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Introduction

my cells are smarter than me

Lorenzo Farinelli, MD trainee

During the last few years, a great deal of interest has risen concerning the
applications of stochastic methods to several biochemical and biological phe-
nomena. This interest comes from the observation, also experimentally founded,
that almost every biological process is intrinsically noisy and cannot therefore
be described with purely deterministic methods such as Ordinary Differential
Equation (ODE). Even taking this into consideration, phenomena like gene ex-
pression, cellular memory, bet-hedging strategy in bacterial growth and many
others, cannot be described by continuous stochastic models due to their intrin-
sic discreteness. This feature limits the feasibility of a more standard approach
like the Fokker-Plank equation formalism, leading to a progressive introduction
of the Master Equation technique in the field of biological modeling due to its
capacity of describing discrete stochastic processes. In this thesis I have used
the Chemical Master Equation (CME) technique to modelize some feedback
cycles and analyzing their properties, including experimental data.

In the first part of this work, the effect of stochastic stability is discussed
on a toy model of the genetic switch that triggers the cellular division, which
malfunctioning is known to be one of the hallmarks of cancer. Both the presence
of a secondary peak without a corresponding deterministic stable point and the
reciprocal effect are discussed along, with their biological relevance.

The second system I have worked on is the so-called futile cycle, a closed
cycle of two enzymatic reactions that adds and removes a chemical compound,
called phosphate group, to a specific substrate. This system is deterministically
monostable, but it has been recently shown to be able to exhibit bistable prop-
erties when an appropriate level of noise is added to the system. I have thus
investigated how adding noise to the enzyme (that is usually in the order of few
hundred molecules) modifies the probability of observing a specific number of
phosphorylated substrate molecules, and confirmed theoretical predictions with
numerical simulations.

In the third part the results of the study of a chain of multiple phosphorylation-
dephosphorylation cycles will be presented. This system can exhibit multi-
stability even in the deterministic regime, and we have studied under which
conditions this is valid even in the discrete stochastic regime. We will discuss
an approximation method for the exact solution in the bidimensional case and
the relationship that this method has with the thermodynamic properties of the
system, which is an open system far from equilibrium.

In the last section the agreement between the theoretical prediction of the
total protein quantity in a mouse cells population and the observed quantity
will be shown, measured via fluorescence microscopy. This quantity is observed
during the process of cellular senescence and its compared with the behavior of
other special proteins like the histones, the protein structure responsible for the
chromatin folding, and the laminin-A, a nuclear membrane protein.
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Chapter 1

The master equation

In this chapter I will show where the master equation comes from and how it can
be used to analyze biochemical system where the standard, deterministic anal-
ysis would give inaccurate results. Starting with a review of the biological basis
for the usage of this approach and its mathematical foundations, I will briefly
review the most common resolution techniques, both analytical and numerical.

1.1 Noise in biology

In biology there are several processes that cannot be described in term of deter-
ministic evolution. From protein production to the behavior of the whole cell,
not only the noise is ever-present, but evolution found several ways to exploit
this noise to the advantage of the single cell or the whole population.

1.1.1 Bet hedging

One of the most intriguing example of exploitation of the stochasticity is the so-
called “bet hedging strategy” which can be found in several bacteria population.
Bacteria are a tiny yet spectacular form of life that can thrive almost everywhere,
from ocean-deep and oxygen deprived boiling pits to the human gut, where their
function is so crucial that a lot a scientist are starting to refer to our symbiotic
partners as microbiome and referring to it as an additional organ of our body,
not less important for our health than the liver or the lungs.

Most environments are very different from our gut, where our symbiotic
bacteria can thrive in a food-filled environment, always with the right conditions
of temperature, moisture and pH. Outside our body the conditions are quite
harsh, with wide temperature variation, a varying range of pH and moisture,
and almost no nutrients. This could severely limit the ability to survive of the
bacteria, due to the frequent changes of environmental conditions. The response
of a lot of species of bacteria to this problem is the “sporulation” process,
where the cell freezes itself in a resistant state waiting for better conditions.
Microbiologists have found spores several million of years old and still capable
of returning to an active state[13].

The main problem with this approach is that the sporulation process is not
instantaneous, but it takes some time to happen (minutes to hours, usually),
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CHAPTER 1. THE MASTER EQUATION

and this can lead to a nearly 100% extermination of the population in case of
rapidly changing environment. What biologists observed is that in any bacterial
population, a fraction of this population is always in the resistant state, whatever
the conditions was. This allowed a certain percentage of the population to
survive no matter how fast the environment fluctuation were. This was true even
for monoclonal population and in general a fixed percentage of the population
enters this sporulation phase regardless of the state of the ancestor.

What has been understood is that bacterial cells undergo a transition toward
sporulation state and back to the reproductive state with a certain fixed proba-
bility. The population that doesn’t exploit this method will have a competitive
advantage in the short term, but in the end will fall victim to the ambient fluc-
tuation, while the sporulating population, albeit slower in growing, will persist
to harder perturbations.[28]

1.1.2 Noise controlling protein production

The production of proteins starting from a gene is now understood as a rich and
complex mechanism, even without taking into consideration the interaction of
the genes with specialized peptides (small proteins) that are called transcription
factors. The concentration of a protein in a cell is crucial in order to perform
certain functions, as the regulation of their level is one of the most important
function in the cell.

The central dogma in the classic molecular biology is that each gene produces
a messenger RNA (mRNA) which is translated into a protein by the ribosomes
outside the nucleus. It is known now that the process is more complex than that:
the mRNA is first spliced to remove the introns (non translated sequences) and
joining the exons, in one or more ways; the resulting mRNA will be translated
if not removed by a silencing RNA or a micro RNA (miRNA), two different
strands of RNA used by the cell to selectively destroy targets mRNA with a
certain grade of specificity: a miRNA can target several different mRNA, and a
mRNA can be the target of several miRNA. This second layer of RNA reaction
is mostly necessary to keep track of the precise amount of mRNA translated,
reducing or amplifying the uncertainty of its distribution. This allows a cell to
fine-tune the amount of protein produced to a very precise level or to a very
broad distribution. This can allow a cell to obtain memory switches from low
cost reactions like the futile cycle (see Chap 3).

A seminal work from the Van Oudenaarden group has shown how it is pos-
sible to correctly predict the level of a fluorescent protein in E. Coli cells linked
to the lactose utilization[71]. Since the lactose utilization network is a very well
known and alterable gene group, they altered a colony of E. Coli to produce a
certain amount of GFP (Green Fluorescent Protein) when the lactose sugar is
detected and the whole switch is activated, making it quite easy to control the
expression of this ensemble of genes. The actual results matched almost per-
fectly those predicted with an appropriate master equation, which described the
protein production process in term of basic reaction: gene→ RNA→ protein.

Noise can also be involved in the regulation of the spatial distribution of
several substances in the cell. The presence and type of noise found in a cell
can create regular oscillations in the position of the concentration of protein in
several kind of bacteria[19], from the center to the extrema of the cell. This is
a major feature of the stochastic regulation, because chemical gradients inside
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1.2. MASTER EQUATION

a cell are the driving force under the embryonic development of all living thing.
In fact, most of our structures, from which side is up and which down to the
structure of the spinal chord, can be seen as a macroscopic cascade effect from
some chemical gradients in the zygote and down on.

1.1.3 Evolutionary theories and population dynamics

The dynamics of a population of individuals can often be represented with a
master equation, as the population size is intrinsically a discrete quantity whose
evolution in time is driven by random interaction between individuals. Popula-
tion growth, epidemic diffusion and the evolution, especially in the formulation
of neutral theory of evolution, can all be represented on a discrete stochastic
basis.

The simplest population growth model treats the individuals as units whose
death is a constant process and reproduction is a simple duplication, and it is
often used for bacteria with good approximation. A more detailed model that
takes into consideration phenomena like male-female interaction, competition
for resources and age groups can be written without special difficulties.

The spreading of a contagious factor in a population, like a disease or a
successful social behavior, can be represented as a simple Susceptible-Infected
model, with a core dynamic where the encounter of an infected individual with
a susceptible one can lead to a transmission: S + I → 2I.

The concept of evolution is well known, even if commonly mis-interpreted, as
a combination of random mutations, both with reproductive fitness advantage
or disadvantage, and natural selection, i.e. the inter-specific competition of the
individual of the population for resources, mating and avoiding predators. Evo-
lution can also be driven by purely stochastic effects, as shown by Motoo Kimura
thirty years ago in his book “The Neutral Theory of Molecular Evolution”[57],
which launched the concept of neutral evolution. This theory states that in
a small population most of the mutation are not fixed in the population by a
competitive advantage but rather by mere case, as reproduction can spread a
trait among a population and fix by mere fluctuation. The actual probability of
fixation for a neutral mutation is in the order of N−1 where N is the population
size. Advantageous mutations spread easier and faster while disadvantageous
ones spread slower with a higher extinction probability, but still can be fixed if
the population is small enough. This idea of neutral evolution is becoming more
and more important in biology, as it gives a null hypothesis to test against on
evolutionary research.

A similar theory has been developed in the ecological niche distribution
among several habitats[109], and is based on discrete stochastic process starting
from simple population dynamic process[47].

1.2 Master equation

The Master equation is an equation that describes changes in time of the proba-
bility of the whole system to be in a specific configuration, driven by a memory-
less process of transition between states. This whole idea can understood in the
light of the continuous time Markov chain theory. In a different way can be seen

3



CHAPTER 1. THE MASTER EQUATION

as a diffusion process on a regular graph, whose nodes represent the available
states and the links stand for the transitions between states.

1.2.1 Markov processes

The basic concept of the master equation is the idea of markovian process. A
Stochastic process is defined as a function of the time t and a stochastic variable
X where for each value of X we observe a different realization of the stochastic
process.

YX(t) = f(X, t)

The process Y can describe any kind of phenomenon, like the state of a
subatomic particle moving through matter, the position of a fluctuating grain
of pollen on the surface of water or, as we will see, the number of molecules of
each kind in a chemical reaction.

We can describe the probability of observing a specific value of the function
Y at a time t as the measure of the ensemble of values of X for which the
function Y gives the value y at time t.

P (y, t) =

∫ +∞

−∞
δ(Y (X, t)− y)dX

In the most general mathematical formulation of this problem there is no
clear relationship between the value of Y at a certain time and its value at the
previous moments, so the probability of observing y at the time t+dt given the
observation of the value of Y at previous times can be any function of all the
previously observed values.

P (Y (t+ dt)) = P (Y (t+ dt)|Y (t∗)∀t∗ 6 t)
Although in a markovian process we have a very simple relationship: the

probability distribution of observing the value y at a time t + dt is a function
of only the state of the system at the time t.

P (Y (t+ dt)) = P (Y (t+ dt)|Y (t))

The system loses any kind of information of its state before the present
value, and so the markovian systems are usually called memory-less. In general
the probability of a observing y after a certain observation y′ is a well behaved
measure function in the space of y, with a limit to the deterministic dynamic
when the P is a delta-shaped function, thus explicitly determining y given the
observation of y′.

We can write the previous relation in a more formal way, that gives the
probability of a transition of the system at the state y2 at the time t+ τ given
the observation of the state y1 at the time t. Under the hypothesis that the
transition probability does not depend on the moment in time but only on the
elapsed time and calling P (y2, t + τ |y1, t) = Tτ (y2|y1), we obtain the so-called
Chapman-Kolmogoroff equation for the transition propensity:

Tτ+τ ′(y3|y1) =

∫
Tτ ′(y3|y2)Tτ (y2|y1)dy2

4



1.2. MASTER EQUATION

Taking the first order term of the Taylor serie of the Tτ ′(y3|y2) integral for small
τ ′, we can write it as:

Tτ ′(y3|y2) = (1− α0τ
′)δ(y3 − y2)− τ ′W (y3|y2) +O(τ ′

2
)

where the δ function represents the fact that for a brief time the system should
not move much and the probability is slightly less than 1 with the term (1−α0τ

′)
where α0(y2) =

∫
W (y3|y2)dy3 is the normalization constant and W (y3|y2) is

the derivative of Tτ (y3|y2) for τ ′ = 0.
The last equation, put into the Chapman-Kolmogoroff, divided by τ ′ under

the limit of τ ′ → 0 gives us the differential form of the CK equation, which is
the master equation:

∂τTτ (y3|y1) =

∫
[W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)]dy2 (1.1)

1.2.2 The Chemical Master Equation

The Eq 1.1 is already a form of master equation, but we can write it into a
more understandable form: noticing that the equation has been written for a
specific y1 and t1, we can remove all the redundant index and write a form for
the probability of observing the state y at the time t:

∂tP (y, t) =

∫
[W (y|y′)P (y′, t)−W (y′|y)P (y, t)]dy′ (1.2)

This can be recognized as an influx of probability to the state y from all the
“surrounding” (in the sense of connected) states y′ and an efflux from y to
every state y′ to which it can move to. If the system state space is discrete, as
when we work with a system with a discrete number of individuals or molecules,
we can write the probability as Pn(t) to represent the discreteness of the state
space. In this case the master equation can be called Chemical Master Equation
(referring to a chemical environment) and it will be written with sums instead
of integrals:

∂tPn(t) =

∞∑
n=0

[λn′,nPn′(t)− λn,n′Pn(t)] (1.3)

where the λs are simply the discrete version of the W of the continuous equation,
with the origin and destination index exchanged, so that λn,n′ represents the
probability flux from the state n to the state n′.

We can further simplify Eq 1.3 as a linear dynamic system:

∂t ~P (t) = Λ~P (t) (1.4)

where the matrix Λ is called the transition matrix and is defined as:

Λi,j =

{
Λi,j = λi,j ∀i 6= j
Λi,i = −∑j 6=i λi,j

(1.5)

This makes Λ a zero determinant matrix by construction, because∑
j

Λij = 0 ∀i

5



CHAPTER 1. THE MASTER EQUATION

The zero determinant matrix represents the conservation of probability: a de-
terminant different from zero means that a certain amount of probability would
be generated or destroyed, and this is an absurd, given that we are describing
the system as a whole. A zero determinant also means that there is at least one
zero eigenvalue, whose corresponding eigenvector is the so-called stationary dis-
tribution, the distribution to which the stochastic process always converges, i.e.
∂tPn(t) = 0, as long as the transition propensities λ are not a function of time.
If the system is fully connected (cannot be broken into two non communicating
pieces) the stationary distribution is guaranteed to be unique. The stationary
distribution will be obviously positive, i.e. all its terms are with positive sign
and the sum of all its components is 1 (being a probability distribution). All the
other eigenvalues will be with negative module, and the corresponding eigen-
vectors will have total sum of the components equal to zero, as they can be
interpreted as the difference between the present distribution and the station-
ary one, both having total sums of the components equal to 1. A special role is
played by the eigenvalue with the smallest absolute value, which it means that
its eigenvector is the longest-standing one. This eigenvector is referred as the
metastable state and its eigenvalue gives a time-scale of the time of convergence
to the stationary distribution. It is worth noticing that albeit each eigenvector
components decay exponentially with time, the convergence to the stationary
distribution can be slower than exponential if a lot of eigenvalues are closer to
the metastable one. If the eigenvalues spectrum is closer to an exponential, it
can be shown that the practical convergence time is a power law, i.e the conver-
gence mean-time goes to infinity. One extreme case happens in system which
describes ecological systems, where the system is unbounded to infinity and the
mean value grows exponentially in time, never actually reaching a stationary
distribution.

1.2.3 Van Kampen operators

It is often useful to not write the master equation in its expanded form, which
is hard to read, understand and thus to work with. A useful way to write the
CME has been proposed by N.G. Van Kampen in his seminal book Stochastic
Processes in Physics and Chemistry, where he defines a couple of operators
inspired by the creation-destruction operators found in quantum physics:

These operators are defined as:

E+
nP (n) = P (n+ 1)

E−nP (n) = P (n− 1)

and so:

(E+
n − 1)P (n) = P (n+ 1)− P (n)

(E−n − 1)P (n) = P (n− 1)− P (n)

So a generic birth-death process can be written in two different but equivalent
forms:

6



1.2. MASTER EQUATION

∂tPn(t) = −(gn + rn)Pn(t) + rn+1Pn+1(t) + gn−1Pn−1(t)

= (E−n − 1)gnPn(t) + (E+
n − 1)rnPn(t)

= (E+
n − 1)(rn − E−n gn)Pn(t)

It is worth noticing that the (E+
n − 1) term counter-intuitively corresponds to a

reaction that reduces the value of n (representing a flux from a high state to a
lower one ), while the (E−n −1) corresponds to a process that increases its value.

This formalism comes especially handy when one is writing approximation
of the master equation, like the Chemical Langevin Equation[39], where it gives
a hint on the correlation matrix of the noise, or the generation of the Fokker-
Planck equation, being the E+

n approximable with a series of derivatives.

1.2.4 Detailed balance

The condition of detailed balance is one of the most distinguishing property
of a system, and corresponds to the thermodynamic equilibrium. The formal
definition regards the microscopic probability flux, asserting the microscopy re-
versibility: λijPi = λjiPj . When this relationship holds the resolution of the
stationary distribution of the master equation is almost trivial for any dimen-
sion, as one can write a “potential” energy of the system and write the solution
of the system with the Boltzmann relationship:

Pn = P0e
En−E0

This property will be used in Chap 4 to approximate the distribution even when
the detailed balance does not hold.

In general this condition can be linked to the Kirchhoff law of fluxes into a
network, because the CME can be interpreted as a probability flux on a network
generated by the available states and linked by the possible reactions. If we have
a circular network of reversible transitions from state A to state B,C and D (so
we are working on a system with only 4 possible states) like the following graph:

A
KAB ++

KAD

��

B
KBA

kk

KBC

��
D

KDC ++

KDA

FF

C
KCD

kk

KCB

FF

The condition of detailed balance between fluxes can be rewritten in terms
of the reaction propensity alone, recalling that Pi = Pj

λji
λij

, and applying it

recursively over the cycle, obtaining the following condition:

KABKBCKCDKDA = KDCKCBKBAKAD

In a system that has more than one elementary cycle the detailed balance con-
dition should apply to every cycle to be valid for the whole system.

7



CHAPTER 1. THE MASTER EQUATION

1.3 Resolution methods

The master equation is impossible to solve in the general case, being a huge (or
infinite) set of degenerate differential equations. In some special cases it is pos-
sible, however, to solve it with analytical and numerical methods. The following
is a list of the main methods of analytical solution or numerical integration of
the master equation to obtain the corresponding stationary distribution.

In order to choose the appropriate resolution method for a CME, it is use-
ful to distinguish between a set of features that renders one or more solution
methods unfeasible.

linearity of the processes: in this case every reaction term is constant or
proportional to the first power of only one chemical specie. This make the
system easy to solve with almost any method, especially the analytical one,
for which it is possible to even try to write the time-dependent solution,
see Sec 1.3.4 and Sec 1.3.5

dimensionality of the process: when the system can be seen as a monodi-
mensional system the solution is usually almost trivial with the linear
expansion method (see Sec 1.3.1). Note that a system of one specie, but
with reactions that allow transitions of several length (like having both
E+
n and E+2

n ) it is not truly linear and thus cannot be solved under the
hypothesis of detailed balance. A method to solve bidimensional processes
will be explained in Cap 4

stiffness of the processes: Stiff systems are very hard to simulate with the
normal SSA method, see Sec 1.3.8, while it is possible to try an approx-
imate numerical method like the τ -leap or the Chemical Langevin Equa-
tion, it is generally convenient to take advantage of that stiffness and try
to separate the stiff process from the others, determining its stationary
distribution independently and plugging that into the resolution method.
If the slow process is a linear one it is often possible to substitute the stiff
distribution with its mean.

separability of the processes: When in presence of chain processes without
feedback it is often possible to solve independently each step of the chain
and using that solution for the following processes. For this kind of solu-
tion, the most convenient method is the probability generating function
explained in Sec 1.3.4

extension of the state space: When the complete state space is of limited
size, like when the CME describes the possible states of a set of enzymes,
one really useful method is the state enumeration (Sec 1.3.2) followed by
an analysis of the eigenvalues of the transition matrix (Sec 1.3.3)

presence of absorbing states: An absorbing state is one where the proba-
bility can flow in, but cannot flow out, and thus will end absorbing all
the probability, being the only possible state in the system (unless there
are more than one absorbing state). In this case the final distribution is
rather trivial: if there is only one absorbing state the final distribution
will be a δ distribution, while with more absorbing states it will be a sum

8



1.3. RESOLUTION METHODS

of one δ for each state, whose absolute value depend from the starting dis-
tribution. In this case can be quite easily calculated the time of extinction
by determining the distribution of the meta-stable state as explained in
Sec 1.3.9

1.3.1 Linear expansion

Given a CME that can be written as a one-step birth-death process, i.e. has
the following form, ∂tPn(t) = −(gn+rn)Pn(t)+rn+1Pn+1(t)+gn−1Pn−1(t), we
have a process for which the stationary distribution can be easily obtained in
the general case with a linear expansion of the coefficient gn and rn.

This can be done noting that in this linear case in the stationary condition
the flux should be 0 for each step, Pngn = Pn+1rn+1, which corresponds to the
condition of detailed balance. This allows to write a simple recursive solution
for this system:

Pn+1 = Pn
gn
rn+1

and so, given a certain value of P0 to maintain the final normalization of prob-
ability, to write the solution as:

Pn = P0

n−1∏
i=0

gi
ri+1

In some cases this solution can be written in a closed form, but often one
can obtain just the series. This method can be used to find the closed form of
two important processes, the birth-death and the interconversion.

The interconversion model represents a system whose components can switch
between two separate states in a way that is independent from the state of all
the others and with a constant probability in time. This is a typical model for a
protein which can be in two state, like phosphorylated and non-phosphorylated,
and switch back and forth between the two, ignoring the detail on how this
transition happens (this hypothesis is sometimes justified by a first-order ap-
proximation of an enzymatic reaction, but need to be examined for each case).
In this model the transition propensities from the state A and B are in the linear
form Aka and Bkb, with the following kinetic scheme:

X
xβ

77 X
∗

x∗αww

Given that the probability of PA=0 = C0 where C0 is the normalization constant
and N is the total number of present molecules N = A+B, the linear expansion

9



CHAPTER 1. THE MASTER EQUATION

can be written as:

p0 = C0

p0kb(N − 0) = p11ka → p1 = C0
NKb

ka

p1kb(N − 1) = p22ka → p2 = C0
NKb

ka

(N − 1)Kb

2ka

p2kb(N − 2) = p33ka → p3 = C0
NKb

ka

(N − 1)Kb

2ka

(N − 2)Kb

3ka
. . .

pi−1kb(N − i) = pN ika → pi = C0
N !

i!(N − i)!
kib
kia

This expression can be recognized as a binomial expression noticing that
ka

ka+kb
can be interpreted as a probability of the transformation from A to B

instead of the opposite happening. With this in mind, we can write the solution
as:

pi = C1

(
N

i

)(
kb

ka + kb

)i(
ka

ka + kb

)n−i
where ka

ka+kb
e kb
ka+kb

are the p and q of the binomial process and C1 = C0(ka +

kb).
In a similar fashion, we can determine the solution of the birth-death model.

This model represents a system where we have a constant income flux of the
substance A, which decades with a constant probability. The decay alone would
generate an exponential fall of the quantity of A toward 0, that will be balanced
by the constant influx. This can arise even from an interconversion system
where one the two forms quantity is much greater than the other and can be
approximated as constant (a zeroth-order approximation). The kinetic scheme
is the following, where the reaction propensity for the birth process is a constant
kc and for the death is a linear one, Akd.

∅ α // X
xβ // ∅

As before we write explicitly the solution of the recurrence equation as

p0 = C0

p0kc = p11kd → p1 = C0
kc
kd

p1kc = p22kd → p2 = C0
kc
kd

kc
2kd

p2kc = p33kd → p3 = C0
kc
kd

kc
2kd

kc
3kd

. . .

pi−1kc = pN ikd → pi = C0
kic
kid

1

i!

where the normalization constant C0 is equal to e− kckd (it is sufficient to note
that the expression is the power series of an exponential, so the summation

10
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over all Pn is one exponential).This leads to the canonical form of the Poisson
distribution:

pi =
e−λλi

i!
with λ =

kic
kid

This process is valid as long as there are no irregular point in the sequence
of the reaction propensities like an attractor point, i.e. a point to which the
probability can flow but not flow back: if n is our interest point, we have
gn−1 > 0 and rn = 0. A natural limit, as the one found in the binomial
example, is not a problem, because we stop the series when we observe gn = 0.

1.3.2 State enumeration

For small, multidimensional system, one of the best resolution strategies is to ex-
plore analytically every possible state determining its links to any other state.
This allows us to write the whole transition matrix Λ, which can be used to
evaluate any property of the system or to perform a greatly enhanced sim-
ulation. If carefully designed, the same algorithm allows us to write the Λ
matrix in an analytical fashion, retaining all the dependencies to each param-
eter, making possible to feed the matrix to a symbolic algebra system like the
“Mathematica” R©suite to solve it in the general case.

The basic algorithm has been delineated in [15]. Given a starting state x0,
it pushes it in a stack and evaluates for each reaction if it may happen and to
which state it would lead. All the reaction propensities will be saved in the
Λ matrix (in a sparse format) and the new states will be pushed in the stack,
testing that they are not already in it. The algorithm will then moves to the
following state in the stack, until all the unexplored states has been visited and
added to the stack.

In the end we obtain a list of all accessible states of the system and the
transition probability from one to the other in the form of a transition matrix.
The algorithm will converge to a finite number of states if the reactions that
generate new molecules (and thus make new states accessible) become zero over
a certain threshold. If this is not true the system is not limited and so has
infinite accessible states. One can always set some threshold on the transition
rates, removing those that are smaller than a set value, but this method can
be used only when we are certain that it will not remove interesting zones, like
secondary peaks of the stationary distribution.

Given this information, we can solve the system in several ways, the most
straightforward being the direct integration of the whole CME as a set of linear
ODE. This method works fine for limited set of states, but has a very slow
convergence due to the determinant of the Λ matrix, which is 0 by design.

1.3.3 Eigenvector solution

Being the CME a linear operator on the probability distribution Pn, represented
by the transition matrix Λ, we can solve the master equation like a normal
dynamical system. The standard solution would suggest that we can write an
evolution law as:

P (t+ ∆t) = P (t)eΛ∆t

11
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. This is formally correct, but practically unfeasible due to the exponentiation
of the matrix Λ, which is not a solvable problem in the general case and it is not
numerically stable when the size of Λ grows, and it often starts from an already
infinite size.

The stationary condition Λ~P = 0 says that the stationary distribution is
the kernel of the matrix Λ, which is always with determinant zero due to the
construction of the matrix itself (this is necessary to impose the conservation of
the probability). As long as the system is not too big in terms of the number
of molecules, we can numerically approximate the value of that eigenvector,
truncating the matrix if necessary without too many problems (as long as we
set gn = 0 if we truncate at size n to maintain the conservation of probability).
This solution has two main problems: it is not analytical and is specific to the
exact parameters used in the solution, not giving any insight on the structure
of the general solution, and has a very poor convergence as soon as the system
has more than few hundreds total states.

For the others eigenvectors very little can be said from a general point of
view. The kernel eigenvector is the only one with nonnegative entries, while all
the others eigenvectors correspond to negative eigenvalues and their sum over all
the probability distribution is zero. In some cases, it is possible to have a hunch
on the values of the eigenvalues, which gives information on the convergence
time of the CME.

For example for the birth-death process can be shown that the eigenvalues
spectrum follow a simple rule:

λi = −i(ka + kb) ∀i ∈ {0, . . . , N}

. The corresponding eigenvectors for a system with N = 24 and ka = 1.0,kb =
3.1 is shown in Fig 1.1

Figure 1.1: eigenvalues and eigenvectors of a birth-death process

12
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1.3.4 Probability generating function

For discrete probability function we have a conjugated function called prob-
ability generating function that can be obtained applying a z-transform to
the distribution, which is the discrete version of the Laplace transform. Be-
ing pi = P (X = i) the probability distribution associated with the stochastic
process X, we define the associated probability generating function (PGF for
brevity) G as:

G(s) =

∞∑
n=0

snpn = E[zX ]

so that the sum of n identical, non correlated processes, is simply GnX = GnX
The function G is unique for the distribution of X, so that if two unknown

distributions X and Y has the same PGF GX = GY we can say that X = Y .
If X is the sum of several stochastic processes, the resulting G will be the

product of the G of the components. This is a consequence of the convolution
theorem of the Laplace transform, being the resulting probability distribution
the convolution of the components distributions.

X =
∑

Xn ⇒ GX =
∏

GXn

G can be seen as an alternative definition for the probability of a specific
process. In fact, starting from G we can obtain both the distribution of the
associated process and his moments.

The distribution terms pi can be obtained taking the i derivative of G cal-
culated in s = 0:

pi(t) =
1

i!

diG(s, t)

dsi

∣∣∣∣∣
s=0

which can be seen as the i-th term of the power serie of G. The same term can
be equivalently calculated as:

pi(t) =
1

2πi

∮
G(s, t)

si+1
ds

If the n-derivative of G is taken with s = 1 we obtain the n-th factorial
moment of the distribution, E[X(X − 1)(X − 2) . . . (X −n)]. These are a linear
combination of the normal moments of the distribution, which can be described
as a sum of derivatives of G:

µ0(X) = 1 = G(1)

µ1(X) = E[X] = G′(1)

µ2(X) = E[X2] = G′′(1)−G′(1)

V ar[X] = E[X2]− E[X]2 = G′′(1)−G′(1)(1−G′(1))

This is true even when G is a multivariate function of two random variable
X1 and X2. In this case we will have

G(s1, s2) =

∞∑
n=0

∞∑
m=0

sn1 s
m
2 p(n,m)

13
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and the value for the probability p(i,j) will be:

p(i, j) =
1

i!

1

j!

∂i

∂si1

∂j

∂sj2
G(s1, s2)

∣∣∣∣∣
s1=0,s2=0

and if there is no correlation between X1 and X2 the global PGF factorizes as
G(s1, s2) = G(s1)G(s2) and the joint pdf results, as expected, the product of
the two distributions on n and m.

If the probability pn can be written as np†n then G(s) = s ∂∂sG
†(s). This mean

that when we have recurrence relationship like the Chemical Master Equation
we can write a differential equation in both time and s which solution is the
PGF of the stationary solution of the CME. In fact, if we manage to write the
whole time-dependent solution, we can write in closed form the whole evolution
of the system. Even when the whole time dependent solution is not available,
it is usually possible to write the evolution of the mean and variance of the
system.

The above relationship is true whenever we have a master equation driven by
polynomial transition rates: the resulting equation is a linear partial differential
equation in the form:

∂G(s)

∂t
= L̂G(s)

where L̂ is a generic linear operator, whose order (the highest power of ∂
∂s

present) is equal to the order of the highest reaction rate. Thus, a reaction
which behave like n3 will correspond to a linear operator of order 3, i.e. with a

derivative of order ∂3

∂s3

We can generally solve this equation in his complete time dependent form
only when the maximum order is one, which mean only one body interaction
and derivatives of order ∂

∂s . Considering a toy model of a decaying ensemble of
n0 particles with a decaying constant of λ, as pictured by the following scheme.

A
k+

k−
// ∅

This system is described by the following master equation:

∂Pn(t)

∂t
= λ(E+1

n − 1)nPn(t)

that has the following PGF partial differential equation:

∂G(s)

∂t
= λ(1− s)∂G(s)

∂s

which leads to the following time-dependent solution using the methods of
the characteristics and the initial condition of G(s, t = 0) = sn0 which derives
from the initial condition P (n, t = 0) = δn,n0

:

G(s, t) = [1 + (s− 1)e(−λt)]n0

We can immediately recognize from the elevation to the n0 that we are deal-
ing with n0 independent processes that evolve independently in an exponential
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fashion, as we may expect in a process of independent decay. Transforming back
this expression requires some algebra manipulation to obtain the complete time
dependent solution:

P (n, t) =
n0!

n!(n0 − n)!
(e−λt)n(1− e−λt)n0−n

The PGF can be used even to determine the i-th moment:

< ni(t) >=

[
(x∂x)iG(s, t)

]
s=1

This can, in theory, be used to write the equation of each moment in time, but
there is a more convenient method that will be discussed in the next subsection.

1.3.5 Moments equation

It’s not always possible to solve the PDE associated with a specific PGF, but in
several cases, like in a multivariate CME or the ones with non-linear coefficient,
it is not feasible to write the PGF at all. This limitation can be avoided if one
renounce to determine the whole time dependent distribution ad settle down to
just the first and second moment of the distribution. In this case is possible to
write a differential equation of these moments that give the evolution in time
without solving the whole evolution.

< ṅi >=

∞∑
n=0

niṖn

Being able to solve this equation for all i has the same information about
the distribution as the solution of the time-dependent CME but is similarly
unfeasible. In general, it is fairly easy to write down the equation for mean and
variance of the distributions, which are usually independent from the moments
of higher order for linear models. considering again the linear decay process we
can calculate his moments in time quite easily:

˙< n > = −n
∞∑
n=0

nPn + n

∞∑
n=0

(n+ 1)Pn+1

= −
∞∑
n=0

n2Pn +

∞∑
n=0

(n+ 1− 1)(n+ 1)Pn+1

= −
∞∑
n=0

n2Pn +

∞∑
n=0

(n+ 1)2Pn+1 −
∞∑
n=0

(n+ 1)Pn+1

= −
∞∑
n=1

n2Pn +

∞∑
n=1

(n)2Pn −
∞∑
n=1

(n)Pn

= − < n >

where we used the fact that nPn is 0 for n = 0 and so
∑∞
n=1 n

iPn =∑∞
n=0 n

iPn. As we expected from the equivalent deterministic model, the mean
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decrease exponentially with time. More interesting is what happen to the sec-
ond moment (which is related to the variance). With a procedure similar to the
previous one we obtain that:

˙< n2 > =< n > −2 < n2 >

1.3.6 Fokker Plank approximation

If we look to a generic birth-death process driven by the birth rate gn and the
death rate rn we can write the master equation as:

∂Pn(t)

∂t
= −(gn + rn)Pn(t) + rn+1Pn+1(t) + gn−1Pn−1(t)

If we consider n� 1 we can approximate this formula treating n as a continuous
variable, so that the finite difference can be treated as differentiations.

f(n± 1) = f(n)± ∂nf(n) +
1

2
∂2
nf(n)

Inserting this result in the previous equation, we get a differential version of
that master equation that is equivalent to a Fokker-Planck equation:

∂tP (n, t) = ∂n[(g(n)− r(n))P (n, t)] +
1

2
∂2
n[(g(n) + r(n))P (n, t)]

where the term (g(n)−r(n)) correspond to a drift term, which tends to translate
the distribution, and the term (g(n)+r(n)) corresponds to a diffusion due purely
to the noise presents in the system. This can be rewritten to explicate this terms
as:

∂tP (n, t) = ∂n[F (n)P (n, t)] +
1

2
∂2
n[D(n)P (n, t)]

this form can be recognized as a equivalent to one that writes explicitly the flux
of probability between states:

∂tP (n, t) = ∂n[[F (n)P (n, t)] +
1

2
∂n[D(n)P (n, t)]]

The steady state solution can be found integrating the system to the general so-
lution imposing the flux to be zero. This is always true in the monodimensional
case but not in the general sense.

P (n) =
1

ZD(n)
exp

[
2

∫ n

0

F (n′)

D(n′)
dn′
]

where Z is a normalization constant. This can be immediately recognized as
equivalent to the linear expansion seen in section 1.3.1.

1.3.7 Deterministic equivalent model

Given a CME, it is always possible to write an equivalent ODE for each one of
the chemical species described. This is especially true in the case of birth-death
processes, where we can simply recognize the gn as a positive term in the ODE
and the rn as a negative one, leading to the following ODE:

ṅ = g(n)− r(n)
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.
It’s very important to notice that the converse, writing the CME given the

ODE, although is a common process, is not correct. This can be seen looking
to a differential equation in the form ẋ = α− βx.

This differential equation, one of the most simple ones, is afflicted by a
severe indetermination when one tries to write a master equation starting from
it. There are two main different models which can be approximated to that
same deterministic equation: the creation-decadence or the interconversion.

The creation-decadence model hypothesize that the substance X is created
with constant probability and decay exponentially, as schematized in the un-
derlying graph:

∅ α // X
xβ // ∅

The interconversion model hypothesizes the existence of a second possible
form of X, which we can call X∗, and our molecule oscillates between these two
states as shown in the graph below:

X

xβ

GGX
∗

x∗α

��

While they have the same macroscopic approximation, the underlying dis-
tributions are different: in the creation-decadence model we have a Poisson
distribution, an unlimited distribution, while in the other case we observe a
binomial distribution, a limited one, with generally different moments for every
order after the first one, the mean (which is described by the ODE).

1.3.8 Stochastic simulation algorithm

For systems that span more than few molecular species with few hundreds
molecules, all the systems listed above fail, one way or the other, due to our
limitation in finding analytical solutions in multidimensional system or the limit
of the numerical computation, whose rounding errors pile up making any pre-
diction close to meaningless.

In this situation, the only feasible way to analyze a system is through Mon-
tecarlo simulations of the system itself. The main system to perform this simu-
lation is the Stochastic Simulation Algorithm[26], which simulates each reaction
step in a painstaking way. The solution obtained with this method has been
proved to converge to those of the corresponding master equation. Starting
from the original formulation, which is a common workhorse in system biology,
several others has been proposed by Gillespie himself to overcome the main lim-
itation of the original algorithm, which is a non bounded time of simulation for
stiff systems.

The basic Stochastic Simulation Algorithm is strikingly simple: given a state
of the system one has to choose which reaction will happen next between the
possible ones and how much time will the system stay still before the reaction
happens. This process is iterated until the whole time of interest has been
simulated.
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Without any loss of generality, we can write the algorithm for the monodi-
mensional case. In the scope of this description we will work with a system
that is described by the state vector ~x, which in general represent the amount
of molecules for each chemical specie. Each reaction i will be described by its
propensity rate λi and by the modification of the state vector that generate: in
a birth-death system the variation will be simple ±1, but in the general case
will be a step in the n-dimensional space in which the process happen, which
will be represented as ~νi .

Given the Markovian hypothesis, each reaction, ignoring the effect of all the
others, will have an exponentially distributed wait time between two successive
event, whose exponent rate will be described by the propensity λi. So the
probability of waiting a time ∆t between two events will behave like:

pi(∆t) = e−λi∆t

the waiting time for any reaction to happen, given that any reaction is indepen-
dent from the others, will be:

p(∆t) = e−
∑R
i=0 λi∆t

where i is used as index for the R possible reactions. This waiting time can be
easily generated with a transformation of a random number between 0 and 1
with the following transform, being

λ =

R∑
i=0

λi

:
∆t = −ln(rand(0, 1))λ−1

After determining the waiting time, we need to know which reaction will
happen next. This can be done selecting among the probabilities proportionally
to the propensity rate λi relative to the total reaction propensity λ. The most
convenient method to determine this reaction is described in [61]. The methods
they propose is to sum all the propensity λi and normalize them by the whole
sum λ, obtaining a normed vector with ordered values between 0 and 1. This
allows us to perform a binary search of which reaction happens given a random
number between 0 and 1 (the basic random number from the Random Num-
ber Generator of most languages). This, combined with the bisection method
discussed in the appendix, allows the selection step to be done in a logarithmic
time in the number of reactions present.

In Fig 1.2 we can see the result of a single realization of a SSA run. The
system jumps from a state to the other in a random fashion. The system de-
picted is a simple creation-destruction process with a mean of 50 molecules. To
estimate the mean in a specific moment of time we have to resort to a set of sim-
ulation, the more the better. This permits to evaluate the distribution at each
moment of time, but it has two severe drawbacks: the number of realization to
estimate correctly the distribution can be very high and will be specific for the
set of parameters used without any possibility of generalization in the parame-
ters space. This makes the SSA a great tool to perform preliminary analysis on
systems with unknown properties or to study the behavior of complex model
given a solid theoretical analysis of its expected properties.
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Figure 1.2: short single realization of a SSA run

In Fig 1.3 we analyze the same system of Fig 1.2, confronting the result of
a singular realization (in blue) versus the evolution of the mean and standard
deviation (red line and orange shade, respectively). In green is represented the
expected behavior of the system based on the ODE of the underlying process,
which is a correct approximation of the effective mean of the system as long as
the system is linear. It is clear that the single realization moves approximately
around the mean, but the variation can be substantial.

Figure 1.3: single realization of a SSA run versus the expected mean and vari-
ance

To evaluate the stationary distribution is crucial to eliminate the first tran-
sient time (approximately before t = 6 in Fig 1.3) and then proceed to evaluate
the probability of being in a certain state as the time spent in each state over the
total time of observation. It is necessary to pay attention to the starting time of
observation: whatever is the starting position, it is necessary to eliminate from
the final distribution all the observed state previous to a at least 5 or 6 time the
inverse of the smallest eigenvalue, to give time to the system to forget the his
starting point. While in principle it could be possible to use the “Coupling from
the Past”[85] method from the MCMC theory, it would be useful only in the
monodimensional case, where other, better performing methods can be used to
obtain the general solution.

Given the slow convergence of this method, two approximation techniques
have been developed by Gillespie itself: the τ -leap[41] and the Chemical Langevin
[39] Equation.

In the τ -leap one try to evaluate how many reactions take place in a specific
time interval τ given the propensity of each reaction at the time t, so that
one can approximately use a Poisson distribution to evaluate how many time
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each reaction fires, and update the system correspondingly. With this idea the
evolution of the system at the time t+ τ is:

~X(t+ τ)− ~X(t) =

R∑
i=1

νiPi(λi( ~X), τ)

Where νi represents the variation in ~X due to the ith-reaction, λi( ~X) is the
expected mean of reaction i happening and Pi represents the Poisson distribu-
tion of actual event for the ith-reaction. The task of choosing the right τ it is
not trivial[14], due to the possibility that the chosen number of reaction events
make a specie negative if not carefully checked. In the most delicate point it is
often mixed with a standard SSA.

In the Chemical Langevin Equation, one works with a deterministic ODE
for the mean, to which is added a Gaussian noise as in the standard Langevin
methods, but designed to respect the correlation of the variation due to the
various reactions, extracting one normal variable for each reaction instead of one
for each specie as the basic Langevin Equation. The corresponding Langevin
equation takes the form of a standard Îto integral in the form:

d ~X(t) =

R∑
i=1

νiλi( ~X(t))dt+

R∑
i=1

νi

√
λi( ~X(t))dWi(t)

Where the Wi(t) are independent scalar Brownian motions. As long as the
underlying CME is composed of linear reaction the Chemical Langevin Equation
is guaranteed to have the same first two moments[49] and, by definition, the
same correlation structure.

1.3.9 Absorbing states

An absorbing state is defined by the property that both gn and rn are equal
to zero while gn−1 or rn+1 is different from zero, meaning that there is a net
probability influx of probability to the state n, subtracting it to the rest of the
system. If it is the only one absorbing point, it will drain all the probability
in it, making the stationary distribution simply a δn function. This makes any
attempt to study the system fruitless. This can be solved in a brutal way simply
adding a small term to generate an efflux of probability from the state, but it
is hard to guarantee that this will not destroy other features of the system.

This is often true when one is trying to modelize ecological systems, where
the point n = 0 is obviously an absorbing state as long that there is no im-
migration in the system. The problem is that the extinction solution is trivial
and true only in the limit of infinite time with a very slow convergence time. In
fact, in most system the actual probability of extinction is zero for all practical
purpose.

A solution for this problem is to explicitly eliminate the absorbing state. For
the sake of simplicity we will consider an ecological system with an absorbing
state in n = 0. In this case we simply impose r1 = 0 and, in fact, the whole state
n = 0 from the equation. It can be demonstrated that this condition leads to
a distribution that is equivalent to the metastable eigenvector of the complete
system: in this case this eigenvector is a proper distribution of positive terms
because the only negative term appears to be the Pn=0. This gives a simple
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estimation of the characteristic time of extinction, that is proportional to the
efflux of probability from Pn=1 to Pn=0, and so it is simply the inverse of r1

before it was ruled out.

Brief note about the computational methods on this thesis

All the computations in this thesis have been done with the scientific frame-
work for python[107]: numpy[77] (basic numerical routines on multidimensional
arrays), scipy[30] (the scientific framework for python), matplotlib[53] (plotting
library for scipy), sympy[102] (symbolic mathematics), ipython[83] (advanced
scipy-ready shell for python) and cython[8] (python compilation as C code).

I would like to give credit to the whole python scientific community for the
excellent tools provided, which allowed me to work for years on these topics
only with full open-source instruments.
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Chapter 2

Analysis of a genetic switch
for E2F and Myc

In the following work we examine a genetic toggle switch that underlies the
regulation of the cellular cycle. Starting from a previous work that describes
a simplified deterministic approximation of that genetic circuit, we develop its
stochastic version, studying where the two models were significantly different
and studying which information could the stochastic approach adds to the deter-
ministic one. The original system, which involves both gene expression, protein
production and miRNA regulation, describes them with a generalized term for
the protein and the miRNA levels. It can be bistable under certain conditions,
and this was verified as true even for the stochastic equivalent. The main dif-
ference was found on the edge between the monomodal and bimodal condition,
where secondary peaks could appear without any deterministic equivalent. We
then proceeded to write an even more simplified version of the model and em-
pirically shown their equivalence as long as the miRNA half-life is lesser than
the protein’s one.
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2.1 Motivation of the work

Complex cellular responses are often modeled as switching between phenotype
states, and despite the large body of deterministic studies and the increasing
work aimed to elucidate the effect of intrinsic and extrinsic noise in such sys-
tems, some aspects still remain unclear. Molecular noise, which arises from the
randomness of the discrete events in the cell (for example DNA mutations and
repair) and experimental studies have reported the presence of stochastic mech-
anisms in cellular processes such as gene expression [69],[68], [104], decisions of
the cell fate [1], and circadian oscillations [5]. Particularly, low copy numbers of
important cellular components and molecules give rise to stochasticity in gene
expression and protein synthesis, and it is a fundamental aspect to be taken
into account for studying such biochemical models [67, 37]. In this paper, we
consider a simplified circuit that is known to govern a fundamental step during
the eukaryotic cell cycle that defines cell fate, previously studied by means of a
deterministic modeling approach [7]. Let set the scene by reminding that ”all
models are wrong, but some are useful” (said by George Edward Pelham Box,
who was the son-in-law of Ronald Fisher). Biologists make use of qualitative
models through graphs; quantitative modeling in biochemistry has been mainly
based on the Law of Mass Action which has been used to frame the entire kinetic
modeling of biochemical reactions for individual enzymes and for enzymatic re-
action network systems [43]. The state of the system at any particular instant
is therefore regarded as a vector (or list) of amounts or concentrations and the
changes in amount or concentration are assumed to occur by a continuous and
deterministic process that is computed using the ordinary differential equation
(ODE) approach. However, the theory based on the Law of Mass Action does
not consider the effect of fluctuations. If the concentration of the molecules is
not large enough, we cannot ignore fluctuations. Moreover, biological systems
also show heterogeneity which occurs as a phenotypic consequence for a cell
population given stochastic single-cell dynamics (when the population is not
isogenic and in the same conditions). From a practical point of view, for con-
centrations greater than about 10 nM, we are safe using ODEs; considering a
cell with a volume of 10−13 liters this corresponds to thousands of molecules
that, under poissonian hypothesis, has an uncertainty in the order of 1%. If the
total number of molecules of any particular substance, say, a transcription fac-
tor, is less than 1,000, then a stochastic differential equation or a Monte Carlo
model would be more appropriate. Similarly to the deterministic case, only
simple systems are analytically tractable in the stochastic approach, i.e. the
full probability distribution for the state of the biological system over time can
be calculated explicitly, becoming computationally infeasible for systems with
distinct processes operating on different timescales. An active area of research
is represented by development of approximate stochastic simulation algorithms.
As commented recently by Wilkinson, the difference between an âapproximateâ
and âexactâ model is usually remarkably less than the difference between the
âexactâ model and the real biological process [24]. Given we can see this ei-
ther as an unsatisfactorily state of art or as a promising advancement, we can
summarise the methodological approaches as following. Biochemical networks
have been modeled using differential equations when considering continuous
variables changing deterministically with time. Single stochastic trajectories
have been modeled using stochastic differential equations (SDE) for continuous
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random variables, and using the Gillespie algorithm for discrete random vari-
ables changing with time. Another choice consists in characterizing the time
evolution of the whole probability distribution. The corresponding equation for
the SDE is the Fokker-Planck equation, and the corresponding equation for the
Gillespie algorithm is called the Chemical Master Equation (CME) [54]. There-
fore, the CME could be thought as the mesoscopic version of the Law of Mass
Action, i.e. it extends the Law of Mass Action to the mesoscopic chemistry and
biochemistry, see for example [87, 112].

Here we compare the results of a stochastic versus deterministic analysis of
a microRNA-protein toggle switch [34, 44] involved in tumorigenesis with the
aim of identifying the most meaningful amount of information to discriminate
cancer and healthy states. We show that the stochastic counterpart of such
deterministic model has many commonalities with the deterministic one, but
some differences arise, in particular regarding the number of stable states that
can be explored by the system. The disagreement between the stochastic and
deterministic description is observed in a “ghost“ effect caused by the proximity
to a deterministic bifurcation [99], and in a somehow opposite situation, in which
the variance of the stable point can mask the detection of the second peak in
the stationary distribution. In this paper we perform a numerical study of the
complete two-dimensional model, but we consider also a simplified, biologically
meaningful, version of the model that allows to calculate an exact solution, with
a numerical characterization of the parameter ranges in which the two systems
produce qualitatively similar results. A discussion of the possible implications
of our results in a real system are described in the last Section.

2.2 The E2F-MYC toggle switch

Oncogenes and tumor-suppressor genes are two pivotal factors in tumorigene-
sis. Recent evidences indicate that MicroRNAs (miRNAs) can function as tumor
suppressors and oncogenes, and these miRNAs are referred to as âoncomirsâ.
MiRNAs are small, non-coding RNAs that modulate the expression of target
mRNAs. The biogenesis pathway of miRNAs in animals was elucidated by [80].
MiRNAs undergo substantial processing since the nuclear transcription where
two proteins play an essential role: Drosha and Dicer. Most of miRNA are first
processed into pre- miRNA by Drosha. After exportated to the cytoplasm, the
pre- miRNA is processed by Dicer into a small double strand RNA (dsRNA)
called the miRNA: miRNA duplex. The active strand, which is the mature
miRNA is incorporated into the RISC and binds to the target mRNA, whereas
the inactive strand is ejected and degraded. In normal tissue, proper regulation
of miRNAs maintains a normal rate of development, cell growth, proliferation,
differentiation and apoptosis. Tumorigenesis can be observed when the target
gene is an oncogene, and the loss of the miRNA, which functions as a tumor
suppressor, might lead to a high expression level of the oncoprotein. When
a miRNA functions as an oncogene, its constitutive amplification or overex-
pression could cause repression of its target gene, which has a role of tumor
suppressor gene, thus, in this situation, cell is likely to enter tumorigenesis.
MiRNAs are often part of toggle switches: important examples involve gene
pairs built with oncogenes and tumour suppressor genes [65, 66]. Here we fo-
cus on the amplification of 13q31-q32, which is the locus of the the miR-17-92.
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The miR-17-92 cluster forms a bistable switch with Myc and the E2F proteins
[56, 75, 7]. The oncogene Myc regulates an estimated 10% to 15% of genes in
the human genome, while the disregulated function of Myc is one of the most
common abnormalities in human malignancy [45, 20]. The other component
of the toggle switch is the E2F family of transcription factors, including E2F1,
E2F2 and E2F3, all driving the mammalian cell cycle progression from G1 into S
phase. High levels of E2Fs, E2F1 in particular, can induce apoptosis in response
to DNA damage. The toggle switch also interacts with dozens of genes (figure
2.1 depicts a portion of the whole circuitry), particularly with Rb and other key
cell-cycle players. A summary of the experiments perturbing miRNA/Myc/E2F
and E2F/RB behaviours have suggested the following:

• The Rb/E2F toggle switch is OFF when RB inhibits E2F, i.e. stopping cell
proliferation; it is ON when E2F prevails and induces proliferation. Once
turned ON by sufficient stimulation, E2F can memorize and maintain this
ON state independently of continuous serum stimulation.

• The proteins E2F and Myc facilitate the expression of each other and
the E2F protein induces the expression of its own gene (positive feedback
loop). They also induce the transcription of microRNA-17-92 which in
turn inhibits both E2F and Myc (negative feedback loop) [115].

Moreover, the increasing levels of E2F or Myc drive the sequence of cellular
states, namely, quiescence, cell proliferation (cancer) or cell death (apoptosis).

Figure 2.1: The E2F-MYC-miR-17-92 toggle switch with its biochemical envi-
ronment (derived form [7]). Arrows represent activation, and bar-headed lines
inhibition, respectively. The elements inside the dashed box represent the pro-
tein compound p (Myc-E2F) and the miRNA cluster m (miR-17-92), modelized
in eq. 2.1 and 2.2.

Although there is increasing amount of research on cell cycle regulation,
the mathematical description of even a minimal portion of the E2F, Myc and
miR-17-92 toggle switch is far from trivial. Aguda and collaborators [7] have
developed a deterministic model, which reduces the full biochemical network of
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2.2. THE E2F-MYC TOGGLE SWITCH

the toggle switch to a protein (representing the E2F-Myc compound) and the
microRNA-17-92 cluster (seen as a single element).

It is a 2-dimensional open system, in which p represents the E2f-myc complex
and m the miRNA cluster: thus no Mass Action Law holds, and the total p and
m concentration is not conserved. The dynamics of p and m concentrations are
described by eq. 2.1 and 2.2:

ṗ = α+
k1 · p2

Γ1 + p2 + Γ2 ·m
− δ · p (2.1)

ṁ = β + k2 · p− γ ·m (2.2)

The model is the following: constitutive creation-destruction processes for p
and m are driven by α,δ,β and γ parameters, while k1 and k2 control p and m
state-dependent synthesis. The Γ1 term is a kinetic (enzymatik-like) constant,
while Γ2 modulates miRNA inhibition of p synthesis. The nonlinearity of p in
eq 2.1 is a Hill coefficient (= 2) representing self-promotion effect driven by a
sigmoidal activation curve, a very common behaviour in gene regulation systems.
A Hill coefficient > 1 can be justified by a cooperative effect of the terms
involved in the compound represented by p: for example due to the E2F trimer,
or a more complex aggregate with Myc. Although several experimental results
suggest that in some cancer processes, a certain amount of interdependence and
interaction among E2Fs exists, a detailed experimental investigation should be
needed in order to estimate such parameter correctly [55, 81, 27].

All the results described in this article are very robust with respect to the
choice of the specific Hill coefficient (here chosen equal to 2 for continuity with
the original model in [7]) as long as it’s larger than one (data not shown).
We found a good qualitative agreement even if a different functional form was
hypotized, as long as it retained its sigmoidal-like structure.

The system can be rewritten in an adimensional form as follows:

εφ̇ = α′ +
k · φ2

Γ′1 + φ2 + Γ′2 · µ
− φ (2.3)

µ̇ = 1 + φ− µ (2.4)

Where the parameters are: α′ = k2
δ·βα, k = k1k2

δβ , Γ′1 =
k22
β2 Γ1, Γ′2 =

k22
βγΓ2, ε = γ

δ

and the change of variables is: φ = k2
β p, µ = γ

βm and τ = γt.

In the original model [7], the rate of protein synthesis is not a function
of the instantaneous concentration (as assumed in eq.2.3 ) but rather of its
concentration at some time ∆ in the past:

εφ̇ = α′ +
k[φ(τ −∆)]2

Γ′1 + [φ(τ −∆)]2 + Γ′2 · µ(τ −∆)
− φ(τ). (2.5)

We will not consider such delay in our stochastic realization of the model, since
it would increase system dimensionality and it does not seem necessary to obtain
the features we want to characterize.

27



CHAPTER 2. ANALYSIS OF A GENETIC SWITCH FOR E2F AND MYC

The steady state can be studied in the nondimensionalized system and, there-
fore, the conditions on the parameters for the existence of multiple steady states.
In the resulting cubic equation:

α′ +
kφ2

Γ′1 + φ2 + Γ′2 · (1 + φ)
− φ = 0 (2.6)

the necessary (but not sufficient) conditions for the existence of 3 steady states
(and thus a bistable system) are:

(Γ′2 − k) < α′ <

(
1 +

Γ′1
Γ′2

)
(2.7)

We took advantage of the deterministic results in [7] in order to consider suitable
parameter ranges for our stochastic modelling (as described in the following
sections).

2.3 Description of the stochastic model

The system represented by equations 2.1 and 2.2 can be studied as a stochastic
system through the Chemical Master Equation (CME) approach [106]. The
resulting CME has two variables, the number of p and m molecules, labeled as
n and m. The temporal evolution of the probability pn,m(t) to have n and m
molecules at time t is described by the following equation:

ṗn,m = (En−1)rnpnm+(E−1
n −1)gnpnm+(Em−1)rmpnm+(E−1

m −1)gmpnm (2.8)

This CME is derived under the conditions of a one-step Poisson process: E and
E−1 are the forward and backward step operators, g and r the generation and
recombination terms for the n and m variables, as shown in superscripts.

The two generation and recombination terms associated with the n and m
variables are respectively:

gn = α+
k1 · n2

Γ1 + n2 + Γ2 ·m
; rn = δ · n (2.9)

gm = β + k2 · n; rm = γ ·m (2.10)

We remark that the molecule influxes into the system (represented by the
α and β terms) could be included in different ways in the stochastic equa-
tions, since in the deterministic equations they represent a sort of ”mean field”
value. As an example, molecules could be added in bursts with specific time
distributions, that do not appear in the macroscopic continuous deterministic
equations. We will consider the simplest approach, but the choice of different
influx patterns should deserve further investigation.

2.3.1 The one-dimensional model

We can reduce the problem from two to one dimension, by considering a different
time scale for the two reactions (in particular considering m as a fast variable)
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and thus considering the steady state solution for the m:

m =
β + k2 · p

γ
= β′ + k′ · p (2.11)

As a consequence we obtain a deterministic equation for the p only:

ṗ = α+
k1 · p2

Γ′ + Γ′′ · p+ p2
− δ · p (2.12)

with Γ′ = Γ2·k2
γ and Γ′′ = Γ1 + Γ2β

γ . The stochastic equation for pn is thus as
follows:

ṗn = (E− 1)rn · pn + (E−1 − 1)gn · pn (2.13)

gn = α+
k1 · n2

Γ′ + Γ′′ · n+ n2
; rn = δ · n (2.14)

A general solution can be obtained

psn =

N∏
i=1

g(i− 1)

r(i)
· p0 =

N∏
i=1

α+ k1·(i−1)2

Γ′+Γ′′·(i−1)+(i−1)2

δ · i · p0 (2.15)

with an adequate normalization factor imposed on p0:

p0 =
1

1 +
∑N
i=1

∏N
i=1 p

s
n1

(2.16)

We remark that the system is open, thus in theory N is not fixed, but we can
truncate the product to a sufficiently high value of N obtaining a good approx-
imation of the whole distribution. This one-dimensional system (for which an
analytical solution can be obtained) will be compared to numerical simulations
of the exact one-dimensional and two-dimensional systems.

2.4 Analysis of the stochastic model

2.4.1 The stationary distribution

The one-dimensional model can show monomodal as well as bimodal stationary
distributions, depending on the parameters considered. As an example, we
obtain bistability with a set of parameters as shown in Fig. 2.2.

Thus the qualitative features of the two-dimensional deterministic model
(i.e. the possibility of being bistable depending on the parameter range) are
recovered for the one-dimensional approximation of the stochastic system. Also
the two-dimensional stochastic system shows bistability for the same parame-
ters, and they are in optimal agreement for a range of parameters in which the
ṁ� ṗ condition holds
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Figure 2.2: The stationary distribution for the one-dimensional space, obtained
using the following parameters: α = 1.68(molecule/h), β = 0.202(molecule/h),
δ = 0.2(h−1), γ = 0.2(h−1), Γ1 = 10300(molecule2), Γ2 = 1006(molecule),
k1 = 90(molecule/h) and k2 = 0.05(h−1).

Figure 2.3: Comparison between the deterministic solution (bottom) and the
stationary distribution (top) for the parameter set as in Table 2.1, case 3.

We also observe some remarkable differences between the deterministic and
the stochastic models: there are regions in parameter space in which the de-
terministic approach shows only one stable state, but in the stochastic system
two maxima in the stationary distribution are observed (see Fig. 2.3). This dif-
ference can be explained qualitatively as follows: for the deterministic system,
there are parameter values for which the system is monostable but very close
to the ”transition point” in which the system becomes bistable. It is known
that in these situations a ”ghost” remains in the region where the stable point
has disappeared [99], for which the systems dynamics has a sensible slowing
down (i.e. when the system is close to the disappeared fixed point, it remains
”trapped” for a longer time close to it, in comparison with other regions). This
behaviour results in the presence of a peak in the stationary distribution of
the corresponding stochastic systems, that thus remains bistable also when the
deterministic system is not anymore.

Another difference is observed: for some parameter values the deterministic
system is bistable, but the stochastic distribution shows a clear peak for the
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Figure 2.4: Comparison between the deterministic solution (bottom) and the
stationary distribution (top) for the parameter set as in Table 2.1, case 4.

maximum with the largest basin of attraction and the smaller peak results
”masked” by the tail of the distribution around the first peak (see Fig. 2.4),
thus resulting in a monomodal distribution with a long tail. In practice, the
highest state behaves like a sort of metastable state, since the states of the
system with a high protein level are visited only occasionally.

2.4.2 Numerical analysis

Here we implemented numerical methods to find the stationary distribution of
a CME. The most accurate is the Kernel resolution method: given the complete
transition matrix of the system, it is possible to solve numerically the eigenvalue
problem, obtaining the correct stationary distribution. This method, in this
case, has a serious drawback: the system is of non-finite size, preventing a
complete enumeration of the possible states. Even with a truncation, the system
size rises in a dramatic way: the state space for a bidimensional system is of
order N2 if N is the truncation limit, and thus the respective transition matrix
is of order N4. This means that even for a relatively small system (with a few
hundred of molecules) the matrix size explodes well beyond the computational
limits. The only feasible resolution strategy is a massive exploration of state
space by Montecarlo methods, in which single trajectories of the system are
simulated: performing this simulations long enough for several times allows to
estimate the stationary distribution.

The Montecarlo method we chose is a modified version of the SSA algorithm
(also known as the Gillespie algorithm) named logarithmic direct method [26,
61], which is a statistically correct simulation of an ergodic Markov system. It
is not the fastest algorithm available, as compared to other methods like the
next-reaction or the τ -leap method, but it produces a correct estimation of the
statistical dispersion of the final state.

For each parameter set we performed 10 simulations for about 106−107 iter-
ation steps each. The multiple simulations were averaged together for a better
estimation of the stationary distribution, and they allowed also an estimation
of the variance over this average distribution.

In the following we discuss four cases that describe the system behaviour for
different parameter settings, shown in Table 2.1.

31



CHAPTER 2. ANALYSIS OF A GENETIC SWITCH FOR E2F AND MYC

Table 2.1: Table of the parameter sets for the cases considered.
Par Case 1 Case 2 Case 3 Case 4
α (molecule/h) 1.0 1.68 1.0 20.0
δ (h−1) 1.0 0.20 0.09 1.19
β (molecule/h) 1.0 0.202 0.0 1.0
γ (h−1) 100.0 0.20 10.0 1.0
k1 (molecule/h) 30.0 90.0 12.5 230.0
k2 (h−1) 100.0 0.05 10.0 1.0
Γ1 (molecule2) 60.0 10300.0 (72.8)2 (110.0)2

Γ2 (molecule) 10.0 1006.0 10.0 10.0

Figure 2.5: Case of good agreement between the theoretical and obtained dis-
tribution (see Tab. 2.1, case 1). Left: one-dimensional system, right: two-
dimensional system. The thin black line is the theoretical distribution obtained
from Eq. 2.15. The thick dark grey line is the average of the various simulations,
while the grey and light grey areas represent the range of one and two standard
deviations from the average distribution.
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Figure 2.6: Case of poor agreement between the theoretical and obtained dis-
tribution (see Tab. 2.1, case 2). Left: one-dimensional system, right: two-
dimensional system. The thin black line is the theoretical distribution obtained
from Eq. 2.15. The thick dark grey line is the average of the various simulation,
while the grey and light grey areas represent the range of one and two standard
deviations from the average distribution.

In case 1, we have a system in which the hypothesis of a time-scale separation
between m and p is strongly satisfied. The simulation was performed up to a
time limit of 103: we can see how the two resulting distributions are in good
agreement with the theoretical one (see Fig. 2.5), with the regions of higher
variance of the histogram around the maxima and minima of the distribution.

In case 2, the time-scale separation assumption does not hold, due to the
very low values of γ and k2: even if this condition doesn’t guarantee that the
stationary state will be different from the approximate one-dimensional solution,
with this set of parameters we can observe a large difference between the two
distributions (Fig. 2.6).

In case 3, as defined before, we observe a ”ghost” in which, even if a de-
terministic stable state does not exist, there is clearly a second peak in the
distribution (Fig. 2.7). In this system the time-scale separation assumption
holds, and we can see how both distributions show similar features.

In this final case (Tab. 2.1, case 4, Fig. 2.8) we observe another effect, in
which the peak related to a deterministic stable state is masked by the tail of
the stronger peak, becoming just a fat tail. Even without a strong time-scale
separation for the m and p variables, both systems give a very similar response,
evidencing that this effect is very robust. It is noteworthy that the increase of
the γ and k2 values does not affect the distribution as long as their ratio is kept
constant. Note that while there are several computational tools for discrete-
state Markov processes such as PRISM [59], APNNtoolbox [11], SHARPE [50],
or Mobius [22], there is very little for CMTC (see for instance [23]). Different
modeling approaches for toggle switches do exists in the area of formal methods
(see for example [36, 35]).

2.5 Discussion of the results

We have studied a stochastic version of a biochemical circuit (the toggle switch)
that is supposed to be involved in cell cycle control, with implications for the
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Figure 2.7: Case 3, ”ghost effect”: only the biggest peak comes from a determin-
istic stable point. Left: one-dimensional system, right: two-dimensional system.
The thick dark gray line is the average of the various simulation, while the gray
and light gray areas represent the range of one and two standard deviations
from the average distribution.

Figure 2.8: Case 4, peak masking effect (parameters as in Tab. 2.1, case 4).
The deterministic system has two stable points, but only the peak related to
the smallest stable point (with the largest basin of attraction) is visible. Left:
one-dimensional system, right: two-dimensional system.
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onset of severe diseases such as cancer, consisting of a gene cluster (Myc-E2F)
and a miRNA cluster (mir-17-92). This cluster has been reported in a very
large number of cancer types: particularly in different types of lymphomas,
glioma, non-small cell lung cancer, bladder cancer, squamous-cell carcinoma of
head and neck, peripheral nerve sheath tumor, malignant fibrous histiocytoma,
alveolar rhabdomyosarcoma, liposarcoma and colon carcinomas. This huge va-
riety of cancer stresses the centrality of this toggle switch and suggests that
advancements in its modelling could lead to insights into differences between
these cancers. This aim is still far but we are delighted to report that our
modeling approach shows important results inching to that direction. First of
all, many features are recovered as observed for the deterministic version of the
same system, also by means of a further approximation that reduces the system
to a unique variable: in this case the system can be treated analytically, and
compared to the one- and two-dimensional numerical simulations.

The stochastic approach, that is the exact approach when the number of
molecules involved is low, shows a different behaviour than the deterministic
one in two situations we have observed. It is noteworthy that the number of
molecules involved shows some agreement with the estimates by [16] and by [64]
for other miRNA-systems (see also [2]). The cell volume is assumed to be about
10−13 liters, then 1 nM = 100 molecules.

First, bistability in the stochastic system (namely, the possibility of having
two stable states, one associated to a resting and the other to a proliferative cell
state) is observed also in situations in which the corresponding deterministic
system is monostable, and this can be explained by the presence of a ”ghost”
state in the deterministic system that is strong enough to produce a second peak
in the stationary distribution of the stochastic model.

Secondly, there are situations in which the peak for the stochastic distribu-
tion related to the highest level of expression (with parameter values for which
the deterministic system is bistable) is masked by the tail of the distribution
of the lowest-expression maximum (that is related to the largest basin of at-
traction in the deterministic model), making the ”proliferative state” appear
almost as a scarcely visited metastable state. This is an interesting behaviour,
that should be further investigated in real experimental data of protein con-
centration and gene expression related to the biochemical circuit considered.
The ”metastable” and the ”fully” bimodal distributions could be associated to
healthy and tumoral cell states respectively, because the highest ”proliferative”
state has different properties in the two cases. From a biological point of view,
such state, being associated to a dysregulated, disease-related conditions, could
actually represent a compendium of several dysregulated states.

We argue that the deterministic approach to this biochemical circuit is not
capable to characterize it completely, and the stochastic approach appears more
informative: further features unique to the stochastic model could be obtained
by considering different time patterns for the molecular influxes to the system,
and this point in our opinion should deserve more investigation in a future work.
MicroRNAs (miRNAs) express differently in normal and cancerous tissues and
thus are regarded as potent cancer biomarkers for early diagnosis. We believe
that the potential use of oncomirs in cancer diagnosis, therapies and prognosis
will benefit from accurate cancer mathematical models.

Given that MiR-17-92 seems to act as both oncogene and tumor suppressor
through decreasing the expression levels of anti-proliferative genes and prolifer-
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ative genes, this behavior is suggestive of a cell-type dependent toggle switch.
Therefore, fitting experimental data could provide insights into differences among
cancer types and on which cell type is behaving differently. The fitting of exper-
imental data with respect to models with different values for the Hill coefficients
could also be interesting towards understanding better the chemistry physics of
the real microRNA system. Moreover, the comparison between the shape of the
expression distributions of the genes/proteins involved in the circuit (and not
only the average expression) considering normal and tumoral cells for different
cell types, should provide experimental evidence for the different behaviour de-
scribed from a theoretical point of view in our work, namely the possibility that
normal and tumoral cells are in different proliferative ”stationary states”.
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Chapter 3

The futile cycle

In this work we examine a very important biochemical process, the futile cy-
cle, where two enzymes compete to phosphorylate or dephosphorylate a certain
substrate. As long as only one phosphorylation site is present on the substrate,
this reaction is known to be both deterministically and stochastically monos-
table. A study of the effects of extrinsic noise is then carried out: this noise
is known to lead the system to bistability under the right conditions. These
has been studied with an analytical method using the Fokker-Planck limit of
the master equation, revealing that is not the level of noise of a single enzyme
that drives the transition, but the variance of their proportion. This has been
verified empirically comparing two different models of extrinsic noise with dif-
ferent variance-mean proportion, and correlation between the two enzymes. For
both models, the significant parameter is shown to be the enzyme proportion’s
variance with a clear threshold that it is independent from the chosen model,
and to be in a good agreement with the analytical prediction.
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3.1 Motivation of the work

Many biological phenomena (e.g. memory induction, chromatin remodeling,
cell-fate determination) are receiving a great deal of attention in recent years,
due to an increasing interest in the description of their complex behaviour by
means of basic biochemical circuitry [38, 6, 63]. The signal transduction ma-
chinery is mainly based on enzymatic reactions, whose average kinetics can
be described within the framework initally proposed by Michaelis and Menten
(MM). The steady state approximation of MM model accounts for the majority
of known enzymatic reactions, and can be adjusted for the description of reg-
ulatory properties such as cooperativity, allostericity and activation/inhibition
[74, 88]. The MM equations are still valid at small molecule numbers (as it
frequently happens in real cells) if the microscopic interpretation is changed
correspondingly [90, 29, 40], but since the discrete stochastic aspects become
predominant a deterministic or a stochastic continuous model usually cannot
grasp the system features in sufficient detail [92, 25, 105].

A large class of enzymatic reactions controls the reversible addition and re-
moval of phosphoric groups, phosphorylation/dephosphorylation reactions cat-
alyzed by kinases and phosphatases respectively. The phospho/dephosphorylation
cycle (PdPC) is thus a post-translational substrate modification that is central
for the regulation of several biological processes [58, 95].

How these processes can show a bistable behaviour [79, 37] in the presence of
fluctuations [9], reflected by a bimodal stationary distribution of protein num-
ber/concentration, is a crucial question for their modeling. In particular, this
point is relevant when considering measurements averaged over cell populations
with respect to single-cell measurements [105].

The deterministic version of a single PdPC is not bistable in general, but it
is hypothesized that external multiplicative noise can trigger such a behavour
[95]. The approaches considered previously don’t take into account the real
nature of the fluctuations due to the finite system size (essentially considering
a gaussian noise with arbitrary mean and variance). For this purpose it is
necessary to study this cycle by a Chemical Master Equation approach, and
consider the continuous approximation only to write explicit conditions on the
system parameters that allow bistability. This is the aim of the present paper.
A closed form for the stationary distribution of the system (considering only
substrate fluctuations) is obtained: we show that the intrinsic noise on the
substrates involved in the cycle can not have a bimodal stationary distribution,
but additional external noise obtained by plausible biological mechanisms (i.e.
the coupling of the system with an enzyme production/activation reaction) can
produce such feature, whereas the simple addition of single-enzyme intrinsic
noise is not sufficient. Under simplified hypotheses, we compute analytically the
conditions in which bimodality occurs, as a function of the reaction parameters
(kinetic constants) and system size (number of enzyme and substrate molecules),
and we verify our results by numerical simulations with a Gillespie algorithm.

3.2 The model

The PdPC (also referred to as the futile cycle) is composed by one phosphory-
lation and one dephosphorylation reaction, catalyzed respectively by enzymes
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E1 and E2:

E1 +A
 E1A→ AP + E1

E2 +AP 
 E2A
P → A+ E2 (3.1)

The deterministic dynamics of this cycle can be described via the MM formalism.
Assuming a steady-state approximation for both enzymatic reactions Ȧ and ȦP ,
we obtain the following equations:

ȦP = v1 − v2 Ȧ = v2 − v1

where

v1 = KC1 · E1
A

KM1 +A
= VM1

A

KM1 +A

v2 = KC2 · E2
AP

KM2 +AP
= VM2

AP

KM2 +AP
(3.2)

Imposing the conservation of the total substrate concentration, let x be the A
molecule concentration, we obtain:

ẋ = VM2
1− x

KM2 + 1− x − VM1
x

KM1 + x
, (3.3)

that can be easily shown to have only one solution in the substrate domain (see
[95]).

3.2.1 The CME approach

Starting from the previous equations, a Chemical Master Equation (CME) ap-
proach [106] is introduced to account for intrinsic noise on the substrate A (pn
is the A-molecule distribution function over the possible states n ∈ [0 : N ],
D+f(n) = f(n+ 1)− f(n)):

ṗn = D+J ; J = rnpn − gn−1pn−1 (3.4)

where

rn = V ′M1

n

K ′M1 + n
gn = V ′M2

N − n
K ′M2 +N − n

N is the total number of the substrate molecules, n is the the number of A
molecules and the MM constants have been accordingly scaled: K ′M = N ·KM

and V ′M = N · VM . In the hypothesis of fast relaxation times, the stationary
solution of eq. (3.4) describes the statistical properties of the reaction in Fig.
3.1. The stationary distribution psn is derived by imposing ṗn(t) = 0; excluding
the existence of a constant current in the system, we get the condition

psn
psn−1

=
gn−1

rn
⇒ D+ ln ps(n) = ln

gn
rn+1

If we define a potential V (n), such thatD+V (n) = − ln(gn/rn+1), the stationary
solution has the Boltzmann form

psn = F · e−V (n), (3.5)
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CHAPTER 3. THE FUTILE CYCLE

where F is a normalizing constant. According to (3.5), the maxima and minima
of the distribution are obtained by imposing D+V (n) = 0, extending the n
domain to the set of real numbers. This leads to gn/rn+1 = 1, similar to (3.3)
and with an unique solution inside the [0 : N ] domain. This result is also
confirmed by Gillespie simulations of the dynamical process.

3.2.2 Bimodality induced by enzyme noise

Relaxing the assumption of fixed enzyme concentration, we characterize the
effect of enzyme fluctuations on the substrate stationary distribution. In the
symmetric case K ′M1 = K ′M2 = K ′Mand K ′C1 = K ′C2, the equilibrium points
of the average equation (3.2) corresponding to maxima of psn can be calculated
explicitly as a function of the ratio between enzymes γ:

γ =
E1

E2
=
N − n+ 1

n

K ′M + n

K ′M +N − n+ 1
(3.6)

If one introduces the variable u:

u =
n

N
− N + 1

2N
=

n

N
− a u ∈

[
−a,+a+

1

N

]
(3.7)

where a ' 1/2 for N � 1, the condition (3.6) reads

γ =
a− u
a+ u

· KM + a+ u

KM + a− u,

where KM = K ′M/N . Assuming that KM � 1, so that the critical point is quite
sensitive to the enzyme concentration, and performing a perturbative approach
over KM , the previous equation can be rewritten as(

1

a+ u
− 1

a− u

)
=
γ − 1

KM
(3.8)

When γ = 1 (i.e. E1 = E2) we have the trivial solution u = 0 (an unique
maximum with n = (N + 1)/2, x = 1/2), whereas for γ − 1 > 0 (resp. < 0) u
shifts towards −a (resp. a).
Supposing that enzyme concentration can fluctuate around the average value,
given ξ = (γ − 1)/KM and p(ξ) the corresponding probability distribution, the
probability distribution p(u) reads

p(u) = p(ξ(u))

∣∣∣∣ dξdu
∣∣∣∣ = p(ξ(u))

(
1

(a+ u)2
+

1

(a− u)2

)
. (3.9)

Under the hypotheses that ξ fluctuates around zero and p(ξ) tends sufficiently
fast to zero at the boundaries (natural boundary condition), we study the con-
ditions for bimodality of p(u). The critical points of p(u) must satisfy

dp(u)

du
=
d2ξ

du2
p(ξ(u)) +

(
dξ

du

)2
dp

dξ
= 0 (3.10)

If we approximate p(ξ) with a Gaussian distribution (justified for a sufficiently
large enzyme molecule number and K sufficiently small, see Fig. 3.1) so that

p(u) =

(
1

(a+ u)2
+

1

(a− u)2

)
e
− 1

2σ2
ξ
( 1
a+u−

1
a−u )

2
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the equation (3.10) reads

1

σ2
ξ

(
1

(a+ u)2
+

1

(a− u)2

)2(
1

a+ u
− 1

a− u

)
−2

(
1

(a+ u)3
− 1

(a− u)3

)
= 0

(3.11)

If we exclude the symmetric solution u = 0, we get the following condition for
bimodality (recalling that σξ = σγ/KM )

σ2
ξ >

2

3a2
⇒ σ2

γ >
2K2

M

3a2
(3.12)

The condition (3.12) can thus be realized if the enzymatic concentrations fluctu-
ate largely enough around the mean, and as it will be shown in the next section
this fluctuation depends on enzyme number.

3.3 Numerical simulations for two biological cir-
cuits

As previously shown, substrate intrinsic noise cannot induce bimodality in
PdPC, but enzyme fluctuations can produce this effect for KM sufficiently small
by coupling the initial system (3.1) with a set of reactions involving the enzymes
of the cycle. We have considered two cases: 1) uncorrelated Poisson fluctuations
on both enzymes, and 2) two enzymes whose fluctuation is coupled by a mecha-
nism of competitive induction (e.g. by an effector molecule [97]). The stochastic
dynamics of these systems has been implemented numerically by means of the
Gillespie algorithm. We considered an identical variance for the stationary dis-
tribution of single enzymes in both systems (that can be calculated analytically)
that produced a different variance in the distribution of enzyme ratio (calcu-
lated numerically from the simulations with the Gillespie algorithm), and thus
resulted in different degrees of bimodality as predicted by Eq. (3.12).

In system 1), we have two (identical) equations for enzyme creation/destruction
Ėi = KC−KD ·Ei, that can be described by a Master equation for each enzyme
with gm = KC and rm = KD ·m: these equations produce the fluctuating num-
ber of E1, E2 enzymes contained in eq. (3.2,3.3). The stationary distribution is
a Poisson distribution, with the average number of molecules and the variance
given by 〈E〉 = σ2

E = KC/KD.
For system 2), defining as E∗1 and E∗2 the inactive (or alternatively, located

externally to the reaction region) enzyme concentrations, and EA the concen-
tration of activating molecules, the full kinetic reaction scheme becomes:

EA + E∗1 
 E1

EA + E∗2 
 E2

E1 +A
 E1A→ AP + E1

E2 +AP 
 E2A
P → A+ E2

A simplified version of the enzyme competition can be obtained by considering
a direct interchange between the two active enzymes: E1 
 E2, with E2 =
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ET − E1, ET the total enzyme concentration. The kinetic equation for this
system thus reduces to Ė1 = K1 · (ET − E1)−K2 · E1, thus the corresponding
Master equation has gm = K1 · (MT − m) and rm = K2 · m. The stationary
distribution of this equation is of Binomial type, with a mean value 〈E〉 = ET /2
and a variance σ2

E = ET /4 (considering K1 = K2). In the limit of large enzyme
molecule number, these systems coincide with the enzymatic cycle in eq. (3.1),
and the variance of the enzyme ratio distribution p(γ) tends to zero; thus there
is a limit system size in order to observe bimodality.

Applying the calculation performed previously, we have shown that the sta-
tionary distribution is a bimodal distribution if the condition (3.12) is satisfied
under the simplified assumption that p(γ) can be appoximated by a Gaussian
function. In Fig. 3.1 we numerically check our approximation for a moderate
number of enzymes. For even lower enzyme molecule numbers (in our simula-
tions 〈E〉 ranges from unity to hundreds) the gaussianity condition is not strictly
satisfied, but our criterion is in qualitative agreement with our simulations any-
way (see Fig. 3.2).

Figure 3.1: Gaussian approximation of p(γ) (γ = E1/E2) for E1 + E2 = 100.
Bars: empirical distribution of γ; continuous line: gaussian distribution with
same mean and variance.

In Fig. 3.2 we show the results of our simulations for both systems. In order
to characterize the effect of system size on bimodality, we fixed the chemical
reaction constants of substrate reactions in (3.2) KM1 = KM2 = 0.1, KC1 =
KC2 = 10 and we considered an increasing number of total substrate molecules
NT ranging from 100 to 1000. Moreover, we scaled the enzyme-substrate system
by fixing the ratio between average enzyme and total substrate molecule number,
with a different ratio for the two systems in order to have the same variance in
single enzyme distribution: 〈E〉/XT = 0.3 (remembering that ET = 2 · 〈E〉),
K1 = K2 = 1 for system 1. For system 2, we adjusted the kinetic constants
accordingly: KC = XT · 0.15, KD = 1.

We have numerically checked the agreement with our theoretical results by
looking at the value for which bimodality becomes negligible, that corresponds
approximately to N > 400 for the binomial system and to N > 900 for the
Poisson system. In Fig. (3.2, top) the corresponding σ2

γ values are crossed by the
same horizontal line (estimated from the picture below) confirming the existence
of a unique threshold related only to this parameter, and not for example to the
substrate or enzyme molecule number. Numerically, the horizontal line sets a
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3.3. NUMERICAL SIMULATIONS FOR TWO BIOLOGICAL CIRCUITS

Figure 3.2: Results of simulations for system 1 (circles) and 2 (squares). Top:
plot of σ2

γ as a function of substrate total number of molecules N ; the dashed
line shows approximately the critical value of σ2

γ for which bimodality is lost
(see bottom plot) in both systems. Bottom: plot of peak distance (rescaled over
the total substrate molecule number N), calculated as the distance between the
maxima of the two half distributions N ∈ [0 : N/2] and N ∈ [N/2 : N ], by
taking advantage of the symmetry of the system.
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threshold for σ2
γ approximatively equal to 0.07, that corresponds to a value of

KM = 0.16, in good agreement with the real KM = 0.1 used in our simulations.

3.4 Discussion of the results

In this paper we study the conditions that result in a noise-induced bimodal sta-
tionary distribution of a single phosphorylation/dephosphorylation cycle. The
system is described by Michaelis-Menten equations in the quasi-steady state
assumption, and studied with a finite number of molecules by a Master Equa-
tion approach. We show that the effect of an intrinsic noise on the substrate
molecules is not enough to achieve bimodality in this system. Therefore, we
propose a different approach to generate stochastic bimodality (that does not
change the number of deterministic stable states, thus a purely noise-driven phe-
nomenon) by coupling the cycle with a reaction scheme for enzyme turnover.
For this system we clarify the conditions for which stochastic fluctuations in
enzyme concentration can lead to bimodality in substrate concentration in a
continuous approximation to the model. We show that it depends on the distri-
bution of the ratio between the two enzymes involved in the reaction, and on one
of the kinetic constants related to the substrate reaction, KM , that determines
the susceptibility of the system to enzyme fluctuations. In the final section we
implement, by means of Gillespie algorithm, two different reaction schemes that
can be considered biologically plausible for modeling enzyme turnover. The
simulation results are in good agreement with our simplified analytical calcu-
lations, and moreover they emphasize that bimodality depends indirectly on
the system size (i.e. the number of molecules involved). We remark that the
number of molecules used in our simulations are of the same order of magnitude
than some molecules known to have a central role in cell regulation (such as
Myc [3, 38] and P53 [60] oncogenes). These results define in more detail the
conditions for which this phenomenon could occur in real biological systems,
stating that if noise has to be exploited to achieve a bimodal behaviour there
must be a relationship between the chemical parameters of the system and its
size.
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Chapter 4

The double phosphorylation
cycle

In the following work we study a system composed by two connected futile cy-
cles, i.e. the substrate has two different phosphorylation sites. This system is
known to be deterministically bistable, and we verify that this is true even for
the stochastic version of the model. Then we proceed to study a perturbative
method to evaluate the stationary distribution, starting from a detailed balance
approximation of the process and using this to evaluate the non-equilibrium
probability fluxes. This approximation is always possible as long as the system
is bidimensional, and is based on a discrete equivalent of the Helmholtz field
decomposition theorem, which allows us to write a vector field as a sum of a
scalar potential (the basis for the detailed balance principle) and a vector po-
tential (which breaks the microscopical reversibility and so the detailed balance
of the system).
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CHAPTER 4. THE DOUBLE PHOSPHORYLATION CYCLE

4.1 Motivation of the work

One of the most important aspects of biological systems is their capacity to learn
and memorize patterns and to adapt themselves to exogenous and endogenous
stimuli by tuning signal transduction pathways activity. The mechanistic de-
scription of this behavior is typically depicted as a “switch” that can drive the
cell fate to different stable states characterized by some observables such as
levels of proteins, messengers, organelles or phenotypes [114]. The biochemical
machinery of signal transduction pathways is largely based on enzymatic reac-
tions, whose average kinetic can be described within the framework of chemical
kinetics and enzyme reactions as pioneered by Michaelis and Menten [98, 72].
The steady state velocity equation accounts for the majority of known enzy-
matic reactions, and can be adjusted to the description of regulatory proper-
ties such as cooperativity, allostericity and activation/inhibition[74]. Theoreti-
cal interest in enzymatic reactions has never stopped since Michaelis-Menten’s
work and has lead to new discoveries such as zero-order ultrasensitivity [42, 9].
Among various enzymatic processes, a wide and important class comprises the
reversible addition and removal of phosphoric groups via phosphorylation and
dephosphorylation reactions catalyzed by kinases and phosphatases. The phos-
pho/dephosphorylation cycle (PdPC) is a reversible post-translational substrate
modification that is central to cellular signalling regulation and can play a key
role in the switch phenomenon for several biological processes [58, 95]. Dual
PdPC’s are classified as homogeneous and heterogeneous based on the num-
ber of different kinases and phosphatases [52]; the homogeneous has one kinase
and one phosphatase, while the heterogeneous has two kinases and two phos-
phatases. Variants of homogeneous and heterogeneous dual PdPC’s may only
have a non-specific phosphatase and two specific kinases [91] or, symmetrically,
a non-specific kinase and two specific phosphatases. The PdPC with the non-
specific phosphatase controls the phosphorylation state of AMPA receptors that
mediates induction of Long Term Potentiation (LTP) and Long Term Depres-
sion (LTD) in vitro and in vivo[91, 37, 48]. Recently, several authors have
reported bistability in homogeneus pPdPC [79, 52]) as well as those with a non-
specific phosphatase and two different kinases [37]. The bistable behaviour of
the homogeneous system is explained on the basis of a competition between the
substrates for the enzymes. The majority of studies on biophysical analysis of
phospho/dephosphorylation cycle have been performed in a averaged, determin-
istic framework based on Michaelis-Menten (MM) approach, using the steady
state approximation. However, recently some authors [70] have pointed to the
role of fluctuations in the dynamics of biochemical reactions. Indeed, in a single
cell, the concentration of molecules (substrates and enzymes) can be low, and
thus it is necessary to study the PdPC cycle within a stochastic framework.
A “natural” way to cope with this problem is the so-called Chemical Master
Equation (CME) approach [106], that realizes in an exact way the probabilistic
dynamics of a finite number of molecules, and recovers the chemical kinetics of
the Law of Mass Action, which yields the continuous Michaelis-Menten equation
in the thermodynamic limit (N →∞,) using the mean field approximation. In
this paper we study a stochastic formulation of enzymatic cycles that has been
extensively considered by several authors [52, 79]. The deterministic descrip-
tions of these models characterize the stability of fixed points and give a geo-
metrical interpretation of the observed steady states, as the intersection of conic
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curves[79]. The stochastic description can in fact provide further information
on the relative stability of the different steady states in terms of a stationary
distribution. We propose a perturbative approach for computing the stationary
solution out of the thermodynamics equilibrium. We also point out the role
of currents in the transition from a mono-modal distribution to a bimodal dis-
tribution; this corresponds to bifurcation in the deterministic approach. The
possibility that chemical fluxes control the distribution shape suggests a generic
mechanism used by biochemical systems out of thermodynamic equilibrium to
obtain a plastic behavior. Moreover, we show that at the bimodal transition
there exists a diffusion region in the configuration space where a Fokker-Planck
equation can be introduced to approximate the stationary solution. Analogous
models have been previously studied [9, 86, 89] for single-step PdPC.

4.2 Dual phosporylation/dephosphorylation en-
zymatic cycles

The process shown in Fig. (4.1) is a two-step chain of addition/removal reactions
of chemical groups and may, in general, model important biological processes
such as phenotype switching (ultrasensitivity) and chromatine modification by
histone acetylation/deacetylation as well as phospho/dephosphorylation reac-
tions. Without loss of generality, we perform a detailed study of the homo-
geneous phospho/dephosphorylation two-step cycles (PdPC cycles) where two
enzymes drive phosphorylation and dephosphorylation respectively. Thus, there
is a competition between the two cycles for the advancement of the respective
reactions.

Figure 4.1: Scheme of the double enzymatic cycle of addition/removal reactions
of chemical groups via Michelis-Menten kinetic equations as shown in eq (4.1)
in the case of phosphoric groups.

The deterministic Michaelis-Menten (MM) equations of the scheme (4.1)
with the quasi-steady-state hypothesis reads:
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dA

dt
=

kM4
vM2

(1−A−APP )

kM2
kM4

+ kM4
(1−A−APP ) + kM2

APP

− kM3
vM1

A

kM1
kM3

+ kM1
(1−A−APP ) + kM3

A

dAPP
dt

=
kM1

vM3
(1−A−APP )

kM1kM3 + kM1(1−A−APP ) + kM3A

− kM2vM4A
P
P

kM2
kM4

+ kM4
(1−A−APP ) + kM2

APP
(4.1)

where A and APP are the concentrations of the non-phosphorylated and dou-
ble phosphorylated substrates, kMi

denote the MM constants and vMi
are the

maximal reaction velocities (i = 1, · · · 4). Let n1 and n2 denote the molecules
number of the substrates A and APP respectively, the corresponding CME for
the probability distribution ρ(n1, n2, t) is written

∂ρ

∂t
= g1(n1 − 1, n2)ρ(n1 − 1, n2, t)− g1(n1, n2)ρ(n1, n2, t)

+ r1(n1 + 1, n2)ρ(n1 + 1, n2, t)− r1(n1, n2)ρ(n1, n2, t)

+ g2(n1, n2 − 1)ρ(n1, n2 − 1, t)− g2(n1, n2)ρ(n1, n2, t)

+ r2(n1, n2 + 1)ρ(n1, n2 + 1, t)− r2(n1, n2)ρ(n1, n2, t)

(4.2)

where gj(n1, n2) and rj(n1, n2) are the generation and recombination terms
respectively, defined as :

r1(n1, n2) =
KM3

vM1
n1

KM1KM3 +KM1(NT − n1 − n2) +KM3n1

g1(n1, n2) =
KM4

vM2
(NT − n1 − n2)

KM2
KM4

+KM4
(NT − n1 − n2) +KM2

n2

r2(n1, n2) =
KM2

vM4
n2

KM2
KM4

+KM4
(NT − n1 − n2) +KM2

n2

g2(n1, n2) =
KM1vM3(NT − n1 − n2)

KM1
KM3

+KM1
(NT − n1 − n2) +KM3

n1

(4.3)

NT is the total number of molecules, and we have introduced scaled constants
KM = NT kM . The biochemical meaning is that the enzyme quantities should
scale as the total number of molecule NT , to have a finite thermodynamic limit
NT → ∞, in the transition rates (4.3). As it is known from the theory of
one-step Markov processes, the CME (4.2) has a unique stationary solution
ρs(n1, n2) that describes the statistical properties of the system on a long time
scale. The CME recovers the Mass Action-based MM equation (4.1) in the
thermodynamic limit when the average field theory approach applies. Indeed it
can be shown that the critical points of the stationary distribution for the CME
can be approximately computed by the conditions (cfr. eq. (4.15))

g1(n1, n2) = r1(n1 + 1, n2) g2(n1, n2) = r2(n1, n2 + 1) (4.4)
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whose solutions tend to the equilibrium points of the MM equation when the
fluctuation effects are reduced in the thermodynamic limit as O(1/

√
N). As a

consequence, one would expect that the probability distribution becomes singu-
lar, being concentrated at the fixed stable points of the equations (4.1), and that
the transition rate among the stability regions of attractive points is negligible.
However, when a phase transition occurs due to the bifurcation of the stable
solution, fluctuations are relevant even for large NT and the CME approach is
necessary. In the next section we discuss the stationary distribution properties
for the CME (4.2).

4.3 The Stationary Distribution

The stationary solution ρs(n1, n2) of the CME (4.2) can be characterized by

a discrete version of the zero divergence condition for the current vector ~J
components(see Appendix)

Js1 = g1(n1 − 1, n2)ρs(n1 − 1, n2)− r1(n1, n2)ρs(n1, n2)

Js2 = g2(n1, n2 − 1)ρs(n1, n2 − 1)− r2(n1, n2)ρs(n1, n2)

(4.5)

and the CME r.h.s. reads

D1J
s
1 (n1, n2) +D2J

s
2 (n1, n2) = 0 (4.6)

where we have introduced the difference operators

D1f(n1, n2) = f(n1 + 1, n2)− f(n1, n2)

D2f(n1, n2) = f(n1, n2 + 1)− f(n1, n2) (4.7)

Due to the commutative properties of the difference operators, the zero-divergence
condition for the current is equivalent to the existence of a current potential
A(n1, n2) such that

Js1 (n1, n2) = D2A(n1, n2) n1 ≥ 1

Js2 (n1, n2) = −D1A(n1, n2) n2 ≥ 1

(4.8)

We remark that the r.h.s. of eq. (4.8) is a discrete version of the curl operator.
The potential difference A(n′1, n

′
2) − A(n1, n2) defines the chemical transport

across any line connecting the states (n1, n2) and (n′1, n
′
2). At the stationary

state the net transport across any closed path is zero and we have no current
source in the network. As discussed in [106, 96] we distinguish two cases: when
the potential A(n1, n2) is constant (the so called “detailed balance condition”)
and the converse case corresponding to a non-equilibrium stationary state. In
this case the stationary solution ρs is characterized by the condition J1 = J2 = 0
over all the states, whereas in the other case we have macroscopic chemical fluxes
in the system. When detailed balance holds, simple algebraic manipulations (see
Appendix) result in the following conditions for the stationary solutions

D1 ln ρs(n1, n2) = ln a1(n1, n2) (4.9)

D2 ln ρs(n1, n2) = ln a2(n1, n2) n1 + n2 < NT

(4.10)
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where the discrete drift vector field components ai are defined by:

a1(n1, n2) =
g1(n1, n2)

r1(n1 + 1, n2)
a2(n1, n2) =

g2(n1, n2)

r2(n1, n2 + 1)
. (4.11)

Equations (9) and (4.10) imply the existence of a potential V (n1, n2) such that

ln a1(n1, n2) = −D1V (n1, n2)

ln a2(n1, n2) = −D2V (n1, n2) (4.12)

Figure 4.2: Stationary distributions for the A and APP states in the double
phosphorylation cycle when detailed balance (4.13) holds with KM1 = KM4 = 1
and KM2

= KM3
= 2. In the top figure we set the reaction velocities vM1

=
vM2

= 1 and vM2
= vM3

= 1.05 (symmetric case), whereas in the bottom figure
we increase the vM2

and vM3
value to 1.15. The number of molecules is NT = 40.

The transition from a unimodal distribution to a bimodal distribution is clearly
visible.

Using definition (4.3) it is possible to explicitly compute a set of parameter
values for the PdPC cycle, that satisfy the detailed balance condition (4.12)
according to the relations

2KM1
= KM2

= KM3
= 2KM4

(4.13)

where the reaction velocities VM are arbitrary. The stationary distribution is
given by the Maxwell-Boltzmann distribution

ρs(n1, n2) = exp(−V (n1, n2)) (4.14)

where the potential V (n1, n2) is computed by integrating equation (4.12) and
choosing the initial value V (0, 0) to normalize the distribution (4.14). Using a
thermodynamical analogy, we can interpret the potential difference V (n1, n2)−
V (0, 0) as the chemical energy needed to reach the state (n1, n2) from the initial
state (0, 0). As a consequence, the vector field (4.11) represents the work for
one-step transition along the n1 or n2 direction. Definition (4.14) also implies
that the critical points of the stationary distribution are characterized by the
conditions

g1(n1, n2)

r1(n1 + 1, n2)
=

g2(n1, n2)

r2(n1, n2 + 1)
= 1 (4.15)
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and coincides with the critical points of the MM equations. In figure 4.2 we plot
the stationary distributions (4.14) in the case NT = 40 with KM1

= KM4
= 1

and KM2
= KM3

= 2; we consider two symmetric cases: vM1
= vM2

= 1 with
vM2 = vM3 = 1.05 or vM2 = vM3 = 1.15 (all the units are arbitrary). In the
first case, the probability distribution is unimodal, whereas in the second case
the transition to a bimodal distribution is observed. Indeed, the system has a
phase transition at vM2

= vM3
' 1.1 that corresponds to a bifurcation of the

critical point defined by the condition (4.15).
In figure 4.2 we distinguish two regions: a drift dominated region and a

diffusion dominated region. In the first region the chemical reactions mainly
follow the gradient of the potential V (n1, n2) and tend to concentrate around
the stable critical points, so that the dynamic is well described by a Liouville
equation[51]. In the second region the drift field (4.11) is small and the fluctua-
tions due to the finite size introduce a diffusive behaviour. Then the distribution
can be approximated by the solution of a Fokker-Planck equation[106]. As dis-
cussed in the Appendix, the diffusion region is approximately determined by
the conditions

g1(n1, n2)− r1(n1 + 1, n2) ' g2(n1, n2)− r2(n1, n2 + 1)

' O(1/NT ) (4.16)

To illustrate this phenomenon, we outline in fig. 4.3 the region where con-
dition (4.16) is satisfied (i.e. the gradient of the potential V (n1, n2) is close to
0 (4.12)). This is the region where the fixed points of the MM equation are
located, and comparison with fig. 4.2 shows that it defines the support of the
stationary distribution.

Figure 4.3: In grey we show the region where components of the vector field
(4.11) are ' 1 using the parameter values of fig. 4.2 (bottom). The blue lines
enclose the region where the first component is nearby 1, whereas the red ones
enclose the corresponding region for the second component.

In the diffusion dominated region a molecule can undergo a transition from
the dephosphorylated equilibrium to the double phosphorylated one. At the
stationary state the transition probability from one equilibrium to the other
can be estimated by the Fokker-Planck approximation; but this does not imply
that the Fokker-Planck equation allows us to describe the transient relaxation
process toward the stationary state. Indeed, due to the singularity of the ther-
modynamics limit, the dynamics of transient states may depend critically on
finite size effects not described by using the Fokker-Planck approximation[108].
To cope with these problems in the PdPC model further studies are necessary.
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CHAPTER 4. THE DOUBLE PHOSPHORYLATION CYCLE

When the current (4.8) is not zero the CME (4.2) relaxes toward a Non-
Equilibrium Stationary State (NESS) and the field (4.11) is not conservative.
We shall perform a perturbative approach to point out the effects of currents
on the NESS nearby the transition region to the bimodal regime. We consider
the following decomposition for the vector field

ln a1(n1, n2) = −D1V0(n1, n2) +D2H(n1, n2)

ln a2(n1, n2) = −D2V0(n1, n2)−D1H(n1, n2)

n1 + n2 ≤ NT − 1 (4.17)

where the rotor potential H(n1, n2) takes into account the irreversible rotational
part. The potential H(n1, n2) can be recursively computed using the discrete
Laplace equation

(D1D1 +D2D2)H = D2 ln (a1(n1, n2))−D1 ln (a2(n1, n2)) (4.18)

where n1 +n2 ≤ NT −2, with the boundary conditions H(n,N−n) = H(n,N−
1 − n) = 0 (see Appendix). Assuming that the potential H is small with
respect to V , we can approximate the NESS by using the Maxwell-Boltzmann
distribution (4.14) with V = V0. However, as we shall show in the next section,
at the phase transition even the effect of small currents becomes critical, and
the study of higher perturbative orders is necessary. To point out the relation
among the rotor potential H, the NESS ρs and the chemical flux J , we compute
the first perturbative order letting ρs(n1, n2) = exp(−V0(n1, n2) − V1(n1, n2)).
From definition (4.5) the condition (8) reads:

exp (−V0(n1, n2)− V1(n1, n2)) r1(n1, n2)

· (exp (D2H(n1 − 1, n2))− exp (−D1V1(n1 − 1, n2)))

= D2a(n1, n2))

exp (−V0(n1, n2)− V1(n1, n2)) r2(n1, n2)

· (exp (−D1H(n1, n2 − 1))− exp (−D2V1(n1, n2 − 1)))

= −D1a(n1, n2)

(4.19)

V1(n1, n2) turns out to be an effective potential that simulates the current’s
effect on the unperturbed stationary distribution by using a conservative force.
We note that if the rotor potential H is zero, then both the current potential A
and the potential correction V1 are zero, so that all these quantities are of the
same perturbative order, and the first perturbative order of eqs. (4.19) reads

exp (−V0(n1, n2)) r1(n1, n2) ·
(D1V1(n1 − 1, n2) +D2H(n1 − 1, n2)) = D2A(n1, n2)

exp (−V0(n1, n2)) r2(n1, n2) ·
(D2V1(n1, n2 − 1)−D1H(n1, n2 − 1)) = −D1A(n1, n2)

(4.20)

From the previous equations we see that the currents depend both on the rotor
potential H and the potential correction V1, which is unknown; thus they cannot
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be directly computed from (4.20). We obtain an equation for V1 by eliminating
the potential A from (4.20)

D1 (exp (−V0(n1, n2)) r1(n1, n2)D1V1(n1 − 1, n2))

+D2 (exp (−V0(n1, n2)) r2(n1, n2)D2V1(n1, n2 − 1)) =

D2 (exp (−V0(n1, n2)) r2(n1, n2)D1H(n1, n2 − 1))

−D1 (exp (−V0(n1, n2)) r1(n1, n2)D2H(n1 − 1, n2))

(4.21)

Eq. (4.21) is defined for n1 ≥ 1, n2 ≥ 1 and n1 + n2 ≤ NT − 1, and we can
solve the system by introducing the boundary conditions V1(n, 0) = V1(0, n) =
V1(n,NT − n) = 0. It is interesting to analyze equation (4.21) in the phase
transition regime. When the recombination terms r1,r2 are almost equal and
their variation is small (for our parameter choice this is true for n1 ' n2 and
n1 + n2 � 1) the r.h.s. can be approximated by

exp(−V0(n1, n2) [D2V0(n1, n2)D1H(n1, n2 − 1)

−D1V0(n1, n2)D2H(n1 − 1, n2)]

(4.22)

As a consequence, in the transition regime this term is negligible since both
D1V0(n1, n2) and D2V0(n1, n2) tend toward zero in the diffusion region where
the bifurcation occurs; thus the first perturbative order is not enough to compute
the stationary distribution correction, but higher orders should be considered.

Figure 4.4: Plot of the rotor field for the potential H using the following pa-
rameter values: vM1 = vM2 = 1, vM2

= vM3
= 1.15 KM1

= KM4
= 1, NT = 40

and KM2
= KM3

= 1.8 (left picture) or KM2
= KM3

= 2.2 (right picture).

4.4 Numerical simulations

In order to study the non equilibrium stationary conditions in the double phos-
phorylation cycle (4.1) we have perturbed the detailed balance conditions con-
sidered in figure (4.2) by changing the value of the MM constants KM2

and
KM3

. In figure (4.4) we show the rotor field of the potential H in the cases
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CHAPTER 4. THE DOUBLE PHOSPHORYLATION CYCLE

Figure 4.5: (Left picture): plot of the zero-order approximation for the proba-
bility distribution using the decomposition (4.17) for the vector field associated
to the CME. (Right picture): plot of the stationary distribution computed by
directly solving the CME (4.2). We use the parameter values of the case I in
the table 4.4.

Figure 4.6: The same as in fig. 4.5 using parameter values of case II in table
4.4.

KM2
= KM3

= 2.2 and KM2
= KM3

= 1.8 when the detailed balance condi-
tion (4.13) does not hold. We see that in the first case (left picture) the rotor
field tends to move the particles from the borders toward the central region
n1 = n2, so that we expect an increase of the probability distribution in the
center, whereas in the second case the rotor field is directed from the central
region to the borders and we expect a decrease of the probability distribution
in this region. To illustrate the effect of the potential H, we compare the zero-
order approximation of the probability distribution (4.14), where the potential
V0(n1, n2) is computed using decomposition (4.17) with the stationary solution
of the CME (4.2). The main parameter values are reported in table 4.4

Case KM2
KM3

vM2
vM3

I 1.8 1.8 1.05 1.05
II 1.8 1.8 1.15 1.15
III 2.2 2.2 1.05 1.05
IV 2.2 2.2 1.15 1.15

whereas the other parameters values are: vM1
= vM2

= 1,KM1
= KM4

= 1 and
NT = 40. For the first parameter set, the zero-order approximation is a bimodal
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Figure 4.7: The same as in fig. 4.5 using the parameter values of the case III in
table 4.4.

distribution, but the effect of the currents induced by the rotor potential H (see
fig. 4.4) left) are able to destroy the bimodal behaviour by depressing the two
maximal at the border (see fig. 5).

If we increase the value of the K2M and K3M (case II), the exact stationary
distribution becomes bimodal and the effect of currents is to introduce a strong
transition probability between the two distribution maxima (fig. 4.6).

Therefore, when the MM constants KM2 and KM3 are < 2 (we note that
for KM2 = KM3 = 2, the detailed balance holds), the non-conservative nature
of the field (4.17) introduces a delay in the phase transition from a mono-modal
to a bimodal distribution. However, when we consider KM2 = KM3 > 2 (cases
III and IV) the rotor potential H moves the particle towards the borders and
the central part of the distribution is depressed. This is shown in the figure 4.7
where we compare the zero-order approximation of the stationary distribution
and the solution of the CME using the case III parameters of the table 4.4.

Finally, in case IV of table 4.4, the CME stationary solution undergoes a
transition to a bimodal distribution, whereas the zero-order approximation is
still mono-modal ( fig. 4.9), so that the effect of currents is to anticipate the
phase transition.

Using the stationary solution one can also compute the currents according
to definition (4.5). In figure (9) we plot the current vector in case IV parameters
to show that the current tends to become normal to the distribution gradient
near the maximal value.

This result can be also understood using the perturbative approach (4.21),
where one shows that the main effect of the V1 potential correction is to com-
pensate the rotor field of H along the distribution gradient directions. As a
consequence, the current is zero at the maximal distribution value and condi-
tion (4.15) defines the critical points of the stationary distribution even in the
non-conservative case.

4.5 Discussion of the results

The CME approach we present here is a powerful method for studying complex
cellular processes, even with significant simplifications such as spatial homo-
geneity of volumes where the chemical reactions are taking place. The CME
theory is attractive for a variety of reasons, including the richness of aspects (the
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Figure 4.8: Current vector field computed by using definiton (4.5) and the
stationary solution of the CME with case IV parameters. The distribution
is bimodal (cfr. figure 8) and the current lines tend to be orthogonal to the
distribution gradient near the maximal value.

Figure 4.9: The same as in fig. 4.5 using parameter values of case IV in table
4.4.

capability of coping with fluctuations and chemical fluxes) and the possibility
of developing thermodynamics, starting from the distribution function. The
violation of detailed balance gives information on the “openness” of the system
and on the nature of the bistable regimes, which are induced by the external
environment; in contrast, it is a free-energy equilibrium when detailed balance
holds. This statement can be expressed in a more rigorous form by introducing
the vector field generated from the ratio between the generation and recombi-
nation terms, by decomposing it into a sum of “conservative” and “rotational”
fields (Helmholtz decomposition) and by relating the chemical fluxes to the non-
conservative field. The magnitude of deviations from detailed balance influences
the form of the stationary distribution at the transition to a bistable regime,
which may be driven by the currents. An interesting test for the prediction of
the PdPC CME model would be to perform one experiment with the parame-
ter values chosen to satisfy DB and compare it with another set of parameters
where DB is not fulfilled. Our results show that the PdPC can operate across
these two regions, and that the transition regime can be explained by the role
of the currents, that, within a thermodynamic framework, can be interpreted
as the effect of an external energy source. A full thermodynamic analysis of
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this cycle is beyond the scope of this paper, but we can surmise that this ap-
proach might be extended to other cycles in order to quantify if, and how much
energy, is required to maintain or create bistability. Another way to extend
this analysis would be the generalization to n-step phospho/dephosphorylation
cycles, where the stationary distribution will be the product of n independent
one-dimensional distributions. In conclusion, our results could be important for
a deeper characterization of biochemical signaling cycles that are the molecular
basis for complex cellular behaviors implemented as a “switch” between states.

4.6 Mathematical results

The master equation describes the evolution of one-step Markov Processes ac-
cording to

∂ρ

∂t
(n1, n2, t) =

g1(n1 − 1, n2)ρ(n1 − 1, n2, t)− g1(n1, n2)ρ(n1, n2, t)

+r1(n1 + 1, n2)ρ(n1 + 1, n2, t)− r1(n1, n2)ρ(n1, n2, t)

+g2(n1, n2 − 1)ρ(n1, n2 − 1, t)− g2(n1, n2)ρ(n1, n2, t)

+r2(n1, n2 + 1)ρ(n1, n2 + 1, t)− r2(n1, n2)ρ(n1, n2, t)

(4.23)

with the boundary conditions for the coefficients

g1(n,N − n) = g2(n,N − n) = 0 and

r2(n, 0) = r1(0, n) = 0 n ∈ [0, NT ]

(4.24)

so that n1 + n2 ≤ NT . By introducing the difference operators (4.7), eq. (4.23)
can be written in the form of a continuity equation

∂ρ

∂t
(n1, n2, t) = −D1J1(n1, n2, t)−D2J2(n1, n2, t) (4.25)

where we introduce the current vector J of components:

J1(n1, n2, t) = g1(n1 − 1, n2)ρ(n1 − 1, n2, t)

−r1(n1, n2)ρ(n1, n2, t)

J2(n1, n2, t) = g2(n1, n2 − 1)ρ(n1, n2 − 1, t)

−r2(n1, n2)ρ(n1, n2, t)

(4.26)

The stationary solution ρs(n1, n2) is characterized by the zero divergence con-
dition for the current (25). Detailed balance holds when the current is zero and
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ρs satisfies

r1(n1, n2)ρs(n1 − 1, n2)

·
(

ρs(n1, n2)

ρs(n1 − 1, n2)
− g1(n1 − 1, n2)

r1(n1, n2)

)
= 0

r2(n1, n2)ρs(n1, n2 − 1)

·
(

ρs(n1, n2)

ρs(n1, n2 − 1)
− g2(n1, n2 − 1)

r2(n1, n2)

)
= 0

(4.27)

for 0 < n1 and 0 < n2. The previous equations can be written in the form

D1 ln(ρs(n1 − 1, n2)) = ln

(
g1(n1 − 1, n2)

r1(n1, n2)

)
D2 ln(ρs(n1, n2 − 1)) = ln

(
g2(n1, n2 − 1)

r2(n1, n2)

)
(4.28)

and, if one introduces the the vector field

a1(n1, n2) =
g1(n1, n2)

r1(n1 + 1, n2)

a2(n1, n2) =
g2(n1, n2)

r2(n1, n2 + 1)

(4.29)

due to the commutative property of the difference operators Di, detailed balance
implies an irrotational character for the vector field ln(a(n1, n2))

D2 ln(a1(n1, n2))−D1 ln(a2(n1, n2)) = 0 (4.30)

If we have no singularities in the domain, eq. (4.30) is a sufficient condition
for the existence of a potential V (n1, n2) (cfr. eq, (4.12)) and the distribution
ρs(n1, n2) can be computed using the recurrence relations

ρs(n1 + 1, n2) = a1(n1, n2)ρs(n1, n2)

ρs(n1, n2 + 1) = a2(n1, n2)ρs(n1, n2)

(4.31)

Therefore, the components a1(n1, n2) and a2(n1, n2) can also be interpreted as
creation operators according to relations (4.31) and detailed balance condition
(4.30) is equivalent to the commutativity property for these operators. The
stationary distribution can be written in the Maxwell-Boltzmann form (4.14)
and the potential V (n1, n2) is associated with an “energy function”. We finally
observe that the critical points of the stationary distribution ρs are defined by
the condition

a1(n1, n2) = a2(n1, n2) = 1 (4.32)

For the double phosphorylation cycle (4.1) it is possible to derive explicit ex-
pressions for the stationary distribution ρs(n1, n2) by applying recursively the
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relations (4.31) in a specific order: for example, first moving along the n2 direc-
tion and then along n1, we obtain an expression for ρs(n1, n2) as a function of
ρs(0, 0)

ρs(n1, n2) =

n1∏
i=1

g1(i− 1, n2)

r1(i, n2)

n2∏
l=1

g2(0, l − 1)

r2(0, l)
ρs(0, 0) (4.33)

A direct substitution of the coefficients (4.3) in the relation (4.33) gives

ρs(n1, n2) =

n1∏
i=1

KM4VM2(NT − i− n2 + 1)

KM2KM4 +KM4(NT − i− n2 + 1) +KM2n2
·

KM1KM3 +KM1(NT − i− n2) +KM3i

KM3VM1i

·
n2∏
l=1

KM1VM3(NT − l + 1)

KM1KM3 +KM1(NT − l + 1)

KM2KM4 +KM4(NT − l) +KM2l

KM2VM4l
ρs(00)

We can further simplify this expression by using the definition of multinomial
coefficients and the rising and falling factorial symbols, defined as x(n) = x(x+

1)(x+ 2) · · · (x+ n− 1) = (x+n−1)!
(x−1)! and x(n) = x(x− 1)(x− 2) · · · (x− n+ 1) =

x!
(x−n)! ) respectively.

ρs(n1, n2) =

(
VM2

VM1

)n1
(
VM3

VM4

)n2
(
NT − n2

n1

)(
NT
n2

)
(
KM3 −KM1

KM3

)n1
(
KM2 −KM4

KM2

)n2

·

(KM1(1 + n2 −KM3 −NT )−KM3)(n1)

(KM1 −KM3)(n1)(KM2(1 + n2

KM4
) +NT − n2)(n1)

·

(KM2(1 +KM4) +KM4(NT − 1))(n2)

(KM2 −KM4)(n2)(KM3 +NT )(n2)

ρs(0, 0)

Finally, it is interesting to go to a continuous limit that is equivalent toNT →
∞. First we introduce the population densities A = n1/NT and APP = n2/NT
and use the fact that the generation and recombination rates are invariant by
substituting n1 and n2 with A and APP . Then we approximate

D1V (A,APP ) = V (A+ 1/NT , A
P
P )− V (A,APP )

=
1

NT

∂V

∂A
(A+

1

2NT
, APP ) +O(1/N3

T )

and a similar expression holds for D2V (A,APP ). According to eq. (4.12), the
partial derivatives of V (A,APP ) are bounded when NT →∞ only in the domain
where the following approximation holds (diffusion dominated region)

gi(A,A
P
P )

ri(A,APP )
= 1 +O(1/NT ) i = 1, 2 (4.34)
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and we can estimate

ln

(
g1(A,APP )

r1(A+ 1/NT , APP )

)
' −2

r1(A+ 1/NT , A
P
P )− g1(A,APP )

r1(A+ 1/NT , APP ) + g1(A,APP )
+O(1/N3

T )

ln

(
g2(A,APP )

r2(A,APP + 1/NT )

)
' −2

r2(A,APP + 1/NT )− g2(A,APP )

r2(A,APP + 1/NT ) + g2(A,APP )
+O(1/N3

T )

(4.35)

Then we may approximate (we use the convention of leaving out the dependence
on APP )

r1(A+ 1/NT )− g1(A)

r1(A+ 1/NT ) + g1(A)
=

r1(A+ 1/2NT )− g1(A+ 1/2NT ) + 1/2NT (∂r1/∂A(A+ 1/2NT ) + ∂g1/∂A(A+ 1/2NT ))

r1(A+ 1/NT ) + g1(A)

(4.36)

up to an error of order O(1/N2
T ) (a similar expression is obtained for the second

equation). Therefore, detailed balance in the continuous limit reads

r1(A,APP )− g1(A,APP ) + 1/2NT
(
∂r1/∂A(A,APP ) + ∂g1/∂A(A,APP )

)
r1(A+ 1/2NT , APP ) + g1(A− 1/2NT , APP )

= − 1

2NT

∂V

∂A
(A,APP )

r2(A,APP )− g2(A,APP ) + 1/2NT
(
∂r2/∂A

P
P (A,APP ) + ∂g2/∂A

P
P (A,APP )

)
r2(A,APP + 1/2NT ) + g2(A,APP − 1/2NT )

= − 1

2NT

∂V

∂APP
(A,APP )

(4.37)

The limit NT →∞ turns out to be singular since

− ∂V

∂A
(A,APP ) =

2NT (r1(A,APP )− g1(A,APP )) + ∂r1/∂A(A,APP ) + ∂g1/∂A(A,APP )

r1(A,APP ) + g1(A,APP )

− ∂V

∂APP
(A,APP ) =

2NT (r2(A,APP )− g2(A,APP )) + ∂r2/∂A
P
P (A,APP ) + ∂g2/∂A

P
P (A,APP )

r2(A,APP ) + g2(A,APP )

(4.38)

Hence in the diffusion domain defined by condition (4.34), we recover detailed
balance for a Fokker-Planck equation with drift and diffusion coefficients defined
as:

ci(A,A
P
P ) = 2NT

(
ri(A,A

P
P )− gi(A,APP )

)
i = 1, 2

and
bi(A,A

P
P ) = ri(A,A

P
P ) + gi(A,A

P
P ) i = 1, 2

In the diffusion region the drift and the diffusion coefficients are of the same
order, otherwise ci(A,A

P
P ) � bi(A,A

P
P ) when NT � 1. As a consequence,

the stationary solution of F.P. equation is an approximation of the stationary
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distribution of the CME in the diffusion region, but the approximation of the
transient state dynamics using the F.P. equation requires further studies due to
the singularity of the thermodynamic limit.
In the generic case of eq. (4.23), we represent the r.h.s. of eq. (4.28) as a sum
of a rotational and a gradient vector fields

ln a1(n1, n2) = D1V (n1, n2) +D2H(n1, n2)

ln a2(n1, n2) = D2V (n1, n2)−D1H(n1, n2)

(4.39)

Taking into account the condition n1 + n2 ≤ NT − 1, from the eqs. (4.39) we
get the discrete Poisson equations

(D1D1 +D2D2)V (n1, n2) =

D1 ln (a1(n1, n2)) +D2 ln (a2(n1, n2))

(D1D1 +D2D2)H(n1, n2) =

D2 ln (a1(n1, n2))−D1 ln (a2(n1, n2))

(4.40)

We remark that the r.h.s. of eqs. (4.40) is defined only if n1 + n2 ≤ N − 2
and corresponds to N(N − 1)/2 independent equations, whereas we have (N +
2)(N+1)/2 unknown values H(n1, n2). As a consequence from the explicit form
of the discrete Poisson operator

(D2
1 +D2

2)H(n1, n2) = H(n1 + 2, n2)− 2H(n1 + 1, n2) +

H(n1, n2) +H(n1, n2 + 2)− 2H(n1, n2 + 1) +H(n1, n2) (4.41)

we can set the boundary conditions H(n,N −n) = H(n,N − 1−n) = 0 and
recursively solve the system setting

2H(n,N − 2− n) =

ln

(
a1(n,N − 1− n)a2(n,N − 2− n)

a1(n,N − 2− n)a2(n+ 1, N − 2− n)

)
)

(4.42)

and successively using the equations

2H(n,N − j − n) = −H(n+ 2, n− j − n)−H(n,N − j − n− 2)

+2H(n+ 1, N − j − n) + 2H(n,N − j − n− 1)

+ ln
a1(n,N − j − n+ 1)a2(n,N − j − n)

a1(n,N − j − n)a2(n+ 1, N − j − n)

(4.43)

for N ≥ j > 2. Once H(n1, n2) is computed, we define the “potential”
V (n1, n2) by using eq. (4.39). The recursion relations (4.43) can be written in
an exponential form by defining

R(n1, n2) = exp(H(n1, n2))
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R(n,N − j − n)) =√
a1(n,N − j − n+ 1)a2(n,N − j − n)

a1(n,N − j − n)a2(n+ 1, N − j − n)

· R(n+ 1, N − j − n)R(n,N − j − n− 1)√
R(n+ 2, n− j − n)R(n,N − j − n− 2)

(4.44)

As a consequence, the recurrence (4.31) reads

ρs(n1 + 1, n2) = a1(n1, n2)
R(n1, n2)

R(n1, n2 + 1)
ρs(n1, n2)

ρs(n1, n2 + 1) = a2(n1, n2)
R(n1 + 1, n2)

R(n1, n2)
ρs(n1, n2)

(4.45)

for all n1 + n2 ≤ N − 1.

The current componentss (25) turn out to be proportional to the rotational
part of the field (4.39) (i.e. to H(n1, n2))[78], so that the current vanishes at
the points where condition (4.32) is satisfied. One can prove that the critical
points of the stationary distribution are still defined by eq. (4.32). Indeed, if
one computes the formal expansion of the generation and recombination rates
around a solution of eqs. (31)

g(n) = 1 +
∂g

∂n
(n∗) ·∆n+ ....

r(n) = 1 +
∂r

∂n
(n∗) ·∆n+ ....

(4.46)

(for the sake of simplicity we have normalized the value of the generation and
recombination rate to 1 at the critical point) the current components can be
approximated by the expressions

Js1 (n1, n2) ' ρs(n1 − 1, n2)− ρs(n1, n2)

+
∂g1

∂n
(n∗) ·∆nρs(n1 − 1, n2)− ∂r1

∂n
(n∗) ·∆nρs(n1, n2)

Js2 (n1, n2) ' ρs(n1, n2 − 1)− ρs(n1, n2)

+
∂g2

∂n
(n∗) ·∆nρs(n1, n2 − 1)− ∂r2

∂n
(n∗) ·∆nρs(n1, n2)

(4.47)

At the critical point n∗ we get

ρs(n
∗
1 − 1, n∗2) = ρs(n

∗
1, n
∗
2 − 1) = ρs(n

∗
1, n
∗
2) (4.48)

since Js(n∗1, n
∗
2) = 0. The condition (4.48) means the n∗ is a critical point for

the stationary distribution ρs.

When H(n1, n2) is small, the detailed balance solution (4.14) is a good approx-
imation of the stationary solution ρs(n1, n2) and a perturbative approach can
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be applied. Let us write the stationary condition (4.6) in the form

D1r1(n1, n2)ρs(n1, n2)

(
1− a1(n1 − 1, n2)

ρs(n1 − 1, n2)

ρs(n1, n2)

)
+

D2r2(n1, n2)ρs(n1, n2)

(
1− a2(n1, n2 − 1)

ρs(n1, n2 − 1)

ρs(n1, n2)

)
= 0

(4.49)

By using the definitions (4.39), we assume that the rotational field is associated
with a potential εH(n1, n2), with ε � 1 perturbation parameter and we write
the stationary solution in the form

ρs(n1, n2) = C exp(V (n1, n2) + εV1(n1, n2)) (4.50)

From a direct calculation we get

D1r1(n1, n2)eV (n1,n2) (1− exp(ε(D2H(n1 − 1, n2)−D1V1(n1 − 1, n2))))

+D2r2(n1, n2)eV (n1,n2) (1− exp(−(εD1H(n1, n2 − 1) +D2V1(n1, n2 − 1))) '
εD1r1(n1, n2)eV (n1,n2) (D1V1(n1 − 1, n2)−D2H(n1 − 1, n2))

+εD2r2(n1, n2)eV (n1,n2) (D2V1(n1, n2 − 1) +D1H(n1, n2 − 1)) = 0

(4.51)

for all the values n1 + n2 ≤ N − 1 and ni ≥ 1. The correction potential
V1(n1, n2) has to be computed from the previous equation, and it enters in the
definition of the stationary currents.
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Chapter 5

Protein concentration
during cellular senescence

In this chapter we will give the outlines of a work aimed to model the total
number of proteins in the cell nucleus and their concentration as the cells un-
dergo cellular senescence. We will see that while the cells become senescent
they increase in size and the total amount of nuclear proteins increases. One
surprising factor is that also their density increases, meaning that the nucleus
is being clogged with proteins.

A basic model for protein production will be taken in consideration and
its prediction will be confronted with the experimental data provided by Dott.
Marco De Cecco during its PhD, under the guidance of Prof. John Sedivy at
Molecular Biology Department at Brown University. A model for the whole cell
division will be discussed, with its prevision for a new set of observation of the
same phenomena.

5.1 Fluorescence microscopy

Fluorescence microscopy is a technique that in the past ten years has revolu-
tionized the field of biology, combined with the introduction of the GFP (Green
Fluorescent Protein). The problem with standard microscopy is that observing
a biological sample under transmitted white light gives a very poor response:
most of the fundamental structures of the cell have more or less the same op-
tical refraction index of the water, so they appear uniformly transparent with
just few little local variations; in addiction, this microscopy form suffers from
the Abbe diffraction limit, that affirms that is not possible to distinguish two
point objects that a closer than the distance limit d = λ

2n sin(θ) , where λ is the

wavelength of light, n is the refraction index of the observed medium and θ is
half of the microscope angular aperture.

With modern equipment the diffraction limit can reach roughly half of the
wavelength of the incident light which, for a green light (the best for human
perception), is in the order of 250 nm, while most cellular structures have a
size at least one order of magnitude less. This limit can be stretched using UV
microscopy, which on the other end has a lower contrast factor for biological
tissues and damages the sample rather quickly.
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In the fluorescence microscopy one does not observe the transmitted light
from the sample but rather the emission from specific molecules called fluo-
rophores, which get excited by a fine tuned light source and emit back with a
different wavelength, so that one can discriminate between the source light and
the fluorescence light with a dichroic mirror.

Several fluorophores exist that permit to cover almost the whole luminous
spectrum, and can be used for various purposes. Fluorescent proteins like the
GFP can be put in sequence to a target gene to monitor its expression. Similar
to the GFP (also called FITC sometimes) we can find the DAPI, which is a blue
fluorescent protein which bind to the nucleus and is commonly used to locate
and identify it, and the TRITC, a red fluorescent one. The combination of the
previous three is common due to the very little superposition in absorbing and
emitting spectra of the three proteins, which allows to perform quite easily a
single experiment with all these fluorophores. Also, being non-toxic to the cell,
they allow to follow biological processes with as little interference as possible.

For a general review on this topic, see: [62, 73, 84, 101, 46, 113, 10, 17, 111,
76, 110, 93, 18, 32]

5.1.1 Experimental methods

Usage of this fluorophores in live cell imaging, combined with an incubator,
allows prolonged periods of time of observation. We are utilizing a Nikon Ti
Eclipse microscope, with a completely functional incubating unit that allows
continuous observation up to three days, fully automated with a computer in-
terface. This allows not only for a continuous experiment under constant mon-
itoring, but even real time numerical analysis to guide the observation.

However, the data shown here has been produced by Dott. Marco De Cecco
during its PhD, under the guidance of Prof. John Sedivy, of the Molecular
Biology Department of the Brown University, RI. The cells are a standard line of
murine fibroblast cells, cultivated from a young specimen. Every two duplication
steps (every few days near convergence on the plate) the plate was transferred
and samples were taken for analysis. This is referred as one passage. The
sample analyzed afterward are taken from passage 3 (still young cells) and from
9,10,11,12 and 13 (late cellular senescence). These cells, due to the cellular
senescence, were significantly bigger and slower in the reproduction, near to a
complete stop.

Each sample was then prepared with an immunofluorescence treatment,
where the biological samples are killed and fixated by chemical means, then
a specific developed fluorescent antibody is added to the mixture, binding it
to the target. In this experiment the cells and nucleus membranes were made
permeable and then all the nuclear proteins were denatured with a high temper-
ature bath, rendering them susceptible to a generic antibody staining that binds
to the hydrophobic core of the proteins. This permits the direct observation of
the quantity of the nuclear proteins amount. A second antibody marked the
chromatin, to ease the separation of the nuclear matter from the rest. These
fixated plates were then observed with a confocal fluorescence microscope, a
high precision microscope that acquires the image with a laser scansion to ob-
tain great precision on the observation of the fluorescence, allowing to select
only the focal plane of interest removing all the light from other sources.
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Figure 5.1: time-dependences of total quantity and density for the nuclear pro-
tein, laminin-A and histones

The resulting images were then numerically treated to select only the pro-
tein signal from the nucleus (thanks to the nuclear basal staining), calculating
the size of the nucleus (in pixels) and the total fluorescence from the nuclear
proteins. Others staining has been done to select the laminin-A, a protein that
binds to the nucleus membrane and is thought to be unchanged during the cel-
lular senescence, and the nuclear histones which, being linked to the amount of
DNA present in the cell, are almost assured to be constant during the stationary
phase of the cell cycle.

In the following image we can see a summary of the results of the analysis
of the first set of data: the lines represented are the change in time of the
total quantity and density of the three measured quantities: nuclear proteins,
laminin-A and histones. Even with a great variance we can see how both the
quantity and density of proteins increase with time, while the other two remains
approximately constants.

5.2 Mechanistic model

Modeling protein production is not a trivial task at first glance, due to the
complexity of the underlying phenomena. Recent experimental[12, 103, 116]
and theoretical advances give a different hint: even if the protein production
process is a rather complex one, it is possible to approximate it with the most
basilar model, where one schematize just the mRNA and protein production,
neglecting everything else. In this kind of model the protein production system
is represented by the following reaction scheme:
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DNA
k1 // mRNA

k2 //

γ1

��

Protein

γ2

��
∅ ∅

Where the DNA quantity is assumed being constant and the production of
mRNA scarce. The reaction constants k1 and k2 represent the production rate
of mRNA and protein respectively, and the γ1 and γ2 their degradation rate.
For each mRNA molecule, several proteins are produced, generating the so-
called protein production burst. This burst has been experimentally observed
and the distribution was compatible with an exponential one, as expected from
the model above in the limit of short-lived mRNA.

5.2.1 A basic model for protein concentration

The above model has been solved in the concentration limit by Friedman et
Al[33], which started from a generic monodimensional continuous master equa-
tion for the concentration of protein p(x) with x = n/V , where V is the volume
of the cell and n the protein number. In this equation the first term represents
the dilution of the protein due to both the degradation of the protein and the
augmentation of cell volume due to the cellular duplication. γ2 can thus be seen
as a composition of the this two components,γ2 = (ln 2/T + ln 2/T1), where T
the protein half life and T1 the cell cycle duration (cell volume doubling time).
The term w(x, x′) is a transition constant as discussed in Sec 1.2.1 about Markov
process.

∂p(x)

∂t
=

∂

∂x
[γ2xp(x)] + k1

∫ x

0

dx′w(x, x′)p(x′)

This equation can be solved in the stationary limit, where ∂p(x)
∂t = 0 and

thus:

− ∂

∂x
[xp(x)] = aw ∗ p(x)

where a = k1/γ2 represents the medium number of production burst per cycle.

To solve this equation we can work with its Laplace transform, which is

s
∂ ˆp(s)

∂s
= aŵ ˆp(s) (5.1)

where ˆp(s) and ŵ are the Laplace transforms of the probability distribution
and the burst distribution respectively.

Under the hypothesis of burst dimension independent from the present con-
centration and described by a distribution ν(x − x′) we obtain w(x, x′) =
w(x−x′) = ν(x−x′)−δ(x−x′), where the delta guarantees the probability flux
conservation. Remembering the exponential approximation for the burst size,
we can write ν(x) = (1/b)exp(−x/b), where b = k2/γ1 is the average number of

proteins produced on each burst. Its Laplace transform is ˆw(s) = −s/[s+(1/b)].
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Inserting this formula into Eq 5.1 we have a defined equation that can be solved
to obtain the transform of the stationary distribution:

ˆp(s) = [s+ (1/b)]−a

This can be recognized as the transform conjugate of a gamma distribution
with shape a and scale b:

p(x) =
xa−1e−x/b

baΓ(a)

The interesting property of the Gamma distribution is that, like the Gaus-
sian, is closed under sum as long as the b parameter is the same. Being b an
index of the performance of the protein translation mechanism by the ribosomes
and not of the protein per se, it is plausible that it should be shared among all
the different kind of proteins present in the cell, allowing to write a gamma for
the total protein quantity in the cell:∑

i

Γ(ai, b) = Γ(
∑
i

ai, b)

.
An other interesting property of this distribution is that has a Bayesian con-

jugate prior quite easy to work with, allowing for a good parameter estimation
based on the likelihood method alone. Given n observation xi, the conjugate
prior is:

Γ(a, b|p, q, r) =
1

Z

pa−1e−b
−1

Γ(b)rbar

Where Z is a normalization constant (that can be usually neglected for practical
purposes). The parameters p, q, r are defined as follow:

p′ = p
∏
i xi

q′ = q +
∑
i xi

r′ = r + n

The gamma distribution can also be seen as the continuous limit of a negative
binomial distribution, as demonstrated by Paulsson et Al[82]. The negative
binomial is a commonly observed distribution among the solution of the master
equation. Two examples of this are the following two master equations defined
by their gn and rn terms. The first one represents a population in an open
environment with birth and death proportional to the population and a constant
immigration term, and converges to a negative binomial a long as γ > β, diverges
to infinity otherwise:

gn = α+ βn
rn = γn.

(5.2)

The second one, that is completely equivalent as stationary distribution,
represents a chemical environment where the chemical specie in consideration is
constantly created, but decreased with a nonlinear term that can be interpreted
as a Michaelis-Menten kinetic reaction. A different possible interpretation will
be used in the next section, where it will represent the actual density over a
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volume that is filled with the substance of interest and an independent, con-
stant, inert background. A convergence condition is required as before, γ > α,
otherwise a divergence to infinity happens:

gn = α
rn = γ n

θ+n .
(5.3)

5.2.2 The model used for the cell growth

We worked on a basic model to represent the quantity of visible proteins in
the cell nucleus. The protein of interest is called Pva, which stands for visible
protein in the cell A. The cell index A is used only for modeling the cell division,
and is a mute index otherwise. We have then the protein Pda, which stands for
denatured protein, which is the protein that is not fluorescent due to degrada-
tion or simply because it is of a different specie. These two species have two
specular variables, Pvb and Pdb which will represent the quantity of protein
in the daughter cell during the division. A third quantity, taken as constant
to represent the bulk materials of the nucleus, is called DNA, being this non
fluorescent part mainly composed of chromatin. We define the concentration of
the two kind of proteins as Cv = Pva

Pva+Pda+DNA and Cd = Pda
Pva+Pda+DNA .

Both kind of proteins are driven by a immigration-reproduction-death as
described on Eq 5.2. This is a plausible assumption, remembering that the
production of proteins can be enhanced even by the protein itself and, being Pva
not a single specie but rather a mixture of cellular proteins, the basic hypothesis
is a linear self replication and a linear degradation term. A small quantity of
Pva can decade into Pda, and we could safely ignore the reverse transition (it
is common that a fluorescent protein stop being so after degradation, but the
converse is quite implausible). The status of the cell, growing or dividing, is
driven by the growth and divide factors, which can be 1 or 0 and switch back
and forth given the right condition.

A set of reactions is bounded to happen only during the growth phase, like
the production and degradation of the proteins. During the division regime,
which is very short-lived in respect to the stationary phase of the cell cycle, we
have a balanced interconversion between Pva and Pvb to represent the exchange
of materials between the mother and daughter cell. An identical reaction hap-
pens to Pda, which balances with Pdb. The net effect of this reactions is that
after the division the cell is roughly split in half with a certain dishomogeneity
between the cells. These reactions are very fast and reach the equilibrium in
a time scale much shorter than the others, so that the equilibrium is assured.
No reaction has been implemented for the DNA because it will be conserved
before and after the duplication and any variation during the duplication phase
can be ignored.

The last variable is called clock, and represents the cellular “off” switch:
each cell starts with a certain amount of tolerance, which is removed after
each duplication. Eventually the loss of this clock molecule slows down the
reproduction process. This term represents the core idea of an active aging
effect for the cell, some sort of programmed “shutdown”. We are working even
on a model with a passive form of aging due to a clogging effect of the damaged
proteins, but it is still in the first phase of development.
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Figure 5.2: model prediction for the resulting gamma distribution

growth+ clock → 102 C
2
vclock

2

k+clock2
→ divide

divide → 100 → growth
Pva + growth → 103C2

v → 2Pva + growth
Pva + growth → 10−3Pva → growth

growth → 100 → Pva + growth
Pva + growth → 100Pva → Pda + growth

growth → 102 → Pda + growth
Pda + growth → 100CvCd → growth
Pda + growth → 101Pda → growth
Pvb + growth →� 101Pvb → growth
Pdb + growth →� 101Pdb → growth
Pvb + divide →� 101Pvb → Pva + divide
Pva + divide →� 101Pva → Pvb + divide
Pdb + divide →� 101Pdb → Pda + divide
Pda + divide →� 101Pda → Pdb + divide

Due to the great number of non-specified parameters, this model is not yet
strong enough to make discriminating predictions, but in most of the cases it
predicts that the distribution of the protein density will be a Gamma distri-
bution both in the young and old cells, and maintains this distribution even
during the aging process, where a group of still active cells and inactive one
coexist. An example of this can be seen in Fig. 5.2, that is the fit of the time
dependent solution of the model for a generic set of parameters. It shows both
parameters of the gamma distribution with its mean, variance and maximum
peak value of the distribution. We can see that the mean and variance are at
a glance compatible with the experimentally observed. On the right-low panel
we can see the evaluated r2 between the observed distribution and the Gamma
distribution fitted with Maximum Likelihood Method. We can see that the r2

is high on each phase of the aging, as it will be confirmed by the observations.
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Figure 5.3: example of the resulting quantile-quantile plot and the relative
distribution of the expected r2 values

5.3 Fit of the obtained distributions

The fits are performed with a standard maximum likelihood estimation on the
raw data. The distributions studied are the Gaussian, the Lognormal and the
Gamma distribution. The Gaussian distribution has been chosen as a control
distribution, to attest that the data do not conform to it. The Lognormal has
been chosen being a common choice for the cellular size[21]. To avoid spurious
defects from the image processing technique used to evaluate the protein quan-
tity, like the fusion of two proximal cells or the division of a misshaped nucleus,
the dataset was trimmed by 1% on each extreme.

The goodness of fit has been evaluated with a Montecarlo method based on
the r2 value obtained from the quantile-quantile plot: given the fit parameters
the distribution of possible r2 observable given the null hypothesis has been
evaluated, operating on the simulated dataset with the same process of trimming
of the original one. The result of these tests for the three distributions in the
various passages, for the total protein quantity, density and nucleus size, are
shown below.

Following the three tables with the fits results there are six images which
depict the distribution of the protein total quantity, density and nuclear size for
the first serie of data (passage number 3) and for the last one (passage number
13). For each distribution the partial distribution of each of the four separate
experiment is shown below, with the small caption of the quantile quantile plot
and respective r2 evaluation.
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GAMMA DISTRIBUTION:
observation protein density nuclei dimension protein quantity

passage N r2 pval r2 pval r2 pval
03 730 0.997 0.371 0.998 0.961 0.996 0.75
09 251 0.982 0.001 0.974 0.001 0.994 0.403
10 193 0.962 0.001 0.995 0.27 0.982 0.004
11 101 0.996 0.963 0.992 0.436 0.993 0.766
12 180 0.991 0.075 0.992 0.155 0.996 0.727
13 672 0.998 0.673 0.999 0.996 0.994 0.309

LOGNORMAL DISTRIBUTION:
observation protein density nuclei dimension protein quantity

passage N r2 pval r2 pval r2 pval
03 730 0.998 0.871 0.998 0.871 0.995 0.884
09 251 0.99 0.197 0.99 0.197 0.998 1.0
10 193 0.981 0.084 0.981 0.084 0.968 0.001
11 101 0.993 0.733 0.993 0.733 0.976 0.248
12 180 0.992 0.201 0.992 0.201 0.99 0.269
13 672 0.999 0.978 0.999 0.978 0.996 0.983

GAUSSIAN DISTRIBUTION:
observation protein density nuclei dimension protein quantity

passage N r2 pval r2 pval r2 pval
03 730 0.996 0.018 0.954 0.001 0.946 0.003
09 251 0.931 0.002 0.933 0.001 0.923 0.001
10 193 0.866 0.001 0.986 0.001 0.953 0.001
11 101 0.97 0.002 0.967 0.001 0.919 0.001
12 180 0.955 0.001 0.979 0.001 0.954 0.001
13 672 0.995 0.004 0.969 0.002 0.927 0.001
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Figure 5.4: protein density of the third passage group and fit with Gaussian,
lognormal and Gamma (from left to right)

Figure 5.5: protein density of the thirteenth passage group and fit with Gaus-
sian, lognormal and Gamma (from left to right)
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Figure 5.6: protein quantity of the third passage group and fit with Gaussian,
lognormal and Gamma (from left to right)

Figure 5.7: protein quantity of the thirteenth passage group and fit with Gaus-
sian, lognormal and Gamma (from left to right)
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Figure 5.8: protein dimension of the third passage group and fit with Gaussian,
lognormal and Gamma (from left to right)

Figure 5.9: protein dimension of the thirteenth passage group and fit with
Gaussian, lognormal and Gamma (from left to right)
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5.3.1 Parameters evaluation for the data

Here we present the parameters of the gamma distributions resulting from the
fit performed in the previous section. In each plot four quantities will be shown
versus the number of passage from which it was observed. The first two are the
shape and scale parameters of the distribution, here called α and β, that in the
case of the protein quantity are linked to the number of burst per cell cycle and
the number of proteins for each burst. Then starting from these two parameters
we evaluate the mean of the distribution as αβ and its variance as αβ2. For the
mean will be shown the standard error due to the sampling.

First we have the estimated nucleus size utilizing every set of data (being
the only common measure), that shows how the cells grow steadily until they
reach the senescence at the thirteenth passage, where they stop increasing their
size. Being the quantity of DNA constant in the senescence process, we expect
an increase of the quantity of the proteins and an increase also in their density.
This trend can be clearly seen in the data means.

The laminin-A should grow alongside the nucleus border length, so their
linear density, estimated as the quantity of laminin-A divided by the square
root of the area of the nucleus, is shown with their density and total quantity.
This linear density should be constant, and the data support this theory. The
deviations from the constant value are probably due to the rough estimation of
the nucleus border length.

The histones are expected to be constant, being the structural skeleton of
the chromatin, whose quantity should not change with the senescence. Instead,
they show a very sharp increase in the total quantity in the last two passages,
especially in the total amount. It is not clear if this increase is an actual aug-
mentation of the number of molecules or it is due to a form of un-packing of
the DNA strands, leaving more histones exposed to the immunofluorescence
staining.

Several studies have shown that a reduction in the number of histones is a
normal sign of cellular aging, while its increase has been related to the trans-
formation into neoplastic cells[31, 94, 4, 100]. Murine cells reach the normal
stasis after the senescence, but are known to transform often into immortalized
lines (tumoral cells), so it is possible a relationship between the increase of the
histones and the abnormal fate of these cells.
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Figure 5.10: nucleus size across all experiments
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Figure 5.11: density of the proteins during passages

Figure 5.12: total quantity of proteins
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Figure 5.13: nucleus size on the histones experiment

Figure 5.14: density of the histones during passages
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Figure 5.15: total quantity of histones

Figure 5.16: nucleus size on the histones experiment
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Figure 5.17: linear density of the laminin-A during passages

Figure 5.18: total quantity of laminin-A
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Figure 5.19: density of the laminin-A during passages

Figure 5.20: nucleus size on the laminin-A experiment
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Chapter 6

Conclusions

The aim of the present thesis was to show how the master equation formalism
can successfully enter in the description of biological phenomena. After a first
introduction to the theoretical fundamentals of this technique, three works have
been presented.

In the first one we developed a simplified model for a genetic toggle switch
of cardinal importance in molecular biology and for cancer development, and
showed how this model react to the presence of the intrinsic noise in the system.
This research confirmed that for nonlinear system like the genetic regulations
mechanisms, the introduction of the intrinsic noise, due to the discreteness and
finiteness of the system, cannot be neglected. The model is interesting on its
own, leading to the identification of features that we hope will be further charac-
terized, also experimentally, as possible links with the self sustained replication
of tumoral cells.

In the second one we worked on the conceptual structure of an enzymatic
futile cycle, an ubiquitous phenomena in both bacterial and eukaryotic cells.
This cycle, whose usefulness was not clear, is without any interesting property
when analyzed from a deterministic point of view, but it is known to be sensitive
to the presence of external noise through a zeroth-order sensitivity which allows
the system to amplify and rectify the incoming noise, becoming a bistable switch
and so capable of holding a bit of information for the cellular memory. We
showed how this sensitivity works and which parameters of this external noise
allow the transition from monostable to bistable, linking it to the variance of
the balance between the two concurrent enzymes. Being these futile cycles often
arranged in a cascade which amplifies the noise variance at each step, this can be
one piece of the puzzle to explain the exceptional frequency of this biochemical
pattern.

In the third work we studied two coupled futile cycles driven by the same
couple of enzymes (one kinase one phosphatase), i.e a double modification of the
substrate. This reaction is quite different from the single futile cycle, allowing
the existence of a double stable state even when treated under deterministic
hypothesis. Double, triple and so-on modification cycles (phosphorylation or
methylation are the most common ones) are a leitmotif in the cellular regu-
lation pathways. The methylation is responsible for the chromatin’s folding
and unfolding, indirectly silencing or expressing whole part of the genome, and
it is thought to be one of the main driver under the non-genetic inheritance,
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the epigenetic phenomena, which transmits information on the genome state
of activation between the parents and the children without any alteration of
the underlying genetic data. We showed how to analyze this bidimensional sys-
tem with an approximation to the detailed balance case equivalent to a discrete
version of the Helmholtz theorem for the vector field decomposition, and we
used this method to solve some simple cases and discussed the thermodynamic
properties of the system.

In the fourth chapter, a work in progress, we studied several parameters
of a mouse cell line with fluorescence microscopy to analyze the morphological
changes that an eukaryotic cell undergo while it reaches the replicative senes-
cence. The total quantity of proteins in the nucleus is studied from a theoretical
point of view, starting from a simplified model and writing a more detailed one to
take into consideration how the cell reproduction influences the protein amount
and how this change can be modeled in respect to the senescence. Extensive
fit of several dataset has been made with an ad hoc technique to evaluate the
goodness of fit, showing how the previsions of the model are compatible with the
observed data, giving a hint on a possible minimal model for the total protein
distribution inside the cell.

Summarizing, my opinion is that the stochastic framework used in this thesis
and the biochemical modeling described by it, will be of ever-growing importance
in the field of biology and biotechnology, as the growing number of works on
this topic confirms. The power to predict and modelize, not only the expected
values of the observed parameters, but also their whole probability distribution,
is being recognized as a cardinal development in a field that, a couple of decades
ago, was still thought as far from the theoretical physics as possible.

86



Bibliography

[1] A. Arkin, J. Ross, and H. H. McAdams, Stochastic kinetic analysis of
developmental pathway bifurcation in phage lambda-infected e. coli cells,
Genetics, 149 (1998), p. 1633â1648.
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[55] F. K, Y. I, H. DP, and A. ER., Prediction and genetic demonstration
of a role for activator e2fs in myc-induced tumors, Cancer Res, 71 (2011),
pp. 1924–1932.

[56] O. KA, W. EA, Z. KI, D. CV, and M. JT, c-myc-regulated micrornas
modulate e2f1 expression, Nature, 435(7043) (2005), pp. 839–43.

90



BIBLIOGRAPHY

[57] M. Kimura, The Neutral Theory of Molecular Evolution, Cambridge Uni-
versity Press, 1983.

[58] E. Krebs, A. Kent, and E. Fischer, The muscle phosphorylase b
kinase reaction., J Biol Chem, 231 (1958), pp. 73–83.

[59] M. Z. Kwiatkowska, G. Norman, and D. Parker., Prism 2.0: A
tool for probabilistic model checking., QEST, (2004), p. 322â323.
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