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Introduction 

Durum wheat [Triticum durum (Desf.)] 

Wheat (Triticum spp.) is one of the first domesticated species. Grown by 

man since the Neolithic revolution, for 8,000 years it has been the basic staple 

food of the major civilizations of Europe, West Asia and North Africa. Today it is 

the most cultivated crop in the World (on more than 215 million ha [16% of all 

tilled land], 627 million t of production, FAO source), more than all other cereals 

(figure a). 

Figure a. Main cereals in the World (% cereal cropped area in 2000-2005; FAO Datasheets) 

 

Together with rice, wheat provides more nourishment to humans than 

any other food source. It is a major diet component mainly because of the ease 

of its dry grain storage. It is usually grounded into flour for making edible, 

palatable, and satisfying foods. Wheat is the most important source of 

carbohydrate in a majority of countries. Its starch is easily digested, as are most 

of its proteins. Because of the high content of minerals, vitamins and fats 
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(lipids), with the addition of a small amount of animal or legume proteins, wheat 

grain becomes highly nourishing. A predominately wheat-based diet is higher in 

fibre than a meat-based diet (Johnson et al., 1978). 

Wheat has a very wide agronomic adaptability. Moreover, widely differing 

pedigree varieties exist, which allow its cultivation in many environmental 

conditions. Although successfully grown between the ranges: 30-60°N and 27-

40°S of Latitude (Nuttonson, 1955), wheat is cultivated well beyond these limits, 

from within the Arctic Circle to the Equator, at high elevations. In the past 

couple of decades, researchers of the International Maize and Wheat 

Improvement Centre (CIMMYT, Mexico) have shown that wheat production can 

be technologically feasible also in much warmer areas (Saunders and Hettel, 

1994). In altitude, the crop is grown from sea level to more than 3,000 m a.s.l., 

and in Tibet there are wheat fields up to 4,570 m a.s.l. (Percival, 1921). 

The optimum growth temperature of wheat is about 25°C, with minimum 

and maximum of 3-4°C and 30-32°C, respectively (Briggle, 1980). It is adapted 

to a broad range of moisture conditions: from xerophytic to littoral. About three-

fourths of the World wheat area receives an average of 375-875 mm of annual 

rainfall, but it grows also where precipitation ranges from 250 to 1,750 mm 

(Leonard and Martin, 1963). Sufficient water availability during the whole 

growing season is needed for optimal production. However, too much rain can 

lead to yield losses from disease and root asphyxia. Although in any months of 

the year somewhere in the world wheat is being harvested, the harvest in the 

main temperate zones generally occurs between April and September in the 

Northern Hemisphere and from October to January in the Southern Hemisphere 

(Percival, 1921). 

The traditional classification into spring and winter wheat refers to the 

growing season of the crop. For winter wheat, heading is delayed until the plant 

experiences a period of cold (vernalization with an optimum of 0° to 5°C). So, it 

is usually planted in the autumn, remains in the tillering phase during winter and 

resume growth in early spring, to mature in early summer. This cycle has the 

advantage of profiting by autumn moisture for germination and spring sunshine, 
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warmth, and rainfalls for rapid vegetative growth. Spring wheat, on the contrary, 

is planted in spring and matures late in summer because of a low vernalization 

requirement to flower. However, in countries with mild winters, such as in South 

Asia, Mediterranean Basin, and Middle East, spring wheat can also be sown in 

the autumn. 

Durum wheat in the World  

Durum wheat (Triticum durum Desf.) is traditionally produced in only a 

few areas of the Planet. Low rainfalls and frequent water shortages characterize 

these zones. Therefore the cultivation of this cereal is heavily dependent on 

weather, which can substantially affect both its product quantity and quality. 

Adverse climatic conditions often limit the production and worsen grain 

characteristics, thereby pushing up market prices, which are widely variable 

over the years. 

Durum wheat is considered a minor cereal crop, representing only the 

5% of the global wheat production, but it has a great relevance in the 

Mediterranean countries, where it is largely used for human consumption, as 

pasta, couscous, and bread. In Southern Europe it is mainly used for pasta 

production (85%). The Italian, French and Greek rules authorize only semolina 

and water in pasta making. Therefore, the quality of this food highly depends on 

the characteristics of the raw material (wheat grain) and on the industrial 

technology. 

Today durum wheat in the World is grown on 14 million ha, 

approximately, that are concentrated in the Mediterranean Basin and North 

America (table a). On a global basis, its surface is spreading, due to a 

continuous increase in pasta consumption. In the last four years World 

production reached about 28 millions tons. Together, Italy and Canada gave the 

15% of this amount (table b). 

The yield of this cereal widely varies in the different countries. According 

to FAO statistics, the last few years the highest average yields (about 5 t ha-1) 

have been obtained in UK and Germany. In France, Austria, and Mexico the 
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mean yields have varied between 3 and 5 t ha-1, while 2-3 t ha-1 have been the 

means in Argentina, India, Syria, Italy, USA, Spain, Turkey, Greece, and 

Australia. The lowest productions were recorded in Russia (less than 1 t ha-1). 

In 2006 the UE average yield was 3.4 t ha-1; 32% higher than that of the World 

(Eurostat Database). 

 

Table a. Durum wheat area in the World (2002-2006 avg.; Source: FAO Datsheets) 

Country 1,000 ha Country 1,000 ha Country 1,000 ha 

Canada 2,216 Spain 895 Australia 178 

Italy 1,681 Syria 851 Portugal 146 

Algeria 1,230 Tunisia 702 Kazakhstan 80 

Russia 1,220 Greece 450 Argentina 48 

USA 1,067 India 440 Austria 14 

Turkey 1,060 France 363 Germany 6 

Morocco 1,022 Mexico 232 UK 1 

 

Table b. Durum wheat production in the World (2002-2006 avg.; Source: FAO Datasheets) 

Country 1,000 t Country 1,000 t Country 1,000 t 

Canada 4,171 Spain 1,359 Australia 350 

Italy 4,166 Syria 1,322 Portugal 168 

Algeria 2,418 Tunisia 1,240 Kazakhstan 144 

Russia 2,240 Greece 1,160 Argentina 90 

USA 2,180 India 1,160 Austria 55 

Turkey 1,980 France 1,031 Germany 33 

Morocco 1,616 Mexico 903 UK 6 
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Durum wheat in Italy 

In Italy durum wheat represents the major crop, being grown on 1.5 

million ha. Its annual production is 5 million t, approximately, against a need of 

6.0-6.5 million t that are mainly used by the pasta industry (table c). The crop is 

concentrated in Southern Italy and in the islands, where the 75% of the Italian 

durum wheat surface and the 66% of the country production are located (figure 

b). In Italy the quantity and quality of grain production is quite unsteady  due to 

variable weather and differentiated environmental conditions, agronomic 

management, and genetic background. Recently the Italian durum wheat yields 

steeply increased, thanks to the intensive breeding and to an expansion in the 

Northern regions, where there are more fertile soils (Boggini et al., 1992). In 

2006, however, because of the C.A.P. reform, the Italian durum wheat surface 

drastically reduced: 14% area loss and 19% less production were recorded than 

in the previous year. 

Figure b. Regional production of durum wheat in Italy (2004-05 avg., ISTAT) 

 
 

Most of the durum wheat that is produced and imported in Italy is used by 

the industry to make semolina. 
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Table c. Evolution of durum wheat balance in Italy (Source: Italmopa) 

Years 
Production 

1,000 t 

Import 

1,000 t 

Needs 

1,000 t 

Import/Needs 

% 

1966-67 1,685 631 2,316 27.2 

1976-77 3,230 396 3,626 10.9 

1986-87 4,493 908 5,400 16.8 

1996-97 4,419 1,311 5,730 22.9 

2004-05 5,666 1,510 7,176 21.0 

2005-06 3,605 1,500 5,104 29.4 

 

This amount is mainly transformed to pasta (48%), bread (6%) and other 

bakery products. The transformed foods are almost equally addressed to the 

internal market (53%) and to the exportation (47%) (Source: Barilla). 

Durum wheat yield limiting factors 

Durum wheat can be damaged by several biotic and abiotic factors that 

limit its yield and worsen the quality of its production. 

The major biotic adversities are represented by pathogenic fungi, which 

can infect various parts of the plant at different stages of growth. It is calculated 

that each year these pathogens cause million of tons grain losses (10-20% of 

the global production). Under particular circumstances and sites they can 

reduce yields of more than 80%. Many pathogens can be highly detrimental to 

the production quality as well. Wheat grain from diseased plants can lose the 

capacity to satisfy the demands of industrial procedures and health safety. In 

the last decade this latter problem has become increasingly important as the 

final consumer expects more rigorous controls on food healthiness. For this 

scope a series of new methodologies have been set up that can rapidly analyze 

great amounts of cereal grains. Today one of the most troublesome problems 

from this point of view remains the possible contamination of wheat kernels with 

mycotoxins that are difficult and costly to determinate and that are particularly 
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toxic in the human and animal diets, even at very low dosages (few ppm or 

ppb). 

The mycotoxins risk 

The study of mycotoxins is only recent but these molecules have always 

threatened man and animals health. Their diffusion is global, but the intensity of 

food contamination, whose detection is quite difficult, and its consequences 

vary among the different localities on the basis of the type of agriculture, dietary 

habit and health safety sensibility of the different people in the World. 

Figure c. Law limits concerning the milk contamination with aflatoxin M1 in 60 countries all over the World 

(Van Egmond and Jonker, 2004). In Italy the limit is 0.05 ppb; in the USA it is 0.50 ppb (10 times higher). 

 

 

This variability makes any comparison meaningless and partially explains 

why among the countries there are wide differences in the regulation limits 

about these substances in human food (figure c). Recently, the CEE has ruled 

the content of mycotoxins in food and feedstuffs, imposing precise limits for the 

different products (2174/03, 683/04 and 472/02 UE Reg.). 
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Mycotoxins are molecules that are produced by the secondary 

metabolism of various fungi, particularly those belonging to the genera: 

Aspergillus, Penicillium and Fusarium. 

The fusari mycotoxins are considered the most troublesome for wheat all 

over the World because of the wide diffusion of these fungi. A recent 

investigation of a joined commission of food additives experts (JECFA) and of 

the World Health Organisation (WHO) found a significant contamination, 

particularly by DON (a mycotoxin produced by fusari), in the grain of wheat 

grown everywhere in the World (57% of 11,022 samples contained up to 30 

ppm of the toxin). The European SCOOP project aimed at the evaluation of 

mycotoxin risk to man, found contaminations in 61% of 6,358 European wheat 

samples (FAO/WHO JECFA, 2001; Schothorst and Van Egmond, 2004). In Italy 

as well the mycotoxins more frequently found in wheat kernels are those 

produced by Fusarium spp. Their occurrence in the Italian production was first 

investigated in 1995 (Lops et al., 1998). The analyses revealed a high 

contamination frequency in the Emilia Romagna grains, sometimes with more 

than 1ppm DON, while the Southern samples resulted uncontaminated Triticum 

durum Desf. was more prone to contamination than Triticum aestivum L. 

Since then mycotoxins in wheat grain were thoroughly studied also in 

Italy. Some researches confirmed a strong association between Fusarium spp. 

ear diseases and DON in the kernels (Campagna et al., 2005). Pascale et al. 

(2000, 2001 and 2002) studied the effects of weather on ear syndrome and 

consequent DON contamination. In particular, they found that the disease 

diffusion and intensity, together with DON frequency and concentration levels, 

greatly depend on the amount of propagules that are present in crop residues 

and on the occurrence of high temperatures, humidity and rainfalls during the 

period: ear emergence (10.1 Feekes’ scale) to grain milk-dough maturation 

stage (11.3 Feekes’ scale). These requirements explain why, in Italy, the 

Northern productions, where these conditions are commoner, are more 

frequently contaminated than the Southern ones. 
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The fusari are the main causal agents of the “head scab” blight, a 

common syndrome affecting the spike of many cereals. The ear partially or 

totally dries down, with consequent heavy yield reductions.  The caryopses of 

infected ears have a high probability to be contaminated by mycotoxins that, 

under favourable conditions, are rapidly and abundantly produced by the fungi. 

Mycotoxin production generally begins in the field but it can continue throughout 

the storage period, encouraged by a scarce cleanliness of the storage facilities. 

The optimal conditions for mycotoxin production vary with the substrate, 

the fungus species and the isolate. Their production, however, depends also on 

well-defined ranges of both temperature and humidity. 

The commoner mycotoxins produced by fusari are trichothecenes, 

zearalenone, and fumonisins. In addition, moniliformin, beauvericin, and 

fusaproliferin have been occasionally reported as problematic (Logrieco et al., 

1990; Wiese, 1987). 

Trichothecenes 

They can be divided into two types: A and B. 

A-Type trichothecenes include: T-2 toxin (T2) and its derivatives (HT-2 

toxin, T-2 triol, T-2 tetraol), that are produced by strains of F. sporotrichioides, 

F. acuminatum, and F. poae; diacetoxyscirpenol (DAS) and 

monoacetoxyscirpenol (MAS), produced by strains of F. poae, F. equiseti, F. 

sambucinum, and F. sporotrichioides; and neosolaniol (NEO), produced by 

strains of F. sporotrichioides, F. poae and F. acuminatum.  

B-Type trichothecenes include: deoxinivalenole a.k.a. vomitoxin (DON) 

and its mono-acetylated (3-AcDON, 15-AcDON) and di-acetylated derivatives 

(3,15-AcDON), which are produced by strains of F. graminearum and F. 

culmorum; nivalenol (NIV) and its monoacetylated derivative (fusarenone X, 

FUS) and the di-acetylated derivative (4,15-AcNIV), produced by strains of F. 

cerealis, F. poae, F. graminearum and F. culmorum. 

Trichothecenes have shown to cause a variety of toxic effects in 

laboratory animals, including skin inflammation, digestive disorders, 



 

12 

haemorrhagic syndrome in internal organs, blood disorders, haemolytic 

imbalance and depletion of the bone marrow, immuno-suppression (leukopenia) 

and nervous system disturbances (IARC, 1993). In farm livestock they are held 

responsible for several mycotoxicoses, including haemorrhagic syndrome 

caused by A-type; emetic and feed refusal syndromes, associated with B-type 

(Rotten et al., 1996). T2 and DON have also been implicated in human 

toxicoses (ATA); but they have not yet proved to be genotoxic. Indeed, no 

trichothecene is classified as carcinogenicity compound to animals or humans 

by IARC (1993). 

Zearalenone 

Zearalenone (ZEA) is produced by F. graminearum, F. culmorum, F. 

cerealis, F. equiseti and F. semitectum. It is among the most widely distributed 

Fusarium mycotoxins in agricultural commodities and it is often found at 

relatively high concentrations, especially in maize grain. ZEA is both 

uterotrophic and estrogenic, and may cause reproductive disorders in domestic 

animals, particularly swine. It is responsible for recurring toxicoses in livestock, 

characterised by hyperestrogenism in swine, infertility and poor performance in 

cattle and poultry, and there is a possible impact on human health. The 

preliminary scanty evidence of ZEA genotoxicity is limited to mice and cultured 

mammalian and human cells. Thus it is not classified as human carcinogen 

(IARC, 1993). 

Fumonisins 

Fumonisins were first isolated from F. verticillioides, then they were found 

in cultures of F. proliferatum and in a few other Fusarium species, with unclear 

ecological distribution. Amongst them, fumonisin B1 (FB1) and fumonisin B2 

(FB2) represent the greatest toxicological concern. Feed contaminated by FB1 

cause leukoencephalomalacia in horses, pulmonary oedema in swine, poor 

performance in poultry, and altered hepatic and immune function in cattle. 

Moreover, home grown maize contaminated by FB1 has been associated with 
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oesophageal cancer of humans in Africa, China, and in the United States. The 

structural similarity with sphingosines suggests a role for fumonisins as 

depletion agents of the complex sphingolipids from biological membranes. This 

could account for their toxicity and, perhaps, their carcinogenicity. However, the 

evidence that F. verticillioides cultures and FB1 samples can promote liver 

cancer in rats, led to the classification of fumonisins as carcinogenic to animals 

and possibly to humans (Group 2B) (IARC, 1993). 

Wheat root and crown disease 

Wheat pathogens can be schematically classified according to the plant 

organ that they infect. Generally they are grouped into pathogens causing 

blights on leaves and ears and those rotting the root and the basal part of the 

culm (the so-called crown). 

In Italy these latter diseases are frequently referred to as “mal del piede”. 

This is a vague, all including terminology. It comprehends a complex syndrome 

that can be attributed to many soil-borne fungi, with different morph-

physiological traits. In other languages the disease is more precisely 

distinguished, according to the pathogen. For example, in French the 

terminology “piétin echaudage” refers only to the disease caused by 

Gaeumannomices graminis var. tritici (Ggt), while “piétin verse” indicates the 

root rots due to Fusarium spp., Bipolaris sorokiniana, Rhizoctonia cerealis and 

Ramulispora herpotrichoides. In English there are five terms: “take-all” defines 

the pathology caused by Ggt, “eyespot” that caused by Ramulispora 

herpotrichoides, “sharp eyespot” by Rhizoctonia cerealis, “rhizoctonia root rot” 

by Rhizoctonia solani, and “common (dryland) root and foot rot” the disease due 

to Fusarium spp. and Bipolaris sorokiniana. 

 

 

All the reported pathogens produce a certain amount of inoculum, whose 

modality of action vary according to: 
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a) Geographic site 

b) Edaphic  condition (soil conditions) 

c) Climate and weather courses 

d) Agronomic practices 

 

To better identify the disease causal agents, the influence of these 

variables has been studied for most single pathogens. However, the rot is 

frequently provoked by the infection of several species that can simultaneously 

or subsequently proliferate on the same plants and show synergic effects during 

the whole cultural cycle (Corazza et al., 1993 a and b). 

A common feature of all root and crown disease pathogens is that they 

spend most of their vital cycle in the soil, where they use crop residues as 

survival and diffusion means. They live on them as active mycelium or as 

dormant propagules. Their saprophytic ability is not only a specific trait but often 

depends on the amount and distribution of plant debris along the soil profile 

(Bateman et al., 1998, Innocenti, 1993). 

The competitive phenomena between the pathogens and the microflora 

living in the soil influence the primary infection potential in the autumn, at the 

beginning of the vegetative season (Garrett, 1970). A secondary contamination 

by low pathogenic species largely depends on the intensity of that primary 

contagion. Later infections, caused by species with long living soil-borne 

propagules, can also be important for the quantity and quality of produced grain. 

The simptomatology of the root and crown syndrome can vary according 

to: 

a) Main causal agent 

b) Weather conditions 

c) Edaphic conditions 

d) Phenological stage of the host plant 
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A typical symptom of the root and crown disease is a more or less wide 

necrosis on the roots and/or on the basal portion of the culm. This causes an 

insufficient water and nutrient supply to plants because the culm mechanical 

resistance and its conductivity potential are reduced. In both instances hot and 

dry springs, provoking water stress, cause the appearance of the so-called 

“white ears”, which give typically scanty caryopses. The mechanical damage to 

the culm favours lodging, which is worsened by strong wind and heavy rains. 

The ears, contacting the soil, can easily be infected by opportunistic pathogens 

that cause rot. Moreover, lodging increases the grain losses at harvest. Plant 

can die under heavy infections; this often happens soon after crop emergence 

(1.3-2 Feekes’ scale), when autumn is moist and mild, and with large amounts 

of inoculum in the soil (Wiese, 1987). The plant physiological status represents 

a major factor in the starting and development of the pathology. For example, a 

nutrition deficiency favours the attacks of G. graminis by slowing down the root 

growth (Hornby, 1998). Instead excessive N supply favours lodging of the 

diseased plants. It can also augment the “white ears” density due to water 

stress because N increases transpiration (Wiese, 1987). 

There exists a specific difference in susceptibility to this disease among 

the cereals. Wheat (both T. aestivum and T. durum) and triticale proved the 

most susceptible crops. Barley, thanks to its stronger root system, resulted less 

damaged by a same amount of inoculum in the soil. Oat revealed a higher 

resistance, particularly against G. graminis. Maize, rice, sorghums, and several 

wild Poaceae have a great importance in the pathogens survival and spreading 

in the absence of wheat (Domsh et al., 1993; Wiese, 1987, Matta, 1996). 

The major pathogens of wheat root and crown disease will be described 

more in detail in the following chapters. 
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Wheat root and crown disease main causal agents 

Fusarium spp. 

Taxonomy 

The genus Fusarium includes several species that are considered causal 

agents of the root and crown disease of cereals. Many Fusarium spp. are 

metagenetically linked to the teleomorph genera Nectria and Gibberella that 

belong to Hypocreaceae family and Ascomycetes class. Other species (e.g. F. 

culmorum) exist only as anamorphs and belong to the Hypomycetes class 

(Deuteromycotina). Throughout this paper all species will be called fusari, thus 

referring only to their asexual state. 

The main fusari causing the cereal root and crown syndrome are F. 

culmorum (W.G. Smith) Sacc., F. avenaceum (Fr.) Sacc., and F. graminearum 

Schwabe. Among them traditionally was included also Microdochium nivale (Fr.) 

Samuels & I.C. Hallet (in metagenetic linkage with Monographella nivalis 

(Schaffnit) E. Müller) that was classified as F. nivale (Fr.) Ces., until recently. 

The role of other Fusarium spp. as causal agents of this disease is still 

uncertain. Often they are considered scarcely pathogenic or not pathogenic at 

all: simple saprophytic fungi thriving in the rhizosphere, but their pathogenic 

capacity was reported variable (Balmas et al., 2000). Among them there are: F. 

sporotrichioides Sherbakoff, F. equiseti (Corda) Sacc., F. oxysporum (Schl.) 

Snyder & Hansen, F. solani (Mats.) Nirenberg, F. proliferatum (Mats.) 

Nirenberg, and F. tricinctum (Corda) Sacc. (Specht et al., 1988; Burgess et al., 

1988). 

Symptomatology 

The Fusarium disease on cereal plants is mainly characterized by brown 

spots on the roots, at the first or second node or flame-like necrosis spreading 

along the first internodes of the culm. However, many fusari can also cause 

seedling and ear diseases. Climatic conditions and, partially, the inoculum soil 

content can greatly change the symptoms (Cook, 1968; Parry, 1990). Seedling 
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withering can occur when infected seeds are used and with hot and dry spells at 

seeding time (Wiese, 1987). Root and crown rot appears later, and, again, it is 

favoured by hot and dry weather. Diseased plants, particularly when water 

stressed, suddenly dry down becoming easily recognizable (the so-called “white 

ears”) from the still completely green, healthy, plants. They mature earlier and 

produce few, scanty caryopses. All these effects can be ascribed to the injured 

parenchyma tissue at the culm base. The major interferences to the plant 

vascular system due to heavy infections can even kill the plants before 

flowering (Wiese, 1987, Matta, 1996). 

Under wet springs, many fusari can reach the ear. There they cause 

spike sterility and withered kernels. Beside, the caryopses can be contaminated 

by the mycotoxins produced by the fungi. 

Host range 

Fusarium spp. are generally polyphagous fungi but some of them can 

show a narrow specialization on single hosts, as to present “formae specialis”. 

Moreover, many fusari can saprophytically live for long periods on alternative 

hosts, such as wild and cultivated Poaceae, or even broad-leaf weeds (Matta, 

1996). Their pathogenicity varies according to the geographic site. For example, 

F. graminearum is considered the main responsible of fusari diseases on 

cereals in Australia and North America (Colhoun et al., 1964; Wong, 1985) but 

its importance is negligible in Europe (Corazza et al., 1987; Bateman et al., 

1995; Rossi et al., 1995) where, on the contrary, F. culmorum is more 

widespread and dangerous. The pathogenic activity is variable also in different 

isolates. Some isolates of F. equiseti and F. tricinctum, which are common 

species not only in agricultural land, have shown a high pathogenicity towards 

cereals both in controlled environment and in the field (Balmas et al., 2000), 

while innocuous F. culmorum isolates are largely reported in the literature (Salt, 

1978). Moreover, certain conditions of the host plant and weather can suddenly 

turn the fungus from a saprophytic to a pathogenic state (Matta, 1996). 
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Life cycle 

Although the transmission through infected seed can be frequent, the 

contaminated residues of the preceding crops represent the main inoculum 

source. The primary infection starting from the organic debris on the soil can 

last throughout the vegetative season. Notwithstanding a high tolerance to 

various climatic conditions, the infections by several fusari (e.g. F. culmorum 

and F. graminearum) prevalently occur under hot and dry weather, while others 

(e.g. F. avenaceum and M. nivale) are favoured by high moisture and relatively 

low temperatures. At crop emergence, the primary infection starts on the 

coleoptile and on the seedling roots, later it can infect the crown, the developed 

roots and the culm internodes. The upward progress of the disease is 

accomplished by secondary infections, which, however, still depend on the 

success of the first entrance (Wiese, 1987). The inoculum content in the soil 

before seeding, although can affect seedling emergence, is not always 

correlated to the disease intensity on adult plants, which appeared more 

influenced by weather conditions. Under rainy and humid springs (Pancaldi et 

al., 1994), the inoculum originated from the sporodochia at the stem base can 

infect all aerial plant organs through rain spattering (Jenkinson et al., 1994) or 

even with the insect aid (Sturz et al., 1983). 

On the crop residues the fungus can survive as active mycelium or as 

chlamydospores and perithecia, in the instance of pathogens with the sexual 

state. In the soil the survival is achieved only by chlamydospores, which, in 

some species, remain viable longer than two years. 

Ecology 

Fusarium spp. are common on the cereal crops all over the world. 

Species are not differentiated on the basis of their diffusion, but mainly on their 

pathogenic capacity. For example, in Australia the Fusarium disease is mainly 

ascribed to pathogenic strains of F. graminearum, while the isolates of this 

fungus were found scarcely damaging in Europe (Colhoun et al., 1964). In 

particular habitats Balmas et al. (2000) and Domsh et al. (1993) reported 
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virulent strains also of F. equiseti, which is a typical saprophytic, ubiquitous 

fungus that is quite common everywhere, in untilled soils. The various species 

show different climatic requirements. M. nivale is particularly abundant and 

harmful in Northern Europe (Colhoun et al., 1964) because it is mainly active in 

cold and wet periods, which are too short in warmer climates. However, a high 

presence of this fungus has been reported also in some parts of Southern Italy 

(Piglionica et al., 1975) under particularly wet winters. F. avenaceum as well 

results more harmful in colder climates, where it mainly damages emerging 

seedlings (Domsh et al., 1993). This marked behavioural variability of the 

different Fusarium strains as a function of edaphic and climatic condition, make 

their control extremely difficult and site-specific. 

A high N fertilization generally favours Fusarium spp., while they show a 

great adaptability to other soil factors, like pH, P, K, and organic matter soil 

content. Their survival ability endures a quite wide range of soil temperatures 

and moistures, with different optima for the single species. For example: F. 

culmorum and F. graminearum prefer hot and dry soil, while F. avenaceum and 

M. nivale colder and wetter conditions. 

Diagnostic techniques 

Visual diagnosis: Typical disease symptoms are spots on the first 2-3 

basal internodes, slightly narrowing at the nodes. At the crown a flame-shaped 

necrosis can be often noted, that can extend over a large portion of the first 

internode. Inside the culm, mainly at the node level, a whitish or rose mycelium 

can often be observed. 

The fusarioses identification is not easy for it is quite impossible to 

distinguish them from B. sorokiniana disease. In case of serious infections, the 

typical brown elliptical spots of this latter fungus join together and give a diffuse 

browning that resembles that of Fusarium spp. The symptoms of G. graminis 

disease are alike as well, mainly in heavy infections. Moreover, all three 

pathogens, besides causing similar symptoms, can be simultaneously found on 

a same host plant. 
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Photo 1. Darkening at the crown up to the 1st-2nd node of the culm. The symptoms 

can be ascribed either to Fusarium spp. or to B. sorokiniana. 

 

Conventional isolation methods: Fusarium spp. can be isolated in the soil 

either directly, from the solid matrix, or through a serial dilution technique. The 

latter method is mainly used for the species that survive only by 

chlamydospores (Windel, 1992). The isolation from diseased tissues is also 

possible. They can be grown on many agar media (e.g. PDA, MPA, etc.). For 

species identification it is advisable to induce the sporulation and especially the 

macroconidia production. For this scope PDA nor MPA are not always 

adequate. Many species do not sporulate on them and, even if they do, their 

spores are misshapen. For the sporulation, many researchers use sterile 

dianthus leaf water agar (Nelson et al., 1983) or SNA (Spezieller Nahrstoffarmer 

agar), with a previous exposure to near ultraviolet light (Nirenberg, 1981). The 

species diagnosis is based on several parameters, such as the morphology, the 

colour, the growth speed of mycelium, the presence of chlamydospores, the 

sporodochia colour, the conidiophora type, the presence of micro- or 

macroconidia, etc.  (Nelson et al., 1983). 
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Bipolaris sorokiniana (Sacc.) Shoemaker 

Taxonomy 

Bipolaris sorokiniana is the anamorph of Cochliobolus sativus (Ito & 

Kurib.) Drechs., an Ascomycete of the Plesporaceae family, Dothideales 

subdivision. Once it was included in the genus Helminthosporium; for this 

reason the disease that it causes on many Poaceae is still frequently called 

Helminthosporiosis (Matta, 1996). 

Symptomatology 

The symptoms are similar to those reported for Fusarium spp. at the 

crown zone and on the first internodes scorches that are slightly darker than 

those that fusari develop. The disease can also reach the root system, but 

generally with little damage. Under wet weather, the lower leaves can be 

infected from the diseased crown, developing dark spots, particularly evident 

after flowering. B. sorokiniana disease is more manifest under hot and dry 

weather, which favours water stress in the host plant. However, differently from 

Fusarium spp., its infection never reaches the spikes (Wiese, 1987). 

Host range 

It is a pathogen of a wide range of Poaceae. However, it can be isolated 

also from several dicotyledonous crops, on which it causes only slight damages 

(Stack, 1992; Matta, 1996). 

Life cycle 

It is similar to that of Fusarium spp. The mycelium mainly survives on 

infected plant debris as a saprophyte. It contaminates the kernels with which 

gets in touch. Its dormant conidia can survive in the soil for many months, 

waiting for a host. Therefore primary infections can start from the seed, from 

crop residues or from free-living in the soil conidiospores. Not too low 
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temperatures are required. Secondary infections develop from the culm lesions, 

from which conidia are produced that infect leaves in wet periods. However, the 

most serious damages occur in hot and dry early summers, when the injured 

vascular system causes water stress. In the open field the disease often 

manifests with irregularly spread patches of dwarfed and chlorotic plants 

(Wiese, 1987) 

Ecology 

It is widespread all over the World, wherever cereals are grown. This 

fungus is well suited to various climatic situations. Its ecological requirements 

are similar to those of Fusarium spp., therefore the two pathogens are often 

isolated together. Like Fusarium spp., it benefits from high N concentrations in 

the media. In general, it tolerates wide variations of soil pH and humidity 

(Domsh et al., 1993). 

Diagnostic techniques 

Visual diagnosis: As already mentioned, it is hard to visually identify the 

pathogen because of the resemblance of its symptom with that of fusariosis. 

The spots on the internode just below the crown are perhaps the most 

distinctive symptom. 

Conventional diagnostic methods: They consist of the isolation of the 

pathogen from soil or from diseased tissue samples kept on culture media. Its 

mycelium is green-black and originates several erect and septate 

conidiophores. They stand alone or clustered so to give a velvet aspect to the 

colony. The conidia are slightly curved with 2-3 septa, where the cell wall is 

thicker. They are well identifiable with an optical microscope. 
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Gaeumannomyces graminis (Sacc.) Von Arx & Olivier 

var. tritici Walker 

Taxonomy 

This Ascomycete was previously classified as belonging to the 

Diaphotales order. Recently it was linked to Magnaporthe spp. and now it is 

included in the Magnaporthaceae family, which hasn’t yet been assigned to any 

specific order (Cannon, 1994). The anamorph of G. graminis var. tritici is 

Phialophora radicicola Walker and both states are collectively referred to as the 

“Gaeumannomyces-Phialophora complex”. 

Symptomatology 

The primary infection starts on the seminal roots of autumn sown wheat 

on whose surface dark runner hyphae develop. The hyphae enter the root 

through the cortex, colonizing and destroying the vascular tissue. Diseased 

roots and stem darken to nearly black and the lower leaves typically become 

chlorotic. If the plant doesn’t die, it produces few or no tillers. With time, the 

black lesions can spread toward the root tips and extend up into the crown 

tissue. If the soil remains moist for long periods, the disease may patchily 

spread in the field. Eventually, the infected plants develop “white ears” and die 

prematurely. 

Host range 

G. graminis var. tritici is a pathogen of wheat but can also be found on 

many other cereal crops wild grasses and volunteer cereal weeds. 

Life cycle 

During the intercrop period, G. tritici saprophytically survives on crop 

residues, which represent the major inoculum source. The amount of viable 

inoculum that remains in the soil sharply drops in the absence of susceptible 
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crop. This is usually sufficient to drastically reduce the disease incidence after a 

break year in cereal successions. Perithecia, which subsequently release 

ascospores, are sometimes produced at the crow of cereal plants or on 

stubbles. However, this propagation is considered negligible in the field. 

Ecology 

G. tritici distribution is worldwide, wherever wheat is grown. It is more 

frequent in temperate regions or at high elevation in the tropics. It prefers 

neutral or alkaline soils and thrives on water soaked and NP deficient soils. 

Nitric-N is more favourable to the fungus than ammonium-N. 

 

 

Photo 2. G. graminis. Black lesions develop on the root and extend up into the crown 
tissue 

 

Diagnostic techniques 

Visual diagnosis: As above mentioned, the identification of the fungus on 

the basis of a simple visual diagnosis is not easy because of the resemblance 
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of its symptoms with those of Fusarium spp. Perhaps the darkening of the first 

internode below the crown is the more typical feature. 

Conventional diagnostic methods: They consist in the isolation from 

infected tissue or soil samples kept on cultural media. The main fungus feature 

is a black-green mycelium, which produces several erect and septate 

conidiophores. They develop alone or clustered conferring a velvet aspect to 

the colony. The conidia are slightly curved with 2-3 septa. They are easily 

recognizable with an optical microscope. 
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Ramulispora herpotrichoides (Fron) Arx 

Taxonomy 

It is the anamorph of Tapesia yallundae Wallwork & Spooner, which is an 

Ascomycete of Helotiales subdivision (Matta, 1996). R. herpotrichoides has two 

varieties that differ according to their conidia morphology: vaR. herpotrichoides, 

with 4-septate conidia (35-80 μm length), and var. acuformis, with 4-6 septate 

conidia (43-120 μm length). Both of them are cereal pathogens (Murray, 1992). 

Simptomatology 

The initial disease symptoms are dark, irregular spots that become more 

evident at the ear emergence stage. The symptoms at the plant base are 

typically long strikes running along the culm. They are grey to yellowish-brown 

in colour, with darker centre and margins, and are called “eyespot” lesions. 

Host range 

R. herpothrichoides parasites all herbaceous plants; but mainly Poaceae. 

Life cycle 

It is a polycyclic pathogen. Its life starts with a primary infection that 

originates from the crop residues, where the fungus survives as active 

mycelium. Then the disease progress with secondary infections brought about 

by conidia that are produced by the mycelium from the crown lesions. The 

primary infection begins whenever the autumn, winter, or spring temperatures 

fall below 16°C. Epidemiologic researches have shown that the amount of 

inoculum left in the soil until the next crop depends on the secondary infections 

(Wiese, 1987). R. herpotrichoides mycelium can survive also on wild Poaceae, 

which represent another major factor of inoculum diffusion and survival. The 

sporulation has a maximum at 10°C, but can occur within 0-20°C range.  
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The fungus can survive as a saprophyte on infected residues up to three 

years. However, adverse edaphic conditions and many agricultural practices 

(e.g. soil ploughing) can markedly reduce its survival (Garrett, 1970; Wiese, 

1987). 

Ecology 

In Europe R. herpotrichoides has been frequently reported in France, 

where it is considered a major problem in all cereal crops (Colbach et al., 1995), 

and recently also in Central Europe (Cavelier et al., 1997). It has also been 

found in South and North America, in New Zealand, Australia, and Africa. In 

Italy it appeared less common and less damaging (Innocenti, 2000 b). 

Mild winters and cool, rainy spring favour the fungus. However, also dry 

and hot spring can be dangerous on the plants infected in winter. The fungus 

thrives in high N fertilized soils, particularly when their moisture remains high 

throughout plant life. 

Diagnostic techniques 

Visual diagnosis: The disease shows clear symptoms on adult plants, but 

only when the lesions are not too extended. They consist of eyespots that are 

grey to yellowish brown, darker in the central zone than in the margins. The 

lesions can look like those of R. cerealis, but they differ having more blurred 

margins and a darker centre. The grey mycelium inside the culm can be seen 

trough the lesions, while externally, on the infected tissue, dark hyphal stroma 

develop and produce conidia. Sometimes, in heavy infections, the culm twists 

and breaks down, causing lodging. As mentioned above, many lesions can 

merge together and determine a diffuse darkening of the culm that is not easily 

distinguishable from the symptoms of Fusarium spp. or B. sorokiniana. All three 

species can live together on the same culm part. This coexistence has been 

shown both with conventional isolates (Bateman, 1993) and with PCR 

techniques (Turner et al., 1999). It often causes an overvaluation of Fusarium 

spp. dangers with respect to R. herpotrichoides. 
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Conventional diagnostic methods: The isolation from diseased tissues is 

not simple because of the scarce competitiveness of the fungus in cultural 

media, mainly in the rich ones, like PDA. The isolation is easier when the 

tissues are still green and with less presence of bacteria and other fungi. After 

having superficially sterilized the tissue, it is better to use poor agar media (e.g. 

water agar), enriched with antibiotics, in particular with rifampicin (Murray, 

1992). Mycelium needs 18-20°C to grow and produce conidia when stimulated 

with NUV light. A typical mycelium growth progress slowly, regularly, and in a 

concentric way around the inoculum site. The mycelium appears compact and 

hyaline. The isolation from the soil is very hard. It can be done from infected 

residues, after an incubation period in a humid chamber. The conidia directly 

originate from the tissue and can thus be collected with a small spatula (Murray, 

1992). 

 

 

Photo 3. Ramulispora herpotricoides. The symptoms at the plant crown are grey to 
yellowish-brown longitudinal spots with darker centre and margins which are called 

eyespot lesions 
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Rhizoctonia spp. 

Taxonomy 

Both Rhizoctonia solani Kühn and Rhizoctonia cerealis Van der Hoeven 

can be cereal pathogens. The first one is the anamorph of the Basidiomycete 

Thanatephorus cucumeris (Frank.) Donk; the second of Ceretobasidium cereale 

D. Murray & L.L. Burpee. In anamorph state they spread only by mycelium. 

Both species can be divided into anastomosis groups, i.e. in accordance with 

the possible hyphal fusion between compatible strains. AG-8 is the commoner 

R. solani pathogen of the cereal root system. Also R. cerealis was divided into 

several anastomosis groups (CAG), but their incidence is still unclear (Carling et 

al., 1992). 

Simptomatology 

R. solani can be a very noxious pathogen of the cereal root systems, 

where it causes rot. Its visual diagnosis is difficult because at sampling the 

infected root tear off, remaining in the soil. The extracted plants show only slight 

spots on short pieces of roots. In some circumstances the infection is so heavy 

that all roots almost disappear. The root injury causes plant dwarfing, lodging 

and “white ears” in adult crops. Sometimes the fungus directly kills the seedling. 

The pathogen infection can facilitate the entrance of other, secondary invaders 

(e.g. Acremonium spp., Epicoccum spp., etc.). These fungi can prolong the 

radical disease even during the hotter months, when R. solani normally 

regresses. On the contrary, R. cerealis is a pathogen of the culm. Its symptoms 

are often mistaken with those of R. herpotrichoides. They appear as very sharp 

eyespots, with dark margins and white centre, generally located on the first 

basal internodes. These spots are some cm of width but they can merge so as 

to enclose the whole culm circumference. When this happens the plant is 

particularly susceptible to lodging. Also the vascular system is damaged, but 
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usually less intensively than by other pathogens. However, patches of “white 

ears” plants can be observed in the field. 

Host range 

The hosts vary with the anastomosis groups. The cereal root rots is 

usually ascribed to AG-8 R. solani. The other groups are either saprophytic or 

parasite other hosts, many of which are cultivated plants, like potato, sugarbeet, 

Fabaceae and Brassicacae species (Carling et al., 1992). R. cerealis is a 

polyphagous fungus on the Poaceae species, with a high saprophytic capacity. 

Probably for this fungus as well there are specializations of various anastomosis 

groups, but they are still scarcely known. 

Life cycle 

The mycelium of both species can easily saprophytically survive on plant 

residues or free in the soil, where it is very resistant to microbial attack. The 

infection starts soon as it gets into contact with the host, generally soon after 

emergence. Usually R. solani enters the root, while R. cerealis infects the 

lowest leaves sheaths. At first it spreads superficially towards the apex, then 

inside the foliar parenchyma. When it reaches the culm it determines the typical 

eyespots. For this fungus primary or secondary infection cannot be 

differentiated because the mycelium is always active. Its constant growth does 

not allow any conidial stage. Therefore the teleomorph role in the disease 

seems negligible (Wiese, 1987). 

Ecology: 

R. solani is widespread in all temperate regions, but not always behaves 

as a pathogen. For example, heavy damages have been reported in Australia, 

USA, Europe, but not in Italy. R. cerealis is common in North America, Europe 

and also in Italy (Innocenti et al., 2000 a; Rossi et al., 1995). The first fungus is 

prevalent in wet and cool environments, while R. cerealis thrives in hot and dry 
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climate. R. solani prefers humid soils while sandy and slightly acid soils favour 

R. cerealis. 

 

 

Photo 4. Rhizoctonia spp. Symptoms located on the first basal internode. They look 

like sharp eyespots, with marked dark margins and white centre. 

 

Diagnostic techniques 

Visual diagnosis: The determination of R. solani through the examination 

of its symptoms is particularly difficult because the infected roots easily tear off 

from the plant and remain in the soil. On the contrary, R. cerealis is easier to 

recognize for the typical eyespots shape of its disease. Moreover, 

pseudosclerotia, which are characteristic survival propagules of the fungus, are 

often found on the lesions. 

Conventional diagnostic methods: The mycelium isolation is quite easy 

when infected tissues are grown on agar media. Instead the serial dilution 

method to isolate Rhizoctonia spp. from the soil cannot be used for the absence 

of conidia production. However, the fungus sclerotia can be directly extracted by 
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sieving the dried soil particles. In the agar media rhizoctonia colonies are 

typically yellow-brown in colour and grow rapidly. They develop little aerial 

mycelium and concentrically produce sclerotia that become dark brown with 

time. Microscopically, the fungus is characterized by narrow hyphae at the 

lateral branches that depart at right angle from the main hypha. R. cerealis 

differs from R. solani for the darker colour of its mycelium, for larger hyphal 

diameter and, particularly, for binucleate cells instead of polynucleate. The 

anastomosis groups can be determined by growing mycelia on water agar and 

letting intercrossing in a same plate the unknown colonies with tester strains 

(Parameter et al., 1969; Carling et al., 1988). 
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Wheat root and crown disease in Italy 

Notwithstanding the wide diffusion of root and crown disease in the 

Italian wheat, the papers dealing with this pathology are relatively few, 

particularly those treating the epidemiologic aspects. This is mainly true in the 

Northern regions, where only Picco (1985), Innocenti et al. (1985, 1986 and 

1992), Rossi et al. (1995), and Toderi et al. (1976 and 1978) have studied the 

pathology in the last 20 years. In the South, where durum wheat is 

concentrated, the researches have been more numerous (Frisullo et al., 1991; 

Piglionica et al., 1975 and 1976; Corazza et al., 1987, 1993 a; Balmas et al., 

1992; Cappelli et al., 1977; Covarelli et al., 2000). 

Many authors studied the disease as influenced by various factors, such 

as: botanical species (Corazza et al., 1998 and 1999), crop variety (Corazza et 

al., 1987; Rossi et al., 1995), fungicide efficacy (Frisullo et al., 1978; Covarelli et 

al., 2000), N fertilization (Cappelli et al., 1977), crop sowing date (Covarelli et 

al., 2000; Cariddi et al., 1985), crop residue management (Corazza et al., 1993 

a) soil tillage, and crop rotation (Innocenti, 1993 and 1996; Innocenti et al., 2000 

a). 

Amongst the fungi responsible for the “mal del piede” syndrome, F. 

culmorum resulted the most frequent and dangerous pathogen all over Italy, 

particularly on durum wheat grown in the South (Innocenti, 1996, Innocenti et 

al., 2000 a; Corazza et al., 1987, 1998 and 1999; Piglionica et al., 1976; Frisullo 

et al., 1991). Beside this species, M. nivale was found extensively spread 

(Rossi et al., 1994; Piglionica et al., 1975 and 1976), particularly when 

investigations were made in spring, with weather more suitable to the fungus. 

All other species have been reported only sporadically, though sometimes they 

showed really heavy infestations. This happened, for example, for G. graminis 

(Innocenti, 1992), R. herpotrichoides (Innocenti et al., 2000 b; Covarelli et al., 

2000), B. sorokiniana (Rossi et al., 1995; Corazza et al., 1999), R. cerealis 

(Rossi et al., 1995; Innocenti et al., 2000 a) and R. solani (Corazza et al., 1998). 
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Sporadic resulted the frequency of other Fusarium species that are potentially 

pathogenic to durum wheat. 

The influence of several factors on the development of the disease was 

found extremely variable, probably as a function of the different environmental 

conditions, where the researches took place. Thus the experimental results are 

not easy to generalize. 

Control methods of wheat root and crown disease 

The control of root and crown disease in the Italian wheat is extremely 

difficult for several reasons, among which: a) the number of possible causal 

agents, b) the weather fundamental role on the infection frequency and severity 

and c) the necessity to obtain satisfactory crop yields with a minimum 

environmental impact. Being a complex syndrome, its control requires multiple 

managements. Indeed, the techniques that are aimed at the control of a single 

pathogen are usually unsuccessful. Sometimes good results are obtained, but 

they are sporadic and generally last for short periods of time. The eradication of 

a causal agent often favours another one, which can be even more noxious 

than the target organism. The large diffusion in French wheat fields of R. 

cerealis, was attributed to the successful, widespread chemical control of R. 

herpotrichoides. According to Bateman et al. (1999), a complete control of G. 

tritici can increase the F. culmorum infections. This agrees with what Cavazza 

(pers. comm.) observed on durum wheat grown in the Ozzano experimental 

farm of Bologna University, where the control of G. graminis with agronomic 

practices favoured the fusariosis. Chemical control and the development of 

genetic resistances in crops have received great importance in fungi 

management within the intensive agriculture of the developed countries. 

Unfortunately, for most of the wheat pathogens both methods are often not so 

effective or cheap enough to be extensively employed. This is particularly true 

for Rhizoctonia spp. and G. graminis. The introduction of genetically resistant 

varieties has been sometimes successful, but not thanks to a direct action 

against the pathogen, but for a better resistance to the consequences of its 



Soil tillage and crop rotation effects on Triticum durum (Desf.) yield and mycotoxins content in its grain  

35 

infection. This is the instance of short wheat varieties, which can better resist to 

lodging, or varieties with stronger and branched root system that can replace 

rotten portions (Hornby, 1988). However, it should be stressed that the new 

cultivars do not reduce the amount of inoculum in the soil. Therefore from a 

phyto-pathological standpoint their use is not so useful. In the past the seed 

treatment with systemic benzimidazoles resulted quite successful against 

Fusarium spp. (Frisullo et al., 1978; Roberti et al., 1992). However, the currently 

increasing distrust of the public opinion regarding pesticides makes their use 

less recommended also in intensive agriculture. 

Within a sustainable agroecosystem the biological control should receive 

a major importance because it exploits the natural cycles of biotic and abiotic 

elements, with a reduced environmental impact. This term comprehends all 

measures that negatively affect the pathogens. The methods can be direct or 

indirect:  organisms that are not normally involved in the Host-Parasite complex 

can be used (Matta, 1996), or we can physically modify the environment to 

disfavour the parasites. The direct biological control consists in introducing 

antagonists with the target pathogen in the soil or on the host plant. They can 

act through the following mechanisms: a) predation, 2) competition, 3) 

hyperparasitism, 4) antibiosis and 5) plant resistance induction. The 

conventional techniques for using mycoparasites to control fungi are the 

treatment of seed or propagation material and the spreading on tilled soil of 

their propagules in liquid or semi solid formulations (Chet, 1990). 

The most utilized organisms against the mycopathogens belong to the 

genera Trichoderma e Gliocladium. In controlled environments (laboratory and 

glasshouse) Trichoderma strain on wheat proved successful in controlling root 

and crown disease pathogens, such as Fusarium culmorum (Roberti et al., 

2000), G. tritici (Almassi et al., 1991; Dunlop et al., 1989; Simon et al., 1988) 

and R. cerealis (Innocenti, 1989). Unfortunately their application in the open 

field seldom gave satisfactory results and appeared not yet economically 

recommended. The use of low virulence strains of G. graminis or Phialophora 

spp. to check G. graminis gave some positive results (Tivoli et al., 1974), but 
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the action of less virulent strains is still uncertain. The use of not-pathogenic or 

scarcely pathogenic fusari (e. g. F. equiseti) can be interesting. In the 

glasshouse they showed the ability to reduce the occurrence of F. culmorum 

disease, probably through competition for infection sites (Balmas et al., 2000), 

but further confirmations in the open field are needed. The successes obtained 

with Pseudomonas spp. strains applied in seed treatments to contrast G. tritici 

appear more promising (Cook, 2000). These organisms produce antibiotics with 

a powerful inhibitory activity towards G. graminis (Thomashow et al., 1988). 

However, their scarce action against other root pathogens, like R. solani, 

represents a limiting factor in their widespread agricultural use (Cook, 2000). 

Biological control has other drawbacks. For example, the current methods of 

antagonist applications in the field do not allow it to develop sufficient biomass 

and persistence in the soil. Indeed the newly introduced organism suffers both 

from the competition of soil microflora and from sub-optimal soil conditions. 

Therefore repeated applications would be required, intolerably rising the costs 

of control. Moreover, many of the purposed antagonists are site-specific and 

require precise environmental, edaphic conditions that hinder their widespread 

commercialization. Recently organic matrixes as means to carry the useful 

organism into the soil have been tested with the aim of developing an active 

and stable biomass in the soil. Today the most promising matrix appears the 

compost originated from the differentiated organic waste disposal. Several 

researches have found that some physical, biological and chemical factors in 

the compost enhance the efficacy of the antagonist, prolonging and stimulating 

its activity (Postma et al. 2000). If this use will spread we could simultaneously 

obtain numerous benefits: the amendment of soils, their protection from runoff 

and erosion (Giardini, 1982), together with a reduction of waste disposal 

problems. 

The indirect biological control is essentially based on the use of one or 

more agronomic practices aimed at limiting the pathogens spread by: a) 

eradication of the inoculum from the soil, b) enhancement of the competition 
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and inhibitory activity of naturally occurring soil microflora and c) optimization of 

the soil conditions to create a more favourable environment to cropped plants. 

Amongst the agronomic practices, soil tillage can directly destroy the 

inoculum in the soil. Ploughing, by overturning sods, carries the pathogen 

inoculum present in crop residues in deeper soil layers, where there are sub-

optimal edaphic and environmental conditions (Giardini, 1982). Moreover, it 

determines a dilution along the soil profile of the inoculum. This reduces its 

infective potential by removing it from the first cm below the soil surface, where 

the crop seed will be placed. In that way a seedling infection soon after 

germination is less probable (Innocenti et al., 2000 a). Also the soil ripping 

(without the sod turning) can destroy some fungi by fragmenting their hyphal 

chains, particularly those, like Rhizoctonia spp., which develop large mycelium 

nets in the soil (Wardle, 1995). 

Some other agronomic practices can reduce the soil inoculum. Rotations 

can be particularly successful against highly specialized pathogens, like G. 

graminis or R. herpotrichoides. The best results can be obtained by alternating 

wheat with not-host crops (Innocenti et al., 2000 a; Rovira, 1985), with set aside 

(Cook, 2000), with host crops sown in spring (Cook, 2000), or late in the autumn 

(Covarelli et al., 2000; Hornby, 1998). The fungi with a low saprophytic capacity 

can’t survive on plant debris for a long period without the host plant. Therefore 

they will be rapidly replaced by the resident saprophytic microflora (Cook, 

2000). The rotation of wheat or other winter cereals with not-host crops enriches 

the soil with an alternative biotic community that replaces the previous 

population by competitive effects (Innocenti et al., 2000 a; Kollmorgen, 1985). 

The positive effect of not-host crops can be due not only to the selection of a 

different microflora but also to the production of root essudates with antibiotic 

actions (Baker et al., 1982). According to some authors (Cook, 2000; Yarham et 

al., 1981), soil tillage that less disturb or do not disturb the soil at all (like 

minimum or no-tillage), can favour the settlement of the antagonist fungi, which 

can help control the diseases. 
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Many agronomic practices are aimed at the improvement of crop plant 

physiology. The same ploughing, for example, by creating large macroporosity 

in the soil: a) increases the water availability for the crop by enlarging the water 

reserves, b) prevents water stagnation risks, reducing the problems of root 

asphyxia and root rot and c) increases the volume of soil available for root 

growth. However, also no-tillage can improve soil structure and nutrient 

availability by favouring the organic matter build-up in the first layers of soil 

(Giardini, 1982). A uniform and adequate sowing density can reduce the wheat 

susceptibility to lodging (Wiese, 1987). Nitrogen fertilization as well can greatly 

influence the physiological status of the crop. It can improve the growth and 

strength of host plants that thus can better resist to the infections. But excessive 

N rates favour lodging and increase crop transpiration, thus worsening the 

water stress of infected plants (Wiese, 1987). The same type of nitrogen 

compound used in the fertilization can influence the interaction host-parasite. It 

was shown that ammonium is less favourable to G. graminis. By lowering soil 

pH, it increases manganese availability that stimulates antagonist bacteria in 

the rhizosphere  (Sarniguet, 1990). 

Effects of soil tillage on wheat root and crown disease 

Schematically soil tillage today has three variants: 

 

a) Ploughing (to various depths, generally from 20 down to 50 cm) 

b) Minimum tillage (with various tools, without the sod turning effect 

of ploughing) 

c) No tillage (direct sowing, with crop residues on the soil surface) 

 

The three systems have a great impact on soil habitat. Soil tillage directly 

influence the physical and chemical soil properties, such as the moisture 

content, the aeration, the temperature, etc., all of which determine the root 

growth and nutrient assimilation. The physical impact on soil microhabitat and 

the dislocation along the soil profile of soil pathogen and of their antagonists 
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can directly affect the incidence and severity of root and crown disease 

(Sumner et al., 1985). The sod overturning operated by ploughing has 

numerous advantages, like the reduction of weed seedbank, the burial of crop 

residues and propagules, the placement of fertilizers at an optimal depths, the 

reduction of water stagnation risks, etc. However, in the last years this practice 

has been abandoned in many developed countries due to its high costs both 

economic and energetic. Besides, its ecological impact is considered too heavy. 

Ploughing, by a better soil aeration, improves organic matter mineralization, 

thus depleting the soil of this important component. Soils with less organic 

matter, particularly in the shallower layers, are more prone to erosion, 

superficial runoff and pollution risks due to applied chemicals. Moreover they 

show a reduced nutrient availability to plants (Giardini, 1982). Therefore 

nowadays ploughing is considered beneficial only in heavy soils and in localities 

with high precipitations in the autumn-winter period, where soils can get water 

saturated. The economic benefits of reduced tillage greatly depend on the crop 

requirement of soil structure. Some plants, like sugarbeet, sunflower, etc., are 

particularly favoured by aeration deep along the soil profile; others, like many 

shallow rooted cereals (e.g. wheat, barley, etc.) are less demanding. According 

to Giardini (1982), also in the heaviest soils a ploughing depth to 20 cm should 

be sufficient to obtain a satisfactory economic return from these latter crops. For 

them minimum or no tillage is often preferable. 

No tillage (sin. zero-tillage, sod seeding, direct drilling, etc.) is one of the 

most revolutionary agronomic practices of the last century. It consists in the 

sowing of a crop without disturbing the soil. That means with the soil surface still 

covered by the residues of the preceding crops. It demonstrated successful all 

over the World, particularly on lighter soils, on sloping land prone to erosion, or 

on low in organic matter soils. With respect to ploughing no tillage has the 

advantage to: reduce cultivation costs to a minimum, limit the erosion risks and 

favour the humification processes of soil organic matter. A stable high organic 

matter reserve is particularly beneficial also from an ecological point of view. It 

arises the soil cation exchange capacity and absorption power, which are 
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important prevention means of water table pollution by agricultural chemicals. A 

drawback of no tillage is a major presence of weeds whose seeds are less 

disturbed. This contributes to a seedbank build up, mainly on the soil surface, 

with an increased emergence of weed seedlings. The recent progress in the 

weed control with the availability of safer and economic herbicides (e.g. 

glyphosate) has markedly reduced this problem in the last years. One of the 

disadvantages of no tillage not so easily resolvable remains the risk of water 

stagnation in heavy, clayey soils, which are typical, for example, in the Italian 

eastern Po Valley, particularly with high precipitations in the autumn-winter 

period. 

Regarding the no-tillage effects on the root and crown syndrome in 

wheat, the researches have been few and their results often contrasting. Direct 

sowing showed little influence on the mobility and diffusion of R. herpotrichoides 

(Herman et al., 1985; Vez, 1979; Yarham et al., 1979; 1981), and Cook (1977) 

did not find any significant difference between no tillage and ploughing. G. 

graminis demonstrated a variable response: in an American research take-all 

was more aggressive on direct tilled crops (Moore et al., 1984), while a study in 

the Czech Republic gave the opposite results (Novotny et al., 1981). Other 

experiments showed no significant differences on this fungus between 

ploughing and no tillage (Yarham et al., 1981). When no tillage was found more 

effective against the pathogen this was attributed to the more compact soil at 

the shallower layers that limits the movements of the fungus propagules or 

mycelium. 

Minimum tillage has been studied on heavy Italian soils (Triberti et al., 

2000). This practices is aimed at the same beneficial effects of not ploughing: a 

decrease of cultivation costs, a reduction of erosion risks, and slower soil 

organic matter degradation, which makes the soil management more 

sustainable. In one of its simpler variants minimum tillage is obtained by a 

unique disc harrow passage before the seeding, comporting a shallow soil 

disturbance (15-20 cm, on average). In more intense minimum tillage a ripper 

passage and one or two harrow passages are added (Giardini, 1982). With 
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respect to no tillage, minimum tillage has the advantage to form a looser soil, 

with consequent soil warming, especially in spring, and minor water stagnation 

risks, and to favour a slightly better burial of cultural residue into the soil, but 

never so good as that obtained by ploughing. Thus it can be considered a 

middle course between ploughing and no tilling. As ploughing it superficially 

disturbs the soil and thus bring about a direct physical eradication of many 

fungal inoculums, but, like no tillage, it leaves most crop residues, which are the 

major infection sources, in the first cm of soil, where the crop seed will be 

placed. From the literature it seems that minimum tillage favours the fusariosis 

and R. herpotrichoides infections (Innocenti et al., 2000 a; Innocenti, 2000 b). 

Instead its effects on G. graminis are still uncertain (Yarham et al., 1981). 

However, high disease damages have been reported in the instances of heavy 

infestations of this fungus on minimum tilled plots (Innocenti, 1992). Minimum 

tillage can affect soil mycopathogens also indirectly. For example a repeated 

minimum soil disturbance over the years usually lowers soil pH and this 

acidification, in the long term, should reduce the pathogenic activity of some 

fungi, such as the same G. graminis (Triberti et al., 2000). 

Crop rotation effects on wheat root and crown 

disease 

Since the Roman times, and even before, the crop rotation has always 

been considered an important mean to prevent the soil fertility loss that is 

frequently observed when a same crop is repeated on a field. Today the 

monosucession of some crops (e.g. maize, rice, cotton, etc.) is widespread in 

some countries with a highly specialized and mechanized agriculture, but it is 

more often criticized. The monosuccession cannot be included in a sustainable 

agriculture (particularly in organic farming) mainly because it greatly relies upon 

an effective chemical control against pathogens and weeds. The crop 

succession beneficial effects on the agro-system, however, are highly variable 

according to the adopted rotational design and to the chosen crops. From this 

point of view a rough classification divides crops into these groups: 
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Improving crops (e.g. leguminous leys) that improve the soil structure and the 

nutrient (mainly N) availability. 

Impoverishing crops (e.g. winter cereals, sorghums, colza, etc.) that leave the 

soil after being harvested in worse condition than before their sowing. 

Preparatory (or renewal) crops (e.g. sugarbeet, sunflower or peas) that improve 

soil structure for the intensive tillage practices they need. Set aside 

(fallow) can be included among them because it can contribute to a 

better water and nutrient availability to the subsequent crops and to a 

drastic reduction of the weed seedbank in the soil, particularly when it is 

covered with Leguminous plants to be buried under (N enrichment) or 

when it is well managed with the aid of chemical or cultural means (weed 

suppression) (Giardini, 1982). 

 

The effects of crop successions on the mycopathies are extremely 

variables. The first factor is whether the alternating crops consist of plants that 

are hosts, not-hosts or alternative-host of a single pathogen. In the latter 

instance the crop can be or not damaged by the pathogen. If the crop is not 

particularly injured, its presence can even augment the inoculum content in the 

soil, thus resulting in heavier infections in the subsequent cultivation. This 

represents a so-called “bridge crop”. Oat is an example of this phenomenon. 

Without revealing any fusariosis symptoms it caused a greater infection on the 

successive wheat crop in many researches in different parts of the World 

(Innocenti et al., 2000 a; Cook, 1981; Corazza et al., 1993 b). Maize resulted a 

bridge crop for G. graminis and R. cerealis (Colbach et al. 1997). The same 

authors (Colbach et al., 1995) found that an alfalfa ley of three years has a 

bridge effect for R. herpotrichoides, not because the fungus directly infects 

leguminous plants but because the ley is frequently infested by Lolium spp., 

which are particularly susceptible to its disease (Ponchet, 1959 and Maenhout, 

1975). Even barley, which is usually tolerant to G. graminis resulted in heavier 

pathogen damages on the subsequent wheat (Innocenti et al. 2000 a, 
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Proceedings of the First International Workshop on Take-all of Cereals, 1983, in 

Ecology and Management, 1985). The more a not-host crop is grown in a field 

less pathogen agents in the soil can be found. The pathogen decline, that can 

be more or less rapid, depends on a reduction in the soil of its required specific 

nutrients, or on the selection of alternative microflora that competitively invades 

all the pathogen living space. This particularly happens for those species that 

are highly host specific and have a reduced capacity of saprophytic life. For 

example, G. graminis and R. herpotrichoides infestations in wheat are 

drastically controlled even by one year’s break of winter cereal monosuccession 

with a not-host crop (Innocenti et al., 2000 a; Colbach et al., 1995; Wiese, 

1987). These rotational benefits are less evident against polyphagous fungi 

(e.g. Fusarium spp. and, particularly, Rhizoctonia spp.). Indeed, as already 

mentioned, many Fusarium spp. can infect a wide range of plants and even with 

no host they can survive in the soil at least for a couple of years as dormant 

chlamydospores. This phenomenon partially explains why alternating wheat 

with other crops in biennial rotations couldn’t significantly reduce the gravity of 

this fungus (Innocenti et al., 2000 a). Even scarcer resulted the rotation effect 

on R. cerealis spreading. Indeed the fungus is endowed with a high capacity of 

saprophytic survival. Moreover, it can actively live on many other wild Poaceae, 

on which it encounters a slight competition from other specific pathogens, like 

R. herpotrichoides (Colbach et al., 1997). In Australia the precession of not-host 

crops to wheat even worsened the infections of R. solani on the cereal (Anon, 

1994).  

The influence of fallow on the pathogens of the subsequent wheat is 

actively studied today because of the contributions that UE gives for this kind of 

set aside. However, up to now its effects on mycopathologies is not yet well 

defined. It appears highly variable according to many factors; mainly as a 

function of the edaphic conditions and of the type and amount of plant cover 

during set aside. The benefits against soil borne diseases could come from the 

development of a stable antagonistic microflora and the drawbacks from the 

occurrence of bridge phenomena due to the presence of certain wild plants. 
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Notwithstanding that wheat monosuccession has always been 

considered a highly negative practice for several soil borne phytopathogen 

organisms, in some instances it was shown that it can confer the soil a 

repression potential against some parasites. The phenomenon, which has been 

discovered for G. graminis wheat infestations, was named TAD (Gerlagh, 

1968). 

TAD (Take All Decline) 

TAD is a classical example of how an agronomic practice can enhance 

the soil repression against a fungus. It was a well-known phenomenon in 

England and the USA since the 30’s years, but it had been scientifically proved 

only at the end of the 60’s. It consists of a drastic decline in the G. graminis 

infections after 3-4 years of continuous wheat growing. The repression agents 

are purely biological. Indeed this capacity is temperature sensitive (it disappears 

with high moisture and at temperatures above 55-60°C) (Grelagh, 1968; 

Shipton et al., 1973), it can be transferred form one soil to another and it can 

proliferate (Baker et al., 1982). Which is the causal agent of this repression is 

still uncertain. Very important seem the fluorescent Pseudomonas bacteria that 

grow together with G. graminis (Sarniguet et al., 1993). American and English 

researches confirmed that these bacteria, besides being highly competitive in 

the rhizosphere, synthesize specific antibiotics against the fungus (Thomashow 

et al., 1988; Raaijmakers et al., 1997 and 1998). Other studies identified other 

probable repression agents, such as Trichoderma spp. (Simon et al., 1988) or 

fungi acting through antagonistic mechanisms (Andrade et al., 1994). Instead, 

some authors have hypothesized a genetic variation inside the pathogenic 

population toward less virulent forms (Asher, 1980; Cunningam, 1975) or the 

selection of less damaging species, like Phialopora spp. and Ggg, that are 

correlated with G. graminis and competitive with it at the infection site level 

(Asher, 1981). All these results, which were obtained in various parts of the 

World, imply that TAD should be a ubiquitous phenomenon, but with variable 

intensity in the different sites. 
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The time distribution of TAD varies as well. Some English research 

showed that the repression takes place only during the pathogenic phase of the 

fungus, particularly on the secondary infections (Cook et al., 1986). On the 

contrary, in Australia Simon et al. (1989) revealed a repressive action also 

during the saprophytic stage. 

What is confirmed in most of the literature is that TAD can be annulled by 

just one year of interruption of the monosuccession. This is frequently explained 

with the disturbance that this break causes on the TAD antagonistic microflora 

in the soil. This was clearly demonstrated when the break of monosuccession 

was made with not-host crops, but it is still to be verified in the instance of an 

alternation with susceptible cereals, for example in a rotation barley-wheat. 

Cook (2000) and Hornby (1995) have discordant views. The first author claims 

that barley growing can maintain the soil repressive capacity, while the second 

thinks that TAD will be drastically reduced due to rapid selections inside the two 

pathogens populations, that, in a long term, could develop distinct antagonistic 

microflorae (Ward et al., 1992; Bateman et al., 1997). 

TAD cannot be stable over many years, even after a prolonged wheat 

monosuccession. Indeed sudden burst of disease were detected even after 

many years of TAD, particularly with climatic conditions unfavourable either to 

the microflora linked to TAD or to the same G. graminis. As a paradox, a low 

intensity of the disease doesn’t encourage the antagonistic microflora and 

causes a slower decline in the following years (Hornby, 1988). This fact, 

together with the high yield losses in the first years of continuous wheat and 

with the probable increment of other wheat phytopathogens, advise against the 

wheat monosuccession, particularly in the Italian conditions, where Fusarium 

spp. are the prevalent causal agent of the root and crown disease. 

Interactions between tillage and rotations on root and 

crown disease of wheat 

The knowledge of the interactions on wheat soil-borne diseases between 

the two agronomic practices is still scarce. However it must have significant 
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effects. Indeed, tillage influences the position of crop residue in the soil profile. 

The previous crop residues have a paramount importance in determining the 

possibility and seriousness of primary infections, which are linked to their origin 

and type, that is to their ability to host the pathogen during the intercropping 

period. Schematically, and in theory, a great concentration at the soil surface of 

host-residues should bring high infestations, whilst the agronomic practices that 

cause a presence on the soil of not-host residues should be advantageous in 

favouring a potentially antagonistic microflora. Colbach et al. (1995) verified this 

hypothesis, at least regarding R. herpotrichoides, in an experiment where 

various biennial rotations (host/host, host/not-host and host/bridge crops) where 

compared with or without ploughing. No tillage gave the highest infections in the 

succession host/host or host/bridge, while the opposite happened with the 

host/not-host succession. In this latter instance ploughing, by turning sod, 

brought again at the soil surface the infected residues of the host crop grown 

two years before. The plant debris still showed an infective ability after two 

years due to the content of inoculum that had survived in the deep layers of the 

soil. On the contrary, no tillage favoured the not-host crop residue presence at 

the soil surface, thus an antagonistic microflora that can limit the pathogen 

development. Other experiments showed that the increment of root and crown 

disease, which is usually brought about by minimum tillage, is less marked 

when wheat alternates with renovation crops than in cereal succession 

(Innocenti et al., 2000 b). 

Fusarium Head Blight (FHB) of small grains 

The Fusarium head blight of small grains (a.k.a. ear scab or ear blight), 

that infects wheat and other cereals, is an important disease in many parts of 

the World, especially where humid or moist conditions prevail in the period from 

ear emergence (10.1 Feekes scale) to kernel maturity (11.4 Feekes scale). 

Poland, the Netherlands, United Kingdom, Russia and Austria are countries 

where ear scab most frequently occurs. There it can reach high intensities. 
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During 1979-85 its frequency in Nederland fields was about 67%, with 2% 

severity on infected spikelets. Therefore this pathology can cause important 

production losses : for example, it halved the yield of Chinese and Japanese 

wheat in certain year. Not only ear scab can drastically reduce grain yields; the 

mycotoxins that can be produced by fusari can contaminate grain and are now 

regarded as a major problem in the diet of both animal and humans. 

Table d. Fusarium spp. isolated and identified as causal agents of FHB (Wang 1988) 

 

F. graminearum Schwabe 
F. culmorum (W.G. Smith) Sacc. 

F. campoceras W&R  

F. moniliforme Sheld var. subglutinans (W&R) Nelson, Tousson &Marasas 
F. longipes W &R 

F. equiseti (Corda) Sacc. 
F. compactum Gordon 

F. sambucinum Fuckel (W&R) W&R 

F. graminum Corda (W&R) 
F. avenaceum (Fr.) Sacc. 

F. tricinctum Corda W&R 
F. acuminatum Ell et Ev. 

F. nivale (Fr.) Ces 

F. sporotrichoides Sherb 
F. chlamydosporum (W&R) 

F. semitectum Berk &Rav. 
F. oxysporum (Schlecht.) Snyd & Hans. 

F. solani (Mart.) Appel & Wollenw 
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Photo 5. FHB symptoms – Above: red margins on the wheat spikelets - Below: 

infected kernels, on the left, are compared to healthy ones (right). 

 

The fungus Fusarium graminearum was more frequently found as the ear 

blight causal agent. Some investigations in the Netherlands and other areas of 

Central Europe, however, have detected similar virulence levels (from severe to 

acute) also for F. culmorum and M. nivale, while F. avenaceum was reported as 

mildly to moderately virulent. In several other studies on FHB as many as 18 
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Fusarium spp. were isolated and identified (table e). In particular, on wheat 

infected ears Wang (1988) isolated the following Fusarium spp. (in order of 

frequency): 98% Fusarium graminearum, 8,2% F. poae, 2,4% F. acuminatum, 

1,8% F. moniliforme var. subglutinans, 1,6% F. equiseti, and 0,1% F. culmorum, 

F. avenaceum and M. nivale, cumulatively. 

F. graminearum is teleomorph of Giberella zeae (Schw.) and produces 

perithecia also in the field. On wheat it grows on the glumes, protruding from 

them. Under favourable circumstances it releases ascospores, which constitute 

the initial inoculum source for head scab. The intercrop survival of F. 

graminearum is allowed by mycelia or immature perithecia remaining on 

infected spikelets and grain left on the soil surface at harvest. Thus cultural 

practices play an important role in its survival. If crop residues are ploughed 

under, perithecia mainly die and the primary inoculum source drastically 

decreases. High moisture and warm weather are the main climatic factors 

favouring the inoculum production The required temperature for macroconidia 

formation are 16-36 °C, with an optimum at 32 °C. Rain and wind are the main 

means of inoculum dispersal. Besides wheat, barley, oats, rye, maize, alfalfa, 

and triticale represent the commoner hosts of F. graminearum. Some wild 

grasses are either secondary hosts or saprophytic substrata. The infection site 

of F. graminearum is the wheat spike, where it invades all the floral organs. This 

affects both wheat pollination and grain filling. Macroconidia or ascospores 

represent the principal inoculum that is dispersed by wind. Infected spikelets 

quickly fade losing chlorophyll. Later they turn pink or peach colour, especially 

at the base and at the glumes margins. If wet weather continues, disease 

spikelets are invaded by saprophytic fungi and turn dark or black. For this 

reason, scab is sometimes mistakenly called “head smut”. 

Primary inoculum comes from infected plant debris on which the fungus 

overwinters as saprophytic mycelium. In spring, warm and humid weather 

favours the growth and maturation of conidia and perithecia that produce 

ascospores simultaneously to wheat flowering. The contact of spores with spike 

tissues soon starts the infection process. Thus wheat head are most infected 
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during anthesis (Sutton, 1982). The fungus spread in wheat from floret to floret 

inside a spikelets and the movement from a spikelet to another occur through 

the rachis and rachilla vascular bundles (Ribichich et al., 2000). Under wet 

condition mycelia can spread over the external surface of the glumes (Bushnell 

et al., 2003). The fungus has a brief biotrophic relationship with its host before 

switching to the necrotrophic phase. This stage is associated with enhanced 

fungus colonization. Eventually, plant death leads to a complete colonization of 

the host substrate. Asymptomatic F. graminearum can be found in various 

grass hosts (Farr et al., 1989; Inch and Gilbert, 2003) or colonizing different 

plant organs, such as corn stalks (Bushnell et al., 2003).  

Fusarium is one of the most prolific mycotoxins-producing genera, 

especially on such cereals as maize, wheat, rice and sorghum. It is also one of 

the most dangerous pathogen because the many produced toxins have diverse 

metabolism origin and mode of action on human and animal health. (D’Mello et 

al., 1999)  

Agronomic practices and soil biodiversity 

The soil biotic community consists of several trophic levels, starting from 

that of bacteria and fungi, mainly decomposers, through that of primary 

producers up to the primary and secondary consumers, which are composed by 

micro-, meso- and mega fauna. The knowledge of the interactions between all 

trophic levels is still fragmental and obscure, considering the great complexity of 

trophic nets in the soil. The confusion is increased by the great variability of the 

soil habitat, by a frequent overlapping of ecological niches, and by the 

interactions (predation, neutralism, symbiosis, etc.) between many taxonomical 

groups that vary during a same life cycle (Wardle, 1995). The high number of 

soil microrganisms that hasn’t yet been identified testifies the richness of the 

soil biotic component. Up to now it is estimated that only the 1% of bacteria, the 

3% of nematodes and the 5-10% of fungi living in the soil have been recognized 

(Wardle, 1995; Viaud et al., 2000). 
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Many authors claim the existence of a positive correlation between 

biodiversity and ecosystem productivity (Adams et al. 1989, Connell et al. 

1964). Although a straight relation is partially criticized (Connell, 1978; 

Colinvoux, 1995), some researchers try to transfer this model to the soil system.  

A wide biodiversity enhances the ecosystem capacity to rapidly regain the 

equilibrium after a perturbation (resilience) (Pankhust, 1997). In the soil a high 

resilience could be favourable because it could sustain a microbial population 

rich in antagonists of different plant pathogens (the so-called “soil repression 

ability”) (Caporali 1993; Pankhurst, 1997; Sivapalan et al. 1993; Altieri, 1991). 

Many scientists studied the impact of different agronomic practices on 

soil population stability and on soil system functioning. For example, 

Wasilewska (1979) showed that the diversity of nematode population in the soil 

is reduced in tilled land when compared to permanent leys. Other studies on 

fruit trees (Houston et al., 1998 a and b) grown with or without chemicals didn’t 

show any difference in the fungi number, though the abundance of single 

species markedly differed. Ploughing destroys some microhabitats and creates 

completely different ones. Thus many researches on soil biodiversity focused 

on this agronomic practice. As a theory, no tilled cropped soil should be the 

most similar to natural systems (House, 1984). This kind of agroecosystems 

should have the highest grade of diversity and buffering ability (Altieri, 1991). 

This relationship has been confirmed in many papers on macro and meso fauna 

(Andrén et al., 1983; Yeates et al., 1990, Bertolani et al. 1989), in which 

ploughing often reduced the biodiversity and the functional groups. However, 

some contradictory results were obtained (Sabatini et al., 1997; Hendrix et al., 

1986), showing that the correspondence minimum impact - maximum diversity 

is not so straight. Less, and even more contradicting, have been the results 

regarding the ploughing impact on microflora diversity (Wache et al., 1979). 

Some authors reported a marked increase of the microbial content in minimum 

tilled soil, particularly in the shallower layers, and linked it to the positive effect 

of the reduced disturbance on the soil organic matter (Triberti et al., 2000, 

Saffigna et al., 1989; Angers et al., 1992; Wardle, 1992). On the contrary, 
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Wardle (1995) claims that the ploughing influence on fungi communities is only 

slight. These contradictions can be partially explained by the insufficient 

taxonomic resolution of the conventional isolation techniques, that doesn’t allow 

a precise evaluation of biodiversity in the soil. Moreover, the soil decomposers 

can be endowed with a superior stability than most of the trophic nets in other 

ecosystems. But many other biotic and abiotic factors can explain the wide 

variability of the obtained results. For example, a reduced tillage can cause a 

different root growth according to the soil type and conditions. In heaviest soils 

this practice should cause a less extended root system. This could significantly 

reduce the microflora linked to the rhizosphere, which is considered the major 

component of soil ecosystem (Wardle, 1995). 

The rotation effects on soil biological diversity were analyzed mainly 

regarding the quantitative variations of single species (Bateman et al., 1999). 

It's a common opinion that a greater diversity of cropped species widens the soil 

biotic diversity (Letourneau, 1987). Zelles et al. (1995) confirmed this 

phenomenon for the bacterial community. The fallow should have the same 

positive effect, thanks to the diverse microrganisms that are promoted by the 

wild vegetation covering the uncropped field (Hornby, 1988). As previously 

mentioned, Wardle (1995) thinks that our little knowledge of soil biotic diversity 

is mainly due to uncertainty of organism individuation and ineffectiveness of 

conventional isolation methods. Indeed, the major limit of conventional 

techniques is the hard detection of microrganisms that cannot grow on the 

commoner substrata. Many authors have tried to analyze the biological diversity 

with alternative, modern techniques, such as the analysis of the fat acid profile 

(Zelles et al., 1995) or the soil DNA extraction (Viaud et al., 2000). However, 

besides being extremely expensive, these methods are unsuitable to handle a 

large number of samples and seldom give quantitative results (Pankhurst, 

1997). The DNA analysis, moreover, up to now can be only approximate, due to 

the still scarce number of organisms, mainly fungi, that have been sequenced 

and whose traces are stored in available databases (Viaud et al., 2000).  
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Research aims 

The main purpose of the research was to find out how to improve the 

production of Italian durum wheat from both a quantitative and qualitative point 

of view by adequately modifying some agronomic practices. With so many 

people still starving to death in the World the necessity of increasing such a 

basic staple as wheat is out of doubt. In Italy Triticum durum production is even 

more important because we are net importers of this commodity, mainly used 

for pasta that is exported all over the World. But an optimal grain quality is 

required, both on the side of the industrial performance (one of the prerequisite 

is a heavy, kernel, full of starch and proteins) and from the human health point 

of view. Today this latter aspect is becoming increasingly important. In the 

developed countries the consumers are well aware of the risks of food 

contamination and pretend strict controls on commercialized foodstuffs. In the 

last few years the problem of mycotoxins in cereal grains has burst out. By now 

these substances were confirmed to be very noxious to humans and animals 

and were frequently found also in the Italian durum wheat production. The 

control of the fungi that produce mycotoxins should be the first step to bring the 

risks of grain contamination below the extremely low levels that the recent 

European rules impose. But in a prospect of a sustainable agriculture (and even 

more in organic farming) the control of parasitic organisms without chemicals 

appears very difficult. Therefore it would be interesting to know if it is possible to 

reduce the spreading of the causal agents of the major wheat diseases 

adopting adequate agronomic strategies. First of all, however, the life and 

infective capacity of the pathogens must be well known. Fortunately most of the 

parasites of wheat have already been thoroughly studied. The take-all, eyespot, 

etc. at the base of the culm and the fusariosis ear blight on the ears are well 

known diseases and much is known about the biology and ecophysiology of 

their agents. A great part of the life cycle of the pathogens is spent in the soil, 
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particularly on plant debris. Thus to control wheat infections the management of 

crop residue must certainly considered. For this reason we thought important to 

study the interaction between the preceding crop and soil tillage on the major 

fungi of wheat. The study was conducted on a long-term experiment, where 

different crop rotations and soil tillage are being compared for many years.. 

Thus it is probable that in the soil of the different plots the biotic phase has 

reached a steady condition, in equilibrium with the repeated treatments. Indeed, 

because of the high resilience, the fungi population in the soil presumably 

changes slowly and the effects of an ecological perturbation (such as wheat 

monosuccession or minimum tillage) can become manifest only after a long 

time. For four years we observed many aspects of the fungal compartment of 

the long-term trial with the scope of understanding how the soil pathogen 

population infects wheat plants and what can be the consequences of the 

diseases on the grain yield quality and quantity. We also could study the 

influence on wheat soil-borne pathogens of the crop residue management, 

based on the interaction between crop precession and tillage sequences. In the 

research the microflora composition in the soil was assessed with recent, 

innovative techniques that much helped in the identification of fungi that is so 

difficult by conventional means. Finally we wanted to investigate the possible 

contamination of wheat grain by the most troublesome mycotoxins. Our intent 

was to verify the existence of a relation between the ear fusari disease, which is 

so easy to visualize in the field, and the risk of kernel poisoning. The results of 

our efforts should help the growers to choose a successful and economically 

sound agronomic strategy against the wheat diseases so that, with no risk of 

polluting the environment with pesticides, he can produce more wheat of good 

quality and absolutely safe from the human health. 
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Materials and methods 

Field experiment 

Description of the long-term experiment 

All soil and plant samples that were used in this research had been 

collected from a long-term field experiment that started in 1985 and is still going 

on at the experimental and didactic farm of Bologna University, located near 

Ozzano dell’Emilia (Bologna), at the foot of the hills in the southeast Po Valley 

(Italy). In the experiment several crop successions, all including wheat, are 

compared under three tillage regimes consisting of sequences of conventional 

ploughing or minimum tillage for seedbed preparation. The treatments and 

some environmental characteristics of the site are reported in figure  and are 

more detailed described in Toderi et al. (2000). The rotation sub-plots are 48 m2 

of area each. The following cv. are used: ‘Creso’ variety of durum wheat; 

‘Valeria’ hybrid of maize; ‘Taxus’ hybrid of sorghum and ‘Ippolita’ hybrid of 

sugarbeet. The experiment is not irrigated and all agronomic practices other 

than the compared ones are conducted according to what is normal in the zone. 

Wheat is seeded around mid October and harvested at the end of June. At 

seeding it receives a fertilization of 80 kg P2O5 ha-1 with no K. 180 kg N ha-1 are 

supplied in two fractions: 2/3 at the mid tillering stage (3 Feekes’ scale, usually 

in the first days of March), and the rest at the beginning of stem elongation (4 

Feekes’ scale, in mid April). Weeds are controlled with post emergence 

herbicide mixtures including grass killers. No fungicide or insecticide treatment 

is carried out. 

For this research we observed the plots reported in table  for 4 years 

(from 2003 to 2006) in order to study on wheat the interaction between the 

previous crop and the tillage sequence. The long time elapsed from the 
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beginning of the experiment (18 years) allows to suppose that in the 

assessment years a steady equilibrium was already reached in the 

agroecosystem, after a probable transition phase. 

Figure . Schema of the long-time trial on crop rotation x tillage sequence in Ozzano Emilia (BO) 
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Table . Treatments of the long-term experiment that were taken into consideration. 

Rotations Year 2003 Year 2004 

Wheat/ 

Wheat 

P25 / 

MT 

P25 / 

P25 

P50 / 

P25 

P25 / 

MT 

P25 / 

P25 

P50 / 

MT 

Maize/ 
Wheat  

P25 / 
MT 

P25 / 
P25 

P50 / 
P25 

P25 / 
MT 

P25 / 
P25 

P50 / 
MT 

Sorgum/ 

Wheat  

P25 / 

MT 

P25 / 

P25 

P50 / 

P25 

P25 / 

MT 

P25 / 

P25 

P50 / 

MT 
Sugarbeet/ 

Wheat  

P25 / 

MT 

P25 / 

P25 

P50 / 

P25 

P25 / 

MT 

P25 / 

P25 

P50 / 

MT 

Rotations Year 2005 Year 2006 

Wheat/ 
Wheat  

P25 / 
MT 

P25 / 
P25 

P50 / 
MT 

Ar25 / 
MT 

P25 / 
P25 

P50 / 
MT 

Sorgum/ 

Wheat  

P25 / 

MT 

P25 / 

P25 

P50 / 

MT 

P25 / 

MT 

P25 / 

P25 

P50 / 

MT 

Sugarbeet/ 
Wheat  

P25 / 
MT 

P25 / 
P25 

P50 / 
MT 

P25 / 
MT 

P25 / 
P25 

P50 / 
MT 

4-year rotation 

Sb/W/So/W 

P25 / 

MT 

P25 / 

P25 

P50 / 

MT 

P25 / 

MT 

P25 / 

P25 

P50 / 

MT 

Tillage sequences: P25/P25 = ploughing to 25 cm depth every year; P25/MT = ploughing to 25 cm 

alternated with minimum tillage; P50/P25 = ploughing to 50 cm alternated with ploughing to 25 cm; 

P50/MT = ploughing to 50 cm alternated with minimum tillage 

 

 

 

Photo . View of the 25/25 cm ploughed wheat main plot in spring 2004 
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Weather data 

Weather courses during the wheat cycles are shown in figures  and  

Figure . Precipitation, average daily temperature and relative humidity in decades of 2002-03 and 2003-
04 wheat cycles  

 

2002-03 

2003-04 
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Figure . Precipitation, average daily temperature and relative humidity in decades of 2004-05 and 2005-
06 wheat cycles 

 

2004-05 

2005-06 
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In 2002 autumn-winter period was particularly rainy and wet. Winter and 

early spring 2003 were cold and dry. During wheat stem elongation it copiously 

rained and humidity remained high. Since anthesis to harvest rainfalls was 

scarce and days very hot. The autumn of the following year was very wet and 

rainy so that wheat roots suffered from asphyxia, tillering was scarce and the 

conditions were favourable to fungi development. During 2004 spring the 

rainfalls were more evenly distributed than the previous year, but temperatures 

kept cool (stem elongation and flowering were delayed) and humidity quite high 

also during the last maturity stages. In 2004/05 a mild and wet autumn-winter 

promoted wheat tillering. The elongation phase started early and the kernel 

maturation proceeded slowly, thanks to temperatures and moisture that 

remained optimal through harvest. The winter of the following year (2005/06) 

was very cold. In spring a long drought (from January to mid April) caused 

severe water stress to wheat, enhanced by an early and prolonged hot spell 

(from March to June). The hot and dry May induced early wheat maturation, and 

precluded a satisfactory translocation of elaborates into the kernels. 

Assessments 

During the 4 years the phenology and healthiness of wheat was 

constantly observed on the chosen plots and many parameters were measured. 

Schematically, they interested the soil, with core samplings, and the crop yield. 

Wheat grain was harvested using an experimental combine; its humidity and 

specific weight were measured.  Regarding wheat pathologies, we assessed 

the incidence and severity of Fusarium blight on the spike after wheat flowering, 

with a visual diagnosis. At the end of the milky maturity stage we performed a 

visual diagnosis of the root and crown diseases, with a measurement of the 

damage degree. At the same time we made a collection of diseased plants to 

isolate pathogens in the laboratory. Samples of grain coming from the collected 

plants were taken to identify the causal agents. This was done in the DISTA 

laboratory, on the flour obtained by grinding the sampled kernels. In the same 
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laboratory the mycotoxin contamination was measured on the flour coming from 

the grain harvested in each plot. The structure of microflora population in the 

soil samples was analyzed in a Wageningen (NL) laboratory. 

Evaluation of wheat root and crown disease  

The determination took place at the wheat milky-dough maturation stage 

(11.1 – 11.2 Feekes’ scale). From each plot 100 fertile plants were collected 

taking one individual each meter along two lines running parallel to the plot 

length. Plants and roots were freed of soil; their culm base was freed by 

removing all the leaf sheaths and was put into paper bags. The bags were kept 

into a cold chamber at 5-8°C until the assessment date, for a period never 

longer than 1 week. On each culm we visually determined the occurrence and 

the severity of the disease affecting the root and the first three internodes. 

When possible, the causal agent was identified on the basis of diagnostic 

symptoms. The visually recognized pathogens were: Fusarium spp. and B. 

sorokiniana (that were considered a unique group due to the difficulty in their 

visual differentiation), G. graminis, Rhizoctonia spp. and R. herpotrichoides. 

When there were more symptoms on a same culm only the most important was 

recorded. Each disease was evaluated by the following scale, based on the 

percentage of diseased area (Ledingham, 1981): 0 = No symptoms; 1 = slight 

infection (1-25% of infected surface), 2 = moderate infection (25-75%), 3 = 

serious infection (75-100%). A damage degree (i) of each pathogen was 

calculated for every plot, according to the following formula (Towsend-

Heubergher, 1943):  

Damage degree (i %) = (  nivi / N ) x 100 / M 

 

where: i = Class index 

ni = Number of culms in each class 

vi = Numeric values of the class 

N = Total number of samples 

M = Numeric value of the highest class 
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To better identify the pathogens, particularly to recognize the various 

Fusarium spp., simultaneously with the visual diagnosis we performed a 

conventional isolation by standard laboratory methods on 120 samples taken 

from each plot. We started with a superficial disinfection of the samples, on the 

hypothesis that so we could select only the fungi living in the parenchyma or the 

vascular bundles of the culm or in the cortex and central cylinder of the root 

(Muller et al., 2000). The culm were cut at the 3rd internode and washed in tap 

water for at least 10 min. Then they were sterilized with 15% solution sodium 

hypochlorite for 2 min, rinsed three times with bi-distilled water and placed on 

blotting paper to dry off under sterile hood. Later the dried tissues were placed 

in 9 cm-diameter Petri dishes with agar and water at 14 g/l concentration added 

with the following antibiotics and growth inhibitors (Covarelli and Santori, 2000): 

160 mg/l of Streptomycin sulphate, 60 mg/l of Tetracyclin, and 6 mg/l of 

dichloronitroaniline. The plates were incubated at 20-24°C for 4-5 days. From 

the grown colonies we took mycelium that was transferred to Petri dishes with 

25 g/l of PDA (Potato Destrose Agar, Difco) for pure culture isolation. To 

stimulate the spore production of organisms that do not sporulate on PDA, like 

most Fusarium spp., we transferred the colonies on Sucrose Nutrient Agar 

(SNA) (Nirenberg, 1980) (table ) and exposed them to Near Ultraviolet light 

(NUV) at a constant temperature of 17°C. 

Table . SNA (Sucrose Nutrient Agar) substratum composition 

          Concentration Constituent 

1.0 

1.0 

0.5 

0.5 

0.2 

0.2 

15.0 

g/l 

g/l 

g/l 

g/l 

g/l 

g/l 

g/l 

KH2PO4 

NaOH 

MgSO4 

NaCl 

Glucose 

Saccharose 

Agar – Agar 
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We identified the genus or species of fungi on the basis of the visual 

observation of the micro and macro morphologic features of the mycelium and 

reproductive structures, according to the identification keys proposed by Von 

Arx (1970), Domsh et al. (1993), Nelson et al. (1983) and Nirenberg (1980). 

Analysis of the fungi community in the soil 

At the end of 2006 May in the second block of the field experiment we 

collected soil samples to investigate the soil microflora. 

Sampling procedure 

From each sub-plot 3 soil samples were taken to 15 cm depth with a 3 

cm diameter soil corer. They were collected along a diagonal at 1 m distance 

each other and from the plot border. The samples of each plot were bulked 

together, ground and sieved through a 1 cm mesh. They were sealed in plastic 

bags and kept at 3°C in the dark. Then they were sent to the Plant Research 

International Institute of Wageningen (NL) to investigate the fungi population of 

the soil. 

Soil analysis 

At the laboratory of the Plant Research International Institute of 

Wageningen (NL) the soil samples were analysed by the DGGE (Denaturing 

Gradient Gel Electrophoresis) method. This is a recent fingerprinting technique 

in which PCR-amplified DNA fragments are separated according to their 

sequence information. Double stranded DNA molecules of the same length, but 

differing in base-pair sequence can be partially separated as they migrate down 

a polyacrylamide gel containing a linearly increasing gradient of denaturants 

(Muyzer et al., 1996). Theoretically, each DGGE band corresponds to a single 

operational taxonomic unit (OTU), where the total banding pattern is reflective 

of a community species richness and diversity (Muyzer et al., 1993). 

In Wageningen each soil sample was divided into two sub-samples and 

each of them was twice analyzed to reduce the analytic error. 
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DNA extraction. 

DNA was extracted from 0.5 g of soil as described by Protocol MO.BIO 

with Ultraclean Soil DNA isolation kit. 

 

PCR amplification  

PCR of fungal ITS sequences was performed according to Anderson et 

al. (2003). PCR amplification of bacterial 16S rDNA genes was performed 

according to Postma et al. (2000). Amplifications were performed in a PTC-100 

thermal cycler (Mj Research Inc., Tilburg, NL). 

 

Analysis of PCR products by DGGE  

DGGE was performed with the phorU2 system (Ingeny, Leiden, NL). 

PCR products (15 to 20 ml) were directly applied onto 6% (wt/vol) 

polyacrylamide gels in 0.53 TAE buffer (20mM Tris-acetate [pH 7.4], 10 mM 

sodium acetate, 0.5 mM di-sodium EDTA) containing a linear denaturing 

gradient (in general, the concentration of the denaturant ranged from 35 to 

65%). The gradients were formed with 6% (wt/vol) acrylamide stock solutions 

that contained no denaturant and 100% denaturant (the 100% denaturant 

solution contained 7 M urea and 40% [vol/vol] formamide deionized with 

AG501-X8 mixed-bed resin [Bio-Rad, Veenendaal, NL]). The gels were 

electrophoresed for 16-18 h at 60°C and 100V. After electrophoresis, the gels 

were stained for 30 min with SYBR Gold I nucleic acid gel stain (Molecular 

Probes Europe, Leiden, NL) and were photographed under UV light by using a 

SYBR Green gel stain photographic filter (Molecular Probes) and a Docugel V 

system apparatus (Biozym, Landgraaf, NL). 
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Analysis of DGGE gels and statistics  

Banding pattern analysis and comparison of gels was processed by 

Gelcompar® II software (version 1.61; Applied Maths, Woluwe, Belgium). 

Correspondence of bands between different samples was performed with 1% 

dynamic range settings. Experimental data was exported and connected to 

band tables containing band positions and relative intensity. The obtained 

results underwent a cluster analysis to visualize the similarity between groups of 

populations and a RDA discriminant analysis to evaluate the main factors 

influencing their composition. The results where shown by a dendrogram of 

similarity and by a two axes graph of concentration, respectively. 

 

Evaluation of the Fusarium head blight (FHB) of small 

grains 

The assessment took place in 2005 and 2006, ten days after wheat 

flowering (10.53 Feekes’ scale) approximately, in all plots of the second block. 

The disease visual evaluation was performed on 10 ears chosen in ten sites per 

plot. The sites were chosen along the perimeter and diagonal of a rectangle 

created at a distance of 1 m from the margins of the plot. In each site we 

counted the diseased spikes and obtained an incidence value (I% = frequency 

of infected ears). Moreover, to every spike we attributed a grade on the basis of 

the disease spread. Thus we obtained an indication of the seriousness of the 

disease (DS = Degree of Severity, expressed as percentage). The severity 

scale was as follow: 0 = no symptoms, 2 = some symptomatic spots; 5 = 2-3 

diseased spikelets per spike, 10 = 4-5 diseased spikelets, 25 = diseased a 

quarter of the spike, 50 = diseased half spike; 75 = diseased three quarters of 

the spike, 90 = healthy only few spikelets, 100 = the whole spike was infected 

and completely white. By averaging all recorded data, we obtained single I (%) 

and DS (%) for each plot. 
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Photo . Scale of the Fusarium Head Blight severity on wheat ears 

 

Analysis of the Colony Forming Units (CFU) in wheat 

flour 

At harvest, in 2004 and 2006 a sample of diseased ears were hand 

collected from each plot of the second block, air dried for 4-5 days and shelled. 

The obtained kernels were grounded with a laboratory mill to get 0.5 mm flour. 

Flour samples were kept in plastic bags in a refrigerated chamber at 4°C in the 

dark. Their analysis was performed in the laboratory of the Dept. of Agro-

environmental Science and Technologies of Bologna University. Each analysis 

was replicated on four 0.5 g sub-samples. Through subsequent dilutions with 

distilled water we obtained a 1:20 = flour : water (wt/vol) solution. It was placed 

on 9 cm diameter Petri dishes containing 25 g/l of PDA (Difco) agar substratum 

and the following antibiotics: 300 mg/l Streptomycin sulphate and 150 g/l 

Neomycin. The plates were incubated for 4 days at 22°C and then the grown 
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fungi colonies were counted. They were moved to Petri dishes with PDA to 

obtain pure cultures and they were thus identified. For the not sporulating fungi 

on PDA the same above reported procedure (SNA medium and NUV 

exposition) was used. The already mentioned classification keys were used to 

identify the fungi. 

Determination of mycotoxin content in wheat flour 

The flour mycotoxin contamination was assessed all the four years in the 

laboratory of the Dept. of Agro-environmental Science and Technologies of 

Bologna University. The analysis concerned the plots of the second block, the 

same where Fusarium Head Blight had been evaluated. All the harvested grain 

in each plot was dried to constant weight in an oven at 60-80°C. It was mixed 

once then from it we took 3 sub-samples that were separately ground in <1 mm 

flour. The flour coming from each plot was then mixed and bulked in a unique 

sample. From it we took 500 g of flour to be analyzed in the laboratory. The 

following mycotoxins were searched: 

 

• Aflatoxin B1, B2, G1, G2 

• Fuminosin B1 and B2 

• Zearalenone (ZEA) 

• Deoxinivalenole (DON) 

 

They were analyzed by high purification liquid chromatography (HPLC), 

after purification of extracts with the use of columns based on specific mono- 

and polyclonal antibodies for single mycotoxins or groups of them. The samples 

were extracted and purified using the immuno-affinity column methods that are 

reported in Vicam manuals. Mycotoxin quantity was measured by the external 

standard method, using calibration curves within a concentration range whose 

limits were those of the Italian regulation on food grains or, if absent, in the 

legislations of other countries. For each mycotoxin we had previously fixed the 

analytical determination limits, the recovery and the analytical repeatability. The 
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first two parameters were obtained by a simultaneous test performed on six sub 

units of the sample. The repeatability (r) was calculated, according to the Italian 

rules on aflatoxins in food, as: 

r = 2.8 x standard deviation 

(Gazzetta Ufficiale n. 33, 9 Febbraio 2001). 

Statistical analysis of data 

The wheat yield was expressed as areic grain production with 13.0% of 

moisture, the grain apparent specific weight in kg hl-1. Each year, separately, 

their data were subjected to an analysis of variance (ANOVA SAS® procedure) 

considering the split-plot design of the experiment. When the F rate between 

variances of a single factor or interaction was significant at P 0.05 the 

differences between the means were evaluated by a S.N.K. test at P 0.05 (SNK 

SAS® procedure). To test the possible relationships between recorded 

parameters we used the linear correlation analysis (Excel data analysis) and 

obtained a Pearson’s correlation-r whose significance was evaluated on the 

basis of the comparison degrees of freedom. A multiple regression analysis was 

used to evaluate the importance of diseases in determining the grain yield. For 

this analysis the Excel statistical package was used. The CFU data of single 

pathogens were related with the tillage intensity and the wheat precession to 

analyze their mutual influence. For this scope an analysis of correspondence 

was used (SSA SAS® procedure) on the basis of the relative frequency of fungi 

in each plot. For the analysis the previous crops were scored in the following 

order: Wheat/W = 1; Sorghum/W = 2; Maize/W =3 and Sugarbeet/W = 4 on the 

basis of an assumed decreasing presence of Fusarium spp. inoculum in the 

soil. On the same basis, the tillage sequences were ordered as a function of 

their increasing soil disturbance. They were graded as follow: 1 = P25/MT; 2 = 

P25/P25; 3 = P50/MT; 4 = P50/P25. The results of the concentration analysis 

were shown by a 2 axes graphs based on the two major directions of variability 

of the studied universe. 
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Results and discussion 

Yield quantity: Effects of crop succession and soil 

tillage on wheat yield 

In the field experiment the crop precession and the intensity of soil tillage 

significantly influenced the grain yield of durum wheat in all four years (tables 1, 

2, 3, and 4). 

Table 1. Crop succession and soil tillage effects on grain wheat yield (t ha-1 ± standard error of the mean) 

in 2003. (Tillage sequences: 25/Mt = 25 cm deep ploughing for preceding crop and minimum tillage for 

wheat; 25/25 = repeated ploughing to 25 cm; 50/25 = 50 cm deep ploughing for the previous crop and 
ploughing to 25 cm for wheat). The interaction: Successions x Tillage was significant at P 0.01 

 wheat/wheat sorghum/wheat maize/wheat beet/wheat 
Tillage 
means 

25/Mt 2.13 ± 0.40 3.77 ± 0.25 4.45 ± 0.12 3.50 ± 0.33 3.46 

25/25 3.85 ± 0.15 4.22 ± 0.21 4.64 ± 0.38 4.96 ± 0.26 4.42 

50/25 3.50 ± 0.21 3.94 ± 0.18 4.56 ± 0.11 4.86 ± 0.14 4.22 

Rotation 
means 

3.16 C§ 3.98 B 4.55 A 4.44 A 4.03 

§ Means followed by different letters are significantly different at P 0.05 according to S.N.K. test 

Table 2. Effects of crop succession and soil tillage sequence on grain wheat yield (t ha-1 ± standard error 

of the mean) in 2004. (Tillage sequences as in table 1). The interaction: Successions x Tillage resulted 
significant at P 0.01 

 wheat/wheat sorghum/wheat maize/wheat beet/wheat 
Tillage 
means 

25/Mt 0.49 ± 0,79 3.99 ± 0,28 3.88 ± 0.55 4.46 ± 0,33 3.21 B 

25/25 3.69 ± 0,20 3.81 ± 0,61 4.56 ± 0.34 4.21 ± 0,27 4.07 A 

50/Mt 3.13 ± 0,52 4.55 ± 0,19 3.87 ± 0.35 4.31 ± 0,45 3.97 A 

Rotation 
means 

2.44 B§ 4.12 A 4.11 A 4.33 A 3.75 

§ Means followed by different letters are significantly different at P 0.05 according to S.N.K. test 
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Table 3. Effects of crop succession and soil tillage sequence on grain wheat yield (t ha-1 ± standard error 
of the mean) in 2005. (Tillage sequences as in table 1). The interaction: Successions x Tillage resulted 

significant at P 0.05 

 wheat/wheat sorghum/wheat beet/wheat* beet/wheat 
Tillage 
means 

25/Mt 0.56 ± 0.53 5.71 ± 0.41 5.35  ± 0.63 5.13 ± 0.61 4.19 

25/25 3.03 ± 0.19 5.58 ± 0.70 4.77 ± 0.30 5.68 ± 0.35 4.77 

50/Mt 2.95 ± 0.51 4.96 ± 0.18 5.55 ± 0.24 5.25 ± 0.51 4.68 

Rotation 
means 

2.18 B§ 5.42 A 5.22 A 5.35 A 4.55 

§ Means followed by different letters are significantly different at P 0.05 according to S.N.K. test 
* Inserted in a 4-year course rotation: sugarbeet/wheat/sorghum/wheat 

Table 4. Effects of crop succession and soil tillage sequence on grain wheat yield (t ha-1 ± standard error 
of the means) in 2006. (Tillage sequences as in table 1). The interaction: Successions x Tillage resulted 

significant at P 0.05. 

 wheat/wheat sorghum/wheat sorghum/wheat* beet/wheat 
Tillage 
means 

25/Mt 1.18 ± 0.15 3.56 ± 0.36 3.88 ± 0.58 3.70 ± 0.44 3.08 B 

25/25 3.33 ± 0.12 4.05 ± 0.67 3.85 ± 0.06 2.82 ± 0.27 3.51 B 

50/Mt 2.96 ± 0.70 5.00 ± 0.16 4.44 ± 0.16 3.76 ± 0.49 4.04 A 

Rotation 
means 

2.49 B§ 4.20 A 4.06 A 3.43 A 3.54 

§ Means followed by different letters are significantly different at P 0.05 according to S.N.K. test 

* Inserted in a 4-year course rotation: sugarbeet/wheat/sorghum/wheat 

 

On average, continuous wheat produced less than the crops following 

maize, sorghum, or sugarbeet. Moreover, minimum tillage for wheat generally 

gave lowest yields than ploughing to 25 cm depth. Tillage that was performed 

for the preceding crops showed only a little influence on grain yield, with the 

exception of 2006. However, because the interaction of crop succession with 

tillage was frequently significant and the variability among years was high, the 

effects of both factors on wheat production will be examined more in details. 
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Continuous wheat (W/W) 

In wheat monosuccession minimum tillage gave always significantly 

lower yields than ploughing. The influence of depth of the ploughing that had 

been carried out for the preceding crop was slight. From this standpoint the 

straw burial appears important to mitigate the soil drop in fertility that is common 

in continuous wheat. 

Maize-Wheat succession (M/W) 

Wheat yields after maize generally showed slight but constant responses 

to tillage sequences in both years. The best results were always obtained with 

ploughing repetition to 25-cm depth. The other sequences gave lower yields, 

similar between them, but with a tendency of worst results given by minimum 

tillage to wheat. This response can be attributable to the benefits of turning the 

soil sod each year respectively to reducing the tillage intensity for wheat. 

 

Sorghum-Wheat succession (So/W) 

With the sorghum precession wheat yield showed significantly different 

responses to tillage in the four years, probably because sorghum emergence 

needs a good soil structure and this depends on the interaction between tillage 

and climate conditions. In 2003 the highest grain productions were recorded 

with 25-25 cm ploughings and the lowest with minimum tillage (the same 

pattern that was observed in continuous wheat). In 2004 and 2006 the best 

yields were given by the most intense tillage (deepest ploughing for sorghum), 

probably for the better incorporation in the soil of the residues of both crops 

facilitating wheat seedbed preparation that was particularly difficult in the wet 

autumn. On the contrary, in 2005 wheat yielded most with the shallowest tillage 

sequence, probably because of the drier autumn that implied a reduced wheat 

requirement for a good soil structure. 



 

72 

Sugarbeet-Wheat succession (Su/W) 

In two years out of four (2003-2005), wheat yield was higher when 25 cm 

ploughing for wheat had followed 25 ploughing for sugarbeet. They were the 

years with the driest autumns. Thus it seems that minimum tillage for wheat is 

not particularly favourable for this cereal in dry conditions.  In 2004 and 2006, 

with more rainy Novembers, the best productions were obtained with minimum 

tillage, independently from the tillage performed for the previous crop. The 

importance of a good structure for the rotations including sugarbeet is thus not 

confirmed. Again, as in sorghum precession, the interaction between tillage and 

climate during crop emergence confirmed very important in determining the 

wheat yield. Perhaps, the break in the cereal succession could have been 

favourable form a pathological standpoint, with the introduction in the soil of 

microrganisms that are antagonists to cereal pathogens. 

Among the many factors that can explain the above reported yield 

responses, indeed, certainly there is the occurrence of plant pathologies, 

particularly those present in the crop early, at the stem base (wheat root and 

crown disease) and later, at the ear level (Fusarium Head Blight a.k.a. FHB). In 

the four research years all these diseases were recorded and their occurrence 

significantly affected wheat yield (table 5). 

Table 5. Correlations between the severity of plant diseases and wheat grain yield (t ha-1) based on the 
data of four years (2003-06) and all rotations, with repeated ploughing to 25 cm depth (25/25). 

Plant pathology Recorded parameter 
Pearsons’ r of their correlation 

with wheat yield § 

Wheat root and crown disease Damage degree [i (%)] - 0.42** 

Fusarium Head Blight (FHB) Incidence (I %) - 0.57*** 

Fusarium Head Blight (FHB) Disease Severity (DS %) - 0.33** 

§ **,*** Correlation significant at P 0,01 and P 0.001, respectively (with 46 d.f.) 
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Effects of wheat root and crown disease on 

grain yield 

At the end of wheat milky maturation phase, on average, the most 

frequent disease that we found on the roots and at the base of wheat culm was 

the common stem rot, which was mainly caused by Fusarium spp. (47.1%, on 

average over the four years; F) and Bipolaris sorokiniana (Sacc.) Shoemaker 

(21.5%; B). To a lesser extent we also found Rhizoctonia spp. sharp eyespot; 

(18.1%; Rh), take-all by Gaeumannomyces graminis (Sacc.) Von Arx & Olivier 

var. tritici Walker (6.4%; Ggt) and eyespot due to Ramulispora herpotrichoides 

(Fron) Arx (4.5%; Ps). 

Figure 1. Isolation frequency of wheat plants infected by root and crown diseases of different causal 
agents (F = Fusarium spp.; B = Bipolaris sorokiniana; Ggt = Gaeumannomyces graminis var. tritici; Rh = 

Rhizoctonia spp.; Ps = Ramulispora herpotrichoides; NI = not identified). 

 

The isolated fusari mainly consisted of: F. tricinctum (Corda) Sacc. 

(35.2% of isolations, on average over the four years), followed by F. culmorum 

(W.G. Smith) (27.0%), F. graminearum Schwabe (15.3%) and F. avenaceum 

(Fr.) Sacc. (10.1%). The occurrence of other species (F. moniliforme Sheldon 

var. anthophilum (Braun) Wollenw, F. chlamydiosporum Wollenw & Reiking, F. 
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proliferatum (Mats) Niering, F. sporotrichioides Scherbankoff, F. nivale (Fr.) 

Ces., and F. solani (Mart.) Sacc.) never exceeded 5% of the total. 

In the four years the pathogens colonized wheat with a various frequency 

(figure 1), probably due to different climatic courses. On average, the worst 

infections were recorded in 2004, the slightest ones in 2003 and 2006. The 

autumn-winter weather of 2002 was cold and rainy and should have favoured 

G. graminis (Ggt) and R. herpotrichoides (Ps), which are less thermophyl and 

prefer soaked soils. The subsequent hot and dry 2003 seasons should have 

stopped the secondary infections of these fungi and promoted fusarioses (F), 

especially those caused by F. graminearum and F. culmorum, and also by 

Rhizoctionia spp. disease, all of which are thermophyl pathogens. However, 

also the later infections of these blights on the upper parts of the plant should 

have been inhibited by the too dry conditions after wheat anthesis till harvest. 

Figure 2. Isolation frequency of the different Fusarium spp. isolated in the four years on tissues at the base 
of wheat culm. 

 

 

The following year (2003-04) the autumn-winter was milder, with more 

evenly distributed precipitations: the optimal conditions for the spreading of Ggt 

and Ps. Later, the cool and humid spring should have favoured also root rot; not 

caused by the same specie of the year before, but by less thermophyl ones, 
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e.g. F. avenaceum and F. nivale. Therefore 2004, on the whole, was particularly 

favourable to all fungi of the root and crown diseases on wheat. In 2005 the 

autumn-winter weather was similar to the previous year, favouring Ggt and Ps 

infections. In late spring, at wheat anthesis, the temperatures were already high, 

but the early drought did not allow a wide spreading of root rots, particularly of 

those caused by F. tricinctum and F. culmorum whose infections require high 

moisture to progress.  

The rotation significantly influenced the pathogen spreading as well. With 

repeated shallow ploughings (25 cm deep, each year), which is the commoner 

tillage sequence in Northern Italy, the most troublesome pathogens in all 

successions were the Fusarium spp. and Bipolaris sorokiniana (F+B) (figure 3). 

They showed a higher damage degree in continuous wheat, but were also 

particularly noxious to wheat after sorghum and sugarbeet. Ggt was mainly 

found in continuous wheat, while Rh was prevalent in wheat after the other two 

crops. In all successions Ps caused very little infections to wheat. 

 

Figure 3. Visual determination of the damage degree (i %) of the pathogens of the root and crown 

diseases as affected by crop precession in the soil continuously tilled to 25 cm depth (averages of four 

years). (F = Fusarium spp.; B = Bipolaris sorokiniana; Ggt = Gaeumannomyces graminis var. tritici; Rh = 
Rhizoctonia spp.; Ps = Ramulispora herpotrichoides; NI = not identified). 
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The importance of single pathogens in the determination of wheat yield 

was more thoroughly studied through a multiple regression analysis, based on 

all the four years’ disease degrees, whose results is shown in table 6. The high 

corrected-R2 of the regression (0,59, significant at P 0.001) confirms that much 

of the observed variability in wheat production can be ascribed to the 

occurrence of the root and crown infections. Considering the b coefficient 

significance of each pathogen, the F+B and Rh influence on wheat yield (even 

positive, but statistically not significant) resulted far less than those of Ggt and 

Ps (both with negative b coefficients, significant at P 0.001), which thus 

appeared the most dangerous pathogens in the experiment. 

 

Table 6. Multiple regression analysis with y = wheat grain yield (t ha-1) and x = the main wheat root and 

crown disease pathogens (damage degree %). The analysis was performed on the means of the four 
years (48 observations) 

Multiple regression R = 0.79; R2 = 0.62; Corrected R2 = 0.59 

ANOVA d.f. S.S. M.S. F F signif. 

Regression 4 39.92 9.98 17.79 1.09E-08 

Residue 43 24.12 0.56   

Total 47 64.04       

Coefficients Coeff. St. error Student t    t significance 

Intercept 3.954 0.280 14.09 1.01E-17  

F+B 0.019 0.016 1.13 0.2664  

Ggt  -0.060 0.016 -3.66 0.0007  

Rh 0.037 0.020 1.79 0.0799  

Ps  -0.093 0.021 -4.33 8.74E-05  

 

 

The analysis of the inter-correlations between the damage degrees of the 

single pathogens (table 7) revealed a negative relationship between Ggt and Rh 
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that underlies some sort of antagonism between them. On the contrary, Ggt and 

Ps were strongly positively linked, which testify that they can both proliferate on 

a same plant, without any competition effects. Synergic phenomena can explain 

their high capacity of colonizing and damaging wheat yield. 

Table 7. Correlations’ r between causal agents of wheat root and crown disease. The analysis was 
performed on the damage degree (i %) means of the four years (48 observations) 

Correlation r F + B  Ggt  Rh Ps 

F + B  1     

Ggt  -0.021 ns 1    

Rh 0.158 ns -0.364** 1   

Ps  0.106 ns 0.409** -0.108 ns 1 

**, ns Correlation significant at P 0,01 or not significant, respectively (with 46 d.f.) 

 

 

The principal component analysis conducted on the basis of the damage 

degree means of all four years (figure 4) allows a better visualization of the 

relationships between the single pathogens of root and crown disease in wheat, 

the studied agronomic factors (soil tillage and crop succession), and between 

themselves altogether.  

Three types of pathogens can be identified in that graph. A first, small 

group whose presence is mainly determined by crop rotation (R. 

herpotrichoides (Ps) and Gaeumannomyces graminis var. tritici (Ggt)), and a 

second group, mainly influenced by tillage, which is made up of many fusari (F. 

tricinctum, F. avenaceum, F. chlamydosporum, F. proliferatum, F. graminearum, 

F. anthophilum), together with B. sorokiniana (B). The presence of the other 
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casual agents resulted only slightly affected by both agronomic factors. In 

particular Rhizoctonia spp. (Rh) appeared the least influenced pathogen. 

 

 

Figure 4. Principal component analysis of the two agronomic factors (soil tillage and crop succession) and 
the main agents of wheat root and crown disease. The analysis was based on the damage degree means 

of the four years. The two axes explain the 24% of total variability 
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Effects of crop succession and soil tillage on the 

causal agents of wheat root and crown disease 

As shown above, the single agents of the root and crown syndrome of 

wheat showed different responses to the agronomic factors that we examined. 

Therefore it can be interesting to better illustrate how the main pathogens were 

influenced by the crop succession and soil tillage sequence. 

Fusarium spp. (F) and Bipolaris sorokiniana (B) 

The main agents of the “Common stem rot” resulted pooled in a unique 

group, which was mainly influenced by soil tillage. Therefore their responses 

are discussed together, particularly regarding the agronomic aspects (table 8).  

Table 8. Damage degree (i %) on wheat of common stem rot disease caused by Fusarium spp. and B. 

sorokiniana in 4 years as affected by soil tillage sequences (25 or 50 cm ploughing for the preceding crop, 
followed by 25 cm ploughing or minimum tillage for wheat) (means of the crop successions). 

Tillage 2003 2004 2005 2006 Means 

25 / MT 10.28 22.52 15.13 9.21 14.29 

25 / 25 12.68 19.81 13.20 13.48 14.79 

50 / MT nd§ 17.38 13.43 10.90 13.90 

50 / 25 7.40 nd nd nd 7.40 

Means 11.48 19.90 13.92 11.20  

§ nd = Tillage sequence not present in that year, the means are calculated without this datum 

 

The common stem rot disease was abundant in all four years. In 2004 

wheat was severely damaged, probably because of spring conditions that were 

favourable to the pathogens. As a mean of the four years and of all the 

successions, a deep ploughing for the previous crop resulted in less stem rot 

than shallow tillage. On the contrary, the difference between minimum tillage 

and shallow ploughing for wheat were quite slight on the disease spreading on 
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the crop. Probably a deep burial of the propagules of the pathogens on wheat 

stubble for the seedbed preparation of summer crops can effectively reduce the 

inoculum presence for at least two years. 

Gaeumannomyces graminis var. tritici (Ggt) 

The take-all disease was particularly infectious in 2005 while was almost 

absent in 2003 (table 9). As expected, it always resulted strongly associated 

with wheat monosuccession. Surprisingly, sugarbeet was more favourable to 

the disease than sorghum, which was the crop that caused the least take-all 

infections to the following wheat. Probably sorghum residues create a microbial 

population on the soil surface that includes many antagonists of G. graminis. 

Table 9. Damage degree (i %) on wheat of take-all caused by Gaeumnannomyces graminis var. tritici in 

four years as affected by crop succession (averages of the different tillage). 

Succession 2003 2004 2005 2006 Means 

Wheat/W. 0.69 20.87 22.60 9.87 13.51 

Sorghum/W. 0.00 0.12 0.13 0.14 0.10 

Maize/W. 0.00 1.45 nd nd 0.73 

Sugarbeet/W. 0.00 0.35 0.43 3.08 1.29 

Means 0.23 7.48 11.37 5.00  

§ nd = Succession not present in that year, the means are calculated without this datum 

Ramulispora herpotrichoides (Ps) 

The eyespot was particularly damaging in 2004 (table 10), but the 

disease was common in all four years. As the previous fungus, the continuous 

wheat markedly favoured R. herpotrichoides and, again, sugarbeet resulted less 

effective against its colonizing ability than sorghum, but not so evidently as for 

take-all. 
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Table 10. Damage degree (i %) on wheat of eyespot caused by Ramulispora herpotrichoides in 4 years as 
affected by crop succession (means of the different tillage sequences). 

Succession 2003 2004 2005 2006 Means 

Wheat/W. 5.62 11.86 4.74 3.18 6.35 

Sorghum/W. 0.15 2.90 1.01 0.07 1.03 

Maize/W. 0.00 1.28 nd nd 0.64 

Sugarbeet/W. 0.14 2.01 1.15 0.00 1.05 

Means 1.92 5.35 2.88 1.63  

§ nd = Succession not present in that year, the means are calculated without this datum 

 

 

Rhizoctonia spp. (Rh) 

Differently from all other pathogens, the most serious root rot by 

Rhizoctonia spp. was prevalently found on wheat following other crops, 

particularly maize. Instead the continuous wheat was less affected by 

Rhizoctonia spp. (table 11), probably because this pathogen is less competitive 

on wheat stubbles than other aggressive pathogens, like G. graminis. 

Table 11. Damage degree (i %) on wheat of root rot caused by Rhizoctonia spp. in 4 years as affected by 

crop succession (means of the different tillage sequences).  

Crop 

succession 
2003 2004 2005 2006 Means 

Wheat/Wheat 1.21 2.09 0.56 0.17 1.01 

Sorghum/Wheat 1.68 13.23 3.58 1.92 5.10 

Maize/Wheat 6.73 12.33 nd nd 9.53 

Sugarbeet/Wheat 5.53 12.01 10.51 3.52 8.68 

Means 3.21 9.22 2.07 1.04  

§ nd = Succession not present in that year, the means are calculated without this datum 

 

 



 

82 

Effects of crop succession and tillage on the soil 

fungi population 

The DGGE analyses of microbial soil population that were performed in 

Wageningen (NL). 

Figure 5. Ordination by discriminant analysis performed on the DGGE bands of soil samples collected in 

2006. Means of 2 gels/sample. The graph shows the major factors of discrimination between fungi 
populations and the reciprocal distance between the different soil samples, each with its fungi population. 
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The analysis gave gels with different bands that can be used to 

determine if the agronomic factors modified the fungi population in the soil, thus 

influencing the root and crown disease of wheat. 

The results of the ordination of the soil samples that were collected in the 

experimental plots allowed to clarify which of the agronomic factors that we 

compared had a major influence in determining the composition of the fungi 

population in the soil. 

The discriminant analysis results are reported in figure 5 as a two axes 

graph, showing arrows whose length is proportional to the factor influence. The 

factors that mainly determined the fungi population in the soil were tillage, 

particularly that for wheat: 25 cm deep ploughing vs. minimum tillage, and crop 

succession, mainly the difference between continuous wheat and wheat 

inserted in the 4-year rotation. Minor importance had the preceding crops 

(sugarbeet or sorghum) and the tillage performed for them (ploughing to 25 or 

50 cm). 

The observation of the analytic gels (figure 6) revealed that continuous 

wheat with respect to 4-year rotation and minimum tillage vs. ploughing for 

wheat both caused a drastic drop in the number of bands and an increase of 

their thickness. 

This is a clear indication of a simplified soil microbial population that 

many authors consider unfavourable to cropped species (particularly to wheat) 

for the lack of pathogen antagonists. Indeed, on the basis of what we observed 

in the field, most of the more abundant fungi in continuous wheat presumably 

belong to two aggressive species: G. graminis and Ramulispora 

herpothricoides, which are generally overwhelmed by Fusarium spp. in the 

other successions. 
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 Figure 6. Classification of gel lines on DGGE bands corresponding to various soil samples 
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 Interaction of Fusarium Head Blight (FHB) with 

wheat root and crown disease 

The results of the field determinations that we carried out in 2005 and 

2006 after wheat flowering on the diffusion and severity of Fusarium Head 

Blight are shown in figures 7 and 8  

 

Figure 7. Influence of crop succession on the incidence (I) and severity (DS) of Fusarium head blight. 

Averages of two years (2005 and 2006) and 6 tillage treatments ± standard errors 
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As an average of both years, with a similar occurrence of FHB, after 

sugarbeet head scab on wheat crop resulted sparser and less severe than after 

sorghum or wheat. The precession of the two cereals, instead, caused no 

significant difference on its diffusion and on severity of its damages (figure 7). 

Figure 8. Influence of tillage sequence on the incidence (I) and severity (DS) of FHB (MT= minimum 
tillage; 25 or 50 cm ploughing depth). Averages of two years (2005 and 2006) and three crop successions 

± standard errors 

 

Both parameters appeared augmented when wheat was seeded in 

minimum tilled soil, maybe for a less vigorous growth of crop plants during stem 
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elongation that made them more prone to the Fusarium late infection. The 

tillage influences on FHB, however, were slighter than what we expected. The 

results of the correlation analysis between the incidence (I) and severity (DS) of 

scab and the detected root and crown pathogens (expressed as disease 

incidence [i%]) are shown in table 12.  

 

 

Table 12. Correlations between Fusarium Head Blight (FHB) incidence (I) and severity (DS) on wheat and 

root and crown disease pathogens isolation frequency (%). Analysis based on 48 observations 
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FHB 

(I%) 
1        

FHB 

(DS%) 
+0.53*** 1       

Fusarium spp. 
(%) 

-0.18ns -0.15ns 1      

F. sporotrichioides 
(%) 

+0.32* -0.07ns -0.09ns 1     

Rhizoctonia spp. 
(%) 

-0.30* -0.35* -0.28ns -0.17ns 1    

B. sorokiniana 
(%) 

+0.12 +0.43** 0.00ns -0.09ns -0.41*** 1   

G. graminis 
 (%) 

+0.45*** +0.71*** -0.30* +0.04ns -0.41*** +0.37** 1  

R. herpotrichoides 
(%) 

+0.14ns +0.54*** +0.24ns -0.24ns -0.13ns -0.16ns +0.29* 1 

***,**,*,ns Correlation-r significant at P 0.001, P 0.01, P 0.05 and not significant, respectively 
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We did not find any significant relationship between Fusarium head blight 

of small grains and most of the Fusarium spp. isolated at the wheat culm base 

and root, except in the instance of F. sporotrichioides. On the contrary, 

significant relations were found with Rhizoctonia spp. (Rh), B. sorokiniana (B), 

G. graminis (Ggt), and R. herpotrichoides (Ps). While B, Ggt and Ps showed a 

positive correlation, meaning that when there is a heavy infection at the culm 

base it is probable to register a severe head scab disease. The relation of Rh 

with FHB was negative. Probably Rh infection does not weaken wheat plants, 

thus they can better resist to FHB. On the contrary, with heavy infestations of 

other root and crown disease pathogens (Ggt, Ps, B) FHB is more severe and 

Rhizoctonia spp. less present. 

All these relationships can be probably due to the same antagonistic and 

synergic effects between the pathogen infections that we previously conjectured 

and can explain why most Fusarium and Rhizoctonia spp. at the culm base do 

not damage yield as the other pathogens. From this point of view G. graminis, 

R. herpotrichoides, and B. sorokiniana appear the most troublesome pathogens 

over the whole cycle of wheat crop, and they can effectively limit the diffusion of 

Rhizoctonia spp. On the other hand the Fusarium spp. and Rhizoctonia spp. 

that were so frequently found at the stem base do not seem significantly linked 

to the FHB damaging the wheat ear, which is so detrimental to grain yield. 
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Yield quality: effects of crop succession, tillage 

and diseases on wheat grain apparent specific 

weight 

 

The compared agronomic practices had a marked influence on the 

quality of wheat caryopses. Their effect was clear on the apparent specific 

weight of the grain (tables 13,14,15,16) that varied similarly to wheat yield (table 

17). This quality parameter was always lowest in continuous wheat with respect 

to other successions, and minimum tillage worsened it compared to ploughings. 

The best results were obtained in wheat following maize or sugarbeet with the 

alternation of ploughings to 25 and 50 cm depth. These tillage sequence and 

succession are also those that most limited the infections of wheat root and 

crown diseases. 

 

Table 13. Effects of crop succession and soil tillage sequence on the apparent specific weight (kg hl-1 ± 
s.e. of the means) of wheat grain in 2003. (Tillage sequences: 25/Mt = 25 cm deep ploughing for the 

preceding crop followed by minimum tillage for wheat; 25/25 = repeated ploughing to 25 cm depth; 50/25 = 
50 cm deep ploughing for the previous crop followed by ploughing to 25 cm for wheat). The interaction: 

Successions x Tillage was not significant 

 wheat/w. sorghum/w. maize/w. sugarbeet/w. 
Tillage 
means 

25/Mt 74.20 ± 1.35 77.10 ± 0.32 78.37 ± 0.59 76.27 ± 0.60 76.48 B 

25/25 77.03 ± 0.96 78.07 ± 0.72 78.43 ± 0.27 78.30 ± 0.35 77.96 AB 

50/25 78.27 ± 0.37 78.13 ± 0.34 79.03 ± 0.35 78.33 ± 0.35 78.44 A 

Rotation 
means 

76.50 A§ 77.77 AB 78.61 A 77.63 AB  

§ Means followed by different letters are significantly different at P 0.05 according to S.N.K. test 
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Table 14. Effects of crop succession and soil tillage sequence on the apparent specific weight (kg hl-1 ± 
s.e. of the means) of wheat grain in 2004. (Tillage sequences as in table 13). The interaction: Successions 

x Tillage was significant at P 0.01  

 wheat/w. sorghum/w. maize/w. sugarbeet/w. 
Tillage 
means 

25/Mt 72.83 ± 1.30 78.73 ± 0.69 77.16 ± 0.22 78.90 ± 0.95 76.91 A 

25/25 78.67 ± 0.58 78.63 ± 0.42 78.70 ± 0.24 78.87 ± 0.35 78.72 A 

50/25 78.63 ± 0.29 78.27 ± 0.41 78.77 ± 0.35 79.40 ± 0.85 78.77 B 

Rotation 
means 

75.74 B§ 78.54 A 78.21 A 79.06 A  

§ Means followed by different letters are significantly different at P 0.05 according to S.N.K. test 

Table 15. Effects of crop succession and soil tillage sequence on the apparent specific weight (kg hl-1 ± 
s.e. of the means) of wheat grain in 2005. (Tillage sequences as in table 13). The interaction: Successions 

x Tillage was not significant 

 wheat/w. sorghum/w. beet*/w. sugarbeet/w. 
Tillage 
means 

25/Mt 74.33 ± 1.96 78.77 ± 0.82 77.20 ± 0.21 77.53 ± 1.30 76.96 

25/25 74.83 ± 0.42 78.60 ± 0.45 77.60 ± 0.37 77.87 ± 0.40 77.23 

50/25 75.80 ± 0.18 78.23 ± 0.41 77.57 ± 0.17 77.60 ± 0.83 77.30 

Rotation 
means 

74.99 C§ 78.53 A 77.46 B 77.67 B  

§ Means followed by different letters are significantly different at P 0.05 according to S.N.K. test 
* inserted in a 4-year course: sugarbeet/wheat/sorghum/wheat 

Table 16. Effects of crop succession and soil tillage sequence on the apparent specific weight (kg hl-1 ± 
s.e. of the means) of wheat grain in 2006. (Tillage sequences = in table 13). The interaction: Successions 

x Tillage was not significant 

 wheat/w. sorghum/w. sorghum*/w. sugarbeet/w. 
Tillage 
means 

25/Mt 73.67 ± 1.96 78.43 ± 0.32 78.90 ± 0.04 78.33 ± 0.29 77.33 

25/25 74.57 ± 0.44 78.57 ± 0.41 78.33 ± 0.31 76.87 ± 0.43 77.09 

50/25 75.73 ± 0.15 78.80 ± 0.67 79.93 ± 0.20 77.93 ± 0.30 78.10 

Rotation 
means 

74.66 C§ 78.60 AB 79.05 A 77.71 B  

§ Means followed by different letters are significantly different at P 0.05 according to S.N.K. test 

* inserted in a 4-year course: sugarbeet/wheat/sorghum/wheat 
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The grain apparent specific weight was better correlated to Fusarium 

head blight (FHB) severity than to most of the wheat root and crown disease 

pathogens (table 17), demonstrating the importance of the pathologies infecting 

the spike on the quality of produced grain. The significant negative correlation 

between grain specific weight and R. herpotrichoides incidence means that its 

disease also damages grain quality. 

 

Table 17. Correlations between the grain apparent specific weight, the wheat yield, the Fusarium Head 

Blight (FHB) incidence (I) and severity (DS) and the isolated root and crown disease pathogens (%). 

Correlation r 
Apparent Specific Weight 

of wheat grain (kg hl-1) 

Wheat grain yield (t ha-1) § + 0.63*** 

Fusarium Head Blight incidence (I%) § - 0.47*** 

Fusarium Head Blight severity (DS%) § - 0.42*** 

Fusarium spp. on root and crown (%) # - 0.02 ns 

F. sporotrichioides (%) # - 0.46*** 

Rhizoctonia spp. (%) # + 0.19 ns 

B. sorokiniana (%) # + 0.14 ns 

G. graminis (%) # - 0.11 ns 

R. herpotrichoides (%) #  - 0.33* 

***,**,ns Correlation-r significant at P 0.001, P 0.01, and not significant, respectively, 
§ based on 48 observations; # based on 24 observations 
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Flour quality: Fusarium Head Blight and fungi 

content in wheat grain 

 

The determination of pathogens content in the grounded wheat grain 

revealed a vast quantity of fungi other than Fusarium spp., such as Penicillium 

spp., Verticillium spp. and Aspergillus spp., some of which resulted the most 

abundant contaminants of the flour (table 18). Most of them are ubiquitous 

saprophytes, whose spread shouldn’t directly depend on the studied agronomic 

factors. 

Table 18. Fungi in the flour of wheat (averages of the 3-years determinations, 48 samples per year) 

Pathogen 
 

% Isolations in flour samples 

Penicillium spp. 38.51 

Verticillium spp. 30.29 

Fusarium proliferatum 15.57 

Aspergillus spp. 10.89 

Bipolaris spp. 1.67 

Fusarium culmorum 1.64 

Fusarium graminearum 1.31 

Fusarium sporotrichioides 0.13 

 

 

Tillage had no significant influence on the amount of fungi content in 

wheat flour (figure 9). On the contrary, crop rotation was determinant. In 

particular, continuous wheat caused a significant increase of UFC (Unit forming 

Colonies), while the precessions of both sorghum and sugarbeet caused much 

lower, similar, contents. 
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Figure 9. Influence of preceding crop and tillage sequence on the amount of fungi in wheat flour (means of 
48 determinations ± standard errors of the means)  

 

Regarding the frequency of single microrganisms (figure 10), it’s clear 

that the difference of wheat monosuccession from the other rotations was due 

to Penicillium spp. and Verticillium spp. The fungi of both genera were favoured 

by continuous wheat, not showing any antagonistic effect. Aspergillus spp. were 

slightly less present in wheat after sugarbeet, also compared to sorghum 

precession, while F. proliferatum was found more in sorghum and sugarbeet 

precession than in continuous wheat. 
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Figure 10. Composition of the population of fungi that were detected in the wheat flour as affected by crop 
succession and soil tillage sequence (means of 48 determinations) 
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The tillage sequence, notwithstanding a scarce influence on the amount 

of fungi in the flour, markedly varied their composition. Surprisingly tillage did 

not influence the occurrence of F. proliferatum, which resulted indifferent even 

to the preponderance of Penicillium spp.  

Table 19. Correlation-r between wheat grain yield and specific apparent weight, fungi in the flour (UFC/g) 
and Fusarium Head Blight (FHB) incidence (I%) and severity (DS%) on wheat spikes (means of 48 data). 
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Wheat Yield t ha-1 1            

Grain specific wt. kg hl-1 0.63a 1           

Penicillium spp. UFC/g -0.80a -0.72a 1          

Aspergillus spp. UFC/g -0.20 0.11 -0.07 1         

Bipolaris spp. UFC/g 0.25 -0.04 -0.20 -0.20 1        

Verticillium spp. UFC/g -0.18 -0.20 -0.18 0.30b -0.09 1       

F. proliferatum UFC/g 0.34b 0.21 -0.30 0.09 0.22 0.04 1      

F. sporotrichioides UFC/g -0.15 0.08 -0.05 0.86a -0.02 -0.04 0.21 1     

F. culmorum UFC/g -0.02 -0.20 0.23 -0.21 0.17 -0.09 0.08 -0.18 1    

F. graminearum UFC/g 0.01 0.27c -0.05 0.28c -0.35b 0.11 -0.03 0.17 -0.29c 1   

FHB (I%) -0.57a -0.47b 0.56a -0.11 0.07 -0.04 -0.16 0.00 0.08 -0.14 1  

FHB (DS%) -0.33b -0.42b 0.20 -0.21 0.24 0.07 -0.08 -0.10 0.38b -0.43a 0.53a 1 

 
§ a, b. c, Correlation-r significant at P 0.001; P 0.01 and P 0.05, respectively 

 

Instead we found much more Penicillium spp. in the sequence 25 cm 

deep ploughing followed by minimum tillage for wheat. In the other sequences 

the Penicillium place was taken by Verticillium spp., which, on the contrary, 
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appeared scarce with less intensive tillage. These responses of fungi population 

to tillage remain obscure. They could be due to competition effects between the 

two saprophytic genera, which have similar environmental requirements and 

behaviour, when they develop on a substratum more or less contaminated by 

other fungi. 

The correlations between FHB, the pathogens found in the flour, grain 

yield and specific weight are shown in table 19. A significant negative relation 

was found between the wheat yield quantity and quality and the Penicillium spp. 

flour content. Because Penicillium spp. is not a pathogen we didn’t expect this 

result. However Penicillium in the grain was strongly positively correlated with 

FHB, which was the more detrimental disease to wheat yield and its quality. 

Thus Penicillium damage to yield could be only due to indirect effects. 

This conjecture is also confirmed by the fact that the great diffusion of 

fusari in continuous wheat and in shallow tilled plots brought about a high flour 

content of Penicillium spp. On the other hand, the preponderance of saprophytic 

Penicillium spp. and Verticillium spp. fungi in the flour would have masked any 

straight relationships between the manifest FHB in the field and the grain 

content of Fusarium spp. 

Product quality: pathogen content in wheat 

flour and mycotoxins contamination 

We decided to search for mycotoxins on the basis of pathogens that 

were mostly found in wheat flour. Thus, we analyzed aflatoxins G1, G2, B1 and 

B2 because of Aspergillus spp. presence; fumonisin B1 and B2 because of F. 

proliferatum, DON and ZEA because we had found F. sporotrichioides, F. 

culmorum and F. gramineaurum (Figure 11). In the three years’ determinations 

all mycotoxins concentrations were below the detection limits of our 

instruments, with the exception of fumonisin B2 (table 20). The presence of this 

latter can be explained by the high content of F. proliferatum that we found in 

the grain, little influenced by the agronomic practices and by the presence of 
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other fungi on the flour. However also fumosinin B2 was detected within a 

concentration range (0.05-0.10 ppm), which is well below the recent European 

regulations about winter cereal grains. 

Figure 11. Determined mycotoxins 

 

          

                                                                                                     1.-Aflatoxin B1     2.-Aflatoxin B2 

                                                                                                     3.-Aflatoxin G1     4.-Aflatoxin G2 

        

 

Fumonisin B1: R1= OH; R2= OH; R3= OH; 

                                                                                                    Fumonisin B2: R1= H; R2= OH; R3= OH; 

                                       zearalenone 
 

               B. trichothecenes 

                                                                                                  Don. (R1.=.OH, R2. = H, R3.=.OH, R4 = OH) 
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Table 20. Results of the analysis of fungi (CFU countings) and 

mycotoxins (HPLC) in wheat flour (averages of 12 detections per year). 

   Years  Detection 

  2004 2005 2006 Limits 

Fungi in wheat flour      

Aspergillus spp. CFU/g 3.42 1.46 15.71 - 

Fusarium proliferatum CFU/g 0.25 14.79 9.75 - 

Fusarium sporotrichioides CFU/g 0.08 0.04 0.17 - 

Fusarium culmorum CFU/g 0.96 2.08 0.50 - 

Fusarium graminearum CFU/g 1.58 0.48 1.58 - 

Mycotoxins in wheat flour      

Aflatoxin G1 ppb nd nd nd <0.12 

Aflatoxin G2 ppb nd nd nd <0.03 

Aflatoxin B1 ppb nd nd nd <0.09 

Aflatoxin B2 ppb nd nd nd <0.03 

Deoxinivalenole (DON) ppm nd nd nd <0.15 

Fumonisin B1 ppm 0.05-0.1 0.05-0.1 0.05-0.1 <0.05 

Fumonisin B2 ppm nd nd nd <0.05 

Zearalenone (ZEA) ppb nd nd nd <6.00 

 

nd = Less than the detection limit of the instrument (HPLC) 
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Conclusions 

The results that we obtained in this preliminary research show that durum 

wheat yield quantity and quality can significantly vary according to the crop 

rotation and the intensity of soil tillage sequence carried out for many years. 

The crop succession was the major factor in this sense, causing significant 

differences in wheat yield in all the four years. Continuous wheat substantially 

differed from the other rotations, because it always gave lower yields (1-3 t ha-1 

less) and scanty kernel quality. The productivity of the other successions (wheat 

preceded by maize, sorghum or sugarbeet) didn’t differ much among them. 

Tillage influence was less marked and unsteady. It resulted significant only two 

years out of four. The interaction between tillage and rotation treatments was 

seldom found significant. Therefore the lower productivity of monosuccession 

couldn’t be significantly improved by any soil tillage intensification. 

Many factors can substantially vary the responses of wheat yield to 

tillage; for example, its effects heavily depend on weather, which can affect not 

only the efficacy of this practice, but also crop growth and all crop adversities, 

including soil mycopathogens. However, wheat grown on minimum tilled soil 

yielded always less than after shallow ploughing. Instead the tillage performed 

for the previous crop had only a slight influence on grain production. 

Much of the observed yield variability, and principally that linked to the 

continuous wheat vs. other crop successions, can be explained by the 

occurrence of pathogenic fungi infecting wheat, many of which survive in crop 

residues. 

In our field experiment, which was conducted in rather wet conditions, in 

northern Italy, on a plain at the foot of the hills, most infections on the root and 

culm base were caused by the Fusarium genus, and, to a lesser extent, by B. 

sorokiniana. This result confirms what was already found in many other 

investigations on the wheat root and crown disease in Italy (Corazza et al., 1987 
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and 1998; Rossi et al., 1995). Also Innocenti et al. (2000) reported a similar 

pattern in another research, conducted in the same Ozzano farm. Thus it seems 

that fusari are always abundantly present in our wheat fields. Probably this 

genus can easily adapt to a wide range of environmental conditions, thanks to 

the different requirements of its several species. However, luckily, their 

infections didn’t markedly reduce wheat yield. Their occurrence was more 

intense in wheat monosuccession than in any other rotations. G. graminis as 

well was more present in continuous wheat, but it was more noxious to the crop. 

Its infections did not show any trend throughout the experiment: in a year it 

caused very high damage degrees, the next one almost no symptom at all. This 

irregularity doesn’t agree with the TAD theory that forecasts a progressive 

decrease of take-all intensity in cereal monosuccessions with time. The 

contrasting results can be simply due to different weather conditions. The crop 

preceding wheat had a significant effect on G. graminis diffusion. In particular, 

this pathogen developed better after sorghum than after sugarbeet and maize. 

Our investigation revealed the great importance of R. herpotrichoides in 

wheat root and crown disease in Italy. Up to now this pathogen has been 

scarcely reported in our country; probably it received little consideration 

because Fusarium spp., which are often simultaneously present on the same 

wheat culm, can easily mask its symptoms. Moreover, it is difficult to isolate 

because on agar medium many fusari grow more rapidly and can even stop its 

mycelium development when they are grown on the same rich substratum, such 

as PDA. Therefore, R. herpotrichoides can actually be in Italy as serious a 

cereal pathogen as it is in France and in other Central European countries, but 

it is often undervalued. In our research its occurrence was positively correlated 

with the other most troublesome wheat pathogen (Ggt) and, together, they 

caused the worst yield reductions. The most serious infections of R. 

herpotrichoides were observed in wheat monosuccession; sorghum precession 

was slightly more favourable to the fungus than sugarbeet. Maize gave the least 

disease on the subsequent wheat, but this crop precession was tested only for 

two years. 
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We also found Rhizoctonia spp., whose spreading is increasingly 

reported in other Europe countries (Colbach et al., 1995). However, its 

dangerousness didn’t appear high: the correlation between its damage degrees 

and wheat yield was never significant. 

The diseases caused by the detected fungi were influenced by soil tillage 

and even more by crop precession. The rotation influenced mainly G. graminis 

and R. herpotrichoides, while tillage treatments showed major effects on most 

Fusarium spp. and B. sorokiniana. In particular minimum tillage for wheat 

favoured fusari. Ggt and Ps mainly occurred in monosuccession because they 

are wheat host specific and have a reduced capacity of saprophytic life. On the 

contrary the propagation of many Fusarium spp. is less dependent on the 

presence of crop residues because they can easily survive free in the soil. Both 

tillage and rotation treatments had no significant influence on Rhizoctonia spp., 

which are typical polyphagous pathogens, widespread on all the crops and can 

also survive for some years in the soil without plant debris. 

Anyway, in our research the importance of crop residues as the main 

survival mean and the primary source of inoculum for most soil-borne 

pathogens was confirmed. Tillage mainly modifies the crop residues distribution 

in the soil profile, while crop precession determines their characteristics. But 

there can be an interaction between the two effects. If a residue from a host 

crop is left on the soil surface, where the crop seed will be planted (as it 

happens in a succession of host/host or bridge/host crops with minimum tillage) 

it is highly probable that the subsequent crop plants will be soon infected. On 

the contrary, if what remains on the soil surface is made of not-host residues 

(like when minimum tillage is performed for a not-host/host succession), primary 

infection will be limited both for a smaller inoculum amount and for a higher 

competition from the microflora that is linked to the not-host crop. This can 

explain why in the rotation: renewal crop-cereal, minimum tillage is 

unfavourable to many pathogens, while in the successions host/host (i.e. 

continuous wheat) or bridge/host, ploughing remains the most effective control 

practice against the two most frequent root and crown diseases of wheat: 
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Fusarium spp. and R. herpotrichoides. The sod turning brought about by 

ploughing, besides diluting the crop residues in the soil profile, carries them far 

from the seed and deep into the soil, where the pathogen propagules find sub-

optimal growth conditions. Moreover, ploughing creates a macroporosity that 

speeds up the residue degradation, thus depriving pathogens of their main 

propagation means (Giardini, 1982). A long period from ploughing to sowing 

can drastically reduce the inoculum soil content, and this is what usually 

happens on clay soils, like those typical of the Po Valley. This phenomenon is 

more decisive for the scarcely saprophytic pathogens (Wiles, 1987). Our results 

on R. herpotrichoides confirm this theory. Its disease on wheat was more 

serious after minimum tillage than after ploughing, and its infections were 

particularly low when ploughing for wheat followed deep ploughing for summer 

crops. On the contrary, residue burial by ploughing didn’t significantly affect Ggt, 

even in 2004 and 2005, when this pathogen resulted particularly damaging. 

The Fusarium Head Blight of small grains (FHB) on wheat spikes was 

particularly noxious to the quantity and quality of grain yield. Its incidence and 

severity appeared little influenced by fungi that we isolated at the culm base, 

even if the literature reports the possibility of an upward movement of Fusarium 

spp. along the wheat culm. The major FHB infection source should be the 

amount of inoculum in the soil, more than the severity of Fusarium spp. 

diseases at the culm base. Relatively to other pathogens of wheat and crown 

disease, FHB was found positively related with Ggt, B. sorokiniana and R. 

herpotrichoides and negatively with Rhizoctonia spp. These relationships can 

be ascribed to the fact that a plant that is weakened by aggressive pathogens, 

like Ggt and Ps, is more susceptible to other later diseases, like FHB. On the 

contrary, less aggressive pathogens, like Rhizoctonia spp. don’t favour further 

infections. 

To reduce FHB sugarbeet appeared a good precession, better than the 

summer cereals. Sorghum caused FHB infections on subsequent wheat not 

different from wheat precession. Tillage type had a slight influence on the 

disease. However, 25-cm ploughing for wheat seemed to discourage the 



Soil tillage and crop rotation effects on Triticum durum (Desf.) yield and mycotoxins content in its grain  

103 

infections more than minimum tillage. This confirms the hypothesis that much of 

the FHB infection starts from the Fusarium spp. in the soil, that are reduced by 

ploughing before wheat seeding. However these phenomena can be also 

determined by indirect influences between populations of fungi in the soil-crop 

continuum, which are difficult to clarify. There can be great effects due to 

climatic factors; indeed, the diffusion of Fusarium head blight seemed also 

determined by the weather in mid spring. 

The wheat grain quality was significantly reduced by a wrong crop 

succession (continuous wheat) and by too a shallow soil tillage (minimum tillage 

for wheat in certain years with heavy autumn rain). As expected, the grain 

specific weight, which is well correlated with the semolina yield, was lowest in 

wheat monosuccession and with minimum tillage, similarly to what we observed 

for the grain yield. Moreover, it was strongly affected by the incidence and 

severity of Fusarium head blight of small cereals. The fungi contaminating the 

flour were also different from the causal agents of FHB symptoms. In our 

research many of them belonged to Verticillium, Aspergillus and Penicillium 

genera, which include typical saprophytic species. They are ubiquitous not-

pathogenic organisms, also present on the aerial parts of the plants, where they 

can survive without revealing any symptom of their presence. In wheat flour 

they find an optimum substratum and, in the absence of other competitors, they 

can rapidly develop large populations. In the instance of wheat plants that are 

stressed because of nutrient or water deficiencies, or due to early infections of 

G. graminis, those saprophytic fungi can contaminate the kernels more 

efficiently than FHB Fusarium spp. 

The rotation had a great influence on the fungi flour content. 

Monosuccession gave the highest amount of saprophytic organisms, probably 

due to a more severe crop stress. We found a strong negative correlation 

between Penicillium spp. occurrence and the crop qualitative and quantitative 

production that can be due to an indirect influence on Penicillium and FHB 

symptom intensity. 
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Tillage had a slight influence on the amount of fungi on the flour, but 

greatly affected the composition of their population by favouring either 

Verticillium or Penicillium as a consequence of turning or not the soil sod for 

wheat. Also at the flour level, thus, our research revealed complex relations 

between various microrganisms, which should be always considered when 

better control means of certain diseases are to be chosen. 

The low content of Fusarium spp. and Aspergillus spp. that we always 

found in wheat spikes and flour could explain why mycotoxins were almost 

completely absent in wheat final product. Some traces were found only of 

fumonisin B, probably originated by the F. proliferatum infecting the flour. The 

mycotoxin problem, however, remains serious. In our research the presence of 

Penicillium spp. on the kernels that were produced by weakened plants is 

worrying. Indeed durum wheat in Italy can be easily stressed by water shortage 

or nutrient deficiencies or even by infections of fusari or other pathogens during 

its whole cycle. Many Penicillium spp. can produce ocratoxins, which are toxic 

as well. The search for these toxins in the flour coming from fusari diseased 

ears should be an interesting future step for a better understanding of the risks 

of mycotoxins contaminations of durum wheat grain with the aim to prevent any 

intoxication to humans. 

From our experiment it can be evinced the difficult choice that a farmer 

should take regarding the control of wheat pathogens in Italy. Would it be more 

profitable to control wheat root and culm disease than Fusarium head blight? 

On the basis of our results perhaps it would be better to prevent any stress to 

cropped plants due to soil-borne pathogens, to reduce the possibility of later 

infections on the spikes by fungi that can contaminate grain production with 

mycotoxins. 
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