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0.1 Introduction

We can say nothing about the thing in itself, for we have
eliminated the standpoint of knowing, i.e. of measuring. A
quality exists for us, i.e. it is measured by us. If we take
away the measure, what remains of the quality? What things
are is something that can only be established by a measuring
subject placed alongside them.

Friedrich Nietzsche [1].

Sonja: Morality is subjective.
Russian gentleman: Subjectivity is objective.
Sonja: Moral notions imply attributes to substances which
exist only in relational duality.
Russian gentleman: Not as an essential extension of
ontological existence.
Sonja: Can we not talk about sex so much?

Woody Allen, Love and Death.

This thesis gathers and tidies up three years of speculations and results
on several aspects of Non-Equilibium Statistical Mechanics, some of which
have been made public on the arXiv and eventually have been published or
are in the process of being published in peer-reviewed journals [2–5]:

- M.P., Macroscopic constraints for the minimum entropy production
principle, Phys. Rev. E 84, 051117 (2011),

- M.P., Nonequilibrium thermodynamics as a gauge theory, accepted for
publication on Eur. Phys. Lett. (13 dec. 2011),

- M.P., System/environment duality of nonequilibrium network observ-
ables, arXiv:1106.1280 (2011),

- M.P., Equivalence Principle and Critical Behaviour for Nonequilibrium
Decay Modes, arXiv:1105.4134 (2011).

The rest of the material is work in progress that the author is elaborating,
in part by himself and in part in collaboration with Massimiliano Esposito
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and his group in Brussels, where the author spent a period of three months
(winter 2011). Many of the basic raw ideas behind this work have been
shared and discussed with the Ph.D. advisor professor Armando Bazzani.
The author spent another period of three months (spring 2010) in Marseille
as a host in the Quantum Gravity group of Carlo Rovelli. These are the three
persons which — scientifically — I am mostly grateful to, for various reasons:
moral support and intellectual intimacy, independence and familiarity with
the community, liberty of thought and discussion.

Non-Equilibrium Statistical Mechanics (NESM) is a broad subject. As a
matter of fact, it possibly embraces all physical systems, as it can be argued
that no physical system is truly isolated: environmental noise, external forc-
ing, measuring apparatuses, emergent phenomena from complexity, unknown
fundamental theories entail that dissipation occurs at all levels of description
of reality. Equilibrium Statistical Mechanics (ESM) is the small portion of
NESM that studies thermalized systems, i.e. systems that have already re-
laxed to an equilibrium state where no in- or out-flows occur, be them flows
of matter, energy, charge or, more abstractly, entropy. As to the ambitions,
NESM overreaches ESM in many respects: (i) Describing systems in the pro-
cess of thermalization (ii) Describing systems which have relaxed to steady
states which display constant entropy flows towards the environment; (iii)
Describing systems in the process of relaxation to non-equilibrium steady
states; (iv) Describing forced systems which do not relax at all. As to the
results, it is fair to say that ESM exceeds NESM both in theoretical control
of its models and in experimental validation, and that in the 20th century
NESM has best succeeded in the close-to-equilibrium regime. However, the
last twenty years have witnessed a burst in the development of driven lattice
models, stochastic thermodynamics, spin glasses, thermostatted dynamical
systems, systems with long-range interactions, complex systems, and appli-
cations to nanophysics, biophysics, climatology, complex networks and many
other diverse fields, fostering some (cautious) optimism about the future of
NESM and of its experimental reach.

Given the immense realm of NESM, a host of techniques and approaches
are employed in the theoretic literature to attack simplified models and
generic systems. This makes it difficult to define exactly what NESM is.
In this respect, a perfect example is the problem of the attribution of the
so-called fluctuation theorems, that were derived in a variety of contexts,
from Axiom A dynamical systems [6] to Markov processes [7] to hamiltonian
driven systems [8, 9], but which actually can be backdated to the work of
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Bochkov and Kuzovlev [10]. Basically, the body of literature on the fluctu-
ation theorems (and on NESM in general) is divided in two main segments:
deterministic vs. stochastic descriptions. This thesis inscribes in the litera-
ture on stochastic systems, although many of the considerations in Ch.1 have
a wider scope.

Ch.1 is devoted to the network theory of macroscopic thermodynamical
observables, initiated by Julian Schnakenberg [11, 12]. Schnakenberg en-
gaged in the definition of the fundamental macroscopic observables of Non-
Equilibrium Statistical Mechanics, grossly conceived as a theory of the in-
ternal flows of a system. He worked with conjugate variables (currents and
forces) defined over a finite state space, founding his theory on an analogy
with the theory of electrical circuits and generalizing it, in some respects,
to regimes where Ohm’s law does not hold. For this reason the other great
scientist that we gladly tribute is Gustav Robert Kirchhoff [13], whose laws
and theorems are ubiquitous in this thesis. Schnakenberg’s theory was born
out of the study of biophysical systems [12, 15], and recently it is finding
growing applications to chemical reaction networks, molecular motors and
transport phenomena [16–23], It has already been recognized in the literature
that Schnakenberg’s analysis has a deep geometrical and combinatorial con-
tent [24, 25]. It is the backbone for the comprehension of Non-Equilibrium
Steady States (NESSs) [24, 26], to which the theory was so-far restricted.
The aim of this chapter is to illustrate the theory and to go beyond NESSs,
generalizing Schnakenberg’s construction to arbitrary states and providing a
detailed survey of the linear regime constitutive relations.

The complete theory of nonequilibrium observables turns out to enjoy
a duality which exchanges forces with currents, the concept of steadiness
with that of detailed-balancing of the external constraints, and ultimately
properties of the environment with properties of the system. This is the sub-
ject matter of Ch.2, where it is also shown that Schnakenberg’s observables
serve as constraints for a formulation of the Minimum Entropy Production
Principle that marries well with Prigogine’s original formulation [27].

Ch.3 introduces continuous-time Markov processes on a finite state space,
through the master equation. We choose to spare useless details and only
introduce the pieces of machinery that are essential for the rest of the thesis.

The thermodynamics of master equation systems is discussed in Ch.4. We
first define the internal, environmental and total entropy production rates for
the master equation, then introduce their microscopic analogues along single
jump trajectories. These definitions are used to prove fluctuation theorems.
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Although this is standard material, we tried to give a rather personalized
perspective on the problem. In particular we make a strong claim about
fluctuation theorems for systems with incommensurable rates. The second
part of the chapter discusses the Local Detailed Balance ansatz, which was
recently proposed by Esposito and Van den Broeck in the attempt to give a
more physical grasp on the nonequilibrium thermodynamics of master equa-
tion systems [46]. Local Detailed Balance permits to make direct contact
with 18th century thermodynamics; in particular, we show that the notion
of Schnakenberg affinity coincides with Clausius’s measure of irreversibility
along a cyclic process.

Spanning trees are one major graph-theoretical ingredient of this thesis.
They participate in our network analysis, as the choice of one spanning tree
allows to find basis of cycles and of dual cocycles whereupon we define a set
of macroscropic observables. They appear in the enumerative polynomials
which provide expressions for the determinant of the linear response matri-
ces. Finally, they are used to define the steady-state solution of the master
equation. In Ch.5 we prove the spanning-tree formula for the steady state,
briefly illustrate the content and spirit of the so-called matrix-tree theorems
and discuss a few combinatorial properties and applications.

The material developed in Ch.6 constitutes the most conceptual and at
the same time consistent part of this thesis. In accordance with our modern
understanding of Quantum Mechanics and Quantum Field Theory, where
adiabatic phases and Wilson loops play an ever more prominent role [14],
in Schnakenberg’s theory the constraints which prevent a system from re-
laxing to equilibrium are circuitations of certain “connection” variables. We
make this observation into a gauge principle. In particular, we observe that
thermostatics, that is, the quantification of the internal entropy of a system,
depends on a prior probability that one assigns to microstates of the system
(for example, microcanonical equiprobability of certain degrees of freedom).
We interpret this arbitrariness as a gauge freedom, and prove that Schnaken-
berg’s theory is consistent with the requirement of a gauge invariant theory
of thermodynamics. In Sec.6.6 we give a microscopic interpretation of gauge
invariance as the choice of a stochastic process representing a given jump
trajectory, something akin to the choice of coordinates for the representation
of the motion of bodies in classical mechanics. The discrete setup allows to
give an intuitive and self-contained treatment of the geometrical aspects of
gauge theory, without delving into the differential geometry of principal and
tangent bundles. However, from time to time geometrical jargon will make
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its appearance in this thesis.
Geometry is also involved in the interpretation of the results presented

in Ch.7, where certain orthogonality relations between eigenmodes of a gen-
erator are shown to be related to the Fisher-Rao metric on the space of
probability measures. Using a motto, we can state that equilibrium sys-
tems are to thermodynamics what inertial frames are to gravity, as their
modes trivialize the metric at one point on the manifold, corresponding to
the steady state. The phenomenology of nonequilibrium systems in the light
of the Fisher matrix is very rich; besides equilibrium systems, we analyze
nonequilibrium p-normal systems, with complex spectrum and a peculiar be-
havior under time-reversal, and systems with a degenerate spectrum. In this
latter case the Fisher metric seems to signal the insurgence of a class of non-
equilibrium phase transitions — even on a finite state-space. Apart from
the geometrical interpretation, the formalism seems to be rich and of direct
physical application; in fact, we use it to prove that relative entropy with
respect to the steady state is not a convex function of time, thus refuting a
tempting conjecture and a potential principle of thermodynamics.

In the conclusive chapter we briefly describe possible directions of research
where this material might be employed.

Four broad and important subjects related to this work are completely
absent: Equilibrium Statistical Mechanics, Stochastic Differential Equations,
diffusion equation of continuous systems (Fokker-Planck Equation), and Large
Deviation Theory. Nevertheless, all of these topics have been a major concern
of the author.

This brief overview will probably leave the impression of a patchwork
rather than an organic thesis. In many respects it is so. The author spent
the last three years doing “research” in the literary sense of the world, search-
ing for motivations, results, interpretations, always digging out new material,
considering its relevance, abandoning lines, opening new projects and so on.
This thesis should be considered as a recollection of thoughts and results and
not as an encyclopedia of the things that he studied. Therefore it reflects the
author’s style and gait in doing research. In particular, by no means should
this thesis be considered as a manual or an introduction to NESM, not even to
network theory or to the geometry and combinatorics of NESM. As a matter
of fact, we give nearly no background on geometry, combinatorics and NESM
besides what is strictly necessary for the derivation of the results, nor do we
really employ mathematically sophisticated instruments, that would require
further explanation and deserve several chapters on their own. We consider
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this thesis more like a report-in-progress, susceptible of future modifications,
a momentary repository where it is useful to pin-point what has been done
so far and put some order into ideas and partial results that are in constant
re-elaboration, in view of possible future publication. However, there is an
underlying question connecting all considerations in this report: To what ex-
tent are non-equilibrium systems different from equilibrium ones, and which
geometrical instruments can be used to quantify the distance between them?
Along this thread, we tried to give a consequential and self-contained outline,
in such a way that a sufficiently elastic and willing reader will in principle be
able to go through the whole work, without resorting to other material.

This thesis is a rather theoretical work, even though it is the final out-
put of a Ph.D. program in applied physics. Its style reflects the author’s
interests, ambitions and even his ideas on the utility and scope of science.
At this point it should be incumbent to prospect viable applications. Un-
fortunately, the author’s expertise does not allow for a deep insight into the
fascinating physics of real-world complex and non-equilibrium systems. A
friend and colleague of the author, a sharp physicist who recently left the
academia, appended to his latest article the following (all-too-bitter) dis-
claimer: “This paper is not intended for journal publication. Therefore, it
lacks the delusional claims typically found in published papers about its (si-
multaneous) relevance to drug design, nanoelectronics, photonics, spintronics
or any other fashionable application [. . . ]”. We think that avoiding propa-
gandistic fireworks helps clarifying contents and allows a serious evaluation
the true scientific value of a piece of research. Applications might well be
around the corner, but they are not the subject matter of this thesis.

Finally, let us briefly comment on the quotations at the head of this in-
troduction. At the time of writing, the author subscribes to what might be
called the “informationism” interpretation of statistical mechanics. This is
not just a marginal note, as this point of view sustains the findings described
in Ch.6, which would otherwise have marginal relevance. Informationists take
very seriously the fact that physics produces statements about measurements
that observers perform on a system and prescriptions about how they con-
front results. Physics is about acquisition of information, information storage
and processing, and communication. This viewpoint does not exhaust itself
with the trite recognition that experimental validation, in all of its variants,
is the unquestioned arbiter of the physical nature of a theory. It rather refers
to the crucial role that information has come to play in the logical founda-
tion of theories. No assertion whatsoever is made about the existence of the
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world, which is an ontological issue which trascends physics: informationism
is equidistant both from realism and from solipsism. Paraphrasing Nietzsche:
“Existence is nonsensical without interpretation”. Although this might ap-
pear as an extremist point of view, it is instead very laic, prudent and even
conventional. By its own statute, it does not aim at telling how the world
is on the whole, but it is only concerned with how we deal with the portion
of the world that is empirically accessible to us. However, discussions about
objectivity and subjectivity, ontological existence and relational duality tend
to become wars of religions. With Allen, we prefer to only lightly touch upon
philosophy and soon plunge into more “physical” discourses.

0.2 Results

Some of the results that are original (at least to a certain degree, and up
to our knowledge) in this thesis are conceptual, and even of a foundational
character; some others are of a rather technical nature, mainly involving
graph theory. Technical results might be part of a greater picture or might
be isolated yet.

From our point of view, the most interesting conceptual proposals are:

- The generalizaton of Schnakenberg’s observables to non-steady states
of non-equilibrium systems, accounting for internal and external con-
jugate macroscopic currents and forces (Sec.1.4).

- The duality between observables characterizing the state of the system
and those characterizing the state of the environment, and the analysis
of special instances where system/environment duality comes into play
(Sec.2.1 and Sec.2.2).

- The implementation of macroscopic observables as constraints in the
Minimum Entropy Production Principle (MINEP) and the connection
to Prigogine’s original formulation of the principle and to his expecta-
tion that MINEP should be cast in the form of a gaussian principle of
least constraint (Sec.2.3).

- Schnakenberg’s circuitations as a tool for understanding the thermody-
namics of locally detailed balanced master equation systems (Sec.4.5),
and the emergence of Clausius’s measure of irreversibility along a cyclic
process as the fundamental macroscopic force.
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- Thermodynamics of master equation systems as a gauge theory, and the
interpretation of gauge transformations as changes of prior probability
measure (Ch.6).

- The relevance of the Fisher-Rao metric for the analysis of the decay
modes of the master equation. In particular: the geometrical interpre-
tation of equilibrium systems as those systems which satisfy a sort of
statistical equivalence principle (Sec.7.9), and the critical behavior of
systems with defective generator (Sec.7.8).

- The confutation of conjectures on the convexity of the relative entropy
as a function of time by means of a counterexample (Sec.7.7).

A list of more technical results:

- The definition of macroscopic observables as cycles and cocycles start-
ing from one spanning tree, Eqs.(1.27), and the consequent decom-
position of the entropy production in terms of the generalized set of
observables, Eqs.(1.12a,1.35).

- In the linear regime, the decomposition of the entropy production
as a quadratic form of the external macroscopic forces and currents,
Eq.(1.53).

- The invariance of the determinant upon modification on the fundamen-
tal set of observables.

- The formula for the number of spanning trees of a graph as the volume
of the parallelotope formed by cycles (or cocycles) in a fundamental
set, Eq.(1.55).

- The discrete electro-magnetic duality between fields and sources, Eq.(2.2),
as an example of system/environment duality.

- Using affinities as Lagrange multipliers for the minimization of the
entropy production, Eq.(2.8).

- The Transient Fluctuation Theorem for the currents Eq.(4.24), which
generalizes a result by Andrieux and Gaspard [21], and the Fluctuation
Theorem for the heat flows, Eq.(4.48).
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- A proof that Local Detailed Balance is not restrictive, i.e., that all
master equations can be given a Local Detailed Balance interpretation
with a cyclomatic number of heat reservoirs (in Sec.4.4).

- The Schnakenberg analysis of locally detailed balanced systems in terms
of topological and non-topological cycles, Eqs.(4.40,4.41).

- The analysis of the linear-regime for the heat fluxes, Sec.(4.6) and (4.7).

- The derivation of the Local Detailed Balance assumption from the
markovian dynamics of Open Quantum Systems, and consequently a
viable definition of the entropy production rate for quantum Lindblad
Equations, Eq.(4.59).

- A simple graphical proof of the matrix-tree theorem for master equa-
tions, Eq.5.1, and a new proof based on the Fluctuation Theorem of a
result by Hill on cycle fluxes, Eq.(5.12).

- A proof that the entropy production, Eq.6.22, is gauge invariant, and
that it is the simplest gauge-invariant completion of the time derivative
of the Gibbs-Shannon’s entropy.

- A proof that the evolution equation for the moment generating function
of a suitable stochastic process, Eq.(6.39), coincides with the time-
dependent gauge-transformed master equation, Eq.(6.32).

- The definition of the Fisher’s correlation matrix for decay modes of a
master equation, which is shown to be diagonal for equilibrium and p-
normal systems (Sec.7.9); time-reversal generators have inverse Fisher
matrix.

- A counterexample to convexity of the relative entropy, Eq.(7.22), and a
discussion on how to generate counterexamples with initial state sam-
pled arbitrarily close to the steady state.

- In Sec.(7.8), the analysis of a simple three-state system which displays
critical behavior in time, and for which the Fisher matrix becomes
degenerate at the critical line.

Results are not given in the form of theorems, as mathematical accuracy has
not been pursued.
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1

Network theory

1.1 Examples first

We espouse Gowers’s principle that examples should precede the theory for
a better understanding [28].

Consider a discrete state space consisting of four states, which exchange
between one another some physical quantity, be it mass, energy, charge, spin
etc., at certain rates. For sake of abstractness, we will suppose that these
physical quantities are coded in bits, so that from the comparison of two
nearby snapshots of the system an observer will be able to measure a certain
flux of raw “information” at a certain time. States of the system are depicted
with vertices (or sites) of a graph, and the channels of communication with
oriented edges e connecting the states, as is shown in Fig.1.1a. Currents je
might have positive or negative sign, according to the direction of the flow —
concordant or opposite to the edges’ orientations. Notice that not all states
need to be connected. We further suppose that the currents are induced by
conjugate mesoscopic forces ae, which have the same sign signae = sign je,
and finally we introduce the entropy production (rate)1,

σ[j, a] = j1a1 + j2a2 + j3a3 + j4a4 + j5a5. (1.1)

A comment is needed on the usage of the scale words. Schnakenberg referred
to je’s as a microscopic currents, and to the observables we are going to

1In this chapter we will talk of entropy production meaning entropy production rate,
in later chapters we will be more careful with the terminology.
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build as macroscopic. However, later developments in the stochastic ther-
modynamics of master equation systems (see Ch.3 and references therein)
allow us to identify single-trajectory analogues of thermodynamical quanti-
ties whose averages over paths return je, σ, etc. This suggests to reserve the
word “microscopic” for this further layer, and to adopt “mesoscopic” for je
and ae, irregardless of their spatial dimension.

We first consider steady states. This is the original reach of Schnaken-
berg’s theory. The configuration of currents is steady if the total inflow at
the nodes is null, yielding the conservation laws

j ss4 = j ss1 , j ss2 = j ss3 , j ss1 + j ss5 = j ss2 , j ss3 − j ss4 = j ss5 . (1.2)

Eqs.(1.2) are known as Kirchhoff’s Current Laws. One of them is redundant.
The others allow us to express all of the steady currents in terms of, e.g., j ss1

and j ss3 . Replacing the solution into the expression for the entropy production

e1

e2e4

e3

e5

a

d c

b

(a) (b)

A1

A1

A3

A3

J3

J1

(d)

+

=

A5

A2

A2

(c)

J5 J2

Figure 1.1: (a) An oriente graph. (b,c) Internal currents and external forces
corresponding to different spanning trees. (d) Composition of affinities.
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yields

σ[j ss, a] = j ss1

A1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(a1 + a4 − a5) + j ss3

A3

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(a2 + a3 + a5) . (1.3)

Overbraces are used to define the macroscopic external forces or affinities.
They form pairs of conjugate variables together with the fundamental internal
currents J1 = j ss1 and J3 = j ss3 . A system is said to satisfy detailed balance
when affinities vanish

A1 = A3 = 0. (1.4)

These are known Kirchhoff’s Voltage Laws. When both Kirchhoff’s Current
Law and Voltage Law hold, the system displays null entropy production, and
we talk of an equilibrium steady state. Near the equilibrium steady state,
the linear regime constitutive relations are now assumed: currents and forces
are related by ae = `ej sse , with `e a positive local (i.e., edge-by-edge) linear
response coefficients. This regime corresponds to a small perturbation of an
equilibrium steady state into a non-equilibrium steady state. We obtain for
the macroscopic forces

A1 = `1j
ss
1 + `4j

ss
4 − `5j

ss
5 =

L11

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(`1 + `4 + `5) J1 + (

L13

«
−`5 )J3

A3 = `2j
ss
2 + `3j

ss
3 + `5j

ss
5 =

L33

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(`2 + `3 + `5) J3 + (

L31

«
−`5 )J1.

The right-and side defines the macroscopic linear response coefficients,
which satisfy Onsager’s reciprocity relations [29],

L13 = L31.

Moreover, response coefficients satisfy

detL ≥ 0, L = ( L11 L13

L31 L33
) , (1.6)

which corresponds to Eq.(1.3) in the original paper by Onsager [29], by him
attributed to Boltzmann. So, affinities and internal currents are good ther-
modynamical observables.
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Notice that the choice of J1 and J3 as boundary currents in terms of
which all other steady state currents are expressed was arbitrary. A different
equivalent choice would be, for example, J2 = jss2 and J5 = jss5 . Solving
Eqs.(1.2) we obtain jss1 = jss4 = J2 − J5, jss3 = J2, and the entropy production
now reads

σ[j ss, a] = J2

A2

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(a1 + a2 + a3 + a4) + J5

A5

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(−a1 − a4 + a5), (1.7)

where again we identified conjugate external forces. There is a simple graph-
theoretical description of the internal currents and the affinities. With refer-
ence with Fig.1.1.b, notice that removing the edges e1 and e3 corresponding
to the chosen boundary currents J1 and J3 yields a spanning tree, that is a
set of edges which contains no cycles and which spans the graph. A spanning
tree is such that when we add either e1 or e3 (which are called the chords of
the spanning tree), a unique cycle is generated. Then the conjugate affinities
A1 and A3 are defined as circuitations of the mesoscopic forces along the
cycles. Similarly for the new currents and forces, which are defined starting
from a different spanning tree (Fig.1.1.c). Obviously, the new currents can
be expressed in terms of the old ones by a linear transformation. So can the
new affinities in terms of the old ones,

A2 = A1 +A3, A5 = −A1.

These rules correspond to an intuitive composition of cycles, Fig.1.1.d. In
particular, the property of detailed balance, Eq.(1.4), is independent of the
set of fundamental observables (fundamental set) chosen.

The choice of a spanning tree allows to identify a set of conjugate variables
characterizing nonequilibrium steady states. Affinities are circuitations, in-
ternal currents flow along preferred edges of the graph. Spanning trees arise
in the theory in another very notable respect. We can now consider the
linear regime with respect to J2,A2, J5,A5. We do not perform the direct
calculation explicitly. One can verify that the determinant of the new linear
response matrix coincides with the one calculated in Eq.(1.6),

det( L11 L13

L31 L33
) = det( L22 L25

L52 L55
)

= `1`2 + `1`3 + `1`4 + `2`4 + `3`4 + `3`5 + `2`5 + `4`5. (1.8)

18



The homogeneous polynomial in the right-hand side is the so-called spanning
co-tree polynomial. It is calculated by taking the product of the linear re-
sponse coefficients along chords of trees, summing over all possible spanning
trees that the graph admits. There are eight such trees in our example; they
are depicted in Fig.1.6.

To resume, conservation laws at the nodes can be used to express the en-
tropy production in terms of a certain number of boundary currents and of
conjugate affinities, which are circuitations of the mesoscopic forces along ori-
ented cycles of the graph. Assuming the linear regime constitutive relations
yields a symmetric linear response matrix between affinities and fundamen-
tal currents, satisfying Boltzmann’s relation. Different choices of internal
currents and of external forces can be performed by a graph-theoretical pro-
cedure, after we choose a spanning tree. However, the determinant of the
linear response matrix is independent of the fundamental observables chosen.

An analogous (and, in a very precise sense, dual) theory can be developed
for systems which satisfy detailed balance. Eqs.(1.4) furnish a criterion, due
to Kolmogorov [30], for systems to satisfy detailed balance. A more physical
criterion is that there exists a potential (vi)i∈V defined over vertices, such
that the mesosopic affinities are potential drops between vertices

adb1 = va−vb, adb2 = vb−vc, adb3 = vc−vd, adb4 = vd−va, adb5 = vd−vb.

For example, this is the case for electrical networks with no electromotive
forces. The potential is determined up to a ground value vi → vi + u; con-
sidering that there are four values of vi, only three mesoscopic forces are
independent. In fact Eqs.(1.4) can be used to express detailed balanced
mesoscopic forces in terms of three boundary values, for example A∗

2 = adb2 ,
A∗

4 = adb4 and A∗
4 = adb5 , with

adb1 = A∗
5 −A∗

4, adb3 = −A∗
2 −A∗

5. (1.9)

We call A∗
2,A

∗
4 and A∗

5 macroscopic internal forces. We can plug these ex-
pressions into the entropy production to obtain

σ[j, adb] = A∗
2

J2∗³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(j2 − j3) + A∗

4

J4∗³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(j4 − j1) + A∗

5

J5∗³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(j5 + j1 − j3) . (1.10)

Overbraces define the external macroscopic, or injected, currents. Let us
develop the linear regime for detailed balance systems. Physically, in this
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case, we perturb an equilibrium steady state into a detailed balance non-
steady state, obtaining

⎛
⎜
⎝

J2
∗
J4
∗
J5
∗

⎞
⎟
⎠

= L∗
⎛
⎜
⎝

A∗
2

A∗
4

J∗5

⎞
⎟
⎠

=
⎛
⎜
⎝

`−1
2 + `−1

3 0 `−1
3

0 `−1
1 + `−1

4 −`−1
1

`−1
3 −`−1

1 `−1
1 + `−1

3 + `−1
5

⎞
⎟
⎠

⎛
⎜
⎝

A∗
2

A∗
4

J∗5

⎞
⎟
⎠
.

One can verify that the following relation between determinants of the re-
sponse matrices holds,

detL

detL∗
= ∏

e

`e. (1.11)

Hence the linear response of steady states and of detailed balance systems
out of equilibrium are related in a subtle way. The author has not yet gained
a sufficient physical insight into Eq.(1.11), which could pose limits to the
simultaneous optimization of the entropy production contributions.

While most of what has been said so far is collected from known facts in
graph theory [31], electrical circuit theory [32], and the theory of Feynman
diagrams [33], to our knowledge the forthcoming result might indeed be orig-
inal. The following formula is crucial in that it paves the way to the results
that will be discussed in the rest of this thesis. It turns out that the two
expressions for the entropy production of steady state and detailed balanced
systems (1.7,1.10) can be put together even for generic non-steady states of
unbalanced systems,

σ[j, a] =

σss[j,a]
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
J1A

1 + J3A
3 +

σdb[j,a]
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
J2
∗A

∗
2 + J4

∗A
∗
4 + J5

∗A
∗
5, (1.12a)

= j1a1 + j2a2 + j3a3 + j4a4 + j5a5 (1.12b)

where the fundamental set of macroscopic observables, internal and external
currents and forces, is given by

J1 = j1, A1 = a1 + a4 − a5,

J3 = j3, A3 = a2 + a3 + a5,

J2
∗ = j2 − j3, A∗

2 = a2,

J4
∗ = j4 − j1, A∗

4 = a4,

J5
∗ = j5 − j3 + j1, A∗

5 = a5.
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Overbraces in Eq.(1.12a) define the steady entropy production and the tran-
sient (or detailed balance) entropy production. The steady entropy produc-
tion vanishes for detailed balanced systems, the transient entropy productio
vanishes at steady states:

σss[j, adb] = 0 = σdb[jss, a].

They both vanish at an equilibrium steady state.
In the linear regime, less intuitive result is that an analogous superpo-

sition holds if we express the entropy production in terms of the external
observables,

σ[j, `j] = σ[`−1a, j] = ATL−1A + JT∗ L
−1
∗ J∗, (1.13)

where AT = (A1,A3) and JT∗ = (J2
∗ , J

4
∗ , J

5
∗). We will show that external

forces and external currents can be varied independently. The fact that
there are no cross-terms in Eq.(1.13) is not obvious, and further supports the
point of view that external forces and currents are fundamental macroscopic
observables. Moreover, this expression allows to derive the minimum entropy
production principle near equilibrium steady states, in two different, and
dual, acceptations. Steady states minimize the entropy production at given
fixed affinities, as the entropy production in the linear regime is a positive
quadratic form, and setting the first variation to zero yields

δσ[j, `j]
δj

∣
A

= δσ[j, `j]
δJ∗

= 2L−1
∗ J∗ ≡ 0, (1.14)

i.e., vanishing external currents. Analogously, detailed balanced systems
minimize the entropy production at given fixed injected currents,

δσ[`−1a, a]
δa

∣
J∗

= δσ[`−1a, a]
δA

= 2L−1A ≡ 0. (1.15)

Finally, there is a precise sense in which observables A,J are dual to
observables J∗,A∗. We leave this topic to Sec.1.6.

1.2 Which system?

We append to the previous section some considerations on the notion of
system and state. The task of identifying the correct states of a system
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is delicate. One can always complete the system with further states so as
to modify the definition of steadiness and balancing. An example will do.
Suppose pA and pB are the populations of two sectors of the world: say,
the Austral hemisphere and the Boreal hemisphere. Macroscopic internal
currents between the two hemispheres are due to migrational fluxes. The
force which drives migrational fluxes might be identified with – say – the
wealth gap between the two hemispheres, aAB = vB − vA, and we might sup-
pose that to a first approximation the migrational flux is proportional to the
wealth gap. The population of each hemisphere is also subject to nativity
and mortality rates, which in this picture represent external currents. Then
the steady state occurs when each state has equal nativity and mortality
rates, and there is no migrational flux whatsoever. However, populations are
also stationary when migrational fluxes are compensated by an excess natal-
ity in one hemisphere and an excess mortality in the other, in such a way
as to keep the overall world population constant. Then one can complete
the system with one further state C (where souls wait for reincarnation, or
else for predestination/heavenly retirement). Natality and mortality can be
seen as migrational fluxes to and from C, external currents become internal
currents, and the notion of steady state is much broader, as it allows for the
net circulation of non-null currents.

1.3 Algebraic graph theory in a nutshell

Roughly speaking, algebraic graph theory is graph theory where graph el-
ements (edges, vertices, cycles, trees) are vectors, their incidence relations
are matrices and enumeration problems can be turned into algebraic prob-
lems. All the elements of graph theory that we will employ in this section
are re-elaborated from standard material. The author suggests the books by
Biggs [31] and by Godsil-Royle [34]. Graphs can also be seen as skeletons of
cell complexes; therefore, here and there some algebraic-topological consid-
erations will come into play; in this perspective we referred to Giblin’s old
book [35].

A graph (V,E) consists of a set V of vertices i ∈ V that are pairwise
connected by edges e ∈ E. Edges can be thought of as couples of vertices,
E ⊆ 2V . In the following we shall denote with V,E both the vertex and edge
sets and their cardinality, without possibility of confusion. A graph might
consist of more than one connected component when two or more subsets of
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V are not joint by any edge; here we exclude this possibility and suppose
that the graph is connected.

A graph per se is an abstract combinatorial object; however, some of the
properties that we are going to discuss depend on the possibility to embed it
in a plane (or more generally on an orientable surface) and on the peculiar
way it is embedded. An embedding of a graph is a map that sends edges
to continuous paths and vertices to points, in such a way that the images
of two edges only cross at the image of a vertex. It is a standard result
that any graph can be embedded in R3; those that can be embedded in R2

are called planar. Not all planar embeddings are topologically equivalent, in
the sense that two embeddings of the same graph might not be continuously
deformable one into the other, as Fig.1.2.a illustrates.

An arbitrary orientation can be assigned to each edge e ∈ E (see Fig.1.3).
An orientation is the choice of a source vertex s(e) from which the edge
emanates, and of a target vertex t(e) at which the edge points. By inverting
source and target one obtains the inverse edge −e. All the information about
graph topology and edge orientation is resumed in the V ×E incidence matrix
∂ with entries

∂ei =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

+1, if
e← i

−1, if
e→ i

0, elsewhere

. (1.16)

When an orientation is chosen, we talk of an oriented graph G = (V,E, ∂).
Row-vectors of the incidence matrix will be denoted ∂i. These vectors are not
all independent: since each edge has exactly one source vertex (with matrix

a. b.

Figure 1.2: (a) Nonequivalent embeddings of the same graph in a plane. (b)
A graph with a loop, a pendant edge and multiple edges.
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entry −1) and one target vertex (with matrix entry +1), summing over all
vertices gives zero

∑
i

∂i = 0. (1.17)

Therefore the incidence matrix has at least one left eigenvector relative to
eigenvalue zero. In fact, when G is connected it has exactly one such inde-
pendent left eigenvector: it is a well-known fact that the rank of the incidence
matrix of a connected graph is V −1. The incidence matrix does not account
for loops (edges whose source and target vertices coincide). We hypothesize
that G is loopless for the moment. Instead, we allow for multiple edges be-
tween two given vertices (see Fig.1.2.b). The set of loop-less graphs and of
viable incidence matrices coincide.

We now allow ourselves to take integer linear combinations of edges, and
define a 1-chain (or simply a subgraph) of G an element of the additive group
ZE. An example, with reference to Fig.1.3: we can graphically represent
the integer linear combination 2e1 − e2 by drawing two arrows for edge e1

pointing towards its target vertex, according to the chosen convention on
the orientation, and one arrow which runs opposite to e2. Notice that the
algebraic representative of a collection of edge e5 and its inverse — which we
call an edge-cycle — gives a null 1-chain; we drew dotted edges.

In the following we shall need to perform linear algebra on vectors in
ZE, even though strictly speaking ZE is not a vector space; we can always
think of 1-chains as special vectors in RE which take integer components in
the basis of individual oriented edges — rigorously speaking, we work on a
lattice. The incidence matrix defines a linear operator that to any 1-chain

e1 e4

e5

e2

e3

Figure 1.3: A graph, an arbitrary orientation, subgraph 2e1 − e2 + e5 − e5.
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g ∈ ZE associates a linear combination of vertices in ZV (also called a 0-
chain), which constitutes the boundary of g. The degree of a vertex in g is
the number of outgoing edges minus the number of incoming ones,

degi g = ∂ig.

The support [g] of an oriented subgraph is obtained by replacing all oriented
edges of g with their unoriented counterparts. We call the bare degree of i
in g

degi[g] = ∑
e∈g

[δs(e),i + δt(e),i] ,

which is simply the number of edges which are incident at a given vertex. A
vertex is a leaf if it has bare degree one in E; its only incident edge is said
to be pendant (see Fig.1.2.b).

An oriented cycle c (or, simply, a cycle) is a subgraph whose vertices all
have null degree in c, that is, it has null boundary. This means that for
any incoming edge at a vertex, if any, there exists an outgoing one. This
definition coincides with the algebraic condition

∂c = 0. (1.18)

Therefore, as vectors in RE, cycles belong to C = ker∂, which is a closed
vector space called the cycle space. The dimension of C (which we also
denote with C) is an important topological invariant of graphs called the
cyclomatic number,

C = E − V + 1. (1.19)

This formula follows from the rank-nullity theorem, which for any linear
operator A on a E-dimensional vector space states that rkA+nullA = dimE.
Applying the theorem to the incidence matrix, and considering that rk∂ =
V − 1, we obtain the cyclomatic number. As elements of the additive group
ZE, cycles belong to the first homology group of any embedding of G into Rn.
In this context the cyclomatic number is interpreted as the first Betti number,
the zero-th Betti number being the number of connected components.

To summarize, the cyclomatic number is the maximum number of in-
dependent oriented cycles that are not edge-cycles; all others are integer
combinations of these. Notice that the support of a cycle [c] is a graph
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whose vertices all have an even bare degree. In general, it might consist of
multiple copies of the same edge and have crossings, that is, vertices of bare
degree > 2. If we restrict to vertices of bare degree 2 in [c] we then talk
of simple cycles, which are represented by multiplets in {−1,0,1}E. Simple
cycles are not closed under addition, so that they do not form an additive
group. However, we will mainly be interested in simple cycles, as we will
show that there always exist basis for C consisting of simple cycles.

A simple cocycle (also called cut or bond in the literature) is a subgraph
of G whose removal disconnects the vertex set. A simple cocycle is uniquely
identified by the vertex set of one of the two components. If we orient all
edges of a simple cocycle so that they emanate from vertices of one of the
two components pointing towards vertices of the other, we obtain an oriented
simple cocycle c∗; we will omit to specify “oriented” from now on. A simple
cocycle is uniquely identified by the source set S(c∗) ⊂ V ; vice versa, the
simple cocycle whose source vertex subset is S ⊆ V will be denoted c∗(S).
Let us emphasize that, like for simple cycles, simple cocyles form a subset
of {−1,0,1}E which is neither a vector space nor an additive group. Again,
we can take linear combinations of simple cocycles to generate the cocycle
vector space C∗. Vectors in C∗ with integer entries are called cocycles. The
number of simple cocycles in a connected graph is equal to the number of
bipartitions of the vertex set. In general, they are not independent: the
dimension of the cocycle space is V − 1. Let us sketch an argument proving
this fact. An interesting addition law holds: the sum of two cocycles with
disjoint source sets S1 and S2, S1 ∩ S2 = ∅, is the cocycle which emanates
from the union S1 ∪ S2 of the source sets. As a consequence, a cocycle with
source S = ∪m{im} is the sum of the cocycles which emanate from single
vertices {im} ⊂ S. These are not all independent though, since the cocycle

Figure 1.4: (a) An oriented cycle with multiple edges and crossing. (b) A
simple cycle that is a linear combination of two simple cycles.
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emanating from the full vertex set V is zero by definition

c∗(V ) = 0. (1.20)

A single-vertex-sourced cocycle c∗({i}) is the sum of the oriented edges whose
source is i. By definition of the incidence matrix, this coincides with the i-th
row-vector of ∂:

c∗({i}) = ∂i.

Notice that relation (1.20) implies that the sum of the rows of ∂ is null,
confirming Eq.(1.17). This bounds the dimension of C∗ to be at most V − 1
and further implies that the cocycle space is spanned by an arbitrary choice
of V − 1 rows of the incidence matrix, which are linearly independent; hence
the dimension of C∗ is exactly V − 1.

Finally, we can prove the extremely important fact that cycles and co-
cycles are orthogonal with respect to the euclidean scalar product over the
edge set

(g, g′)E ∶= ∑
e∈E

geg
′
e.

Orthgonality follows from the definition of cycle, Eq.(1.18), which implies
(∂i, c) = 0, and from the fact that the row vectors of the incidence matrix ∂i
span the cocycle space. We then have

C ⊥ C∗.

a. b.

e1

e2

Figure 1.5: a) Two oriented cocycles. Squares and bullets respectively denote
the source and target vertices. b) Superposition of a cycle and a cocycle.
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Cycles and cocycles are independent and orthogonal, consistently with the
formula for the cyclomatic number, Eq.(1.19). In algebraic terms, C is the
kernel of ∂, C∗ is its co-image (or row space), whence orthogonality follows.
Their dimensions are related by the rank-nullity theorem. From a graphical
point of view, orthogonality of C and C∗ means that a cycle and a cocycle
can only share an even number of edges or none, half of them with the
same orientation and half of them with opposite orientation. For example, in
Fig.1.5.b the the drawn cycle and cocycle share edge e1, in opposite direction,
and e2, in concordant direction, hence their scalar product vanishes.

Let us summarize and generalize the relevant facts about cocycles. Let
S1, S2 ⊂ V be vertex subsets in G. The oriented cocycles which emanate from
S1 and S2 obey the sum rule

c∗(S2) + c∗(S1) = c∗(S1 ∪ S2) + c∗(S1 ∩ S2). (1.21)

Any choice of V − 1 rows of ∂ is a basis for the cocycle space,

C∗ =
V −1

⊕
m=1

∂iσ(m) ,

where σ ∶ V → V is an arbitrary permutation of the indices. Then dimC∗ =
V − 1. The cycle and cocycle spaces furnish an orthogonal decomposition of
the vector space of 1-chains,

RE = C ⊕C∗.

There’s a standard procedure to construct suitable basis of simple cycles
and cocycles. The basis we are going to construct are peculiar in that each
element cα or cµ∗ is uniquely associated to a different conjugate edge eα or
e∗µ. We call these edges respectively chords and cochords. Moreover, oriented
overlaps between cycles, cocycles, chords and cochords satisfy

(cα, eβ) = δαβ , (e∗µ, cν∗) = δνµ, (cα, cµ∗) = 0, (e∗µ, eα) = 0. (1.22)

A basis of simple cycles and cocycles which come with a set of conjugate
chords and cochords satisfying these relations will be called a fundamental
set. Spanning trees allow to generate fundamental sets. A spanning tree is a
subset T of the edge set of a graph which satisfies the following properties:

- Contains no cycles;
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- Has V − 1 edges;

- Connects all vertices.

Any two of the above suffice to characterize a spanning tree (see Fig.1.6).
Spanning trees are a fundamental ingredient in many different respects in
this thesis work. They allow to define a basis of fundamental observables,
to express the determinant of the linear response matrices, to write an ex-
plicit expression for the steady state of the master equation (see Ch.5). The
following recipe generates cycles of a fundamental set:

(i) Choose a spanning tree T ;

(ii) Add one of the remaining oriented edges eα (called a chord): this will
produce exactly one cycle;

(iii) Remove all edges which do not belong to the cycle;

(iv) Orient all edges in the cycle along the direction of eα to obtain an
oriented cycle cα.

A similar procedure can be used to generate cocycles of a fundamental set
starting from the same spanning tree T :

(i’) Define the cotree T ∗ = E ∖ T as the complement of T in E;

(ii’) Add to T ∗ one of the remaining oriented edges e∗µ (called a cochord):
this will produce exactly one cocycle;

Figure 1.6: All possible spanning trees of the graph in Fig.1.3.
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(iii’) Remove all edges which do not belong to the cocycle;

(iv’) Orient all edges in the cocycle accordingly with e∗µ so to get an oriented
cocycle cµ∗.

Seen from another perspective, a set of cocycles is found by removing one
edge of the spanning tree at a time, thus disconnecting the vertex set into
two components. Then the cocycle generated is that which connects the two
components. In Fig.1.7 we give a graphical step-by-step construction of a
fundamental set of cycles and cocycles. The fundamental sets of cycles and
cocycles defined above form a basis respectively for C and C∗

C =
E−V +1

⊕
α=1

cα, C∗ =
V −1

⊕
µ=1

cµ∗.

By construction, these are in fact fundamental sets as they satisfy the rela-
tions in Eq.(1.22). Interestingly, besides these relations, another interesting
superposition rule holds:

(cα, e∗µ) + (cµ∗, eα) = 0, (1.23)

that is, if cycle α contains cochord e∗µ, then cocycle cµ∗ contains chord eα. In
fact, notice that a fundamental cycle contains one chord and several cochords,
and that a cocycle contains one cochord and several chords. The source and

Figure 1.7: Constructing fundamental sets: an arbitrary orientation is as-
signed, then steps (i), (ii), (iii), (iv), (ii), (iv), (i’), (ii’), (iii’), (iv’), (ii’), (iv’),
(ii’), (iv’) described above are performed.
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target vertices of a chord eα either belong to distinct source and target subsets
of a cocycle cµ∗, or else they belong to the same sets. In the second case, cα and
cµ∗ do not overlap, as cα cannot contain the generating cochord e∗µ: if it did,
then cα and cµ∗ should share another edge, which is not eα and which cannot
be another cochord (as every cocycle only contains one cochord); therefore
it should be another chord, and cα would contain two different chords, which
is impossible. The same argument holds when cα and cµ∗ do overlap.

Using the sum rules for cocycles we can produce explicit transformation
formulas from a fundamental set to the incidence matrix rows,

cµ∗ = ∑
i∈S(cµ∗)

∂Ti , (1.24a)

∂Ti = ∑
µ∶

i∈S(cµ∗)

cµ∗ − ∑
ν∶

i∈V ∖S(cν∗)

cν∗. (1.24b)

We now give a general summary of the definitions of this section and the
construction of a fundamental set of cycles/cocycles. Let G = (V,E, ∂) be
a connected graph with V vertices i ∈ V and E edges e ∈ E. Edges carry
an arbitrary orientation (a choice of source and target vertices), with −e
designating the inverse edge. With the exception of loops, the topology of
the graph is completely described by the incidence matrix, Eq.(1.16). We
use a rather algebraic approach to graph theory, working with integer linear
combinations of edges in the lattice ZE, upon which ∂ acts as a boundary
operator. It is a standard result that ∂ induces an orthogonal decomposition
of ZE = C ⊕ C∗ into the cycle space C = ker(∂) and the cocycle space C∗ =
rowspace (∂). The dimension of the cycle space is given by the cyclomatic
number C = E −V +1, whence by the rank-nullity theorem the cocycle space
has dimension V − 1.

From a graphical point of view, cycles c are chains of oriented edges such
that each vertex is the source and the target of an equal number of edges
(possibly none). It is simple if it is connected, has no crossings or overlapping
edges. A simple cycle can exist in two opposite orientations. A simple cocycle
c∗ is a collection of edges whose removal disconnects the vertex set into two
components; it might carry one of two possible orientations when all edges
point from one of the two components, called the source set S(c∗), towards
the other. Of all possible integral basis of ZE, we concentrate on fundamental
sets, which satisfy the algebra of relations in Eq.(1.22). Fundamental sets
are generated starting from a spanning tree. Let T ⊆ E be a spanning tree of
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the graph, i.e. a maximal subset of E containing no cycles; we call its edges
e∗µ the cochords. The remaining edges eα ∈ E∖T are called chords. There are
V − 1 cochords and C chords. When a chord eα is added to a spanning tree,
a simple cycle cα is generated, which can be oriented accordingly with eα.
The fundamental set of cycles {cα}α so generated is a basis for C. Similarly,
when a cochord e∗µ is removed, the spanning tree is disconnected into two
components, which identify a simple cocycle cµ∗, with orientation dictated by
e∗µ. Again, the fundamental set of cocycles {cµ∗}µ is a basis for C∗. The crucial
peculiarity of fundamental sets is that no chord is shared by two cycles, and
no cochord is shared by two cocycles. Moreover, any of the sets {eα, e∗µ},
{cα, e∗µ}, {cα, cµ∗}, {eα, cµ∗} forms a basis for ZE.

We conclude this section with an inessential question: how many different
choices of fundamental basis there exist? Notice that a set of cycles can
be generated by more than one spanning tree, and the same is true of the
cocycle space. Moreover, not all collections of independent simple cycles and
cocycles can be generated starting from a spanning tree; a simple calculation
shows that there are 3 possible cycles in the example graph and 6 possible
cocyles (with connected source sets), which would give 18 > 8 combinations
We conjecture that fundamental sets are one-to-one with spanning trees (up
to orientation of the chords and cochords). Find in Fig.(1.8) an example of a
basis of simple cycles and cocycles which is not a fundamental set, and which
cannot be generated starting from a spanning tree.

The matrix-tree theorem (see Sec.5.1) states that the number of spanning
trees in a graph is given by the product of the non-null eigenvalues {λi}V −Ki=1 of
the Kirchhoff matrix ∆ = ∂∂T , where T denotes matrix transposition. They
coincide with the non-null eigenvalues of the co-Kirchhoff matrix ∆′ = ∂T∂

Figure 1.8: A basis of simple cycles and cocycles which is not a fundamental
set. Notice that the third cocycle is not associated to its own cochord.
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(our definition). We have

# (fund. sets) =
V −K
∏
i=1

λi,

where we momentarily allow for K disconnected components. Let us detour
a little. We redefine ∂1 = ∂. Let V1, . . . , VK be the sets of vertices of the
disconnected components of a graph. We introduce the V × K boundary
operator ∂0 which assigns each vertex to its component:

(∂0)ik = { 1, if i ∈ Vk
0, if i ∉ Vk

.

It is such that ∂0∂1 = 0 (the boundary of a boundary is zero). Then we can
start building an exact sequence of vector spaces

RK ∂0←Ð RV ∂1←Ð RE

such that im∂1 = ker∂0. The homology groups of G are defined to be Hj(G) =
ker∂j. Then we have a topological characterization of the cycle space as an
homology group. We are now able to introduce one special case of a powerful
tool which in algebraic topology takes the name of laplacian (analogous to a
discretized Hodge laplacian),

∆0 = ∂T0 ∂0 + ∂1∂
T
1 .

By construction it is a non-degenerate V ×V matrix. The matrix-tree theorem
then states that the number of spanning trees is given by

# (fund. sets) = det ∆0

∏k ∣Vk∣2
.

The point of Schnakenberg’s theory is that the physically relevant observables
are defined over fundamental sets. However, there are many ways to choose
the set of observables with which to describe the system; this is a sort of
gauge freedom, and one can fix the gauge by choosing a preferred spanning
tree and an orientation. It is no novelty in physics that the number of ways
by which one can fix the gauge is given by the determinant of a laplacian
operator: think for example of the Faddevev-Popov determinant in QFT. In
that case the measure over the group orbits is complicated by the non-abelian
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structure group. The abelian nature of our theory (i.e. the fact that we are
dealing with observables which are real numbers) makes the counting purely
topological. Were we to construct a functional integral for our theory, we
could easily factor out the determinant and absorb it into the normalization
constant.

1.4 Mesoscopic and macroscopic observables

A system has a finite set of states V . A couple of states might exchange
“information” in the form of a current je, whose flow is ignited by a conju-
gate force ae; here e ranges over all possible ordered couples of states which
communicate.

We suppose that both real-valued variables are skew-symmetric under
reversal of the order in which the states are considered, that they have the
same sign, that when forces vanish currents vanish altogether, and that when
forces are small, currents are small and they are linearly related to their
corresponding forces in a local way, i.e., edge-by-edge.

All of these assumptions are verified for the simplest special example of
an electrical network, where forces are voltage differences between nodes of
a circuit or electromotive forces, and they are linearly related to currents via
Ohm’s law. Motivated by this analogy, we define the entropy production as

σ = ∑
e

aeje, (1.25)

quantifying the amount of dissipation.
To resume, along the edges of an oriented graph G = (V,E, ∂), we intro-

duce:

(i) Real mesoscopic currents, antisymmetric by edge inversion, j−e = −je;

(ii) Antisymmetric real conjugate forces ae = −a−e, with signae = sign je;

(iii) The entropy production (rate)

σ[j, a] = ∑
e

jeae = (j, a)E. (1.26)

Here and there, we will adopt in this section a geometrical jargon borrowed
from discrete differential geometry [36,37]. Being antisymmetric, mesoscopic
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currents and forces are discrete differential 1-forms; the entropy production
is a scalar. The scalar product is the inner product of 1-forms, induced by
Hodge’s duality. This implies that either the current or the affinity are the
Hodge duals of some more primitive quantities. We will discuss this briefly
in Sec.1.5.

We choose a spanning tree T , which comes with a fundamental set of
simple cycles and cocycles. We define the macroscopic observables:

internal currents ∶ Jα = (eα, j); (1.27a)

external forces ∶ Aα = (cα, a); (1.27b)

external currents ∶ Jµ∗ = (cµ∗, j); (1.27c)

internal forces ∶ A∗
µ = (e∗µ, a). (1.27d)

More explicitly,

Jα = jeα , Aα = ∑
e∈cα

ae, Jµ∗ = ∑
e∈cµ∗

je, A∗
µ = ae∗µ . (1.28)

Internal currents flow along fundamental chords, external currents are the
total flow out of the source set of a cocycle, external forces are circuitations
of forces along the fundamental cycles, internal forces are exerted along the
internal edges of the spanning tree. We will also refer to external forces as
affinities, for reasons that will become clear in Ch.4. Internal variables are
local, in that they are defined edge-wise, while external variables are non-
local and additive. For this reason one might also refer to the former as
intensive variables and to the latter as their conjugate extensive variables.

We say that a system is in a steady state when Kirchhoff’s Law holds

∂jss = 0. (1.29)

From a geometrical viewpoint, we might say that jss is divergenceless. Steady-
state currents belong to the kernel of the incidence matrix. We know from
the discussion in the previous section that there exists a cyclomatic number
of boundary currents Jα such that

jss = Jssα c
α, (1.30)

where repeated indices are implicitly summed over. Notice that we assume
Einstein’s convention on index contraction when working with macroscopic
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observables. The Jssα ’s are steady macroscopic internal currents. By the
orthogonality relations Eq.(1.22), projecting the steady mesoscopic current
(1.30) along chord eα yields

Jssα = (eα, jss),

consistently with Eq.(1.27a). A condition equivalent to Kirchhoff’s Law
(1.29) is the vanishing of all external macroscopic currents (1.27c),

Jµ,ss∗ = (cµ∗, jss) = 0. (1.31)

Plugging Eq.(1.30) into the entropy production, we obtain

σ[jss, a] = (a, jss)E = AαJssα (1.32)

This is Schnakenberg’s main result: entropy production at the steady state
can be expressed in terms of macroscopic conjugate variables. Out of the
steady state, Eq.(1.32) suggests the definition of the steady state contribution
to the entropy production

σss[j, a] ∶= AαJα. (1.33)

The (environmental influence on a) system is said to satisfy detailed bal-
ance when the affinities vanish,

Aα,db = (cα, adb) = 0.

In geometrical terms, we say that adb is a closed 1-form (its curl vanishes).
As we saw in Sec.1.1, by the Kolmogorov criterion vanishing of the affinities
is equivalent to the existence of a potential, or in other words adb is also an
exact 1-form. On a graph, closed 1-forms are exact (there is no topology
at work). By the orthogonality between cycles and cocycles, it follows that
detailed balance forces are a linear combination of cocycles,

adb = ∑
µ

A∗db
µ cµ∗. (1.34)

Plugging into the entropy production yields

σ[j, adb] = A∗db
µ Jµ∗ .
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Out of the detailed balance class of systems, we call the transient contribution
to the entropy production the term

σdb[j, a] ∶= A∗
µJ

µ
∗

On the one hand, entropy production boils down to the steady entropy
production when the system is in a steady state. On the other, it becomes
the transient entropy production when the system satisfies detailed balance.
In fact, the entropy production always splits in these two contributions

σ[j, a] = σss[j, a] + σdb[j, a]. (1.35)

This is the central result of this chapter, and possibly of the whole thesis.
It is a significative extension of Schnakenberg’s original result Eq.(1.32). We
now furnish the proof. The strategy is to find the general solution to the
following continuity equation with sources

ṗ + ∂j = 0, (1.36)

where ṗi is the current injected at vertex i. Such currents are constrained by

∑i∈V ṗi = 0. Since any V −1 rows of ∂ span the cocycle space, ṗi is expressible
as a linear combination of a fundamental set of external currents, and vice
versa. Given the identities (1.24a), one obtains

Jµ∗ = − ∑
i∈S(cµ∗)

ṗi. (1.37)

The flow out of a source set is equal to (minus) the sum of the injected
currents at the vertices of the set. The general solution of Eq.(1.36) can be
found as a particular solution plus the general solution of the homogeneous
equation associated to it. Solving ∂j = 0 yields a superposition of cycles

∑α λαc
α. We look for a particular solution such that the internal currents

along chords vanish, (eα, j) = 0. Since chords and cochords are a basis for
the edge set, we only need to specify the particular solution along cochords,
obtaining

j = λαc
α + λµ∗e∗µ. (1.38)

Inserting Eq.(1.38) into the definitions Eqs.(1.27), and using the orthonor-
mality relations Eq.(1.22), we identify Jα = λα, and Jµ∗ = λµ∗. Plugging this
solution into into Eq.(1.26) yields

σ[j, a] = ∑
α

AαJα +∑
µ

A∗
µJ

µ
∗ .
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This proves our result. Notice that Eq.(1.38) reads

j = Jαc
α + Jµ∗ e∗µ. (1.39)

Similarly, for the affinities the following expression is found:

a = A∗
µc
µ
∗ +Aαeα. (1.40)

1.5 Discretizing continuous theories

Let us briefly go back to the geometrical interpretation of edge variables as
differential forms. We might suppose that our theory is a discretized version
of a more general continuous theory on a manifold M , with dimM =m. We
choose m = 3 for ease. Tipically a continuity equation reads ṗ + dj, where d
is the exterior differential, p is a volume form p = p(x)dx1 ∧ dx2 ∧ dx3, and
j = εijk i(x)dxj ∧ dxk is a 2-form. We introduce the conjugate force 1-form
a = ai(x)dxi. The wedge product ∧ allows to compose a k1-form with a k2-
form returning a (k1 + k2)-form. Then j ∧ a is a volume form, and it can be
integrated over the manifold to yield the entropy production

σ = ∫
M
a ∧ j.

We now inscribe a three-dimensional lattice L in M , consisting of volumes
v separated by surfaces s which share edges e which meet at vertices i. As
j has the meaning of a current and it is a 2-form, it can be integrated over
surfaces

js = ∫
s
j = ∫

s
⃗ ⋅ n̂Σ dΣ, (1.41)

where ⃗ = (1, 2, 3), dΣ is the area element, n̂Σ is the normal to the area
element and we used the euclidean scalar product. Notice that the scalar
product allows to represent the 2-form as a vector by virtue of Hodge duality.
The current js has the obvious meaning of total flux of current out of surface
s. By contrast, a 1-form’s destiny is to be integrated over edges. Therefore
we define

ae = ∫
e
a = ∫

e
a⃗ ⋅ γ̇t dt,

where γ̇t is the tangent vector to the curve at time t.
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To define the current along an edge we need to turn to the dual lattice L∗.
We draw a vertex i∗v within each volume v, an edge e∗s puncturing each surface
s, a surface s∗e punctured by each edge and a volume v∗i surrounding each
vertex i. Then there is a one-to-one correspondence between dual elements
of the two lattices, and we can finally define

je = ∫
s∗e
j

and discretize the entropy production according to

σ ≈ ∑
e

aeje.

Duality will be the subject matter of the next section. In that case,
we restrict to planar graphs (2-dimensional manifolds) and only touch on
possible generalizations. It is a work in progress of the author to generalize
the complete Schnakenberg’s analysis to higher-dimensional lattices (or, more
generally, cellular complexes) and to put the geometrical discretization at
work for the actual discretization of diffusion equations (Fokker-Planck). The
development of such procedure would be more than an academic exercise, as
the geometrical discretization maintains the affinities,

∮
cα
a = ∑

e∈cα
a,

so that the thermodynamical character of the theory would be respected.

1.6 Duality of graphs

A graph is planar if it can be drawn on a plane (or, equivalently, on the surface
of a sphere) with non-intersecting edges, but at vertices. Planar embeddings
are characterized by vertices, edges and faces f ∈ F , which are open neighbors
of the plane which cannot be path-connected without crossing an edge. One
“outer” face fF surrounds the full graph; all other “inner” faces fm,m < F
are bounded by cycles of the graph. On the surface of a sphere, there is
no difference between inner and outer faces. Euler’s formula in algebraic
topology prescribes the number of faces to be

F = E − V + 2.

39



The dual graph G∗ = (V ∗,E∗, ∂∗) is obtained with a simple graphical proce-
dure. Draw a dual vertex within each face, including the outer face. If two
faces share an edge e at their boundary, draw a dual edge e∗ between their
correspondent vertices. The dual edge e∗ crosses e: to assign an orientation,
counterclockwise rotate e until it overlaps with e∗ (see Fig.1.9.a). The re-
sulting graph has F vertices connected by E edges. Edges are sent to edges,
faces to vertices and vertices to faces.

Crucial facts about the duality transformation ∗ are:

(i) Up to a reorientation E → −E, it is involutive;

(ii) Different embeddings might yield non-isomorphic duals (with different
incidence relations);

(iii) Duality maps the cycle space to the cocycle space, and vice versa.
Moreover, it maps a spanning tree T to the complement T ∗ = E ∖ T∗
of a spanning tree T∗ ⊆ E∗, in such a way that the fundamental sets
generated by T∗ are the duals of the fundamental sets generated by T ,
according to the scheme (see Fig.1.9.b)

chords ↔ cochords,

cycles ↔ cocycles.

So far we listed a few facts about duality. We now give a more detailed
algebraic characterization. An orientation can be assigned to each face f ,

(b)(a)

Figure 1.9: (a) The dual graph; the grey angle depicts the assignment of an
orientation to a dual edge. (b) The dual of a cocycle and of a cycle.
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either clockwise (denotedÿ) or counterclockwise (denotedû). An oriented
edge which belongs to the boundary of f can be concordant to f if, intuitively,
its direction is tangent to the orientation of f (e ↓û f or e ↑ÿ f), or opposite
to it (e ↑û f or e ↓ÿ f). Let us pick for definitiveness all counterclockwise
orientations. We define the face-edge incidence matrix

(∂2)fe ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

+1, e ↓û f
−1, e ↑û f
0, elsewhere

which can be thought of as an operator on the vector space RF of linear
combinations of oriented faces that yields their oriented boundary. In fact,
the f -th column ∂f2 = ∂2f is an oriented cycle. On the other hand, every
oriented cycle is the boundary of some oriented inner face; since C = F − 1
we conclude that

im∂2 = C = ker∂1, (1.42)

where we renamed the incidence matrix ∂1 ∶= ∂. By the rank-nullity the-
orem we know that dim ker∂2 = F − C = 1. In fact each edge belongs
to the boundary of exactly two faces, with which it is in opposite relative
orientation. Each row of the boundary operator then has only two non-null
elements, one +1 and one −1, so that

∑
f

(∂2)fe = 0. (1.43)

This property also reflects the fact that the boundaries of the inner faces are
all independent, while the boundary of the outer face is inverse to the sum
of the boundaries of the inner faces. The crucial fact is that ∂T2 is a good
incidence matrix. We then define the dual graph G∗ to be that graph whose
incidence matrix is2

∂∗1 ∶= ∂T2 .

2From a slightly formal point of view, along with matrix ∂0 defined at the end of Sec.1.3,
we can define the F × 1 matrix ∂3 = (1, . . . ,1), such that ∂3∂2 = 0. Then we have an exact
sequence of vector spaces

0
∂0←Ð RV ∂1←Ð RE ∂2←Ð RF ∂3←Ð 0, (1.44)

meaning that ker∂m = im∂m+1. Taking the transpose of ∂m∂m+1 = 0, we obtain ∂Tm+1∂
T
m =

0. Duality inverts the sequence.
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Notice that this characterization of duality retains no information on loops,
which are dual to pendant edges, as Fig.1.10.a shows. From a thermodynam-
ical point of view, loops and pendant edges are redundant and inessential,
and can be eliminated. In Fig.1.10.b it is shown how different embeddings
might give rise to non-isomorphic duals.

Both by graphical or algebraic construction, it is straightforward that the
dual of cycle ∂f2 which encloses face f is the collection of edges which emanate
from the dual vertex f∗; therefore, it is a cocycle of the dual graph. Since
there are F − 1 independent cocyles in G∗ and F − 1 independent cycles in
G, we can already conclude that the dual of the cycle space of a graph is the
cocycle space of the dual graph and the other way around,

C∗(G) = C(G∗), C(G) = C∗(G∗).

There is a tight correspondence between simple cycles and simple cocycles.
A clockwise oriented simple cycle c encloses a surface which is a composition
of clockwise-oriented faces; a counterclockwise oriented cycle can be seen
as enclosing the outer faces, with respect to which it is in concord relative
orientation. In both cases such cycle is defined by the set of enclosed faces,
which we can denote S∗(c). Viceversa, we write c(S∗) to indicate the cycle
enclosing S∗ ⊂ F . Let S∗1 , S

∗
2 ⊂ F be face subsets in G. The oriented cycles

which enclose S∗1 and S∗2 obey the sum rule

c(S∗2 ) + c(S∗1 ) = c(S∗1 ∪ S∗2 ) + c(S∗1 ∩ S∗2 ).

(a) (b)

Figure 1.10: (a) The dual of a pendant edge is a loop. (b) Different embed-
dings give rise to nonisomorphic dual graphs (no degree-4 vertex in the first
example, one degree-4 vertex in the second).
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This is exactly the same rule as Eq.(1.21) for cocycles. Then not only are the
cycle and cocycle space dual one to the other, but each simple cycle is dual
to one simple cocycle. The same holds for spanning trees and for cotrees,
and therefore for the fundamental basis of cycles and cocycles [33].

Not all graphs can be embedded on the plane or, equivalently, on the
surface of a sphere. The two important examples are the complete graph
on five vertices K5 and the complete bipartite graph on 6 vertices, K3,3 (see
Fig.1.11.a), which are the cornerstones of any non-planar graph as implied
by Kuratowski’s and Wagner’s theorems. However, both these graphs can
be embedded in a torus with non-intresecting edges (see Fig.1.11.b). In
fact, every graph can be embedded on an orientable (Riemann) surface of
high enough genus [38]. The lowest-genus surface defines the genus g of the
graph. Euler’s formula dictates the number of faces:

F = E − V + 2 − 2g.

1.7 Linear regime

One major clue that led Schnakenberg to the identification of chords and
cycles as good conjugate thermodynamic observables is the fact that, in the
linear regime, Onsager’s reciprocity relations arise. By “linear regime” it is
meant that mesoscopic currents and forces satisfy Ohm’s law

a = `j +O(j2), (1.45)

where

` = diag{`1, . . . , `E}, `e > 0,

a. b.

Figure 1.11: (a) The nonplanar graph K3,3. (b) An embedding of K3,3 in a
torus (opposite sides of the bounding rectangle are identified).
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is a positive local linear response matrix. By “local” we mean that ` is
diagonal, that is, that linearly perturbed currents and forces depend on each
other edge-by-edge. There are three acceptation of linear regime that we will
focus on, separately:

(i) A system, initially at an equilibrium steady state, is perturbed to a
nearby nonequilibrium steady state, while the macroscopic external
currents are held fixed

Jµ∗ = 0.

(ii) A system is in a non-steady state near the equilibrium steady state and
its affinities satisfy detailed balance

Aα = 0.

(iii) Linear regime with no contraints.

Schnakenberg only referred to the first case. He furnished the macro-
scopic linear relation Aα = LαβJβ, proving that the matrix L = (Lαβ)α,β
is symmetrical. In our algebraic formalism the derivation is straightforward.
Using the definition of the macroscopic affinity Eq.(1.27b) and the integrated
Kirchhoff’s Current Lat, Eq.(1.30), we obtain

Aα = (cα, `j) = LαβJβ, (1.46)

where

Lαβ ∶= (cα, `cβ) (1.47)

are the phenomenological coefficients. We will call L the resistance matrix.
The resistance matrix is a weighted superposition of cycles. It is obviously
symmetrical, hence it satisfies Onsager’s relations. For master equation sys-
tems, this insight is complemented by Andrieux and Gaspard’s proof of a
Green-Kubo-type of formula for L [16].

Case (ii) is analogous. Definition (1.27c) and Eq.(1.34) yield

Jµ∗ = (cµ∗, `−1a) = Lµν∗ A
∗
ν (1.48)

where

Lµν∗ ∶= (cµ∗, `−1cν∗)
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is the symmetrical response matrix, which we call the conductance matrix.
The response matrices L and L∗ are Gramian matrices: their entries are

non-degenerate scalar products of collections of vectors. Gramian matrices
are always positive semi-definite. Their determinant is non-null if and only if
the vectors are linearly independent. The determinant of a Gramian matrix
is the square of the volume of the parallelotope formed by these vectors,

√
detL = ∣∣v1 ∧ . . . ∧ vE−V +1∣∣ > 0, (1.49a)√
detL∗ = ∣∣v1

∗ ∧ . . . ∧ vV −1
∗ ∣∣ > 0, (1.49b)

where ∧ is the exterior product between vectors, vα = `1/2cα and vµ∗ = `−1/2cµ∗.
Therefore the linear response matrices are positive definite. Eqs.(1.49a,1.49b)
furnish a generalization of Boltzmann’s relation Eq.(1.6).

The general case (iii) is more complicated. Working out Eqs.(1.39,1.40),
we obtain the following linear response relations for the currents

Jα = (eα, `−1cµ∗)A∗
µ + (eα, `−1eβ)Aβ,

Jµ∗ = Lµν∗ A
∗
ν + (cµ∗, `−1eα)Aα,

and analogous relations for the forces

Aα = LαβJβ + (cα, `e∗µ)J
µ
∗ ,

A∗
µ = (e∗µ, `cα)Jα + (e∗µ, `e∗ν)Jν∗ .

We define the following matrices, which contain information about the weighted
overlap of cycles with cochords, chords with chords and so on:

Hα
µ = (cα, `e∗µ), D∗

µν = (e∗µ, `e∗ν) = δµν`e∗µ ,

Hµ
∗α = (cµ∗, `−1eα), Dαβ = (eα, `−1eβ) = δαβ`

−1
eα .

Compressing indices in vector notation, the linear response eqs. read

( J
J∗

) = ( D HT
∗

H∗ L∗
)( A

A∗ ) , (1.50a)

( A
A∗ ) = ( L H

HT D∗ )( J
J∗

) . (1.50b)

Onsager’s reciprocity relations are satisfied also in this general case. Since
the above equalities coincide, we can derive a host of relationships between
linear response matrices imposing

( D HT
∗

H∗ L∗
)( L H

HT D∗ ) = ( L H
HT D∗ )( D HT

∗
H∗ L∗

) = ( I 0
0 I

) .
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Indeed, these combinatorial matrices are interrelated in many interesting
ways. We now multiply Eq.(1.50a) on the left by (A,A∗), and we multiply
Eq.(1.50b) on the left by (J, J∗), obtaining two parallel expressions for the
entropy production,

σ = ATDA + 2AT∗H
∗A +AT∗L∗A∗, (1.51a)

σ = JTLJ + 2JTHJ∗ + JT∗ D∗J∗. (1.51b)

Completing the square, and keeping Eqs.(1.50a,1.50b) in mind:

σ = JT∗ L
−1
∗ J∗ +AT (D −H∗TL−1

∗ H
∗)A

σ = ATL−1A + JT∗ (D∗ −HTL−1H)J∗.

Since Aα and Jµ∗ can be made to vanish independently, we necessarily have

L−1 = D −H∗TL−1
∗ H

∗,

L−1
∗ = D∗ −HTL−1H.

Finally we obtain the central result of this section,

σ = (L−1)αβAαAβ + (L−1
∗ )µνJµ∗ Jν∗ , (1.53)

which pairs with the original definition Eq.(1.26), which we rewrite as

σ = (∆∗−1)µνA∗
µA

∗
ν + (∆−1)αβJαJβ. (1.54)

The entropy production in the linear regime can be written as a bilinear
form either of the internal observables, as in Eq.(1.54), or else of the external
variables, as in Eq.(1.53), in such a way that there are no mixed terms of
currents and affinities. Notice instead that if we express the entropy produc-
tion in terms of the affinities only, as in Eq.(1.51a), or of the currents only,
as in Eq.(1.51b), we obtain cross-terms.

As we commented above, the determinants of both the resistance and
the conductance matrices are positive; their value has been related to the
volume of the polytope generated by the (deformed) cycle and cocycle vectors
respectively. A crucial fact is that these values turn out to be independent
of the fundamental set chosen; we might call them linear response invariants.
This is far from being an obvious consequence of linear algebra, since both
matrices were not constructed as linear operators on the cycle/cocycle space,
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but rather as combinatorial objects, strictly depending on graph topology. In
fact, the trace of both matrices does depend on the fundamental basis set3.

An intriguing explicit formula for their determinants exists. Let T (G)
denote the set of spanning trees of a weighted graph G, that is a graph with
a weight function w ∶ E → R which is symmetric under edge inversion (such
is ` = (`e)e∈E, for example). We build two important graph polynomials, the
weighted spanning tree polynomial TG(w), and its dual T ∗

G(w):

TG(w) = ∑
T ∈T (G)

∏
e∈T

we, T ∗
G(w) = ∑

T ∈T (G)
∏
e∉T

we.

The first is homogeneous of degree V − 1 in w, and the second is homoge-
neous of degree E − V + 1. They are dual one to the other in the sense that
the category of spanning trees is dual to the category of spanning co-trees.
However, graph G needs not be planar in order for both polynomials to be
well-defined. If G is planar, then T ∗

G(w) = TG∗(w). This is another situation
where duality occurs even when graph duality is not realizable.

It is known [33] that the determinants of L and L∗ are given by

detL∗ = TG(`−1), detL = T ∗
G(`).

Notice that the right-hand side of both does not depend on the fundamental
set chosen to define L and L∗, so we conclude that the determinants of the
response matrices are linear response invariants. As a consequence, setting
`e = 1,∀e ∈ E, Eqs.(1.49a) tell us that the square of the volume enclosed
by a fundamental set of simple chords or cochords is independent of the
fundamental set chosen and enumerates all spanning trees,

# (spanning trees) = ∣∣⋀
α
cα ∣∣2 = ∣∣⋀

µ
cµ∗ ∣∣

2
. (1.55)

Consider two different basis of simple cycles, and let A be the endomorphism
from one basis to the other. A simple argument (see the previous footnote)

3More precisely, let U = {uµν} be an invertible endomorphism of the cut space which
induces a change of basis, c∗ν = ∑µ uµν c∗µ. Then the conductance matrix takes the form

Lµµ
′

∗
=∑
νν′
uµνu

µ′

ν′L
νν′

∗
= (UL∗UT )µµ

′

which is not the formula for a matrix change of basis, unless we restrict to orthogonal
transformations UT = U−1, which is too restrictive in our case.
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shows that detA = ±1, where the sign depends on the orientation of the
volume element. We orient all simple cycles so that they have the same
orientation. Entries of A must be integers, since all simple cycles are integer
linear combinations of simple cycles; then from a mathematical point of view
A belongs to the special linear discrete group over the integers, SL(C,Z). Its
generators are the transvection matrices Tij with all 1’s on the diagonal and
other entries all null but for a +1 in the (i, j)-position [39].

If we choose a basis of cocycles (ci∗)i≠l which correspond to the edges
emanating from each of the V − 1 vertices i ≠ l, expliciting the conductance
matrix’s entries we obtain

Lij∗ = (ci∗, `−1cj∗) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑l `
−1
ij , i = j

−`−1
ij , i ∼ j

0, elsewhere
. (1.56)

In the r.h.s we recognize the matrix obtained by removing l-th row and
column from the weighted laplacian of the weighted graph (see [40] for a
review on the laplacian of graphs). All first-minors of the weighted laplacians
coincide, and by the matrix-tree theorem they enumerate weighted spanning
trees. So the dual response matrix is a generalization of the concept of
weighted laplacian of a graph which describes the overlapping of some basis
of cocycles, rather than the neighboring of vertices.

The spanning tree polynomial is a special case of an extremely powerful
construct which is built as a sum over weighted subsets of the edge set of
a graph, namely the weighted Tutte polynomial (see [41] for a comprehen-
sive and comprehensible review). A consequence of this correspondence is
promptly derived using formula (4.11) from §4.2 in Sokal’s review [41]. The
determinants of L and L∗ satisfy

detL

detL∗
= ∏

e∈E
`e = detD∗

detD
. (1.57)

Finally, it is evident that linear response matrices are dual one to the
other under graph duality. More precisely, sending ` ↔ `−1 and taking the
dual graph we obtain

L ↔ L∗, ∆ ↔∆∗, H ↔H∗. (1.58)

In particular, due to Eq.(1.23), matrices H and H∗ are self-dual. We will
describe the physical nature of duality in Sec.(1.6). The analysis of duality in
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the linear regime might help find more practical applications. For example,
Eq.(1.57) might put constraints on the ability to maximize or minimize its
detailed balance or steady state entropy production.

To resume, entries of the response matrix L and of its dual L∗ are weighted
superpositions of cycles and cocycles. Both matrices L and L∗ are symmetric,
and under ` ↔ `−1 they are dual one to the other. Similar matrices are
employed in electrical circuit analysis [32] and in the parametric formulas
for Feynman diagrams (see [33, §3] [42, §18.4] [43, Ch.3]), where they are
known as Kirchhoff-Symanzik matrices. In this contest planar-graph duality
has been related to duality between momentum and position representations
[44]. Possibly, the most intriguing properties of L and L∗ are that their
determinants are independent of the fundamental sets chosen, that they obey
the relation detL/detL∗ = det `, and that they are related to the 0-state
Potts-model partition function [41,45].

Finally, we motivate the choice of names for the resistance and the con-
ductance matrices, showing that the linear response coefficients obey series
and parallel reduction rules analogous to the rules for electrical circuits. A
vertex is a knee when it has bare degree 2 in G; it is the target or source
of only two edges. A double edge is a couple of edges between the same
pair of vertices, enclosing a cycle between them. Let us orient both edges in
the same direction, in both cases. It is a simple fact that for planar graphs,
duality sends knees to double edges and viceversa (see Fig.1.12.a). Series
reduction consists in the replacement of a knee with a single edge, thus elim-
inating a vertex. Parallel reduction is obtained by replacing a double edge
with a single edge, thus eliminating a cycle.

Let us analyze the effect of series reduction on entropy production. At a
steady state, there is no current injected in the middle vertex of a knee, so

a. b.
e3e4 e34

e2e1 e12

Figure 1.12: (a) A kneee and its dual. (b) The result of series and parallel
reduction.
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that the current flowing along its two eges e1 and e2 is the same, j1 = j2 = j12.
Entropy production then reads

σ[a, jss] = ∑
e≠e1,e2

jeae + j12(a1 + a2).

This suggests to define the reduced force a12 = a1 + a2, so that, in the linear
regime, we have a12 = `12j12 where the reduced linear response coefficient is

`12 = `1 + `2,

leaving the entropy production unaltered. For detailed-balanced systems,
the macroscopic force a3 − a4 is null, a3 = a4 = a34. Proceeding as above, the
entropy production reads

σ[adb, j] = ∑
e≠e3,e4

jeae + (j3 + j4)a34

giving the parallel reduction rule

`34 = `3`4

`3 + `4

.

Of course, the inverse linear coefficients `−1 obey inverted parallel and
series reduction rules. While the `’s behave like resistances in an electrical
circuit, the `−1s behave like condensators. On the other hand, it can be shown
that series and parallel reduction leave respectively the spanning co-tree and
the spanning tree polynomials unaltered.

Finally, a generalization of the linear regime is feasible, by considering
non-local linear response relations

ae = ∑
f

`efjf (1.59)

where ` = (`ef)e,f is a positive definite matrix. Then most of the arguments
in this section can be replied, including positivity of the linear response ma-
trices, Eqs.(1.50a,1.50b) and Eq.(1.53). We do not know whether generalized
linear response matrices have combinatorial properties related to spanning
trees.
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2

Applications: duality and
variational principles

All existence seemed to be based on duality, on con-
trast. Either one was a man or one was a woman,
either a wanderer or sedentary burgher, either a think-
ing person or a feeling person-no one could breathe in
at the same time as he breathed out, be a man as well
as a woman, experience freedom as well as order, com-
bine instinct and mind. One always had to pay for one
with the loss of the other, and one thing was always
just as important and desirable as the other.

Hermann Hesse, Narcissus and Goldmund.

In this chapter we discuss two theoretical applications of the mathemat-
ical machinery that we introduced in Ch.1. From the discussion in Sec.1.6
there arises a duality between macroscopic external affinities and currents,
the steady and the transient entropy production terms, Kirchhoff’s Current
Law and Kirchhoff’s Loop Law, and the resistance and conductance linear
response matrices. In Sec.2.1 we develop a very elementary example where
duality seems to interchange the role of the system and that of the environ-
ment. In Sec.2.2 we advance some more elements which should support our
choice of name for graph duality in the context of NESM. We then derive
a version of the Minimum Entropy Production Principle for Schnakenberg-
type observables (Sec.2.3), and we discuss its relationship with the Maximum
Entropy Production Principle (Sec.2.4).

51



2.1 System/Environment Duality: example

Let us linger on the simple 3-state example depicted in Fig.2.1, in the attempt
to provide an intuitive grasp on the physics of duality. Suppose that the
labels εi of the example graph are energy levels of an open system, which can
emit and absorb energy from the environment. The onset of a NESS might
be due to the interaction with two thermal baths [46, 47], whose inverse
temperatures βA and βB label the states of the dual system, with βA > βB.
Suppose that transitions 2 and 3 are exclusively due to the interaction with
B, while transition 1 is exclusively due to the interaction with A. The ratio
of emission and absorption rates is given by we1/w−e1 = expβA(ε2 − ε3), and
similarly for the others, yielding as macroscopic affinity A1 = (βA − βB)(ε2 −
ε3). In a nonequilibrium steady state, with current j1 = j2 = j3 = J1, one
transition yielding an amount of energy ε2−ε3 happens on average every ∣J1∣−1

seconds. In the same time two transitions are stimulated by the interaction
with reservoir B, which absorbing respectively amounts of energy ε2 − ε1 and
ε1 − ε3. It takes shape a picture where to a steady state there corresponds a
nonsteady flow of energy from the hotter to the colder bath:

non-Eq. system in a steady state → non-steady environment

Whilst purely speculative, this interpretation is consistent with the physical
intuition that NESSs are determined by a transient environmental behav-
ior [48]. Vice versa, a detailed-balanced flow arises when there is no tem-
perature gradient, βA = βB, in which case we only resolve one reservoir. At

A

B

B

a.

c.

A=B

A B

b.
ε2

ε3

ε1

Figure 2.1: (a) Transitions between states due to absorption and emission
from two reservoirs. (b) Steady state heat flux between reservoirs. (c) One
reservoir with internal fluxes stimulated by the system’s nonsteady configu-
ration.

52



equilibrium, because of steadiness and detailed balancing, as many emitting
and absorbing transitions occur. However, fluxes within the system deter-
mine a non-null flow of currents in the bath. The reservoir, being a 1-state
system, is necessarily in a steady state. Hence the system’s state plays the
role of external force which causes internal fluxes within the environment:

steady environment → equilibrium system out of steady state.

This is nothing but the logical negation of the above proposition, hence its
dual under transposition of the material implication symbol (→), much in the
spirit of a fascinating connection between graph duality and logical duality
put forward by McKee [49].

Despite of its simplicity, the example is rather clumsy and only vaguely il-
lustrative: system and environment do not play mirror roles, for which reason
we were not able to draw the inverse implications. However, the qualitative
principle seems to be robust. It is quite remarkable that graph duality finds
a similar interpretation also in mechanical engineering [50], where the statics
of structures and machines and their first order kinematics are related to dual
properties of their design. Thus there seems to be a vast variety of systems
to which duality might apply: it is the author’s opinion that the development
of a complete statistical model which displays duality between enviromental
and internal degrees of freedom would be a major advance. The question
remains open what is the role of duality for master equation systems.

2.2 System/Environment Duality: discussion

Duality comes in many flavors in physics. Among the first that one encoun-
ters: the duality between vectors —velocities— and linear forms —momenta;
the Legendre transform which maps the lagrangian into the hamiltonian, piv-
oting on the bilinear form ∑i q̇ipi; the electromagnetic duality, which is the
archetypical physical counterpart of Hodge’s geometrical theory of differen-
tial forms; and, less credited, the electro-technical duality between resistances
and condensators, parallel and series reduction, voltage and current laws [32].
The one that we put forward descends from the latter, abstracting and gen-
eralizing it to nonlinear regimes, where Ohm’s law does not necessarily hold;
but it also resonates with each other of the above. While the reference
physical situation is that of a thermodynamic system in the framework of
the nonequilibrium statistical mechanics of master equation systems, we will
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cast our propositions in a very general form. In fact, they can be applied
to any lattice theory which bears a couple of conjugate variables. As an
example, we treat electromagnetism on a network.

We apply graph duality to the structure of nonequilibrium observables.
The mapping a↔ j leaves the entropy production σ invariant, but it switches
macroscopic observables with those of the dual graph, mapping internal forces
to internal currents, external currents to external forces and the steady to
the transient entropy production,

Aα ↔ Jµ∗ , A∗
µ ↔ Jα, σss ↔ σdb. (2.1)

Since we ascribed Aα to the state of the environment and Jµ∗ to that of
the system, it is fair to dub this symmetry system-environment duality.
Steady states, for which the macroscopic external currents vanish, are dual to
detailed-balanced systems, for which the macroscopic external forces vanish:
the former are in fact properties of the system under given environmental
conditions, while the latter are properties of the environmental influence on
the system, independently of the system’s state.

Duality is a far-reaching concept, which is not relegated to the symmet-
ric role of currents and forces in the expression for the entropy production.
Out of the a ↔ j special case, we stress that duality is a graph-theoretical
property: it tells how well-behaved observables look like from the point of
view of the environment and of the system, not which mesoscopic variables
enter the construction. For example, a different manifestation of duality is
the forthcoming. Let us shift mesoscopic affinities by a weighted cocycle, and
mescoscopic currents by a weighted cycle,

a → a +∑
µ

H∗
µc

µ
∗ j → j +∑

α

Kαc
α.

Due to orthogonality between the cycle and the cocycle spaces, macroscopic
external observables are left unmodified after such transformations,

δAα = ∑
µ

H∗
µ(cα, c

µ
∗) = 0, δJ∗µ = ∑

α

Kα(cµ∗, cα) = 0.

For this reason we call these symmetry transformations. It is a simple alge-
braic fact that this kind of transformations are the most general translations
of the mesoscopic variables which leave all external observables unaltered.
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Notice that the entropy production acquires a new term ∑αH
∗
µJ

µ
∗ +∑αKαAα

and that the internal variables transform according to

δA∗
µ = H∗

µ , δJα =Kα,

Without any need for further formalization, we realize that cocycles are the
generators of symmetry transformations of cycles, and cycles are the gener-
ators of symmetry transformations of cocycles. Observables and symmetries
which leave observables invariant are related by duality. So, duality is more
than the mere observation that the entropy production is a bilinear form of
the forces and currents.

An important notion of duality against which it is interesting to compare
ours is the elecromagnetic duality. We refer here to C. Timm’s work on mas-
ter equations [51]. Let’s think of ρ as a charge density. In order to make the
overall network neutral we introduce a supplementary vertex “∞”, charged
ρ∞ = −∑i ρi. All graph-theoretical notation will refer to this extended graph,
which can be further made into a two-dimensional cell complex by introduc-
ing a collection P ⊇ C of plaquettes. Plaquettes are analogous to faces as
far as their boundary is always an oriented cycle, but they need not to be
embedded in the plane, so their number is not constrained by Euler’s for-
mula. Choose a conventional clockwise/counterclockwise orientation for each
plaquette p and define the boundary (curl) operator

(∂×)pe =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

+1, if e ↓û p, e ↑ÿ p
−1, if e ↑û p, e ↓ÿ p
0, elsewhere

.

Boundaries of plaquettes (columns of ∂×) are cycles. Cycles live in the kernel
of the incidence matrix. Therefore ∂(∂×) = 0, which translates into the well-
known fact that the divergence of the curl vanishes.

Introduce an electric field Ee over edges and a magnetic field Bp over
plaquettes. The electric field is required to satisfy Gauss’s law ∂E = ρ.
Taking the time derivative of Gauss’s law, we have ∂(Ė + j) = 0. It follows
that Ė + j is a linear combination of cycles. In a basis of fundamental cycles,
let Bα be the coefficients of the decomposition:

j = − Ė +Bαc
α =∶ − Ė + ∂ ×B.

In the righ-hand side we imposed the Ampère-Maxwell Law. This equation
establishes a relationship between the magnetic field and the boundary values
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Bα. In fact, since cα is a complete set of cycles, there exists an P ×C matrix η
such that (∂×)p = ηpαcα. Therefore Bα = ηpαBp. We further impose Faraday’s
Law (∂×)TE + Ḃ = 0, and apply η:

(cα,E) = − Ḃα.

It follows that any two combinations of plaquettes which share the boundary
enclose a volume across whose boundary the magnetic flux is zero (Gauss’s
Law). Hence only C out of P magnetic field values are independent.

As entropy production it is reasonable to elect the total energy flux

σ = d
dt [(E,E)E + (B,B)P ]

where ( ⋅ , ⋅ )P is the scalar product with respect to the plaquettes. Applying
Faraday’s Law, transposing the curl operator, and using Ampère’s Law,

σ = (E, Ė)E + (B, Ḃ)P = − (j,E) = (E, Ė) +BαḂ
α.

The second identity yields the Integrated Poynting’s Theorem. The third
displays a simple dependence of the magnetic field on the boundary values.
Our result on the general decomposition of the entropy production can now
be applied, yielding

σ = JαḂ
α − Jµ∗E ∗

µ

where E ∗
µ is the electric field along cochord e∗µ. By Eq.(1.37), Jµ∗ is (minus)

the time-derivative of the charge in S(cµ∗). Hence under graph duality and
j ↔ E one obtains

E ∗
µ ↔ Jα, Bα ↔ ρµ + const. (2.2)

The electric field is mapped to the source of the magnetic field and vice versa.
Thus the example further supports the interpretation of duality as reversing
the role of system and environment. Although, notice that the dynamical
evolution is not respected: only Kirchhoff’s and Faraday’s “structure” equa-
tions are dual to each other. The lagrangian (see Ref. [51]) turns out not to
be self-dual. This is an important difference between system/environment
and electromagnetic duality, which is dynamical. Moreover, the former is
2-dimensional, while the latter, restricted to sourceless cases or requiring
magnetic charges, involves the Hodge machinery in 3 dimensions. Contrary
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to standard electromagnetic duality, in ours divergencelessness of the mag-
netic field is an essential feature rather than an obstruction to duality.

The electromagnetical example highlights another crucial feature of du-
ality: it only works for kinematical states, viz. instantaneus snapshots of the
system. So, for example, by “steady” we mean that Kirchhoff’s law is satis-
fied, not persistence in time. This is one important limitation that one will
have to take care of when considering, for example, markovian evolution: by
no means do we claim that duality maps master equations into dual master
equations.

Restriction of duality to planar graphs might appear to be a serious lim-
itation. Although, nonequilibrium observables behave “as if” there always
existed some dual graph. In a fascinating work [49], McKee attempts a gen-
eralization of graph duality, finding a correspondence with logical duality
between the universal and existential quantifiers (∀ and ∃) under the in-
volutive action of negation (¬)1. In the prologue he comments that “some
optimists see them [dualities] as mechanically doubling the number of results
of a theory”. We are optimist, claiming that for every proposition that is true
of steady states, there exists a dual proposition regarding detailed-balanced
systems, regardless of the possibility to draw a dual graph. One explicit ex-
ample is a dual minimum entropy production principle, discussed in Sec.2.3.
From a more formal point of view, notice that property (iii) of graph du-
ality on p.40 is independent of the particular embedding chosen. Indeed,
generalizing the concept of a graph to that of an abstract matroid [41, 53],
it turns out that matroids always admit a well-defined dual which satisfies
property (iii), even though dual matroids might not be visualizable as graphs.
In other words, trees and cotrees, cycles and cocycles, chords and cochords
always have mutual properties that can be ascribed to an abstract concept of
duality, even when there exists no dual graph. This aspect of graph duality
arised in the analysis of the linear regime.

As we pointed out at the end of Sec.1.6, embedding graphs in higher-
genus surfaces is another possibility for dealing with non-planar graphs. We
will not examine this technique in full detail. Still we want to point out a
very peculiar behavior: the failure of the one-to-one correspondence between
cycles and dual cocycles, and the emergence of topological currents. Fig.2.2
shows four different embeddings of the complete graph on four vertices (K4)

1For a work with fascinating points of contact with duality in logic and in probability
theory, and its relevance for the definition of entropy see Knuth [52].
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in a torus. Let c = 3 be the cyclomatic number of K4. Depending upon how
many cycles wind around the holes of the torus (more precisely: belong to
the first homology group of the torus), the number of vertices of the dual
graph range from c + 1 = 4 to c + 1 − 2g = 2, where g = 1 is the genus of the
torus. In this latter case, which corresponds to the two lower examples, the
dual graph has c − 2g = 1 independent cocycle, dual to the one cycle which
is contractible to a point, and five independent cycles, two more than usual.
The two excess cycles are dual of those fundamental cycles of K4 that are
topological. One can then separate topological cycles and contractible cycles
in the entropy production

σ = ∑
contractible

AαJα + ∑A∗
µJ

µ
∗ + ∑

topological

AαJα.

Dualization is still possible, but one must carefully interpret the physical
nature of dual observables. In fact, the last term poses a topological obstruc-
tion to the definition of dual external currents. The emergence of topolog-
ical currents in the study of diffusion theory on manifolds has been widely
discussed by the Jiang and the Qians [24], who noticed the possibility to in-
tegrate entropy production in terms of topological circulations, in the spirit
of Schnakenberg’s program. However, this approach, whilst much more con-
crete than matroids, is doomed to become impracticable when one deals with

Figure 2.2: Four different embeddings of the complete graph on four vertices
K4 in a torus. Squares denote different faces.
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large lattices of more than two dimensions.
Beyond two dimensions, there is a gap between the mathematical real-

ization of duality, which suffers from great limitations (abstractness, in the
case of matroids, and excessive complication in the case of surfaces) and the
propositional reach of the theory, which seems to be completely independent
of the possibility to visualize duals.

2.3 Minimum entropy production

The minimum entropy production principle (MINEP) asserts, using Klein
and Meijer’s words [54], that

“the steady state is that state in which the rate of entropy pro-
duction has the minimum value consistent with the external con-
straints which prevent the system from reaching equilibrium”.

So worded, it is reminiscent of the inferential method that provides ensembles
in equilibrium statistical mechanics, by maximization of the Gibbs-Shannon
entropy — a measure of ignorance of the microstate of the system — un-
der suitable constraints. In an information-theoretic framework, constraints
are pieces of knowledge the observer gains from the measurement of certain
observables of the system, or macroscopic parameters that can be experimen-
tally controlled. In the extremization procedure constraints are introduced
through Lagrange multipliers [55, 56].

Not exactly so for MINEP. Its first proof as a closed theorem is at-
tributed to Prigogine [27, Par. VI.2]. In Prigogine’s statement, owing to
the applied thermo-chemical setting, knowledge of the nonequilibrium ex-
ternal constraints, such as temperature or chemical potential gradients, is
granted from the start. Further generalizations of the principle always entail
that constraints can be read off the physical setup of the problem. So, in his
extension of the principle to density matrices [57], Callen recalls that

“Prigogine showed that in the steady state which is reached when
certain affinities are constrained to have definite values, all uncon-
strained affinities assume the values which minimize the entropy
production function”.

However, the environmental influence on a system might be a priori un-
known, or difficult to decipher. Here we do not assume previous knowledge
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of the nonequilibrium constraints, or affinities. As uninformed observers, we
look at the system, measure its fluxes and local constitutive relations, and
ask which are the constraints that impede relaxation to equilibrium. More
specifically, this work addresses two technical questions: Which Lagrange
multipliers should be introduced in the MINEP variational procedure? For
systems in the linear regime, the answer is found in Schnakenberg’s macro-
scopic affinities.

As for most, if not all, constructive variational principles in NESM, the
range of validity of the principle is the linear regime. Notice that we assume
the linear regime constitutive relations and not derive them from the princi-
ple of least dissipation, as is done in classical textbooks on nonequilibrium
thermodynamics [58, Ch. 4 and Ch. 5]. In particular, we do not distinguish
between the dissipation function and the entropy production.

Let us hint with a simple example why circuitations are good nonequi-
librium constraints. Consider the classical problem of heat diffusion in an
approximately one-dimensional inhomogenous conductive rod, whose ends
are put in contact with thermal reservoirs at slightly different boundary tem-
peratures, Tb ≳ Ta, while the body of the rod is isolated (see [59, §3.1] and
references therein). A temperature profile T (x) establishes. By Fourier’s
Law the induced heat current thorugh the rod is

j(x) = − k(x)∂T (x), (2.3)

where k(x) is the thermal conductivity at x ∈ [a, b] and ∂ = ∂/∂x. The follow-
ing identity

Tb − Ta + ∫
b

a

j(x)
k(x)

dx ≡ 0 (2.4)

is interpreted as a constraint on the currents, where we make use of the
equivalence symbol ‘≡’ to impose constraints. The configuration is steady if
∂j ss(x) = 0, which implies j ss(x) = const.

The same result can be obtained by a different route. Let us define the
local force as the right incremental ratio

a(x) = lim
δx→0+

T −1(x + δx) − T −1(x)
δx

, x ∈ [a, b). (2.5)

We assume that the system satisfies linear regime constitutive equations,
that is, that forces and currents are small and linearly related,

a(x) = `(x)j(x). (2.6)
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For this assumption to hold it is necessary that the temperature profile is
approximately constant and the temperature drop between the extremities
of the rod is sufficiently small with respect to its length, in such a way that
to first order one can approximate the conjugate force as a(x) = −T −2

av ∂T (x),
x ≠ b, where Tav is the average value of the temperature [59]. The local linear
regime coefficient then reads `(x) = T −2

av k(x)−1. The entropy production

σ = ∫
b

a
j(x)a(x)dx,

is then a quadratic functional of the currents. We require σ to be stationary,
that is δσ = 0, with respect to all possible current profiles that are consistent
with constraint (2.4). Introducing one Lagrange multiplier λ, we calculate
the variation

δ

δj(y)
[∫

b

a
`(x)j(x)2dx − 2λ∫

b

a

j(x)
k(x)

dx] = 0, (2.7)

leading to a uniform stationary current j ss = λT 2
av. The value of the multiplier

is fixed by substitution into Eq.(2.4):

jss = T 2
avλ = (Tb − Ta) [∫

b

a
k(x)−1dx]

−1

.

The above solution corresponds to a minimum of σ, and it coincides with
the steady configuration of currents. We conclude that the steady state is
the minimum of the entropy production among nearby current profiles that
are compatible with the external constraint. Notice that we prefer to use the
“stationary” when referring to the extremal solution of a variational prob-
lem, and “steady” for a configuration of currents that satisfies the continuity
equation.

The problem of heat-conduction and the minimum entropy production
principle in a rod has been widely debated [60], with arguments revolving
around the onset of the linear regime. While the exact MINEP solution
displays an exponential dependence on the position, it can be shown that
under reasonable experimental conditions the deviations between the rigorous
MINEP temperature profiles and the steady profiles are small. In this work
we are not interested in the careful identification of the range of validity
of Eq.(2.6), but rather in the forthcoming geometrical interpretation of the
constraint as a circuitation: So we will always assume that our systems admit
a well-defined linear regime.
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At a steady state as much heat is absorbed by the colder reservoir, as
much has to be poured in by the hotter one. If we ideally short-circuitate
the rod, bringing the end-points to coincide, the linear system is mapped to
a unicyclic system, with a conserved heat flux through the whole ring. Due
to the discontinuity of T (x) at x = a, the affinity is not a conservative field
(i.e., it is not the derivative of some potential in all of its domain). However,
we can still integrate it to get the constraint

∮
ring

a(x)dx ≡ 1

Ta
− 1

Tb
,

which in the linear regime is equivalent to Eq.(2.4). When the boundary
temperatures coincide, that is, at equilibrium, the affinity is indeed an ex-
act form and the circulation vanishes. Thus there exists a correspondence
between “topological” circuitations, nonconservative driving forces, and the
onset of nonequilibrium behavior. As soon as one abandons the 1-dimensional
case, one incurs great difficulties. In particular, steadiness ∂j ss = 0 does not
imply a uniform current distribution, and one realizes that the problem is of
geometrical nature, involving differential forms, topology, etc. However, on
a discrete state space this intuition can be efficiently put to work.

According to Schnakenberg’s theory of nonequilibrium observables, the
external constraints that force a system into a non-equilibrium steady state
are the macroscopic external forces. We will now extremize entropy produc-
tion with respect to mesoscopic currents in the linear regime, using Schnaken-
berg’s affinities as constraints,

Āα ≡ Aα[j] = ∑
e

cαe `eje +O(j3), (2.8)

where Āα is a fixed, “observed” value of the affinity. The entropy production
is the quadratic form

σ[j] = ∑
e

`ej
2
e +O(j4). (2.9)

We introduce Lagrange multipliers and vary

δ

δje
[σ[j] − 2∑

α

λα(Aα[j] − Āα)] = 0. (2.10)

Multipliers λα are to be determined by replacement of the stationary solution
into (2.8). The calculation is easily carried over, yielding

j ss = ∑
α

λαc
α.
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Stationary currents are linear combinations of a cyclomatic number of bound-
ary terms λα. We now prove that the latter are in fact the macroscopic
currents conjugate to the constrained values of the affinities. Fixing the
Lagrange multipliers we get

Āα = ∑
β

λβ∑
e

`ec
α
e c
β
e = ∑

β

Lαβλβ,

where we recognized the linear response matrix. This relation can be in-
verted, showing, after Eq.(1.46), that λα is the steady current conjugate to
the measured value of the affinity Āα. The second variation

δσ

δjeδjf
− 2∑

α

cαe
δλα
δjf

= `eδe,f .

yields a positive Hessian matrix, which guarantees positive concavity.
We thus conclude that the stationary configuration of currents that in the

linear regime minimizes the entropy production with constrained macroscopic
forces, satisfies Kirchhoff’s conservation law. From a dynamical point of view,
if under some ergodic hypothesis the steady state is asymptotically reached
over the long time (as is the case, for example, for Markovian systems),
one can conclude that a nonequilibrium system tends to relax to a state
of minimum entropy production, compatibly with the macroscopic external
forces that prevent it from reaching equilibrium. This echoes Klein and
Meijer’s phrasing.

Prigogine’s proof of MINEP [27], shaped upon chemical systems, was
based on an assumed splitting of the entropy production into a matter flux
term and a heat flux term,

σ = JthAth + JmAm. (2.11)

Steadiness is equivalent to the requirement that matter currents vanish, Jm =
0. Hence entropy production at a steady state consists only of heat flux
contributions.

Bridging to our abstract setup, we might interpret heat currents and
inverse temperature gradients respectively as Schnakenberg’s internal cur-
rents and external forces. Pushing this identification out of the steady state,
we might also interpret matter currents as external currents and pressure
gradients as internal currents, so that Prigogine’s splitting corresponds to
our splitting of the entropy production in a complete set of observables,
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Eq.(1.35). Given this identification, the reasoning follows along the same
tracks as Prigogine’s. Variation with respect to the mesoscopic observables,
at constant external affinities, can be replaced with variation with respect to
the external currents, as we did in Eqs.(1.14,1.15). We thus conclude that
our approach is completely superimposable on Prigogine’s phenomenologi-
cal derivation, adding to it an abstract and quite general definition of the
constraints. Moreover, it generates the following dual principle:

Detailed balanced systems are those systems for which the rate of
entropy production has the minimum value that is consistent with
the fixed inflowing currents which prevent them from reaching a
stationary state.

Finally, to make the link with Prigogine’s work even stronger, we recall that
in some early reflections [61] he wrote that

“d’une manière un peu obscure mais imagée on pourrait appeler
ce principe celui de la moindre vitesse.”

He referred to Gauss’s Principle of Least Constraint, which states that the
physical trajectories xi(t) of N particles with masses mi, i = 1, . . . ,N mini-
mize the gaussian curvature G = ∑imi∣∣ẍi(t)∣∣2, compatibly with whichever
constraints on their position and velocities. The method is very powerful
as it also deals with non-holonomic constraints, and it is employed in the
characterization of the non-equilibrium statistical mechanics of dynamical
systems subject to thermostats [62]. Ref. [63] discusses the mathematical
solution of the problem. The approach is more interesting when we pose the
inverse question: Which are the constraints

(kα, `j) = K̄α

to be imposed to the entropy production in the linear regime, in such a way
that Kirchhoff’s Law is satisfied? We find in Ref. [64] that, after we define
matrix K = [k1, . . . , kα, . . .], minimization of the entropy production yields
jmin = `−1/2(K`1/2)+K̄, where M+ is the Moore-Penrose pseudoinverse of
M . When the kα’s are independent the Moore-Penrose pseudoinverse has an
explicit expression, as

jmin = KT (K`KT )−1K̄.
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We want the constrained minimum to solve Kirchhoff’s equation:

∂jmin = ∂KT (K`KT )−1K̄ = 0.

Notice that K`KT is an invertible matrix. Then the columns kα of K must
live in the kernel of ∂: they are cycles. Notice that (K`KT )−1 is indeed
the linear response matrix and K̄ are values of the affinities. Therefore, in
our approach, Prigogine’s will is fulfilled, and allows a simple and elegant
derivation of MINEP which is well-suited for our algebraic formalism.

A few concluding remarks. Some of the hypothesis upon which we de-
rived the principle can be relaxed. Working in a differential-geometric setting
should allow us to extend the principle to continuous systems. In this con-
text, a result similar to Schnakenberg’s decomposition has been obtained by
Jiang and the Qians [24] for topological currents, such as those that flow
along the two fundamental cycles of a torus. The task is then to extend to
nontopological currents, through lattice discretizations and limiting proce-
dures. One problem appears at the horizon: As the discretization becomes
more and more refined, the number of cycles tends to infinite, becoming non-
denumerable in the continuum limit. This clashes with the physical intuition
that nonequilibrium constraints should be a few boundary conditions that
are experimentally accessible. For physically relevant systems, symmetries
might have a role in the reduction of the number of affinities. The condi-
tion of locality can also be relaxed, considering the more general mesoscopic
phenomenological linear response relation, see Eq.(1.59).

As to the hypothesis of linear regime, in our formulation the assump-
tion seems to be unavoidable if one chooses affinities as nonequilibrium con-
straints. The possibility is open that better observables might allow for a
departure from the linear regime. There exist many instances of variational
principles in NESM, most of which can be traced back to Onsager’s least
dissipation ad Prigogine’s minimum EP, with their own, and different, incli-
nation. However, notwithstanding high-flown claims, to the author’s knowl-
edge none truly departs from the linear regime, at least in an operational
sense. So, in this respect our principle is no exception.

Our extremization procedure is based on the identification of the fun-
damental macroscopic observables which keep a system in a nonequilibrium
steady state. The setup is quite general and can in principle be adapted to
any system that allows a local conservation law. It can be applied to mas-
ter equation systems, where its robustness can be tested against well-known
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results. It is shown to provide an abstract setup where Prigogine’s original
statement sits comfortably, provided that we have a mesoscopic substrate.
So, while the principle is no novelty, the procedure and its generality are.

While the hot topic of NESM are, of course, fluctuations, there is a priori
no fluctuating character in the principle we have formulated: It is purely
geometrical.

Coming to a conclusion, we suggest that the search for an extremal func-
tional is as important as the identification of constraints of physical relevance.
This might be a good guiding principle, for example, in the search of a maxi-
mum entropy principle (MAXENT): While MAXENT can be constructively
employed to derive equilibrium ensembles [55], to our knowledge a similar
application to nonequilibrium steady states is still lacking. The possibility is
open that giving to Schnakenberg’s affinities the correct weight might allow
to derive as useful tools of calculation as are equilibrium ensembles, fulfilling
Jaynes’s expectation that “essentially all of the known results of Statistical
Mechanics, equilibrium and nonequilibrium, are derivable consequences of
this principle” [65].

2.4 Maximum entropy production?

The striving for variational principles in NESM has a long and contrived
history. In particular, another, less familiar, variational principle has been
proposed that should characterize the behavior of non-equilibrium systems:
the maximum entropy production principle (MAXEP). There are at least
as many formulations of MAXEP as there are of MINEP. Arguably, the
apparent clash between these two instances is due to the fact that they apply
to distinct scales and regimes, and employ different notions of “state”. There
is a vast literature that tries to sort out the matter [66], and by no means
do we mean to be exhaustive. However, we need to put our principle in
contact with some instances of MAXEP in order to appreciate their relative
significance.

It was Jaynes’s conviction that [67] “there must exist an exact variational
principle for steady irreversible processes”and that such principle should cap-
ture conservation laws: “we should rather take the conservation laws as exact
and given, and seek a principle which gives the correct phenomenological re-
lations”. Jaynes thought that reversing this logic would also reverse the
principle: “perhaps the exact phenomenology is the one that has maximum
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entropy production for prescribed exact conservation laws”. So, Jaynes’s ex-
pectation was that conservation laws and constitutive equations should fit
in the same picture, under the aegis of one unifying maximum principle.
This supposition informs Gyarmati’s research [58, Par. V.3], as he claims
that “the principle of minimum production of entropy is not an independent
principle [. . . ], but rather is only an alternative reformulation of the Onsager
principle valid for stationary cases”.

In this respect, P. Županović, D. Juretić and S. Botrić’s proposition is
more closely related to our principle, as it deals with Kirkhhoff’s Current
Law and Kirkchhoff’s Loop Law on networks. It is to this work that we
mainly refer in the following.

Suppose we do not know the system’s constitutive equations, but that we
do know that entropy (in the form of heat) is dispersed into the environment
at a rate

ω =∑
e

`ej
2
e ,

which is called the dissipation function. This is the case for electrical circuits,
where `e plays the role of a resistance. Entropic balance then requires

σ − ω ≡ 0. (2.12)

This is particularly reasonable for an electrical circuit, where ω is the electric
power and σ the heat flux. Finally we extremize entropy production, varying
with respect to the currents, and imposing constraint (2.12),

δ

δje
[σ + λ(σ − ω)] = 0. (2.13)

We obtain ae = 2λ/(1+λ) `eje. The value of the multiplier is set by replacing
the extremizer in Eq.(2.12), which yields λ = 1, a stationary value σ∗ = ω
and the desired mesoscopic phenomenological, ae = `eje. Taking the second
variation we obtain a negative hessian, hence a concave-down paraboloid,
hence we front a maximum entropy production principle.

Variational principle (2.13) is discussed by Martyusheva and Seleznev
[66, Eq. 1.16], where it is introduced as Ziegler’s principle, and again by
Županović and coworkers [68, Eq. (9)] in a follow-up paper on the relation
between MAXEP and the principle of least dissipation: In fact, the procedure
is but a restatement of Onsager’s least dissipation principle, which in its
original form simply states that σ − ω should be maximum [29].
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Embedding Kirchhoff’s Current Law into Eq.(2.13),

δ

δJγ
[(1 + λ)∑

α

JαA
α − λ∑

α,β

LαβJαJβ] = 0,

or, equivalently, constraining the solution to the variational problem (2.13) on
the ∂j = 0 shell, leads to the identification of circuitations Aα = ∑β L

αβJβ as
the phenomenological conjugate variables to the currents. This realization of
MAXEP does indeed reproduce Jaynes’s expectation that the reversed logic
should yield the correct phenomenological laws. The MAXEP of Županović
et al. is in a sense complementary to our MINEP, reproducing the macro-
scopic Onsager’s relations. With one specification: The MAXEP principle
does not imply that “currents in a linear planar network arrange themselves
so as to achieve the state of maximum entropy production”. That is due to
the minimum entropy production principle.
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3

Master equation: dynamics

In this brief chapter we give the elements of continuous-time diffusion the-
ory and jump processes on finite state space that are strictly necessary for
the development of the forthcoming results. So, we omit a discussion of the
Markov property, the derivation of the master equation from the Chapman-
Kolmogorov equation, backward and forward equations, and many other in-
teresting topics that are typically found in the dedicated literature [69, 70].
Some more elements about the markovian generators will be found in Ch.7.

3.1 Master equation

On an oriented graph G = (V,E, ∂) with sites i ∈ V connected by oriented
edges ij ∈ E, the time-dependent master equation reads

∂p

∂t
(t) = dp

dt
(t) = ∑

j∈V
[wij(t)pj(t) −wji(t)pi(t)] (3.1)

where p(t) ∶ V → [0,1] is a normalized probability density at time t over the
discrete set V and wij(t) is a positive transition rate from site j to site i at
time t. As a simple consequence of the antisymmetry of the summand in the
right-hand side, Eq.(3.1) preserves normalization. The equivalence of partial
and total time derivative is to signify that there is no further explicit time
dependence of the probability density other than the one prescribed by the
master equation. We cast it in matrix notation,

ṗ(t) = W (t)p(t), W (t)ij ∶= { wij(t), i ≠ j
−∑kwki(t), i = j .
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Entries along the columns of the generatorW add up to zero, hence (1,1, . . . ,1)
is a left-eigenvector of W relative to eigenvalue zero.

The master equation is the diffusion equation associated to continuous-
time Markov chains, also known as jump processes. It describes the evolution
of an ensemble of trajectories which are sampled with initial probability
p = p(0), and which perform jumps from site j to i at rate wij. The i-th
diagonal element of the generator is (minus) the average waiting time at site
i before a jump is performed [71]. We write them in short

wi(t) ∶= ∑
k

wki(t).

It is usually assumed that G is connected and that rates are strictly
positive, hence non-null, along all edges of G, in both directions, at all times.
In other words, given any two sites there exists a path connecting them
such that the product of the transition rates along the path does not vanish.
Furthermore, if the rate of jumps between site i and site j is non-null then
also the opposite-direction transition has non-null rate. Unless otherwise
stated, the above assumptions are always implicitly understood, and we will
say that the master equation is ergodic.

A Markov process is said to be stationary when its transition probabilities
are invariant under shift of the time origin. The corresponding master equa-
tion turns out to have time-independent rates. For such systems it makes
sense to question the existence of steady states. Under the above assump-
tions, by application of the Perron-Frobenius theorem the master equation
can be shown to afford a unique steady (or invariant) state such that

Wpss = 0.

We devote Ch.5 to the steady state and its combinatorial properties.
Although we will mainly be interested in the evolution equation for the

probability density, for later reference we introduce the adjoint generator.
Let f(t) ∶ V → R be a real time-dependent function defined over sites of the
graph. The adjoint generator is defined by

⟨W †(t)f(t)⟩p(t) = ⟨f(t)⟩W (t)p(t)

where the average is the ensemble average, ⟨g⟩p = ∑i gipi. The matrix entries
of the adjoint generator are found by transposition of W (t),

[W †(t)f]i = ∑
j

wji(t)(fj − fi). (3.2)
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The total time derivative of the average of an observable is given by

d

dt
⟨f(t)⟩p(t) = ⟨∂f(t)

∂t
+W †(t)f(t)⟩

p(t)
.

3.2 Reduced dynamics

The master equation is a set of V first order differential equations. They are
not all independent, as on a connected state space normalization constrains
one equation to the others. We now want to recast the dynamics in such a
way as to keep track of the normalization constraint. We choose state iV as
a reference state. Let p̃ be a reduced probability vector with entries labelled
by index m = 1, . . . , V − 1 (we do not display the time dependence),

p̃ = (p1, . . . , pV −1),

such that pV = 1 −∑V −1
m=1 p̃m. We have

dp̃m
dt

= (Wp)m = ∑
m′
Wmm′ p̃m′ +WmV (1 −∑

m′
p̃m′)

= WmV +∑
m′

(Wmm′ −WmV ) p̃m′

=∶ wm + (W̃ p̃)m,

where in the last identity we defined the vector w with entries wm = WmV ,
and the reduced matrix W̃ , which is invertible. Hence

d

dt
(p̃ + W̃ −1w) = W̃ (p̃ + W̃ −1w) . (3.3)

The steady state that solves the time-independent equation is

p̃ss = − W̃ −1w.

Equation (3.3) then turns into

dp̃

dt
= d

dt
(p̃ − p̃ss) = W̃ (p̃ − p̃ss) . (3.4)

The matrix W̃ is obtained from W by subtracting the V -th column from
each other column and then by eliminating the V -th row and column. Of
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course, the choice of the V -th state is arbitrary, so that all of the above can
be recast in terms of any reference state k. For example, for a three-state
system with generator

W =
⎛
⎜
⎝

−w21 −w31 w12 w13

w21 −w12 −w32 w23

w31 w32 −w13 −w23

⎞
⎟
⎠
,

choosing k = 2, we obtain the reduced generator

W̃ = ( −w21 −w31 −w12 w13 −w12

w31 −w32 −w13 −w23 −w32
) .

The general expression for the reduced generator with reference state k is

W̃ = W∖(k,k) −w ⋅ (1,1, . . . ,1), (3.5)

where the row vector has V − 1 copies of number 1 and, the dot stands for
the usual matrix product and w is the k-th column of W , from which the
k-th entry has been removed.

As a trivial application of this approach, we solve the reduced master
equation for a two state system. Choosing k = 2,

ṗ1(t) = w12 − (w21 +w12)p1(t).

The general solution is

p1(t) = w12

w12 +w21

+ e−(w12+w21)t (p1(0) −
w12

w12 +w21

) . (3.6)

3.3 Semigroup propagator

The formal solution of the time-dependent master equation is found by the
same methods employed for the time-dependent Schrodinger equation, and
more generally for defining holonomies of Lie groups [72]. In this section we
give an explicit expression for the propagators, which will be employed in
the Sec.3.4 to introduce an interaction picture and to derive a path measure
for stochastic jump processes. This is standard material, yet the author was
not able to find a readily accessible derivation in the literature. It might be
handy to have a complete treatment. The quantum-mechanical analogy is
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found in the quantum formalism developed by Schütz [73, 74], which turns
out to be particularly suggestive for treating many-body particle systems.
However, we will not employ the quantum notation.

We first put the master equation in the form of an integral equation,
setting the initial probability to p(t0) = p,

p(t) = p + ∫
t

t0
dt1W (t1)p(t1).

By recursive substitution we obtain

p(t) =
∞
∑
n=0
∫

t

t0
dt1∫

t1

t0
dt2 . . .∫

tn−1

t0
dtnW (t1)W (t2) . . .W (tn)p

=
∞
∑
n=0

1

n! ∫
t

t0
dt1∫

t

0
dt2 . . .∫

t

t0
dtn T←{W (t1)W (t2) . . .W (tn)}p

= T←{ exp∫
t

t0
dt′W (t′)}p, (3.7)

where T← is the time-ordering operator, such that

T←{W (t)W (t′)} = T←{W (t′)W (t)}, t < t′.

The second step in the derivation of Eq.(3.7) follows from the fact that the
integral over right hyper-triangles with catheti of length t1, t2, . . . tn is equal
to 1/n! the integral over hyper-parallelepipeds with sides t1, t2, . . . tn.

We can recast the master equation in terms of the propagator as

U̇(t, t0) = W (t)U(t, t0).

Propagators satisfy the semigroup property

U(t, t′)U(t′, t′′) = U(t, t′′). (3.8)

The inverse propagator is given by

U(t, t0)−1 = U(t0, t) = T→ {exp∫
t0

t
dt′W (t′)} (3.9)

Notice that the time-ordering operator is inverted.
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3.4 Jump trajectories and the path measure

In this section we give a representation of the propagator in terms of stochas-
tic jump trajectories, similar to the Feynman path integral representation of
a quantum propagator. Unlike the quantum path integral [75, Ch.1], dis-
creteness of the state space makes the path measure well-defined and simple.

We resort to an interaction picture, which is analogous to the Dirac pic-
ture in QM. We split the generator in a “free” term that generates perma-
nence at a site and an “interaction” term that generates jumps,

W (t) = W0(t) +W1(t),
with

W0(t)ij = { 0, i ≠ j
−∑kwki(t), i = j , W1(t)ij = { wij(t), i ≠ j

0, i = j .

We introduce the free propagator

U0(t, t0) = T←{∫
t

t0
dt′W0(t′)},

d

dt
U0(t) = W0(t)U0(t).

The interaction propagator Ũ1(t, t0) is defined by the identity

U(t, t0) =∶ U0(t, t0) Ũ1(t, t0). (3.10)

The final step is to identify the interaction generator W̃1(t) which allows to
cast the the interaction propagator as a time-ordered exponential

Ũ1(t) = T← {exp∫
t

t0
dt′ W̃1(t′)} ,

d

dt
Ũ1(t) = W̃1(t)Ũ1(t).

To find an explicit expression, we take the time derivative of Eq.(3.10). After
some simple manipulations we obtain

W̃1(t) = U0(t, t0)−1W1(t)U0(t, t0). (3.11)

We now cast the propagator as a sum over paths, weighted by a suit-
able probability density. Using the interaction picture Eq.(3.10), the explicit
expansion for the propagator Eq.(3.7) and the semigroup property Eq.(3.8),

p(t) = U0(t, t0) T← {exp∫
t

t0
dt′ W̃1(t′)} p

=
∞
∑
n=0
∫

t

t0
dtn∫

t1

t0
dtn−1 . . .∫

t2

t0
dt1U0(t, tn)W1(tn) . . .

. . . U0(t3, t2)W1(t2)U0(t2, t1)W1(t1)U0(t1, t0)p. (3.12)
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In view of the last step, we define the probability qi(t′, t) of staying at site i
from time t to time t′ as

qi(t′, t) = exp−∫
t′

t
dτ wi(τ),

such that U0(t′, t)ij = qi(t′, t)δi,j. Making matrix entries explicit, we obtain

pj(t) =
∞
∑
n=0

∑
i0,...,in−1
im+1 ≠ im

∫
t

t0
dtn∫

tn

t0
dtn−1 . . .∫

t2

t0
dt1

qj(t, tn)wjin−1(tn) . . . qi1(t2, t1)wi1i0(t1)qi0(t1, t0)pi0 . (3.13)

Notice that since W1(t) has null diagonal entries, we have to exclude from
the summation over sites the occurrence of two consecutive identical sites.
Inspection of this formula reveals that there arises a path density and a path
measure. Let for simplicity tn+1 = t and in = j. We can formally1 define a
trajectory as ι = {i(t′), t′ ∈ [t0, t]}, with

i(t′) =
n

∑
m=0

im χ[tm,tm+1)(t′), (3.14)

where χI is the step function in the interval I. Inspection of Eq.(3.13) reveals
that associated to the trajectory ι there is a path density

Prob (ι) = qin(t, tn) [
n−1

∏
m=0

wim+1im(tm+1)qim(tm+1, tm)]pi0

= exp [
n−1

∑
m=0

lnwim+1,im(tm+1) −
n

∑
m=0

∫
tm+1

tm
wim(τ)dτ]pi0 .

(3.15)

The latter line can be identified as the Girsanov(-Cameron-Martin) formula
for continuous-time Markov chains ??. We can then see Eq.(3.13) as an
average over paths,

U(t, t0)ji = ∫ Dι δi(t),j δi(0),i Prob (ι) (3.16)

where the path measure it given by

∫ Dι =
∞
∑
n=0

∑
i0,...,in−1

∫
t

t0
dtn∫

tn

t0
dtn−1 . . .∫

t2

t0
dt1. (3.17)

1See discussion in Sec.6.6.
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In later chapters we will mainly be interested in time-dependent processes;
in that case a small simplification is possible by performing the changes of
variables tm+1 − tm = τm. We obtain

Prob (ι) = e−τnwin (
n−1

∏
m=0

wim+1ime
−τmwim)pi0 , (3.18)

∫ Dι =
∞
∑
n=0

∑
i0,...,in−1
im+1 ≠ im

∫
t−t0

0

n

∏
m=0

dτm δ (t0 − t +
n

∑
m=0

τm) , (3.19)

where we introduced a Dirac delta to impose that the time intervals add to
t − t0.

3.5 Appying the path measure

As an example, in this section we use the path measure to perform the direct
calculation of the propagator for a two state system. Two state systems are
particularly simple because sites have to occur alternatively:

i0 = i2 = . . . , i1 = i3 = . . .

We only consider the probability of being at site 1 at time t given that we
were at site 1 at time t0 = 0 with certainty. We have

U11(t) = ∑
n

even

(w12w21)n/2∫
t

0
dτ1 . . . dτn+1 δ (τe + τo − t) e−w12τe−w21τo .

where

τe = τ2 + τ4 + τ6 . . . , τo = τ1 + τ3 + τ5 . . .

To solve the model, we take the Laplace transform

Ũ11(ω) = ∫
t

0
e−tωp1(t) = ∑

n∈N
(w12w21)n∫

∞

0
dτ1 . . . dτ2n+1 e

−(w12+ω)τe−(w21+ω)τo

= ∑
n∈N

(w12w21)n [∫
∞

0
dτ e−(w21+ω)τ]

n+1

[∫
∞

0
dτ e−(w12+ω)τ]

n

= 1

w21 + ω
∑
n∈N

[ w12w21

(w21 + ω)(w12 + ω)
]
n

.
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Using the fact that, for a < 1,

∑
n∈N

an = 1

1 − a
.

we obtain

Ũ11(ω) = w12 + ω
ω(w12 +w21 + ω)

.

Inversion of the Laplace transform yields

U11(t) = w12

w12 +w21

+ e−(w12+w21)t (1 − w12

w12 +w21

) ,

which is consistent with Eq.(3.6).

3.6 Ergodic theorems

We consider two kinds of functions defined along a jump trajectory:

– Vertex functions, which hold values in the waiting times,

f ι(t) = ∑
m

fim(t)χ[tm,tm+1)(t),

– Edge functions, which spike at transitions,

gι(t) = ∑
m

gimim−1(t) δ(t − tm).

Ergodic theorems relating path expectation values and ensemble averages
hold for the two kinds of functions:

Et′[f ι(t)] = ∑
i

pi(t)fi(t), (3.20a)

Et′[gι(t)] = ∑
i,j

wijpj(t)gij(t). (3.20b)

Notice that the path averages run up to time t′ ≥ t, but in fact they turn out
to be independent of t′. We prove the first identify. Let θ be the Heaviside
step function. Then:

Et′[f(t)] = ∑
n
∑
k≤n

∑
{im}

∫
t′

0
∏
m

dtm θ(tm − tm−1) . . .

. . .wik+1ik(τk+1)qik(tk+1, t)fik(t)χ[tk,tk+1)(t)qik(t, tk) . . . pi0(0).
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We now commute ∑n∑k≤n = ∑k∑n≥k and use the fact that χ[tk,tk+1)(t) =
θ(t − tk)θ(tk − t),

Et′[f(t)] = ∑
k

∑
n≥k

∑
{im}

∫
t′

0
[∏
m≠k

dtm θ(tm+1−tm)]θ(tk+1−t)∫
t′

0
dtk θ(t−tk) . . .

. . .wik+1ik(τk+1)qik(tk+1, t)fik(t)qik(t, tk) . . . pi0(0),

factorize according to

∑
{im}

= ∑
in,ik

∑
{im}
n>m>k

∑
{im}
k>m

,

and separate contributions before time t and contributions after time t. No-
tice that we are not constraining the trajectories to end at a given state.
Therefore after some work and by comparison with the expression for the
propagator, Eq.(3.16), we obtain

Et′[f(t)] = ∑
k,j,i

U(t′, t)kj fj(t)U(t,0)ji pi(0)

Since the unit vector is a left eigenvector of the propagator, ∑k U(t′, t)kj = 1
and Eq.(3.20a) follows. Eq.(3.20b) is proven by an analogous procedure.

3.7 Path inversion

Let us comment very briefly on an important feature of the path measure
in the time-independent case. We define the inverse trajectory ι∗ (avoid
confusion with the notation for duality),

i∗(t′) = i(t − t′) =
n

∑
m=0

im χ[t−tm+1,t−tm)(t′). (3.21)

The inverse trajectory is a good trajectory, i.e. it belongs to the space of
trajectories over which we integrate in Eq.(3.17), hence it is endowed with a
well-defined (forward) path measure. Notice that the inverse trajectory waits
at site i0 the same amount of time as the forward trajectory (t−t0)−(t−t1) =
t1−t0 = τ0 as the forward trajectory, while the transitions occur in the inverse
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direction. Hence by inspection of the path measure Eq.(3.18) we can guess
the correct path measure of the trajectory:

Prob (ι∗) = e−τ0wi0 (
n−1

∏
m=0

wimim+1e
−τm+1wim+1)pin(t). (3.22)

This suggests the definition of the inverse probability measure over trajecto-
ries as the one satisfying

Prob ∗(ι) = Prob (ι∗)

Inversion a trajectory is an involutive operation, therefore one has Prob ∗(ι∗) = Prob (ι).
The inverse path measure can be derived by a more rigorous procedure, anal-
ogous to what done above for the forward trajectory, considering the inverse
propagator. We will not pursue this result here. Notice that the path mea-
sure is invariant under path inversion

Dι = Dι∗. (3.23)

We conclude this chapter with a formula which will pave the way for
the fluctuation theorems in Ch.4. Notice in fact that when composing the
Girsanov-Cameron-Martin formulas of the forward and backward probability
densities we obtain

Prob (ι)
Prob ∗(ι)

= (
n−1

∏
m=0

wim+1im

wimim+1
) pi0(0)
pin(t)

. (3.24)

We also refer (somewhat improperly) to Eq.(3.24) as the Girsanov-Cameron-
Martin property under time inversion.
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4

Master equation:
thermodynamics

This chapter is devoted to the stochastic thermodynamics of master equation
systems. In the first part of the chapter, we introduce the internal, envi-
ronmental and total entropy production rates1 for continuous-time Markov
chains in Sec.4.1, and their microscopic counterparts, defined along single
jump processes in Sec.4.2. Sec.4.3 gives a survey of Fluctuation Theorems
for Schnakenberg-type splittings of the entropy production rate.

The second part delves into the thermodynamical interpretation in the
light of the Local Detailed Balance ansatz, which is introduced in Sec.4.4 and
put to work alongside with our own network analysis of macroscopic observ-
ables in Sec.4.5. In this approach, circulations of the mesoscopic forces return
Clausius’s expression for the entropy of a cyclic process, affinities of a partic-
ular fundamental set are related to temperature differences, and heat fluxes
arise as the relevant fluctuating variables. The linear regime constitutive
relationships for the heat fluxes are studied in Sec.4.6, while Sec.4.7 exploits
the Fluctuation Theorems to prove Green-Kubo type of relationships for the
linear response coefficients. We conclude this chapter with a derivation of
Local Detailed Balance rates for Open Quantum Systems weakly interacting
with the environment.

1Notice that we restored the specification “rate”.
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4.1 Entropy production

The (Gibbs-Shannon) entropy of a probability distribution p = (pi)i∈V over a
finite set is defined as

S(p) ∶= −∑
i

pi log pi.

Entropy is a state function. It quantifies the amount of ignorance a observer
has about the state of the system. It is an internal property of the system.
When we deal with continuous-time Markov chains, entropy inherits a time-
dependence from the probability distribution,

S(t) ∶= S(p(t)) = −∑
i

pi(t) log pi(t). (4.1)

Its time derivative describes how the microstate of a jump trajectory becomes
more or less predictable in time, according to

σsys(t) ∶= Ṡ(t) = −∑
i

[Wp(t)]i log pi(t)

= ∑
i<j

[wijpj(t) −wjipi(t)] log
pj(t)
pi(t)

=∶ ∑
i<j
jij(t) log

pj(t)
pi(t)

,

where we used the fact that ∑i[Wp(t)]i = 0, and in the third passage we
implicitly defined the probability current jij(t) from state j to state i. The
time derivative of the entropy σsys(t) only describes that part of the ther-
modynamics of an open system which in a way codes the information flow
from the system towards an observer. We call this the internal entropy pro-
duction rate, as it only depends on the state of the system. Along with his
network analysis, one major contribution due to Schnakenberg [11] is the
identification of a second term σenv to the total entropy production rate of a
system, which is due to the entropy flow towards an external environment.
He assumed that the total entropy production rate

σ(t) = σenv(t) + σsys(t)

should be positive for general nonequilibrium systems and should only vanish
at equilibrium steady states, in view of the Second Law of Thermodynamics.
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He then observed that the environmental entropy production rate is well
described by

σenv(t) ∶= ∑
i<j
jij(t) log

wij
wji

, (4.2)

yielding for the total entropy production rate

σ(t) = ∑
i<j
jij(t)aij(t), (4.3)

where the mesoscopic forces between states are defined as

aij(t) ∶= log
wijpj(t)
wjipi(t)

. (4.4)

It is a trivial exercise to prove that aij is positive if and only if jij is positive,
hence σ is a positive bilinear form. In fact, it can be argued that this identifi-
cation is unique under reasonable assumptions. In Ch.6 we give a completely
different argument for motivating Schnakenberg’s choice, based on gauge in-
variance. Yet another argument comes from information theory [77, §4.2];
we give a survey in Sec.4.2.

The splitting of the entropy production rate in environmental and inter-
nal contributions is one of many possible splittings. Esposito and Van den
Broeck [78] considered a splitting in terms of the time derivative of the rel-
ative entropy with respect to the steady state (adiabatic term) and a jump
contribution (non-adiabatic term),

σa.(t) ∶= ∑
i,j

jij(t) log
pj(t)
pssj

= − d

dt
S(p(t) ∣∣pss)

σn.a.(t) ∶= ∑
i<j
jij(t) log

wijpssj
wijpssi

,

where S( ⋅ ∣∣ ⋅ ) denotes the relative entropy, or Kullback-Liebler distance.
Properties of this splitting are that the adiabatic term vanishes at steady
states, and the non-adiabatic term vanishes for systems which satisfy de-
tailed balance, that is when

assij = log
wijpssj
wijpssi

= 0. (4.5)
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Notice that this characterization of detailed balance is consistent with the
one given in Sec.(1.4), as if Eq.(4.5) holds then there exists a time-dependent
vertex potential ui(t) = log pj(t)/p∗j such that aij(t) = uj(t) − ui(t).

Splittings of the entropy production that are analogous to the adia-
batic/nonadiabatic splitting can be given starting from a spanning tree and
applying our generalized Schnakenberg decomposition, as in Eq.(1.35). We
will discuss in this chapter their thermodynamical characterization. Let us
conclude this section with the observation the the external macroscopic forces

A(c) = (c, a) = log∏
ij∈c

wij
wji

,

turn out to be time-indendent (if transition rates are), as they do not depend
on the state of the system, but only on the transition rates, which on the
other hand can be thought of as properties of the environment. This is
another important clue that led Schnakenberg to the identification of these
observables as the macroscopic external nonequilibrium constraints.

4.2 Path entropies

In this chapter we introduce microscopic analogues along single paths (stochas-
tic process) whose averages return the various entropy production rates de-
fined above, giving strength to the above definitions.

Consider for the moment a discrete-time stochastic process (Xτ)nτ=1. Its
(forward) entropy rate is defined as [77]

σ+ = − lim
n→∞

1

n
∑

i1,...,in

Prob (Xn = in, . . . ,X1 = i1) log Prob (Xn = in, . . . ,X1 = i1),

if the limit exists. In the right-hand side there appears the entropy of the
joint probability distribution. For example, for independent and identically
distributed random variables, sampled with probability µ, the entropy rate
turns out to coincide with the entropy S(µ) of the stationary distribution2.
In case of stationary ergodic Markov chains having transition matrix Π =
(πij ≥ 0)i,j, with ∑i πij = 1, one can prove that

σ+ = −∑
i,j

πijp
ss
j logπij. (4.6)

2Notice that we use both S(µ) and S(X) to denote the entropy of a process.
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The entropy rate Eq.(4.6) is also known as Kolmogorov-Sinai entropy [79].
We now introduce the inverse probability distribution as the probability of
the inverse process,

Prob ∗(Xn = in, . . . ,X1 = i1) ∶= Prob (Xn = i1, . . . ,X1 = in) (4.7)

and define the entropy production rate at the steady state as

σ(pss) ∶= lim
n→∞

1

n
∑

i1,...,in

Prob (Xn = in, . . .) log
Prob (Xn = in, . . .)
Prob ∗(Xn = in, . . .)

(4.8)

where in the right-hand side we considered the relative entropy between the
forward probability with respect to the inverse probability. It can be shown
that the result is

σ(pss) = ∑
i<j

(πijpssj − πjipssi ) log
πij
πji
.

This approach shows that the definition of the entropy production rate con-
tains information about time-inversion of trajectories, consistently with the
spirit of the Second Law, which measures the degree of violation of time-
reversal invariance.

We now replicate this approach with continuous-time Markov chains. We
claim that the total entropy production satisfies

σ(t) = d

dt ∫
Dι Prob t(ι) log

Prob t(ι)
Prob t(ι∗)

, (4.9)

where trajectories elapse up time t, and we replaced limt→∞ t−1 with the time-
derivative so to generalize to non-steady states. We know from the proof of
the ergodic theorem that the time t′ ≥ t at which we evaluate the expectation
value is irrelevant. Then

σ(t) = Et′ [σι(t)] ,

where we defined the microscopic analogue of the entropy production along
a trajectory as

σι(t) ∶= d

dt
log

Prob t(ι)
Prob t(ι∗)

= σι
env(t) + σι

sys(t).
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Notice that setting t′ ≥ t allowed us to commute the time derivative and
the path integral in Eq.(4.9). In the right-hand side of the last equation
we introduced the environmental and the internal entropy production rates
along trajectories,

σι
env(t) ∶= ∑

m

log
wim+1im

wimim+1
δ(t − tm), (4.10a)

σι
sys(t) ∶= −∑

m

[Wp(t)]im
pim(t)

χ[tm,tm+1)(t). (4.10b)

Integrating over time:

Σι
sys(t) ∶= ∫

t

0
σι
sys(t′)dt′ = log pi0(0) − log pin(t) (4.11)

Σι
env(t) ∶= ∫

t

0
σι
env(t′)dt′ = ∑

m

log
wim+1im

wimim+1
,

where we defined the (integrated) environmental and internal entropy pro-
ductions. The internal entropy production is the difference between the so-
called self-information of the final state and that of the initial state – a
measure of the typicality of the occurrence of a state when sampled from a
probability distribution (see Ref. [80]). The total entropy production is

Σι(t) ∶= Σι
sys(t) +Σι

env(t) = log
Prob t(ι)
Prob t(ι∗)

, (4.12)

consistently with the Girsanov-Cameron-Martin property, Eq.(3.24).

Finally, we need to prove that Eq.(4.9) is consistent with Eq.(4.3). We
apply both ergodic theorems, Eqs.(3.20a,3.20b), obtaining:

σenv(t) = Et [σι
env(t)] , σsys(t) = Et [σι

sys(t)] . (4.13)

To resume, we introduced stochastic processes corresponding to the environ-
mental, the internal and the total entropy production rates, such that the
mesoscopic expressions are expectation values of the microscopic analogues.

Stochastic thermodynamics was initiate by Sekimoto [81]. A good general
review is the one by Seifert [82].
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4.3 Fluctuation theorems

Fluctuation Theorems [6–8] prescribe a time-reversal symmetry between ex-
treme fluctuations of non-equilibrium processes. The literature on the argu-
ment has literally exploded in the past fifteen years. We do not linger on
the physical meaning and mathematical premises, but head on steadfastly
to the derivation of Fluctuation Theorems in the context of Schnakenberg’s
analysis. Some reference works that might be propaedeutic to this section
are the ones by Lebowitz and Spohn [71], by Andrieux and Gaspard [16,21]
and by Faggionato and Di Pietro [19]. In these works Fluctuation Theorems
are derived by means of generating functions and Large Deviation Theory.
We proceed by a less-elegant, brute-force method which consists in direct
application of the path measure, as is done in Refs. [78, 83]. One advantage
is that, while Large Deviation Theory by its own nature only deals with the
long time behavior, yielding asymptotic-type relations, our approach allows
the derivation of more general transient relations. We will be very sketchy
and only concentrate on what is strictly necessary for deriving results.

Consider the discrete jump trajectory ι in Eq.(3.14) and the Girsanov-
Cameron-Martin property, which we have rewritten in Eq.(4.12) in terms
of the (integrated) entropy production. Given that the entropy production
along a trajectory is obviously antisymmetric under path inversion,

Σι∗(t) = −Σι(t), ,

and that the path measure is invariant, see Eq.(3.23), after some manipula-
tion of Eq.(4.12), and integrating over all trajectories with a given entropy
production value Σ̂ (time-dependence not shown),

∫ Dι δ (Σι − Σ̂)Prob (ι) = ∫ Dι δ (Σι − Σ̂)Prob (ι∗) exp Σι

= eΣ̂∫ Dι∗ δ (Σι + Σ̂)Prob (ι),

we obtain for any value of t the Transient Fluctuation Theorem

Prob [Σι ≡ Σ̂]
Prob [Σι ≡ −Σ̂]

= exp Σ̂. (4.14)

Given the splitting of the entropy production in Eq.(4.12), considering that
the internal entropy production only contributes a boundary term, while the
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environmental contribution grows linearly with time, we obtain the Asymp-
totic Fluctuation Theorem for the environmental entropy production rate

Prob [1
t ∫

t

0 σ
ι
env(t′)dt′ ≡ σ̂env]

Prob [1
t ∫

t

0 σ
ι
env(t′)dt′ ≡ −σ̂env]

t
≍ exp tσ̂env, (4.15)

where “
t
≍” is the symbol for asymptotic tendency at large times. We em-

phasize again that it is crucial for this to hold that integrating the internal
entropy production rate along a trajectory yields a boundary term, Eq.(4.11).
This finds correspondence in the fact that its path average is the total time
derivative of an ensemble average (namely, the Gibbs-Shannon entropy). The
Transient Fluctuation Theorem for the entropy production and the Asymp-
totic Fluctuation Theorem for the environmental entropy production rate are
usually found in the specialized literature [74].

In fact, we can do slightly better than Eq.(4.15). If we integrate over all
trajectories with fixed initial and final sites,

∫ Dι δit,j δi0,i δ(Σι
env −Σenv)Prob t(ι)

= pi(0)
pj(t) ∫

Dι δit,j δi0,i δ(Σι
env −Σenv)Prob t(ι∗) exp Σι

env,

we obtain the fixed-end points Fluctuation Theorem for the environmental
entropy production

Prob [Σι
env(t) ≡ Σ̂env, it = j, i0 = i]

Prob [Σι
env(t) ≡ −Σ̂env, it = i, i0 = j]

= pi(0)
pj(t)

exp Σ̂env.

Now, we suppose that rates are incommensurable, i.e. that the following
ratios are all irrational

wij
wkl

∈ R ∖Q, ∀ kl ≠ ij.

Find in Sec.5.3 a thorough discussion of this assumption. As a matter of fact,
systems with incommensurable rates are the overwhelming majority, as the
set of systems with commensurable rates has measure zero in the set of all
possible systems. It follows from the discussion in Sec.5.3 that trajectories
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which start at site i, with a given environmental entropy production Σ̂env

(see Eq.(4.12), if there exists any, necessarily end at the same site, and vice
versa for the inverse trajectories. Hence for almost all systems we have3

Prob [Σι
env(t) ≡ Σ̂env, i0 = i]

Prob [Σι
env(t) ≡ −Σ̂env, i0 = j]

= pi(0)
pj(t)

exp Σ̂env. (4.17)

Manipulating as usual the above expression, and summing over i and j we
obtain the Transient Fluctuation Theorem for the environmental entropy
production

Prob [Σι
env(t) ≡ Σ̂env]

Prob [Σι
env(t) ≡ −Σ̂env]

= exp Σ̂env.

Along this line, we move on to prove that similar fluctuation theorems
hold for the steady entropy production. We fix a spanning tree T . The
key ingredient is that the transient entropy production rate is the total time
derivative of an ensemble average

σdb = d

dt
∑
i

pi(t)[ − log pi(t) + Γi(t)].

Let us prove this fact. A cocycle current is the total current which flows
out of the source of the cocycle (we remind that a cocycle separates two
connected domains of the graph, the source and the target sets of the cocycle).
Then the macroscopic current along cocycle cµ∗ is the time derivative of the
total probability in the source set of the cocycle, see Eq.(1.37). We split its
conjugate internal force according to

A∗
µ = log

we∗µ
w−e∗µ

+ δe∗µ log p.

where the coboundary operator δe is defined by

δeε = εt(e) − εs(e), (4.18)

3In other words, with the exception of cycles we have

Prob [Σι
env(t) ≡ Σ̂env, it = j, i0 = i] = Prob [Σι

env(t) ≡ Σ̂env] δi,kδj,l (4.16)

where l and k are the unique states which allow a path with environmental entropy produc-
tion Σ̂env. Cycles need some further consideration. Summing over i, j, k, l yields Eq.(4.17).
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It is easily seen to be the transpose of the incidence matrix, δ = ∂T . We need
the following graph-theoretical result. Let f = (fi)i∈V be a function on the
vertex set. Then

∑
ι

Jµ∗ δe∗µf = (f, ∂j)V (4.19)

From the cycle/cocycle decomposition: ∑e jege = ∑α(cα, g)jeα +∑µ(c
µ
∗, j)ge∗µ .

In this case g = δf makes the circuitation along cycles vanish, (cα, δf) = 0,
from which we obtain ∑µ J

µ
∗ δe∗µf = (j, δf)E = (f, ∂j)V . Applying Eq.(4.19),

the transient entropy production rate results

σdb = d

dt
[S(t) + ∑

µ

log
we∗µ
w−e∗µ

∑
i∈S(cµ∗)

pi(t)].

Pulling out the probabilities we obtain the desired result, with

Γi = ∑
µ

S(c∗µ) ∋ i

log
we∗µ
w−e∗µ

,

where the sum over µ is carried over cocycles whose sources contain site i.
Let us work out a more intuitive expression for Γi. We can always choose
an orientation of the edges such that the fundamental spanning tree T is
oriented and rooted at some k, i.e. such that there exists a unique oriented
path γik along T which goes from i to k. Then

Γi = log ∏
e∈γik

we
w−e

.

For equilibrium systems we have

⟨Γ⟩p = ∑
i

piΓi = ∑
i

pi log pssi − log pssk

which up to an additive constant is the mutual information of state p with
respect to the steady state. It is independent of the particular spanning tree
chosen: in fact, for equilibrium systems σss = 0 implies that σdb is the same
for any choice of a fundamental spanning tree. Therefore ⟨Γ⟩ can be seen as
a measure of the peculiarity of the fundamental set chosen.

Integrating σdb over time yields the transient entropy production

Σdb(t) = S(t) − S(0) + ⟨Γ⟩p(t) − ⟨Γ⟩p(0). (4.20)
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The second step towards a Fluctuation Theorem is the definition of a
well-behaved stochastic process whose mean returns Σdb(t). We evaluate
− log pi + Γi along a trajectory, yielding as microscopic counterpart

Σι
db(t) = log pi0(0) − log pin(t) + Γin − Γi0 .

We write its time derivative in this form,

σι
db(t) = d

dt
Σι
db(t) = ∑

m

δ(t − tm) [log
pim+1(t)
pim(t)

+ Γim+1 − Γim] . (4.21)

The validity of this formula can be tested by direct integration (it is seen to be
consistent with the one involving step functions, Eq.(4.10b), once one realizes
its distributional character and the fact that Dirac deltas are derivatives of
Heaviside step functions).

Notice that Γi is well-behaved under composition of paths, i.e. Γi − Γj is
calculated along the unique path in T which goes from j to i,

Γim+1 − Γim = log ∏
e∈γim+1im

we
w−e

.

Then

σι
db(t) = ∑

m

δ(t − tm) log [pim+1(t)
pim(t)

⋅ ∏
e∈γim+1im

we
w−e

].

Inserting an edge-delta ∑e δt(e),im+1δs(e),im = 1 and rearranging logarithms:

σι
db(t) = ∑

e

jιe³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∑
m

δ(t − tm)δt(e),im+1δs(e),im ∑
ij∈γt(e)s(e)

log
wijpj(t)
wjipi(t)

.

The over-brace is used to define the fluctuating current along an edge, return-
ing a definition given by Andrieux and Gaspard [21]. The physical picture is
clear: microscopic currents spike whenever a jump along e occurs, giving a
contribution to the transient entropy production with a suitable weight.

We need another graph-theoretical identity:

σdb = ∑
µ

(e∗µ, a)(c
µ
∗, j) = ∑

e

je∑
e′∈γ

ae′ , (4.22)
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where γ is the unique path across the spanning tree T from the source vertex
of edge e to its target vertex. In fact, the right-hand side gives

∑
e

je(∑
e′∈γ

ae′ + ae − ae) = σ +∑
e

je(∑
e′∈γ

ae′ − ae) = σdb,

where we used the fact that the term between parenthesis vanishes when e is
a cochord, otherwise it coincides with −Aα when e = eα is a generating chord.

If we now subtract the transient term from the total microscopic entropy
production, applying Eq.(4.22)

σι
ss(t) = σι(t) − σι

db(t) = ∑
α

AαJ ι
α(t), J ι

α(t) ∶= jιeα(t)

which is easily identified as the microscopic steady entropy production rate.
Notice that the Aα’s are macroscopic affinities. They are path-independent,
and that they do not depend on time. They are non-fluctuating variables.

To resume, so far we managed to find a set of fluctuating microscopic
fundamental currents and a state-function such that the entropy production
rate along a trajectory can be written as

σι(t) = ∑
α

J ι
α(t)Aα +

d

dt
[− log pit(t) + Γit] .

Finally, the third and last step is to integrate over trajectories with fixed
end-points and given integrated fundamental currents (also known as Helfand
moments, [21]), obtaining

Prob [∫
t

0 j
ι
α(t′)dt′ ≡ Λα, i0]

Prob [∫
t

0 j
ι
α(t′)dt′ ≡ −Λα, it]

= pi0(0)
pit(t)

exp(∑
α

AαΛα + Γit − Γi0) , (4.23)

from which we derive a Conditional Fluctuation Theorem

Prob [∫
t

0 j
ι
α(t′)dt′ ≡ Λα∣i0]

Prob [∫
t

0 j
ι
α(t′)dt′ ≡ −Λα∣it]

= exp(∑
α

AαΛα + Γit − Γi0) .

Summing over the initial and final states in Eq.(4.23) we obtain the Tran-
sient Fluctuation Theorem for the currents, which is a generalization of the
Andrieux-Gaspard theorem:

Prob [∫
t

0 j
ι
α(t′)dt′ ≡ Λα]

Prob [∫
t

0 j
ι
α(t′)dt′ ≡ −Λα]

=
⟨exp−Γ⟩p(0)
⟨exp−Γ⟩p(t)

exp∑
α

AαΛα. (4.24)
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In the long-time limit the Andrieux-Gaspard theorem is recovered

Prob [1
t ∫

t

0 j
ι
α(t′)dt′ ≡ λα]

Prob [1
t ∫

t

0 j
ι
α(t′)dt′ ≡ −λα]

t
≍ exp t∑

α

Aαλα.

Finally, if we integrate over all trajectories with a given steady state en-
tropy production (that is, if we do not resolve single currents) we obtain the
Asymptotic Fluctuation Theorem for the steady entropy production rate,

Prob [1
t ∫

t

0 σ
ι
ss(t′)dt′ ≡ σ̂ss]

Prob [1
t ∫

t

0 σ
ι
ss(t′)dt′ ≡ −σ̂ss]

t
≍ exp tσ̂ss. (4.25)

4.4 Local detailed balance

We discuss in this and later sections the Local Detailed Balance ansatz,
which allows to give an intuitive physical interpretation of master equation
thermodynamics, including macroscopic affinities, which follows the spirit of
the Schnakenberg’s original motivation. Schnakenberg considered an auto-
catalytic reaction system in which the population of a chemical species X
can increase or decrease by one unity according to two independent chemical
reactions with molecule reservoirs A and B at fixed density, and stochiomet-
ric coefficients νA = νB = 1. While inhibition of one of the reactions yields
a detailed balanced open system which relaxes to equilibrium, when both
mechanisms concur the system reaches a nonequilibrium steady state, with
a net flux of molecules from one reservoir to the other. He commented that

“in our example, these transitions belong to independent chemical
reactions and thus have to be treated independently in the math-
ematical and physical considerations [. . . ] We stress this point
because for the purpose of a solution of [the master equation] it
is convenient to compress the two transitions formally into one.
This is a purely formal trick and must not be misinterpeted as a
physical change of the system”.

Let i be the population of X. The total rate at which a molecule is produced
or destroyed is resolved into two mechanisms

wi±1,i = w
(A)
i±1,i +w

(B)
i±1,i.
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Each set of rates independently satisfies detailed balance

w
(A)
i+1,i/w

(A)
i,i+1 = expβµA, w

(B)
i+1,i/w

(B)
i,i+1 = expβµB, (4.26)

where µA, µB are the chemical potentials. Direct calculation shows that all
affinities are integer multiples of the logarithm of

w
(A)
i+1,iw

(B)
i,i+1

w
(A)
i,i+1w

(B)
i+1,i

= τAB
τBA

= expβ(µB − µA). (4.27)

It can be shown (see Sec.5.3, Refs. [15, 84]) that this quantity is the ratio
of the average time τAB for producing a molecule with mechanism B and
annihilating it with mechanism A, with respect to the average time τBA in
which process A produces a molecule which is annihilated through B, at the
steady state. This yields a dynamical characterization of Schnakenberg’s
circuitations. On the other hand, there is a thermodynamical characteriza-
tion as the external forces which determine the nonequilibrium nature of the
system: in this case, they are the chemical potential difference, determining
a flux of matter. For general chemical reaction networks of dilute systems,
Schnakenberg’s affinities always have a similar interpretation; the complete
treatment can be found in Ref. [16].

We now abandon the chemical setting and only retain the idea that tran-
sition rates can be resolved into several mechanisms

wij = ∑
ν

w
(ν)
ij , (4.28)

each independently satisfying detailed balance

w
(ν)
ij /w(ν)

ji = expβ(ν)(εj − εi). (4.29)

where εi is some weight associated to state i. This assumption is known as
Local Detailed Balance [46]. In general, we will interpret the state’s weight
as an energy and the β(ν) as inverse temperatures of several independent
reservoirs; this will be the case in Sec.4.8, where we derive Eq.(4.29) for open
quantum systems. It’s simple however to make a generalization to open
systems which exchange both energy and particles, with

w
(ν)
ij /w(ν)

ji = exp [β(ν)(εj − εi) + µ(ν)(Nj −Ni)] , (4.30)
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and to any other situation where a state function of the system is coupled
to a conjugate parameter of the environment. From the graphical point of
view, we represent transition mechanisms by means of multiple edges (see
Fig.4.1a).

We referred to Local Detailed Balance as an assumption. Is Local De-
tailed Balance restrictive? At the level of the master equation, it is not:
given a set of arbitrary rates, one can always define an energy function and
a suitable number of temperatures such that transition rates satisfy local
detailed balance. For this reason we prefer to talk about the Local Detailed
Balance ansatz. In fact, there exists an equivalence class of reservoirs which
give rise to the same collection of rates. We say that rates satisfy the con-
dition of minimal coupling: each transition is due to only one mechanism;
as we will see, considering more than one mechanisms per rate modifies the
thermodynamical description. Choose a spanning tree T . Fixing one ground
value εk of the energy at k and one reference temperature β, the energy levels
of the system are uniquely determined by

wij/wji = expβ(εj − εi), ij ∈ T, (4.31)

along the links of the spanning tree. Along the remaining C = E −V +1 links
we define a cyclomatic number of temperatures β(ν) such that

wij/wji = expβ(ν)(εj − εi), ij ∈ E ∖ T. (4.32)

Considering that εk and β are arbitrary, it takes V − 1 energy levels and
C − 1 temperatures to realize a minimal coupling reservoir for a given set of
transition rates.

a) b) c)

Figure 4.1: a) Multiple transitions for an oriented graph. Convex, concave
and straight edges correspond to three different mechanisms. b) A non-
topological cycle. c) A topological cycle.
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We will talk of “lumping” when we coarse grain, by considering the sum
over mechanisms as in Eq.(4.28). Let us define the partial generators

[W (ν)p]
i
= ∑

j

j
(ν)
ij = ∑

j

(w(ν)
ij pj −w

(ν)
ji pi) . (4.33)

For example, as Schnakenberg observes, the full dynamics coincides with
the dynamics of the lumped system, since W = ∑νWν is the generator of a
linear differential equation. In other words, resolution of mechanisms does
not affect the dynamics of the system, as the currents add according to a
parallel reduction rule

jij = ∑
ν

j
(ν)
ij .

However, it does affect the thermodynamics, as we move on to discuss.

4.5 Clausius circuitations

We briefly describe the master equation thermodynamics in the light of local
detailed balance, which was extensively studied by Esposito and Van den
Broeck [46]. We momentarily allow for an explicit time dependence of the
energy levels, εi(t). All other time-dependencies will not be displayed. The
ν-th mesoscopic force along edge ij reads

a
(ν)
ij = ln

w
(ν)
ij pj

w
(ν)
ji pi

= β(ν)[εj(t) − εi(t)] + ln
pj
pi
. (4.34)

We define as local entropy production rate

σ = 1
2 ∑
i,j,ν

j
(ν)
ij a

(ν)
ij , (4.35)

Notice that it differs from the entropy production rate, Eq.(4.3), which after
substitution of the lumped mesoscopic force Eq.(4.28) becomes

σ̃ = 1
2 ∑
i,j,ν′

j
(ν)′
ij ln

∑ν w
(ν)
ij pj

∑ν w
(ν)
ji pi

.
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By the log-sum inequality [77], the former is easily shown to never be smaller
than the latter

σ ≥ σ̃ ≥ 0.

Hence, if we did not resolve transition mechanisms, we would systematically
underestimate the entropy production rate. In particular, it can occur that
the lumped transition rates satisfy (global) detailed balance while the system
is locally non-equilibrium. Plugging Eq.(4.34) into the entropy production
rate Eq.(4.35) we obtain

σ = 1
2 ∑
i,j,ν

j
(ν)
ij {β(ν)[εj(t) − εi(t)] + ln

pj
pi

} = −∑
ν

β(ν)q(ν) + Ṡ(p), (4.36)

where we defined the heat flow from the ν-th reservoir as

q(ν) = − (ε,W (ν)p) . (4.37)

Here ( ⋅ , ⋅ ) is the euclidean scalar product over the vertex set. Notice that
q(ν) is not a total time derivative, which ultimately is the reason behind the
nonequilibrium character. Defining the work rate w = ⟨ε̇⟩p and the average
energy E = ⟨ε⟩p, we are able to give a suggestive detailed version of the First
Law of Thermodynamics

Ė = w +∑
ν

q(ν) . (4.38)

The forthcoming argument shows that the heat flows introduced in Eq.(4.37)
have a natural tendency to flow from the hotter to the colder reservoir, con-
sistently with common intuition. At a steady state the heat flows balance,

∑ν q
(ν) = 0, and the relative entropy term in Eq.(4.36) vanishes. We suppose

that ν = 0 corresponds to the reservoir at lowest temperature β = β(0), and
introduce the driving forces conjugate to the heat flows, χ(ν) = β − β(ν) ≥ 0.
Notice that χ(ν)/β is the Carnot efficiency of the ν-th reservoir. Then

σ(pss) = ∑
ν

χ(ν)qss(ν). (4.39)

Considering a two-reservoir system, we obtain σss = χ(1)q(1); since the driving
force is positive and the entropy production is positive, the steady heat flux
is positive. At a steady state, the system is the intermediary for the heat
flow from the hotter to the colder reservoir.
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We now consider our Schnakenberg-type decomposition of the entropy
production rate. For simplicity, we restrict to systems which satisfy the
maximal coupling condition, where all transitions can be due to all mech-
anisms. Let N + 1 be the number of mechanisms (Fig.4.2a). The opposite
situation of minimal coupling is also very simple. Actual physical systems
in fact lie in the middle, with some transitions due to some baths and some
others due to other baths; the following results become more complicated
and laborious — and will not be discussed here. From a graph-theoretical
point of view, we distinguish between the graph of the system, with multiple
edges between states depicting different mechanisms, and its backbone graph,
where multiple edges are lumped. There exist two kinds of cycles in a graph
with multiple edges. Non-topological cycles are enclosed by two different
mechanisms along one edge of the backbone graph (Fig.4.1b). Topological
cycles run along cycles of the backbone graph, taking up varied tempera-
tures along the path (see Fig.4.1c). Let for definitiveness cycle c run through

states im, and let e
(νm)
m be the edge connecting im to im+1. The Schnakenberg

affinity along c reads

A(c) = −∑
m

β(νm)(εim+1 − εim) = − ∮
c

δε

T
,

where in the right-hand side we give a suggestive notation, in units where
Boltzmann’s constant kB = 1. We call these quantities the Clausius circui-
tations.

Spanning trees of a graph with multiple edges can be found by choosing

a) b)

c)

Figure 4.2: a) Maximally coupled three-state system with two reservoirs. b)
The lowest temperature basis. c) A basis of fundaental cycles: two topolog-
ical and two non-topological. The first topological cycle has null affinity.
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a spanning tree of the backbone graph and picking an arbitrary temperature
for each edge. Our choice falls on an arbitrary topological spanning tree
whose fundamental cochords all have lowest temperature (see Fig.4.2b). We
now evaluate the steady entropy production rate, Eq.(1.33), in the lowest-
temperature basis. Each topological cycle comes in N + 1 copies cα(ν), ac-
cording to choice of the fundamental chords eα(ν),

A (cα(ν)) = − β ∑
e∈cα/eα

δeε − β(ν)δeαε = χ(ν)δeαε.

The affinity corresponding to ν = 0 vanishes (Fig.4.2c). The topological
contribution to the steady entropy production rate then reads

∑
ν

χ(ν)∑
α

j
(ν)
eα δeαε. (4.40)

To each backbone cochord e∗µ are associated N non-topological affinities

χ(ν)δe∗µε (Fig.4.2c). Their conjugate currents j
(ν)
e∗µ

flow along the ν-th mecha-

nism of cochord e∗µ. We obtain a contribution to the steady entropy produc-
tion rate coming from nontopological cycles,

∑
ν

χ(ν)∑
µ

j
(ν)
e∗µ
δe∗µε. (4.41)

Since chords and cochords exhaust the edge set, given eqs.(4.40, 4.41) the
steady state EP is the sum over all possible edges and all mechanisms

σss = ∑
ν

χ(ν)q(ν), (4.42)

which is in the form of the typical Onsager bilinear expression of the forces
(temperature differences) and conjugate (heat) fluxes. At the steady state
it coincides with Eq.(4.39). Remarkably, Eq.(4.42) does not depend on the
backbone spanning tree, while it does depend on the choice of the lowest
temperature basis. A different choice will add to this term a total time
derivative. Taking Eq.(4.38) into account we obtain

σss = −∑
ν

β(ν)q(ν) + β(Ė −w). (4.43)

Finally, using Eq.(4.36) the transient entropy production rate results

σdb = (Ṡ − βĖ) −w = − βḞ −w,
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where F is the Hemholtz free energy. The splitting of the entropy production
rate σ = σss + σdb is one of many possible splitting. Esposito and Van den
Broeck considered a splitting in an adiabatic term and a non-adiabatic term.
Our splitting depends on the choice of basis. Any two splittings are related
by a shift of a total time derivative from one term to the other. We will
interpret in Ch.6 such shifts as due to gauge transformations. In our case,
when the energy levels have no explicit time dependence, we obtain for the
transient entropy production rate the time derivative of (minus beta) the
Hemholtz free energy.

4.6 Linear regime for the heat fluxes

In this section we expand Local Detailed Balance rates near a set of equi-
librium rates and perturb them by varying the reservoirs’ temperatures. We
then investigate the linear response of the heat fluxes in the case where the
state of the system is held fixed, resulting in a quench.

Locally detailed balanced rates can always be written as

w
(ν)
ij = v

(ν)
ij exp[β(ν)(εj − εi)/2].

In fact, ln v
(ν)
ij and β(ν)(εj − εi)/2 are respectively the symmetric and the

antisymmetric part of the logarithm of the transition rates. When the hot-
ter reservoirs’ temperatures are approximately equal to the coldest, we can
expand to first order

w
(ν)
ij = w̄

(ν)
ij [1 − χ(ν)(εj − εi)/2] , (4.44)

where

w̄
(ν)
ij = v

(ν)
ij exp[β(εj − εi)/2]

are detailed-balanced rates with respect to the canonical distribution, and
the temperature differences χ(ν) are small. The perturbed partial generator
is W (ν) = W̄ (ν)+δW (ν). We suppose that the (non-steady) state of the system
p = p̄ ss+δp is close to the unperturbed equilibrium steady state. Notice that,
being equilibrium, L̄(ν)p̄ ss = 0,∀ν. Using Eq.(4.37), the heat flows result

q(ν) = − (ε, [W̄ (ν) + δW (ν)][p̄ ss + δp] )

= q̄(ν) + χ
(ν)

2
∑
i,j

εi [w̄(ν)
ij (εj − εi)p̄ ssj − w̄(ν)

ji (εi − εj)p̄ ssi ] (4.45)
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where

q̄(ν) = − (ε, W̄ (ν)p)V

is the ν-th heat flux in state p, calculated using the unperturbed generator.
Using the fact that the w̄

(ν)
ij ’s satisfy detailed balance, we can work out the

last term in Eq.(4.45) to obtain

q(ν) = q̄(ν) +L(ν)χ(ν), (4.46)

where the linear response coefficient L(ν) reads

L(ν) = ⟨εW (ν)† ε⟩
p̄ss

= ∑
i,j

p̄ ssi εi w̄
(ν)
ji (εj − εi). (4.47)

Notice that q(ν) and q̄(ν) are calculated in the same close-to-equilibrium state.
Therefore L(ν)χ(ν) quantifies the additional heat flux that one obtains from
the ν-th reservoir due to a sudden modification of the characteristics of the
system, something that might be called a quench. Interestingly, when this
occurs there are no off-diagonal Onsager cross-coefficients. This might be a
bit surprising, but it has a simple physical interpretation. When one abruptly
modifies the temperature of the ν-th reservoir, heat starts flowing into the
system, which will eventually heat up and yield some of its heat to lower-
temperature reservoirs, until the steady state is reached. At that point, the
linear response matrix has developed off-diagonal terms

qss(ν) = ∑
ν′
L(νν′)χ(ν)′ , L(ν≠ν′) = − δ

δχ(ν)′ ⟨W̄
(ν)†ε⟩

pss
∣
χ=0

,

where the dependence on χ comes through the linearly perturbed nonequi-
librium steady state pss = pss(χ). Notice that by Eq.(4.37)

∑
ν

qss(ν) = 0,

which implies

∑
ν

L(νν′) = 0.

Then L(νν′) is a stochastic matrix. Finally, notice that Eq.(4.47) has some
similarity with the Kubo representation of linear phenomenological coeffi-
cients. We will specify this point in Sec.(4.7).
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4.7 Green-Kubo relations for the heat fluxes

Let us define a microscopic stochastic process corresponding to the rate of
heat exchange with the ν-the reservoir:

q
(ν)
ι (t) = β(ν)∑

m

δνm,νδ(t − tm)δemε

where νm is the mechanism responsible for the m-th transition. Here δνm,ν is
the Kroenecker delta, δ(t − tm) is the Dirac delta and δem is the coboundary
operator, see Eq.(4.18).

Along the same lines as above, the following transient Asymptotic Fluc-
tuation Theorem is proven,

Prob [1
t ∫

t

0 q
(ν)
ι (t′)dt′ ≡ q(ν)]

Prob [1
t ∫

t

0 q
(ν)
ι (t′)dt′ ≡ −q(ν)]

t
≍ exp∑

ν

χ(ν)q
(ν). (4.48)

Following the same line of reasoning as in Ref. [16], we use this to prove
that heat fluxes near equilibrium are reciprocal. We will be very sketchy,
the interested reader should look at the references for greater detail. Let us
introduce the cumulant generating function

C [λ(ν), χ(ν)] = lim
t→∞

1

t
log E[ exp−∑

ν

λ(ν)∫
t

0
q
(ν)
ι (t′)dt′].

By virtue of the FT, it is easily shown to satisfy symmetry

C [λ(ν), χ(ν)] = C [χ(ν) − λ(ν), χ(ν)] .

We can derive the response coefficients by taking derivatives of the generating
function

L(νν′) = − 1

2

∂2C

∂λ(ν)∂λ(ν′) (0,0)

which is obviously symmetric. This formula also yields L(νν′) in terms of
self-correlations of the microscopic heat fluxes:

L(νν′) = 1

2 ∫
∞

−∞
dt E{(q(ν)ι (t) −E[q(ν)ι (t)]) (q(ν

′)
ι (0) −E[q(ν

′)
ι (0)])} .
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4.8 Independent reservoirs in OQS

In this section we derive the Local Detailed Balance condition for open quan-
tum systems weakly interacting with several independent and infinitely large
heat baths. We choose to work with quantum, instead of classical, systems
in that they allow a simple and general derivation, because it’s an area where
concepts of nonequilibrium thermodynamics and geometry discussed in this
thesis might be fruitfully applied, because it is reasonable to consider the
discrete states visited by a master equation as labeled by the discrete energy
eigenstates of a quantum systems, and finally because the quantum equation
we will derive typically has decoherence times that are much faster than the
relaxation times, so that after a transient such systems behave classically. We
retrace the microscopic derivation of the Lindblad equation as found in the
book by Breuer and Petruccione [85, Part II, §3.3.1] (BP in the following),
generalizing it to the case of many heat reservoirs. The reader should con-
stantly rely on the cited reference in order to be able to follow this otherwise
rather scholarly exercise. We set h̵ = 1.

The setup is as follows. A quantum system (S) interacts with the envi-
ronment (B). For simplicity, the Hilbert space of the system is supposed to
be finite-dimensional. Suppose that the Hilbert space of the environment is
further resolved into Hilbert spaces of several heat baths, labeled by ν,

H = HS ⊗HB, HB = ⊗
ν
H(ν)
B .

To the total time-independent hamiltonian,

Ĥ = ĤS + ĤB + Ĥint, ĤB = ∑
ν

Ĥ
(ν)
B , Ĥint = ∑

ν

Ĥ
(ν)
int ,

there contribute the internal energies of the system and of each bath

ĤS = HS ⊗ I, Ĥ
(ν)
B = H

(ν)
B ⊗ I,

where HS acts on HS, H
(ν)
B acts on H(ν)

B and the unit operators have suitable
dimensionality accounting for the remaining degrees of freedom. As to the
interaction hamiltonian, we assume that the reservoirs are independent one
of each other, i.e., they do not interact among themselves,

Ĥ
(ν)
int = H

(ν)
int ⊗ I,
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where H
(ν)
int acts on HS ⊗H(ν)

B . Finally, the density matrix of the system is
prepared in a completely factorized state at time t = 0,

ρ(t) = ρS(t)⊗ ρB, ρB =⊗
ν
ρ
(ν)
B , t = 0. (4.49)

The goal is to find a closed equation for the evolution of the state of the
system ρS(t), working out the interaction picture von Neumann equation

d

dt
ρ(t) = − i[Ĥint(t), ρ(t)].

The time dependence of Ĥint(t) is not due to an explicit time dependence
of the hamiltonian, but only to the interaction picture. There are several
assumptions and approximations involved in the derivation. The first is (i)
the weak coupling assumption, which comes into play after one retains only
terms up to second order in the integro-differential equation

d

dt
ρ(t) = − i[Ĥint(t), ρ(0)] − ∫

t

0
ds [Hint(t), [Hint(s), ρ(s)]]. (4.50)

It is then supposed that (ii) the state remains approximately factorized at
all later times, and that the state of the environment is not influenced by
the system, hance it does not change in time (Born approximation), so that
Eq.(4.49) holds at all later times. Taking the trace over the heat bath degrees
of freedom in (4.50) we obtain

d

dt
ρS(t) = − ∫

t

0
ds trB [Ĥint(t), [Ĥint(s), ρS(s)⊗ ρB]] ,

where we also assumed that

trB[Ĥint(t), ρS(0)⊗ ρB] = 0. (4.51)

It is assumed (iii) that the future evolution of the system does not explicitly
depend on the past history of ρS(s) but only on its present value (Markov
approximation), yielding the so-called Redfield equation

d

dt
ρS(t) = − ∫

t

0
ds trB [Ĥint(t), [Ĥint(s), ρS(t)⊗ ρB]] .

This equation still depends on the initial preparation at time t = 0, thus it is
not markovian yet. Markovian dynamics arises at large times, when (iv) the
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initial instant is set in the far past. We send it to −∞ by making a change
of variables s↦ t − s,

d

dt
ρS(t) = − ∫

∞

0
ds trB [Ĥint(t), [Ĥint(t − s), ρS(t)⊗ ρB]] . (4.52)

The pathway to the last approximation is more troubled. We do not repro-
duce the full discussion here, and refer to [BP], with the following modifi-
cations due to the presence of several heat baths. Decomposing the tensor
product, the ν-th interaction hamiltonian can be written as

Ĥ
(ν)
int = ∑

α

A
(ν)
α ⊗ B̂(ν)

α , B̂
(ν)
α = B(ν)

α ⊗ I

where A
(ν)
α acts on HS, B

(ν)
α acts on H(ν)

B and the identity acts on the remain-
ing bath degrees of freedom. Notice that the span of α in general depends
on ν; we do not keep track of this in the notation. We shall then plug into
Eq.(4.52) the interaction hamiltonian

Ĥint(t) = ∑
ν
∑
α

A
(ν)
α (t)⊗ B̂(ν)

α (t), (4.53)

after we solve its Schroedinger picture evolution. This is achieved by ex-
pressing the A

(ν)
α in a basis of eigenoperators, a sort of operatorial Fourier

expansion is terms of the discrete energy gaps ω in the spectrum of the sys-
tem’s hamiltonian. The microscopic derivation follows unmodified up to [BP,
eqs.(3.132, 3.133)]. The Schroedinger picture bath interaction term reads

B̂
(ν)
α (t) = exp [iĤ(ν)

B t] B̂(ν)
α exp [−iĤ(ν)

B t] .

Eq.(4.52) turns into

d

dt
ρS(t) = ∑

ν,ν′
∑
ω,ω′

∑
α,β

ei(ω
′−ω)tΓ

(νν′)
αβ (ω)

[A(ν)′
β (ω)ρS(t)A(ν)

α (ω′)† −A(ν)
α (ω′)†A

(ν)′
β (ω)ρS(t)] + h.c. (4.54)

(h.c. = hermitian conjugate), where we introduced the half-Fourier transforms
of the self-correlation functions

Γ
(νν′)
αβ (ω) = ∫

+∞

0
ds eiωs ⟨B̂(ν)

α (s)†B̂
(ν)′
β (0)⟩

ρB
,
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each cross-term Γ
(ν≠ν′)
αβ (ω) measuring correlations between different baths.

We remind that the average is taken with respect to the state of the environ-
ment, which factorizes at all times, and that we are working in the interaction
picture. Eq.(4.51) becomes

∑
ν
∑
α

trν {B(ν)
α ρ

(ν)
B } [A(ν)

α , ρS(0)] = 0

which holds independently of the initial state of the system, implying

⟨B(ν)
α (t)⟩ = trν {ρ(ν)B B

(ν)
α (t)} = 0,

where we trace over the ν-th bath degrees of freedom. It follows that cross-
bath correlations and their half-Fourier transforms vanish. Finally, (v) the
rotating-wave approximation consists in approximating the exponential term
ei(ω

′−ω)t with δωω′ . This is justified when the bath correlation functions de-
cay sufficiently fast with respect to the typical relaxation times. One then
decomposes Γ

(νν)
αβ (ω) in its real and imaginary parts [BP,(Eq.3.127)], and de-

fines the effective hamiltonian Heff and, more importantly, the Lindbladian
dissipator L = ∑ν L(ν), with

L(ν)ρS = ∑
ω,α,β

γ
(ν)
αβ (ω)[A(ν)

β (ω)ρSA(ν)
α (ω)† − 1/2{A(ν)

α (ω)†A
(ν)
β (ω), ρS} ],

where the γ’s are Fourier transforms of the baths’ correlation functions,

γ
(ν)
αβ (ω) = ∫

+∞

−∞
ds eiωs trν {ρ(ν)B B̂

(ν)
α (s)†B̂

(ν)
β (0)} .

The Lindblad equation reads

d

dt
ρS = − i[Heff , ρS] +LρS. (4.55)

We do not give the explicit expression for the effective hamiltonian term,
which does not contribute to the evolution of populations. An important
property is that it commutes with the system’s hamiltonian, [Heff ,HS] = 0.

We can now formulate the Local Detailed Balance assumption: each bath
is prepared in a thermal state with canonical ensemble

ρ
(ν)
B =

exp−β(ν)H
(ν)
B

trν exp−β(ν)H
(ν)
B

.
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By the Kubo-Martin-Schwinger condition on the correlation functions,

trν {ρ(ν)B B
(ν)
α (s)†B

(ν)
β (0)} = trν {ρ(ν)B B

(ν)
β (0)B(ν)

α (s + iβ(ν))†} ,

we obtain the fluctuation relations [BP, Eq.(3.149)]

γ
(ν)
αβ (ω) = γ

(ν)
βα (−ω) expβ(ν)ω. (4.56)

When all temperatures coincide, the thermal state exp−βHS can be shown
to be the steady state of the Lindblad equation (if ergodic).

The last steps for connecting the theory of the quantum master equa-
tion and the classical master equation is choosing a basis and projecting the
Lindblad equation on it. Among the many possibilities, the following two
choices are meaningful. The first is the time-dependent basis where the den-
sity operator is diagonal at all times, which is attained via a time-dependent
unitary transformation U(t),

ρS(t) =∑
i

∣i(t)⟩pi(t) ⟨i(t)∣.

The diagonalized master equation reads

ṗi(t) = ∑
ν
∑
j

[w(ν)
ij (t)pj(t) −w(ν)

ji (t)pi(t)] (4.57)

with time-dependent transition rates

w
(ν)
ij (t) =∑

ω
∑
α,β

γ
(ν)
αβ (ω)⟨i(t)∣A(ν)

β (ω)∣j(t)⟩⟨j(t)∣A(ν)
α (ω)∣i(t)⟩.

In this basis the Lindblad equation has the form of a classical-looking time-
dependent master equation, and in principle it allows to define the thermody-
namics, fluctuation theorems etc. [86]. However, there is an important caveat.
To obtain the transition rates, one should know the diagonalizing unitary ba-
sis, and this is only possible if one first solves the Lindblad equation itself.
So we have a conceptual loophole.

To be precise, this microscopic derivation identifies a class of Lindblad
equations. The Lindblad equation, in all its generlity, is obtained as the time
derivative of a generic dynamical map ρS → V(t)ρS which is trace-preserving,
convex linear, completly positive and which satisfies the semigroup property.
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While the latter basis can be defined for any lindbladian semigroup genera-
tor, systems which correspond to the above microscopic derivation enjoy the
existence of the energy basis

HS = ∑
i

εi∣i⟩⟨i∣.

It can be shown that in this basis the equations for the populations and for
the coherences decouple, the first yielding the so-called Pauli master equation
with time-independent rates

w
(ν)
ij = ∑

α,β

γ
(ν)
αβ (εj − εi)⟨j∣A(ν)

α ∣i⟩⟨i∣A(ν)
β ∣j⟩.

Finally, using Eq.(4.56), and after a simple manipulation of the indices, we
derive the Local Detailed Balance condition

w
(ν)
ji = w

(ν)
ij expβ(ν)(εj − εi). (4.58)

Local detailed balance will play an important role for the interpretation of
our geometrical theory of gauge transformations in thermodynamical terms.
We gave a quantum-mechanical derivation; it would be (more than) an in-
teresting exercise to provide for a classical stochastic derivation through the
brownian motion of mesoscopic particles subject to several independent baths
of microscopic particles. On the other hand, the quantum-mechanical deriva-
tion poses many interesting questions on its own. Given an arbitrary state of
the environment, under what conditions can we represent it as a collection
of locally detailed balanced reservoirs? Keeping track of the interaction be-
tween baths seems to be a very hard task, but it’s interesting to inquire how
to account for initial-time coherences between noninteracting baths. While
we can study the classical thermodynamics of the Pauli master equation, one
would expect that quantum nonequilibrium thermodynamics should be based
on the Von Neumann entropy, accounting for the (independent) behavior of
the coherences. It would be a major result to define a consistent nonequi-
librium thermodynamics for a generic markovian semigroup generator, for
example by giving conditions on the Lindblad operators that satisfy detailed
balance analogous to the Kolmogorov criterion. More specifically, the defini-
tion of entropy production rate is still elusive even for microscopically-derived
Lindblad equations. In this respect, Local Detailed Balance might serve the
purpose as Eq.(4.36) can be extended to quantum systems

σ = −∑
ν

trS {L(ν)ρS (lnρS − lnµ(ν))} (4.59)
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where

µ(ν) = exp−β(ν)HS

trS exp−β(ν)HS

(4.60)

is the canonical quantum measure with respect to temperature β(ν). This for-
mula generalizes [BP,(Eq.3.99)] including a non-vanishing term at a nonequi-
librium steady state. A quantum term due to coherences is only included in
the time derivative of the Von Neumann entropy term trS {LρS lnρS}, while
the additional term is analogous to its classical counterpart. Difficult to say
whether this is fully satisfactory. A test-bed for the formula would be its
positivity. Furthermore, as we briefly discussed in Sec.(4.4), Local Detailed
Balance is not restrictive for classical master equations, as for a given set of
rates one can always find a set of temperatures and of energy levels for which
Local Detailed Balance holds, reproducing correctly the thermodynamics of
the system. If this procedure could be replied for a generic Lindblad gen-
erator or for a microscopically derived generator whose bath’s state is not
canonical, this would make Eq.(4.59) of much wider applicability.

The nonequilibrium thermodynamics of Lindblad-type systems is dis-
cussed in [86,87]. A tentative definition of entropy production rate for open
quantum systems is given in [88]. On the definition of detailed balance for
quantum markovian semigroups [89–91]. A recent article [92] discusses a
fluctuation theorem for quantum markovian systems.
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5

Steady states

There exists a well-known graph theoretical expression for the steady state
of a master equation in terms of rooted oriented spanning trees. In Sec.5.1
we introduce the expression and discuss the so-called matrix-tree theorems
associated to it. In Sec.5.2 we give a simple proof, and in Sec.5.3 we further
linger on certain combinatorial aspects associated to the cycle fluxes of a
Markov process, re-deriving a result by Hill [15] by means of the Fluctuation
Theorem. We then briefly discuss the relationship between the canonical
equilibrium partition function and a nonequilibrium analogous expression,
finding that the nonequilibrium partition function also retains some infor-
mation on the linear regime.

5.1 Matrix-tree theorems

A spanning tree is a subset T of the edge set of a graph which satisfies the
following properties:

- Contains no cycles;

- Has V − 1 edges;

- Connects all vertices.

Any two of the above suffice to characterize a spanning tree. It follows that
in a spanning tree there exists only one path between any two vertices. We
can choose one particular vertex i as the root and orient all edges of the
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spanning tree so that there is a unique oriented path from any other vertex
to the root. In this case we talk of an oriented rooted spanning tree Ti.

Let π(A) be the evaluation function, which takes the product of all tran-
sition rates along edges of an oriented subgraph A,

π(A) = ∏
e∈A

we.

The Kirchhoff state associated to the set of transition rates w = (wij)i,j is

zi = Zi(w)
Z(w)

= ∑Ti π(Ti)
∑j∑Tj π(Tj)

, (5.1)

where ∑Ti ranges over all rooted oriented trees, and we defined the homoge-
neous polynomials of degree V − 1 in the transition rates

Zi(w) ∶= ∑
Ti

π(Ti), Z(w) = ∑
j

Zj(w).

The Kirchhoff’s state coincides with the steady state of the master equation,
pssi = zi. We give a purely graph-theoretical of this fact in Sec.5.2. On
the other hand, it’s simple to derive an algebraic formula for the steady
state [94]. Since W has only one eigenvector relative to eigenvalue zero, it
has null determinant but non-null minors. Choosing row i and expanding
the determinant through Laplace’s formula,

detW = ∑
j

Wij(−1)i+j detW∖(i,j) = 0,

we read off that the i-th vector of cofactors ((−1)i+j detW∖(i,j))j∈V is a null
eigenvector of L. Remember that eigenvalue zero has multiplicity one, hence
all such vectors, for different i, are collinear. By comparison with the steady
master equation, we obtain

pssj ∝ (−1)i+j detW∖(i,j), ∀i.

Since detL∖(i,j) is homogeneous of degree V − 1 in the transition rates, it is
necessarily true that

Zj(w) = ∑
Tj

∏
e∈Tj

we = (−1)i+j detW∖(i,j), (5.2)
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independently of the i-th row which is eliminated from L; notice instead that
it is crucial that the j-th column be fixed. This is known as the matrix-
tree theorem for weighted oriented graphs. It is the important result of
this section. From now on we linger on further inessential algebraic and
graph-theoretical considerations. We first consider the reduced dynamics
introduced in Sec.(3.2). The normalized reduced steady state reads

p̃ssi = (W̃ −1w)i = ∑
j

(−1)i+j det W̃∖(j,i)

det W̃
wj,

where the inverse of W̃ has been expressed in terms of the transposed matrix
of cofactors. We remind that p̃ss is obtained from p by removing the k-th
entry, that W̃ is the reduced laplacian Eq.(3.5) and that w is the k-th column
of W , with the k-th entry removed. Since p̃ssi is the ratio of two homogeneous
polynomials, we are allowed to identify

Zi(w) = ∑
j

(−1)i+j det W̃∖(j,i)wj, Z(w) = det W̃ ,

yielding a simple expression for the normalization polynomial Z(w) as the
determinant of the reduced density matrix. Consider now the characteristic
polynomial of the generator

ξ(λ) = det (λ1 −W ) =
V

∑
v=0

Cv(w)λv,

where coefficient Cv(w) is a polynomial of degree V − v in the transition
rates. A theorem in linear algebra states that the v-th coefficient of the
characteristic polynomial is (−1)V −v the sum over all principal minors of W
with V − v rows and columns, where a principal minor is the determinant
of the submatrix obtained by removing rows i1, . . . , iv and the corresponding
columns [95, Sec.1.2]. It is understood that when V = v, whereupon we
should be removing all rows and columns of W , we set CV = 1. On the
opposite side, when v = 0, the only minor is detW = 0, hence C0 = 0. When
v = V − 1, we obtain the diagonal elements of W ,

CV −1(w) = − trW = ∑
i,j

wij. (5.3)

The above examples, C0, CV −1 and CV , are somewhat trivial. We are mostly
interested in C1, which by the above discussion coincides with (−1)V −1 the
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sum over all principal minors obtained by removing one row and column. By
Eq.(5.2), we obtain

C1(w) = (−1)V −1∑
i

Zi(w) = (−1)V −1Z(w). (5.4)

On the other hand, we can express ξ(λ) in terms of its roots, the eigenvalues
λα. Besides eigenvalue zero, there are real eigenvalues, labeled by ι, and
possibly couples of complex conjugate eigenvalues λκ ± iωκ, so that

ξ(λ) = λ∏
α

(λ − λα) = λ∏
ι

(λ − λι)∏
κ

[(λ − λκ)2 + ω2
κ].

Expansion in powers of λ is a dull exercise, and it leads to an expression
for the coefficients of the characteristic polynomial as a sum of products of
eigenvalues and as a sum over principal minors [95, Theorem 1.2.12]. As an
example, coefficient C0 is obviously zero and CV = 1 by construction. As to
CV −1, we have

CV −1(w) = −∑
α

λα = − trW, (5.5)

consistently with Eq.(5.3). Finally,

(−1)V −1C1(w) = ∏
α

λα = ∏
ι

λι∏
κ

(λκ + ωκ)2 = Z(w). (5.6)

To resume, the coefficient of the characteristic polynomial relative to λ is the
sum over all roots and all rooted spanning trees of the graph. In fact, this
result generalizes to the other coefficients of the characteristic polynomial [31,
Theorem 7.5], and it is a consequence of the all-minors matrix-tree theorem
[96]. The generalization of a spanning tree is a forest F , which is a subgraph
of G with no cycles. A forest with E(F ) = E − 2 edges can be obtained
from a spanning tree by removing one edge; the vertex set is then necessarily
disconnected in two components V1 and V2 (one can eventually be an isolated
vertex). Each component can be assigned a root i1, i2, and edges can be
oriented so that there exists a unique path from any other vertex to either
one of the roots. This defines a rooted oriented forest Fi1,i2 with E −2 edges,
and we can proceed similarly for more sparse forests. The v-th coefficient of
the characteristic polynomial then reads

Cv(w) = (−1)V −v ∑
i1,...,iv
i1≠...≠iv

∑
Fi1,...,iv

π(Fi1,...,iv)
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where Fi1,...,iv spans over all forests on E − v edges with given roots.
Let us briefly state a few specializations of the matrix-tree theorem. When

W is symmetric, by simple inspection of the steady master equation the
steady state is seen to be uniform, pss = (1/V, . . . ,1/V ). Then all cofactors of
W are equal to each other and equal to the spanning tree polynomial, which
in turn is the product of the non-null eigenvalues of the laplacian

Z(w) = V Zi(w) = ∏
α

λα.

To conclude, when W is the laplacian matrix of a graph, with all wij = wji = 1,
any minor of W counts the number of spanning trees of the graph

#(spanning trees) = 1

V
∏
α

λα = detW∖(i,j), ∀(i, j).

5.2 Proof of steady state formula

We give a simple graph-theoretical proof of Kirkhhoff’s formula (5.1). The
method takes inspiration from Hill’s diagrammatic method for the determi-
nation of cycle fluxes [15, Sec.7] [93].

Let g be a connected subgraph of G. The contraction G/g is the graph
obtained by identifying g with a unique vertex, which we also call g. Upon
contraction, edges of g disappear, edges which have only one endpoint in g
are redirected to vertex g and vertices which have both endpoints in g but
do not belong to its edge set become loops; since loops are irrelevant for
spanning tree combinatorics, they are eliminated. Contraction is also well-
defined for oriented graphs. Notice that the orientation of the edges of g
is irrelevant for contraction. In general, contracting a graph with respect
to an arbitrary connected subgraph will produce loops and multiple edges.
However, it is an intuitive fact that every contraction of a tree yields a tree,
and that every contraction of a spanning tree spans the contracted graph.
Examples of contractions are given in fig.5.2.c,d,e,f.

A self-avoiding walk is a path with no cycles. We denote with γ a self-
avoiding walk from vertex i to vertex j. Spanning trees are in a sense self-
similar upon contraction, as the following formula holds

Zj[G] = ∑
γ

π(γ)Zγ[G/γ]. (5.7)
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Here, the sum is taken with respect to all self-avoiding walks from vertex
i to vertex j, and Zγ[G/γ] is the Kirchhoff weight of the contracted graph
with root in the contracted vertex γ. If t is a spanning tree of G/γ, then
T , consisting of the edges of t and of γ over the vertex set V , is a spanning
tree of G. Notice that since there is a unique path from j to i in T , the
contracted tree t is uniquely identified. Then the correspondence is one-to-
one and Eq.(5.7) holds.

The contraction formula is the central tool for this paragraph As a corol-
lary, it implies that Kirchhoff’s formula for the steady state is correct. Sup-
pose edge ij exists. Then c = γ ∪ ij is an oriented cycle. Since all vertices in
c are identified upon contraction and loops disappear,

Tj/c = Tj/γ.

Every self-avoiding walk identifies a unique cycle which passes through ij,
and vice versa. Thereofore, multiplying Eq.(5.7) by wij and replacing the
sum over self-avoiding walks with the sum over simple cycles through ij,

wijzj = ∑
c

f(c)π(c), wjizi = ∑
c

f(c)π(−c), (5.8)

where

f(c) = f(−c) = Zc(G/c)
Z(G)

.

Finally, the Kirchhoff current along edge ij is

jzij ∶= wijzj −wjizi = ∑
c ∋ ij

f(c)[π(c) − π(−c)]. (5.9)

This result was recently re-derived derived by Zia and Schmittmann [98,
Sec.2], who noticed the factorization of the terms π(c) − π(−c) but did not
exhibit an explicit formula for its factor. The steady current is expressed
as a combination of cycles. We know from Sec.1.3 that cycles and cuts are
orthogonal and that the rows of the incidence matrix are cuts. Then, the
currents in Eq.(5.9) satisfy Kirchhoff’s conservation law:

∂jz = 0.

This proves that (zi)i∈V , as given by Kirchhoff’s formula, is the unique nor-
malized steady state of the master equation.
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Detailed balance occurs when all macroscopic external affinities vanish,
as we saw in Eq.(1.4), impying

π(c) = π(−c)

Given Eq.(5.9), we have

wijp
eq
j = wjip

eq
i , (5.10)

where we called peq the equilibrium steady state.

5.3 Cycle fluxes

We append to the last section a proof of Hill’s remarkable formula for average
rotation times [15, Eq.(7.8)] based on the transient fluctuation theorem, and
we discuss the problem of determining the algebraic relations between cycle
fluxes. We call the quantities

J+(c) = f(c)π(c), J−(c) = f(c)π(−c).

the cycle fluxes and J(c) = J+(c) − J−(c) the net cycle flux. Let

Ω = ∑
i,j

wijzj = ∑
i

wizi (5.11)

be the average frequency of jumps. Then wijzj/Ω is the average fraction
of jumps from j to i. Since at a steady state jumps are due to all possible
cyclic trajectories which pass through ij, then the directional cycle flux J+(c)
might be intuitively interpreted as the number of cycles c completed per unit
time, or in other words as the average frequency it takes to perform cycle c.
Similarly for J−(c) along the inverse cycle −c. Then we have

J+(c)
J−(c)

= expA(c). (5.12)

This is a very remarkable result of Hill, which has received little attention.
Seifert [84] used this result to discuss constraints on the efficiency at max-
imum power of certain nano-machines. Notice that the entropy production
at the steady state admits a simple form in terms of the cycle fluxes as

σss = ∑
c

J+(c) ln
J+(c)
J−(c)

,
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where the sum runs over all simple oriented cycles of the graph (including
both orientations).

We now give a heuristic proof based of Eq.(5.12) on the Transient Fluctu-
ation Theorem. We suppose for simplicity that rates are incommensurable,
i.e. that their ratio is irrational

wij
wkl

∈ R ∖Q, ∀ kl ≠ ij.

This excludes equilibrium systems, but we might regard commensurable
rates as approximations of incommensurable rates with an arbitrarily small
error. We say that two trajectories γ and γ′ are thermodynamical-equivalent
if their entropy production is the same. Consider the two different cyclic
paths c1 and c2 depicted in Fig.5.1.b. The entropy production Σ(c1) of all tra-
jectories along c1 that elapse from time 0 to time t, sampled from the steady
state, whatever the waiting times happen to be, and the entropy production
along c2 necessarily differ, because rates are incommensurable. Therefore,
thermodynamical-equivalent trajectories run along the same paths, up to
the engraftation of non-topological cycles, that is, of edges which are walked
in both directions (see Fig.reffig:cyclefluxes.c). Such grafts do not contribute
to the total entropy production.

Let c be a fixed cycle. The fluctuation theorem states that, in path
space, in a given time interval t, the probability that a trajectory with initial
vertex sampled from the steady state, produces entropy Σ(c) = (c, a), and
the probability that a trajectory with initial vertex sampled from the steady

b.a.

c1

c2

c.

Figure 5.1: a) Contraction of a cycle into a vertex (both in black). b) Two
thermodynamically inequivalent cycles. c) A cycle with grafts.
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state produces entropy Σ(−c) = −Σ(c) are related by

Prob [Σι ≡ Σ(c)]
Prob [Σι ≡ −Σ(c)]

= exp Σ(c),

By the above discussion, the set of trajectories which have exactly a given
value of the total entropy production, if there exists any, coincides with a
set of thermodynamical equivalent trajectories. Therefore, the fraction of
trajectories that realize a cycle c at the steady state is

J+(c) ∝ Prob [Σι ≡ Σ(c)].

We do not calculate the proportionality constant. Eq.(5.12) follows.
One last issue that we would like to address is the inter-dependence of

the cycle fluxes. We propose a conjectural result, discussing the specific
example in fig.5.2. Let c1 and c2 be two oriented cycles, as in Fig.5.2.a, where
we also introduce a (de)composition of cycles. We do not further specify
this definition, which requires some care when one composes disconnected
cycles and cycles which only have one vertex in common. Fig.5.2.b shows
how to contract the graph in grey with respect to the several cycles, and
which spanning trees contribute to the respective coefficients f(c), after being
suitably oriented. For this special simple case, the following result holds

f(c1)f(c2) = f(c1 ∪ c2)f(c1 ∩ c2).

Since it is a simple fact that π(c1)π(c2) = π(c1 ∪ c2)π(c1 ∩ c2), we obtain

J+(c1)J+(c2) = J+(c1 ∪ c2)J+(c1 ∩ c2).

The generalization of these formulas to general graphs is a work in progress.
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a.

b.

c.

d.

e.

f.

c1 c1 ∪ c2c2 c1 ∩ c2

=+ +

Figure 5.2: a) Composition of cycle c1 with cycle c2, yielding cycle c1 ∪ c2

and cycle c1 ∩ c2. b) Contraction of a graph with respect to: cycle c1, cycle
c2, cycle c1 ∪ c2 and the edge c1 ∩ c2 shared b c1 and c2. c) Combinatorial
contributions to f(c1). d) e) f) Idem for f(c1), f(c1 ∪ c2), f(c1 ∩ c2).
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5.4 Recovering eq. partition functions

It is a commonplace that there is no such thing as a partition function in
nonequilibrium statistical mechanics. Using Ardnt’s words, “In thermal equi-
librium the probability measures can in principle be expressed through an
appropriate ensemble. For driven systems an equally powerful concept is
missing” [99]. However, as Zia and Schmittmann foreshadow [26], the nor-
malization factor Z “may play the role of a (super-)partition function”. It
is a tempting hypothesis that is currently taken into account. A piece of
evidence in this direction has been advanced by Ardnt himself and by Blythe
and Evans [100, 101], who proved for certain driven lattice systems that a
non-equilibrium phase transition is accompanied with the accumulation of
zeros of Z towards the real axis. We will hark back to this and similar re-
sults in Ch.?, where we discuss a class of non-equilibrium phase transitions.

Blythe and Evans also claimed that Z reduces to the equilibrium partition
function when transition rates satisfy detailed balance. We pinpoint this
assertion. Usually the equilibrium steady state is denoted

peqi = e−βui

Q(β)
, (5.13)

where Q(β) = ∑j e
−βuj is the canonical partition function. The most general

class of transition rates compabitle with Eq.(5.13) satisfying detailed balance,
Eq.(5.10), is

w
(λ)
ij = vij exp β

2
[(2 − λ)uj − λui],

where λ ∈ R is a parameter and vij = vji is a symmetric edge weight, which
we assume to be independent of the temperature. Notice that different sets
of transition rates yield the same steady state but different stochastic dy-
namics – this is the case for example for the Glauber [102] and the Kawasaki
dynamics for the Ising model.

Let’s first consider λ = 0. This is the case for transition rates that are
derived from Arrhenius’s law [103]. The idea is that transitions are due to
thermal fluctuations that allow the crossing of a potential hill, whose depth
only depends on the energy of the starting state and not on that of the arrival
state. Since in a rooted spanning tree each vertex, but the root, is the source
of exactly one edge, we can factorize according to

Z 0(v, β) = (∑
T

∏
e∈T

ve) ⋅∑
i

exp (β∑
j≠i
uj) = T (v)Q(β) eβU ,
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where U = ∑j∈V uj is the total energy of the system and T (v) is the spanning
tree polynomial. As a generating function, Z 0 coincides with the canonical
partition function, but for a meaningless shift of the thermodynamic poten-
tials and of the average energy,

− ∂

∂β
lnZ 0 = ⟨u ⟩ +U. (5.14)

The situation is more interesting when λ ≠ 0. We prove in the rest of this
paragraph that

− ∂

∂β
lnZ λ = ⟨u ⟩ +U + λ

2 ∑
i<j

[¯̀
ij/`ij(ui + uj)], (5.15)

where `ij is the resistance along edge ij and ¯̀
ij is the effective resistance,

to be introduced below. Resistances emerge in the analysis of first order
departure from the stationary state, so that Z λ also encodes information
about the out-of-equilibrium linear regime (see Sec.1.7). Defining

vλij = vij exp−βλ2 (ui + uj) (5.16)

we obtain

Z λ(v, β) = T (vλ) Q(β) eβU .

In this case the spanning-tree term does depend on the temperature. Relation
(5.14) updates to

− ∂

∂β
lnZλ − λ

2 ∑
i≺j

[(ui + uj)
∂ lnZλ

∂ ln vλij
] = ⟨u ⟩ +U. (5.17)

We now perturb the system peqi → peqi (1 + ηi), keeping the transition rates
fixed. The perturbed affinity reads aij ≃ ηj−ηi and the current is jij = `−1

ij (ηj−
ηi), where the conductance (inverse resistance) is given by `−1

ij = Q−1vλij. At
each node i there is an external inflowing current Ji = ∑j jij, such that

Ji = ∑
j∼i
`−1
ij (ηi − ηj) = ∑

j

Lijηj, (5.18)

where Lij = δij∑i′ `
−1
ii′ − `−1

ij is a weighted laplacian matrix. We now assume
that all incoming currents but those at nodes k and l are null, so that there
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is a net flow of current from vertex k towards vertex l, such that Jk = −Jl = J
1. We define the effective conductance between vertex k and l as

¯̀−1
kl = ηk − ηl

Jk − Jl
= ηk − ηl

2J
. (5.19)

To solve Eq.(5.18) for the potential, we eliminate the l-th equation and invert
the matrix L(l) obtained by removing the l-th row and column:

ηi≠l = ∑
j≠l

[L(l)−1]ijJj = J∑
j≠l

[L−1
(l)]ik (5.20)

so that ηk = J[L−1
(l)]kk, and vice versa by the same argument ηl = −J[L−1

(k)]ll.
The (k, k)-th entry of the inverse of L(l) is the ratio of the (k, k)-th cofactor
of L(l) and of its determinant,

ηk − ηl = J (
detL(k,l)

detL(k)
+

detL(l,k)

detL(l)
) (5.21)

where L(k,l) is the matrix obtained by removing both the k-the and the l-
th row and column. It is well known that the diagonal cofactors of L are
identical and coincide with the spanning tree polynomial

detL(k) = detT (`). (5.22)

We then obtain

¯̀−1
kl =

detL(k,l)

detL(k)
= (

∂ lnL(k)

∂`−1
kl

)
−1

= ( 1

`−1
kl

∂ lnL(k)

∂ ln `−1
kl

)
−1

(5.23)

where the second identity follows from the fact that by definition of determi-
nant `−1

kl multiplies the (k, l) minor detL(k,l) in detL(k). Eq.(5.15) follows.

1Our definition of J differs from that of Wu [45, Eq.(4.32)] by a factor 2. Since the
conclusion is the same for both, either the author or Wu made an error.
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6

Nonequilibrium Geometry

Open systems subject to dissipation are usually modeled through marko-
vian dynamics and further characterized by nonequilibrium thermodynamics.
The link between dynamics and thermodynamics is the concept of thermo-
dynamic force. In this chapter we assume that markovian dynamics on a
finite graph enjoys a gauge symmetry under local scalings of the probability
density, derive the transformation law for the transition rates and interpret
the thermodynamic force as a gauge potential. A widely accepted expression
for the total entropy production of a system arises as the simplest gauge-
invariant completion of the time derivative of Gibbs’s entropy. We show that
transition rates can be given a simple physical characterization in terms of
locally-detailed-balanced heat reservoirs. It follows that Clausius’s measure
of irreversibility along a cyclic transformation is a geometric phase. In this
picture, the gauge symmetry arises as the arbitrariness in the choice of a prior
probability. Thermostatics depends on the information that is disposable to
an observer; thermodynamics does not.

In Secs.6.1,6.2 we discuss the foundational questions which purport gauge
invariance, starting with a personal episode and interpreting gauge transfor-
mations as changes of prior probabilities. In Sec.6.3 we put the principle
to work, in Sec.6.4 we discuss Wilson loops. Finally, we generalize to time-
dependent gauge transformations in Sec.6.5, and attack the problem of gauge
invariance using generating functions in Sec.6.6.
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6.1 On information and entropy

This chapter starts with a personal anecdote. During the 15th National
Convention on Statistical Physics and Complex Systems held in Parma, june
2011, Angelo Vulpiani and the author had a cordial but vigorous corridor
quarrel about the physical nature of entropy. Vulpiani’s foregoing talk [104],
The role of chaos for the foundation of statistical mechanics, was devoted
to the ontology of chaos, grossly dividing the community among those who
believe that chaos should be welcomed as a fundamental ingredient in a
second-law-dominated world (a line of thought which has Prigogine as its
popularizing champion, and which has been variously criticized and even
mocked through the years [105]), and those who believe that irreversibility is
compatible with determinism. Unwilling to take a stand on this issue, in the
question time the author pointed out, with amused but slightly polemical
tone, that there exists at least a third viewpoint, which might be called the
“informationist” to which, needless to say, he subscribes.

Vulpiani was prepared to the question and promptly projected slides to
respond. In the informationist approach to statistical mechanics, which dates
back to Jaynes’s cornerstone article Information Theory and Statistical Me-
chanics [55], the Gibbs-Shannon (or differential) entropy

S(p) = −∫
X
dx p(x) log p(x), x = (x1, . . . , xn) ∈X, (6.1)

plays a crucial role as the measure of the unbiased plausibility of a proba-
bility, given certain observational constraints (see [106] for a thorough dis-
cussion on the relationship between statistical mechanics and information
theory). Vulpiani’s confutation of the informationist viewpoint, in his judge-
ment, prised on the non-invariance of S(p) under changes of integration
variable. In fact, consider an invertible map y ↦ x = f(y) with jacobian

J(y) = det(∂f
∂y

) .

The volume element transforms according to

dx = J(y)dy.

The probability measureis reasonably assumed to be invariant,

Prob (dx) = p(x)dx = p′(y)dy = Prob ′(dy). (6.2)
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Therefore, the probability density transforms according to

p′(y) = J(y)p (f(y)) . (6.3)

Let the inverse image of the domain X be Y = f−1(X). Performing a change
of variables in Eq.(6.1) we obtain

S(p) = −∫
Y
dy p′(y)[ log p′(y) − logJ(y)] = S(p′) + ⟨J⟩p′ ,

where ⟨ ⋅ ⟩p′ is the expectation value. It satisfies

⟨J⟩p′ = ⟨J ○ f−1⟩p. (6.4)

From a geometrical point of view, the above transformation laws, Eqs. (6.2),
(6.3) and (6.4) can be so stated: under coordinate changes, the probability
density transforms like a scalar density, the probability measure is a volume
form, the expectation value transforms like a scalar.

Later in the conference aisle, the question triggered further discussion,
with Vulpiani holding that coordinate-dependence of the Gibbs-Shannon en-
tropy is nonsensical, since the thermodynamics of bodies does not care for the
coordinates that we use to describe systems. This point of view is very com-
mon among physicists. Hnizdo and Gilson [107] write: “Whereas the ther-
modynamic entropy is not expected to depend upon the choice of variables,
the differential entropy can be changed by a transformation of variables”.
They Gilson solve the problem by only considering symplectic transforma-
tions, which are volume-preserving. However, this limitation is not fully
satisfactory, and the problem remain open.

As Vulpiani was making his point, he was beating with his hand on a
metal banister to convey that the reality of any thermodynamical object is
given, with or without information. We point out that, from an information-
ist’s perspective, Vulpiani’s beating on the banister is a measurement process
that an observer — Vulpiani — performs with an instrument with finite res-
olution — his hand — in order to acquire information — for example, the
temperature of the banister, its stiffness etc. Temperature is defined as a
heat exchange between the system and a small thermometer; the latter is
supposed to influence the system’s state in an unmeasurably small manner.
Thermometers interact with certain degrees of freedom of the system: for ex-
ample, the electromagnetical forces of the outer, non-shielded electrons of a
molecule. Every-day thermometers do not interact strongly with the nucleus,
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electro-weakly with the electrons, they do not exchange gluons, massive vec-
tor bosons, gravitons, strings, quanta of space-time and whatever is beyond
our knowledge. A thermometer has a finite resolution, just like Vulpiani’s
hand. So what is the temperature? It depends on the coarse graining of
“reality” that physical apparatuses always entail. Along this line of thought,
of the two questions

how much entropy is within a body?
how much entropy does an observer measure in a body?

only the second has the status of a physical question. The entropy amount
does depend on the measuring apparatus. As we will explain later, the choice
of an apparatus is related to the choice of integration variables in Eq.(6.1).
In other words, the thermostatics of an object is subjective.

However, the author agrees with Vulpiani in one respect. If we put a
body in contact with an environment, with the observer now sitting outside
and looking at the complex “system + environment”, the thermodynamics
should be independent of the chosen variables: a physical evolution involving
heat flows from the system to the environment, or viceversa, will occur in the
same manner, whichever the observer-dependent quantification of the flowing
heat and of the system’s entropy. Dynamics, not statics, is physical.

6.2 Priors

A gauge theory has an internal symmetry whose action leaves all physical ob-
servables invariant [72]. Strictly speaking, any symmetry leaves observables
invariant, there comprising the choice of units and reference frames [108].
However, conventionally one refers to gauge symmetries as to supplementary
redundancies of the variables, which are not related to space-time symme-
tries: hence “internal”. In this section we provide a physical and slightly
philosophical motivation for the gauge invariance, identifying the gauge sym-
metry of Non-Equilibrium Statistical Mechanics as the arbitrariness in the
choice prior probabilities [109].

In the “informationist” approach to statistical mechanics, whose fore-
father is Jaynes [55, 56], the Gibbs-Shannon entropy is a measure of the
ignorance that an observer has about the state of the system. Maximiza-
tion of the entropy, subject to constraints according to whatever pieces of
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information the observer gains from measurement, produces the most plau-
sible distribution given that the sites’ occurrences are a priori equally likely,
according to Laplace’s principle of insufficient reason. There is a source of
subjectivity, which Jaynes accepted as physical, related to the choice of the
observables one sets up to measure. However, there is a second one which is
in-built and which made Jaynes uneasy in his earlier writings. From [56]:

“Laplace’s “Principle of Insufficient Reason” was an attempt to
supply a criterion of choice [. . . ] However, except in cases where
there is an evident element of symmetry that clearly renders the
events “equally possible”, this assumption may appear just as
arbitrary as any other that might be made. Furthermore, it
has been very fertile in generating paradoxes in the case of con-
tinuously variable random quantities, since intuitive notions of
“equally possible” are altered by a change of variables.”

He then advised to replace Laplace’s with the maximum entropy principle.
So doing, he swept the dirt under the carpet, as the Shannon-Khintchin’s
set of axioms for the entropy include equiprobability [110], and Shannon’s
monotonicity axiom [111] [56, p. 630] makes reference to it.

Moreover, as we saw in the previous section alleged paradoxes are found
in the continuous variables case, where the differential entropy [77, Ch.9],
Eq.(6.1), has been a source of dismay [107,112], for it is not invariant under a
change of variables. Related to this is the following riddle (from [113, Ch.8]):
if we pick a number x between 1 and 10 at random, the probability that it
is smaller than 5 is 1/2; but if we pick x′ at random between 1 and 100, the
probability that it is smaller than 25 is 1/4. How is it possible that picking
either a number or its square aren’t equally likely? The solution to this
puzzle is to recognize that the choice of an arbitrary prior is congenital. It
hides in that “at random” which is the continuous counterpart of Laplace’s
principle: in the first case we assume x is uniform, so that the prior is 1/10dx;
in the second we assume that x′ = x2 is uniform, with prior 1/100dx′ = 1/50xdx.
Formally, in order to make Eq.(6.1) mathematically sound, one will interpret
p(x) as the Radon- Nikodym derivative of the probability measure p(x)dx
with respect to the arbitrary prior dx. A change of variables corresponds to
a change of prior.

This is not, as Jaynes thought, an artifact of continuous variables. Think
for example of a dice. Basing on visual impressions — which, by the way,
are the result of a measure process — we might be tempted to assign equal
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probabilities 1/6 to each face. However, if we knew that an incredibly huge
mass was hidden near one of its corners, due to friction with air and the
inelastic impact with the gaming table, we would have sufficient reason to
believe that the three faces which are adjacent to the loaded corner will have
probability approximately 1/3, and the others near zero. Our gambling strat-
egy will depend on this prior knowledge. As a way out, in spite of invoking
measure theory, up to additive constants we might just regard (neg)entropy
as a special case of relative entropy

S(p ∣∣p(pr)) = ∑
i

pi log pi/p(pr)
i , (6.5)

with respect to a uniform prior p
(pr)
i = V −1. We refer the reader to Banavar

and Maritan’s work [114] for some nice physical implications of working with
relative entropy.

The physical rationale is that the quantification of the entropy of a system
depends on the choice of the underlying degrees of freedom. If we assume
that all configurations of positions and momenta of a number of classical
particles are equiprobable, we implicitly coarse-grain the atomic and sub-
atomic structure. The question “how much entropy is within a body” makes
no sense on its own, since we can always go deeper into the inner structure
of matter, according to the resolution of our “gedanken-apparatus”. Ther-
mostatics depends on the prior. However — and here comes the key point
— if we put a gas in contact with heat reservoirs, the process will occur in
exactly the same manner, irregardless of our quantification of the system’s
entropy. Thermodynamics is independent of the prior.

This is the gauge principle we assume. A gauge transformation is a change
of priors. Gauge fixing means to choose a prior; it is analogous to the choice
of a position with respect to which we measure displacements, with the im-
portant difference that in Newtonian mechanics the choice of a reference
frame is absolute, in gauge theories the choice of a “reference frame” varies
point by point.
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6.3 Implementing gauge invariance

In this section we prove that Schnakenberg’s definition for the thermody-
namic force is the most natural candidate if we assume that thermodynamics
is gauge-invariant. More precisely, we postulate that

p′i = e−φipi (6.6)

is a symmetry of the theory, with φi ∈ R. For sake of consistency, we need to
prescribe transformation laws for all of the objects which partecipate to the
master equation. First, consider transition rates. We assume an edgewise and
linear transformation law w′

ij = vijwijeφj , where we singled out eφj , without
loss of generality. Notice that the special case with all vij = 1, namely

w′
ij = wije

φj (6.7)

leaves the currents invariant,

j′ij = jij. (6.8)

The following graph-theoretical analysis proves that Eq.(6.7) is the most
general edgewise linear transformation law compatible with Eq.(6.6). In fact,
under the assumptions of connectedness and of nonvanishing rates, there
exists a unique steady state pss of the master equation; let’s consider its
explicit expression, given in terms of spanning trees. By construction, each
site of the graph, but the root i, is the starting point of exactly one edge of
Ti, so that we can factorize

Z ′
i = eΦ−φi∑

Ti

πv(Ti)πw(Ti), (6.9)

where Φ = ∑j∈V φj. By Eq.(6.6), Z ′
i must be proportional to the analogous

expression for e−φiZi. We obtain

∑
Ti

πw(Ti) = c1−V ∑
Ti

πv(Ti)πw(Ti) (6.10)

where c is a proportionality constant. Since all transition rates are posi-
tive and the equality must hold for all sets of transition rates, if follows
that πv(Ti) = cV −1 independently of the spanning tree. Furthermore, the
transformation law should be universal, i.e. it should not depend on the
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specific graph. As graphs become larger, tipically the number of spanning
trees grows exponentially in the number of edges of the graph — whereby
“tipically” loosely means “for most graphs” [115, 116]. For example, for a
complete graph on V vertices, by Cailey’s law there are 2V −2 spanning trees
and V (V −1)/2 edges. This entails that the number of equations specified by
πv(Ti) = cV −1 becomes enormously larger than the number of the unknowns.
The only universal solution is vij = c,∀ ij; the constant can then be scaled to
unity with a redefinition of the time unit t→ t/c.

We now face a seeming paradox. In fact, considering the transformed
master equation ṗ′i = ∑j j

′
ij and keeping into account Eq.(6.6) and Eq.(6.8),

we obtain an equation which is not equivalent to the starting master equa-
tion, Eq.(3.1)! The solution delves into the geometrical interpretation of
summation symbols. We consider again the incidence matrix

(∂1) jki =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

+1, if j < k, k = i
−1, if j < k, j = i
0, elsewhere

, (6.11)

and the expression of the master equation as a continuity equation

ṗ + ∂1j = 0. (6.12)

Technically speaking, the incidence matrix is a boundary operator which
maps edges into their boundary sites. Normalization of the probability can
be written as

∑
i∈V
pi = ∂0p = 1 (6.13)

where we introduced one further boundary operator 0∂ = (1,1, . . . ,1), which
maps sites to the connected component of the graph they belong to. Although
this latter definition is rather trite, it gets more pertinent when the graph
has several disconnected components. Notice that ∂0∂1 = 0, from which con-
servation of probability follows. Therefore “summation over i” has different
geometrical meanings according to the context.

Strictly speaking, pi should not be considered as a number, but rather as
a one-component vector which lives in the internal vector space Ψi ≅ R which
is attached to site i. The gauge transformation Eq.(6.6) is interpreted as a
linear change of basis in Ψi. It follows that we should consider the boundary
operator’s entries as linear maps on Ψi, which transform according to

(∂′1) i = e−φi (∂1)i, (∂′0) i = eφi (∂0)i. (6.14)
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With this prescription, Eq.s (6.12) and (6.13) are covariant. To simplify the
notation a bit, we introduce a modified sum symbol ∑′ such that

∑
i

′ = ∑
i

eφi . (6.15)

This modified symbol is crucial for the up-coming result, so let us further
linger on it. Consider the average of a gauge-invariant site function f ′ = f (a
scalar field),

⟨f⟩p = ∑
i

pifi = ∑
i

′
p′ifi. (6.16)

Requiring gauge invariance ∀f yields the transformation law for the summa-
tion symbol. In other words, while the probability measure ⟨ ⋅ ⟩p is gauge
invariant, the probability density pi is not, in analogy with the continuous
variables case, see Eq.(6.2).

Finally, the Gibbs-Shannon entropy transforms according to

δS = S′[p′(τ)] − S[p(τ)] = ⟨φ⟩p = − S(p′ ∣∣p) (6.17)

where S′ is calculated using ∑′. On the right-hand side, the transformation
law is succinctly expressed in terms of relative entropy. Remarkably, while
relative entropy is not a difference of entropies, in this context it is naturally
interpreted as (minus) the entropy change after a gauge transformation. The
rate at which the entropy of the system changes is subject to

δṠ = ∑
i<j
jij(φi − φj). (6.18)

In gauge theories, non-gauge invariant terms are adjusted with the introduc-
tion of a connection, which is an antisymmetric edge variable aij = −aji such
that

δaij = φj − φi. (6.19)

Once a connection is given, the term1

σ = ∑
i<j
jijaij (6.20)

1In this case, the sum has meaning of a bilinear form from the space of edges to real
numbers, so no gauge transformation is needed.

133



has a transformation law which balances Eq.(6.18), making Ṡ + σ invariant.
In principle, connections can be constructed as convex linear combinations
of terms such as

log
pssi
pssj

, log
ωj
ωi
, . . . (6.21)

where ωi = ∑kwki is the average frequency of a jump out of site i. So, for
example, adding ∑i<j jij log pssi /pssj yields the relative entropy with respect to
the steady state. The latter plays an important role in the theory of Markov
processes as a Lyapunov functional (see Sec.7.5 and [11, Sec.V]); fitly, it is
gauge invariant, while entropy per se is not. However, the options listed
above are, technically speaking, exact: they are differences of site functions,
so that their circuitations vanish, thus making the graph’s geometry rather
dull. As a further consequence, gauge invariant terms obtained this way
vanish at the steady state.

A good candidate as a “truly edge” connection variable is given by the
driving force, defined in Eq.(4.4). Although it is not the only antisym-
metric edge variable that one could engineer which transforms according to
Eq.(6.19), it is certainly the simplest. Then Ṡ + σ coincides with Schnaken-
berg’s total entropy production [11, Eq.(7.6)],

σtot = Ṡ + σ = ∑
i<j
jij log

wijpj
wjipi

, (6.22)

which is widely accepted as the entropy production rate of a Markov process.
In this setting σ arises as the simplest term which completes Ṡ into a gauge
invariant quantity and which does not vanish at the steady state.

A gauge transformation will result in a shift of a total time derivative
from σ to Ṡ, with a consequent redefinition of the internal entropy and of
the entropy flow towards the environment. For example, letting φi = log pssi ,
we obtain

S′ = −S(p ∣∣pss), σ′ = ∑
i<j
jij log

wijpssj
wijpssj

, (6.23)

whose microscopic analogues along single stochastic trajectories have been
interpreted by Esposito and Van den Broeck as non-adiabatic and adiabatic
terms, obeying detailed fluctuation theorems [78]. In fact, regarding fluctu-
ation theorems gauge transformations have the only effect of changing the
boundary terms.
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To our knowledge, until very recently the geometric nature of the ther-
modynamic force was confined to the mathematical literature [24] and to
work by Graham [117], with no explicit reference to gauge invariance. In
the year of writing, for continuous diffusive processes the interpretation of
the force as a gauge potential has been put forward by Feng and Wang [118].
Sagawa and Hayakawa [119] made a proposal for a gauge potential connecting
nonequilibrium steady states along slowly driven protocols; differently from
Feng and Wang’s, their connection has null curvature. They also observe
that “the gauge symmetry does not seem to play any important role”. We
fill the gap, taking an orthogonal approach: we do not assume the connection
to be given, and derive it as the most natural candidate which guarantees
covariance of the master equation; the appearance of a gauge potential is a
byproduct of the symmetry, a conclusion which in a way parallels Abe and
Kaneko’s analysis of driven quantum equilibrium states [120].

6.4 Parallel transport and Wilson loops

From a geometrical viewpoint (see Refs. [36,37]), not only a provides a con-
nection over the manifold, but it also constitutes a measure of the oriented
lenght of paths along chains of edges γ = (inin−1, . . . , i1i0),

Σ(γ) =
n

∑
κ=1

aiκiκ−1 = ∫
γ
a . (6.24)

Since the lenght is additive upon composition of paths, the real positive
numbers obtained by exponentiating Σ(γ) can be thought of as elements in
the multiplicative group of real positive numbers (R+,×), which is the gauge
group of the theory. In the representation theory of groups, group elements
are not seen as “static” objects, but rather as “active” linear maps; they
act on vectors ψi which live in the internal vector spaces Ψi. Such vectors
acquire phases as they are parallel transported along paths, thus connecting
far-apart sites,

ψin = exp Σ(γ) ψi0 , (6.25)

where ψin represents the result of parallel transport along path γ. In our case,
due to the very simple gauge group, the displaced vector is just a real number
and parallel transport produces a scaling factor. The interpretation of group
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elements as linear maps further entails that new equivalent representations
can be obtained by performing basis transformations in Ψi, one per each site:
this yields a gauge transformation. In the case at hand, such a basis change
amounts to an orientation-preserving rescaling ψ′i = e−φiψi. Transformed
vectors are parallel transported according to ψ′in = exp Σ′

γ ψ
′
i0

, where Σ′ is a
new representation of the group element, defined in terms of a transformed
connection a′. Requiring equivalence with Eq.(6.25) for any possible path
γ yields the transformation law for the vector potential, Eq.(6.19). Grossly,
this introduces the geometrical framework for gauge theories.

Gauge transformations define an equivalence relation “ ∼ ” between gauge
potentials; so, for example, the adiabatic force log(wijpssj /wjipssi ), see Ref.
[78], is gauge-equivalent to ours, Eq.(4.4). The connection is said to be exact
when it is equivalent to a′ij = 0. It is well known [24, 117, 118, 121] that
equilibrium systems are characterized by an exact potential. In fact, when
aij = φi−φj, the steady solution of the master equation is pssi ∝ e−φi , as direct
substitution into Eq.(3.1) shows. Detailed balance follows, wij/wji = pssi /pssj .

Along closed cycles c, with i0 = in, the exponentiated lenght is a Wilson
loop. When Wilson loops are all unity the connection is exact and the ori-
ented lenght of an open path only depends on the extremal sites, and not on
the particular path which connects them, for which reason the connection is
said to be flat. As a remarkable consequence, Kolmogorov’s criterion [26,30]
is equivalent to all Wilson loops being equal to unity. Hence detailed balanced
systems can be seen as the special class of models with a flat connection, with
zero curvature; they all belong to the same equivalence class.

On a discrete state space, knowledge of a finite number of Wilson loops
suffices to characterize the connection. The so-called Mandelstam identity

W (c1 ○ c2) = W (c1)W (c2) (6.26)

allows to compose loops. A basis of loops can be found this way. Consider
an arbitrary spanning tree T of the graph — this time with no preferred root
and orientation. Let iαjα be one of the edges which do not belong to T . By
definition, adding iαjα to the spanning tree generates a cycle cα, which can
be oriented according to the orientation of iαjα. By Euler’s formula, there
are E − V + 1 such cycles. We proved in the first chapter that any loop can
be decomposed in terms of the cα’s. Let eαij be +1 if ij = iαjα, −1 if ji = iαjα,
otherwise it is zero. It can be shown that

log∏
α

W (cα)e
α
ij ∼ aij. (6.27)
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Wilson loops allow to reconstruct the gauge potential, up to gauge transfor-
mations [122]. By Eq.(6.27), the choice of a spanning tree fixes the gauge by
selecting one particular representative in the equivalence class of aij.

Spanning trees also allow to give a physical interpretation of the connec-
tion, using the Local Detailed Balance ansatz. Any graph which coincides
with a spanning tree, E = T , has no cycles, hence it can only accomodate
equilibrium systems. Then there exists a site function φi = βui such that

wij/wji = eβ(uj−ui), ij ∈ T, (6.28)

where we introduced an inverse temperature β, in units of Boltzmann’s con-
stant. The inverse temperature and the energy ui are determined up to an
energy shift and a rescaling of units, ui → k(ui + v), β → k−1β. In general,
adding further edges iαjα to the graph will not result in a detailed balanced
system, unless we fine-tune their rates. We then define a new set of temper-
atures βα, such that

wiαjα/wjαiα = eβα(ujα−uiα), iαjα ∈ E ∖ T. (6.29)

We just proved that the thermodynamics of any collection of transition rates
can be described in terms of at most E − V reservoirs, each at its own tem-
perature, satisfying the condition of local detailed balance (see Sec.4.4). In
this “minimal” case each transition is due to the interaction with exactly one
reservoir. This ansatz allows to recast the basis Wilson loops in this form

W (cα) = exp [(β − βα)(uiα − ujα)] . (6.30)

Therefore, temperature differences are the fundamental thermodynamic forces
of nonequilibrium systems, as one could expect. Since there is no exter-
nal time-dependent driving, which would result in time-dependent transition
rates, no work is performed by an external agent along one single realization
of the process, and by the first law of stochastic thermodynamics [82], along
a transition the energy gap δu coincides with the heat exchanged δq. It is
then illuminating to rewrite the geometric phase as

logW (c) = ∮
c

δq

T
, (6.31)

yielding Clausius’s measure of irreversibility along one realization of a cyclic
irreversible process. The lenght Σ(γ) is the entropy exchanged with the envi-
ronment along any trajectory which performs a sequence of jumps, whichever
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the jumping times might be. This notion is completely independent of the
time parametrization of the trajectory: it is purely geometrical.

The above construction can be easily generalized to Markov processes
with time-dependent transition rates (see Sec.6.5) and to time-dependent
gauge transformations. In this respect, our formalism has evident points of
contact with stochastic pumping along cyclic protocols, whose geometrical
nature has been recently studied [123] [124]. It would be a conceptual ad-
vance to give a unified description of both aspects of NESM. We notice in
passing that Sinitsyn [125, §6] makes a remark on gauge transformations ap-
plied to the current generating function, arguing that they follow from the
modification of the “prior” currents which have flown before a given initial
time.

Regarding the nature of gauge transformations, for continuous variables
they have been shown to follow from coordinate changes. Thus the gauge
group could be seen as (a subgroup of) the group of diffeomorphisms. It has
been a matter of disagreement [126] [127, §2.1.3] whether diffeomorphisms
and gauge transformations should be considered by the same standards; the
diatribe mainly revolves around gravity and its formulation as a local affine
theory [128]. The identification of ours as a gauge transformations is justified
by the usage of the gauge machinery, which is analogous to well-established
practice for the formalization of geometric phases in QM and of electromag-
netism as a U(1) gauge theory. Employing analogies with the latter, C.
Timm [51] discussed a slightly different gauge-theoretic structure for master
equations.

To conclude, while we are conscious that the very simple gauge group
makes the geometrization of irreversible thermodynamics unnecessary for all
practical purposes, it allows to better appreciate the importance of macro-
scopic affinities as fundamental observables, and it might serve as a good
starting ground for later generalizations. We point out that a Schnakenberg-
type analysis is still lacking for quantum nonequilibrium systems, either de-
scribed by a Lindblad-type equation or a by a more general interaction of a
system with reservoirs of quantum degrees of freedom. It is tenable that ex-
cursions to the quantum world might require more interesting gauge groups
and a more pertinent application of gauge theory.
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6.5 Time-dependent gauge transformations

The extension of time-dependent gauge transformations is straightforward,

p(t) → pΦ(t) = exp[−Φ(t)]p(t),

where Φ(t) = diag[φ1(t), . . . , φV (t)]. The ME reads

ṗΦ(t) = LΦ(t)pΦ(t), (6.32)

where we defined the transformed generator

LΦ(t) = e−Φ(t)L(t)eΦ(t) − Φ̇(t).

Consider the splitting of the generator in a free and an interaction part,
taking into account that L0(t) and Φ(t), being diagonal, commute:

LΦ(t) = e−Φ(t)L1(t)eΦ(t) +L0(t) − Φ̇(t) = LΦ
1 (t) +LΦ

0 (t).

where in the last identity we defined the transformed free generator LΦ
0 ∶=

L0−Φ̇ and the transformed jump generator LΦ
1 ∶= exp−ΦL1 exp Φ. Interaction

picture propagators are then easily calculated

UΦ
0 (t) = e−Φ(t)U0(t)eΦ(t), LΦ

1 (t) = e−Φ(t)L1(t)eΦ(t),

respectfully of the path measure Eq.(3.12).
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6.6 Microscopic analysis

When we introduced the stochastic trajectory Eq.(3.14), we blandly observed
that it was a formal expression. Strictly speaking, it’s inappropriate to mul-
tiply graph elements by a step function. In practical situations, graph ver-
tices are always associated to a weight φi, which can eventually be a time-
dependent function. We then prefer to represent a trajectory i(t′) from time
0 to t, given the initial state i0, by a real-valued process

Rι(t′) =
n

∑
m=0

χ[tm,tm+1)(t′)φim(t′) − φi0(0), t′ ∈ [0, t]

where the subtraction accounts for the initial datum, so to conventionally
make all such processes null at the initial time, Rι(0) = 0. This is a very
physical standpoint: even when we consider the deterministic motion of a
body, we never deal with its absolute position, but we rather associate a real
number (actually, a rational number) given by comparison of its distance
from a fixed arbitrary origin with a conventional unit length. The motion
of the object is independent of the choice of unit length and of the origin.
Ultimately, what is the trajectory? Since it is impossible to make physical
claims on its objective nature, we might regard the trajectory as the equiv-
alence class of all possible descriptions that we can give of it. We assert this
principle for stochastic trajectories. Rather than a sequence of vertices of a
graph, a trajectory ι is an equivalence class of real-valued processes Rι(t′).
For practical purposes, we already set the origin, thus spending part of the
gauge, by choosing Rι(0) = 0.

It is well-known that the moment generating function of a stochastic
process contains all useful information about the process. In this section
we derive a diffusion equation for the moment generating function of Rι(t),
showing that it coincides with the time-dependent gauge-transformed master
equation, Eq.(6.32). So, after giving a macroscopic thermodynamic charac-
terization of gauge invariance in terms of Schnakenberg’s observables, we are
able to interpret gauge invariance at the microscopic level.

The first step is to rewrite

Rι(t) =
n

∑
m=0

[φim(tm+1) − φim(tm)] +
n−1

∑
m=0

[φim+1(tm+1) − φim(tm+1)]

= ∫
t

0
dt′ {

n

∑
m=0

χ[tm,tm+1)(t′)ϕim(t′) +
n−1

∑
m=0

δ(t′ − tm)[φim+1(t′) − φim(t′)]} .
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where we defined

ϕi(t′) = dφi
dt′

(t′), (6.33)

and we remind that χ[tm,tm+1) is the step function in the interval (tm+1, tm],
t0 = 0 and tn+1 ∶= t. This overly complicated rewriting of φin(t) − φi0(0) is
worth the identification of contributions of two different kinds. An integrat-
ing counter is thought to be attached at each vertex, and one spiking counter
is attached along edges. The value of the integrating counter is increased by
an amount

∫
tm+1

tm
dt′ϕim(t′)

when the trajectory delays at im between time tm and time tm+1. The value
of the spiking counter is increased by an amount

φim+1(tm+1) − φim(tm+1)

when the trajectory performs a stochastic jump at time tm+1 from site im
to site im+1. We concentrate on stochastic processes associated to these
counters, respectively defined as

Qι
i(t) = ∫

t

0
dt′

n

∑
m=0

δi,imχ[tm,tm+1)(t′)ϕi(t′),

P ι
ij(t) = ∫

t

0
dt′

n−1

∑
m=0

δi,im+1δj,imδ(t′ − tm+1)[φi(t′) − φj(t′)],

The respective moment generating functions are defined as

ζQk (λ, t) = Ek[ exp−∑
i

λiQi(t)],

ζPk (Λ, t) = Ek[ exp−∑
i,j

λijPij(t)],

where the average is taken with respect to all paths with fixed end point k
at time t, while λ = (λi)i and Λ = (λij)i,j are respectively a vector and a
matrix of conjugate parameters. Derivatives with respect to the λ’s generate
moments and correlation functions,

(− ∂

∂λ1

)
N1

. . .(− ∂

∂λV
)
NV

ζQk (λ, t) ∣
λ=0

= Ek [Q1(t)N1 . . .QV (t)NV ],
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and similarly for the P -processes. Notice that the processes Qi are not inde-
pendent of all other Qj’s, nor are they independent of the P -processes.

We now want to derive evolution equations for ζQj and ζPj . We work
explicitly with the path measure. Let’s first concentrate on the Q-process.
We consider Eq.(3.17) at time t + dt and split it as follows

∫
t+dt
Dι =

∞
∑
n=0

∑
i0,...,in−1

⎡⎢⎢⎢⎢⎣

1st
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫
t+dt

t
dtn∫

tn

t
dtn−1 . . .∫

t1

0
dt0

+

2nd
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫
t+dt

t
dtn∫

t

0
dtn−1 . . .∫

t1

0
dt0 +

3rd
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫
t

0
dtn∫

tn

0
dtn−1 . . .∫

t1

0
dt0

⎤⎥⎥⎥⎥⎦
.

The first contribution gives terms of order dt2. As to the third, using

exp−∑
i

λiQi(t + dt) =
n

∏
m=0

exp [−λim ∫
tm+1

tm
dt′ϕim(t′)]

with tn+1 = t + dt, and given Eq.(3.13), we obtain the integrand

qk(t + dt, t)e−λk ∫
t+dt
t dt′ϕk(t′){qk(t, tn)e−λk ∫

t
tn
dt′ϕk(t′)

× [
n−1

∏
m=0

wim+1imqim(tm+1, tm)e−λim ∫
tm+1
tm

dt′ϕim(t′)]pi0},

where we collected all terms up to time t between braces, and in = k. Inte-
grating with respect to the third contribution to the path measure we obtain

qk(t + dt, t)e−λk ∫
t+dt
t dt′ϕk(t′)ζQk (λ, t)

= [1 −wkdt − λkϕk(t)dt]ζQk (λ, t). (6.34)

The second contribution requires more care. Since tn ≥ t in this range of
integration, we rearrange the integrand as

qk(t + dt, tn)eλk ∫
t+dt
tn

dt′ϕk(t′)wk,in−1qin−1(tn, t)e−λin−1 ∫
tn
t dt′ϕin−1(t

′)

qin−1(t, tn−1)e−λin−1 ∫
t
tn−1 dt

′ϕin−1(t
′) [

n−2

∏
m=0

wim+1im . . . ].
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Singling out ∑j, with j = in−1, upon path-averaging:

∑
j
∫

t+dt

t
dt′′ qk(t + dt, t′′)e−λk ∫

t+dt
t′′ dt′ϕk(t′)wkjqj(t′′, t)e−λj ∫

t′′
t dt′ϕj(t′)ζQj (t)

= ∑
j

wkjζ
Q
j (t)dt +O(dt2). (6.35)

Putting Eqs. (6.34) and (6.35) together we obtain

d

dt
ζQk (λ, t) = ∑

j

wkjζ
Q
j (λ, t) − [wk + λkϕk(t)]ζQk (λ, t). (6.36)

Derivatives with respect to the λ’s yield a hierarchy of coupled evolution
equations for the moments. When λ = 0, given that

ζQk (0, t) = pk(t),

we obtain the master equation for the probabilities, as expected. In gen-
eral, the equation for the M -th moment depends on all lower moments. For
example, the equation for the first moment reads

d

dt
Ei [Qι(t)] = ∑

j

{wij Ej [Qι(t)] −wjiEi [Qι(t)] } + ϕi(t)pi(t).

We can proceed in a similar way for ζP . The derivation is simpler and
will not be carried over explicitly. We obtain:

d

dt
ζPi (Λ, t) = ∑

j

wije
−λij[φi(t)−φj(t)]ζPj (Λ, t) −wiζPi (Λ, t). (6.37)

Eqs. (6.36) and (6.37) reproduce two different traits of the behavior of the
gauge-transformed equation, Eq.(6.32). Now, we set all λi, λij’s equal to λ
and choose ϕ(t) as the time derivative of φ(t), as is done in Eq.(6.33). The
R-process defined above is given by

Rι(t) = ∑
i

Qi(t) +∑
i,j

Pij(t), (6.38)

with moment generating function given by

ζRk (λ, t) = Ek [exp−λR(t)] .
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As we said above, the P and Q-processes are not independent, even though
they do not depend directly on the value of all other counters, since they
depend on the same underlying microscopic dynamics. Hence expectation
values do not factor. The time evolution equation for ζR = (ζR1 , . . . , ζRV ) has
to be found from direct calculation. We finally obtain

d

dt
ζRi (λ, t) = ∑

j

wije
−λ[φi(t)−φj(t)]ζRj (λ, t)−[wi + λ

dφi
dt

(t)] ζRi (λ, t). (6.39)

This is the central result of this section. Absorbing λ in the definition of φi,
or equivalently choosing λ = 1, Eq.(6.39) comes to coincide with Eq.(6.32),
with ζR(1, t) playing the role of pΦ(t). As a special case, we have the time-
independent processes, with

ϕi(t′) = 0, φi(t) = φi(0) ∶= φi.

In conclusion, the time-dependent gauge-transformed master equation is
seen to be equivalent to the moment generating function of a stochastic
process. The stochastic process associates weights to the states visited by a
trajectory, thus giving physical consistency to what is otherwise just a formal
expression. We interpret this procedure as a choice of gauge.
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7

Decay modes

In this chapter we give a detailed survey of the properties of real and complex
decay modes of a master equation generator. We introduce the time-reversal
generator and a special class of normal systems, including reversible ones,
which are particularly well-behaved under time-reversal. Decay modes of
normal systems obey certain orthogonality relations with respect to a suitable
scalar product, affecting the late time-behavior of the relative entropy with
respect to the steady state: Normal systems do not display superposition
of modes. We introduce the Fisher matrix associated to a generator and
prove that the time-reversal generator has inverse Fisher matrix. In the
vicinity of the steady sate, this formalism allows to recast propositions about
monotonicity and convexity of the relative entropy as problems in linear
algebra. While monotonicity is well-known to hold, convexity is a tempting
possibility, as it would make for a nice new principle of thermodynamics.
We are able to spot a clear-cut condition for the violation of convexity and
we generate a class of counterexamples with initial probability distribution
picked arbitrarily close to the steady state, thus rejecting the conjecture in
all possible regimes.

In the last section we put forward a geometrical interpretation of several
results of this chapter in terms of the Fisher-Rao metric on the space of statis-
tical states. More precisely, we argue that (i) the choice of a nonequilibrium
generator picks out one preferred basis for the Fisher-Rao metric near the
invariant state, in such a way that (ii) a diagonal Fisher matrix occurs for
systems which commute with their time reversal, while (iii) degeneracies are
accompanied with the sort of critical behavior which is typical of nonequi-
librium phase transitions — but with no cogent need for a thermodynamic
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limit on the number of states. We finally linger on the geometric meaning
of the results, showing that (iv) decay modes can be seen as local reference
frames for the Fisher-Rao metric, so that p-normal systems correspond to
coordinate patches which make it euclidean at one point of the manifold,
thus realizing a sort of statistical equivalence principle.

7.1 Eigenvalues and decay modes

The generator W of an ergodic master equation has one eigenvector relative
to the null eigenvalue, the steady state. Besides that, it is well-known that by
application of the Perron-Frobenius theorem theorem all other eigenvalues are
shown to have negative real part, and they might come in complex conjugate
couples. We call their conjugate eigenvectors the decay modes. The real
part of the eigenvalues determines the exponential decay of modes towards
the invariant state, while the complex part yields an oscillating character.
Generic eigenvalues/eigenvectors of W will be labelled by α,β; among them,
real eigenvalues will be labelled by ι, ι′ and complex eigenvalues by κ,κ′.

Unless otherwise specified, we assume that W is diagonalizable, i.e. that
it affords a complete set of eigenvectors. Later we will relax this assumption
and inspect properties of defective generators.

7.2 The time-reversal generator

The time-reversal generator is what comes closest to reverting the direction
of time. Whilst it is not capable of inverting the full dynamics, it properly
inverts the path measure and certain steady-state thermodynamic properties
of the master equation. Here we will only deal with the linear algebra of
the decay modes. Time-reversal is a standard construction for markovian
dynamics [69, p.47] [70, Sec. 3.7]. It has been considered by various authors
in relation to fluctuation theorems [78, 83, 129]. Some contents of this and
later sections have been anticipated by the author in Ref. [5].

Although we will mostly work with the master equation, the definition
of time-reversal is particularly intuitive in the adjoint formalism. Let two
scalar functions take values f = (fi)i and g = (gi)i at time t = 0. We consider
their steady state correlation ⟨fg⟩ ∶= ∑i p

ss
i figi. The observable f is made to

evolve with the adjoint generator, f(δt) = f+δtW †f . We ask which generator
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should be employed to evolve g → ḡ(δt) in such a way that

⟨f(δt)g(0)⟩ = ⟨f(0)ḡ(δt)⟩.

We then define W̄ † through

⟨(W †f)g⟩ = ⟨f(W̄ †g)⟩.

An explicit calculation shows that the time-reversal generator enjoys the
following properties. Off-diagonal and diagonal elements read respectively

w̄ij = wji p
ss
i /pssj , w̄i ∶= −∑

k≠i
wki.

In particular exit frequencies are preserved, w̄i = wi. The time-reversal gen-
erator W̄ is indeed a markovian generator, as its off-diagonal entries are
positive and its columns add up to zero,

∑
k≠i
wkj +∑

i≠j
wji p

ss
i /pssj = 0,

where we used ∑j wijp
ss
j = ∑j wjip

ss
i = 0. Introducing the diagonal matrix

P ∶= diag{pss1 , . . . , pssV }

the time-reversal generator can be written as

W̄ ∶= P W T P −1, (7.1)

where T denotes matrix transposition. Hence time-reversal is involutive:

¯̄W = P W̄ T P −1 = PP −1W PP −1 = W.

The steady state of the time-reversal generator is the same as that of W ,

W̄ pss = PW TP pss = 0,

since P pss = (1,1, . . . ,1)T is the left-eigenvector of W relative to zero.
As to the other eigenvalues, since Eq.(7.1) is a similarity of matrices, W̄

has the same spectrum as W T , which in turn has the same spectrum as W .
Then W and its time-reversal W̄ have the same spectrum. Not so for the
eigenvectors. Let q̄ α,R be a right eigenvector of W̄ , relative to λα,

W̄ q̄ α,R = λαq̄
α,R.
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Then

W TP −1q̄ α,R = λαP
−1q̄ α,R,

which means that P −1q̄ α,R is a left eigenvector of W relative to eigenvalue
λα. Then P sends left eigenvectors of W to right eigenvectors of W̄ , and P −1

sends right eigenvectors of W to left eigenvectors of W̄ , relative to the same
eigenvalue. The bi-orthonormality principle [95, p. 59] states that the left
and right eigenvectors of a real matrix are orthogonal

(qα,W , qβ,Ri )C = (qα,W ∗
, qβ,Ri ) = 0, α ≠ β,

where ∗ denotes complex conjugation, ( ⋅ , ⋅ ) is the euclidean scalar product
and ( ⋅ , ⋅ )C is its hermitian counterpart. Here α and β label both real eigen-
values and couples of complex conjugate eigenvalues. Let us reserve index ι
to real eigenvalues. Then the real eigenvectors qι,L and qι

′,R can be scaled so
to satisfy

(qι,L∗, qι
′,R
i ) = διι

′
. (7.2)

Let κ label couples of complex conjugate eigenvalues, and let the real and
imaginary parts of the left and right complex eigenvectors be determined by
qκ,L = 1/√2(qκ,L1 + iqκ,L2 ) and qκ,R = 1/√2(qκ,R1 + iqκ,R2 ). We have

(qκ,L1 + iqκ,L2 , qκ,R1 + iqκ,R2 ) = 0, (qκ,L1 − iqκ,L2 , qκ,R1 + iqκ,R2 ) = icκ.

With little work cκ is seen to be real and can be scaled to unity. Bi-
orthonormality relations hold for the real and imaginary parts of the eigen-
vectors as in Eq.(7.2).

7.3 Normal generators

Among all possible generators, an important role is played by those which
commute with their time reversal

[W,W̄ ] = WW̄ − W̄W = 0. (7.3)

which we dub pss-normal. Systems with a pss-normal generator will be called
simply “normal”. Let us compare the evolution of a system initially in state
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p, which is first run for a short time δt with W and then for a short time δt
with W̄ , with respect to the situation where the system is first run with W̄
and then afterwards with W :

Ū(δt)U(δt)p −U(δt)Ū(δt)p = δt δt [W̄ ,L]p +O(δt3).

Thus the operator [W,W̄ ] retains a slightly geometrical flavor as a “curva-
ture”, as it measures how circuitation along an infinitesimal parallelogram
of sides δt and δt fails to reproduce the initial state. In the forward picture,
normality occurs when

⟨(Wf)(Wg)⟩ = ⟨(W̄f)(W̄g)⟩. (7.4)

Among pss-normal there are reversible generators, such that W̄ =W ,

w̄ij = wji p
∗
i /p∗j = wij.

Their rates satisfy detailed balance, and vice versa, balanced rates define a
reversible generator. Hence reversible and equilibrium generators coincide.

The class of pss-normal generators is broader than just equilibrium sys-
tems. To appreciate this, we need to turn to systems with complex spectrum.
Suppose that the spectrum of W is nondegenerate (no multiple eigenvalues).
Let qι be a real eigenvector of W relative to the real eigenvalue λι, and qκ be
a complex eigenvector relative to the complex eigenvalue λκ. Since W is real
then also qκ∗ is an eigenvector, relative to the complex conjugate eigenvalue
λ∗κ. We have

LW̄ qκ = W̄W qκ = λκW̄ qκ,

LW̄ qι = W̄W qι = λιW̄ qι.

Then W̄ qκ and W̄ qι are eigenvectors of W relative respectiely to λκ and λι.
Since we supposed the spectrum to be nondegnerate, we conclude that qκ, qι

are also eigenvectors of W̄ ,

W̄ qκ = ηκq
κ, (7.5a)

W̄ qι = ηιq
ι. (7.5b)

Consider the matrix P −1/2WW̄P 1/2. It is easily seen to be symmetric, hence
its spectrum is real. Since it is obtained from WW̄ by a similarity transfor-
mation, the spectrum of WW̄ is real. Applying W to Eq.(7.5a) we obtain

WW̄ qκ = λκηκq
κ,
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whence qκ is an eigenvectors of LW̄ relative to eigenvalue λκηκ, which must
be real. It follows that

ηκ = λ∗κ. (7.6)

Finally, using the bi-orthonormality condition (7.2) one finds that ηι = λι.
Hence we conclude that when W is normal, it has the same spectrum and
the same eigenvectors as those of W̄ , but eigenvectors relative to positive
and negative frequency eigenvalues are interchanged. When the spectrum is
real, the two operators exactly coincide, returning reversible systems.

The significance of all this is better appreciated by scrutinizing the time-
evolution of an initial probability density

p = pss +∑
ι

bιq
ι +∑

κ

(cκqκ + c∗κqκ∗) . (7.7)

We remind that eigenvalues of W have negative real part

λκ = − 1/τκ ± iωκ.

Let us propagate (7.7) to time t with L and with W̄ :

etLp = pss +∑
ι

bιe
−t/τ ιqι +∑

κ

e−t/τκ(cκeiωκtqκ + c∗κe−iωκtqκ∗), (7.8a)

etW̄p = pss +∑
ι

bιe
−t/τ ιqι + ∑

κ

e−t/τκ(cκe−iωκtqκ∗ + c∗κeiωκtqκ∗). (7.8b)

The reversal propagator inverts all of the frequencies: while the dissipative
exponential decay is exactly the same for W and W̄ , the oscillatory modes
are inverted. In a way, the unitary character of the evolution is time-reversed,
while the non-unitary dissipative behavior is left unchanged.

7.4 The Fisher matrix

We introduce the matrix

H ∶= P −1/2WP
1/2. (7.9)

A crucial property of H is that its transpose is obtained after the same
transformation of the time-reversal generator,

HT = P −1/2W̄P
1/2. (7.10)
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In particular it follows that equilibrium systems are those for which H is
symmetrical and normal systems are those for which H is a normal matrix

W reversible ∶ H = HT ,

W pss−normal ∶ HHT = HTH.

Since Eq.(7.9) is a similiarity of matrices, H and W have the same spectrum,
with left and right eigenvalues of H related to those of W by

eα,L = P
1/2qα,L, e0,L = P

1/2(1,1, . . . ,1)T ,
eα,R = P −1/2qα,R, e0,R = P −1/2pss.

Where unnecessary we will omit the superscript for “right”. Explicitly, we
have eαi = qαi /

√
pssi and e0,L

i = e0,R
i =

√
pssi . We will let index a range from 0

through the span of α in the following, so that ea = e0, eα.
Let us momentarily restrict to generators whose spectrum is contained in

the field of real numbers. We further introduce more matrices G′ = (gab)a,b
and G = (gαβ)α,β, with entries

gab = (ea, eb), gαβ = (eα, eβ) = ∑
i

qαi ,i q
β⟩/pssi .

where ( ⋅ , ⋅ ) is the euclidean scalar product. Matrix G will be referred to as
the Fisher matrix. We leave to a later chapter a thorough discussion of the
choice of this name and its geometrical and statistical significance. We find

g00 = ∑
i

pssi = 1, g0α = ∑
i

qαi = 0.

Hence

G′ = ( 1 0
0 G

) .

On the field or reals, the spectral theorem asserts that a matrix is symmetric
if and only if it admits a basis of orthogonal eigenvectors, which therefore
can be chosen to be orthonormal:

gαβ = δαβ, G = 1V −1, G′ = 1V .

Hence, if we restrict to generators with real spectrum, the Fisher matrix is
diagonal if and only if the generator is of equilibrium, in which case its modes
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can be scaled so to make G the unit matrix. This result was known to Van
Kampen [130, Sec. 5.7.].

Over the complex field, the spectral theorem generalizes to normal matri-
ces [95, p.59, p.123]: it suffices (and is necessary) that HH† =H†H to make
H unitarily diagonalizable, i.e. with a complete set orthonormal eigenvectors
with respect to the hermitian scalar product

(eα, eβ)C = ∑
i

eα∗eβ = δαβ.

Let the eigenvalues come in k ≤ V /2 complex conjugate couples and V −1−2k
real eigenvalues, with corresponding eigenvectors labelled by (κ,−), (κ,+)
and ι respectively, that is, eκ+ is the eigenvector of H relative to eigenvalue
λκ while eκ− = eκ+∗ is relative to eigenvalue λ∗κ. Then according to the spectral
theorem the following orthonormality relations are satisfied:

(eκ+, eκ
′
+ )C = (eκ−, eκ

′
− )C = δκ,κ

′
(7.11a)

(eκ−, eκ
′
+ )C = (eι , eκ+ )C = 0 (7.11b)

(eι, eι′+)C = δι,ι
′
. (7.11c)

Notice however that in general, for non-normal matrices, the hermitian scalar
product of two complex modes will not be a real number, so that if we were
to define the Fisher matrix as above we would obtain a complex matrix. For
reasons that will soon become clear, it is recommendable that the Fisher
matrix is a real positive-definite symmetric matrix. Then it is necessary to
switch to the real and imaginary parts of the eigenvectors,

eκ1 = 1√
2
(eκ+ + eκ−), eκ2 = 1

i
√

2
(eκ+ − eκ−).

Plugging into Eqs.(7.11a,7.11b) we obtain

(eκ1 , eκ
′

1 ) + (eκ2 , eκ
′

2 ) + i(eκ1 , eκ
′

2 ) − i(eκ2 , eκ
′

1 ) = 2δκ,κ
′
,

(eκ1 , eκ
′

1 ) − (eκ2 , eκ
′

2 ) + i(eκ1 , eκ
′

2 ) + i(eκ2 , eκ
′

1 ) = 0.

Notice that in these formulas the scalar product is the euclidean one. Con-
sidering separately the real and imaginary parts of these expressions together
with Eqs.(7.11b,7.11c), the full set of orthonormality relations is found:

(eκ1 , eκ
′

1 ) = δκκ
′ = (eκ2 , eκ

′
2 ),

(eκ2 , eκ
′

1 ) = 0 = (eκ1 , eκ
′

2 ),
(eκ2 , eι ) = 0 = (eκ1 , eι ),
(eι, eι′2 ) = διι

′
.
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At this point it is clear that how we should construct the Fisher matrix in
the complex case. We introduce the basis of real vectors

ẽα =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

eα1 , α = 1, . . . , k
eα−k2 , α = k + 1, . . . ,2k
eα−2k, α = 2k + 1, . . . , V − 1

(7.12)

We further introduce the matrix e with vectors ẽα as its columns. Finally
we define the Fisher matrix as

G = eTe = ((ẽα, ẽβ))α,β =
⎛
⎜
⎝

(eκ1 , eκ
′

1 ) (eκ1 , eκ
′

2 ) (eκ1 , eι
′)

(eκ2 , eκ
′

1 ) (eκ2 , eκ
′

2 ) (eκ2 , eι
′)

(eι, eκ′1 ) (eι, eκ′2 ) (eι, eι′)

⎞
⎟
⎠
κ,κ′,ι,ι′

.

Notice that since G is the Gram matrix of a collection of linearly independent
real vectors, it is by construction a positive definite symmetric matrix.

We can now state the central result of this chapter, so far. The Fisher
matrix G is diagonal if and only if the generator W is normal, in which case
the eigenvectors of the generator W can be chosen so to make G the unit
matrix. For generators with real spectrum, the Fisher matrix G is diagonal
if and only if W satisfies detailed balance.

The Fisher matrix has been constructed by means of the right eigenvectors
of H. Since by Eq.(7.10) left eigenvectors of H play a symmetric role as
right eigenvectors of the time-reversal generator, the Fisher matrix of the
time-reversal is easily constructed as

Ḡ =
⎛
⎜⎜
⎝

(eκ,L1 , eκ
′,L

1 ) (eκ,L1 , eκ
′,L

2 ) (eκ,L1 , eι
′,L)

(eκ,L2 , eκ
′,L

1 ) (eκ,L2 , eκ
′,L

2 ) (eκ,L2 , eι
′,L)

(eι,L, eκ
′,L

1 ) (eι,L, eκ
′,L

2 ) (eι,L, eι′,L)

⎞
⎟⎟
⎠
κ,κ′,ι,ι′

.

Is there any relationship between the Fisher matrix of a generator and
the Fisher matrix of its time-reversal? According to the following claim, the
answer is in the affirmative.

Eigenvectors of H can be scaled so that the Fisher matrix Ḡ of the time-
reversal generator W̄ is the inverse of that of generator W :

GḠ = ḠG = 1. (7.13)

An indirect proof of this fact will follow from considerations to come. For
later reference, we report a table of the span of the several indices that have
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been employed in this section:

a, b = 0, . . . , V − 1,

α, β = 1, . . . , V − 1,

κ, κ′ = 1, . . . , k,

ι, ι′ = 1, . . . , V − 2k − 1,

where we remind that V is the finite number of discrete states of the system
and k is the number of complex conjugate couples of eigenvalues of W .

7.5 Relative entropy and monotonicity

We consider the relative entropy with respect to the steady state:

S ∶= S(p ∣∣pss) = ∑
i

pi ln(pi/pssi ). (7.14)

It is easily seen to be a monotonically decreasing function along solutions of
the master equation p = p(t), t ∈ [0,∞). The following proof is taken from
Schnakenberg [11]; a similar simple proof can be found in Van Kampen [130]:

S′ ∶= dS

dt
= ∑

i

(Wp)i ln(pi/pssi )

= ∑
i,j

wijpj [ln(pipssj ) − ln(pjpssi )]

≤ ∑
i,j

wijpj [pipssj /(pjpssi ) − 1]

≤ ∑
i,j

(w̄ji −wji)pi

≤ 0,

where we used concavity of the logarithm and the last equality is due to

∑j wji = ∑j w̄ji. Unfortunately, the same procedure cannot be reproduced
for the second time derivative.

We prosecute this paragraph with a discussion of the close-to-steady-state
regime, showing that monotonicity implies a certain algebraic relationship
between eigenvalues and scalar overlaps between eigenvectors. There are two
acceptations of vicinity to the steady state: We can either look at the long
time limit of a solution of the master equation; Or else we can prepare the
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system in a state which is close enough to the steady state. The second
acceptation is more general. They are not in principle equivalent, as in the
long time limit only one real mode or one couple of complex conjugate modes
govern the tendency to the steady state. We will always refer to the second
situation unless otherwise specified. Let then

p = pss +∑
ι

ειq
ι +∑

κ

(ε−κqκ+ + ε+κqκ−) ,

where ε+κ = ε−κ∗, and all ε-terms are comparably small. We define

ε+κ = 1√
2
(ε1
κ + iε2

κ), ε−κ = 1√
2
(ε1
κ − iε2

κ),

and collect these terms in a unique vector ε = (εα)α whose vector’s com-
ponents εα are defined in exactly the same manner as ẽα was defined in
Eq.(7.12). We then obtain

p = P
1/2 {e0 +∑

ι

ειe
ι + 1

2 ∑
κ

[(ε1
κ − iε2

κ)(eκ1 + ieκ2) + (ε1
κ + iε2

κ)(eκ1 − ieκ2)]}

= P
1/2[e0 +∑

ι

ειe
ι +∑

κ

(ε1
κe
κ
1 + ε2

κe
κ
2) ]

= P
1/2 (e0 + e ⋅ ε) ,

where e ⋅ ε = ∑α εαẽ
α. The first time derivative of p reads

Wp = P
1/2He ⋅ ε

It’s a simple exercise to compute the action of H on the real and imaginary
parts of the eigenvectors:

Heκ1 = − 1
τκ
eκ1 − ωκeκ2 , Heκ2 = − 1

τκ
eκ2 + ωκeκ1 .

It follows that

He = − (Υ + iΩ)e = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱
τ−1
κ ωκ
−ωκ τ−1

κ

⋱
τ−1
ι

⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮
eκ1
eκ2
⋮
eι

⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

155



where we introduced

Υ = diag{. . . , τ−1
κ , τ−1

κ , . . . , τ−1
ι . . .}

Ω = ⊗
κ

( 0 −iωκ
iωκ 0

)⊗0V −2k.

Properties of these matrices are: Self-adjointness, Υ† = Υ, Ω† = Ω; Skew-
symmetry of Ω = −ΩT ; They commute, [Υ,Ω] = 0; The square of Ω is

Ω2 = diag{. . . , ω2
κ, ω

2
κ, . . .},

which a posteriori motivates the introduction of a factor i in its definition.
We now expand relative entropy (7.14) to second order in ε (repeated

indices in the following expression are implicitly summed over):

S = ∑
i

(pssi + ειqιi + ε+κqκ+,i + ε−κqκ−,i) ln (1 + ειqιi/pssi + ε+κqκ+,i/pssi + ε−κqκ−,i/pssi )

= ∑
i

(pssi + ειqιi + ε+κqκ+,i + ε−κqκ−,i) [ειqιi/pssi + ε+κqκ+,i/pssi + ε−κqκ−,i/pssi +

−1
2
(ειqιi/pssi + ε+κqκ+,i/pssi + ε−κqκ−,i/pssi )2 ] +O(ε3).

The linear term vanishes while the second order term has to be carefully
worked out. We obtain

S = 1
2 ∑

i

p2
i /pssi = 1

2(ε,Gε) +O(ε3).

Finally using the above equations we find that (up to order ε2)

S′ = ∑
i

pi(Lp)i/pssi = εTeTHe ⋅ ε = − εT (Υ + iΩ)Gε.

For sake of clarity, notice that H acts on the internal index i while the matrix
(Υ + iΩ) acts on the eigenvector labels α, for which reason we were able to
commute it with eT . Symmetrizing, we obtain

S′ = − 1
2ε

T [(Υ − iΩ)G +G(Υ + iΩ)]ε =∶ εTS′ε

where the last equality defines S′. We have the following result: The sym-
metric form defined by the matrix S′ is positive, whence

{Υ,G} − i[Ω,G] > 0, (7.15)
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where { ⋅ , ⋅} and [ ⋅ , ⋅ ] are respectively the anticommutator and the commu-
tator of two matrices.

This result follows from the fact that the relative entropy is monotone
along a solution of the master equation. Intuitively, since monotonicity holds
arbitrarily far from the steady state, in particular it holds for any solution
which passes by p at some time t. A complete mathematically satisfactory
proof is out of the reach of this work.

Inequality (7.15) is far from obvious, and a direct proof seems to be
elusive. For normal systems, we have G = 1 so that it reduces to Υ > 0,
which is obvious. For non-normal systems this inequality entails a detailed
relationship between the length and superpositions of the eigenvectors and
the eigenvalues.

7.6 Convexity: an overview

In this paragraph we question whether the second derivative of the relative
entropy is strictly positive

S′′ ∶= d2S

dt2
?
> 0, (7.16)

or in other words whether the relative entropy is convex. This would make for
a nice principle of thermodynamics. We know that the entropy production
is not a strictly decreasing function of time but for equilibrium systems,
for which it reduces to (minus) the time derivative of relative entropy with
respect to the steady state, which in turn for equilibrium systems is easily
shown to be monotone. Is relative entropy monotone also for nonequilibrium
systems, irregardless of the behavior of the entropy production?

Making (7.16) explicit:

S′′ = S′′irr + S′′rev = ∑
i

(W 2p)i ln(pi/pssi ) +∑
i

(Wp)i(Wp)i/pssi . (7.17)

Here the reversible and the irreversible contributions to the second derivative
of the relative entropy are defined. It is evident that

S′′rev ≥ 0. (7.18)

For (7.16) to hold it is sufficient (but not necessary) that

S′′irr
?
> 0. (7.19)
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Positivity of the irreversible term has been conjectured by Esposito [?]. Both
problems, (C1) convexity of S and (C2) positivity of S′′irr, turn out to be
difficult, so it is fundamental to circumstantiate them. First, we will consider
the situation where we are close enough to the steady state.

We now introduce some basic facts and incidentally prove that conjecture
(C1) holds for normal systems and that (C2) holds for bornal ststems if a
condition on the spectrum is satisfied. Introducing the scalar product

⟨a, b⟩ ∶= ∑
i

aibi
pssi

, (7.20)

the two contributions in the near the steady state can be written as

S′′rev = ⟨Wp,Wp⟩,
S′′irr = ⟨W̄p,Wp⟩ +O(ε3).

Notice that the first is general and it is just a rewriting of the corresponding
term in (7.17). The second only holds near the steady state; its proof is
straightforward:

S′′irr = ∑
i,j,k

WijWjkpk (pi/psi − 1) +O(ε3)

= ∑
j

1

psj
(∑

i

W̄jipi)(∑
k

Wjkpk) +O(ε3).

In fact, the above proof shows that W̄ and W are one the adjoint of the other
with respect to the scalar product, so we have

S′′rev = ⟨p, W̄Wp⟩,
S′′irr = ⟨W 2p, p⟩ +O(ε3).

Let S̄′′rev and S̄′′irr be the correspondent time-reversed quantities, calculated by
replacing W̄ with W . Since the scalar product is symmetric, the irreversible
contribution is left unchanged, S′′irr = S̄′′irr, while in general S̄′′rev differs from
S′′rev. Normal systems are exceptional in this respect,

S̄′′rev = ⟨p, W̄Wp⟩ = ⟨p,WW̄p⟩ = S′′rev.

In this case we have (to order ε2)

S′′ = 1
2
(S′′rev + S̄′′rev + 2S′′irr) = 1

2 ∣∣(W + W̄ )p ∣∣2 > 0
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where the norm is defined by the scalar product ⟨ ⋅ , ⋅ ⟩. Conjecture (C1) is
then proven for normal systems close to the steady state. Notice in particular
that for equilibrium systems we have S′′rev = S′′irr > 0 in the so-called linear
regime.

We now apply the above formalism of the Fisher matrix to the problem
of convexity. It is a straightforward calculation that

S′′ = εTS′′ε = εT (S′′rev + S′′irr)ε,

where we introduced the symmetric matrices

S′′rev = (Υ − iΩ)G(Υ + iΩ),
S′′irr = 1

2
[(Υ − iΩ)2G +G(Υ + iΩ)2] .

For normal systems, G = 1, we obtain

S′′rev = Υ2 +Ω2, S′′irr = Υ2 −Ω2, S′′ = 2Υ2.

The first and third matrices are obviously positive definite, as they should be.
The second is positive if and only if the real part of the eigenvalues is strictly
greater in modulus than the imaginary part. We condense these results in the
following result: Convexity of the relative entropy near the steady state holds
for normal systems. The irreversible contribution to the second derivative
of the entropy production is positive for normal systems if and only if the
real part of each eigenvalue is bigger in modulus than the imaginary part.
Similar results have been advanced by Maes and coworkers [131].

7.7 Finding counterexamples to convexity

The counterexample to both conjectures (C1) and (C2) is given in terms of
the following generator

W = 1

4

⎛
⎜
⎝

−401 1 1
400 −2 1
1 1 −2

⎞
⎟
⎠
, (7.22)

with steady state

pss = (3,801,402)/1205. (7.23)
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Notice that the system is strongly unbalanced, as one rate dominates over
all others. As a consequence, one state is almost isolated, its occupancy
probability falling rapidly to a value near zero. We choose as initial state

p = (0.002,0.464,0.534), (7.24)

We propagate p up to time t via p(t) = exp(tW )p. Relative entropy as a
function of time is s(t) = S(p(t) ∣∣pss) = ∑i pi(t) ln[pi(t)/pssi ]. A plot of s̈(t)
is given in Fig.7.1, showing a region where the function becomes negative.

The initial state in Eq.(7.24) is not close to pss in any reasonable accep-
tation of vicinity, so one might expect that this effect only occurs sufficiently
far from the steady state. Instead, we are able to generate counterexamples
in which the initial state is chosen arbitrarily close to the steady state. No-
tice that, since the system has real spectrum, after a transient time relative
entropy will recover its convexity, dominated by the largest-modulo eigen-
value. We illustrate in the rest of this section the procedure by which one
can generate similar counterexamples.

Figure 7.1: A plot of the second time-derivative of the relative entropy as a
function of time in the interval t ∈ [0,0.03].
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The most general generator of a three-state system dynamics is

W =
⎛
⎜
⎝

−w21 −w31 w12 w13

w21 −w12 −w32 w23

w31 w32 −w13 −w23

⎞
⎟
⎠
.

Its steady state reads

pss = 1

Z

⎛
⎜
⎝

w12w13 +w32w13 +w12w23

w21w13 +w21w23 +w31w23

w31w12 +w21w32 +w31w32

⎞
⎟
⎠

= 1

Z

⎛
⎜
⎝

Z1

Z3

Z3

⎞
⎟
⎠
,

where the normalizing factor Z is given below:

T = w21 +w31 +w12 +w32 +w13 +w23,

Z = w12w13 +w32w13 +w12w23 +w21w13 +w21w23

+w31w23 +w31w12 +w21w32 +w31w32.

The two non-null eigenvalues of W are given by

λ± = −1
2 (T ±

√
T 2 − 4Z) ,

with relative eigenvectors

q± =
⎛
⎜
⎝

(w13 +w23 + λ±)(w12 +w32 + λ±) −w23w32

w23w31 +w21(w13 +w23 + λ±)
w32w21 +w31(w12 +w32 + λ±)

⎞
⎟
⎠
.

The system has two real eigenvalues when T 2 > 4Z and it has two complex
conjugate eigenvalues when T 2 < 4Z. In the 2V -dimensional space of param-
eters W ∋ {wij > 0}, these two regions are separated by a (2V −1)-dimensional
algebraic set D determined by zeros of a polynomial,

D ∶ T 2 − 4Z = 0.

On this hypersurface, the spectrum becomes degenerate and the generator
is either defective or it affords a complete set of eigenvectors. Notice that
λ+λ− = Z and λ+ +λ− = −T . Moreover, from their explicit form we have that

T 2 > 2Z (7.25)
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from which it follows that when the spectrum is complex, λ± = −1/2(T ±
i
√

4Z − T 2), the real part of the eigenvalue is always bigger than the imagi-
nary part, which implies that the conditions for conjecture (C2) to hold for
normal operators is always satisfied for three-state systems.

In the real domain, the Fisher matrix reads

G = ( ∣∣q+∣∣2 ⟨q+, q−⟩
⟨q+, q−⟩ ∣∣q−∣∣2

)

and it is positive by virtue of Schwarz’s inequality ∣∣q+∣∣2∣∣q−∣∣2 > ∣⟨q+, q−⟩∣2. The
traces of S′′irr, S

′′ and S′ is easily seen to be positive, while their determinant
is positive if the following chain of inequalities holds

∣∣q+∣∣ ⋅ ∣∣q−∣∣
∣⟨q+, q−⟩∣

> λ2
+ + λ2

−
2λ+λ−

> (λ+ + λ−)2

4λ+λ−
> λ+ + λ−

2
√
λ+λ−

,

which strengthen Schwarz’s inequality. According to the above discussion,
only the right-hand most is known to hold.

Now suppose that we have a smooth one-parameter family of three-state
systems W (s), where W (0) is a normal system (real or complex spectrum),
for which conjecture (C2) is known to hold. At s = 0 the symmetric matrix
S′′ is positive, so that all of its eigenvalues are positive, while at s = 1 we
approach a degenerate system on D . As we vary s eigenvalues of S′′ vary
smoothly. For S′′ to fail to be positive definite, it is necessary to stumble into
a null eigenvalue, i.e. to cross an hypersurface where detS′′ = 0. We then
identify another algebraic variety as the set of zeros of the polynomial

S ′′ ∶ Z1Z2Z3

Z
[16λ2

+λ
2
−∣∣q+∣∣2∣∣q−∣∣2 − ⟨q+, q−⟩2(λ2

+ + λ2
−)4] = 0.

The factor Z1Z2Z3/Z ensures that this is a polynomial. Now it’s fairly obvi-
ous that D ⊆ S ′′. The converse is not true.

To find counterexamples we must then find a non-defective generator for
which detS′′ = 0, which is a simple problem that can be solved by computa-
tion. Close to such generator is a generator with a negative eigenvalue. Its
relative eigenvector identifies the direction where one can pick eigenmodes
so to generate a non-concave behavior of the relative entropy. One can pick
the eigenmode’s entries small at will, thus generating counterexamples where
the initial state is arbitrarily close to the steady state.
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7.8 A class of NE phase transitions?

We left out from our analysis defective generators, that is, generators that ad-
mit degenerate eigenvalues lacking a complete set of corresponding eigenvec-
tors. This case and the phenomenology so far analyzed are better illustrated
with the aid of an example. Consider the following generator, parametrized
by positive rates ξ, χ

W (ξ, χ) =
⎛
⎜
⎝

−ξ − χ 1 χ
χ −1 − χ 1
ξ χ −1 − χ

⎞
⎟
⎠
. (7.26)

The dynamics generated by W (ξ, χ) is that of a hopping particle with a sys-
tematic bias in the counterclockwise direction, and one perturbed clockwise
rate (see Fig.7.2a). Its phase space is depicted in Fig.7.2b. By Kolmogorov’s
criterion, transition rates satisfy detailed balance if and only if the only
macroscopic affinity vanishes, ln ξ/χ3 = 0, which traces the equilibrium line
`eq. The model corresponding to χ = 1 = ξ is known as the unbiased hopping
particle, with twice degenerate eigenvalue λ = 2 affording a complete basis
of eigenvectors. The space of parameters is partitioned into two phases with
real spectrum (A, in grey in Fig.7.2a) and with a couple of complex conjugate
eigenvalues (B1, in white), marked out by the critical lines `1 ∶ χ+3ξ = 4 and
`2 ∶ ξ = χ. For the first class of models, direct calculation of the eigenvectors
shows that G is diagonal only along the equilibrium line. In phase B1 one
needs to turn to the complex components of the eigenmodes to be able to
expand relative entropy as a positive bilinear form. Along `∗ are the biased
hopping particle models W (1, χ), which make the complexified matrix diag-
onal. Their reversal if found by inverting the bias in the clockwise direction,
yielding W̄ =W T .

With the exception of W (1,1), a generator W picked along the critical
lines only has one eigenvector q relative to the degenerate eigenvalue −τ−1.
A generalized eigenvector u shall then be introduced, with

Wu = − τ−1u + q,

carrying W into Jordan’s normal form. The time evolved exp(tW )p is seen
to acquire a term ∝ te−t/τq [132].

Consider now a path Γ = {ξ(s), χ(s)} in parameter space, as depicted
in Fig.7.2b. We first traverse the complex phase. At s = 1 we come upon
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an abrupt switch in the appropriate basis. Approaching the critical line `1

from below, the imaginary part Im q+(s) becomes smaller and smaller until
it vanishes; from above, the modes q+(s) and q−(s), respectively with higher
and lower eigenvalue, tend to align. At the critical line the Fisher matrix
becomes degenerate and has a discontinuity

G↑ = ( 1 0
0 0

)→ G↓ = ( 1 1
1 1

) . (7.27)

An order parameter fs(∞) —of little physical meaning though— can also be
engineered. Consider two vectors q⊥−(s) and u⊥, respectively in the orthogonal
complement of q−(s) and u. Projecting exp[tL(s)]p− pss along the two, and
then taking the ratio, yields

f2>s>1(t) ∝ [1 + ce−t(τ−1− −τ−1+ )]−1
, (7.28a)

f1(t) ∝ 1/(1 + c′t), (7.28b)

where c and c′ are some constants. The exponential decay, which reaches
an arbitrary nonzero value of fs(∞), becomes a power-law at the critical
line, with fs(∞) = 0. Thence we took the liberty to refer to a class of
nonequilibrium phase transitions, with an acceptation that is reminiscent of
that employed for simple driven lattice models [133, Sec. 1.1]. This is also
motivated by the equilibrium usage of the Fisher matrix, which coincides

Figure 7.2: a) Transition rates for the hopping biased particle with one clockwise
perturbed rate. b) The parameter space of L(x, y): phases, critical and trivial
lines, a path Γ.
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with the covariance matrix of the observable constraints Xα that define the
equilibrium ensemble

p ∝ exp−∑
α

βαX
α. (7.29)

Crooks [134] commented that, as we vary the intensive parameters βα, corre-
lations vary smoothly except at phase transitions, where divergencies occur.
On this line, further insight might come from estimation theory. Consider
an unbiased estimator ε̂i = (εiα)α, whose average

⟨ε̂⟩p = ∑
i

εipi = ε

yields precisely the vector of parameters ε = (εα)α that describes state p,

p = pss +∑
α

εαq
α.

The Crámer-Rao inequality [135], establishes a lower bound on the covariance
matrix

⟨(ε̂ − ε)(ε̂ − ε)⟩p ≥ G−1,

where A ≥ B means that A − B is positive semidefinite. Multiplying by G
and taking the trace we obtain

⟨∥ ε̂ − ε ∥2
G(s)⟩p ≥ n, s ≠ 1,2. (7.30)

A degenerate metric admits non-null vectors of null norm. Hence in the
limit s→ 1 there might exist unbiased estimators whose correlations diverge,
since degeneracy of the bilinear form must be compensated by a divergence
in order to verify Eq.(7.30).
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7.9 Information-geometric interpretation

In this section we interpret some of the results of this chapter in the light
of information theory and geometry. We estabilish a connection between
thermodynamical aspects of nonequilibrium systems, encoded in their decay
modes, and geometrical properties of the Fisher-Rao measure of distance
between probability distributions.

As was already known to Kullback [136, Sec. 2.6] and thoroughly dis-
cussed by Baez in his blog [137], relative entropy is at the core of the defini-
tion of Fisher’s matrix gαβ [138], which was reinterpreted by Rao as a metric
g on the manifold of statistical states [139]. Already a standard tool in infor-
mation theory and statistics [135], the Fisher-Rao metric was rediscovered in
equilibrium statistical mechanics [140–142], and more recently it is drawing
attention in NESM [134,143] and in quantum information theory [144–146].
Singularities of gαβ have been shown to signal the insurgence of quantum
phase transitions [147].

Indeed, a rich nonequilibrium phenomenology is marked by the peculiar
representation of relative entropy near the invariant state, which can be in-
terpreted as a metric on the manifold of statistical states P. Let us hint at
its construction. With an information-theoretical attitude, one would like
to employ relative entropy as a tool to compare probability distributions.
However, relative entropy is not a good distance: it is not symmetrical, and
the triangle inequality can be violated [137], as one can split a path between
two far-apart points into short segments whose relative entropies add up to
a number smaller than S(p′∣p). The way out of this puzzle is to stick to
nearby distributions, thus obtaining a local metric that measures the length
of vectors εαqα living on the tangent space to P at p. When moving to a
different neighbourhood, one will shift the reference probability distribution
to p′, and there define the metric in terms of S( ⋅ ∣p′). If this procedure is
carried on point-wise, one endows P with the Fisher-Rao metric. One can
then assign coordinates xα to neighbourhoods of the manifold; associated
to such coordinates is a basis of preferred tangent vectors ∂/∂xα, which yield
a matrix representative for the metric at each point of the neighbourhood.
Notice that the Fisher-Rao metric is smoothly defined all over the manifold
(except at boundaries and corners); it is its coordinatisation that might suffer
from pathologies, as is the case for our critical systems.

But for n = 1, it can be shown that g has a non-null Riemann curva-
ture: while one can always choose a coordinate patch that trivialises the
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metric at one given point, there is no such coordinate transformation which
simultaneously makes g diagonal all over a neighbourhood. Given the twice-
contravariant transformation law for the metric, gα

′β′ = Λα′
α Λβ′

β g
αβ, where

Λα′
α (x′) = ∂xα/∂x′

α′ is the inverse jacobian of the coordinate transformation
x → x′(x), one realises that the components of eαi can be interpreted as the
jacobian of an embedding patch, also called a frame, which trivialises the
metric at p. The choice of a markovian generator L identifies a point on the
manifold of statistical states and a set of decay modes. We first map the prob-
ability simpex into the surface of a sphere, then interpret the pushed-forward
vectors’ entries eai as the jacobian of a second coordinate transformation, in
such a way that an equilibrium generator corresponds to the choice of a co-
ordinate patch which trivializes the Fisher-Rao metric at the invariant state.
Given an invariant state, there exists a whole O(n + 1)-orbit of frame fields
which trivialize the metric. Vice versa, two equilibrium generators with the
same invariant state yield gauge-equivalent frames.

Hence, orthonormal frames are associated to p-normal systems; vice versa,
two such systems with the same invariant state yield different orthonormal
frames, which are connected by an O(n + 1) “gauge” transformation. This
very mechanism lies at the heart of the Equivalence Principle of General Rela-
tivity. While gravity curves spacetime so as to prevent the definition of broad
notions of “parallelism” and “simultaneity”, one can always find coordinates
that make spacetime minkowskian at one point, and gravity indiscernible
from a fictitious force. To a special observer, the frames’ entries provide an
inertial frame of coordinate axis: in a very precise way they measure how
much the orientation of these axis differs, up to Lorentz gauge transforma-
tions, from “bent” coordinate axis. This discrepancy is the gravitational
field [127, pp. 59-60].

In this chapter we established a close connection between the Fisher-Rao
metric and markovian generators. The choice of a generator induces a nat-
ural identification of a positive semi-definite matrix representation, nested
in the late-time behavior of relative entropy. A trivialized metric emerges
for generators that commute with their time-reversal, including equilibrium
systems. Then, using a motto, we might claim that equilibrium systems
are to nonequilibrium thermodynamics what inertial frames are to gravity.
Seeming nonequilibrium phase transitions are induced by degenerate coordi-
natizations. This study calls for a careful treatment of the algebraic varieties
of critical and trivial loci in the space of generators, and for a thermody-
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namical characterization of the order parameters. Normal systems seem to
enjoy special properties, and deserve more in-depth study, in particular in
relation to the fluctuations and large deviations of their microscopic jump
trajectories. Finally, the neat framework suggests to deepen the nonequi-
librium characterization of geometric objects such as Christoffel coefficients,
geodesic curves, intrinsic and extrinsic curvature.

We conclude this section with some more precise and formal note on the
Fisher-Rao metric. The two matrices H and −W are both representations of
an operator H with eigenvectors

ea = qai
∂
∂pi

= eai
∂
∂zi
. (7.31)

The peculiar notation employed for the basis vectors denotes that
√
P might

be seen as the inverse jacobian of the coordinate transformation pj ↦ zj(p) =
2
√
pj, which maps the probability simplex {pi ∈ [0,1]n+1 ∶ ∑j pj = 1} into a

portion of the hypersphere with square radius∑i z
2
i = 4. Both are embeddings

of the abstract manifold P of probability distributions into Rn+1. Each such
coordinatization (say, x) of “positions” on P endows the (n+1)-dimensional
vector space V ≅ Rn+1 of “velocities”, attached to p, with a preferred basis of
directions ∂/∂xi. Vectors eα span the n-dimensional tangent space TpP ⊂ V ,
while e0 describes how a neighbourhood of p sits in the embedding space.

A metric at p is a positive semidefinite bilinear form hp[v,w], with vec-
tors v,w ∈ V attached to p. A choice of coordinates endows the dual space
V ∗ with a basis of linear forms dxa, such that dxa[∂/∂xb] = δba. Vectors’ com-
ponents are then obtained by projecting va = dxa[v], while the metric in
coordinates reads hp = hab(x)dxa⊗dxb. Again, the notation “dxa” highlights
the transformation properties of linear forms: if x ↦ x′(x) is a diffeomor-
phism, the metric’s entries transform twice contravariantly

ha
′b′ = ∂xa

∂x′a′

∂xb
∂x′b′

hab. (7.32)

A metric is fully characterized by its action on a complete set of vectors. In
our case, we define hp via

hp[ea,eb] ∶= δijeai ebj =∶ δijei ⊗ ej [ ∂
∂xa

, ∂
∂xb

] (7.33)

where the right-hand side helps introducing the frame forms ei = eai dxa [72].
Given a metric, frames are determined up to O(n + 1)-rotations ei ↦ Rj

iej,
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which leave the metric’s coefficients unaltered. When such rotations are
performed point-by-point all over a neighborhood of the manifold, in a dif-
ferentiable way, one talks of a gauge transformation.

Comparison of Eq.(7.33) with Eq.(7.32) reveals that eai is the inverse ja-
cobian of a coordinate tranformation z ↦ x(z) which pulls back the metric’s
components to the unit matrix. For example, choosing “spherical” coordi-
nates xa = δiazi, one obtains the euclidean lenght element hp = (dz)⊗2. The
intrinsic metric at p, gp, is defined as the restriction of hp over the hypersur-
face P, acting on the tangent space TpP. By construction e0 is orthogonal
to all other eα’s. Finally, the Fisher-Rao metric on the manifold is simply
the disjoint collection of local intrinsic metrics, g = ⊔p∈P gp.
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