
 

1 

 

 



 

2 

 

Alma Mater Studiorum – Università di Bologna 

 

 

DOTTORATO DI RICERCA IN 

 

Fisica Applicata 

Ciclo _XXIV 

Settore Concorsuale di afferenza: __02/B3 

 

Settore Scientifico disciplinare:____FIS/07 

 

TITOLO TESI 

 

Microscopic Modeling on Complex networks 

 

 

Presentata da: Pierandrea Petazzi 

 

Coordinatore Dottorato     Relatore 

 

Fabio Ortolani                                                         Sandro Rambaldi 

_______________________   ___________________ 

 

Esame finale anno 2012 



 

3 

 

 

Index 

Introduction ............................................................................................................................................................... 7 

Microscopic Modeling Of Car Traffic .............................................................................................................. 11 
1.1 A brief history of traffic studies: state of the art, and how we got there ........................................... 11 
1.2. Some basic concepts and definitions ................................................................................................. 14 
1.3 the Fundamental Diagram ................................................................................................................... 15 
1.4 Phase transitions ................................................................................................................................. 18 
1.5. A brief review of car following models............................................................................................... 20 

The Gazis-Herman-Rothery models (GHR). ........................................................................................... 21 
Safety-distance or collision avoidance models (CA). ............................................................................. 21 
Linear models (Helly). ............................................................................................................................ 22 
Psychophysical or Action Point (AP) models. ........................................................................................ 22 
Fuzzy logic models. ................................................................................................................................ 23 

1.6. What to do: a Physicist's standpoint .................................................................................................. 24 
1.5 The model:  Mobilis ............................................................................................................................. 25 
1.5.1. The characteristics of roads in the Mobilis Model .......................................................................... 27 
1.5.2. Nodes in Mobilis .............................................................................................................................. 27 
1.5.3. Car following dynamics ................................................................................................................... 29 
1.8. Analysis of some test networks .......................................................................................................... 31 

1.8.1. A single ring ................................................................................................................................. 31 
1.8.2. Two interacting rings ................................................................................................................... 36 
1.8.3. A Manhattan-like road network .................................................................................................. 39 
1.8.4. A Manhattan-like road network with roundabouts .................................................................... 43 

1.8.5. A “chessboard” Manhattan Network. ............................................................................................. 45 

2. Hysteresis phenomena and phase transitions in ideal urban mobility networks  ........... 47 
2.1.The model and the fundamental diagram .......................................................................................... 47 
2.2.The density distribution ...................................................................................................................... 49 
2.3.Back on the macroscopic fundamental diagram, conjectures on phase transitions .......................... 52 

Constant density .............................................................................................................................. 54 

Constant inflow ................................................................................................................................. 56 

2.4.Scale invariance ................................................................................................................................... 58 
2.6.Introducing spatial inhomogeneity in the network ............................................................................ 60 
2.6.Tentative explanations ........................................................................................................................ 62 

3.Road Hierarchy ................................................................................................................................................... 65 

4. Crowd Transplant ............................................................................................................................................. 70 

5. References ........................................................................................................................................................... 76 

  



 

4 

 

List of figures  
Introduction ............................................................................................................................................................... 6 

Microscopic Modeling Of Car Traffic .............................................................................................................. 10 

1.1 A brief history of traffic studies: state of the art, and how we got there ........................................... 10 

1.2. Some basic concepts and definitions ................................................................................................. 13 

1.3 The Fundamental Diagram .................................................................................................................. 14 

1.4 Phase transitions ................................................................................................................................. 17 

1.5. A brief review of car following models............................................................................................... 19 

The Gazis-Herman-Rothery models (GHR). ........................................................................................... 20 

Safety-distance or collision avoidance models (CA). ............................................................................. 20 

Linear models (Helly). ............................................................................................................................ 21 

Psychophysical or Action Point (AP) models. ....................................................................................... 21 

Fuzzy logic models. ............................................................................................................................... 22 

1.6 What to do: a Physicist's standpoint ................................................................................................... 23 

1.5 The model:  Mobilis ............................................................................................................................. 24 

1.5.1 The characteristics of roads in the Mobilis Model ........................................................................... 26 

1.5.2 Nodes in Mobilis ............................................................................................................................... 26 

1.5.3 Car following dynamics .................................................................................................................... 28 

1.8 Analysis of some test networks ........................................................................................................... 30 

1.8.2 Two interacting rings .................................................................................................................... 35 

1.8.3. A Manhattan-like road network .................................................................................................. 38 

1.8.4 A Manhattan-like road network with roundabouts ..................................................................... 42 

1.8.5 A “chessboard” Manhattan Network. .............................................................................................. 44 

2. Hysteresis phenomena and phase transitions in ideal urban mobility networks ........... 46 

2.1.The model and the fundamental diagram .......................................................................................... 46 

2.2The density distribution ....................................................................................................................... 48 

2.3Back on the macroscopic fundamental diagram, conjectures on phase transitions ........................... 51 

Constant density .............................................................................................................................. 53 

Constant inflow ................................................................................................................................. 55 

2.4. Scale dependencies ............................................................................................................................ 57 

2.6. Introducing spatial inhomogeneity in the network ............................................................................ 59 



 

5 

 

2.6. Tentative explanations ....................................................................................................................... 61 

3.Road Hierarchy ................................................................................................................................................... 64 

4. Crowd Transplant ............................................................................................................................................. 69 

5. References ........................................................................................................................................................... 75 

 

 

  



 

6 

 

Introduction 

The words of Philip W. Anderson in his article “More is different” are probably 

still today the best definition of complex system to be found: The constructionist 

Hypothesis breaks down when confronted with the twin difficulties of scale and 

complexity. The behavior of large and complex aggregates of elementary 

particles it turns out is not to be understood in terms of a simple extrapolation of 

the properties of a few particles. Instead at each level of complexity entirely new 

properties appear, and the understanding of the new behaviors requires 

research which I think is as fundamental in its nature as any other(Anderson, 

1972). In a nutshell, even the knowledge of all fundamental laws governing 

nature does in no way give us the ability to reconstruct and understand the 

universe, those properties that appear at new complexity levels are usually 

called emergent properties. 

This definition unfortunately doesn’t provide us any useful tools to explore the 

vastness of the subject, but it gives us a connection between a whole plethora 

of phenomena that up to then was somehow ignored by the most quantitative 

sciences, and it allows to make analogies, which are all but new in physics, 

between emergent properties at very different scales, from elementary 

particles, to many-body physics, chemistry, molecular biology, physiology, up to 

entire organisms, societies, ecosystems.  

A good idea of the topic comes up looking at an ants nest. A nest is a clearly 

visible macroscopic structure, a functionally efficient superorganism, its 

construction and management is performed by all the ants living in it, though no 

ant alone knows in detail the whole project, nor is aware of the structure, every 

ant just does its job, guided by instinct, and communicating with the rest of the 

ants mostly by the pheromones left by other ants. The whole nest is then 
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obviously something very different from a hypothetical sum of N ants. Looking 

at ants a little further there are more things to be discovered; there are “slaver 

ants” that steal eggs from other colonies to increase the workforce of their own, 

some of them can choose to do so, but there are species of ants which queen 

has no choice but attacking another colony, usurping the resident queen’s place, 

since they lack the ability to produce workers. There is also a beetle, the 

Lomechusa Strumosa, that acts somehow as a drug dealer to ants, being a 

social parasite of the colony, the beetle gives the ants some sugar-like 

psychoactive secretion, making the ants “lomecusomans”, inducing them to feed 

it rather than the queen and the larvae, and in the long term killing the queen 

and the whole colony. Another example is the Maculinea butterfly, when it is in 

caterpillar stage, if it falls from a tree, if found by myrmica ants, it tricks their 

sense of hearing and smell, mimicking the characteristics of one of their larvae. 

The ants take it back to the nest, and for a time variable from 11 to 23 months, 

the butterfly is a social parasite of the myrmica nest.  

But even more surprising, there is some “second order” parasite of the 

maculinea, a wasp, the neotypus melanocephalus can in some still unclear way 

understand if there is a butterfly larva inside an ants nest in its cocoon phase, it 

then enters the nest, keeping ants at bay with some deceiving secretion that 

makes ants fight each other, and lays an egg inside the butterfly cocoon before 

it hatches. 

A single organism or even just its nervous system is a complex system in its 

own right. Though most of the details in the way a brain works is still unclear, 

there is some overwhelming empirical evidence that it can reliably and 

effectively process information; a group of individuals can develop a language, a 

culture or a society and a set of laws governing it, that then evolves itself 

independently from any single member of the group, this goes further building 
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information giants such as the web 2.0 and its huge interconnected structure of 

social networks, blogs, individuals and circulating ideas, which can in turn show 

their effects in the real world and in real societies. Social networks changed the 

dynamics of more than a generation, and spawned whole new movements, the 

Arab spring in early 2011 started on Twitter and Facebook and was claimed as a 

visible success of the new social media in helping people fight for democracy. 

However, the appearance of emergent properties is not always good. A clear 

example of negative effect may be found in the catastrophic terroristic attack in 

Madrid on 11 march 2004.Local and international police, along with intelligence 

services from various countries strived to understand who was behind it; they 

interrogated hundreds of people and investigated in every conceivable way for 

years, but it seems in the end there was no enemy to be found, no one claimed 

to be responsible for that, and no hypothesis, whether blaming on the Basques 

or on the Muslims seem to hold any better than the others. Some people 

involved in it were caught, but just like in an ants nest, no one seemed to know 

the big picture, every one of them made a small part of the whole work, the 

attack was then somehow self-organized, and there is probably no cause to find 

for it other than general discontent and frustration. In the much advertised “War 

on Terror” the media always try to feed people with a name, a face, a person to 

consider responsible someone to take the blame and the hate of entire 

countries, but though it might be in our nature to think of someone ultimately 

responsible, terrorism is probably better explained as an emergent property, 

which sometimes people on one side or another exploit to further their agendas.  

Apparently a physicist can do very little with the traditional constructionist-

reductionist approach, when deconstructing the system destroys all the features 

of the system we are trying to understand; nevertheless computer simulations 

and data analysis give us a chance to go looking for those crucial control 

parameters of huge complex systems, of which a proper understanding of the 
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microdynamics gives us very little information about the behavior of the system 

at larger scales. 

The subject is very controversial, even the definition I gave in the beginning of 

this introduction is a very popular one, but is in no way accepted as a unifying 

definition. Applications are endless, what we could understand about complexity 

could allow us to predict, or even better control the dynamics of so many 

different things that a big discovery in this field could probably be one of the 

biggest turning points in history. 

Now, the field of complex systems is huge, and as such, there is no way to 

study it as a whole. What I did in this 3 years has been trying to get as much 

understanding as I could of many different systems. The topic I devoted most of 

my time, and which constitutes the bulk of this thesis is traffic dynamics, and 

traffic data analysis, but that is not all this thesis is about;  I’ve been working on 

anomalous diffusion on a network, and in the 6 months I’ve spent at the 

University of California San Diego (which is by chance the place where 

Anderson’s talk I quoted at the beginning of this introduction was held) I’ve tried 

to get a grasp of biocomplexity by helping to build a model replicating the 

olfactory discrimination mechanics of a locust, making some image analysis on a 

fruit fly brain while it was smelling vinegar primed or not with some specific 

pheromones, and I also made an interesting attempt at studying the dynamics 

of a social network which unfortunately wasn’t a great success, but is for sure 

worth explaining. Unfortunately much of this work was a bit too ambitious, and 

in the end it didn’t get to any conclusive results, there was no way to get a 

chapter of the thesis dedicated to those topics, but it was sure of great help in 

getting some understanding of the methods to investigate complex systems and 

their behavior.  

  



 

10 

 

Microscopic Modeling Of Car Traffic 

1.1 A brief history of traffic studies: state of the art, and how we got there 

Traffic problems on roads existed to some extent since the invention of the road 

itself, but before beginning of universal automobile transportation, those 

problems were small, isolated and required little thought to be solved. It is 

commonly accepted that the first pioneering work in the field was carried by 

Greenshields in the mid-1930s, he was the first to address the problem, and 

though the measuring instruments at the time were quite rudimentary, the field 

was completely unexplored, and he built the empirical bases on which more 

modern traffic theory is based, he is also the first to write a flow-density relation 

leading to the first idea of the fundamental diagram. 

Figure 1. Greenshields making measurements with his rudimentary but ingenious 

camera setup 
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By the 1950s though, with the almost worldwide adoption of the car as a 

personal mean of transportation traffic problems became big and gained a lot of 

attention from scientists coming from the most diverse fields all looking for a 

way to model traffic and find a way to make traffic impact as little as possible on 

people's lives (Gazis, 2002). Some of the early contributions to traffic modeling 

were those of Reuschel (1950) and Pipes (1953), on one hand, and Lighthill and 

Whitham (1955), on the other. 

Reushel (1950) proposed a detailed microscopic model of traffic, following the 

movement of single vehicles on a one lane road, with the hypothesis that the 

speed of a car should be a linear function of the speed of the one preceding it, 

somehow an ancestor of later car-following models, but at the time this model 

proved to be of little use in getting significant results;. 

As to Lighthill and Witham, they applied their knowledge of fluid dynamics 

creating a macroscopic model based on the conservation of the number of cars 

and on an equation of state, introducing a relationship between flow and 

density; their model reproduced some of the basic traffic phenomena, such as 

the propagation of shockwaves induced by transitions from a steady state to 

another, the model though was completely inefficient in dealing with 

intersections, and could account only for shockwaves widely enough separated 

in time.  

By the late 1950s General Motors made serious investments in their R&D lab, 

that brought Herman, a former particle physicist, Gazis, Rothery, Herman, Potts, 

and later even the Nobel laureate Ilya Prigogine, to work on the subject, on a 

daily basis or as long term consultants. That lab gave birth to most of the early 

important results in traffic theory, such as the GHR car following model, the 

transition equation, the first to bridge between macroscopic and microscopic 

models, and later to the Prigogine-Herman kinetic equation. Most of these 
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models gave good results compared to empirical data in the free flow domain of 

traffic, but in presence of congestion they often proved to be inadequate on 

paper. They are however the building blocks on which modern computer 

simulations are built. 

Microscopic simulations are today the tool of choice when trying to make sense 

of traffic due to the underlying complex system dynamics; in more recent times 

they also became a precious tool to evaluate the effects of intelligent transport 

systems (ITS) such as adaptive traffic management, traveler information and 

incident management systems. What those simulations do is providing a 

controlled environment where different traffic scenarios can be evaluated and 

tested without disrupting real traffic and summoning the hate of thousands of 

rightfully enraged unwilling lab-rat drivers. 

Modeling of traffic has always been a computationally intensive problem, in the 

past much effort has been made to minimize the computational cost of such 

models, such as the development of cellular automata models or completely 

ignoring the microdynamics and using mesoscopic models, somehow resembling 

fluid dynamics (Schreckenberg, et al., 1995). The power of calculators today 

make these approaches quite obsolete for most applications, unless the purpose 

is modeling traffic on some huge network, such as a major city or a whole 

region, most traffic modeling problems are now treated with a microscopic 

model. 

There are various microscopic models, based on different theories on 

microscopic traffic behavior about car-following and lane changing, car following 

in particular, and the proper tuning of the model parameters can have a very 

significant impact on the ability of the model to reliably replicate traffic behavior 

on the road.  
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1.2. Some basic concepts and definitions 

All basic definitions from kinematics of course apply seamlessly to traffic, 

therefore 𝑣 =
∆𝑥

∆𝑡
 and 𝑎 =

∆𝑣

∆𝑡
  apply as usual. All the models and calculations in this 

chapter will be about car following models. The distance between the center of a 

car and the center of the one following it, 𝑥𝑖−𝑥𝑗 will be usually called d, the safety 

distance 𝑑𝑠 = 𝑑𝑠(𝑣) is the distance below which a car in the model will start braking 

The density is defined as 𝜌 = 𝑁𝑐𝑎𝑟 /𝐿 where L is the length of the road or road 

network of interest; it is also the reciprocal of the average distance.  Being 

different from the number of cars just by a constant term, in much of this thesis 

the number of cars will be used instead of the density whenever normalization is 

not absolutely necessary. 

The concentration is defined as 𝑘 = 𝜌𝑑𝑚𝑖𝑛, where 𝑑𝑚𝑖𝑛 is the minimum possible 

value for d, in simulations of course a constant of the model. k too differs from  

only by a constant multiplicative term, it can also be defined as𝑘 = 𝑁𝑐𝑎𝑟 /𝑁𝑚𝑎𝑥  or 

equivalently 𝑘 = 𝜌/𝜌𝑚𝑎𝑥. Where 𝜌𝑚𝑎𝑥 and 𝑁𝑚𝑎𝑥 are respectively the maximum 

achievable density or the maximum possible number of cars on the road or 

network.  

Car flow 𝜙, is classically defined in traffic flow theory as the number of cars 

crossing some point in a unit of time, this is very practical when we consider 

that most data are collected from magnetic sensors, it is easy to prove that on a 

road or network of length L𝜙 =
𝑁𝑐𝑎𝑟 

⧍𝑡
=

𝑁𝑐𝑎𝑟 ∗<𝑣>

𝐿
 which differs from < 𝑣 >∗ 𝑁𝑐𝑎𝑟just 

by a 1/L factor as density, just as before, in most cases, for practical reasons, it 

will be used instead of the more conventional definition. Flow, is also, for a large 

enough number of cars approximately equal to the reciprocal of the average 

headway; defining headway as ℎ = 𝑡1 − 𝑡2 where t1 and t2 are the times of arrival 

of two subsequent cars, < ℎ >=
∑ ∆𝑡

𝑁𝑐𝑎𝑟 
≅

𝑇

𝑁𝑐𝑎𝑟 
= 1/𝜙 
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1.3 The Fundamental Diagram 

One of the most impressive quantitative results of traffic theory is the existence 

of a fundamental diagram. First proposed by Greenshields in the mid-1930sit 

has become a cornerstone in traffic studies. 

 

Figure 2.The first v-q fundamental diagram, as sketched by Greenshields 

(1933) 
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Figure3.Idealized fundamental diagrams 

The  Fundamental diagram expresses the relationships between average speed, 

flow and density. It was empirically derived from measurement on highways, 

they being equivalent to one another, the flow density diagram will be the one 

more used in this thesis.  

A more recent correction, known already in the 60s to the parabolic 

fundamental diagram is the triangular or truncated triangle fundamental 

diagram which can also be analytically derived on a one lane road from car 

following models: 

At low density, the mutual interactions between cars are negligible, therefore 

(1) 𝜙 = ⧍𝑉𝑚𝑎𝑥 

when 𝜌 ≈ 𝑑𝑚𝑖𝑛/𝑑𝑠 or equivalently  < 𝑑 >≈ 𝑑𝑠the interactions become very 

relevant, therefore, if we consider the road in equilibrium, all cars moving at 
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equal distances at the same speeds. 

Assuming a linear relation between the safety distance and the speed, 𝑑𝑠 =

𝑑𝑚𝑖𝑛 + 𝑇1𝑣, we get 𝑣 = (
1

𝜌
− 𝑑𝑚𝑖𝑛)/𝑇1 therefore 

(2) 𝜙 = 𝜌𝑣 =(1 − 𝜌)(𝑑𝑚𝑖𝑛/T1)  

Equations 1 and 2 allow to build a theoretical maximum fundamental diagram: 

 

The existence of a fundamental diagram (FD) has been proven empirically in 

many different scenarios, from highways to, under some conditions, networks 

encompassing urban areas, and can be reproduced, though not effortlessly, in 

both microscopic and macroscopic models. 

The FD is a property of the road or network, it has been proved (Daganzo et al 

2008) to be independent of traffic demand, being thus only a property of the 

roads of interest. The characteristics of the decreasing part of the graph are to 

the least controversial: it is not clear if, on many roads or networks a defined 
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slope can be found experimentally. There are few, if any, examples of a clear 

descending branch from real world data 

 

Figure 4.Flow-density plot from real-world traffic data, these are taken from the 

“grande raccordo anulare” in Rome 

Most real world data collections yield graphs very similar to the one in figure 9 

above, the free-flow branch can be easily identified, but after the critical density 

it is very hard to define a proper curve. 

1.4 Phase transitions 

The notion of a phase transition might seem inappropriate on the topic of traffic, 

some statistical mechanics purists would say that rigorously speaking there are 

no possible phase transitions in traffic, since there is no sensible way of defining 

a partition function, the system is open, and somehow never in a real 

equilibrium condition, and even more important, the number of particles and the 

system volume have no way of going anywhere near infinity.  

By analogy with empirical experience, a phase transition will be defined here as 

the point where a small change in the value of a control parameter of the 
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system, causes a significant change in some macroscopic variable we are 

measuring. For every practical application in the rest of this chapter the number 

of vehicles Ncar on a network of fixed dimensions, will be used as a control 

parameter and the flow Ncar<V> will be measured and recorded as a 

macroscopic variable of interest.  

Flow-density plots have been in the past the most widely used graphs in traffic 

studies, along with speed-density plots and flow-speed, graphs are of course 

linked by the equation  =v 

Traffic, according to some theories is believed to have two or three different 

phases  

I. Free flow. It is somehow analogous to the gaseous phase in thermodynamics; 

this is the phase in which the effect of interactions between vehicles are not 

dominating the dynamics, cars go as fast as drivers wish to go, compatibly 

with legal regulations and road conditions, the dynamics is weakly dependent 

on the interactions between vehicles. 

II. Synchronized motion: The existence of this phase has been part of an intense 

debate in academic papers on the subject, being somehow analogous to liquid 

phase, and as such is an intermediate condition between the free-flow and 

the congested phase in this state cars are moving synchronously at speeds 

way lower than the limits imposed by the law or the characteristics of the 

road, it has been somehow observed in highways, whether this is a robust 

phase is still an open question. 

III. Congested state or wide moving jams. The term wide is used though of 

course it refers to the length of the jam and not to its width, analogous to 

solid phase, the interactions between vehicles strongly dominate the behavior 

of traffic, the motion of traffic in this situation is usually characterized by 

stop&go waves propagating backwards 
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Most of the studies on the traffic phases focus on the collective dynamics of a 

single long road, this does make sense, since for sure it is the system that can 

more easily be studied, the effects of small changes in the dynamics parameters 

can be readily addressed, and many variables can be studied in detail. This is 

the first step toward the investigation of more complex road network, this will 

be the focus of later chapters. 

 

1.5. A brief review of car following models 

Understanding drivers behavior is of course key in devising a performing traffic 

simulation; car following describes how a pair of vehicles on the same lane 

interact, and plays a major role in determining the accelerations and the mutual 

distances between vehicles in the model.  

There is a number of factors influencing car following behavior, usually classified 

in 2 different categories, the first category are those depending on the individual 

characteristics, such as driver's age, gender, risk taking behavior, vehicle 

performance; the other category includes those situational factors that involve 

both the individual and the environment, such as stress, fatigue, alcohol or 

drugs intoxication, road conditions, weather or other possible distractions, such 

as other people in the vehicle or eye catching ad billboards.  

Reliably representing in a model environmental effects is hardly feasible, and 

even measuring and quantitatively evaluating the influence of those on the 

driver behavior is beyond the possibilities of a model, but stable individual 

differences can be reasonably modeled on empirical data, drivers over 59 years 

of age seem to prefer a headway 23% greater than drivers of an age ranging 

from 23 to 37 (Evans and Waasieleweki, 2003) , also males are reported to 

choose on average a shorter headway than females. 

Car following models can be roughly classified in the following groups: 
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a. the Gazis-Herman-Rothery models (GHR); 

b. the Safety-distance or collision avoidance models (CA); 

c. the Linear models (Helly); 

d. the Psychophysical or Action Point (AP) models; 

e. the Fuzzy logic models 

The Gazis-Herman-Rothery models (GHR). 

These models, developed in the late 50s in the General Motors labs are based 

on the equation: 

 

𝑎𝑛(𝑡) = 𝑐𝑚(∆𝑣𝑛(𝑡 − 𝑇))/(∆𝑥𝑛
𝑙 (𝑡 − 𝑇)) 

 

where a is the acceleration of the vehicle of interest, ΔV is the difference in 

speed between the vehicle and the one immediately ahead of it,  ΔX is the 

distance between the aforementioned vehicles, t is the current time, T is the 

driver reaction time, m, l and c are  model calibration constants determining 

which is all but trivial, there have been many possible estimates, mostly 

based on closed-track experiments, but still there is no widespread 

consensus regarding the values of such parameters. 

Safety-distance or collision avoidance models (CA). 

These models date back to 1959, from the work of Eiji Kometani and Tsuna  

Sasaki. The CA models, unlike the GHR do not specify a stimulus-response 

type function, but they seek, trough manipulation of Newton's basic 

equations of motion, a way to specify a safe following distance, within which 

a collision would be unavoidable as expressed by the original formulation: 

∆𝑥(𝑡 − 𝑇) = 𝛼𝑛−1
2 (𝑡 − 𝑇) + 𝛽𝑣𝑛

2(𝑡)  + 𝛽1𝑣𝑛(𝑡) + 𝑏0
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where  Δx as before is the distance between the nthand the (n-1)thvehicle, t 

is the time, T is the reaction time, b0 is the braking capability of the vehicle, 

V is the speed of the nth vehicle,  α, βand β1 (as of course are T and b0 ) are 

parameters to be determined experimentally, just as in the GHR model. 

Linear models (Helly). 

These models, that also date to 1959 are usually attributed to Helly although 

the GHR model too was originally based on a linear relation, it is based on 

the following equations: 

𝑎𝑛(𝑡) = 𝐶1∆𝑣(𝑡 − 𝑇) + 𝐶2(∆𝑥(𝑡 − 𝑇) − 𝐷𝑛(𝑡)) 

where D, the desired following distance is defined as: 

𝐷𝑛(𝑡) = 𝛼 + 𝛽𝑣(𝑡 − 𝑇) + 𝛾𝑎𝑛(𝑡 − 𝑇) 

This model has quite some similarities with the GHR model, most of the 

simulation work in this chapter is based on a variation of it, it is different of 

course from a collision avoidance model, but it allows to easily tweak the 

safety distance, since it appears explicitly in the equation. 

 

Psychophysical or Action Point (AP) models. 

Not as easy to describe with a straightforward equation as the others, but 

for sure worth noticing are the psychophysical models, also called action 

point models. These are based on the assumption, first suggested by 

Michaels in 1963 that a driver can tell if the distance with the preceding 

vehicle is changing if he sees a noticeable change in the apparent size of the 

vehicle, in other words the driver perceives the change in speed of the 

preceding vehicle as changes in the visual angle θ subtended by the car 

ahead. The threshold is known to be (Δ v /Δ x2
)∼6∗10−4

when this threshold is 
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exceeded, drivers will choose to decelerate until they can no longer perceive 

a relative velocity, and if this threshold is not re-exceeded they will base 

their decisions on the perceived changes in spacing. 

 

Fuzzy logic models. 

A fuzzy logic model is used to describe the behavior of a driver, a human 

being that is likely to make decisions based on more than a single input 

variable, a fuzzy logic based model combines many different input variables 

into a fuzzy set, where the information will be used to assess the level of 

truth of some binary variables such as “close”, “too close”, “closing”. They 

offer a very realistic looking approach to modeling traffic and they 

undoubtedly have plenty of potential, there is much research being made, 

but none of the commercially available traffic simulators today are based on 

fuzzy logic. 
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1.6 What to do: a Physicist's standpoint 

The choice of the model to use for simulating traffic behavior is a critical 

decision; as previously stated, traffic is a complex system, and as such, we don't 

want the model to oversimplify the problem, a physicist would be tempted to 

use a model he can easily understand and manipulate, but as a smooth sphere 

is not a proper approximation of a horse, using a simple model exposes us to 

the risk of removing those critical features of the system that are responsible for 

the emergent properties that we are mostly interested in understanding, on the 

other hand we want the model to be as simple as it can be, for computational 

speed and also for making it feasible, once in a while to find analytical solutions 

in simple cases. There is of course no right and wrong choice in general; a 

model very suited to solve a particular problem could be completely unfit to 

tackle another. 

Calibration itself, and the tuning of the model is also an issue; as mentioned 

before, it is possible to introduce a large number of features in every single 

agent of the model, there are models that describe the acceleration taking into 

account gear changes, the torque curve of the engine, and countless other 

features, but doing so would quite drive us away from the goal:  in reality we 

have no way of reliably and deterministically describing the behavior of a human 

being driving a car, we have no way of knowing what car will be where and 

when, and whatever estimate we make of these features will carry such large 

errors to be of no quantitative interest or so. 
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1.5 The model:  Mobilis 

The model used here is called Mobilis, it is a software developed in the physics 

of the city laboratory at the Alma Mater University of Bologna. It is entirely 

developed in C++, it is  for our purposes a single lane car following model, so 

there is no overtaking taken into account, this might seem like a big 

approximation, but it turns out to be more than adequate at reproducing quite 

faithfully many traffic features. 

The model can be used to build a model of a road network, taking in 

consideration various possible regulations of intersections; such as left or right 

yield, traffic signals, roundabouts, forced turns, or one-way roads; the model in 

action can be monitored thanks to a fltk based graphic interface. Many traffic 

features on different network configurations have been analyzed, testing the 

performance of the model against proven results of the theory and investigating 

new features where possible. 
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Figure 5. A Manhattan/chessboard-like road network as represented in the 

Mobilis Software. It is called Manhattan because of the square grid 

shape, and chessboard because of the alternating crossroad junctions 

and roundabouts. This configuration has interesting unique properties. 
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Figure 6. A 2-way road as it is represented in Mobilis 

 

1.5.1 The characteristics of roads in the Mobilis Model 

In Mobilis roads are built as 2 non interacting lanes of width 3/2L, where L is a 

scaling parameter, usually equal to 4 meters, in the middle of every lane there is 

an L wide are where cars are moving, leaving in each lane an L/4 free area on 

the sides. No overtaking or U turns are considered, so there is no interaction 

between cars on different lanes, for making it easier to easily spot higher 

density areas the color of every lane changes with density, from blue in case of 

very low density to red when density is very high (usually in that case the road 

is congested already). 

 

1.5.2 Nodes in Mobilis 

Nodes are divided in 2 categories: external nodes and intersections. External 

nodes usually play the part of sources of sinks for the agents of the model, 

though agents could if needed be created or destroyed in any node; the agents 

are created in the external nodes, which are displayed only as a road with an 

open end, and from there they move towards their destination, following the 

algorithm they are supposed to follow in that specific simulation. Intersection 

nodes are also divided in 3 and 4 way intersections, and 3 and 4 ways 

roundabouts. 

Intersections can be regulated in various ways; there can be a traffic signal 

alternating green and red phases, the timing for each signal can be set 
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independently 

 

 

 

Figure 7. Left side (7a): A 4-way intersection, the road with the darker shade of gray is 

the one that has to yield in case of no signal, and the one that has a red light if the 

signal is active. Right side (7b): A 3-way intersection, the meaning of the shades of 

gray are the same as in the 4-way intersection. 

Rundabouts on the other end have no need for such regulations, in real life they 

seem to be dominating most of road planning in European cities, their effects on 

the global dynamics of a road network cannot be neglected,  

7a 7b
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Figure 8.A roundabout in Mobilis, its functioning replicates quite faithfully the ideal 

behavior of a real world roundabout 

 

The structure of a roundabout in the model is quite complicated; the inside of 

the roundabout is built as a 3-lane circular road, so, cars going straight, left or 

right have their own lane to use in the roundabout, cars trying to enter the 

roundabout of course yield to those that are already in. As we shall see later, 

roundabouts allow for self-organization of traffic, whether this is more or less 

efficient than an old-fashioned traffic signal strongly depends on traffic 

conditions. 

1.5.3 Car following dynamics 

The car following equations used in these simulations are not based on any of 

the models described in the previous chapter. The reason for this unorthodox 

approach is simple; while those dynamic models presumably can reproduce 
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urban mobility dynamics in a quantitatively reliable way, that is not the purpose 

of this work. Many different car following models were tested in a single-lane 

model, just to see if they produced phenomena of interest (stop&go waves 

propagation namely). All the models discussed before can recreate this type of 

traffic behavior, but they all have many parameters and overly complicated 

equations for our purposes. The model chosen is a linear model with a safe-

distance that depends on the second order of speed, dependent only on one 

parameter. 

 

Figure 9. Screenshot of a one-lane simulation used to test different dynamics 

When the distance from the preceding car is greater than the safety distance, 

the car accelerates trying to reach the maximum speed allowed on the road it is 

on, following the equation: 

𝑎𝑖 = 𝛼(𝐶𝑣𝑚𝑎𝑥 − 𝑣𝑖) 

where ai and vi    are the acceleration and the speed of the ith vehicle, α is the 

acceleration parameter, relative to the supposed performance of the car, Vmax is 

the maximum allowed speed and C is a parameter relative to the local curvature 

of the road. 

The safety distance is defined as 

𝑑𝑠 = 𝑑𝑚𝑖𝑛 + 𝑇1𝑣 

 is a calibration constant relative to the stopping distance, it has the 

dimensions of a time, and it is usually defined as the desired headway. This first 
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linear approximation of the safe distance it is quite effective at giving reasonable 

qualitative results on many networks below critical densities; whenever the 

purpose was to study the phase transitions or the behavior of the simulation in 

high density conditions, a quadratic term was added. 

𝑑𝑠 = 𝑑𝑚𝑖𝑛 + 𝑇1𝑣 + 𝑇2𝑣2 

The parameter T2 allows also to take into consideration different driver behavior, 

this will be done in the calibration by changing the value of 𝐷2 = 𝑇2 ∗ 𝑣𝑚𝑎𝑥
2  

When the distance from the preceding car is lower than the safety distance, the 

car follows the equation: 

ai=γ∗(Dij−Ds)  

where  is a calibration parameter, which value whose chosen to simulate the 

empirical fact that a road car has much better braking than acceleration. 

This model shows phase transitions both on single roads and larger scale 

networks. 

1.8 Analysis of some test networks 

1.8.1 A single ring 

 

Figure 10. The Layout of the single ring test network 
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Quite some time was devoted to analyze the characteristics of the fundamental 

diagram in some sample networks: the first test was done on a single closed 

ring. The ring, was composed of 4 roads, placed in a square, connected by 4 

roundabouts, cars were proceeding counterclockwise, so they had to go all 

around every roundabout, this is irrelevant for this experiment, since the ring is 

isolated, but it will be important when the ring will be interacting with other 

traffic structure. The distance between the centers of the roundabouts is 600 m, 

every roundabout has a radius of 30m, so a single loop of the ring is 2725m.  I 

first tried to see how the fundamental diagram looked in this simple case. The 

graph is generated as a series of 20 simulations each 4 hours of simulation time 

long, the flow is calculated as the average speed of all cars in the equilibrium 

state which reached quickly after all cars have entered the ring. To remove all 

the effects of transients from the data, all the output from the first hour of 

simulation was discarded. 
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Figure 11. Flow density plot on a single ring. 

This looks very similar to the triangular fundamental diagram, which is generally 

acknowledged to be closer to experimental data on single lane roads than the 

bell shaped one. The density can get very high without the system entering a 

lockdown. Looking at the simulation, in the free flow branch cars proceed 

undisturbed or so all along the road; at densities higher than the transition 

point, stop&go waves start to form, usually a single one propagating backwards 

along the whole ring; all that changes raising the density is the amount of cars 

that are stuck in the stop&go at the same time. 

Being this single ring structure very simple, perfectly equivalent to a single road 

with periodic boundary conditions, it was ideal for studying the effects of the 

parameter D2 in the safe distance. The parameter was chosen so that the safety 
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distance couldn’t get smaller than dmin therefore, taking the safety distance 

equation  

𝑑𝑠 = 𝑑𝑚𝑖𝑛 + 𝑇1𝑣 + 𝑇2𝑣2 

We need to impose                      𝑇1𝑣 + 𝑇2𝑣2 > 0  for  every    𝑣 < 𝑣𝑚𝑎𝑥 

Therefore                                      𝑇1𝑣 > |𝑇2𝑣2| → 𝑇1𝑣𝑚𝑎𝑥 > |𝐷2| 

imposing 𝑇1 a headway of 2 seconds, and given 𝑣𝑚𝑎𝑥 = 13.9 𝑚/𝑠 (60 𝐾𝑚/ℎ) yelds 

   𝐷2 > −27.8 

A series of simulations were run with a fixed number of 100 cars which were 

enough to make stop&go waves appear independently of the parameter, to 

evaluate the average flow in a 4 hour run for every integer value of the 

parameter between -18 and +18 meters. Cars with a negative value of the D2 

parameter are way more efficient, due to their choice of a shorter safety 

distance , and the ones with a positive value are more careful drivers, choosing 

a higher headway the next logical question then was about the effects of mixing 

drivers with a positive D2,  with some with a negative D2. 
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Figure 12.  Flow of 100 cars on a single ring varying the value of the D2 

 

The simulations were conducted the usual way, the differences in flows, though 

not dramatic show that positive D2 makes for slightly higher flows in the free-

flow state and sensibly lower flows in the congested state and the interesting 

property that the mix of the two seems to behave slightly better than both the 

homogenous systems.  

No extensive microscopic traffic data are available in order to make a better 

calibration of the parameters, so the choices of the parameters values of D2 

between +12 and -12 meters has been used as a reasonable way of creating 

some diversity in driver behavior. In all subsequent simulations the D2parameter 

was randomized between those extremes. 
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Figure 13. Another fundamental diagram on the same single ring: the blue line is the 

flow when there are only good (negative D2) drivers, the purple one is done 

with only bad (positive D2) drivers and the green one with an equal mix of 

good and bad drivers 

 

 

1.8.2 Two interacting rings 

In the previous example there was no interaction between cars on different 

roads. This happens at intersections. This simple model it is composed of two of 

the rings of the previous paragraph linked by a roundabout. 
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Figure 14. Two rings connected by a roundabout. 

Since all cars go counterclockwise in the roundabout, whenever this is occupied 

they have to stop and yield; cars on one ring never move into the other. The 

number of cars in the first ring was fixed to 80, which were proven in the 

previous paragraph to be not enough to generate stop&go waves. If 

undisturbed, cars in ring one would remain a steady free-flow state. A series of 

simulations varying the number of cars in the second ring were made, up to 

making them equal in both rings.  
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Figure 15.The flow-density plot on two interacting rings: in blue the flow on the first 

ring, constantly occupied by 80 cars, in green the flow in the second ring 

with a number of cars varying from 10 to 80 in red the sum of the two flows. 

 

This looks nothing like the fundamental diagrams showed before; but this is 

nonetheless  part of the fundamental diagram of the network; it appears there is 

an upper limit to the number of cars that can get through the roundabout in a 

given time, somehow analogous to the rate of flow in a pipe in fluid dynamics, 

which is even more evident watching the sum of the two flows, which apart 

from a slight decrease in the left part of the graph, probably due to the effects 

of interactions having an effect somehow analogous to viscosity or drag, turns 

out to be approximately constant.  Looking at the simulation it is evident that 

the behavior of the stop&go waves is a lot different from before, if in a 

congested single ring steady stop&go waves formed, here the roundabout 

becomes a source of many waves, travelling upstream, at high enough densities 

in both rings, but the roundabouts completely breaks the regularity of such 

waves, a wave forming in one ring gets to the beginning of the cue starting at 
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the intersection and dissipates. Increasing the number of cars in both rings 

doesn't give any significant change, putting 100 cars in one ring, slightly more 

than enough to cause stop&go waves to appear spontaneously and raising the 

number of cars in the other to 100 too, the behavior of the system looks much 

similar to the previous one. 

 

Figure 16.The flow-density plot on two interacting rings: in blue the flow on the first 

ring, constantly occupied by 100 cars, in green the flow in the second ring 

with a number of cars varying from 10 to100 in red the sum of the two 

flows. There seems to be no significant change in the behavior of the model 

from the previous simulations. 

 

1.8.3. A Manhattan-like road network 

Though this is somehow just another test network, its importance and greater 

complexity makes it worth a deeper analysis; 

It is pretty common to find large areas of cities or almost entire cities where 
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roads intersect each other at a 90° angle, forming a large grid of mutually 

intersecting roads, we called it Manhattan, but Turin, Barcelona and many other 

cities exhibit similar layouts. The reason this kind of map in a city is so common 

goes back to the Roman Empire and their idea of urban planning. 

 The characteristic of such a road network are way more complicated than the 

previous examples, but it offers a chance to investigate the effects of larger 

scale interactions between multiple crossroads and/or roundabouts. In this 

model intersections are placed at a distance of 200m from each other, and the 

external nodes are 200m away from the adjacent internal nodes. 

 

Figure 17. A small Manhattan-like road network with simple intersections and randomly 

timed traffic signals  

Unlike the previous models, this one is open, cars can leave the network 

through any of the external nodes, which are of course also the ones trough 

which they enter the simulation, the decision making is pretty straightforward, 

at every crossroad every car determines randomly which direction to take; this 

is very unlike real traffic, but brings the system closer to its thermodynamic 

analogs, under such conditions the probability space is homogenous and the 
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characteristics of the road network can be investigated without bothering with 

individual choices or origin-destination matrixes.  

Studying the fundamental diagram is trickier than in the previous cases; keeping 

the number of cars constant at high densities without having the whole network 

fall in an irreversible lockdown, due to the agent intelligence shortcomings, is 

quite challenging, and getting a smooth averaged plot is almost unfeasible. In 

order to make the simulation proceed it was necessary to monitor the average 

speed and the density for the whole duration of the run, making sure the 

system didn't go in an irreversible lockdown adjusting manually the rate at 

which the external nodes put cars in the system.  

The shape of the Flow-density plot that came out of this process was much 

different from the one expected (Fig. 18).This kind of behavior was not easy to 

explain at first; In many fundamental diagrams obtained from experimental data 

there are points that appear way below the expected point in the density-flow 

curve, but there was no explanation for these outliers other than the inherent 

complexity of the system and the network on which the experiment was 

performed. A recent paper (Geroliminis et al 2011) on the topic gives a 

promising explanation. In that paper they analyzed some real world traffic data 

from the network of highways in Minnesota, and showed how the system 

seemed to have some memory of the previous states, making another 

thermodynamics or solid state physics analogy, cars in a road network show an 

Hysteresis like behavior.  
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Figure 18. The Manhattan-like network with traffic signals. Flow-density plot from the 

simulation. From A to B the free flow branch, from B to C the decreasing branch, from 

C to D an Hysteresis branch. 

Even if the fundamental diagram keeps being a property of the network only, 

independent from the number of cars in it, at a given density there are various 

possible flows; once the system is congested, if the demand suddenly decreases 

it doesn't return to its free-flow state going back through the peak, but it goes 

through an hysteresis cycle. There are various possible explanations for this 

behavior, in the aforementioned paper the main hypothesis was that this kind of 

phenomena was mostly induced by spatial inhomogeneity in the demand, which 

is not the case in my simulation since cars are introduced from all nodes at 

equal rates and decide where to go in a completely random fashion, the 

inhomogeneity here is in the time change of the demand; when the system is 

highly congested the amount of cars entering the system is sharply dropped, so 

given a little time the network slowly “decongests” itself closing the Hysteresis 

loop in the figure above. 

There is still no proper theoretical explanation of this behavior of traffic in a 

network, but there are some interesting points to examine. When the simulation 
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is going through the lower branch of the loop, the density is highly non 

homogenous, there are some congested blocks, while all the other roads are in 

a free flow state. This, in more detail will be the topic of the next chapter. 

1.8.4 A Manhattan-like road network with roundabouts 

The previous model was regulated by traffic signals, in recent years much 

emphasis has been put on roundabouts, as they allow traffic to self-organize, 

without introducing any artificial timing in the system.  

 

 

 

Figure 18. A Manhattan like network with roundabouts 

 

Roundabouts are expected to make the network perform way better in the free 

flow branch, but their behavior in a congested scenario could be very far from 

optimal 
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Figure 19.Flow density plot on a Manhattan network regulated by Roundabouts 

 

The system enters an irreversible lockdown with little or no warning; the 

appearance of congestion completely kills the system dynamics very quickly. 

 

 

Figure 20.Lockdown configuration of the roundabout network 

 

As shown in the figure, closed loops form between roundabouts, so that they 

depend on each other in order to move again. Real traffic wouldn’t of course be 

completely and irreversibly locked, but would for sure be in a very low flow 

condition, relying exclusively on drivers’ goodwill to get back moving. 
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1.8.5 A “chessboard” Manhattan Network.  

 

It seems clear looking at the previous paragraphs that roundabouts are more 

efficient than signaled intersections in low density conditions and less efficient 

when congestion starts to arise. A intermediate solution of course is feasible. 

 

Figure 21. A Manhattan/chessboard road network 

 

This  is the same configuration shown in Fig. 5 at the beginning of the chapter; 

it has been named the “chessboard” because signals and roundabouts are 

disposed like black and white on a chessboard. Signals on one row are opposite 

in phase with the ones in the other, therefore the idea is to regulate entrances in 

the roundabouts, so that the local density doesn’t get critical too soon. 

Comparing the behavior of the three similar systems:
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Figure 22.Flow-density plots of the three similar networks. In green the roundabouts 

only one, in blue the chessboard one, and in red the uncorrelated signals 

one. 

 

When comparing the behavior of the three similar systems it seems clear that 

the chessboard has a slightly longer free flow branch than the other two, while 

the roundabouts only one performs better than the other two on the free flow 

branch, especially at low densities. When densities get higher, the performance 

differences get smaller, and the signals only system is the only one capable of 

getting through an hysteresis loop and going back to the free flow branch if the 

external flows are reduced, while the others inevitably fall towards a lockdown 

when density gets critical. The free flow branch in the roundabouts network 

resembles more than the others the curve expected in a single lane fundamental 

diagram, since there are no signals disturbing the self-organization of cars. 
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2. Hysteresis phenomena and phase 

transitions in ideal urban mobility 

networks 

 

2.1.The model and the fundamental diagram 

In the previous chapter the topic of phase transitions and hysteresis emerged 

from watching the shape of fundamental diagrams in microscopic simulations. 

The characteristics of the networks there though didn’t allow for some solid 

statistics, the biggest model that was investigated was a four-by-four Manhattan 

network. The fundamental diagram here would be better called a “macroscopic 

fundamental diagram”; historically flow density plots have been used to 

characterize the behavior of single roads, typically highways; It has been shown 

however (Geroliminis et al 2007) that interconnected road networks might 

follow a unique macroscopic fundamental diagram. To do so a bigger Manhattan 

network was built; a ten-by-ten network, with 100 crossroads regulated by 

uncorrelated traffic signals and 40 external nodes (Fig.23). 
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Figure 23. 10-by-10 road network as used in the simulations 

As before, the system is open; cars can leave the simulation by going through 

any of the external nodes, which are also the sources that generate the cars in 

the model. It is not therefore possible for now to control directly the number of 

cars in the system, with this setup, what is controlled is the inflow; the number 

of cars that enters the network every second trough each node which is set to 

be equal for every source. 

Various simulations have been run on this network to explore the statistics of 

the possible states it can go through. 
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Figure 24.  Rescaled flow-density plot and density variance on one run 

Figure 24, though obtained by a single run, shows clearly the connection 

between the phase changes of cars in the network and the variance of density 

on the roads: when the number of cars is increasing variance slowly but steadily 

increases, as flow reaches its maximum, the system makes a transition to a 

congested state, variance sharply increases, flow goes through a clockwise loop, 

showing hysteresis behavior as in the smaller model, while the variance loop 

goes counterclockwise; the congested hysteresis branch clearly shows a much 

higher density variance then the free-flow state, as expected. 

2.2The density distribution 

Since the density variance and the flow seem to show some meaningful 

correlation, the next step was investigating the density distribution in the 

various states, identifying the states from their respective positions in the 

fundamental diagram plot. First of all a few runs were made keeping the 

incoming flow low enough so that the system could remain in a free flow quasi-

equilibrium state indefinitely. 
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Figure 25. Density distribution histogram in various free flow quasi-equilibrium 

conditions. The flows are intended for every single external node. 

If the incoming flow is low enough then the density distribution closely 

resembles an exponential decay, as expected, when flows increase, a peak 

appears, and it shifts to the right and gets broader as the external flows, and 

therefore the densities increase, just as the density variance plot in the previous 

figure would suggest. Studying the decreasing branch of the fundamental 

diagram is not an easy feat, it is very hard to keep the simulation in that 

condition stably; the flow maximum seems to be a metastable state, from which 

it can drop to the mixed phase equilibrium value following a vertical trajectory in 

the flow-density plot. The decreasing branch of the fundamental diagram is 

rarely observed in real-world data, and in this the simulation is very lifelike. 

The density distribution histograms in Fig. 26 gives us a clearer understanding 
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that the congested state the system enters once it gets past the maximum is a 

mixed state, therefore, if some other thermodynamic analogies hold, it should 

be a 1st order phase transition. The graph shown in Fig. 26 is derived from a 

series of time slices taken while the system slowly relaxes to a free flow state 

from a highly congested state. It is clear looking at the picture that the road 

population splits between roads that keep following roughly the free flow 

statistics and roads that have a density very close to the maximum. In the 

beginning, the high density peak is higher, and few roads are in the free flow 

state, as the system decongests roads go from one state to another, getting in 

the end to a distribution very similar to the one of in the free flow state. 

 

Figure 26. Density distribution histograms along the hysteresis/mixed phase branch, 

data 1 is relative to the rightmost and more congested part of the branch, 

the following are relative to the progressively less congested system as it 

goes back to the free flow state. 
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2.3Back on the macroscopic fundamental diagram, conjectures on phase 

transitions 

There has been quite some work on the characteristics of the fundamental 

diagram; many studies focused on the characteristics of the decreasing branch, 

Boris Kerner [7] introduced the three phase traffic theory as a qualitative model 

to describe traffic behavior when interactions have a strong effect on the 

dynamics.  

Since the macroscopic fundamental diagram is a property of the network 

(Daganzo et al 2008), there is little point in discussing the general shape of it, 

even if it is just a numeric simulation, the 2 ring example in the previous chapter 

shows clearly that the geometric characteristics of the network and the 

intersection regulations can drastically change its layout. The early fundamental 

diagram from Greenshields referred to a single highway, there are however 

experiments on whole cities, such as Toulouse, France and Yokohama, Japan 

(Geroliminis et al 2011) that show an empirical density-flow profile that is in 

some regions very similar to the single lane model one, including also a 

clockwise hysteresis loop that is much similar to the one shown in the previous 

paragraph, but also many experiments that show a completely different 

behavior even just on larger regions of a single highway. 
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Figure 27.Another flow density plot on the “Grande Raccordo Anulare” in Rome. In this 

some hysteresis-like behavior can be observed in the lower region, but on 

the whole it is very difficult to define a slope after the traffic breakdown. 

The work from Kerner (Kerner et al 1997) theorizes a change in the slope of the 

descending branch of the fundamental diagram, and though the theoretical 

calculations are for sure correct and probably do apply in some real-world 

scenario, it is hard to get such accuracy in the measurement, and the 

equilibrium condition such models refer to is  not very descriptive of real road 

networks. In most fundamental diagrams sketched from empirical data there is 

no evidence the descending branch of the diagram has a defined slope at all. In 

the Mobilis simulation, if the average density is kept stably at a value slightly 

lower than the one corresponding to the expected flow maximum the system 

collapses to a mixed state after a short time. 

The simulation run up to now, except the one in the figure 28, were done 

controlling the incoming flow, but no constraint was put to the number of cars in 

the simulation. This did account well for the study of the network responding to 

different traffic demands, but does not give us any information on the stability of 

the various states in the fundamental diagram at different densities. A series of 

runs were made then, controlling the density, and except for some transients, 
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left there long enough to investigate the stability of the state. 

 

 

Figure 28.Transition from free flow to a mixed state at non critical average density 

To further understand the behavior of the fundamental diagram of this system 

there are two different roads to take; one is studying the system at constant 

density, and the other is studying it at constant input flow.  

Constant density 

The flow-density diagram, if gone through slowly increasing the density, looks 

nothing like the usual bell shaped curve, if the desired density is lower than a 

critical value, flow is a monotonously increasing function of density as in the 

single lane model; average speed is decreasing along the branch, but the points 

in the plot are very far from the hypothetical maximum flow line because traffic 
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signals have a strong impact on average speed. Interactions between vehicles 

are present even at these densities, but can be neglected. 

 

Figure 29. Sketch of the flow-density diagram in the simulation. 

Increasing the density further (entering the teal region of the graph in figure 29) 

the flow keeps increasing linearly or so, until density gets high enough to make 

a transition to a mixed state. The transition here is quite abrupt, and can easily 

be identified watching the simulation. While in the linearly growing branch road 

occupancy was homogenously increasing, now there are one or more clearly 

congested areas. Density can be set even at higher values, flow will stay on the 

“nearly” constant red line in the graph until it reaches a region where a 

transition similar to the one before can take place, taking the system in an 

irreversible lockdown. In this state there is typically one huge congested area 

that will survive indefinitely. Even if incoming flows are set to zero there will be 

no going back to the previous condition, this specific behavior is somehow an 

artifact induced by the model; it happens as some congested structure forms a 

closed loop, and it creates a chain of interactions long enough that a loop of 

static congestion can be closed. 
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Figure 30.An irreversible lockdown in the model 

If when the system has entered the mixed phase density is decreased, it will go 

back to the linear branch closing the hysteresis loop. All points there are stable 

at fixed densities, there are no “vertical” transitions allowed far from the area 

where the mixed-congested branch meets the stable free-flow branch, and in 

simulations there are no vertical transitions from the free flow branch to the 

mixed state below some critical density. Changing the system density gives rise 

to transients effects; for all the simulations in figure 31, the system was kept 

from time to time at a density locked between two boundaries, oscillating from 

maximum inflow to no inflow. This caused some counterclockwise loops to 

appear in the free flow branch, as in the rarefaction phase flow increases 

significantly. 

Constant inflow 

If the inflow is kept constant the system moves on the same plot in a slightly 

different way. If the flow is lower than a certain threshold value, the system will 

reach a point of equilibrium in the density-flow plot somewhere along the stable 

free-flow branch, if the inflow is above that threshold, the system will 

dynamically go through a path that resembles a bell shaped curve (the green 

part in the graph), will make a transition to the mixed phase, and then to the 

lockdown zone after some time, unless the inflow is significantly reduced.  

The maximum inflow that allows the system to dynamically cross all the mixed 

phase backwards is approximately the same flow that would allow a stable free-
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flow condition in the area where the two lines meet, empirically 𝜌 ≈ 𝜌𝑐𝑟𝑖𝑡/2.  

If the flow is higher than that, the system will unavoidably make a transition to 

a complete lockdown after some time. This maximum inflow is clearly related to 

the outflow from the congested “cluster” which seems approximately constant. 

All along the hysteresis the cluster size decreases, as the density distribution 

plots some pages ago showed. 

Going back to the thermodynamic analogy, it seems, as mentioned before, this 

has much in common to a first order phase transition; where the two end states 

are the free flow state and the lockdown state, the congested state, along the 

hysteresis branch is a mixed state, similar to freezing water. Like water, it can 

get to a state that resembles super cooling, which is the higher part of the free 

flow branch; the density is more than high enough to allow, if kept constant, a 

congested cluster to survive, but it’s not high enough to allow a “homogeneous 

nucleation” of a congestion. The density is such that if some big enough 

disturbance occurs, it would cause a group of cars to slow down and create a 

cluster, but it’s not high enough to allow smaller clusters forming spontaneously 

out of the system random oscillations to become nuclei for the formation of a 

bigger cluster. In the hysteresis branch on the other hand, one or more big 

clusters have formed already, and they can either be kept at a stable size, grow 

up to a complete lockdown or shrink down and disappear, depending on how the 

density of the system is controlled. 
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Figure 31. Various density plots superimposed, in different dynamical states. 

 

2.4. Scale dependencies 

All the previous simulations were done keeping the size of the system constant, 

the distance between intersection was 200m for all simulations, in order to 

study a similar system at different scales, quantities have be normalized; the 

following plots will be 𝜑 − 𝑘 plots, where 

𝜑 = 𝑘 ∗< 𝑣 > 

In this framework, a few simulations were run to study the behavior of a 

network twice the size of the first one, the distance between nodes is 400m. 
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Figure 32.Normalized flow-concentration plot on the smaller network (blue) and in the 

one twice the size (green). 

 

Keeping the density close to constant by having it oscillate between two 

extremes makes the plot very noisy, there is plenty of non-equilibrium effects, 

rarefaction-compression loops and similar trajectories, that are interesting for 

the description of the dynamics but are not the purpose of this study. 

The simulator was re-run to get a more defined quasi equilibrium plot on both 

scales (Fig.33); to do so, density wasn’t set to oscillate between two extremes 

as before, but it was slowly increased and then decreased when it reached a 

value close to the irreversible congestion, to follow and analyze all states in the 

diagram as close as possible to a constant density condition. 
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Figure 33.Normalized  flow-concentration plots of the two networks at nearly constant 

densities. The smaller one in blue and the bigger one in green 

The general behavior of the system reported in Fig.33 is not much different, 

still, the differences that were evident in the plot in Fig. 32 are still there; the 

free flow branch of the bigger network performs much better, and so does the 

congested branch, but the transition from one to the other happens at a lower 

density.  

This makes sense since the effects of signals in intersections is much more 

relevant in the smaller network, and these, though they make the flow globally 

smaller, help keeping the system in the free flow state at higher densities. 

2.6. Introducing spatial inhomogeneity in the network 

Some might argue that the vertical decrease in flow from the free flow branch to 

the mixed phase is due to the network being homogenous, that if roads have 

different lengths and capacities, they would make a transition to the congested 
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state independently at different densities. Thus a different network, of the same 

size, with similar topology, but with a local centered inhomogeneity was tested, 

to see if that was the case (Fig.34). The network has the same total road length 

as the bigger network studied in the previous paragraph, but the distance 

between the center roads is only 200m like in the smaller model, the distance 

between those and the neighbor roads outside is 600m. 

 

Figure 34.Part of a Manhattan network with an inhomogeneity in the distance between 

nodes 
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Figure 35.Normalized Flow-Density plot of the 400m intersection distance network 

(blue) compared to the inhomogeneous one showed inFigure 34 (green) 

Figure 35 clearly shows that the inhomogeneity works as a weak point in the 

network, making congestion appear at lower densities than in the homogeneous 

network, once the congestions forms in the smaller roads, it quickly spreads to 

the other roads, taking the system to the mixed phase, from which it might 

recover just like the homogenous system at the same density. The rightmost 

part of the Mixed branch was explored, but is not shown in the plot because the 

system was more prone to lockdown that the homogeneous one. There is no 

obvious difference between the behavior of the systems when they both have a 

density low enough to stay on the free-flow branch 

2.6. Tentative explanations 

The beginning of phase changes of the system is clearly identifiable as the 

appearance of a local congested cluster, this, happens at a density at an average 

speed that, in good accord with theory is ≈ 1/𝑑𝑠. As the plots clearly show this 
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transition doesn’t happen in a deterministic way, but statistically becomes more 

probable when the density reaches a threshold value. It is not trivial to define 

what equilibrium is in this system; if we define equilibrium classically, as a state 

where the system can explore all its configuration space, the flow-density plot 

would look much different from the one in the previous graphs. Since in the 

model cars commit to a turn and don’t change their mind even after spending a 

long time stationary, if the system contains enough cars to form a closed locked 

loop, the probability of a transition to a complete lockdown is ≠ 0  since there 

are at that density some points in the configuration space of the network that 

allow a complete lockdown to form. If we accept this idea, the existence of the 

upper branch and the hysteresis loop appears to be purely dynamical; the 

equilibrium macroscopic fundamental diagram would look like in figure 36. 

 

Figure 36.A minimal theoreticalequilibrium  flow density plot 

The minimal theoretical equilibrium flow density plot shown in Fig.36 constitutes 

a “minimal” curve above which all the possible dynamical states can take place.   

The importance of this equilibrium plot of course is marginal, cars, both in these 

simulations and even more in reality are not going to explore all the 

configuration space in any reasonable finite time, at higher densities, the total 

lockdown state makes more sense, as the locked configurations of the 

configuration sapace at higher densities become a relevant fraction of it. Real 

drivers can change their minds allowing the system to locally unlock, but the 

widespread congestion is such that a complete lockdown state makes sense in 
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theory even with real cars, though it would retain some dynamical 

characteristics and unlike in these simulations it would be reversible. This 

minimal equilibrium plot is in good accord with the idea that the system has only 

two pure equilibrium states, a free flow one and a completely congested one, 

and all confgurations that are in neither of the two are to be considered as 

dynamical states that depend on the history of the system.  
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3.Road Hierarchy 

 

Some studies carried out in the Physics of the city laboratory in Bologna suggest 

the use of roads in a network obeys a power law; there are few roads where 

there is a lot of traffic passing by and way more roads that are way less 

populated. This makes plenty of sense in the real world, a highway is of course 

used much more than some back road in a residential area. The power law was 

obtained analyzing GPS data provided by Octo Telematics that were than located 

in a cell grid where the number of cars passing per day was counted: 
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Figure 37. Normalized histogram of road usage in a log log scale.  

 

Making a similar analysis on the Manhattan test network as expected didn't give 

any similar results; being all roads in the model identical to agents in the model 

there are no preferred routes, and the distribution looks mostly like a Gaussian, 

the microscopic simulator was then of no use in investigating this. Another 

interesting experimental result that seemed to depend from hierarchy in the 

roads system was how the length of a trip relates to the speed the drivers reach 

during the trip itself. 
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Figure 38. Speed profiles averaged on many trips of given length 

 

It is common experience that in order to go a long way any driver looks for a 

faster road,  while for going a shorter way this is not always feasible or sensible, 

even inside a city, there are various hierarchies of roads, from highways and 

motorways to urban traffic arteries to smaller local roads.  

A simple hierarchical network structure was then built, to test if that could, 

under the right conditions give rise to a similar speed profile (Fig.39). 

 

 

Figure 28 
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Figure 39.Two dimensional representation of the one dimensional hierarchical 

transportation network 

The model was built using the NetworkX python package, from any point in the 

network a driver can move to any adjacent node, all nodes on one level are 

connected horizontally, and from every point there is a connection to the lower 

levels, but there isn’t a connection allowing to go up everywhere, this to 

replicate the need to use lower hierarchy roads for short distance trips and the 

fact that usually a driver in order to access a highway or a high flow road has to 

go some distance on secondary roads. In the model every layer allows a certain 

speed, which grows according to the hierarchical level of the road. Using this 

model and a Dijkstra algorithm to compute the shortest paths a speed-distance 

graph was built.  
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Figure 40.Speed-distance plot in the ideal hierarchical network described above 

Though this might look like a simple exercise, it clearly tells that a very simple 

and completely deterministic system, exclusively based on a hierarchy can under 

reasonable hypothesis generate the same speed profiles that are found in real-

world data analysis; therefore hierarchy is very likely to be the main factor in 

generating such profiles   
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4. Crowd Transplant 

 

A short and very qualitative chapter, a first person story about a project that got 

a lot of my attention and got me violating the terms of service of unnumbered 

websites and programs but nowhere else or so. 

I strongly believe Wikileaks’ release of the so called “cablegate” files is one of 

the most shocking events in recent history; democracies have thrown their 

masks away, devoting as much energies as possible in prosecuting and 

discrediting the source, and apparently fighting as hard as they could against 

the freedom of information they’re supposed to stand for; banks and credit card 

institutions, that always proclaimed themselves neutral and never stopped 

people from donating to the Ku Klux Klan, the Aryan brotherhood, or many 

similar organizations, created an unprecedented monetary embargo on 

Wikileaks, making the task of donating to the organization almost impossible.  

Notwithstanding the incredible impact this cablegate affair has had on the world, 

from making public confidential information about the 9/11 attacks or 

indiscretions about pedophile priests in Ireland, by spring 2011 very little 

information was available on the structure of the whole Wikileaks dataset, which 

by the way was wiki only in the name, since unlike a proper wiki it couldn’t be 

searched or edited in any way.  

The first idea that came to my mind was downloading the whole dataset and 

trying to make some text-data-mining on it, the idea was looking for person 

names, and look for reoccurring names in cables, then trying to study a network 

of names, putting a link between those names that appeared in the same cable 

at first, then trying to make a similar work on names appearing in different 
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cables from the same embassy and so on, in search of some interesting 

property, or, as unscientific as it might sound, of some names we wouldn’t 

expect to be appearing that often or in many diverse circumstances. Also it 

would have been interesting to analyze the data in an information theory 

framework. 

The task was I believe very feasible, but unfortunately way beyond my 

computer programming abilities, I tried to study some languages to make that 

easier, or even just feasible, with no success, and no computer science expert I 

tried to talk to had a proper solution for my problem. Then an idea occurred to 

me, which seemed too good to keep it to myself, so I went to my temporary 

tutor during my brief internship at the UCSD and told him; why have some 

software do it when it can be done by people? The web, as a community is an 

extremely powerful information processing machine, it doesn’t need to be 

programmed to understand what a name is, and though its work can sometimes 

be prone to mistakes is just as good at finding and correcting them 

spontaneously. My first idea was to try building a proper wiki, so that people 

could independently work on the files and help indexing and organizing the data. 

Some other guy that took part in the discussion, that I won’t mention because 

his position in this thing is somewhat compromising had another idea; since he 

was working for Facebook he was in the privileged position to extract data from 

Facebook itself, so his idea was to try making people organize data in the form 

of distinct and mutually connected Facebook pages and then look at the data 

and how the self-organization of the system worked. This of course had also 

deep and interesting political implications; Facebook officially stands for freedom 

of information, it claims its role in the Arab uprisings, so they would have found 

themselves in a tight spot, being in the position to be hosting this organized 

material in the name of freedom of information, and at the same time being 

forced to take some kind of stance or throw the mask in front of the American 
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government, which for is not very positive towards Wikileaks and the 

“cablegate”. This project took the name of “crowd transplant” and it all looked 

very promising; the idea itself was totally unheard of, and the topic was hot 

enough to catch the attention of social network users, which of course was 

essential in order to succeed, if the thing got big enough it could easily have 

become viral and keep growing bigger and bigger once it started. 

 

Figure 41.the Crowd-Transplant logo 

I started, by making my first violation of the terms of service, by creating a fake 

Facebook account; this was necessary of course since there was a strong 

possibility this would have drawn some unwanted attention and I didn’t want to 

expose myself personally to that. I installed a Linux distribution on a blank 

partition and I created a new email address to connect to the account, to make 

the connection with UCSD more believable I also created an alias for my email 

address at the university that referred only to the crowd transplant project. Of 
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course someone with the authority to ask the university computer center who 

that email belonged to would have ended up getting my name, but that was a 

necessary risk. With my new fake account ready, I asked a friend with better 

graphic skills than me create a logo for it (one thing I was sure, you’re not going 

anywhere on FB without a cool logo), I created a page for the project,  

explaining briefly what people were asked to do, and links to a few examples I 

had built to make understanding easier.  

Then unfortunately my tutor came and told me to stay away from Wikileaks; he 

grew scared that his position at the university could be compromised by this 

hacker-like idea growing under his responsibility and asked me to divert the 

project on some less controversial data sets. The first idea coming from him was 

to try and do the same thing on the ENRON email dataset, which is available to 

the public for download and that already was subject to some academic works 

and publications. Once I downloaded the whole dataset I realized the idea of 

asking a social network to work on such stuff was completely unfeasible, also, I 

found out that the content of the emails was of little or no interest; both looking 

for information or connections between the senders; the dataset consisted of a 

bunch of outlook folders used by ENRON Employees until the company was 

struck by the well-known scandal, but they proved to be pretty useless; the 

amount of inside email exchange was almost non-existent, I opened most of 

those folders, and no email had an address ending in @enron.com as a 

recipient. Also, the email folders of the top managers involved in the scandal, 

were all missing, No Andrew Fastow, no Jeff Skilling, the only big name to be 

found was Mr. Kenneth Lay, founder of the company, but his email folder was 

actually managed by his secretary and was almost a junk email folder. Then, 

more scientifically I thought all I needed was a topic people could work on, not 

necessarily anything controversial, just something they could work on, gathering 

and organizing information about, not necessarily coming from one single 
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source. I thought about a topic from history; the history of wars and conflicts 

between nations or other organizations; I created a page about it, and people 

could then create other pages, links between them, listing conflicts between 

them. This was quite easy to do, the hard part was of course having people 

actually do it; in order to do so I went advertising the project on various forums, 

regarding diverse topics, and also on some news websites, I also wrote about it 

to various schools, since I believed someone could have picked this up as 

something with an educational potential too.  

Nothing of all this worked at all; on some conspiracy theory forums they claimed 

Facebook is secretly a new-world-order or CIA project, so they refused to 

cooperate; on some history forums they didn’t take it seriously either, on one 

they even managed to leave my post intact, just removing the link. I got no 

response at all from schools, the impression was that being the project 

somehow related to Facebook people thought it wasn’t worth being taken 

seriously. 

Later I thought I had a real shot of luck; Sarah Palin, former governor of Alaska, 

former beauty queen and controversial political figure in the US, was under the 

spotlight from Huffington Post; it seemed there was a whole bunch of emails 

from her previous office as governor that were made public, journalists from 

Huff post were asking for people for a way to read through the emails, and I 

thought the crowd-transplant idea was just perfect for the task. This too didn’t 

work, my post about it on Huffington post was censored, this too I believe 

because it was on Facebook.  

There are then very few conclusions I can take from all the work on this topic: 

first of all, Facebook is not taken in any way seriously from people or 

organizations, being in the eyes of many either an instrument of control, a 

slacking-off website, or something else for some reasons not worth of their 
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attention. Also, since I had added already a lot of friends to my fake profile, I 

found out that they were very active in playing Farmville or other games of that 

sort, posting the usual stuff that you would expect to see on a social network; 

but that very few of them bothered looking at my crowd transplant page, and 

my aggressive spamming of it wasn’t helping at all. 

Notwithstanding the little success of this project I still believe it to be a very 

good idea itself. What I learned is that there is no room for anything remotely 

serious on Facebook, and that huge potential of 800 million active users, and all 

their connectivity cannot be easily exploited for this kind of tasks.   
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