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Abstract

In this thesis it is studied in detail the possibility to use the mechanism of

dynamic stabilization for mitigating the deleterious effects of the Rayleigh-

Taylor instability which arises in ablation fronts in inertial confinement

fusion. This approach has been originally proposed by Boris in 1977 and

later considered by Betti in 1993.

From an historical point of view, such a method has been proposed proba-

bly for the first time to stabilize the inverted pendulum, and has also been

appplied to the control of Rayleigh-Taylor instability in Newtonian fluids.

In practically all those studies dynamic stabilization was obtained by ap-

plying a sinusoidal modulation to the background gravity leading to the

instability of the system, probably on the basis of believing that sinusoidal

modulation was the simplest waveform that could be both produced and

analyzed. However, from a mathematical point of view this approach leads

to a Mathieu equation which is very difficult to analyze, and makes very dif-

ficult to find the regions of stability. In this thesis, it is shown that there is

no reason for choosing such a driving modulation, but instead the simplest

possible waveforms, that is Dirac deltas and square waves, can be used for

dynamic stabilization without loosing sight of the physical picture of the

whole system.

In addition to that, in this thesis two situations will be considered, namely

an ablation front driven by ion beams and by thermal conduction. It is

demonstrated that even for an ion beam driven ablation front some frac-

tion of the energy must be transported by thermal conduction, to make

the dynamic stabilization of the front possible. Besides, it is shown that

some damping effect introduced by the ablation process itself is also es-

sential. The use of simple modulation waveforms allows to find complete

analytical solutions to the equations, and to do a comparison between them



in order to find optimization of the process. Consequently, the important

similarity parameters that govern the problem can be found and this sets

the basis for the design of an experiment. For this purpose, integrated 2D

simulations should be performed starting from the values of the parameters

suggested by the theoretical analysis. In any case, the order of magnitude

of the latters already demonstrates that dynamic stabilization is well within

the present experimental capabilities.In particular, this work could help in

the present ignition campaign that is taking place at the National ignition

facility (NIF) at Livermore (USA).



To my parents
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1

Introduction

1.1 Review on controlled thermonuclear fusion

In 1929 Atkinson and Houtemans discovered the possibility of obtaining energy starting

from nuclear fusion reactions,with much more gain than in the case of nuclear fission.

Nuclear fusion is a process in which two very light nuclei combine forming a nucleus

with a higher binding energy (or lower mass), thus releasing energy according to Ein-

stein’s formula. In 1939 Hans Bethe was the first to propose that nuclear fusion could

be the way the sun produces its energy, and soon it became clear he was right. Ap-

proximately in the 1950s civil reasearch about the possibility of reproducing nuclear

fusion started; nowadays many countries support studies in this field, hoping that we

can find a new resource for the production of electricity. If it were possible to develop a

controlled way of achieving fusion, we could have a very efficient and practically infinite

source of energy. In fact, the energy gain of fusion reactions is 4-8 times larger than in

fission ones, and the fuels (light elements like deuterium) are so abundant in nature as

to provide energy for the conceivable future. In addition to that, such processes do not

produce radioactive waste, although in the case of a reactor neutron production should

be taken into account as a likely problem.

In spite of the considerable effort that has been made so far to dominate the nuclear fu-

sion mechanism, the goal has not yet been reached due to the difficulties that have arisen

each time it seemed quite near. In principle many energy-releasing fusion processes be-

tween different low mass elements are possible. However, the problem in igniting such

a fusion reaction is that the light nuclei are positively charged and strongly repel each

1



1. INTRODUCTION

other, so that under normal conditions the distance between them is so large that a

nuclear reaction is quite unlikely: most of the collisions simply produce a change in

the particles’ trajectories (diffusion)1. In the center of the sun, the high temperature

(≈ 106K) and pressure, together with the large number of particles and the relatively

long time span available, make the cross section for such reactions large enough to

maintain the large energy releases characteristic of the sun. Here on Earth there is not

enough space or time in comparison to the sun, nor its great mass which in turn creates

the necessary gravitational attraction and it would be impossible to produce energy on

a large scale. In a laboratory the only way to overcome the problem of coulombic

repulsion that hinders the nuclei from fusing is to give the nuclei themselves a very

high initial kinetic energy. This can only be achieved by heating the materials to very

high temperatures , so that we deal with a thermalized gas whose particles follow a

random distribution in velocity, namely the Maxwell-Boltzmann distribution; indeed,

it has been statistically proven that most of the observed thermonuclear reactions will

be due to a relatively small fraction of the nuclear collisions in which the relative ener-

gies are greatly in excess of the average (for a more detailed treatment, see (1)). This

mechanism of achieving fusion reactions is called thermonuclear fusion. When it is

done in an uncontrolled way, it gives birth to the hydrogen bomb, and the proof of

its feasibility was obtained in 1952; in this case the detonator is X radiation generated

by a nuclear fission bomb explosion. Experiments to determine the energy required

to ignite fusion fuel in such a way were done between 1978 and 1988 in the series of

Halite-Centurion studies in the USA, and the few data publicly available suggest that

an implosion energy of 20 MJ would be needed. These results gave an idea of what

should be the energy of the driving mechanism, but left scientists with the problem of

how to achieve fusion in a controlled fashion with a fusion reactor.

Because of the high temperatures and densities required for fusion, the fuel has

to be in the plasma state. As we said before, the temperatures and consequently the

thermal velocities of the nuclei have to be sufficiently high so that they have a chance to

1It can be demonstrated that if we simply accelerate a nucleon beam towards a target there is no

gain of energy, since the particles have all the same kinetic energy and move in the same direction, so

that it is very unlikely that at least some can overcome the Coulombic repulsive barrier. Only when

energy is adquired as a result of a growth in temperature particles exhibit a random motion, so that

at least a little fraction of the particle population will have a high kinetic energy.

2



1.1 Review on controlled thermonuclear fusion

approach each other close enough to overcome Coulombic repulsion and be subjected

to the short-range attractive nuclear forces. At this point the nuclei can fuse and

free the enormous power incapsulated inside them. However, under these conditions

matter tends to fly apart very quickly unless constrained in some way, and the higher

the temperature and density, the more difficult it becomes to confine the plasma for

a sufficient amount of time. Therefore, we first have to look for a situation in which

the requirement for confinement is as low as possible, and consequently for the fusion

reaction which is most readily achieved under these conditions.

Even if the energy of the particles is slightly less than that required to overcome

the Coulomb barrier, the fusion process can still occur via tunnelling, but at the same

time the probability of tunnelling increases as much as the particle energy gets closer

to overcoming the barrier. In general, in order to have a sufficient number of fusion

reactions, the thermal energy of the nuclei should not be too much smaller than their

repulsive Coulomb barrier B, which is given by

B ≈ 1.44
q1q2

r1 + r2
MeV (1.1)

Here q1,2 and r1,2 are the charges and radii of the particles in units of the elemen-

tary charge and in fm, respectively. To have an idea of the temperatures needed to

overcome the ”height” of the barrier, let’s consider the simple case of two hydrogen

nuclei. In this situation, the barrier is about 700 KeV, which means that we should

heat the gas (fuel) until it reaches a temperature equal to 2B/3kB ' 3.6× 109K; this

is not a realistic prospect at the moment. Therefore, we have to choose light elements

that have a smaller Coulomb barrier: this is the case of the heavier hydrogen isotopes,

deuterium and tritium. After a calculation of the cross section and the mass defect of

all the possible reactions between these elements, it turns out that the best reaction

is deuterium-tritium fusion because its cross section is two orders of magnitude larger

than the one of the next largest reaction in the relevant temperature range (typically

20-40 keV, as shown in fig.(1.1)). The intermediate product of this reaction is a nucleus

consisting of two protons and three neutrons, which splits immediately into a neutron

of 14.1 MeV energy and an α-particle of 3.5 MeV: 2
1D + 3

1T −−→
4
2He + 1

0n + 17.6 Mev.

3



1. INTRODUCTION

Figure 1.1: Nuclear reaction rates - Nuclear reaction rate as a function of temperature

for the most common fusion reactions. DT is by far the easiest fuel to ignite (source:

Pfalzner, 2006 (2)).

In addition to energetic considerations, this fusion reaction has more advantages in

the abundance and availability of the fuel components. Deuterium can be produced

from sea water, whereas tritium can be generated by lithium reactions with neutrons

directly in the reactor. However, there is still one problem. Lithium resources are likely

to be sufficient for several 104 years , but making it react to produce tritium has two

disadvantages: tritium is a radioactive gas and litium a highly poisonous substance, so

that this task includes safety as an essential goal. Nevertheless it has to be stressed that

such problems are not huge if compared with the ones we have to deal with in fission

reactors: the half life of tritium is 12.5 years, much shorter than the 2.4× 107 years of

uranium 236, or 7.13×1018 of uranium 235, and still negligible if compared to the 24000

and 6600 years of plutonium 238 and 240, respectively. In the end, deuterium-tritium

fusion is still the more advantageous one for producing energy.

4



1.2 Lawson criterion

1.2 Lawson criterion

Once we have chosen the type of reaction we have to achieve a good way of confining the

fuel and obtaining a huge number of fusion reactions per second. First of all, we need a

criterion that allows us to decide if a particular nuclear fusion process is able to produce

a net amount of energy. The Lawson criterion defines the condition needed to reach a

situation in which the heating of the plasma by the products of the fusion reactions is

sufficient to maintain the temperature of the plasma against all losses without external

power input. Here we will assume, in an optimistic view, that the energy losses due to

Bremsstrahlung (that is, electromagnetic radiation emitted by the deceleration of the

plasma charged particles) are negligible, and we will consider only the fusion energy

and the thermal energy of the plasma. Besides, we will derive the formula for the case

of a deuterium-tritium (DT) fuel, but the results can be easily generalized to any other

fusion fuel.

Assuming that the plasma consists of deuterons and tritons of density n
2 each (equimolar

mixture), the volume rate W (numbers of reactions per volume per time) is given by

W =
n2

4
〈vσ〉, (1.2)

where v is the relative velocity of the two nuclei, σ is the fusion cross-section and

〈〉 denotes an average over the Maxwellian velocity distribution of the particles in the

plasma.The energy produced per time τ depends on the kinetic energy Q of the reaction

products and the rate of fusion processes W in the following way:

E = WτQ =
n2

4
〈vσ〉τQ. (1.3)

Now we need to impose that the energy obtained from the fusion processes has to be

greater than the energy to heat the plasma to such high temperatures; only this way

energy will be gained from an ignited DT-plasma. As the kinetic energy of the nuclei

and electrons is Ekin = 3nkBT , it follows that only if

3nkbT <
n2

4
〈vσ〉τQ (1.4)

the fusion reactions actually release more energy than is required to produce the plasma

of such temperature and density. We can re-express the condition (1.4) as

nτ >
12kBT

〈vσ〉Q
, (1.5)

5



1. INTRODUCTION

that is a relation for the product of the number of particles per cm−3 and τ the confine-

ment time. The relation (1.5) is called Lawson criterion, and is one of the fundamental

relations of confinement fusion.

To fix a value for the kinetic energy kbT we have to take into account that it must be

high enough to assure a sufficient number of fusion reactions. For DT fuel this value is

approximately 5keV , but the operative temperature of the reactor can be set to 5-10

keV. Knowing that Q=17.6MeV , the Lawson criterion for DT fusion becomes

nτ w 1014 − 1015s cm−3. (1.6)

Now that we have the fundamental condition for confinement fusion, we have to find

a confinement mechanism that can satisfy it. We have already seen that the physical

situation we have in stars cannot be reproduced in a laboratory, so we have to look for

other solutions. Actually two ways of doing confinement have been found and devel-

oped: magnetic confinement and inertial confinement .

1.3 Magnetic vs inertial fusion

1.3.1 Magnetic confinement fusion approach

In magnetic confinement fusion (FCM), the plasma is being confined by using very

intense magnetic fields, due to their properties of deviating the trajectories of charged

particles. The basic idea is that exists a suitable magnetic configuration which can

force the nuclei and electrons in the plasma to stay on closed orbits and never es-

cape. This mechanism is object of investigation since the 1950s, when I. Tamm and

A. Sakharov invented the TOKAMAK (Russian acronym for toroidal magnetic cham-

ber). The Tokamak is a device containing vacuum into which a mixture of deuterium

and tritium is injected; the magnetic field is produced by passing an electric current

through coils wound around a torus (see fig.(1.2)). Experimental research on Tokamaks

was conducted for the first time by a scientific group led by L. Artsimovich in Moscow

since 1956, and in 1968 it was announced by Russians that the first ever quasistationary

thermonuclear reaction had been achieved. The tokamak has since gone on to become

the most studied approach to controlled fusion until recent times. However, in spite

6



1.3 Magnetic vs inertial fusion

of the improvements obtained during the following years in terms of plasma temper-

ature, confining time and amount of produced energy, no one was able to construct

a full theory of a plasma which undergoes very strong magnetic fields, so that every

new device was undermined by new and unknown problems, most of which are still

unresolved. Mainly, the problems come from the fact that MCF tries to confine the

plasma at low densities (∼ 1014 to 1015cm−3) for several seconds, during which a lot

of disturbing effects are observed to appear. For example, the same collisions between

plasma particles which are necessary for fusion process have the tendency to destroy

confinement in the long run, because when two particles hit they are temporarily dis-

connected from their magnetic field line and so they can move towards the walls of the

reactor. Besides, a plasma instability can occur if an initially small perturbation in the

configuration induces a further disturbance, which in turn increases the perturbation

and so on. In MCF a large variety of these instabilities occur, thus reducing the quality

of the confinement. Due to all these difficulties, in recent years a lack of confidence in

this way of achieving confinement started to spread among the scientific community.

The last and most ambitious international experimental project relating to this field,

ITER (International Thermonuclear Experimental Reactor), is still under preparation

although first designed in 1986, and reasonably the proof of an engineering feasibility

of an MCF reactor is not in sight yet.

1.3.2 Inertial confinement fusion approach: central direct ignition

concept

Later than MCF has been developed a new kind of investigation in thermonuclear

fusion, the so called inertial confinement fusion. The aim is to confine the plasma

using inertia as the mechanism that avoids plasma dispersion; in this scheme, a small

amount of fusionable material is compressed to very high densities and temperatures

by ablating the outer shell using very strong mechanisms of energy deposition (laser,

particle beams, x-ray radiation). As a natural reaction to the vaporization of the outer

material, the inner fuel implodes and heats. Therefore, the plasma reaches very high

densities (typically greater than 1025 cm−3), while the confinement times are extremely

short, typically of the same order of magnitude of the time it takes to a sound wave to

travel through the capsule (≤ 10−10 s). This is an alternative way to fulfill the Lawson’s

7



1. INTRODUCTION

Figure 1.2: Scheme of a tokamak - Schematic picture of magnetic configuration in a

tokamak (source: Pfalzner, 2006 (2)).

criterion with respect to MCF, and is expected to yield very good results even if the

physical phenomena behind it are still under study.

In the early days of fusion research, it was thought that the whole of the fuel should

be compressed to thermonuclear fusion conditions: this process was called volume igni-

tion. It was discovered quite soon that this would require an unrealistically high driver

energy, due to the unefficiency of the system: in numbers, with the usual parameters

for the target, we are speaking of an input energy of ≈ 60 MJ .

At the present time, the proposed way of achieving inertial confinement fusion is the

hot-spot scheme. In this approach the energy is deposited by the driver on the shell

in such a way that ignition is produced in the center of the capsule. In this way only

a fraction of the fuel is ignited and the central region is compressed, thus becoming

considerably hotter and less dense than the outer part. This central area which is com-

pressed and heated is the so-called hot-spot; thermonuclear burn starts here, when the

initial conditions of temperature and density are finally achieved, and then the burn

front propagates rapidly outward into the main fuel region, producing a fusion energy

that is significantly greater that the total energy put into the driver beams. The hot

spot scheme is much more efficient that volume ignition, because it requires heating less

8



1.3 Magnetic vs inertial fusion

material, and the heating is what costs more in terms of energy demanding. Further-

more, compression is more energy-consuming for hot material than for cold material,

so there is a further advantage in reducing the quantity of hot material to the cen-

tral region. In addition to that, external dense fuel layer provides better confinement.

However, there is an important issue to deal with, namely that any premature heating

of the material has to be avoided as long as possible, because this would completely

jeopardize the compression.

In the following, we will briefly summarize the procedure of hot-spot ignition: unless

we specificy otherwise, the following considerations will be valid independently of the

mechanism of energy deposition on the shell.

In the initial phase (interaction phase) the energy is delivered by laser or particle

beams onto the capsule containing the DT fuel, which consists of a spherical shell filled

with deuterium-tritium gas at low density (≤ 1.0 mg/cm−3). The shell itself consists

of a high-Z material at the outside and an inner region for DT, which forms the bulk of

the fuel. To reach the conditions of high temperature and density required for fusion,

the capsule needs to be exposed to an enormous burst of energy applied as symmet-

rically as possible. For example, to heat a 5-mm diameter capsule of fuel to 10keV

temperatures requires an energy input of Ed = 2MJ , which has to be delivered in ten

nanoseconds to the outer part of the target shell. Because of such a burst of energy

in a small time, the shell heats up, ionizes and vaporizes immediately; this process is

called ablation.

The interaction phase differs significantly depending on the energy driver mechanism.

First of all, both direct and indirect drive can be used to deposit the energy; in this

section we will mainly focus on the direct drive, namely direct illumination of the target

by means of laser or ion beams. Here we will describe the scheme known as central

ignition, in which the compression of the fuel and the heating of the hot-spot are gen-

erated by the same pulse hitting the fuel target. Lately, we will examine other possible

approaches that have been proposed in the last years for the hot-spot ignition.

In the case of a direct drive with lasers, a plasma is created immediately as soon as

the laser beam comes into contact with the outer surface of the capsule and expands

outward from this surface. This plasma cloud is called corona; it has high temperature
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1. INTRODUCTION

and low density, and its thermal pressure, together with the reaction of the inner ma-

terial, causes the implosion. In principle the laser beam should penetrate through this

plasma to reach the capsule, but in practice it only penetrates until a point in which

the critical density is reached, that is where the plasma frequency is equal to the laser

frequency : ωp = 2πν . Consequently, the laser energy is not directly deposited onto

the capsule surface. The critical density is the density at which the plasma becomes

opaque to the laser light (just like it happens for any kind of radiation passing through

a material), and it exhibits a strong dependence on the wavelength, intensity, and pulse

length of the laser beam. The choice of these parameters is thus essential for an efficient

coupling of the laser energy to the target. These parameters determine not only the

gap between the critical surface and the target surface, but also the amount of ablation

and the efficiency of the subsequent compression phase.

In the case of a direct drive with ion beams, the ions penetrate into the corona until

a distance which is defined by Bragg peak, with relatively little loss in energy, if com-

pared with the case of electromagnetic radiation. Also, their focusing onto the target

can be done by magnets.

As the outer part of the shell blasts off, the inner part -essentially the fuel- is

strongly accelerated towards the centre of the sphere as a consequence of momentum

conservation, thus being compressed to high densities (several hundreds of g cm−3) and

thermonuclear temperatures. The ablation surface, namely the interface between the

inner, cooler and denser plasma and the outer ablated material is at first located at the

deeper point of penetration of the driver, and then moves rapidly inwards. As the outer

shell is accelerated by the ablation pressure until half the initial radius of the capsule

(current target designs use a capsule radius of about 500 µm), the implosion time can

be estimated as the ratio of this distance and the implosion velocity, tipically around

3 − 4 × 107 cm /s for laser intensities of ∼ 1MJ and it results to be ∼ 1 ns . Finally,

ignition occurs at the centre of the capsule and the consequent fusion energy produces

an outward shock wave and soon the pressure overcomes that of the imploding wave, so

the capsule blows back out in a very short time (for a schematic representation of the

process in the case of a laser driver, see fig.1.3). On the other hand, the confinement

time of the plasma is mainly determined by the radius R(HS) of the hot-spot, namely

by the ratio of R(HS) over the speed of the rarefaction waves that disassemble the fuel.

10



1.3 Magnetic vs inertial fusion

Since the rarefaction waves travel with a velocity cs(HS) approximately equal to the

one of sound in the material at a temperature of 10 − 15 KeV, if the radius of the

hot spot is realistically estimated as 50− 100µm (corresponding to about 2% of the to-

tal mass of the fuel), the confinement time is given by tc w R(HS)/cs(HS) ≈ 10 ps (3) (4).

When the inner part of the fuel reaches the center of the capsule the third step

of fusion begins: it is the deceleration or stagnation phase, which is so called because

now the kinetic energy of the inner part is converted into internal energy. This way

we achieve the desired temperature and density increase in the center of the capsule,

where ignition is reached leaving the rest of the fuel relatively undisturbed. In the hot

spot concept, the fuel must reach the center with an in-flight velocity of at least 2×107

cm/s, which means generating a pressure of ∼ 100 Mbar.

After the deceleration phase, we have finally the ignition and burn phase, as soon

as temperature and density in the center of the capsule are high enough (typically, we

should have ∼ 30 times the density of lead and a temperature of ∼ 108 K). As we have

already said, ignition produces α-particles which deposite their energy primarily in the

central area and heat it up vey quickly. Then the energy is trasported by radiation,

fusion neutrons and thermal conduction (driven by electrons) from the hotspot region

to the outer fuel area. As the temperature of this outer region increases, other fusion

reactions take place also there and the burn propagates further outward. The time scale

of the whole process is approximately 10 ps, enough to let a very high pressure to build

up and eventually blow apart the remaining fuel and thermalized α-particles. These

α-particles have to be taken into account for safety problems, as they can interact with

the walls of the reactor. Then the ICF cycle ends ; the next target is injected in the

reactor and the ICF process starts again.

1.3.3 Estimate of the efficiency of ICF using the Lawson criterion

In the context of ICF, we can re-express the Lawson criterion using first the estimate

for a freely expanding sphere with the same density ρ and radius R as the final radius of

the capsule itself. We already know from the previous paragraph that the confinement

time can be roughly estimated by τ w R(HS)/cs(HS) , being R(HS) and cs(HS) the

11
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Figure 1.3: Laser driven implosion - The concept of a laser driven implosion (source:

Nakai and Mima, 2004 (5)).
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1.3 Magnetic vs inertial fusion

hot spot radius and the velocity of the rarefaction waves which disassemble the fuel,

respectively. Introducing the number density n, which is related to the fuel density by

n = ρ/m, we can substite (1.5) with the approximation

nτ w
nR

cs
=

ρR

csm
. (1.7)

A realistic estimate is nτ w 2×1015 s cm−3, which leads to a first approximate condition

ρR w 3g/cm2.

We also have to take into account that the energy gain in ICF fusion depends on the

amount of fuel which is burned in the process. Whatever is the target configuration, it

will always be impossible to burn all the fuel in the capsule, but we can estimate the

fuel conditions that must be achieved for efficient burn and a high yield relative to the

driver energy. The number of thermonuclear reactions n per second is given by

dn

dt
= nDnT 〈σv〉, (1.8)

where nD e nT are the reactant number densities, namely, for an equimolar DT-mixture

nD = nT =
n0

2
− n, (1.9)

where n0 is the initial total number density. The fractional burn is the ratio of the

number density of the reaction products to the initial number densities of the deuterium

(or tritium), that is fb = n/nDT = n/(n0/2) = 2n/n0. Consequently, the number

density can be expressed as n = n0fb/2 and the (1.8) becomes

n0

2

d fb
dt

=

(
n0

2
− n0fb

2

)2

〈σv〉, (1.10)

or
dfb
dt

=
n0

2
(1− fb)2〈σv〉. (1.11)

Assuming that 〈σv〉 is constant during burning time τb, it follows that

fb
1− fb

=
n0τb

2
〈σv〉. (1.12)

This can be rewritten as

fb =
n0τb〈σv〉/2

1 + n0τb〈σv〉/2
. (1.13)
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Knowing that the burn time and the sound speed are approximately related by τB =

r/3cs, it follows that

fb =
n0r〈σv〉/(6cs)

1 + (n0r〈σv〉)/(6cs)
. (1.14)

Using the mass density , which is related to the number density by n0 = 6.02×1023Z
Aρ,

we finally have

fb =
ρR

ρR+ ψ(Ti)
, (1.15)

where ψ(Ti) ≈ cs/〈σv〉. The reaction rate depends strongly on the temperature, and

approximate formulas have been found for it, but here we directly consider the case of

the equimolar DT mixture at 20-40 keV, which gives us the following expression for

the (1.15):

fb =
ρR

ρR+ 6(g/cm2)
. (1.16)

The (1.16) is in very good agreement with more detailed numerical simulations of

the burn process of most ICF targets. For example,we need ρR = 3g/cm2 for a 33%

burnup. According to this criterion, igniting 1 mg of DT requires a radius of 90 µm and

an average density for the material of 330 g/cm3, which is about 1300 times the density

of cryogenic DT. The corresponding pressure for DT, at a temperature of the order of

10 keV more, is of hundreds of Gbar. This means that we need laser or ion beam pulses

with a duration of a few nanosecond, which are able to generate pressures of hundreds

of Mbar on the ablation surface. To reach such high densities in the compressed fuel

requires keeping the entropy low enough so to minimize the amount of work required

for compression. This can be achieved by modulating the shape of the laser or ion beam

pulses so to generate a sequence of waves capable of accelerating the fuel towards the

center if the capsule causing the minimum possible rise of the entropy (nearly isentropic

compression).

The ablated material acts like a piston pressing onto the inner fuel, which is denser

and therefore tends to expand, thus generating a rarefaction wave traveling outward.

This results in an increase of the pressure and in the formation of a positive density

gradient in the fuel. The same mechanism occurs twice for each beam, as both the pre-

pulse and the pulse generate rarefaction waves. As the second pulse starts to penetrate

the target, it finds the rarefaction wave generated by the previous pulse which travels

in the opposite sense. The final result is that the entropy assumes a well-defined spatial

distribution, decreasing with the radius. Such an entropy profile is maintained during

14



1.4 The indirect drive scheme

the entire stagnation phase, provided that we always use the same pulse scheme in

the succession of the beams. The deceleration phase takes place in a suitable manner

provided that the last of the shocks acts at the same time as the first shock on the

compressed fuel in the center. Consequently, the challenge is to achieve a good timing

for the sequence of shocks.

1.4 The indirect drive scheme

If we simply deal with the previous treatment, it may seem that it is not such a diffi-

cult task to achieve a good energy gain whith ICF, because the energy requirements for

heating the fuel do not seem too demanding. This was the first impression scientists

had in the early 1960s and 1970s, starting from the same considerations above. Actually

the situation is not the one we have just depicted: after the initial enthusiasm, further

investigation showed that in practice not all the energy contained in the driver can be

used for ignition, because there are a lot of energy losses during the energy conversion

processes from the laser to the final burn of the fusion material. In addition to that,

in central ignition, both the ablated shell and the hot central region are subjected to

hydrodynamic instabilities, mainly Rayleigh-Taylor instability.

Most of the undesired effects in compression phase are determined by microscopic or

macroscopic illumination nonuniformity in the interaction phase. Macroscopic nonuni-

formities can be caused by an insufficient number of beams or the existence of a power

imbalance between the individual beams, while microscopic nonuniformities can derive

from the presence of spatial fluctuations within a single beam itself. For each case,

there are a number of possibilities, but further analysis is beyond the purposes of this

work. Here, the important fact we have to take into account is that both microscopic

and macroscopic nonuniformities can lead to instabilities in the compression phase. In

the case of macroscopic instabilities, one solution can be to take a sufficient number

of beams and to improve their syncronization. An alternative approach that has been

proposed is the x-ray or indirect drive scheme, which is mainly motivated by military

applications and for the possibility to simulate inertial fusion indirectly driven by ion

beams, if acceleratos are considered as feasible drivers.

The dynamics of indirect drive can be summarized as follows. Laser beams deposit
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their energy on the internal surface of a radiation cavity called hohlraum, typically a

hollow cylinder 1-2 cm long, with a diameter of 6 o 7 mm respectively The walls of the

cavity are made of high-Z material, typically gold, and are 20-40 µm thick, and they

have holes at the extremities to let the laser beams enter. The inside of the cavity is

filled with a low density inert gas to avoid expansion of the walls and fluidodinamic

motions. The capsule is installed in the center of the hohlraum. When lasers hit the

cavity’s wall, the latters emit isotropic thermal radiation costituted by soft X-ray radi-

ation, which in turn is absorbed and re-emitted 8-10 times before depositing its energy

on the capsule. Typically, the efficiency of the laser energy conversion is about 70-80%.

A numerical estimate for the driver energy which takes into account the mechanisms

of energy loss and gives a comparison with the energy Ed required in direct drive is

Eind = ηhηLEd, ηh, ηL ≈ 0.1 , where ηh and ηL are the hydrodynamic efficiency and

the laser efficiency. The cavity is gradually filled by a nearly isotropic radiation field

which is responsible for the ablation of the outer shell of the capsule.

Indirect drive is less sensitive to hydrodynamic instabilities (but not completely free

of them), since it produces relatively high ablation velocities, and the requirements for

laser uniformity and simmetry are lower. However, this scheme needs a higher energy

input if compared with direct drive, due to the fact that the efficiency in converting the

energy of the lasers into X-ray radiation is not of 100%. Again, we have to deal with

technological problems, this time related to the use of laser driving, which make the

current rates of repetition of the igniting process (now in units of days ) still far from

the frequency for the fusion required for producing energy for practical use (about ten

per seconds). Hence, the possibility of using ion beam drivers instead of lasers could

be examined. Anyway, one advantage with indirect drive is that we can study the

generation of thermal radiation and the capsule implosion separately, as the latter is

independent of the features of the cavity and of the laser beams. As both methods

present advantages and disadvantages, it is not clear yet which one could be the most

suitable for producing inertial fusion energy. The indirect-drive scheme is very much

favoured by United States and France, where laser systems for ICF , NIF and Laser

megajoule respectively, play a major role in military application programs (NIF has

already been built, whereas LMJ is under construction),but other countries are more

interested in civil uses and would prefer developing direct-drive approach.
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1.4 The indirect drive scheme

Figure 1.4: Direct versus indirect drive - Basic implosion schemes direct drive and

indirect drive(source: Nakai and Mima, 2004 (5)).
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1.5 Fast ignition approach

In the last years other methods for ignition of the target have been proposed, in order

to look for solutions resulting less sensitive to the effects of RTI showed both by direct

and indirect drive approaches. The most important is the fast ignition scheme, first

proposed in 1994 by Tabak, Munro, and Lindl. They suggested an approach known as

hole boring consisting of three phases (fig. 1.5):

1. the capsule is imploded by a conventional laser to produce a high-density core;

2. a hole is drilled through the coronal plasma using a high-intensity 100 ps pulse,

whose focal position is near the critical surface so that it penetrates the overdense

region;

3. the core is ignited using a third laser pulse with high Iλ2 (product of intensity

times the square of the wavelength).

The advantage of such a concept is that it allows separating the two phases of com-

pression and ignition, thus achieving a higher gain for a lower driver energy input; the-

oretical investigations suggest that a Q ∼ 200 could be reached, much greater than the

corresponding values for indirect-drive scheme (Q ∼ 30) and for direct-drive (Q ∼ 100).

Because of such advantages in gain, in fast ignition the driver efficiency (if it works well)

could be 5%, less than in the other approaches. Therefore, the tolerances in target fab-

rication can be higher.

Figure 1.5: - Fast ignition concept: at the maximum compression of laser implosion, the

ultra-intense short-pulse laser is injected to heat the dense core plasma (source: Nakai and

Mima, 2004 (5)).
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Apart from these considerations, it is worth to make a direct comparison between

the fast-ignitor and the central-ignitor concept. In the last one an isobaric configura-

tion (first studied by Meyer-ter-Vehn, 1982 (6) ) is maintained during the compression:

the central hot spot can equilibrate its pressure with the one of the high-density region

in contact with it, because during the stagnation process the sound speed in the gas

is much greater than the shell closure velocity. In this phase the shell moves to its

convergence radius from twice that radius and it turns out that the main fuel is about

1 sound-crossing time thick. On the other side, in the fast-ignitor scheme the whole fuel

is compressed by a conventional laser to a very high density and then the core (some-

times called hot spark) is ignited very quickly with a ultra-intense pulse after drilling

a hole in the corona, so that pressure equilibrium is not kept at all. Therefore there is

no need for a low-density hot central region, and the confinement parameter ρr for the

ignited core can be significantly higher than in the central ignition case. Rather than

isobaric, this is an isochoric compression, namely at uniform density, as in the model

firstly proposed by Kidder in 1976(7) for central ignition (it is worth to notice that

this work was later substituted by the one of Meyer-ter-Vehn and finally was drawn up

by scientists to study fast ignition) , so that more mass can be compressed to much

lower peak density, resulting in a larger amount of burnt fuel. In addition to that, the

stagnation pressure in the isochoric model is about two orders of magnitude lower than

the one in the isobaric model, and this great reduction in concentration of energy eases

the required implosion quality. For a direct comparison between the models used for

different ignition schemes, see fig. (1.6).

The main challenge in fast-ignition scheme is how to deliver the energy to the

pre-imploded capsule. The laser should penetrate into the extended corona which sur-

rounds the ablated plasma, and then reach the overdense central region without losses

of energy. As always happens when we use a laser as a driver, we have to deal with

the fact that it only travels until the critical density is reached, and in this case it

happens at a distance of several hot-spot diameters from the central core, in a region

populated by hot electrons. Coupling of the laser with such electrons would result in a

poor efficiency,therefore a way to bring the intense light closer to the compressed core

has been studied. In addition to that, the original idea of Tabak et al. (8) of drilling

the hole using a 100 ps pulse presents more shortcomings. Experiments have shown
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Figure 1.6: Ignition schemes - Ignition schemes of compressed fuel. The central ignition

scheme (a) is analysed with an isobaric model, and the fast ignition (b) is analysed with an

isochoric model. Uniform distribution of density and tempearture is assumed for volume

ignition (c) (source: Nakai and Mima, 2004 (5)).
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that the result is an enhanced neutron yield, and that unfortunately this process is

dominated by the high-energy ions instead of the thermal ones (the most suitable for

fusion); besides, it is not still understood if such a neutron yield comes from fusion

reactions near the critical surface or from the core.

Alternative options for solving the problems with hole-boring have been proposed.

Deutsch at al. (9) suggested to take advantage from relativistic effects that appear when

an ultraintense laser (1019 − 1021 W/cm2 for a duration of a few femtoseconds) strikes

a plasma and in particular from the ponderomotive force, which depends on pressure

radiation and therefore is related to the energy density of the laser pulse. The idea

is that the suprathermal electrons generated by laser-plasma interaction could travel

from the critic surface in the corona to the core of ultra-dense fuel, where they could

deposit their energy so to create the temperature conditions for ignition. However, the

energy spreading of the electrons generated by laser-plasma interaction prevents from

obtaining an efficient coupling between relativistic electrons and a pre-compressed fuel,

as hypothesized in (9). It has also been suggested to use heavy ion beams instead of

ultra-intense lasers, but the extreme requirements for pulse duration make this approach

not feasible at the present time. Finally, the option of designing a target as a capsule

with a guiding cone made of high-Z material (so that its walls remain intact when the

plasma develops) has become increasingly popular in recent years. In this scheme, the

fuel shell is imploded to produce a compressed core plasma near the tip of the cone and

when the required density is reached (typically 1000 times solid density for a reactor-size

cone target, with confinement parameter ρr > 2g/cm3) the heating pulse is injected at

the moment of maximum compression. However, experiments suggest that only about

25% of the laser energy can be transported to the core of the plasma using guiding cone

targets. Therefore, it can be concluded that at the moment there is not any satisfactory

approach for fast ignition which could assure the success of thermonuclear burn.

1.6 The main problems that are still unsolved in ICF

All the presented schemes show shortcomings that cannot be avoided at the present

time. The most important ones are the hydrodynamic instabilities, that are present

in every approach, especially Rayleigh-Taylor class of instabilities. These instabilities
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always occur when a denser material is lying onto a less dense one; when the target is

compressed , hot plasma pushes onto cold plasma, and this situation is equivalent to the

one of a heavier fluid lying onto a lighter one (see fig. (1.7)). The important parameters

for the growth rate of Rayleigh-Taylor instabilities during ablation are the wavenumber

of the perturbations, the acceleration of the interface and the density gradient within

the plasma. It turns out that the shortwavelenght harmonics of the perturbations are

fortunately damped by thermal conductivity to a large extent, so the most destructive

nonuniformities are the ones of intermediate wavelength. As a result of this perturba-

tion, a mixing of the hot and cold plasma occurs, which leads to an undesired cooling

of the hot region and consequently to a higher input of energy required for achieving

ignition. Consequently, targets have to be designed in such a way that Rayleigh-Taylor

(RT) instabilities are minimized as far as possible. Basically, we have two parameters

which are crucial for target designing, the so-called in-flight aspect ratio (IFAR) and

the convergence radius.

The in-flight aspect ratio (IFAR) is defined as the ratio of the shell radius R as it

implodes to its thickness ∆R, that is smaller than the initial thickness because of

the compression. RT instability sets an upper limit on this ratio, which results in

a minimum pressure or absorbed driver irradiance. To give some numerical values,

for 25 < IFAR < 35, we have a peak of respectively ∼ 100 Mbars for the pressure

and ∼ 1015 W/cm2 for the irradiance, in the case of megajoule-scale drivers. These

minimum values depend on the required implosion velocity (typically in the range of

3− 4× 107 cm/s for ignition), which in turn is determined by the capsule size.

Another parameter that can be used to state if compression is sufficiently symmetric

is the convergence ratio Cr, namely the ratio of the initial outer radius of the ablator

to the final compressed radius of the hot spot. If a target with an initial radius RA and

average acceleration g has an acceleration perturbation of size δg on its surface, then

its deviation from sphericity is given by:

δR =
1

2
δgt2 =

δg

g
r(Cr − 1). (1.17)

There is a limit for the asymmetry in the compression above which the conversion of

the available kinetic energy into heating of the fuel is seriously compromised. Typically
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it is required that the deviation δR be less than r/4, where r is the final compressed

radius, which means that
δg

g
≈ δv

v
<

1

4(Cr − 1)
, (1.18)

where v is the implosion velocity. Typical convergence ratios to the hot spot for an

ignition or high-gain target design are 30-40. According to (1.18), this means that we

require accelerations and velocities that are uniform to about 1%.

Figure 1.7: Hydrodynamic instability in direct-drive implosion - The biggest

obstacle in direct-drive implosion is shell breakup and quenching of the hot spot by hydro-

dynamic instabtility

It is important to stress that, hydrodynamic instabilities are not only a drawabck

themselves , but they also indirectly cause other problematic phenomena In fact, due to

the presence of instabilities, it is not possible to use large and thin targets that would

be ignited at low laser intensities, therefore we have to work with ultraintense lasers

for which Iλ2 ≥ 1013 − 1014 W/cm2 ( I and λ are the laser intensity and wavelength,

respectively). In such a regime, a current of hot electrons appears coming from the

corona that can preheat the fuel, thus making the compression much more difficult.

Due to these problems, conventional laser-driven fusion facilities have to deal with

the problems of low efficiency and the necessity for a high repetition rate for the beams.

At the present time, facilities such as NIF (National Ignition Facility, at Lawrence

23



1. INTRODUCTION

Livermore National Laboratory in California) use Nd-glass lasers, whose maximum

efficiency can be about 15%; besides, one can expect at best one shot every 8h for NIF,

while several shots per second would be needed . Apart from looking for alternative

laser technologies with higher efficiencies, it is planned to study the possibility of using

heavy-ion beams as a driver, because both their repetition rate and efficiency are much

higher than the laser ones. Typicallly an ion beam induction accelerator can achieve an

efficiency of 30%, twice the available one for laser facilities. A further advantage of ion

beams is that the focusing onto the targets can be done by magnets. The high-velocity

ions penetrate into a capsule made of a high-Z material (typically lead) until a certain

distance, defined by Bragg peak, with relatively little loss in energy, if compared with

the case of electromagnetic radiation, so the final focus magnet can much more easily

shield fusion by products by appropriate design of the target chamber. Also this option

presents some disadvantages: as the ions in the beam are all positively charged, they

repel each other, the more so the denser the beam. The result is an unwanted spread of

the beam, which at some point becomes dominated by space-charge effects. A way of

overcoming this problem is to start with a relatively long pulse with a low density, and

then compress it later by electrical fields and magnets; another way is to use a large

number of beams, thus reducing the current in each single beam and consequently the

spreading.

1.7 Present status of ICF projects

In spite of the development of more and more exhaustive analytical models and of recent

technologic progresses, fusion conditions have not been achieved to date. However, two

major milestones have been reached independently. In 1989 Yamanaka (10), from the

Insititute for Laser technology at Osaka, performed an experiment with 600 times

liquid density of compressed fuel, in practice the first true high-density target, but the

reached temperature was of only 300 eV, far too low to produce an appreciable number

of fusion reactions. In 1995 Soures et al.(11) have measured bursts of 2×1014 neutrons

in the OMEGA direct-drive experimental program at Rochester laboratory, but they

only obtained a density of 2g/cm3 with a 15 keV temperature. The reason for which

these records in density and neutron production have not yet been overcome is that the

energy provided by the laser sets very important limits in this sense. Therefore new
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progresses need first an improvement in laser design.

In the next years a proof of the scientific feasibility of inertial confinement fusion is in

sight, to be obtained at two facilities: the National ignition Facility (NIF) settled at

Lawrence Livermore National Laboratory in Berkeley, USA, and the Laser MegaJoule

(LMJ) which is being built in Bordeaux, France. NIF is operative since May 2009, and

its equipment is consituted by an Nd laser with 129 ion beams which can deliver 1.8 MJ

of energy in the third harmonics (λL = 0.35µm) and a maximum power of 500TW. It

will experiment mainly indirect illumination of targets, even if there is the possibility of

doing some trials with direct-driven capsules. The probability of obtaininig controlled

nuclear fusion in the context of the experiments conducted at these two facilities is

considerable, because in previous experiments the following results for indirect drive

have been demonstrated:

1. it is possible to achieve high efficiency in conversion of laser energy to X-ray

radiation with a pulse intensity of 1014 − 1015 W/cm2;

2. control of the simmetry of illumination can be obtained varying the focus point

of the laser beams and the geometry of the hohlraum;

3. hydrodynamic instabilities can be limited for the case of indirect illumination;

4. suprathermal electrons produced by laser-plasma interaction can be controlled;

5. uncertainty in the state equations for DT and other materials eventually present

in the capsule have been reduced;

6. uncertainties in the opacity of the materials in the hohlraum and in the capsule

have been minimized.

Furthermore, the designs for the capsule and the hohlraum have been optimized with

respect with the initial plans, so to enlarge the tolerance for the available energy. This

means that little deviations between the original project and the real experiments can

be balanced by the energy in excess. In fig. (1.8) the working point of targets at NIF

is compared with targets for fast ignition characterized by different values of ρR. The

threshold energy of the NIF target is 500 kJ and a gain of 15 to 20 times is expected,

provided that the energies of the lasers are of about 200 kJ. On the other hand, the

threshold energy of the targets for fast ignition has an order of magnitude of a MJ and
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gains of 50 to 70 times are foreseen with the actual laser energies.

The experiments that will be conducted at NIF and LMJ will be scientific proofs rather

Figure 1.8: Comparison for NIF targets - Gain as a function of the energy for direct

and indirect-driven targets at NIF and for fast ignition targets.

than first trials for a thermonuclear reactor. The latter requires the development of :

1. high efficiency (10− 15%) lasers, capable of operating at frequencies of 10 Hz or

higher;

2. methods of compression for the capsule that allow to reduce hydrodynamic in-

stabilities, like the one that will be proposed in this thesis;

3. wrapping of the walls with new materials that are able to save the fusion energy

and allow the production of other tritium.

At the present time, a new prototype of reactor for demonstration, denominated LIFE

(Laser Inertial Fusion Energy, is being designed at LLNL, and it is expected to be

operative in 2025. These prototype will use the technology already available at NIF

(apart from the laser, that will be a diode pumped laser) and the materials currently

existing. In its first phase, annual maintaning will be needed and the power will be an

intermediate one; in a second moment the power will be elevated and the maintenance
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1.7 Present status of ICF projects

will be required less frequently.

In addition to all that, a european project dedicated to demonstrate the feasibilty

of laser driven fusion is being designed, named HiPER (High Power Laser Energy

Research). At first it was thought that it could study the possibility of study fast

ignition, but due to the lack of proof of the feasibility of this scheme the current idea is

to study the approach of shock ignition (12). However, the scientific proof of principle

for this second approach is not in sight yet either. In this thesis an alternative method

for reducing hydodynamic instabilities will be shown, which could else serve as a basis

for the design of new experiments to be done in the context of HiPER.
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2

Dynamics of an ablation front

2.1 Introduction

The dynamics of an ablation front is a very complex phenomenon and, in the suitable

conditions for ICF, a large variety of different situations can occur, depending on both

the nature of the driver and the material with which it interacts. Basically, what makes

the difference is the mechanism of energy transportation, which can be diffusive (heat

conduction or radiation) or non-diffusive (collisional transport of particles or photons).

In the first case the energy transport process is described by a Fourier law:

Q = −χ(ρ, T )∇T. (2.1)

In the non-diffusive case, the Fourier law is not valid any more and energy transport

follows Kirchoff’s law:

dQb

dy
=

Qb

λ(ρ, T )
. (2.2)

Then other effects can be present, due to suprathermal electrons or impurities

in the ablated material which make the energy spectrum more complicated. In any

case, the situations in which a laser or an ion beam act as a driver have to be distin-

guished,because of the fundamental differences in the energy deposition and penetration

into matter.
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2. DYNAMICS OF AN ABLATION FRONT

2.2 General description of an ablation front

2.2.1 Laser energy deposition and transport

When an intense electromagnetic pulse (> 1012 − 1014) hits a solid (for example, the

fusion target), a heat wave arises, which can travel with either subsonic or supersonic

velocity, depending on the characteristic time of pulse duration and the properties of

the material itself (density and atomic number). In the first case, a shock wave is

launched into the solid shell while a rarefaction wave travels in the opposite direction.

This is what is called an ablation front. Typically the whole system, formed by the

front and the material behind it, reaches a quasistationary configuration before the end

of the radiation pulse. The end of the propagation of the shock marks the beginning

of the acceleration process of the whole capsule. If we choose a well-defined coordinate

system fixed to the ablation front, this acceleration now appears as a gravitational field

recreating the situation of a heavier fluid lying above a lighter one, thus generating the

conditions for the rise of Rayleigh-Taylor instability.

If the solid target is dense enough, in the evaporated material there will be some region

in which the density is higher than the critical electron density (here simply indicated

by ncr) , given by:

ncr =
ε0mω

2
L

e2
= 1.1× 1021

(
λL

1µm

)−2

[cm−3]. (2.3)

In equation (2.3) ωL and λL are the laser frequency and wavelength, respectively. The

laser radiation cannot propagate where n > ncr, that is where the plasma frequency 1

is greater than the laser frequency ωL = 2πc
λL

; therefore, the laser will deposit its energy

mostly at or near the critical surface, where n = ncr and, correspondingly, the mass

density will be given by ρcr =
Amp
Z ncr .

Typically, the critical surface is far enough from the ablation front and the two divide

the target in three distinct regions: the absorption domain, the transport domain and

the compression domain (fig.2.1). The absorption domain is the region of laser-plasma

interaction (the so-called corona), namely the outer material that extends up to the

1typically a plasma has two characteristic frequencies, for electrons and ions respectively:

ωpe =

(
4πe2ne
me

) 1
2

, ωpi =

(
4πZ2e2ni

mi

) 1
2

. (2.4)
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2.2 General description of an ablation front

critical surface, and is characterized by a very high temperature (∼ 100 eV) and a low

density (< 0.01 g/cm3). In the corona the electrons absorb the laser energy through

a large variety of processes, mainly inverse bremsstrahlung absorption, resonance ab-

sorption, Brillouin and Raman scattering (see fig.2.2). Actually, the mechanisms with

which the laser deposits its energy in the critical and supercritical region are only par-

tially known. Then this energy is transported from the critical surface to the ablation

surface, where the plasma is created and blows off in the direction of the laser at ap-

proximately the speed of sound cs. In the transport domain the density is between

0.01 g/cm3 and solid density, namely ρ0 = 1 − 3 g/cm3 for ablated DT mixture, with

temperatures ranging between ∼ 30 eV and 1000 eV. Finally, behind the transport

domain there is the compression domain, where densities range between ρ0 and 10ρ0

at temperatures of 1− 30 eV.

Figure 2.1: Laser plasma interactions - Schematic picture of laser-plasma interactions

in an ICF target (source: Pfalzner, 2006 (2)).
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2. DYNAMICS OF AN ABLATION FRONT

Figure 2.2: Physical processes in the corona - The different physical processes going

on in the corona of a spherical target irradiated by laser beams. Here, em denotes elec-

tromagnetic waves, l Langmuir waves, and ia ion acoustic waves. (source: Pfalzner, 2006

(2)).
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2.2 General description of an ablation front

2.2.2 Ion beam energy deposition

The main difference in energy deposition between ion beams and lasers is that the ions

penetrate and deposit their energy through a collisional process. In the case of ion

beams, there is not a critical plasma density, but nevertheless the ions are stopped at

a well-defined distance defined by the Bragg peak (see fig.2.3).

Figure 2.3: Bragg peak - The energy deposition by an ion beam as it penetrates into

matter. (source: Pfalzner, 2006 (2)).

From an historical point of view the analytical treatment for the stopping of ions

in a material has been developed first for low-intensity beams in cold matter: the first

contribute was the one by Bethe in the 1930s and then several corrections have been

introduced. The Bethe formula describes the energy loss per distance (dE/dx) of swift

charged particles (not for electrons) travelling through matter, and states that it de-

pends on the initial velocity and energy of the particles themselves, and on the atomic

and mass number of both the ions and the stopping material. The general concept of

particles penetrating into matter is similar in both the cases of a cold material and of

a plasma, that is the ions are slowed down by excitation and ionization processes of

the atomic electrons through Coulomb interactions . However, there is a fundamental

difference: electrons in cold matter are assumed to be in a bounded state, while the

plasma is fully ionized. It turns out that the plasma has a higher stopping power, and

presents less electron recombination; this has a very important effect on the effective
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2. DYNAMICS OF AN ABLATION FRONT

charge of the projectiles. When ions enter in cold matter, their effective charge Zeff

runs through a series of equilibrium states essentially determined by their instanta-

neous velocities, and dE/dx ∝ Z2
eff ; when the stopping material is a plasma, high

nonequilibrium charge states of the ions are found due to the higher stopping power

and the reduced recombinations. For high-intensity beams in highly ionized targets

the Coulomb logarithm is increased, the ion range is shortened and the Bragg peak is

more pronounced. It also turns out that, somewhat counter-intuitively, heavier ions

can deposit more energy in a given depth than light ions. Although the ion beams are

only singly or doubly charged, as soon as they hit the target, many of the remaining

electrons are stripped away. The heavier ions loose more electrons and therefore end

up with higher positive charges. This means that they are stopped faster and deposit

more energy over a given distance than light ions. Typically the energy deposited by

ions with A = 36− 82 is ∼ 1− 10 GeV, while the one deposited by light elements such

as lithium is around 50 MeV. There are two pratical consequences: the first one is that

the beam intensity can be smaller for heavy-ion beams than for light-ion beams; the

second one is that heavier ions allow us to obtain a volumetric heating, instead of the

superficial one produced by light ion beams.

2.3 Basic model of the ablation front

For the ablation phenomenon in ICF a multitude of different situations can occur, as

the transport mechanism can be driven by diffusion or radiation heat conduction, de-

pending on the temperature gradients, and can also be affected by the eventual presence

of suprathermal electrons or by the thermal radiation emitted by impurities of high Z

number in the material. Due to this large variety of possibilities, all the models which

have been developed so far for the dynamics of the ablation front are necessarily approx-

imated. In the present work we will concentrate on the elements which are useful for

our following understanding of the mechanism driving the Rayleigh-Taylor instabilities.

2.3.1 The sharp boundary model

The simplest treatments are founded on the sharp boundary model (SBM), first intro-

duced by Bodner in 1974, then studied and modified by various scientists and finally
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2.3 Basic model of the ablation front

revisited by Piriz in 1997. According to such a model, the ablation front can be taken

as a moving surface of zero thickness , which is initially at y = 0 and separates two

homogeneous fluids of densities ρ1, for y > 0 , and ρ2 > ρ1, for y < 0, respectively (see

fig.2.4). The heavy fluid is supported against an acceleration g by the lighter one ;it

is important to notice that such acceleration is opposite to the density gradient and is

taken in the direction of the positive y axis in the picture. Actually, in the ICF context

Figure 2.4: Sharp boundary model - Diagram of a steady ablation front described by

means of the sharp boundary model (source: Piriz, 1997 (13)).

there is only one fluid instead of two, but there is an analogous situation as we have a

lower density (hot plasma) on a higher density (cold plasma), and the acceleration g

is generated by the ablation pressure. The main shortcoming of this model is that it

requires additional information associated with the flow structure behind the ablation

front, and such conditions cannot be introduced self-consistently with the SBM model.

This is a problem that always arises when we try to study the ablation process by

means of a discontinuity approximation and it is usually considered to be the reason

for the disagreement between such models and the numerical calculations. However, as

noticed by Piriz, this additional information comes from the boundary conditions on

the ablation front and is given in a natural manner when the structure of the ablation is
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2. DYNAMICS OF AN ABLATION FRONT

resolved. For this we need to start directly from the fluid equations for the conservation

of mass, momentum and energy:

∂ρ

∂t
+∇ · (ρv) = 0 (2.5)

ρ
∂v

∂t
+ ρ(v · ∇v)v = −∇p+ ρg (2.6)

∂

∂t

[
ρ

(
v2

2
+ ε

)]
+∇ ·

[
ρv

(
v2

2
+ γε

)
+ Q

]
= ρv · g +W (2.7)

Q = −κD∇ε, (2.8)

where we have assumed that the fluid is an ideal gas with enthalpy coefficient γ. The

quantities ρ, v, ε and p = (γ−1)ρε are, respectively, the density, the velocity, the specific

internal energy and the pressure of the fluid. Here Q is the energy flux driving the

ablation, expressed in a very general way as a function of the specific internal energy;

κD = χεν is the thermal conductivity, and it has been considered as an arbitrary power

of the specific internal energy ε in order to let us define it later for the different cases of

electronic thermal conduction (ν = 5/2 ) or thermal radiation. The additional term W

allows us to take eventually into account more complex energy transport mechanisms

that could affect the physical description, like, for example, radiative processes and

energy deposition by suprathermal electrons or ion beams. To study Rayleigh-Taylor

instability, we can consider the stationary regime for the fluid equations above, which

means that the time derivatives are zero. For the treatment of the steady energy flux

in the supercritical region of the corona (0 ≤ y ≤ ycr) we can neglect the effects of the

acceleration g in the homogeneus regions on both sides of the front. This is a good

approximation if the Mach number M0 of the ablated flow is relatively small in the

front: M2
0 =

v20
c20
<< 1 (c0 is the adiabatic sound speed). This is really the case, so this

approximation will be used throughout this treatment. The steady mass conservation

equation states that the mass ablation rate is constant through the ablation region

(eq.(2.5)):

ṁ = ρ2v2 = ρv = const (2.9)

The momentum conservation law implies that the net momentum flux through the

interface is constant (equation (2.6)):

p+ ρv2 = p2 + ρ2v
2
2, (2.10)

36



2.3 Basic model of the ablation front

where the quadratic velocity term can be neglected in the regime M2
0 << 1 and the

index 2 denotes the value on the ablation front at y = 0. In such a case, the role of the

external forces is played by the ablation pressure p2 , which is approximately the same

at each side of the front, so that the momentum conservation is expressed by:

p = (γ − 1)ρε = p2. (2.11)

Finally, we have to deal with energy conservation (eq. (2.7)) which in the regime

M2
0 << 1 reads :

~∇ ·
[
ρ~vγε− κD ~∇ε

]
= W. (2.12)

Due to the fact that motion and flux take place in the y direction , the (2.12)

becomes:
d

dy
·
[
ρvγε− κD

dε

dy

]
= W. (2.13)

Now, further specification about the nature of the term W is needed to solve this

equation.

2.3.2 Ablation front driven by thermal diffusion

If the energy transport mechanism is heat conduction, the term W in the equation

(2.7) is zero. This allows us to integrate the equation for the energy flux, taking into

account equation (2.9), so that we can rewrite the (2.13) as

ṁγε = κD
dε

dy
+ const, (2.14)

and then we find the energy equation:

κD
dε

dy
= γṁ(ε− ε2). (2.15)

Therefore, recalling equations (2.7) and (2.11), we can summarize the physical descrip-

tion of an ablation front driven by thermal diffusion as

κD
dε

dy
= γṁ(ε− ε2), (2.16)

p ≈ p2 = const, (2.17)
ε

ε2
≈ v

v2
≈ ρ2

ρ
. (2.18)

(2.19)
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2. DYNAMICS OF AN ABLATION FRONT

In addition to that, if the energy transport mechanism is electronic thermal con-

duction, we have: κD = χε5/2 where χ is the coefficient of thermal conduction (14),

and therefore equation (2.16) becomes:

y =
χ

γṁ

∫ θ

0

ε5/2

ε− ε2
dε

→ y

L2
=

2

5

(
θ5/2 − 1

)
+

2

3

(
θ3/2 − 1

)
+ 2

(
θ1/2 − 1

)
+ ln

√
θ − 1√
θ + 1

.

(2.20)

where θ = ε/ε2 = ρ2/ρ (see eq.(2.18)).

The logarithmic term represents the behavior of the temperature in the cold, unablated

region, and is important only when θ approaches 1. As we have assumed a strong den-

sity jump at the surface of discontinuity, it turns out that θ >> 1 and the logarithm is

negligible. Calculations made following this development are in very good agreement

with numerical results (Kull,(15)) in almost all the cases of interest.

The evolution of the density profile for an ablation front driven by thermal con-

duction is shown in fig 2.5. From the density profile it is straightforward to obtain the

corresponding velocity and energy profiles, according to equation (2.18).

2.3.3 Ion beam driven ablation front

The physical picture of an ion beam driven ablation front can be obtained on the basis

of the theory of particle-particle interactions in a fully ionized plasma (Fokker-Planck

theory). We know from the study of transport phenomena in a plasma that two types of

interactions can be separated in a functional way: the weak, long-range, simultaneous

interactions of many plasma particles, which is incorporated into average electric and

magnetic fields, and the strong, short-range, binary interaction between two charged

particles, mathematically described by a specific collision binary operator in the theory

equations. In a fully ionized plasma, the scattering by a large-angle in a single encounter

is much less likely than a net large-angle deflection due to the cumulative effect of the

many small-angle scatterings that the electron experiences as it moves along its path.

The exact particle dynamics is well described by classical multiple Coulomb scattering,

which considers a test particle moving through a plasma volume with n scattering

centers: as any individual deflection is assumed to be random, the average deflection

will be zero, but the mean-square deflection will not be zero, producing a random walk
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2.3 Basic model of the ablation front

Figure 2.5: Profiles in an ablation font driven by thermal diffusion - Density and

velocity profiles in the corona region close to an ablation front driven by thermal diffusion.
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in a small angle away from the original direction of motion of the test particle. Actually,

the rigorous treatment of collisions can be very well approximated by Fokker-Planck

theory, according to which diffusion in plasma is controlled, not by the random walk

of one particle through a fixed background, but by the change of the distribution of

particles f(v, t) as a result of many small-angle scatterings with a variety of speeds

distributed as specified in f .

We consider an intense beam of ions with mass mb, charge number Zb, and energy E =

(mb/2)v2
b , which interacts with the corona plasma by classical Coulombian collisions.

The equation for the energy flux (2.13) assumes the form

d

dy
(ρvγε) = W, W =

dQb
dy

=
Qb
λ
, (2.21)

where Qb is the energy flux transported by the ions (neglecting backscattering) and

Qb = γṁε ∝ E:

1

Qb

dQb
dy

=
1

E

dE

dy
=

1

L
, L =

αE2

ρψ(vb/vthe)
, (2.22)

α =
Amp

Z
memb

1

2πZ2
b e

4lnΛb
(2.23)

ψ(w) =
2√
π

[ ∫ w

0
e−x

2
dx− we−w2

]
. (2.24)

where me is the electron mass, vthe = (2kBT/me)
1/2 the electron thermal velocity,

Z the charge number of the ablation plasma and lnΛb is the Coulombian logarithm,

which will be taken as a constant whose value is specified by the particular plasma

conditions of interest: lnΛb ≈ 8 . Here, L is the mean free path, that is the inverse of

the relaxation time, and it can be expressed in different ways depending on ψ(w) , the

well-known error function from the classical theory of multiple scattering (see Krall and

Trievelpiece,(16)). Fundamentally, there are two limits in which it assumes a particular

value:

1. if the velocity of the ions can be regarded as much greater than the thermal

velocity of the electrons, that is vb >>
√

2kTe
me

, we can take ψ(w) ≈ 1 , and then

we have

L =
Ampmemb

ρZ

E2

2πZ2
b e

4lnΛb
, (2.25)
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2. in the opposite limit of vb <<
√

2kTe
me

we have that ψ(w) ≈ (4/3
√
π)w3 and

consequently

L =
Ampmemb

ρZ

E2

2πZ2
b e

4(4/3
√
π)w3lnΛb

. (2.26)

In the region close to the ablation front, the Mach number of the corona plasma is

M1 << 1 and the corona profiles can be approximately described by the following

equations of continuity and momentum:

µbE ≈ γeṁ(ε− ε2), µb = nbvb; (2.27)

p ≈ p2 = const→ ρε = const (2.28)

ṁ = ρv = const→ ε

ε2
≈ v

v2
≈ ρ2

ρ
. (2.29)

Here, nb is the particle density of the ion beam and ε2 is the specific internal energy

of the medium ahead the front (y < 0). From the previous equation, knowing that

vthe ∼
√
ε = ε2θ

1/2, vb ∼
√
ε− ε2 = ε2(θ − 1)1/2, we can get

vb
vthe

≈
[

me

(γe − 1)Ampmb

γeṁ

µb

](
θ − 1

θ

)1/2

= w0

(
θ − 1

θ

)1/2

, (2.30)

where θ = ε
ε2

. As the temperature (and thus the internal energy) of the corona plasma

(y > 0) is much greater than the one of the region ahead the front, we can assume that

θ >> 1. Consequently, we can take ψ(w) ≈ ψ(w0) and the integral (2.24) becomes

independent of θ.

Solving equations (2.22) to (2.30) we get:

y

L2
≈ 1

6
+

1

3

(
ρ2

ρ

)3

− 1

2

(
ρ2

ρ

)2

, L2 =
αE2

ρψ(w0)
; E2 =

γṁε2
µb

. (2.31)

The behavior of the density profile for an ion beam driven ablation front is repre-

sented in fig.2.6 According to equation (2.28), once we have the density profile we can

immediately obtain the corresponding velocity and energy profiles.
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2. DYNAMICS OF AN ABLATION FRONT

Figure 2.6: Profiles in an ablation front driven by ion beams - Density and velocity

profiles in the corona region close to an ion beam driven ablation front (source: Piriz, 2009

(17)).
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The Rayleigh-Taylor instability

3.1 Introduction

In the first chapter it has been stressed that a key point in achieving fusion is a homoge-

neous compression (except for the formation of the hot spot), which means aiming for

a perfectly spherical implosion. In reality this ideal is never reached, mainly because of

hydrodynamic instabilities of the shell which arise during both the acceleration and the

deceleration phases of the implosion. During the acceleration phase, the mass ablation

of the capsule’s outer surface creates a local density gradient pointing from the denser,

unablated shell material toward the hot, ablated plasma compressing the shell’s corona,

such as we have discussed in chapter 2 . In the shell’s frame of reference, the accel-

eration of the bulk material is directed outward toward the corona, thereby making

the shell’s outer surface unstable due to the Rayleigh-Taylor instability. Similarly, the

shell’s inner surface becomes RT unstable during the deceleration phase, as the local

density gradient points outward to the dense shell material from the less dense gas fill,

and in the shell’s frame of reference the acceleration points inward. In this thesis, we are

dealing with the hydrodynamic instabilities which arise during the acceleration phase,

but it is important to notice that it is not the only moment in which RT instability

appears.

In ICF implosions, the RT instability is seeded both by inherent imperfections in the

shell’s surface finish, which cause deviation from sphericity, and by non-uniformities

in the driver (x-ray, laser or ion beam), which imprint perturbations on the shell’s

outer surface. In indirect-drive ICF, the high uniformity of the black-body x-ray ra-
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3. THE RAYLEIGH-TAYLOR INSTABILITY

diation results in a negligible level of imprinted perturbations on the outer shell sur-

face.Therefore the seeds of RT instability are mostly introduced by capsule surface

roughness. In direct-drive ICF, however, the laser beam intensity is not highly uni-

form spatially, such that the direct illumination of the shell leads to high levels of

laser imprinting that cause the rise of RT instability at the outer surface. Advances

in beam-smoothing techniques have reduced laser imprint in direct-drive implosions,

but not enough to avoid significant lowering of the performance of the direct-drive im-

plosion due to nonuniform irradiation. For all these reasons, RT instability has been

widely studied since the early times of research on inertial confinement fusion, but due

to the difficulty in understanding the basic mechanism of the phenomenon, the history

of its analysis is full of misunderstandings. Let’s examine first the historical treatment

of the so-called ”classical” Rayleigh-Taylor instability, namely the one concerning the

case of an interface between two ideal, incompressible fluids without flux of mass across

the interface. In the simplest analysis, the perturbation is decomposed in a Fourier

development . If its mode amplitudes are much smaller than their corresponding wave-

lengths, it is said to be in the so-called ”linear” regime, in which each mode evolves

independently, growing exponentially in time with its own characteristic growth rate.

If the fluids are separated by a sharp boundary, the mode amplitude evolution in the

linear regime can be derived explicitly to first order, yielding the following expression

for each time-dependent amplitude ξ(t) corresponding to a single mode:

ξ(t) = ξ0e
Γt. (3.1)

Here ξ0 is the initial amplitude of the perturbation, t is the time and Γ is the RT linear

growth rate, which, according to the theory (to be addressed in the next paragraph) is

given by

Γ =
√
ATkg, (3.2)

where AT is the well-known Atwood number, and in this case it will be expressed in

terms of the density of the heavy (ρh) and light (ρl) fluids, respectively:

AT =
ρh − ρl
ρh + ρl

. (3.3)

Equation (3.2) shows that the Rayleigh-Taylor growth rates increase as the perturbation

wavelength λ = 2π/k decreases, and corresponds to the case of a sharp variation in the
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density at the interface between the two fluids. If the density profile smoothly changes

over a length similar to or greater than the perturbation wavelength, the Rayleigh-

Taylor instability is mitigated by the finite density gradient at the unstable interface,

and the growth rate of short wavelength modes tends asymptotically to the constant

value

Γ =
√
g/Lm (3.4)

where Lm is the minimum density-gradient scalelength defined as

Lm = min

(
1

ρ

∂ρ

∂z

)−1

, (3.5)

with z as the coordinate in the direction of density variation. In the long wavelength

limit (λ >> Lm), however, the finite density gradient scale lengths have no effect and

we recover the expression (3.2)

It is important to notice that the linear regime in the case of two classical fluids is

maintained while the mode amplitudes are of the order of kξ << 1; beyond this limit

we enter the ”nonlinear” regime, where the individual modes interact, higher order

terms become important, and mode growth rates saturate. Since the amplitude regime

where the transition from linear to nonlinear occurs scales with the wavelength, it turns

out that shorter wavelenghts saturate at lower amplitudes.

The development of Rayleigh-Taylor instability during the acceleration phase of com-

pression is quite different from the classical case. In the context of the first studies of

RT instability in ICF in the ’70s , it was noticed that mass ablation can reduce the local

growth rate of the RT instability, in a manner that was not completely understood until

the 90’s. However, at that time it was already noticed that the level of growth rate

mitigation was largely determined by the ablation velocity, which represents the speed

of propagation of the heat front inside the shell material. According with equation

(2.9), the ablation velocity is given by:

v2 =
ṁ

ρ2
, (3.6)

where we remember that ṁ is the mass ablation rate and ρ2 is the shell’s outer surface

density. In a paper written in 1972 (18),and based on laser directly driven implosion

of bare drops or shells of DT, Nuckolls used a dispersion relation based on a model of
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3. THE RAYLEIGH-TAYLOR INSTABILITY

”fire polishing” during the ablation process and proposed the following expression for

the growth rate:

γ2 = ka− k2 p2

ρ
= ka(1− k∆R), (3.7)

where p2 is the ablation pressure [see equation (2.11], k is the wave number, and ∆R

is the shell thickness. Equation (3.7) predicts that all wavelengths shorter than 2π∆R

are stabilized, but the model by Nuckolls was soon proven to be too optimistic, as

it assumed that implosions with absorbed laser intensities approaching 1017 W/cm2

would be feasible and thus concluded that ignition at laser energies of ∼ 1kJ might be

achievable. Early experiments indicated that, because of reduced absorption and hot

electron production by plasma collective processes, laser intensities would be limited

to 1014 to a few times 1015 W/cm2, depending on the laser wavelength. By 1972,

numerical calculations indicated that direct-drive capsules designed for ignition and

gain would have much higher instability growth rates than indicated by equation (3.7).

In 1985, Takabe et al. (19) proposed a dispersion relation for Rayleigh-Taylor instability

in the case of direct-drive illumination of spherical targets, namely

γ = α
√
kg − βkv2. (3.8)

Takabe’s formula is obtained by fitting a series of numerical calculations with very

small density gradients at the ablation front and can be modified to account for density

gradients which can result in significant stabilization for certain types of direct drive

implosions:

γ = α

√
kg

1 + kLm
− βkv2. (3.9)

Now, the term kLm takes into account the finite density scale lengths effects.

In both the (3.8) and the (3.9) g is the acceleration of the outer material.

The linearized conservation equations for mass, momentum and energy are solved

by Takabe using sophisticated numerical methods which can be fitted by the expressions

above. The values of the parameters α and β derive from analytical fitting of numerical

calculations; in particular, β oscillates between 1 (for radiation driven implosion) and

3 (for direct drive implosion). This fact could lead to the wrong conclusion that in the

case of indirect drive compression the instability growth rate is higher; actually, in this

case the ablation velocity at a typical intensity of 1015 W/cm2 is about 10 times larger

than the one for direct drive. The higher ablation rates also result in the possibility
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to have thicker shells and larger density scale lengths Lm for radiation-driven capsules.

In optimized capsules, the ablation and density scale-length effects are about equally

important stabilizing effects.

Takabe’s generalized formula has been widely used until the end of the 90’s, when

the introduction of the work by Betti and Goncharov based on asymptotic matching for

solving the linearized equations allowed to find a more accurate analytical expression for

the growth rate. Soon after this work, Piriz was able to derivate the same expressions

by means of a much simpler model based on the sharp boundary model.At present

times, all efforts are concentrated on improving the sharp boundary model to get more

effective analytical treatments based on solid physical argumentation. More recently it

has been shown that it is possible to obtain the same formulas from an even simpler

physical model of the ablation front instability (Piriz 2009,(17)). Such a model will be

discussed in this chapter and it will be used in this thesis for the study of the dynamic

stabilization of RTI in the ablation front.

3.1.1 The classical Rayleigh-Taylor instability

Before addressing the case of RTI in an ablation front, we go into the analytical model

of the RT instability for the case of two ideal fluids introduced by Piriz et al. in 2006

(20), then discussed again in 2010 (21) . This treatment starts from the classical RTI

and then includes the surface tension and viscosity effects. This study will serve as a

basis to understand analogous work done for the case of the instability at the ablation

front, where we found equivalent effects to the ones of viscosity and surface tension.

The simplest case in which the Rayleigh-Taylor instability arises is for two semi-

infinite incompressible and inviscid fluids with a surface of contact initially at y = 0

(see fig.3.1 a)). The denser fluid of density ρ2 lies above the lighter fluid of density

ρ1 < ρ2 in a uniform gravitational field g. We will hypothesize that initially the two

fluids are at equilibrium and the interface between them is perfectly planar, so that

the fluid elements on each side of the interface immediately above and below will have

the same pressure p1 = p2 = p0. Now, let us introduce a small perturbation ξ(x) at

the interface such that the elements originally at y = 0 are quasistatically translated

to the new position y = ξ(x) (see fig.3.1 b)). As the pressure in an incompressible

fluid decreases linearly with depth, the elements at a deeper position (ξ > 0) will feel a
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3. THE RAYLEIGH-TAYLOR INSTABILITY

Figure 3.1: RTI at the interface between two fluids - Diagram of the interface

between two fluids : a) planar interface in equilibrium, b) perturbed interface (source:

Piriz et al. , 2006 (20)).
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pressure greater than p0, whereas the elements at y < 0 will feel a pressure less than p0.

The pressure also increases proportionally to the fluid density, so for ξ > 0 it increases

more on the side of the fluid with higher density. The pressure of the fluids on each

side of the translated interface is:

p′1 = p0 + ρ1gξ, (3.10)

p′2 = p0 + ρ2gξ. (3.11)

This means that the perturbation introduces a pressure difference ∆p = (ρ2 − ρ1)gξ

across the interface, which tends to deform it further. This pressure difference drives

the motion of the interface according to Newton’s second law of motion:

mξ̈ = ∆pA, (3.12)

where A is the area of the interface and m is the mass of the fluids contained within the

characteristic distance of the motion. It can be demonstrated that, starting from the

assumptions that the velocity field of an inviscid fluid is irrotational and incompressible

, it is possible to find that the Rayleigh-Taylor instability induces surface modes that

decay from the interface as exp(-ky), where k = 2π/λ is the wave number and λ is the

wavelength of the perturbation. Such an explanation for Rayleigh-Taylor instability is

less physical than the one exposed in the previous paragraph, but it will be useful for

what follows. The consequence is that in the linear regime the intensity of the motion

decays with the distance from the interface with a characteristic length k−1, and so

does the effective mass participating in the motion itself:

m = m1 +m2 = ρ1
A

k
+ ρ2

A

k
. (3.13)

Here, m1 and m2 are the fractions of mass moving with the interface for the light and

heavy fluids, respectively. As in the linear regime we have that kξ << 1, k−1 is the

only relevant scale length that is involved in the determination of the density profile.

Now, using equations (3.12) and (3.13), the equation of motion of the interface can be

written as:
(ρ1 + ρ2)

k
ξ̈ = (ρ2 − ρ1)gξ, (3.14)

or

ξ̈ = ATkgξ, AT =
ρ2 − ρ1

ρ2 + ρ1
, (3.15)
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3. THE RAYLEIGH-TAYLOR INSTABILITY

where AT is the Atwood number. The expression for the growth of the amplitude is

easily found integrating the (3.15) , and it turns out to have an exponential behavior:

ξ = ξ0cosh(γt) +
ξ̇0

γ
sinh(γt), (3.16)

with initial conditions of perturbation and velocity given, respectively, by ξ0 = ξ(t = 0)

and ξ̇0 = ξ̇(t = 0). The growth rate is γ =
√
ATkg.

Equation (3.15) summarizes the results obtained originally by Lord Rayleigh by using

the normal modes method; its derivation can be extended to more complex situations

such as those involving nonideal fluids. In the latter case additional forces Fi on the

interface must be included into the equation of motion. The most general form for the

equation of motion is

d

dt
[(m1 +m2)ξ̇] = (ρ2 − ρ1)gξ̇A+ ΣFi, (3.17)

where the time derivative on the left hand side allows for the possibility of a flux of mass

across the interface as occurs for example, in an ablation front. In the next subsection it

is shown how to obtain the forces Fi for the cases in which surface tension and viscosity

are present.

3.1.2 Surface tension and viscosity effects

3.1.2.1 Surface tension

We first consider the case of two inviscid fluids with a surface tension coefficient σ

between them, which in general has an exact solution that can be expressed in simple

terms. In this framework, the force FST on the interface between the fluids due to the

surface tension is given by the Laplace formula:

FST = AδpST = A
σ

RC
, (3.18)

where RC is the radius of curvature of the interface surface ξ(x):

RC =
[1 + (dξ/dx)2]3/2

d2ξ/dx2
. (3.19)

Taking into account that in the linear regime kξ << 1, now we apply a sinusoidal

perturbation ξ(x) ∝ exp(ikx). This means that the radius of curvature becomes

RC =
[1 + (ikξ)2]3/2

−k2ξ
≈ − 1

k2ξ
. (3.20)
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Now, substituing the expressions (3.20) into equation (3.18)and using equation (3.13),

we get the following equation of motion of the interface:

ξ̈ =

(
ATkg −

σk3

ρ1 + ρ2

)
ξ. (3.21)

The last equation coincides with the exact result given by normal modes theory. It

describes the asymptotic exponential growth of the perturbation amplitude with a

growth rate γST [ξ ∝ exp(γST t)],

γST =

√
ATkg −

σk3

ρ1 + ρ2
(3.22)

Setting the growth rate equal to zero, we find the cutoff wave number kc, which has

the following meaning: the restoring force stabilizes the interface for all perturbation

wave numbers larger than kc. Its expression is given by

kc =

√
(ρ1 − ρ2)g

σ
. (3.23)

3.1.2.2 Viscous fluids

The calculation with the normal modes method for Rayleigh-Taylor instability in the

interface between viscous fluids with dynamical viscosities µ1 and µ2 leads to the nu-

merical solution of a fourth degree polynomial. Here this procedure will not be followed,

but the approach contained in (20) will be exposed; such a treatment provides approxi-

mate but very accurate results that yield insight into the physical effects of the viscosity

on the instability growth.

We know from continuum mechanics that the force per unit of area fi due to an arbi-

trary fluid on an interface is (Landau, (22)) :

f
(ν)
i = p′νn

ν
i − Sνijnνj , (3.24)

p′ν = p0 + ρνgξ is the in pressure on the perturbed interface due to the incompressible

fluid ν(ν = 1, 2). The notation has been chosen so that i, j = x, y, z denote the

coordinate directions, n
(ν)
j is the jth component of the unit vector n(ν) directed outward

along the normal of the interface, and S
(ν)
ij is the deviation of the stress tensor σ

(ν)
ij =

−pνδij + S
(ν)
ij . Clearly, S

(ν)
ij accounts for the nonisotropic part of the surface forces.
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3. THE RAYLEIGH-TAYLOR INSTABILITY

For a Newtonian incompressible fluid the deviatoric part of the stress tensor is given

by the following constitutive relation

Sνij = 2µDν
ij , D

ν
ij =

1

2

(
∂vνj
∂xj

+
∂vνj
∂x

)
, (3.25)

where Dν
ij is the strain rate tensor, vνj are the corresponding components of the fluid

velocities, and µ2 is the dynamical viscosity coefficient. If we consider two-dimensional

perturbations ( i = x, j = y) and ignore surface tension, the vertical force per unit area

due to each fluid is

fνy = p′νn
ν
y − Sνyynνy − Sνyxnνx. (3.26)

In the linear regime nνx ∼ kξ << 1 and |n(ν)
y | ≈ 1 so that the last term in above

equation is negligible and we can express the force per unit of area on the interface due

to the two fluids as

fνy = p′νn
ν
y − Sνyynνy . (3.27)

The total force Fyν on the interface due only to the effects of the viscosity of both fluids

is

Fyν = (f (1)
y + f (2)

y )A− δpA = 2µ1
∂v

(1)
y

∂y
A− 2µ2

∂v
(2)
y

∂y
A, (3.28)

where δp = (ρ2 − ρ1)gξ is the term due to gravity effects, which has been subtracted

in order to calculate only the force due to the viscous effects. From normal modes

theory we know that any linear perturbation can be written as a combination of simple

perturbations in exponential form (Fourier components) with different wave numbers

k. Therefore, we can assume a perturbed velocity field of the form:

v(1)
y ∝ eikx−qy, v(2)

y ∝ eikx+qy, (3.29)

where q is the longitudinal wave number, which in principle can be calculated in a con-

sistent way from the equations of mass, momentum, and energy conservation. However,

considerable simplification can be achieved by supposing that the velocity field can be

taken as the one corresponding to an inviscid fluid.This means that we can take q ≈ k
and after performing the velocity derivatives in equation (3.28) we get:

Fyν ≈ −2(µ1 + µ2)kξ̇A, (3.30)

where

v(1)
y (y = 0), v(2)

y (y = 0) = (̇ξ). (3.31)
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3.2 RTI in an ablation front

If we substitute (3.30) into the equation of motion (3.17), we obtain

ξ̈ = ATkgξ −
µ1 + µ2

ρ2
(1 +AT )k2ξ̇. (3.32)

As in the previous cases, by setting ξ ∝ exp(γvt) we obtain a quadratic equation whose

solution yields the asymptotic growth rate:

γ2
v +

(µ1 + µ2)

ρ2
(1 +AT )k2γv −ATkg = 0. (3.33)

The above equation is not exact, but it is a well-known analytical approximation accu-

rate to within 11 % which, furthermore, has been derived using physical arguments that

show the effect of the viscosity on damping the instability growth rate. This procedure

avoids dealing with the exact dispersion relation, which would lead to a fourth-order

polynomial that must be solved numerically.

Fianlly, we can resume all the previous treatment and write an equation of motion

which takes into account the effects of both viscosity and surface tension:

ξ̈ = ATkgξ −
(µ1 + µ2)

ρ2
(1 +AT )k2ξ̇ − σk3 (1 +AT )

2ρ2
ξ. (3.34)

The corresponding asymptotic growth rate is

γ2 +
(µ1 + µ2)

ρ2
(1 +AT )k2γ −

[
AT − σk3 1 +AT

2ρ2

]
= 0. (3.35)

3.2 RTI in an ablation front

The first treatments based on the sharp boundary model to study RTI in an ablation

fronts used simply the fluid equations (2.5) -(2.8) presented in the previous chapter for

a stability analysis of the front by applying to them the normal modes procedure as in

(13). Here a more physical approach to the same problem will be shown, introduced

in 2009 in the article by Piriz et al. (17). The scheme of the sharp boundary model is

still taken into account , but a suitable expression for Newton’s second law is found in

terms of the parameters given before, and physical boundary conditions are stated to

close the problem.

As it is already well known (Landau, (22)), if we consider some volume of a New-

tonian fluid, the ith component of the flux of the momentum across the unit boundary
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3. THE RAYLEIGH-TAYLOR INSTABILITY

surface area is given by the the projection of the perturbed momentum flux density

tensor on the unit vector nk along the outward normal to the surface:

Πiknk = pδiknk + ρvivknk − Sijnk. (3.36)

Since we are considering ideal fluids, the deviatoric part Sij is zero.

In the vertical direction, Newton’s second law for the interface is:

d

dt
[(m1 +m2)ξ̇] = δΠ(1)

yy n
(1)
y + δΠ(2)

yy n
(2)
y , (3.37)

where n
(ν)
y is the vertical component of the unit vector n(ν) directed outward along

the normal to the interface (n
(2)
y = −n(1)

y ), and δΠ
(ν)
yy is the vertical component of

the perturbed momentum flux density tensor Π
(ν)
ik in the medium ν(ν = 1, 2). In

the previous equation p(ν), ρν , v
(ν)
i are the pressure, the density, and the fluid velocity.

Furthermore, mν is the mass per unit area of the fluid involved in the motion due to

the perturbation, and can be expressed in terms of the density ρ and the perturbation

wave number k in the following way:

mν =
ρν
k
, (3.38)

because we are dealing with surface modes that decay exponentially from the interface

with the characteristic length k−1. If we denote with vν the unperturbed velocities of

the fluids, then the perturbed ones are given by

v(1)
y = v1 + ξ̇, v(2)

y = v2 − ξ̇, (3.39)

where ξ̇ is the velocity of the front moving because of the perturbation . In the (3.39)

v
(2)
y is the ablation velocity, or, in the reference frame fixed to the nonablated material,

it is the front recession velocity due to ablation; in the same reference frame, v
(1)
y is

the velocity with which the material is ejected from the front. In the same manner the

perturbed mass ablation rates (namely the mass variations per unit time, also called

mass evaporation rate) are:

ṁ1 = ṁ+ δm; ṁ2 = ṁ− δm, (3.40)

where ṁ = ρνvν denotes the mass ablation rate at equilibrium and the mass perturba-

tions of the two fluids are given by δṁ1 = −δṁ2 = δṁ.
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3.2 RTI in an ablation front

According to the hydrostatic equation for an incompressible fluid, the perturbed pres-

sures are

p(1) = p0 + ρ1gξ; p(2) = p0 + ρ2gξ, (3.41)

where p0 = ρ2gh (h is the thickness of the nonablated phase and it is assumed that

kh >> 1 ) is the pressure on the interface at equilibrium. Thus the pressure perturba-

tions turn out to be δp(1) = ρ1gξ, δp
(2) = ρ2gξ.

With the previous considerations, we can write the expression for the perturbed mo-

mentum flux density tensor as (actually the variations are only referred to the vertical

components of the velocities):

δΠ(ν)
yy = δp(ν) + δṁνvν + ṁδv(ν)

y . (3.42)

Using equations (3.39), (3.40), (3.41) and (3.42), the (3.37) becomes:

2ṁξ̇ +
ρ1 + ρ2

k
ξ̈ = (ρ2 − ρ1)gξ − 2ṁξ̇ − δṁ(v1 + v2). (3.43)

The last term on the right side of equation (3.43) is the ”surface tensionlike” force,

and it is the result of the reaction due to the perturbation δṁ in the mass ablation

arising as the interface moves through the temperature gradient of the ablative corona.

The perturbation δṁ is determined by the particular mechanism driving the ablation

process.

Actually, equation (3.43) is valid for all kinds of interfaces, independently of the fact

that they are or not ablation fronts. Some additional information is needed to specify

that the modell deals effectively with an ablation front: this condition is, consistently

with the previous thin front approximation, that the isotherms move with the front,

or, that is the same, the front is an isotherm. This fact has been originally noted by

Bodner (23) and Baker (24),(25) but the first correct physical picture was given in (17).

Such a property of the front arises from the fact that the maximum deposition rate of

the energy flux takes place on the ablation surface, independently of the displacement

produced. As a consequence, neither the energy flux nor the temperature at the front

are affected by the kind of perturbation, which means that for every fluid element on

the front with unperturbed temperature ε0(y = 0) that is displaced from y = 0 to y = ξ

the perturbed temperature is ε(ξ) = ε0(0) and the perturbation of the specific internal

energy can be written as follows:

δε = −ξ dε0
dy

)
y≈0

. (3.44)
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Now the key point for directing this analysis towards a specific ablation front is finding

the expression for the surface tensionlike force determined by the perturbation in the

ablation rate, for each driving mechanism, namely in both cases of ablation driven by

thermal diffusion and by ion beams.

3.2.1 RTI in ablation fronts driven by thermal conduction

For ablation fronts driven by thermal diffusion, thermal flux is given by the Fourier

heat conduction equation (2.1) with κD = χε5/2. Furthermore, we can use equation

(3.44) to express δQy in terms of the unperturbed thermal flux Q0, which relates to

the global properties of the corona and, as we have already said before, is a known

parameter in the SBM model:

δQT0 ≈ kξQT0; QT0 = κD
dε

dy

)
y≈0

. (3.45)

Additional progress comes from the zeroth order equation of the energy, which comes

directly from the (2.15) if we take into account that in an ablation front the Mach

number is M2
1 = v2

1/γ(γ − 1)ε << 1 . This implies that v2
1/ε << 1 and that the (2.15)

can be approximated as in equation (2.16):

QT0 = κD
dε

dy
≈ γṁ(ε− ε0).. (3.46)

Now, we know from (3.45) that δQT = kξQT0, where we have taken into account

that for y > 0 the medium is isothermal and then it is κD1k/ṁ = kL1 >> 1, L1 =

(1/ε1)× (dε/dy)y=0+ . Using equation (3.46) we get

δṁ

ṁ
≈ δQT
QT0

≈ kξ, (3.47)

and consequently, the surface tensionlike force is

δṁ(v1 + v2) ≈ kξṁ(v1 + v2). (3.48)

Introducing the new expression for the tensionlike force into equation (3.43) we get the

following equation of motion for the evolution of the interface:

ξ̈ =
ρ1 + ρ2

ρ1 − ρ2
kgξ − 4kṁ

ρ1 + ρ2
ξ̇ − k2ṁ(v1 + v2)

ρ1 + ρ2
ξ. (3.49)

56



3.2 RTI in an ablation front

By substituting ξ ∼ eσt, we get the equation for the instability growth rate

σ2 +
4kv2

1 + rD
σ + kg

(
kv2

2

grD
−AT

)
= 0, (3.50)

where AT = (1− rD)/(1 + rD) is the Atwood number . This procedure shows that the

surface tensionlike effect that leads to a cutoff wave number is caused by the thermal

diffusion driving the ablation and that the damping term (the coefficient multiplying

σ) is a consequence of the ablation process itself, independently of the means used to

drive it. Solving the equation (3.50) , one can get the following expression for the

dimensionless growth rate :

σL2

v2
=

√(
2κv2

1 + rD

)2

− κ2

rD
+
κAT
Fr2

− 2κ

1 + rD
, κ = kL2. (3.51)

were kL2 is the dimensionless wave number and we have introduced as a new parameter

the Froude number Fr2 = v2
2/gL2. By setting the condition that the characteristic

length be of the order of k−1:

y =
1

k
, ρ1 = ρ(k−1)→ ρ2

ρ1
=

1

rD
, (3.52)

the development (2.20) provides us the expression for rD:

1

kL2
≈ 2

5

(
1

r
5/2
D

− 1

)
+

2

3

(
1

r
3/2
D

− 1

)
+ 2

(
1

r
1/2
D

− 1

)
(3.53)

→ rD ≈
(

2kL2

5

)2/5

for rD << 1 (AT ≈ 1). (3.54)

3.2.2 RTI in ablation fronts driven by ion beams

By setting δE ∼ ke−y in equation (2.22) , we get the following equation for the energy

flux perturbation Qb:
δQb
Qb

=
δE

E
≈ − 1

kL1

δρ

ρ
, (3.55)

where L1 = ε1/(dε/dy)y=0+ = αE2
1/ρ1ψ(w0), E1 = γṁε1/µb (see equation (2.27).

Then, taking into account that the front is an isotherm (3.44) and remembering (3.41),

we have:
δρ

ρ
=
δp

p
− δε

ε
=
ξ

h
+
ξ

ε

dε

dy
. (3.56)
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Equations (2.27), (3.55) and (3.56) yield

δṁ

ṁ
≈ δQb

Qb
≈ kξ

kL1

(
1

kh
+

1

kL1

)
. (3.57)

Since kh << 1 and in the isothermal region (y > 0) it is also kL1 >> 1, it turns out

from equation (3.57) that δm/ṁ << kξ and the surface tensionlike force in equation

(3.43) becomes negligible. Thus, the equation of motion at the interface reads

ξ̈ =
ρ1 + ρ2

ρ2 − ρ1
kgξ − 4kṁ

ρ1 + ρ2
ξ̇. (3.58)

By taking ξ ∼ eσt we get the following equation for the instability growth rate σ:

σ2 +
4kv2

1 + rD
σ −ATkg = 0, (3.59)

where rD is obtained from equation (2.31) by using the condition (3.52) :

1

kL2
≈ 1

6
+

1

3

(
ρ2

ρ

)3

− 1

2

(
ρ2

ρ

)2

, → rD ≈
(
kL2

3

)1/3

for rD << 1(AT ≈ 1). (3.60)

Once the expression for rD is specified , we can get the dimensionless growth rate
σL2
v2

as a function of the dimensionless wave number with the Froude number as a

parameter:

σL2

v2
=

√
ATκ

Fr2
+

(
2κ

1 + rD

)2

− 2κ

1 + rD
; κ = kL2. (3.61)

The dimensionless growth rate is presented in fig.3.2 as a function of the dimensionless

wave number κ in a logarithmic scale for Fr2=1,10,100. In fig.?? we show the growth

rate in a linear scale for Fr2=1,2,3.

From these graphs we can see that the growth rate achieves a maximum value

σm for a wave number km that depends on the Froude number and then it decreases

asymptotically for large values of k. The absence of a diffusive process of energy

transport prevents the existence of a surface tensionlike force and no cutoff wave number

is observed. However, a stabilizing viscouslike effect is generated by the ablation process

itself, so that there is a growth rate reduction in comparison with the classical case.

In fig.3.4 we represent the maximum dimensionless growth rate and the corresponding

dimensionless wave number as a function of the Froude number. It is evident that the

maximum growth rate decreases almost linearly with the ablation velocity v2.

In general, it can be assumed that in an ion beam driven ablation front the total
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3.2 RTI in an ablation front

Figure 3.2: Dimensionless growth rate for an ion beam driven ablation front (1)

- Dimensionless growth rate number σL2

v2
as a function of the dimensionless wave number

kL2 for different Froude numbers Fr2=1,10,100. (source: Piriz, 2009 (17)).

Figure 3.3: Dimensionless growth rate for an ion beam driven ablation front (2)

- Dimensionless growth rate number σL2

v2
as a function of the dimensionless wave number

kL2 for different Froude numbers Fr2=1,2,3. (source: Piriz, 2009 (17)).
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Figure 3.4: Maximum dimensionless growth rate for an ion beam driven ab-

lation front - Maximum dimensionless growth rate σL2

v2
and wave number kmL2 as a

function of the Froude numbers Fr2=1,2,3. (source: Piriz, 2009 (17)).

energy flux deposited into the ablative corona can be transported by means of collisional

deposition and thermal conduction. By allowing that some part QT of the beam energy

flux be transported by thermal conduction so that φ0 = QT /(QT + Qb), we can write

for the perturbation in the mass ablation rate a more general expression,

δṁ

ṁ
≈ δQT
QT0

≈ φ0kξ. (3.62)

and consequently we get

δṁ(v1 + v2) ≈ Φ0kξṁ(v1 + v2). (3.63)

Of course, if some fraction φ0 of the energy flux is transported by thermal conduc-

tion,in principle the density profile expressed by equation (3.60) is not valid any more.

However, it can be easily noticed that the result in (3.60) is only slightly different

with respect to the case of a corona driven purely by thermal conduction ablation, for

which in the same limit of rD << 1 , we would get rD ≈ (5kL2/2)2/5. Therefore, we

can expect that in a general case for which both mechanisms, thermal conduction and

collisional beam deposition, are present, the equation (3.60) will still represent a good
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3.2 RTI in an ablation front

approximation to the density jump rD.

Introducing the expression (3.62) into equation (3.43), we obtain the following equation

of motion for the interface:

ξ̈ +
4kv2

1 + rD
ξ̇ +

[
φ0
k2v2

2

rD
ATkg

]
ξ = 0, (3.64)

In this case we also recover the presence of a cutoff wave number kc, whose expression

can be found solving equation (3.64) for σ = 0:

kc =
grD(1− rD)

Φ0v2
2(1 + rD)

. (3.65)

We notice that kc can become very large if the fraction Φ0 of the energy flux transported

by thermal diffusion gets small. Also, it is important to stress that this last result is

quite general, due to the fact that setting ψ(w) ≈ ψ(w0) in equation (3.55) we take

into account both the cases in which vb > vthe and vb ≤ vthe. Actually, the treatment

above is not altered moving from one situation to another, provided that we substitute

the right expression for ψ(w). The only difference between the two cases is that when

vb ≤ vthe, the quantity L2 becomes even larger and the density gradient may become

somewhat smoother over a distance of the order k−1 from the ablation front.
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4

Dynamic stabilization of

Rayleigh-Taylor instability in an

ablation front

4.1 Introduction

In this section the problem of dynamic stabilization of Rayleigh-Taylor instability in the

acceleration phase of the compression will be addressed. We have already seen in the

introduction the role of RTI in determining the size of the target, by setting an upper

limit to the in-flight aspect ratio; as ignition velocities are in the range of 3 − 4 × 107

cm/s for megajoule scale lasers, the minimum amount of energy which is necessary

for achieving ignition is determined by the mass, therefore thinner shell targets allow

reducing the imput energy. Thus, any method for stabilizing ablation fronts in ICF is of

interest: the one that will be proposed here is based on the already known mechanism

of dynamic stabilization, whose effectiveness has been already demostrated in various

problems in mechanics and electrodynamics. In general, it consists in applying an

external periodic driving force to a physical system which shows instability, and it has

been proven that by choosing the suitable values of amplitude and frequency for the

periodic modulation it is possible to mitigate the instability itself.

The first proposal for such a method for stabilizing the inverted pendulum dates

back to 1908, when Stephenson (26) pointed out how from the study of the equation

of motion (which in this case is a Mathieu equation) it was possible to demonstrate
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that an inverted pendulum (namely, a pendulum whose mass is above the pivot point)

can be maintained around its position, otherwise unstable, by a periodic variation in

spring of sufficiently large frequency. This behaviour was later discussed and inves-

tigated experimentally by Kapitza in 1951 (27), and today we know that not only

an inverted pendulum which undergoes vibrations of large enough amplitude and/or

frequency shows no tendency to turn down, but also that at small and moderate devi-

ations from the vertical the pendulum tends to return to it. After that, many papers

dealing with the analysis of the properties of this system have been written, also due

to its importance in various fields of the physics, among which the theory of solitons ,

quantum optics and weak superconductivity.

An analogue mechanism provides the stabilization of the motion of charged particles in

the Paul’s trap. The latter is a quadrupole radio-frequency trap in which the particles

are suspended in dynamic equilibrium by setting electrode configurations which give

sinusoidally time varying forces whose strenghts are proportional to the distance from

a central origin. In such conditions, the ions experience a restoring force which drives

them back to the center of the trap and their motion is described by the solution of the

corresponding Mathieu equations. It was proven that, provided that the frequency and

amplitude of the varying forces are large enough, it is possible to maintain the particles

steady at the center (28).

In 1969 Wolf (29) demonstrated from an experimental point of view the possibility

of dynamically stabilizing the Rayleigh-Taylor instability of the interface between two

Newtonian fluids by submitting the latter to a vertical sinusoidal motion, under certain

conditions for the angular frequency and amplitude of the oscillations. Later, Troyon

and Gruber (30) gave a theoretical explanation for the results obtained by Wolf, and

showed the importance of both viscosity and surface tension in determining the regions

of the parameters space for which stabilization can be achieved. However, the analyt-

ical method they applied to the Mathieu equation of motion for finding the region of

stability led to solutions from which it is very difficult to extract relationships which

could serve as scaling laws for designing experiments. Thus it was found at the same

time that a minimum value of the surface tension is also necessary for achieving stabi-

lization and that for some values of the coefficients of the Mathieu equation the surface

tension can reduce the stabilizing effect of the driving oscillation.
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Dynamic stabilization by vertical vibration of an ablation front in ICF was first pro-

posed by Boris in 1977 (31),in the context of laser driven pellet implosions. He showed

by means of 2D numerical simulations that if the laser beams are modulated in inten-

sity so that the ablation layer is subject to a sufficiently rapid and strong oscillating

acceleration, then a substantial band of the Rayleigh-Taylor instability wave number

spectrum can be stabilized by this oscillation. However, he was not able to give a com-

plete physical picture of the basic mechanism of the phenomenon, since at that time

the essential physics of the linear phase of ablative RTI was not yet well understood.

Actually, he did not derive the equation for the evolution of the perturbation amplitude

from a consistent theory, but instead he had to use a phenomenological version in which

the damping effects of the ablation are not present. In this thesis it will be shown that

in reality they are crucial for the stabilization of the ablation front.

In 1993 Betti et al. (32) studied again this problem by means of a simplified sharp

boundary model with continuity of the mass flow and the pressure balance at the inter-

face as boundary conditions. However, as it happened for Boris, a theoretical treatment

of the linear stage of ablative RTI was not yet available and Betti et al. used a Takabe-

like formula (see 3.8) for the instability growth rate. Such an approach, in opposition

to the one of Boris, led to an overestimation of the magnitude of the damping effect,

producing rather optimistic results.

In 2010 Piriz et al. (21) proposed a new analysis of the dynamic stabilization of an

interface between two inmiscible and incompressible Newtonian fluids, based on Newton

second law, that allowed for the consideration of a time-varying interface. In practice

equation 3.34 is recovered and a periodic perturbation is added to the background ac-

celeration g, then a new dispersion relation is found, whose solutions are analytic and

give the upper and lower limits of the stability region. The periodic vertical excitations

were chosen to consist in a periodic sequence of Dirac deltas, whereas all the previous

works both related to fluids and plasmas used a sinusoidal vibration. It was found that

for symmetric Dirac deltas the qualitative results do not differ significantly from the

ones obtained by Troyon and Gruber in the case of a sequence of sine waves. However,

this new analysis allowed to clarify the role of viscosity and surface tension by express-

ing the minimum frequency required for obtaining dynamical stabilization in terms of

both these quantities. Also, it was possible to find dimensionless combinations of the
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physical parameters governing the problem, namely the ratio between the amplitude

of the perturbation acceleration and the background acceleration g, the dimensionless

frequency of the perturbation and the dimensionless minimum wave number that it is

possible to stabilize. In this way scaling laws which can be used for experiments were

provided. Moreover, it was shown that in the case of a symmetrical driving surface

tension effects are necessary in order to get dynamic stabilization of the interface.

The case of RTI in Newtonian fluids presents some analogies with the same one in

ablation fronts, because RTI in ablation fronts shows analogous effects to viscosity and

surface tension. However, the different dependence of the damping and surface ten-

sionlike effects on the perturbation wavenumber preclude a direct extrapolation of the

results obtained for Newtonian fluids. Furthermore, in an ablation front the compress-

ibility effects (absent in Newtonian fluids) play a crucial role. In this chapter a specific

study of dynamic stabilization of ablation fronts will be addressed, using the simplest

possible modulation, that is, a sequence of Dirac deltas. It has been demonstrated (21)

that such an approach allows us to capture the essential physics of the RTI dynamic

stabilization, and besides allows for finding the general similarity parameters that are

actually independent of the particular form of modulation used. Finally, it can serve as

a basis for a general comparison between the performance of different drivings which

will be shown in the next chapter.

4.2 Dynamic stabilization of Rayleigh-Taylor instability

in ablation front by means of sequences of Dirac deltas

We consider an ablation front driven by ion beams as discussed in subsection (3.2.2).

For our purpose of studying dynamic stabilization, we recover the equation of motion

(3.64) and add to the constant background gravity acceleration g a periodic modulation

Γ(ωt) that oscillates with a frequency ω and an amplitude A:

ξ̈ +
4kv2

1 + rD
ξ̇ +

[
φ0
k2v2

2

rD
−ATkG(t)

]
ξ = 0, G(t) = g + bΓ(ωt); b = ω2A. (4.1)

Then, we consider an oscillatory acceleration modulation consisting in a sequence of

positive and negative Dirac deltas δ(τ) with amplitudes A1 = b1/ω
2 and A2 = b2/ω

2

respectively:

Γ(ωt) = b1δ(ωt− 2mπ)− b2δ[ωt− (2m+ 1)π], (4.2)
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where m is an integer. Now, we introduce the following dimensionless variables

τ = ωt; x = ξ/ξ0, (4.3)

where ξ0 is the initial perturbation amplitude (at t = 0). Substituting the new variables

in (4.1) and dividing by ξ0, we find:

ω2ẍ+
4kv2

1 + rD
ωẋ+

[
φ0k

2v2
2

rD
−ATkg −ATkω2AΓ(τ)

]
x = 0. (4.4)

Then we introduce the new quantities:

D =
2kv2

(1 + rD)ω
; (4.5)

K2 =
φ0k

2v2
2

ω2rD
− ATkg

ω2
; (4.6)

β1 = ATkA1; (4.7)

β2 = ATkA2. (4.8)

Now, we can use the assumptions made in chapter 3 for the discontinuity jump (see

equation (3.60)), namely that rD << 1 and AT ≈ 1 and so we get D = 2kv2
ω , β1 =

kA1, β2 = kA2. Using these new definitions, equation (4.1) becomes a Hill equation:

ẍ+ 2Dẋ+ [K2 − βΓ(τ)]x = 0, (4.9)

βΓ(τ) = β1δ(τ − 2mπ)− β2δ[τ − 2mπ]. (4.10)

By further introducing the dimensionless variables

κ =
kv2

2

g
, $ =

ωv2

g
, (4.11)

the density jump expressed by equation (3.60) reads as

rd ≈
κ1/3

3Fr
1/3
2

, Fr2 =
v2

2

gL2
, (4.12)

where Fr2 is the Froude number and is the characteristic parameter of the steady

ablation front. In the same manner, the coefficients of equation (4.9) can be expressed

in terms of the new variables as follows:

D =
2κ

$
, K2 =

κ

$

[(
κ

κc

)2/3

− 1

]
, (4.13)

κc =
rD(kc)

φ0
≈ 1

φ
3/2
0 (3Fr2)1/2

, (4.14)

β1 =
k

$2

b1
g
, β2 =

k

$2

b2
g

(4.15)

67
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Equation (4.14) is the dimensionless expression for the natural cutoff wave number of

the nonoscillating ablation front already found in (3.65).It is important to notice that

in terms of the new variables, κc is a function of the Froude number Fr2 and of the

fraction φ0 of the energy flux that is transported by thermal diffusion, in such a way

that it becomes larger when φ0 becomes smaller. Now, we perform the usual variable

change y = xexp(Dτ) and so we get:

ÿ + [K2 −D2 − βΓ(τ)]y = 0. (4.16)

According ot the Floquet theory (33), the solutions of (4.16) have the general form

x(τ) = P (τ)eστ , σ =
γ

ω
, (4.17)

where P (τ) is a periodic function and γ is the instability growth rate. In addition,

these solutions have the general property of translational symmetry:

x(τ + 2π) = χx(τ) or y(τ + 2π) = e2πDy(τ), (4.18)

χe2πD = ei2πη = e±imπ+2π(σ+D). (4.19)

Here, η is the so-called characteristic exponent which in general depends on the quan-

tities K2 −D2 and β. For the case of marginal stability it turns out that σ = 0.

4.2.1 The case of symmetric Dirac deltas driving (SD)

We consider here the case of a symmetric driving in which β1 = β2 = β = (κ/$2)(b/g)

(see fig.4.1). Equation (4.16) is a dimensionless Hill equation which can be easily

solved in the regions where Γ(τ) = 0. These solutions can be written as:

y1 = c1 cosτ
√
K2 −D2 + c2 sinτ

√
K2 −D2, −π < τ < 0; (4.20)

y1 = c3 cosτ
√
K2 −D2 + c4 sinτ

√
K2 −D2, 0 < τ < π, (4.21)

By using the periodic condition for the solutions:

y3(τ + 2π) = ei2πηy1(τ), (4.22)

and by integration of equation (4.16):∫ +ε

−ε
dẏ =

∫ +ε

−ε
bΓ(τ)y(τ)dτ. (4.23)

we can state the following matching conditions for the solutions:
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Figure 4.1: Dirac delta waves - Symmetric Dirac delta wave oscillation.

1. y1(0) = y2(0);

2. y2(π) = y3(π) = ei2πνy1(−π);

3. ẏ1(0)− ẏ2(0) = −β1y1(0);

4. ẏ2(0)− ẏ3(0) = β2y2(π) = β2e
i2πνy1(−π).

which can be converted in equations whose unknowns are the integration constants

ci(i = 1, 2, 3, 4):

1. c1 = c3;

2. c3 cosλπ + c4 sinλπ = ei2πν(c1 cosλπ − c2 sinλπ);

3. c2 = −β1
λ c3 + c4;

4. −c3λ sinλπ+c4λ sinλπ−ei2πνπ(c1 sinλπ+c2 cosλπ) = βei2πν(c1 cosλπ−c2 sinλπ).

After some algebra, we get the following dispersion relation:

cos 2πν = cos 2πλ−
(
β

2λ

)2

(1− cos 2λπ), (4.24)

that is

β2 = 4(K2 −D2)
cos 2π

√
K2 −D2 − cos 2πη

1− cos 2π
√
K2 −D2

. (4.25)
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Taking into account (4.19), we have

cos 2πη = ± cosh 2π(σ +D). (4.26)

Then we can also use the expressions (4.13) and (4.15) and rewrite equation (4.25) as

b

g
= 4ω̄

[(
1− K2

D2

)
cosh 2πD

√
1−K2/D2 ± cosh 2π(σ +D)

cosh 2πD
√

1−K2/D2 − 1

]1/2

(4.27)

D =
2κ

$
,
K2

D2
=

(κ/κc)
2/3 − 1

4κ
, (4.28)

where we have put cos 2π
√
K2 −D2 = cosh 2π

√
D2 −K2. By setting σ = 0 in equation

(4.27), we obtain two curves for b/g as a function of the variables in equation (4.28),

namely b/g)± = f(κ) with κc and $ as parameters. The solutions with the plus and

minus sign denote, respectively, the upper and lower limit of the stability region.

The first thing that can be noticed from equations (4.27) and (4.28) is that the damping

term D is essential for making dynamic stabilization possible and in the case it is

absent, like in the problem originally considered by Boris (31), only a narrow range of

wavenumbers can be stabilized. In fact, setting D = 0 equation (4.27) becomes

b

g
≈ 4ω̄

(
cosh 2πK ± 1

cosh 2πK − 1

)1/2

. (4.29)

It is easy to see that now the new limits of marginal stability are given by the curves of

b/g whose intersection with the axis of the dimensionless wave number are respectively

κc and the value κ0 corresponding to the solution of the equation 2πK(κ0) = π, that

is (4κ0/$
2)[(κ0/κc)

2/3 − 1] = 1. This means that only the wave numbers which are

in the interval between these two values can be stabilized for b/g << 1, as in figure

4.2. Moreover, the interval of the stable wave numbers becomes even narrower with

larger b/g. This is an analogue result to the one obtained for dynamic stabilization of

Newtonian fluids by Piriz et al. (21).

In general, for D 6= 0, the upper (”+”) and lower (”-”) limits are like the ones

shown in fig. 4.3 for two typical cases :κc = 0.3, $ = 0.8 and κc = 1, $ = 0.5.

Apart from the qualitative view shown in the picture, it is interesting to calculate

the mathematical behaviour of the two curves. For this purpose, we examine the limits

of the (4.27) for κ << 1 and κ >> 1 ,that is β → 0 and β →∞ for the (4.25) . In the

case of the upper (”+”) curve, we have that for κ >> 1 equation the sines and cosines
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Figure 4.2: Stability region for a zero damping - Dimensionless driving acceleration

b/g for marginal stability as a function of the dimensionless wave number κ for the case

D = 0. The upper and lower limits of the region of stability are shown for κc = 1 and

$ = 2.05.

Figure 4.3: Stability region for SD (1) - Dimensionless driving acceleration b/g for

marginal stability as a function of the dimensionless wave number κ for κc = 0.3, $ = 0.8

and κc = 1, $ = 0.5. The upper and lower limits of the region of stability are denoted by

the symbols ”+” and ”-”, respectively.
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in (4.25) can be transformed into the corresponding hyperbolic functions which in turn

become very large, so that the 1 in the denominator becomes negligible . In this limit

we also have that
K2

D2
=

(κ/κc)
2/3 − 1

4κ
−−−→
κ→∞

0, (4.30)

and using the exponential development coshx = (ex + e−x)/2 we get

b

g
≈ 4$[1 + e(π/2$)[(κ/κc)2/3−1]]1/2, (κ >> 1). (4.31)

Equation (4.31) describes the behaviour of the upper curve beyond the minimum, as

shown qualitatively in fig. 4.3. The behaviour before the minimum can be found by

calculating the limit of (4.27) for κ << 1. In this case D2/K2 → 0 and the Taylor

series development for the cosine and hyperbolic cosine can be applied to get

b

g

)
+

≈ 2

π

$

k
, (κ << 1). (4.32)

This means that dynamic stabilization is possible only for values of b/g below the

minimum of the upper limit, which is the upper limit of stability.

For the lower curve, in the case of κ << 1, we find that

b

g

)
−
≈ 2ω

k
, (κ << 1). (4.33)

The limit for the lower curve for the case of β → ∞, which in reality corresponds to

κ → κc, can be found by means of an analogous derivation to the one developed for

(4.31) and reads as

b

g
≈ 4$[1− e(π/2$)[(κ/κc)2/3−1]]1/2, (κ→ κc). (4.34)

For each wave number κm such that κm < κc, the corresponding intersection on the

lower curve determines the minimum value b/g)min that is required in order to dynam-

ically stabilize all the wavenumbers κ ≥ κm. Such value of b/g is the lower boundary

of stability. Clearly, in order to have a region of stability in the parameter space of the

problem, it is necessary that b/g)min < b/g)max. To better represent the situation, we

can construct stability charts of b/g as a function of $ that provide the stability re-

gions for a given value of the parameter κc and for chosen values of the minimum wave

number κm that we want to stabilize. In order to do that, we take the minimum value

of the positive branch of equation (4.27) (with σ = 0) and represent it as a function of
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$ for a given κc in order to find the upper boundary. For the lower boundary, instead,

we set κ = κm in the negative branch of equation (4.27) and again we represent it as a

function of $ for a given κc . For each value of κm the intersection between the upper

and lower boundary gives us the minimum values of b/g and $ that are necessary for

dynamic stabilization.

Typical stability charts are shown in figs.4.4-4.6 for three different values of κc: 0.3, 1

and ∞. These figures show the general behaviour: the smaller the minimum value κm

of the wave numbers that we want to stabilize for a given value of the cut-off wave

number κc, the larger the relative amplitude b/g and frequency $ that are requested

for stabilization. In the same manner, the smaller κc, the more difficult to reduce κm

to a given fraction of κc, thus requiring higher values of b/g and $. It is important to

notice that, as it is shown in fig.4.6 , even for the case κc = ∞, which corresponds to

the case φ0 = 0, or absence of thermal conduction, in equation (4.1), it is still possbile

to stabilize large wave numbers, although it turns out to be more difficult to stabilize

lower desired wave numbers. This is in contrast with the results obtained for Newtonian

fluids in the article (21), where it was found that it is not possible to stabilize the wave

numbers which are larger than a given value of κm when surface tension (the analogous

effect in fluids with respect to thermal conduction in ablated plasmas) is not present.

We will see later that such a behaviour of dynamic stabilization of Rayleigh Taylor

instability in ablation fronts is exclusive of the Dirac deltas driving and that for more

general acceleration modulations it performs in a similar manner as in Newtonian fluids.

Obviously the possibility to stabilize all the wave numbers above a certain κm,

hopefully as small as possible, is one of the main goals. However, it is also very im-

portant to reduce the maximum growth rate of the unstable modes. For this purpose,

we calculate the dimensionless growth rate γ(γv2/g = σ$) as a function of κ for given

values of κc and $ and for several values of b/g. The instability growth rate can be

explicitly obtained from equation (4.27) by solving it for σ:

σ =
1

2π
cosh−1

[
±
(

1+
q2

1−K2/D2

)
cosh 2πD

√
1−K2/D2+

q2

1−K2/D2

]
−D, (4.35)

where q = (b/g)(1/4$). In principle, just looking at the stability charts one could

imagine intuitively that by increasing the value of b/g above the upper boundary, in

the region known as the one corresponding to parametric instabilities, the instability
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Figure 4.4: Stability chart for SD (1) - Stability region for κc = 0.3. The lower

boundary is given for κm = 0.10, 0.15 and 0.20.

Figure 4.5: Stability chart for SD (2) - Stability region for κc = 1. The lower

boundary is given for κm = 0.3, 0.5 and 0.7.
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Figure 4.6: Stability chart for SD (3) - Stability region for κc = 0.3. The lower

boundary is given for κm = 0.50, 1 and 10.

growth rate could be lower that in the reference case. It is possible to see from the

graphs of the growth rate for different b/g that this is not exactly true. In fig. 4.7 we

show the instability growth rate for $ = 0.6, κc = 0.3 and b/g = 0, 2.4, 4.5. We observe

that, with respect to the refence case of the nonoscillating front (b/g = 0), increasing

b/g until 2.4 we remain below the upper limit (see fig.4.8) and the dynamic cut-off

wave number is reduced to κm = 0.15, while the maximum growthr ate is reduced from

σmax = 0.112 to σmax = 0.096 [curve(b)].When b/g = 4.5,we are below the lower limit if

κm ≤ κm2 and the maximum growth rate in this region results to be further lowered to

σmax = 0.075; however, for κm3 ≤ κm ≤ κm4, we are again in the region of parametric

instabilities and, in such a region, not only the range of unstable wave numbers is wider

(∆κm = κm4−κm3) but also the maximum growth rate has increased to a value close to

the reference case: σmax = 0.104. Therefore, the better strategy is to remain inside the

stability region defined by the parametric instabilities in the upper boundary and by

the minimum wave number κm above which we want to stabilize in the lower boundary.
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Figure 4.7: Instability growth rates for SD - Instability growth rate for κc = 0.3

and a fixed dimensionless frequency $ for different values of the dimensionless driving

acceleration b/g.

4.2.2 Compressibility effects

The results shown by stability charts 4.4-4.5 are in agreement with the ones already

found for Newtonian fluids in (21) for what concerns the necessity of going at relatively

large values of b/g in order to achieve stabilization. To allow the existence of such

large oscillations in the unablated material ahead the front we have to consider the

presence of compressibility effects in the plasma. This fact has been already noticed by

Boris (31))and Betti (34): the ablation pressure itself can push the ablation front but

is unabe to pull it, so compressibility effects are the only responsible for the creation

of local accelerations b that are considerably larger than the background acceleration g

affecting the whole mass of the accelerated shell. In this way, an oscillating cycle that

makes dynamic stabilization work is generated.

The details of the process for which large values of b/g can be achieved in an ablation

front and the thickness of the region affected by the vibration should be investigated

by means of one dimensional numerical simulations. Here we will consider such com-

pressibility effects in a phenomenological manner in order to understand what new
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Figure 4.8: Stability region for SD (2) - Upper and lower limits given by dimensionless

driving acceleration b/g from equation (4.27) as function of the dimensionless wave number

κ for κc = 0.3, $ = 0.6. The wave numbers κmi(i = 1, 2, 3) correspon to the cut-off values

of fig. (4.7).

77



4. DYNAMIC STABILIZATION OF RAYLEIGH-TAYLOR
INSTABILITY IN AN ABLATION FRONT

constraints they impose on the stabiltiy region.

The first consequence of taking into account compressibility effects is that the minimum

wave number km = 2π/λm above which the front is dynamically stabilized cannot be

freely chosen any more, but will depend on the oscillation frequency ω. In fact the

thickness of the shell region affected by the oscillation is equal to the distance that

can be covered by the sound waves, that is, if they travel with velocity cs2 during an

oscillation characteristic time T = 2π/ω, we have that

λm ≈ ∆y = cs2T, k
−1
m ≈ cs2ω−1. (4.36)

using the dimensionless variables defined in (4.11), the condition above becomes

κm ≈M2$ (4.37)

where M2 = v2/cs2 is the Mach number in the relatively dense and cold material ahead

the ablation front. Equation (4.37) shows that the larger is the frequency $, the larger

will be the minimum wave number κm, thus suggesting that too large frequencies may

not stabilize sufficiently small wave numbers.

On the other hand, the phenomenological calculation for the local acceleration b shows

that large frequencies are necessary to produce large local accelerations b. It has been

suggested by Betti (32) and confirmed by preliminary one dimensional simulations that

when a pressure modulation ∆p/p is imposed on the front , an average acceleration b is

developed on a region of thickness ∆y beneath the ablation front that can be estimated

by the following expression

b ≈ ∆p

ρ2∆y
⇒ b

g
≈ ∆p

p

d

∆y
, (4.38)

where p = ρ2gd is the ablation pressure, and d is the shell thickness. Introducing

dimensionless variables, we get
b

g
≈ ∆p

p

$

M2
. (4.39)

Taking into account that ∆p/p < 1, it turns out that relatively large frequencies $ >>

M2 are required to produce values of b/g cosiderably larger than unity. The only way

to put together the opposite requirements of equations (4.37) and (4.39) is to use the

lowest possible frequency that allows us to enter the stability region.

It is necessary to take into account the conditions for κm derived fom the compressibility
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effects in the stability charts, in order to obtain a more realistic representation of the

stability regions. This can be done by simply introducing the expression (4.37) into the

negative branch of equation (4.27) for each chosen value of the Mach number M2. In fig.

(4.9) a stabilty chart including compressibility for a typical reference case (κc = 0.3) is

shown. One can see that in general, if the Mach number of the dense shell is known,

a unique value of the minimum wave number that can be stabilized is determined, as

well as the value of b/g and the oscillation frequency that must be used. Here we have

chosen some possible values of interest for M2, that is, 0.04, 0.06.0.10 and 0.20, then for

each value we have calculated the corresponding κm ,thus modifying the curves of the

lower boundary with respect to the previous graphs, and finally we have taken the most

restrictive upper boundary between the ”old” boundary and the curve ∆p/p = 1. It is

evident that for a sufficiently small Mach number, equation (4.39) does not impose any

new constraint on the upper boundary. Moreover, the minimum value of κm is rather

insensitive to the exact value of M2 but, instead, it considerably affects the required

values of b/g and $.

4.2.3 The case of asymmetric Dirac deltas driving (AD)

So far the simplest case, namely the one of a sequence of symmetric Dirac deltas, has

been analyzed to study the effect of the driving modulation on the RTI in the ablation

front. However, there are several types of driving modulations including sequences of

Dirac deltas and square waves which could be used as well, and that lead to analytical

or at least numerically tractable solutions of the equation 4.16. A comparison between

these solutions allows us to study the optimization of dynamic stabilization, that is, to

determine the best shape of the driving modulation on the basis of the results obtained

in terms of the new minimum wave number above which we achieve stabilization and of

the new instability growth rate in the region of the parametric instabilities. Therefore

the previous analysis has been extended to the other cases, and in this thesis the most

significant results will be exposed.

To complete the analysis about driving modulations in the shape of sequences of Dirac

deltas, now we will consider an asymmetric driving; the simplest case is the one of

a sequence of negative (subtracting from the direction of backgorund gravity) Dirac

deltas. Such a kind of modulation results from (4.10) by setting β1 = −β and β2 = 0.

As for the symmetric case, equation (4.16) must be solved when Γ(τ) = 0, taking into
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Figure 4.9: Stability chart for SD with compressibility (4) - Stability re-

gion for κc = 0.3. The lower boundaries (”-”) are given for κm = M2$ and M2 =

0.04, 0.06, 0.10, 0.20.. The upper boundaries (”+”) correspond to the incompressible case

of fig. 4.4 for the smallest values of M2 and to a pressure modulation of 100%(∆p/p = 1)

for the case M2 = 0.20. (source: Piriz et al, 2011 (35)).
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account the conditions imposed by Floquet’s theorem; in practice we introduce once

again the general solutions (4.20) and (4.21), and impose the boundary conditions:

1. y1(0) = y2(0);

2. y2(π) = y3(π) = ei2πνy1(−π);

3. ẏ1(0)− ẏ2(0) = −β1y1(0);

4. ẏ2(0)− ẏ3(0) = β2y2(π) = 0,

which yield the following conditions for the integration constants ci:

1. c1 = c3;

2. c3 cosλπ + c4 sinλπ = ei2πν(c1 cosλπ − c2 sinλπ);

3. c2 = −β1
λ c3 + c4;

4. −c3λ sinλπ + c4λ sinλπ − ei2πνπ(c1 sinλπ + c2 cosλπ) = 0.

Solving this system of equations and performing some straighforward algebra, we get

the following dispersion relation:

β =
√
K2 −D2

cos 2π
√
K2 −D2 − cos 2πη

sin 2π
√
K2 −D2

(4.40)

Remembering the condition (4.26) and introducing the dimensionless variables al-

ready defined in (4.11), the dispersion relation becomes

b

g
= 4$

√
1− K2

D2

cosh 2πD
√

1−K2/D2 ± cosh 2π(σ +D)

sinh 2πD
√

1−K2/D2
(4.41)

D =
2κ

$
,
K2

D2
=

(κ/κc)
2/3 − 1

4κ
. (4.42)

As in the case of symmetric Dirac deltas, the limits of marginal stability are given

by the solutions of equation (4.41 when σ = 0. In fig. 4.10 these limits are repre-

sented for the same particular cases already chosen in the previous case, that is for

κc = 0.3, $ = 0.8 and κc = 1, $ = 0.5. There are some differences in the limits with

respect to the symmetric case.
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Figure 4.10: Stability region for AD (1) - Dimensionless driving acceleration b/g for

marginal stability as a function of the dimensionless wave number κ for κc = 0.3, $ = 0.8

and κc = 1, $ = 0.5 , in the case of an asymmetric Dirac delta modulation (source: Piriz

et al, 2011 (35)).

In the limit for β → 0 (κ << 1) of the (4.40), we have that D2/K2 → 0 and we can

use the Taylor developments for the sine and the cosine, thus getting:

b

g

)
+

≈ 2
$√
k
, (κ << 1). (4.43)

which is the same as (4.32). To calculate the lower limit in the case κ << 1 , we

transform as before the sine and cosine into the corresponding hyperbolic functions

and we use their Taylor developments, thus getting

b

g

)
−
→ 2π (κ << 1). (4.44)

In order to find the limit for β → ∞(κ >>)1 of (4.40) for both the upper and lower

limit , we perform again the usual tranformations of trigonometric functions into the

corresponding hyperbolic ones and use the exponential development for the hyperbolic

sines and cosines; we have that

b

g

)
±
≈ 4$[1± e(π/2$)[(κ/κc)2/3−1]], (κ >> 1). (4.45)

We can notice that both the upper and lower limits for the asymmetric driving grow

exponentially in a somehow stronger way with respect to the symmetric case. These
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differences cause the minimum value of the upper limit to be higher in the asymmetric

case than in the symmetric case, whereas the lower limit for the asymmetric case

seems to be restricted to the condition b/g ≤ 2π). In principle this behaviour can

be interpreted as the possibility of dinamically stabilizing all the perturbation wave

numbers provided that the driving acceleration is large enough to set the upper limit

of the region of stability above 2π. Actually, such an hypothesis does not take into

account the effects of the compressibility, which cannot be neglected at all beacuse

they are essential to produce valeus of b/g > 1. Therefore, in reality we can only

stabilize values of the wavenumbers larger than κm,where the latter depends on the

Mach number of the shell. As in the previous case, we draw the stability charts for

the same two values of interest of the cut-off wave number as in figg.4.4-4.5 , namely

κc = 0.3, 0.1 (figg.4.11-4.12), in order to make a direct comparison.

Figure 4.11: Stability chart for AD (1) - Stability region in the case of an asymmetric

driving, for κc = 0.3. The lower boundary is given for κm = 0.1, 0.15 and 0.20. (source:

Piriz et al, 2011 (35)).

It can be noticed that in the asymmetric case we can achieve a wider stability region

with relatively lower values of $ and b/g. In particular, in fig. 4.11 it can be seen that,

for κc = 1 and assuming that compressibility effects are not present, for b/g ≥ 2π all

the wave numbers could be stabilized. Moreover, the dynamic cut-off wave number is

reduced with respect to the symmetric case.
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Figure 4.12: Stability chart for AD (2) - Stability region in the case of an asymmetric

driving, for κc = 1. The lower boundary is given for κm = 0.05, 0.1 and 0.3. (source: Piriz

et al, 2011 (35)).

To complete the comparison between the two cases we analyze the behaviour of the

growth rate for different values of the dimensionless driving acceleration, for given values

of κc and $ . The equation for the growth rate can be derived from the dispersion

relation (4.41) by calculating σ(γv2/g = σω) a s a function of the other variables:

σ =
1

2π
cosh−1

[
±
(

cosh 2πD
√
K2 −D2 +

q√
1−K2/D2

sinh 2πD
√
K2 −D2

)]
−D.

(4.46)

In figg.4.13-4.14 we can see respectively the graphs of the different growth rates for each

value of b/g and of the corresponding regions of stability for the asymmetric case, for

the same choice of the parameters as in figg.4.7-4.8 for the symmetric driving. A direct

comparison shows that the asymmetry leads to a reduction of the growth rate. This

advantage seems to be maintained even when we take into account the compressibility

effects. The stability chart for asymmetric driving in the presence of compressibility

effects is shown in fig. 4.15, for the same values of κc and of the Mach number as in

fig. 4.9. The graphs show that in the asymmetric case it is possible to get lower values

of the minimum wave number κm with relatively lower values of b/g and $ for each

given value of M2.
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Figure 4.13: Instability growth rates for AD - Instability growth rate for κc = 0.3

and a fixed dimensionless frequency $ for different values of the dimensionless driving

acceleration b/g, in the case of an asymmetric driving (source: Piriz et al, 2011 (35)).

Figure 4.14: Stability region for AD (2) - Upper and lower limits given by dimen-

sionless driving acceleration b/g from equation (4.27) as function of the dimensionless wave

number κ for κc = 0.3, $ = 0.6, in the case of an asymmetric Dirac delta driving. The

wave numbers κmi(i = 1, 2, 3) correspond to the cut-off values of fig. (4.13). (source: Piriz

et al, 2011 (35)).
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Figure 4.15: Stability chart for AD with compressibility (3) - Stability region

for κc = 0.3 in the case of asymmetric driving. The lower boundaries (”-”) are given for

κm = M2$ and M2 = 0.04, 0.06, 0.10, 0.20.. The upper boundaries (”+”) correspond to the

incompressible case of fig. 4.4 for the smallest values of M2 and to a pressure modulation

of 100%(∆p/p = 1) for the case M2 = 0.20. (source: Piriz et al, 2011 (35)).

Although the results for asymmetric driving are more satisfactory than the ones

for the symmetric case, such an asymmetric driving consisting of negative Dirac deltas

is not of practical interest by itself. In fact such an asymmetric modulation would

lead to a continuous decompression of the shell region of thickness ∆y ≈ cs2$, thus

causing a translation fo the unstable interface to the position y ∼ −k−1
m instead of a

stabilization. Actually, any type of driving should maintain the density average value

ρ2 of the dense layer ahead the front in such a way that at the end of each oscillation

cycle, the interface should go back to its equilibrium position. This is not the case of

a driving whose asymmetry is only in one direction with respect to the background

gravity. Therefore, the study of a modulation of negative Dirac deltas can serve only

as a basis for determining the results given by the following asymmetric modulation:

Γ(τ) =
1

2π
− δ(τ). (4.47)

Such a modulation represents a constant positive acceleration (adding to the back-

ground acceleration g) applied during all periods, followed by a negative pusle accel-

eration at the end of the period in such a way that the average acceleration is null.
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Actually, it is a positive square wave plus a negative Dirac delta in the same period, in

such a way that the total sum of the areas below the two pulses is zero. This way the

average shell density is preserved. It can be verified that, by simply replacing g with

g′ = g + b/2π the dispersion relation (4.41) is recovered. However, it is more useful to

derive the treatment of this kind of modulation from the general formula for a sequence

of square waves, as it will be shown in the next chapter.
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5

Vibration waveform effect on

dynamic stabilization of

Rayleigh-Taylor instability in an

ablation front

5.1 Introduction

In this chapter we will study dynamic stabilization of ablative RTI with a similar

approach as in the previous one, but we will use as a driving modulation a more

general waveform, in order to get some insight about the optimization process of the

dynamic stabilization of RTI in an ablation front. This will allow us to state a general

comparison between the performances of different waveforms in terms of the reduction

of the natural cut-off wave number and of the maximum growth rate of the RTI.

5.2 Dynamic stabilization of Rayleigh Taylor instability

in an ablation fronts by means of square waves.

In this section we consider a more general type of driving for the dynamic stabiliza-

tion of ablative RTI consisting in a two-step or square wave modulation of the front

acceleration which may better represent experimentally accessible drivings. This kind

of waveform can still be treated analytically and allows for considering asymmetries in
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the acceleration amplitudes and in the duration of each half-period. This is an advan-

tage because, as we have seen in the previous chapter, a certain type of asymmetric

driving (preserving the average shell density) seems to give better results for dynamic

stabilization.

We start again from the equation (4.1) and in the Hill equation (4.9) we set

βΓ(τ) =

{
+βc if 2mπ ≤ τ ≤ 2mπ + c

−βd if 2mπ + c ≤ τ ≤ 2(m+ 1)π
, (5.1)

where c+ d = 2π, K and D are the same as in (4.5)-(4.6) and

βc =
kbc
ω2

; βd =
kbd
ω2

. (5.2)

Moreover, the relation bcc = bdd is valid so that the total sum of the area below the

Figure 5.1: Square waves - General square wave oscillation.

square waves in a period is zero and the average acceleration of the front is < G(t) >=g

(see fig. 5.1).

As in the case of Dirac deltas, we introduce the dimensionless variables (4.11) and

solve the dimensionless Hill equation (4.16) in the regions where Γ(τ) = 0 by adopting

the general form (4.17 and using the consequences of the Floquet theorem (4.18)-(4.19).
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For a general driving of the form (5.1) the solutions can be written as

y1 = c1 cosλcτ + c2 sinλcτ, (5.3)

y2 = c3 cosλdτ + c4 sinλdτ, (5.4)

y3 = c′1 cosλcτ + c′2 sinλcτ. (5.5)

(5.6)

Here λ2
c = D2 −K2 + βc, λ

2
d = D2 −K2 − βd.

Then we impose the matching conditions for the solution y(t) and its derivative ẏ(t)

at τ = 2mπ and τ = 2mπ + c , taking into account the properties of translational

symmetry expressed in (4.18):

1. y1(0) = y2(0);

2. ẏ1(0) = ẏ2(0)

3. y2(c) = y3(c) = ei2πνy1(−d);

4. ẏ2(c) = ẏ3(c) = ei2πν ẏ1(−d).

The corresponding equations for the integration constants are

1. c1 = c3;

2. c2 = c4λd
λc

;

3. c3 cosλdc+ c4 sinλdc = ei2πν(c1 cosλcd− c2 sinλ1d);

4. −c3λd sinλdc+ c4λd cosλdc = ei2πν(c3λc sinλcd+ c2λc cosλcd.

After some algebra, and taking into account the substitution (4.26) we get the following

dispersion relation:

cosh(λcc) cosh(λdd) +
λ2
c + λ2

d

2λcλd
sinh(λcc) sinh(λdd) = cosh[2π(σ +D)]. (5.7)

It can be noticed that this dispersion relation is the same as the resulting for the

Schrodinger equation when the Kronig-Penney potential, consisting in rectangular sec-

tions, is considered, due to the mathematical analogies between the two problems.

From equation (5.7) it is possible to extract an explicit expression for the dimension-

less growth rate σ as a function of κ for given values of the front parameter κc and
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of the modulation parameters bd/g (or bc/g) and $, for any type of square wave (5.1)

characterized by the parameters c and bd (or bc and d). In absence of modulation we

have bc = bd = 0 and substituting these values into equation (5.7) one immediately

recovers the growth rate for ablative RTI

σ =
√
D2 −K2 −D. (5.8)

As we have already seen that the relevant differencies for dynamic stabilization are

between symmetric and asymmetric modulations, we will develop our analysis of the

dispersion relation (5.7) for these two cases.

5.2.1 The case of a symmetric square waves driving

For a perfectly symmetric square wave (SSW) we have c = d = π and bc = bd ≡ b. By

substituting these values and putting σ = 0 in the equation (5.7) we get the expres-

sions for the positive and negative branches determining the upper and lower limits of

stability in the form of an implicit function b/g of the dimensionless wave number κ.

Differently to the case of the sequence of Dirac deltas studied in the previous chapter,

here both branches result to be multivalued functions of κ with infinite solutions. In

particular for each values of the parameters κc, $ we obtain a graph in which the first

curve from the bottom is the lowest solution of the negative branch, and then we see

a set of infinite closed regions of stability limited by lobed curves as it is shown in fig.

5.2.These lobes determine the upper limit of the stability region: for each single case,

this upper limit is given by the first lobe on the right of the lower limit, with respect

to its position on the x-axis, that is above the lower curve in this region. Due to the

implicit character of equation (5.7), the solutions must be found numerically by mean

of a simple iteration process. Nevertheless, some limits useful for the discussion of the

results can be obtained analytically.

For relatively large values of $ the upper limit, determined as described above, is given

by the first lobe from the bottom (in red colour in the graphs (a) and (c) of fig.5.2).

For this lowest lobe, we get the following asymptotic behaviour of the modulation

amplitudes bc
g

)
+

and bd
g

)
+

for κ << 1:

bd
g

)
+

=
bc
g

)
+

c

d
≈ 2

√
2

cd3

$2

κ

[√
1 +

(d− c)2

2d2c3
− d− c√

2d2c3

]
(κ << 1). (5.9)
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For the rest of the higher lobes, we find that they also go as 1/κ for κ << 1:

bd
g

)
±

=
bc
g

)
±

c

d
≈ f±(d/c, bd/g)

$2

κd
(κ << 1), (5.10)

where f±(d/c, bd/g) is a multivalued function of bd/g that for κ << 1 takes only discrete

values. As the dimensionless frequency $ decreases, the number of lobes of the upper

limit increases and they compact on an envelope curve which can be obtained from

equation (5.7) by taking the limit $ << 1 (see graph (b) in fig.5.2)

Figure 5.2: Stability region for SSW (1) - Dimensionless driving accelerations b/g for

marginal stability as a function of the dimensionless wave number κ for a driving consisting

of symmetric square waves and for: (a) κc = 0.3 and $ = 1 ; (b) κc = 0.3 and $ = 0.05;

(c) κc = 5 and $ = 1.5; and (d) κc = ∞ and $ = 1. Red and blue curves correspond to

the positive and negative branches of equation (5.7), respectively.

bd
g

)
±

=
bc
g

)
±

c

d
≈
[
4

[
4π2

c2
− 1

)
κ+

(
κ

κc

)2/3

− 1

]
c

d
($ << 1). (5.11)

Unfortunately, this limit yields the rather unphysical result that perturbation wave

numbers smaller than κc can still be stabilized when $ << 1 and this is due to the
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assumptions of linear stability and incompressibility that underlie equation (4.1). In

fact, in the dispersion relation (5.7) we have automatically considered stable all the

periodic solutions with a bounded average value on a period even when, physically,

the maximum amplitude would be large enough to make the instability enter in the

non-linear regime. Such an information is not present in the model and this is the

reason for the unphysical feature of the limit 5.11). From a practical point of view,

this feature is irrelevant, because it will be shown later that actually this limit is never

achieved when compressibility effects are included.

In the same manner as before, we can get the asymptotic behavior of the lower limit

bd/g)− [or bc/g)−] for small and large values of κ from equation . For κ << 1 we get:

bd
g

)
−

=
bc
g

)
−

c

d
≈ 2π

√
2cd3 $√

κ
(κ << 1). (5.12)

Instead, the limit for κ << 1 or κ→ κc reads as

bd
g

)
−

=
bc
g

)
−

c

d
≈ 4

√
κ[1− κ/κc]2/3

1 + (ω/2πκ)[(d/c− 1)2 − 1]

c

d
. (5.13)

From (5.13) we find that there is a maximum for the lower limit for the largest values

of κ, given by

κmax ≈
(

3

5

)3/2

κc

[
1−

(
5

3

)1/3 $

2πκc

]3

. (5.14)

This maximum can be seen in graphs (b)-(c) of fig. 5.2 . Equation (5.13) yields an

important result: for κc →∞ the lower limit goes to infinity for large values of κ (see

graph (d) in fig.5.2) , that is, in absence of transport by thermal conduction dynamic

stabilization results to be impossible since only a restricted range of wave numbers

can be stabilized. This behavior is analogous to the one found for Newtonian fluids in

absence of surface tension (21), but in contrast with the results previously obtained for

Dirac deltas in section 4.2. Actually, the previous conclusions seem to derive from a

mere artifact of the Dirac delta function and now we can say, more properly, that in

general some minimum fraction of the energy flux driving the ablation process must

be transported by thermal conduction in order to make dynamic stabilization possible.

This point is of particular relevance for the ion beam driven ablation scenario recently

considered by Logan et al. (36). For ablation directly driven by ion beams, most of the

energy is transported by classical coulombian collisions, and thermal conduction may
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be absent or just be a small fraction of the total energy flux. Nevertheless, numerical

simulations show that around one third of the energy flux could be transported by

thermal conduction, which, according to our analysis, would be sufficient for making

possible dynamic stabilization of an ablation front directly driven by ion beams.

As in subsection 4.2.2, we take into account the compressibility effects by choosing a

minimum stable wave number κm which is dependent on the dimensionless frequency

for a given Mach number (see eq. 4.37). In this case we also have to consider the

maximum of the lower limit: if b(κm) < b(κmax), the latter has to be assumed as the

true minimum value of b/g required for stability. Once again, the upper boundary is

the minimum of the higher curve corresponding to the lobe which is immediately above

the lower limit and on the right of it with respect to the x axis. In an analogous way as

for Dirac deltas driving, we construct the stability regions for b/g as a function of the

dimensionless frequency $ , for a given value of the parameter κc and chosen values

of the minimum wave number κm that we want to stabilize. In fig.5.3 we present two

typical stability diagrams for κc = 0.3 and κc = 5, for the same values of κm: 0.1, 0.15

and 0.20. In the case of κc = 0.3, the lower boundary is determined essentially by b(κm),

and for the largest values of κm (provided that κm < κc), we have the anomalous finite

stability region for $ << 1 that we have previously discussed in the context of the

”unphysical” limit for very small values of $ . When κc = 5 such a region is not

present since the lower boundary is now fixed by b(κmax). It is important to notice

that the general qualitative features of the stability regions for symmetric square waves

are the same as for the sequence of Dirac deltas analyzed in section 4.2. In fact, also

in this case we find that,the smaller the value κm of the minimum wave number that

we want to stabilize, the larger are the dimensionless driving acceleration b/g and $

required for stabilization. However, with the introduction of compressibility effects, as

shown in fig.5.4 some quantitative differences become evident.

It can be noticed that, as before, the condition (4.37) affects the lower boundary,

whereas the (4.39) affects the values of the upper boundary only for Mach numbers

that are larger than the ones considered in fig.5.4 and it may reduce the stability

region if M2 turns out to be too large. Once again, compressibility determines the

minimum frequency $ and the minimum modulation amplitude b/g that are necessary

for the stabilization for a given value of M2. However, now the minimum value of

the dimensionless wave number κm above which the perturbation wave numbers are
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STABILIZATION OF RAYLEIGH-TAYLOR INSTABILITY IN AN
ABLATION FRONT

Figure 5.3: Stability region for SSW (2) - Stability region for κc = 0.3 and κc = 5

in the case of a symmetric square wave driving (SSW). In both cases the chosen values of

minimum stable wave number are κm = 0.10, 0.15.0.20 (source: Piriz et al, 2011 (37)).

Figure 5.4: Stability chart for SSW with compressibility - Stability charts in-

cluding compressibility in the case of SSW driving for κc = 0.3 and κc = 5 . In both

cases the boundaries are given for κm = M2$ and different values of the Mach number

M2 = 0.04, 0.06 and 0.10. s
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stabilized results to be weakly dependent of M2. Moreover, a quick comparison with

the case of symmetric Dirac deltas (SD) shows some improvement in the reduction of

the cutoff wave number: for SD we obtained κm ≈ 0.08 starting from κc = 0.3, whereas

with the same initial condition we are able to achieve a minimum stable wave number

κm ≈ 0.06. In order to complete our analysis of dynamic stabilization and to look

for full optimization of the driving waveform, we examine the case of an asymmetric

driving involving square waves.

5.2.2 Effects of asymmetries for square wave drivings

The advantages in the reduction of the growth rate with SSW with respect to SDD are

not so large to make SSW decisely preferable. Therefore, it is interesting to see what

could happen using asymmetric square waves.

Various possibility for an asymmetric square wave modulation have been considered,

starting from the general form (5.1) and taking c 6= d 6= π(c+ d = π), provided that it

is still valid the condition bdd = bcc, so that < G(t) >= g and the average density of

the shell material is preserved during the oscillation cycle.

It has been verified by performing practical calculations that asymmetries for which

c > d perform worse than the corresponding ones with c < d. In particular, the

example discussed at the end of section 4.2.3 of a perturbation consisting of a positive

square wave followed by a negative Dirac delta (c = 2π, d = 0) yields as its best result

a reduction of the cut-off wave number κm/κc = 0.67 for κc = 0.3, which is a poor

result if compared with the correspondent values of 0.25 and 0.2 obtained with SD and

SSW, respectively, as it will be shown later when we will get a general view of the best

performances for the different drivings. Therefore, here we will consider only situations

in which c < d and we will take the particular case c = π/4(d = 7π/4) as representative

of the general situation. Fig. 5.5 shows the upper and lower limits of stability for the

same values of κc used for the case of SSW. We can see that the qualitative features

as the same as before, and in particular that if κc = ∞ dynamic stabilization is not

possible (graph (d)), and that for $ =<< 1 stable solutions can be obtained (graph

(b)).

In order to better appreciate the real performance of ASW, we directly consider the

stability charts which include compressibility effects (fig.5.6). Again, we find that the

lowest dynamic cut-off wavenumber is not strongly dependent on the values of M2 and
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Figure 5.5: Stability region for ASW (1) - Dimensionless acceleration b/g for

marginal stability as a function of the dimensionless wave number κ for an asymmetric

square wave driving (ASW) and for : (a) κc = 0.3 and $ = 1.5 ; (b) κc = 0.3 and $ = 0.1;

(c) κc = 5 and $ = 1.5 ; (d) κc = 5 and $ = 1. Red and blue curves correspond to the

positive and negative branches of equation (5.7), respectively.
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κc and has an approximately constant value κm ≈ 0.03. This means that, although

some minimum fraction φ0 of the energy flux is required to be transported by thermal

conduction in order to assure the possibility of dynamic stabilization, even if the latter

is relatively small we have a significant reduction of the natural cut-off wave number.

As in the previous cases, smaller values of κm are possible, provided that κc is smaller

, but the smaller is κc the harder is to get a further reduction of the fraction κm/κc.

Figure 5.6: Stability chart for ASW with compressibility - Stability charts includ-

ing compressibility in the case of ASW driving for (a) κc = 0.3 and (b) κc = 5 . In both

cases the boundaries are given for κm = M2$ and different values of the Mach number

M2 = 0.04, 0.06 and 0.10.s

By performing extensive calculations it has been found that the performance of

dynamic stabilization of ASW improves (that is, κm is reduced) whn the duration

of the positive half periods c is smaller. Therefore, we can get insight on the best

performance that can be expcted from dynamic stabilization of an ablation front by

considering the extreme case c = 0 (b = 2π) which results in a sequence of positive

Dirac deltas followed by negative square waves in the same period.
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5.2.3 The case of negative square waves + positive Dirac deltas (SW+D)

The dispersion relation for a sequence of negative square waves followed by positive

Dirac deltas (SW+D) can be obtained from equation (5.7) by taking the limit c → 0

and keeping bcc = constant = 2πbd :

cosh 2πλd +
πβd

sinh 2πλd
= ∓ cosh[2π(σ +D)]. (5.15)

As in the previous cases, by setting σ = 0 we get the boundaries of stability, which

are represented in fig. 5.7 for the typical cases κc = 0.3 and κc = 0∞. We can

immediately notice that, although the general feautures are similar to the one sof SSW

and ASW, the asymptotic behavior of the lower limit of stability for large values of κ

is quite different.

In order to see the difference in a quantitative way, we calculate the limit of the

lower curve for κ >> 1 or κ→ κc , and we get

bd
g

)
−
≈ 2$

π

{
e

π
2$

[
bd
g
−1+

(
κ
κc

)2/3]
− 1

}
. (5.16)

Then, for any fintie value of κc, bd/g → 0 for κ = κc without having any maximum as the

ones observed for the general square waves. In addiction, for κc →∞, equation (5.16)

shows that a minimum value bd
g

)
min

is reached. This means that if we involve Dirac

deltas in the modulation, dynamic stabilization is possible even in absence of thermal

conduction jst like wa have already found for the other Dirac delta drivings. This fact

strenghtens our previous conclusion that in realistic situations dynamic stabilization

of an ablation front requires that some fraction of the energy flux be transported by

thermal conduction and results as the one in graph (c) of fig. 5.7 are only a mere

artifact of using Dirac deltas.

The asymptotic behavior of the lower limit for κ << 1 reads as

bd
g

)
−
≈
√

3

π

$√
κ

(κ << 1), (5.17)

which means that for small values of κ it is bd
g

)
−
∼ $√

κ
, in general agreement with the

results obtained for any other type of modulation, including the sinusoidal modulation

used in the literature (38). From this we can conclude that the particular kind of mod-

ulation only affects the numerical factor of proportionality.
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Figure 5.7: Stability region for SW+D - Dimensionless acceleration b/g for marginal

stability as a function of the dimensionless wave number κ for a SW+D and for : (a)

κc = 0.3 and $ = 1.5 ; (b) κc = 0.3 and $ = 0.1; (c) κc = ∞ and $ = 0.1. Red and

blue curves corrspond to the positive and negative branches of equation (5.15), respectively

(source: Piriz et al, 2011 (37)).
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Fig.5.8 shows the stability charts for SW+D including already the compressibility ef-

fects. We can see that for κc ≥ 0.3, it results κm ≈ 0.015 , which means a reduction of a

factor larger than 20 (κm/κc = 0.05) in the cut-off wave number. Of course, as we have

already discussed, such large reduction factors in the dynamic cut-off wave number are

not held for progressively low values of κc since the resulting value of the dynamic wave

number κm seems to be strongly dependent on κc . For instance, when κc = 0.05, we

still get κm ≈ 0.015 and the maximum reduction factor that can be obtained for the

SW+D modulation is around 3 , which means κm/κc = 0.3.

Figure 5.8: Stability chart for SW+D - Stability charts including compressibility in

the case of SW+D driving for (a) κc = 0.3 and (b) κc =∞ . In both cases the boundaries

are given for κm = M2$ and different values of the Mach number M2 = 0.04, 0.06 and

0.10.

5.2.4 Growth rate comparison of different driving modulations

In order to get better insight into the differences between the performances obtained

with different driving waveforms, we have calculated the best result for the instability

growth rate that can be obtained in each case and compared them with the reference

case when no modulation is applied. The results for the case of κc = 0.3 are shown

in fig.5.9. If we look at curve (e) (SD) and curve (c) (SSW), we can notice that there

is a 50% difference between the absolute values of the new minimum wave numbers
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obtained with these two drivings, but if we compare this situation with any of the

asymmetric cases the reduction of the cut-off is much more strong in the latter. In

the same manner if we compare ASW (curve (b)) and SW+D (curve (a)) we notice

a smaller difference with respect to a comparison with any of the symmetric curves .

This means that there is a significant improvement in the performance if we substitute

a symmetric driving with an asymmetric one. In particular, the best result is the one

given by SW+D, which resembles the well-know picked-fence pulse proposed by Betti

in (39),(40).
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Figure 5.9: Comparison between different types of driving - Instability growth

rates with respect to a case in which κc = 0.3 produced by using different types of driving:

(a) negative square waves + positive Dirac deltas (SW+D); (b) asymmetric square waves

(ASW with c = π/4); (c) symmetric square waves (SSW); (d) no driving (b = 0); and (e)

symmetric deltas driving (SD)
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6

Discussion and conclusions

In this thesis we have theoretically analyzed the problem of dynamic stabilization of

RTI in an ablation front in inertial confinement fusion by means of a superposed peri-

odical vertical vibration. For this purpose, we have first considered the simplest type of

acceleration driving, which is the one consisting of sequences of Dirac deltas. Such an

approach allows us to capture the essential physics of RTI in an ablation front by using

a relatively simple mathematics; in fact it yields explicit analytical solutions for the

instability dispersion relation which, in turn, leads to analytical expressions for both

the instability growth rate and the boundaries of the region of marginal stability.

We demonstrate that, in general, as in the case of RTI in Newtonian fluids, the presence

of damping effects is essential to dynamically stabilize all wave numbers above some

minimum κm. However, when we use Dirac delta driving we get some stability region

also in absence of a finite cut-off wave number in the RTI of the nonoscillating ablation

front, that is, when there is no energy flux transported by thermal conduction. This

behavior is different from the one observed in Newtonian fluids and it would be of spe-

cial significance for the case of ablation fronts directly driven by ion beams where the

energy transport is nearly completely due to collisional deposition, so that the natural

cut-off wave number is very large. Nevertheless, it appears that such a result is a mere

artifact of Dirac deltas since it was not retrieved when the study has been extended to

other driving waveforms.

We have considered the constraints imposed on the stability region by the compress-

ibility of the fluid layers ahead the front in a phenomenological manner. Such effects

preclude the possibility of freely chosing the value of κm since it depends on the oscilla-
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tion frequency $ through a factor of proportionality given by the shell Mach number.

At the same time, the dimensionless driving acceleration is also related to $ in such

a way that relatively large frequencies are necessary to generate large local values of

b/g. Therefore, the best strategy is to use the minimum frequency required to reach

the stability region and thus the minimum value of κm is determined.

In the context of Dirac deltas study, we have also examined the possibility of an

asymmetric impulsive driving, and the related results have shown that the conclu-

sions extracted from the symmetric impulsive driving also hold for the asymmetric

case. Nonetheless, significant quantitative results are found, indicating that results can

be improved by using an appropriate wave form for the acceleration modulation.

Asymmetric impulsive driving itself is not of practical interest for dynamic stabiliza-

tion since it leads to a continuous decompression of the layer subjected to vibration.

However, such results can be easily extended for calculating the growth rate of an

equivalent problem in which the interface returns to its initial relative position at the

end of each cycle, ensuring that the average value of the density of the vibrated layer is

maintained. This modulation is given by a positive delta followed by a negative square

wave in the same period. Later, we have found that actually such an option results in

a worse performance than symmetric driving, but the comparison between the possible

driving waveforms only became complete with the study of square waves.

Then, we have examined the case of a driving modulation consisting both of symmetric

and asymmetric square waves. We have found that asymmetries consisting in a short

duration and large positive acceleration followed by long duration and small negative

acceleration perform better than the opposite case. The best performance corresponds

to the limiting case when the positive acceleration is a Dirac delta. Such a kind of

drivings resemble the picket fence pulses considered in the literature (39),(40) also for

stabilization of RTI in an ablation front but based on a different principle. In fact,

picked fence pulses have been proposed for controlling RTI in the ablation front by

generating an entropy shaping that drives the layers beneath the front on a higher

adiabat. In this way, an increase in the ablation velocity is produced that improves the

front stability. Such effects, of course, are not included in our analysis of the dynamic

stabilization but they could be certainly be present in a realistic situation providing a

further mechanism of stabilization.

In addition, analysis of dynamic stabilization by means of square waves has proved that
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in a realistic situation some minimum fraction of the energy flux that drives the ablation

process must be transported by thermal conduction in order to make possible dynamic

stabilization of the ablative RTI. Such a requirement could be of concern in the case

of ablation directly driven by ion beams, for which beam energy is mainly trasported

by Coulombian collisions. However, numerical simulations showed that some fraction

φ0 ' 0.3 is transported by thermal conduction, making possible the dynamic stabiliza-

tion of RTI also for ICF directly driven by ion beams (36). This means that dynamic

stabilization in an ablation front behaves in a similar manner as for Newtonian fluids

for which some minimum surface tension, besides of the viscosity, is required. These

analogies suggest the possibility to use Newtonian fluids for surrogate experiments that

may help to understand the physics of dynamic stabilization in a much simpler exper-

imental framework.

Now we will extract from our analysis an example to illlustrate the design of an

hypothetical experiment on dynamic stabilization. Using the typical scheme for the

laser-driven pellet compression at NIF, we have the following values for the parameters:

1. laser wavelength: λL = 0.35µm

2. pulse duration: τ ' 4 ns

3. radius of the capsule: R ' 0.5 mm

4. ablation velocity: v2 ' 106 cm/s

5. background acceleration: g ' 1016 cm/s2

6. I ' 9× 1014 W/cm2.

. Typically, for a steady-state ablative corona, the ablation pressure is given by the

following relationship (41):

p2 ' 12Mbar(I/1014W/cm2)2/3(1µm/λL)2/3 × (A/2Z)1/3. (6.1)

With the parameters above defined, equation (6.1) yields p2 ' 100 Mbar.

In the context of the NIF scheme, ablation pressure by itself allows for stabilizing all

the waveleghts l ≥ lc = 150 = κcR, therefore kc ' 3000 cm−1 and from (4.11) we

get κc ' 0.3. Then, assuming, for instance, M2 ' 0.15, and if we want to reduce
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κc = 0.3 to a minimum value κm ≤ 0.1 by using a symmetric square wave, we can

take b/g = 3.5 and $ = 1 in order to obtain a working point which is surely inside the

region of stability (see fig.6.1 ).

Figure 6.1: - Stability region for SSW driving and the working point chosen for our

example: b/g = 3.5 and $ = 1 .

On the other side, assuming that equation (4.39), valid for steady state conditions,

can still be used for such rapid variations, we have:

∆p

p2
' 0.5, (6.2)

and remembering the (4.11) the frequency is given by

ν =
$g

2πv2
= 1.6 GHz. (6.3)

Finally, from equation (6.1) we get

1 +
∆p

p2
=

(
1 +

∆I

I

)2/3

(6.4)

which yields ∆I/I = 0.84. Therefore we need a driving oscillation of 1.6 GHz, with a

84% modulation in intensity.
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In the previous example, we have used a phenomenological model for relating the

pressure modulation to the required acceleration modulation b/g. Besides, we have

assumed some reasonable values of the unknown Mahc number M2. Furthermore,

we have considered that the steady state model linking the laser intensity with the

ablation pressure [equation (36)] is still valid for obtaining a relationship between the

modulation in the ablation pressure ∆p/p and the laser intensity ∆I/I. Certainly, a

more rigorous approach is beyond the scope of this thesis and it would require numerical

simulation in one and two dimensions. After a first step, one dimensional simulations

would be necessary to set a precise relationship between the modulation intensity and

the acceleration modulation as well as for determining the minimum wave number κm

that can be stabilized. Finally, integrated 2D simulations would be required for the

derailed design of an experiment. In those simulations the evolution of the RTI in the

ablation front should be analyzed for one mode perturbations and for a given spectrum

of mode perturbations resulting from the best surface finish allowed by the present

technology.

It is clear that such a study can be performed by only a reduced group of researchers all

around the world, possessing not only the adequate expertise but also the sophisticated

tools consisting in the most powerful 1 and 2 D numerical simulations codes allowing

for the above mentioned integrated simulations. However, the work presented in this

thesis has settled the basis for such a study and will serve as a unique guide for them.

Such numerical simulations would be impossible without a previous comprehension of

the physical problem as the one we have afforded in this thesis.
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