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ABSTRACT 

The corpus luteum (CL) lifespan is characterized by a rapid growth, 

differentiation and controlled regression of the luteal tissue, accompanied by 

an intense angiogenesis and angioregression. Indeed, the CL is one of the 

most highly vascularised tissue in the body with a proliferation rate of the 

endothelial cells 4- to 20-fold more intense than in some of the most 

malignant human tumours. This angiogenic process should be rigorously 

controlled to allow the repeated opportunities of fertilization. After a first 

period of rapid growth, the tissue becomes stably organized and prepares 

itself to switch to the phenotype required for its next apoptotic regression. In 

pregnant swine, the lifespan of the CLs must be extended to support 

embryonic and foetal development and vascularisation is necessary for the 

maintenance of luteal function. Among the molecules involved in the 

angiogenesis, Vascular Endothelial Growth Factor (VEGF) is the main 

regulator, promoting endothelial cells proliferation, differentiation and survival 

as well as vascular permeability and vessel lumen formation. During vascular 

invasion and apoptosis process, the remodelling of the extracellular matrix is 

essential for the correct evolution of the CL, particularly by the action of 

specific class of proteolytic enzymes known as matrix metalloproteinases 

(MMPs). Another important factor that plays a role in the processes of 

angiogenesis and angioregression during the CL formation and luteolysis is 
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the isopeptide Endothelin-1 (ET-1), which is well-known to be a potent 

vasoconstrictor and mitogen for endothelial cells. The goal of the present 

thesis was to study the role and regulation of vascularisation in an adult 

vascular bed. For this purpose, using a precisely controlled in vivo model of 

swine CL development and regression, we determined the levels of 

expression of the members of VEGF system (VEGF total and specific 

isoforms; VEGF receptor-1, VEGFR-1; VEGF receptor-2, VEGFR-2) and ET-

1 system (ET-1; endothelin converting enzyme-1, ECE-1; endothelin receptor 

type A, ET-A) as well as the activity of the Ca++/Mg++-dependent 

endonucleases and gelatinases (MMP-2 and MMP-9). Three experiments 

were conducted to reach such objectives in CLs isolated from ovaries of 

cyclic, pregnant or fasted gilts.  

In the Experiment I, we evaluated the influence of acute fasting on VEGF 

production and VEGF, VEGFR-2, ET-1, ECE-1 and ET-A mRNA expressions 

in CLs collected on day 6 after ovulation (midluteal phase). The results 

indicated a down-regulation of VEGF, VEGFR-2, ET-1 and ECE-1 mRNA 

expression, although no change was observed for VEGF protein. 

Furthermore, we observed that fasting stimulated steroidogenesis by luteal 

cells. On the basis of the main effects of VEGF (stimulation of vessel growth 

and endothelial permeability) and ET-1 (stimulation of endothelial cell 

proliferation and vasoconstriction, as well as VEGF stimulation), we 

concluded that feed restriction possibly inhibited luteal vessel development. 



L.A. Ribeiro                                             Abstract 

 6

This could be, at least in part, compensated by a decrease of vasal tone due 

to a diminution of ET-1, thus ensuring an adequate blood flow and the 

production of steroids by the luteal cells. 

In the Experiment II, we investigated the relationship between VEGF, 

gelatinases and Ca++/Mg++-dependent endonucleases activities with the 

functional CL stage throughout the oestrous cycle and at pregnancy. The 

results demonstrated differential patterns of expression of those molecules in 

correspondence to the different phases of the oestrous cycle. Immediately 

after ovulation, VEGF mRNA/protein levels and MMP-9 activity are maximal. 

On days 5–14 after ovulation, VEGF expression and MMP-2 and -9 activities 

are at basal levels, while Ca++/Mg++-dependent endonuclease levels 

increased significantly in relation to day 1. Only at luteolysis (day 17), 

Ca++/Mg++-dependent endonuclease and MMP-2 spontaneous activity 

increased significantly. At pregnancy, high levels of MMP-9 and VEGF were 

observed. These results suggested that during the very early luteal phase, 

high MMPs activities coupled with high VEGF levels drive the tissue to an 

angiogenic phenotype, allowing CL growth under LH (Luteinising Hormone) 

stimulus, while during the late luteal phase, low VEGF and elevate MMPs 

levels may play a role in the apoptotic tissue and extracellular matrix 

remodelling during structural luteolysis. 

In the Experiment III, we described the expression patterns of all distinct 

VEGF isoforms throughout the oestrous cycle. Furthermore, the mRNA 
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expression and protein levels of both VEGF receptors were also evaluated. 

Four novel VEGF isoforms (VEGF144, VEGF147, VEGF182, and 

VEGF164b) were found for the first time in swine and the seven identified 

isoforms presented four different patterns of expression. All isoforms showed 

their highest mRNA levels in newly formed CLs (day 1), followed by a 

decrease during mid-late luteal phase (days 10–17), except for VEGF182, 

VEGF188 and VEGF144 that showed a differential regulation during late 

luteal phase (day 14) or at luteolysis (day 17). VEGF protein levels paralleled 

the most expressed and secreted VEGF120 and VEGF164 isoforms. The 

VEGF receptors mRNAs showed a different pattern of expression in relation 

to their ligands, increasing between day 1 and 3 and gradually decreasing 

during the mid-late luteal phase. The differential regulation of some VEGF 

isoforms principally during the late luteal phase and luteolysis suggested a 

specific role of VEGF during tissue remodelling process that occurs either for 

CL maintenance in case of pregnancy or for noncapillary vessel development 

essential for tissue removal during structural luteolysis. 

In summary, our findings allow us to determine relationships among factors 

involved in the angiogenesis and angioregression mechanisms that take 

place during the formation and regression of the CL. Thus, CL provides a 

very interesting model for studying such factors in different fields of the basic 

research. 
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INTRODUCTION 

The ovarian cycle is characterized by repeated patterns of cellular 

proliferation and differentiation that accompany follicular development as well 

as the formation and regression of the corpus luteum (CL). Ovulation is the 

critical event that initiates the transformation of the fluid-filled preovulatory 

follicle into the solid CL. After the ovulation, profound and radical changes 

occur in the theca and granulosa layers, which enable CL formation and 

maturation. During the luteal phase, the CL undergoes definitive structural 

and functional changes until regression and corpus albicans formation or, 

when pregnancy occurs, its function is maintained until term. This rapid 

growth and regression of ovarian tissues are accompanied by equally rapid 

changes in their vascular beds (Kaczmarek et al., 2005). The formation of a 

dense capillary network (angiogenesis) in the ovary enables the hormone-

producing cells to obtain oxygen, nutrients and also precursors necessary to 

synthesize and release different hormones essential for maintenance of the 

ovarian functions (Kaczmarek et al., 2005). In the vascularisation of the CL 

the angiogenesis is most intense. Indeed, the CL has the highest blood 

supply per unit mass of any tissue in the body, eight times that of the kidney. 

Over 85% of proliferating cells in the CL are endothelial cells and endothelial 

cells make up around 50% of all cells in the mature ovarian gland (Fraser & 

Duncan, 2005). In contrast, in non-reproductive tissues, endothelial cells, 
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once differentiated, normally remain functional for 2-3 years (Fraser & 

Duncan, 2005). 

Within two weeks, however, in the absence of pregnancy, the CL regresses, 

becoming an avascular remnant (Fraser & Duncan, 2005). Consequently, in 

each ovarian cycle there is a highly regulated angiogenesis and vascular 

regression. In contrast, in a fertile cycle, the lifespan of the CL, with its 

attendant vasculature, is prolonged. Therefore, within a short time, the CL 

must accommodate a period of angiogenesis followed by either controlled 

regression or maturation of the vasculature in the non-fertile or fertile cycle, 

respectively.  

Angiogenesis refers to the formation of new blood vessels and is essential for 

normal tissue growth and development (Folkman & Klagsbrun, 1987). The 

angiogenic process begins with capillary sprouting and culminates in 

formation of a new microcirculatory bed composed of arterioles, capillaries 

and venules. The initiation of angiogenesis consists of at least three 

processes: 1) breakdown of the basement membrane of the existing vessels, 

2) migration of endothelial cells from the existing vessels towards an 

angiogenic stimulus, and 3) proliferation of endothelial cells (Klagsbrun & 

D’Amore, 1991). New blood vessel development is completed by formation of 

capillary basal lamina and differentiation of new capillaries into arterioles and 

venules. 
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Aside from luteal tissue, wound healing and some pathological processes, 

including neoplasia, the vascular system in the adult is generally quiescent. 

Since it is almost certain that some forms of ovarian dysfunction are 

associated with abnormalities of the angiogenic process, the ovary therefore 

represents an exceptional and highly relevant tissue in which to study the 

physiological and pathological control of blood vessel development (Fraser & 

Duncan, 2005). On the contrary to that observed during pathological tissue 

growth (e.g. tumor growth), the angiogenic process in female reproductive 

tissues is limited and, therefore, must be tightly regulated (Reynolds et al., 

1992).  

It is established that angiogenesis is regulated by a series of complex 

interactions among stimulatory, modulatory and inhibitory factors. Several 

potential regulators of angiogenesis have been identified including acidic 

fibroblast growth factor (aFGF or FGF-1), basic fibroblast growth factor 

(bFGF or FGF-2), angiopoietins (Angs), insulin-like growth factors (IGFs), 

transforming growth factors (TGFs), interleukin-8 (IL-8) (Ferrara, 2000). 

Several laboratories over the last several years have elucidated the pivotal 

role of Vascular Endothelial Growth Factor (VEGF) in the regulation of 

normal and abnormal angiogenesis (Ferrara, 2004). Because of the potential 

benefits in being able to manipulate angiogenesis in the clinic, inhibitors are 

being developed to prevent their action for treatment of solid tumours, 

rheumatoid arthritis, diabetic retinopathy, macular degeneration and 
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psoriasis. Pro-angiogenic strategies are being developed to stimulate the 

process where it is lacking, such as in ischemic heart disease. These 

molecules may also be employed to elucidate the processes involved in 

physiological angiogenesis in the female reproductive tract, and to explore 

possible new approaches to the regulation of fertility, the treatment of 

infertility and reproductive tract pathologies (Fraser & Duncan, 2005). 
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1. CORPUS LUTEUM 

The oestrous cycle length varies among domestic animals; in swine is around 

21 days. The corpus luteum (CL) is critical for successful maintenance of 

entire pregnancy period (114 days) because it is the primary source of 

progesterone production, necessary to the survival and development of the 

embryos and foetus. 

The CL is a temporary endocrine structure with a short lifespan in the non 

pregnant state. It is formed from a fluid-filled preovulatory follicle composed 

by an avascular granulosa layer and two vascular theca interna and externa 

layers. After the ovulation induced by the luteinising hormone (LH) surge, the 

follicle undergoes remarkable changes and is converted into CL. The 

granulosa cells form large luteal cells (LLC) while the theca interna cells form 

small luteal cells (SLC). The granulosa-lutein cells begin progesterone (P4) 

secretion, and newly formed luteal tissue becomes highly vascularised. The 

very early CL is characterised by haemorrhage into the ovulatory cavity and 

individual sprouting vessels can be identified within 1 to 2 days after 

ovulation (Geva & Jaffe, 2000). The developing CL continues to growth for 

approximately one-third of the duration of the ovarian cycle until reaches its 

maximal size. As the CL forms, progesterone production increases and 

becomes maximal during the midluteal period. The mature CL is 

characterized by the typical lipid pink colour, reflecting its endocrine function. 

In conjunction with these cellular changes, there are significant changes in 
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the extracellular matrix (ECM) of the forming CL. For example, the type of 

collagen present in the basement membrane of the follicle (type IV) is 

replaced by a fibrillar (type I) collagen that comprises a major component of 

the CL (Luck & Zhao, 1993). This collagen component comprises up to one 

sixth of the luteal weight in the mature bovine CL (Luck & Zhao, 1993), 

reflecting the importance of the ECM in the overall structure of the CL. 

By day 14-16 of the luteal phase, in case of pregnancy does not occur, the 

uterine Prostaglandin F2α (PGF2α) promotes the regression of the fully 

developed CL. The luteal regression includes two phases. The first phase is 

a functional luteolysis that is characterised by a rapid decline in progesterone 

production and secretion. The second phase is a slower, prolonged structural 

luteolysis of the CL. This structural luteolysis has been postulated to occur in 

part by an apoptotic mechanism (Paavola, 1979; Bacci et al., 1996; Forni et 

al., 2003) and in part by proteolysis and destruction of the luteal ECM by 

metalloproteinases (MMPs) (Kiya et al., 1999). This destruction of the luteal 

extracellular scaffolding may involve invading macrophages, which increase 

in number in the involuting CL and produce MMPs (Brannstrom & Friden, 

1997). 

The switch between growth and regression is mainly regulated by LH 

(luteotrophyn) and PGF2α (luteolysin) and their receptors balance as well as 

by cytokines, growth factors, apoptosis/oncogenes related factors and 

plasminogen activator/ MMP activators and inhibitors (Neuvians et al., 2004; 
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Diaz & Wiltbank, 2005). In fact, to allow repeated opportunities of fertilization, 

the duration of CL lifespan is rigorously programmed. Five to ten grams of 

luteal tissue grow and disappear at each ovarian cycle.  

Figure 1 demonstrates the life history of a follicle destined to ovulate. The 

ovum of a mature follicle is surrounded by the cumulus oophorus and is 

situated within a fluid-filled cavity (antrum). Tissue degeneration within the 

follicular-ovarian surface contact leads to stigma formation and rupture. Upon 

ovulation the follicle is transformed into transient progesterone-producing CL. 

 

  

 

Fig. 1. Schematic ovary depicting the life history of a follicle destined to 
ovulate (counter-clockwise beginning from primordial follicles). 
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1.1 Role of the vascularisation during CL lifespan 

Follicular development and atresia, ovulation, formation and regression of CL 

are processes characterised by dramatic tissue remodelling and 

angiogenesis. 

The angiogenic process in the developing CL begins with dissolution of the 

basal membrane between granulosa and theca interna layers. Following this, 

the expansion of theca capillaries is initiated by sprouting into the avascular 

granulosa layer to form a dense network of capillaries surrounding the 

luteinising granulosa cells. The high density of capillaries is demonstrated by 

the fact that microvascular endothelial cells are the most abundant cell type 

in the CL, with each luteal cell in apparent contact with at least one 

neighbouring capillary (Gaytan et al., 1999). In fact, 85% of the dividing cells 

in the primate CL during the early luteal phase are endothelial cells and the 

rate of endothelial cells proliferation is 4- to 20-fold more intense than in 

some of the most malignant human tumours (Christenson & Stouffer, 1996). 

This intense blood vessel formation in the newly forming CL, often compared 

with angiogenesis in rapidly growing and aggressive tumours, enables 

mature CL to receive one of the greatest rates of blood flow of any tissue in 

the body (Kaczmarek et al., 2005). 

Maturation of the newly formed vascular bed is characterised by recruitment 

of mural cells. Endothelial cells of arterioles and venules recruit smooth 

muscle cells to stabilise the vessels and control their vasotonia; whereas 
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endothelial cells in microvessels recruit pericytes to ensheath the capillaries 

and influence vessel function (Carmeliet, 2000). Some reports have indicated 

that up to 60% of microvessels in the mature CL contain pericytes and that, 

as well as for endothelial cells, pericytes migrate into the granulosa from the 

thecal capillaries and proliferate in the developing CL (Goede et al., 1998; 

Reynolds & Redmer, 1999). These data would suggest that microvessels 

maturation in the CL falls somewhere between that observed in most adult 

tissues (100% pericytes) and human tumours (15-40%). This is an important 

issue because the degree of maturation influences vessel integrity, function, 

and sensitivity to angiogenic or anti-angiogenic factors, and ultimately vessel 

degeneration.  

The start of blood vessels regression (angioregression) during luteolysis 

varies among species, but, in several of them, this occurs at the beginning of 

the CL regression (Stouffer et al., 2001). This decline may be related to 

morphologic changes in endothelial cells including cell death (via apoptosis) 

or loss by shedding into the circulation. The degeneration of the 

microvasculature ensures loss of luteal structure-function and restores the 

ovaries to a state in which the next dominant follicle could develop. While 

portions of the luteal capillary beds degenerate during early luteolysis, some 

of the large microvessels are maintained (and arteriolisation may occur), 

perhaps to assist the resorption of luteal mass, and ultimately vascular shut-

off of the luteal residue, i.e., corpus albicans (Stouffer et al., 2001). 
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1.2 Angiogenic and angiolytic factors throughout the CL lifespan 

Maintenance of luteal function has been demonstrated to depend to a great 

extent on angiogenesis, while luteal regression is associated with its 

inhibition (Fraser et al., 2000). 

Vascular Endothelial Growth Factor (VEGF) system 

 VEGF is the main angiogenic factor; promotes proliferation, migration and 

survival of endothelial cells as well as stimulates microvascular leakage 

which allows tissue infiltration of plasma proteins (hence the alternative name 

vascular permeability factor - VPF; Connolly et al., 1989; Keck et al., 1989). 

The importance of VEGF throughout CL lifespan has been demonstrated in 

several species. In the newly forming CL, VEGF mRNA and protein 

expression are observed both in the granulosa- and theca-derived luteal 

cells. In several species, however, expression levels were higher in 

granulosa-derived than in theca-derived luteal cells (Kamat et al., 1995; Endo 

et al., 2001; Boonyaprakob et al., 2003). Highly expressed VEGF in 

granulosa-derived luteal cells may act as a chemoattractant for endothelial 

cells in order to initiate the invasion of avascular granulosa layer, establishing 

an extensive capillary network that nourishes the developing CL and 

maintains the luteal function throughout its’ lifespan (Mattioli et al., 2001). 

The duration of the intense angiogenic phase in CL varies among species, 

but appears to be completed by day 8 of the luteal phase in caprine (Kawate 
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et al., 2003) and in bovine (Acosta et al., 2003), and by day 6 in primates 

when capillaries surround most luteal cells and capillary dilation is evident 

(Lei et al., 1991; Christenson & Stouffer, 1996). In general, VEGF expression 

is higher during this period of intense angiogenesis (Redmer et al., 1996; 

Berisha et al., 2000; Ribeiro et al., 2007). However, in human (Otani et al., 

1999; Endo et al., 2001) and equine CL (Al-zi’abi et al., 2003), high levels of 

VEGF mRNA and protein are found to be still maintained in the mid-luteal 

phase. Furthermore, in the macaque (Hazzard et al., 2000) and caprine CLs 

(Kawate et al., 2003), VEGF mRNA expression was even higher during the 

mid-luteal than early luteal phase. This continued expression of VEGF 

beyond the period of intense angiogenesis may serve as a survival factor for 

the newly-formed endothelial cell and as a permeability factor for increasing 

the uptake of cholesterol to luteal cells (Otani et al., 1999). In fact, 

administration of anti-VEGF antibody during the mid-luteal phase suppressed 

the production of progesterone in the marmoset CL, supporting the concepts 

that beside mitogenic activity, VEGF is also a modulator of the vascular 

permeability in the CL (Dickson et al., 2001). The decrease in permeability of 

capillaries can deprive the luteal cells of both the necessary precursors for 

P4 production and the efficient spreading of their products into the 

bloodstream (Dickson et al., 2001). 

In regressing CL, VEGF expression decreases along with gradual dissolution 

of small blood vessels and decline of blood flow. However, VEGF expression 
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during luteolysis of the CL is regulated differentially depending on species-

specific mechanisms involved in luteal regression. In domestic animals such 

as sheep, cow, pig and horse, the decline of VEGF expression in the 

regressing CL seems to be associated with PGF2α secretion (Al-zi’abi et al., 

2003; Acosta & Miyamoto, 2004; Neuvians et al., 2004), suggesting that the 

cessation of VEGF support for the CL may play a role during structural 

luteolysis.  

Many factors may regulate VEGF production and release, such as 

gonadotropins, cytokines and growth factors. Besides these factors, VEGF 

expression has also been shown to be influenced by nutrients, such as 

fructose (Feletou et al., 2003) and taurine (Boujendar et al., 2003). Some 

reports have been demonstrated the effect of feed restriction on reproductive 

hormone in ewes (Kiyma et al., 2004), on hormonal control of reproduction in 

pig (Prunier & Quesnel, 2000; Almeida et al., 2000), on follicular development 

and luteal function in cows (Burns et al., 1997), and on VEGF production by 

growing pig ovarian follicles (Galeati et al., 2003). We recently demonstrated 

that fasting significantly reduced the VEGF mRNA expression in newly 

formed pig CL after 3 days of food deprivation (Galeati et al., 2005). 
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Endothelin-1 (ET-1) system 

Another factor, ET-1, has been demonstrated to stimulate VEGF and FGF-2 

expression (Peifley & Winkles, 1998; Davis et al., 2003). ET-1, the only 

isopeptide synthesized and secreted by vascular endothelial cells (Levin, 

1995) and initially defined as a potent vasoconstrictor, is synthesised as a 

prepropeptide, which is cleaved by endopeptidases to big ET-1 (proET-1). A 

zinc metallopeptidase, endothelin-converting enzyme (ECE-1), converts big 

ET-1 into an active ET-1, which acts through two receptors ET-A and ET-B. 

The ET-1 system has been shown to regulate oocyte maturation, ovulation 

and CL functions (Flores, 2000; Berisha et al., 2002) as well as to inhibit 

progesterone production in luteal cells after administration of PGF2α (Girsh 

et al., 1996; Miyamoto et al., 1997).  

Angiopoietins (Ang) system 

Co-ordination of blood vessel formation, maintenance, stabilisation and 

regression also involve other factors other than VEGF (Fraser & Duncan, 

2005). These include the angiopoietins Ang1 and Ang2, which act via the 

tyrosine kinase receptor, Tie2. The angiopoietins are of particular interest 

because they influence the stabilisation of newly formed vasculature, as well 

as the destabilisation of existing vascular network (Thurston, 2003). 

Specifically, Ang1 activation of Tie2 enhances the maturation and 

stabilisation of newly formed blood vessels. Ang2 also binds to Tie2, but can
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 act as an endogenous antagonist, blocking Ang1 mediated receptor 

phosphorylation. In the presence of VEGF, increased autocrine expression of 

Ang2 by the vascular endothelium is associated with angiogenesis, while in 

the absence of VEGF or other pro-angiogenic factors, its expression is 

associated with degenerative changes in the vasculature (Maisonpierre et al., 

1997). At luteolysis, VEGF mRNA decreased and the Ang2:Ang1 ratio 

increased. It was proposed that this change would destabilise vessels in the 

CL and lead to vascular regression via apoptosis (Maisonpierre et al., 1997).  

Endocrine gland VEGF (EG-VEGF) 

Another regulator of ovarian angiogenesis, EG-VEGF, was identified in 

human ovary and has been proposed as a steroidogenic endocrine gland 

specific angiogenic regulator (LeCouter et al., 2001). Although highest levels 

were found in the ovary, testis and adrenal, EG-VEGF is also present at 

lower levels in other tissues such as the small intestine, where its action 

appears to be in regulating contraction of gastrointestinal smooth muscle (Li 

et al., 2001). EG-VEGF mRNA has been reported by in situ hybridisation in 

the human CL (Ferrara et al., 2003a). However, the regulation of this factor 

throughout CL lifespan in domestic animals needs to be elucidated. 
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Matrix Metalloproteinases (MMP) system 

As mentioned above, the CL formation, maintenance and regression are 

cyclic events that depend upon extensive luteal tissue and ECM remodelling. 

Components of the ECM modulate cellular processes (including gene 

expression, cellular proliferation, migration and differentiation; and apoptosis) 

via cellular surface receptors and serve as a reservoir for a number of 

biologically active factors. Consequently, the controlled degradation of ECM 

by the action of a specific class of proteolytic enzymes known as matrix 

metalloproteinases (MMPs) and their associated endogenous inhibitors 

(TIMPs: Tissue Inhibitors of Metalloproteinases) may be essential for 

preserving a microenvironment appropriate to luteal function (Smith et al., 

2002).  

The role of the MMPs and their inhibitors throughout the oestrous cycle and 

pregnant CLs has been described in several species, such as porcine (Pitzel 

et al., 2000; Ribeiro et al., 2006), bovine (Goldberg et al., 1996; Zhang et al., 

2003), ovine (Ricke et al., 2002; Towle et al., 2002), mouse (Waterhouse et 

al., 1993; Hagglund et al., 1999; Liu et al., 2003), rat (Nothnick et al., 1995; 

Liu et al., 1999; Li et al., 2002), primates (Young et al., 2002; Chen et al., 

2006), and human (Duncan et al., 1996; Duncan et al., 1998).  

Although there are species differences in the luteal expression patterns of the 

various MMPs and TIMPs, it is readily apparent that the changes, which 

occur in the expression of the MMP system, parallel the luteal formation, 
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maintenance and regression. A general model for the MMP system in luteal 

formation is one in which MMPs and TIMPs are elevated during the period of 

extensive tissue and ECM remodelling that occurs as the postovulatory 

follicle is transformed into CL. After the CL is fully formed, steroidogenesis is 

maximal during the midluteal period, and MMPs/TIMPs expression and 

activity are at basal levels. With the onset of structural regression, the MMPs 

are again called into action for the ECM remodelling and removal of the 

regressing CL. These dynamic changes must be accompanied by a delicate 

balance between the activity of the MMPs and their inhibitors to allow precise 

remodelling of the ECM while at the same time limiting the type of matrix to 

be remodelled, the site-specific location, and the extent of proteolytic 

degradation (Curry & Osteen, 2003). 

Currently, the MMP family encompasses at least 25 related proteolytic 

enzymes that can be subdivided into collagenases, gelatinases, 

stromelysins, membrane type MMPs (MT-MMPs) and others (Table 1; Smith 

et al., 2002; Curry & Osteen, 2003). These proteinases exhibit numerous 

structural and functional similarities (Fig. 2). Common features of the MMP 

family include: 1) the presence of zinc in the active site of the catalytic 

domain, 2) synthesis of the MMPs as preproenzymes that are secreted in an 

inactive form, 3) activation of the latent zymogen in the extracellular space, 4) 

recognition and cleavage of the ECM by the catalytic domain of the enzyme, 
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and 5) inhibition of enzymes action by both serum-borne inhibitors 

(macroglobulins) and TIMPs in the extracellular environment.  

 

Table 1.  Summary of the nomenclature and actions of MMPs. 
Family Enzyme MMP 

Number 
Matrix substrates 

Collagenases Interstitial collagenase, 
Neutrophil 

MMP-1 Collagens I, II, III, VII, X, IGFBP-3 

 Collagenase MMP-8 Collagens I, II, III 
 Collagenase-3 MMP-13 Collagens I, II, III 
 Collagenase-4 

(Xenopus) 
MMP-18 Collagen I 

Gelatinases Gelatinase A MMP-2 Gelatins, collagens IV, V, VII, X and 
XI, fibronectin, laminin, plasminogen 

 Gelatinase B MMP-9 Gelatins, collagens IV, V and XIV, 
fibronectin, plasminogen 

Stromelysins Stromelysin-1 MMP-3 Gelatins, fibronectin, laminin, 
collagens III, IV, IX and X, vitronectin, 
proteoglycan, ECAD, IGFBP-3, 
activates proMMP-1 

 Stromelysin-2 MMP-10 Fibronectin, collagen IV 
 Stromelysin-3 MMP-11 Fibronectin, laminin, collagen IV, 

gelatine 
 Enamelysin MMP-20 Amelogenin 
Membrane-type 
MMPs 

MT1-MMP MMP-14 Collagens I, II and III, fibronectin, 
laminin, vitronectin: activates 
proMMP-2 and proMMP-13 

 MT2-MMP MMP-15 Fibronectin, gelatin, laminin: activates 
proMMP-2, collagen I and III, nidogen, 
tenascin, aggrecan, perclean 

 MT3-MMP MMP-16 Collagen III, fibronectin, gelatin, 
activates proMMP-2 

 MT4-MMP MMP-17 Gelatin, proMMP-2, proTACE-
substrate 

 MT5-MMP MMP-24 ProMMP-2 
 MT6-MMP (Leukolysin) MMP-25 Collagen IV, gelatin, fibronectin, fibrin 
Others Matrilysin MMP-7 Fibronectin, gelatin, laminin, collagen 

IV, plasminogen, proteoglycan 
 Metalloelastase MMP-12 Elastin, plasminogen 
 RASI-1 MMP-19 Fibronectin, gelatin, collagen I, IV 
 Xenopus MMP (xMMP) MMP-21 Not known 
 Chicken MMP (cMMP) MMP-22 Casein 
 Cysteine array MMP 

(ca-MMP) 
MMP-23 Not known 

 Matrilysin-2 
(Endmetase) 

MMP-26 Fibrinogen, fibronectin, vitronectin, 
gelatin, collagen I and IV, proMMP-9 

 Human paralog of 
MMP-22 

MMP-27 Not known 

 Epilysin MMP-28 Casein 
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Fig. 2. Schematic representation of the MMP family (Derived from Lafleur et 
al., 2003). 
 

The regulation of MMP synthesis can be both tissue- and MMP-specific (Fig 

3). Subsequent to MMP synthesis, activation of the pro-MMPs in the 

extracellular space occurs via proteinases, including other MMPs, serine 

proteinases such as the plasminogen activator/plasmin system, cysteine 

proteinases, as well as by nonproteolytic agents such as reactive oxygen 

species (ROS), sulfhydryl reactive agents, and denaturants. However, MMPs 
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that are resistant to serine proteinase activation, such as MMP-2, are 

activated via an alternative mechanism involving the MT-MMPs and TIMP-2. 

This mechanism of MMP-2 activation may also occur for the activation of 

other MMPs, such as MMP-13, although other inhibitors may be involved 

(Knauper et al., 1996; Murphy et al., 1999). Although most MMPs are 

activated following secretion, stromelysin-3, MMP-23 and all MT-MMPs can 

be activated intracellularly by furin, a serine protease or by other unknown 

activators (Smith et al., 2002). 

The inhibition of MMPs activity in the extracellular environment is principally 

controlled by TIMPS that are highly abundant in reproductive tissues, locally 

produced, hormonally regulated, and has been hypothesized to coordinate 

numerous ovarian and uterine processes including matrix turnover, cell 

growth, and steroidogenesis.  

Currently, four different TIMPs have been identified. TIMP-1 has been shown 

to be a secreted glycoprotein (29 kDa) that binds to and inhibits the active 

form of MMPs on a 1:1 stoichiometric basis. Since the initial discovery of 

TIMP-1, other TIMPs have been identified including TIMP-2, TIMP-3 (which 

is glycosylated), and TIMP-4. TIMP-2 is differentially regulated from TIMP-1 

and has been proposed to act selectively on different MMPs (Stetler-

Stevenson et al., 1989). For example, TIMP-2 has a high affinity for MMP-2, 

whereas TIMP-1 preferentially binds to MMP-9. TIMP-3 also exhibits 

differential preference for the MMPs, having a high affinity for MMP-9 and 
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being able to inhibit MT1-MMP, unlike TIMP-1, which cannot act on MT1-

MMP. However, unlike TIMP-1 or TIMP-2, TIMP-3 is secreted and then 

bound to the ECM. By residing in the ECM as opposed to being free in the 

extracellular fluid, TIMP-3 has been suggested to act as an additional 

regulatory stop point by acting at the site of MMP action (Leco et al., 1994). 

TIMP-4 has recently been cloned and shown to be present in reproductive 

tissues (Simpson et al., 2003). TIMP-4 has been shown to act on numerous 

MMPs, and has been postulated that this TIMP is a good inhibitor for all 

classes of MMPs without remarkable preference for special MMPs.  

Several evidences indicate that TIMPs, in addition to their classical ability to 

regulate MMP action, may act as autocrine/paracrine factors in reproductive 

processes involving cellular proliferation, differentiation, and 

neovascularization (Fassina et al., 2000). Some reports have been 

demonstrated that TIMPs stimulate cellular proliferation of endothelial cells 

and fibroblasts (Hayakawa et al., 1992), inhibit angiogenesis (Moses & 

Langer, 1991; Johnson et al., 1994), promote embryo growth and 

development (Satoh et al., 1994) and stimulate steroidogenesis (Boujrad et 

al., 1995). Finally, there are correlative reports of TIMP-3 mRNA expression 

associated with healthy follicular development in the rat (Simpson et al., 

2001).  
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Fig 3. Schematic representation of the MMP system regulation. The MMP are 
generally translated into a latent or pro-form of the MMP protein. Certain 
MMPs, such as the MT-MMPs and MMP-11, are activated intracellularly via a 
furin proteolytic processing pathway and are secreted or inserted into the 
membrane in an active form. The majority of the pro-MMPs, however, are 
secreted in a latent form that requires activation in the extracellular space by 
other proteinases. This activation cascade can occur via other MMPs, such 
as the MT-MMPs, serine proteinases such as the plasmin-plasminogen 
activator pathway, or other proteinases. Once the MMP is active, it can 
cleave the ECM, resulting in focal degradation. Alternatively, the active MMP 
can be bound by MMP inhibitors, such as TIMPS, resulting in an inhibition of 
MMP action (Derived from Curry & Osteen, 2003). 
 

1.3 Vascular bed regulation at pregnancy 

When pregnancy is recognized, the lifespan of the CL must be extended to 

support embryonic and foetal development. In the CL of pregnancy, 

vascularisation seems to be necessary for the enhancement of luteal function 

(Fraser & Wulff, 2003). However, it is not clear whether this involves further
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 angiogenesis. No increase in CL angiogenesis was observed during early 

pregnancy in marmosets (Rowe et al., 2002), sheep (Jablonka-Shariff et al., 

1993) and hCG-induced pregnancy in rhesus monkey and human 

(Christenson & Stouffer, 1996; Rodger et al., 1997), suggesting that the CL 

vascular bed required at pregnancy is already established during the luteal 

phase. In contrast, intensive proliferation of endothelial cells was observed in 

the rodent CL during early pregnancy (Tamura & Greenwald, 1987) and in 

rescued human CL (Wulff et al., 2001), indicating that a second wave of 

angiogenesis may take place in the CL of pregnancy. Certainly, the survival 

of the CL during pregnancy requires a stable vasculature with increased 

requirement of pericytes and prolonged endothelial cell survival in addition to 

prolongation of the lifespan of hormone-producing cells (Jablonka-Shariff et 

al., 1993; Rodger et al., 1997; Wulff et al., 2001). 

The molecular mechanisms that regulate the angiogenic process in pregnant 

CLs are not fully elucidated, but clearly involve the expression of the VEGF 

and its receptors. The expression of VEGF mRNA in the CL of pregnancy 

was found to be higher than that during the miluteal phase in bovine (Berisha 

et al., 2000), swine (Ribeiro et al., 2006) and in women (Sugino et al., 2000). 

Moreover, VEGF mRNA and protein is up-regulated in the human CL during 

stimulated pregnancy (Wulff et al., 2000; Wulff et al., 2001). The increased 

expression of VEGF suggests a role in either angiogenesis or endothelial cell 

survival. On the contrary, no differences in mRNA expression of VEGF and 
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its receptors between CL of pregnancy and preregressing CL (late luteal 

phase) in marmosets were found, suggesting that the fully-formed, cyclic CL 

has already established a mature vascular system and the molecular 

capacity to synthesize VEGF and its receptors (Rowe et al., 2002). 

Furthermore, Pauli et al., (2005) reported that the administration of anti-

VEGFR-2 antibodies disrupted maternal ovarian functions in pregnant rats 

through elimination of pre-existing luteal blood vessels and caused 

abnormalities during the embryonic development probably due to the 

cessation of progesterone support. Therefore, during pregnancy, the 

activated VEGF/VEGFR-2 pathway is of critical importance for the survival 

and maintenance of luteal vasculature in the ovary. 
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2. ANGIOGENESIS AND ANGIOREGRESSION MECHANISMS 

2.1 Angiogenesis 

Blood vessels differentiate from endothelial precursors (angioblasts) by a 

process called vasculogenesis during embryo development. In adults, 

however, further vessel development from pre-existing vasculature occurs by 

intussusception or sprouting by a process called angiogenesis. This process 

is limited in adults, except for wound healing, several pathological conditions 

(including neoplasia), formation and growth of bone as well as in female 

reproductive cycle (Fraser & Duncan, 2005). The process and molecular 

basis of angiogenesis are detailed bellow and schematized in figure 4. 

Vascular permeability, endothelial cell proliferation and migration 

Angiogenesis initiates with vasodilation, a process involving nitric oxide (NO). 

Vascular permeability increases in response to VEGF, thereby allowing 

extravasation of plasma proteins that lay down a provisional scaffold for 

migrating endothelial cells. Ang1, a ligand of the endothelial Tie2 receptor, is 

a natural inhibitor of vascular permeability, tightening pre-existing vessels.  

Endothelial cells need to loosen interendothelial cell contacts and relieve 

periendothelial cell support to migrate from their resident site; so, mature 

vessels need to become destabilized. Ang2, an inhibitor of Tie2 signalling, 

may be involved in detaching smooth muscle cells from the extracellular 

matrix (Maisonpierre et al., 1997; Gale & Yancopoulos, 1999). Proteinases of 

the plasminogen activator, MMP, chymase or heparanase families influence 
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angiogenesis by degrading basal membrane and extracellular matrix 

molecules as well as by activating or liberating growth factors (bFGF, VEGF 

and IGF-1) sequestered within the extracellular matrix (Coussens et al., 

1999). MMP-3, MMP-7 and MMP-9 affect angiogenesis in neonatal bones 

(Vu et al., 1998) and tumours (Bajou et al., 1998), whereas TIMP-1, TIMP-3 

or a naturally occurring fragment of MMP-2, by preventing binding of MMP-2 

to αvβ3 integrin, may limit the extent of migration and invasion of endothelial 

cells during tumour angiogenesis (Brooks et al., 1998). 

Once the path has been cleared, proliferating endothelial cells can migrate to 

distant sites. Ang1 phosphorylates tyrosine in Tie2 and is chemotactic for 

endothelial cells, induces sprouting and potentiates VEGF, but fails to induce 

endothelial proliferation (Suri et al., 1998). In contrast to VEGF, Ang1 itself 

does not initiate endothelial network organization, but stabilizes networks 

initiated by VEGF, presumably by stimulating the interaction between 

endothelial and periendothelial cells. This indicates that Ang1 may act at later 

stages than VEGF (Gale & Yancopoulos, 1999). Ang2, at least in the 

presence of VEGF, is also angiogenic. VEGF and its receptor VEGFR-2 

affect physiological and pathological angiogenesis and are therapeutic 

targets, although much remains to be learned about the involvement of the 

distinct VEGF isoforms or of the heterodimers of VEGF family members.  

Members of the fibroblast growth factor (bFGF) and platelet-derived growth 

factor (PDGF) family are redundant during normal development; both affect 
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angiogenesis probably by recruiting mesenchymal or inflammatory cells 

(Zhou et al., 1998; Lindahl et al., 1998). TGF-β1 and tumour necrosis factor 

(TNF)-α can either stimulate or inhibit endothelial growth, and may be 

involved in tumour dormancy (Gohongi et al., 1999). Molecules involved in 

cell-cell or cell-matrix interactions, such as αvβ3 integrin, which localizes 

MMP-2 at the endothelial cell surface, mediate endothelial spreading, 

explaining why αvβ3 antagonists inhibit angiogenesis (Varner et al., 1995). 

Nitric oxide, a downstream effector of VEGF, TGFβ-1 and other angiogenic 

factors, is not essential for embryonic vascular development, but affects 

pathological angiogenesis and improves the re-endothelialisation of naked 

vessels (Murohara et al., 1998). A growing list of molecules is being 

discovered that are angiogenic after exogenous administration, but which 

molecules function as endogenous angiogenic factor remain undetermined 

(Carmeliet, 2000). 

Angiogenic sprouting is controlled by a balance of activators and inhibitors. 

Angiogenesis inhibitors, suppressing the proliferation or migration of 

endothelial cells, include angiostatin (an internal fragment of plasminogen; 

O’Reilly et al., 1994), endostatin (a fragment of collagen XVIII; O’Reilly et al., 

1997), antithrombin III, interferon-β (IFN-β), leukaemia inhibitory factor (LIF) 

and platelet factor 4 (PF4) (Carmeliet, 2000). 
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Lumen formation 

Migrating endothelial cells often assemble as solid cords that subsequently 

acquire a lumen. Intercalation or thinning of endothelial cells and fusion of 

pre-existing vessels allow vessels to increase their diameter and length 

(Carmeliet, 2000). Specific VEGF isoforms play distinct roles in this moment, 

i.e. VEGF189 isoform decreases luminal diameter, whereas VEGF121, 

VEGF165 and their receptors increase lumen formation, in addition to 

increasing vessel length. Ang1 in combination with VEGF also increases 

luminal diameter (Suri et al., 1998). Other molecules affecting lumen 

formation are integrins (αvβ3 or α5) and the myocyte enhancer binding factor 

2C (MEF2C) transcription factor. Excessive proteolysis may lead to cystic 

assembly of endothelial cells and prevent tube formation. Thrombospondin 

(TSP)-1 is an endogenous inhibitor of lumen formation (Carmeliet, 2000).  

Endothelial survival and differentiation 

Once assembled in new vessels, endothelial cells become quiescent and 

survive for years (Carmeliet et al., 1999). Endothelial apoptosis is a natural 

mechanism of vessel regression in the retina and ovary after birth and a 

frequent (therapeutic) inhibitor of angiogenesis. Endothelial apoptosis is 

induced through deprivation of nutrients or survival signals when the lumen is 

obstructed by spasms, thrombi or the shedding of dead endothelial cells, or 

when a change in the angiogenic gene profile occurs (Jain et al., 1998; 

Gerber et al., 1999). The survival function of VEGF depends on an 
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interaction between VEGFR2, β-catenin and vascular endothelial (VE)-

cadherin (Carmeliet et al., 1999). Ang1 also promotes, whereas Ang2 

suppresses, endothelial survival, at least in the absence of angiogenic stimuli 

(Gale & Yancopoulos, 1999; Holash et al., 1999). Haemodynamic forces are 

essential for vascular maintenance, as physiological shear stress reduces 

endothelial turnover and abrogates TNF-α mediated endothelial apoptosis. 

Endothelial apoptosis can be also induced by NO, ROS, angiostatin, TSP-1, 

the metallospondin METH-1, IFN-γ, tissue factor pathway inhibitor (TFPI) and 

vascular endothelial growth inhibitor (VEGI) (Carmeliet, 2000). 

To accommodate local physiological requirements, endothelial cells acquire 

specialized characteristics that are determined in part by the host tissue 

(Risau, 1998). For example, an interaction of astroglial cells expressing glial 

fibrillary acidic protein, pericytes and normal angiotensinogen levels is 

essential for development of the blood-brain barrier (Lindahl et al., 1998). In 

contrast, endothelial cells in endocrine glands, involved in the exchange of 

particles, become discontinuous and fenestrated; this is possibly mediated by 

interactions between VEGF and the extracellular matrix. 

Remodelling, vessel maturation and stabilisation 

The remodelling of the endothelial network involves the pruning of capillary-

like vessels with uniform size, and irregular organization into a structured 

network of branching vessels. Intussusception, resulting in replacement of 

vessels by extracellular matrix, underlies pruning and branching. Gene 
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inactivation studies indicate a morphogenetic function for VEGF and VEGFR-

3 (Carmeliet et al., 1996; Ferrara et al., 1996; Dumont et al., 1998), the 

endothelial receptor Tie1 (Patan, 1998), integrin, fibronectin and others 

(Carmeliet, 2000). 

The maturation of the neovascular bed is characterised by a recruitment of 

mural cells. Endothelial cells from large vessels recruit smooth muscle cells 

whereas endothelial cells in microvessels recruit pericytes. The mural cells 

stabilise nascent vessels by inhibiting endothelial proliferation and migration, 

and by stimulating production of a new basal membrane and extracellular 

matrix. They thereby provide haemostatic control and protect new 

endothelium-lined vessels against rupture or regression. Indeed, vessels 

regress more easily as long as they are not covered by smooth muscle cells 

(Benjamin et al., 1998). PDGF-B secreted by the endothelial cells recruits 

pericytes and smooth muscle cells (Lindahl et al., 1998). VEGF also 

promotes mural cell accumulation, presumably through the release of PDGF-

B or binding to VEGF receptors (Benjamin et al., 1998). Ang1, Tie2 and 

Ephrin-B2 affect growth and maintenance of blood vessels by stabilizing the 

interaction of mural cells with the nascent endothelial channel, and by 

inducing branching and remodelling (Suri et al., 1996; Maisonpierre et al., 

1997; Gale & Yancopoulos, 1999). TGF-β1, TGF-βR2 (Transforming Growth 

Factor-β Receptor II), endoglin (an endothelial TGF-β binding protein) and 

Smad5 (a downstream TGF-β signal) are involved in vessel maturation in a 
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pleiotropic manner: they inhibit endothelial cell proliferation and migration, 

induce smooth muscle differentiation and stimulate extracellular matrix 

production (Dickson et al., 1995; Li et al., 1999).  

 

 

 

 

 

 

 

 
 
 
 
 
Fig. 4. Schematic angiogenic process showing the degradation of the ECM 
and vascular basal membrane (VBM) of existing blood vessel, proliferation 
and migration of endothelial cells towards an angiogenic stimuli, and 
formation and maturation of the new blood vessel sprout with the recruitment 
of pericytes. 
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2.2 Angioregression 

The regression of blood vessels is an intrinsic feature of both physiological 

and pathological processes. The regression of vessels occurs under a variety 

of settings and is tightly correlated with apoptosis of the endothelial cells. In 

some tissue, the regression is a consequence of macrophage-induced 

apoptosis of the cells within the vessels (Ito & Yoshioka, 1999). However, in 

certain case, the regression precedes apoptosis; with the loss of cell-cell and 

cell-matrix contacts as the vessels begins precipitating apoptosis of the cells 

(Bayless & Davis, 2004; Saunders et al., 2005; Mavria et al., 2006). These 

observations suggest that regression is a regulated step in the angiogenic 

process (Im & Kazlauskas, 2006). 

There is also evidence to indicate that extracellular factors can induce 

regression. For instance, Ang2, in absence of angiogenic stimuli and 

endothelial survival factors, destabilises the vessels, inducing vessel 

regression (Ito & Yoshioka, 1999; Tsigkos et al., 2003). However, Ang2 is 

also capable of promoting vessel formation in other vascular beds (Oshima et 

al., 1994; Lobov et al., 2002). The critical conditions that regulate the action 

of Ang2 seem to be the maturity of the vessels and the presence of other 

angiomodulators (such as VEGF) (Oshima et al., 2005). 

Other specific factors that can be capable to drive regression include 

angiostatin and endostatin. These molecules induce vessel regression by 

disruption of the interaction between cell surface integrins and the 
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extracellular proteins (Sim, 1998; Chavakis & Dimmeler, 2002). The 

regulation of endothelial cells by vasoactive peptides (ET-1 and angiotensin 

II) and cytokines (TNFα and IFNγ) play also an important role during 

angioregression (Filippatos et al., 2001; Davis et al., 2003). 

Figure 5 shows a tightly coordination between angiogenesis and 

angioregression. More specifically, stable, quiescent vessels must first be 

destabilized. This transition is associated with a loss of a functional 

interaction with pericytes (von Tell et al., 2006). In presence of angiogenic 

stimuli, the endothelial cells migrate out of the vessel and proliferate, 

resulting in angiogenesis. On the contrary, the destabilized vessels may 

regress in absence of these stimuli as well as of endothelial survival factors.  

 

 

 

 

 

 

 

 

 
Fig. 5. Formation of new vessel or regression of existing vasculature. The 
first step of the angiogenic program is a process by which stable vessels 
become destabilised. This step is a prerequisite for subsequent responses 
such as sprouting or regression. The presence of growth factors and other 
angiomodulators contribute to the fate of the destabilized vessel. 
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3. VEGF FAMILY AND RECEPTORS 

The VEGF family currently comprises several members, including the first 

identified molecule VEGF-A (also referred as VEGF), Placental Growth 

Factor (PlGF), VEGF-B, VEGF-C, VEGF-D, and VEGF-E (a viral homolog of 

VEGF). PlGF is restricted to the placenta, while VEGF-B is particularly 

abundant in heart and skeletal muscle. VEGF-C and VEGF-D are involved in 

lymphangiogenesis and maintenance of the lymphatic vessels (Robinson & 

Stringer, 2001; Ferrara et al., 2003b). 

The VEGF proteins exert their biological functions almost exclusively through 

a family of closely related receptor tyrosine kinase: fms-like tyrosine kinase 

(Flt-1 or VEGFR-1), fetal liver kinase-1/kinase insert domain-containing 

receptor (Flk-1/KDR or VEGFR-2), and VEGFR-3 (Flt-4). However, PlGF, 

VEGF-B, VEGF-E and certain isoforms of VEGF-A bind selectively to two 

neuropilins (NRP-1 and NRP-2), which are transmembrane non–tyrosine 

kinase receptors, identified firstly on neuronal growth cones as mediators of 

semaphoring/collapsing control of axonal guidance (Gluzman-Poltorak et al., 

2000; Stouffer et al., 2001; Robinson & Stringer, 2001) (Fig 6). 
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Fig 6. The endothelial cell surface receptor for members of VEGF family and 
their biological activities. VEGF tyrosine kinase receptors consist of seven 
extracellular Ig-like domains (numbered), a transmembrane region and an 
intracellular tyrosine kinase domain interrupted by a kinase-insert sequence. 
The soluble VEGFR-1 contains only the first six Ig-like domains. The 
neuropilins are isoforms-specific receptors for certain VEGF family members. 
The α1-α2 region has homology to components of the complement system; 
β1-β2 shares homology with coagulation factors V and VIII, whereas γ 
domain contain a MAM domain (Meprin/A5-neuropilin/Mu), a protein 
sequence also found in the metalloprotease meprin and receptor  
phosphatase µ (Robinson & Stringer, 2001). 
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2.1 VEGF gene and protein structure 

The VEGF gene contains eight exons (Houck et al., 1991; Tischer et al., 

1991). Alternative splicing of a single pre-mRNA generates several distinct 

isoforms identified by the exon composition and amino acid length of the final 

secreted protein (Fig 7).  

All VEGF isoforms are secreted as covalently linked homodimers. The signal 

peptide (exon 1 and four residues of exon 2) is cleaved off during secretion 

(Leung et al., 1989). An N-glycosylation site exists at Asn74 that appears to 

have no effect in VEGF function but is required for efficient secretion (Peretz 

et al., 1992; Claffey et al., 1995). 

Site-directed mutagenesis identified three acidic residues (Asp63, Glu64 and 

Glu67) in exon 3 and three basic residues (Arg82, Lys84 and His86) in exon 

4 essential for binding to VEGFR-1 and VEGFR-2, respectively.  

2.2 VEGF expression 

Many cytokines and growth factors upregulate VEGF mRNA or induces 

VEGF release. These include PDGF, TNF-α, TGF-α, TGF-β, FGF-4, 

keratinocyte growth factor (KGF/FGF-7), epidermal growth factor (EGF), IL-

1α, IL-1β, IL-6 and IGF-1. Several lack direct angiogenic effects but exert 

angiogenic activity through VEGF and bFGF (Brogi et al., 1994; Pertovaara 

et al., 1994). 
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Hypoxia induces a rapid and strong increase in VEGF mRNA levels, which is 

particularly noticeable around necrotic areas of tumours (Shweiki et al., 

1992). Interestingly, the other VEGF family members and bFGF are not 

induced by hypoxia; therefore VEGF might be the main mediator of hypoxia-

induced neovascularisation (Brogi et al., 1994; Enholm et al., 1997).  

A hypoxia response element (HRE) acts upstream of the VEGF gene as an 

enhancer (Levy et al., 1995; Liu et al., 1995). This HRE contains a 

consensus binding site for hypoxia-inducible factor 1 (HIF-1), a heterodimer 

of the transcription factor HIF-1α and ARNT (aryl hydrocarbon receptor 

nuclear translocator) (Forsythe et al., 1996). Low oxygen tension increases 

HIF-1 levels at a post-transcriptional level and increases its DNA-binding 

ability (Jiang et al., 1996). 

Hypoxia increases the half-life of VEGF mRNA, which is intrinsically labile 

owing to the presence of three synergistic sequence elements within the 5’ 

and 3’ untranslated regions (Dibbens et al., 1999). Binding of a hypoxia-

induced stability factor (HuR) increases the half-life of this mRNA 3 to 8-fold 

(Levy et al., 1998). An alternative transcription-initiation site allows VEGF 

mRNA translation from a downstream ribosomal entry site. This might be 

advantageous under hypoxic stress, when cap-dependent translation can be 

inhibited (Stein et al., 1998). 
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2.3 VEGF splice variants  

In human, at least eight VEGF isoforms (VEGF121, VEGF145, VEGF148, 

VEGF165, VEGF165b, VEGF183, VEGF189 and VEGF206) are generated 

by alternative splicing of a single VEGF mRNA (Fig 7). In non-primate 

animals, the VEGF isoforms present one amino acid shorter at the exon 2; so 

their nomenclatures are represented with a minus one amino acid. 

VEGF isoforms are distinguished by the presence or the absence of the 

peptides encoded by exons 6a, 6b, 7a and 7b of the VEGF gene. VEGF121 

lacks all these exons, VEGF189 lacks only the exon 6b, VEGF165 lacks 

exons 6a and 6b (Tischer et al., 1991), while VEGF145 lacks exons 6b, 7a 

and 7b (Poltorak et al., 1997). A conserved alternative splicing donor site 

within exon 6a originates the VEGF183 isoform; as a consequence, an 18-bp 

section from the C-terminal of the exon 6a is missing (Lei et al., 1998). 

VEGF148 lacks exons 6a, 6b and 7b, changing the reading frame and 

producing a premature stop codon into exon 8a (Whittle et al., 1999). 

VEGF206 is the full length form (Houck et al., 1991). 

More recently, an inhibitor splice variant of VEGF165, named VEGF165b, 

has been described. This isoform, formed by distal splice site selection in the 

terminal exon of VEGF, predicts an open reading frame encoding an 

alternate C-terminal sequence, named exon 8b, that has the same number of 

amino acids in the mature protein. This predicted the translation of a protein 

of the same length as VEGF165, but with a different sequence. The C-
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terminal six amino acids usually coded by exon 8 (CDKPRR) is replaced by 

six different amino acids (SLTRKD) coded by 18 bases of mRNA spliced 66 

bases downstream of the usual acceptor splice site for exon 8 (Bates et al., 

2002; Cui et al., 2004; Woolard et al., 2004). 

Most VEGF-producing cells appear preferentially to express VEGF121, 

VEGF165 and VEGF189. VEGF183 also has a wide tissue distribution and 

may have avoided earlier detection through confusion with VEGF189 (Lei et 

al., 1998; Jingjing et al., 1999). In a model of systemic hypoxia, the VEGF183 

and VEGF189 splice variants have been shown to be the most upregulated 

isoforms in response to a hypoxic challenge in rabbit meniscus (Hofstaetter 

et al., 2004). In contrast, VEGF145 and VEGF206 are comparatively rare, 

seemingly restricted to cells of placental origin (Anthony et al., 1994; Cheung 

et al., 1995). Interestingly human skin mast cells normally express VEGF121, 

VEGF165 and VEGF189 but can be induced to express VEGF206 as well by 

incubation with phorbol myristate acetate (PMA), which stimulates protein 

kinase C (PKC) activity (Grutzkau et al., 1998). 

VEGF165 is secreted as ∼46-KDa homodimers, which have a basic 

character and moderate affinity for heparin, owing to the presence of 15 

basic amino acids within the 44 residues encoded by exon 7 (Ferrara & 

Henzel, 1989). In contrast, VEGF121, which lacks this region, is a weakly 

acidic protein and does not bind heparin. VEGF121 is freely released from 

producing cells, whereas 50-70% of VEGF165 remains cell and ECM 
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associated, probably owing to heparan sulphate proteoglycan (HSPG) 

interactions (Houck et al., 1992). VEGF189 and VEGF206 contain addition 

sequence encoded by exon 6 and bind heparin strongly. These isoforms are 

completely sequestered in the ECM and to a lesser extent at the cell surface 

(Houck et al., 1992; Park et al., 1993). VEGF183, although lacks 18 bp at the 

end of exon 6a, it still contains the heparin-binding site and its binding 

characteristics should be similar to that of VEGF189 (Lei et al., 1998).  

The exon-6a-encoded sequence of VEGF145 confers an affinity for heparin 

similar to that of the exon-7-encoded sequence of VEGF165 (Poltorak et al., 

1997). However, this sequence also mediates binding to components of the 

ECM that is independent of heparin or heparan sulphate. ECM-bound 

VEGF145 remains active as an endothelial cell mitogen (Poltorak et al., 

1997). The 24-residue exon 6 peptide contains 12 basic amino acids, 

including the sequence 126K-R-K-R-K-K131 identified as a cell-surface 

retention sequence (CRS). Since VEGF145 is freely released from producing 

cells, it is though that a combination of CRS binding protein-1 (CRSBP-1) 

and heparan sulphate interactions with the extended region derived from 

exons 6 and 7 is responsible for the cell-surface retention of VEGF189 and 

VEGF206 (Poltorak et al., 1997; Jonca et al., 1997). The sequence encoded 

by exon 6 has also been shown to release bioactive bFGF from the ECM and 

cell surface and thus confers to VEGF189 the ability to exert some of its 

biological effects through bFGF signalling pathways (Jonca et al., 1997). 
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VEGF147 splice variant is a truncated form of VEGF164, with mitogenic 

property but without the ability to bind heparin. VEGF147 is the only isoform 

presenting a truncated exon 8a and, as a consequence, it can possibly lack 

biological activity; nevertheless, it may affect the function of other VEGF 

isoforms, even though its physiological importance still remains to be 

elucidated (Whittle et al., 1999).  

VEGF isoforms in the ECM constitute a reservoir of growth factor that can be 

slowly released by exposure to heparin, heparan sulphate (HS) and 

heparinases or more rapidly mobilised by specific proteolytic enzymes such 

as plasmin and urokinase-type plasminogen activator (uPA) (Houck et al., 

1992; Plouet et al., 1997). These enzymes already contribute to 

angiogenesis through ECM depolymerisation, and might also regulate VEGF 

bioactivity by releasing sequestered VEGF from the cell surface and ECM. 

Recombinant VEGF189 and VEGF206 are unable to stimulate endothelial 

cell mitogenesis (Houck et al., 1991), because protein folding in these larger 

isoforms obscures regions responsible for receptor binding. VEGF189 binds 

VEGFR-1 but requires enzyme maturation by uPA or plasmin to bind 

VEGFR-2 and exert its mitogenic effects on endothelial cells (Plouet et al., 

1997). uPA cleavage towards the C-terminal end of the exon-6-encoded 

region generates a truncated factor (uPA-VEGF189) that has an endothelial 

cell mitogenicity equivalent to that of VEGF165. Although not all VEGF 

isoforms contain a site for uPA cleavage, they can all be cleaved by plasmin. 
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The Pl-VEGF (VEGF110), by comparison with VEGF165 and uPA-VEGF189, 

elicits a 50-fold reduced mitogenic effect on endothelial cells, which is similar 

to that observed for VEGF121 (Keyt et al., 1996; Plouet et al., 1997). This 

demonstrates that the VEGF sequences encoded by exons 6 and 7 do more 

than just regulate the bioavailability of VEGF through HSPG binding: they 

actually enhance mitogenic signalling. 

VEGF165b is an inhibitory isoform, described firstly to be down-regulated in 

human renal cell carcinoma (Bates et al., 2002). Further studies have been 

demonstrated that this isoform is an endogenous splice variant expressed in 

normal cell and tissues, and that could counteract the angiogenic and 

mitogenic activity of the VEGF165 isoform, by inhibiting the activation of 

VEGFR-2, and hence preventing phosphorylation and downstream signaling 

of this receptor (Cui et al., 2004; Woolard et al., 2004). Moreover, a potential 

role of VEGF165b in the control of human tumor growth was also 

demonstrated (Woolard et al., 2004). 
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Fig. 7. The splice variants of human VEGF. The VEGF gene, through 
alternative mRNA splicing, produces currently seven isoforms plus an 
additional VEGF165b inhibitory isoforms. The functional domains and the 
exons from which they derived are represented at the bottom of the figure. 
Exon 1 contain 5’-untranslated region (UTR) and signal peptide; exon 2, NH2 
terminus; exon 3 and 4 contain VEGFR-1 and VEGFR-2 binding sites, 
respectively; exon 6 and 7, heparin binding domains (PSS, Proximal Splice 
Site; DSS, Distal Splice Site) (Woolard et al., 2004). 
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2.4 VEGF Receptors 

The three signalling tyrosine kinase receptors (VEGFR-1, VEGFR-2 and 

VEGFR-3) contain an extracellular region with seven immunoglobulin (Ig)-like 

loops, a single transmembrane region and an intracellular tyrosine kinase  

domain interrupted by a kinase-insert sequence (Robinson & Stringer, 2001; 

Cross et al., 2003). 

The ∼180-KDa glycoprotein VEGFR1 has the highest affinity for VEGF (Kd 

10-30 pM; de Vries et al., 1992; Quinn et al., 1993). VEGFR1 is also shared 

by the related growth factors PlGF and VEGF-B. Its expression in mice is 

localised to the endothelium in adult and embryonic tissues, as well as to the 

neovasculature of healing skin wounds (Peters et al., 1993). The presence of 

VEGFR-1 mRNA in quiescent as well as proliferating endothelial cells 

suggests a continued role in endothelial maintenance. Tyrosine 

phosphorylation of VEGFR-1 in response to VEGF stimulation is hard to 

detect, and, in endothelial cells, no direct proliferative, migratory or 

cytoskeletal effects mediated by this receptor are apparent (Park et al., 1994; 

Seetharam et al., 1995). However, VEGFR-1 has been implicated in 

upregulated endothelial expression of tissue factor, uPA and plasminogen 

activator inhibitor 1 (PAI-1) (Clauss et al., 1996; Olofsson et al., 1998). In 

other cell types VEGFR-1 has different roles, such as tissue factor induction 

and chemotaxis in monocytes, and enhancing matrix metalloproteinase 
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expression by vascular smooth muscle cells (Barleon et al., 1996; Wang & 

Keiser, 1998). 

VEGFR-2 is a 200-230-KDa high-affinity receptor for VEGF (Kd 75-760 pM; 

Terman et al., 1992; Quinn et al., 1993), as well as for VEGF-C, VEGF-D and 

VEGF-E. VEGFR-2 is expressed normally in endothelial cells, nascent 

haematopoietic stem cells and umbilical cord stroma. However, in quiescent 

adult vasculature, VEGFR-2 mRNA appears to be downregulated (Millauer et 

al., 1993; Quinn et al., 1993). Although VEGFR-1 has the greater affinity for 

VEGF, VEGFR-2 is tyrosine phosphorylated much more efficiently upon 

ligand binding and in endothelial cells leads to mitogenesis, chemotaxis and 

changes in cell morphology (Quinn et al., 1993; Waltenberger et al., 1994). 

Both VEGF receptors are glycosylated; this is not essential for VEGFR-1 

ligand binding (Barleon et al., 1997a), but only the mature glycosylated form 

of VEGFR-2 can efficiently autophosphorylate (Takahashi & Shibuya, 1997). 

The interaction of VEGF with VEGFR-1 and VEGFR-2 occurs in two separate 

domains located at one end of the VEGF monomer. In the mature VEGF 

dimer, the monomers are linked in a rough “head-to-tail” fashion (with a large 

overlap) by disulfide bridges so that the main VEGFR-2 binding domains are 

at opposite ends of the molecule, as are the main VEGFR-1 binding domains 

(Fig. 8). The positioning of these receptor-binding interfaces at each pole of 

VEGF seems to facilitate receptor dimerisation, which is essential for 

transphosphorylation and signalling (Siemeister et al., 1998). 
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Fig 8. Interaction of VEGF with the binding sites of VEGFR-1 (A) and 
VEGFR-2 (B). The two VEGF monomers are shown in a head-to-tail 
orientation, indicated by arrows and held together by disulfide bonds. The 
main VEGF binding domains of the VEGFR-1 and VEGFR-2 receptors is 
located in Ig-like loop 2, but loop 3 also participates in the binding. The two 
VEGFR-1 receptors form a dimer that undergoes autophosphorylation on 
tyrosine residues located in the cytoplasmic part of the VEGFR-1 receptors 
(P), leading to the initiation of signal transduction. The dimer is held together 
by the interaction of each VEGFR-1 with a common VEGF dimer and is 
further stabilised by interactions between amino acids located at the loop 4 
dimerisation domain (C) (Derived from Neufeld et al., 1999). 
 

 

A soluble truncated form of VEGFR-1 (sFlt-1) that contains only the first six 

Ig-like domains has been cloned from a HUVEC cDNA library (Kendall et al., 

1996). sFlt-1 binds to VEGF as strongly as does full-length VEGFR-1 and 

inhibits VEGF activity by sequestering it from signalling receptors and by 

forming non-signalling heterodimers with VEGFR-2. VEGF-B and PlGF also 

bind to sFlt-1. Particularly high levels of sFlt-1 occur in the placenta, where it 
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might control VEGF activity at particular stages of pregnancy (Clark et al., 

1998; He et al., 1999). A truncated form of VEGFR-2, lacking the C-terminal 

half of the kinase domain, is expressed in normal rat retina (Wen et al., 

1998). This truncated form is expressed at lower levels than full-length 

VEGFR-2 in these cells, but seems to be activated by VEGF at least as 

efficiently. 

VEGFR-3 (Flt-4) expression is restricted mainly to the lymphatic endothelium 

of adult tissues (Pajusola et al., 1992; Kaipainen et al., 1995). VEGFR-3 

binds VEGF-C and VEGF-D, but not VEGF, and is though to control 

lymphangiogenesis. 

As regarding neuropilins (NRP-1 and NRP-2), some reports have been 

indicated that certain tumour and endothelial cells express cell-surface VEGF 

binding sites distinct from VEGFR-1 and VEGFR-2, and that the exon 7-

encoded basic sequences are required for binding to this putative receptor 

(Soker et al., 1996; Soker et al., 1998). Subsequently, it was demonstrated 

that NRP-1 binds specifically to VEGF165 (Soker et al., 1998), while NRP-2 

binds both VEGF165 and VEGF145 (Gluzman-Poltorak et al., 2000). When 

coexpressed in cells with VEGFR-2, NRP-1 enhanced the binding of 

VEGF165 to VEGFR-2 and VEGF-mediated chemotaxis (Soker et al., 1998). 

It has been proposed that NRP-1 presents VEGF165 to VEGFR-2 in a 

manner that enhances the effectiveness of VEGFR-2 mediated signal 

transduction. Binding to NRP-1 explains, in part, the greater mitogenic 



L.A. Ribeiro                VEGF Receptors 

 54

potency of VEGF165 relative to VEGF121 (Soker et al., 1998). There is no 

evidence that NRP-1 or NRP-2 signal after VEGF binding (Neufeld et al., 

2002). In contrast, NRP-1 is required for the development of the vascular 

system in mice embryos (Kawasaki et al., 1999) and zebrafish (Lee et al., 

2002). Furthermore, both NRP-1 and NRP-2 are expressed in rat uterus 

(Pavelock et al., 2001). 

2.5 Receptors expression 

Upstream control elements confer endothelial-cell-specific transcription on 

both VEGFR-1 and VEGFR-2 (Morishita et al., 1995; Patterson et al., 1995). 

Not surprisingly, hypoxia, as well as inducing VEGF release, is also a potent 

stimulator of VEGFR-1 and VEGR-2 expression in vivo (Tuder et al., 1995; Li 

et al., 1996). In common with VEGF, VEGFR-1 has a HIF-1 consensus in its 

promoter region (Gerber et al., 1997). VEGFR-2 has no similar sequence and 

transcription might be slightly downregulated by hypoxia (Thieme et al., 1995; 

Gerber et al., 1997). However, VEGFR-2 is though to be upregulated at the 

post-transcriptional level by an unidentified paracrine factor released from 

ischemic tissue (Brogi et al., 1996; Waltenberger et al., 1996). 

Several growth factors, including VEGF (Wilting et al., 1996; Barleon et al., 

1997b), affect VEGF receptors expression. VEGF stimulation of VEGFR-2 

both upregulates expression of VEGFR-2 gene and increases cellular 

VEGFR-2 levels (Shen et al., 1998). bFGF is known to synergise with VEGF 

in inducing angiogenesis and one mechanism for this is through upregulation
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of VEGFR-2 in endothelial cells (Pepper et al., 1998). Interestingly, cell-cell 

and cell-matrix contact might also affect VEGF receptors expression: 

VEGFR-2 levels vary according to cell density and the geometry of the 

culture conditions (Pepper & Mandriota, 1998), and expression of both 

VEGFRs is influenced by the levels of platelet endothelial cell adhesion 

molecule 1 (PECAM-1: Sheibani & Frazier, 1998). 

2.6 Heparan sulphate proteoglycans and VEGF isoforms 

Heparin and heparan sulphate (HS) are found on the cell surface and in the 

ECM of almost all mammalian cells, and are component of the heparan 

sulphate proteoglycans (HSPGs). Heparin/HS affinity can affect VEGF 

function through several mechanisms. HSPGs affect VEGF bioavailability 

through sequestration at the cell surface/ECM. This VEGF reservoir may be 

protected from enzymatic degradation (Houck et al., 1992), although ECM-

bound VEGF189 does not appear to be protected from uPA or plasmin 

maturation (Plouet et al., 1997). VEGF can displace other HSPG-bound 

growth factors from the ECM, most notably bFGF, which can then synergise 

with VEGF in stimulating angiogenesis (Jonca et al., 1997). Heparin/HS also 

protects the heparin-binding isoforms from natural inhibitory and degradatory 

processes by preventing their interaction with proteins such as α2-

macroglobulin and platelet factor 4 (Soker et al., 1993; Gengrinovitch et al., 

1995). Furthermore, HSPGs may regulate the interaction of several heparin 
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binding growth factors with their respective receptors and, consequently, their 

biological activity (Schlessinger et al., 1995).  

 A novel function of heparin may be in the restoration of function to damaged 

VEGF. Oxidising agents and free radicals, both common around areas of 

inflammation and wound healing, can inactivate VEGF. Under such 

conditions, heparin binding by VEGF165 could prolong its biological activity 

compared with VEGF121 by partially restoring lost function (Gitay-Goren et 

al., 1996). In fact, glypican-1, an HSPG known to be present on endothelial 

cells, has been shown to play a chaperone-like function by partially restoring 

VEGF165 activity after oxidative damage and promoting VEGFR-2 binding 

(Gengrinovitch et al., 1999).  
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AIMS 

The experiments realized during my PhD originated three original papers 

published on international journals.  

The first study (Experiment I) was aimed at verifying whether feed restriction 

influences the VEGF production as well as the mRNA expression of VEGF 

and its receptor VEGFR-2 and the ET-1 system members (ET-1, ECE-1 and 

ET-A) in swine CL. 

# Galeati et al., 2005. Domestic Animal Endocrinology, 28:272-284. 

 

The second study (Experiment II) was aimed at characterizing the temporal 

expression pattern of VEGF, gelatinases and endonuclease throughout the 

lifespan of swine CL and pregnancy and investigating whether the expression 

levels of those molecules are related to CL functional stage. 

# Ribeiro LA et al., 2006. BMC Developmental Biology, 6(1):58. 

 

The third study (Experiment III) was aimed at determining the pattern of 

different VEGF isoform and receptor mRNAs expression and protein levels in 

swine CL during estrous cycle. 

 # Ribeiro LA et al., 2007. Molecular Reproduction and Development, 74:163-

171. 
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EXPERIMENT I 
 

Fasting influences steroidogenesis, vascular endothelial growth factor 
(VEGF) levels and mRNAs expression for VEGF, VEGF receptor type 2 

(VEGFR-2), Endothelin 1 (ET-1), Endothelin Receptor Type A (ET-A) and 
Endothelin Converting Enzyme -1 (ECE-1) in newly formed pig corpora lutea. 

 

Domestic Animal Endocrinology, 2005, 28:272-284. 
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Abstract

This study was designed to verify whether fasting influences vascular endothelial growth factor
(VEGF) production and VEGF, VEGF receptor-2 (VEGFR-2) as well as endothelin (ET) system
members (endothelin converting enzyme-1, ECE-1; ET-1; endothelin receptor type A, ET-A) mRNA
expression in pig corpora lutea; furthermore, we wanted to assess whether fasting affects steroidoge-
nesis in luteal cells. Eight prepubertal gilts were induced to ovulate and were randomly assigned to
two groups: (A)n= 4, normally fed; and (B)n= 4, fasted for 72 h starting 3 days after ovulation. At
the end of fasting, ovaries were removed from all the animals and corpora lutea (CLs) were collected.
VEGF and steroid levels in luteal tissue were determined by ELISA and RIA, respectively; VEGF,
VEGFR-2, ET-1, ET-A and ECE-1 mRNAs expression was measured by real-time PCR. VEGF pro-
tein levels were similar in the two groups, while all steroid (progesterone, testosterone, estradiol 17�)
concentrations were significantly (P< 0.001) higher in CLs collected from fasted animals compared

∗ Corresponding author. Tel.: +39 051 2097922; fax: +39 051 2097899.
E-mail address:tamanini@vet.unibo.it (C. Tamanini).

0739-7240/$ – see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.domaniend.2004.11.002
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with those from normally fed gilts. VEGF, VEGFR-2, ET-1 and ECE-1 (but not ET-A) mRNA expres-
sion was significantly lower (P< 0.05) in fasted versus normally fed animals. The overall conclusion
is that all the parameters studied are affected by feed restriction, but the mechanisms activated at luteal
level are possibly not fully adequate to compensate for nutrient shortage.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Angiogenesis; Gilt; Progesterone; Testosterone; Estradiol 17�

1. Introduction

The corpus luteum (CL) undergoes rapid growth, differentiation and controlled regres-
sion during every ovarian cycle[1–3]. Maintenance of luteal function has been demonstrated
to depend to a great extent on angiogenesis, the growth and development of new blood ves-
sels from pre-existing ones, while luteal regression is associated with its inhibition[4].
The main angiogenic factor is the vascular endothelial growth factor (VEGF), whose im-
portance in CL development and function has been demonstrated in several species[4–7]
for a review on the angiogenic process at luteal level see[8]. In addition, luteal tissue
has been found to be a source of VEGF (cattle[9], caprine[10], equine[11], humans
[12], rat [13], sheep[14]). In the pig CL, Boonyaprakob et al.[15] reported the expres-
sion of VEGF and its receptors (VEGFR-1 and VEGFR-2) mRNA throughout the luteal
phase. In situ hybridization and immunohistochemistry studies provided evidence for the
presence of VEGF mRNA mainly in steroidogenic cells, while VEGF receptors appear
to be present in both steroidogenic and endothelial cells in human corpora lutea[12,16].
In the bovine species, receptors for VEGF are only expressed in endothelial cells[9] and
VEGFR-2 (but not VEGFR-1) mRNA expression is clearly regulated throughout the estrous
cycle[9].

Endothelin-1 (ET-1), the only isopeptide synthesized and secreted by vascular endothe-
lial cells [17], has been demonstrated to regulate oocyte maturation, ovulation and CL
functions[18,19]. It is derived from an inactive intermediate peptide, big ET-1, by en-
dothelin converting enzyme-1 (ECE-1). Endothelin-1, initially defined as a potent vaso-
constrictor, has recently gained increasing attention due to its diverse biological functions,
such as cardiovascular homeostasis, embryo development and angiogenesis[20–22] and
the endothelin system appears to play an important role in ovarian physiology[23,24].
ET-1 has been demonstrated to stimulate both VEGF and basic fibroblast growth fac-
tor (bFGF) production[25–27] and it may also inhibit progesterone production in luteal
cells [28] this inhibitory effect is potentiated by PGF2� [29]. Thus, ET-1 may play a
role during both physiological and induced luteolysis[30], as it appears to be responsi-
ble for the decrease of blood flow in the mid-cycle CL after induction of luteal regression
[31].

Besides being up-regulated by luteinizing hormone (LH), insulin-like growth factor-I
(IGF-I) and other factors[32], VEGF production has also been shown to be influenced
by nutrients such as fructose[33] and taurine[34]. Thus, a reduction in the availability
of nutrients could modify luteal VEGF production which, in turn, may alter blood vessel
growth during CL function. Recently, we have demonstrated that short-term fasting in gilts
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significantly increases VEGF levels in follicular fluid from large ovarian follicles as well as
the permeability of follicular blood vessels. We also observed an increase in VEGF mRNA
levels in the theca (but not in granulosa) layer[35].

Both VEGF and ET-1 systems are, therefore, involved in modulating luteal angiogenesis
and impaired metabolic conditions occurring during the early CL development could likely
affect their expression and function.

On the basis of these observations, this study was designed to verify whether fasting influ-
ences VEGF production and VEGF and VEGFR-2 mRNA expression as well as expression
of members of the ET system (ECE-1, ET-1, ET-A) in pig corpora lutea and whether this
is related to changes in luteal steroidogenesis. The experimental model we chosen (72 h
fasting) has been recently demonstrated to be effective in significantly reducing glucose
while increasing both leptin and non-esterified fatty acids (NEFA) plasma levels[36]; this
approach may be, therefore, useful to determine the effects of impaired metabolic conditions
on the factors involved in the angiogenic process.

2. Materials and methods

2.1. Animals and hormonal stimulation protocols

Eight prepubertal Large White gilts, with an average weight of 98± 1.67 kg (mean±
S.E.M.), were treated with 1250 IU equine chorionic gonadotropin (eCG; Folligon, Intervet,
Holland) and 750 IU hCG (Corulon, Intervet) 60 h later (day 0); this treatment induces
ovulation about 44 h after hCG administration. Five days after hCG treatment, animals
were randomly divided into two groups: group A, normal feeding with a commercial diet
(n= 4); and group B, 72 h of fasting with water available at all times (n= 4).

On day 8, ovaries were recovered by laparotomy; animals were pre-anesthetized by
an injection of azaperone (240 mg/gilt; Stresnil, Janssen, Belgium) and atropine sodium
salt (2 mg/gilt; Industria Galenica Senese, Italy), and maintained under thiopental sodium
(1.5 g/gilt; Pentothal Sodium; Gellini, Latina, Italy) anaesthesia. Immediately after removal,
ovaries were transported to the laboratory where single CLs were isolated. The CLs obtained
from each ovary were counted and cut in two halves with a razor blade. One half was
weighed and homogenised in PBS (0.1 g/ml) on ice bath by an Ultra Turrax. The homogenate
obtained was processed as follows: 500�l were centrifuged at 2000×g for 10 min at 4◦C
and supernatant was stored at−20◦C until VEGF determination; the remainder of the
homogenate was kept frozen until steroid (progesterone, P4; testosterone, T; and estradiol
17�, E2) measurement. All CLs were processed for steroid and VEGF determination. Total
RNA was isolated from the second half of the CLs (10 CLs/gilt) with the Tri-Pure isolation
reagent, according to the manufacturer’s instructions (Roche Diagnostic GmBH, Mannheim,
Germany), and stored at−80◦C until VEGF and its receptor mRNA as well as ET-1, ET-A
and ECE-1 mRNA levels were determined as described below. All the samples were frozen
by 2 h from the surgical removal of the ovaries.

All animals were housed and used according to EEC animal care guidelines. The experi-
mental procedures had previously been submitted to and approved by the Ethical Committee
of Bologna University.
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2.2. VEGF assay

VEGF concentrations were measured in 100�l samples of homogenate supernatants
by a specific enzyme linked immune-adsorbent assay (ELISA, Quantikine, R&D Sys-
tems, Minneapolis, MN, USA) previously validated for the measurement of porcine VEGF
[35,37,38]. This highly specific sandwich assay recognises VEGF 165 as well as VEGF
121, while it exhibits negligible cross-reactivity with all the cytokines/growth factors
tested (the complete list is reported in the manufacturer’s booklet). A 96-well plate reader
(Biomek 1000, Beckman Instruments, Fullerton, CA, USA) set to read at 450 nm emis-
sion was used to quantify the results. The sensitivity of the assay was 5 pg/ml, and the
intra- and inter-assay coefficients of variation were less than 6 and 10%, respectively.
All data are expressed as pg/mg protein; protein concentration was determined accord-
ing to Lowry method[39] using a protein assay kit (Sigma Diagnostics, St. Louis, MO,
USA).

2.3. Steroid assays

Steroid hormone concentrations in CL homogenates were measured by validated RIAs
as previously described (progesterone and estradiol 17� [40], testosterone[41]).

2.4. Estradiol 17� (E2) and testosterone (T)

In brief, aliquots (500�l) from each homogenate CL were extracted with 5 ml diethyl
ether. After centrifugation, ether was collected and dried under a N2 stream. Dried ether
extracts were resuspended in 500�l of phosphate buffer and sets of two 100�l or 20�l
aliquots were then assayed for E2 and T content, respectively.

The sensitivities were 1.6 pg/tube for T assay and 1.1 pg/tube for E2 assay. The intra-
and interassay coefficients of variation were 3.4 and 10.9%, respectively, for T and 5.8 and
11.2% for E2. The results are expressed in pg/mg tissue.

2.5. Progesterone (P4)

Aliquots of 20�l from each homogenate CL were extracted with 5 ml petroleum ether.
After centrifugation, ether was collected and dried under a N2 stream. Dried ether extracts
were resuspended in 1 ml phosphate buffer, diluted 1:50 and aliquots of 50�l were then
assayed.

The sensitivity of the assay was 3.7 pg/tube. The intra- and interassay coefficients of
variation were 6.3 and 9.6%, respectively. The results are expressed in ng/mg tissue.

2.6. Total RNA extraction and reverse transcription

Total RNA from CLs (10 CLs/gilt) was resuspended in RNAse-free water and was
spectrophotometrically quantified (A260 nm). One microgram of total RNA was reverse-
transcribed to cDNA using iScript cDNA Synthesis Kit (Bio-RAD Laboratories Inc., CA,
USA) in a final volume of 20�l, according to the manufacturer’s instruction. Transcrip-
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tion reactions without reverse transcriptase were performed to determine a possible DNA
contamination.

2.7. Real-time quantitative PCR

Swine primers were designed for ET-1, ET-A, ECE-1, VEGF, VEGFR-2 and�-actin,
using the Beacon Designer 2.07 Software (Premier Biosoft International, Palo Alto, CA,
USA). Their sequences, expected PCR product length and accession number are shown in
Table 1. Real-time quantitative PCR was performed in the iCycler Thermal Cycler (Bio-
RAD Laboratories Inc., Hercules, CA, USA) using SYBR green I detection. A master-mix
of the following reaction components was prepared to the indicated end-concentrations:
1.5�l forward primer (0.6�M), 1.5�l reverse primer (0.6�M), 6.5�l water and 12.5�l
IQ SYBR Green BioRad Supermix (Bio-RAD Laboratories Inc.). Three�l of cDNA were
added to 22�l of the master-mix. All samples were performed in duplicate for all genes.
The two step real-time PCR protocol employed was: initial denaturation for 3 min at 95◦C,
40 cycles at 95◦C for 15 s and 60◦C for 30 s, followed by a melting step with a slow heating
from 55 to 95◦C with a rate of 0.5◦C/s. The relative mRNA level was determined as the
PCR cycle number that crosses an arbitrarily placed signal threshold (CT). TheCT value
correlates inversely with the amount of target mRNA in the sample. The housekeeping
gene�-actin was used to normalize the amount of RNA. The expression of each gene was
calculated as�CT (target geneCT − �-actinCT) for all individual samples. To determine
the relative amount of the target genes in the fasting group relative to control one, we
calculated the��CT (fasting group average�CT − control group average�CT). As the
PCR amplification is an exponential process, a difference of twoCT signifies approximately
a regulation by a factor of 2−��CT .

Real-time efficiencies were acquired by amplification of a standardised dilution series
and corresponding slopes and PCR efficiencies were calculated using iCycler iQ Real Time
PCR Detection System (Bio-Rad Laboratories Inc.).

Table 1
Forward and reverse primers sequences, RT-PCR product length and accession number (Acc. No.)

Primer Sequence (5′–3′) Product length (bp) Acc. No.

ET-1 For.: CCTGTCTGAAGCCATCTC 109 X07383
Rev.: AGTAAGGAACGGTCTGAAC

ET-A For.: TCACCGTCCTCAATCTCTG 98 S80652
Rev.: GGCTGTGACCAATGGAATC

ECE-1 For.: CCATCATCAAGCACCTCCTC 108 D89494
Rev.: GCTCCTCAATCCTGGTTTCG

VEGF For.: CCTTGCCTTGCTGCTCTACC 101 AF318502
Rev.: CGTCCATGAACTTCACCACTTC

VEGFR-2 For.: AACGAGTGGAGGTGACAGATTG 104 AJ245446
Rev.: CGGGTAGAAGCACTTGTAGGC

�-Actin For.: ATGGTGGGTATGGGTCAGAAAG 103 AF054837
Rev.: TGGTGATGATGCCGTGCTC
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3. Statistical analysis

Statistical significance was determined using the independent samples T-test (SPSS Ver-
sion 8.0 Inc., Chicago, IL, USA), after a preliminary statistical comparison between treat-
ments based on evaluation of S.E.M. at 95% probability (significance level). Differences
were considered significant atP< 0.05. Data on VEGF and steroid concentrations and
mRNA expression of the target genes in luteal tissue are presented as mean± S.E.M.

4. Results

4.1. VEGF and steroid concentrations in homogenate CLs

The total number of CLs isolated from the ovaries of gilts fed with normal plane of
nutrition was 76 (19± 1.35 CLs/gilt, mean± S.E.M.); fasting did not modify CLs number
(n= 81; 20.25± 1.62 CLs/gilt). Differences in weight were not observed, neither per CL,
nor per ovary (data not shown).

VEGF concentrations in CL extracts from A and B groups were not different
(125.97± 4.57 and 115.97± 3.43 pg/mg protein, respectively).

The levels of steroids in CLs (Fig. 1) were markedly affected by feed regimens.
Under control conditions, P4 concentrations were 23.49± 0.55 ng/mg protein, while E2
and T concentrations were 0.39± 0.02 and 14.58± 0.62 pg/mg, respectively. Fasting sig-
nificantly (P< 0.001) increased P4 (30.44± 0.65 ng/mg), E2 (0.57± 0.02 pg/mg) and T
(23.16± 1.09 pg/mg) levels.

4.2. ET-1, ET-A, ECE-1, VEGF and VEGFR-2 mRNA Expression

Table 2andFig. 2 summarize the�CT of ET-1, ET-A, ECE-1, VEGF and VEGFR-
2 mRNA expression in fasted and normally fed animals. The relative amount of ET-1
mRNA in CLs from fasted animals was significantly lower (P= 0.002) than that observed
in normally fed animals, with a relative decrease of 34%. Similar results were observed for
ECE-1, whose mRNA expression was reduced by 20% (P= 0.032) in fasted gilts, while no
significant differences were observed between fasted and normally fed animals for ET-A
mRNA expression. VEGF mRNA and VEGFR-2 mRNA expressions were significantly
lower in fasted than in normoalimented animals (P= 0.001 and 0.015, respectively).

5. Discussion

The production of VEGF by cells from both cyclic and pregnant CLs as well as
mRNA expression for VEGF and its receptors (VEGFR-1 and -2) has been reported in
many species. Available data demonstrate that both protein and mRNA change through-
out the estrous cycle in bovine[9] and equine[1] CL, with maximum levels during the
early and low levels during the late luteal phase and particularly during luteal regres-
sion. High VEGF expression during the early luteal phase has also been shown in ovine
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Fig. 1. Progesterone (P4), testosterone (T) and estradiol 17� (E2) concentrations in luteal tissue from normally
fed (open bars) and fasted (closed bars) gilts. Asterisk indicates a significant difference (P< 0.001).

Fig. 2. Relative luteal tissue mRNA expression for ECE-1, ET-A, ET-1, VEGF and VEGFR-2 in normoalimented
(open bars) and fasted (closed bars) gilts. Error bars represent the range of relative expression. Asterisks indicate
significant differences (*P< 0.05;** P< 0.005).
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Table 2
ET-1, ET-A, ECE, VEGF and VEGFR-2 mRNA expression in fasted and normally fed animals; the data are
presented as the mean± S.E.M.

Gene Group �CT
a ��CT

b Relative expression to controlc

ET-1 Control 4.94± 0.12 0± 0.12 1.0 (0.92–1.09)
Fasting 5.53± 0.13** 0.59± 0.13 0.66 (0.61–0.73)

ET-A Control 3.34± 0.16 0± 0.16 1.0 (0.89–1.12)
Fasting 3.69± 0.18 n.s. 0.35± 0.18 0.78 (0.69–0.89)

ECE-1 Control 0.27± 0.10 0± 0.10 1.0 (0.93–1.07)
Fasting 0.59± 0.10* 0.32± 0.10 0.80 (0.75–0.86)

VEGF Control 0.71± 0.10 0± 0.10 1.0 (0.93–1.07)
Fasting 1.3± 0.14** 0.59± 0.14 0.66 (0.60–0.73)

VEGFR-2 Control 0.87± 0.12 0± 0.12 1.0 (0.92–1.09)
Fasting 1.44± 0.18* 0.56± 0.18 0.68 (0.60–0.77)

n.s.: not significant.
a �CT = target geneCT − �-actinCT; �-actin level was similar in control and fasting group (P= 0.24).
b ��CT = fasting group− control group average�CT. This is a subtraction of an arbitrary constant, so that the

S.E.M. of��CT is the same as the S.E.M. of the�CT value.
c The relative expression is determined by 2−��CT . The range (numbers in parentheses) were calculated by

2−(−��CT−S.E.M.) and 2−(−��CT+S.E.M.), where S.E.M. = the standard error mean of the��CT value.
∗ P< 0.05.

∗∗ P< 0.005.

CL [14]. These findings represent convincing evidence that luteal development is asso-
ciated with VEGF expression in those species. In contrast, high levels of mRNAs en-
coding the VEGF 165 isoform and VEGFR-1 have been found during the mid and late
luteal phase in caprine CL[10] allowing these Authors to suggest a non-angiogenic role
of the VEGF system. In the pig, VEGF mRNA expression has been reported to be con-
stant throughout the lifespan of CL and to decrease only at its end, while the expression
of both VEGF receptors mRNA changes[15]. Although our experimental model does not
allow us to clarify whether steroidogenic or endothelial cells (or both) are involved, re-
sults from this study confirm that porcine luteal tissue expresses mRNAs for both VEGF
and VEGFR-2 as well as VEGF protein. The highly specific sandwich assay we used
for VEGF determination recognizes VEGF 165 as well as VEGF 121[37,38], while our
method for VEGF mRNA quantification (real-time PCR) measures all VEGF isoforms
even though the contribution of each to the total amount of VEGF mRNA cannot be deter-
mined.

A possible modulatory role for CL formation has also been suggested for members of the
endothelin family[19]. In the bovine CL, ET-1 mRNA expression is high after ovulation,
decreases during the mid and late luteal phases and increases again during luteal regression,
while ET-A and ECE-1 mRNA levels are constant throughout all luteal stages. As both
ECE-1 and ET-1 levels have been shown to be up-regulated in the bovine CL after PGF2�-
induced luteolysis[42], the ET-1 system is thought to act as a vasoconstrictor and an inducer
of cell apoptosis, likely through a positive-feedback mechanism with prostaglandins[28].
ET-1 seems also to be related with VEGF, as in other systems endothelin has been found to
stimulate VEGF production[25]. Since both VEGF and endothelin-1 are expressed in the
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newly ruptured follicle[43], we may hypothesise that endothelin-1 potentiates the VEGF-
mediated angiogenesis in the newly developing corpus luteum.

Dietary restrictions have been shown to negatively affect reproductive performance in
many species (ovine[44], swine[45–47], bovine[48,49]). In particular, a post-ovulatory
food deprivation in sows has been reported to reduce cleavage rate of embryos[45] and
to delay oocytes transport[50,51]. Several mechanisms are likely involved, among them
an impairment of luteal development and function (for a review on nutritional influences
on reproductive activity, see[52]). Our results demonstrate that both endothelin and VEGF
systems are negatively affected by acute fasting, although VEGF concentrations in luteal
tissue do not seem to be modified. Angiogenesis has been shown to be stimulated by nutrients
shortage[53,54], which has been demonstrated to be also effective in increasing VEGF levels
in follicular fluid from pig large follicles[35]. In our previous study we found that the overall
content of VEGF mRNA in the follicle wall was unaffected by fasting, even though the
distribution of VEGF gene expression shifted from the granulosa to the theca compartment;
thus, the two follicle compartments differently contribute to the total amount of VEGF in
follicular fluid. Both theca and granulosa cells differentiate into luteal cells; therefore, it is
not surprising that VEGF concentrations do not differ between CLs from normoalimented
and fasted animals in that theca- and granulosa-derived luteal cells may possibly compensate
each other as for VEGF production. This does not seem to be the case for VEGF and its
receptor mRNAs, which are significantly lower in fasted than in normoalimented gilts;
similar data were obtained for all the components studied (except for ET-A) of the ET-1
system. ET-1 reduction may be, at least in part, responsible for the decrease in VEGF mRNA,
as a stimulatory effect of ET-1 on VEGF has been demonstrated[25]. Nutrients shortage
seems, therefore, to be effective in reducing the ET-1 system expression. In accordance
with this, a fasting-induced decrease of plasma endothelin levels has been reported in rats
[55], while high glucose levels are effective in increasing ECE-1[56] and ET-1 has recently
been shown to be higher in obese than in lean control patients[57]. In support of our
observations, maternal malnutrition has been demonstrated to dramatically reduce VEGF
and VEGFR-1 expression in fetus pancreatic cells[34], while taurine supplementation to
the maternal diet prevents such under-expression. In addition, both VEGF and endothelin-1
have recently been found to be higher in diabetic patients than in healthy controls[58]. These
observations may account for the concomitant reduction of the VEGF and ET-1 system gene
expression we found in feed restricted gilts. The fasting-induced VEGF and ET-1 inhibition
may be mediated through a reduction of gonadotropins and/or insulin-like growth factor-I
(IGF-I) [44,48,59,60], which are effective in stimulating both VEGF[37,61–63]and ET-1
[64] production. On the basis of the main effects of VEGF (stimulation of vessel growth
and endothelial permeability) and ET-1 (stimulation of proliferation of endothelial cells
and vasoconstriction, as well as VEGF increase), we may conclude that feed restriction
possibly inhibits luteal vessel development. This could be, at least in part, compensated by
a decrease of vasal tone due to a suppression of endothelin-1, thus ensuring an adequate
blood flow. Our data on steroid concentrations in luteal tissue indicate that fasting does not
negatively affect steroidogenesis which, in fact, is stimulated. We have previously reported
[35] that fasting modifies follicular steroidogenesis, by increasing progesterone secretion
while decreasing both E2 and testosterone output. The increase in progesterone synthesis as
induced by fasting seems, therefore, also to be confirmed in luteal tissue and may be due, at
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least in part, to a reduction of the inhibitory effects of ET-1, which has been demonstrated
to inhibit steroidogenesis in bovine[24,65] and porcine[66] luteal cells. In according to
our luteal data, higher plasma progesterone concentrations were seen in feed-restricted than
in normally fed gilts[67] and sows[45]. As suggested[57], the high P4 levels in plasma
from fasted gilts may be due to a reduction of the metabolic clearance of the steroid, but
our luteal data suggest that there may also be a higher secretion; similar conclusions have
been drawn also in both sheep[44] and cows[68]. As for the increase observed in E2 and
its precursor (T), we do not have any convincing explanation for this effect; however, since
VEGF has been demonstrated to inhibit estradiol output by granulosa cells from pig large
follicles [69], a fasting-induced inhibition of the VEGF system may account for the indirect
stimulation of E2 which, in turn, may exert a powerful stimulatory effect on P4 secretion
[70,71].

Taken together, the results from the present study indicate that acute fasting inhibits
mRNA expression of ET-1 system, VEGF and VEGFR-2 in newly formed pig corpora
lutea, even though it does not seem to affect VEGF levels in luteal tissue. Furthermore, feed
restriction exerts a stimulatory effect on luteal steroidogenesis. According to our experimen-
tal model, we evaluated only one time point after fasting; therefore, we may hypothesize that
the discrepancy between VEGF luteal levels and VEGF mRNA expression could depend
on a temporal shift between the activation of a mechanism of adjustment of luteal cells at
the level of gene and protein expression. The overall effects of fasting on luteal function
may be clarified in the future by studying other luteal phases (i.e., luteal regression, when
ET-1 system should be maximally expressed).
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Abstract
Background: The development and regression of corpus luteum (CL) is characterized by
an intense angiogenesis and angioregression accompanied by luteal tissue and extracellular
matrix (ECM) remodelling. Vascular Endothelial Growth Factor (VEGF) is the main
regulator of angiogenesis, promoting endothelial cell mitosis and differentiation. After the
formation of neovascular tubes, the remodelling of ECM is essential for the correct
development of CL, particularly by the action of specific class of proteolytic enzymes known
as matrix metalloproteinases (MMPs). During luteal regression, characterized by an
apoptotic process and successively by an intense ECM and luteal degradation, the activation
of Ca++/Mg++-dependent endonucleases and MMPs activity are required. The levels of
expression and activity of VEGF, MMP-2 and -9, and Ca++/Mg++-dependent endonucleases
throughout the oestrous cycle and at pregnancy were analyzed.

Results: Different patterns of VEGF, MMPs and Ca++/Mg++-dependent endonuclease were
observed in swine CL during different luteal phases and at pregnancy. Immediately after
ovulation, the highest levels of VEGF mRNA/protein and MMP-9 activity were detected. On
days 5–14 after ovulation, VEGF expression and MMP-2 and -9 activities are at basal levels,
while Ca++/Mg++-dependent endonuclease levels increased significantly in relation to day 1.
Only at luteolysis (day 17), Ca++/Mg++-dependent endonuclease and MMP-2 spontaneous
activity increased significantly. At pregnancy, high levels of MMP-9 and VEGF were observed.

Conclusion: Our findings, obtained from a precisely controlled in vivo model of CL
development and regression, allow us to determine relationships among VEGF, MMPs and
endonucleases during angiogenesis and angioregression. Thus, CL provides a very

interesting model for studying factors involved in vascular remodelling.
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Background
The growth rate of corpora lutea (CL) immediately after
ovulation is 4- to 20-fold more intense than that of some
of the most malignant human tumours and is sustained
by the formation of new blood vessels from capillaries of
the theca interna compartment [1]. Actually, 85% of the
dividing cells in the primate corpus luteum during the
early luteal phase are endothelial cells [2]. The duration of
this intense angiogenic phase in the corpus luteum varies
among species, but appears to be completed by day 6 of
the luteal phase in primates when capillaries surround
almost all luteal cells and capillary dilation is evident [3].
Vascular Endothelial Growth Factor (VEGF) effect on
endothelial cells mitosis and differentiation is considered
fundamental in vascular bed development. We have pre-
viously determined the ability of swine granulosa and
theca cells of growing follicles as well as luteal cells to pro-
duce VEGF [4,5].

After the stimulation of endothelial cells mitosis for neo-
vascular tubes development, the remodelling of extracel-
lular matrix is necessary and different proteolytic enzymes
are involved [6]. The extracellular matrix (ECM) has
become recognized as a key regulatory component in cel-
lular physiology, providing an environment for cell
migration, division, differentiation, anchorage, and in
some cases, an ultimate fate between cell survival or cell
death [7]. The highly regulated control of ECM turnover
and homeostasis occurs, in part, by the action of a specific
class of proteolytic enzymes known as the matrix metallo-
proteinases (MMPs). The MMPs and their associated
endogenous inhibitors act in concert to control aspects of
reproductive function. In the ovary and uterus, the MMP
system has been postulated to regulate all the dynamic
structural changes that occur throughout the oestrous
cycle [8].

To allow repeated opportunities of fertilization, the dura-
tion of CL life is rigorously programmed, in fact, after a
first period of rapid growth the tissue becomes stably
organized and prepares to switch to the phenotype
required for its next apoptotic regression [9,10]. Five to
ten grams of luteal tissue growth and disappear at each
ovarian cycle (21 days in sow).

The switch between growth and regression is mainly regu-
lated by LH (luteinising hormone – luteotrophyn) and
PGF2α (prostaglandin F2α – luteolysin) and their recep-
tors balance as well as by cytokines, growth factors, apop-
tosis/oncogenes related factors and plasminogen
activator/matrix metalloproteinase activators and inhibi-
tors [10-12]. If fertilization has not occurred, or implanta-
tion was unsuccessful, or the pregnancy ends, luteolysis is
initiated whereby the CL rapidly loses its progesterone-
producing ability followed by degradation of luteal tissue

[13]. Luteal regression is thought to occur through apo
totic [9,14] and proteolytic [15] mechanisms; howev
the molecular mechanisms underlining this event are n
well characterized [8,16]. Apoptosis requires a wide extr
cellular matrix remodelling [17] as well as the action o
Ca++/Mg++-dependent endonuclease, that is developme
tally regulated in rat luteal cell nuclei [18], leading to t
degradation of genomic DNA into discrete oligonucle
some fragments. Therefore angiogenesis and apopto
and their regulation in the CL play a fundamental role 
the maintenance of reproductive performances. Furth
more, the ovary is the unique organ where strictly reg
lated tissue hyperplasia and regression take place in
cyclic manner under physiological conditions.

This study was aimed at characterizing the tempo
expression pattern of VEGF, MMP-2, MMP-9 and Ca+

Mg++-dependent endonuclease throughout the lifespan
swine CL and investigating whether the expression leve
of those molecules are related to CL functional stage.

Results
CL functional stage assessment
Both luteal progesterone (P4) concentration and prosta
landin F2α receptor (FPr) mRNA expression followed ty
ical swine luteal phase patterns. P4 concentratio
increased gradually during the formation of CL, reachi
the highest level during the mid-late phase (days 10 an
14), and then declined significantly on day 17 (Fig 1A
Similarly, FPr mRNA levels increased gradually to
greater extent on day 14 (3.4-fold in relation to day 1, F
1B). At pregnancy, high levels of P4 and FPr mRNA (7
fold increase in relation to day 1) were observed.

DNase activity assay
A regulated Ca++/Mg++-dependent endonuclease expre
sion and activity were detected in swine CL. Fig 2A illu
trates the Ca++/Mg++-dependent endonuclease activ
found in luteal nuclei obtained at days 1, 14 and 17.
marked activity was obtained with both Ca++ and Mg
whereas the addition of Zn++ inhibited almost complete
the enzyme activity.

The amount of activable DNase gradually increased du
ing the oestrous cycle, maintaining high at pregnanc
Moreover, a high level of spontaneous apoptosis in t
control group (No Salt) at day 17 was also observed (F
2B).

VEGF content
Both VEGF mRNA and protein presented similar patter
of expression throughout the oestrous cycle. The highe
values of VEGF were observed immediately after ovu
tion, decreasing significantly at day 3, and remaini
unchanged during the mid-luteal phase. At day 17, a se
Page 2 of 9
(page number not for citation purposes)

luca.cartoceti
74



BMC Developmental Biology 2006, 6:58 http://www.biomedcentral.com/1471-213X/6/58

ed
is
es
sis
he

F
o-
he
ial
ce
+/

ue

 is
7]
le
A

u-
s

is
he
he
o-
te

of
ng
re-
of
],

he
d-

d
an
al
l-

ng
d

P-
s-
L

ed
P-
ng
te-
re-
ed
or
ond significant drop was observed. At pregnancy VEGF
mRNA and protein levels were intermediate between
those of day 1 and 3 (Fig 3).

MMPs activity assay
Three distinct bands of gelatinase activity corresponding
to latent MMP-9 (proMMP9), latent MMP-2 (proMMP2)
and active MMP-2 (actMMP2) were evidenced in the
swine CL (Fig 4A). Gelatinolytic activities for both latent
and active forms of MMP-2 were considered together for
the analysis. The activities of MMP-2 and MMP-9 changed
over the luteal phase. Constant levels of MMP-2 activity
were observed during CL formation, increasing signifi-
cantly in late (day 17) luteal phase (Fig 4B). In contrast,
MMP-9 activity peaked in the early (days 1–3) and late
(day 17) luteal phase, showing the lowest values in the
midluteal phase (days 10–14 – Fig 4C). At pregnancy,
basal levels of MMP-2 and high levels of MMP-9 were
observed.

Discussion
The CL is a transient endocrine gland, which is form
from the remnants of an ovulated follicle [13]. During th
process, a capillary network invades from the theca tissu
into the granulosa layers through a dynamic angiogene
process such that after its formation, the CL is one of t
most vascularised organs in the body [16]. During VEG
driven angiogenesis, microvascular endothelial cells pr
duce gelatinases (MMP-2 and -9), which breach t
perivascular basement membrane and allow endothel
cells to migrate outward through the extracellular spa
[19-21]. MMPs are also involved, together with Ca+

Mg++-dependent endonuclease, in apoptotic tiss
remodelling at luteolysis.

In this study, proteases with gelatinolytic activity that
consistent with MMP-9 and MMP-2 family members [
were identified in CL collected during the oestrous cyc
and at pregnancy. The gradual increase of FPr mRN
expression, peaking on day 14, together with the accum
lation of Ca++/Mg++-dependent endonuclease, confirm
the competence acquired by the luteal tissue around th
moment to rapidly react to PGF2α and to initiate t
regression. These characteristics are maintained in t
pregnant CL which is always sensible to PGF2α. More
ver, elevated concentrations of P4 at day 14 corrobora
the CL ability to sustain an eventual pregnancy.

Members of MMP-system may be involved in several 
the proteolytic events that take place in the ovary duri
the reproductive cycle [16]. MMP-2 and MMP-9 have p
viously been detected by zymography in homogenates 
rat ovaries [22,23], and in CL of bovine [24], human [15
primates [25], mouse [26], ovine [27] and swine [17]. T
main role proposed for MMPs concerns the tissue remo
elling associated to luteolysis.

Our findings demonstrated the presence of MMP-2 an
MMP-9 in the corpus luteum during different ovari
phases. MMP-2 activity was basal during early-mid lute
phase and at pregnancy while was maximal during luteo
ysis. MMP-2 plays a role in various tissue remodelli
processes, including trophoblast invasion [28] an
tumour cell motility [20]. However, a persistence of MM
2 activity throughout the CL formation supports sugge
tions that tissue remodelling continues throughout C
development and maintenance.

Concerning MMP-9 activity, high levels were observ
during early luteal phase, luteolysis and pregnancy. MM
9 is probably involved in the extensive tissue remodelli
that occurs during CL formation, when extracellular ma
rial, composed primarily of follicular elements that rep
sent a basement membrane-type ECM, is remov
[15,29]. This clearance may create a more hospitable 

P4 and FPr mRNA levels in swine CL during different luteal phases and pregnancyFigure 1
P4 and FPr mRNA levels in swine CL during different luteal 
phases and pregnancy. A: Changes in P4 levels (mean ± SEM). 
B: Changes in FPr mRNA expression in relation to day 1; 
error bars represent the range of relative expression. The 
statistical analysis were based upon the mean of 5 CLs per 
animal (n = 4/time point). Different letters represent signifi-
cant differences (p < 0.05).
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A: Representative electrophoresis profile of low molecular weight DNA from CL at day 1, 14 and 17Figure 2
A: Representative electrophoresis profile of low molecular weight DNA from CL at day 1, 14 and 17. Each lane contains 10ug 
of DNA extracted from luteal nuclei after treatment with different cations. B: Nuclease activity in swine CL nuclei during differ-
ent luteal phases and pregnancy. For each time point only No Salt (open bars) and Ca+++Mg++ (closed bars) samples were pre-
sented. Data represent means ± SEM of percentage of low molecular weight DNA (≤ 2000 bp). The statistical analysis were 
based upon the mean of 5 CLs per animal (n = 4/time point). Different capital and small letters represent significant differences 
(p < 0.05) for No Salt and Ca+++Mg++ groups, respectively.
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spacious environment for the subsequent rapid prolifera-
tion and intermingling of luteal cells [21,30] and develop-
ment of luteal ECM [31]. This hypothesis is supported by
the findings that it is the primary metalloproteinase
detected in follicles explants [32]. In addition, MMP-9 is
the major MMP secreted into the culture medium of
luteinised bovine [33] and human granulosa cells [34].

A different activity profiles for both MMP-2 and MMP-9
were also observed in human [15] and bovine [21] corpus
luteum. In the porcine CL, mRNA expression for MMP-2
and MMP-9 was low during early luteal period (days 6–8
of the oestrous cycle), increasing significantly during mid-
luteal period (days 9–11), and reaching the highest values
during the late luteal period (days 13–15) [17]. These
results agree well with ours, considering that the authors
did not studied the earliest period of oestrous cycle (days
1–5 after ovulation), period in which we verified major
alterations of MMP-9 activity.

In the early luteal phase, we also detected the highest le
els of VEGF. As expected, VEGF mRNA and protein we
detected during all days of the oestrous cycle and show
similar pattern of expression. High levels were verifi
immediately after ovulation, concomitantly with t
intense luteal vascular growth and CL formation. Th
supporting the role of VEGF in the angiogenesis of t
newly formed CL. Changes of VEGF levels in CL duri
the oestrous cycle have been reported also in other speci
[35-39]. Those reports, in accord with our results, demo
strate that the highest VEGF mRNA expression and VEG
protein concentration are detected during the early lute
phase, and are followed by a significant decrease 
expression during the mid and late luteal phases.

VEGF mRNA and protein levels in swine CL during different luteal phases and pregnancyFigure 3
VEGF mRNA and protein levels in swine CL during different 
luteal phases and pregnancy. A: changes in VEGF mRNA 
expression in relation to day 1; error bars represent the 
range of relative expression. B: changes in VEGF content 
(mean ± SEM). The statistical analysis were based upon the 
mean of 5 CLs per animal (n = 4/time point). Different letters 
represent significant differences (p < 0.05).
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A: Representative gelatin substrate zymography gel showingelatinase activity in swine CL during different luteal phaseand pregnancyFigure 4
A: Representative gelatin substrate zymography gel showin
gelatinase activity in swine CL during different luteal phase
and pregnancy. B: Relative abundance of MMP-2 as deter-
mined by densitometric analysis expressed as means ± SEM
C: Relative abundance of MMP-9 as determined by densito
metric analysis expressed as means ± SEM. The statistical 
analysis were based upon the mean of 5 CLs per animal (n 
4/time point). Different letters represent significant differ-
ences (p < 0.05).
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Taken together, our results provide that in addition to
intense angiogenesis (characterized by maximal VEGF
concentration), elevated luteal gelatinases may contribute
to the extensive luteal ECM and tissue remodelling that
occurs as the postovulatory follicle is transformed into the
CL [15,21]. Many studies relative to neoplastic growth
well describe the interplay between VEGF and MMPs [40-
43]. Bergers et al. [44] demonstrated that MMP9 is able to
mobilize matrix attached VEGF isoforms and this action
results essential for the switch between vascular quies-
cence to angiogenesis during carcinogenesis. Another
study showed that VEGF regulated ovarian cancer inva-
sion through secretion and activation of MMPs [45].

After the CL is fully formed, steroidogenesis is maximal
during the midluteal period, and MMP activity and VEGF
concentration are at basal levels. Interestingly, we previ-
ously reported an increased expression of the less abun-
dant and matrix-attached VEGF splice variants (VEGF188
and VEGF182) as well as of the two VEGF receptors in this
moment [5]. In this phase, luteal tissue prepares itself to
the next step cumulating high levels of FPr and endonu-
clease making the tissue very sensitive to luteolytic stimu-
lus. With the onset of structural regression, the MMPs are
again called into action for the remodelling and removal
of the CL [7].

The elevated expression of VEGF associated to the pres-
ence of MMP-9 at pregnancy suggests that initial ang-
iogenic process during the early luteal phase may be
renewed in swine pregnant CL. Increased angiogenesis at
pregnancy in luteal tissue is controversial. Wulff et al. [46]
demonstrated that luteal rescue is associated with a sec-
ond wave of angiogenesis in human CL, while Rowe et al.
[47] stated that no pregnancy-induced angiogenesis take
place in marmoset CLs. Certainly, a stable and efficient
vascular bed are required for the endocrine function of
pregnant CL. Pauli et al. [48] reported that the administra-
tion of anti-VEGFR-2 antibody during the pre- and post-
implantation periods in rodents, disrupted maternal ovar-
ian function eliminating pre-existing luteal blood vessels.
Thus, VEGF/VEGFR-2 pathway is critical to maintain the
functionality of luteal blood vessels during pregnancy and
might also be involved in regulating vascular permeability
and P4 release into the bloodstream [49]. Therefore, the
increase in VEGF at pregnancy is not unexpected but the
increase in MMP-9 needs further clarifications. The differ-
ent profile of VEGF/MMP-9 expression observed between
fully formed (midluteal phase) and pregnant CLs should
be taken into account when physiological effects will be
monitored.

Conclusion
We have demonstrated that CL development and regres-
sion is a very useful model for studying VEGF/MMPs rela-

tionships. During the very early luteal phase, high MM
activities coupled with high VEGF levels drive the tissue 
an "angiogenic phenotype", allowing CL growth und
LH stimulus. In the late luteal phase, low VEGF and el
vated MMPs levels may play role in the apoptotic tissu
and ECM remodelling during structural luteolysis.

Methods
Animal model
Synchronized folliculogenesis was obtained in 28 prep
bertal Large White gilts (96 ± 2.13 Kg, mean ± SEM) b
administration of 1250 IU equine chorionic gonadotr
pin (eCG; Folligon, Intervet, Holland) and 750 IU hC
(Corulon, Intervet) 60 h later. In this model, ovulatio
occurs around 42–44 h after hCG administration (day 0
Four animals were artificially inseminated 40 h after hC
administration and pregnancies were determined b
ultrasonography 35 days after. Ovaries were recovered b
surgical laparotomy on days 1, 3, 5, 10, 14 and 17 aft
ovulation (n = 4 animals/time point) and at day 60 
pregnancy. Animals were pre-anesthetized by using az
perone (240 mg/gilt; Stresnil, Janssen, Belgium) and atr
pine sodium salt (2 mg/gilt; Industria Galenica Senes
Italy), and maintained under thiopental sodium (1.5 
gilt; Pentothal Sodium; Gellini, Latina, Italy) anaesthesi
Five CLs from each gilt, chosen totally random from bo
ovaries, were isolated, cut in three parts with a razor blad
and employed to perform all the analysis.

One third was weighed and homogenized in PBS (0.1 
ml) on ice bath by an Ultra Turrax. The homogena
obtained was processed as follows: 500 µl were cent
fuged at 2000 × g for 10 min at 4°C and supernatant w
stored at -20°C until VEGF determination and th
remainder of the homogenate was kept frozen until pr
gesterone (P4) measurement and MMPs activity evalu
tion.

Total RNA was isolated from the second third of the C
with the Tri-Pure reagent (Roche Diagnostic GmBH, Ma
nheim, Germany) and stored at -80°C until VEGF an
Prostaglandin F2α receptor (FPr) mRNA levels quantific
tion. The last part of samples was immediately processe
for nuclei extraction and Ca++/Mg++-dependent endon
clease activity evaluation. All the sampling procedur
were executed within 2 hours from the surgical removal 
the ovaries.

All animals were housed and used according to EEC an
mal care guidelines. The experimental procedures ha
been previously approved by the Ethical Committee 
Bologna University.
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P4 assay
Aliquots of 20 µl from each homogenate CL were
extracted with 5 ml petroleum ether. After centrifugation,
ether was collected and dried under a N2 stream. Dried
ether extracts were resuspended in 1 ml phosphate buffer,
diluted 1:50 and aliquots of 50 µl were then assayed by a
validated RIA as previously described [9].

The sensitivity of the assay was 3.7 pg/tube. The intra- and
interassay coefficients of variation were 6.3 and 19.6%,
respectively. The results are expressed in ng/mg tissue.

RNA extraction and Real-time quantitative RT-PCR
Total RNA from CLs, homogenized in Tri-Pure reagent (50
mg/ml), was extracted according to manufacturer's
instructions (Roche Diagnostic GmBH, Mannheim, Ger-
many). Purified RNA was resuspended in RNase-free
water and quantified (A260 nm). One microgram of total
RNA was reverse-transcribed to cDNA using iScript cDNA
Synthesis Kit (Bio-RAD Laboratories Inc., CA, USA) in a
final volume of 20 µl, according to the manufacturer's
instruction. Transcription reactions without reverse tran-
scriptase were performed to control for an eventual DNA
contamination.

Swine primers were designed for VEGF, FPr and HPRT
(Hypoxanthine Guanine Phosphorybosyl Transferase),
using the Beacon Designer 3.0 Software (Premier Biosoft
International, Palo Alto, Ca, USA). Their sequences,
expected PCR product length and accession number are
shown in Table 1. Real-time quantitative PCR was per-
formed in the iCycler Thermal Cycler (Bio-RAD Laborato-
ries Inc., Hercules, CA, USA) using SYBR green I detection.
The following reaction components was prepared to the
indicated end-concentrations: 0.6 µM of each primer, 1X
IQ SYBR Green BioRad Supermix (Bio-RAD Laboratories
Inc.), 150 ng of cDNA and H2O nuclease free to a final
volume of 25 µl. All samples were performed in duplicate
for all genes. The two step real-time PCR protocol
employed was: initial denaturation for 3 min at 95°C, 40
cycles at 95°C for 15 sec and 60°C for 30 sec, followed by
a melting step with a slow heating from 55 to 95°C with
a rate of 0.05°C/s. The specificity of the amplified PCR

products was verified by analysis of the melting curv
which is product-specific. The relative mRNA level w
determined as the PCR cycle number that crosses an arb
trarily placed signal threshold (Ct). The Ct value correlat
inversely with the amount of target mRNA in the samp
The housekeeping gene HPRT was used to normalize t
amount of RNA. The relative changes in VEGF and F
expressions were examined using the ∆∆Ct metho
described previously [50], with ∆Ct = Cttarget - CtHPRT an
∆∆Ct = ∆Ct(days 3,5,10,14,17,60) - ∆Ct(day 1). As PCR amplific
tion is an exponential process, a ∆∆Ct difference denot
a shift in regulation by a factor of two (2-∆∆Ct).

Real-time efficiencies were acquired by amplification o
standardised dilution series and corresponding slopes an
PCR efficiencies were calculated using iCycler iQ Re
Time PCR Detection System (Bio-Rad Laboratories Inc.

Ca++/Mg++-dependent endonuclease activity assay
Tissues were immediately treated to isolate nuclei and 
determine endonuclease activity in the samples [51].

In brief, minced tissue was homogenized (1/10, w/v) wi
a Dounce homogenizer in a homogenization solutio
containing 10 mM Tris-Cl (pH 7.4), 3 mM MgCl2, 3 m
EGTA, and 250 mM sucrose. The homogenate was filter
and then centrifuged at 800 g for 15 min at 4°C. T
resulting pellet was resuspended in the homogenizatio
solution supplemented with 0.5% (v/v) nonidet P4
incubated for 15 min at 4°C and then centrifuged at 8
g for 15 min at 4°C. The resulting pellet was resuspend
in a solution containing 10 mM Tris-Cl (pH 7.4), 25 m
NaCl, and 340 mM sucrose. The reaction mixture for t
DNA fragmentation assay was performed with 30 mg 
luteal tissue and 1 mM Ca++ and 5 mM Mg++, with or wit
out the addition of 2 mM Zn++. A control reaction, wit
out salts, was also carried out. The reactions we
performed at 37°C for 10 min, after which low and hi
molecular weight DNA were extracted; residual RNA w
removed by addition of RNase A. DNA content was ev
uated by densitometric scanning under a UV transillum
nator after 2% agarose gel electrophoresis run. Lo

Table 1: Sense and antisense primers sequences used for real time RT-PCR.

Primer Sequence (5'-3') Product size (bp)

HPRT sense GGACAGGACTGAACGGCTTG
HPRT antisense GTAATCCAGCAGGTCAGCAAAG 115
VEGF sense* CCTTGCCTTGCTGCTCTACC
VEGF antisense* CGTCCATGAACTTCACCACTTC 101
FPr sense TCAGCAGCACAGACAAGG
FPr antisense TTCACAGGCATCCAGATAATC 151

*VEGF primers were located on a common region for all VEGF isoforms.
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molecular weight DNA (≤ 2000 bp) was expressed as per-
cent of total DNA in the sample.

VEGF assay
Luteal VEGF concentrations were measured in 100 µl sam-
ples of homogenate supernatants by a specific enzyme
linked immune-adsorbent assay (ELISA, Quantikine,
R&D Systems, Minneapolis, MN, USA) previously vali-
dated for the measurement of porcine VEGF [4]. This
highly specific sandwich assay recognizes VEGF164 as
well as VEGF120, while it exhibits negligible cross-reactiv-
ity with all cytokines/growth factors tested. A 96-well
plate reader (Biomek 1000, Beckman Instruments, Fuller-
ton, CA, USA) set to read at 450 nm emission was used to
quantify the results. The sensitivity of the assay was 5 pg/
ml, and the intra- and interassay coefficients of variation
were less than 6 and 10%, respectively. All data are
expressed as pg/mg protein; protein concentration was
determined according to Lowry method [52], using a pro-
tein assay kit (Sigma Diagnostics, St Louis, MO, USA).

MMPs activity assay
MMP-2 and -9 activities were analyzed by use of gelatin
zymography on 10% Tris-Glycine poliacrylamide pre-cast
gels with 0.1% gelatin (10% Novex Zymogram Gels, Inv-
itrogen U.K.). Aliquots containing 30 µg of total proteins,
mixed with an equal volume of sample buffer (Novex Tris-
Glycine SDS sample Buffer 2X, Invitrogen U.K.) were
loaded into the gel. Electrophoresis was performed under
non-reducing conditions at a constant voltage (125 V for
120 minutes). Following electrophoresis, gels were
washed for 30 minutes in Novex Zymogram Buffer (Invit-
rogen U.K.), equilibrated at room temperature for 30 min-
utes in developing buffer (Novexα Zymogram Developing
Buffer, Invitrogen U.K.) and then incubated at 37°C for
22–24 hours in fresh developing buffer. Band of gelatino-
lytic activity were developed after staining gels for 6–8
hours with Simply Blue Safe stain (Invitrogen U.K.) by
comparison with a MMP-2 and -9 human standard
(Chemicon International, CA, USA).

Gel images were captured with a computerized system
(Geldoc 1000, Bio-Rad), and gelatinolytic bands were
measured with densitometric analysis software (Quantity
One, Bio-Rad). The resulting data are expressed as arbi-
trary units (AU).

Statistical analysis
The statistical analysis were based upon the mean of 5 CLs
per animal (n = 4/time point), since no significant differ-
ences among CLs within the same animal were observed.
Differences in relative mRNA expression of VEGF and FPr
(using the ∆Ct values), VEGF protein levels, progesterone
contents and MMPs and Ca++/Mg++-dependent endonu-
clease activities were determined using one-way ANOVA

(SPSS Version 13.0, Inc, Chicago, IL, USA), followed 
the Duncan's post-hoc test. Data are presented as mean
SEM. A value of p < 0.05 was considered significant.
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Characterization and Differential Expression
of Vascular Endothelial Growth Factor
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Luteum Throughout Estrous Cycle
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CARLO TAMANINI, AND MONICA FORNI

Department of Morphophysiology and Animal Production, University of Bologna, (DIMORFIPA) Italy

ABSTRACT Corpus luteum (CL) undergoes
growth and regression during each estrous cycle;
these processes are accompanied by growth and
regression of the luteal vascular bed. Vascular en-
dothelial growth factor (VEGF) is the main regulator of
angiogenesis, inducing endothelial cell proliferation,
migration, vascular permeability, and vessel lumen
formation. VEGF presents several isoforms that are
produced by alternative splicing of the same mRNA
transcript. We determined by real time RT-PCR the
expression patterns of VEGF isoform and receptor
mRNAs, as well as the VEGF protein levels in pig
CL throughout a whole estrous cycle. Four novel
VEGF isoforms (VEGF144, VEGF147, VEGF182,
and VEGF164b) were found for the first time in
swine and the seven identified isoforms can be grouped
in four different patterns of expression. The most
expressed splice variants were VEGF120 and
VEGF164. All isoforms showed their highest mRNA
levels in newly formed CLs (day 1), followed by a
decrease during mid-late luteal phase (days 10–17),
except for VEGF182, VEGF188 and VEGF144 that
showed a differential regulation during late luteal
phase (day 14) or at luteolysis (day 17). VEGF protein
levels paralleled the most expressed and secreted
VEGF120 and VEGF164 isoforms. The VEGF recep-
tors mRNAs showed a different pattern of expression in
relation to their ligands, increasing between day 1 and
3 and gradually decreasing during the mid-late luteal
phase. The differential regulation of VEGF isoforms
may suggest specific physiological roles for some of
them, particularly in angioregression occurring during
the apoptotic structural luteolysis. Mol. Reprod. Dev.
� 2006 Wiley-Liss, Inc.

Key Words: VEGF isoforms; VEGFR1; VEGFR2;
corpus luteum; pig; Real Time

INTRODUCTION

Vascular endothelial growth factor (VEGF) is
the fundamental regulator of angiogenesis both in
physiological and pathological conditions including
tumorigenesis (Neufeld et al., 1999; Grunstein et al.,

2000). VEGF exerts its effects by stimulating endothe-
lial cell migration, proliferation, and vessel lumen
formation; it is also a potent vasodilator and a mediator
of microvascular permeability (Robinson and Stringer,
2001; Bates et al., 2002b).

In adult tissues, angiogenesis is a highly controlled
phenomenon and the female reproductive cycle is one of
the few examples in which angiogenesis occurs at a rapid
rate leading to describe the corpus luteum (CL) as a
‘‘transitory tumor’’ (Zhang et al., 2005).

The ovarian cycle is characterized by repeated
patterns of cellular proliferation and differentiation
that accompany follicular development and atresia as
well as CLs formation and regression. Associated with
CL lifespan are strong alterations in luteal vascular
bed, being VEGF the most important regulator factor
(Ferrara and Davis-Smyth, 1997).

In human, at least eight VEGF isoforms (VEGF121,
VEGF145, VEGF148, VEGF165, VEGF165b, VEGF183,
VEGF189, and VEGF206) are generated by alternative
splicing of a single VEGF mRNA. The domain encoded
by exons 1–5, conserved in all VEGF isoforms, contains
the VEGF receptor [VEGFR-1/Flt-1 (fms-like-tyrosine
kinase) and VEGFR-2/Flk-1 (fetal liver kinase-1)]
binding sites. VEGF isoforms are distinguished by the
presence or the absence of the peptides encoded by exons
6a, 6b, 7a and 7b of the VEGF gene (Fig. 1). VEGF121
lacks all these exons, VEGF189 lacks only the exon 6b,
VEGF165 lacks exons 6a and 6b (Tischer et al., 1991),
while VEGF145 lacks exons 6b, 7a and 7b (Poltorak
et al., 1997). A conserved alternative splicing donor site
within exon 6a originates the VEGF183 isoform; as a
consequence, an 18-bp section from the C-terminal of the
exon 6a is missing (Lei et al., 1998). VEGF148 lacks

� 2006 WILEY-LISS, INC.
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exons 6a, 6b, and 7b, changing the reading frame and
producing a premature stop codon into exon 8a (Whittle
et al., 1999). VEGF206 is the full-length form (Houck
et al., 1991).

More recently, an inhibitor splice variant of
VEGF165, named VEGF165b, has been described. This
isoform is generated by a distal splice site, 66 bases
downstream of the usual acceptor splice site for exon 8a,
which predicts an open reading frame encoding an
alternate C-terminal sequence, named exon 8b (Bates
et al., 2002a; Cui et al., 2004; Woolard et al., 2004).

The VEGF isoforms exhibit different secretion pat-
terns (despite all members having an identical signal
sequence), which suggests different physiological roles.
VEGF121 is a weakly acidic protein; it does not bind
heparin and is freely diffusible. In contrast, VEGF189
and VEGF206 bind to heparin with high affinity and
are almost completely sequestered in the extracellular
matrix (ECM) and, to a lesser extent, on the cell surface.
VEGF165 and VEGF145 present intermediate proper-
ties; they are predominantly secreted, but a significant
fraction remains bound to the cell surface and ECM.
VEGF isoforms in ECM constitute a reservoir of growth

factors that can be slowly released by exposure to
heparin, heparin sulfate and heparinases, or more
rapidly mobilized by specific proteolytic enzymes such
as plasmin and urokinase-type plasminogen activator
(uPA) (Robinson and Stringer, 2001).

Most cell types produce several VEGF variants
simultaneously, VEGF121 and VEGF165 being the
most highly expressed isoforms (Ferrara and Davis-
Smyth, 1997). VEGF145 is one of the main VEGF
isoforms expressed by several cell lines derived from
carcinomas of the female reproductive system, reaching
levels comparable with VEGF165 (Poltorak et al.,
1997). VEGF206 is a very rare isoform that has been
detected in a human fetal liver cDNA library (Houck
et al., 1991) and in human mast cells stimulated with
calcium ionophore and phorbol ester (Grutzkau et al.,
1998).

In female swine, previous studies have demonstrated
the presence of three VEGF isoforms (one amino acid
shorter than the human ones, Sharma et al., 1995),
VEGF120, VEGF164, and VEGF188 in follicles
(Barboni et al., 2000; Shimizu et al., 2002), CL
(Boonyaprakob et al., 2003), oviduct and endometrium

Molecular Reproduction and Development. DOI 10.1002/mrd

Fig. 1. Reported model for human VEGF pre-mRNA that generates the alternative splicing variants
(Woolard et al., 2004). Exon 3 and 4 contain VEGFR-1 and VEGFR-2 binding sites, respectively; exon 6 and
7, heparin binding domains (UTR, untranslated region; PSS, proximal splice site; DSS, distal splice site).
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(Welter et al., 2003); however, these reports focused on
the identification of single VEGF splice variants.

This study was aimed at determining the pattern of
different VEGF isoform and receptor mRNAs expression
and protein levels in CL collected at different stages of
an induced estrous cycle.

MATERIALS AND METHODS

Animals

Twenty-four prepubertal large white gilts, with an
average weight of 100�2.18 kg (mean�SEM), were
treated with 1250 IU equine chorionic gonadotropin
(eCG; Folligon, Intervet, Holland) and, 60 hr later, with
750 IU hCG (Corulon, Intervet); this treatment induces
ovulation 44 hr after hCG administration (Barboni
et al., 2000). Animals were randomly assigned to
different groups (n¼ 4) and on day 1, 3, 5, 10, 14, and
17 after ovulation, the ovaries were recovered by
surgical laparotomy. The animals were preanesthetized
by an injection of azaperone (240 mg/gilt; Stresnil,
Janssen, Belgium) and atropine sodium salt (2 mg/gilt;
Industria Galenica Senese, Italy), and maintained
under thiopental sodium (1.5 g/gilt; Pentothal Sodium;
Gellini, Latina, Italy) anesthesia. Immediately after
removal, ovaries were transported to the laboratory
where single CLs (22� 5 CLs/gilt), chosen totally
random from both the ovaries, were isolated and cut in
two halves with a razor blade. One-half was homo-
genized in PBS (100 mg/ml) on ice bath by an Ultra
Turrax. The homogenate obtained was processed as
follows: 500 to 0.5 ml were centrifuged at 2,000g for 10
min at 48C and supernatant was stored at �208C until
VEGF protein determination; the remainder of the
homogenate was kept frozen until progesterone mea-
surement or Western blotting analysis. The second half
of the CLs was homogenized in Tri-Pure reagent (Roche
Diagnostics GmbH, Gerrmany) and stored at �808C
until RNA extraction. Five CLs from each gilt were
randomly selected to perform the analysis. These CLs
were quite homogeneous as for morphology and weight.

All animals were housed and used according to EEC
animal care guidelines. The experimental procedures
had previously been submitted to and approved by the
Ethical Committee of Bologna University.

Measurement of Luteal VEGF Content

VEGF concentrations were measured in 100 ml
samples of homogenate supernatants by a specific
enzyme linked immune-adsorbent assay (ELISA, Quan-
tikine, R&D Systems, Minneapolis, MN) previously
validated for the measurement of porcine VEGF
(Barboni et al., 2000; Galeati et al., 2003). This highly
specific sandwich assay recognizes VEGF164 as well as
VEGF120, while it exhibits negligible cross-reactivity
with all cytokines/growth factors tested. A 96-well plate
reader (Biomek 1000, Beckman Instruments, Fullerton,
CA) set to read at 450 nm emission was used to quantify
the results. The sensitivity of the assay was 5 pg/ml, and
the intra- and interassay coefficients of variation were

5.6% and 9.8%, respectively. All data are expressed as
pg/mg protein; protein concentration was determined
according to Lowry method (Lowry et al., 1951) using a
Protein Assay Kit (Sigma Diagnostics, St. Louis, MO).

Western Blot

Protein homogenates (30 mg) were separated on
NuPage 4%–12% Bis-Tris Gel (Invitrogen, Paisley,
UK) for 60 min at 200 V. Proteins were then electro-
phoretically transferred onto a nitrocellulose membrane
(Hybond ECL, Amersham Biosciences, UK). Blots were
washed in PBS and protein transfer was checked by
staining the nitrocellulose membranes with 0.2% Pon-
ceau Red and the gels with Comassie Blue. Non-specific
protein binding on nitrocellulose membranes was
blocked with 5% milk powder in PBS-T20 (phosphate
buffer saline, 0.1% Tween-20) for 1 hr at RT. The
membranes were then incubated with rabbit polyclonal
antibodies against human VEGFR-1 (1/100, Santa Cruz
Biotechnology, Inc., Santa Cruz, CA), mouse VEGFR-2
(1/100, Santa Cruz Biotechnology, Inc.) and human
HPRT (1/250, Santa Cruz Biotechnology, Inc.) in Tris
Buffered Saline-T20 (TBS-T20, 20 mM Tris-HCl pH 7.4,
500 mM NaCl, 0.1% T20) overnight at 48C. After several
washings with PBS-T20 the membranes were incubated
for 1 hr with a goat anti-rabbit IgG biotin conjugate
antibody (1/80,000, Stressgen Biotechnologies, Inc.,
San Diego, CA) and then with a 1/1,000 dilution of an
anti-biotin horseradish peroxidase (HRP)-linked anti-
body (Cell Signaling Technology, Inc., Danvers, MA).
The Western blots were developed using a chemilumi-
nescent substrate (Bio-Rad Laboratories, Inc., Hercules,
CA), according to the manufacturer’s instructions. The
relative protein content was determined by the density
of the resultant bands and expressed in arbitrary units
(AU) relative to the HPRT content, using the Quantity
One Software (Bio-Rad Laboratories, Inc.).

Progesterone (P4)

Aliquots of 20 ml from each homogenate CL were
extracted with 5 ml petroleum ether. After centrifuga-
tion, ether was collected and dried under a N2 stream.
Dried ether extracts were resuspended in 1 ml phos-
phate buffer; diluted 1:50 and aliquots of 50 ml were
then assayed by validated RIA as previously described
(Galeati et al., 2005).

The sensitivity of the assay was 3.7 pg/tube. The intra-
and interassay coefficients of variation were 6.1% and
10.3%, respectively. The results are expressed as ng/mg
tissue.

Total RNA Extraction and
Reverse Transcription

Total RNA from CLs (5 CLs/gilt), homogenized in
Tri-Pure reagent (50 mg/ml), was extracted according
to manufacturer’s instructions. Purified RNA was
resuspended in 25 ml of RNAse-free water and was
spectrophotometrically quantified (A260 nm). One
microgram of total RNA was reverse-transcribed to
cDNA using iScript cDNA Synthesis Kit (Bio-RAD
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Laboratories, Inc.), in a final volume of 20 ml, according
to the manufacturer’s instruction. Transcription reac-
tions without reverse transcriptase were performed to
control for an eventual DNA contamination.

Real-Time PCR Quantification

Based on the human and swine VEGF sequences
present in GenBank, primers were designed for the
specific VEGF isoforms and VEGF receptors, VEGFR-1
and VEGFR-2, using the Beacon Designer 2.07 Software
(Premier Biosoft International, Palo Alto, CA). For
VEGF205, VEGF188, VEGF182, VEGF147, VEGF144,
and VEGF120 splice variants, a common forward primer
located on the exon 4 was designed. For VEGF164 and
VEGF164b isoforms, a forward primer spanning the
exons 5 and 7a boundary was employed. The specific
amplification of each splice variant was performed with
specific reverse primers spanning the variant specific
exon boundaries (Table 1).

Real-time quantitative PCR was performed in the
iCycler Thermal Cycler (Bio-RAD Laboratories, Inc.)
using SYBR green I detection. A master-mix of the
following reaction components was prepared to the
indicated end-concentrations: 1.5 ml forward primer
(0.6 mM), 1.5 ml reverse primer (0.6 mM), 6.5 ml water and
12.5 ml IQ SYBR Green BioRad Supermix 2X (Bio-Rad
Laboratories, Inc.). Three ml of cDNA were added to 22 ml
of the master mix. All samples were performed in
duplicate for all genes. The real-time PCR protocol
employed was: initial denaturation for 3 min at 958C,
40 cycles at 958C for 15 sec and 608C for 30 sec, followed
by a melting step with a slow heating from 558C to 958C
with a rate of 0.058C/sec. Real-time efficiencies were
acquired by amplification of a standardized dilution
series and corresponding slopes and PCR efficiencies
were calculated using iCycler iQ real time PCR detection
system (Bio-Rad Laboratories, Inc.). The specificity of
the amplified PCR products was verified by analysis of
the melting curve, which is product-specific. The
relative mRNA level was determined as the PCR cycle
number that crosses an arbitrarily placed cycle thresh-
old (CT). The CT value correlates inversely with the

amount of target mRNA in the sample. The house-
keeping HPRT (hypoxanthine-guanine phosphorybosyl
transferase) gene was used to normalize the amount of
RNA. The expression of each gene was calculated asDCt

(HPRT Ct—target gene Ct) for all individual CL.

Detection of VEGF205 Isoform by
DIG-Labeled RT-PCR

To detect the rare VEGF205 isoform, a direct labeling
of the RT-PCR product with digoxigenin-11-dUTP (DIG-
dUTP) was performed, using primers flanking exon 6b.
The PCR reaction was conducted in a final volume of
50 ml, containing the following components (end-con-
centrations indicated): 1X buffer iTaq (BioRad Labora-
tories, Inc.), 200mM each dNTP (PCR DIG Labeling Mix,
Roche Diagnostics GmbH, Mannheim, Germany),
0.6 mM forward and reverse primers, 3 mM MgCl2
(Bio-Rad Laboratories, Inc.), 2.5 U iTaq DNA Polymer-
ase (Bio Rad Laboratories, Inc.) and 300 ng cDNA. The
primers used were located on exon 6a (forward, 50-
TCGAGGAAAGGGAAAGGG-30) and exon 7a (reverse,
50- CGTCTGCGGATCTTGTAC�30). The real-time PCR
protocol employed was the same described above. After
amplification, the PCR products were electrophoreti-
cally separated in a 4% low melting agarose gel for 4 hr
and subsequently transferred to a Nylon membrane
(Hybond, Amersham Biosciences) to proceed to the
chemiluminescent detection of the DIG-labeled RT-
PCR, according to DIG Luminescent Detection Kit
(Roche Diagnostics GmbH) instructions. The lumines-
cent light signal was detected in a FluorS MultiImager
instrument (BioRad Laboratories, Inc.).

Statistical Analysis

The statistical analysis was performed considering
the mean of all 5 CLs per animal, since no significant
differences among CLs within the same animal were
observed.

Differences in mRNA expression of the target genes
(using the DCt values), VEGF and VEGF receptor
protein levels and progesterone contents were deter-
mined using ANOVA, followed by the Duncan’s post-hoc
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TABLE 1. Forward and Reverse Primers Sequences Used for Real Time RT-PCR

Primer Sequence (50-30) Product size (bp)

HPRT forward GGACAGGACTGAACGGCTTG
HPRT reverse GTAATCCAGCAGGTCAGCAAAG 115
VEGFR-2 forward AACGAGTGGAGGTGACAGATTG
VEGFR-2 reverse CGGGTAGAAGCACTTGTAGGC 104
VEGFR-1 forward TTGGACTGTTGGCACAAAGAC
VEGFR-1 reverse GCTGTTGCTCGTCAGAATGG 141
VEGF common forward ATGCGGATCAAACCTCACCAAG
VEGF205 reverse ACAGCAGCGGGCACCAAC 197
VEGF188 reverse CCACAGGGAACGCTCCAG 185
VEGF182 reverse CCACAGGGACGGGATTTCTT 167
VEGF147 reverse GTCACATCTTGCAACGCGAG 208
VEGF144 reverse TCGGCTTGTCACATACGCTC 190
VEGF120 reverse CGGCTTGTCACATTTTTCTTGCC 117
VEGF164/164b common forward GAGGCAAGAAAATCCCTGTGG
VEGF164 reverse GTCACATCTGCAAGTACGTTCG 151
VEGF164b reverse TCCTGGTGAGAGATCTGCAAG 156
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test (SPSS Version 8.0, Inc., Chicago, IL). The data are
shown as the mean�SEM.

RESULTS

Progesterone Levels

Progesterone concentration in luteal tissue increased
gradually during the formation of CL, reached the
highest level during the mid-late phase (day 10 and 14)
and decreased drastically on day 17 (Fig. 2).

VEGF mRNA Isoforms Expression

All splice variants were amplified, except for
VEGF205 isoform that was not detected either with
specific primers or with primers localized externally to
the exon 6b. With the specific reverse primer, designed

according to human sequence and located on the exon
6b, no band was detected. With primers positioned
externally to the exon 6b, two products equivalent to the
VEGF182 (102 bp) and VEGF188 (120 bp) isoforms were
observed, whereas no band equivalent to the VEGF205
isoform (171 bp in human) was detected, even with the
highly sensitive chemiluminescent detection.

The two most abundantly expressed splice variants
were VEGF120 and VEGF164 followed by VEGF147,
VEGF188, VEGF182, VEGF144, and VEGF164b in that
order. Four patterns of expression were detected.
VEGF164, VEGF147, and VEGF164b mRNA expression
immediately dropped after day 1 (2.6-fold decrease),
showing a second significant decrease between day 14
and 17 (3.3-fold decrease) (Fig. 3a). VEGF120 showed a
three-step fall of mRNA expression, between day 1 and 3
(two-fold decrease), day 5 and 10 (1.7-fold decrease), and
day 14 and 17 (1.6-fold decrease) (Fig. 3b). VEGF188 and
VEGF182 mRNA levels progressively decreased until
day 10 (four-fold decrease between day 1 and 10), then
transiently increased on day 14 (2.3-fold increase),
returning to value of day 10 on day 17 (Fig. 3c).
VEGF144 showed a decline of mRNA expression until
day 10 (five-fold decrease between day 1 and 10),
followed by a progressive increase until day 17 (2.5-fold
increase between day 10 and 17) (Fig. 3d).

VEGF Protein Levels

The pattern of VEGF luteal levels during the estrous
cycle was similar to that of VEGF164 isoform, even if
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with a different magnitude. After day 1, at which the
highest values were observed, the levels of tissue VEGF
drastically decreased, remaining unchanged during
most of the luteal phase (day 3–14). A second significant
drop occurred on day 17 (Fig. 4).

VEGFR-1 and VEGFR-2 mRNAs Expression

The VEGF receptor most abundantly expressed was
the VEGFR-2. Both receptors showed a rapid increase in
mRNA expression during the early luteal phase (a
1.7-fold increase between day 1 and 3 for VEGFR-1, and
a 2.7-fold increase between day 1 and 3–5 for VEGFR-2),
followed by a decrease during mid and late luteal phase,
reaching levels similar to those reported for day 1 on day
17 (Fig. 5).

VEGFR-1 and VEGFR-2 Protein Levels

Both VEGFR-1 and VEGFR-2 proteins were detected
during CL lifespan. A clear single band (180 kDa) was
detected for VEGFR-1, while two faint bands (200 and
230 kDa) were observed for VEGFR-2. The relative
expression of VEGFR-1 increased at days 10–14 and
slightly decreased on late luteal phase (day 17). On the
contrary, the highest levels of VEGFR-2 expression was
observed on day 5, gradually decreasing until day 14,
while no bands was detected on day 17 (Fig. 6).

DISCUSSION

Progesterone measurement in luteal tissue confirmed
that our experimental protocol had been effective in
stimulating an ovarian activity. Steroid levels gradually
increased from day 1, reached the maximum values on
day 10–14 and dropped on day 17, consistently with the
establishment of luteal regression.

Angiogenesis represents a key aspect of the normal
cyclical ovarian function and VEGF is its most impor-
tant regulatory factor. Early studies have shown that
VEGF and its receptors are temporally and spatially
related to the proliferation of blood vessels in several
reproductive tissues, including follicles (Barboni
et al., 2000; Mattioli et al., 2001; Shimizu et al., 2002),
endometrium (Charnock-Jones et al., 1993; Huang
et al., 1998; Welter et al., 2003), placenta (Houck et al.,

Molecular Reproduction and Development. DOI 10.1002/mrd

0

100

200

300

400

500

600

700

171410531

Days after ovulation

V
E

G
F

 le
ve

ls
 

(p
g/

m
g 

pr
ot

ei
n)

a

b            b            b            b 
c

Fig. 4. Tissue VEGF concentrations in swine CLs during different
luteal phases. Results are presented as mean�SEM. Different letters
indicate statistically significant differences (P< 0.05).

Fig. 5. Expression of VEGFR-2 and VEGFR-1 mRNAs in swine CLs
during different luteal phases. Results are presented as Delta Ct
(HPRT Ct—target gene Ct)�SEM. Different letters indicate statisti-
cally significant differences (P<0.05).

Fig. 6. Expression of VEGFR-1 and VEGFR-2 proteins in swine CLs
during different luteal phases. Representative Western blotting of
VEGFR-1, VEGFR-2 and HPRT (A) and relative VEGFR-1 (B) and
VEGFR-2 (C) contents (AU, arbitrary units). Data represent the
mean�SEM. Different letters indicate statistically significant differ-
ences (P<0.05).
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1991; Cheung et al., 1995; Vonnahme and Ford, 2004b),
uterus (Ancelin et al., 2002; Vonnahme and Ford,
2004a), fallopian tube and ovary (Gordon et al., 1996;
Ferrara et al., 2003a), and CL (Berisha et al., 2000;
Redmer et al., 2001; Boonyaprakob et al., 2003; Gabler
et al., 2004).

Only three VEGF isoforms have been described in
swine and only the VEGF164 isoform has been detected
in CL (Boonyaprakob et al., 2003). This last report
showed a constant level of expression on days 4, 7, 10, 13,
and 15 after onset of estrus; these results agree well with
our observation for the period examined as well as for
the specific VEGF164 isoform.

Changes of VEGF levels in CL during the estrous cycle
have been reported also in other species (Redmer et al.,
1996; Berisha et al., 2000; Al-zi’abi et al., 2003).
Those reports demonstrate that the highest VEGF
mRNA expression and VEGF protein concentration
are detected during the early luteal phase, and are
followed by a significant decrease of expression during
the mid and late luteal phase. Our findings on the two
most expressed isoforms, VEGF120 and VEGF164,
agree well with those observations.

Recently, Tesone et al. (2005), in an attempt to
identify the different VEGF splice variants in monkey
CL, detected only the two most expressed isoforms,
VEGF121 and VEGF165. To our knowledge, our study is
the first one reporting the multiple alternatively spliced
VEGF mRNA isoforms in swine CL throughout the
whole luteal phase.

Due to the VEGF splice variant complexity, we chose
to apply an isoform specific panel of RT-PCR primers
effective in differentiating the VEGF isoforms and its
receptors; to provide quantitative data, a Real Time RT-
PCR approach was used.

In our study, the predominant VEGF isoforms are
VEGF120 and VEGF164, followed by VEGF147,
VEGF188, and VEGF182, in this order. VEGF144 and
VEGF164b are also expressed, although at very low
level. In contrast, VEGF205 isoform has not been
detected in any day of the estrous cycle, thus confirming
that this isoform is possibly restricted to embryonic
tissues (Ferrara and Davis-Smyth, 1997).

All isoform mRNAs are maximally expressed imme-
diately after ovulation (day 1), then their expression
decreases during mid-luteal phase. VEGF120 and
VEGF164, that are involved essentially in the endothe-
lial cell proliferation (Hofstaetter et al., 2004), reach the
lowest mRNA expression levels during the CL func-
tional regression (day 17). The same pattern of expres-
sion has been observed for the VEGF protein levels.

VEGF188 and VEGF182 isoforms showed a transient
increase of expression on day 14. This might indicate a
potential role of these isoforms in the mechanism of the
maternal recognition of pregnancy that takes place, in
pregnant sows, around this moment. In this period, in
fact, CLs either start the process of regression or, if a
pregnancy is in progress, have to survive, and VEGF
may have a role in matrix maturation, necessary for CL
maintenance (Bacci et al., 1996; Duncan, 2000). This

hypothesis is supported by the fact that Uchida et al.
(2003) suggested a possible role of VEGF188 in the
healing process after a drill-hole injury in rat bones, as
the responsible for matrix maturation, even if this
isoform is inactive as a mitogen due to its inability to
bind efficiently to VEGFR-2 (Plouet et al., 1997). In
addition, progesterone has been shown to stimulate
VEGF189 expression in human decidual cells (Ancelin
et al., 2002), suggesting that the high progesterone
levels observed at day 14 in our model may have up-
regulated the VEGF188 mRNA expression. The involve-
ment of VEGF188, and possibly VEGF182, in CL
survival and remodeling may also be supported by the
simultaneous decrease of both these isoforms and
progesterone levels at day 17.

The increase of VEGF144 during the functional
luteolysis (day 17) leads to hypothesize that the
conditions of metabolic stress and hypoxia (observed
during this phase) are responsible for the up-regulation
of this isoform, as previously demonstrated in murine
ovarian cancer cells under glucose starvation (Zhang
et al., 2002). A possible explanation for the presence of
this isoform during early luteolysis, despite the reduc-
tion and loss of capillaries (Bacci et al., 1996; Lei et al.,
1998; Gaytan et al., 1999), should be the conspicuous
development of noncapillary vessels in order to assist
the absorption of degenerated luteal mass (Reynolds
and Redmer, 1998; Bauer et al., 2003).

VEGF144/145 expression, in contrast to that of
VEGF120/121, VEGF164/165, and VEGF188/189, which
have been detected in most tissues and cells (Neufeld
et al., 1999), seems to be restricted to reproductive tissue.
This specific isoform has been demonstrated in human
endometrium (Charnock-Jones et al., 1993), blastocysts
(Krussel et al., 2001), breast and ovarian cancer (Stimpfl
et al., 2002), and in several tumorigenic cell types
originated fromthe femalereproductive system(Poltorak
et al., 1997), as well as in ovine placenta and fetal
membranes (Cheung et al., 1995).

Hence, the present study identified in swine CL four
novel isoforms, VEGF144, VEGF147, VEGF182, and
VEGF164b, not yet described. Surprisingly, VEGF147
splice variant demonstrated high levels of expression
during estrous cycle. This isoform is a truncated form of
VEGF164, with mitogenic property but without the
ability to bind heparin. VEGF147 is the only isoform
presenting a truncated exon 8a and, as a consequence, it
can possibly lack biological activity; nevertheless, it may
affect the function of other VEGF isoforms, even though
its physiological importance still remains to be eluci-
dated (Whittle et al., 1999).

The pattern of VEGF182 mRNA expression is similar
to that of VEGF188. Although this isoform lacks 18 bp at
the end of exon 6a, it still contains the heparin-binding
site, so its binding characteristics should be similar to
that of VEGF188. In a model of systemic hypoxia, the
VEGF182 and VEGF188 splice variants have been
shown to be the most upregulated isoforms in response
to a hypoxic challenge in rabbit meniscus (Hofstaetter
et al., 2004).

Molecular Reproduction and Development. DOI 10.1002/mrd

VEGF ISOFORMS IN PIG CORPUS LUTEUM 7

luca.cartoceti
89



VEGF165b is an inhibitory isoform, described firstly
in human renal cell carcinoma (Bates et al., 2002a); its
mRNA expression is very low throughout the whole
luteal phase. The pattern of expression is similar to that
of VEGF164, thus suggesting that the inhibitory isoform
could counteract an excessive angiogenic and mitogenic
activity of the abundant VEGF164 isoform (Cui et al.,
2004). An anti-angiogenic effects of VEGF165b in vivo as
well as its potential role in the control of human tumor
growth have been already demonstrated (Woolard et al.,
2004).

As for VEGF receptors, VEGFR-2 (which is known as
the major mediator of the mitogenic, angiogenic, and
permeability-enhancing effects of VEGF) is the most
expressed in swine CLs throughout the estrous cycle.

Both VEGF receptors showed a differential regulation
throughout estrous cycle. The patterns of mRNA and
protein exhibited some differences, probably due to a
different sensitivity of the employed techniques.
All together, the results obtained showed that both
VEGF receptors increased during CL development and
decreased at luteal regression. VEGFR-2 reached max-
imal levels for both protein and mRNA at day 5
(presenting high mRNA levels already at day 3),
gradually decreasing afterward. Similar patterns have
been observed for VEGFR-2 mRNA levels in both bovine
(Berisha et al., 2000) and swine (Boonyaprakob et al.,
2003) CLs. This transitory increase observed during
early luteal phase is inversely related to the contem-
poraneous decrease of all VEGF isoforms, thus suggest-
ing that it may be involved in a negative feedback
mechanism, responsible for the control of the VEGF-
mediated luteal vascular growth.

On the contrary, conflicting results have been
reported for VEGFR-1 expression. Boonyaprakob et al.
(2003) demonstrated a gradual increase of mRNA
expression between day 4 and 15 from onset of estrus
in swine while no differences have been observed
throughout the bovine estrous cycle (Berisha et al.,
2000). Our findings on VEGFR-1 protein levels are
consistent with those obtained by Boonyaprakob et al.
(2003). The precise function of VEGFR-1 is still unclear;
it is expressed in both proliferating and quiescent
endothelial cells and is thought to be critical for
VEGF-induced formation of vascular capillary tubes as
well as for promoting a vascular bed-specific release of
growth factors. Other data indicate that VEGFR-1 may
also play a role in the regulation of VEGF activity by
preventing its binding to VEGFR-2 [for review see
(Ferrara et al., 2003b; Tamanini and De Ambrogi,
2004)]. This later role of VEGFR-1 could explain the
high levels of this receptor observed in our study during
mid-late luteal phase as well as during luteolysis.

In conclusion, luteal VEGF protein and transcript
concentrations are high immediately after ovulation,
when luteal vascular growth is rapid and tumultuous,
thus supporting the role of VEGF in the angiogenesis of
the newly formed CL. Subsequently, the increases of
receptors expression as well as the coincident decrease
of VEGF possibly assure a regulatory mechanism of

angiogenesis in the mid-stage CL. Finally, the high
mRNA expression of some VEGF isoforms during late
luteal phase and luteolysis suggest a role of VEGF in the
tissue remodeling necessary either for CL maintenance
in case of pregnancy or for noncapillary vessel develop-
ment essential for tissue removal during structural
luteolysis.
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CONCLUSIONS 

The results presented in this thesis, summarised in four main points, 

demonstrated:  

1) the regulation of feed deprivation on luteal vessel development and 

hormone production by luteal cells;  

2) the strict relationship between VEGF, MMPs and endonucleases and 

the functional CL stage throughout the oestrous cycle and at 

pregnancy;  

3) the detection of novel VEGF isoforms for the first time in swine CL; 

4) the differential expression of some VEGF isoforms principally during 

the late phase of the oestrous cycle; period in which the CL lifespan 

should be extended in case of pregnancy occurs or should undergoes 

structural and functional regression. 

Taken together, these findings demonstrate that our model of CL 

development and regression is a very useful tool for studying the factors 

involved in the angiogenesis and angioregression mechanisms as well as 

their molecular interactions and regulation.  
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LIST OF ABBREVIATIONS 

aFGF or FGF-1: acidic Fibroblast Growth Factor 
bFGF or FGF-2: basic Fibroblast Growth Factor 
Ang: Angiopoietin 
Ang-1: Angiopoietin-1 
Ang-2: Angiopoietin-2 
ARNT: Aryl Hydrocarbon receptor Nuclear Translocator 
CL: Corpus Luteum 
CRS: Cell-surface Retention Sequence 
CRSBP-1: Cell surface Retention Sequence Binding Protein-1 
ECE-1: Endothelin Converting Enzyme  
ECM: Extracellular Matrix 
EGF: Epidermal Growth Factor  
EG-VEGF: Endocrine Gland - Vascular Endothelial Growth Factor 
ET-1: Endothelin-1 
ET-A: Endothelin receptor Type A 
ET-B: Endothelin receptor Type B 
HIF-1: Hypoxia-Inducible Factor 1 
HRE: Hypoxia Response Element 
HS: Heparan Sulphate 
HSPG: Heparan Sulphate Proteoglycan 
HUVEC: Human Umbilical Vein Endothelial Cells 

IFN-β: Interferon-β 
Ig: Immunoglobulin 
IGF: Insulin-like Growth Factors  
IL-8: Interleukin-8  
KGF/FGF-7: Keratinocyte Growth Factor 
LH: luteinising hormone 
LIF: Leukaemia Inhibitory Factor 
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LLC: Large Luteal Cells 
MAM: Meprin/A5-neuropilin/Mu  
MEF2C: Myocyte Enhancer binding Factor 2C 
MMP: Metalloproteinases 
MT-MMP: Membrane Type-Metalloproteinases 
NO: Nitric Oxide 
NRP-1: Neuropilin 1 
NRP-2: Neuropilin 2 
P4: Progesterone 
PDGF: Platelet-Derived Growth Factor 
PECAM-1: Platelet Endothelial Cell Adhesion Molecule 1 
PF4: Platelet factor 4 

PGF2α: Prostaglandin F2α  
PKC: Protein Kinase C 
PlGF: Placental Growth Factor 
PMA: Phorbol Myristate Acetate  
ROS: Reactive Oxygen Species 
SLC: Small Luteal Cells 
TFPI: Tissue Factor Pathway Inhibitor 

TGF-βR2: Transforming Growth Factor-β Receptor type II  
TGF: Transforming Growth Factor 
TIMPs: Tissue Inhibitors of Metalloproteinases 

TNF-α: Tumour Necrosis Factor-α  
TSP-1: Thrombospondin-1 
uPA: urokinase-type Plasminogen Activator 
UTR: Untranslated Region 
VEGF: Vascular Endothelial Growth Factor 
VEGFR-1: Vascular Endothelial Growth Factor Receptor-1 
VEGFR-2: Vascular Endothelial Growth Factor Receptor-2 
VEGI: Vascular Endothelial Growth Inhibitor 
VPF: Vascular Permeability Factor 
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