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ABSTRACT 

 

With life expectancies increasing around the world, populations are getting age and 

neurodegenerative diseases have become a global issue. Neurodegenerative disorders 

are the result of abnormalities in the transport, degradation and aggregation of particular 

types of proteins in the brain. There are currently no known biomarkers or preventative 

strategies for neurodegenerative diseases. This provides much opportunity for ground-

breaking research. For this reason we have focused our attention on the two most 

important neurodegenerative diseases: Parkinson’s and Alzheimer’s.  

 

Parkinson’s disease (PD) is a chronic progressive neurodegenerative movement disorder 

of multi-factorial origin. Environmental toxins as well as agricultural chemicals like 

Rotenone, Paraquat (PQ) and Maneb (MB) have been associated with PD. Has been 

observed that N/OFQ contributes to both neurotoxicity and symptoms associated with 

PD and that pronociceptin (ppN/OFQ) gene expression is up-regulated in rat SN of 6-

OHDA and MPP induced experimental parkinsonism. First, we investigated the role of 

N/OFQ-NOP system in the pathogenesis of PD in an animal model developed using PQ 

and/or MB. Adult male Sprague–Dawley rats were injected intraperitoneally (i.p.) twice 

a week for 4 weeks with: saline solution, PQ + MB HD (10 + 30 mg/kg) and  PQ + MB 

LD (5 + 15 mg/kg). Rat weight, locomotion activity and specific behaviours were 

scored and evaluated. We determined tyrosine hydroxylase (TH), alpha synuclein 

(SNCA), P-ERK ½, CREB, GAD 65/67 levels in the substantia nigra (SN) and caudate 

putamen (CP) by Western Blotting.  Quantification of N/OFQ-NOP and PDYN/KOP 

system, as well parkin gene expression in SN and CP was performed by Real Time RT-

PCR. Weight and locomotion activity decreased significantly in all treated animals 

compared with controls, and animal behavior showed a significant difference between 

both PQ + MB groups versus control group. A significantly decrease of TH 

immunoreactivity in PQ + MB LD in the SN and CP was observed, and a significant 

increase of SNCA immunoreactivity in the PQ + MB LD in the SN and PQ + MB HD 

in CP were observed. Parkin gene expression showed a decreased statistically 

significant in SN, no changes were observed for both groups in the CP. No changes in 

the immunoreactivity of P-ERK ½, CREB and GAD 65/67 were observed in the SN and 

CP. A significant decrease in the KOP mRNA levels was observed in the SN and CP, 



with an increase only in PDYN mRNA levels for PQ + MB HD in the SN. A 

statistically significant decrease of NOP receptor mRNA levels was observed, together 

with a significant increase for N/OFQ gene expression in the SN for PQ + MB LD. In 

the CP, no changes of the N/OFQ-NOP system were detected. These data strengthen the 

hypothesis that this neuropeptidergic system could be implicated in the mechanisms 

underlying Parkinson's disease.  

 

Then we studied Alzheimer's disease. This disorder is defined as a progressive 

neurologic disease of the brain leading to the irreversible loss of neurons and the loss of 

intellectual abilities, including memory and reasoning, which become severe enough to 

impede social or occupational functioning. One of the problems of Alzheimer's disease 

is that symptoms of disease appear to develop only after substantial cell loss has 

occurred in brain. Effective biomarker tests could prevent such devastating damage 

occurring. This will be particularly important once a cure or more effective medications 

become available. We utilized the peripheral blood cells of AD discordant monozygotic 

twin in the search of peripheral markers which could reflect the pathology within the 

brain, and also support the hypothesis that PBMC might be a useful model of epigenetic 

gene regulation in the brain. We investigated the mRNA levels in several genes involve 

in AD pathogenesis, the protein precursor amyloid (APP), presenilin 1 (PSEN1), sirtuin 

1 (SIRT1), PIN1 and Apolipoprotein E (APOE), as well DNA methylation by MSP 

Real-Time PCR. Finally by Western Blotting we assess the immunoreactivity levels for 

H3K9 Ac and K3K4 me3 considered as marker of gene activation and H3K27 me3 

marker of gene silencing. We found that APP, SIRT1 and PIN1 gene expression was 

highly up-regulated in the AD versus the healthy twin, along with a substantial 

reduction of H3K9 Ac and H3K4 me3, and an increased immunoreactivity in H3K27 

me3. No change in mRNA levels of APOE was observed. We found a decrease in the 

values of PSEN1 gene expression in the AD twin versus the healthy twin. A general 

DNA hypomethylation of all gene promoters studied was also observed in both twins. 

Our study should provide insights into the molecular causes of differential susceptibility 

to AD in genetically identical organisms and clarify the importance of epigenetic factors 

in its mediation. Our results support the idea that epigenetic changes assessed in 

PBMCs can also be useful in neurodegenerative disorders, like AD and PD, enabling 

identification of new biomarkers in order to develop early diagnostic programs. 



Abbreviations 
 
 
5-HT   5-hydroxytryptamine 
6-OHDA  6-hydroxydopamine 
Aβ   beta-amiloid  
AD   Alzheimer’ disease 
APOE   Apolipoprotein E 
APP   Amyloid precursor protein 
CNS   Central nervous system 
CP   Caudate putamen 
CSF    Cerebrospinal fluid 
DDCt   Delta-delta Ct 
DNMT   DNA methyltransferases 
ERK   Extracellular signal-regulated kinase 
ƑAD   Familial AD 
GABA   ɣ-aminobutyric acid 
GAPDH   Glyceraldehyde-3-phosphate dehydrogenase 
HATs   Histone acetyltransferase 
HD   Huntington disease 
HDACs   Histone deacetylase 
L-DOPA  L-3,4-dihydroxyphenilalanine 
MAO-B   Monoamine oxidase B 
MB   Maneb 
MCI   Mild cognitive impairment 
Mn-EBDC  Manganese ethylenebis-dithiocarbamate 
MPTP   1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
MPP+   1-methyl-4-phenyl-2,3-dihydropyridinium 
MZ   Human monozygotic 
NFTs   Neurofibrillary tangles 
NMDA   N-methyl-D-aspartate 
N/OFQ   neuropeptide nociceptin/orphanin FQ 
NOP   NOP receptor 
PBMC   Peripheral blood mononuclear cells 
PD   Parkinson’s disease 
PIN1   Peptidyl-prolyl cis/trans isomerase 
ppN/OFQ  Pre-pro nociceptin 
PQ   Paraquat  
PSEN1   Presenilin 1 
PSEN2   Presenilin 2 
ROS   Reactive oxygen species 
SIRT1   Sirtuin 1 
SN   Substantia nigra 
SNpc   Substantia nigra pars compacta 
SNCA   Alpha-synuclein 
TH   Tirosyne hydroxylase 
UCH-L1  Ub carboxyl-terminal hydrolase 
VTA   Ventral tegmental area 
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1. GENERAL BACKGROUND 

 

1.1 NEURODEGENERATION 
 

With neurodegeneration is intended the progressive loss of structure or function of 

neurons, including neuron death. Neurodegeneration can be found of many different 

levels, from molecular to systemic, and several diseases like Parkinson’s, Alzheimer’s, 

and Huntington’s occur as a result of neurodegenerative processes. Neurodegenerative 

disorders constitute one of the major challenges of modern medicine. Although these 

diseases are relatively common and highly debilitating, the physiopathologic 

mechanisms implicated are poorly understood with the subsequent lack of effective 

therapies. (Rubinsztein 2006, Bredesen et al 2006). 

 

Recently, linkage studies have begun to identify genes underlying heritable forms of the 

neurodegenerative disorders. While these breakthroughs potentially provide a window 

into the more common sporadic forms of these disorders, we currently know very little 

about the functions of these genes and the mechanisms by which their mutational 

alteration results in neuronal death. Several studies have shown many similarities 

between different neurodegenerative diseases suggesting a common therapeutic 

approach that could be useful for many diseases simultaneously. There are many 

parallels between different neurodegenerative disorders including atypical protein 

assemblies as well as induced cell death (Rubinsztein 2006, Bredesen et al 2006). 
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1.1.2 PARKINSON’S DISEASE 

 

In 1817 James Parkinson, an english surgeon, in his classic monograph “an essay on the 

shaking palsy?”, described the main features of what is now known as Parkinson’s 

disease (PD) giving case histories of six sufferers. PD is second only to Alzheimer`s 

disease (AD) as the most common idiopathic neurodegenerative disorder affecting 

roughly 0,5-1% of the current population among 65 to 69 years of age, rising to 1 to 3 

percent among persons of 80 years of age and older (Tanner and Goldman 1996). 

 

The first and most prominent manifestations of PD are the impairments in motor 

function. This neurological disorder has 4 cardinal features: bradykinesia, muscular 

rigidity, tremor at rest and postural unbalance, causing falls and crawling. Not each 

patient shows at the beginning classic signs (Zigmond et al 2002). However with 

disease progression a new set of problems emerges, including speech difficulties, 

cognitive dysfunction, and depression, sleep disturbance, constipation, bladder and 

sexual dysfunction, and a series of autonomic problems. Patients with PD shows an 

increased risk of cognitive and psychiatric diseases, with dementia and depression as the 

most common ones, but hallucinations, irritability, apathy and anxiety have also been 

described (Zigmond et al 2002). Without treatment, in 5 to 10 years, PD progresses up 

to rigidity and akinesia and prevents patients to take care of themselves. Death 

commonly results from complication associated with immobility, and includes 

pneumonia or pulmonary embolism. 

 

PD is characterized at neuropathologic level by loss of dopaminergic neurons normally 

present in substantia nigra pars compacta (SNpc). This area provides dopaminergic 

innervation to striatum (caudate and putamen nucleus) and to globus pallidus (Bohlen 

und Halbach et al 2004, Schulz and Falkenburger 2004). The disease becomes clinically 

apparent once ≈ 70% of the dopaminergic neurons of the SN are lost. However, has 

been demonstrated that neurodegenerative damage is not only restricted to substantia 

nigra (SN) neurons but can also affect noradrenergic (locus coerulus), serotoninergic 

(raphe), and colinergic (Meynert basal nuclei and vagus dorsal motor nucleus) systems, 

cerebral cortex, olfactory bulb and autonomous nervous system. Damage within these 

areas will explain cognitive and psychiatric signs observed in aged patients, even 10 
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years before PD diagnosis, suggesting an early damage of this areas respect to 

dopaminergic damage.  

 

Another neuropathological hallmark of PD is the presence of Lewy Bodies, spheric 

intracytoplasmatic inclusions, constituted by insoluble proteins deposits, like α-

synuclein (SNCA), parkin, ubiquitin, synphilin y neurofilaments, present in the 

neuronal soma and dendrites of affected neurons. They have a diameter of 

approximately 15 µm and have an organized structure with a dense nucleo surrounded 

by a clear halo.  Lewy Bodies are found in all affected brain regions (Forno 1996, 

Spillantini et al 1998) however they are not specific of PD and can be also found in AD, 

Huntington Disease (HD), Dementia and aged healthy subjects. Additionally, not all 

cells are able to form these protein aggregations. Vagus dorsal nucleus, locus coerulus, 

SNpc, mesocortex and neocortex have been described as the more susceptible areas, but 

no relation between this histological change and loss of neurons has been found. It has 

been hypothesized that a mutation could affect protein degradation leading to 

intracellular accumulation, and damage will be due to interference with cellular traffic 

and/or kidnap of critical cellular proteins (Schulz and Falkenburger 2004). Thus it has 

been proposed that dysfunction of protein degradation pathways plays an essential role 

in the degenerative process observed in PD. 

 

 Although diagnosis is made clinically, other disorders can show prominent symptoms 

and signs similar to PD, such as postencephalite, drug-induced, and arteriosclerosis, 

situation noted as Parkinsonism and which may be confused with PD until a final 

confirmation by an autopsy (Hughes et al 1992). 
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1.1.2.1 PRINCIPAL HYPOTHESIS OF DOPAMINERGIC NEURONAL 

DEATH 
 

OXIDATIVE STRESS   

 

The brain depends mostly on mitochondrial energy supply which is associated with the 

production of highly reactive oxygen species (ROS), the 95% of the molecular oxygen 

is metabolized within the mitochondria by the electron transport chain, so mitochondria 

are highly exposed to oxidative stress which may induce damage in distinct neuronal 

populations (Tritschler et al 1994). Mitochondrial dysfunction increases free iron levels 

and impairs free radical defense mechanism leading to oxidative stress increase. 

Reduced levels of glutathione in the midbrain may be indicative of increased free 

radical levels (Sian et al 1991). 

 

Dopamine metabolism can also be a source of ROS in nigral neurons, leading to 

functional alterations in proteins, lipids and DNA. Lipid damage, in turn, causes loss of 

membrane integrity and decreased membrane-permeability to ions, which can promote 

excitotoxicity (Halliwell 1992). Cytosolic dopamine produces electrophilic 

semiquinones and quinones which themselves act as oxidants by supporting ROS 

formation (Sulzer and Zecca 2000). It has also been recognized that oxidative stress 

leading to caspase activation and consequent apoptosis are clearly evident in PD 

(Friedlander 2003). These findings provide a plausible link between oxidative damage 

and formation of the Lewy bodie, oxidative damage induce SNCA aggregation and 

impairs proteosomal ubiquitination and degradation of proteins (Jenner 2003). 

Mitochondrial dysfunction and oxidative stress might reset the threshold for activation 

of apoptotic pathways in response to Bax and other pro-apoptotic molecules 

(Henchcliffe and Flin Beal 2008). Several animal models of PD such rotenone, 2,4,5-

trihydroxyphenethylamine or 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP), have been shown to have multiple mitochondrial 

dysfunctions including increased ROS generation and striking sensitivity to stressors 

(Onyango 2008).  
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MITOCHONDRIAL DYSFUNCTION 

 

The mitochondrion is the primary site for the generation of energy supply for the cell. 

The mitochondrial generation of energy is regulated by five respiratory chain 

complexes. A defect in the mitochondrial complex I could contribute to cell 

degeneration in PD through decreased ATP synthesis and dearrangements in complex I 

cause SNCA aggregation, which contributes to demise of dopaminergic neurons 

(Dawson and Dawson 2003). Dysfunction of the electron transport chain activity in 

neurons of the SNpc might be related to PD induced by environmental toxins (O. von 

Bohlen und Halbach et al 2004). 1-methyl-4-phenyl-2,3-dihydropyridinium (MPP+), 6-

OHDA and rotenone acts as a mitochondrial toxin that selectively inhibits the 

mitochondrial complex I (Greenamyre et al 1999, Jenner 2001). Mitochondrial 

dysfunction, however, might not exclusively be related with dopaminergic neurons of 

the SNpc but may be systemic, since mitochondrial dysfunction in PD is also observed 

in the striatum and other tissues (Parker and Swerdlow 1998). 

 

EXCITOTOXICITY 

 

Damage due to excess of glutamate, which changes the permeability of cells to calcium 

by acting on and through N-methyl-D-aspartate (NMDA) receptors, is considered to be 

involved in neurodegeneration. Massive activation of glutamate receptors can result in 

excessive rises in cytoplasmic Ca2+ that are thought to underlie the fundamental 

processes ultimately leading to neuronal death (Mody and MacDonald 1995). The 

concept of excitotoxicity has also been applied to PD; studies have demonstrated that 

parkin (hereditary Parkinson disease PARK2 gene product) regulates the function and 

stability of excitatory glutamatergic synapses. Dopaminergic nigrostriatal neurons are 

rich in glutamate receptors and receive and extensive glutamatergic innervation from 

the cortex and the subthalamic nucleus (Olanow and Tatton 1999). The post-synaptic 

expression of parkin dampens excitatory synaptic transmission and causes a marked loss 

of excitatory synapses in hippocampal neurons. Conversely, knockdown of endogenous 

parkin or expression of PD-linked parkin mutants profoundly enhances synaptic 

efficacy and triggers a proliferation of glutamatergic synapses. This proliferation is 

associated with increased vulnerability to synaptic excitotoxicity. The resulting 

excessive glutamatergic drive could be a source of excitotoxicity in the SN. As 



 6

described above, persistent activation of NMDA receptor increases intracellular calcium 

levels. A role for elevated intracellular calcium in the events leading to cell death in PD 

is supported by the observation that dopaminergic neurons expressing the calcium-

binding protein calbindin may be selectively preserved in PD (Lang and Lozano 1998). 

A number of studies have shown that ionotropic antagonists of the NMDA glutamate 

receptor subtypes counteract parkinsonian symptoms or act in synergy with L-3,4-

dihydroxyphenylalanine (L-DOPA) in animal models of PD. A key indication that 

environmental factors may play a role in PD came with the discovery of MPTP, which 

has been used to develop animal models of PD in which the pathogenesis of the disease 

and a variety of therapeutic interventions designed to prevent or reduce dopaminergic 

neurodegeneration can be studied. 

 

PROTEASOMAL DYSFUNCTION 

 

A significant feature of PD pathology is the presence of Lewy bodies. This is indicative 

of incomplete clearance of the target proteins by the ubiquitin-proteosome system. This 

may arise from increased protein oxidation products overwhelming the proteolytic 

capacity of the proteosome (Elkon et al 2004). Lewy Bodies are constituted by insoluble 

proteins deposits, like SNCA, parkin, ubiquitin, synphilin and neurofilaments, with 

SNCA as main one. 

 

Alpha-synuclein  

Synucleins are a family of 15-20 kDa proteins currently consisting of three diferent 

members: α-synuclein, β-synuclein and γ-synuclein (Clayton and George 1998). All 

three different synucleins are expressed in human and rodent brains (Giasson et al 

2001). 

 

In cell cultures, using SNCA transfected B103 neuroblastoma cells, has been shown that 

SNCA up-regulated the expression of calveolin-1 and down-regulates extracellular 

signal-regulated kinase (ERK) activity (Hashimoto et al 2003). Since ERK plays a 

central role in several neuronal functions, including survival, neuronal growth, synapse 

formation, synaptic plasticity and long-term potentiation, modulation of the ERK 

pathway might be an important mechanism in normal SNCA functions. In addition, 

SNCA might also be associated with axonal transport (Mizuno et al 2001). 
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Interestingly, several pesticides, including rotenone and paraquat, can induce a 

conformational change in SNCA and, thus, accelerate the rate of SNCA fibrils 

formation in vitro (Uversky et al 2001). The molecular mechanism by which abnormal 

SNCA oligomers cause dysfunction and death of dopaminergic neurons in the SNpc is 

still unknown. However, it has been confirmed that SNCA co-localizes with tyrosine 

hydroxylase (TH), the rate-limiting enzyme of dopamine biosynthesis (Perez et al 

2002). In cell-free systems, a dose-dependent inhibition of TH by SNCA has been 

observed. Under normal conditions, low concentrations of SNCA might have 

neuroprotective properties, for the contrary, high micromolar concentration SNCA 

exerts neurotoxic effects in primary neuronal cultures (Seo et al 2002). 

 

Parkin 

Parkin is expressed in neurons, but also in glial cells and blood vessels of the human, 

monkey (Zarate-Lagunes et al 2001) and rat brain. Also has been detected in neuronal 

perikarya of the SN, the striatum, the hippocampal formation, the pallidal complex, the 

red nucleus, and the cerbellum in human and monkey brains (Zarate-Lagunes et al 

2001). In rats, parkin mRNA and protein have been detected in the SNpc (Horowitz et 

al 1999). Its ability to enhance the ubiquitination and degradation of misfolded tubulins 

may play a significant role in protecting neurons from toxins that cause PD (Ren et al 

2003). The function of parkin in the ubiquitination pathway is to target misfolded 

proteins for degradation, as parkin protects against neurotoxicity induced by unfolded 

protein stress (Imai et al 2000, Chung et al 2001). Additionally, it was found that 

unfolded protein stress induces up-regulation of both the mRNA and protein level of 

parkin. Furthermore, overexpression of parkin specifically suppressed unfolded protein 

stress-induced cell death. In addition, parkin is able to suppres SNCA-induced toxicity 

in cell culture systems (Oluwatosin-Chigbu et al 2003). The neuronal expression pattern 

of SNCA and parkin mRNA are highly overlappping in the brain, suggesting that these 

two proteins may play a role in the pathophysiology of PD (Solano et al 2000). Indeed, 

parkin has been shown to ubiquitinate Lewy bodies-like inclusions (Chung et al 2001) 

and to protect against the toxicity associated with SNCA (Petrucelli et al 2003)   
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1.1.2.2 ETIOLOGY  

 

GENETIC FACTORS 

 

The familial PD can be divided into two types, autosomal dominant and autosomal 

recessive. Autosomal dominant PD can be caused by mutations in at least two proteins; 

SNCA and Ub carboxyl-terminal hydrolase (UCH-L1). The SNCA gene encodes a 

presynaptic protein that may play a role in learning and memory and synaptic plasticity 

(Dev et al 2003). Two single point mutations in SNCA, A30P and A53T, have been 

reported (Polymeropoulos et al 1997). On the other hand, UCH-L1 is an enzyme also 

found in Lewy bodies (Lowe et al 1990), and mutation in this enzyme may then lead to 

the mismanagement of Ub recycling. 

  

Autosomal recessive young-onset Parkinson is characterised by an early age of onset, 

beginning in the late 20s and generally before the age of 40, and the clinical feature is 

indistinguishable from idiopathic PD. It was shown that autosomal recesive young-onset 

PD has a recessive mode of inheritance where both alleles of parkin are mutated, and is 

recognized that about 50% of the European family affected by autosomal recessive 

Parkinsonism have mutations in the parkin gene (Abbas et al 1999, Lücking et al 2000, 

Kahle et al 2000).  

 

ENVIROMENTAL FACTORS  

 

Genetics forms of PD represent less than 10% of current cases, thus the causes of the 

vast majority of sporadic cases of PD are still unknown. Accumulating evidence 

strongly points to environmental toxins as feasible triggers of neurodegeneration of 

nigrostriatal dopaminergic neurons (Cichetti et al 2005, Meredith et al 2008).  

 

Exposure to air pollution and heavy metals is correlated to PD prevalence (Aquilonius 

and Hartvig 1986, Gorell et al 1998), and the common use of pesticides in rural life has 

been correlated to Parkinsonism in humans (Di Monte et al 2002). Moreover, pesticides 

are often used in overlapping territories leading to exposure to multiple potentially toxic 

agents, which might act additively or synergistically (Thiruchelvam et al 2000).  
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1.1.2.3 ANIMAL MODELS OF PARKINSON'S DISEASE 

 

The development of animal models for PD is an important approach to the elucidation 

of pathogenetic mechanism of neuronal dysfunction and degeneration within the SN 

underlying movement deficits (Cichetti et al 2005). Neurological disorders in humans 

can be modeled in animals using standardized procedures that emulate specific 

pathogenetic events and their behavioral outcomes.  Murine models can demonstrate 

many pathophysiological features of PD and their use has increased our understanding 

of the mechanism underlying this neurodegenerative disorder (Dauer and Przedborski 

2003) and opened doors to exploration of neuroprotective and neurorestorative 

strategies (Dawson and Dawson 2002). 

 

GENETIC ANIMAL MODELS  

 

• Mouse model based on the deletion of genes important for the development or 

maintenance of dopaminergic neurons or their phenotype. These mice exhibit 

dopaminergic cell loss at various times in their life, thus reproducing a cardinal 

feature of PD (Pitx3 -/- mice and engrailed knock-out mice). 

• Mouse or rat models based on expression or deletion of genes known to cause 

familiar forms of PD (SNCA, Parkin, PINK1, DJ1 and LRRK2). 

• Based on virally mediated expression of genes or mutations known to cause 

familial PD, usually in nigrostriatal dopaminergic neurons. 

 

ENVIROMENTAL ANIMAL MODELS  

 

Neurotoxins  

 

6-Hydroxydopamine 

6-OHDA was the first chemical substance discovered that shows a specific neurotoxic 

effect on central monoaminergic neurons (Ungerstedt 1968). Is a neurotoxin with a 

structure similar to dopamine and norepinefrine, and using the same catecholaminergic 

transport system produces specific degeneration of catecholaminergic neurons (Betarbet 

et al 2002). Within neurons it is rapidly oxidated producing hydrogen peroxide and 
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paraquinone, both extremely toxic. It is not capable of produce inclusions-like Lewy 

bodies (Meredith et al 2008). 6-OHDA seems to be toxic to the mitochondrial complex I 

and induces generation of ROS. It is not able to cross the blood-brain barrier, therefore 

has to be applied directly into the SN or the striatum. The magnitude of the lesion 

depends on the amount of 6-OHDA injected, the site of injection and the species used 

(Betarbet et al 2002). It is usually injected unilaterally, while the intact hemisphere 

servs as internal control. This unilateral 6-OHDA injection represents the so called 

“hemiparkinson model” (Perese et al 1989), which is characterized by an asymmetric 

motor-circling behavior after administration of dopaminergic drugs. However, the 6-

OHDA model does not mimic all pathological or clinical features of PD, but induces 

acute effects, which is different from the slow progresive nature of human PD. 

 

MPTP 

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a bypass product of the 

chemical synthesis of a meperidine analog with potent heroin-like properties. Drug 

addicts who toke MPTP accidentally developed a syndrome that clinically and 

pathologically resemble PD (Langston et al 1983). Exposure to MPTP results in a 

selective degeneration of dopaminergic neurons due the toxic effect of the active 

metabolite MPP+, which inhibits Complex I of mitochondrial electron transport chain. 

Unlike 6-OHDA, MPTP is highly lipophilic and crosses the blood-brain barrier, 

therefore the administration can be done at systemic level or directly in the central 

nervous system (CNS). Once in the CNS, is metabolized by monoamine oxidase B 

(MAO-B) within the astrocytes to active metabolite MPP+. MPP+ has high affinity with 

dopamine transporter which facilitates their entry into dopaminergic neurons. MPP+ is 

also sequestered into synaptic vesicles by the vesicular monoamine transporter, 

preventing its interaction with mitochondria (Reinhard et al 1987, Liu et al 1992). Loss 

of dopaminergic neurons depends on treatment performed and varying from 20% with a 

single dose to 50% with an acute treatment for 4 days (Chan et al 1997). Presence of 

small inclusions containing SNCA has been determined even after 3 days of treatment 

(Meredith et al 2002). The treatment of primates or rodents with MPTP represents an 

animal model which reflects many features of human PD. MPTP can produce an 

irreversible and severe Parkinsonian syndrome that replicates nearly all features of PD, 

including rigidity, tremor, slowness of movement and even freezing. A dramatic cell 

loss is accompanied by an increase in the number of SNCA immunoreactive neurons 
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located in the SNpc and in an increase of SNCA mRNA (Vila et al 2000). The regimen 

of MPTP administration in mice have been shown to determinate the mode of neuronal 

cell death in the SN. Chronic regimen causes apoptotic cell death of dopaminergic 

neurons (Tatton and Kish 1997), whereas an acute regimen causes a necrotic cell death 

of dopaminergic neuron in the SN (Jackson-Lewis et al l995). However, there are some 

limitations of the MPTP model. In many cases acute MPTP treatment were performed, 

which do not mimic the progressive degeneration of nigrostriatal dopaminergic neurons 

in PD. This can be overcome by a model of chronic MPTP regimens, however, long-

term treatment with low doses of MPTP has resulted in recovery of motor deficit once 

the treatment is stopped (Betarbet et al 2002). 

 

Pesticides 

 

The possibility that pesticides and other environmental toxins are involved in the 

pathogenesis has been suggested by several epidemiological studies (Seidler et al 1996, 

Gorell et al 1998). Two of the three widely used animal models of PD employ 

pesticides. Pesticides may be absorbed by inhalation, ingestion or, in some cases, such 

as the organophosphates, through the skin, i.e. dermal absorption (Dick 2007). 

Pesticides is defined as any agent used to kill undesired organisms such as insects 

(insecticides), snails and slugs (molluscicide), rodents (rodenticide), plants (herbicide) 

or fungi (fungicide). Pesticides can be categorized in a number of ways, including their 

acute toxicity to humans, their chemical group or their mode of action. A number of 

mechanisms by which pesticides might lead to PD has been identified, including 

mitochondrial dysfunction, oxidative stress, protein aggregation and altered dopamine 

levels (Dick 2007).  

 

Rotenone  

Rotenone is a naturally occurring complex ketone, derived from the root of 

Lonchocarpus species. Originally, rotenone was employed by Indians as a fish poison. 

One of the biggest advantages of rotenone as a pesticide is that it biodegrades in few 

days, even if spread over hundreds of acres of agricultural land (Uversky 2004). It has a 

lipid component which allows easily cross blood-brain barrier (like MPP+) favoring 

rapid distribution in the brain; does not depend on dopamine transporter for celular 

entry and furthermor, is not sequestered into synaptic terminals (Dauer et al 2002). 
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Once in the brain, its accumulates in subcellular organelles, such as mitochondria 

(Talpade et al 2000), where it impairs oxidative phosphorylation by inhibiting complex 

I of the electron-transport chain (Schuler and Casida 2001), microgliosis, increased iron 

deposits and the formation of inclusion-like Lewy bodies with ubiquitin and SNCA in 

nigral cells, quite similar to Lewy bodies seen in PD (Meredith eta al 2008).  However 

there is also a debate concerning the specificity of rotenone for the dopaminergic 

system, also has been demostrated that systemic administration of rotenone produces 

selective damage in the striatum but not in the SN (Ferrante et al 1997). This raises the 

questions whether rotenone exclusively acts on mesencephalic dopaminergic neurons, 

or whether other striatal projection systems are similarly affected (O. Von Bohlen und 

Halbach et al 2004).   

 

Paraquat  

Paraquat (1,1-dimethyl-4,4-bipyridinium) (PQ) is a nonselective bipyridyl contact 

pesticide that was first produced in 1961. The geographical pattern of usage strongly 

overlaps with the incidence of idiopathic PD in several countries (Rajput and Uitti 1987, 

Priyadarshi et al 2001, Di Monte et al 2002). It gained considerable attention because of 

its extreme toxicity in cases of human exposure, it’s know to cause lung, liver, kidney 

and brain injury (Uversky 2003, Hatcher et al 2008). Is poorly absorbed when inhaled 

but causes severe illness when ingested orally, usually causing death within 2 days of 

ingestion of 50 mg/kg. At lower doses, death may be delayed for several weeks. PQ 

crosses the blood-brain barrier, but slowly, inefficiently, and to a limited extent, 

although detectable levels of the herbicide have been measured in the CNS after its 

systemic injection into rodents (Corasaniti et al 1998). PQ is transported into 

mitochondria by a carrier-mediated process (Cochemé and Murphy 2007), where it is 

reduced by complex I forming a PQ radical capable oxidatively damaging the 

mitochondria. Thus, whereas MPP+ and rotenone directly inhibit Complex I function, 

PQ indirectly disrupts mitochondrial function via intra-mitochondrial ROS formation 

through complex I interactions with PQ (Meredith et al 2008). These ROS interact with 

unsatured lipids of membranes (lipid peroxidation) and destroy organelles subsequently 

leading to cell death (Dodge 1971). In parallel to the neuronal toxicity induced by 

pesticides and herbicides, the neuroinflammatory response is increasingly suspected to 

induce more degeneration in the vicinity of targeted neurons (Cichetti et al 2005). The 

SNpc is particularly rich in microglia, the resident immune surveillance cells in the 
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brain, and patients with idiopathic PD or MPTP-induced PD display localized 

microglial activation within the SN (McGeer et al 1987, Langston et al 1999). 

Microglial activation is also found following PQ and Maneb (MB) exposure in rat 

ventral mesencephalic cultures (Cichetti et al 2005), and in the nigrostriatal pathways of 

rodents following repeated systemic administration (McCormack and Di Monte 2003, 

Cichetti et al 2005). Microglial, once activated by neuronal degeneration, release several 

cytokines, such as tumor necrosis factor - α, interleukin-1β, and interleukin-6, which, in 

excess, can have detrimental effects on dopaminergic neurons. Systemic intraperitoneal 

(i.p.) administration of low doses of PQ to adult mice generates specific loss of  

dopaminergic neurons in the SN with associated decrease in locomotor activity (Brooks 

et al 1999, McCormack et al 2002) This is coupled with an up-regulation and 

aggregation of SNCA  (Manning-Bog et al 2002). Another line of evidence suggests the 

importance of the direct interaction between PQ and SNCA. PQ markedly accelerates 

the in vitro rate of SNCA fibril formation, with the accelerating effects being clearly 

dose-dependent (Uversky 2003). 

 

Maneb  

MB is a fungicide that inhibits glutamate transport and disrupts dopamine uptake and 

release (Vaccari et al 1999). The major metabolite active of MB is manganese 

ethylenebis-dithiocarbamate and has been demonstrated in rats and cell culture systems 

that MB inhibited mitochondrial function, complex III in particular, and increased 

oxidative stress. Furthermore, decreased proteosomal function and formation of 

cytoplasmic inclusions immunoreactive for aggregations of SNCA protein were 

detected (Zhang et al 2003, Zhou et al 2004, Barlow et al 2005). MB is able to cross the 

blood-brain-barrier where they may cause selective nigrostriatal neurodegeneration. 

Humans exposed to MB show signs of parkinsonisms like tremors and slowed 

movement and gait, developing after years of unprotected handling of exceptionally 

large amounts of this compound. MB no generate any effects on the serotonergic nerve 

system like concentration of aspartate, glutamate, taurine or ɣ-aminobutyric acid 

(GABA) in corpus striatum or in the rest of the brain, indicating that neither the 

glutammatergic not the GABAergic nerve system was affected by the MB exposure 

(Nielsen et al 2006). In rodent models, MB is capable of altered behaviour function, 

inhibit locomotor activity and aggressiveness, rats exposed to MB produced dose-

dependent signs of decreased movement, disturbance of coordination, lack of appetite, 
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and general weakness (Morato et al 1989). Generally is co-administered with PQ 

subchronically generating degeneration of nigrostriatal dopaminergic system in mice, 

suggesting a synergistic effect (Thiruchelvam et al 2000). Studies in older rats have 

shown that they are very sensitive to the toxic effects of the combination PQ + MB at 

the same doses used in younger mice (Saint-Pierre et al 2006). Loss of dopaminergic 

neurons, motor impairment and microgliosis, which are found in both young and old 

rats, mimic different stages of clinical PD. However, a potential disadvantage of PQ + 

MB treatment for older rats is systemic lung toxicity, which can be lethal. The lungs of 

animals treated with PQ + MB present alveolitis and/or bronchiolitis with no evidence 

of bronchitis, lymphoid aggregates, bronchiectasis, or fibrosis. Reduction of the alveolar 

airspace due to hyperplasia of the alveolar lining cells may have in part led to 

subsequent respiratory problems (Saint-Pierre et al 2006, Cichetti et al 2005). 
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Fig 1.- Structure relative to 6-OHDA, MPTP, Rotenone, PQ and MB. 
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Although sequence differences between several forms of NOP receptor isolated from 

different species, there still close to 90% homology between them. Studies focused in 

receptor distribution have shown presence not only in the CNS (brain and spinal cord) 

but also in some peripheral tissues; particularly intestine, vas deferens, liver and spleen. 

No presence has been reported in scheletric muscle, esophagus, kidney, testis and 

adrenal glands (Wang et al 1994). About CNS distribution, in situ hybridization studies 

have revealed higher mRNA concentrations in the hypothalamus, amygdala, piriform 

cortex, dorsal raphe and nucleus coeruleus. Receptor is also present in the cortex, 

thalamus, hippocampus, periaqueductal grey matter and spinal cord (Fukuda et al 1994, 

Bunzow et al 1994, Wick et al 1994, Lachowicz et al 1995). 

 

Nevertheless the already mentioned orphan receptor inability to join opioid ligands, 

there is an interesting functional homology with classics μ, δ e k receptors. Indeed, 

potent opioid agonist etorphine is able to decrease cAMP accumulation induced by 

forskolin in Chinese hamster ovary cells stably transfected with the NOP coding gene 

(Mollereau et al 1994). 

 

Overall, these data have suggested two main considerations: 

 

      i) Orphan receptor is an inhibitory G protein coupled receptor for adenylate cyclase 

and; 

     ii) Endogenous opioids do not represent the physiologic ligands for this receptor.  

 

THE NEUROPEPTIDE NOCICEPTIN/ORPHANIN FQ (N/OFQ) 

 
In 1995, two independent research teams were able to isolate an endogenous agonist for 

the orphan receptor. Meunier et al. (Meunier et al 1995) used successive 

chromatographic purifications of an acid extract of rat brain, while Reinscheid et al. 

1995 used suine hypothalamus as starting material. 

 

To highlight active biological compounds within chromatographic fractions both groups 

have used the same strategy, consisting in the biological dosage of cAMP accumulation 

inhibition in cells expressing the “orphan receptor”. The following sequencing of this 
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biological compound showed structural corrispondence with a heptadecapeptide analog 

to opioid peptides already note, and due a possible nocive effect after intraventricular 

brain injection in mouse (Meunier et al 1995) or as orphanin FQ (Reinscheid et al 1995) 

was named nociceptin (N/OFQ). Beyond structural analogies with opioid peptides, an 

important characteristic is the absence of the tyrosine amino acid in position 1 (unlike 

all opioid peptides) but a phenylalanine. 

 

Studies carried out to investigate the structure activity relationship of N/OFQ amino 

acid sequence have indicated that N/OFQ retains full ability to bind with the receptor, 

whereas the affinity drops drastically with N/OFQ fragments (1-12) and (1-8) (Dooley 

and Houghten 1996, Dunnill et al 1996). Similar results were obtained in vitro regarding 

the biological activity of these fragments (Calo et al 1996). Unexpectedly, also the 

N/OFQ 7-18 and 13-18 shows a high affinity for the NOP receptor (Meunier et al 2000, 

Butour et al 1997). The all set of observations indicates that the significant portion of 

N/OFQ is its very basic inner portion, not only in terms of recognition but also in the 

activation of its receptor. 

 

Additionally, this suggests that although the structural homology of NOP with opioid 

receptors and opioid peptides withN/OFQ, the latter doesn’t seem to bind to its receptor 

in the same way that dynorphin A binds opioid receptors. In particular, the evidence of 

an affinity of N/OFQ (Meunier et al 2000, Chen et al 1994, Calo et al 1996) for NOP 

indicates that the theory of "message-address" previously used for opioid peptides, may 

not be applicable for the N/OFQ (Chawkin and Goldstein 1981). 

 

At CNS level, distribution of this new heptadecapeptide seems to be more limited than 

that of its receptor. The N/OFQ is present among others in the preoptic area, septum, 

amygdala, and median eminence. Instead, low levels of the peptide seem to be present 

in many areas in which the receptor is highly expressed, such as cortex, nucleus 

suprachiamaticus, supraoptic nucleus, paraventricular and ventromedial hypothalamus 

and the dorsal raphe (Watson et al 1996). Finally, elevated levels were found in the 

superficial layers of the dorsal horn of the spinal cord, trigeminal complex and other 

areas involved in pain transmission such as the periaqueductal gray matter (Schulz et al 

1996). 
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Pharmacological Effects of Nociceptin/Orphanin FQ 

The responses evoked by N/OFQ at the cellular level are similar to those obtained by 

other receptor agonists, members of the 7-transmembrane domain Gi / Go proteine 

coupled superfamily. However, it should be noted that in the absence of antagonists 

against the orphan receptor, the actions of N/OFQ alone, attributed to its interaction 

with NOP, are only those observed in cells transfected with this receptor while those in 

non-transfected neuronal tissues are still to be considered only as probable. In 

transfected cells, N/OFQ strongly inhibits adenilylociclase (Meunier et al 1995, 

Reinscheid et al 1995) stimulated by forskolin and determines the opening of the 

"inward rectifier" K + channel (Matthes et al 1996). This action on K + channels was 

also observed in the dorsal raphe, locus coeruleus and periaqueductal gray matter (Wu 

et al 1997, Connor et al 1996, Vaughan and Christie 1996). 

 

The neuropeptide is also able to inhibit the entry of Ca2+ through voltage-dependent 

channels in cell cultures (SH-SY5Y) and in cultured hippocampal pyramidal neurons 

(Connor et al 1996b). Inhibition of Ca2+ voltage-sensitive channels at hippocampal level, 

involves Gi proteins since it is prevented by pertussis toxin pretreatment and involves 

multiple types of Ca2+ channels (N-type, L and P / Q). 

 

Always at CNS level, has been observed that N/OFQ inhibits, through mechanisms 

currently not clarified, the release of glutamate and GABA from nerve endings 

(Vaughan and Christie 1996, Knoflach et al 1996). Reggarding peripheric system, 

N/OFQ is able to block the release of acetylcholine caused by light stimulation in the 

retina of rabbit (Nicol et al 1996). In the sympathetic nervous system, this neuropeptide 

is able to effectively block neuromuscular transmission in the vas deferens of rat, rabbit 

(Neal et al 1997) and mouse (Nicholson et al 1996, Calo et al 1996). While, in the 

parasympathetic system, some results indicate (Berzetei-Gurske 1996) that N/OFQ is 

able to partially inhibit release of acetylcholine from nerve endings in the trachea. In 

fact, the same investigation that led to the isolation and characterization of this peptide 

(Meunier et al 1995, Reinscheid et al 1995), has also show that intracerebroventricular 

N/OFQ administration in mice, causes a lowering of the threshold in both tests hot plate 

and "tail-flick" (Reinscheid et al 1995). Moreover, the nature of the pro-nociceptive 

neuropeptide seems further confirmed by the observation that by reducing the 

expression of the orphan receptor, by administration of antisense oligonucleotides for 
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NOP, the opposite effect is obtained, namely an increase in nociceptive threshold (Calo 

et al 1996). 

 

However, with the progress of the studies, the overall picture of the actions induced by 

N/OFQ in nociceptive transmission has revealed more complex. Some authors have 

suggested the involvement of stress-induced autoanalgesia mechanisms in N/OFQ 

action (Patel et al 1997). Other studies have also suggested the existence of a biphasic 

response comprising hyperalgesia followed by a period of analgesia (Mogil et al 1996). 

The action exerted by N/OFQ in the spinal cord is still controversial. In fact, some 

authors did not observe significant alterations of the nociceptive threshold after 

intrathecal administration of N/OFQ in the rat (Rossi et al 1996), while other 

investigations have revealed an inhibitory effect of the neuropeptide on synaptic 

responses of type C fibers (Tian et al 1997, Faber et al 1996). 

 

The effects on locomotor activity evoked by the neuropeptide are still controversial. 

While some groups have observed a decrease, some data suggest an increase in 

locomotion following intracerebroventricular administration of low doses of peptide 

(Giuliani and Maggi 1996). 

 

Regarding the motivational activities, N/OFQ doesn’t seem to induce reward or adverse 

effects (Florin et al 1996), although nucleus accumbens has been shown to contain high 

levels of mRNA for its receptor and that the peptide is able to decrease the release of 

dopamine in the same nucleus (Devine et al 1996). It is known that nucleus accumbens 

is involved in several functions such reinforcement, drug reward and locomotor 

behavior (Murphy et al 1996). Recent results have suggested that N/OFQ suppresses the 

activity of the dopaminergic reward pathways of the mesocortic-limbic system not 

producing, as already mentioned, neither preference nor aversion in the test of 

conditioned choice (place preference), but recent studies on the same test, indicates that 

N/OFQ has been shown capable of modifying, in an inhibitory manner, conditioned 

preferences indiced by other substances, such alcohol and morphine (Devine et al 

1996b). Where recently observed that chronic use of high doses of morphine accelerates 

the release and biosynthesis of N/OFQ in the rat brain to antagonize the effect of 

opioids. This effect seems to play a role in the development of tolerance to morphine. It 

has been suggested that N/OFQ may serve as a retarded negative feedback control for 
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opioid analgesia (Murphy et al 1999, Yuan et al 1999). Some results indicate that 

N/OFQ decreases the activity of dopaminergic mesocortico-limbic neurons through an 

action in the ventral tegmental area (VTA). This effect is not only transient but 

demonstrates rapid tolerance and thus is insufficient to prevent the development of 

sensitization to cocaine. The ability of the peptide to induce sensitization to cocaine 

when administered alone, despite its acute inhibitory effects, is unique and requires 

further studies to elucidate the responsible mechanisms (King et al 1998). Behavior 

reinforcement influenced by the nucleus accumbens and the hypothalamus is that of 

nutrition. It 'was shown a definite increase in the effect of the central rewarding drugs of 

abuse in animals subjected to food restriction (Narayanan and Maidment 1999). 

 

More recently it has been shown that administration of N/OFQ in the ventromedial 

hypothalamic nucleus and the nucleus accumbens increased food intake in rats (Cabeza 

De Vaca and Carr 1998). The role of N/OFQ in stimulating the nutrition behavior is 

supported also by a recent study showing a reduction of hyperphagia induced by 

N/OFQ, following central administration of antisense probe against NOP (Stratford et al 

1997). As pointed several times by several authors there is a need for new molecules, 

possibly non-peptide, which selectively activate (agonists) or block (antagonists) the 

NOP receptor. In order to demonstrate conclusively that the effects of N/OFQ are 

produced by its interaction with the NOP receptor, is more useful to have pure and 

selective antagonists for the NOP receptor. To do this, right now, are mainly used 

molecules that can antagonize the NOP receptor, although none has been shown to have 

pure selectivity and antagonistic properties as needed to provide clear results. These 

compounds are: 

 

1. Naloxone benzoilidrazopne (NalBzOH), a non-selective opioid receptor ligand was 

observed to be able to competitively block some effects of N/OFQ, with low power 

(pA2≈6.0-6.5) (Matthes et al 1996, Siniscalchi et al 1999, Calo’ et al 2000). However, 

this drug is not ideal because it has also affinity for κ and µ opioid receptors, and exerts 

in these receptors a mixed agonist-antagonist action, particularly acts as an agonist for µ 

receptor. This effect can be antagonized by the presence of naloxone, however, the use 

of that substance may result inappropriate in studies on the pharmacological effects of 

N/OFQ, since although the low affinity for the NOP receptor, in some in vivo studies 
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has proved to be an antagonist indirect effects produced by N/OFQ (Schlicker et al 

1998). 

 

2. [Phe1ψ(CH2-NH2)Gly2]nociceptin(1-13)NH2, also known as [F/G]NC(1-13)NH2, a 

selective pseudopeptide for the NOP receptor, even when selective for δ and κ are not 

for µ, because its selectivity factor against this receptor is less than 100 (Guerrini et al 

1998). This compound was seen to behave as a selective antagonist of the NOP receptor 

in an in vitro study on mouse vas deferens and guinea pig ileo electrically stimulated 

(Paul et al 1990). However, since then, many studies, both in vivo and in vitro have 

been published on the action of this pseudopeptide, showing that it actually can act as 

an antagonist, partial agonist (Varani et al 1999) or full agonist depending on the 

preparations. 

 

3. The [Nphe1]nociceptin(1-13)NH2, a recently discovered peptide that seems to have 

shown activity as a pure antagonist in several in vivo and in vitro studies (Sbrenna et al 

2000, Siniscalchi et al 1999). However, recent in vivo studies have produced conflicting 

results, they see such a compound to act as a partial agonist. 

 

The J-113397, a potent antagonist selective for the NOP receptor, has a chemical 

structure is structurally unrelated to N/OFQ (Calo’ et al 2000). 

 

INTERACTION OF NOCICEPTIN/ORPHANIN FQ-NOP RECEPTOR SYSTEM 

WITH OTHER NEURONAL SYSTEMS 

 

Noradrenergic system 

Many studies have shown that N/OFQ inhibits the release of noradrenaline in slices of 

cerebral cortex in rat, mice and guinea pigs (Rizzi et al 2002, Kawamoto et al 1999, 

Siniscalchi et al 1999), and in slices of rat hippocampus and hypothalamus (Schlicker et 

al 1998). This is consistent with the distribution of the NOP receptor, which is 

expressed in various brain regions rich in noradrenergic fibers such as the hippocampus, 

tract of the solitary nucleus and lateral reticular nucleus (Werthwein et al 1999). 
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In particular, the presence of the NOP receptor in some hippocampal formations 

suggests a possible involvement of the NOP receptor in cognition and memory. 

 

Dopaminergic system 

In vitro studies on slices of cerebral cortex in mice have demonstrated that N/OFQ 

inhibits the release of dopamine (Siniscalchi et al 1999). On the other hand, in vivo 

studies have demonstrated that N/OFQ administered intracerebroventricularly (Devine 

et al 1996) or by microdialysis, directly into the ventral tegmental area (Mollereau and 

Mouledous 2000) reduce the release of dopamine in the nucleus accumbens of 

anesthetized rats. Additional in vivo studies have shown that N/OFQ, administered 

intracerebroventricularly, is not able to modify the release of dopamine in the nucleus 

accumbens and the caudate nucleus, but prevent the increase of dopamine release, 

caused by morphine administered systemically, both in the nucleus accumbens and in 

the caudate nucleus (Murphy and Maidment 1999, Di Giannuario et al 1999). The 

inhibition of mesocortico-limbic dopaminergic fibers by N/OFQ agrees with various 

experimental observations that N/OFQ is involved in reward, cognitive and motility 

mechanisms, which originates right in the mesocortico-limbic system (Werthwein et al 

1999). Finally, different in vivo studies have demonstrated that N/OFQ, administered 

through microdialysis directly into the striatum of naloxone-sensitive unanesthetized 

rats, is able to increase dopamine release (Di Giannuario and Pieretti 2000). 

 

This facilitator role of N/OFQ on nigro-striatal dopaminergic neurons is in agreement 

with studies of functional distribution of the NOP receptor, which have evidenced it 

expression in the nigro-striatal projections involved in the coordination of movement 

(Werthwein et al 1999). 

 

Serotoninergic system 

The N/OFQ is able to inhibit the release of 5-HT (5-hydroxytryptamine), 5-HT, both 

from synaptosomes (Varani et al 1999) and cortex slices of rats and mice (Sbrenna et al 

2000, Konya et al 1998, Maneuf et al 1999). These findings have been correlated with 

the anxiolytic action of which the NOP receptor and N/OFQ appear to be responsible 

(Varani et al 1999). 
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Endogenous opioid system 

From a molecular approach, based on genetic criteria, there is no doubt that the NOP 

receptor and opioid receptors belong to the same family and, additionally, also the 

precursors of their endogenous ligands (N/OFQ and opioids peptides) have a high 

homology in genetic profile. However, at functional level the NOP receptor is not an 

opioid receptor: does not bind opioid receptor ligands with high affinity and, more 

importantly, pharmacological effects mediated by it are mostly insensitive to the opioid 

receptor antagonists. 

 

The marked structural analogy between the NOP receptor and opioid receptors 

(especially κ receptor) and between N/OFQ and opioid peptides (especially dynorphin 

A) is not reflected on the anatomy, because N/OFQ and opioid peptides appear to be 

localized in separated neuronal circuits. Moreover, N/OFQ shares with opioid peptides 

the same pathway of signal transduction mediated by G proteins, in particular both 

stimulate currents of K+ "outward" and / or inhibit Ca2+ voltage-dependant channels, 

through which reduces the synaptic efficacy. However, although this is the same signal 

transduction pathway of opioid receptors, it can lead to opposite effects. In fact, 

morphine, by suppression of the tonic inhibition exerted by GABA in the ventral 

tegmental area on mesocortico-limbic dopaminergic fibers, decreases the activity of 

these neurons, while N/OFQ is able to antagonize this effect by increasing the activity 

of GABAergic neurons (Sbrenna et al 1999, Ciccocioppo et al 2000, Meunier 1997). So, 

even when the genetic profile of the nociceptin/NOP receptor belongs to the same 

family of opioid receptors, under the functional pharmacological profile acts as an anti-

opioid system. 

 

GABAergic system 

The N/OFQ is unable to modulate the release of GABA in synaptosomes of rat cerebral 

cortex (Meunier 1997). However, in vivo studies have shown that it is able to increase 

levels of GABA in the ventral tegmental area (Mollereau and Mouledous 2000). This is 

correlated with the ability of N/OFQ to decrease the release of dopamine in the nucleus 

accumbens when administered via microdialysis in the ventral tegmental area. In fact, 

GABAergic and glutamatergic neurons within the ventral tegmental area are able to 

modulate in an inhibitory manner the dopaminergic fibers projected from the ventral 
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tegmental area to the nucleus accumbens (Mollereau and Mouledous 2000, Di 

Giannuario et al 1999). 

 

It is possible to say that NOP receptor is present in brain areas which are not associated 

with individual physiological functions or individual neurotransmitter systems, but in 

areas involved in various processes, such as pain and sensory perception, memory, 

stress, motility, endocrine regulation and gratification. This wide distribution reflects 

the involvement of the NOP receptor with a large number of physiological responses, 

or, more probably the contribution of the NOP receptor system, as well as other 

systems, to homeostasis through modulation of different neuronal circuits 

simultaneously. This may explain why the deletion of the NOP receptor gene in mice 

(knock-out mice) has only a slight impact (Meunier 1997) on the mentioned 

physiological functions and also why the pharmacological effects of N/OFQ are 

sometimes contradictory. 

 

Glutamaergic system 

Glutamate is the major excitatory neurotransmitter in the central nervous system where 

it acts upon ionotropic. Although, glutamate plays a central role in excitatory 

neurotransmission alterations in glutamate homeostasis can have significant 

repercussions on neurons through the generation of neurotoxic or exitotoxic cascade 

(Olney 1990). It is believed that excitotoxicity can damage neurons directly through the 

overstimulation of NMDA receptors as a result of increased release of extracellular 

glutamate or a reduction in its removal from the synaptic cleft, thus propagating the 

influx of calcium (Caudle and Zhang 2009). In vitro studies have shown that N/OFQ 

inhibits glutamate release in cortex slice of rats (Knoflach et al 1996), but is not able to 

modulate it in synaptosomes derivated from the same brain area (Maneuf et al 1999). 

On the contrary, in vivo, N/OFQ increases the release of glutamate in the ventral 

tegmental area, and it has been correlated with the results obtained from similar 

experiments with dopamine in the nucleus accumbens and ventral tegmental area with 

GABA. 
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NOCICEPTIN/ORPHANIN FQ – NOP SYSTEM AND PARKINSON’S DISEASE 

 

The opioid-like neuropeptide N/OFQ and its receptor NOP are widely expressed in 

cortical and subcortical areas (Darland et al 1998), and particularly in the SNpc, a brain 

area containing dopamine neurons that degenerates in PD, in which 50% of 

dopaminergic neurons express NOP mRNA, and 50-60% of N/OFQ neurons express 

glutamic acid decarboxylase mRNA, suggesting that N/OFQ is released from SNpc 

GABA neurons. Endogenous N/OFQ facilitates nigral glutamate release and inhibits 

nigrostriatal dopamine transmission and motor behaviour (Marti et al 2005). N/OFQ is a 

17-amino-acid neuropeptide with high sequence homology with dynorphin A (Witta et 

al 2004), is derived from a larger precursor, pre pro-nociceptin/orphanin, that is also 

precursor for several other peptides, including nocistatin, nociceptin-2 and pN/OFQ. 

N/OFQ has selective affinity for the NOP receptor with negligible affinity for the mu, 

delta or kappa opioid receptors. N/OFQ expression is strongly induced in neurons and 

astrocytes by oxidative stress and proinflammatory mediators (Buzas et al 1999). At 

cellular level, N/OFQ induce an inhibition of adenylate cyclase, activation of the MAP 

kinase pathway, inhibition of N-type Ca2+ channels and an increase of K+ conductases 

(Connor et al 1996). Generally the distribution of N/OFQ immunoreactivity in human 

post-mortem brain is correlated with the distribution of N/OFQ-immunorectivity in rat 

brain (Witta et al 2004). These suggest that many functional roles for N/OFQ that have 

been proposed based on studies in rat are probably conserved in human brain. 

 

Several studies have shown that exogenous N/OFQ inhibits activity of dopaminergic 

neurons in the SNpc in vitro and nigrostriatal dopaminergic transmission in vivo (Marti 

et al 2004) and elevates the glutamate release in the SN reticulate in vivo (Marti et al 

2002). It is also know that NOP receptor antagonists facilitate nigrostriatal 

dopaminergic transmission and motor behavior and inhibits release of glutamate in the 

substantia nigra reticulate (Marti et al 2002, Marti et al 2004), by depressing an 

N/OFQergic tone. PD may represent a specific clinical indication for NOP receptor 

antagonist usage. The 6-OHDA lesion was also associated with reduction of NOP 

receptor expression in the SNpc and, to lesser extent, in the SN reticulate. Because 75% 

of NOP receptor expressing neurons in the SNpc are TH positive (Norton et al 2002), 

reduction of NOP receptor mRNA levels may reflect loss of dopaminergic neurons 

(Marti et al 2005). In addition to sustaining parkinsonian-like symptoms, endogenous 
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N/OFQ also contributes to MPTP toxicity. Indeed, MPTP-treated ppN/OFQ-/- mice 

displayed higher number of surviving TH-positive cells in SN and fibers in the caudate 

putamen (CP). N/OFQ, but not other products of the ppN/OFQ gene (nocistatin and 

N/OFQ II), potentiated the excitotoxic white matter lesions induced by ibotenate via 

NMDA receptor activation (Laudenbach et al 2001). Glutamatergic mechanisms have 

been implicated in MPTP toxicity. Indeed, MPP+ inhibits mitochondrial complex I, 

resulting in a loss of intracellular ATP and generation of ROS, which contribute to 

degeneration of dopaminergic neurons. Moreover, loss of ATP ultimately causes a fall 

in neuronal membrane potential, leading to impaired calcium homeostasis and enhanced 

sensitivity to glutamate mediated excitotoxicity (Nicotra and Parvez 2002). 
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1.1.3 ALZHEIMER’S DISEASE 
 

In 1911, Alois Alzheimer described a neuropsychiatric disorder affecting the elderly, 

which is widely known today as AD. AD is the most common irreversible, progressive 

cause of over 50% of all dementia and actually affects more than 24 million people 

worldwide. Moreover, over 5 million new cases of AD are reported each year, and the 

incidence increases from 1% between the ages of 60 and 70 to 6% to 8% at the age of 

85 years or older and is likely to increase as a greater proportion of the population ages. 

The duration of disease is typically 8 to 10 years, with a range from 2 to 25 years after 

diagnosis. AD is characterized by a severe, progressive memory and cognitive skills 

loss, accompanied by specific neuropathological changes such as the formation of 

neurofibrillary tangle and senil plaque, as well as a reduction in levels of acetylcholine. 

Until today no treatments have been found able to completely stop or slow the 

progression of this disorder, and the autopsy represents the main mean by which the 

definitive diagnosis is made (Perl 2010). 

 

MACROSCOPIC CHANGES 

 

AD is a disease of the brain affecting especially temporal and parietal cortex, 

hippocampus, and amygdala. Most cases of AD shown a modest degree of cerebral 

cortical atrophy but can also involve the frontotemporal association cortex; additionally 

the loss of brain tissue generally leads to a symmetrical dilation of the lateral ventricles 

(Fig 3). 

 
Fig 3.- View of massive cell loss changes the whole brain in advanced AD. Damage areas involved 

are cortex, hippocampus and ventricles. 
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MICROSCOPIC CHANGES 

 

Neurofibrillary tangles (NFTs) 

Alois Alzheimer noted the presence of abnormal fibrous inclusions whithin the 

perikaryal cytoplasm of pyramidal neurons, this inclusion are considered a cardinal 

microscopic lesion associated with the disease. The NFTs appear as parallel, thickened 

fibrils that surround the nucleus and extend toward the apical dendrite, are composed of 

abnormal fibrils measuring 10 nm in diameter that occurs in pairs and are wound in a 

helical fashion with a regular periodicity of 80 nm (Kidd 1963). The primary constituent 

of the NFTs is the microtubule-associated protein tau. The tau is abnormally 

phosphorylated with phosphate groups attached to very specific sites on the molecule 

(Lee et al 1991). Another constituents associated with the neurofibrillary tangle, are 

ubiquitin, cholinesterases, and beta-amyloid 4, but tau is considered to be the critical 

constituent of most of these structures. The NFTs are not specific feature of AD, other 

disorders include postencephalitic parkinsonism, post-traumatic dementia or dementia 

pugalistica, type C Niemann-Pick disease, and amyotrophic lateral 

sclerosis/parkinsonism dementia complex of Guam.  

 

Senil plaques 

Senil plaques also named neuritic plaques, are complex structures that are defined by 

the presence of a central core accumulation of a 4 kD protein with a beta-pleated sheet 

configuration called beta-amyloid (Aβ) (Masters et al 1985, Kang et al 1987). The Aβ 

peptide is derived from the proteolysis of the amyloid precursor protein (APP) (Glenner 

and Wong 1984) and correspond a 40 to 43 amino-acid proteolysis product of a larger 

precursor protein. The deposits of amyloid fibrils were localized extracellularly in the 

brain. The activity of β- and γ-secretase is required to generate Aβ. Once generated, Aβ 

is immediately secreted into the media of cultured cells or biological fluids such as 

plasma and cerebrospinal fluid (CSF) (Haass and Selkoe 1993). The third secretase, the 

α-secretase, cleaves in the middle of the β-amyloid domain and thus prevents Aβ 

generation. 
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Fig 4.- The classical histopathological lesions of AD demonstrated by the modified Bielschowsky silver 
stain. In the center, a senile plaque consists of a large, compacted deposit of extracellular 
amyloid (A) surrounded by a halo of dilated, structurally abnormal, or dystrophic, neurites (open 
arrowheads).  
 

1.1.3.1 HYPOTHESIS OF ALZHEIMER DISEASE 

 

CHOLINERGIC HYPOTHESIS 

 

It was the first theory proposed by Bartus et al 1982 and is based on the finding of a loss 

of cholinergic activity in the brain of AD patients (Davies and Maloney 1976, Perry et 

al 1981). Previous findings supporting this theory into question and it is no longer 

widely believed that the cholinergic depletion alone is responsible for causing AD. 

Several studies in humans and non-human primates have suggest a role for 

acetylcholine in learning and memory, and have reported that blocking central 

cholinergic activity with scopolamine, young subjects would demonstrate memory 

deficits similar to those seen in aged individuals. Davis et al, 1999, examined 

cholinergic markers in the brains of aged human subjects with mild cognitive 

impairment (MCI) and compared them to AD patients with severe late stage AD; the 

conclusion of this work was that colinergic dysfunction does not occur until later in the 

disorder.  

 

AMYLOID HYPOTHESIS  

 

This hypothesis has been described for the first time in 1992 (Hardy and Higgins 1992). 

This hypothesis also called “amyloid cascade hyphotesis” synthesizes histopathological 



 31

and genetic information (Fig 5), and claims that the deposition of the Aβ peptide in the 

brain parenchyma initiates a sequence of events that ultimately lead to AD dementia 

(Karran et al 2011). This hypothesis does not consider the interaction of Aβ and tau. A 

key role in Aβ production is played by an altered proteolitic cleavage, operated by 

different enzyme complexes, of the APP. APP cleavage results from sequencially 

proteolitic action exerted by α, β, γ-secretases, metallproteins able to cut protein at 

specific points. Under physiologic conditions, APP can undergo two processing ways: 

non amylodogenic (through α-secretasi) and amyloidogenic (through β-secretasi) with 

the last inducing production of amyloid peptides of different length. Specifically, in the 

amyloidogenic way, the proteolitic cleavage by β-secretasi (an aspartil-protease, named 

BACE, β site-APP cleaving enzyme) at extracellular side is done at N-terminal portion 

of the Aβ sequence, inducing the formation and secretion of the sAPPβ fragment and 

the formation of a second one named C99 which remains in the membrane where is 

subsequently cleaved by γ-secretasi. The end point is the formation and secretion of Aβ 

fragments, about 39 to 43 amino acids length, into endocytic compartments from where 

in turn will be exported outside to form the charasteristic plaques. 

 

 
 

Fig 5.- The amyloid cascade hypothesis. The amyloid cascade hypothesis posits that the deposition of the 
amyloid-β peptide in the brain parenchyma is a crucial step that ultimately leads to AD. Autosomal 
dominant mutations that cause early onset familial AD occur in three genes: presenilin 1 (PSEN1), 
PSEN2 and amyloid precursor protein (APP).  
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TAU HYPOTHESIS 

 

The discovery by Alois Alzheimer of NFTs in the brain of patients with AD provided 

the basis for a significant amount of studies to elucidate the molecular, cellular and 

genetic features of this disease (Maccioni et al 2001). However, the discovery that the 

protein components of NFTs and the paired helical filaments were hyperphosphorylated 

forms of tau was achieved only during the 1980s (Kosik et al 1986). Tau is a normal 

constituent of neurons and corresponde to a soluble protein which join to cytoskeletal 

tubulin to promote assembling and stabilization of neurons (Maccioni and Cambiazo 

1995) (Fig 6). In AD as well as in other Taupathies, tau protein is abnormally 

phosphorilated. The hyperphosphorylation of tau protein could be related to unbalance 

kinase (GSK 3β and CDK5) or phosphatase activities, which are further regulated by 

other proteins like PIN1 (Wang et al 1995, Sze et al 2004), and alters tau affinity for 

tubulin and conferring an increased tendency to form insoluble fibrillar aggregates that 

are deposited inside cells, compromising synaptic and neuronal functions. The altered 

phosphorylation pattern of tau is evident from the initial stages of the neurodegenerative 

process, first in the hyppocampus and then in the amygdala and brain cortex. The main 

effect induced by neurofibrillar aggregates is the modification of neuronal cytoskeleton 

with loss of cellular organization and alteration of axonal transport preventing the 

propagation of nerve impulses (Mudher and Lovestone 2002).  

 

 
 

Fig 6.- Tau neurofibrillar aggregates. 
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1.1.3.2 ETIOLOGY 

 

Both, environmental and genetic factors are involved in AD etiology, but the key 

pathogenic events leading to neuronal degeneration and dementia, are not yet fully 

understood. 

 

GENETICS FACTORS 

 

The majority of cases of AD correspond to the sporadic form of this disorder. 

Approximately 5-10% of patients shown an autosomal mode of transmission and 

account for cases called familial AD (ƒAD). Mutation of three genes is known to be 

associated with early-onset familial AD. The mutations in APP gene are the first genetic 

cause of AD. The mutations are located before β-secretase cleavage site, after α-

secretase site, or immediately after γ-secretase cleavage site. In 1995, researchers 

identified genetic mutations within presenilin 1 gene (PSEN1, chromosome 14) and 

presenilin 2 gene (PSEN2, chromosome 1) in several early-onset ƒAD (Rogaev et al 

1995), these two genes encodes for presenilin 1 and presenilin 2 transmembrane 

proteins, respectively. Both presenilins are expressed in the brain and many tissues of 

the human body. It was shown that both proteins are subunits of γ-secretase, which 

cleaves APP within its transmembrane domain and γ-secretase generates a spectrum of 

peptides which accumulates in the brain of AD patients. 

 

1.1.3.3 INVESTIGATED GENES IN ALZHEIMER’S DISEASE 

 

AMYLOID PRECURSOR PROTEIN (APP) 

 

APP is a single transmembrane domain protein with multiple alternative transcripts and 

expressed ubiquitously (Kang et al 1987); has a short half life and is metabolized 

rapidly by two different pathways in all cells. APP is sensitive to proteolysis by a set of 

proteases called α, β and γ secretases. Secretases are responsible for the production of 

Aβ (1-40) peptide or the Aβ (1-42) variant with a significantly higher capacity to self-

aggregate. A total of five mutations have been described in the APP gene that lead 

“purely” to AD. Those that cause the “pure” AD phenotype have in common the fact 
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that they lead to the production of long Aβ. The phosphorylation of APP on the Thr668-

Pro motif has been shown to be increased in AD brain or in models of AD, leading to 

increased production of Aβ peptides (Lee et al 2003, Pastorino et al 2006). The 

production of long Aβ is of particular importance because long Aβ has been shown to 

be the earliest and most abundant specie of Aβ in neuritic plaques, and in biophysical 

experiments it has been shown to be the most prone to form fibrillar aggregates (Jarret 

et al 1993). 

 

PRESENILIN 1 (PSEN1) 

 

Several studies indicate that PSEN1 and Presenilin 2 (PSEN2) are predominantly 

expressed in neurons; however, expression in glia has also been observed (Lah et al 

1997). Intracellular localization of the PSEN1 and PSEN2 proteins reveals that they are 

present predominantly in the endoplasmic reticulum with some immunoreactivity 

observed in the early Golgi (Kovacs et al 1996). In neurons, both proteins are 

principally observed in the cell body and in the dendrites (Cook et al 1996). The vast 

majority of mutations (>80%) in PSEN1 and PSEN2 are associated with early-onset 

AD. Mutations in both PSEN1 and PSEN2 are associated with increased production of 

Aβ42 (Mann et al 1997), the amyloidogenic form of Aβ that is deposited selectively in 

early AD (Iwatsubo et al 1994). PSEN1 is involved in normal APP procesing, therefore, 

mutations leading to PSEN1 with different altered sites to appear to be responsible for 

the erroneous cleavage of APP and generation of Aβ 1-42, the most aggressive variant 

for the plaque deposition in the human brain. Furthermore, PSEN1 interacts with 

glycogen synthase kinase, one of the critical protein kinases involved in tau 

phosphorylation. 

 

PIN1 

 

PIN1 (peptidyl-prolyl cis/trans isomerase) belongs to the parvulin family; it is 

conserved from yeast to humans and has been shown to be necessary to undergo mitosis 

(Shen et al 1998). The implications of PIN1 in AD pathogenesis have been reported 

from several laboratories (Liou et al 2003). The recent finding that PIN1 is oxidatively 

modified, and that it also shows reduced activity and decreased expression in 
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hippocampus from MCI and AD subjects (Butterfield et al 2006). Previous studies have 

shown that PIN1 is co-localized with phosphorylated tau and exists in inverse 

relationship to the expression of tau in AD. In addition, an in vitro study has shown that 

PIN1 protects neurons against age-related neurodegeneration (Liou et al 2003); it can 

also restore the ability of phosphorylated tau to bind microtubules and promote their 

assembly in vitro, a process that might represent a potential therapeutic use for PIN1 

(Thorpe et al 2001). 

 

PIN1 is mainly localized to neuronal nuclei in normal human brain but in AD brain, it is 

found in neuronal cytoplasm and perikaryan NFTs. PIN1 in AD brain binds to the 

phosphorylated Thr231 residue of tau protein. The neurodegeneration and neuronal 

apoptosis in AD might possibly be induced via depletion of nuclear PIN1 or association 

with specific up-regulated phosphoprotein targets (Thorpe et al 2004). 

 

APOLIPOPROTEIN E  

 

Apolipoprotein E (APOE) exists mainly as a component of lipoprotein complexes along 

with other apolipoproteins and proteins in plasma and CSF. In humans, there are three 

major polymorphic forms of APOE: APOE2 (Cys112, Cys158), APOE3 (Cys112, 

Arg158), and APOE4 (Arg112, Arg158) (Nickerson et al 2000). Several susceptibility 

genes have also been implicated in AD risk, one of which, APOE, has been confirmed 

to confer risk for sporadic, late-onset disease (age >60 years), and has also been linked 

to autosomal dominant ƒAD. The APOE ε3 allele is present in 50–90% of people in all 

populations, whereas APOE ε4 is present in 5–35% and APOE ε2 in 1–5% of people. 

Risk of AD is associated more strongly with APOE ε4 than it is with ε3 and in turn 

more strongly with ε3 than ε2. The APOE ε4 allele is present in about 50% of patients 

who have late-onset disease, compared with 20–25% of controls. Presence of one copy 

of the APOE ε4 allele increases risk of late-onset AD about three times and two copies 

about 12 times. Although the mechanism by which APOE isoforms affect risk of AD is 

not entirely understood, there is strong evidence that APOE isoforms differentially 

modulate Aβ metabolism and accumulation. In vitro studies and studies in animals show 

that APOE has an important role in determining whether and when Aβ converts from a 

monomeric, non-toxic molecule into higher-molecular-weight forms such as oligomers 

and fibrils (Wisniewski et al 1994). In post-mortem tissue from patients with AD, Aβ 
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plaques are a major hallmark of AD pathology, and APOE is found within these 

plaques. Several studies have reported an increase in senile and neuritic plaques in 

patients with AD who were homozygous for APOE ε4 compared with those who were 

homozygous for APOE ε3 or who had the APOE ε4/ε3 genotype; moreover, more 

plaques were noted in patients with APOE ε4 than in those without the allele. 

(Strittmatter et al 1993, Polvikoski et al 1995). 

 

SIRTUIN 1 (SIRT1) 

 

Sirtuin1 (SIRT1) is the mammalian homologue of yeast silent information regulator 

(Sir)-2, a member of the sirtuin family of protein deacetylases. Among the non-histone 

cellular substrates of SIRT1 there are the tumor suppressor p53, the transcription factor 

NF-қВ and the FOXO family of transcription factors. SIRT1 also regulates a wide range 

of metabolic activities in muscle, adipose tissues and liver; therefore have apparent 

functions that could link nutrient availability and energy metabolism to adaptive 

changes in transcriptional profiles that affects cell survival in multiple systems. In 

mouse embryos, SIRT1 was expressed at high levels in the heart, brain, spinal cord, and 

dorsal root ganglia (Sakamoto et al 2004). The high levels in the brain suggest that 

might have a role in neuronal and/or brain development. In the adult brain, can be found 

in the hippocampus, cerebellum and the cerebral cortex, and has been hypothesize that 

oxidative stress and energy homeostasis can affect the levels of SIRT1 (Wu et al 2006). 

The sirtuin deacetylation reaction, as seen in neurodegenerative conditions associated 

with memory impairment, and has been shown to consume NAD+ (know to protect 

neurons), causing a release in nicotinamide and ADP, which in turn inhibits sirtuins, 

this recycling is crucial for the maintaining of SIRT1 functions (Bordone and Guarente 

2005) A link between SIRT1 and AD is increasingly evident (Anekonda 2006). 

Overexpression of SIRT1 and resveratrol treatment markedly reduced NF-қВ signaling 

stimulated by Aβ and had strong neuroprotective effects. Another possible link between 

SIRT1 and AD came from the potential benefits of caloric restriction on AD symptoms 

and progression. Recent epidemiological evidence suggest that individuals who 

maintain a low caloric diet have a reduce risk of developing AD (Mattson MP 2003). 

Has been propose that SIRT1 induces non-amyloidogenic APP procesing be 

corroborated by our finding that NAD+ or resveratrol treatment led to dose-dependent 

increases in the content of soluble APPα (Bordone and Guarente 2005). 
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1.1.3.4 MONOZYGOTIC TWINS 

 

Human monozygotic (MZ) twins account for 1 in 250 live births. The origin of MZ 

twins is attributed to two or more daughter cells of a single zygote undergoing 

independent mitotic divisions, leading to independent development and births. They are 

considered genetically identical, but significant phenotypic discordance between them 

may exist. MZ twins have been used to demostrate the role of enviromental factors in 

determining complex diseases and phenotypes, but the true nature of the phenotype 

discordance remains poorly understood. Epigenetics profiles may represent the link 

between an environmental factor and phenotypic difference in MZ twins. 

 

The study of epigenetic profiles in twins offers an excellent opportunity to understand 

the causes and consequences of epigenetic variation. Twin epigenetic heritability 

estimates tell us about the genetic control of DNA methylation variability and the 

stability of methylation patterns during cell division. The contribution of epigenetic 

variants to complex phenotypes can be assessed using disease-discordant MZ twins who 

are otherwise matched for genetics, age, sex, cohort effects, maternal effects and a 

common environment. Phenotype differences between MZ twins reared apart are not 

significantly higher that between MZ twin reared together (Hanson et al 1991). Rates of 

disease discordance in MZ twins are usually well over 50%, even for highly heritable 

disease (Kendler and Prescott 1999), suggesting that epigenetics can contribute 

significantly to MZ twin discordance (Petronis 2010). Over the past two decades the 

discordant MZ twins design has emerged as a powerful tool for detecting phenotype risk 

factors while controlling for unknown confounders. 

 



 38

1.1.3.5 EPIGENETICS 

 

GENERAL CONSIDERATIONS 

 

Epigenetics (from the Greek, epi-: επί- over, above; and -genetics) correspond to the 

study of heritable changes in gene expression or in the cellular phenotype caused by 

mechanisms other than changes in the DNA sequence (Feinberg and Tycko 2009). 

Cellular differentiation is a well know example of relevance of epigenetic mechanism. 

If all cells within an organism have the same DNA (Nestler 2009) then the ability to 

have different cells with different functions must be due to a selective activation or 

silencing of particular genes within genome (Grewal 2003). Actually, it has been 

demonstrated that epigenetic events, altogether with genetic events, plays a crucial role 

in tumor progression (Jordà and Peinado 2010). 

 

Three epigenetic mechanisms are considered the most important ones: genomic 

imprinting, histone modifications and DNA Methylation (Feinberg and Tycko 2004) 

(Fig 7). Genomic Imprinting refers to the relative silencing of one parental allele 

compared with the other parental allele as consequence of differentially methylated 

regions within or near imprinted genes. Histone modifications, principally acetylation, 

methylation and phosphorylation, are important in transcriptional regulation due the 

ability to induce chromatin structure modification, altering DNA accessibility (Feinberg 

and Tycko 2004). DNA methylation is the most common epigenetic mechanism (Jordà 

and Peinado 2010) and consists in a covalent modification of DNA, in which a methyl 

group is transferred from S-adenosylmethionine to the C-5 position of cytosine by a 

family of cytosine (DNA-5)-methyltransferases (Feinberg and Tycko 2004) and occurs 

predominantly in the cytosines that precede guanines (CpG) (Bird 1986). 
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Fig 7.- Esqueme of principal components of epigenetic code, DNA Methylation and Histone 

modification. 

 

DNA METHYLATION 

 

DNA methylation appears to be one of the most important epigenetic mechanisms used 

by the cell, for the establishment and manteinance of the correct patterns of gene 

expresion. Indeed, alterations in the patterns of genomic methylation are strongly 

associated with several human diseases, making the use of specific inhibitors of the 

processes involved a common practise in their treatment (Egger et al 2004). DNA 

methylation patterns are stablished during differentiation, and serve to suppress genes 

unnecessary for the function of the mature cell. Demethylation of DNA also occurs and 

involves at least two mechanisms: the first is the mechanism by which 5-azacytidine (an 

irreversible DNA Mtase inhibitor) hypomethylates DNA, and a second mechanism is 

that may involve DNA demethylase (Richardson 2003). DNA methylation in mammals 

ocurrs in the cytosin of the CpG dinucleotide via a reaction catalysed by enzymes 

named DNA methyltransferases (DNMTs) and the recognition of methylated cytosines 

is done by proteins that posses a specific binding domain, the so-called methyl-CpG 



 40

binding domain. DNMTs are expressed throughout neural development, and in the adult 

brain in selective regional and cell-specific patterns including mature stem cell 

generative zones mediating ongoing neurogenesis (Feng et al 2007). Moreover, DNMTs 

are actively regulated by physiological and pathological states and interactions, and they 

promote neuronal survival, plasticity and stress responses (Ooi et al 2007). In mammals, 

the DNMT family includes five proteins: DNMT1, DNMT2, DNMT3, DNMT3B, and 

DNMT3L (DNMT3-like). On the other hand, the proteins that binds to and recognises 

5-methylcytosines are the methyl-CpG binding domain proteins in mammals are 

MeCP2, MBD1, MBD2, MBD3 and MBD4. MeCP2 was the first of these proteins to be 

characterised.  

 

The methylation of CG sequences can affect nearby gene expression. Hypomethylation 

of regulatory sequences ussually correlates with gen expression, while methylation 

results in transcriptional suppressor. In general, the more CpG islands located in the 

promoter of a gene, the more the trancription level is dependent on DNA methylation 

(Graff and Mansuy 2008). Methylation of CpG units disrupts the binding of 

transcription factors and attracts proteins known as methyl-CpG binding domain 

proteins that are associated with gene silencing and chromatin compaction (Antequera 

and Bird 1993).  The CpG islands, regions with more than 500 bp and a G + C content 

larger than 55%, are localized in the promoter regions of 40% of all the genes in 

mammals and are normaly maintaind in the non-methylated form (Bird and Wolffe 

1999, Takai and Jones 2002), but the CpGs located outside the CpG islands are ussually 

methylated (Urdinguio et al 2009). The importance of DNA methylation in the function 

of normal cells is evidenced by its role in differentiation, X chromosome inactivation, 

genomic imprinting maintenance of chromatine structure, and suppression of "parasitic" 

DNA. Methylated citosines can serve as binding platform for specific proteins. On the 

other hand, this modification can also prevent binding of proteins to DNA.  

 

It has been observed that multiple exogenous agents can affect DNA methylation, and it 

is possible that transient exposure to a DNA methylation inhibitor can have long term 

effects on DNA methylation. Dietary deficiencies in nutrients important for 

transmethylation reactions are one potential cause of DNA hypomethylation, for 

example diets deficient in folate, choline and methionine, or trace elements such zinc or 

selenium (Cooney 2001, Poirier 2002). In AD a diet deficient in folate may, by 
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increasing homocysteine levels, promote the degeneration of neurons (Kruman et al 

2002). 

 

HISTONE MODIFICATIONS 

 

Gene expression can also be modulated by the chromatin state. DNA is packed in the 

nucleus of eukaryotic cells through its chromatin organisation. The nucleosome, the 

fundamental unit of chromatin structure, consists of 146 base pairs of DNA wraped 

around an octamer of histone made up of two copies of each of the core histone (H2A, 

H2B, H3 and H4) (Kouzarides T 2007). Each core histone is composed of a structured 

domain and an unstructured amino-terminal tail of varying lengths from 16 amino acid 

residues for H2A, 32 for H2B, 44 for H3 and 26 for H4, protruding outward from the 

nucleosome (Taniura et al 2007). These proteins provide not only a solid structure; N-

terminal regions of histones which protrude from the nucleosome are susceptible to 

interactions with other proteins. Chromatin can exist either in a decondensated, active 

arrangement, termed euchromatin, or in a condensated, inactive state, i.e. 

heterochromatin. 

 

The post-translational modification of the residues at histone tails are: methylation of 

lysines and arginines, acetylation, phosphorylation, ubiquitination, sumoylation, and 

ADP-ribosylation. Two widely studied histone modifications are histone acetylation and 

phosphorylation. Histone acetylation is linked with transcriptional activation, while 

deacetylation is related to transcriptional repression (Berger 2007). Histone acetylation 

is a reversible modification of lysine residues within the amino-terminal tail domain of 

core histone; histone acetyltransferase (HATs) transfers an acetyl-group from acetyl-

coenzyme A to the ε-amino group of the lysine resiue, while histone deacetylase 

(HDACs) acts in the reverse to remove the acetyl group. Also histone can be methylated 

by histone methyltransferases, inducing changes in the chromatin structure. Methylation 

may create binding sites for other regulatory proteins thus influencing the chromatin 

structure, either condensating or relaxing the structure (Chouliaras et al 2010). 

 

Although DNA methylation and histone modifications can act independently, they can 

also interact with each other. DNA methylation is associated with histone modifications 

through methyl CpG binding proteins interaction with dynamic complexes containing 
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histone-modifying enzymes that promote gene repression and DNA replication and 

repair (Klose and Bird 2006). The binding of some deoxymethylcytosine binding 

proteins to methylated sequences attracts complexes containing co-repressors and 

histone deacetylases, leading to a change in the chromatin structure from an open, 

trancriptionally active form to a more compact, inactive form, inaccessible to the 

transcription machinery (Richardson 2003).  

 

EPIGENETICS AND ALZHEIMER'S DISEASE 

 

Although the putative role of epigenetic mechanisms in the pathophysiology of AD has 

not been yet investigated, several characteristics of late-onset sporadic AD are 

compatible with an epigenetic component (Chouliaras et al 2010). Several studies in 

MZ twins have shown that the epigenetic code diplays alterations, for example 

difference between the genomic 5-methyl-C content and the acetylation levels of H3 

and H4 were significantly different in each twin. Also has been found that a different 

association in this epigenetic difference and the age of the MZ twin, i.e. the younger 

pair were epigenetically similar, whereas the older pairs were most distinct (Fraga et al 

2005). In fact, some of enviromental exposures that have been associated with an 

increased risk of developing AD have also been shown to induce epigenetic changes in 

a diversity of tissues samples. In addition, aging which represents one of the major risk 

factors of AD, is asociated with remarkable epigenetic alterations (Fraga 2009). 

 

Several studies have been conducted on altered DNA methylation in AD. Most of these 

have analyzed methylation status of the promoters of genes implicated in the 

pathophysiology of AD in human postmortem brain tissues. There is no clear pattern for 

methylation in patients with AD. A global DNA hypomethylation was observed in the 

cortex of AD patient (Mastroeni et al 2008) for the promoter of the gene encoding 

CREB5, a trancription factor involved in synaptic plasticity and cognition (Zukin 2009) 

but in particularly, in the promoter region of the APP gene in patient with AD when 

compared to controls. Also has been showed that CpG island in the promoter region of 

the APP gene in the parietal cortex are frequently methylated before the age of 70 years 

and are significantly demethylated after that age, which may be associated with the 

progressive deposition of Aβ in the aging brain (Tohgi et al 1999). Another studies 

reported increased methylation in the promoter regions of the APOE and MTHFR genes 
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in both postmortem prefrontal cortex tissue and peripheral lymphocytes of AD patients 

were hypermethylated when compared to controls (Wang et al 2008). The finding that 

lymphocyes in people with sporadic AD also showed an age-specific epigenetic drift, 

although the differences were smaller than in brain tissues, suggest that epigenetic 

changes may affect also peripheral cell types (Chouliaras et al 2010). While that the 

expression patterns of lymphocytes may differ substantilly from the expression pattern 

in the CNS findings that gene expression profiling of lymphocytes in AD patients and 

healthy aged controls showed a difference in the expression of 20 genes involved 

various pathways, suggest that changes in accessible peripheral cell types could be 

useful as biomarkers for AD (Kálmán et al 2005). 

 

Regarding the histone modifications has been reported that the examination of brains of 

MZ twins discordant for AD, the pathology of the disease was associated with a marked 

increased of the trimethylation of histone H3K9 and condensation of heterochromatin 

structure in the temporal cortex and hippocampus of the twin with AD when compared 

to the other twin. H3K9 trimethylation is a marker of gene silencing. Otherwise it have 

been observed that the administration of HDAC inhibitors, like sodium butyrate, 

reinstated learning behavior and contributed to the recovery of long-term memories in 

the mouse model of neurodegeneration (CK-p25 TG) (Sweatt 2007). In line with a 

central role for HDACs, overexpression of HDAC2 in mice was shown to induce 

significant memory impairment (Guan et al 2009). 

 

It is evident that AD is associated with epigenetic dysregulation at variuos levels and 

that epigenetic mechanisms may mediate the effects of life events on AD risk. Indirect 

evidence demostrating epigenetic alterations associated with various risk factors for 

AD, such as nutritional factors, stress, depression, and brain trauma, implies that 

epigenetic processes may be the key mechanism mediating genotype and enviromental 

factors interaction in AD. 
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1.1.3.6 PERIPHERAL BLOOD MONONUCLEAR CELLS 

 

Unlike many diseases, in which researchers and doctors are able to access the affected 

tissue, while the patient is still alive, psychiatry is limited by inaccessibility of the organ 

of interest. Therefore, there exists a long history of research of peripheral markers 

capable of reflecting the pathology within the brain. There are several factors that make 

it particularly useful the Peripheral Blood Mononuclear Cells (PBMC) to serve as a 

model of epigenetic gene regulation in the brain. 

 

First, previous studies have shown that PBMCs may provide a reliable means to study 

the impact of environment / life experiences on the structure of chromatin and DNA 

methylation. Fraga et al 2005 has reviewed a number of epigenetic parameters of 

lymphocytes in MZ twins aged between 3 and 70 years and found that while 3 years 

twins were virtually indistinguishable in terms of their overall level of DNA 

methylation, acetylated histone 3 and 4, 50 years twins have had significant differences 

on these measures. In general, elderly twins were more different in terms of epigenetic 

parameters than younger twins. Moreover, it is important to note that these differences 

were consistent across subjects in at least 12 weeks, indicating that measures of global 

epigenetic parameters in peripheral lymphocytes are a reliable method to assess the state 

of chromatin. These results indicate that chromatin extracted from lymphocytes may 

provide a "molecular fingerprint" reflecting the environment and life experience of an 

individual, and stochastic factors that would not have been revealed through other tests. 

Secondly, the analysis of gene regulation in nucleated blood cells of live patients takes 

fully account of the evolution of the disease, including drug response, metabolic and 

environmental events, and is the only approach likely prospects for the longitudinal 

clinical research, and seems to be the natural evolution of post-mortem studies on the 

brain. Additionally, PBMCs contain the complete set of enzymes and epigenetic 

mechanisms founded in many tissues including neurons (De Ruijter et al 2003, 

Dangond and Gullans 1998). Previous studies have shown that PBMCs are able to 

exhibit all the anomalies of the epigenetic mechanisms, also probably present in the 

brain. For example, in HD, a disease known to be associated with histone 

acetyltransferase malfunctioning, has been found a similar pattern of transcriptional 

repression in various chromosomes in both blood and brain (Anderson et al 2008). In 

addition, several studies have shown that peripheral markers are able to discriminates 
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the differences of chromatin structure in twins discordant for mental illness (Kuratomi 

et al 2008, Tsujita et al 1998), as well as show similarities in epigenetic parameters 

between individuals with the same disease (Kuratomi et al 2008, Petronis et al 2003). 

It is possible to hypothesize that PBMCs may be able to reflect epigenetic mechanisms 

within an individual and provide a mean to discriminate such subsets of patients who 

have profound abnormalities of chromatin structure or DNA methylation. This approach 

could also help to understand the impact of hormones, drugs and drugs of abuse on 

chromatin. Finally, it could provide a tool that helps in the development of new 

chromatin altering agents as well as to identify patients most likely to benefit from these 

types of drugs. 
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2. AIM OF THE STUDY 
 

During the last decade, the molecular studies of neurodegenerative disease have had a 

significant increase, due to their multifactorial etiologies. From environmental to 

genetic factors seem to be involved in their pathogenesis. It’s well accepted that many 

of the underlying pathogenic processes are similar for several neurodegenerative 

diseases, and includes protein misfolding, oxidative stress, cytoskeletal abnormalities, 

disruption of calcium homeostasis, and inflammation, all of which increase during 

aging. Thus, aging is described as the most significant risk factor of neurodegenerative 

disorders. During aging process several disturbances leads to DNA damage, suggesting 

an association between age and epigenetic changes. The existence of related 

mechanisms underlying neurodegeneration raises the possibility of developing a class of 

therapeutic strategies usefull for a variety of neurological disorders through activation 

of body’s own defenses against age-related changes that leads to deterioration and cell 

death. Molecular and epigenetics mechanisms offer the possibility to develope new 

indicators or “markers” to improve early detection and diagnosis rate. For this reason 

the research was focalized in the two most important neurodegenerative diseases: 

Parkinson’s and Alzheimer’s. Their have a strong genetic component, but the sporadic 

presentation is around 90% of cases. 

 

Thus, the first part of this thesis concerns to the study of molecular mechanisms of PD 

using an animal model. It has been described that using animal models allows to 

replicates the pathology and symptomatology and is essencial for the development of 

new therapies. We developed an animal model based on two pestices commonly used in 

agriculture, PQ and MB. The dopaminergic damage was confermed principally by TH 

and SNCA levels, and the end we evaluated the toxic effects in the transcription of 

NOFQ/NOP system genes in dopaminergic neurons of rats. 

 

On the other hand, as already mentioned, it has become increasingly obvious that 

epigenetic mechanisms are an integral part of a large number of brain functions that 

range from the development of the nervous system and basic neuronal functions to 

higher order cognitive processes. For this reason, the second part of this thesis was 

directed to evaluate peripheral markers in PBMC samples of MZ twin discordant for 
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AD. Specifically, we evaluated the relation between epigenetic mechanisms and the 

transcription of genes involved in AD, using the two most importante epigenetics codes, 

DNA methylation and histone modification. We determinated the gene expression and 

methylation levels of APP, PSEN1, SIRT1, PIN1 and APOE promoter region, in MZ 

twins discordant for AD; as well as the immunoreactivity of three histone modifications, 

H3K9 Ac, H3K4 me3 and H3K27 me3. 
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3. MATERIALS AND METHODS 
 

3.1 PARKINSON’S DISEASE 
 

3.1.1 CHEMICALS  

 

Paraquat dichloride (1,1′-dimethyl-4,4′-bipyridinium dichloridehydrate) and Maneb 

(manganese-ethylenebisdithiocarbamate) were purchased from Sigma (Milan, Italy).   

 

3.1.2 EXPERIMENTAL ANIMALS AND TREATMENT 

 

Adult male Sprague–Dawley rats, weighing 170 ± 10g at the beginning of treatment, 

were used (Harlan, Correzzana, Italy). Rats were housed three per cage in a temperature 

(22 ± 1 °C) and light (8:00 a.m.– 8:00 p.m.) controlled room for at least 6 days before 

use. Standard rat chow and tap water were available ad libitum. Experiments were 

carried out in accordance with the European Communities Council Directive 

(86/609/EEC) and national laws and policies (Ministry of Health authorizations no: 

204/2008-B). 

 

Rats were injected intraperitoneally (i.p.) twice a week (on monday and thursday) for 4 

weeks (total of 8 injections), with saline solution (vehicle, n = 10), PQ + MB (10 + 30 

mg/kg, n = 10) referred as high dose (HD) and PQ + MB (5 + 15 mg/kg, n = 10) 

referred as low dose (LD). Doses have been chosen based on previous reports 

(Thiruchelvam et al 2000, Cicchetti et al 2005). Pesticides were dissolved in saline 

solution and the combinations were administrated as separated injections. 

 

3.1.3 WEIGHT, LOCOMOTOR ACTIVITY AND BEHAVIOUR  

 

Animal weights were registered every morning before injection. Locomotor activity was 

measurement with Actometric cages (38 x 30 x 25cm). A DC current, 65 V, 25 μA was 

continuously delivered to the stainless steel grid floor of the cage and every closure of 

the circuit performed by the rats feet was recorded as one motility count by an 

electronic counter, only horizontal displacements of the animal across the cage were 
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recorded. Animals have one hour habituation period to the experimental environment. 

At the end of this time, each 10 minute during one hour the horizontal and ambulatory 

movements were recorded.  Behavioural assessment was performed by direct 

observation 24 hours after injection by the same observer during all treatment. The 

parkinsonism following PQ and MB exposure were rated, for a maximal disability score 

of 9  in the following way: (a) Posture: normal = o, flexed intermittent = 1, flexed 

constant = 2, crouched = 3; (b) Mobility: normal = 0, mild reduction = 1, moderate 

reduction = 2, severe reduction = 3; (c) Gait: normal = 0, slow = 1, very slow = 2, very 

slow with freezing = 3. A score was given every 30 min reflecting observations of the 

preceding half-hour (modify of Hadj Tahar et al 2001).  

 

3.1.4 TISSUE PROCESSING 

 

Seven days after end of treatment, rats were killed by decapitation and their brains were 

removed. The SN and CP were rapidly dissected out, frozen on dry ice and stored at -

80° C until use. 

 

3.1.5 WESTERN BLOTTING 

 

Protein Extraction 

The tissue was sonicated in 4 volume of lysis buffer (50 mM Tris, pH 7,5, 0,4 % NP-40, 

10% glycerol, 150 mM NaCl, 10 g/ml leupeptin, 10 mM EDTA, 1 mM sodium 

orthovanadate, 100 mM sodium fluoride) and centrifugated at 12000 rpm at 4°C for 20 

minute, the supernatant was stored at -20°C.  

 

Quantification Protein 

The protein concentration was determinated by the Bradford protein assay (Bio-Rad 

Laboratories, Inc. Milan, Italy).  

 

Western Blotting Analysis 

Close to 30 μg of protein were separated by 10% SDS-polyacrilamide gel and then 

transfered by electrophoresis for 3 h at room temperature to a 0.45 μm nitrocellulose 

membrane (Bio-Rad, Italy). The membrane was blocked for 60 minute with a mixture 

of 5% non-fat dry milk and TBS-T 1%, and incubated overnight at 4°C with TH, 
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SNCA, P-ERK 1/2, ERK 1/2, P-CREB, CREB, GAD 65/67 antibodies at different 

concentration with the appropriated secondary antibodie conjugated with horseradish 

peroxidase (Table 1). Then, membranes were washed five times with TBS-T 1x and 

incubated for 1 h at room temperature with a horseradish peroxidase-linked anti-rabbit 

secondary antibody and horseradish peroxidase-linked anti-mouse secondary antibody 

when appropriated (Table 1). The immunoreactivity was visualized by enhanced 

chemiluminiscence (ECL) detection solutions in to Versadoc MP 4000 (Bio-Rad). The 

membrane was reprobed with a mouse anti-glyceraldehydes-3-phosphate 

dehydrogenase (GAPDH) monoclonal antibody, and with a horseradish peroxidase-

linked anti-mouse secondary antibody (Table 1). For quantitative analysis of obtained 

bands, Quantity One software (Bio-Rad) was used. The integrated intensity of the band 

(optical density value) was determined using both band density and area. The variations 

of proteins levels were then evaluated with respect to GAPDH. The resulting ratios 

were evaluated as level percentage change or as changes in status of activation, 

expressed as the ratio between the phosphoprotein and total protein compared to 

controls, with controls as 100%. The results were then reported as histograms. 

 

PRIMARY ANTIBODIES KDa DILUTION 

Antibody policlonal anti-Tyrosin Hydroxylase 55 1:1000 

Antibody policlonal anti GAD 65/67 65/67 1:2000 

Antibody policlonal anti-CREB 43 1:1500 

Antibody policlonal anti-CREB phosphorylated Ser 33 43 1:400 

Antibody anti-ERK ½ 42/44 1:2500 

Antibody anti-ERK ½ phosphorylated 42/44 1:2000 

Antibody alpha-synuclein 25 1:500 

Antibody monoclonal anti-GAPDH 36 1:3000 

 

SECONDARY ANTIBODIES DILUTION 

Antibody anti-rabbit horse radish peroxidase 1:3000 

Antibody anti-mouse horse radish peroxidase 1:3000 

 

Table 1. Proteins and antibodies concentrations used for Western Blotting analysis. 

 

 



 51

3.1.6 REAL TIME RT-PCR 

 

Extraction and measurement of total RNA. 

Total RNA was prepared according to the method previously described (Chomczynski 

and Sacchi 1987).  The RNA was extracted from single tissue samples by homogenizing 

with TRI Reagent solution (Ambion Inc. Italy), containing phenol and guanidine 

thiocyanate (Ambion), 1 mL TRI Reagent solution per 50-100 mg tissue.  Then, 0.2 ml 

chloroform/2 ml of homogenate, and centrifuging the suspension at 12,000 x g for 10-

15 minute at 4°C, and was transfered the aqueous phase to a fresh tube. A volume of 0.5 

ml isopropanol was added, incubated for 15 min at 4°C and the RNA pellet was isolated 

by centrifugation at 12,000 x g for 25 min at 4°C (Di Benedetto et al 2009). The pellet 

was washed twice with 75% ethanol, dried under vacuum and then resuspended in 25 µl 

of Rnase-free water. Total RNA, digested with DNase RNase-free enzyme to eliminate 

genomic DNA content, was quantified by measurement of absorbance at 260 nm 

(1OD/ml = 40 µg RNA/ml). The ratio OD260/OD280 > 2 provided an estimate of the 

purity of the total RNA. 

 

Real Time RT-PCR analysis 

RNA samples were subjected to DNase treatment and converted to cDNA with the 

GeneAmp RNA PCR kit (Applied Biosystems, Foster City, CA, USA) by using random 

hexamers (0.45 µg of total RNA in a final reaction volume of 20 µl). The cDNAs were 

subsequently diluted three times. Relative abundance of each mRNA species was 

assessed by real-time RT-PCR employing 1 µl of the diluted samples in a final volume 

of 20 µl using iQ SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) on an DNA 

Engine Opticon 2 Continuous Fluorescence Detection System (MJ Research, Waltham, 

MA, USA). To provide precise quantification of initial target in each PCR reaction, the 

amplification plot is examined and the point of early log phase of product accumulation 

is defined by assigning a fluorescence threshold above background defined as the 

threshold cycle number or Ct. Differences in threshold cycle number were used to 

quantify the relative amount of PCR target contained within each tube. Relative 

expression of different gene transcripts was calculated by the Delta-Delta Ct (DDCt) 

method and converted to relative expression ratio (2-DDCt) for statistical analysis 

(Pfaffl 2001, Livak and Schmittgen 2001). All data were normalized to the endogenous 

reference genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. 
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Results on RNA from PQ and MB treated animals were normalized to results obtained 

on RNA from the control, vehicle treated rats. After PCR, a dissociation curve (melting 

curve) was constructed in the range of 60 ºC to 95 ºC to evaluate the specificity of the 

amplification products. The primers used for PCR amplification (Table 2) were 

designed using Primer 3. Total RNA was converted to complemetary DNA (cDNA) 

using 50 U Superscript II Reverse Transcriptase (Invitrogen, Milan, Italy) in 20 µL of 

buffer containing 0.5 mM deoxynucleotide triphosphates (Invitrogen, Milan, Italy), 40 

U RNase inhibitor (Invitrogen, Milan, Italy) and 0.5 µg Oligo (dT) 12-18 Primer 

(Invitrogen, Milan, Italy). 

 

PRIMERS Forward (5’-3’) Reverse (5’-3’) 

GAPDH AGACAGCCGCATCTTCTTGT CTTGCCGTGGGTAGAGTCAT 

PARKIN ACACCCAACCTCAGACAAGG GACCAAGACAGGGTTCCTGA 

KOP TTGGCTACTGGCATCATCTG ACACTCTTCAAGCGCAGGAT 

NOP AGCTTCTGAAGAGGCTGTGT GACCTCCCAGTATGGAGCAG 

pDYN CCTGTCCTTGTGTTCCCTGT AGAGGCAGTCAGGGTGAGAA 

ppN/OFQ TGCAGCACCTGAAGAGAATG CAACTTCCGGGCTGACTTC 

 
Table 2.-Sequence of primers used for gene expression of GAPDH, Parkin, KOP, NOP, PDYN and  

ppN/OFQ. 

 

3.1.7 STATISTICAL ANALYSIS 

 

The data were analyzed by One-way ANOVA, followed by a post-hoc Dunnett t-test. 

Stadistical significant was set at *P < 0.05 **P < 0.01 versus control group. Results are 

reported as mean ± SEM for groups. 
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3.2 ALZHEIMER’S DISEASE 
 

3.2.1 REAL TIME RT-PCR 

 

PBMCs were separated by density gradient (Lympholyte-H, Cedarlane, Canada), total 

RNA was isolated as reported (Chomczynski and Sacchi 2006) and reverse-transcribed 

using the M-MLV Reverse-Transcriptase System and oligo (dT) (Clontech, Italy). 

Relative abundance of each mRNA species was assessed by real-time RT-PCR using iQ 

SYBR Green Supermix (Bio-Rad, Hercules, CA, USA), on an DNA Engine Opticon 2 

Continuous Fluorescence Detection System (MJ Research, Waltham, MA, USA), and 

was calculated by the Delta-Delta Ct (DDCt) method, using GAPDH as internal control. 

The primers used for PCR amplification are indicating in Table 3. 

 

PRIMERS Forward (5’ – 3’) Reverse (3’ – 5’) 

PIN1 GACGAGGAGAAGCTGCCGCC CAGGCTCCCCCTGCCCGTTT 

APP CATCCCCACTTTGTGATTCC GTTTCGCAAACATCCATCCT 

SIRT1 GCGATTGGGTACCGAGATAA GTTCGAGGATCTGTGCCAAT 

PSEN1 TTGCGGTCCTTAGACAGCTT AGGACAACGGTGCAGGTAAC 

APOE CCAGCGGAGGTGAAGGAC TACCTGCCAGGAATGTGA 

GAPDH ATTCCACCCATGGCAAATTC TGGGATTTCCATTGATGACAAG 

 
Table 3.-Sequence of primers used for gene expression of PIN1, APP, SIRT1, PSEN1, APOE and 

GAPDH. 

 

3.2.2 DNA METHYLATION 

 

In order to assess the possible methylation status of the promoter region of studied 

genes in MZ twins discordant for AD, the following approach has been performed: 

 

• DNA extraction from PBMC (Peripheral Blood Mononuclear Cells) 

• Bisulfite treatment of extracted DNA 

• Analysis of treated DNA by Real-Time PCR 
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DNA extraction and purification from whole blood 

DNA was extracted from a 7 ml blood EDTA sample. Blood samples were frozen (< -

20°C) for several days before extraction in order to facilitate leukocyte lysis. FlexiGene 

(Qiagen) was used to extract genomic DNA following manufacterer’s instuctions which 

main steps are mentioned below. 

 

1. To FG1 Buffer (lysis), contained in 50 ml falcon tube, add 7 ml of whole blood 

and vortex to mix well. 

2. Centrifuge 2500 rpm for 30 min at 10°C. Centrifugation separate proteins (and 

other macromolecules and sub cellular structures) according they dimensions 

(and form) through generation of gravitational forces within a sample tube.  

3. Surnatant is discarded and FG2 Protease Buffer (denaturation buffer) is added 

and inmediatly vortexed, the resulting volume is then divided in 1,5 ml 

eppendorf. 

4. Incubate aliquots at 65° for 10 min: color changes from red to green when 

proteic digestion verifies. 

5. Add isopropanol (100%) and mix until DNA precipitation. 

6. Centrifuge 10000 rpm for 10 min at room temperature and discard surnatant. 

7. Add ethanol 95 % and vortex 5 seconds. 

8. Centrifuge 10000 rpm for 10 min at room temperature and discard surnatant. 

9. Dry DNA pellet at room temperature until full diluent evaporation (at least 5 

min). 

10. Add FG3 Buffer (hydratation buffer), vortex 5 seconds at low speed, resuspend 

the DNA pellet and incubate for 1 hour at 65°C bath. 

 

Sample DNA amount was determined by spectrophotometry at 260 nm and DNA 

aliquots were frozen at -20°C. 

 

Sodium Bisulfite treatment 

The vast majority of DNA methylation analysis is based on using a PCR using DNA 

treated with sodium bisulphite as a model. Two different strategies are used in the 

design of the primers for these reactions:  
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• Methylation-indipendent PCR primers (MIP)  

• Methylation-specific PCR primers (MSP) 

 

Normally, the epigenetic information is lost during the PCR because the DNA 

polymerase does not distinguish between methylated and non-methylated cytosine, so 

the polymerase adds a guanine and then a non-methylated cytosine in both situations. 

After PCR, each originally methylated allele is diluted to a concentration impossible to 

analyze, so the DNA must be modified in a way that allows methylated information to 

remain preserved. Treatment with sodium bisulfite, which deaminates cytosine into 

uracil (Clark et al 1994) is the method of choice in most laboratories for this type of 

analysis. 

 

Due the fact that the degree of deamination of 5'-methylcytosine to thymine is much 

slower than the conversion of cytosine to uracil, it is assumed that the only remaining 

cytosine after treatment with sodium bisulfite are those derived from 5'metilcitosine. 

Thus, during the subsequent PCR, the uracil residues are transcribed as cytosine. The 

procedure is based on the chemical reaction of single-stranded DNA with sodium 

bisulfite (HSO3-) at low pH and high temperatures. The chemical reaction of each step 

is as follows: cytosine carbon-6 sulfonation, irreversible hydrolytic deamination of 

carbon-4 that produces a sulfonate uracil, and finally the following desulfonation under 

alkaline conditions to generate uracil. Methylation of carbon-5 prevents the carbon-6 

sulfonation in the first step reaction. Although the 5-methylcytosine can react with 

sodium bisulfite, this reaction is extremely slow, and the balance favors the 5-

methylcytosine rather than thymine (the deamination product of 5-methylcytosine). 

Thus it is important the subsequent necessary purification to remove salts and other 

reagents used in the process. Treatment with sodium bisulfite converts unmethylated 

cytosine of the original strand of DNA to uracil, while methylated cytosines remain 

cytosines.The CpG dinucleotide is the target of methylation in human cells (Fig 8). 

 

The protocol described by Frommer et al 1992 has been widely used for the treatment 

with sodium bisulfite. When treatment with sodium bisulfite is conducted under 

appropriate conditions, the expected convertion level of unmethylated cytosines is about 

99% (Taylor et al 2007). Despite this high level of conversion, however, it is possible 

that a small amount of DNA have a lower conversion rate (Warnecke et al 2002) and the 
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distribution of unconverted sites does not be random, so some promoter regions are 

more prone to an incomplete conversion. The conversion rate depends greatly on the 

quality of DNA (Warnecke et al 2002). This is especially important to keep in mind 

when looking for low levels of DNA methylation with MSP primers based methods. 

 

 
 

Fig 8.- Sodium Bisulftine treatment of Genomic DNA. 

 

The antiparallel strands of DNA are no longer complementary after treatment with 

sodium bisulfite. Therefore, the MIP and MSP primers are designed to be both Forward 

and Reverse. 

 

In mammalian DNA, the major base modification is 5-methylcytosine (5-MC), this 

occurs in 2-5% of all cytosine residues (generally those that are found in CpG doublets). 

The modification with bisulfite is a reaction between the molecule bisulfite and 

unmodified cytosine of single-stranded DNA. The reaction converts cytosine into uracil, 

while methylated cytosine (5-MC) within the CpG sites remains unchanged. The 

modified DNA can be amplified via PCR to understand the state of methylation. 

 

The bisulfite modification of DNA samples was carried out with the EpiTect bisulfite 

kit (Zymo) (Fig. 9) as described by the manufacturer. For each conversion reaction 1 ug 

of DNA was used. After conversion, the modified DNA was purified and eluted in 20 ul 

of TE (2,5 mmol / L EDTA, 10 mmol / L Tris-HCl (pH 8)), then used immediately or 
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stored at -20 ° C for one month. Positive control (100%) and standard curves were 

produced using universally methylated (uDNA) and methylated (mDNA) DNA. 

 

DNA Input: each treated sample have 500 ng of DNA 

Conversion efficiency: >99% of unmethylated Cytosines are converted to Uracil 

DNA Recovery: >80% 

 

• Add 5uL of M-Dilution Buffer to DNA sample. Add Nuclease-Free 

water to a final volume of 50μL.  

• Incubate 15 min at 37°C, and add 100μL of CT Conversion Reagent to 

each sample. Incubate for 12 to 16 hours at 50°C. 

• At the end of incubation time, transfer each sample to individual 

separation columns, containing 400μL of M-Binding Buffer. After the 

first centrifugation, the DNA remains attached to the resin present in the 

column while the buffer is discarded.  

• Add M-Desulphunation Buffer and incubate 15-20 min.  

• Add M-Wash Buffer and centrifuge to wash the DNA.  

• Add 20 μL of M-Elution Buffer to release DNA from the resin.  

 

Converted DNA can be conserved at -80° for up to three months.  
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Fig 9.- EZ DNA Methylation procedure (source ZIMO RESEARCH 2010) 

 

MSP primers 

The MSP primers are designed to amplify only the methylated DNA thus the possible 

errors associated with MIP based methods are no longer a problem. This specificity is 

achieved by including a few CpG sites in the sequence of the primer, preferably at the 

3’ end (Fig. 10) (see Table 4 for MSP primers). 

If PCR strict conditions are followed, only the amplification of methylated DNA will 

occurs. MSP assays are generally associated with high levels of false positives, 

especially when using large numbers of PCR cycles, which are often necessary to obtain 

high-sensitivity analytical assays. False-priming events (in which the amplification 

takes place despite the mismatch between primer and sample) and not fully converted 

DNA molecules may be responsible for false-positive results. The events of false-

priming can be detected through the use of an appropriate negative control and 

prevented by limiting the number of cycles and using higher annealing temperatures. 
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The present study analyzes four genes, APP, SIRT1, APOE, PSEN1 and PIN1. We also 

used MYOD_noCpG. Of each of these genes we create their MSP primers in order to 

perform MSP Real-Time PCR. 

 

After retrieving the correct sequence of special databases of the gene of interest, we 

look upstream in the promoter region for CpG rich areas (CpG Island). Several pairs of 

suitable sequences are tested (forward / reverse primers). 

 

 
 

Figura 10.- Graphic representation of CpG rich areas (CpG Island) within gene promoter region. 

 

 

 

PRIMERS Forward (5’ – 3’) Reverse (3’ – 5’) 

PIN1 GTCGTTTCGGATTATTTAGGAGTC TAACTAACCGCGCTCTACACCG 

APP CGTTTGTTTTATTTTTTTAAATCGA ACGACCCACCTAAACTTCGTA 

SIRT1 CGGATTAAAATTTGAGTTGTTTC CCTTCCTCTTTATAACGAACGTA 

PSEN1 GGGGTTTTCGTTTTTAGTTC AACGATTACGAAAAAAACCC 

APOE ATTTCGGAATTGAGGGGTAC CTCGAAACGAACCCAAAC 

Myod no CpG  CCAACTCCAAATCCCCTCTCTAT TGATTAATTTAGATTGGGTTTAGAGAAGGA 

 
Table 4.-Sequence of MSP primers used for MSP RT-PCR. 
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MSP Real-Time PCR 

For the methylation PCR study, a SYBR Green PCR kit was used. Each 20 ul of PCR 

reaction contains: 2 ul of eluted bisulfite modified DNA, 10 ul of SYBR Green PCR 

Master Mix, 1 ul of each of the two primers (concentrations used vary from 10 to 100 

pmol / ul resulting in final concentrations of 0.3 to 3 uM), and 6 ul of DNase-free water. 

To normalize for the amount of input DNA, we have chosen a pair of primers 

corresponding to a specific sequence of MyoD gene. 

Real-time PCR conditions were 95 ° C for 15 minutes followed by 45 cycles of 94 ° C 

for 15 s, 60 ° C for 30 s, 72 ° C for 30 s with data acquisition after each cycle. At the 

end, the amplification products will be verified by melting curve analysis: 95 ° C for 1 

min, 55 ° C for 1 min, followed by 80 cycles of increasing incubation temperature for 

10 s each, from 55 ° C to up to 95 ° C (0.5 °C increase) with data acquisition after each 

cycle. Two replicates for each sample were used and PCR was performed in a DNA 

Engine Opticon 2 continuous fluorescence detection system (MJ Research, Waltham, 

MA, USA). Ct values of each sample were recorded. Methylation percentage was 

calculated by 2^(-DDCT), where DDCT = (Ct Target - Ct, MyoD) sample - (Ct Target - 

Ct, MyoD) fully methylated DNA and multiplied by 100. A calibration curve using the 

fully methylated DNA was carried out in parallel with each analysis, providing 

additional confirmation for each sample as methylation ratio, defined as the ratio of the 

fluorescence emission intensity values of target PCR product respect those of Myod 

PCR products. The correct length and purity of PCR products were verified by agarose 

gel electrophoresis (1,5% agarose). 

 

TEMPERATURE APP SIRT1 APOE PSEN1 PIN1 

Gene expression 60°C 60°C 60°C 60°C 55°C 

DNA methylation 55°C 55°C 55°C 55°C 57°C 

 

Table 5.- Annealing temperature for gene expression and DNA methylation of studied genes. 

 

3.2.3 WESTERN BLOTTING  

 

Histone modifications analysis 

For protein extraction, PBMCs were lysed in Triton X-114/Tris buffer in the presence 

of a protease inhibitor cocktail (Sigma, Italy). Extracted proteins (20 μg) were separated 
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by 15% SDS-polyacrilamide-resolving gel under reducing conditions, and transferred to 

0.45 μm nitrocellulose membranes (Bio-Rad, Italy). Bands were immunovisualized with 

monoclonal antibodies against either Histone 3 lysine 27 trimethylated (H3K27me3) 

(Millipore, 17-622), Histone 3 lysine 4 trimethylated (H3K4me3) (Abcam, ab8580), 

Histone 3 lysine 9 acetylated (H3K9Ac) (Millipore, 17-658) or GAPDH, the latter used 

to normalize the acetylation and methylation status of H3, followed by a horseradish 

peroxidase-linked anti-mouse antibody and a chemiluminescent substrate (Amersham 

Biosciences Corp., Milan, Italy) (Table 6). Membranes were scanned and the intensities 

of the immunoreactive bands were quantified by densitometry, using a molecular 

analysis software system (Bio-RAD GS-700 Imaging Densitometer). 

 

PRIMARY ANTIBODIES KDa DILUTION 

Antibody Anti-acetyl-Histone H3 (Lys 9) 17 1:1000 

Antibody Anti-trimethyl-Histone H3 (Lys 4) 17 1:5000 

Antibody Anti-trimethyl-Histone H3 (Lys 27) 17 1:1500 

Antibody monoclonal anti-GAPDH 35 1:3000 

 

SECONDARY ANTIBODIE DILUTION 

Antibody anti-rabbit horse radish peroxidase 1:3000 

Antibody anti-mouse horse radish peroxidase 1:3000 

 
Table 6.-Proteins and antibodies concentrations used for Western Blotting analysis. 
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4. RESULTS 
 

4.1 PARKINSON’S DISEASE 
 

We observe a decrease of weight in all animals after the treatment with the association 

of PQ + MB HD and LD, being statistically significant versus control group at the same 

time of injection (Fig 11). The animals treated with PQ + MB HD and LD (Fig 12) 

showed a significant decrease of locomotion (204 ± 28 steps and 295 ± 52 steps of 

control, respectively). Regarding the results of behavior both associations revealed an 

increased statistically significant in the levels of disagreement of the animals (Fig 13).  

 

The immunoreactivity observed in western blotting revealed decreased levels of TH in 

the SN after the treatment with the association of PQ + MB HD and LD  (78,4 ± 10,1 % 

and 39,7 ± 14,5 % of control, respectively), being statistically significant only for PQ + 

MB LD. We observed a decrease in TH immunoreactivity in CP after PQ + MB HD and 

LD (85,3 ± 8 % and 65,9 ± 5,5 % respectively compared with Control) (Fig 14), with 

statistically significant differences only after the association of PQ + MB LD. The 

levels of SNCA, assessed in the western blotting analysis, showed an increase in the PQ 

+ MB HD and LD groups in the SN (132,1 ± 11,1 % and 153 ± 13 % of control, 

respectively) and CP (162,6 ± 13,8 % and 130,9 ± 14,9 % of control, respectively), 

being statistically significant in both areas (Fig 15). The levels of Parkin mRNA 

revealed a significant decreased in the SN after the treatment with PQ + MB HD and 

LD (57 ± 9 % and 67 ± 5 % of control, respectively), no significant modifications was 

observed in the CP (98 ± 9 and 92 ± 17 % of control, respectively) after both treatment 

(Fig 16). 

 

P-ERK 1/2 immunoreactivity showed an increased level after the treatment with PQ + 

MB HD and LD (127,8 / 118,35 ± 2 / 4,5 % and 107,33 / 128 ± 11,96 / 15,7 % of 

control, respectively) being statistically significant for ERK-1 after the association of 

PQ + MB HD. No changes was observed in P-ERK 1/2 in the CP after PQ + MB HD 

and LD (105,17 / 88,1 ± 21,58 / 23,96 and 93,33 / 67,67 ± 25, 44 / 18,35 % of control, 

respectively)(Fig 17). No significant changes was observed after the treatment with PQ 
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+ MB HD and LD in P-CREB (106,81 ± 13,99 % and 92,86 ± 5,38 % of control, 

respectively)(Fig 18) and GAD 65/67 (88,36 ± 8,41 % and 93,61 ± 3,4 % of control, 

respectively)(Fig 19) immunoreactivity in the SN. The treatment with PQ + MB HD 

and LD doesn’t generates changes in values of P-CREB and GAD 65/67 (95,96 ± 5,53 

and 101,28 ±  7,09 % of control, respectively) immunoreactivity in CP (Fig 18,19). 

 

The values obtained in PDYN mRNA levels showed a decreased after the treatment 

with PQ + MB HD and LD both in the SN (69 ± 11 % and 91 ± 8 % of control, 

respectively), being statistically significantly after the treatment with PQ + MB HD. 

While in the CP no differences for both associations (93 ± 21 % and 99 ± 6 % of 

control, respectively) was observed (Fig 20). KOPr mRNA levels showed a 

significantly decrease after the treatment with PQ + MB HD, but not after PQ + MB LD 

(59 ± 4 % and 71 ± 6 % of control, respectively) in SN. A decrease was observed in the 

KOPr mRNA levels after PQ + MB HD and LD (66 ± 10 % and 91 ± 9 % of control, 

respectively) in the CP being significant only after the treatment with PQ + MB HD 

(Fig 21). 

 

Regarding the N-OFQ/NOP system we observe increased levels of ppN/OFQ mRNA 

after the treatment with PQ + MB HD and LD (115 ± 21 % and 152 ± 16 % of control, 

respectively), being statistically significant only for the LD in SN. No variation in the 

values of ppN/OFQ mRNA expression in the CP for both associations (93,9 ± 19,4 % 

and 89,7 ± 10,5 % of control, respectively) was observed (Fig 22). Level of NOPr 

mRNA expression showed a statistically significant decrease in the SN after the 

treatment with PQ + MB HD and LD (63 ± 5 % and 63 ± 7 % of control, respectively), 

while in the CP, NOPr gene expression did not change significantly after PQ + MB HD 

(100,1 ± 12,2 % of control) and LD (94,2 ± 11,4 % of control) treatment (Fig 23). 
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Fig 11.- Weight of rats after administration of PQ + MB HD and PQ + MB LD. *P < 0.05; **P < 0.01 

versus control group in the same time of injection. 
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Fig 12.- Locomotion activity on the day after the last administration of PQ + MB HD and PQ + MB 

LD in rats. *P < 0.05 versus control group. 
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Fig 13.- Behavioral effects on the day after PQ + MB HD and PQ + MB LD administration in rats. *P 

< 0.05; **P < 0.01 versus control group. 

 

 

 

 

 

 

 

 

 

 

 



 67

Substantia Nigra

Control PQ/MB HD PQ/MB LD
0

50

100

150

**
TH

 d
en

si
ty

 (%
 c

on
tr

ol
)

 

 

 

 

Caudate Putamen

CONTROL PQ/MB HD PQ/MB LD
0

50

100

150

*

TH
 d

en
si

ty
 (%

 o
f c

on
tr

ol
)

 

 

Fig 14.- Effects of PQ + MB HD and PQ + MB LD on the density of TH immunoreactivity in SN and 

CP. *P < 0.05 **P < 0.01 versus control group. Values represent mean ± SEM. 
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Fig 15.- Effects of PQ + MB HD and PQ + MB LD on the density of TH immunoreactivity in SN and 

CP. *P < 0.05 versus control group. Values represent mean ± SEM. 
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Fig 16.- Levels of Parkin mRNA in SN and CP. Bars represent 2-DDCt value calculated by DDCt 

method. Expression was normalized to GAPDH and means of mRNA levels are expressed relative to 

control ± SEM. *P < 0.05 versus control group. 
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Fig 17.- Effects of PQ + MB HD and PQ + MB LD on the density of P-ERK 1/2 immunoreactivity in 

SN and CP. *P < 0.05 versus control group. Values represent mean ± SEM. 
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Fig 18.- Effects of PQ + MB HD and PQ + MB LD on the density of P-CREB immunoreactivity in 

SN and CP. Values represent mean ± SEM. 
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Fig 19.- Effects of PQ + MB HD and PQ + MB LD on the density of GAD 65/67 immunoreactivity in 

SN and CP. Values represent mean ± SEM. 
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Fig 20.- Levels of pDYN mRNA in SN and CP. Bars represent 2-DDCt value calculated by DDCt 

method. Expression was normalized to GAPDH and means of mRNA levels are expressed relative to 

control ± SEM. *P < 0.05 versus control group. 
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Fig 21.- Levels of KOP mRNA in SN and CP. Bars represent 2-DDCt value calculated by DDCt 

method. Expression was normalized to GAPDH and means of mRNA levels are expressed relative to 

control ± SEM. *P < 0.05 versus control group. 
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Fig 22.- Levels of ppN/OFQ mRNA in SN and CP. Bars represent 2-DDCt value calculated by DDCt 

method. Expression was normalized to GAPDH and means of mRNA levels are expressed relative to 

control ± SEM. *P < 0.05 versus control group. 
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Fig 23.- Levels of NOPr mRNA in SN and CP. Bars represent 2-DDCt value calculated by DDCt 

method. Expression was normalized to GAPDH and means of mRNA levels are expressed relative to 

control ± SEM. *P < 0.05 versus control group. 
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4.2 ALZHEIMER’S DISEASE  
 

The gene expression analysis showed increased values for APP, SIRT1 and PIN1 in the 

AD twin, respect the healthy twin. No changes where observed beetwen the MZ twin 

for the APOE mRNA levels. A decrease in the values of PSEN1 mRNA was observed 

in the AD twin respect of control twin (Table 7). 

 

Regarding the changes in DNA methylation, we observe a general decreased 

methylation level of APP, SIRT1, PSEN1 and PIN1 for the MZ twins (healthy and AD). 

No difference in methylation levels was observed in the promoter region of APOE 

(Table 8). 

 

An increase in the histone modification that leading to activation of transcription was 

observed in the immunoreactivity of H3K9 Ac and H3K4 me3 (34,8 and 84,1 %, of 

control, respectively) in the AD MZ. While an increase in the density of H3K27 me3 

(129% of control) was observed in the AD twin (Table 9). Representative immunoblots 

are shown in Fig 24. 
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 APP SIRT1 APOE PSEN1 PIN1 
MZ twins Cont     AD Cont    AD Cont     AD Cont    AD Cont      AD 

Gene expression 1        ↑↑↑   1      ↑↑↑↑ 1         0,97 1         0,46 1           41 
 
 

Table 7.-Gene expression analysis: The DDCt for each gene is indicated. The DDCt was calculated from 
the changes in gene transcription in the AD versus the healthy twin. 

 
 
 
 

 APP SIRT1 APOE PSEN1 PIN1 
MZ twins Cont  AD Cont     AD Cont     AD Cont    AD Cont      AD 

% Met. DNA 2,3     5,8 1,1       3,8 100     100 0           0  2,9        0,9 
 
 

Table 8.-DNA methylation status of gene promoter regions: % of methylation at each gene promoter 
calculated for AD and control (CT) twins using Myod as reference gene. 

 
 
 
 

 H3K9 Ac H3K4 me3 H3K27 me3 
MZ twins Cont      AD Cont      AD Cont     AD 

Immunoreactivity (%) 100        34,8 100         84,1 100        129 
 
 

Table 9.-Analysis of histone modifications: H3K9Ac, H3K4me3, H3K27me3, % changes between AD 
and control (CT) twins. 
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Fig 24.- Representative immunoblots for histone modifications, H3K9 Ac, H3K4 me3 and H3K27 me3 
respectively. 
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5. DISCUSSION 
 
5.1 PARKINSON’S DISEASE 
 

In the present study, the 40% of the treated animals with PQ + MB HD either died or 

had to be sacrificed as a result of severe weight of loss and/or signs of respiratory 

distress following the third injection, consistent with progressive neurotoxicity 

(Cicchetti et al 2005, Saint-Pierre et al 2006). As pointed by Cichetti et al 2005, who 

established that differently to other pesticides, the association of PQ + MB do not result 

in animal death, our study indicates that the association of PQ + MB LD generated a 

consistent changes in weight with weight increase but at a lower rate than control group. 

Cichetti et al 2005 have also indicated that animals treated with PQ or the association of 

PQ + MB show respiratory difficulties due to lung anormalities like alveolitis and 

broncheolitis. This observation agrees with our results, since we have evidenced 

respiratory distress in animals treated with the associations of PQ + MB HD. It has been 

described that only combined exposure was able to produce the sustained decreases in 

motor activity immediately following injections, with activity levels returning to control 

values 24 h later (Thiruchelvam et al 2000). These results associated with behavior 

demonstrated that both pesticides are capable to generate changes in the neural 

connexion between SN and CP, essential brain regions that support the normal motor 

functions (Dinis-Oliveira et al 2006). 

 

A decreased immunoreactivity of TH, the rate-limiting enzyme for dopamine synthesis, 

was observed in both brain areas indicating progressive loss of dopaminergic neurons, 

with a lower TH levels after the treatment with PQ + MB LD in SN, confirming 

dopaminergic system damage. We can hypothesize that the type of exposure, like dose 

and number of injections can modulate different levels of degeneration, indicating that a 

lower dose but at major time of exposure can induced a hight loss of dopaminergic cell, 

confirmed by a significant decreased of TH immunoreactivity in both brain areas after 

the lower dose.  

 

As previously mentioned one of the histopathological hallmark of PD is the presence of 

Lewy bodies. One theory is that Lewy bodies could be beneficial to neurons, moving 

the partially aggregated species into a relative safe and sequestered form (Baptista et al 
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2004). The increase of SNCA observed in our study is in agreement with other studies, 

in vivo and in vitro (Manning-Bog et al 2002) revealing that the fibrillation of SNCA 

may be accelerated by common pesticides such as PQ and MB (Manning-Bog et al 

2002) causing oxidative damage and leading to a higher cells vulnerability (Hsu et al 

2000, Kanda et al 2000, Ko et al 2000).  Also, other authors have shown that dopamine 

can modulate the aggregation of SNCA. Dopamine induces the aggregation of both 

A53T and WT SNCA in human neuroblastoma M17 cells (Moussa et al 2008). SNCA 

expression can alter the homeostasis of dopamine leading to an increase in cytosolic 

levels; the oxidation of dopamine generates reactive intermediates and ROS that among 

other things causes impairments of protein function (Leong et al 2009). For otherwise 

was observed a decrease in mRNA levels of parkin. Parkin is neuroprotective in a 

number of different model systems and, importantly, can protect against SNCA toxicity 

in vitro (Petrucelli et al 2002) and in vivo (Yang et al 2003). This leads to the concept 

that parkin and SNCA have opposite actions and affect cell survival pathways that may 

involve the toxicity of cellular proteins (Baptista et al 2004). Despite the observation 

that SNCA has a major effects on the mitogen-activated protein kinase (MAPK) and 

stress-activated protein kinase pathways, and for this reason the overexpression of 

SNCA can result in an inappropriate activation of the MAPK pathway throught 

interaction between SNCA and ERK-2, our results indicate only changes in the values 

of P-ERK-1 on the SN in the animals treated with PQ + MB HD, but not in the rest of 

the treated animals, suggesting that in our experimental conditions the pesticides 

utilized did not involve these pathways in the mechanisms underlying the development 

of PD symptoms. No change was observed in the values of P-CREB in the SN and CP 

of all treated animals, suggesting that the toxicity of PQ and MB has not involved this 

way of action. To determinate the effect of PQ + MB, in the non-dopaminergic neurons 

(i.e. GABA), we assessed the levels of GAD 65/67, enzyme that convert glutamate to 

GABA. In our experiment the levels of GAD 65/67 were unmodified after both 

treatments in SN and CP, supporting a lack of involvement of PQ + MB toxicity in the 

GABAergic system. These results are in agreement with our previous data (Di 

Benedetto et al 2009), obtained after MPP+ administration.  

 

We observed a significant decrease of pro-dynorphin (PDYN) mRNA levels in SN of 

animals treated with PQ + MB HD, and a significant decrease in the levels of KOPr was 

obtained in the SN of rats after the treatment with PQ + MB HD. A large body of work, 
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based on animal models of PD, has demonstrated that dopamine denervation modulates 

the expression of striatal peptides (Steiner and Gerfen 1998, Carta et al 2001, Carta et al 

2003). Removal of DA input to the striatum leads to a decrease in dynorphin mRNA 

expression and increased levels of enkephalin mRNA (Steiner and Gerfen 1998, Carta 

et al 2001, Carta et al 2003). The imbalance between these two pathways is thought to 

contribute to the motor dysfunction associated with PD. Animals treated with PQ + MB 

HD showed a compromised motor activity thus the modifications observed in KOPr 

mRNA after this treatment could affect motor compromission. PDYN and KOPr are 

localized in abundance in both globus pallidus and SN reticulate (Haber and Watson 

1985, Mansour et al 1987) placing this opioid system in a strategic location to modulate 

motor function. Even thought data on PDYN in PD are not unequivocal, a decrease in 

the PDYN levels in the striatum has been observed in PD patients (Bäckman et al 

2007). Nevertheless PD is a chronic neurodegenerative disease normally associated with 

aging; it cannot be easily compared with animal models of parkinsonism, which 

normally involve young animals with a rapid onset and short duration of DA neuron 

degeneration and striatal DA depletion. Others factors may influence the data on this 

system, like duration of treatment, affecting the neuromodulation activity and 

expression of striatal peptides (Bäckman et al 2007). 

 

The possible role of N/OFQ-NOP system in the pathology of PD remains poorly 

understood, but it has been suggested that endogenous N/OFQ may contribute to 

symptoms and neurodegeneration associated with PD (Marti et al 2005, Di Benedetto et 

al 2009). The analysis of ppN/OFQ showed an increase in the mRNA levels in SN after 

the treatment with PQ + MB LD in according with other studies (Marti et al 2005, Di 

Benedetto et al 2009) with no significant differences observed in CP after either 

treatment. Several studies demonstrated that the i.c.v. administration of N/OFQ in rats 

decreases the extracellular dopamine levels in the SN and in the ventral tegmental area 

(Murphy and Maidment 1999), with some neuropathological implications that involve 

the control of motor activity due to the inhibitory action of N/OFQ on the release of 

several neurotransmitters, that include noradrenaline, serotonin, glutamate and 

dopamine (Schlicker and Morari 2000, Flau et al 2002). The default of alterations of 

GAD65/67 levels in either the SN or the CP following PQ + MB HD and LD 

administration, leads us to hypothesize a lack of involvement of glutamate in the 

toxicity of both pesticides. Moreover it has been shown that MPP+ induces an increase 
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in ppN/OFQ gene expression in the SN in the absence of significant changes in 

GAD65/67 expression, suggesting that even in the toxic effects of this neurotoxin there 

is an involvement of the N/OFQ–NOP system that may be evoked by a mechanism of 

action that does not require changes in GAD expression (Di Benedetto et al 2009). On 

the other hand, the effects of both treatments induce a significant 40% decrease in the 

values of NOP mRNA levels in the SN and CP. Our results are in agreement with data 

obtained in other experimental PD models, after 6-OHDA (Norton et al 2002) and with 

MPP+ treatments (Di Benedetto et al 2009), the latter compound having a structure 

similar to PQ. On the basis of these results, it has been suggested that the 

pharmacological or genetic blockade of NOP in the SN may represent a novel target in 

PD therapy (Marti et al 2005). Norton et al 2002 indicated that NOP mRNA is mainly 

expressed in tegmental and nigral dopaminergic neurons and, for this reason, the 

decrease in the values of NOP mRNA in the SN may reflect a loss of dopaminergic 

neurons, being consistent with the decrease of immunoreactivity of TH. On the 

contrary, N/OFQ mRNA is largely expressed in GABAergic neurons (20-25%) present 

in the SN, and this different localization may explain why the levels of N/OFQ were not 

decreased in this area. On the other hand, it is interesting to point out that we also 

observed a down-regulation of both ppN/OFQ and NOP mRNAs in the CP after both 

the neurotoxins administration. The cellular location and functional role(s) of ppN/OFQ 

and NOP mRNAs in the CP are unknown. Another possible explanation for these 

opposite results, between peptide and receptor, is that the NOP down-regulation 

observed might be a result of the increase of N/OFQ in the SN (Di Benedetto et al 

2009).  

 

Several publications have established that inhibiting N/OFQ-NOP system may improve 

the symptomatology of PD (Marti et al 2005, Marti et al 2007, Brown et al 2006). 
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5.2 ALZHEIMER DISEASE 
 

MZ twins constitute an excellent example of how genetically identical individuals can 

exhibit differences and therefore provide a unique model to study the contribution of 

epigenetic modifications in the establishment of the phenotype.  

 

Among the genes investigated, we observed a large increase in APP, SIRT1 and PIN1 

gene expression in the AD versus the healthy twin, in agreement with previous data on 

APP overexpression in specific areas of AD brains (Johnson et al 1990). The increase 

observed in APP mRNA levels is in agreement with the pathologic changes presented in 

this disease, like formations of senile plaques, hallmarks of AD. Regarding the levels of 

PIN1, it has been demonstrated that it acts on both tau and APP, regulating their 

dephosphorylation, processing and biological functions (Liou et al 2003). The 

hyperphosphorylation of tau protein could be related to unbalanced kinase or 

phophatase activities, which are further regulated by other proteins like PIN1, leading to 

a tangle formation and neurodegeneration (Lu et al 2003). It has been hyphotesized that 

reduced PIN1 activity in the frontal cortex of patients with MCI contribute to the initial 

accumulation of hyperphosphorilated tau and followed, in a more advanced stage of the 

disease, by a compensatory upregulation of the PIN1 gene that counteracts Aβ plaque 

formation (Wang et al 2007). According to our results, Arosio et al 2011 have recently 

indicated that in PBMCs of subjects with late onset disease, a significant increase in 

PIN1 gene expression together with a significant decrease in gene promoter methylation 

was observed. 

 

The induction of SIRT1 mRNA levels may be alterated under various neurotoxic 

conditions (Kim et al 2007) and may be interpreted as a neuroprotective adaptation 

response. It seems that SIRT1 enhance cellular repair mechanisms and buys time for 

these mechanisms to work, so conceptually sirtuins may promote health and longevity, 

in part, by slowing cell death and prolonging function in cells. Wang et al 2010 suggest 

that SIRT1 activation may downregulate the generation of Aβ peptides interfering with 

AD mechanisms. A possible link between SIRT1 and AD came from the potential 

benefits of caloric restriction on AD symptoms and progression. The epidemiology of 

neurodegenerative diseases are related with multiple genetic factors, diet and social 
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behaviour (Mattson et al 2002). High caloric diets are associated with the risk of AD, 

and a low caloric diet have a reduced risk of developing AD by promoting SIRT1-

mediated regulation of APP processing mechanisms relevant to the generation of 

amyloidogenic Aβ peptides and neuritic plaque deposition in the brain in mouse model 

of AD (Wang et al 2010). 

 

A strong association between early onset AD and high levels of PSEN1 expression has 

been described due the proteolytic activity of PSEN1 against βAPP, cleaving it and 

leading to Aβ and p3 accumulation (Steiner et al 1999). However, Theuns and Van 

Broeckhoven 2000 suggest that PSEN1 may be up or down regulated in AD depending 

on the cell-type analyzed. Our results confirmed this situation, since we found a 

decrease in the gene expression of PSEN1, suggesting that, even when the role 

described for PSEN1 is fundamental in Aβ generation, it is not the only one that could 

be proposed for this gene, mainly because of the existence of several cross-talk with 

another cellular pathways, like NOTCH signaling as suggested by Steiner et al 1999, 

which alternatively can induce cellular death leading to the disease presentation. 

 

The presence of the ɛ4 allele in APOE represents the most important genetic risk factor 

for late onset sporadic AD, but despite the magnitude of the APOE ɛ4 risk effect and a 

possible mechanistic link with Aβ pathology, it is still far from clear how APOE ɛ4 is 

involved in AD pathogenesis (Kok et al 2009). The APOE protein plays a central role in 

the regulation of cholesterol and triglyceride metabolism in the context of AD 

pathology (Bales 2010). Moreover, it has previously proposed that the synthesis of 

ApoE might play a role in regional vulnerability of neurons in AD. Despites of these 

hypotheses, no changes was observed in APOE mRNA levels between the MZ twins, 

suggesting that several factors can influence the expression of this gene, and further 

studies are necessary to confirme the transcription of APOE gene. 

 

With the getting age of the population, the growing incidence and prevalence of AD 

increases. It is clear that aging and AD are associated with epigenetic dysregulation at 

various levels, and twin studies in AD support the notion that epigenetic mechanisms 

mediated the risk for AD. Recently Wang et al 2008 reviewed evidence for non-

mendelian anormalies in sporadic AD, suggesting an important role for environmental 

risk factors and epigenetic regulation in the causes of sporadic AD. The methylation of 
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CG sequence can affect nearby gene expression and hypomethylation of regulatory 

sequences usually relates to gene expression, in agreement with the majority of our 

results for DNA methylation of promoters regions, where a very low hypomethylation 

was observed for many of the genes investigated in both MZ twins, even for those 

where alterations on gene expression were observed. 

 

The hypomethylation observed in APP promoter region seems to have again a strong 

component. One study from the early 90’s in a post-mortem brain sample of an 

unaffected patient suggest that APP promoter is always unmethylated in brain and 

hence may not be controlled by DNA methylation in the brain of healthy individuals 

(Milici et al 1990). These results may be confirmed by a low DNA methylation in the 

APP promoter region close to the transcriptional start site reported in both AD and 

healthy subjects in post-mortem analysis of the frontal cortex and hippocampus of the 

promoter for APP and PSEN1 (Barrachina et al 2009). Age-dependent methylation 

changes associated with AD have been previously reported for the APP gene. Toghi et 

al 1999 reported that some of the CpG sites within the APP promoter can be partially 

methylated in brains of healthy individuals (≈26% methylation), accompanied by a 

reduction with age (˂8%) in methylcytosine content in these CpG sites. 

 

Moreover, a hypomethylation of PSEN1 that was not related to age or disease state has 

been documented (Siegmund et al 2007). PSEN1 is expressed at high levels in the brain 

cells as well as in lymphocytes and are, as expected, unmethylated in both tissues 

(Wang et al 2008). The same authors described in prefrontal cortex of late onset AD an 

abnormal PSEN1 methylation patterns and were usually associated with 

hypomethylation of the promoter.  

 

The hypomethylation observed for the PIN1 promoter region is in agreement with the 

findings in PBMCs of subjects with late onset AD, where observed a significant 

increase in PIN1 gene expression together with a significant decrease in gene promoter 

methylation (Arosio et al, 2011). The authors suggest that the modifications found in 

PIN1 in the same subjects support the hypothesis that PIN1 plays a signifanct role in 

AD. 
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APOE is the main candidate for late onset AD and patients are routinely screened for 

APOE genotypes. We found that APOE gene was strongly methylated in both twins, 

complementing a previous study in both late-onset AD and normal elderly (Wang et al 

2008). It is important to point out that both twins were carring the ApoE ε4 allele, a 

major genetic risk factor for late-onset sporadic AD (Bu 2009). No difference on 

promoter for APOE was observed, but is possible to observe a major level of 

methylation than the other genes. Interestingly, the APOE gene belongs to a group of 

genes that no posses a classical CpG island in their promoters, but rather low CpG 

density regions (Weber et al 2007). 

 

Overall, our results are in agreement with a generalized reduction of DNA methylation 

upon ageing (Scarpa et al 2006). Several researchers have reported both global and 

locus-specific differences in DNA methylation; and histone acetylation in identical 

twins at different ages (Fraga et al 2005). They have concluded that, whereas young MZ 

twin pairs are essentially indistinguishable in their epigenetic markings, older MZ twin 

shows substantial variations, consistent with changes in gene expression, and the 

differences reported is up to four times greater in older MZ twins than those observed in 

young twin couples (Martin 2005). 

 

Data on histone modifications in humans AD brain tissues are sparse. It was reported, in 

a post-mortem neuropathological examination of the brains of MZ twins discordant for 

AD, that the pathology of the disease was associated with a marked increase of the 

H3K9 me3, considered as marker of gene silencing, and condensation of 

heterochromatin structure in the temporal cortex and hippocampus of the twin with AD 

when compared with the healthy twin (Chouliaras et al 2010). Interestingly, among the 

histone modifications studied it has been observed a strong reduction of H3K9Ac, 

tipically associated with gene activation, in the AD twin. The latter finding seems of 

particular relevance in the context of published data, since the observed up-regulation of 

SIRT1 could be linked to an increase of histone deacetylases and a subsequent reduction 

of histone acetyltransferases (Narayan and Dragunow 2010). In accordance with our 

results, it has been reported an increase in the levels of SIRT1 evidenced by a decrease 

in acetylation state of PGC-1 alpha, a target for SIRT1 deacetylase activity (Nemoto et 

al 2005). The decrease in the immunoreactivity observed for H3K9 Ac and H3K4 me3 
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and the increase in the density of H3K27 me3 allows hypothesize a general low gene 

expression for AD. 
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6. CONCLUSIONS AND PERSPECTIVES 
 

Our results allow us to conclude that the exposure to PQ and MB by action of DA 

modulates the N/OFQ–NOP system gene expression in SN and CP, strengthening the 

hypothesis that this neuropeptidergic system could be strongly involved in the 

mechanisms underlying PD. Furthermore, our findings enhance the evidence available, 

supporting the hypothesis of a potential value of NOPr antagonists for the alleviation of 

PD symptoms, and possible neuroprotection following exposure to neurotoxins. 

 

On the other hand, the results regarding AD help to improve our understanding of key-

genes in AD. APP, APOE, PSEN1, SIRT1 and PIN1 are involved in AD pathogenesis, 

as the main theories has pointed, and epigenetic changes related to promoter region of 

these genes changes according pathologic status. Additionally, these results allow 

confirm that the use of peripheral blood cells is a useful model for the study of gene 

regulation directed to identify critical alterations within the brain. Finally, this study 

also suggests that epigenetic differences, possibly related to environmental factors and 

normal physiology, could be relevant to generate molecular alterations linked to AD. 

 

Diagnosis of Parkinson’s and Alzheimer’s diseases is mainly made by exclusion of 

other neuropathologies with similar symptomatologie. Moreover, the impossibility to 

access directly to the affected tissue prevents identify the first critical changes that 

verify in the brain at the beginning of the disease. Traditionally, animal models have 

allowed improve our knowledge about these diseases, evidencing main pathways 

involved and suggesting potential therapies. However, they are only models and lack of 

some important keys related with these diseases. Epigenetic modifications have proven 

to be related with changes of gene expression in several pathologies and these 

modifications can be detected in PBMCs.  

 

In conclusion, the results of this doctoral thesis support the idea that epigenetic changes 

assessed in PBMCs can be useful in neurodegenerative disorders, like AD and PD, 

enabling identification of new biomarkers in order to develop early diagnostic 

programs. 
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