition of the differences that make the “pomodoro di Pachino” worth to 

be protected, with a European Quality Mark, from the attempts to use in a fraudulent way its 

name for tomatoes of different quality. For an Italian food scientist, it is mandatory to find 

the way to protect, from imitations, such a vegetable product which is, together with olive oil 

and mozzarella, the fundamental ingredients of the most famous Italian food: that is "pizza". 
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1 INTRODUCTION 

 

1.1 FOOD QUALITY 

 

The quality of foods is of primary importance for both consumers and industries, at all levels 

of the production process, from raw materials to finished products. Quality standards have 

been established through the requirement of quality labels, that specify the chemical 

composition of each product, and its authentication is essential to avoid unfair competition 

that can create a destabilized market and disrupt the regional and national economy. Thus, 

scientists researching in the field of food and beverage industry are faced with many 

different quality control tasks, e.g., making sure that flavors meet certain standards, 

identifying changes in process parameters that may lead to a change in quality, detecting 

adulteration in any ingredient, and identifying the geographical origin of raw materials.  

Many of these quality control issues have traditionally been assessed by panels of experts, 

who are able to determine a product's quality by observing their organoleptic characteristics 

such as color, texture, taste, aroma, etc. However, it takes years of experience to acquire 

these skills. It would therefore be advantageous if there were a way for food scientists to 

measure the quality of a product by instrumental analyses. 

 

1.1.1 Instrumental analyses for the evaluation of food quality 

 

Many techniques are used and are usable to carry out analytical control with the final goal of 

food characterization or adulteration detection. High-performance liquid chromatography 

(HPLC), for example, represents one of the most widely used techniques as a quality control 

tool, because it can separate various chemical constituents of mixtures. Numerous chemical 

compounds have been extensively analyzed by HPLC either for food products 

characterization or to detect adulteration [1-8]. 

In addition, gas chromatography (GC) is used for separating volatile organic compounds and 

GC-MS coupling is the most widely used hyphenated technique even if the use of GC-FTIR 

(gas chromatography with Fourier transform infrared spectroscopy) is increasingly adopted 

because it gives some structural information on the chemical functional groups of the 



Introduction 

 

2 

molecules but at lower costs than GC-MS and with less maintenance. GC is generally used to 

discriminate among different varieties of the same product, adulteration detection, and 

organic compound authentication and identification [9-11]. 

The determination of nitrogenous content in food products such as cheese, milk, or honey is 

usually performed with numerous techniques based on the chemical properties of protein, 

peptides, and/or amino acids. Most of these are spectrophotometric or fluorometric 

techniques [12-15], also employed to characterize other classes of substances, such as fatty 

acids, sugars, vitamins, or mineral elements, entering in the composition of a wide variety of 

food products [16-19].  

Others very useful techniques for the determination of the mineral content in food products 

are the Atomic Absorption/Atomic Emission (AAS/AES) and Inductively Coupled Plasma-

Atomic Emission (ICP-AES) analytical techniques, that found their principal application in 

multi-element analysis of wines[20], sugar[21], fruit [22, 23], cheeses [24], and honeys [25, 

26].  

Furthermore, Isotope Ratio Mass Spectrometry (IRMS) has been widely applied for the 

determination of food authenticity and also for origin control in honey and many other food 

products [27]. Since the elemental isotopic abundance in biological products varies in 

relation to natural processes, IRMS provides important information for studies with different 

finalities. The isotopic signatures of bio-molecules depend upon geographical parameters, 

and seasonal effects [28]. For example, the measurements of stable isotope ratio of light 

elements (2H/1H, 15N/14N, 13C/12C, 18O/16O, 34S/32S) and of heavy element 87Sr/86Sr (a trace 

element), have been used to detect regional provenance and supply authenticity control 

information for products like fruit juices, wine, milk, butter and cheese [26, 28-32]. These 

analyses point out chemical differences between food samples originating from a specific 

region and, conversely, similarities between foodstuffs produced in different regions. In 

other words, stable isotope analysis enables the differentiation of chemically identical 

substances, but with different origins, through their specific isotopic fingerprints. 

A complementary technique to the chemical analytical methods mentioned above is 

Differential Scanning Calorimetry (DSC). It is the most widely used among all thermal 

analysis techniques and has a great utility in quality assurance of food. This technique 

measures the difference in energy transfer to a sample and to a reference material, as a 

function of time or temperature, while the sample and the reference material are subjected 

to a controlled time-temperature program. So it provides qualitative and quantitative 



Introduction 

 

3 

information regarding transitions in materials that involve endothermic (e.g. melting) or 

exothermic processes (e.g. crystallization) or changes in heat capacity (e.g. glass transition). 

Proteins are the main food components studied by thermal analysis including studies on 

conformational changes of these macromolecules, thermal denaturation of tissue proteins, 

food enzymes and enzyme preparations for the food industry, as well as effects of various 

additives on their thermal properties [33-35]. Frozen foods are also monitored by DSC to 

measure their thermal properties, and to estimate the state of their constituent water, 

naturally presents in foods or added as ingredient in food preparations. Moreover DSC is 

used to determine gelatinization behavior of starches and interaction of starch with other 

food components [36-41]; to characterize polysaccharides and to study their phase 

transitions during baking processes [42]; to observe change in lipid composition during 

fusion or crystallization of fats [43]; to predict oil stability during thermal oxidative 

decomposition of edible oils. At last research in food microbiology utilizes DSC in better 

understanding thermoadaptive mechanisms or heat killing of food-borne microorganisms. 

Since multiple interactions can arise between food components and lead to some 

modifications of the thermal behavior of foods [44, 45], a good understanding of their 

thermal properties has great value for a good definition of product quality [46-55] and for 

detecting alteration [56] or adulteration [57-59]. 

 

1.2 NUCLEAR MAGNETIC RESONANCE (NMR) IN FOOD SCIENCE 

 

In recent years, the constantly growing potentiality of Nuclear Magnetic Resonance (NMR) 

methods has found an increasing application in the field of food chemistry. During the past 

50 years NMR spectroscopy first and Magnetic Resonance Imaging (MRI) later, has evolved 

from being expensive, academic and not appropriate for industrial applications into an 

extremely powerful analytical technique able to elucidate chemical structures, molecular 

conformations and dynamics of food constituents in the liquid or solid state. 

The great advantage of NMR in complex systems such as foodstuffs is that the spectroscopic 

method properly filters the information that is observed by the spectrometer. At the most 

basic level, signals from only one kind of nucleus (e.g. 1H, 13C, 31P, 15N, 23Na, etc.) are 

observed at a time.  
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Different nuclei give rise to characteristic spectral lines, in different position, depending on 

the different chemical environment. Therefore, it is possible to observe a specific nucleus in 

a particular environment even in complex structures, both in solution and in the solid state. 

In literature, numerous applications in complex food systems are published: NMR is used to 

examine the chemical and physical characteristics of meat, fish, dairy products, vegetables, 

fruits, juices, pastries, cheese, wine and emulsified materials. Specific properties can be 

measured, including freeze-thaw, percent alcohol, fruit ripeness [60], sugar content, 

moisture content, state of water, oil/water ratio, saturate versus unsaturated fatty acid 

content, food adulteration [61]. NMR applications also include the determination of enzyme 

activity and water macromolecular interactions, the detection of bacterial spoilage and the 

study of rheology and mixing in multi-phase process streams. All of these measurable 

parameters ultimately lead to keep control of product quality and many of these 

characterizations can be made on-line and thus influence processes control. Nowadays, 

different NMR experiments and devices, such as low-resolution NMR, Site-Specific Natural 

Isotopic Fractionation–NMR (SNIF-NMR), Magnetic Resonance Imaging (MRI) and high-

resolution NMR, are available and yield different information. 

 

1.2.1 Low-Field NMR (LF-NMR) spectroscopy 

 

Most low-field NMR applications involve the measurement of spin–spin (T2) and/or spin–

lattice (T1) relaxation times, which are related to specific physical properties, such as 

viscosity, surface area and moisture content. Other applications involve analysis of the FID 

or spin–echo signals to yield quantitative information relating to the concentrations of 

individual components, which can be distinguished by virtue of different T2 values [62]. 

Low-field, NMR spectroscopy has been extensively used in foodstuffs analyses, such as the 

determination of moisture [63-68], fat [69-71], hydrogen and fluorine contents [72, 73]. 

The spin–lattice relaxation time (T1) has also been measured on hen egg to evaluate the 

change of quality during its first few days of storage [74]. Moreover, it has been explored as 

parameter to be measured, with on-line NMR sensor, for assessing the egg quality in a non-

destructive and fast way. The study was focused mainly on the thick albumen trying to find 

correlations between its NMR properties and viscoelasticity, an important internal quality 

factor that, together with water content, decreases during storage [75]. The viscoelasticity of 

fresh thick albumen appears to be related to the existence of a cross-linked gel-like protein 
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network formed by the ovomucin–lysozyme complex. The change of viscoelasticity observed 

during the storage suggested that the nuclear relaxation times of water may be parallel to 

the modifications of the dynamic state of biopolymers’ network. The gradual degradation of 

this network during the storage, accounting for the progressive decrease in viscoelasticity, 

was found to correlate with water proton T1 measured at low-field, thus indicating that such 

an NMR parameter may be a good indicator of albumen transformation, a.k.a. the thinning 

phenomenon [74, 76]. Moreover an external unit was developed that permits using a 

commercial electromagnet spectrometer for measurements of T1 at very low fields by 

lowering its frequency down to the 700 kHz-1 MHz range [77]. The application of such an 

instrument, at 700 kHz, was demonstrated useful with hen shell eggs, whose relaxation time 

measured on its water protons can give an indication of the freshness of the egg. The very 

low resonance frequency allowed by such an external unit permits the highest discrimination 

between fresh and timed albumen. The constructive layout of the simple probe gave the 

capability of containing large samples, thus giving the possibility of performing non-

destructive analyses on whole shell eggs [77]. This feature, which also eliminates the risk of 

microbial contamination, makes the approach suitable for on-line applications. 

 

1.2.2 NMR-MObile Universal Surface Explorer (NMR -MOUSE) 

 

The concept of the NMR-MOUSE was first proposed in 1996 by Eidmann et al. [78] and 

further described by Blumich et al. [79] and Balibanu et al. [80]. The NMR-MOUSE is a small 

and portable LF-NMR system with a one-sided magnet layout that replaces the conventional 

magnet and probe on a bench-top LF-NMR system. This LF-NMR device allows unrestricted 

access to large intact samples, giving few restrictions to sample geometry. 

The potential of the NMR-MOUSE applied to food systems has been firstly evaluated in a 

study that has measured the concentration of oil and water in emulsions [81]. In a 

successive study has been developed a method for fat content measurements in live or 

slaughtered fish using the Bruker Professional Mouse®, supporting how this technique has 

good potential for the quantitative analysis of intact food products [82]. Moreover, the NMR-

MOUSE technique has been applied for measurements on beverages, contained in closed 

bottles, for determining the oxygen content in table superoxygenated water [83]. 

The version with a "semisingle-sided" sensor has been reputed an appropriate tool for 

nondestructive NMR relaxation measurements. The term "semisingle-sided" refers to the 
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open bay which receives the sample in a single-sided RF coil. This type of sensor has allowed 

much better sensitivity without sacrificing the necessary open access needed for 

measurements on entire food packages, such as bottles, making this sensor a tool for 

practical applications in food science.  

 

1.2.3 SNIF NMR 

 

SNIF-NMR®, stands for Site-Specific Natural Isotopic Fractionation studied by Nuclear 

Magnetic Resonance [84]. This type of spectroscopy, developed by G.J. Martin in 1980’s [85, 

86], is based upon the natural isotopic distribution of atoms inside molecules. The technique 

is able to determine the 2H/1H isotopic ratio of the different sites of a molecule. This 

information, supported by a robust database of geographical isotopic radio distribution, 

permits to individuate the botanic and geographic origin of natural substances such as 

sugars, ethanol, aromas, glycerol, fatty acids, etc. The main application of this technique has 

been so far the wine sector [EC Reg. n. 2676/90] but there are many other food and/or 

natural products, such orange juices [87], honey [88], olive oil and tobacco leaves [89] that 

are subjects of SNIF-NMR.  

 

1.2.4 Magnetic Resonance for Imaging (MRI) 

 

The NMR experiment, when performed in a magnetic field with a controlled gradient, 

provides spatial distribution of observed spins, i.e. the NMR image, rather than NMR 

spectrum. The NMR images give non-invasive pictures of cross-sections of biological objects. 

Combined with spectroscopy, NMR images give a detailed map of the physiological state of a 

studied model. 

The most widespread use of MRI is as a diagnostic tool in the field of medicine. However, 

over recent years MRI has been applied extensively in the food industry to obtain both 

structural and dynamic information of a wide variety of foodstuffs [90, 91]. 

The images can be quantified to yield information about several processes and material 

properties, such as mass and heat transfer, fat and ice crystallization, gelation, water 

mobility, composition and volume changes, food stability and maturation, flow behavior, and 

temperature [92]. For example, this technique has been used to map the internal structure 
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of fruit and vegetables. Monitoring the tissue morphology has allowed to study the quality of 

food in terms of its ripeness[93, 94] and bruising [95] or in terms of alteration upon freezing 

[96]. 

MRI has also been used to asses the quality of cheese by mapping or imaging moisture and 

fat contents, providing real-time and real-location information on the distribution of moisture 

and fat in cheese blocks, while the cheese blocks are being cured or cooled or aged [97]. 

 

1.2.5 High Resolution Nuclear Magnetic Resonance (HR-NMR) 

 

High-resolution nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for 

the identification of pure organic compounds, but in the last fifteen years the use of NMR in 

chemically complex and highly heterogeneous systems, has consistently grown thanks to the 

development of 2D and multiD experiments [98, 99]. 

The success of this technique is due to the current availability of NMR equipments of high 

magnetic field strength (800-900 MHz) and to the development of cryogenic probe 

technologies. The latter have significantly increased the sensitivity of the systems, affecting 

experimental time and/or concentration of compounds needed to obtain adequate spectra 

[100]. 

These high-field devices, combined with the use of two-dimensional (2D) homonuclear and 

heteronuclear correlated techniques using pulsed field gradients, have facilitated the 

identification of specific compounds in complex mixtures without purification or severe and 

time-consuming extractions which generate qualitative and quantitative modifications [101]. 

Capitalizing its growing potentiality to solve spectra of complex mixtures and to quantify the 

corresponding components without chemical separation, high-field NMR methods have found 

an increasing application in the field of food chemistry [102-104]. 

The advantages of the NMR technique with respect to other analytical methods are the non 

invasive approach, preserving food structure, the high specificity and selectivity reachable, 

and the possibility to provide information on a wide range of metabolites in a single 

experiment. NMR also supports the food industry in its increasing need to understand and be 

innovative in products and process and provides a new method to enforce legislation and 

control quality [105-112]. A well-known example is the authentication of olive oil by using 
13C NMR spectroscopy [113-115]. As mentioned in the reference work, the fatty acid 

amount, as well as the saturated, monounsaturated and polyunsaturated fatty acid ratios has 
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been determined from a single 13C NMR spectrum. Moreover the presence of unsaturated 

trans-isomers was detected, and the distribution of fatty acids on the glycerol chain was 

determined [114, 116, 117]. 

Finally, many relevant NMR studies have been published on high resolution NMR techniques, 

finding chemical details on different types of food and drinks which include wine [118-121], 

olive oil [113-115] [116, 117], coffee [122-124], fruit juices [125, 126], tomatoes [127], 

vegetables [128], milk and dairy products [129-132], meat [133] and flour [134]. 

 

1.3 NOTIONS ON NMR SPECTROSCOPY 

 

NMR spectroscopy investigates on matter by studying its magnetic nuclei by aligning them 

along a very powerful external magnetic field and perturbing this alignment using an 

electromagnetic field. The resulting response to the external perturbing electromagnetic field 

is the phenomenon that is observed and exploited in nuclear magnetic resonance, both 

spectroscopy and imaging. 

 

1.3.1 Discovery 

 

The first step in the discovery of the NMR phenomenon begun in the 1930’s with the 

pioneering works of the scientists Gorter, Stern, Gerlach and Rabi. Gorter attributed the 

coining of the phrase "nuclear magnetic resonance" to Rabi, in a publication which appeared 

in the Netherlands in 1942 [135]. Only in 1946, independently from each other, two 

scientists working in the United States described a physical-chemical phenomenon depending 

on the magnetic properties of certain nuclei. When introduced into a strong magnetic field, 

these nuclei would adsorb energy, by resonance, in the radio-frequency interval of 

electromagnetic radiations and re-emit this energy afterwards. The observation that different 

atoms within a single molecule resonate at different frequencies, at a given magnetic field 

strength, allows discovering of a wide range of information about the chemistry and the 

structure of the molecule. 

The phenomenon was called nuclear magnetic resonance (NMR) because the magnetic field 

strength and the radio-frequency must match each other: nuclear because only the nuclei of 

the atoms react; magnetic because it happens in a magnetic field; and resonance because of 
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the direct dependence of field strength and frequency. For this discovery the two scientists, 

Felix Bloch and Edward M. Purcell, were awarded the Nobel Prize in Physics in 1952.  

The concept of "chemical shift", which is at the basis of spectroscopy, was exposed for the 

first time in the article published by Proctor and Yu in 1950, titled: "The Dependence of a 

Nuclear Magnetic Resonance Frequency upon Chemical Compound"[136]. 

 

1.3.2 Continuous wave (CW) spectroscopy 

 

At its beginning, and for the first few decades, nuclear magnetic resonance spectrometers 

utilized a technique called continuous-wave (CW) spectroscopy, even if this technique may 

be performed in two different manners: either the magnetic field is kept constant and the 

oscillating electromagnetic field is scanned in frequency to diagram the resonant frequencies 

of the nuclei present or, more often, the oscillating field is set at a fixed frequency 

(continuous wave) and the magnetic field is varied looking for all the frequencies involved in 

NMR phenomenon in the analyzed system. The limit of CW spectroscopy is that it 

investigates each frequency separately, in succession. This makes CW experiments rather 

slow and, because magnetic resonance phenomenon is, for the reasons below explained, 

intrinsically insensitive, the resulting spectra suffer from a poor signal-to-noise ratio (S/N). A 

way to overcome such a poor signal-to-noise ratio is that it can be improved by signal 

averaging. The latter is a method where the NMR signals from many successive scans are 

added together. The random character of the noise leads to average the noise itself toward 

the normal baseline oscillations, while the actual nuclei signal is constant and additive. For 

this reasons several scans of the sample submitted to NMR analysis are often required in 

order to obtain an adequate S/N ratio but obviously this determines an increase of the 

experiment time. 

1.3.3 Pulsed NMR spectroscopy and Fourier’s transform. 

 

In the mid 1960’s Richard R. Ernst successfully preformed the first experiments with the 

technique presently known as "Fourier transform nuclear magnetic resonance spectroscopy" 

(FT-NMR). For that he won the Nobel Prize in chemistry in 1991. A great consequence of this 

improved NMR technique was that the time required for a single scan was dramatically 

reduced by allowing a range of frequencies to be probed at once. Successively this technique 
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has been made more and more practical and affordable with the development of two 

technologies: the knowledge of how to create an array of frequencies at once and computers 

capable of performing the computationally-intensive mathematical transformation of the data 

from the time domain to the frequency domain to produce a spectrum. In FT-NMR the 

sample, put into a static external strong magnetic field, is irradiated with a very short (of the 

order of μs) square pulse of radiofrequency energy containing all the frequencies in the 

range of interest. This is possible because the Fourier decomposition of an approximate 

square wave, for the Heisenberg uncertainty principle, contains contributions from all the 

frequencies in the neighborhood of the main frequency. The polarized magnets of the nuclei, 

when exposed to this radiofrequency energy, start to precess together, determining an 

oscillation of the surrounding magnetic field that is observable because it will induce current 

in a surrounding coil of conductive material. When the radiofrequency pulse is ended and, 

consequently, the associate energy is not further provided, the precessions decay to the 

equilibrium state making the polarization vector aligning with the field. 

The strength of the magnetic field determines the frequency at which magnetic resonance of 

the nucleus to be studied occurs. The stronger the magnetic field applied the higher the 

resonance frequency, the greater the spectral resolution, the higher the sensitivity of the 

instrument, and the better the spectrometer. 

Modern NMR spectrometers have now superconducting magnets providing the strongest 

magnetic fields obtainable with the present technology. The most common nucleus to be 

observed by NMR is that of hydrogen, although most of the elements in the periodic table 

have at least one isotope sensitive to NMR. 

The fact that not less than 99.9% of organic molecules and compounds contain at least one 

hydrogen proton make NMR spectroscopy the perfect tool for investigating natural organic 

products. This has led to the common use of the hydrogen resonant frequency for a given 

NMR spectrometer as a measure of the magnetic field strength of that spectrometer. NMR 

spectrometers that use permanent or electromagnets range from 10 MHz up to 100 MHz, 

while spectrometers with superconducting magnets range from 200 MHz to, until now, 900 

MHz. 

High resolution NMR (HR-NMR) spectrometers are still very expensive and require specialized 

technicians for their use and maintenance. However, the high spectral resolution achieved by 

these instruments is not always required in every research field and hence lately many low 

field instruments have been developed and commercialized. These instruments use 

permanent or electronic magnets compatible with small dimensions, similar to those of other 
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bench-top analytical instruments, and are resulted perfect for many research field among 

which also food chemistry. 

The initial cost and maintenance of these instruments is affordable for most of research 

laboratories and their use is simpler than high filed spectrometer. Normally the range of their 

magnetic field intensity varies between 0.23 and 0.70 Tesla (T) corresponding to 10 to 30 

MHz Larmor’s frequency for 1H protons. However, there are examples of applications 

suggested at much lower magnetic field like that one described for the home made external 

device used in the direct analysis of intact shell eggs (see Section 1.2.1). 

Since they are cheaper, smaller, lighter and less sensitive to fluctuations in environment and 

magnetic field than HR Spectrometers they represent, very likely, the future of NMR for 

industrial on-line applications. 

 

1.3.4 Theoretical principles 

1.3.4.1 Nuclear Magnetic Resonance phenomenon 

 

Every atomic nucleus possesses an electric charge and in some of them, because of the 

rotation (spinning) around the nuclear axis, this induces a magnetic dipole oriented along the 

rotational axis. Likewise electrons, these atomic nuclei present an intrinsic property called 

"spin angular momentum" such as that, if they are put into a magnetic field, they can 

assume only two different states or orientations denoted with the Greeks letters α and β 

(Figure 1.1). 

 

 
Figure 1.1: Effect of the external magnetic field on the 

orientation of the nuclear magnetic dipole 

 

B0

α state 

β state 
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Spin angular momentum is a quantized property and it can assume different integer or half-

integer values for a given nucleus. Protons and neutrons possess a spin angular momentum 

whose value can be +½ or –½ and inside a given atomic nucleus, protons can pair with 

other antiparallel protons in the same way that electrons pair in a chemical bond. Neutrons 

behave in the same way. The resulting net value of spin in the case of paired particles is 

equal to zero "0" but a nucleus with unpaired protons and neutrons will have a non-zero 

overall spin, with the number unpaired contributing ½ to the overall nuclear spin quantum 

number I. 

 

Table 1.1: Magnetic properties of some nuclei [137] 

I Atomic 
mass 

Atomic 
number Example (I) 

Half-integer Odd Odd or even  )N(), O(), H( 2
115

72
517

82
11

1  
Integer Even Odd  B(3)N(1), H(1), 10

5
14
7

2
1  

Zero Even Even N(0)O(0), C(0), 34
16

16
8

12
6  

 

When this number is not equal to zero, a nucleus will present a spin angular momentum and 

an associated magnetic moment, μ, depending on the direction of the spin. It is this 

magnetic moment μ that is possible to exploit in every NMR experiment.  

Examples of nuclei of this type, interesting for NMR applications, are: 
1H (Natural abundance = 99.98%) 
13C (Natural abundance = 1.1%) 
15N (Natural abundance = 0.37%) 
31P (Natural abundance = 100%) 
17O (Natural abundance = 0.038%) 
23Na (Natural abundance = 100%) 

If a nucleus presenting this characteristics is put, as affirmed above, into a magnetic field of 

intensity B0 (directed along the z-axis) then the two states α and β present different energy 

level and hence a ΔE is revealed. Since 

 

ΔE = h ν    Equation 1.1 

and also  

ΔE = (hγ/2π) B0   Equation 1.2 
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where h is the Plank’s constant and B0 represents the magnetic field intensity, it is possible 

to induce transitions between the two states using an electromagnetic radiation with 

opportune frequency ν.  

Furthermore, since h, γ and π are constant, ΔE is proportional to B0. For this type of 

energetic gap, the involved frequencies fall into the radio-frequencies interval between 100 

and 1000 MHz, depending on the magnetic field intensity. The fundamental NMR equation 

that relates an involved radiofrequency v1 with the magnetic filed intensity is: 

 

v1 = (γ/2π) B0  Equation 1.3 

 

For instance if B0 = 1.4 Tesla (14000 Gauss) then a value of v1 = 60 MHz (corresponding to 

a radio frequency with λ = 5 m) is required to fulfill the equation. 

The constant γ is called gyromagnetic ratio and it is a fundamental nuclear constant 

proportionally related with the magnetic moment μ and the spin quantum number I: 

 

γ = 2π μ/h I  Equation 1.4 

 

Unlike UV and IR spectroscopies, in NMR the value of ΔE is extremely small: for this reason 

the α state population (Nα) (energetically more stable and then more crowded in agreement 

with Boltzmann’s distribution) has only an excess of about 0.005 % with respect to the β 

state population (Nβ).  

 

Nβ / Nα = e ̶ ΔE/kT  Equation 1.5 

 

This determines that the NMR spectroscopy technique has a relatively low sensitivity with 

respect to UV and IR techniques. Nevertheless, this lack is more than compensated because 

of the plenty of information that is possible to collect in a single NMR spectrum. 

Increasing the magnetic filed B0 increases the difference between the two Boltzmann levels 

and hence the sensitivity of the NMR technique as well as it becomes more sensitive at lower 

temperatures (cryoprobes equipped spectrometers) where the S/N ratio is increased by a 

much lower noise (Figure 1.2). 
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Figure 1.2: Difference between the two Boltzmann levels affecting the sensitivity of the NMR technique 

 

If the nucleus is viewed as a rotating particle immersed in an external magnetic field, the 

magnetic axis of this nucleus precedes around the z-axis of the stationary magnetic field B0 

in the same way as a whipping-top precedes under the influence of the gravity (Figure 1.3). 

 

 
Figure 1.3: Precession of nuclear magnetic axis about the external 

magnetic field B0 vector 
 

An array of equivalent protons randomly preceding around z-axis produces a net 

macroscopic magnetization M0 along this axis but not in the xy plane (Figure 1.4). When the 

provided radiofrequency v1 is equal to precession frequency of the equivalent protons 

(Proton Larmor Frequency vL, in MHz), the magnetic resonance is achieved and the NMR 

fundamental equation can be rewritten as: 

 

vL = v1 = (γ/2π) B0   Equation 1.6 

 

ΔE
I = ½

E

Increasing magnetic field intensity (B0) 

Nβ 

Nα 

Spin = –½, β 

Spin = +½, α 

 

B0 

Nuclear magnetic dipole μ

rotating 

Orbit precession 
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This equation can be applied to an isolated array of protons. The aim of a radiofrequency 

pulse is to tilt the net magnetization vector onto the horizontal plane xy of the reference 

Cartesian system by which it is possible to measure the resulting magnetization component 

in such a plane. 

 

 
Figure 1.4: Macroscopic magnetization M0 along the z-axis 

 

If the sample is irradiated along the x-axis with a radiofrequency pulse (oscillating magnetic 

field B1) containing the Larmor’s frequencies of the examined nuclei (i.e. 1H), then these 

nuclei will adsorb the associated energy with a consequent spin state transition. At a 

macroscopic level it’s possible to observe that the net macroscopic magnetization vector M0 

rotate from the z-axis toward the xy horizontal plane, starting a precession rotation around 

the z-axis (M). Since the radiofrequency is not further provided to the system it will return 

the adsorbed energy and a receiving coil, disposed along the xy horizontal plane, will start to 

measure the oscillation of the y component of M. Because of relaxation phenomena, the 

adsorbed energy of an atom is transferred to the other surrounding atoms and the M vector, 

with a decreasing spiral of precession around the z-axis, slowly return to the initial position 

M0 where the y component is equal to zero (Figure 1.5). 

 

 
Figure 1.5: Perturbation of the macroscopic magnetization M0 after a radiofrequency pulse 

and subsequent relaxation 
 

x y 

M0

z 

y x 

z 
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The duration of the radiofrequency pulse, t(p), has to be accurately determined in order to 

obtain a strong NMR signal. If t(p) is strong enough to determine a 90° tilt of the vector M0 

then the maximum value of the y component will be achieved. Normally t(p) is of the order 

of μs. The signal acquired is an electromagnetic radiation with frequency ν, the Larmor’s 

frequency of the nucleus examined, that tends to decay in the time (Figure 1.6). This 

characteristic oscillatory decay is known as the Free Induction Decay (FID). 

 

 
Figure 1.6: Oscillatory decay of the NMR signal known as Free 

Induction Decay (FID) 
 

Successively, thanks to the calculation power of modern computers, the mathematical 

function known as Fourier transformation converts in real time this time-dependent pattern 

into a frequency-dependent pattern of nuclear resonances giving origin to characteristic 

nuclear magnetic resonance spectrum in which every different investigated nucleus presents 

its own signal (Figure 1.7). 

 

 
Figure 1.7: Fourier transformation of the FID signal: the spectrum of pure 

ethanol 
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Each magnetic nucleus that absorbs this radio-frequency energy will then radiate it back at a 

very specific frequency originating a specific signal in the NMR spectrum in agreement with 

the "chemical shift" theory. 

 

1.3.4.2 Chemical shift 

 

In molecules nuclei appear inside atoms and they are surrounded by electrons that react to 

B0 giving rise to an additional induced magnetic field (Bind) opposite to B0. Each nucleus 

senses an actual magnetic field equal to B0 – Bind or, as it is usually expressed, (1-σ)B0, 

where σ is called the "shielding constant". Since the value of the shielding constant depends 

largely on the variation in electron density in the neighborhood of each nucleus, NMR-active 

atoms placed in different molecular locations may thus attain resonance at a slightly different 

frequency as compared to "naked" nuclei of the same kind. This phenomenon is at the basis 

of the great success of NMR because the resonance frequency of a nucleus is characteristic 

of a specific chemical environment in which it is located. For example, an electron 

withdrawing group decreases the electron density (hence the shielding constant) at a nearby 

nucleus. This "deshielded" nucleus resonates at an higher frequency than the one necessary 

for the same nucleus in a not electron withdrawing environment. Likewise, a proton bound 

to an sp2 carbon is expected to be more deshielded than a proton bound to an sp3 carbon, 

owing to the increased electronegativity of the former carbon resulting from bond orbitals 

hybridization with an higher s character. 

However, a problem arises because the resonance frequency also depends linearly on the 

applied B0. For this reason a "chemical shift" (σ) scale in units of part per million (ppm) is 

used in which the position of each line is given by difference (measured in Hz) from the 

resonance line of an internal standard divided by the operating frequency of the 

spectrometer expressed in MHz.  

The chemical shift scale is independent of the external magnetic field and it is thus 

convenient for comparing data obtained with different spectrometers. The reference 

chemical shift standard (σ = 0 ppm) for 1H and 13C NMR spectroscopy is tetramethysilane 

(TMS), (CH3)4Si. TMS has been chosen because it is unreactive, readily soluble in most 

common solvents and easily removed owing to its low boiling point (28 °C). More 

importantly, it yields an NMR line that does not overlap with the NMR signals of most organic 

compounds. In fact, since silicon is less electronegative than carbon, it produces an electron 
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density increase at carbon and hydrogen and makes both nuclei more shielded than any 

other common organic compound. As a result, the 1H and 13C TMS lines appear at one edge 

of the corresponding NMR spectrum. A chart summarizing the chemical shifts of carbon and 

protons associated with the most common functional groups is provided in Figure 1.8. 

 
Figure 1.8:  1H and 13C chemical shift ranges for common proton (white fill) and carbon (black 

fill) environments in organic molecules. Hatched fill indicates overlap. [138] 
 

1.3.4.3 Tuning, Locking and Shimming 

 

Matching and tuning are operations that must be performed before the FID acquisition in 

order to optimize the instrumental conditions to the sample characteristics. Specifically, since 

the probe receives the sample within wires working like an antenna and radio-frequency 

waves cannot be efficiently sent over regular wires, the main effect is that the energy 

transfer requires pulses so long that become selective and no more able to cover all the 

spectral width. For this reason it is necessary to change the impedance of wires in order to 

prevent signal losses due to bad RF power transfer by matching and tuning.  
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Locking is a step, in the acquisition of spectra, which permits to keep the radiofrequency of 

the transmitter locked (referenced) to the 2H frequency of a certain deuterium nucleus 

belonging to an abundant species, i.e. the solvent. When it is locked on that frequency, the 

spectrum peaks are not shifting any more during the data acquisition time, while magnet 

field is always drifting. Another reason of locking is that shimming is usually based on the 

lock signal. 

Shimming is the operation that improves the magnetic field homogeneity in the sample by 

changing the current intensity in supplemental wires that function as magnetic lenses, thus 

aligning the force lines in the part of the sample comprised within the receiver coil. When the 

magnetic field homogeneity is optimized, it will be possible to get sharp and symmetric 

peaks. In order to better explain the effects of such operations on the quality of the NMR 

spectra three 1H-NMR spectra have been recorded on the same sample of grape juice at 400 

MHz, changing the instrumental conditions. The spectrum relative to the best instrumental 

conditions is shown in Figure 1.9. Only a restricted region of the spectra is shown to better 

pick the details of such an influence. 
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Figure 1.9:  Sugars’ region of the 1H-NMR spectrum of grape juice 

recorded in optimized shimming conditions. 
 

A badly shimmed magnetic field produces the dramatic effect that is possible to observe in 

Figure 1.10.  
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Figure 1.10: Sugars’ region of the 1H-NMR spectrum of grape juice 

recorded in bad shimming conditions. 
 

In this situation, since the frequency is tuned, signals are intense but very broad, 

determining a certain loss of the spectral features. A well shimmed magnetic field coupled 

with a non tuned frequency produces a spectra having a quite good resolution but showing a 

very low signal to noise rate. In such a way signals of the substances present in the smallest 

concentration inside the food sample are buried by the noise, thus lost. The absolute 

intensities of the signals are very low as it is possible to observe in Figure 1.11.  
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Figure 1.11: Sugars’ region of the 1H-NMR spectrum of grape juice 

recorded in bad tuning conditions. 
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1.3.4.4 Fine structure in a NMR spectrum 

 

In a hydrogen NMR spectrum, the presence of resonances explains first that the molecule of 

study contains hydrogen. Second, the number of signals in the spectrum shows how many 

different positions there are on the molecule to which hydrogen is attached. The frequency 

of a particular resonance in the NMR spectrum is referred to as the chemical shift. This is the 

most important measurable part of the NMR spectrum and contains information about the 

environment of each hydrogen atom and the structure of the compound under study. The 

third bit of information that an NMR spectrum provides is the ratio of the areas of the 

different bands, thus explaining the relative number of hydrogen atoms that exist at each 

position on a given molecule. This ratio is direct evidence of the structure of molecular 

structure and must correspond absolutely to any proposed structure before that structure 

may be considered correct. 

Finally, the complex structure of the bands may contain information about the distance that 

separate the various hydrogen atoms through covalent bonds and the spatial arrangement of 

the hydrogen atoms attached to the molecule, including conformational diversity. 

Normally this type of information is clear and understandable only for pure substances or for 

simple mixtures of them.  

But, when the examined sample is a complex matrix, such as biofluids or food matrices, 

hundreds of molecules, and then thousands of protons, can participate to the final spectrum 

shape with the consequence of an unavoidable overlap of signals that makes the complex 

interpretation of the 1D-NMR spectrum not always (rarely) achievable. Therefore, the 

information associated would be unusable and the advantages of this spectroscopic 

technique would be precluded. Is there a solution for this type of cases? Fortunately in the 

last century mathematical and statistical tool have been developed in order to make easier 

the life for NMR scientists and help them in understanding the meaning of their too complex 

data. First of all a simplification of the data collected is required in order to better 

understand the information here contained, as well as an analysis of the data that take in 

account every variable in a multi-way manner. This is exactly what Chemometrics do! 

In order to better understand how chemometrics works it is necessary an introduction to its 

statistical tools. 

 

 

 



Introduction 

 

22 

1.4 CHEMOMETRICS 

 

In 1974 Svante Wold defined chemometrics as "The art of extracting chemically relevant 

information from data produced in chemical experiments…//...in analogy with biometrics, 

econometrics, etc." [139]. 

Chemometrics, like other "-metrics" techniques, make use of different kinds of mathematical 

models (high information models, ad hoc models, and analogy models) and requires 

knowledge of statistics, numerical analysis, operation analysis etc. In other words 

chemometrics is the field of extracting information from multivariate chemical data using 

tools of statistics and mathematics. However, the main problem for Wold is not mathematical 

but how to organize chemical data in a form that can be related to mathematical models. 

Following this criterion Wold, after 20 years, was not able to update the definition of 

chemometrics otherwise that: "How to get chemically relevant information out of measured 

chemical data, how to represent and display this information, and how to get such 

information into data" [139]. 

It is relatively easy to generate a good deal of data in a short time by proper use of 

spectroscopies, but, as it has already explained, it is not always straightforward getting 

useful results from a set of spectral data. Determining the amounts of the components of a 

mixture can often be problematic without a prior separation step because of the overlap of 

spectral responses. Identifying the components of a mixture can also be challenging because 

of the similarity of many spectral responses. Initially, the solution to these problems has 

been that to increase spectral resolution or, as in the case of the quantitative analysis, to 

enhance the spectral resolution by means of a prior separation step. Many of these 

spectroscopic fixes, adopted in order to solve the problem of extracting understandable and 

significant results from data, work worst than one might expect, given only an apparent 

"information" in a spectral scan. Furthermore, huge amounts of data generate by 

spectroscopic measurements, often result redundant. Indeed, since the chemical and 

physical basis for the spectroscopic transition(s) observed are not perfectly unique to a single 

species and for a very isolated set of energies, the data generated have often a high 

correlation. 

For this reasons, in the last decades, spectroscopists have increasingly turned to 

chemometrics for finding an effective help in dealing with spectral data. In fact, chemometric 

methods are efficient at extracting unique information from multichannel redundant data 

such as spectra. Moreover, these methods presume serial correlation that can be found in 
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spectra and are designed to use it to improve the precision of any estimation made from the 

data. 

 

1.4.1 Preprocessing of raw data 

 

Nuclear magnetic resonance analysis of complex samples such as foodstuff, produces data 

that frequently have to be arranged before their successive analysis. The original FIDs, 

representing NMR raw data, must be at first processed trough Fourier transformation, 

accurate spectral phasing and baseline correction, exact chemical shift referencing and 

scaling, in order to be considered suitable for statistical analysis. The differences on the 

spectral shape, due to tuning and shimming errors, must be checked and corrected, in the 

same way as the FID processing must not introduce any unwanted variance in the 

transformed spectra. Nevertheless, even when a correct FID processing is performed, still an 

eventual abscissa residual variance may produce unaligned spectra more difficult to be 

interpreted [140]. For example, temperature variations or differences of relative 

concentration in the background matrix of the sample may cause these variations [141]. The 

misalignment of spectral signals in different samples may be also associated to chemical shift 

variations of the signal assigned to a given nucleus belonging to the same substance but 

experiencing a different chemical environment, e.g. solvent polarity, ionic strength or 

different pH. In fact, molecules having protons sensitive to pH produce different 1H-NMR 

chemical shifts of such protons depending on their ionization state. Other environmental 

effects can also influence chemical shifts, including metal ions concentrations, metabolite-

protein binding, and chemical exchange phenomena. Obviously, any research study, based 

on such affected NMR data, may present missing and/or false information, among the true 

ones, and therefore the information inferred can lead to erroneous conclusions. For these 

reasons, chemometric tools able to preprocess data for making them suitable for successive 

multivariate analysis steps, have increasingly developed and utilized in the last years. 
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1.4.1.1 Data Alignment 

 

"Binning" is, so far, one of the most common method, able to make a spectral dataset more 

homogeneous. It involves a data reduction performed through NMR signals integration, 

within standardized spectral regions whose width arbitrary ranges between 0.01 and 0.05 

ppm [142, 143]. This operation results in a decrement of the errors due to either unwanted 

shifts and changes of the line shape of peaks. On the other hand, binning may hide 

significant variations in the concentration of low components when their signals overlap 

those of other molecules present at much higher concentrations. The effect is expressed as a 

loss of spectral resolution that often can results a drawback. In effect, the interpretation of 

derived chemometric models in terms of identified metabolic biomarkers, can not easily be 

obtained from the reduced data, but requires reexamination of the real NMR spectra to 

identify such metabolites responsible for the observed patterns. For this reason, when high 

definition is required in order to keep every useful spectroscopic information, it would be 

preferable to avoid binning and looking for some other chemometric tools. For example 

Needle Representation (NR) keeps all the information related to the true signals, but 

reducing the total amount of variables to submit to following (if any) improving algorithms [144]. 

An alternative, more complex approach is that of using automatic peak alignment algorithms, 

able to resolve the problem of signal position variation in 1H-NMR spectra and allowing the 

use of the full spectral resolution for pattern recognition. For example, Stoyanova et al. [145] 

removed the signals' positional noise using Principal Component Analysis (see Section 

1.4.2.1) to determine the misalignment across a series of biofluid NMR spectra. Furthermore, 

methods involving the application of a genetic algorithm to align segments of spectra have 

also been used, [146, 147]. Other examples of peak alignment methods are reported in 

literature such as that using reduced set mapping (PARS) [144, 148, 149], dynamic time 

warping [150, 151], correlation-optimized warping [152, 153], partial linear fit [154] and a 

method by Johnson et al. [155] again based on PCA results. 

 

1.4.1.2 Data Normalization 

 

Normalization (vertical scaling of data) is another crucial preprocessing step for all the 

"-omics" approaches [156]. It mainly corrects dilution errors occurring among samples but 

also some other due to instrumental variables, such as tuning of the instrument or radio-
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frequency power settings. In addition, also a variable content of an unwanted species (e.g. 

water) on the samples can determine such a type of errors. Even if the use of an internal 

standard can often help to solves this problem, not all the time this can be used or, if used, 

can be not effective in solving the problem. 

For this reason, a large variety of algorithms, able to perform a normalization of NMR data, 

have been published and, even if the "total integral to a Constant Sum (CS)" represent de 

facto the standard for most of recent studies [156], some other methods, such as 

"probabilistic quotient normalization" [157], demonstrate that normalization is context 

dependent and CS is not always the best solution. 

 

1.4.1.3 Data Centering and Scaling 

 

In many kinds of multivariate data analysis methods, it is common practice to perform 

preprocessing steps such as scaling and centering transformations [158, 159]. Without this 

preprocessing step, variables expressed by higher number or defined in a large range, would 

have more weight than variables expressed by smaller number or defined in a narrow range. 

To avoid this situation it is suitable to uniform all the variables in order to have the same 

weight a priori. The most common method are i) Centering that consists in subtracting the 

mean value from each variable (Equation 1.7) 
 

 XXY ii −=     Equation 1.7 

 

and ii) Scaling that is performed by dividing each centered variable by its standard deviation 

(Equation 1.8). 
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This can assist methods, such as PCA, that are sensitive to scale, by giving to each variable 

an equal chance of influencing the models parameters. 

 

All the previous listed methods differ in their theoretical approach and computational 

complexity but they all have the same purpose to pre-process spectral data in order to make 

the successive statistical analysis more reliable and meaningful. 
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1.4.2 Principal Chemometric Tools 

 

Chemometrics is typically used for one or more of three primary purposes: 

• To explore patterns of association in data; 

• To track properties of materials on a continuous basis; 

• To prepare and use multivariate classification models. 

 

Exploratory data analysis can reveal hidden patterns in complex data by reducing the 

information to a more comprehensible and manageable form. Such a chemometric analysis 

can expose possible outliers and indicate whether there are patterns or trends in the data. 

Algorithms such as Principal Component Analysis (PCA) (see Section 1.4.2.1) and 

Hierarchical Cluster Analysis (HCA) are designed to reduce large and complex data sets into 

a series of optimized and interpretable views. These views emphasize the natural groupings 

of the data and show which variables most strongly influence those patterns [160]. 

In many applications, it is expensive, time consuming or difficult to directly measure a 

property of interest. Such cases require the analyst to predict something of interest based on 

related properties that are easier to measure. The goal of chemometric regression analysis is 

to develop a calibration model which correlates the information in the set of known 

measurements to the desired property. Chemometric algorithms for performing regression 

include Partial Least Squares (PLS) and Principal Component Regression (PCR) and are 

designed to avoid problems associated with noise and correlations in the data. Because the 

utilized regression algorithms are based in Factor Analysis (FA), the whole group of known 

measurements is considered simultaneously, and information about correlations among the 

variables is automatically built into the calibration model. Chemometric regression lends itself 

to the on-line monitoring and process control industry, where fast and inexpensive systems 

are needed to test, predict and take decisions about product quality. 

Furthermore, many applications may require that samples be assigned to predefined 

categories, or "classes". This may involve determining whether a sample is good or bad, or 

predicting an unknown sample as belonging to one of several distinct groups. A classification 

model is used to predict a sample's class by comparing the sample to a previously analyzed 

experience set, in which categories are already known. K-Nearest Neighbor (KNN), Soft 

Independent Modeling of Alass Analogy (SIMCA) and Linear Discriminant Analysis (LDA) (see 

Section 1.4.2.2) are main chemometric workhorses. When these techniques are used to 

create a classification model, the answers provided are more reliable and include the ability 
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to reveal anomalous samples in the data. In all kind of classification methods is of critical 

importance the distance measure for data value. The most commonly used distance 

measures are the Euclidean Distance (ED) and the Mahalanobis Distance (MD) (see Section 

1.4.2.3). The latter is a very useful way of determining the "similarity" of a set of values from 

an "unknown" sample to a set of values measured from a collection of "known" samples. 

 

1.4.2.1 Principal Component Analysis (PCA) 

 

Principal Components Analysis (PCA) is a multivariate procedure which rotates the data such 

that maximum variabilities are projected onto the axes [161]. Essentially, a set of correlated 

variables are transformed into a set of uncorrelated variables which are ordered by reducing 

variability. The uncorrelated variables are linear combinations of the original variables, and 

the last of these variables can be removed with minimum loss of real data. 

The main use of PCA is to reduce the dimensionality of a data set while retaining as much 

information as is possible. It computes a compact and optimal description of the data set. 

The first principal component is the combination of variables that explains the greatest 

amount of variation. The second principal component defines the next largest amount of 

variation and is independent to the first principal component. There can be as many possible 

principal components as there are variables. 

What PCA performs, can be viewed as a rotation of the existing axes to new positions in the 

space defined by the original variables. In this new rotation, there will be no correlation 

between the new variables defined by the rotation. The first new variable contains the 

maximum amount of variation, the second new variable contains the maximum amount of 

variation unexplained by the first and orthogonal to the first, etc. 

Principal component analysis is based on the statistical representation of a random variable. 

Supposing a random vector population x, where: 

 

 
T
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and the mean of that population is denoted by: 

 

 { }xEx =μ     Equation 1.10 
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and the covariance matrix of the same data set is: 

 

 { }T
xxx xxEC ))(( μμ −−=   Equation 1.11 

 

The components of xC , denoted by ijc , represent the covariances between the random 

variable components ix and jx . The component iic  is the variance of the component ix . 

The variance of a component indicates the spread of the component values around its mean 

value. If two components ix  and ix  of the data are uncorrelated, their covariance is zero 

( )0== jiij cc . The covariance matrix is, by definition, always symmetric.  

From a sample of vectors Mxx ,,.........1  it is possible to calculate the sample mean and the 

sample covariance matrix as the estimates of the mean and the covariance matrix. From a 

symmetric matrix such as the covariance matrix, it is calculated an orthogonal basis by 

finding its eigenvalues and eigenvectors. The eigenvectors ie  and the corresponding 

eigenvalues iλ  are the solutions of the equation: 

 

 nieeC iiix ,....1, == λ    Equation 1.12 

 

For simplicity it is assumed that the iλ  are distinct. These values can be found, for example, 

by finding the solutions of the characteristic equation: 

 

 0=− ICx λ     Equation 1.13 

 

where the I is the identity matrix having the same order than xC and the  denotes the 

determinant of the matrix. If the data vector has n components, the characteristic equation 

becomes of order n. 

This is easy to solve only if n is small. Solving eigenvalues and corresponding eigenvectors is 

a non-trivial task, and many methods exist. One way to solve the eigenvalue problem is to 

use a neural solution to the problem [162]. The data is fed as the input, and the network 

converges to the wanted solution. By ordering the eigenvectors in the order of descending 

eigenvalues (largest first), one can create an ordered orthogonal basis with the first 
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eigenvector having the direction of largest variance of the data. In this way, it is possible to 

find directions in which the data set has the most significant amounts of energy. 

Suppose one has a data set of which the sample mean and the covariance matrix have been 

calculated. Let A  be a matrix consisting of eigenvectors of the covariance matrix as the row 

vectors.  

By transforming a data vector x, it is obtained: 

 

 ( )xxAy μ−=     Equation 1.14 

 

which is a point in the orthogonal coordinate system defined by the eigenvectors. 

Components of y can be seen as the coordinates in the orthogonal base. It is possible to 

reconstruct the original data vector x  from y  by: 

 x
T yAx μ+=     Equation 1.15 

 

using the property of an orthogonal matrix TAA =−1 . The TA is the transpose of a matrix 

A . The original vector x was projected on the coordinate axes defined by the orthogonal 

basis. The original vector was then reconstructed by a linear combination of the orthogonal 

basis vectors.  

Instead of using all the eigenvectors of the covariance matrix, it is possible to represent the 

data in terms of only a few basis vectors of the orthogonal basis. If the matrix having the K 

first eigenvectors is denotet as rows by KA , a similar transformation can be create as seen 

above: 

 

 ( )xK xAy μ−=    Equation 1.16 

and 

 x
T

K yAx μ+=     Equation 1.17 

 

This means that it projects the original data vector on the coordinate axes having the 

dimension K and transforms the vector back by a linear combination of the basis vectors. 

This minimizes the mean-square error between the data and this representation with given 

number of eigenvectors. If the data is concentrated in a linear subspace, this provides a way 

to compress data without losing much information and simplifying the representation. By 
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picking the eigenvectors having the largest eigenvalues it is lost as little information as 

possible in the mean-square sense. 

One can e.g. choose a fixed number of eigenvectors and their respective eigenvalues and 

get a consistent representation, or abstraction of the data. This preserves a varying amount 

of energy of the original data. Alternatively, approximately the same amount of energy can 

be chooses together with varying amount of eigenvectors and their respective eigenvalues. 

This would in turn give approximately consistent amount of information in the expense of 

varying representations with regard to the dimension of the subspace. 

At this point one is here faced with contradictory goals: on one hand, one should simplify the 

problem by reducing the dimension of the representation. On the other hand, one want to 

preserve as much as possible of the original information content. PCA offers a convenient 

way to control the trade-off between loosing information and simplifying the problem at 

hand. Then the question becomes: how many factors is wanted to be extracted? Note that 

as consecutive factors are extracted, they account for less and less variability. The decision 

of when to stop extracting factors depends on when there is only very little "random" 

variability left. The nature of this decision is arbitrary; however, various guidelines have been 

developed [163]. The two most useful methods are the Kaiser criterion and the scree test. 

 

The Kaiser criterion retains only factors with eigenvalues greater than 1. In essence this is 

like saying that, unless a factor extracts at least as much as the equivalent of one original 

variable, it is dropped. This criterion was proposed by Kaiser [164], and is probably the one 

most widely used.  

 

The scree test is a graphical method, first proposed by Cattell [165], suggesting to find the 

place where the smooth decrease of eigenvalues appears to level off to the right of the plot. 

To the right of this point, presumably, one finds only "factorial scree" ("scree" is the 

geological term referring to the debris, which collects on the lower part of a rocky slope).  

Both criteria have been studied in detail [166-169]. Theoretically, one can evaluate those 

criteria by generating random data based on a particular number of factors. One can then 

see whether the number of factors is accurately detected by those criteria. Using this general 

technique, the first method (Kaiser criterion) sometimes retains too many factors, while the 

second technique (scree test) sometimes retains too few; however, both performed quite 

well under normal conditions, that is, when there are relatively few factors and many cases. 
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In practice, an additional important aspect is the extent to which a solution is interpretable. 

Therefore, one usually examines several solutions with more or fewer factors, and chooses 

the one that makes the best "sense". 

1.4.2.2 Linear Discriminant Analysis (LDA) 

 

Linear Discriminant Analysis (LDA) easily handles the case where the within-class frequencies 

are unequal and their performances have been examined on randomly generated test data. 

This method maximizes the ratio of between-class variance to the within-class variance in 

any particular data set thereby guaranteeing maximal separability. 

In general, an object is assigned to one of a number of predetermined groups based on 

observations made on the object. Note that the groups are known or predetermined and do 

not have order (i.e. nominal scale). 

LDA is also closely related to PCA in that both look for linear combinations of variables which 

best explain the data. LDA explicitly attempts to model the difference between the classes of 

data. PCA on the other hand does not take into account any difference in class [170]. 

LDA works when the measurements made on each observation are continuous quantities. 

When dealing with categorical variables, the equivalent technique is called Discriminant 

Correspondence Analysis (LDC) [171]. 

 

LDA for two classes considers a set of observations x (also called features, attributes, 

variables or measurements) for each sample of an object or event with known class y. This 

set of samples is called the training set. The classification problem is then to find a good 

predictor for the class y of any sample of the same distribution (not necessarily from the 

training set) given only an observation x. 

LDA approaches the problem by assuming that the probability density functions )1( =yxp r
 

and )0yx(p =
r

 are both normally distributed, with identical full-rank covariances 

 

 Σ=Σ=Σ == 1y0y     Equation 1.17 

 

It can be shown that the required probability )0( =xyp r
depends only on the dot product 

 

 xr
r
⋅ω where )( 01

1 μμω rrr
−Σ= −   Equations 1.18 and 1.19 
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That is, the probability of an input x being in a class y is purely a function of this linear 

combination of the known observations. 

A similar analysis that allows the covariances to be different is called quadratic discriminant 

analysis (QDA) [172]  

The terms Fisher's linear discriminant and LDA are often used interchangeably, although 

Fisher's original article "The Use of Multiple Measures in Taxonomic Problems" actually 

describes a slightly different discriminant, which does not make some of the assumptions of 

LDA such as normally distributed classes or equal class covariances [173]. 

Supposing two classes of observations having means 1,0 == yy μμ rr
 and covariances 

10y , == ΣΣ  the linear combination of features xrr
⋅ω  will have means iy=⋅ μω rr

 and variances 

ωω
rr

iy
T

=Σ  for i = 0, 1. Fisher defined the separation between these two distributions to be 

the ratio of the variance between the classes to the variance within the classes: 
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This measure is, in some sense, a measure of the signal-to-noise ratio for the class labeling. 

It can be shown that the maximum separation occurs when 

 

 )()( 0y1y
1

10 ==
−

== −Σ+Σ= μμω rrr
  Equation 1.21 

 

When the assumptions of LDA are satisfied, the above equation is equivalent to LDA. 

 

Multiclass LDA is an improved LD method that can deal with a multiple set of classes. 

Supposing C classes having means iμ
r

 and covariance matrices iΣ  with i = 1,...,C the 

decision boundaries of these C classes if given by the quadratic terms  

 

Jj
1

j
T

jii
1

i
T

i nl)x()x(nl)x()x( Σ+−Σ−=Σ+−Σ− −− μμμμ rrrrrrrr
 Equation 1.22 

 

 xr  is the vector of all samples iμ
r

 is a vector with the mean values of each feature 

When the class distributions share the same covariance matrix, ji,ji ≠∀Σ=Σ , the 

equations 1.22 results in linear boundaries. This led this extension of the work pioneered by 
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Fisher (which was originally only defined for the 2 class problem) to be known as Linear 

Discriminant Analysis. 

Under the assumption of equal covariance matrices (also known as homoscedastic), LDA 

provides those C-1 features where the Bayes error is minimized. This operation can be 

shown to reduce to the following eigenvalue decomposition problem: 

 

 ΛΣ= V   VSB     Equation 1.23 

 

where BS  is the between-class scatter matrix and Σ is the average over all iΣ  

LDA is not guarantee however to find the best optimal solution for a set of less than C-1 

features (even if the data is homoscedastic), and is very sensitive to the number of samples 

used. A common way to improve the accuracy and robustness of this approach is to add a 

regularization term to the estimate of Σ . In general this can be written as I   εΣ + , where 

I is the identity matrix and ε  is small. Other generalizations of LDA have been defined to 

address the more general problem of heteroscedastic distributions (i.e., where the data 

distributions are not homoscedastic). These are usually called Heteroscedastic LDA. 

Alternatively, one can use QDA. In practice, the class means and covariances are not known. 

They can, however, be estimated from the training set. Either the maximum likelihood 

estimate or the maximum a posteriori estimate may be used in place of the exact value in 

the above equations. Although the estimates of the covariance may be considered optimal in 

some sense, this does not mean that the resulting discriminant obtained by substituting 

these values is optimal in any sense, even if the assumption of normally distributed classes is 

correct. Another complication in applying LDA and Fisher's discriminant to real data occurs 

when the number of observations of each sample exceeds the number of samples (and this 

is the case of the study considered in the present thesis). In this case, the covariance 

estimates do not have full rank, and so cannot be inverted. There are a number of ways to 

deal with this. One is to use a pseudo inverse instead of the usual matrix inverse in the 

above formulae. Another, called regularized discriminant analysis, is to artificially increase 

the number of available samples by adding white noise to the existing samples. 

These new samples do not actually have to be calculated, since their effect on the class 

covariances can be expressed mathematically as 

 

 I2σCCnew +=     Equation 1.24 
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where I is the identity matrix, and σ is the amount of noise added, called in this context the 

regularization parameter. The value of σ is usually chosen to give the best results on a cross-

validation set. The new value of the covariance matrix is always invertible, and can be used 

in place of the original sample covariance in the above formulae. 

LDA can be generalized to multiple discriminant analysis, where c becomes a categorical 

variable with N possible states, instead of only two. Analogously, if the class-conditional 

densities )icx(p =
r

are normal with shared covariances, the sufficient statistic for 

)xc(P r
are the values of N projections, which are the subspace spanned by the N means, 

affine projected by the inverse covariance matrix. These projections can be found by solving 

a generalized eigenvalue problem, where the numerator is the covariance matrix formed by 

treating the means as the samples, and the denominator is the shared covariance matrix. 

 

1.4.2.3 Leave One Out (LOO) cross-validation 

 

Though a powerful method, LDA has some drawbacks. Since it is a supervised technique, 

LDA has a tendency to overfitting [174] in small-sample-size problems, where the 

dimensionality is higher than the sample size. To avoid overfitting problem cross-validation 

methods, frequently the leave-one-out test (LOO) is applied. 

Leaving-one-out is an elegant and straightforward technique for estimating classifier error 

rates. For a given method and sample size, n, a classifier is generated using (n - l) cases and 

tested on the single remaining case. This is repeated n times, each time designing a 

classifier by leaving-one-out. Thus, each case in the sample is used as a test case, and each 

time nearly all the cases are used to design a classifier. The error rate is the number of 

errors on the single test cases divided by n. Evidence for the superiority of the leaving-one-

out approach is well documented [175]. The leave-one-out error rate estimator is an almost 

unbiased estimator of the true error rate of a classifier. This means that over many different 

sample sets of size n, the leaving-one-out estimate will average out to the true error rate. 

Because the leave-one-out estimator is unbiased, for even small sample sizes of over 100, 

the estimate should be accurate. The great advantage of cross-validation is that all the cases 

in the available sample are used for testing, and almost all the cases are also used for 

training the classifier. 
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1.4.2.4 Mahalanobis Distances (MD) 

 

Mahalanobis Distance (MD) is a measure of distance based on correlations between variables 

by which different patterns can be identified and analyzed. It is a useful way of determining 

similarity of an unknown set of cases to a known one. It differs from Euclidean Distance (ED) 

in that it takes into account the correlations of the data set and is scale-invariant, i.e. not 

dependent on the scale of measurements. 

Formally, the Mahalanobis distance from a group of values with mean μ = (μ1,μ2,μ3,...,μp)T 

and covariance matrix Σ for a multivariate vector x = (x1,x2,x3,...,xp)T is defined as: 

 

 )x()x()x(D 1T
M μμ −Σ−= −   Equation 1.25 

 

Mahalanobis distance can also be defined as dissimilarity measure between two random 

vectors xr and yr of the same distribution with the covariance matrix Σ : 

 T1T )yx()yx()y,x(d rrrrrr
−Σ−= −   Equation 1.26 

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the 

Euclidean distance. Moreover, if the covariance matrix is diagonal, then the resulting 

distance measure is called the normalized Euclidean distance: 

 ∑
=

−
=

p

1i
2
i

2
ii )yx()y,x(d

σ
rr

   Equation 1.27 

where σi is the standard deviation of the xi over the sample set 

To better understand how Mahalanobis distance works, consider that, when using Euclidean 

distance, the set of points equidistant from a given location is a sphere, that is to assume 

that the sample points are distributed about the center of mass in a spherical manner. 

Intuitively, the closer a test point in N-dimensional Euclidean space is to this center of mass, 

the more likely it is to belong to the set. But were the distribution is non-spherical, for 

instance ellipsoidal, the probability of the test point belonging to the set to depend not only 

on the distance from the center of mass, but also on the direction. In those directions where 

the ellipsoid has a short axis the test point must be closer, while in those where the axis is 

long the test point can be further away from the center. Putting this on a mathematical 
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basis, the ellipsoid that best represents the set's probability distribution can be estimated by 

building the covariance matrix of the samples. The Mahalanobis distance is simply the 

distance of the test point from the center of mass divided by the width of the ellipsoid in the 

direction of the test point. 

 

1.4.3 Chemometrics in food science 

 

The detailed study of food composition and quality attributes is of paramount importance to 

accomplish efficient quality control and improve properties of foodstuff. High-resolution NMR 

and hyphenated NMR methods give a valuable contribution to that study, as shown by 

recent work [176-178]. In addition, multivariate analysis of spectroscopic data can provide 

rapid information about quality related factors such as food geographical origin, processing 

conditions, and reproducibility within different production sites. 

Spectroscopic NMR methods provide, in a single experiment, relevant information on a wide 

range of compounds present in the food matrix, offering advantages in terms of simplicity of 

sample preparation and rapidity of analysis. The speed with which NMR spectra can be 

obtained, often under automation, enables examination of many samples as required for 

most food composition, authenticity and quality control applications [179]. 

Because the richness of information often results in high spectral complexity, it calls for the 

use of multivariate analysis to study large numbers of spectra and extract meaningful 

information. 

The application of chemometrics to high-resolution NMR data has been applied in some 

instances to address different issues of food authenticity and origin. For example, promising 

results have been obtained concerning the classification of apple juices according to variety 

[180], the detection of adulterations in orange juice [181, 182], the discrimination of coffee 

samples differing in their manufacturing process [183], the differentiation of olive oil 

according to cultivar, botanical and geographical origin [111, 184-187], the differentiation 

and characterization of grape cultivars [188, 189], the characterization of wine geographical 

origin [190-192][, the quality control of beer [193], the authentication of dairy products 

[194] and the metabolite profiling of transgenic tomato fruit [195]. 

In most of cases, the data patterns obtained from a significant number of samples are used 

to develop a predicting model. The latter is able to predict the features of unknown samples 

evaluated a posteriori, by means of their own quality parameters. 
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1.5 A CASE STUDY OF CHEMOMETRICS APPLIED TO NMR DATA 

 

The present research work constitutes a case study of application on NMR data, sustained by 

chemometric analysis, applied to the assessment of the geographical origin of a food product 

which is protected by the European laws with the Protected Geographical Indication, a 

collective mark that need to be objectively associated to quality parameters in order to be 

actually protected. 

  

1.5.1 Collective marks 

 

The market, thanks to the effects of the globalization and the close economic relationships 

existing among the various Countries, is being enriching of a great variety of products, very 

different for characteristics and price, among which it is more and more difficult to orient. 

Following this situation, it has emerged for many producers the necessity to characterize and 

to valorize their own products with a mark legally recognized. 

Agro-food typical products, that represent a segment of Quality Food Products (QFPs), are 

an example of the new concept consumer’s choice in terms of genuinity and authenticity in 

front of food massification. These recent tendencies about food safety aspects, and the need 

of re-discovering the true values of agriculture strictly connected with the territory, have 

leaded to the creation of quality certifications marks. The latter have became a strategic 

instrument of differentiation that confers to the food products a commercial added value 

[196]. 

The consumer can immediately identify products that respect protocolled quality parameters, 

trough quality logos clearly reported in its package. 

European logos, identifying Protected Designation of Origin (PDO) and Protected 

Geographical Indication (PGI), have been developed and used for individuating those 

European food products having the corresponding characteristics (Figures 1.12 and 1.13). 

The aim of such logos is to promote and protect genuine food products to the other having 

similar organoleptic characteristics but not responding to the established quality parameters. 

PDO and PGI were introduced by the EEC Reg. 2081/92 which has been recently upgraded 

by EC Reg. 510/2006. Their definition is reported below as well their respective logo. 
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Figure 1.12: PDO logo 

 

 

PDO (Protected Designation of Origin): 

"Designation of Origin means the name of a region, a specific place or, in exceptional cases, 

a country, used to describe an agricultural product or a foodstuff originating in that region, 

specific place or country, and the quality or characteristics of which are essentially or 

exclusively due to a particular geographical environment with its inherent natural and human 

factors, and the production, processing and preparation of which take place in the defined 

geographical area" [EEC Reg. 2081/92, article 2.2.a]. 

Thus PDO covers the term used to describe foodstuffs which are produced, processed and 

prepared in a given geographical area using recognised know-how. 

 

 

 
Figure 1.13: PGI logo 

 

 

PGI (Protected Geographical Indication): 

"Geographical Indication means the name of a region, a specific place or, in exceptional 

cases, a country, used to describe an agricultural product or a foodstuff originating in that 

region, specific place or country, and which possesses a specific quality, reputation or other 

characteristics attributable to that geographical origin and the production and/or processing 
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and/or preparation of which take place in the defined geographical area" [EEC Reg. 2081/92, 

article 2.2.a]. 

In the case of PGI, the geographical link must occur in at least one of the stages of 

production, processing or preparation. Furthermore, the product can benefit from a good 

reputation [197]. 

PGI and POD are defined collective marks, and they identify products obtained by all the 

firms that respect certain environmental and productive conditions and that voluntarily 

accept to be submitted to a system of control effected by independent organisms. The 

fundamental document, at the basis of an application for a PDO or for a PGI certification, is 

the Disciplinary of Production, that specifies the criterions that the producers must follow in a 

peremptory way for the obtainment of the protected food product. Therefore it is a real 

certification of quality that accompanies a product responding to a collective mark. The 

activity of control is carried out by designate public authority or by private organisms, 

authorized with decree of the Office of the Agricultural and Forest Politics [198]. It allows to 

guarantee that the protected products respond to the requisite of the Disciplinary of 

Production. Both PDO and PGI certifications share the same normative system and the same 

procedures for the application. They give the same guarantees to consumers and the same 

rights to producers. The difference between these two quality certifications methods depend 

on how closely the specifications of the quality of the food product are linked to the 

geographical area whose it bears the name. The PDO certification is meant for those 

products which show an objective and very close link between their features and the area of 

which they bear the name (including human and natural factors, such as climate, soil quality 

and local know–how); the PGI certification also designates products linked to the area of 

which they bear the name but with a more flexible objective link. [199].The meaning of the 

idea standing behind these quality certifications marks is summarized in these paragraph of 

the EC Reg. 510/2006: "In view of the wide variety of products marketed and the abundance 

of product information provided, the consumer should, in order to be able to make the best 

choices, be given clear and succinct information regarding the product origin" [EC Reg. 

510/2006]. 

The recognition of the greater quality grade of a product that these labels furnish it is 

accompanied to a great economic added value and therefore it makes the verification of the 

truthfulness of the declared characteristics necessary. Given the actual presence in the 

market of a great number of products very similar for chemical composition and organoleptic 

characteristics, the classical analytical techniques often result inadequate for a detailed 
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characterization and differentiation of the product. Therefore some advanced analytical 

methods have been lately applied, as already reported in Section 1.2, having characteristics 

of more accuracy and immediate analysis, as it is possible to find in NMR methods. 

 

1.5.2 The "Pomodoro di Pachino" PGI product. 

 

The Cherry Tomato of Pachino represents the characteristic agricultural production of a well 

delimited zone of the Italian region Sicily, collocated on the extreme southern cape of the 

isle, that covers the whole territories of Pachino and Portopalo di Capo Passero and a part of 

the district of Ispica (Ragusa) and Noto (Siracusa) (Figure 1.14). 

 

 

 
Figure 1.14: Detail of the district of Pachino 

 

 

Thanks to its peculiar characteristics, due to a lucky combination of climate, salt water 

irrigation and cultivation techniques, the "Pomodoro di Pachino" (cherry tomato from 

Pachino) is the first Italian tomato which has obtained, on April 2003 [EC Reg. n.167/2003], 

the Italian PGI certification (Protected Geographic Indication), becoming well-known either in 

the national market and in the international one. 

The pedological and micro-climatic conditions of the area where this cherry tomato is 

cultivated have peculiar characteristics, different from the other geographical zones indicated 

to produce this type of vegetable: the temperate-arid climate typical of the Mediterranean 

zone, very high temperatures, a huge quantity of solar radiations whose intensity is higher 

than 300000 lux, the proximity to the sea that determines a climate mitigation, the low 
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frequency of winter-spring frosts and the texture of 

the soil (usually sandy) are the factors that 

determine the sharpening of the qualitative 

characteristics of the product. But even more 

interesting is the effect due to the salinity of the 

irrigation waters: these are pulled out from salted 

groundwater and they are cause of reduction of 

the dimensions of tomatoes, which is the reason of 

a big increment of the organoleptic characteristics. 

The tomato, for the effect of water stress, 

increases his quantity of reducing sugars acquiring, 

in this way, a higher sweetness. 

 

 

Picture 1.1: Cherry tomato of Pachino 

 

For the cultivation conditions above described, which have as direct consequence an 

harvesting much lower than the possibilities of the employed cultivars, this agricultural 

production involves an economical expense obviously higher than the cost for traditional 

cultivations of cherry tomatoes, that determines an important enhancement of the price of 

the final product. For this reason is necessary to protect either producers and consumers 

from whom, not having the same expenses, introduces in the market a fake calling it with 

the protected name "pomodoro di Pachino". 

 

 
Picture 1.2: "Pomodoro di Pachino" and European PGI logos 

 

These are the reasons that have leaded the ATPTP (Associazione per la Tutela dei Prodotti 

Tipici di Pachino – Association for the Tutelage of the Typical Product of Pachino) to require 

the PGI certification; necessity due to the international notoriety of this product that, if on 

one hand represents a positive factor because it is a synonymous of prestige, on the other 

hand implicate the danger of an indiscriminate use of the denomination "Pomodoro di 
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Pachino IGP" also by the other cherry tomato producers of the other zones of Sicily or other 

areas of Italy. In fact, even though its great taste is hardly imitable, a lot of commercial 

fakes, with definitely lower organoleptic characteristics, are present on the Italian and 

international market. Therefore it was founded a organism of control, the Society of 

Certification "SoCert", which checks the whole production system of the tomato of Pachino 

through inspections and verification exams and draws up rules and procedures protocols. In 

spite of this, if on one hand this organism is able to certify the whole system of cultivation of 

the tomatoes, on the other hand it cannot take advantage of a scientific method able to 

discriminate with reliability an unknown sample from a sample coming from the district of 

Pachino. For this reason, lately, a large interest was focused on analytical techniques able to 

assess the origin of a tomato sample or, at least, to indicate whether or not it is originating 

from the Pachino area. 

 

1.6 AIM OF THE RESEARCH 

 

The research work of this PhD study is collocated in a project, financed by the MIUR 

(Ministero dell’Istruzione, dell’Università e della Ricerca) and by the MiPAF (Ministero delle 

Politiche Agricole e Forestali), whose aim is to be able to infer from the data, collected using 

the adopted analytical technologies, information relative to molecular markers, useful to 

asses the quality and to recognize whether or not the origin of the tomatoes is from Pachino. 

This project have found a collaboration in the ATPTP which provided the samples necessary 

to create a NMR spectra database, basic for the further statistic approach. In fact not all the 

molecular components are useful to determine the good quality of the cherry tomatoes of 

Pachino, but only some of these whose identification can lead to the recognition of the 

authenticity of the product under molecular scale. To such aim, 1H Nuclear Magnetic 

Resonance spectroscopic analyses, together with an appropriated multivariate statistics 

analysis of the data, have been carried out on an elevated number of samples coming from 

the region of Pachino and on some other samples coming from other zones of Italy. As a 

further study, the effect of a different magnetic field strength has been tested by using two 

different spectrometers operating at 200 and 400, with the aim to test if a higher spectra 

resolution can make the difference on samples' classification. 
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2 MATERIALS 

 

The following materials have been used along the present research work: 

 

2.1 GLASSWARE AND DISPOSABLE MATERIALS 

 

● 30 ml glass vials with sealing caps 

● Plastic vessels for sample weighting 

● Steel spatula for sample weighting (VWR™ International) 

● Ceramic mortar (grinding vessel) and pestle 

● Precision Microliter Pipettes PIPETMAN® Gilson (P1000, P200, P100, P20, P10) and their 

respective plastic tips 

● 50 ml plastic centrifuge tubes with screw sealing caps, Sarstedt (62.547.254) 

● 15 ml plastic centrifuge tubes (gamma sterilized) with screw caps, Oregon Scientific 

● 1.5 ml safe-lock plastic tubes (centrifugation up 30000*g), Eppendorf (0030 120.086) 

● NMR Sample Tubes (up to 700 MHz, 8" (203 mm), round bottom, with plastic caps), 

AmpolNMR (Cat.no AP5-600-8) 

 

2.2 REAGENTS 

 

● Milliq demineralized water produced by Helix5 

● Glacial Acetic Acid (100% CH3COOH, d=1.05 Kg/dm3), Merk (UN 2789) 

● HEPES (99.5% N-[2-Hydroxyethyl]piperazine-N’[2-ethanesulfonic acid], C8H18N2O4S) 

pKa=7.5 at 25°C, Sigma (H-3375) 

● Sodium Hydrogen Carbonate (NaHCO3, anhydrous) Carlo Erba (478537) 

● UVASOL® Deuteriumoxid (99.9% D2O, d= 1.11 Kg/dm3), MERK (S4036166-519) 

● Sodium Hydroxide (100% NaOH, INCOFAR) in chips 
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2.3 SOLUTIONS 

 

Three different deuterated buffer solutions, at three different pH values, have been prepared 

being careful to minimize the introduction of protoned water in the sample. Therefore, salts 

for the buffer preparation have been used in a dry solid form (where possible) or in solutions 

at the highest possible concentration. All the buffer solutions have been prepared when 

necessary in small quantity each time (20 ml), so that they could be quickly used and 

replaced with others of new preparation in order to avoid an excessive 2D exchange with the 
1H air humidity. 

 

BUFFER SOLUTIONS: 

 

• Buffer pH=4.0 

For this value of pH, the Acetic-Acetate buffer has been chosen at a concentration of 100 

mM. An amount of 114.3 μl of Glacial Acetic Acid is withdrawn with a Gilson micropipette 

p200 and diluted in 20 ml of deuterated water. The pH has been adjusted to 4.0 with the 

addition of small chips of pure NaOH (sodium hydroxide anhydrous), with the help of a 

digital pH-meter. 

 

• Buffer pH=7.0 

It has been prepared by dissolving 0.476 g of HEPES, weighted with the analytical balance, 

in 20 ml of deuterated water, up to a final concentration of 100 mM, thus the pH was 

adjusted to 7.0 by adding small chips of pure NaOH. The final correct value of pH has been 

reached with the help of a digital pH-meter. 

 

• Buffer pH=10.0 

For this value of pH, the carbonate-bicarbonate buffer has been chosen at a concentration of 

100 mM. It has been prepared by dissolving 0.168 g of sodium bicarbonate (NaHCO3), 

weighted with the analytical balance, in 20 ml of deuterated water and, as for the other two 

precedent buffers, the pH value has been corrected with the addition of small chips of NaOH 

under control of a digital pH-meter. 
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2.4 INSTRUMENTATIONS 

 

2.4.1 Classical laboratory instrumentation 

 

● ULTRA–LOW TEMPERATURE FREEZER (Lowest temp. -86°C, 328 lt), NUAIRE (NU6511) 

● Technical balance (max 2200 g, d= 0.01 g), SCALTEC (SBA 52) 

● Analytical balance (max 220g, d= 0.0001g), SCALTEC (SBC 31) 

● Digital pH-meter, Jenway (model 3310) 

● Combined mini-electrode (Reference electrode, saturated KCl / Combination pH/orp 

electrode 3.0 M KCl, saturated with AgCl), Jenway 

● Thermostatic oven, INSTRUMENTS s.r.l. Bernareggio(MI) 

● Orbital shaker (with thermostatic Cupola "Climatic Hood", mod.810), ASAL (mod.709) 

● Heating magnetic stirrer, VELP® scientifica (model ARE) 

● Micro-centrifuge (speed 0 to 14000 RPMs equipped with F241.5P rotor with 24 cavities for 

1.5 ml vials), Beckman Coulter™ (Microfuge® 18) 

 

2.4.2 200 MHz NMR spectrometer 

 

For recording NMR FIDs at 200 MHz it has been used a Bruker Biospin (Karlsrhue, Germany) 

spectrometer operating at 200.132 MHz 1H Larmor frequency and equipped with AC200 

console, ASPECT3000 computer, 12 bit Analogical Digital Converter (ADC), broadband probe 

head from 15N to 1H and deuterium lock system. The spectrometer is interfaced with a PC 

computer with a Linux operating system for data transferring. The NMR system is shown in 

Picture 2.1 where also the Oxford Superconducting NMR Cryomagnet (200/54), generating a 

4.7 Tesla constant magnetic field, is visible. In Picture 2.2 is shown a particular of the AC200 

console and of the ASPECT3000 computer. 
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Picture 2.1: Bruker 200 MHz NMR spectrometer Picture 2.2: A particular of the AC200 console. 

 

The NMR system is also equipped with a Variable Temperature Unit (B-VT2000) and a 

Pneumatic Unit for probe head nucleus changing. 

 

2.4.3 400 MHz NMR spectrometer 

 

The NMR spectrometer utilized for recording FIDs at 400 MHz presents the following 

characteristics: 

Varian Mercury Plus AS400/54 spectrometer, operating at 400.097 MHz 1H Larmor 

frequency, equipped with: 

• Mercury Plus Console 

• 23 channels shimming unit 

• Dual Fullband RF system 

• Pulsed Field Gradient Driver (model L700) 

• Variable Temperature Controller (-60°C to +100°C) (model L900) 

• 5 mm PFG gradient 4-nuclei probe (1H/19F/13C/31P) 

• 400MHz (9.4 Tesla) Oxford Active Shielded Superconducting Magnet System (400/54) 

• Sun BLADE 150 Host Workstation with Solaris 10 Operating System, 80 GB System 

Disk, 512 Mb RAM, CD ROM SCSI Drive and VnmrJ Software 1.1D 
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Picture 2.3: Varian spectrometer operating at 400 MHz 

 

 
Picture 2.4: Oxford superconducting magnet 

 

The Picture 2.3 shows the full NMR system. A particular of the 9.4 Tesla Narrow Bore 

superconducting magnet is shown in Picture 2.4. 
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3 METHODS 

 

3.1 PROTOCOLS 

 

The following protocols have been developed for a standardized procedure. 

 

3.1.1 Cherry tomato fruit extraction in D2O buffer solutions 

 

The milled freeze-dried samples of tomato to be submitted to analysis, maintained inside 

their glass vial in nitrogen atmosphere, have been withdrawn from the ultrafreezer, where 

they have been preserved at a temperature of -75°C, and placed at room temperature for 

about 10 minutes, until complete thawing. Then the sample has been weighted with a 

technical balance. In the case of not well freeze-dried or not well ground samples, fruit 

powders have been further manually milled by using ceramic mortar and pestle, to make it 

more homogeneous. 

For each tomato sample, three 1.5 ml plastic tubes (Eppendorf), opportunely marked with 

the number of the sample and the relative pH value, have been prepared. Using the 

analytical balance, exactly 100 mg of freeze-dried sample have been accurately weighed 

inside every Eppendorf. These steps have been performed rather quickly in order to avoid 

the absorption of atmospheric damp and, successively, the freeze-dried powder has been 

rapidly reinserted inside its vial, under gaseous nitrogen insufflation, and immediately sealed 

and put back in ultra freezer to -75°C. 

The freeze-dried sample weighted into the Eppendorf 1 has been extracted with 1 ml of pH 

4.0 buffer solution, withdrawn with a Gilson p1000 micropipette. The same procedure has 

been also repeated for the Eppendorf 2 and 3 using respectively the buffer solutions at 

pH=7.0 and at pH=10.0 and then the three Eppendorf have been sealed with Parafilm and 

placed in a rack inside the thermostatic cupola of the orbital shaker kept at 30°C constant 

temperature. 

After some initial tests, the extraction time of 2 hours at a 250 RPMs speed has been chosen 

in order to obtain an exhaustive extraction in the shortest time. 
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After the extraction, the suspensions contained in the Eppendorf microtubes have been spun 

in the microcentrifuge in order to achieve extract separation from the residual solid 

component. Centrifugation has been accomplished for 7 minutes at 15000 RPMs speed. After 

centrifugation the respective separated extracts have been transferred in three new 

Eppendorf, previously marked with the correspondent codes, with a Gilson p1000 

micropipette, trying not to pick up solid particles. The quantity of clear extract usually 

recovered after this operation resulted to be about 900 µl. 

Even if at this point the samples were ready for NMR analysis they have been frozen in 

ultrafeezer until their analysis moment, in order to prevent oxidation or hydrolysis 

phenomena. 

 

3.1.2 NMR samples preparation 

 

The sample to be submitted to analysis has been withdrawn from 

the ultrafreezer few minutes before the analysis, until thawing and 

thermal equilibrium with ambient. Then it has been centrifuged at 

15000 RPMs for 3 minutes with the purpose to separate the eventual 

solid particulate. Using a Gilson p1000 micropipette, equipped with a 

rigid plastic cannula inserted on the tip, 600 µl of the sample have 

been placed on the bottom of a 5 mm NMR tube, previously washed 

with distilled water and perfectly dried. At this point the sample has 

been inserted in the spinner and subsequently in the probe of the 

spectrometer, where it has spun to a speed of 20 RPMs. Before 

proceeding with tuning, locking and shimming operations around 15 

minutes have been waited: in such a way the temperature of the 

sample reached the probe temperature selected for NMR analysis. 

In Picture 3.1 is shown a sample extract inserted in the NMR tube 

with the spinner, ready to be placed inside the spectrometer probe head. 

All the instrumental parameters referred to NMR analysis of the samples are reported in the 

following Section 3.2.1 distinguishing between the two different magnetic field strengths. 

 

 

 

 

 

 

 

 

 

 

 

Picture 3.1: A sample 

into the NMR tube 
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3.1.3 Protocol for 200 MHz NMR analysis 

 

Before each 200 MHz NMR FID acquisition the procedures below listed have been followed. 

● SIGNAL LOCK: with the sample inserted into the probe and spun at 20 RPMs, the 

Deuterium Lock signal has been found, centered and maximized, and then the radio-

frequency has been locked. 

● SHIMMING: axial magnetic field homogeneity has been regulated varying current 

circulating into its shim coils. Rarely also radial shim coil currents have been regulated. 

● FID and SPECTRUM CHECK: before acquiring the complete FID an attempt has been 

performed acquiring only 8 scans after 4 dummy scans. The FID registered has been 

checked and FT transformed for signals validation: only if the 1H α-D-Glucose downfield 

signal at 4.650 ppm presented a half-height width smaller than 0.6 Hz the spectrum has 

been considered good and the shimming step complete. Otherwise new shimming steps 

have been performed again and again until obtaining a good signal width. 

● FID FILE SAVING: every FID has been saved with its univocal file name. 

 

3.1.4 Protocol for 400 MHz NMR analysis 

 

Before each 400 MHz NMR FID acquisition the procedures below listed have been followed. 

● MATCHING AND TUNING OF THE MAIN FREQUENCY: with the sample inserted into the 

probe and spun at 20 RPMs, the best matching and tuning of the main frequency has been 

performed operating onto the apposite screws located under the probe head. A digital 

display on the foot of the instrument indicated a value to be minimized in order to achieve 

the best matching and tuning. 

● SIGNAL LOCK: Using the apposite procedure included into the instrument software 

(VnmrJ) the Deuterium Lock signal has been found, centered, maximized and then the 

radio-frequency has been locked. 

● SHIMMING: being the instrument equipped with a 23 channel gradient shimming unit with 

pre-charged shim maps, the shimming step has been performed in a totally automatic way. 

Since not every time this operation reached a satisfying result, in those cases it has been 

repeated several times until good result evaluated by measuring the half-height width of a 

signal successively specified. Sometime it has been necessary a manual fine shimming, 
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performed operating onto the axial shim coils through the specific shim coil control page of 

the software. Rarely also radial shim coil have been regulated. 

● FID and SPECTRUM CHECK: before acquiring the complete FID a test step has been 

performed acquiring only 4 scans after 2 dummy scans. The FID registered has been 

checked and FT transformed for signals validation: only if the downfield peak of the 1H signal 

of β-D-Glucose set at 4.650 ppm presented an half-height width smaller than 1.2 Hz the 

spectrum has been considered good and the shimming step complete. Otherwise new 

shimming steps have been performed again and again until a good signal width obtaining. 

● FID FILE SAVING: every FID has been saved with its univocal file name. 

 

3.1.5 Protocol for the temperature and pH dependence of signals 

 

A single aqueous extract of cherry tomato sample coming from Pachino (ID number 225) has 

been investigated to study its spectral changes related to pH and temperature variability. 

The sample has been analyzed at three different pH values, each at three different 

temperatures. The pH has been changed by stepwise titration with a small quantity of NaOH. 

Three NMR spectra have been acquired at three different probe temperature on the sample 

prepared according to the standard procedure: 296, 298 and 300 °K. The parameters of the 

NMR analysis (see Section 3.2.2) have been kept like those of all other samples except for 

the number of acquired transients that has been reduced to 512 (half of the usual number) 

to shorten the total time of acquisition at 35 min. 

Between a recording and the next one it has been necessary to attend about 10' for the 

stabilization of the set temperature, afterward a new round of magnetic field shimming and 

signal locking has been performed: this required a total time of about 20-25 min. 

At the end of the first three acquisitions at different temperature, the sample has been 

drawn out from the NMR tube and accurately transferred into an Eppendorf microtube of 1.5 

ml. After careful calibration of the pHmeter, equipped with a combined mini-electrode, the 

first pH value has been measured and annotated. The pH value has been then slightly 

changed introducing a very small quantity of NaOH picked up with the tip of a glass Pasteur 

pipette scraped over a NaOH chip and dipped inside the sample. The same Pasteur pipette 

has been also used for successive pH value correction in order to lose the smallest possible 

quantity of sample. For the same reason, the pH value has been measured only after that 

the 3 experiments at the selected temperatures have been completed. 
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3.2 INSTRUMENTAL PARAMETERS FOR NMR ACQUISITION 

 

For this research work it has been chosen to not use any solvent suppression Pulse sequence 

in order to avoid losing signals falling near that of the solvent. Therefore it has been used 

the simplest pulse sequence either for FIDs acquired at 200 MHz and for those acquired at 

400 MHz. Since two NMR spectrometers of different brand (Bruker and Varian) have been 

utilized, the way as the instrumental parameters are named slightly changes and then are 

briefly explained in the following dedicated sections. 

 

3.2.1 1H-NMR spectra of Cherry tomato extracts recorded at 200 MHz 

 

The parameters of a Bruker pulse sequence called "ZG" have been setup for recording FIDs 

at 200 MHz. The pulse sequence is illustrated in Figure 3.xx that also reports the times of 

each step. 

 

 
Figure 3.1: Pulse sequence scheme used for the 1D 1H-NMR 

experiments at 200 MHz 

 

The main Bruker acquisition parameters utilized are the following: 

• Acquisition mode: SEC 

• Dummy Scans (DS): 16 

• Number of Scans (NS): 4096 

• Time Domain (TD): 8 K (r) + 8 K (i) 

• Data Size: 8 K 

• Acquisition time (AQ): 3.4078 s 

• Recycle Delay (d1): 0.0 s 

• Preparation Pulse (p1): 0.0 µs 

• Mixing Time (d2): 0.0 ms 
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• Acquisition pulse (pw): 8.70 µs 

• Spectral Window (SW): 12 ppm 

• Sample rotation (Spin): 20 Hz 

• Temperature of acquisition (T): 298 °K 

• Experiment Time (EXPT): 252 min 

 

3.2.2 1H-NMR spectra of Cherry tomato extracts recorded at 400 MHz 

 

The parameters of a Varian pulse sequence called "s2pul" have been setup for recording 

FIDs at 400 MHz. The pulse sequence is illustrated in Figure 3.xx that also reports the times 

of each step. 

 

 
Figure 3.2: Pulse sequence scheme used for the 1D 1H-NMR experiments at 400 MHz 

 

The main Varian acquisition parameters utilized are the following: 

• Steady Scans (ss): 16 

• Number of Transient (nt): 1024 

• Number of complex Points (np): 32768 (32K) 

• Data Size: 16 K 

• Acquisition time (at): 3.416 s 

• Recycle Delay (d1): 500 ms 

• Preparation Pulse (p1): 0.0 µs 

• Mixing Time (d2): 0.0 ms 

• Acquisition pulse (pw): 7.20 µs 

• Spectral Window (sw): 12 ppm (4796.2 Hz) 

• Sample rotation (Spin): 20 Hz 

• Temperature of acquisition (T): 298 °K 

• Experiment Time (exptime): 71 min 
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3.3 NMR DATA HANDLING 

 

All FIDs acquired along the present thesis work have been transferred to a personal 

computer equipped with the software Mestre-C 4.9.8 (www.mestrec.com) for data 

processing [200]. Magnetic Resonance Companion (MestReC) is a software package that 

performs all necessary data processing, visualization, simulation and analysis of high 

resolution nuclear magnetic resonance (NMR) data. Since this software owns data filters for 

many types of NMR spectrometers, no preliminary data conversion has been necessary. An 

example of the user-friendly graphical interface of this program is shown in Figure 3.3 

 

 
Figure 3.3: Mestre-C Software graphical interface. 
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3.3.1 FID processing for acquisition at 200 MHz 

The 1D 1H-NMR data recorded at 200 MHz have been processed with the following 

procedure: 

● Fourier Transform (FT) along F1 with phase quadrature, automatic drift correction and 0.1 

Hz exponential apodization (Line Broadening) 

● Manual phasing (phase correction) of each spectrum along F1 

● Raw automatic Baseline correction with Bernstein polynomials function of order 5 

● Fine linear multipoint Baseline correction of the spectrum with selection of single points 

forced at 0. 

● Chemical Shift referencing over methyl protons of acetate signal at 2.029 ppm for spectra 

registered at pH 4.0 

● Chemical Shift referencing over characteristic protons signal of HEPES at 3.175 ppm for 

spectra registered at pH 7.0 

● Chemical Shift referencing over 1H α-D-Glucose downfield signal at 5.13 ppm for spectra 

registered at pH 10.0, arbitrary chosen because carbonate buffer solution doesn’t present 

any NMR signal except the unusable water exchanging one 

● Spectral region selection between 0.0 and 10.0 ppm 

● ASCII conversion of the selected 10 ppm spectral region: 6820 intensity data points (from 

8192 total data points) have been exported for each spectrum for successive chemometric 

processing (see Section 3.4.1) 

 

3.3.2 FID processing for acquisition at 400 MHz 

1D 1H data in D2O have been processed with the following procedure: 

● Fourier Transform (FT) along F1 with phase quadrature, automatic drift correction and 0.5 

Hz exponential apodization (Line Broadening) 

● Manual phasing (phase correction) of each spectrum along F1 

● Fine linear multipoint Baseline correction of the spectrum with selection of single points 

forced at 0. 

● Chemical Shift referencing over methyl protons of acetate signal at 2.029 ppm for spectra 

registered at pH 4.0. 

● ASCII conversion of the whole spectra: 16384 (16K) intensity data points have been 

exported for each spectrum for successive chemometric processing (see Section 3.4.2) 

 



Methods 

 

57 

3.4 CHEMOMETRIC DATA PROCESSING 

 

In this PhD thesis every statistical and chemometric analysis has been carried out with the 

free open source program "R" (version 2.4.0, www.r-project.org) [201]. 

A short description of the features of the program is reported below. 

R is an integrated suite of software facilities for data manipulation, calculation and graphical 

display. Among other things it has 

• an effective data handling and storage facility, 

• a suite of operators for calculations on arrays, in particular matrices, 

• a large, coherent, integrated collection of intermediate tools for data analysis, 

• graphical facilities for data analysis and display either directly at the computer or on 

hardcopy, and 

• a well developed, simple and effective programming language which includes conditionals, 

loops, user defined recursive functions and input and output facilities. 

 

 
Figure 3.4: R environment with several devices opened during chemometric analysis of data 
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The term "environment" (Figure 3.X4) is intended to characterize it as a fully planned and 

coherent system, rather than an incremental accretion of very specific and inflexible tools, as 

is frequently the case with other data analysis software. 

R is very much a vehicle for newly developing methods of interactive data analysis. 

Technically R is an expression language with a very simple syntax. Elementary commands 

consist of either expressions or assignments. An expression may be given as a command, 

and it is evaluated, printed, but the value is lost. An assignment also evaluates an expression 

and passes the value to a variable but the result is not automatically printed [202]. 

Several scripts in R language have been in-house written in order to handle spectroscopic 

data for chemometric analysis. The most important algorithms developed for data handling 

and chemometric analysis are briefly described below, taking into account the different data 

processing necessary for every spectroscopic dataset acquired. 

The complete R scripts for data handling are reported in Appendix A. 

 

3.4.1 Chemometric data processing of spectra recorded at 200 MHz  

 

Spectral alignment, vertical normalization and binning of the dataset 

Starting with single ASCII files, exported after 1D 1H NMR FID processing, all the data have 

been arranged in a S x V matrix where S represents matrix rows consisting in NMR spectra 

and V represent matrix columns consisting in spectral variables (intensities for each data 

point). S can vary form case to case but V is always equal to 6820 data points corresponding 

to the spectral window exported by Mestre-C. Several text files listing alphanumeric strings 

relative to the samples to be processed have been preliminarily created, containing useful 

information about every sample, like spectrum file name, code number, harvesting season, 

cultivar, geographical region, etc. These files are read by the program at the beginning for 

initial dataset definition. 

Data matrix creation is accomplished by a series of R language commands that take into 

account different situations depending on which sample group is going to be submitted to 

chemometric analysis (see Appendix A for script details) 

Considering the necessary data preprocessing steps, preceding chemometric analysis, 

illustrated in Section. 1.4.1, some algorithms have been developed in R language in order to 

obtain reliable dataset to be submitted to multivariate analysis. 
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First of all every line of the NMR data matrix is plotted, in progressive order as in a sequence 

of frames during the projection of a movie, within a specific range that comprehends the 1H 

α-D-Glucose doublet signals. In this way it is possible to take a look at the horizontal shifting 

of such a signal over all the NMR spectra. This operation helps to notice if there are 

anomalous spectra and if the dataset is enough homogeneous for preprocessing steps. 

The same is made over acetate signal in a new plotting device thorough some script 

command lines that generate also a new data vector ("ace") containing index position of 

such a signal for every spectrum (matrix rows) of the data set. 

The latter vector "ace" is used to perform a spectral normalization of every row in the data 

matrix accomplished dividing each of all data points of each row of the data matrix for the 

corresponding "ace" value. A new normalized data matrix ("tabace") is created. 

Data normalization precedes horizontal signals alignment that can be performed in two 

different ways, according to data homogeneity, as described below: 

● a first algorithm performs signals scanning considering a specific spectral region of a 

selected target spectrum, defined as reference spectrum, and sliding the same spectral 

region of the other samples/rows until the least square difference among the pair of 

compared spectra is reached. This corresponds to a best fitting algorithm between spectra. A 

vector containing points of shifting for every spectrum is written ("index") for the successive 

signal alignment; 

● an alternative algorithm performs the signal scanning within a specific spectral region 

chosen in a selected target spectrum. The algorithm searches for the highest intensity in the 

narrow given range, where it is expected to find the signal on which all spectra will be 

aligned (reference peak). It must be the most intense signal in the chosen narrow region: in 

the present study, the downfield peak in the doublet signal of 1H α-D-Glucose has been 

chosen as reference peak. Thus, the algorithm passes the position of the peak maximum to 

a variable; afterward, it calculates the difference between the position in each spectrum and 

that one in the target spectrum, storing such values in a vector called "maxvet". 

"index" and "maxvet" vectors can be alternatively used to perform signal alignment for every 

spectrum (data matrix rows). Every row is aligned over the reference peak by sliding every 

spectrum by a number of datapoints equal to index or maxvet. An algorithm perform these 

operations returning a new matrix Sx6820 with aligned variables ("allineanomer") 

Spectra dimension is reduced from 6820 to 6800 data points by cutting useless edge data 

containing only noise. A new reduced data matrix is obtained ("allineanomer1"). 
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Since normalization over acetate signal has been seen to be not effective on obtaining the 

best vertical scaling of data an "Integral to a Constant Sum" (CS) [156] algorithm has been 

written and applied to the dataset obtaining a data matrix normalized in a reliable manner 

("allineati.CS"). 

A binning step for variables reduction is now performed: the number of variables is lowered 

at 200, by performing summation of the intensities of 34 consecutive datapoints, constituting 

a bin of data, along the whole width of each spectrum. An Sx200 data matrix ("intervallo") 

represents the new binned dataset. 

Before multivariate analysis 9 bins, containing water and acetate signals, obviously not 

significant for the successive steps, are removed from the dataset: a new data matrix 

("perpca") is now ready to be processed with multivariate tools. 

 

Principal Component Analysis 

Principal Component Analysis of the data is carried out using a prebuilt R-language command 

("prcomp"). Each variable (column) is centered and scaled during PCA analysis. The resulting 

scores and loadings matrices are produced in a single object ("principali4") where they are 

stored together ("principali4$x", "principali4$rotation"), respectively. Some commands have 

been written in order to generate meaningful plot of two dimensional PC scores spaces, in 

order to highlight differences among cherry tomatoes by using different labels and colors. 

 

Linear Discriminant Analysis 

LDA has been carried out using the corresponding R language command ("lda"). Canonical 

Variates matrix is produced in a R object from where it can be recalled and plotted ("zlda"). 

LD Scores vectors ("LDAx_scores" where x stands for every calculated LD space) have been 

then calculated by matrix product between LD Canonical Variates matrix and the selected PC 

score matrix. Further command lines have been written in order to generate meaningful plot 

of two dimensional and three dimensional LD scores spaces, in order to show samples 

grouping according to their geographical origin, by using different labels and colors. 
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3.4.2 Chemometric data processing of spectra recorded at 400 MHz  

 

Starting with single ASCII files, exported after 1D 1H NMR FID processing, all the data have 

been arranged, as for the 200 MHz dataset, in a S x V matrix where S represents matrix 

rows consisting in NMR single spectra and V represent matrix columns consisting in spectral 

variables (intensities). S can vary form case to case but V is always equal to 16K (16384) 

data points considering the whole spectral window. Several text files listing samples to be 

processed have been previously written, containing useful information about every sample 

like spectrum file name, code number, harvesting season, cultivar, geographical region, etc. 

These files are read by the software at the beginning for initial dataset definition. 

Data matrix creation is performed by a series of R language commands that take into 

account different situations depending on which sample group is going to be submitted to 

chemometric analysis (see Appendix A for script details) 

The data are hence organized in a raw-data matrix ("spettri") where every spectrum is 

represented in his initial conditions of horizontal signals' position and vertical scaling. This 

matrix represents the starting point for all successive chemometric processes. 

For successive normalization and horizontal alignment of signals, chemometric processing 

needs a target spectrum. The scores matrix of a preliminary Principal Component Analysis of 

the samples allows selecting the one with average spectral features ("spref"). 

An algorithm analyzes each row of such a matrix and individuates the maximum value on the 

acetate region: this value results useful for successive initial data normalization: every point 

of every matrix row is then divided by such a maximum found for every spectrum, obtaining 

a new roughly normalized data matrix ("refacetato"). 

Considering the necessary data preprocessing steps, preceding chemometric analysis, 

illustrated in Section 1.4, some algorithms have been developed in R language in order to 

obtain reliable dataset to be submitted to multivariate analysis. 

A first horizontal alignment of the variables is accomplished using as referencing point the 

variable index of the 1H β-D-Glucose downfield signal at 4.650 ppm of a target spectrum, 

selected among all the others because the most similar to the average spectrum. This 

operation is carried out looking for the shifting of this signal for every row of the data matrix 

and generating a vector of length S ("maxvet") containing the number of points of shifting of 

this signal for each spectrum. Successively every row is aligned over this signal sliding every 

spectrum, according to his shifting value in "maxvet". An algorithm performs these 

operations returning a new matrix Sx13600 with aligned variables ("allineati") 
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A common data normalization "integral to a constant sum" [156] of the whole spectra is then 

carried out using a series of command that return a total sum of the intensities of each 

spectrum equal to 100. Since the information relative to real signal intensity want to be 

maintained, a successive vertical scaling of each spectral row is performed using, for every 

rows, an index ("up") calculated by the algorithm. A new matrix of normalized data is, in this 

way, stored in "allineati.CS". 

The further preprocessing step consists in spectral variables reduction by means of a binning 

algorithm. It is clear that external regions of the spectrum do contain only noise and hence 

are not useful for successive chemometric analysis. Therefore, in order to obtain a number 

of useful variables V that can be divided in homogeneous groups (bins), these external 

points are cut from the original matrix obtaining a new matrix ("spettri") presenting V 

dimension equal to 13600 variables. 

Each whole spectrum, consisting in 13600 data point,s has been divided in 200 integral 

regions (bins) of the same width equal to 68 points. This corresponds to 0.05 ppm on an 

NMR spectrum recorded at 400 MHz, where a single signal has average half-height width 

equal to 0.005 ppm (1÷10). Binning is therefore carried out on the whole matrix dataset 

obtaining a new Sx200 reduced matrix ("intervallo"). The latter contains also some spectral 

regions not useful for chemometric data processing. Therefore some script lines have been 

written in order to eliminate those regions relative to residual water (HDO) signal and 

acetate signal: in this way 6 intervals (bins) are cut from the dataset originating a new 

matrix dataset Sx194 ("perpca"). 

 

Bins containing pH dependent signal removing: 24 bins previously selected by pH 

dependence study (Section 4.2.1) as containing signals sensitive to pH small variations, and 

listed in a data file ("eliminare.txt") read by the script, are cut from the data matrix 

generating a new dataset ("interbins") Sx180 that is ready to be submitted to PCA analysis. 

 

PCA analysis 

Principal Component Analysis of the data is carried out using the relative R language 

commands ("prcomp"). In order to assign the same importance to each variable, each 

column is centered and scaled during PCA analysis. Resulting Scores and Loadings matrices 

are produced together in a single object from where they can be recalled and plotted 

("principali4"). Some commands have been written in order to generate meaningful plot of 
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two dimensional PC scores spaces, in order to highlight differences among the samples by 

using different labels and colors. 

A PCA scores calculation script, based on loadings matrix determined by PCA of a selected 

dataset of samples, has been also written in order to calculate PC scores of samples 

introduced posteriorly: this is made for projecting new unknown samples into the score plots 

in order to obtain information about their geographical origin. 

 

LDA analysis 

Also for 400 MHz data matrices Linear Discriminant Analysis is carried out on PCA scores. As 

it will be shown in Section 4.2.4, only PC spaces participating to a total variance explanation 

up to 90% have been kept by the algorithm to perform LDA analysis. New dataset matrices 

are assembled by R language script in order to obtain a dataset suitable for R LDA analysis, 

containing all the needful information ("LDAtable"). 

LDA is therefore carried out using the relative R language commands ("lda"). Canonical 

Variates matrix is produced in an R object from where they can be successively recalled and 

plotted ("zlda"). 

LD Scores vectors ("LDAx_scores" where x stands for every calculated LD space) are then 

calculated by matrix product between LD Canonical Variates matrix and the selected PC 

score matrix. Further commands have been written in order to generate meaningful plot of 

two dimensional and three dimensional LD scores spaces, in order to show samples grouping 

according to their geographical origin, by using different labels and colors. 

In LD two dimensional score plots every determined group (class) is represented with a 

different color and each group is surrounded by ellipses representing its relative Mahalonobis 

distances calculated by the R command "Mahalanobis". In such a way, it visually becomes 

clearer whether a sample belongs to a group rather than another one. 
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3.5 FRUITS SAMPLING 

 

3.5.1 Sampling and cataloguing cherry tomato fruits 

 

Cherry tomato fruit samples analyzed in our laboratories for the present study have been 

harvested in Sicily by cooperating agricultural producers, within determined specific 

geographical zones accurately chosen at the beginning of the project. Every collected 

sample, consisting in about 200g of selected bunches of cherry tomato fruits, has been sent 

to the Experimental Institute for Plant Nutrition (INSP) in Rome where it has been freeze-

dried and then homogenized by grinding. Although a standardized procedure has been 

searched, the final granulometry varies among samples depending on the freeze-drying 

performances. Such milled samples have been then put inside glass vials, immediately sealed 

in nitrogen atmosphere in order to prevent oxidative or degenerative processes. Every vial 

contains more or less 3 g of milled tomato sample, corresponding to around 30 g of fresh 

fruits. Five to seven glass vials has been obtained from every sample. 

Firstly, the agricultural farms to be involved for these sampling procedures have been chosen 

during the project definition. Four different farms located in the Pachino area have been 

selected according to different salinity (measured by electrical conductibility parameter) of 

their irrigation water. In Table 3.1 are shown the average conductivity values of the 

irrigation waters of these first four farms. 

 

 Farm 1 Farm 2 Farm 3 Farm 4 

Conductivity (µS/cm)  5400 1500 2000 5500 

Table 3.1: Electrical conductivity of irrigation waters for selected farms 

 

For every selected farm have been individuated at least 3 different tomato plants (all 

belonging to the NAOMI cultivar), that have been marked with letters A, B and C, from which 

the fruits samples are withdrawn approximatively every three weeks during harvesting 

seasons. Some new different farms have been added during the whole time of the research 

project: some of these are inside the zone of Pachino while some other ones are located in 

different geographical regions successively specified. Not all of this fruit samples belong to 

Naomi cultivar: Shiren, Franchie and Rubino Top cultivars have been represented as well as 

market’s cherry tomatoes and aspecific samples. 



Methods 

 

65 

In order to test if the analytical approach adopted was suitable to predict the geographical 

origin of samples, a comparison between samples from Pachino and from other external 

areas was necessary. For samples harvested in summer it was possible to select another 

Italian region not in Sicily, where these vegetables are normally cultivated: these samples 

have been harvested in Sabaudia (Lazio). 

For winter, at our knowledge, Italian cherry tomatoes originating from areas different from 

Pachino are not available except for those cultivated in other Sicilian areas, where the winter 

cultivation is still economically convenient. Thus, the choice of samples with origin different 

from the Pachino area fell on the neighboring Licata region. It is worthnoting here that both 

regions have similar pedoclimatic characteristics.  

Both Licata and Sabaudia localization are represented in Figure 3.5. 

 

 
Figure 3.5: Localization of the various geographical origins of samples. 

 

For every plant the sampled fruits have been harvested from different bunch of the 

vegetables in order to collect berries at a homogenous, commercial ripening. This operation 

has been effected, for instance, withdrawing the first four cherry tomatoes of every cluster 

up to reach the weight of 200 g or directly withdrawing one or more clusters until to get 

around the same weight. Also for the samples coming from selected farm outside the zone 

of Pachino the same sampling procedure has been adopted. 
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Since the whole sampling project covered more than 3 years the samples have been 

subdivided in sampling groups. Every group of samples, after freeze-drying and grinding 

steps performed in ISNP in Rome, has been delivered to our laboratory where it has been 

submitted to integrity check, sorted, catalogued and stored in Ultrafreezer at -75°C until 

NMR sample preparation. 

In Table 3.2 an example of the sampling catalogue is reported representing almost all the 

classes of samples involved in this research work. 

For the complete list of samples collected see Appendix B. 

 

ID Code Year Season Date Arrival Farm Salinity Plant Origin Cultivar 

1 1Az.1A1a 2003 win. 03 10/03/03 1 1 5400 A Pachino Naomi 

2 1Az.1A1b 2003 win. 03 10/03/03 1 1 5400 A Pachino Naomi 

3 1Az.1A1c 2003 win. 03 10/03/03 1 1 5400 A Pachino Naomi 

           

35 3Az.3A1a 2003 sum. 03 23/06/03 3 3 2000 A Pachino Naomi 

36 3Az.3B1a 2003 sum. 03 23/06/03 3 3 2000 B Pachino Naomi 

38 3Az.4A1a 2003 sum. 03 23/06/03 3 4 5500 A Pachino Naomi 

39 3Az.4A1b 2003 sum. 03 23/06/03 3 4 5500 A Pachino Naomi 

           

174 18Az.6SHA1a 2004 spr. 04 21/05/04 18 6 1500 SH Pachino Shiren 

175 18Az.7SHA1a 2004 spr. 04 21/05/04 18 7 5600 SH Pachino Shiren 

176 18Az.8SHA1a 2004 spr. 04 21/05/04 18 8 6000 SH Pachino Shiren 

           

179 18 Aspecific3 2004 spr. 04 21/05/04 18 Aspecific 2200 Pachino Shiren 

180 18 Aspecific4 2004 spr. 04 21/05/04 18 Aspecific 2200 Pachino Naomi 

181 18 Aspecific 5 2004 spr. 04 21/05/04 18 Aspecific 1800 

 

Pachino Naomi 

           

292 27Az18SHA3a 2005 sum. 05 30/06/05 26 18 1800 A Pachino Shiren 

293 27Az.18SHB3a 2005 sum. 05 30/06/05 26 18 1800 B Pachino Shiren 

           

501 1Licata NaomiA1a 2004 win. 04 16/01/04 1   A (licata) Naomi 

506 1Licata ShirenC1a 2004 win. 04 16/01/04 1   C (licata) Shiren 

           

706 1SabaudiaSHA2 2004 sum. 04 01/09/04 1   A (Sabaudia) Shiren 

707 1SabaudiaSHB1 2004 sum. 04 01/09/04 1   B (Sabaudia) Shiren 

           

912 2OrtoNaturaNaomi 
Gela 2005 win. 05 09/02/05  Ortonatura2000   np(Gela) Naomi 

916 Fondi(Lt)CID 
Corus 2005 win. 05 22/02/05  CIDCorus   np(Fondi) Corus 

917 Fondi(Lt)CID 
Piccadilly 2005 win. 05 22/02/05  CIDPiccadilly   np(Fondi) Piccadilly 

920 2OrtoPIU' Licata  2005 win. 05 18/03/05  OrtoPiù   np (OrtoPiù 
Licata) 

cultivar 
sconosciuta

Table 3.2: an example of the sampling catalogue 
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The variety of the sampling catalogue is summarized in Table 3.3. and in Table 3.4, 

distinguishing between analysis carried out at 200 MHz and at 400 MHz. 

 

Sample's origin Winter season Summer season Total 
        
Pachino (Naomi) 108 57 165 
Pachino (Shiren) 17 15 32 
Pachino (Aspecific) 9 6 15 
Licata (AG) 12 0 12 
Sabaudia (LT) 0 24 24 
Markets 12 11 23 
        

Total n. of samples 158 113 271 
Samples suitable for 
chemometrics 

155 112 267 
Table 3.3: Samples analyzed at 200 MHz with classes specification 

 

Sample's origin Winter season Summer season Total 
        
Pachino (Naomi) 112 50 162 
Pachino (Shiren) 24 8 32 
Pachino (Aspecific) 13 0 13 
Licata (AG) 13 0 13 
Sabaudia (LT) 0 24 24 
Markets 14 13 27 
        

Total n. of samples 176 95 271 
Samples suitable for 
chemometrics 

166 92 258 
Table 3.4: Samples analyzed at 400 MHz with classes specification 

 

3.5.2 Cherry tomatoes for inter-laboratory check test 

 

For testing the general validity of the investigating method developed in this research study 

an inter-laboratory test on some representative samples of the cherry tomatoes cultivated in 

the region of Pachino has been performed following the procedures here described. For such 

intention 11 samples have been chosen and analyzed with NMR spectrometers operating at a 

Larmor's frequency of 400 MHz both in our laboratory and in an external laboratory. The 

latter has been individuated at the Experimental Institute for Plant Nutrition (ISNP) in Rome 

collaborating with us at the same project. Since the spectrometer in use in the laboratory of 

ISNP is a Bruker one, the experimental parameters have been aligned with those of Varian 
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spectrometer operating in our labs, in order to obtain comparable spectra suitable for a 

reliable successive chemometric analysis. Considering that the purpose of the test was that 

to verify if the use of different NMR spectrometers influences the statistical analysis of the 

data, and therefore their classification, the analyzed samples have to result identical in the 

preparation step. For this reason the 11 NMR samples of cherry tomato extract have been 

prepared and analyzed in the internal laboratory (following the protocols already described) 

and immediately brought to ISNP laboratory keeping them at 0°C in a chilled thermostatic 

chamber. In this way the samples analyzed in Rome are physically the same extracts that 

have been analyzed in our internal laboratory. 

The cherry tomatoes selected for the inter-laboratory check test are listed in Table 3.5 (The 

increasing protocol number and the complete code indicating sample group, farm, plant and 

bunch are reported). 

 

 Winter season 2003 

 (35) 3Az.3A1a 

 (46) 4Az.3B2a 

 (82) 5Az4C6a 

 Winter season 2004 

 (107) 8Az.1C3a 

 (123) 10 Az.1A5a 

 (141) 12Az.1C2a 

Summer season 2004 

(198) 21Az6SHA5a 

Spring season 2005 

(223) 23Az12SHR(7/8)a 

(257) 25Az9SHB7a 

Summer season 2005 

(279) 26Az18SHC2a 

(285) 27Az1SHC4a 

Table 3.5:  Samples chosen for the inter-laboratory check test 
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How it is possible to infer from sample’s code, every cherry tomato has been chosen either 

among winter and summer seasons in a period of time covering two years. Both Naomi 

cultivar and Shiren cultivar are represented. In Table 3.6 are shown other details relative to 

these samples. 
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35 3Az.3A1°a 2003 sum. 03 23/06/03 3 3 2000 A Naomi 

46 4Az.3B2a 2003 sum. 03 01/07/03 4 3 2000 B Naomi 

82 5Az.4C6a 2003 sum. 03 09/07/03 5 4 5500 C Naomi 

107 8Az.1C3a 2003 win. 04 23/12/03 8 1 5400 C Naomi 

123 10Az.1A5a 2004 win. 04 28/01/04 10 1 5400 A Naomi 

141 12Az.1C2a 2004 win. 04 10/02/04 12 1 5400 C Naomi 

198 21Az.6SHA5a 2004 sum. 04 21/06/04 21 9 3600 A Shiren 

223 23Az12ShR7/8a 2005 win. 05 15/03/05 23 12 4000 r Shiren 

257 25Az9ShB7a 2005 win. 05 29/04/05 25 9 3600 B Shiren 

279 26AZ.18SHC2a 2005 sum. 05 30/06/05 26 18 1800 C Shiren 

285 27AZ.1SHC4a 2005 sum. 05 30/06/05 26 1 5400 C Shiren 

Table 3.6: Samples chosen for the inter-laboratory check test 
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4 RESULTS AND DISCUSSION 

 

NMR analysis of Cherry tomatoes 

The proton spectrum of Naomi tomato juice, buffered at pH 4.0, recorded at 400 MHz is 

shown in Fig. 4.1. Several hundred signals are present in the spectrum, corresponding to a 

comparable number of tomato metabolites. The spectrum is dominated i) by the not 

suppressed residual peak of water; ii) by the intense singlet signal of the methyl protons of 

acetate which has been introduced with the buffer solution; and iii) by the resonances of the 

major components, such as α-D-glucose, β-D-glucose and other sugars. However, owing to 

the high dynamic range of the spectrometer, signals from minor components are even 

readily detectable (see inset in Fig. 4.1). 

  
Figure 4.1: 400 MHz 1D 1H spectrum (9.0 to 0.0 ppm) of a cherry tomato extract, Naomi cultivar, buffered 

at pH 4.0 
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Looking at the spectrum, the doublets corresponding to the anomeric protons of α and β D-

glucose molecules are visible at both sides of the dominant residual signal of HOD, the latter 

at about 4.8 ppm. Also the dominant peak at 2.03 ppm, assigned to the methyl group of 

acetate, added to the solution as buffer system, is clearly evident. In addition, a coarse 

classification of all the signals is obtained by differentiating three characteristic regions in the 

whole spectral window: the region of the aromatic compounds (10.0 - 6.0 ppm), that one of 

carbohydrates (6.0 - 3.2 ppm) and that one collecting both aminoacids sidechains and 

organic acids (3.2 - 0.0 ppm). 

The signal assignments of some molecules detected in cherry tomatoes extracts (pH 7.0), 

analyzed during a previous study by Segre et al., are reported in Table 4.1, with their 

respective multiplicity [203]. Although the chemical shifts are routinely adopted to identify 

molecules in NMR spectra, the actual pH of the analyzed solution is responsible of dramatic 

changes of their values, when ionization reactions take place. This is the case of organic 

acids, whose signals can span tenth of ppm depending on their ionization state, which in 

turn is imposed by the pH of their chemical environment. A study highlighting this behavior 

will be described below. Thus, only sugars may be identified in the NMR spectra of the 

present study by assigning signals according Table 4.1. On the contrary organic acids, 

including acetic acid, and aminoacids cannot be assigned following the chemical shift 

reported in the mentioned table, since they have different chemical shift at pH 4.0, which is 

the one adopted during most of the experiments of the present study. 

The present chapter will discuss NMR spectra by differentiating results obtained at different 

magnetic field strength, because the information included in each spectrum is deeply 

depending on the sensitivity of the instrument, which makes available signals that are 

observed at higher fields but not at lower one. The effect is that the complexity of 

information changes, making the influence of the noise to be differently treated. The pre-

processing of the spectral raw data, performed by using home made scripts written in a 

suitable programming language (R environment), will be discussed by referring at the 

algorithms described in Chapter 3.3 (Methods) and extensively reported in Appendix A. 

Finally, the statistical multivariate analysis performed on the pre-processed data will be 

discussed, still maintaining separated the data obtained at different magnetic field strength. 
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Table 4.1: Assignment of principal signals in aqueous extracts of tomatoes at pH 7.0

1H shift Multiplicity Molecule 
0.93 t isoleucine 
0.98 d valine 
1.00 d isoleucine 
1.03 d valine 
1.17 t ethanol 
1.26 m isoleucine 
1.32 d threonine 
1.46 m isoleucine 
1.47 d alanine 
1.89 m γ-aminobutyrate 
1.98 m isoleucine 
1.91 s acetate 
2.05 m glutamate 
2.12 m glutamate 
2.14 m glutamine 
2.26 m valine 
2.29 t γ-aminobutyrate 
2.34 m glutamate 
2.37 dd malate 
2.45 m glutamine 
2.53 d citrate 
2.66 dd malate 
2.66 d citrate 
2.68 dd aspartate 
2.80 dd aspartate 
2.87 dd asparagine 
2.95 dd asparagine 
3.00 t γ-aminobutyrate 
3.06 dd tyrosine 
3.13 dd phenylalanine 
3.18 dd tyrosine 
3.19 s choline 
3.24 dd β-D-glucose 
3.27 dd phenylalanine 
3.35 s methanol 
3.40 dd β-D-glucose 
3.41 dd α-D-glucose 
3.46 ddd β-D-glucose 
3.49 t β-D-glucose 
3.53 dd α-D-glucose 
3.54 d β-D-fructofuranose 
3.55 d β-D-fructopyranose
3.59 m threonine 
3.59 d β-D-fructofuranose 
3.61 m valine 
3.65  α-D-fructofuranose 

3.65  ethanol 
3.65  α-D-fructofuranose 
3.67  isoleucine 
3.67 dd β-D-fructofuranose 
3.68  α-D-fructofuranose 
3.70 dd β-D-fructopyranose
3.71 td α-D-glucose 
3.71 d β-D-fructopyranose
3.72 dd β-D-glucose 
3.75 dd glutamate 
3.76 dd α-D-glucose 
3.78 t glutamine 
3.78  alanine 
3.79 dd β-D-fructopyranose
3.79 dd β-D-fructofuranose 
3.80  α-D-fructofuranose 
3.82 m α-D-glucose 
3.82 m α-D-glucose 
3.82 m β-D-fructofuranose 
3.89 dd aspartate 
3.89 dd β-D-glucose 
3.89 dd β-D-fructopyranose
3.94  tyrosine 
3.99 dd phenylalanine 
3.99 ddd β-D-fructopyranose
3.99  α-D-fructofuranose 
4.00 dd asparagine 
4.02 dd β-D-fructopyranose
4.05  α-D-fructofuranose 
4.11 m β-D-fructofuranose 
4.11 d α-D-fructofuranose 
4.25  threonine 
4.29 dd malate 
4.64 d β-D-glucose 
5.23 d α-D-glucose 
6.90 d tyrosine 
7.18 d tyrosine 
7.19 t tryptophan 
7.27 t tryptophan 
7.32 dd phenylalanine 
7.37 t phenylalanine 
7.42 td phenylalanine 
7.54 d tryptophan 
7.72 d tryptophan 
8.45 s formate 

 
Abbreviations: s, singlet; d, doublet; t, triplet; m, complex multiplet; dd, doublet of doublets; 
ddd, doublet of doublets of doublets; td, triplet of doublets. Data taken from [203] 
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4.1 NMR ANALYSIS AT 200 MHz 

 

In order to investigate the cherry tomato extracts without unwanted preconceptions, a 

preliminary study has been conducted aiming at verifying the influence of the pH of aqueous 

buffers on the extraction power and on the consequent quality of the information that is 

acquired with NMR spectroscopy. With this purpose in mind, three different system buffers 

were prepared for the extraction of metabolites from cherry tomato lyophilized powders, 

namely at pH 4.0, 7.0 and 10.0.  

The overall spectrum recorded at 200 MHz resembles the one that has been already shown 

in Figure 4.1, recorded at 400 MHz at the same pH 4.0. The differences are noticeable only 

by inspecting in detail the spectrum by expanding it both in vertical and horizontal scales. In 

fact, the overall region subdivision is still valid, being only resolution and sensitivity affected 

by the magnetic field strength. The picture is also changed by working at different pH. 

The spectrum of a Naomi cherry tomato aqueous extract, recorded at pH 7.0, is shown in 

Figure 4.2. Obviously, while most of the same main signals observed at pH 4.0 are still 

observable, there is not the intense signal of acetate at about 2.03 ppm. 

 
Figure 4.2: 200 MHz 1D 1H spectrum (9.0 to 0.0 ppm) of a Naomi cherry tomato extract buffered at pH 7.0 
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Some new intense signals due to HEPES, used as the buffer system, are present in the 

spectrum at about 3 ppm. Such an intense multiplet signal can be easily assigned to the 

HEPES protons by recording a spectrum of a blank HEPES buffer solution at the same 

experimental conditions of the samples. The spectrum of HEPES at 200 MHz is shown in 

Figure 4.3, where it is possible to observe all signals assignable to its protons. Of course, 

such signals overlap a broad range of resonances belonging to the sample, affecting the 

successive chemometric analysis  

In both spectra recorded at pH 4.0 and 7.0, the signals of buffer species are present, 

introducing other complexity to the system, although it has been found that acetate at pH 

4.0 does not overlap any signal from abundant molecules. However, there are buffer 

systems consisting of species with only solvent exchangeable protons. For such species any 

other signal, besides the ones belonging to the tomato extracts, is not introduced in the 

proton NMR spectra. 

 
Figure 4.3: 200 MHz 1D 1H spectrum (5.0 to 2.5 ppm) of HEPES buffer solution 

 

The spectrum of a Naomi cherry tomato sample, recorded at pH 10.0, is reported in Figure 

4.4. Here, the buffer signals are not present because bicarbonate is the only species of the 

buffer system possessing one proton, which is exchangeable with D2O. Thus, it gives origin 

to a signal collapsed with that one of the residual HOD water solvent signal, anyhow present 

at about 4.8 ppm. For this reason, it is possible to affirm that the spectrum recorded at pH 

10 represents that one referring to a tomato extract not contaminated with any other 

ppm (t1)
2.503.003.504.004.505.00

H2O



Results and discussion 

 

76 

external signal. For the same reason, since there is any substance with non exchangeable 

protons added at known concentration, it is impossible to select a signal as internal standard 

for area normalization in all spectra acquired at pH 10.0. 

ppm (f1)
1.02.03.04.05.06.07.08.0  

Figure 4.4: 200 MHz 1D 1H spectrum (9.0 to 0.0 ppm) of a Naomi cherry tomato 
extract buffered at pH 10.0 

 

By the direct comparison the three spectra recorded at the three different pH values, it is 

also possible to observe how signals falling on the acids region tend to shift toward higher 

fields when the pH value increases. This is due to the fact that many amino acids as well as 

the most common organic acids contain side-chains carrying functional groups interacting 

with the acid protons, and thus their chemical shift is affected by the pH value of the 

solution. In Figure 4.5 are shown the three spectra of the same cherry tomato sample 

analyzed at the three different values of pH that have been selected. This comparing picture 

permits to highlight the differences among the three spectra and also to observe the shifting 

of citrate signals, circled in blue in the spectrum acquired at pH 10.0, with respect to the 

other two spectra. 

Since pH has a deep effect on the overall distribution of signals in the spectrum, a straight 

correlation among spectra recorded at different pH is not easily reachable. The absence of 

some signals in an NMR spectrum is, indeed, not necessarily the consequence of a reduced 

extraction power of the buffer solution, but instead the shift of its position in a different, not 

recognized, position. For this reason the study had to be definitely conducted at only one pH 

value, possibly one similar to the physiological pH, which ranges between 3.8 and 4.5 in 

cherry tomato fruits [204]. 
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Figure 4.5: 200 MHz 1D 1H spectra (9.0 to 0.0 ppm) of the same tomato sample extracted and 

analyzed at three different pH values with highlighting of signal alignment (for sugars 
signals in light green) and misalignment (for citrate signals in light fuchsia). 
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In this way it is expected that the chemical state of metabolites in the extracts is maintained 

as much as possible similar to that one naturally found in cherry tomato fruits. For this 

reason, all chemometric analysis discussed along the present thesis work will refer to the 

aqueous extracts with pH kept at about 4.0. 
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4.1.1 Chemometric data processing 

 

271 cherry tomato samples have been extracted and analyzed by using a 200 MHz NMR 

Bruker spectrometer. 

Once all the FIDs recorded at 200 MHz have been processed with Mestre-C, the spectra have 

been exported in ASCII files and arranged in a comprehensive spectral data matrix (271 x 

6820) suitable for the subsequent chemometric analysis. Each row of such a raw data matrix 

represents one single spectrum and each column represents the same data point along all 

spectra. A simple data plot of 10 out of the 271 superimposed matrix rows restricted to the 

data points corresponding to the spectral region ranging from 1.80 to 4.30 ppm is shown in 

Figure 4.6.  
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Figure 4.6: Superimposing of 10 rows of the whole 200 MHz raw data matrix. 

 

At first glance, it appears that this spectral region shows a large horizontal shift of some 

signals, although recorded at the same pH value. Moreover, there are relevant vertical scale 

variations due to instrumental factors such as the probe temperature or the magnetic field 

homogeneity and/or casual errors in the samples preparation. These preliminary 



Results and discussion 

 

80 

observations become clear by zooming on some topic regions of the spectrum, some of 

which are reported in Figures 4.7-4.9. 
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Figure 4.7: Acetate signal from 40 spectra. Figure 4.8: Sugars region signals. 
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Figure 4.9: α-D-glucose doublet region 

 

In these figures three different spectral regions, that need some explanation, are shown. 

Figure 4.7 depicts the superimposed signals of acetate in 40 samples. Since these signals are 

substantially aligned on the horizontal axis, it results clear that raw data have been well 

referenced over this signal in the previous FID processing step. Despite the good horizontal 

alignment, these signals are affected by a large variation along the vertical scale. Differences 

of the same order of magnitude are observed also for all the signals when an array of 

spectra restricted to the sugars’ polyalcohol region is plotted, as evident in Figure 4.8. The α-

D-glucose region of all 271 acquired spectra, relative to the anomeric doublet, reveals shifts 

along the horizontal axis as well as vertical scale variations (Figure 4.9). Such problems 
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presented by raw spectral data make them not reliable for successive chemometric analysis. 

Therefore further steps have been implemented in the developed series of algorithms, 

obtaining a homogenous dataset in order to minimize them. 

In order to manage the vertical scale errors, a normalization algorithm has been developed 

by considering the signal of acetate being constant by intensity, since its concentration has 

been kept the same for all extracts at pH 4.0. In fact, acetate, which is present in every 

extract at the same concentration (100 mM) as buffer system, can be considered as an 

internal standard for the acquired spectra. For this reason, an algorithm able to normalize 

data over the intensity of such a signal in each spectrum has been written and applied, thus 

obtaining the results shown in Figures 4.10-4.11 
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In Figure 4.10, the acetate spectral region of 40 spectra has been superimposed after 

normalization on the acetate methyl signal. Such a signal has been perfectly normalized by 

the algorithm and presents now the same intensity in each spectrum. As a consequence of 

this step, also other signals have been normalized but, since they can belong to substances 

present in different concentration in the different tomato samples, they can still show a 

relevant variation on its signals intensities. This is the case of the citrate signals of the same 

40 samples shown in Figure 4.11. However, although acetate signal is now both normalized 

and horizontally aligned, the latter condition does not hold for other signals, such as those of 

citrate. This is due to the pH dependence of the acetate signal that is affected by small pH 

variations, causing a shift of the position of these signals in different samples, at a diverse 

extent with respect to that one observed for citrate. Therefore, it appeared clear that such a 

signal, even if intense and always present in all samples at similar concentrations, cannot be 

Figure 4.10: Acetate signal in 200 MHz after 
normalization step. 

Figure 4.11: Citrate signal in 200 MHz after 
normalization step. 
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used as chemical shift reference and, since no other internal standard has been used, 

another suitable signal have to be found to perform this step. 

The requirements of a signal to be suitable for horizontal alignment (the chemical shift 

referencing) have been individuated in the following ones: i) the signal must be isolated and 

not affected by other adjacent signals; ii) it must be present at high and very similar 

concentration in all samples; iii) and, of course, it must be not affected by the pH 

fluctuations. For aqueous tomato extracts, analyzed by the 200 MHz spectrometer, such a 

signal has been individuated in the α-D-glucose doublet. 

A best fit algorithm has been opportunely written to perform an alignment of such a signal 

over all spectra of the dataset, by sliding them in either left or right directions, until the best 

horizontal alignment with respect to the α-D-glucose doublet of a target spectrum is 

reached. The reference spectrum has been previously selected among those calibrated on 

acetate by identifying the one showing the anomeric signal in the position closer to its 

average position over all spectra.  

The effects of the algorithm over not pH dependent signals are shown in Figures 4.12 and 

4.13. Both the signals of the α-D-glucose doublet region and of another generic sugars’ 

region appear perfectly aligned demonstrating the good results achievable by the algorithm. 

In these figures, all the 271 acquired spectra are represented, showing that a significant 

difference in the intensities of the signals still exists. This, of course, is principally due to 

differences among samples on metabolites concentration but still another cause can be 

individuated: since the samples are not homogeneously freeze-dried, it happens that water 

concentration can vary a lot among samples determining fluctuations on the concentration of 

the metabolites extracted on the final sample submitted to NMR analysis. Because a constant 

weight of 100 mg of freeze-dried powder is withdrawn from each original milled sample, the 

amount of dry powder actually taken, depending on water content, can considerably affect 

the concentration of the extracted metabolites. Furthermore, in case of non homogeneous 

food matrices, and this is the case of freeze-dried cherry tomatoes powders, it is possible to 

collect, by chance, different anatomic parts of the fruit, such as seeds, peel or pulp with a 

lower content of extractable matter. Also this casual error can influence the actual 

concentration of metabolites on the resulting NMR spectrum, with the consequence of 

variations in the signals intensities of the molecules present in the mixture.  
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In order to evaluate the oscillations along the horizontal axis, the superimposition of all 

spectra aligned on the anomeric glucose signals are shown in Figures 4.14-4.15, revealing 

the effect of such an aligning algorithm on the pH dependent signals. 
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The way how the acetate signal is shifted over all samples is shown in figure 4.14. Now, it 

results clear that such a signal is not suitable for chemical shift referencing. Furthermore, the 

citrate signals of 40 samples, that still present horizontal misalignment, are shown in Figure 

4.15: this is due to the fact that also citrate signals are pH dependent but not in the same 

way as for acetate one.  

Figure 4.12: α-D-glucose doublet signal at 200 
MHz after CS normalization step. 

Figure 4.13: Sugars signal at 200 MHz after CS 
normalization step. 

Figure 4.14: Acetate signal at 200 MHz after 
normalization and alignment on 
anomeric doublet of glucose.

Figure 4.15: Citrate signal at 200 MHz after 
normalization and alignment on 
anomeric doublet of glucose. 
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As far as it concerns the correction of vertical scaling errors and of artifacts due to pH 

dependent shifts of signals, two different approaches have been applied, namely based on 

the "integral to a constant sum" and on the "binning" algorithms, respectively. 

For solving the vertical scaling problems, often recurring on applications of chemometrics 

NMR data of food matrices, several methods have been developed and published in 

literature, like those briefly described in the Introduction. The most common and used way 

to solve such a problem is to normalize each spectrum to a constant integral of the whole 

area. An algorithm has been written in R language to perform this type of normalization, 

obtaining the results shown in Figures 4.16-4.19 
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Figure 4.16: Superimposing of all the 271 rows of the whole 200 MHz aligned and CS normalized data matrix. 

 

It is possible to capture the resulting homogeneity of data by plotting the whole spectral 

dataset on the same picture. For this reason, 271 spectra corresponding to all analyzed 

samples are plotted together in Figure 4.16. Water and acetate signals have been removed 

before normalization to a constant sum, in order to avoid their main influence on the 

calculation performed. In this way only the signal belonging to cherry tomato metabolites are 

responsible of the data normalization and it is possible to obtain a good consistency of data 

as it is shown in Figure 4.17. The α-D-glucose doublets of all the 271 spectra appear now 

definitely most similar in their intensities as expected for samples of tomato fruits collected at 

the same grade of ripeness.  
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The citrate AB double doublet presents positional misalignment, related to small pH 

differences, but also significant vertical oscillations, even though the normalizing algorithm 

was already applied, because the actual concentration of such a metabolite varies largely, 

also depending on the harvesting season as pointed out afterwards (Figure 4.18). 

While the vertical changes due to differences among metabolite concentrations are searched 

by the chemometric tools for finding correlations and for expressing the actual variability 

within the sample population, the horizontal shift of the same signal in different spectra is an 

artifact introduced by very small pH errors in sample preparation. In order to minimize such 

errors, a binning algorithm has been applied to all spectra. 

As previously described, this method permits to better handle the dataset by performing the 

reduction of variables, by dividing the whole spectral window into integral regions of defined 

wideness (bins). This operation performs also a further alignment of the variables, still 

misaligned after signals alignment, by forcing the inclusion of shifting signal in the same bin 

of all spectra. While this method permits a better data handling by condensing the data 

points in fewer integrals, it causes a loss of definition of spectral features. The latter 

represents the main disadvantage of this chemometric step but, if bins are narrow enough, 

the chance to have only one or few signals within each integral region is still high. By 

applying the binning algorithm, written in R language, each spectrum has been reduced from 

6800 data points to 200 bins, each 0.05 ppm wide, representing the significant variables 

associated to each sample. 

Figure 4.18: Citrate signal at 200 MHz after CS 
normalization and alignment on 
anomeric doublet of glucose. 

Figure 4.17: α-D-glucose doublet signal at 200 
MHz after CS normalization step 
and horizontal alignment. 
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This is graphically represented in Figure 4.19, where the region of the most intense signals 

of a single NMR spectrum is placed over a number of yellow bars representing the integral 

bins, each one collecting few signals. 

 

 

Figure 4.19: A 200 MHz NMR spectrum of a cherry tomato and its corresponding bins. 

 

Not all the bins appear in Figure 4.19, because only a partial region of the whole spectrum is 

shown. It is worth noting here to observe that water signal falls within the bins numbered 

from 101 to 107, while the acetate signal falls in the bins numbered 160 and/or 161, 

depending on its pH dependent shift among samples. 

Since these signals do not represent metabolites of the sample, their corresponding bins 

have been removed from data matrix before successive multivariate analysis obtaining a final 

data matrix of 271 samples (rows) for 191 variables (columns). 

It is this pre-processed dataset that has been firstly submitted to Principal Component 

Analysis (PCA) after centering and scaling the whole data matrix.  

The results obtained from this first PCA are shown in Figure 4.20, representing the plots of 

the third and of the second principal component scores (PC3 vs. PC2), where samples are 

labeled with their own cataloguing ID (See appendix B) in order to easily identify outliers. 
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Figure 4.20 A: PC2-PC3 scores plot of all the samples labeled with ID 

number. 
 

The samples evidenced by circles in the PC plot are outliers and this behavior is found also 

for other PC scores (data not shown here). A careful inspection of their spectra highlighted 

some anomalous features, such as the presence of broad hump or spurious signals, not 

present in any other sample, probably due to contamination. Such samples have been 

removed from the dataset. After four outliers have been removed, the new data matrix, 

consisting of 267 samples x 191 bins, has been resubmitted to PCA. 

All next PC plots, along the thesis, will be presented without the use of numerical identifiers 

but, for the sake of clarity, only dots will afterward be adopted. Just the color labeling will be 

often employed as, for example, in Figure 4.21A, where samples are colored according to 

their geographical origin: red for samples of Naomi cultivar coming from the region of 

Pachino, orange for samples of Shiren cultivar coming from Pachino, black for aspecific 

randomly collected samples coming again from Pachino (hereafter Aspecific), magenta for 

samples coming from Licata (Sicily), green for samples coming from Sabaudia (Lazio) and 

brown for samples of uncertain origin that were purchased at the general Markets. 
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Figure 4.21 A: PC scores plot of all samples marked  Figure 4.21 B: PC scores plot of all samples marked 
  with colors corresponding to origin  with colors corresponding to origin 

 

It is immediately clear that PC scores do not permit a classification of the samples of this 

dataset in agreement with their geographical origin. In Figure 4.21A all classes are spread all 

over the PC spaces without any noticeable tendency. Searching for best combination of PC 

spaces able to distinguish among classes, the best result that can be achieved with the pair 

PC3/PC7 (shown in Figure 4.21B), where some tendency to cluster is visible for samples 

(green colored) relative to tomatoes harvested in the geographical region of Sabaudia. 

However, a large amount of samples originating from Sabaudia and Licata are overlapped 

with samples coming from Pachino, the latter well spread all around. 

Before admitting the inapplicability of PCA to capture the diversity of the geographical origin 

of cherry tomatoes as a function of their NMR data, it is necessary to individuate other 

sources of variance which are responsible of hiding the searched geographical effect. The 

seasonality of harvesting has been considered one of the most imputable effects, since the 

sampling duration was protracted along three years. The dots shown in the two PC plots 

represented in Figures 4.21 have been colored differently according to their harvesting 

season: blue for winter and red for summer. The results of such a new point of view of 

PCA analysis are shown in Figures 4.22 A and 4.22 B. 

Even considering that it is impossible to clearly separate, from the meteorological point of 

view, winter from summer season, because of weather transitions during autumn and spring, 

and of the different behavior of clime along three years, an unequivocal seasonality 

nevertheless emerges from both PC scores plots. A line has been drawn in both PC plots of 

Figures 4.22, in order to better point out the separation between winter and summer 

samples. 
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Figure 4.22 A: PC scores plot of all samples marked  Figure 4.22 B: PC scores plot of all samples marked 
  with colors corresponding to season  with colors corresponding to season 

 

The distinction between the two groups of samples harvested during winter or summer has 

been obtained by first applying the chemometric approach to our data. However, also a 

spectral comparison may give a preliminary suggestion of such distinction, as emerging by 

the inspection of Figure 4.23, where the citrate region of all 271 spectra is plotted. After the 

normalization and the alignment steps described above were applied, and by coloring spectra 

according to their harvesting season, it is clear a tendency of the signals of such a substance 

to be considerably less intense in summer. 
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Figure 4.23: Superimposing of all the spectra in the citrate region 
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Thus, the right consequence of the precedent analysis is to split the whole dataset in two 

different data matrices, the one relative to summer and the other to winter, in order to avoid 

the seasonality effect in the chemometric analysis. 

 

4.1.2 Processing of winter samples 

 

The winter dataset of the spectra recorded at 200 MHz consists of 155 out of the 267 

spectra previously accepted for statistical analysis after removal of outliers. The same 

algorithms have been applied to such a new dataset following all the previously described 

preprocessing steps. 

The plot of the citrate region recorded in all summer samples is reported for completeness in 

Figure 4.24. The signals of such a metabolite, even if belonging to samples of the same 

harvesting season, still present a certain degree of vertical scaling oscillations, besides the 

expected horizontal misalignment associated to small pH variability. The amount of citrate, 

obviously, has also a variability which is independent from seasonality, even thought the 

latter has a larger effect. 
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Figure 4.24: Superimposing of all the winter spectra in the citrate region 
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The results of the Principal Component Analysis conduced over the NMR data bins of the 155 

winter samples are shown in Figures 4.25 and 4.26. The best combinations of PC scores that 

maximize the separation in the PC space among classes related to the geographical origin 

have been selected. The samples, in all PC plots describing the winter samples, are labeled 

with the following color coding: Pachino Naomi samples are blue, Pachino Shiren ones are 

cyan, Licata ones are magenta, and Market ones are brown. Finally, the aspecific 

samples, i.e. those harvested in Pachino without following any standard protocol for 

sampling, are represented as orange dots. Both PC3-4 and PC3-8 scores plots do not reveal 

any marked separation among classes, although a certain tendency to group may be vaguely 

seen for samples cultivated in Licata or belonging to the Shiren cultivar. 

The samples extracted from Naomi tomatoes cultivated in Pachino appear spread all over the 

PC plot and overlapping with the other classes of samples. It is worth remembering here that 

samples from Licata are the only ones coming from a region different from Pachino. 

However, the growing pedoclimatic conditions of Licata are very similar to those findable in 

the adjacent Pachino area; this fact makes the differentiation among these two classes of 

samples PCA very difficult to be accomplished. 
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Figure 4.25: PC 3-4 scores plot of winter samples Figure 4.26: PC 3-8 scores plot of winter samples 

 

Another class of samples, not associable to the Naomi cultivar from Pachino, comprises 

extracts of tomatoes purchased in the general markets whose origin was not declared, and 

are represented as brown dots. These samples are fairly separated from those of the Naomi 

Pachino but not from the samples of the Shiren cultivar (cyan colored dots). Orange dots 

representing aspecific samples, which have not satisfied any standard requirement for 

sampling, appear distributed among other samples of Pachino, where they also come from.  
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As already found for citrate, there are signals in the spectra that are subjected to chemical 

shift changes depending on the actual pH value of the extraction system. This variability 

constitutes an unwanted source of variation which is minimized but not completely removed 

from dataset. A further step in the direction of eliminating pH dependence in spectra consists 

in identifying those bins which vary their integral by only changing the pH of the solution, 

and by removing such variant bins from each row of the dataset matrix. A study directed 

towards such a goal, and described in Section 4.2.1, allowed us to remove 22 bins from the 

dataset, thus reducing the set to 169 variables (pH-free dataset). A new PCA analysis over 

such a reduced data matrix (155 x 169) has been performed obtaining the results shown in 

Figures 4.27 and 4.28. 
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As already found, the aspecific samples continue to be spread over all the PC space 

calculated on the pH-free dataset. Thus, they were removed from the winter dataset in order 

to avoid the effect of introducing samples not satisfying the standard of production although 

originating from the protected Pachino area of production. Thus, further chemometric 

analysis was performed on a reduced 146 samples x 191 bins matrix. 

Although the gained improvement is not dramatic, it can be noticed that a lower group 

spreading and a tendency to color ticking can be seen. For this reason, this step has been 

considered useful, and the corresponding dataset has been utilized for further chemometric 

analysis. The tendency to cluster just seen, authorizes one to perform a Linear Discriminant 

Analysis over all the selected data. 

Figure 4.28: PC 3-8 scores plot of winter 
samples after removal of pH-
dependent bins 

Figure 4.27: PC 3-5 scores plot of winter 
samples after removal of pH-
dependent bins 
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LDA analysis has been performed on the PC rotation matrix (loadings) obtained by PCA 

analysis of the winter data matrix, already purged of aspecific samples. LD 1-2 scores plot of 

the analyzed data matrix is shown in Figure 4.29. The PC space describing 90% of the total 

variance, corresponding to the first 19 PCs, has been involved in LDA analysis. The choice of 

90% will be explained later in Chapter 4.2.4. 

Classification performed by LDA appears to be quite good since the groups are clearly 

distinguishable. The overlap among classes still persists by observing data on a plane of two 

LDs. However, by looking at all the combination of the first three LDs, emerges a clear 

separation among all classes (Figures 4.30 and 4.31). A 3D scatterplot of all the three LD 

dimensions is shown in Figure 4.32. 
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Figure 4.30: LDA 1-3 scores plot of winter samples Figure 4.31: LDA 2-3 scores plot of winter samples 

Figure 4.29: LDA 1-2 scores plot of winter samples with 
Mahalanobis distances 
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Figure 4.32: 3D plot of the three LD scores dimensions 

 

In order to give an indicative estimation of the discriminative power of LDA, the ellipses 

corresponding to the Mahalanobis distances of each group is shown in Figure 4.29. The 

number of ellipses is limited to the highest possible that do not include the centroids of the 

other groups, except for Shiren and Market ones whose centroids are almost superimposed. 

It is noticeable that only samples originating from Pachino and belonging to Naomi cultivar 

have up to three Mahalanobis distances that do not overlap the other centroids. 

According to such a criterion for class assignment, it is possible to observe that samples from 

Licata and those from Pachino are substantially separated. At this point, the "a posteriori" 

introduction of aspecific samples in the LDA space resulted in a large dispersion of the 

corresponding dots, thus justifying their preliminary removal. 
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Figure 4.33: LD1-2 scores plot of winter samples with 

aspecific samples and Mahalanobis distances 
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In fact, Mahalanobis distances of aspecific samples intersect all the other classes determining 

a relevant ambiguity of such samples that does not permit their classification in a regional 

group (Figure 4.33). 

One of the most used tests aiming at calculating the capability of LDA to predict the 

belonging of an unknown sample to one of the preconstituted categories is the lean-one-out 

test (LOO). By performing such a test on the 155 winter samples dataset, it has been found 

that 35 samples have been wrongly assigned to one of the five categories, giving a value of 

predictivity as low as 77.4%. For completeness of information, the category including the 

aspecific samples is forced to be considered a category although sampling conditions do not 

ensure a standardized quality. For this reason, the LLO test has been again conducted, 

without the 9 aspecific samples, giving a predictivity increased to 82.9%. 

A study focused on salinity of irrigation water used for cultivation in the Pachino area has 

been performed in the LD spaces in order to inspect whether this parameter can influence 

the sample discrimination (Figure 4.34). All samples coming from areas external to Pachino 

have been grey colored. Samples from Pachino area have been colored according to their 

corresponding salinity parameters: purple has been used for samples irrigated with water 

having high salinity (≥ 5000 μS/cm of electrical conductivity) and violet has been used for 

samples irrigated with water having low salinity (≤ 4000 μS/cm). 
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Figure 4.34: LD1-2 scores plot of winter samples with samples from 

Pachino area color labeled according their salinity. 
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As evidenced by inspection of Figure 4.34, samples belonging to different salinity grade do 

not show any tendency to group, thus demonstrating that this parameter does not interfere 

with the sample classification based on the production standards adopted by Pachino’s 

farmers. 

 

4.1.3 Processing of summer samples 

 

The summer NMR dataset recorded at 200 MHz consists of 112 out of the 267 spectra 

previously accepted for statistical analysis, after removal of outliers. The same algorithms 

have been applied to such a new dataset following all the previously described preprocessing 

steps. 

The results of the Principal Component Analysis conducted on the NMR data acquired on 112 

summer samples are shown in Figures 4.35 and 4.36. Also for summer samples the best 

combination of PC scores spaces have been selected in order to maximize the separation 

among classes related to their geographical origin. The samples are color labeled according 

with their category: Pachino Naomi samples are red, Pachino Shiren ones are orange, 

Sabaudia ones are green, and Market ones are brown. Finally, the Aspecific samples, i.e. 

those harvested in Pachino without following any standard protocol for sampling, are 

represented as black dots. 
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Figure 4.35: PC 3-4 scores plot of summer samples Figure 4.36: PC 3-8 scores plot of summer samples 

 

Once again, aspecific samples are preferable to be discarded because of their random 

dispersion over the PC plots. Both PC3-5 and PC3-6 scores plots shows a better separation 
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among classes, if compared with those observed for winter samples. Above all, green 

samples, representing cherry tomatoes cultivated in Sabaudia (Lazio), appears substantially 

separated from the other samples along the PC3 axis. 

Also for the summer data matrix, the bins containing the most pH dependent signals, 

identified through the same specific study conducted for the summer samples, have been 

removed from the dataset, thus reducing the involved variables from 191 to 169. PCA 

analysis conducted on such a reduced data matrix (112 samples x 169 bins) has been 

performed obtaining the results shown in Figures 4.37 and 4.38. 

Once again, the obtained improvement is not dramatic, although it can be noticed a lower 

spreading of group colors. Therefore, the corresponding dataset has been utilized for further 

chemometric analysis. 
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Figure 4.37: PC 3-5 scores plot of summer samples Figure 4.38: PC 3-8 scores plot of summer samples 
  after removal of pH-dependent bins  after removal of pH-dependent bins 

 

LDA analysis has been performed on PC (loadings) rotation matrix obtained by PCA analysis 

of the data matrix constituted by the pH independent bins without aspecific samples. 

By observing the Mahalanobis distances ellipsis in the space of the first two LDA scores, 

whose plot is shown in Figure 4.39, it is possible to outline some discrimination, especially 

for those samples that originate from areas with climatic conditions different from those of 

Pachino as observed for cherry tomatoes harvested in Sabaudia. As for winter samples at 

200 MHz, these result has been obtained selecting only the PC spaces describing 90% of the 

total variance. In such a case only 17 of the 169 variables have been kept and used for LDA.  
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Figure 4.39: LD1-2 scores plot of summer samples with 

Mahalanobis distances 
 

However, a clearer classification is even observable if also the space described by the third 

LD score it is taken into account (Figures 4.40 and 4.41). A 3D scatterplot of all the three LD 

dimensions is also reported in Figure 4.42. In this 3D space, it is easier to distinguish colored 

clouds representing classes of samples that appear sufficiently separated. 
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Figure 4.40: LDA 1-3 scores plot of summer samples Figure 4.41: LDA 2-3 scores plot of summer samples 
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Figure 4.42: 3D plot of the three LD scores dimensions 

 

Also for summer samples, the "a posteriori" introduction of aspecific samples in the LDA 

space resulted in a large dispersion of the corresponding dots, thus justifying their 

preliminary removal (Figure 4.43). 
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Figure 4.43: LD1-2 scores plot of summer samples with 

Mahalanobis distances represented and 
aspecific samples included 

 

By performing the lean-one-out test (LOO) on the 112 summer samples dataset, it has been 

found that 19 samples have been wrongly assigned to one of the four categories, i.e. 

excluding the 6 aspecific samples, giving a value of predictivity as low as 82.1%. The latter 
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value is of the same magnitude of the one found for the winter samples (82.9%), although 

slightly worsen, confirming the pictorial idea that the categories of winter samples are better 

distinguishable than those defined for the summer ones. 

Also for the summer sample, a study focused on the effect of the salinity of water used to 

irrigate samples cultivated in the Pachino area has been performed in LD. All samples not 

produced in Pachino area have been grey colored, while samples from Pachino have been 

colored according with their corresponding salinity parameters (Figure 4.44): purple has 

been used for samples irrigated with water having low salinity value (≤4000 μS/cm of 

electrical conductivity) and violet has been used for samples irrigated with water having high 

salinity value (≥ 5000 μS/cm). 
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Figure 4.44: LD1-2 scores plot of summer samples with samples from 

Pachino area color labeled according their salinity. 
 

As evidenced by inspection of Figure 4.44, also in the case of summer samples as for winter 

ones, a different salinity grade do not show any tendency to cluster, thus demonstrating that 

this parameter does not interfere with the sample classification based on the production 

standards adopted by Pachino’s farmers. 
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4.2 NMR ANALYSIS AT 400 MHz 

 

In order to give a preliminary glance to the deep improvement gained by using a most 

powerful instrument, the spectra acquired at 400 MHz and at 200 MHz on the same cherry 

tomato lyophilized powder, extracted with D2O buffer solution at pH 4.0, are shown in 

Figures 4.45 and 4.46, respectively. Detailed expansion of the spectral regions, comprised 

between 5.7 and 6.2 ppm and between 3.1 and 3.3 ppm, are depicted in their insets. 
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Figure 4.45: NMR spectra of cherry tomato extracts recorded at 400 MHz.  

The insets show some details pointing out sensitivity and resolution 
 

It appears immediately clear that at higher magnetic field it is possible to observe more 

signals because of the higher sensitivity, and also the resolution of signals is deeply 

improved with respect to that one observed in spectra recorded at 200 MHz. This fact makes 

the spectra recorder on the same tomato extracts much richer in spectral information at 400 

MHz than at 200 MHz. 

All FIDs recorded at 400 MHz have been have been processed with Mestre-C and entirely 

exported in ASCII files, all containing the intensities relative to the 16384 data points. This 

file has been imported, by a set of home made scripts in the statistical software, and 

arranged in a data matrix for successive statistical pre-processing steps as described below. 
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Figure 4.46: NMR spectra of cherry tomato extracts recorded at 200 MHz.  

The insets show some details pointing out sensitivity and resolution 
 

Before any further chemometric analysis a detailed pH dependence study has been 

accomplished in order to find out what are, and in which measure, those signals affected by 

this parameter. 

 

4.2.1 Study on the temperature and on pH dependence of signals. 

 

A single aqueous extract of cherry tomato sample coming from Pachino (ID num. 225) has 

been investigated to study spectral changes related to pH variability. The sample has been 

analyzed at three different temperatures, and at three different pH values. Therefore, 9 FIDs 

have been acquired, all processed in the same way as for all other samples, and transformed 

in 9 ASCII files suitable for statistical analysis. 

The 9 spectra acquired for this study have been labeled according to the following Table 4.2, 

with the colors used for all figures shown for the pH-dependence study. 

 

Table 4.2:  Experimental design for the study on the effect of 
temperature and pH on the signal position in NMR spectra 

 Temp. = 23°C Temp. = 25°C Temp. = 27°C 

pH = 3.86 (A1) (A2) (A3) 

pH = 4.19 (B1) (B2) (B3) 

pH = 4.44 (C1) (C2) (C3) 
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Signal referencing has been performed by setting the upfield peak of the β-D-glucose 

doublet signal at 4.65 ppm. 

The spectra have been superimposed according to 4 different combinations, three along 

each column of the table, the fourth along the row at pH 3.86. 

All superimpositions of spectra have been performed so that the β-D-glucose signals are 

aligned and scaled at the same intensity. 

By looking at the comparison of spectra along the first row of the table, the influence of the 

temperature on the signal alignment is explored, permitting the individualization of the 

temperature-dependent signals. This is the case of HOD water signal, which is reported in 

Figure 4.47. 
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Figure 4.47: 1H-NMR spectra of cherry tomato extract recorded at different temperature. 

The highest signal is assigned to the residual HOD proton. 
 

At first glance, the temperature dependence of the HOD residual resonance appears evident. 

The shift of this intense and broad signal may have a large influence also on the shape of 

small signals that may be found on the tail of the solvent peak, such as those of the 

anomeric protons of sugars. 

The three superimposed spectra shows, by deep inspection, a very good alignment of all the 

signals falling in all regions of the spectrum. Some relevant spectral zones are shown in 

Figures 4.48-4.51. 

 23°C 

 25°C 

 27°C 
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Figure 4.51, illustrating the aromatic region comprised between 7.8 and 8.9 ppm, shows only 

a negligible horizontal shift of the signals belonging to the phenyl protons of aromatic 

compounds. 
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Figure 4.48: Superimposition of NMR spectra recorded Figure 4.49: Superimposition of NMR spectra recorded 
at different temperatures    at different temperatures 
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Figure 4.50: Superimposition of NMR spectra recorded Figure 4.51: Superimposition of NMR spectra recorded 

at different temperatures    at different temperatures 
 

In the following Table 4.3, the chemical shifts of the residual HOD signal recorded at three 

different temperature are reported, together with their Δ with respect to the upfield peak of 

the doublet signal of β-D-glucose set at 4.65 ppm. 

 

Table 4.3: Water proton chemical shift of HOD recorded at 
different temperatures and pH 3.86 

 

Temp (°C) chem. shift  Δ (ppm) 

23 4.821 0.171 

25 4.801 0.151 

27 4.782 0.132 

 

Acetate
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y = -102.54x + 40.518
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Graph 4.1: temperature dependence of HOD signal 

 

It is found that the largest change of position among the main signals present in the spectrum 

is the one of the residual HOD signal. The chemical shift displacement recorded, for the 

same sample, at three different temperatures is reported in Graph 4.1. A linear dependence 

with temperature of such a signal results clear, and the effect is measurable as a shift of 0.01 

ppm/°C. This value, compared with the width of bins (0.05 ppm), allowed us to neglect the 

effect of temperature in binned data, whenever a small temperature oscillation is admitted 

during the acquisition of the whole dataset. 

Different results have been obtained by investigating the dependence of the chemical shift of 

signals with pH variations. An overview of the HOD resonance in three spectra recorded at 

25 °C still shows a small dependence of its position with pH (Figure 4.52). 
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Figure 4.52: Temperature dependence of HOD signal 
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In this case water signal is not the one experiencing the largest shift with pH titration, but 

many others can be found along several spectral regions. 

The whole spectra, from 10 to 0 ppm, have been shown in the following Figures 4.53-4.63, 

each covering about 1 ppm of spectra. 
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Figure 4.53: Superimposition of NMR spectra recorded Figure 4.54: Superimposition of NMR spectra recorded 

at different pH at different pH 
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Figure 4.55: Superimposition of NMR spectra recorded Figure 4.56: Superimposition of NMR spectra recorded 

at different pH at different pH 
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Figure 4.57: Superimposition of NMR spectra recorded Figure 4.58: Superimposition of NMR spectra recorded 

at different pH at different pH 
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Figure 4.59: Superimposition of NMR spectra recorded Figure 4.60: Superimposition of NMR spectra recorded 

at different pH at different pH 
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Figure 4.61: Superimposition of NMR spectra recorded Figure 4.62: Superimposition of NMR spectra recorded 

at different pH at different pH 
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Figure 4.63: Superimposition of NMR spectra recorded 

at different pH 
 

The vertical scale of the spectral regions represented in these figures has been individually 

adjusted by vertical expansion in order to better catch the positional variation of signals 

otherwise not observable.  
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Going on with the spectral inspection it is clearly noticeable that there are regions where the 

pH-dependent signals are side by side to other ones perfectly aligned in the three spectra. 

For example, in Figure 4.61, the most upfield signals belonging to carbohydrates protons 

visible at about 3.25 ppm are clearly immobile, while the double doublet of citrate, centered 

at about 2.80 ppm, moves upfield with increasing pH. 

A detailed study of the pH dependence of such a signal has been performed and reported 

below. A zoom on the citrate region of the three spectra has been shown in Figure 4.64, 

where also the chemical shift of each peak forming the citrate signal is reported for each 

spectrum. The chemical shifts of the 12 peaks assigned to the AB spin system of methylene 

groups in citrate are reported in Table 4.4 for the three superimposed spectra a different pH. 
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Figure 4.64: pH dependence of NMR signal of citrate 

 
Table 4.4: proton chemical shift of citrate recorded at different pH and 25°C 

Temp.=25°C Signal1 shift (ppm) Signal2 shift (ppm) Signal3 shift (ppm) Signal4 shift (ppm) 

pH=3.86 2.901 2.863 2.778 2.739 

pH=4.19 2.867 2.827 2.749 2.711 

pH=4.44 2.844 2.805 2.729 2.691 
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There is a straight dependence with the pH of all chemical shifts of signal belonging to the 

AB system, as emerging from the linear regression, whose R2 coefficients is reported in 

Graph 4.2. Such linearity is the result of citrate second pKa value (pKa1 = 3.1, pKa2 = 4.8, 

pKa3 = 5.4) being close to the pH of the extracts. The acidic titration is, indeed, in the linear 

portion of the sigmoid close to the flex point.  
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Graph 4.2: pH dependence of NMR signal of citrate 

 

The same evaluation has been conducted on the acetate signal, whose results are reported 

in Figure 4.65 and summarized in Table 4.5 and Graph 4.3.  
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Figure 4.65: pH dependence of the NMR signal of acetate 
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Table 4.5:  proton chemical shift of acetate recorded at 
25°C and different pH 
 

 pH=3.86 pH=4.19 pH=4.44

Acetate peak 2.065 2.043 2.025 

 

Also in this case, there is a straight dependence with the pH of the chemical shifts of the 

signal belonging to the methyl proton of acetate, as emerging from the linear regression, 

whose R2 coefficients is reported in Graph 4.3. Such linearity is the result of the acetate pKa 

value (pKa = 4.3) being close to the pH of the extracts. Also for acetate, the acidic titration 

is, indeed, in the linear portion of the sigmoid close to the flex point. 

 

y = -0.0688x + 2.331
R2 = 0.9995

2.02
2.025

2.03
2.035
2.04

2.045
2.05

2.055
2.06

2.065
2.07

3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

Acetato

 
Graph 4.3: pH dependence of the NMR signal of acetate 

 

As a result of this study, acetate and citrate signals have been demonstrated to shift upfield 

linearly with increasing pH. It is noticeable that, while the slope of the citrate signals is 

around -0.094 ppm/pH unit, the one relative to the acetate signal is about -0.7 ppm/pH unit. 

Thus, signals belonging to different titrable metabolites are usually pH dependent in a 

different manner, making such signals impossible to be aligned in the same spectrum 

without manipulating, in a non linear manner, the chemical shift scale. Such misalignment is 

even found at the level of a single multiplet, whose component peaks experience different 

pH dependence as found in citrate. 

In the region between citrate and acetate signals, as well as upfield with respect to acetate, 

other signals appear to be titrable by pH, as emerging from inspection of Figure 4.62.  
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Summarizing the results obtained by the present study it is possible to infer that the region 

comprised between 3.1 and 4.2 ppm, i.e. the one relative to signals originating from sugars, 

results to be not influenced by pH fluctuations. Thus the superimposed spectra, within this 

region, appear essentially aligned. 

In the light of these considerations, the acquired data have been submitted to statistical 

analysis following the same pre-processing steps already described for other cherry tomato 

samples. It results interesting to take a look at the horizontal shift of every spectrum 

represented by number of points of which each spectrum have to be slid for signal alignment 

with respect to a reference spectrum. These numbers are collected by the algorithm in a 

vector called "maxvet" that is plotted in Figure 4.66. 

 

 
Figure 4.66: PCA performed on NMR data acquired on the same cherry 

tomato extracts at different pH and temperature 
 

In the Y-axis of such a plot is reported the number of data points that separate β-D-glucose 

signal, set at 4.65 ppm in each spectrum, from the same signal positioned in a reference 

spectrum. Temperature has a bigger effect than pH on the position of this signal. This is due 

to the fact that the water signal is always kept at the middle of the spectral window by 

setting the transmitter to its frequency. Thus, the anomeric signal of glucose shifts its 

position with respect to the resonance of residual water, which is the signal that is actually 

dependent on the temperature variations, as seen before in Figure 4.52.  

 pH 4.44 

  pH 4.19 

 pH 3.86
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The original data points have been binned into 200 integral regions, each covering 0.05 ppm, 

and a Principal Component Analysis has been performed on the resulting data matrix, after 

removal of the bins containing the signals relative to residual HOD and acetate.  

The results of the multivariate analysis are shown in Figure 4.67 and 4.68, where the same 

codes for samples identification have been respected, with colors indicating different values 

of pH from pH 3.86 in red to pH 4.44 in blue, through pH 4.19 in green. 

 

  
Figure 4.67: PCA performed on data acquired from Figure 4.68:PCA performed on data acquired from 

samples at different pH and temperature samples at different pH and temperature 
 

By comparison of both Figures 4.67-4.68, it is clear that the most important PC dimension 

able to separate samples recorded at different pH is PC2. It is correct to affirm that PC2 is 

affected by all bins experiencing variability upon pH titration and temperature modifications. 

 

 
Figure 4.69: barplot representing the PC2 loading 

vector emerging from PCA on pH titrated 
samples 
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The PC2 loadings, bar-plotted in Figure 4.69, give a rank to the weight by which each bin 

influences the spectra upon titrations. By expanding the region containing the bins with the 

highest absolute values for loadings (Figure 4.70), it is possible to point out that bins from 

138 to 144, corresponding to the signal belonging to citrate, are responsible of a great 

influence on the variability of the NMR spectrum, because citrate is the predominant organic 

acid in cherry tomato extracts. 

 

 
Figure 4.70: barplot representing the PC2 loading vector emerging 

from PCA on pH titrated samples (detail of Figure 4.69) 

 

An algorithm, able to identify those bins having an absolute intensity higher than 0.025, has 

been used in order to select and remove them from the dataset before application of the 

successive chemometric processing of data. The removing of the same bins has been applied 

also to the NMR data recorded at 200 MHz, as mentioned in Paragraphs 4.1.2 and 4.1.3 for 

data shown in Figures 4.27, 4.28, 4.37 and 4.38. 

 

4.2.2 Chemometric data processing of aqueous extracts 

 

271 cherry tomato samples have been extracted and analyzed by the 400 MHz NMR Varian 

spectrometer. Once all the FIDs recorded at 400 MHz have been processed with Mestre-C, all 

spectra have been exported in ASCII files and arranged in a comprehensive spectral data 
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matrix (271 x 16384). The same steps followed to pre-process all spectra acquired at 200 

MHz have been also applied to the comprehensive 400 MHz raw data matrix, in order to 

obtain a final data matrix suitable for the subsequent chemometric analysis. 

First of all, a PCA analysis performed over raw data matrix has been exploited to point out 

outliers (like the one circled in Figure 4.71) and to find out the spectrum that has the most 

averaged features in the whole dataset (the one closer to the black cross in the same Figure 

4.71). This "central" spectrum, with ID number 170 in the dataset, will be used as the target 

object during the alignment step (spref in the algorithm listed in Appendix A). 

In Figures 4.71 samples are colored according with their geographical origin: red for Naomi 

samples coming from the region of Pachino, orange for Shiren samples coming from 

Pachino, black for aspecific samples still originating from Pachino, magenta for samples 

coming from Licata (Sicily), green for samples coming from Sabaudia (Lazio) and brown 

for samples of different origin purchased from general markets. 
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Figure 4.71: PCA performed on all data acquired at 400 MHz. See text 

for color coding. 
 

After the preliminary multivariate analysis, 10 winter samples and 3 summer samples have 

been discarded because of their anomalous behavior, as pointed out by searching for outliers 

in those PCs explaining most of the variance. For examples, the sample with ID 903 was 
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considered a possible outlier when analyzing PC1 scores (circled label in Figure 4.71). An 

inspection of the spectra of all candidate outliers revealed that there were some problems in 

their NMR acquisition (mainly related to the magnetic field inhomogeneity due to bad 

shimming procedure) that made them not suitable for chemometric analysis. An example of 

such anomalous spectra is reported in Figure 4.72. 

The methyl proton signal of acetate in 3 spectra is shown superimposed in the same figure 

to illustrate how poor spectra (red and green) differ from a good one (dark blue). 

 

ppm (t1)
2.0102.0202.0302.0402.050

 
Figure 4.72: Signal of acetate in poor (green and red) and good (blue) spectra 

 

The "central" spectrum (spref), to be used as the target object in the alignment step, 

becomes the one with ID number 164 in the dataset, after removal of the 13 outliers. 

All spectra in the dataset have been horizontally aligned on the position of the downfield 

peak of β-D-glucose signal in the spref target spectrum. Vertical scale has been corrected for 

each data row using the integral to a Constant Sum algorithm previously described.  
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Figure 4.73: β-D-glucose doublet region. Figure 4.74: β-D-glucose doublet region. 
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Residual HOD and acetate signals have been removed (setting their spectral data to 0) 

before performing such a pre-processing step. The effects of the application of this algorithm 

are illustrated in Figure 4.73 (before application) and Figure 4.74 (after application). 

Proceeding with data preprocessing, a new 258x16384 data matrix with signals horizontally 

aligned and vertically normalized has been obtained. Such a matrix still contains useless data 

relative to edge regions of the spectra containing only noise. For this reason a dimensional 

reduction is performed by cutting both edge regions and obtaining a 258x13600 data matrix 

suitable for successive binning step. As already seen for data acquired at 200 MHz, spectra 

have been split into 200 integral regions, 0.05 ppm wide, each containing the integral of 68 

data points, and producing a new binned 258x200 data matrix. Such a matrix has been 

reduced to a 258x194 matrix by removing the bins corresponding to water and acetate 

signals, before submitting it to a new PCA analysis. 

The results of the multivariate analysis involving all valid samples are reported in Figures 

4.75-4.76.  
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Figure 4.75: PCA performed on all samples Figure 4.76: PCA performed on all samples 

 

Only the samples from Licata and those from Sabaudia seem to be roughly clusterized, even 

though the two groups are overlapped to samples harvested in Pachino. Also the removal of 

the 14 bins selected by the pH dependence study does not improve significantly the 

distribution of samples as emerging, at first sight, from Figure 4.76, but their exclusion from 

analysis will be applied hereafter to avoid any possible unwanted experimental source of 

variance. 
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In Figure 4.77, the samples have been colored according with the four harvesting season: 

blue for winter, green for spring, red for summer and brown for autumn. It is noticeable 

that samples harvested in seasons with intermediate climatic conditions (spring and autumn) 

fall in between summer samples and winter ones. 
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Figure 4.77: PCA performed on all samples Figure 4.78: PCA performed on all samples 

 

In order to make the PC plot more meaningful, the samples have been assigned to the two 

extreme winter and summer seasons according with their harvesting date. Considering that 

Sicily has warm temperature until October, summer samples range between the beginning of 

May and the end of October, while those assigned to winter span the remaining part of the 

year. The PC scores plot representing such a division is depicted in Figure 4.78. 

As already seen for data acquired at 200 MHz, also for samples analyzed at 400 MHz a good 

separation between summer and winter classes exists. Obviously, an intersecting area of the 

two groups exists due to the intrinsic variability of the samples and to the temperature 

oscillations observable during intermediate seasons. 

A Linear Discriminant Analysis has been performed on such a dataset in order to separate 

samples belonging to the four seasons. The results are shown in Figure 4.79 and 4.80. A 

quite good separation among the classes has been reached but a high grade of ambiguity 

still exists for many samples.  

Since the variance due to the harvesting season exceeds all the other sources of variances 

that need to be investigated, the comprehensive dataset has been split in two different new 

data matrix relative to samples of cherry tomato harvested in winter or in summer. 
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Figure 4.79: LDA performed on all samples Figure 4.80: LDA performed on all samples 

 

4.2.3 Processing of winter samples 

 

The winter sample dataset of the spectra recorded at 400 MHz consists of 166 out of the 258 

spectra previously accepted for statistical analysis after removal of outliers. The same 

algorithms have been applied to such a new dataset, following all the previously described 

preprocessing steps. The results of a preliminary PCA analysis of the raw data are shown in 

Figure 4.81, reporting the ID number of each sample. In this figure aspecific samples are not 

reported. 

After the pre-processing steps and the removal of variables containing pH dependent signals, 

the resulting binned 166x180 data matrix has been statistically analyzed by the PCA 

chemometric tool. 

Both PC2-3 and PC2-5 scores plots (Figure 4.82 and 4.83, respectively) do not reveal any 

clear separation among classes, even though a better tendency to group, with respect to the 

results obtained for data acquired at 200 MHz, may be observed for samples cultivated in 

Licata or belonging to the Shiren cultivar, as well as for the samples purchased at the 

market. 

The samples extracted from Naomi tomatoes cultivated in Pachino appear spread all over the 

PC plot and overlapping with the other classes of samples. Again it is worth remembering 

here that the growing pedoclimatic conditions of Licata are very similar to those findable in 

the adjacent Pachino area. Also for data acquire at 400 MHz this fact makes the 

differentiation among these two classes of samples very difficult to be accomplished by PCA. 
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Figure 4.81: PCA performed on data acquired on winter samples at 400 MHz. 

See text for color coding. 
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Figure 4.82: PCA performed on winter samples Figure 4.83: PCA performed on winter samples 

 

Once again, adding a posteriori the aspecific samples on the PC spaces it results that such 

samples do not fall in any specific class and tend to have a random distribution (Figures 4.84 

and 4.85). 
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Figure 4.84: PCA performed on winter samples with Figure 4.85: PCA performed on winter samples 

 aspecific samples with aspecific samples 

 

 

The tendency to cluster just seen, authorizes one to perform a Linear Discriminant Analysis 

over all the selected data, excluding only aspecific samples (153x180 data matrix). 

LDA analysis has been performed on the PC rotation matrix (loadings) obtained by PCA 

analysis performed on the winter data matrix, already purged of the aspecific samples. LD1-2 

scores plot of the analyzed data matrix is shown in Figure 4.86. 
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Figure 4.86: LDA performed on all winter samples without aspecific samples 
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The PC space describing 90% of the total variance, corresponding to the first 34 PCs, has 

been involved in this LDA analysis. 
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Figure 4.87: LDA 1-3 scores plot of winter samples Figure 4.88: LDA 2-3 scores plot of winter samples 

 

Classification performed by LDA appears to be quite good since the groups are clearly 

distinguishable. The overlap among classes still persists by observing data on a plane of two 

LDs. However, by looking at all the combination of the first three LDs, emerges a clear 

separation among all classes (Figures 4.87 and 4.88). A 3D scatterplot of all the three LD is 

shown in Figure 4.89, helping to have an overall sight on the localization of the four different 

classes in the space of the first three LDs. 

 

-8 -6 -4 -2  0  2  4

-4
-2

 0
 2

 4
 6

-8

-6
-4

-2

 0
 2

 4

 6

x

y

z

 
Figure 4.89 3D plot of the three LD scores dimensions 
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A leave-one-out test of such a statistical system has been performed in order to verify its 

predicting ability and whether it is affected by overfitting. The results of the test are shown 

in Graph 4.4. As much as 139 winter samples out of the 153 ones constituting the analyzed 

dataset have been rightly assigned to their own class. This means that only a marginal 

overfitting is present since as high as 90.85% of the samples have been correctly assigned. 
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Graph 4.4: Leave one out test performed on winter samples after LDA on PCs describing 90% of the total variance 
 

Errors are mainly committed by confusing Shiren and Naomi cultivars both harvested in the 

Pachino area, suggesting that geographical origin, more than the cultivar, is the main 

discriminant factor for classification. 

At this point, the aspecific samples previously excluded by the statistical multivariate analysis 

have been projected on the LD spaces. The following Figures 4.90 and 4.91 show in black 

the aspecific samples, together with all other samples.  
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Figure 4.90: LD1-2 scores plot of winter samples Figure 4.91: LD1-2 scores plot of winter samples 

with aspecific samples  with aspecific samples 
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Once again, their random dispersion is undoubted. Although the centroid of the group 

including the aspecific samples falls exactly over the centroid of the group of Naomi samples 

(in fact the origin of both classes is the Pachino area) their assignment to a specific class 

results unfeasible. 

Naomi samples coming from Pachino, projected on the LD scores spaces, have been then 

marked in purple and violet colors according with the salinity grade of their irrigating water, 

as already seen for data recorded at 200 MHz. Other samples have been again gray colored 

in order to make the plot more significant. Figure 4.92 shows the results of the multivariate 

analysis on the effects of salinity of the irrigation water. 
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Figure 4.92: LD1-2 scores plot of winter samples with samples from 

Pachino area color labeled according to their salinity. 
 

As emerging with data at 200 MHz, also those recorded at 400 MHz confirm that salinity 

does not influence in any significant way the distribution of samples, thus demonstrating that 

this parameter does not interfere with the sample classification. 
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4.2.4 Processing of summer samples 

 

The summer dataset of the spectra recorded at 400 MHz consists of 92 out of the 258 

spectra previously selected for statistical analysis after removal of outliers. The preprocessing 

steps already seen for winter samples have been performed on the 92 x 16384 matrix 

constituting the raw dataset of summer samples. A preliminary PCA analysis of the raw data 

is shown in Figure 4.93 reporting the ID number of each sample. During summer, any 

aspecific sample has been analyzed at 400 MHz; therefore, they are never present in this 

statistical step. For summer samples the reference spectrum, selected by the algorithm 

based on PCA, is that one having the ID number 50 ("spref"). In the following figures, 

summer samples have been yet colored according with their geographical origin: Pachino 

Naomi samples are red, Pachino Shiren ones are orange, Sabaudia ones are green, and 

Market ones are brown.  
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Figure 4.93: PCA performed on data acquired on summer samples at 400 

MHz. See text for color coding. 
 

Also for the summer data matrix, the bins containing the most pH dependent signals have 

been removed from the dataset, thus reducing the involved variables from 194 to 180. PCA 
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analysis conducted on such a reduced data matrix (92 x 180) has been performed obtaining 

the results shown in Figures 4.94 and 4.95. 

Once again the best combinations of PC scores that maximize the separation in the PC space 

among classes related to the geographical origin have been selected. 
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Figure 4.94: PCA performed on summer samples Figure 4.95: PCA performed on summer samples 
 

Since Shiren samples (orange) and Naomi ones (red) are both originating from Pachino it is 

not surprising that these two classes appear overlapped in the PC scores space. If these two 

groups are seen as belonging to a single class, thus the separation obtained in the PC space 

(PC2-PC5) results significantly good as emerging from Figure 4.94. 

Samples of different origin appear now, for the firs time in this study, rather distinguished in 

the three classes, even before the LDA step. Only a small portion of samples is overlapped in 

the centre of the plot, where all the categories border on each others.  

In order to perform a significant LDA on the data it has been necessary to accomplish a 

preliminary study for obtaining the best reachable conditions. Since LDA analysis suffers 

from data collinearity of variables, it is not convenient to perform this multivariate analysis 

directly on the data matrix. In fact, different bins may collect signals from the same 

molecule, resulting in a straight correlation among the involved bins. 

The standard procedure transforms the space described by the bin variables in a rotated 

space of new variables called principal components which are chosen to be orthogonal each 

others. The first principal components have most of the information contained in the original 

data, whilst the last ones collect all the noise. For this reason it is convenient to select the 

number of PCs, being subjected to LDA, which retain all the useful information. 
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The number of PCs is also taken as lower as possible to avoid overfitting that usually 

happens in LDA analysis, when the number of variables used to explain a sample of 

investigated objects is much higher than that of objects [174]. Such a selection is based on 

Leave-One-Out studies performed on LDA results obtained by varying the number of PCs 

employed in such a way that the variance explained by PCs ranges between 1 and 99%. This 

has been accomplished by an algorithm that recursively repeats LDA analysis, and the 

consequent LOO tests, by varying the number of PC used. The results of this study are 

graphed in Graph 4.5. 
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Graph 4.5: percent of the explained variance as a function of the employed PCs 

 

The percentage of correct assignments of samples to the proper class, as obtained by the 

corresponding LOO test, is reported in the ordinates, versus the percentage of total variance 

explained by the number of PCs used to perform LDA. It results clear that, in order to obtain 

a good predictivity, at least 60% of total variance have to be explained by the PCs selected. 

This result, alone, is not sufficient to select the right number of PCs for obtaining both a 

good separation among classes and a good predictivity of the system. For this purpose, the 

Mahalanobis distances have been calculated in order to reach a good compromise among 

high predictivity and low overfitting. 
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Figure 4.96: LDA performed by using 83 PCS explaining 99.9% of variance 

 

When 83 PCs, explaining 99.9% of the total variance, are chosen out of 92 totally available, 

a clear overfitting affects the LDA, as evidenced by the as high as 60 mistakes obtained over 

92 samples with the LOO test, corresponding to only a 65.2% predictivity. 
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Figure 4.97: LDA performed by using 10 PCS explaining 71% of variance 

 

On the other side, when only 10 PCs, explaining 71% of the total variance, are chosen for 

LDA a clear overlap of Sabaudia and Pachino classes is found, as evidenced by the 

Mahalanobis distances shown in Figure 4.97. It is worth noting here that predictivity takes 
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the main advantage by the low number of PCs, as it is as high as 91.3% with only 8 

mistakes. 
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Figure 4.98: LDA performed by using 26 PCS explaining 90% of variance 

 

The choice of 26 PCs explaining 90% of total variance resulted to be the best one among all 

those conducted on this study because, on one hand, it still presents a perfect separation 

among classes (Figure 4.98) and, on the other hand, maintains 89.1% predictivity, with only 

10 mistakes (Graph 4.6), very close to the best one obtained with 10 PCs. 

 

 
Graph 4.6: Leave one out test performed on summer samples after LDA on PCs describing 90% of the total variance 

 

In most of the cases mistakes on the assignment of the class which the leaved-out sample 

belongs to are due to confusion between Naomi and Shiren samples of Pachino, thus not 

being a relevant errors since they really have the same geographical origin. 
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In the light of such results, all LDAs carried out along the present thesis work have been 

performed using always a number of PCs explaining 90% of total variance, as previously 

seen for winter data recorded at 400 MHz as well as for data collected at 200 MHz. 
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Figure 4.99: LD1-3 scores plot of summer samples 

 

It is relevant to observe that even if Shiren and Naomi samples are forced to belong to 

different classes, LDA tends to overlap them in LD1-2 scores space (Figure 4.98), suggesting 

that these two groups are very similar, and indeed they are with respect to their 

geographical origin. However, LD3 scores differentiates the two groups, as emerges from 

inspection of Figures 4.99 and 4.100, prompting that another effect, e.g. the cultivar, 

determines certain diversity. 
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Figure 4.100: 3D plot of the three LD scores dimensions 
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In order to thoroughly test the predictivity of LDA, 100 "Leave-Ten-Out" tests have been 

performed, intending that 10 of the 92 summer samples have been randomly excluded from 

the LDA analysis and successively predicted using the Canonical Variates in this way 

calculated. The results of such a validation test are summarized in Graph 4.7. 
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Graph 4.7: Number of successes reached with the Leave-ten-out tests 

 

It results that 89 out the 100 "Leave-Ten-Out" tests predict correctly more than 90% of the 

excluded samples (the weighted mean is 93%).  

According to previous considerations, Naomi and Shiren samples may be considered as 

belonging to a single class; thus, the LDA has been performed on such a differently 

categorized dataset improving the predictivity of the statistical system from 89.13% to 

93.48%, still using 26 PCs explaining 90% of the total variance. The discriminatory capability 

of LDA on the summer samples analyzed at 400 MHz is shown in Figure 4.101.  
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Figure 4.101: LDA performed by using 26 PCS explaining 

90% of variance and keeping together 
Shiren and Naomi in the same category 
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Also for the summer samples, a study focused on the effect of the salinity of water used to 

irrigate cherry tomatoes cultivated in the Pachino area has been performed by LDA. 
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Figure 4.102: LD1-2 scores plot of summer samples with samples from 

Pachino area color labeled according to their salinity 
 

Also in this case, the results shown in Figure 4.102 are identical to those already seen for 

other previously described studies performed on other dataset, confirming that salinity has 

no effect on sample distribution. 
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4.2.5 Inter-laboratory check test 

 

A set of 11 cherry tomato extracts, already prepared and analyzed in our laboratory, all 

cultivated in the area of Pachino, have been analyzed, by another operator, with a 400 MHz 

NMR spectrometer located in an external laboratory. The results of such a check test are 

illustrated below, considering winter and summer samples separately. 

4.2.5.1 Winter 

5 samples, out of the 11 being considered for such a test, are extracted by tomatoes 

harvested in the winter season: 3 of these belong to the Naomi cultivar while the remaining 

2 are chosen among the samples of the Shiren cultivar. The internal winter samples are 

labeled according to the codes already used for chemometric data processing described in 

section 4.2.3. The new added external winter samples are marked with crossed squares, 

colored in two different gradations of green: dark green for Naomi samples (to be 

compared with blue ones) and light green for Shiren samples (to be compared with cyan 

ones). FID processing has been performed on these external samples in the same way as for 

the internal samples. Once that data have been aligned and normalized, PCA analysis 

originated the results shown in Figure 4.103. 
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Figure 4.103: PCA of all winter samples together with 
external samples 
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It is noticeable that, even though a sharp separation is not present among classes, the 

external samples preferentially fall within the region preferentially occupied by the internal 

samples corresponding to the same category. This tendency, roughly seen with PCA, became 

more significant proceeding with the chemometric analysis and performing the LDA step. 

The external samples have been projected on the LD scores spaces using the Canonical 

Variates matrix obtained by analyzing only the internal samples. In this way also the 

predictivity of the system has been tested since the test samples are used as unknown 

samples. The results of LDA analysis are shown in Figure 4.104. 
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Figure 4.104: LDA of all winter samples together with external samples 

 

 

Although one internal sample of the Naomi category (circled red in the figure) has been 

erroneously assigned to the Shiren group, all the external samples have been correctly 

predicted by considering all the LD scores space (only the plane LDA1-2 is shown in figure). 

The correct assignment has been predicted by performing the LOO test whose result is 

shown in Graph 4.8. In such a graph the external samples correspond to the last 5 points in 

the graph and all of them are rightly assigned. The classes of 144 samples out of the 158 

used to perform LDA analysis have been correctly assigned, thus resulting in a predictivity 

equal to 91.1%. 
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Graph 4.8: Leave one out test performed on winter samples, including external samples, after LDA on PCs 

describing 90% of the total variance 

4.2.5.2 Summer 

The remaining 6 external samples, out of 11 analyzed in the external laboratory, originated 

from extracts of tomatoes harvested in summer: 3 of these belong to the Naomi cultivar, the 

other 3 are chosen among the samples of the Shiren cultivar.  

Also in this case, the internal summer samples are labeled according the codes already 

described for the chemometric data processing of summer samples described in section 

4.2.4. The new added external summer samples are marked with crossed squares colored in 

two different colors: blue for Naomi samples (to be compared with red ones) and cyan for 

Shiren samples (to be compared with orange ones). 

FID processing has been performed on these external samples in the same way as for the 

internal samples. Once that data have been aligned and normalized, PCA analysis originated 

the results shown in Figure 4.105. 
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Figure 4.105: PCA of all summer samples together 

with external samples 
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Also for summer samples it is observable that the external samples preferentially fall within 

the region preferentially occupied by the internal samples corresponding to the same 

category. This inter-laboratory consistency, roughly seen with PCA, became more evident 

with LDA. The latter has been performed on summer samples in two different ways: i) the 

first one by including the internal samples in the data matrix being subjected to LDA, and ii) 

the second one by excluding them from data matrix before LDA, afterward they are just 

projected on the LD scores space. The results of such a multivariate analysis are shown in 

Figures 4.106 (i) and 4.107 (ii), respectively. 
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Figure 4.106: LDA performed on all summer samples together 

with external samples 
 

As far it concerns the first approach, the correct inclusion of the external samples in the 

space of LDA confined to the second Mahalanobis distance of their own group is not 

surprising, being such samples included as trial set in LDA. The second approach, according 

which the external samples are excluded from the trial set and used only as test set, has 

been applied in order to test the equivalence of the internal and the external samples. In this 

way, this study should answer to the question whether samples are well recognized 

according to their original geographical origin, even if analyzed with a different NMR 

spectrometer. 
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Figure 4.107 illustrates the results of such second approach, which are almost coincident 

with those obtained by application of the first one, in terms of sample distribution over the 

LD space.  

 

 
Figure 4.107: LDA performed on all summer samples together with 

external samples that have been used as test set 
 

Differently from what has been found with external winter samples, not all the test samples 

result correctly assigned, since one of these falls in the class of the samples coming from 

Sabaudia (pointed by a red arrow in the figure). The same ambiguity on assigning the right 

category to the external samples is contained in Graph 4.9, showing the predictivity 

calculated with the LOO test.  
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Graph 4.9: Leave one out test performed on summer samples, including external samples, after LDA on PCs 

describing 90% of the total variance 
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In such a graph, the external samples are the last 6 ones. Here, even if sample n. 96 is 

rightly assigned to Shiren class, there is for it a relevant component of Sabaudia character as 

highlighted by the red ellipse. Nevertheless, the classes of 88 samples out of the 98 used to 

perform LDA analysis have been correctly assigned, resulting in predictivity equal to 89.80%. 

Although this result is appreciable, not all the external samples are predicted to belong to 

the same category of the corresponding internal one. This fact highlights the necessity to 

pay great attention to the instrumental set up as well as to the acquisition procedures which 

must be homogeneously set among different operators (shimming and tuning steps are 

annoying and more patient operators ensure better results on the spectra). The chemical 

modifications intervening during the gap of time elapsing between the internal and the 

external analyses may by excluded, since a kinetic study has been performed in order to 

verify the stability of extracts, showing that the spectra are perfectly superimposable at a 

distance of a week between two acquisitions (data not shown). 

In the present study, the effect of different sample preparations among more operators has 

also taken into account: two operators have prepared two samples from the same tomato 

powder and analyzed on the same spectrometer. The comparison of the resulting spectra 

confirms that there is any appreciable difference, as predictable by considering the very 

simple method of sample preparation. 
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5 CONCLUSIONS 

 

The research work described along the present thesis, is relative to the assessment of the 

quality in terms of chemical composition expressed as simple numerical parameters, and to 

the exploitation of such parameters to differentiate vegetable products with respect to their 

geographical origin. 

The case study is referred to the “pomodoro di Pachino”, a variety of cherry tomato 

cultivated in a restricted area of the southern coast of Sicily, protected by a European quality 

mark , which guarantee its geographical origin. 

Often the mark is given to a product which is defined of good quality by means of criterions 

not always objectively measurable. In the present case, for example, the quality of tomatoes 

may be related to the way of its cultivation, which must satisfy some defined procedures. 

However, the mark is mainly related to its geographic origin, not necessarily confined to an 

areal with homogeneous pedoclimatic conditions, thus discriminating among neighboring 

regions which are only divided by political definitions. In this case, while it is credible that 

tomatoes cultivated in Sabaudia, an area in the central region of Italy, may be qualitatively 

different from those produced in the Pachino area, some doubts may arise for the legitimacy 

to discriminate between tomatoes cultivated in this latter area and those coming from Licata, 

another area remaining close to Pachino. 

During the three years of the research work, whose results are presented in this thesis, a 

large amount of NMR spectroscopic data has been collected in a comprehensive dataset, 

becoming the basis for the development of a procedure which aims at the characterization of 

the quality of a unique vegetable product recognized and appreciated by consumers. 

The plentiful spectroscopic dataset has been derived from the analysis of more than 270 

samples of lyophilized cherry tomato fruits. Modern chemometric methods have been applied 

on this dataset to extract the necessary information for supporting, with objective measures, 

the decision previously taken without scientific bases, that tomatoes from Pachino are 

actually different from others of different origin. The results of the present research indicate 

that the tomatoes produced in this area, indeed, are different in terms of chemical quality 

from the other tomatoes studied for comparison and coming from different origins. It is also 

worth noting here that the method has allowed to establish that the quality of production is 

differentiable according to the climatic seasons of harvesting, as emerging along the three 

years of the study. This finding holds for both the product of Pachino and the other 
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tomatoes. Once the two seasons of production, summer and winter, are kept separate, non 

negligible differences emerge among tomatoes with different origin. 

The results clearly point out that it is not a single molecular component to make the 

difference rather, like in an orchestra, it is the whole ensemble of instruments to play a good 

symphony. From the chemical point of view, it is the harmonious whole of substances to 

produce a differentiation in the quality of tomatoes having different origin. 

Three additional fundamentals emerge from the present study: 

1) it is necessary that tomatoes from Pachino are produced according to standardized 

procedures of cultivation and harvesting. In fact, the samples picked randomly without 

criteria of good quality, do not have a precise connotation in the space of parameters built 

through the use of chemical descriptors based on NMR. For this reason it is necessary, for a 

greater tutelage of the product and for its recognizability, that the standards of production 

are maintained constant; 

2) the effect of the salinity of the irrigating water, so far characterizing the product even in 

the lowest limit of its range because it constitutes a selective factor for plant growth, has not 

a decisive influence on the quality within the same area of Pachino. The present research 

work has shown that there are not substantial differences among productions irrigated with 

waters with conducibility ranging between 1500 and 5000 µS/m. This allows to establish that 

1500 µS/m is a value related to an extreme salinity already constituting a selective condition. 

These adverse growth conditions, which limit the development, are believed to bring the fruit 

to have a high concentration of components and a rich taste.  

3) the discriminant power of the spectroscopic method is dependent from the strength of the 

spectrometer, as it emerges from the comparison of the results of the Linear Discriminant 

Analysis performed on the data recorded at 200 MHz and at the more powerful 400 MHz. 

With both magnetic field strength, a comparable capture of the season effect is obtained. 

However the weaker instrument gives the smaller predictivity (about 80%) in cataloguing the 

samples to the correct category of origin, whilst the most powerful spectrometer gives a 

correct prediction up to 90%. The method, still requiring to be optimized, however only 

marginally is affected by some inter-laboratory effects. 

In conclusion, the present thesis describes a research work which adds, to the panorama of 

the foods of vegetable origin largely studied such as wine, oil and fruit's juices, another 

product that receives a good gastronomic reputation, and has an added value which is 

recognized by European Community with the quality mark. The same approach is applicable 

to other foods of vegetable origin. 
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In perspective, the research should continue in the identification of those molecular 

components responsible of the greatest part of the discriminating power evidenced by the 

multivariate analysis. Currently, non hyphenated methods are also studied which couple the 

NMR spectroscopy to other classical methods of separation such as HLPC and GC. 
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Appendix A: Algorithms in R language 

In this section the most important R language scripts, developed during my PhD, are 

reported. Obviously not all the command employed in any situation of data processing have 

been illustrated but only the most significant. For further material or utilization advices 

please refer to f.savorani@unibo.it 

 

200 MHz data processing 

 

rm(list = ls()) 
library(MASS) 
#nomi<-read.table("72estivi.txt", sep=";", colClasses = "character", header=T) 
#nomi<-read.table("267_ok_origine.txt", sep=";", colClasses = "character", header=T) 
#nomi<-read.table("114_est_LDA.txt", sep=";", colClasses = "character", header=T) 
nomi<-read.table("155inv_LDA.txt", sep=";", colClasses = "character", header=T) 
#nomi<-read.table("108_estnornd_LDA.txt", sep=";", colClasses = "character", header=T) 
#nomi<-read.table("271peranalisi.txt", sep=";", colClasses = "character", header=T) 
#nomi<-read.table("prova281.txt", sep=";", colClasses = "character", header=T) 
#nomi<-read.table("274_origine.txt", sep=";", colClasses = "character", header=T) 
#nomi<-read.table("167inv_azienda.txt", sep=";", colClasses = "character", header=T) 
#nomi<-read.table("142invernali.txt", sep=";", colClasses = "character", header=T) 
num<-nomi 
ncamp<-nrow(nomi) 
campioni<-nomi  
 
############################### 
###### spectral regions for alignment ###### 
############################### 
all1<-3250; all2<-3310 # c(3200:3350)(4700:5100) 
reg1<-3250; reg2<-3310 
allinea<-c(all1:all2)     
regione1<-c(reg1:reg2) 
inf1<-min(regione1); sup1<-max(regione1) 
  
punti<-6820 
rall1<-500 
rall2<-5000 
rall3<-50000 
rall4<-350000 
 
tabella<-matrix(nrow=ncamp, ncol=punti) 
tabace<-matrix(data=0, nrow=ncamp, ncol=punti) 
 
################################### 
# spectra scanning in order to evaluate their shifting     # 
# with respect to a target spectrum (sample 38, X=17) # 
################################### 
windows(5.7,3.55, xpos=5.8E2, ypos=0) 
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n<-c(1:punti) 
for (z in 1:ncamp) { 
spec<-read.table(nomi[z,1], sep=";", dec=".", header=F) 
spectrum<-as.matrix(spec) 
titolo<-paste("spettro",as.character(z)) 
tabella[z,]<-matrix(spectrum[n]) 
} 
plot(tabella[z,],xlim=c(all1,all2), ylim=c(0,3000),type="l", main=titolo) 
#lines(tabella[z,]) 
########## 
# slow motion # 
########## 
a<-0 
for (z in 1:rall4){ 
a<-a+1 
} 
############# 
# slow motion end # 
############# 
} 
 
windows(5.7,3, xpos=5.8E2, ypos=3.95E2) 
 
#individuates acetate signal in any sample# 
 
ace<-0 
for (i in 1:ncamp) { 
ace[i]<-max(tabella[i,5434:5440]) 
titolo<-paste("spettro acetato",as.character(i)) 
########## 
# slow motion # 
########## 
a<-0 
for (z in 1:rall3){ 
a<-a+1 
} 
############# 
# slow motion end # 
############# 
plot(tabella[i,5430:5445], ylim=c(0,85000), type="p", main=titolo) 
} 
 
########################################################## 
# scales any data point over the maximum of the acetate signal of the correspondent sample # 
########################################################## 
 
windows(5.7,3, xpos=0, ypos=3.95E2) 
tabace<-tabella/ace 
for (i in 1:ncamp) { 
titolo<-paste("spettro",as.character(i)) 
plot(tabace[i,allinea], ylim=c(0,0.15), type="l", main=titolo) 
########## 
# slow motion # 
########## 
a<-0 
for (z in 1:rall3){ 
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a<-a+1 
} 
############# 
# slow motion end # 
############# 
} 
 
########################################### 
# algorithm for signals alignment based on least square minimization # 
########################################### 
 
funtarget<-c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 
minsqm<-matrix(nrow=1,ncol=ncamp) 
windows(5.7,2.8, xpos=0, ypos=0) 
index<-0 
spettroref<-6 
for (h in 1:ncamp) { 
minore<-1E35 
j<-0 
for (z in -15:15){ 
j<-j+1 
limite1<-all1+z 
limite2<-all2+z 
scalato1<-tabella[spettroref,allinea]/max(tabella[spettroref,allinea]) 
scalato2<-tabella[h,c(limite1:limite2)]/max(tabella[h,c(limite1:limite2)]) 
target<-scalato1-scalato2 
funtarget[j]<-sum(abs(target)) 
 
#plot(scalato1, type="l", ylim=c(-1,1), main=as.character(h)) 
#lines(abs(target), type="l", col="red") 
#lines(scalato2, type="l", col="red") 
 
if (sum(abs(target))<minore){ 
minore<-sum(abs(target)) 
index[h]<-z 
} 
} 
########## 
# slow motion # 
########## 
a<-0 
for (z in 1:rall3){ 
a<-a+1 
} 
############# 
# slow motion end # 
############# 
 
plot(funtarget,type="l", main=as.character(h)) 
minsqm[h]<-min(funtarget) 
} 
 
barplot(index) 
index1<- -index 
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########################################### 
# algorithm for signals alignment over α-D-glucose downfield signal  # 
########################################### 
 
centro<-3278 #(signal position on the target spectrum) 
maxvet<-matrix(data=0, ncol=1, nrow=ncamp) 
reganomer<-c(3250:3310) 
for (i in 1:ncamp){ 
for (j in reganomer){ 
if (tabace[i,j]==max(tabace[i,reganomer])) maxvet[i,]<- centro-j 
} 
} 
 
index1<-maxvet 
 
############################## 
#Algorithm for generating aligned data matrix  # 
############################## 
 
allineanomer<- matrix(data=0, ncol=punti, nrow=ncamp) 
for (i in 1:ncamp) { 
shift<-index1[i] 
if (shift>0) allineanomer[i,(1+shift):punti]<-tabace[i,1:(punti-shift)] 
if (shift==0) allineanomer[i,]<-tabace[i,] 
if (shift<0) allineanomer[i,1:(punti+shift)]<-tabace[i,(1-shift):punti] 
} 
 
############################################### 
#Cutting useless external data points (keeping form point 11 to point 6810)# 
############################################### 
 
allineanomer1<-allineanomer[,c(11:6810)] 
 
################################### 
#Plotting of the aligned and reduced (6800 pts) spectra# 
################################### 
 
for (z in 1:ncamp) { 
titolo<-paste("spettro",as.character(z)) 
plot(allineanomer1[z,], type="l", ylim=c(0,0.001), main=titolo)      #xlim=c(150,200), ylim=c(0,0.1) 
#lines(allineanomer1[z,] 
 
########## 
# slow motion # 
########## 
a<-0 
for (z in 1:rall4){ 
a<-a+1 
} 
############# 
# slow motion end # 
############# 
} 
##################### 
# average spectrum calculation  # 
##################### 
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spettromed<-apply(allineanomer1,2,mean) 
barplot(spettromed, ylim=c(0,0.001)) 
allineati<-allineanomer1 
 
################ 
# CS NORMALIZATION  # 
################ 
riferiti<-allineati 
riferiti[,c(3400:3650)]<-0 
riferiti[,c(5400:5480)]<-0 
coefCS<-rep(0,ncamp) 
allineati.CS<-matrix(data=0, ncol=ncol(riferiti), nrow=ncamp) 
for (t in 1:ncamp) { 
rsum<-sum(riferiti[t,]) 
allineati.CS[t,]<-riferiti[t,]/rsum*1 
coefCS[t]<-rsum/100 
} 
vedi<-apply(allineati.CS, 1, sum) 
#max.CS<-which.max(allineati.CS) 
 #up<-riferiti[max.CS]/allineati.CS[max.CS] 
 
up<-mean(apply(riferiti, 1, sum)) 
allineati.CS<-allineati.CS*up 
 
windows() 
plot(allineati.CS[2,3000:6000], ylim=c(0,2e4), xaxt="n", type="l", main="200 MHz CS normalized and 
aligned data", xlab="main spectral region (ppm 1.16-5.80)", ylab="signals intensity") 
 for (i in 1:ncamp){ 
 lines(allineati.CS[i,3000:6000],col=i) 
 } 
 
windows() 
plot(allineati.CS[2,(all1-10):(all2-10)], ylim=c(0,4000), xaxt="n", type="l", main="200 MHz CS 
normalized and aligned data", xlab="alfa-D-Glucose doublet region (ppm 5.15-5.25)", ylab="signals 
intensity") 
 for (i in 1:ncamp){ 
 lines(allineati.CS[i,(all1-10):(all2-10)],col=i) 
 } 
 
windows() 
plot(allineati.CS[2,4780:5050], ylim=c(0,8000), xaxt="n", type="l", main="200 MHz CS normalized 
and aligned data", xlab="citrate region (ppm 2.54-3.04)", ylab="signals intensity") 
 for (i in 1:ncamp){ 
 lines(allineati.CS[i,4780:5050],col=i) 
 } 
 
########################################################### 
# data set binning into 200 integral regions of 34 data points each. Only values > 2e-4 are kept # 
########################################################### 
 
intervallo<-matrix(data=0, nrow=ncamp, ncol=200) 
for (z in 1:ncamp) { 
i<-1 
for (i in 1:200){ 
for (j in 1:34){ 
k<-((i-1)*34)+j 
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a<-allineati.CS[z,k] 
if (a>2e-4) intervallo[z,i]<-intervallo[z,i]+a    
} 
} 
} 
 
############################## 
#REMOVING OF H2O AND ACETATE SIGNALS  # 
############################## 
 
scarto<-c(101:107,160,161) 
perpca<-intervallo[,-scarto]  
 
########### 
# PCA analysis  # 
########### 
 
principali4<-prcomp(perpca,center=T,scale=T) 
#nomi<-read.table("267_origine.txt", sep=";", colClasses = "character", header=T) 
colori<-nomi[,3] 
simbolo<-c(as.numeric(nomi[,4])) 
y<-c(2,3) 
windows() 
plot(principali4$x[,y],pch=" ", col=colori, main="?")  
text(principali4$x[,y], labels=c(1:ncamp), col=colori, cex=.6) 
 
 
########################################## 
# pH dependent bins removing according to pH-dependence study # 
# previously performed (data file "eliminareX(X.X).txt" needs)        # 
########################################## 
 
eliminare1<-scan(file="eliminare(0.05).txt", sep=";") 
eliminare<-c(104:106,eliminare1,160) 
elimina<-sort(eliminare) 
colnames(intervallo)<-c(1:200) 
interbins<-intervallo[,-elimina] 
dim(interbins) 
 
#################### 
#PCA analysis over "interbins" # 
#################### 
 
principali<-interbins 
principali1<-prcomp(principali,center=F,scale=F) 
dati<-read.table("72estivi.txt", sep=";", colClasses = "character", header=T) 
colori<-c(as.character(dati[,2])) 
simbolo<-c(as.numeric(dati[,3])) 
y<-c(1,3) 
plot(principali1$x[,y],pch=" ", col=colori, main="PC1-3; S=F, C=F") #plot con i numeri# 
text(principali1$x[,y], labels=c(1:72), col=colori, cex=.6) 
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400 MHz data processing 

 

# read sample’s name from 'nomefile'.txt depending on sample’s dataset 
 
rm(list = ls()) 
library(MASS) 
#campioni<-read.table("262bestcamp_stag.txt", sep=";", dec=".", header=T) 
#campioni<-read.table("100campinv+lat2.txt", sep=";", dec=".", header=T) 
#campioni<-read.table("67est_az3-4+sab2.txt", sep=";", dec=".", header=T) 
campioni<-read.table("92bestcampest1.txt", sep=";", dec=".", header=T) 
#campioni<-read.table("169campinv_random.txt", sep=";", dec=".", header=T) 
#campioni<-read.table("166bestcampinv_rnd.txt", sep=";", dec=".", header=T) 
#campioni<-read.table("153bestcampinv.txt", sep=";", dec=".", header=T) 
#campioni<-read.table("158bestcampinv_inter.txt", sep=";", dec=".", header=T) 
#campioni<-read.table("98campest_inter.txt", sep=";", dec=".", header=T) 
#colClasses = "character" 
names<-as.character(campioni[,1]) 
nomi<-as.matrix(names) 
punti<-16384 
pachini<-161 
 
# reads all data of each sample and arranges them in a data matrix with ncamp rows and 16384 
columns 
 
ncamp<-nrow(nomi) 
spettri<-matrix(data=0, nrow=ncamp, ncol=punti) 
refacetato<-matrix(data=0, nrow=ncamp, ncol=punti) 
coeface<-rep(0,ncamp) 
for (z in 1:ncamp) { 
tabella<-read.table(nomi[z,1], sep=";", dec=".", header=F) 
# DEFINISCE GLI INTERVALLI E I VALORI PER LO SCALING SULL'ACETATO 
tabella1<-as.matrix(tabella) 
intace<-c(11711:12278) 
acetato<-max(tabella1[intace]) 
coeface[z]<-acetato 
spettri[z,]<-(tabella1) 
# SCALE IN REFACETATO OVER ACETATE MAX 
refacetato[z,]<-(tabella1/acetato) 
} 
 
#NOT USING REFACETATO BUT SPETTRI 
refacetato<-spettri 
##################################### 
# VARIABLES ALIGNMENT OVER beta D GLUCOSE SIGNAL # 
##################################### 
centro<-8424 #( signal position on the target spectrum) 
maxvet<-matrix(data=0, ncol=1, nrow=ncamp) 
reganomer<-c(8360:8500) 
for (i in 1:ncamp){ 
for (j in reganomer){ 
if (refacetato[i,j]==max(refacetato[i,reganomer])) maxvet[i,]<- centro-j 
} 
} 
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allineati<- matrix(data=0, ncol=punti, nrow=ncamp) 
for (i in 1:ncamp) { 
shift<-maxvet[i,1] 
if (shift>0) allineati[i,(1+shift):punti]<-refacetato[i,1:(punti-shift)] 
if (shift==0) allineati[i,]<-refacetato[i,] 
if (shift<0) allineati[i,1:(punti+shift)]<-refacetato[i,(1-shift):punti] 
} 
 
############################################## 
# Performs PCA over "riferiti" in order to individuate the average spectrum# 
############################################## 
noH2OAC<-c(1099:7900,8351:11899,12001:14698) 
allineati2<-allineati[,noH2OAC] 
pca<-prcomp(allineati2,center=T,scale=T) 
y<-c(1,2) 
centroide<-apply(pca$x[,y],2,mean) 
stagione<-c(as.character(campioni[,3])) 
camp<-campioni[,2] 
colori<-c(as.character(campioni[,8])) 
plot(pca$x[,y],pch=" ",cex=1.0, main="PCA; S=T, C=T") 
text(pca$x[,y],labels=camp,col=colori, cex=.6) 
text(centroide[1],centroide[2], labels="+") 
 
matrice<-matrix(data=0, ncol=3, nrow=ncamp) 
for (z in 1:ncol(matrice)) { 
media<-mean(pca$x[,z]) 
for (n in 1:ncamp) { 
scarto<-abs(pca$x[n,z]-media) 
matrice[n,z]<-scarto 
} 
} 
 
sumvet<-apply(matrice, 1, sum) 
names(sumvet)<-c(1:ncamp) 
best<-min(sumvet) 
sumvet[sumvet>best]<-0 
ermeio<-sumvet[sumvet!=0] 
spref1<-names(ermeio) 
spref<-as.numeric(spref1) 
 
########################################## 
# CS NORMALIZATION TO 100 and ORIGINAL VERTICAL SCALING # 
########################################## 
riferiti<-allineati 
riferiti[,c(7901:8350)]<-0 
riferiti[,c(11900:12000)]<-0 
coefCS<-rep(0,ncamp) 
allineati.CS<-matrix(data=0, ncol=ncol(riferiti), nrow=ncamp) 
for (t in 1:ncamp) { 
rsum<-sum(riferiti[t,]) 
allineati.CS[t,]<-riferiti[t,]/rsum*1 
coefCS[t]<-rsum/100 
} 
vedi<-apply(allineati.CS, 1, sum) 
#max.CS<-which.max(allineati.CS) #if a scaling over the maximum is required 
#up<-riferiti[max.CS]/allineati.CS[max.CS] 
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up<-mean(apply(riferiti, 1, sum)) #if a scaling over the mean is required 
allineati.CS<-allineati.CS*up #Coefficient for signal scaling up to real values 
 
###################################################### 
# Perform a difference minimization among spectra using spref spectrum as reference # 
###################################################### 
riferiti<-allineati 
minimizza<-function(par){ 
sum(abs(ref-(test*par))) 
} 
colonna<-c(1:10) 
riga<-c(1:ncamp) 
Risutot<-matrix(0,ncamp,10,dimnames=list(riga, colonna)) 
limiti<-
c(1800,3500,3501,5500,5501,7700,8301,9110,9111,9810,9811,10200,10201,10660,10661,11220,112
21,11890,12000,14000) 
zone<-matrix(limiti, nrow=2, ncol=10) 
for (i in 1:ncamp) { 
for (z in 1:10){ 
zona<-c(zone[1,z]:zone[2,z]) 
test<-riferiti[i,zona] 
ref<-riferiti[spref,zona] 
ris<-optimize(minimizza,c(-1e9,+1e9)) 
Risutot[i,z]<-ris$minimum 
} 
} 
 
#plot(test[6155:6255], ylim=c(0,1000),type="l") 
# write.table(Risutot,"Tab10coeff.txt",sep=";",dec=".") 
 
medie<-apply(Risutot, 1,mean) 
devst<-apply(Risutot, 1,sd) 
risuscarti<-abs(Risutot-medie) 
risubuoni<-(risuscarti-devst) 
risubuoni[risubuoni>0]<-0 
risubuoni[spref,]<-1 
risubuoni[risubuoni<0]<-1 
sumrisu<-apply(risubuoni, 2, sum) 
sumgood<-sumrisu[sumrisu>=(ncamp*0.9)] #here a tolerance value can be set: now it is 10% 
scelti<-c(as.numeric(names(sumgood))) 
 
##################################### 
# multiply each spectrum for the correspondent coefficient # 
##################################### 
 
preriferiti<-riferiti 
coeff<-Risutot[,c(scelti)] 
coefmedio<-apply(coeff,1,mean) 
riferiti<-riferiti*coefmedio 
 
#################### 
# PCA over every single point  # 
#################### 
noH2OAC<-c(1099:7900,8351:11899,12001:14698) 
perpca<-riferiti[,noH2OAC] 
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#################### 
# PRODUCES 200 BINS TABLE # 
#################### 
 
n<-c(1099:14698) 
 
#interesse<-riferiti[,n] 
interesse<-allineati.CS[,n] 
 
intervallo<-matrix(data=0, nrow=ncamp, ncol=200) 
for (z in 1:ncamp) { 
i<-1 
for (i in 1:200){ 
for (j in 1:68){ 
k<-((i-1)*68)+j 
a<-interesse[z,k] 
intervallo[z,i]<-intervallo[z,i]+a 
#if (a<0) intervallo[z,i]<-intervallo[z,i]+a #Use it if you want set a treshold for noise removing  
} 
} 
} 
colnames(intervallo)<-c(1:200) 
 
   ###### 
  #PART I# 
   ###### 
 
################################# 
#ALTERNATIVE 1: ALL THE SIGNAL ARE UTILIZED # 
################################# 
 
perpca<- intervallo 
 
#################################### 
#ALTERNATIVE 2: H2O and Acetate signals are excluded# 
#################################### 
noh2oacet<-c(1:101,107:159,161:200) 
perpca<- intervallo[,noh2oacet] 
perpca2<-perpca 
 
################################### 
#ALTERNATIVE 3: Only Bins selected by LDA are kept  # 
################################### 
 
perpca<- intervallo[,sort(PCbestLD)] 
 
#################################### 
#ALTERNATIVE 4: n Random bins are selected and taken # 
#################################### 
training<-sample(c(1:101,107:159,161:200), 33) 
perpca<-intervallo[,training] 
 
##################### 
# Principal Component Analysis  # 
##################### 
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principali4<-prcomp(perpca,center=T,scale=T) 
colori<-c(as.character(campioni[,8])) 
azienda<-c(campioni[,4]) 
camp<-campioni[,2] 
stagione<-c(as.character(campioni[,3])) 
cultivar<-campioni[,6] 
y<-c(2,5) 
windows() 
plot(principali4$x[,y],pch=" ",col=colori,cex=1.2, main="?") 
text(principali4$x[,y],labels=camp,col=colori, cex=.6)  
 
####################################################### 
# ALGORITHM FOR POSTERIOR SAMPLES PCA SCORES CALCULATION AND PLOTTING  # 
####################################################### 
> campioni2<-read.table("6campest_inter.txt", sep=";", dec=".", header=T) 
> #campioni2<-read.table("5campinv_inter.txt", sep=";", dec=".", header=T) 
> #campioni2<-read.table("13random_inv.txt", sep=";", dec=".", header=T) 
> names<-as.character(campioni2[,1]) 
> nomi<-as.matrix(names) 
> punti<-16384 
> ncamp<-nrow(nomi) 
> spettri<-matrix(data=0, nrow=ncamp, ncol=punti) 
> for (z in 1:ncamp) { 
> tabella<-read.table(nomi[z,1], sep=";", dec=".", header=F) 
> tabella1<-as.matrix(tabella) 
> spettri[z,]<-(tabella1) 
> } 
 
distanzePCA<-rep(0, nrow(campioni)) 
n<-c(1099:14698) 
pcascores<-matrix(data=0, nrow=ncamp, ncol=ncol(principali4$x)) 
medie<-principali4$center 
rms<-principali4$scale 
noCS<-c(7901:8350,11900:12000) 
noh2oacet<-c(1:101,107:159,161:200) 
 
 
for (l in 1:ncamp) { 
spettri[l,][spettri[l,]==0]<-0.00001 
posto<-reganomer[1]+which.max(spettri[l,reganomer])-1 
sposta<-centro-posto 
if (sposta>0) spettru<-c(rep(0,sposta),spettri[l,1:(16384-sposta)]) 
if (sposta<0) spettru<-c(spettri[l,c((abs(sposta)+1):16384)],rep(0,abs(sposta))) 
if (sposta==0) spettru<- spettri[l,] 
 
#spettro<-spettru*coefmedio[l] #Using Regional Vertical Scaling normalization 
spettru[noCS]<-0 
spettro<-spettru*(100/sum(spettru))*up #Using Normalization to a constant sum 
spettro<-spettro[n] 
 
# integra i 200 intervalli formati ciascuno da 68 punti e crea nuovo vettore "interv" 
interv<-rep(0,200) 
i<-1 
for (i in 1:200){ 
for (j in 1:68){ 
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k<-((i-1)*68)+j 
a<-spettro[k] 
interv[i]<-interv[i]+a 
} 
} 
 
#spettroZIP<-interv[noh2oacet]       #USE IF ALL BINS ARE SELECTED BUT THOSE IN "noh2oacet" 
spettroZIP<-interv[sort(PCbestLD)]   #USE IF BINS ARE SELECTED THOROUGH LDA 
#spettroZIP<-interv[sort(training)]  # USE IF BINS ARE SELECTED THOROUGH RANDOM PROCESS 
 
pcascores[l,]<-((spettroZIP-medie)/rms) %*% principali4$rotation 
distanzePCA[l]<-sqrt(sum((pcascores[l,y]-principali4$x[l,y])^2)) 
} 
windows() 
 
> colori<-c(as.character(campioni[,8]),as.character(campioni2[,8])) 
> azienda<-c(campioni[,4],campioni2[,4]) 
> camp<-c(campioni[,2],campioni2[,2]) 
> pcascores<-rbind(principali4$x, pcascores) 
 
plot(pcascores[,y],pch=" ",cex=1.2, main="194 BINS CS a mano") #, ylim=c(-6,7), xlim=c(-11,15)) 
text(pcascores[,y],labels=camp,col=colori, cex=.6) 
 
  
   ####### 
  #PART II # 
  ####### 
 
########################################## 
# pH dependent bins removing according to pH-dependence study # 
# previously performed (data file "eliminareX(X.X).txt" needs)        # 
########################################## 
 
eliminare1<-scan(file="eliminare2(0.025).txt", sep=";") 
eliminare<-c(104:106,eliminare1,160) 
#eliminare<-eliminare1 
elimina<-sort(eliminare) 
 
eliminapt<-rep(0, length(elimina)*68) 
n<-0 
for (g in 1:length(elimina)) { 
j <- elimina[g] 
n<-n+1 
eliminapt[((68*n)-67):(n*68)]<-c(((j-1)*68+1):(j*68)) 
} 
 
# FOR EVERY POINT 
interbins<-interesse[,-eliminapt] 
 
# FOR 200 BINS (INTERVALS) 
#colnames(intervallo)<-c(1:200) 
interbins<-intervallo[,-elimina] #elimina gli intervalli troppo alti in base ai loadings dei 3 pH# 
dim(interbins) 
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######################### 
# PRINCIPAL COMPONENT ANALYSIS  # 
######################### 
 
pc4<-prcomp(interbins,center=T,scale=T) 
colori<-c(as.character(campioni[,8])) 
azienda<-c(campioni[,4]) 
camp<-campioni[,2] 
stagione<-c(as.character(campioni[,3])) 
cultivar<-campioni[,6] 
y<-c(2,5) 
windows() 
plot(pc4$x[,y],pch=" ",col=colori,cex=1.2, main="PC1_3 pH4; S=T, C=T") 
#plot(pc4$x[,y],pch=azienda,col=colori,cex=1.2, main="PC1_2 pH4; S=T, C=T") 
text(pc4$x[,y],labels=camp,col=colori, cex=.6) #COLORARE PER AZIENDA 
#text(pc4$x[,y],labels=camp,col=stagione, cex=.6)  #COLORARE PER STAGIONE 
#text(pc4$x[,y],labels=azienda,col=colori, cex=.6) 
 
##################### 
# ANOVA and Tukey HSD tests  # 
##################### 
xanova<-data.frame(pca$x[,2],campioni[,8]) 
#xanova[xanova=="orange"]<-"red" 
colnames(xanova)<-c("values","ind") 
oneway.test(values ~ ind, data=xanova, var.equal=T) 
Anova<-aov(xanova[,1] ~ xanova[,2]) 
test<-TukeyHSD(Anova) 
test 
edit(test$xanova) 
 
 
################################# 
# Algorithms for interesting spectral regions study   # 
################################# 
 
pc<-2 #select here the PC space whose loadings want to be observed 
spettropca<-filtro 
ww<-1 
for (i in 1:length(filtro)) { 
if (filtro[i]==1) { 
spettropca[i]<-pca$rotation[ww,pc] 
ww<-ww+1 
} 
} 
 
studiapc<-spettropca 
studiapc[abs(studiapc)<0.05]<-0 
 
 
sele<-c(9000:9500)  #Select here which data interval wants to be studied 
 
esp<-10000 #Select here required vertical scaling 
sens<-esp 
 plot(riferiti[14,sele], type="l", ylim=c(-10,esp), col="red") 
 lines(riferiti[58,sele], col="orange") 
 lines(riferiti[60,sele], col="green") 
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 lines(riferiti[88,sele], col="brown") 
 lines(studiapc2[sele]*sens, col="blue") 
 
############################### 
# ANOVA and Tukey HSD test over "PCA" matrix # 
############################### 
 
pca<-?????????? #indicate here which matrix has to be renamed "pca" 
 
pc<-2 
xanova<-data.frame(pca$x[,pc],campioni[,8]) 
#xanova[xanova=="orange"]<-"red" 
colnames(xanova)<-c("values","ind") 
whole<-oneway.test(values ~ ind, data=xanova, var.equal=T) 
owt.R_G<-oneway.test(values ~ ind, data=xanova[c(1:48,50,59:81),], var.equal=T) 
owt.R_O<-oneway.test(values ~ ind, data=xanova[c(1:58),], var.equal=T) 
owt.R_B<-oneway.test(values ~ ind, data=xanova[c(1:48,50,82:93),], var.equal=T) 
owt.G_B<-oneway.test(values ~ ind, data=xanova[c(59:93),], var.equal=T) 
owt.G_O<-oneway.test(values ~ ind, data=xanova[c(49,51:81),], var.equal=T) 
owt.O_B<-oneway.test(values ~ ind, data=xanova[c(49,51:58,82:93),], var.equal=T) 
pcnames<-c("PacN", "PacS", "Sab", "Merc") 
tabanova<-matrix(data=1, ncol=4, nrow=4) 
dimnames(tabanova)<-list(pcnames,pcnames) 
tabanova[c(1,2),c(1,2)]<-owt.R_O$p.value 
tabanova[c(1,3),c(1,3)]<-owt.R_G$p.value 
tabanova[c(1,4),c(1,4)]<-owt.R_B$p.value 
tabanova[c(2,3),c(2,3)]<-owt.G_O$p.value 
tabanova[c(2,4),c(2,4)]<-owt.O_B$p.value 
tabanova[c(3,4),c(3,4)]<-owt.G_B$p.value 
diag(tabanova)<-0 
tabanova.pc2<-tabanova 
 
pc<-5 
xanova<-data.frame(pca$x[,pc],campioni[,8]) 
#xanova[xanova=="orange"]<-"red" 
colnames(xanova)<-c("values","ind") 
whole<-oneway.test(values ~ ind, data=xanova, var.equal=T) 
owt.R_G<-oneway.test(values ~ ind, data=xanova[c(1:48,50,59:81),], var.equal=T) 
owt.R_O<-oneway.test(values ~ ind, data=xanova[c(1:58),], var.equal=T) 
owt.R_B<-oneway.test(values ~ ind, data=xanova[c(1:48,50,82:93),], var.equal=T) 
owt.G_B<-oneway.test(values ~ ind, data=xanova[c(59:93),], var.equal=T) 
owt.G_O<-oneway.test(values ~ ind, data=xanova[c(49,51:81),], var.equal=T) 
owt.O_B<-oneway.test(values ~ ind, data=xanova[c(49,51:58,82:93),], var.equal=T) 
pcnames<-c("PacN", "PacS", "Sab", "Merc") 
tabanova<-matrix(data=1, ncol=4, nrow=4) 
dimnames(tabanova)<-list(pcnames,pcnames) 
tabanova[c(1,2),c(1,2)]<-owt.R_O$p.value 
tabanova[c(1,3),c(1,3)]<-owt.R_G$p.value 
tabanova[c(1,4),c(1,4)]<-owt.R_B$p.value 
tabanova[c(2,3),c(2,3)]<-owt.G_O$p.value 
tabanova[c(2,4),c(2,4)]<-owt.O_B$p.value 
tabanova[c(3,4),c(3,4)]<-owt.G_B$p.value 
diag(tabanova)<-0 
tabanova.pc5<-tabanova 
 
Anova<-aov(xanova[,1] ~ xanova[,2]) 
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test<-TukeyHSD(Anova) 
test 
edit(test$xanova) 
 
 
######################### 
# EUCLIDEAN DISTANCES calculation  # 
######################### 
library(fields) 
xscore<-pca$x[,y[1]] 
yscore<-pca$x[,y[2]] 
#xscore<- -xscore 
#yscore<- -yscore 
matrix<-cbind(xscore,yscore) 
pacN<-matrix[c(1:48,50),] 
pacS<-matrix[c(49,51:58),] 
sab<-matrix[c(59:81),] 
merc<-matrix[c(82:93),] 
pacN.mean<-apply(pacN,2,mean) 
pacS.mean<-apply(pacS,2,mean) 
sab.mean<-apply(sab,2,mean) 
merc.mean<-apply(merc,2,mean) 
 
pacN.centre<-matrix(pacN.mean, nrow=1, ncol=2) 
pacS.centre<-matrix(pacS.mean, nrow=1, ncol=2) 
sab.centre<-matrix(sab.mean, nrow=1, ncol=2) 
merc.centre<-matrix(merc.mean, nrow=1, ncol=2) 
dist.matrix<-rbind(pacN.centre[1,], pacS.centre[1,], sab.centre[1,], merc.centre[1,]) 
 
varPacN<-sd(rdist(pacN, pacN.centre)) 
varPacS<-sd(rdist(pacS, pacS.centre)) 
varSab<-sd(rdist(sab, sab.centre)) 
varMerc<-sd(rdist(merc, merc.centre)) 
 
varPN_PS<-varPacN*varPacS 
varPN_S<-varPacN*varSab 
varPN_M<-varPacN*varMerc 
varPS_S<-varPacS*varSab 
varPS_M<-varPacS*varMerc 
varS_M<-varSab*varMerc 
 
 
distanze<-rdist(dist.matrix) 
colnames(distanze)<-pcnames 
rownames(distanze)<-pcnames 
a<-edit(distanze) 
distanze.var<-distanze 
distanze.var[c(1,2),c(1,2)]<-distanze.var[1,2]/varPN_PS 
distanze.var[c(1,3),c(1,3)]<-distanze.var[1,3]/varPN_S 
distanze.var[c(1,4),c(1,4)]<-distanze.var[1,4]/varPN_M 
distanze.var[c(2,3),c(2,3)]<-distanze.var[2,3]/varPS_S 
distanze.var[c(2,4),c(2,4)]<-distanze.var[2,4]/varPS_M 
distanze.var[c(3,4),c(3,4)]<-distanze.var[3,4]/varS_M 
diag(distanze.var)<-0 
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 ############################# 
 # MAHALANOBIS DISTANCES CALCULATION  # 
 ############################# 
 
 
pacN.var<-var(pacN) 
pacN.mean<-apply(pacN,2,mean) 
pacN.mah<-mahalanobis(pacN,pacN.mean,pacN.var) 
pacS.var<-var(pacS) 
pacS.mean<-apply(pacS,2,mean) 
pacS.mah<-mahalanobis(pacS,pacS.mean,pacS.var) 
sab.var<-var(sab) 
sab.mean<-apply(sab,2,mean) 
sab.mah<-mahalanobis(sab,sab.mean,sab.var) 
merc.var<-var(merc) 
merc.mean<-apply(merc,2,mean) 
merc.mah<-mahalanobis(merc,merc.mean,merc.var) 
 
 ########################### 
 # MAHALANOBIS DISTANCES PLOTTING  # 
 ########################### 
 
 
library(car) 
 
#CAMPIONI DI PACHINO NAOMI 
ellipse(pacN.mean, pacN.var, radius=1, col="red", lwd=1, add=TRUE) 
ellipse(pacN.mean, pacN.var, radius=2, col="red", lwd=1, add=TRUE) 
#ellipse(pacN.mean, pacN.var, radius=3, col="red", lwd=1, add=TRUE) 
 
#CAMPIONI DI PACHINO SHIREN 
ellipse(pacS.mean, pacS.var, radius=1, col="orange", lwd=1, add=TRUE) 
ellipse(pacS.mean, pacS.var, radius=2, col="orange", lwd=1, add=TRUE) 
#ellipse(pacS.mean, pacS.var, radius=3, col="orange", lwd=1, add=TRUE) 
 
#CAMPIONI DI SABAUDIA 
ellipse(sab.mean, sab.var, radius=1, col="green", lwd=1, add=TRUE) 
ellipse(sab.mean, sab.var, radius=2, col="green", lwd=1, add=TRUE) 
#ellipse(sab.mean, sab.var, radius=3, col="green", lwd=1, add=TRUE) 
 
#CAMPIONI DEL MERCATO 
ellipse(merc.mean, merc.var, radius=1, col="brown", lwd=1, add=TRUE) 
ellipse(merc.mean, merc.var, radius=2, col="brown", lwd=1, add=TRUE) 
#ellipse(merc.mean, merc.var, radius=3, col="brown", lwd=1, add=TRUE) 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix A: Algorithms in R language 

 

XVII 

#################################### 
# ALGORITHMS FOR LINEAR DISCRIMINANT ANALYSIS  # 
#################################### 

 
################################### 
#Creates dataset useful for successive LDA and plotting# 
################################### 
LDAest<-campioni[,c(7,8)] 
 
> LDAest2<-campioni2[,c(7,8)]       #Use for unknown samples inserting 
> LDAest<-rbind(LDAest, LDAest2)    # Use for unknown samples inserting 
 
#LDAest<-read.table("datiLDA67est.csv", sep=";", dec=".", header=T) 
 
Principali4 <- ?????????? #Renames interested data matrix in "principali4" 
 
ncamp<-nrow(campioni) 
importance<-principali4$sdev^2/sum(principali4$sdev^2) 
elenco<-rep(0, ncamp) 
soglia<-100  # set % of variance explained by PC variables are going to be chosen 
summa<-0 
for (s in 1:ncamp){ 
summa<-summa+importance[s] 
elenco[s]<-s 
if (summa >= soglia/100) break  
} 
PCgood<-length(elenco[elenco!=0]) 
PCgood 
 
 
pcgood<-principali4$x[,1:PCgood] 
#pcgood<-principali4$x 
 
binslda<-cbind(pcgood,LDAest) #to use it if you want to keep the first PCs with cumulative sdev > 
soglia 
#binslda<-cbind(perpca,LDAest) #to use if there are not bins removed for pH-dependence 
#binslda<-cbind(interbins,LDAest)  # to use if there are bins removed for pH-dependence 
 
#binslda<-binslda1[,2:ncol(binslda1)] 
 
#write.table(binslda,"bins67est.csv", sep=";", dec=".") 
 
 
 
################## 
# LDA ANALYSIS 400 MHz # 
################# 
 
#Matrices for LDA definition# 
col<-ncol(binslda) 
LDAtable1<- binslda[,1:(col-1)] 
 
############################################################## 
#Use to perform a system training removing 2/3 of the samples randomly from dataset and creating# 
# a new dataset to be submitted to LDA analysis "LDAtable"                                                         # 
############################################################## 



Appendix A: Algorithms in R language 

 

XVIII 

 
samples<-nrow(LDAtable1) 
sampling<-as.integer(samples*2/3) 
sampling<-82 #If the number of trained samples want to be chosen a priori  
train1 <- sample(1:samples, sampling) 
train <- sort(train1) 
table(LDAtable1$Sp[train]) #Shows classes of samples selected for training 
table(LDAtable1$Sp[-train]) # Shows classes of samples excluded from training 
tranames<-LDAtable1$Sp[-train] 
#sampled<-c(1:samples)[-train] 
sampled<-c(campioni[,2])[-train] 
camp<-c(campioni[,2])[train] 
names(sampled)<-tranames 
#sampled 
 
LDAtest  <- LDAtable1[-train,] #matrix containing samples excluded from training 
LDAtable <- LDAtable1[train,] #matrix containing samples selected for training 
colorLDA <- binslda[train,] 
 
#USE IT ONLY IF YOU WANT TO USE ALL THE SAMPLE FOR LDA 
LDAtable<-LDAtable1 
colorLDA <- binslda 
 
################################# 
# LDA ANALYSIS and results storing in "zlda" object # 
################################# 
lda" CONTENENTE I RISULTATI  
gruppi<-length(names(table(LDAest$Sp))) 
#zlda <- lda(Sp ~ ., LDAtable, prior = c(1,1,1,1,1)/5) 
zlda <- lda(Sp ~ ., LDAtable, prior = rep(1,gruppi)/gruppi) 
#zlda <- lda(Sp ~ ., LDAtable, prior = c(1,1,1,1)/4  ,subset = train) 
 
#zlda <- lda(Sp ~ ., LDAtable, prior = c(1,1,1,1)/4  ,CV = TRUE) 
#write.table(zlda$posterior,"leaveoneout_33bin.txt", sep=";", dec=".") 
 
 
################### 
# MANUAL LEAVE-ONE-OUT # 
################### 
samples<-nrow(LDAtable1) 
prediction<- rep(0,samples) 
for (l in 1:samples) { 
z2lda <-lda(Sp ~ ., LDAtable[-l,], prior = c(1,1,1,1)/4) 
prediction[l]<-predict(z2lda, LDAtable[l,])$class 
} 
# SUCCESS ESTIMATION OF LEAVE-ONE-OUT STEP # 
comparing<-rbind(prediction,LDAtable1$Sp) 
 different<-apply(comparing,2, diff) 
 good<-different[different==0] 
 success<-length(good)/length(different)*100 
 success 
 
 
 
 
############################################################## 
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############################# 
# SUCCESS ESTIMATION OF THE TRAINING  # 
############################# 
 
 predetti<-predict(zlda, LDAtest)$class 
 compara<-rbind(predetti,tranames) 
 diversi<-apply(compara,2, diff) 
 buoni<-diversi[diversi==0] 
 successo<-length(buoni)/length(diversi)*100 
 successo 
 
 
####################### 
# UNKNOWN SAMPLES INSERTION # 
####################### 
 
samplex<-scan("samplex.spt", sep=";", dec=".") 
samplex[samplex==0]<-0.00001 
# devo fare in modo che il max del picco dell'anomero beta del glucosio sia in un determinato punto 
#samplex<-samplex*coefmedio[32] #dovrei tenere conto della normalizzazione (questo era per il 
campione 66.spt) 
samplex_fil<-samplex*filtro 
samplexzip<-samplex_fil[samplex_fil!=0] 
 
medie<-principali4$center 
rms<-principali4$scale 
pcscoresx<-matrix(data=0, nrow=1, ncol=ncamp) 
for (n in 1:ncamp) { 
pcscoresx[,n]<-sum(((samplexzip-medie)/rms)*principali4$rotation[,n]) 
} 
 
# CONTROL 
pcscores<-matrix(data=0, nrow=1, ncol=ncamp) 
medie<-principali4$center 
rms<-principali4$scale 
for (n in 1:ncamp) { 
pcscores[,n]<-sum(((bins[32,200:291]-medie)/rms)*principali4$rotation[,n]) 
} 
 
 
################## 
# PLOTTING OF THE DATA # 
################## 
 
 pachino<-LDAtable  #Use for showing only samples selected by training 
 campionitot<-campioni[train,] 
 
#pachino<-LDAtable1 #Use for showing also samples excluded from training 
 colorLDA <- binslda #Use only with the above command line 
 camp<-campioni[,2] # Use only with the above command line 
 campionitot<-campioni # Use only with the above command line 
 
 pachino3<-pachino[,1:PCgood] 
 pachino4<-colorLDA 
 ncamp<-nrow(pachino) 
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> interlab<- 
cbind((pcascores[(ncamp+1):nrow(pcascores),1:PCgood]),campioni2[,((ncol(campioni2))-
1):ncol(campioni)]) 
> colnames(interlab)<-colnames(binslda) 
> pachino2<-pachino[,1:PCgood] 
> interlab2<-interlab[,1:PCgood] 
> pachino3<- rbind(pachino2, interlab2) 
> pachino4<-rbind(binslda,interlab) 
> campionitot<-rbind(campioni,campioni2) 
> camp<-campionitot[,2] 
 
 
campLDA<-nrow(pachino4) 
LDA1_scores<-rep(0,campLDA) 
LDA2_scores<-rep(0,campLDA) 
LDA3_scores<-rep(0,campLDA) 
LDA4_scores<-rep(0,campLDA) 
cvlda<-zlda$scaling 
 
# categ<-as.character(pachino[,ncol(pachino)]) 
 
#gruppi<-5 
for (n in 1:campLDA) { 
LDA1_scores[n]<-sum(pachino3[n,]*cvlda[,1]) 
LDA2_scores[n]<-sum(pachino3[n,]*cvlda[,2]) 
if (gruppi > 3) 
LDA3_scores[n]<-sum(pachino3[n,]*cvlda[,3]) 
if (gruppi > 4) 
LDA4_scores[n]<-sum(pachino3[n,]*cvlda[,4])  #1:(ncol(pachino)-1) 
} 
 
colori<- as.character(pachino4[,col]) 
 
windows() 
#plot(LDA1_scores,LDA2_scores,pch=categ, col=colori) #ylim=c(-30,30), xlim=c(-30,30) 
plot(LDA1_scores,LDA2_scores,pch=" ", col=colori) #ylim=c(-30,30), xlim=c(-30,30) 
text(LDA1_scores,LDA2_scores, labels=camp, col=colori, cex=.6) 
 
>windows() 
>plot(LDA1_scores,LDA3_scores,pch=" ", col=colori) #ylim=c(-30,30), xlim=c(-30,30) 
>text(LDA1_scores,LDA3_scores, labels=camp, col=colori, cex=.6) 
>windows() 
>plot(LDA2_scores,LDA3_scores,pch=" ", col=colori) #ylim=c(-30,30), xlim=c(-30,30) 
>text(LDA2_scores,LDA3_scores, labels=camp, col=colori, cex=.6) 
 
windows() 
barplot(zlda$scaling[,1]) 
> windows() 
> barplot(zlda$scaling[,2]) 
> windows() 
> barplot(zlda$scaling[,3]) 
> sumCV<-abs(zlda$scaling[,1])+abs(zlda$scaling[,2])+abs(zlda$scaling[,3]) 
> windows() 
> barplot(sumCV) #per valutare le PC più importanti consideranto tutte le LD 
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#################### 
# THREE DIMENSIONAL PLOT # 
#################### 
 x<-LDA1_scores 
 y<-LDA2_scores 
 z<-LDA3_scores 
library(scatterplot3d) 
windows()  
 for (angle in 1:360) { 
 scatterplot3d(x, y, z, color=colori, angle=angle) 
 } 
scatterplot3d(x, y, z, color=colori) 
 
 
############################################# 
# SELECTION OF THE MOST IMPORTANT BINS OF EACH LD SPACE AND# 
# PLOTTING OF THE 194 BINS ACCORDING TO THEIR IMPORTANCE     # 
############################################# 
 
ldn<-194 
PC<-5 
percent<-0.70 
matLD1<-t(principali4$rotation[,1:26])*zlda$scaling[,1] 
summatLD1<-apply(matLD1,2, sum) 
names(summatLD1)<-colnames(perpca) 
windows() 
barplot(summatLD1) 
sortLD1<-sort(abs(summatLD1), decreasing=TRUE) 
#bestLD1<-sortLD1[1:PC] 
 bestLD1<-sortLD1[sortLD1>=max(sortLD1*percent)] 
PCbestLD1<-as.numeric(names(bestLD1)) 
PCbestLD1 
 
matLD2<-t(principali4$rotation[,1:26])*zlda$scaling[,2] 
summatLD2<-apply(matLD2,2, sum) 
names(summatLD2)<-colnames(perpca) 
windows() 
barplot(summatLD2) 
sortLD2<-sort(abs(summatLD2), decreasing=TRUE) 
#bestLD2<-sortLD2[1:PC] 
 bestLD2<-sortLD2[sortLD2>=max(sortLD2*percent)] 
PCbestLD2<-as.numeric(names(bestLD2)) 
PCbestLD2 
 
matLD3<-t(principali4$rotation[,1:26])*zlda$scaling[,3] 
summatLD3<-apply(matLD3,2, sum) 
names(summatLD3)<-colnames(perpca) 
windows() 
barplot(summatLD3) 
sortLD3<-sort(abs(summatLD3), decreasing=TRUE) 
#bestLD3<-sortLD3[1:PC] 
 bestLD3<-sortLD3[sortLD3>=max(sortLD3*percent)] 
PCbestLD3<-as.numeric(names(bestLD3)) 
PCbestLD3 
 
PCbestLD<-sort(union(union(PCbestLD1, PCbestLD2),PCbestLD3), decreasing=TRUE) 
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length(PCbestLD) 
 
for (s in PCbestLD) { 
titolo<-paste("Bins n°",s) 
windows(13,3) 
meno<-min(intervallo[,s]) 
barplot(intervallo[,s]-meno, col=colori, main=titolo) 
} 
 
###################################### 
# SCRIPT FOR PLOTTING SELECTED REGIONS OF SPECTRA # 
###################################### 
selez<-c(9,38,62,78) 
selez.CS<-allineati.CS[selez,] 
for (w in (sort(PCbestLD))) { 
detto<-paste("Bins n°",w) 
selezbin<-selez.CS[,c((1098+(68*w-67)):(1098+(w*68)))] 
alto<-max(selezbin)+0.1*max(selezbin) 
windows() 
plot(selezbin[1,], type="l", col="red", main=detto, ylim=c(-0.1,alto)) 
lines(selezbin[2,], col="orange") 
lines(selezbin[3,], col="darkgreen") 
lines(selezbin[4,], col="green") 
} 
 
 ############################# 
 # MAHALANOBIS DISTANCES CALCULATION  # 
 ############################# 
 
ldaest<-cbind(LDA1_scores,LDA2_scores) 
 
>ldaest<-cbind(LDA1_scores,LDA3_scores) 
 
>ldaest<-cbind(LDA2_scores,LDA3_scores) 
 
########## 
# ESTIVI # 
########## 
 
ncamp<-nrow(campionitot) 
classi<-campionitot$Sp 
names(classi)<-c(1:ncamp) 
#classe<-table(pachino$Sp) 
classe<-table(classi) 
nomi<-names(classe) 
numclas<-length(nomi) 
for (g in 1:numclas) { 
nam <- paste(nomi[g],"LDA", sep=".") 
assign(nam, as.numeric(names(classi[classi==nomi[g]]))) 
} 
 
ldaestpacN<-ldaest[pacN.LDA,] 
ldaestpacS<-ldaest[pacS.LDA,] 
ldaestsab<-ldaest[sab.LDA,] 
ldaestmerc<-ldaest[merc.LDA,] 
ldainvpacR<-ldainv[pacR.LDA,] 
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ldaestpacN.var<-var(ldaestpacN) 
ldaestpacN.mean<-apply(ldaestpacN,2,mean) 
ldaestpacN.mah<-mahalanobis(ldaestpacN,ldaestpacN.mean,ldaestpacN.var) 
ldaestpacS.var<-var(ldaestpacS) 
ldaestpacS.mean<-apply(ldaestpacS,2,mean) 
ldaestpacS.mah<-mahalanobis(ldaestpacS,ldaestpacS.mean,ldaestpacS.var) 
ldaestsab.var<-var(ldaestsab) 
ldaestsab.mean<-apply(ldaestsab,2,mean) 
ldaestsab.mah<-mahalanobis(ldaestsab,ldaestsab.mean,ldaestsab.var) 
ldaestmerc.var<-var(ldaestmerc) 
ldaestmerc.mean<-apply(ldaestmerc,2,mean) 
ldaestmerc.mah<-mahalanobis(ldaestmerc,ldaestmerc.mean,ldaestmerc.var) 
ldainvpacR.var<-var(ldainvpacR) 
ldainvpacR.mean<-apply(ldainvpacR,2,mean) 
ldainvpacR.mah<-mahalanobis(ldainvpacR,ldainvpacR.mean,ldainvpacR.var) 
 
 ########################### 
 # MAHALANOBIS DISTANCES PLOTTING  # 
 ########################### 
library(car) 
 
#SUMMER SAMPLES OF PACHINO NAOMI 
ellipse(ldaestpacN.mean, ldaestpacN.var , radius=1,col="red", lwd=1, add=TRUE) 
ellipse(ldaestpacN.mean, ldaestpacN.var , radius=2,col="red",lwd=1, add=TRUE) 
ellipse(ldaestpacN.mean, ldaestpacN.var , radius=3,col="red",lwd=1, add=TRUE) 
 
# SUMMER SAMPLES OF PACHINO SHIREN 
ellipse(ldaestpacS.mean, ldaestpacS.var , radius=1,col="orange", lwd=1, add=TRUE) 
ellipse(ldaestpacS.mean, ldaestpacS.var , radius=2,col="orange",lwd=1, add=TRUE) 
ellipse(ldaestpacS.mean, ldaestpacS.var , radius=3,col="orange",lwd=1, add=TRUE) 
 
# SUMMER SAMPLES OF SABAUDIA 
ellipse(ldaestsab.mean, ldaestsab.var , radius=1, col="green",lwd=1, add=TRUE) 
ellipse(ldaestsab.mean, ldaestsab.var , radius=2, col="green",lwd=1, add=TRUE) 
ellipse(ldaestsab.mean, ldaestsab.var , radius=3, col="green",lwd=1, add=TRUE) 
 
# SUMMER SAMPLES OF MERCATO 
ellipse(ldaestmerc.mean, ldaestmerc.var , radius=1, col="brown",lwd=1, add=TRUE) 
ellipse(ldaestmerc.mean, ldaestmerc.var , radius=2, col="brown",lwd=1, add=TRUE) 
ellipse(ldaestmerc.mean, ldaestmerc.var , radius=3, col="brown",lwd=1, add=TRUE) 
 
############## 
# WINTER SAMPLES # 
############## 
ldainv<-cbind(LDA1_scores,LDA2_scores) 
ncamp<-nrow(campionitot) 
classi<-campionitot$Sp 
names(classi)<-c(1:ncamp) 
#classe<-table(pachino$Sp) 
classe<-table(classi) 
nomi<-names(classe) 
numclas<-length(nomi) 
for (g in 1:numclas) { 
nam <- paste(nomi[g],"LDA", sep=".") 
assign(nam, as.numeric(names(classi[classi==nomi[g]]))) 
} 
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ldainvpacN<-ldainv[pacN.LDA,] 
ldainvpacS<-ldainv[pacS.LDA,] 
ldainvLic<-ldainv[Lic.LDA,] 
ldainvmerc<-ldainv[merc.LDA,] 
ldainvpacR<-ldainv[pacR.LDA,] 
 
 
ldainvpacN.var<-var(ldainvpacN) 
ldainvpacN.mean<-apply(ldainvpacN,2,mean) 
ldainvpacN.mah<-mahalanobis(ldainvpacN,ldainvpacN.mean,ldainvpacN.var) 
ldainvpacS.var<-var(ldainvpacS) 
ldainvpacS.mean<-apply(ldainvpacS,2,mean) 
ldainvpacS.mah<-mahalanobis(ldainvpacS,ldainvpacS.mean,ldainvpacS.var) 
ldainvLic.var<-var(ldainvLic) 
ldainvLic.mean<-apply(ldainvLic,2,mean) 
ldainvLic.mah<-mahalanobis(ldainvLic,ldainvLic.mean,ldainvLic.var) 
ldainvmerc.var<-var(ldainvmerc) 
ldainvmerc.mean<-apply(ldainvmerc,2,mean) 
ldainvmerc.mah<-mahalanobis(ldainvmerc,ldainvmerc.mean,ldainvmerc.var) 
ldainvpacR.var<-var(ldainvpacR) 
ldainvpacR.mean<-apply(ldainvpacR,2,mean) 
ldainvpacR.mah<-mahalanobis(ldainvpacR,ldainvpacR.mean,ldainvpacR.var) 
 
 ########################### 
 # MAHALANOBIS DISTANCES PLOTTING  # 
 ########################### 
 
library(car) 
 
# WINTER SAMPLES OF PACHINO NAOMI 
ellipse(ldainvpacN.mean, ldainvpacN.var , radius=1,col="blue", lwd=1, add=TRUE) 
ellipse(ldainvpacN.mean, ldainvpacN.var , radius=2,col="blue",lwd=1, add=TRUE) 
ellipse(ldainvpacN.mean, ldainvpacN.var , radius=3,col="blue",lwd=1, add=TRUE) 
 
# WINTER SAMPLES OF PACHINO SHIREN 
ellipse(ldainvpacS.mean, ldainvpacS.var , radius=1,col="cyan", lwd=1, add=TRUE) 
ellipse(ldainvpacS.mean, ldainvpacS.var , radius=2,col="cyan",lwd=1, add=TRUE) 
ellipse(ldainvpacS.mean, ldainvpacS.var , radius=3,col="cyan",lwd=1, add=TRUE) 
 
# WINTER SAMPLES OF LICATA 
ellipse(ldainvLic.mean, ldainvLic.var , radius=1, col="magenta",lwd=1, add=TRUE) 
ellipse(ldainvLic.mean, ldainvLic.var , radius=2, col="magenta",lwd=1, add=TRUE) 
ellipse(ldainvLic.mean, ldainvLic.var , radius=3, col="magenta",lwd=1, add=TRUE) 
 
# WINTER SAMPLES OF MERCATO 
ellipse(ldainvmerc.mean, ldainvmerc.var , radius=1, col="brown",lwd=1, add=TRUE) 
ellipse(ldainvmerc.mean, ldainvmerc.var , radius=2, col="brown",lwd=1, add=TRUE) 
ellipse(ldainvmerc.mean, ldainvmerc.var , radius=3, col="brown",lwd=1, add=TRUE) 
 
# WINTER SAMPLES OF PACHINO RANDOM 
ellipse(ldainvpacR.mean, ldainvpacR.var , radius=1,col="orange", lwd=1, add=TRUE) 
ellipse(ldainvpacR.mean, ldainvpacR.var , radius=2,col="orange",lwd=1, add=TRUE) 
ellipse(ldainvpacR.mean, ldainvpacR.var , radius=3,col="orange",lwd=1, add=TRUE) 
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400 MHz temperature and pH dependence study 

#INTRODUCTION: 
#THIS SCRIP READS THE 3 SPECTRA ACQUIRED AT 25 °C AT 400 MHz ACCORDING TO  
#pH-DEPENDENCE STUDY AND PERFORMS THE FOLLOWING STEPS:  
#1) SCALING OVER RELATIVE ACETATE SIGNAL MAX 
#2) DATA REDUCING IN 200 BINS (OF A REGION COVERING 10 PPM CONSTITUTED BY 13600 pt.) 
#3) RESIDUAL WATER AND ACETATE SIGNALS REMOVING 
#4) PCA ANALYSIS (SCALE=F, CENTER=F) 
#5) DETERMINATION OF PC2 LOADINGS HAVING VALUE HIGHER THAN A TRESHOLD (0.025) 
#6) DETERMINATION AND CREATION OF A FILE LISTING THE BINS TO BE REMOVED IN THE PCA 
#ANALYSIS OVER ALL SAMPLES 
 
 
# read spectra filenames from 'nomefile'.txt 
 
rm(list = ls()) 
library(MASS) 
campioni<-read.table("test25.txt", sep=";", dec=".", header=T)    
#colClasses = "character" 
names<-as.character(campioni[,1]) 
nomi<-as.matrix(names) 
punti<-16384 
#num<-read.table("numcamp.txt", sep="",col.names=F) 
 
# read every spectrum and arrange them in a matrix of ncamp rows and 13600 (n°points in 10 ppm) 
#columns 
 
ncamp<-nrow(nomi) 
spettri<-matrix(data=0, nrow=ncamp, ncol=punti) 
refacetato<-matrix(data=0, nrow=ncamp, ncol=punti) 
for (z in 1:ncamp) { 
tabella<-read.table(nomi[z,1], sep=";", dec=".", header=F) 
# defines intervals and values for data normalization over acetate signal 
tabella1<-as.matrix(tabella) 
intace<-c(11911:12000) 
acetato<-max(tabella1[intace]) 
spettri[z,]<-(tabella1) 
# scales in "refacetato" using acetate max 
refacetato[z,]<-(tabella1/acetato) 
} 
 
##################### 
#PLOT FOR SIGNALS CONTROL # 
##################### 
 
plot(refacetato[1,c(8360:8500)], type="l",)  
plot(refacetato[2,c(8360:8500)], type="l",)  
plot(refacetato[3,c(8360:8500)], type="l",)  
 
refacetato16384<-refacetato 
 plot(refacetato16384[3,],xlim=c(11920,12000),ylim=c(0,10), type="l") 
 lines(refacetato16384[1,], col="blue") 
 lines(refacetato16384[2,], col="red") 
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##################################### 
# VARIABLES ALIGNMENT OVER beta D GLUCOSE SIGNAL # 
##################################### 
centro<-8424 #(rispetto al campione + rappresentativo che è il 153 (NC)) 
maxvet<-matrix(data=0, ncol=1, nrow=ncamp) 
reganomer<-c(8360:8500) 
for (i in 1:ncamp){ 
for (j in reganomer){ 
if (refacetato[i,j]==max(refacetato[i,reganomer])) maxvet[i,]<- centro-j 
#if (allineati[i,j]==max(allineati[i,reganomer])) maxvet[i,]<- centro-j 
} 
} 
allineati<- matrix(data=0, ncol=punti, nrow=ncamp) 
for (i in 1:ncamp) { 
shift<-maxvet[i,1] 
if (shift>0) allineati[i,(1+shift):punti]<-refacetato[i,1:(punti-shift)] 
if (shift==0) allineati[i,]<-refacetato[i,] 
if (shift<0) allineati[i,1:(punti+shift)]<-refacetato[i,(1-shift):punti] 
} 
 
######################### 
# PRODUCES 200 BINS DATA MATRIX # 
######################### 
 
n<-c(1099:14698) 
interesse<-allineati[,n] #USE WHEN THE SPECTRUM HAVE BEEN ALIGNED 
#interesse<-refacetato[,n] # USE WHEN THE SPECTRUM HAVE NOT BEEN ALIGNED 
 
intervallo<-matrix(data=0, nrow=ncamp, ncol=200) 
for (z in 1:ncamp) { 
i<-1 
for (i in 1:200){ 
for (j in 1:68){ 
k<-((i-1)*68)+j 
a<-interesse[z,k] 
intervallo[z,i]<-intervallo[z,i]+a 
#if (a<0) intervallo[z,i]<-intervallo[z,i]+a #USE IF A TRESHOLD FOR NOISE REMOVING NEEDS 
} 
} 
} 
colnames(intervallo)<-c(1:200) 
 
 
#ALTERNATIVE 1: ONLY BINS CONTAINING RESIDUAL WATER SIGNAL ARE REMOVED 
noh2o<-c(1:103,107:200) 
perpca<- intervallo[,noh2o] 
 
#ALTERNATIVE 2: ARE REMOVED BINS CONTAINING BOTH WATER AND ACETATE SIGNALS 
noh2oacet<-c(1:103,107:159,162:200) 
perpca<- intervallo[,noh2oacet] 
 
#ALTERNATIVE 3: ALL THE BINS ARE KEPT 
perpca<-intervallo 
 
##################### 
# Principal Component Analysis  # 
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##################### 
 
principali4<-prcomp(perpca,center=F,scale=F) 
#colors<-read.table("colori.txt",row.names=1, sep=";", dec=".", header=T) 
colori<-c(as.character(campioni[,3])) 
azienda<-c(campioni[,4]) 
camp<-campioni[,2] 
y<-c(1,2) 
plot(principali4$x[,y],pch=" ",col=colori,cex=1.2, main="PC1_2 pH4; S=T, C=T") 
#plot(principali4$x[,y],pch=azienda,col=colori,cex=1.2, main="PC1_2 pH4; S=T, C=T") 
text(principali4$x[,y],labels=camp,col=colori, cex=.6) 
#text(principali4$x[,y],labels=azienda,col=colori, cex=.6) 
 
#windows() 
 PC1load4<-principali4$rotation[,1] 
 barplot(-PC1load4) 
 
PC2load4<-principali4$rotation[,2] 
numeri<-colnames(perpca) 
names(PC2load4)<-numeri 
windows()  #IN ANOTHER DEVICE Loadings2 ARE SHOWN 
barplot(PC2load4) 
windows()  # IN ANOTHER DEVICE ARE SHOWN ZOOMED bins 160 e 161 
barplot(PC2load4[c(147:167)], cex.names=.5) 
 
#REMOVES BINS HAVING LOADINGS 2 VALUES HIGHER THAN A TRESHOLD (=0.025 in this case) 
positivi<-abs(PC2load4) 
soglia<-0.025 
ciccio<-positivi[positivi>=soglia] 
noshift<-positivi[positivi<=soglia] 
eliminare<-names(ciccio) 
eliminare1<-as.numeric(eliminare) 
 
#WRITES A FILE CONTANING ALL THE BINS TO BE REMOVED FROM DATASET 
write(eliminare1, file = "eliminare2b(0.025).txt",append = FALSE, sep = ";") 
 
#remove from Loadings2 barplot the rejected intervals 
vettore<- rep(1,200) 
vettore[eliminare1]<-0 
load2<-PC2load4*vettore 
windows() 
names(load2)<-names(PC2load4) 
barplot(load2) 
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Appendix B: Cherry tomato samples catalogue 

 

The following table represents the whole sampling catalogue of cherry tomatoes. For each 

sample the main information are reported. "200 MHz" and "400 MHz" columns illustrate 

which samples have been analyzed with these techniques: a missing value means that such 

a sample has not been analyzed with this technique. 

Samples with anomalous FIDs recorded at 400 MHz that have been discarded during 

chemometric analysis are highlighted in yellow. The two FIDs of the samples highlighted in 

red, recorded at 200 MHz, have been discarded because of problems occurred during NMR 

acquisition. External samples, used for inter-laboratory check test, are highlighted in blue. 

Table's rows are colored in different colors for better identification of samples geographical 

origin: Black rows for samples of Pachino, Magenta rows for samples of Licata, Green rows 

for samples of Sabaudia and Brown rows for samples coming from markets, according 

with the colors used for chemometric data plotting. 

 

ID Sample code 200MHz 400MHz Year Season Date group Farm of Pachino Salinity Origin Cultivar 

1 1Az.1A1°a 1 1 2003 win. 03 10/03/03 1 1 5400 Pachino Naomi 

2 1Az.1A1°b 2 2 2003 win. 03 10/03/03 1 1 5400 Pachino Naomi 

3 1Az.1A1°c 3 3 2003 win. 03 10/03/03 1 1 5400 Pachino Naomi 

4 1Az.1B1°a 4 4 2003 win. 03 10/03/03 1 1 5400 Pachino Naomi 

5 1Az.1B1°b 5 5 2003 win. 03 10/03/03 1 1 5400 Pachino Naomi 

6 1Az.1B1°c 6 6 2003 win. 03 10/03/03 1 1 5400 Pachino Naomi 

7 1Az.1C1°a 7 7 2003 win. 03 10/03/03 1 1 5400 Pachino Naomi 

8 1Az.1C1°b 8 8 2003 win. 03 10/03/03 1 1 5400 Pachino Naomi 

9 1Az.2A1°a 9 9 2003 win. 03 10/03/03 1 2 1500 Pachino Naomi 

10 1Az.2A1°b 10 10 2003 win. 03 10/03/03 1 2 1500 Pachino Naomi 

11 1Az.2B1°a 11 11 2003 win. 03 10/03/03 1 2 1500 Pachino Naomi 

12 1Az.2B1°b 12 12 2003 win. 03 10/03/03 1 2 1500 Pachino Naomi 

13 1Az.2C1°a 13 13 2003 win. 03 10/03/03 1 2 1500 Pachino Naomi 

14 1Az.2C1°b 14 14 2003 win. 03 10/03/03 1 2 1500 Pachino Naomi 

22 2Az.1C2°b 22 22 2003 win. 03 14/03/03 2 1 5400 Pachino Naomi 

23 2Az.1C2°c 23 23 2003 win. 03 14/03/03 2 1 5400 Pachino Naomi 

24 2Az.2A2°a 24 24 2003 win. 03 14/03/03 2 2 1500 Pachino Naomi 

25 2Az.2A2°b 25 25 2003 win. 03 14/03/03 2 2 1500 Pachino Naomi 

26 2Az.2B2°a 26 26 2003 win. 03 14/03/03 2 2 1500 Pachino Naomi 

27 2Az.2B2°b 27 27 2003 win. 03 14/03/03 2 2 1500 Pachino Naomi 

28 2Az.2C2°a 28 28 2003 win. 03 14/03/03 2 2 1500 Pachino Naomi 

29 2Az.2C2°b 29 29 2003 win. 03 14/03/03 2 2 1500 Pachino Naomi 

30 2Az.2C2°c 30 30 2003 win. 03 14/03/03 2 2 1500 Pachino Naomi 

31 Random a 31 31 2003 win. 03 14/03/03 2 Random  Pachino Naomi 

32 Random b 32 32 2003 win. 03 14/03/03 2 Random  Pachino Naomi 

33 Random c 33 33 2003 win. 03 14/03/03 2 Random  Pachino Naomi 
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ID Sample code 200MHz 400MHz Year Season Date group Farm of Pachino Salinity Origin Cultivar 

34 Random d 34 34 2003 win. 03 14/03/03 2 Random  Pachino Naomi 

35 3Az.3A1°a 35 35 2003 sum. 03 23/06/03 3 3 2000 Pachino Naomi 

36 3Az.3B1°a 36 36 2003 sum. 03 23/06/03 3 3 2000 Pachino Naomi 

37 3Az.3C1°a 37 37 2003 sum. 03 23/06/03 3 3 2000 Pachino Naomi 

38 3Az.4A1°a 38 38 2003 sum. 03 23/06/03 3 4 5500 Pachino Naomi 

39 3Az.4A1°b 39 39 2003 sum. 03 23/06/03 3 4 5500 Pachino Naomi 

40 3Az.4B1°a 40 40 2003 sum. 03 23/06/03 3 4 5500 Pachino Naomi 

41 3Az.4C1°a 41 41 2003 sum. 03 23/06/03 3 4 5500 Pachino Naomi 

42 3Az.4C1°b 42 42 2003 sum. 03 23/06/03 3 4 5500 Pachino Naomi 

43 4Az.3A2a 43 43 2003 sum. 03 01/07/03 4 3 2000 Pachino Naomi 

44 4Az.3A3a 44 44 2003 sum. 03 01/07/03 4 3 2000 Pachino Naomi 

45 4Az.3A3b 45 45 2003 sum. 03 01/07/03 4 3 2000 Pachino Naomi 

46 4Az.3B2a 46 46 2003 sum. 03 01/07/03 4 3 2000 Pachino Naomi 

47 4Az.3B3a 47 47 2003 sum. 03 01/07/03 4 3 2000 Pachino Naomi 

48 4Az.3C2a 48 48 2003 sum. 03 01/07/03 4 3 2000 Pachino Naomi 

49 4Az.3C3a 49 49 2003 sum. 03 01/07/03 4 3 2000 Pachino Naomi 

50 4Az.4A2a 50 50 2003 sum. 03 01/07/03 4 4 5500 Pachino Naomi 

51 4Az.4A3a 51 51 2003 sum. 03 01/07/03 4 4 5500 Pachino Naomi 

52 4Az.4B2a 52 52 2003 sum. 03 01/07/03 4 4 5500 Pachino Naomi 

53 4Az.4B3a 53 53 2003 sum. 03 01/07/03 4 4 5500 Pachino Naomi 

54 4Az.4C2a 54 54 2003 sum. 03 01/07/03 4 4 5500 Pachino Naomi 

55 4Az.4C3a 55 55 2003 sum. 03 01/07/03 4 4 5500 Pachino Naomi 

56 5Az.3A4a 56 56 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

57 5Az.3A4b 57 57 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

58 5Az.3A5a 58 58 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

59 5Az.3A5b 59 59 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

60 5Az.3A6a 60 60 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

61 5Az.3B4a 61 61 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

62 5Az.3B4b 62 62 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

63 5Az.3B5a 63 63 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

64 5Az.3B6a 64 64 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

65 5Az.3C4a 65 65 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

66 5Az.3C4b 66 66 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

67 5Az.3C5a 67 67 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

68 5Az.3C6a 68 68 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

69 5Az.3C6b 69 69 2003 sum. 03 09/07/03 5 3 2000 Pachino Naomi 

70 5Az.4A4a 70 70 2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

71 5Az.4A5a 71 71 2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

72 5Az.4A6a 72 72 2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

73 5Az.4A6b 73 73 2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

74 5Az.4A6c 74 74 2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

75 5Az.4A6d 75 75 2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

76 5Az.4B4a 76  2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

77 5Az.4B5a 77  2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

78 5Az.4B5b 78 78 2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

79 5Az.4B6a 79 79 2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

80 5Az.4C4a 80  2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

81 5Az.4C5a 81  2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

82 5Az.4C6a 82 82 2003 sum. 03 09/07/03 5 4 5500 Pachino Naomi 

83 Random A 83  2003 sum. 03 09/07/03 5 Random  Pachino Naomi 
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ID Sample code 200MHz 400MHz Year Season Date group Farm of Pachino Salinity Origin Cultivar 

84 Random B 84  2003 sum. 03 09/07/03 5 Random  Pachino Naomi 

90 6Az.4BFSa 90 90 2003 sum. 03 09/07/03 6 4 5500 Pachino Naomi 

91 6Az.4CFSa 91 91 2003 sum. 03 09/07/03 6 4 5500 Pachino Naomi 

92 7Az.1A2a 92 92 2003 aut. 03 09/12/03 7 1 5400 Pachino Naomi 

93 7Az.1A2b 93 93 2003 aut. 03 09/12/03 7 1 5400 Pachino Naomi 

94 7Az.1B2a 94 94 2003 aut. 03 09/12/03 7 1 5400 Pachino Naomi 

95 7Az.1B2b 95 95 2003 aut. 03 09/12/03 7 1 5400 Pachino Naomi 

96 7Az.1C2a 96 96 2003 aut. 03 09/12/03 7 1 5400 Pachino Naomi 

97 7Az.1C2b 97 97 2003 aut. 03 09/12/03 7 1 5400 Pachino Naomi 

98 7Az.2A2a 98 98 2003 aut. 03 09/12/03 7 2 1500 Pachino Naomi 

99 7Az.2A2b 99 99 2003 aut. 03 09/12/03 7 2 1500 Pachino Naomi 

100 7Az.2B2a 100 100 2003 aut. 03 09/12/03 7 2 1500 Pachino Naomi 

101 7Az.2B2b 101 101 2003 aut. 03 09/12/03 7 2 1500 Pachino Naomi 

102 7Az.2C2a 102 102 2003 aut. 03 09/12/03 7 2 1500 Pachino Naomi 

103 7Az.2C2b 103 103 2003 aut. 03 09/12/03 7 2 1500 Pachino Naomi 

104 8Az.1A3a 104 104 2003 win. 04 23/12/03 8 1 5400 Pachino Naomi 

105 8Az.1B3a 105 105 2003 win. 04 23/12/03 8 1 5400 Pachino Naomi 

106 8Az.1B3b 106 106 2003 win. 04 23/12/03 8 1 5400 Pachino Naomi 

107 8Az.1C3a 107 107 2003 win. 04 23/12/03 8 1 5400 Pachino Naomi 

108 8Az.1C3b 108 108 2003 win. 04 23/12/03 8 1 5400 Pachino Naomi 

109 8Az.2A3a 109 109 2003 win. 04 23/12/03 8 2 1500 Pachino Naomi 

110 8Az.2A3b 110 110 2003 win. 04 23/12/03 8 2 1500 Pachino Naomi 

111 8Az.2B3a 111 111 2003 win. 04 23/12/03 8 2 1500 Pachino Naomi 

112 8Az.2C3a 112 112 2003 win. 04 23/12/03 8 2 1500 Pachino Naomi 

113 8Az.2C3b 113 113 2003 win. 04 23/12/03 8 2 1500 Pachino Naomi 

114 9Az.1A4a 114 114 2004 win. 04 09/01/04 9 1 5400 Pachino Naomi 

115 9Az.1A4b 115 115 2004 win. 04 09/01/04 9 1 5400 Pachino Naomi 

116 9Az.1B4a 116 116 2004 win. 04 09/01/04 9 1 5400 Pachino Naomi 

117 9Az.1C4a 117 117 2004 win. 04 09/01/04 9 1 5400 Pachino Naomi 

118 9Az.1C4b 118 118 2004 win. 04 09/01/04 9 1 5400 Pachino Naomi 

119 9Az.2A4a 119 119 2004 win. 04 09/01/04 9 2 1500 Pachino Naomi 

120 9Az.2A4b 120 120 2004 win. 04 09/01/04 9 2 1500 Pachino Naomi 

121 9Az.2B4a 121 121 2004 win. 04 09/01/04 9 2 1500 Pachino Naomi 

122 9Az.2C4a 122 122 2004 win. 04 09/01/04 9 2 1500 Pachino Naomi 

123 10Az.1A5a 123 123 2004 win. 04 28/01/04 10 1 5400 Pachino Naomi 

124 10Az.1B5a 124 124 2004 win. 04 28/01/04 10 1 5400 Pachino Naomi 

125 10Az.1C5a 125 125 2004 win. 04 28/01/04 10 1 5400 Pachino Naomi 

126 10Az.2A5a 126 126 2004 win. 04 28/01/04 10 2 1500 Pachino Naomi 

127 10Az.2B5a 127 127 2004 win. 04 28/01/04 10 2 1500 Pachino Naomi 

128 10Az.2B5b 128 128 2004 win. 04 28/01/04 10 2 1500 Pachino Naomi 

129 10Az.2C5a 129 129 2004 win. 04 28/01/04 10 2 1500 Pachino Naomi 

130 11Az.1A6a 130 130 2004 win. 04 03/02/04 11 1 5400 Pachino Naomi 

131 11Az.1A6b 131 131 2004 win. 04 03/02/04 11 1 5400 Pachino Naomi 

132 11Az.1B6a 132 132 2004 win. 04 03/02/04 11 1 5400 Pachino Naomi 

133 11Az.1C6a 133 133 2004 win. 04 03/02/04 11 1 5400 Pachino Naomi 

134 11Az.2A6a 134 134 2004 win. 04 03/02/04 11 2 1500 Pachino Naomi 

135 11Az.2B6a 135 135 2004 win. 04 03/02/04 11 2 1500 Pachino Naomi 

137 12Az.1A2a 137 137 2004 win. 04 10/02/04 12 1 5400 Pachino Naomi 

138 12Az.1A2b 138 138 2004 win. 04 10/02/04 12 1 5400 Pachino Naomi 

139 12Az.1B2a 139 139 2004 win. 04 10/02/04 12 1 5400 Pachino Naomi 
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140 12Az.1B2b 140 140 2004 win. 04 10/02/04 12 1 5400 Pachino Naomi 

141 12Az.1C2a 141 141 2004 win. 04 10/02/04 12 1 5400 Pachino Naomi 

142 12Az.2A1a 142 142 2004 win. 04 10/02/04 12 2 1500 Pachino Naomi 

143 12Az.2B1a 143 143 2004 win. 04 10/02/04 12 2 1500 Pachino Naomi 

144 12Az.2C1a 144 144 2004 win. 04 10/02/04 12 2 1500 Pachino Naomi 

145 13Az.1A3a 145 145 2004 win. 04 25/02/04 13 1 5400 Pachino Naomi 

146 13Az.1B3a 146 146 2004 win. 04 25/02/04 13 1 5400 Pachino Naomi 

147 13Az.1C3a 147 147 2004 win. 04 25/02/04 13 1 5400 Pachino Naomi 

148 13Az.2A2a 148 148 2004 win. 04 25/02/04 13 2 1500 Pachino Naomi 

149 13Az.2B2a 149 149 2004 win. 04 25/02/04 13 2 1500 Pachino Naomi 

150 13Az.2C2a 150 150 2004 win. 04 25/02/04 13 2 1500 Pachino Naomi 

151 14Az.1A4a 151 151 2004 win. 04 10/03/04 14 1 5400 Pachino Naomi 

152 14Az.1B4a 152 152 2004 win. 04 10/03/04 14 1 5400 Pachino Naomi 

153 14Az.1C4a 153 153 2004 win. 04 10/03/04 14 1 5400 Pachino Naomi 

154 14Az.2A3a 154 154 2004 win. 04 10/03/04 14 2 1500 Pachino Naomi 

155 14Az.2B3a 155 155 2004 win. 04 10/03/04 14 2 1500 Pachino Naomi 

156 14Az.2C3a 156 156 2004 win. 04 10/03/04 14 2 1500 Pachino Naomi 

157 15Az.1A5a 157 157 2004 win. 04 19/03/04 15 1 5400 Pachino Naomi 

158 15Az.1B5a 158 158 2004 win. 04 19/03/04 15 1 5400 Pachino Naomi 

159 15Az.1C5a 159 159 2004 win. 04 19/03/04 15 1 5400 Pachino Naomi 

160 15Az.2A4a 160 160 2004 win. 04 19/03/04 15 2 1500 Pachino Naomi 

161 15Az.2B4a 161 161 2004 win. 04 19/03/04 15 2 1500 Pachino Naomi 

162 15Az.2C4a 162 162 2004 win. 04 19/03/04 15 2 1500 Pachino Naomi 

168 16Az.2C5a 168 168 2004 win. 04 30/03/04 16 2 1500 Pachino Naomi 

170 17Az.2B6a 170 170 2004 spr. 04 16/04/04 17 2 1500 Pachino Naomi 

171 17Az.2C6a 171 171 2004 spr. 04 16/04/04 17 2 1500 Pachino Naomi 

173 18Az.6A1a 173 173 2004 spr. 04 21/05/04 18 6 1500 Pachino Naomi 

174 18Az.6SHA1a 174 174 2004 spr. 04 21/05/04 18 6 1500 Pachino Shiren 

175 18Az.7SHA1a 175 175 2004 spr. 04 21/05/04 18 7 5600 Pachino Shiren 

176 18Az.8SHA1a 176 176 2004 spr. 04 21/05/04 18 8 6000 Pachino Shiren 

177 18 Random 1 177 177 2004 spr. 04 21/05/04 18 Random1 3600 Pachino Shiren 

179 18 Random3 179 179 2004 spr. 04 21/05/04 18 Random3 2200 Pachino Shiren 

180 18 Random4 180 180 2004 spr. 04 21/05/04 18 Random4 2200 Pachino Naomi 

181 18 Random 5 181 181 2004 spr. 04 21/05/04 18 Random5 1800 Pachino Naomi 

183 19Az.5A2a 183 183 2004 sum. 04 04/06/04 19 5 5500 Pachino Naomi 

184 19Az.6A2a 184 184 2004 sum. 04 04/06/04 19 6 1500 Pachino Naomi 

185 19Az.6ShA2a 185 185 2004 sum. 04 04/06/04 19 6 1500 Pachino Shiren 

186 19Az.8ShA2a 186 186 2004 sum. 04 04/06/04 19 8 6000 Pachino Shiren 

187 19Az.9SHA2a 187 187 2004 sum. 04 04/06/04 19 9 3600 Pachino Shiren 

188 20Az.5A3a 188 188 2004 sum. 04 18/06/04 20 5 5500 Pachino Naomi 

189 20Az.6A3a 189 189 2004 sum. 04 18/06/04 20 6 1500 Pachino Naomi 

190 20Az.6ShA3a 190 190 2004 sum. 04 18/06/04 20 6 1500 Pachino Shiren 

191 20Az.8SHA3a 191 191 2004 sum. 04 18/06/04 20 8 6000 Pachino Shiren 

192 20Az.9SHA3a 192 192 2004 sum. 04 18/06/04 20 9 3600 Pachino Shiren 

193 21Az.5A4a 193 193 2004 sum. 04 21/06/04 21 5 5500 Pachino Naomi 

194 21Az.5A5a 194 194 2004 sum. 04 21/06/04 21 6 1500 Pachino Naomi 

195 21Az.6A4a 195 195 2004 sum. 04 21/06/04 21 6 1500 Pachino Shiren 

196 21Az.6SHA4a 196 196 2004 sum. 04 21/06/04 21 6 1500 Pachino Shiren 

197 21Az.6A5a 197 197 2004 sum. 04 21/06/04 21 8 6000 Pachino Shiren 

198 21Az.6SHA5a 198 198 2004 sum. 04 21/06/04 21 9 3600 Pachino Shiren 
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199 21Az.8SHA4a 199 199 2004 sum. 04 21/06/04 21 5 5500 Pachino Naomi 

200 21Az.8SHA5a 200 200 2004 sum. 04 21/06/04 21 6 1500 Pachino Naomi 

201 21Az.9SHA4a 201 201 2004 sum. 04 21/06/04 21 8 6000 Pachino Shiren 

202 21Az.9SHA5a 202 202 2004 sum. 04 21/06/04 21 9 3600 Pachino Shiren 

203 22Az5A2a 203 203 2005 win. 05 26/02/05 22 5 5500 Pachino Naomi 

204 22Az5B2a 204 204 2005 win. 05 26/02/05 22 5 5500 Pachino Naomi 

205 22Az5C2a 205 205 2005 win. 05 26/02/05 22 5 5500 Pachino Naomi 

206 22Az9ShA1a 206 206 2005 win. 05 26/02/05 22 9 3600 Pachino Shiren 

207 22Az9ShB1a 207 207 2005 win. 05 26/02/05 22 9 3600 Pachino Shiren 

208 22Az9ShC1a 208 208 2005 win. 05 26/02/05 22 9 3600 Pachino Shiren 

209 23Az5A3a 209 209 2005 win. 05 15/03/05 23 5 5500 Pachino Naomi 

210 23Az5B3a 210 210 2005 win. 05 15/03/05 23 5 5500 Pachino Naomi 

211 23Az5C3a 211 211 2005 win. 05 15/03/05 23 5 5500 Pachino Naomi 

212 23Az5A4a 212 212 2005 win. 05 15/03/05 23 5 5500 Pachino Naomi 

213 23Az5B4a 213 213 2005 win. 05 15/03/05 23 5 5500 Pachino Naomi 

214 23Az5C4a 214 214 2005 win. 05 15/03/05 23 5 5500 Pachino Naomi 

215 23Az9ShA2a 215 215 2005 win. 05 15/03/05 23 9 3600 Pachino Shiren 

216 23Az9ShB2a 216 216 2005 win. 05 15/03/05 23 9 3600 Pachino Shiren 

217 23Az9ShC2a 217 217 2005 win. 05 15/03/05 23 9 3600 Pachino Shiren 

218 23Az9ShA3a 218 218 2005 win. 05 15/03/05 23 9 3600 Pachino Shiren 

219 23Az9ShB3a 219 219 2005 win. 05 15/03/05 23 9 3600 Pachino Shiren 

220 23Az9ShC3a 220 220 2005 win. 05 15/03/05 23 9 3600 Pachino Shiren 

221 23Az10ShR4a 221 221 2005 win. 05 15/03/05 23 10 5000 Pachino Shiren 

222 23Az11ShR8a 222 222 2005 win. 05 15/03/05 23 11 3600 Pachino Shiren 

223 23Az12ShR7/8a 223 223 2005 win. 05 15/03/05 23 12 4000 Pachino Shiren 

224 23Az13R1a 224 224 2005 win. 05 15/03/05 23 13 2000 Pachino  

225 23Az14R4a 225 225 2005 win. 05 15/03/05 23 14 2200 Pachino  

226 23Az15ShR1a 226 226 2005 win. 05 15/03/05 23 15 1800 Pachino Shiren 

231 24 Az5A5a 231 231 2005 spr. 05 05/04/05 24 5 5500 Pachino Naomi 

237 24Az9ShA4a 237 237 2005 spr. 05 05/04/05 24 9 3600 Pachino Shiren 

243 24Az17ShR3a 243 243 2005 spr. 05 05/04/05 24 17 4000 Pachino Shiren 

248 24Az19R8/9a 248 248 2005 spr. 05 05/04/05 24 19 5000 Pachino Naomi 

250 24Az21ShR6a 250 250 2005 spr. 05 05/04/05 24 21 1500 Pachino Shiren 

252 24Az23ShR6a 252 252 2005 spr. 05 05/04/05 24 23 2200 Pachino Shiren 

257 25Az9ShB7a  257 2005 spr. 05 29/04/05 25 9 3600 Pachino Shiren 

279 26AZ.18SHC2a  279 2005 sum. 05 30/06/05 26 18 1800 Pachino  

285 27AZ.1SHC4a  285 2005 sum. 05 30/06/05 26 1 5400 Pachino  

501 1Licata NaomiA1a 501 501 2004 win. 04 16/01/04 1   Licata Naomi 

502 1Licata NaomiB1a 502  2004 win. 04 16/01/04 1   Licata Naomi 

503 1Licata NaomiC1a 503  2004 win. 04 16/01/04 1   Licata Naomi 

504 1Licata ShirenA1a 504 504 2004 win. 04 16/01/04 1   Licata Shiren 

505 1Licata ShirenB1a 505  2004 win. 04 16/01/04 1   Licata Shiren 

506 1Licata ShirenC1a 506  2004 win. 04 16/01/04 1   Licata Shiren 

507 2Licata NaomiA3a 507  2004 win. 04 13/02/04 2   Licata Naomi 

508 2Licata NaomiB3a 508  2004 win. 04 13/02/04 2   Licata Naomi 

509 2Licata NaomiC3a 509  2004 win. 04 13/02/04 2   Licata Naomi 

510 2Licata ShirenA3a 510 510 2004 win. 04 13/02/04 2   Licata Shiren 

511 2Licata ShirenB3a 511  2004 win. 04 13/02/04 2   Licata Shiren 

512 2Licata ShirenC3a 512  2004 win. 04 13/02/04 2   Licata Shiren 

513 3Licata NaomiA4a  513 2004 win. 04 02/03/04 3   Licata Naomi 
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514 3Licata NaomiA4b  514 2004 win. 04 02/03/04 3   Licata Naomi 

515 3Licata NaomiB4a  515 2004 win. 04 02/03/04 3   Licata Naomi 

516 3Licata NaomiB4b  516 2004 win. 04 02/03/04 3   Licata Naomi 

517 3Licata NaomiC4a  517 2004 win. 04 02/03/04 3   Licata Naomi 

518 3Licata NaomiC4b  518 2004 win. 04 02/03/04 3   Licata Naomi 

519 3Licata ShirenA4a  519 2004 win. 04 02/03/04 3   Licata Shiren 

520 3Licata ShirenB4a  520 2004 win. 04 02/03/04 3   Licata Shiren 

521 3Licata ShirenB4b  521 2004 win. 04 02/03/04 3   Licata Shiren 

522 3Licata ShirenC4a  522 2004 win. 04 02/03/04 3   Licata Shiren 

701 1Sabaudia RubinoTopB1 701 701 2004 sum. 04 01/09/04 1   Sabaudia Rubino top

702 1Sabaudia RubinoTopB2 702 702 2004 sum. 04 01/09/04 1   Sabaudia Rubino top

703 1Sabaudia RubinoTopA1 703 703 2004 sum. 04 01/09/04 1   Sabaudia Rubino top

704 1Sabaudia RubinoTopA2 704 704 2004 sum. 04 01/09/04 1   Sabaudia Rubino top

705 1SabaudiaSHA1 705 705 2004 sum. 04 01/09/04 1   Sabaudia Shiren 

706 1SabaudiaSHA2 706 706 2004 sum. 04 01/09/04 1   Sabaudia Shiren 

707 1SabaudiaSHB1 707 707 2004 sum. 04 01/09/04 1   Sabaudia Shiren 

708 1SabaudiaSHB2 708 708 2004 sum. 04 01/09/04 1   Sabaudia Shiren 

710 1SabaudiaSH1R2 710 710 2004 sum. 04 01/09/04 1   Sabaudia Shiren 

711 1SabaudiaSH2R1 711 711 2004 sum. 04 01/09/04 1   Sabaudia Shiren 

712 1SabaudiaSH2R2 712 712 2004 sum. 04 01/09/04 1   Sabaudia Shiren 

713 2SabaudiaSHC3 713 713 2004 aut. 04 28/09/04 2   Sabaudia Shiren 

714 2SabaudiaSHC4 714 714 2004 aut. 04 28/09/04 2   Sabaudia Shiren 

715 2SabaudiaSHC5 715 715 2004 aut. 04 28/09/04 2   Sabaudia Shiren 

716 2SabaudiaSHD2 716 716 2004 aut. 04 28/09/04 2   Sabaudia Shiren 

717 2SabaudiaSHD3 717 717 2004 aut. 04 28/09/04 2   Sabaudia Shiren 

718 2SabaudiaSHD4 718 718 2004 aut. 04 28/09/04 2   Sabaudia Shiren 

719 2SabaudiaSHD5 719 719 2004 aut. 04 28/09/04 2   Sabaudia Shiren 

720 2SabaudiaSH3R6 720 720 2004 aut. 04 28/09/04 2   Sabaudia Shiren 

721 2Sabaudia RubinoTop B3 721 721 2004 aut. 04 28/09/04 2   Sabaudia Rubino top

722 2Sabaudia RubinoTop B4 722 722 2004 aut. 04 28/09/04 2   Sabaudia Rubino top

723 2Sabaudia RubinoTop B5 723 723 2004 aut. 04 28/09/04 2   Sabaudia Rubino top

724 2Sabaudia Franchie1R4 724 724 2004 aut. 04 28/09/04 2   Sabaudia Franchie 

725 2SabaudiaFranchie2R5 725 725 2004 aut. 04 28/09/04 2   Sabaudia Franchie 

903 Lazio 903 903 2003 sum. 03 20/07/03    market  

904 Puglia 904 904 2003 sum. 03 20/07/03    market  

905 Gela 905 905 2003 sum. 03 Luglio  Ortonatura2000  market Naomi 

906 Pachino 906 906 2003 win. 04 06/12/03    market  

907 Gela 907 907 2004 sum. 04 19/06/04  One Ortofrutta  market Naomi 

908 Ciliegini domestici 908 908 2004 sum. 04 16/08/04    market  

909 Cieliegini Maccarese 909 909 2004 sum. 04 28/08/04    market  

910 OrtoPIU' Licata 910 910 2004 sum. 04 16/06/04  OrtoPiù  market  

911 1OrtoNaturaNaomi 911 911 2005 win. 05 01/02/05  Ortonatura2000  market  

912 2OrtoNaturaNaomi 912 912 2005 win. 05 09/02/05  Ortonatura2000  market Naomi 

913 3OrtoNaturaNaomi 913 913 2005 win. 05 14/02/05  Ortonatura2000  market Naomi 

914 4OrtoNaturaNaomi 914 914 2005 win. 05 16/02/05  Ortonatura2000  market Naomi 

915 5OrtoNaturaNaomi 915 915 2005 win. 05 19/02/05  Ortonatura2000  market Naomi 

916 Fondi(Lt)CIDCorus 916 916 2005 win. 05 22/02/05  CIDCorus  market Corus 

917 Fondi(Lt)CIDPiccadilly 917 917 2005 win. 05 22/02/05  CIDPiccadilly  market Piccadilly 

918 6OrtoNaturaNaomi 918 918 2005 win. 05 02/03/05  Ortonatura2000  market Naomi 

919 7OrtoNaturaNaomi 919 919 2005 win. 05 08/03/05  Ortonatura2000  market Naomi 
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920 2OrtoPIU' Licata 920 920 2005 win. 05 18/03/05  OrtoPiù  market  

921 Piccadylli Sicilia 921 921 2005 win. 05 30/03/05    market Piccadilly 

922 3OrtoPIU'Licata 922 922 2005 spr. 05 01/04/05  OrtoPiù  market  

923 1OrtofrutticolaACESE 923 923 2005 spr. 05 04/04/05  OrtofruttaACESE  market  

924 8OrtoNaturaNaomi 924 924 2005 spr. 05 21/04/05  Ortonatura2000  market Naomi 

925 9OrtoNaturaNaomi 925 925 2005 spr. 05 22/04/05  Ortonatura2000  market Naomi 

926 10OrtoNaturaNaomi 926 926 2005 spr. 05 23/04/05  Ortonatura2000  market Naomi 

927 11OrtoNaturaNaomi 927 927 2005 spr. 05 26/04/05  Ortonatura2000  market Naomi 

928 12OrtoNaturaNaomi 928 928 2005 spr. 05 27/04/05  Ortonatura2000  market Naomi 

929 13OrtoNaturaNaomi 929 929 2005 spr. 05 28/04/05  Ortonatura2000  market Naomi 
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