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Introduction

The study of the geometry of moduli spaces of polygons in Euclidean
space has had, since the 1990’s, a remarkable importance in symplectic ge-
ometry, especially thanks to the works of Kapovich—Millson and Hausmann—
Knutson; many others have also contributed to this lively field.

These moduli spaces have a very rich structure, which arises from two
possible descriptions of them as symplectic quotients. Let S, = H;'L:1 Sfj be
the product of n spheres of radii rq,...,7, respectively; S, is a symplectic

manifold and a Hamiltonian SO(3)-space with associated moment map

p:S, — Lie(SO(3))* ~R3

e€=(e1,...,6,) — e1+...+e,.

For a (suitably chosen) length vector r = (ry,...,7,) € R} (the positive
quadrant) the symplectic quotient S, /SO(3) at the 0-level set is a smooth
manifold, and it is defined to be the moduli space M, (Kapovich—Millson
[KM]). Note that the condition x(€) = 0 is the closing condition for a polygon
with edge vectors ey, ..., e, starting at an arbitrary basepoint. Thus M, can
be identified with the set of polygons in R3, with n sides of lengths 1, ...7,,
modulo rigid motions.

M, can also be described as the symplectic reduction for the natural
action of the torus U7, of diagonal matrices in the unitary group U, on the
complex Grassmannian of 2-planes Gry(C") (Hausmann-Knutson [HK97]);
the moment map flup Gry, — R™ associated to this Hamiltonian action
maps the plane (a,b) generated by the vectors a,b € C" into MU?(@, b)) =
(la1]?+101)%, - . ., |an]?+|b,|?). Then M, is the topological quotient ,u;li (r)/ U

i
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In this thesis we present original results which describes the cobordism
class and the volume of M,. Then we use the volume formula to calculate the
cohomology ring of M, applying the Duistermaat-Heckman theorem. This
calculation also use a original description of how the diffeotype of M, changes
as r change region of regular values.

The idea to calculate the complex cobordism class of M, in terms of
data localized at the fixed point set Mfl, when S! acts by bending along a
diagonal, is due to L. Migliorini and A. Reznikov.

The first result (Theorem 4.4) we present is an explicit characterization of
the oriented S'-cobordism class of M, which depends uniquely on the lengths
vector r: Let r € R” such that M, is smooth, then M, is the disjoint union
of a finite number of oriented (n — 3)-dimensional complex projective spaces,
ie.

~ H J=tpn=3(C)

IeT
=41

where 7 is the set of I C {1,...,n—2} which satisfy a system of inequalities
that depends only on the r;’s (thus also the orientation of the projective
spaces P"3(C) only depends on the 7;’s). In particular if n is even M, is
cobordant to 0.

The main ingredients to prove this result are the bending action (Kapovich-
Millson [KM]) and results presented by Ginzburg, Guillemin and Karshon
(|[GGK96, GGKO02]) that, under suitable hypothesis, link the S!-cobordism
class of a even-dimensional manifold M to data associated to the connected
components of the fixed points set (M)5".

The second main result of the paper is a formula (Theorem 3.3.1) that
describes the volume of M, as a piecewise polynomial function in the r;’s (in
accordance with the Duistermaat-Heckman theorem): Let » € R} such that
M, is smooth, then

n3 n—1

vol(M,) = * > (Rf = Ry)™?
|§|€:k

3)!
)' k:O
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where Ry = 3. .,ri, R = Y, and T ={I C {l,...,n}/R] —
R; > 0}.

The main tools to prove this result are localization theorems in equivariant
cohomology (Martin [Ma], Jeffrey—Kirwan [JK]|, Guillemin—Kalkman [GK96])
together with an equivariant integration formula for symplectic quotients by
non-abelian groups (Martin [Ma2]).

An interesting application of the volume formula for M, is the calculation
of the cohomology ring H*(M,.) of M,. H*(M,) has been already determined
by Hausmann and Knutson ([HK98|), but the technique that we present
involves a thorough analysis of how the diffeotype of M, changes as r crosses
a wall in 4, (Grap) (which we believe has an independent interest) and
perhaps gives a geometrically more direct comprehension of the cohomology
ring H*(M,.).

The convex polytope = := ,LLU{L(GTQJL) is itself the union of convex poly-
topes A; (which are the regions of regular values of NU{L)’ separated by n — 1-
dimensional subspaces, called walls, which are the set of points fixed by some

subgroup H ~ S* of U'. A wall in = has equations Yicr, Ti = ey, for some

el
partions I, and I, of {1,...,n}. The index subsets [, and I, (t(J)geqther with
a suitably choosen orientation) determines the type (p,q) of the wall. In
chapter 4 we prove the following theorem (Theorem 4.2.4):

As the length vector r crosses a wall of type (p,q) in =, the diffeotype of
the moduli space of polygons M, change by blowing up the (q—2)-dimensional
submanifold M (r) isomorphic to CP9~? and blowing down the (projectivized
normal bundle) of a submanifold My, (r) isomorphic to CPP~2.

M;,(r) and M;,(r) are moduli space of polygons themselves (of lower di-
mensions). They are resolutions of the singularity corresponding to the lined
polygon P in M,..

The last original contribution presented in this thesis is the following
theorem (Theorem 5.2.4)

H*(M,,Q) ~ Q[x1,...,x,]/ann(vol M,.)
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where a polynomial Q(x1,...,x,) € ann(volM,) if and only if
Q(ai L %)UOZ(MT) — 0.

This result gives a way to compute the cohomology ring of smooth moduli
space of polygons M, in terms of cohomological classes which arise naturally
from the symplectic quotient structure of M,.

The main steps to prove Theorem 5.2.4 is to show that the cohomology
ring H*(M,, Q) of the moduli space of polygons M,, when M, is a smooth
manifold, is generated by the first Chern classes ¢y, ..., ¢, of the n complex
line bundles associated to the fibration = (r,...,r,) — M,. This has been
done using Gysin and Mayer—Vietoris sequences togheter with the decompo-
sition theorem.

Then the result follows applying the Duistermaat—-Heckman Theorem,
pecisely by showing that the Duistermaat-Heckman polynomial encodes all
the necessary information on the generators and relators of H*(M,), as it

is the case for the cohomology ring of a flag manifold (Guillemin-Sternberg

[GS95]).

The moduli space M, is introduced in chapter 1, which is a quick overview
of the results presented in literature which will be used in the proofs of the
original theorems in the following chapters.

In chapter 2 we describe the theorems by Ginzburg, Guillemin and Karshon
that are the main tool to prove Theorem 2.0.2 and give the proof of it in de-
tail. We shall see some examples in 2.3.

In chapter 3 we first recall some very basic facts in equivariant cohomology
and describe some of the results that S. Martin proved in his PhD thesis.
Then we use these to prove the volume formula (Theorem 3.3.1) and we give
some examples.

In chapter 4 we recall some results from [GS89] and calculate how the
diffotype of M, changes as r crosses a wall. In particular in section 4.2.1 we
describe the wall-crossing phenomena in terms of moduli spaces.

In chapter 5, section 5.1, we first describe how to apply the Duistermaat—
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Heckman Theorem to describe the cohomology ring H*(M,)— following
Guillemin—Sternberg [GS89]. Then, in section 5.2, we use the wall-crossing
analysis to prove that the Chern classes described above actually generates
H*(M,), and so we prove Theorem 5.2.4
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Chapter 1

The Moduli Space M, of Polygons

in the Euclidean Space

In this chapter we introduce the moduli space of polygons M, both as the
symplectic quotient—at the 0-level set— for the diagonal action of SO(3) on the
product of n spheres and as the symplectic quotient—at the r-level set— for the
standard action of the torus U}' of diagonal matrices in the unitary group U,,.
Moment maps and symplectic reductions are nowdays classic construction is
symplectic geometry. And the subject there is a wide literature, we refer in
particular to D. McDuff-D. Salamon [McDS], A. Cannas da Silva [Ca, Ca01]
and M. Audin [Au].

In section 1.2 we describe in detail the bending action, as it has been

introduced by Kapovich—Millson.

1.1 The moduli space M,

A n—gon P in the Euclidean space E? is determined by its n vertices
v1,...,U, joined by the oriented edges e¢; = vj11 —v; (e, = v1 —v,). A
polygon is said to be degenerate if it lies on a line. Let P, be the space
of all n—gons in E3. Two polygons P = (e1,...,¢e,) and Q = (&1,...,&,)

are identified if there exists an orientation preserving isometry g of E® such

1



1. The Moduli Space M, of Polygons in the Euclidean Space

that g(e;) = €;,1 <@ < n. Let r = (r1,...,7,) € R%, the moduli space
M, is defined to be the space of n—gons with fixed side lengths r{,...,r,
respectively modulo isometries as above.

Because P, is the space of polygons of n sides in the Euclidean space
without fixing the lengths, we can observe that the group R, acts on P,
by scaling and this induces an isomorphism M, = M,, for each X in R,.
Moreover, also the group 5,, of permutations on n elements acts on P, by
permuting the order of the edges, and this induce an isomorphism between
M, and M, for each o € §,.

Let S? be the sphere in R? of radius ¢ and center the origin. Let r =
(ri,...,m) € RY, the product S, = [[;_, Sfj of n copies of spheres is a
smooth manifold which can be endowed of a symplectic structure: if p; :
S — Sfj is the projection on the j-th factor and w; is the volume form
on the sphere Sfj, then the 2-form w = 22;1 rijp;wj on S, is closed and
non-degenerate and (S,,w) is a symplectic manifold. The group SO(3) acts
diagonally on S, or, equivalently, identifying the sphere Sfj with a SO(3)-
coadjoint orbit, on each sphere the SO(3)-action is the coadjoint one.The
choice of an invariant inner product on the Lie algebra s0(3) of SO(3) induce
an identification s0(3)* ~ R? between the dual of s0(3) and R3. So, on each
single sphere Sfj, the moment map associated to the coadjoint action is the
inclusion of S? in R”. Tt follows that the diagonal action of SO(3) on S, is

still Hamiltonian and, by linearity, has moment map

uw:S, — R3

e€=(e1,...,6,) — e+ --+ep,.

The level set p(0) := M, = {¢ = (e1,...,e,) €S, : >0 e, = 0} is a
submanifold of S, because 0 is a regular value for p.

Intuitively, if we think at the e,’s as edges of a “broken line” L in R? then
the condition " , e; = 0 is the closing condition for L and L is actually a
polygon in R3, so M, = P,. The existence of an isometry ¢ such that ¢é = &
is equivalent to the existence of A € SO(3) such that Aé¢ = & Thus the
topological quotient M,/SO(3) is the moduli space M, of n—gons of fixed



1.2 The Bending Action

side lengths described above and M, is realized as the symplectic quotient
S, //SO(3). We also point out that the existence of degenerate polygons in M,
translates the existence of a partition Iy = {i1,..., 7} and Iy = {is11,...,0,}
of {1,...,n} such that r,, +...+n, —r;,, —---r;, = 0. For details and

formal proofs of these arguments see [KM].

Proposition 1.1.1. M, is a smooth manifold if and only if the vector of

lengths r does not admit degenerate polygons.

If » € RY is such that in M, there exists polygons on a line, then M,
has singularities, which have been studied by Kapovich and Millson in [KM].
Precisely, they proved that M, is a complex analytic space with isolated
singularities corresponding to the degenerate n-gons in M, and these singu-
larities are “equivalent” to homogeneous quadratic cones.

Remark 1. Observe that for € € M, and and u,v € T-M, the formulas
) =207 (U, v5)s
w(u,v) = 370 (3 uj Avg)s

J

J(u) = (AN, 5 Auy)

B
<

(where (,)g is the standard scalar product in R3) are SO(3)-invariant, and
determine to an inner product (,),, a symplectic form w, and a complex

structure J on M,

1.2 The Bending Action

In this section we describe bending flows introduced by Kapovich and
Millson in [KM]. The geometrical idea underlying the construction is the
following: let P be a n—gon and py its k-th diagonal, i.e. u = ey + -+ +
erx+1- Consider the surface S bounded by P; S is the union of the triangles
Ay, ..., A, where A; has edges j1;_1,€;+1, tt;. Each (nonzero) diagonal breaks
S in two pieces, S” and S”, S” being the union of Ay, ..., A, and S” the union
of the remaining ones. The bending action along the k-th diagonal is the S*-

action which bends S” along p and let S” fixed.



1. The Moduli Space M, of Polygons in the Euclidean Space

More formally, let € = (e,...,e,) € M, and as before let s, be its k-th
diagonal, the function f(€) = 3|ul|* is SO(3)—invariant, and thus will be
identified with the function it induces on the quotient space M,. from now
on the construction will depend only formally on the representative of the
classes, and SO(3)-invariance should be kept in mind. The bending flow
around the k-th diagonal is the Hamiltonian flow of the Hamiltonian vector
field Hy,

Hy (e1,...,en) = (s Ner, ..., pg Neggr,0,...,0)
associated to the function fy.

Remark 2. For all k and [ the functions f; and f; Poisson-commute, i.e.
{fka fl} =0.

The Hamiltonian flow ¢}, associated to fj is the solution of the differential
system
{%:uk/\ei, 1<i1<k+1

de; __ .
‘=0, k+2<i<n.

In [KM] Kapovich and Millson proved that if P is the polygon in M, of edges
e1,...,en, then ¢! (P) is the polygon of edges e;(t),...,e,(t) where

e;(t) =exp(tad,)e, 1<i<k+1
ei(t) = ey, E+2<i<n.

From now on we will denote by £, the S'-action just described of bending

along the k-diagonal.

Remark 3. Here we are using the identification of the Lie algebra so(3) with

R3, thus, for each u,v € R3, ad,v = u A v and exp(ad,) € SO(3) is the sum

of power series » (“i“!)n; in other words exp(ad,) is the rotation in the

plane orthogonal to u of an angle of ||u|| radians.

Let ¢y : M, — R be the function that associates to each polygon P = €
the length of its k-th diagonal, i.e. (,(P) = |le; + ... + ex41||, then the
curve ¢! (P) is periodic of period 27/l (P) if ¢,(P) # 0, otherwise P is a
fixed point for ¢! and the flow ¢! (P) has infinite period. It is possible to



1.3 Polygon spaces and Grassmannians

normalize the flow so that the bending action bends polygons with constant
velocity up to excluding the polygons P such that ¢;(P) = 0. Let M/ be the
open subset of M, consisting of those polygons such that no diagonal y; has
zero length; the choice of a system of n — 3 non intersecting diagonals in M/
allows one to define an action 3 of a (n — 3)-dimensional 7" torus on M
by applying progressively the bending actions i, ..., 3, 3; 0 will be called
(toric) bending action.

Restricting to the dense open subset M? C M of polygons such that
the i-th diagonal u; is not collinear to e;,;, Kapovich and Millson showed in
[KM] that this system is completely integrable and introduced on M? action-
angle coordinates. Precisely, the action coordinates are the lengths ¢; of the
diagonals and the angle coordinates are 6, = 7 — 6;, where 6; is the dihedral
angle between A; and A, ;. (Note that under the hypothesis that no pu; is
collinear to e;,1 none of the A; is degenerate, thus all the 6; are well defined).

Thus the moment map for the bending action 3 is
Py = My — (&%) ~R"2
e — (0(€),...,l,_3(e)).

Remark 4. If n = 4,5,6 then M, is toric for generic r’s (i.e. for r’s such that

no degenerate polygons are possible), see [KM].

1.3 Polygon spaces and Grassmannians

In this section we will give an alternative description of the moduli space
M, of polygons as the symplectic reduction of the Grassmannian of 2-planes
in C" by the action of the maximal torus U}' of diagonal matrices in U,,.
This point of view has been introduced by Hausmann and Knutson in [HK97|
and has been used by them (also) to give a nice description of the bending
action as the residual torus action coming from the Gel'fand-Cetlin system
on G7y,,. This approach made it possible the study of wall-crossing problems
(see chapter 4.2) and the description of the cohomology ring H*(M,.) applying

the Duistermaat—Heckman Theorem (see chapter 5).



1. The Moduli Space M, of Polygons in the Euclidean Space

Let the group of unitary matrices U, act by right multiplication on the
manifold My, ,(C) of n x 2 complex matrices, this action is Hamiltonian
with associated moment map

Huy - Moy, (C) — u(2)*
A — iA*A
where A* is the conjungate transpose of A. The Stiefel manifold of orthonor-

mal 2 frames in C”, defined as follows

al n n n
Stgmz{ ; € Mua(C) 0 ) ai* =1, bi|* =1, Zai@:O}
i=1 i=1 i=1

an by N -

b

0
can be realized as the preimage (1, )~ (iI) of the matrix i/ = ( (Z) . ) .
i

Let Gry,, be the Grassmannian of 2-planes in C". The application
D Stgm — GTQJL

that maps an element (a,b) € Sty,, into the plane generated by a and b is
actually the projection of Sty ,, on the orbit space St ,,/Us, and this realize
the Grassmannian Gry,, as the symplectic quotient M,,«o(|C) )/ Us.

The unitary group U, acts by left-multiplication on the manifold M,,»(C)
(and by restriction on St, ), the projection p defined above is U,,-equivariant
and so the U,-action descends to an action on the quotient G'rs,,.

We recall here some results proved by Hausmann and Knutson in [HK97|,
section 4, to which we refer for proofs and further details.

The action of the maximal torus Uy" on Gry,, is Hamiltonian with asso-
ciated moment map [ Gry, — R™ such that, if IT = (a,b) is the plane

generated by a,b € C", then
P () = (laa[* + 102, . Janl® + [0a]?).

Then the image of the moment map pyn(Gray) is the hypersimplex =

n

MU{L(GTQ’n) === {(rl, o) ERMO<S 1 <1, Zri = 2}

i=1
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(1]

and the set of critical values of jiy» consists of those points (ry,...,7,) €

satisfying one of the following conditions

a) one of the r;’s vanishes;
b) one of the r;’s is equal to 1;

c) there exists ¢; = £1 such that )  ¢;7; = 0 with at least two ¢;’s for

each sign.

Remark 5. Note that points satisfying a) and b) constitute the boundary of

=, while points satisfying condition ¢) are the inner walls of =.

Remark 6. By this construction of M, from the set of orthonormal 2-frames,
the choice of the fixed perimeter p = > | 7; = 2 arises naturally, and actu-
ally agrees with the common choice in literature. Still, we already pointed
out that M, ~ M,, VA € R, thus sometimes (especially in the examples),
we will choose p # 2, i.e. we will not re-normalize the r;. In this case the
image =,, (which still will be called = when this will create no confusion), is
Ep={(r,...,r) eRMO <71, <p/2, > 1r=p}

From the identification of the bending flows with the residual torus action
coming from the Gel'fand-Cetlin system ( [HK97| theorem 5.2), Hausmann

and Knutson prove that the action coordinates /1, . .., £, _3 satisfy the system

Tive < Ui+ iy
b <7rivo+Llivo (1.1)
livi <7rigo+ 4

where, following our notation, ¢; is the length of the i-th diagonal, i.e. ¢;(¢) =
ler + ...+ en_sl.

In the case n = 5 the choice of the two (proper) diagonals from the first
vertex, i.e. j1 = e;+eg and s = €1 +ey+e3 = —(eq+es5), allows us to define
a toric bending action. We can nicely describe the image of the moment map
Wt My — R? associated to this bending action. Let us rename the action
coordinates: ¢; =: x and {5 =: y; moreover note that ¢, = rq, /3 = r5 and so

the system 1.1 makes sense for : =0, 1, 2.
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For:=20

ro <ri+x

(11) <= § rm<raot+z < [r—r <2 <r+r; (1.2)
T < T+

and similarly for ¢ = 2,

ry SY+Ts

(11) <= S y<ry+ry <= |ra—r5| <z <rg+rs. (1.3)
s STyt Y

Finally, for ¢ = 1 we get the system

r+y >3
r<rs+y (1.4)
y<rs+x.

So, if I is the rectangle
I = [|r1 —T2|,T1+’r‘2:| X [|T4—r5|,7“4+7”5
and T is the region
YT={(zy) ER*:y>—z+rs;y>a—r3y < a+r3},

then
,uTQ(Mr) =INT. (1.5)

For some examples we refer to section 2.3.

Note that that the polytope pr2(M,.) encodes all the informations on the
region r € A C = of regular values for the moment map fop - To see this
let us introduce some notation: let A be the line of equation y = |ry — 75|,
B:y=ry+r5,C: x=1|ry—ryland D: x =r; + ry. Moreover let 1 be
the line y = x + r3, 2 the line y = —x + r3 and 3 the line y = z — r3. By
Al we will denote the intersection point of the lines A and 1, and similarly

for the other intersection points. The positions of these intersection points
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C:x=|ry —r

i D x=r1+719

B:y=ry+rs

Figure 1.1: pp2(M,)

determines the region A in which r lies; so, if we assume r; < ro and 74 < 75,
in the example as in figure 1.1 we get the order of the intersection points on
Ais

AC < A2 < AD < A3

which, read on the x-coordinates, is the following system of inequalities:

-1+ 1re<r3+r4—71;
rs+ Ty —15 <1+ T (1.6)

T +re < T3 — T4+ Ts.
Similar inequalities follow from the order of the intersection points on the
lines B, C' and D. Recalling the description of the walls given above it is clear
that these inequalities determine the region A. This remark will be useful in

section 2.3.
Proposition 1.3.1. For reqular values r € = of the moment map Hyp
M, = (1) /U7 = Graa JUL(r)

the space of polygons of fixed side lengths r is the symplectic reduction relative

to the Ul'-action on the Grassmaniann Gry, at the level set r.
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Proof. Let p be the standard projection of St,,, on the orbit space Sts,,/Us.

An element (a,b) € Sty ,, such that p(a,b) € p ! (r) satisfies |ag|* + [be|* = r;
1

for each 7. Thus the couple of complex numbers (a;, b;) can be thought as an

element of the 3-dimensional sphere Sf’/ﬂ and so
IS |
=1

Recall that the 3-sphere can be identified with the group of unit quaternions
Uy (H); where we denote by H := C @ iC be the field of quaternions and the
space IH of pure imaginary quaternions is equipped with the standard basis
1,7, k.

The Hopf map H : H — IH maps ¢ into gig; (we are using the notation
of Hausmann-Knutson, [HK97|, not the original one introduced by Hopf).

H maps the 3-sphere of radius /7, in H onto the 2-sphere of radius r, in
ITH, precisely, for ¢ = ay + by, as, by € C, then

H(ag, bg) =1 [(|a4|2 — |bg|2) + QCfgbgj].

From now on we will also identify H(ay, b;) with the element (|a,|* —
|bg|2, 2Re<dgbg), QIm(dgbg)) € R3.
So the application

Hn3HzS?/r—l - stfe
(a,b) — (H(al,bl),...,H(an,bn))

maps the submanifold p~" (i} (r)) onto M, = {(e1,...,e,) € [[, 52 : X e =
1

0}.
Thus the orbit space of the residual U, /U; ~ SO(3) action is the moduli

space of polygons as introduced in section 1.1. O



Chapter 2

The Cobordism Class of M,

The aim of this chapter is to give a explicit description of the oriented
cobordism class of the moduli space of polygons M,. In the first section we
will recall some notions on G-cobordism and state S'-cobordism results for
symplectic manifolds due to V. Ginzburg, V. Guillemin and Y. Karshon (see
[GGK96] and [GGKO02]) and to S. Martin ([Ma]). In section 2.2 we use the
Sl-action on M, of bending along a chosen diagonal to prove the following

result.

Definition 2.1. For each index set I C {1,...,n—2}lete; =1ifi € [ and
gi=—lifiel°={l,...,n—2}\I. An index set [ is said to be admissible
if and only if Z;:f g;1; > 0 and the following inequalities hold:

ZEZ'TZ' + 1 — Th > 0
Zgiri —T'n—1 + T > 0 (21)
— > &iri+rp_1+ 1, > 0.

We will denote with Z the set of all admissible 1.

Theorem 2.0.2. For r € R"} such that M, is a smooth manifold

M, ~ [ (=)"*cp2.
IeZ
e=|1|

In particular M, ~ 0 if n is even.

11
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2. The Cobordism Class of M,

2.1 Sl-cobordism

Let M be a smooth oriented manifold, as usual we will denote with —M
the same manifold with opposite orientation and with II the disjoint union

(or topological sum) of smooth manifolds.

Definition 2.2. Let M and M’ be two smooth oriented n-dimensional man-
ifolds. M and M’ are said to be oriented cobordant if there exists a smooth
compact oriented manifold with boundary X such that 0.X with its induced
orientation is diffeomorphic (under a orientation preserving diffoemorphism)
to M II —M'. Let G be a compact Lie group and a and o' be actions of
G on M and M’ respectively, both preserving the orientations on M and
M'. M and M’ are said to be equivariantly oriented cobordant if there exists
X as above and an (orientation preserving) action « of G on X such that
0X>~MI-M and a),, =a and |, = d'.

The following theorem was shown by V. Ginzburg, V. Guillemin and
Y. Karshon in [GGK96] (see also [GGKO02]). Similar results were also proved
by S. Martin in [Ma).

Theorem 2.1.1. (V. Ginzburg, V. Guillemin, Y. Karshon)

Let M be a oriented 2d-dimensional manifold on which the group S* acts.
Suppose that this action is quasi-free and has finitely many fized points. Then
M is cobordant a disjoint union of N copies of £CP?, where N is the number

of fized points.

Proof. The circle S acts on M x C by the product of the action on M and the
standard action on C. The fixed points of this action are ¢, = (px,0), pr €
M5". Denote by U, an S'-invariant open ball around g (with respect to
some invariant Riemann metric). Let W be the subset of M x C obtained by
excising the U,’s and the set |z| > 1. Since S! acts freely on W, the quotient
W/S! is a compact manifold with boundary and

s(w/shy = MuUJ]©U)/S". (2.2)
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The linear isotropy action of S on the tangent space T, (M x C) is free

except at the origin, hence there is an R-linear identification

T,.(M x C) ~ C*! (2.3)

% on each copy of C, the

which converts this action multiplication by e
w’s being the weights of the isotropy action. Via 2.3 one can identify Uy
with the set ||z|| < ¢ and hence identify §U; /S with PY(C). Note that the
isomorphism 2.3 may not respect the orientation, if it does the P4(C) comes
with standard orientation it inherits from C"*!, if it does not P4(C) comes
with the opposite one. So from 2.2 we get that M is cobordant to the disjoint
union of N copies of £P4(C); this cobordism is equivariant because the S!
action on the first component of M x C commutes with the diagonal action

and thus descends to 1W/S?. O

Both the assumptions on the action are extremely strong, much can be
said with weaker assumptions. If we do not ask the S' action to be quasi-
free (but still to have finitely many fixed points) than the space 1¥/S! has in
general singularities, but it is still possible to prove a result on equivariant
orbifold cobordism between M and the disjoint union of twisted projective
spaces (|[GGK96|, [GGKO02]). On the other hand, if we assume the action
to be quasi-free but we allow the fixed points set not to be finite, still it is

possible to describe nicely the equivariant cobordism class of M.

Theorem 2.1.2. (V. Ginzburg, V. Guillemin, Y. Karshon)
Let M be a oriented 2d-dimensional manifold endowed of a quasi-free S*

action. Let Xy, k =1,..., N, be the connected components of the fixed points
set MS'. Then

N
M ~[] B
k=1
where By, is a fibration over X, with fiber CP™*, m; = codimcX},.

It is also possible to describe the equivariant orbifold cobordism class

of M when the S! action is not quasi-free and M $' is not finite. In this
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more general case a result similar to 2.1.2 holds, but the fibrations over the
connected components of M 5 have now fibers which are twisted projective

spaces.

2.2 Proof of Theorem 2.0.2

In light of the results presented in the previous section we investigate the
set of fixed points for a bending action. Let 3 be the action of S* on M, by
bending along the n — 3 diagonal pi(,—3y = e; +ea + -+ - + e,_9, €.

0 S'x M, — M,
(t,[(e1,...en)]) +— [(exp(tadu(n_g) et ..., exp(tadu(n_g) Yen_2,€n_1,€n)].

The action [ is quasi-free, in fact the stabilizers of points are connected (they
are S! for fixed points, {0} otherwise).
A point P € M, is fixed by [ if it is of one of the following two types:

(I) [P] =1é],es,...,en_2 are collinear as in figure 2.1

Figure 2.1: Fixed point of type I

In this case the action [ fixes not just [P] but also each representative.

(IT) [P] = [€], en—1, e, are collinear as in figure 2.2.

In this case the action § changes the the representative € but not the
SO(3) class.

The fixed points set M5 is then the (disjoint) union of the sets (M5');,; of

T

fixed points of type I and (M5"),uem of fixed points of type II.
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en Y

€2

€1

Figure 2.2: Fixed point of type 11

Remark 7. 1t is now possible to give a geometric interpretation of the notion
of admissibility for an index set [ introduced in 2.1.

Let us consider a fixed point of type I; because P is planar it is not
restrictive to assume it lies in the plane (z,y). Moreover, let us assume that
the coordinate axis x is oriented as the (n — 3)-diagonal ji(,_3) := 1, then
the triangle in figure 2.1 has side lengths r,,r,_1, and > &;r; where e = 1 if
e = HTTH W, € = —HTTZ'”M. Then the index set I counts the number of “forward

tracks”, or, more formally, if ¢/ = |I|, then

t=t{e;/e; - >0}

and the inequalities in system 2.1 are just the “triangle inequalities”. So [ is
admissible if and only if the triangle of side lengths r,,7, 1, and > e;r; (as

in figure 2.1) closes.

If [P] is a fixed point of type II then [P] € X}, X} submanifold of fixed
points. In particular X} is the space of polygons of n — 1 sides M, with
F=(ry,...,"o,£rpn1E£r,) € R’fl.(The sign + are determined according
to the orientation of the edges e, ; and e,.) Then codimcX; = 1, so, for
2.1.2, X}, contributes to the cobordism of M, with the total space B of
a fibration on X, with fiber CP'. This imply that B, ~ 0 because it is
the boundary of an associated fibration B, on X, with fiber the disk D
(6D = S? ~ CP.

Fixed points of type I are instead isolated and so from theorem 2.1.1
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contribute to the cobordism class of M, with a copy of CP"3. The orientation
of this projective space comes from the generator of the bending action and
may not agree with the orientation that CP" 2 inherits from the symplectic
structure of M,. In fact for each [P] € (Mrsl)isol the symplectic form w
on M, defines a complex structure J on TipM, by wip(u,v) = g(u, Jv),
where g is a Riemannian metric on R3". The bending action defines too a
complex structure on Tip) M, : differentiating 3 in (6, [P]) and valuating it in
1 € R =~ Lie(S") we obtain an endomorphism of T}, M, and this define also

a S'-action (the linear isotropy action) on T}, M, :

dip3: S — End(TyM,)
0 — dp,pps(l)

under which T}, M, decompose in the direct sum

TyM, =PV,

wWEZ
so that on each V,, the S'-action is "multiplication by e’?"; the w’s are the
isotropy weights and, because the action is semi-free (for S'-actions quasi-free

and semi free are equivalent), they are 0 or £1. The differential of djp)3

d
LS

is the generator of the bending action (note that on each V,,, A is the multi-

A = d[p]ﬁ)lzo(l) . T[p]MT — T[p]MT

plication by w).

To determine the cobordism class of M, we will calculate the orientation
that A induce on the projective spaces CP" 3. The proof will go as follows:
first we will calculate

d

A= @(d€6)|:0(1) . TgMT — Tng

where 3 is the bending action on the level set M, = {€ € [[j_, S*(rj)/ex +
...+e, =0} ie.

B: Stx M, — M,

(t,(e1,...en)) — (exp(tadu(n_g) Yer, ..., e:pp(tadu(n_g) Yen—2,€n_1,€n).
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Then identifying Tjp)M, with the orthogonal T (SO(3)- P) to tangent space
to the SO(3) orbit through P in M, we will project A on TipyM, and write
explicitly A. Finally we will verify that A is a complex structure and compare

it with J by checking when a J-positive basis of TpM, is also A-positive.
Remark 8. Observe that A is well defined because if P = [€] is a fixed point
of type I then € is a fixed point for 3 (i.e. [ fixes each representative of the

class, not just the class).

2.2.1 Determine the complex structure A
Determine A : TeM, — TpM,

The action /3 described above still bends the first (n—2) sides of a polygon
along its (n—3)-diagonal. An element of T M, is of the form 4 (P+£Q)|.=0,
P+e@Q = (e;+evy,...,e,+ev,). Let 1 be the (n—3)-diagonal of the polygon
P ie p=e+...4+ e, 9, and v be the (n — 3)-diagonal of P + €@, i.e.
v = Z?;f e; +¢ Z?;f v; := p + €. Now on, when ¢ is understood, we will
write & for £(0) = S0 v

Let R. be the rotation that take v on the x-axis and let by the rotation of
angle 6 around the z-axis. The bending action 3 can be described in terms

of R. and by, precisely:

B(P+¢eQ)=(...,R'bgRe(e; +€v)), ..., en_1 + Ep_1,en + V).

So R ) )
A: TpM, — TpM,
v —  A(v)
with
fl(v) = i i (...,R;lbgRa(ej +Evj), ... en1 +EVL_1, €y F V).
df jo=o de |==0
00 O
Remark 9. We will use the notation j A k for the matrix [ 0 0 —1 of
0

the rotation around the z-axis. In general, for u;,us in R3, u; A uy is the
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rotation which takes u; on uo, i.e.
(u1 A ug)(v) = (up, v)uy — (ug, v)u; Yo € R,

Proposition 2.2.1.

00 i o Bl 1)) = A B 10 k().

df o=0 \ de |e=0 ||#||2 B
Proof. Using the notation as in remark 9,the rotation R, is exp(— @” P’mﬁ”)
where the angle of rotation is © = ||||€5||||, and by is exp(j A k). The first order

Taylor expansions of RZ!, R. and by are

R! zd—l—&t'u S (),Rgzid—eu—/\gjLo(&t),bgzid+92/\ﬁ+o(9).

[ IP (s
So
d - pAE
d_€|5:OR€ 1b9R5(€j+€Uj> = H ”2 b9<€_] "—51}]) b9W<ej +8Uj)—|—b91}j] e=0 =
pAE pAE
pe; — by e; + bov;.
[l ll]? !
Now
d d - d pAE pAE
—  — R 'WR. ( boe: — b Ry ) _
Boodei—ae Rt ) = g, (paqetoes = b ppes +bovs
A A
/ﬁﬂ”fj A k(‘ej) —-J /\E/ﬁﬂ—”f(ej) +Z/\E(U]) =

e k= (e 1) — T () — (€, e5) ) + 4 A (o) =
S Tl &L

|| ||2

</~La 6J>

ME g ANE(E) + 4 A k(vj).
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So A ) )
A TPMT — TPMT
v = (A1(v),..., A(v),0,0) = A(v),
where
A0 =~ 019+ ), 2.4)

When the vector v will be clear we will write A for A(v), and A; for A;(v).
Passage to the quotient M, = MT/SO(?))
The action of SO(3) on M, allows us to decompose the tangent space in
P at M, as follows:

TpM, = Tp(SO(3)- P) ® TZ(SO(3) - P).
It is possible to identify 75 (SO(3)- P) with Tjp|M,; to project Aon Tip M, ~

T#(SO(3) - P) we determine an orthogonal basis §', 6%, 83 of T,(SO(3) - P)
and the projection A is given by:

(A0 5, (A7) 5, (AW, 5)

Alw) = Al) =50 IRk T2k

53 (2.5)

The generators of the SO(3) action are the rotations around the axes. So
6t = (e1AL, ..., e, AD), 62 = (e1Nj,...,en\]), 5 = (e1 Nk, ..., e, Nk) define a
basis of 7,,(SO(3) - P). This base in general is not orthogonal with respect to
the metric associated to the symplectic structure and we will orthonormalize
it using the Gram-Schmidt formula. So, in order to write explicitly the basis
61,62 and 6° of the SO(3)-orbit trough P in M, let us fix a representative
€ in [P]. As before ( remark 7) let us assume that € lies in the (z,y)-plane
and let the first ey,..., e, o edges lie on the z-axis. In [P] there are two
polygons with these properties, one such that p = ||u||2 and the other such
that u = —||u|li. Let € = P be the polygon such that p = ||ul|é (this is
equivalent to require Y e;7; > 0 as in definition 2.1 ). These assumptions
are not restrictive. Let us also assume that the first ¢ edges are oriented as
the z-axis, i.e.

e; = (r;,0,0), Vi=1,...,¢,
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and that the following (n — 2 — /) edges are conversely oriented, i.e.
ei=(—r;,0,0) Vi=/(+1,....,n—2.

This assumption is instead restrictive, we are in fact choosing a particular
class [P]; this assumption is useful in order to keep the notation more com-
pact. We will say some more words about what happen if we consider another

class in remark 14.

€n—2€741

€r

Figure 2.3: toy model for [P] fixed point of type I

Under these assumptions the polygon P is as in figure 2.3 the edges e,
and e, are e, = (—rycos0, —r,sind,0), e,_1 = (—r,_1cosa,r,_1sina,0).

We can express cosa and sina in function of 0, r,_; and r,, as follows:

T'n

— 0
sinf, cosa = M.
Tn—1 Tn—1

sino =

It is now easy to determine the vectors 0!, 62 and 3.
eNi=0 Yi=1,... .n—2

en1 Ni=(—rp_1cosa,r,_1sitna,0) A (1,0,0) = —r,_ysina k.
en Ni = (—rycos8, —r,sinh,0) A (1,0,0) = r,sinb k.
So

5t = 0,...,0,—r,_18tnak, r,sind k).
eNj=rk Yi=1,.../0

62/\.12—7}& VZ:L,g
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en N j = (=rncost, —rysind,0) A (0,1,0) = —r,cos0 k.
So

A~

6= (rk,....,rek, 1o k,...,~"p_ok, —rn_1c0sak, —1,c080 k).

GZAE:—T‘ZJ \V/’L:]_,,f

GZAE:TZl \V/’L:]_,,E
en—1 Nk = (—=rp_1cosa, +r,_1sina,0) A (0,0,1) = r,_1sinai + r,_jcosaj.
en Nk = (—rpcost, —r,sind, 0) A (0,0,1) = —r,sinf i + rycost j.

So

A

0 = (—rik,..., =1k, rek, ... T ok, Tp_18IN0I+Ty,_1c08Q ], =Ty sinbi-+ry,c0507).

The orthogonal basis of 7,(SO(3) - P) We now apply Gram-Schmidt
to built a orthogonal basis {6, 02, 6%} from {0*, 42, 6°}.

Remark 10. The scalar product on TpM, is (u,v) = 37 }i(ui,vi)g where
I?

(-,-)s is the standard scalar product in R3. Of course [|¢°]|*> will be the inner

product (&, 6°).

§t =61, and 6% := 62 — g?:giwl. Now,

(01, 62) = rp_1cosasina — rycoslsinf =

— 0
rnsinHM — rpco80sinf =

Tn—1

||| 7510 — 12 senbcosld — r,_1r,coslsind B

Tn—1

rnsind (||| — cosb(rp—1 + )

Tn—1
and
A A r2
(61,01) = r,_1sin*a + 1,8in%0 = —"—5in*0 + r,sin*0 =
T'n—1

In $in?0(rp_1 +15).

Tn—1
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So o
(01,0%) _ |lpll = cosO(rn_1 + 1)
(51,81)  sinf(rp )
Thus
52 == <T1E7 s 7T£E7 _TZ+1E7 R _Tn*2E7
, lpll = cosO(rn—1 + 1) .
— nSing nsind)k,
(~(lelrysing) + AT g
— cosO(ry,_
(—rncost) — Iyl = cosBru—s +T")'f’n8in9)ﬁ> -
sind(rp—1 +15)
i Tl )
(lea o 7T£E7 Tﬁ-i—lka ey Tn—2E7 Ty + TnE’ P 1 + TnE .

5 (63,61 ¢ (6%,62)
5 1= 58 — lgt —

We can observe that (5%,6') = 0 and also (6%, 62) = 0.
To summarize, an orthogonal basis of 7,,(SO(3) - P) is given by:

5t =(0,...,0, —r,sinbk, r,sindk),

racalll il

8 = (rik, ..., rek, —reik, ..., —rn ok, BENw. ey
0% = (—rk, ..., —rik,renk, . ra_ok, rpsindi 4 (|| pl] — rncosf)j,
—Tp81N0L 4 1,c0507).

Calculate A(v)

Recall that A(v) = A(v) — ﬁ&ﬂ"i”él - ﬁ'ﬂ;)ﬁ‘f)é? — ﬁ'((;g)"'ga)é:*, where

Aw), = — <|’|‘;j;>g AR(E) 4§ A K(vy) =

_<Iu’€j> ‘ |, Vs <'u’€j> — AN C n—
( 2 (4,€) + a>>E+< TE (k, &) — (k, j>>l Vi=1,... . n—2

and A(v); = 0if j = n — 1,n. Let ¢, denote the direction of ¢;, i.e.

1, j=1,...,¢0
g5 =
’ 1 j=l+1,...,n—2
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similarly

(). 6%) = Y- (e (- S )+ () =

(gt kvj>+Z<H jl8) + ()

j=1 =I+1
So, for each v € TjpjM, the components of A(v) are:
T

i ey g e - SA@ 0
g9+ ) )k

i ey ey o (AW@) 0
(”MH<E7£> <E7 J>+ ”53"2 ]).Zv

Av); = <—

foryj=1,---,¢

(7,8 + (4, v;) + %w)@t

Ty

AW = (g

(Aw).89
(= € = ) =)

forj=0+1,---,n—2

(A(v),0%) o allul (A(v), 8%
A g i
(U)n—l ||52||2 Tn_1+7nn& ||53||2

_ (A, &) el (A@),8°)

Av), =
o T EI e P &

(rasindi + (|||l — racosd))j;

(—=rpsindi + rycos0)j;
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2.2.2 Compare the complex structures A and J
Determine a basis of TjpM,

We have already seen that 7jpM, can be identified with T5(SO(3) - P),
trough this identification it is possible to write the equations of Tjp|M, as a

subspace of R3", which are:

i) 2 vi =0,

i) e;-v;, =0 Vi=1,...,n,

Let
UZ:(O,. 707 j 7_j707 70)7i:17 76_]-
NGNS
i i+1
a;=(0,...,0, j ,—5,0,...,0,i=(+1,....n—3
Uz_(07' 707 E 7_E707 70)7i:17 76_1
5 =(0,...,0, k , —k,0,...,0),i=10,....n—3
~
7 1+

The vectors u;, 4;, v;, v; verifies the conditions 7), i), iii), so they are in
TipyM,.
Remark 11. A vector of the form (0,...,0, j , —j,0,...,0) would not

satisfy condition iii).

In the case { = n — 2 the vectors above are 2(n — 3) and are linearly
independent, so they form a basis of T|p)M,.
If instead ¢ # n — 2 then the vectors above are 2(n — 4) and it is necessary

to complete them to a basis. To do this we look for a vector of the form
w = (Ak,..., \k, vk, ..., 7k, A1k, Ak),

with A\, v, A\y_1, A, € R, and we impose that w satisfy the conditions i), ii),
iii). Condition #ii) is straightforward verified by w. Condition 7) holds if and
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only if
A+ (n—L—=2)y+ A1 + X, =0. (2.6)

Remembering that

1
—e; Nw; = —A\J Vi=1,...,4

T
1 . ,
—e; Nw; =] Vi=(+1,...,n—2;
T -
||| — rncosd  r,
en1 A\ Wp_1 = ( — , sind, O) A (0,0, A1)
Tn—1 Tn—1 Tn—1
n —I'n 0
= (Mur-sint, AMM@;
Tn—1 Tn—1
1
—en ANw, = (—cosl, —sinb,0) A (0,0, \,) = (—A,sinb, A\, cos0,0);
Tn

we obtain that condition 7i7) holds if and only if

]| = rncost

A+ (n—0—2)y+ A\ . + Ancost =0 (2.7)
n—1
and
)\n,lrrn senf — \,sinf = 0. (2.8)
n—1

So to determine w we want to solve the system (2.6), (2.7), (2.8).

(4.6) <= X\, = n Apoi.

n—1
Using this in (2.7), we get —¢A + (n —{ —2)y + r”nL_”l)\n_l =0, which is

Tn—1

)\n—l =
gl

(X —(n—1L0—2)y) (2.9)
and using (2.9) in (2.8):

An (XN — (n— £ —2)7). (2.10)

_In
il
So (2.9) and (2.10) in (2.6) give

_n—£—2 |’MH_T”*1_T"

A= ~y .
14 el + 7 + 74
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Choosing v = 5= (|l + rn—y + 1) and A = —55([lpll = rnoy — ), it

follows that ¢\ — (n — £ — 2)y = —||u||. So A\y_1 = =11 and A\, = —1,.
The vector w = (Ak, ..., Nk, vk, ..., vk, —r,_1k, —7,k), A,y as above, is
linearly independent with the vectors w;, u;, v;, v;. Remember that J is the
complex structure associated to the symplectic form, so —.J(w) is linearly
independent with u;, 1;, v;, 9;, w and complete to a basis of Tjp)M,.

Remembering that Jw = (% ANwiy ..o, &N wy,), it follows that

Sonw = (1,0,0)A(0,0,0) = —\j  Yi=1,....6
r; -
“onw = (—1,0,0)A(0,0,7) =~] Vi=l+1,....n—2
T -
LNy = (—||p]| + rncosh, rpsing, 0) A (0,0, —r,_1) =
Tn—1 Tn—1
—rn8inbi — (||p]| — rncos)j;
€n

1
— ANwy, = —(=ryc080, —rysind, 0) A (0,0, —ry,)
Tn Tn

rpsindi — r,cosfj.

Thus
—Jw = (Nj,..., \j, =7, =VJ, Tnsinti+(||p|| —rncos)j, —rypsinbi+r,costy).

So Bl = {ul, ViyeooyUp—1,Vp_1, ﬂg+1, _,{}“—1’ ce ,fbn_g, —@n_g, Jw, w} is a basis

of Tip) M, and it is positive.

Remark 12. This is the standard convention, in fact

Jul-:(...,T—szj,ggA(—1),0,...,0):(0,...,0,@,—@,0,...,0):vi;
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A is a complex structure

In this section we will verify that A is a complex structure. To check that
A? = —Id we write the matrix of A with respect to the basis B; ( with a

little abuse of notation, we will call this matrix A).
First of all we can note that (u;) = £(4;) = &(v;) = £(v;) = 0 (remember
that &(v) = 3.2 v; for all v € R*"). So

5%) = 0. Moreover it is trivial
) = <A<Ai>752> = 0. Now it is

Also

A(—Jw) = bl’Ul + ...+ bk_g’{}k_g + bw

and

A(w) = ayuy + ... + Gp_3lp—3 + a(—Jw)

a;,b;,a,b € R, then the matrix A is:
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0 1 0
10 by, 0
0 1 0 ap,
10 by O
0 —1 0
A= e

So A? = —Id <= ab= —1.

Determine a and b. First of all we can notice that the last two compo-
nents of A(—Jw) and of A(w) are enough to determine a and b because the
vectors u;, 1;, v;, V; have no influence on the final components.

Observing that (A(—Jw),8®) = 0 ( because —Jw has no not 0 components
along k), it follows that:

(A(=Jw),0%) raallpll , (A(=Jw),6%) .|yl k:)
162]2 Tne1+ T 1622 Tnot+7Tn /

A(—Jw) = (

Now, recalling that w = (Ak, ..., Ak, vk, ..., vk, —rn_1k, —r, k) we get

A(=Jw), 8% |lul

b= S :
102|2 Tn—1+Tn

(2.11)

Similarly it is possible to observe that (A(w),§2) = 0, thus

A(w) = ( - —%(rnsm% + (|l = racosh)j),

_{Aw), %)

TR ( — r,8inbi + rncosﬁi)).
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Comparing A(w) with the last two components of —Jw we get:

(A(w), 8%
o= 20 (2.12)
16312
Remember that &(—Jw) = 272 (—Jw); = A — (n — £ — 2)y = —lpllg-
Then

L n—2
(A(=gw),8%) = 32 (Fhlal+2) = 3 (= phlul =) =
Jj=1 j=0+1
n—2 n—2
er—i-ﬁ)\—i-(n—E—Q)V:er—i—rn,lern =92
j=1 j=1
n— n—2
o = Sy g Wl 1) (o) S5 Dl
g 7‘] — .
=1 (Tn 1+ Tn) Tn—1 T+ Th
So
2

(Pne1 +70) Y52y 75+ [lel®
Similarly, £(w) = £+ (1 — € — 2y = —5(lll = rut — ra) + 2l +
Tp—1+ Tn) =Tp—1+ Tn-
l

(A(w), 8%) = Z <_ ”TTjH(rnl +ry) +)\> + "Z_Q <_ L(rn,l +ry) _,Y) —

2 il
n—2 n—2 2
Tp—1+7Tn (rn1 1) D5 7+ |
_ ri+lA—(n—0—2)y=— J=
2" Tl
8312 = 300y 4 ry 1 =2,
So
(Tn-1+7n) Z?;f rj+ [l
a= : (2.13)
2|l

It is now straightforward to verify that ab = —1, and so A% = —Id.
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Conclusions

By = {... uj Au,, ... 04, Ay, ..., —Aw, w} is a A-positive basis of Tp) M,..
Then B is also J-positive if and only if the determinant of the matrix of the
change of base Mp,3, = M is positive; in this case the orientation induced
by A is positive (or concord with the one induced by J).

Let —Aw = cquy + . .. + a,t, + a(—Jw), from the description of A given in

the previous section the matrix of the change of coordinates is

1 Qg
1 0 0
1 as 0
1 0 0
M= 1 o
-1 0 0
1 Qp_g 0
-1 0
0
0 1

So detM = (—1)" 3 *a.
Now, @ = —a, from 2.13 it follows that
(rn—1+7n) Z;L;lz rj+ [ll?

o= — < 0.
|

So sgn(det(M)) = (—1)"* and [P] contributes to the cobordism class of M,
with (—1)"~‘P"=3(C).

Remark 13. We already observed that if £ = n—2 then the vectors u;, v;, i;, ;
is a basis of T{p| M, .. In this case it is straightforward to see that the orientation
induced by A and J agree, i.e. det(M) = 1. So the result sgn(det(M)) =
(—1)"=* holds for each £ =1,...,n — 2.



2.3 Some examples

31

Remark 14. We assumed in 2.2.1 that the first ¢ edges are oriented as the
x-axis and the following n — ¢ —2 are conversely oriented. We already pointed
out that this assumption is equivalent to choosing a particular class [P]. Let
us consider another fixed point [Q] = [€] of type I. Because the first n — 2
edges are on the z-axis and p = ey + ...+ e,_2 = ||u||z, then there exist two
subsets I and I¢of {1,...,n—2} such that INI° =0, TUl°={1,...,n—2},
and such that
e = (r;,0,0) Viel

€ = (—7’1-,0,0) Vi e I

Let ¢ be the cardinality of I. If I = {1,.../¢} then this is the case that we
studied in detail. Otherwise, the proof extends word by word just changing
{1,...,¢} with [ and {¢ + 1,...,n — 2} with I°. So a generic point [Q]
contributes to the cobordism class of M, with (—1)""“P"~3(C) where / is the

number of forward tracks, i.e. £ =t{e; | e; - > 0}.

Remark 15. If n = 2m then the odd dimensional projective space CP"~3
is the total space of a sphere bundle over the quaternion projective space
HP™=2, and hence is the boundary of an associated disk bundle. So, if n is

even M, ~ 0.

2.3 Some examples

The case n =5

We will now calculate explicitly the cobordism class of the moduli space
M, when n = 5 for some choices of r such that M, does not contain de-
generate polygons, or equivalently such that M, is a smooth manifold. For
each length vector r we will analyse which index sets [ are admissible (see
definition 2.1). We point out that if I does not satisfy the closing conditions
(system 2.1), also its complement /¢ := {1,...,5} \ I does not. Moreover
if I is admissible then I¢ can’t be admissible too, in fact just one between

Yoicr€imi >0and Y, ey > 0= =) . r; > 0is true. In this section
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we will denote an element of (M7 l)isol just by giving the signs of the vectors

€1, €a, €3, so for example 4+ + — say us
€1 = (T1707O>7€2 = (T27070>7€3 = <_T37070)7

and the remaining edges ey, e5 are determined up to rotations. So the class
(uniquely) determined in M, by + + — will be denoted by P, .

In the examples the vector of lengths is not normalized (i.e. >, r; # 2),
this will keep the notation cleaner and is not restrictive because M, ~ M,,
for all A € R*.

Each of the following examples is obtained by its previous one by crossing
a inner wall in =, or equivalently (because M, is toric for n = 5) by chopping
off a vertex in the moment polytope pr2M,. We will go back on this remark
at the end of this section, but this should be kept in mind as looking at the

moment polytopes.

1. r=(1,1.5,4,1,2)
M, is a manifold, and the only configuration that is admissible for this

choice of r is:

— —+ = the associated index set [ is {3}, so ¢ = 1; on Tp__ M,
A = (=1)""*J, so the CP? produced with the surgery around
P__, comes with sign (—1)°7! = 1, i.e. it comes with the stan-

dard orientation.

Other configurations are not admissible, in fact:

+ + 4+ = closing conditions 2.1 not satisfied;

+ + — = associated to I = {1,2} for which )
plement of {3});

icr €ili < 0 ([ is the com-
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+ — 4+ = closing conditions not satisfied (and so for — + —);

— 4+ + = closing conditions not satisfied (and so for + — —).

Thus
M, ~ CP?%

In this case the image u72(M,) (as described by equation (1.5)) is as
in figure 2.4.

y=x+4

0.5

[\
ot

Figure 2.4: jr2(M,), M, ~ CP2.

2. r=(0.5,2,4,1,2)
M, is a manifold, and the configurations that this length vector admits

are:

—++ =1=2=o0nTp M, A= —Jand CP? comes with the opposite

orientation to the standard one.

——+ =1=3;=onTp,, M, A= Jand CP? comes with the standard

orientation.
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Thus
M, ~ CP? 11 —CP? ~ 0.

y=x+4

15 25

Figure 2.5: u(M,), M, ~ 0.

For this choice of r the image pp2(M,) is as in figure 2.5

3. r=(2,0.5,4,0.5,2.5)

M, is a manifold, and the only admissible configuration is:

— + + = associated ] = {2,3},s0{ =2 = on Tp . M,, A= —J and

CP? comes with the opposite orientation to the standard one.
The other configurations are not admissible, in fact:

+ + + = closing condition not satisfied;

+ + — = closing condition not satisfied (and so for — — +);
— — + = closing condition not satisfied (and so for + + —);
+ — 4+ = closing condition not satisfied (and so for — 4+ —);

+ — — = associated I = {1}, >
{2,3}).

er€iti < 0 (I is the complement of
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Thus
M, ~ —CP?
Yy
y=x+4
3 |
9 | —
y=x—4
Il Il :L.
1.5 2.5
Yy=-x+4

Figure 2.6: pp2(M,), M, ~ —CP%

The image pr2(M,.) of M, is then the 5-sides polytope in figure 2.6.

4. 1=(2,3.5,4,1,2)

M, is a manifold, and the admissible configurations are:

++—=4(=2=onTp, M, A = —J and CP? comes with the

opposite orientation to the standard one.

+—+=(=2=onTp M, A= —J and CP? comes with the

opposite orientation to the standard one.

It is possible to check that no other configuration are admissible, thus

M, ~ —CP*(C) I -CP?*(C) ~ —2CP?*(C).

As before, it is immediate to draw the polytope pr2(M,.), see figure 2.7.

5. r=(2,3.5,4,3.5,2.5)
M, is a manifold, and the configurations that this vector of lengths

admits are:
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Y
y=x+4
3 y=x—4
1L
‘ ‘ X
15 E
Figure 2.7: pr2(M,), M, ~ —2CP?.
++—=(=2=onTp, M, A = —J and CP? comes with the
opposite orientation to the standard one.
+—+4+ =0=2=onTp, ,M, A= —J and CP? comes with the
opposite orientation to the standard one.
—++=(=2=onTp M, A= —J and CP? comes with the

opposite orientation to the standard one.

Thus
M, ~ —CP?* 11 —CP? 11 —CP? ~ —3CP2.

For this choice of the length vector r the image pzr2(M,) is as in figure
2.8.

6. r=(5,1,4,5,1)

M, is a manifold; for this choice of r the set (Mfl)l-sol is empty, in fact
none of the configuration +++, ++ —, + —+, — 4+ satisfy the closing
condition, thus

M, ~ 0.

and pr2(M,) is as in figure 2.9.
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i5 5.5

Figure 2.8: pr2(M,), M, ~ —3CP2

Figure 2.9: pr2(M,), M, ~ 0.
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7. r=(1,1.5,3.5,3,3.5)
M, is a manifold, and the configurations that this vector of lengths

admits are:

+++ =(=3;=>o0nTp,, M, A= Jand CP? comes with the standard

orientation.

+—+=>(¢=2=onTp ,M, A= —J and CP? comes with the

opposite orientation to the standard one.

—++=(=2=onTp M, A= —J and CP? comes with the

opposite orientation to the standard one.

——+ =>/(=1;=>onTp,, M, A= Jand CP? comes with the standard

orientation.
Yy
Cy=x+35
6.5 Y
3.5 S y=2-35
0.5 T
05 25 35 y=_z+35

Figure 2.10: pr2(M,), M, ~ 0.

Thus
M, ~ CP?*TICP?*1I —CP? 11 —-CP? ~ 0

and the moment image pr2(M,) is as in figure 2.10
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Note that the examples above are built by “chopping off a vertex” at each
step. This has a formal description: “chopping a vertex” corresponds to a
wall crossing in =, for example the passage from r’s such that pz2(M,) is as
in figure 2.4 to r’s such that the moment image pr2(M,) is as in figure 2.5
corresponds to the crossing of the wall 7y + r3 = ry + 4 + r5, (which is the
coincidence condition of the intersection points BC' and B2, see section 1.3).

This is an expected phenomenon, in fact in the 4-dimensional case (n =
5) crossing a wall has the effect to blow up a fixed point (or blow down,
depending on the wall-crossing direction). In chapter 4 we will give a detailed
description of this, together with a complete analysis of wall problems in
higher dimension (using arguments presented by Guillemin and Sternberg in
[GS89]).

By the notion of admissibility for an index subset I, it follows that for
n = 5 these are all the possible cobordism types of M,. Moreover for r’s in
the same region of regular values A C =, the moment polytope pr2(M,) has

the same “shape”, and its number of edges is an invariant of cobordism.
b

Remark 16. The manifolds M, as in examples 2 and 6-7 have the same cobor-
dism type (M, =~ 0), but different diffeotype, and thus different symplecto-
morphism type. The moment polytope pi72(M,) contains all the informations
needed to recover the (T%-equivariant) symplectomorphism type (see Delzant
[De], Lerman-Tolman [LT]). For M,’s such that the moment polytope is as
in example 6,and more generally when the opposite edges of the polytope
prz (M) are parallel, it is well-known that the manifold M, is diffeomorphic
to CP! x CP!, see, for example, [ACL].

Let us now analyze the cases such that the moment polytope has shape
as in figures 2.4 and 2.10. Karshon [Ka| finds explicitly the (S'-equivariant)
symplectomorphism types for these examples, and, in particular, establishes
when they are the same. A possible way to see it is the following: because
pr2(M,) is the intersection of the regions I and Y, its edges are either hori-
zontal, vertical or have slope 41, moreover there is always a pair of opposite

edges which are parallel. If the normals to the other opposites edges (the
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non-parallel ones) generate the lattice Z? then M, is diffeomorphic to CP?
blown up at a point; otherwise, if they generate a sublattice of Z? of index
two, it is diffeomorphic to S? x S? ~ CP! x CP'.



Chapter 3

The Volume of M,

The main result of this chapter is a volume formula (Theorem 3.3.1) that
describes the volume of the moduli space M, as a piece-wise polynomial
function in the r;’s. We saw in the previous chapter that the bending action
along a system of n — 3 non-intersecting diagonals allows one to define a
system of action-angle coordinates on a open dense subset of M,. Because
of the complete integrability of the system it is possible to calculate the
volume of M, from the convex polytope image of the manifold via the moment
map; anyway the impossibility to give a unique formula for generic n and,
even fixing the dimension n, for the possible different quotients suggests to
approach the problem in a different way. The study of the integration of
equivariant cohomology classes developed by S. Martin ([Ma] and [Ma2|)
and separately by V. Guillemin and J. Kalkman (|[GK96]) is the key to prove
theorem 3.3.1. An interesting application of this result will be the calculation

of the cohomology ring H*(M,.), see chapter 5.

In the first section some basic facts and definitions of equivariant coho-
mology are recalled, and in the second there is a quick overview on the results
that S. Martin proved in his thesis. In section 3.3 the volume formula comes,

then some examples are given.

41
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3.1 Equivariant cohomology

In this section we will give some basic definitions and results in equivariant
cohomology that will be helpful in the next sections, and in particular in the
proof of the volume theorem 3.3.1 which is the main result of this chapter.
About equivariant cohomology there is a rich literature, in particular we
suggest the beautiful survey papers [AB| and [Du], and also the book [Ki].

Let G be a compact Lie group acting on a smooth manifold in a Hamil-
tonian way, with associate moment map p : M — g*. The equivariant coho-
mology of M is defined to be the ordinary cohomology of My := EG xg M,
where FG is the total space of the universal bundle FG — BG, BG being
the classifying space of the group G.

If the action is locally free, then the equivariant cohomology of M is
canonically isomorphic to the de Rham cohomology of the quotient space
M/G, and the isomorphism is given by pullback 7* : H*(M/G) — H} (M)
induced in cohomology by the projection 7 : M — M /G of M on the topo-
logical quotient M/G.

Let £ be a regular value for the moment map 1, so that the level set =1 (€)
is a smooth compact submanifold of M, of codimension equal to the dimen-
sion of the Lie algebra g. Moreover, under the assumptions above (&) is
G-invariant and and G acts locally freely on p~'(¢), thus the orbit space
pt(€)/G = MJJG(£) is an orbifold.

Call 7,,; the projection ¢ : u1(£) — p=(§)/G := M JJG(&) that associate
to x € pu(€) its G-orbit G - z; and let i¢ denote the inclusion p= (&) — M
of the &-level set in the manifold M.

Then, using the gradient flow of the function z — ||u(z)||* on M, F. Kir-
wan [Ki| proved that the map

it Hy(M) — H*(n7(€))

is surjective. Because the G-action on the level set p~'(¢) is free then f :
H*(M)JG(&)) — H*G(p'(£)) is an isomorphism. These two combines to
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give the following homomorphism
ke o= (m§) "t oig : Hy(M) — H (M J/G(E))

which is known as Kirwan map, and is one of the fundamental tools in equiv-
ariant cohomology.

The surjectivity of the Kirwan map rises the hope that a good deal of
informations on H*(M /G(£)) of a reduced space can be computed from the
equivariant cohomology Hf (M) of M, and not from its ordinary cohomology
H*(M), which is often much simpler than the one of the reduced space. The
extra informations encoded by the equivariant cohomology turns out to be
related with the orbit structure of the G-action, and in this sense equivariant
cohomology is the natural setting for results, known as “localization theo-
rems”’, which enable many computation to be reduced to the fixed point set
of the G-action. In the next section we will see one of these results, due to

S. Martin, which will enable us to prove the volume formula 3.3.1.

Remark 17. As pointed out in [AB], the functorial nature of the construction
that to M associate M enables one to define equivariant correspondents of
the concepts of ordinary cohomology in a “natural” way. In particular, if V'
is a vector bundle over M, then any action of G on V lifting the action on M
can be used to define a vector bundle Vg = EG xg V over Mg that extends
the bundle V' — M. Thus, for example, the first Chern class of Vg, ¢1(Vg),
naturally lies in H*(M¢) =: H (M) and is called the equivariant first Chern
class of V, denoted by (V). All other equivariant characteristic classes are

defined in a similar way.

3.2 S. Martin’s Results

Let X be a symplectic manifold endowed of a Hamiltonian action of a

torus 7" with associated moment map p: X — t*..

Definition 3.1. Let py and p; be two regular value of the moment map

. A transverse path Z is a one-dimensional submanifold 7 C t* with
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boundary {po, p1} such that Z is transverse to p. A wall in t* is defined to be
a connected component of j(X) where X is the fixed points set for some

oriented subgroup H ~ S! of T.

We point out that by transversality theory the preimage p~'(Z) of a

transverse path Z is a submanifold of X.

Definition 3.2. Associated to each transverse path Z there is a finite set
D(Z) which we refer to as the wall crossing data for Z. D(Z) is defined to
be the set of pairs (H, q) such that p(X*) is a wall crossed by Z at the point
q; the orientation of H is defined by the wall-crossing direction: let us orient
Z from p, to p;, each positive tangent vector field in 7,7, thought as an
element of t*, defines a functional on t which restricts to a nonzero functional
on h:= Lie(H). The orientation of H is defined to be the positive one with

respect to this functional.

Theorem 3.2.1. Localization Theorem
Let pg and p; be reqular values of the moment map p joined by a transverse
path Z having a single wall crossing at q and let H ~ S* be the (oriented )

subgroup associated to the wall. There exists a map
M+ Hi(X) — Hpy (X,

called localization map such that, for any a € H;(X),

[ ow@- [ m@= [ k)
X/ T(po) X/ T(p1) XH)T(q)

where the maps k; - Hi(X) — H*(X))T(p;)) are the Kirwan maps, X" T (q)

is the symplectic quotient of u|_1H ()N X by the quotient subgroup T/H and
X

ky : H;/H(XH) — H*(X®JT(q)) is the associated Kirwan map.

Remark 18. The quotient X JT(q) looks of a wild geometrical nature be-
cause ¢ is not a regular value for the moment map p (it lies on a wall), but
it is instead well defined. H acts trivially on its fixed points set X, thus

w(XH) lies in an affine translate 7 of Lie(T/H)*. Then q is a regular value
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for the map p_, : X" — T, and so ,u‘_lH(q) N X*H is a compact closed sub-
X
manifold of X*. X /T (q) is defined to be the quotient of ,LL"IH(q) N X" by
X
the group 7'/H and is a symplectic orbifold.

It is possible to describe the localization map A in terms of equivariant
characteristic classes. To this aim, we introduce briefly the definition of
(ordinary and equivariant) weighted Chern and Segre classes. Let V' — Y
be a complex vector bundle and P(V) — Y be its projectivitation (see|BT]).
Suppose that the bundle V is endowed of a S'-action linear on the fibers and
such that the set of fixed points equals the zero section. Let S(V') be the
unit sphere bundle in V' (with respect to some S'-invariant metric). If S!
acts with weight 1 on the fibers, i.e. on each fiber the action is the standard
multiplication by ¢, then there is an induced isomorphism S(V)/S* ~ P(V).
For generic weights of the S'-action it is possible to define a cohomology class
(the weighted Chern class ¢¥(V) of the pair (V, S1)) that restricts to the total
Chern class ¢(V') when the weights are all 1. (For definition and properties
of ¢(V') we refer to [BT]).

Note that under the S'-action V splits into isotypic subbundles V ~
®iezV;. The weighted Chern class ¢*(V') of V is defined to be the product

(V) = chm),

where ¢¥(V;) ="+ " ter (Vi) +. ..+ ¢ (V;), ¢;(V;) being the j-th Chern class
of V; and r the rank of V;. Observe that ¢(V') is invertible because none of
the V; is acted on with weight zero (this is equivalent to assume that the
zero section equals the set of points fixed by the action). The weighted Segre
class s (V') is defined to be its inverse, i.e. s*(V)c*(V) = 1.

Now, applying the arguments described in remark 17, we can define equiv-
ariant weighted Chern and Segre classes: let G be a Lie group acting on V
and suppose that the actions of S' and G commute. The G-equivariant
weighted Chern class (¢*)%(V) is defined to be the ordinary weighted Chern
class ¢*(Vg) of Vg = EG x V. Similarly, the G-equivariant weighted Segre
class (s)%(V) is by definition s“(Vg).
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Now let us go back to the localization theorem’ setting, and recall that
H ~ S' is the subgroup of T associated to the wall we are examining. Let
T' C T be a complement to H, i.e. T'=T" x H, this defines an isomorphism
Hx(XT) =2 Hx /(X)) @ Hiy (X)), Note that Hy(XH) = H*(BH) (it is
enough to remember that H};(X) is defined to be the ordinary cohomology
ring H*(EH xy; X*™) and note H acts trivially on its fixed points set X ),
SO

Hi(X") = g (X7 @ H*(BH).

It follows that the restriction to X of any class a € H;(X) decomposes
= Y i @ ® u’ where u is the positive generator of H*(BH) and the a;

a‘xH

are elements in H7, (X).

Proposition 3.2.2. With the notation above

A (a) = k<XzH) Zai ~ S;U—pﬂ
i>0
where k(XH) is the greatest common divisor of the weights of the H-action
on the fibers of vXH — X1 s denotes the j-th T'-equivariant Segre class
of (WXH™ H) and p is the function (constant on the connected components of
XH) such that 2p = rank(vX1).

Next result (see [Ma2]) relates the integration over the symplectic quotient
X//G of a G-manifold X with the integration over the associated quotient
X//T by a maximal subtorus 7' C G.

Let GG be a connected compact Lie group which acts on the smooth mani-
fold X in a Hamiltonian way (with associated moment map j) and let T' be
a maximal subtorus in G; the restriction of the action of G defines a Hamilto-
nian action of 7" on X (with associated moment map pr). There is a natural
restriction map ¢ : Hj(X) — Hjy(X) between the equivariant (respect to
G and T') cohomology rings. To fix the notation, Cl) denotes the complex
space C™ endowed of the S'-action with weight w and Q’("Z)) =X xC, is

the total space of an equivariant line bundle over X.
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Theorem 3.2.3. Equivariant integration formula.
For all a € HL(X),

[ e =g [ k(e = TT ).

aEA

where |W | is the order of the Weyl group of G and A is the set of roots of G.

3.3 The Volume Theorem

Theorem 3.3.1. For r € RY} such that M, is a smooth manifold,

vol(M,) = — % k:(](—l)k IEZI (Rf = Rp)",
1=k

where
R; = ZT“ R} = Zri
iel i¢l
and
I={Ic{l,...,n}:Rf —R; >0}

Proof. The first step in the proof is to apply theorem 3.2.3 and write the

volume of M, as
1 SO 1 1
wol(M) =5 [ ko500 = ' (C) = o' (€0

where a € Hg 5 (S;) is such that ksoes)(a) is the volume form on S, /SO(3) =
M, and S is a (arbitrarily chosen) maximal subtorus of SO(3). (We have
already entered in the formula that the Weyl group of SO(3) is Z/2Z and
that the set of roots of SO(3) is {£1}.)

The second step is to apply the localization theorem 3.2.1 to localize the
calculation of the integral above to data associated to the fixed points set of
the Sl-action.

Remember that the symplectic structure on S, is defined by the 2-form

w=3" Tijpjwj, where p; : S, — S is the natural projection on the j-th
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factor and wj is the volume form on the sphere Sfj. It is a calculation to check
that, if o is the volume form on the unit sphere and wrg is the Fubini—-Study
form on CP! ~ S?% then w; = rja = 2r;wrs.

On each sphere consider the line bundle O(2r;) — sz, the tensor product
of the pullbacks p;O(2r;) of the line bundles O(2r;) defines on S, the line
bundle £ := O(2r;) X ... X O(2r,) (known in literature as the prequantum
line bundle (of S,)). Observe that wpg “is” the first Chern class of O(1),
precisely [“££] = ¢1(O(1)), it follows by the definition of the symplectic form
w on S, that

(2] = 0@ B... BOER) = o (L)

The construction above is well defined just for integral ry,... r,, so let
us restrict to the case r € Z” and prove the stated result for the volume
of M,. Then, for each A\ € R*, we get the volume of M), by rescaling, i.e.
vol(M,y,) = (A\)"3(vol M,.), thus the formula holds also for rational r;. Finally,
by density, the result extends to r € R’.

Let a be the (n—3)-th power of the first equivariant Chern class ¢;°® (L)
((2::)_;,3 ), then its
image k(a) trough the Kirwan map k : Hyy;)(S,) — H*(S,/SO(3)) is the
volume form on M, :

vol(M,) = ((TQLW_)n3)! / T k(P (L)),

of the prequantum line bundle £ (normalized by a factor

We now apply the integration formula 3.2.3: the restriction rg?(?’) maps

SO (Lyn3 in ¢S (L) 3, thus

1(27T)n_3/ Sl -3 Sl Sl
= k: 1(C Cn ~ C C ~— C C_
T3y B 00— () o ()

and the first step is done.

vol(M,) =

In order to apply the localization theorem 3.2.1 we make an explicit choice
of a maximal subtorus S* C SO(3) : let S* be the subgroup that acts on each
sphere by rotation along the z-axis, i.e.

St x Sfj — Sfj
(0,ej) — Age;
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1 0 0 617]'
where Ag= | 0 cosf sinf | ande; = | ey
0 —sinf cost €3

This action is Hamiltonian with moment map the height function

p:S; — st =R

e; — ht(ej) =e3;.

Note that the fixed points of this action are the north pole N; and the south
pole S; and the image (S} is the segment [u(S;), u(N;)] = [-r;, 7] (in
agreement with the convexity theorem.)

These observations extends easily to the product manifold S, : a point in
S, is given by the n-tuple (eq,...,e,), and the action of the maximal torus
Stis

StxS, — S,
0, (e1,...€)) +— (Ageq,..., Agey).
This action is clearly still Hamiltonian and, by linearity, has moment map
the sum of the heights, i.e. if e; = (2,15, 2;) then u(es,...,e,) = 2.

A point (ey,...,e,) is fixed by this action if and only if e¢; € {N},S;}
for each j € {1,...,n}, and these points are isolated. For these points we
introduce a more handy notation: let [ be any subset of {1,...,n}, we define
fr to be the point (e,...,e,) € S, such that e; is a south pole if j € I, a

north pole otherwise. Thus all the fixed points are a f; for some index set

w(fr) :Zm—Zri =R — R;.

igl icl
Remark 19. Note that R —R; # 0for all I; in fact R —R; = 0 would mean

that polygons on a line are possible, which is against the assumption that

and

M, is a manifold. This implies that 0 is a regular value of the moment map
i, in fact d,p is identically O if and only if x = f; : for each tangent vector
v =(v1,...,0,) € TS, dp(v) = >, (; where (; is the third component of
vj. S0

dp=0 <= (=0 Vj <= z=fr.
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For the Atiyah and Guillemin-Sternberg convexity theorem, the image

w(S,) is the convex hull of the points u(fr), i.e.

w(S,) = [— Zn:m,zn:ri].

The idea is now to apply theorem 3.2.1 to calculate the volume of S, //S*.
Choose pg = 0 and p; > >, i, so that g~ '(p;) is empty, this imply that
the integral over S, //S*(p;) is zero and

LK@=, ki)

where the sum is made over the walls p(X ) that the path Z = [0,p;] C R
crosses at g;.

Moreover note that the walls in 1(S,) are just the points u(f;), and the
path Z crosses the walls pu(f7) only for those I such that Rf — R; > 0. We
call these I admissible and define Z to be the set of all the admissible 7. We
can also point out that the quotient spaces X /T(q) are just points, thus

L/yk@):}jmoﬂah»

IeT

Now we will study the normal bundle v f; in order to work out the details
necessary to use the equivariant description 3.2.2 of Ay,.

The f;s are points thus for each I the normal bundle vf; is the direct
sum of copies of Tiy,S7, and Ts,S7 . So, if k is the number of south poles in
fr,i.e. k=1I|, then

vfr~CH* @ CLy).
The equivariant Segre classes that appear in 3.2.2 formally lie in H7, y 7(f1),
where H ~ S' is the subgroup of T associated to the wall u(f7); in our case
T is S! itself, then s“(v f7) lies in the de Rham cohomology ring H*(f7). The
bundle v f; has rank one, and the j-th Chern classes ¢;(C(41)) are zero for
each i and j (because, for each I, vf; is a line bundle over a point), then

wf)=]li=n*

i
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where k is the number of south poles. Then

(=" * j=0,k= ]

0 otherwise

sy (vfr) {

Moreover, k(f;) = 1 for each I because the the weights are all £1.
We have now all the ingredients to apply the equivariant formula 3.2.2
and calculate A\;(ay, ), with a = SH(L) - cfl(g(l)) - (C1y)-
From the construction of the line bundle £ we made above, it follows that
L "= C( RY-R;) where again [ is the index set that detects the south poles.
Thus
¢ (L), = (Rf — Rp)u,

where u is the positive generator of the equivariant cohomology of a point
H,(fr). Similarly,

1 1
& <@(1))f = u, r (Q(l))f = —u
1 1

So

i, = —(Rf = Rp)"u™!

and
May,,) = —(~DH(RF — B)™ P,

To finish the proof we should now apply the Kirwan map &, : H7} y g(XT) —
H*(X"T(q)) as in 3.2.1. Note that in our case T is S* itself and the fixed
points sets X are the f;’s, so k, : H*(f;) — H*(f;) is the identity map.
Thus, summing on all the admissible 7, the result follows.

O

3.4 Examples

Let r = (2,1,8,2,4). We proved in 2.3 that M, is cobordant CP?.
I =0= RS — R; =17 = () is admissible;
I ={1} = Rf — R; =13 = {1} is admissible;
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I ={2} = Rf — R; =15 = {2} is admissible;

I ={3} = Rf — R; = 1= {3} is admissible;

I ={4} = R} — R; = 13 = {4} is admissible;
I={5}= R — R, =9 = {5} is admissible;
I={1,2} = Rf — R; =11 = {1,2} is admissible;
I={1,3} = Rf — R; = —3={2,4,5} is admissible;
I ={1,4} = Rf — R; =9 = {1,4} is admissible;
I={1,5} = Rf — R; =5={1,5} is admissible;
I={2,3} = Rf — R, = —1= {1,4,5} is admissible;
I ={2,4} = Rf — R; =11 = {2,4} is admissible;
I={2,5} = Rf — Ry =7={2,5} is admissible;
I={3,4} = Rf — R; = -3 = {1,2,5} is admissible;
I={3,5} = Rf — R, = -7 = {1,2,4} is admissible;
I={4,5} = Rf — R; =5 = {4,5} is admissible.

Thus, summing on all the admissible I's we get:

vol(M,) = —wﬂ(gj/— (132 4+ 152+ 14+ 132 + 9% + (112 + 9% + 52 + 112 + 72 + 52) —
[1]=0 \1@1 |IT;2

(P13 72)) = —r?(~2) = 21°.

|I|=3

More generally, let A, be the region in = € R® of regular values for the

moment map /., delimited by the following walls:
1
r; < Zn; Vi,

o> > m Vi=1,245 {35} :={1,...,5}\ {35}

i€{3,5} i€{3,j}°

o> Y om ik 0=1,234 {jk 0} :={1... 5}\{jk(}.

26{37]67(} Ze{j7k7£}c
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So for r’s in Ay the set of admissible I’s is

T={{t}, (3,5}, {4k}t =1,....5; jk{=12475}

Then, applying theorem 3.3.1, it is a calculation to check that the volume

for the associated symplectic quotient M, is
volM, = 272(ry + 1y — rg + 14 + 15)?

and, because the perimeter > "  r; = p is fixed, in particular p = 2 on =,
then we get
volM, = 27%(2 — 2r3)*.

Remark 20. Note that r = (2,1,8,2,4) ¢ =, in fact ) ., r; = 17. Nor-
malizing it 7 = 1%(2, 1,8,2,4), and the volume of the associated symplectic
quotient M; can be deduced by the volume of M, by rescaling, i.e.

2 \2 2 \2
volM,. = (1—7) volM, = (—) 972

in accordance with the formula above.

Let us now calculate the volume of M, for r = (1,4,8,2,4), (which is
the second example we examined in section 2.3), and in general for r’s in
the region of regular values A; such that r = (1,4,8,2,4) € A;. Of course
it was possible to calculate the set Z of admissible I for » € A; as done in
the previous example. Anyway recall that A; can be reached from Ag by
crossing the wall r| + r3 = ro + r4y + r5. It is immediate to check that for
r® € Ag then r{ + 73 > ) + r{ + 7 (and in fact I = {2,4,5} is admissible)
and r{ + 7} <r)+r}+riforr! € Ay So for r' € Ay, {2,4,5} is no longer
admissible, while its complement is.

So A; is the region delimited by

i < Zri; Vi,

Yor> > Vi=245 {35 ={....5}\ {3,j}

i€{3,5} ie{3,5}°

T +7r3<<ro+Tg+7rs; TH+7To+7T5>r3+7ry, T1+7T2+714 <73+ 75
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So for r € A; the admissible I are

T={{t}{3,7};{1,2,5};{1,2,4};{2,4,5}/t=1,...,5;j = 2,4,5}.

Again, applying theorem 3.3.1, it is a (long, but not very instructive) calcu-
lation to verify that
vol(M,)

472

:2T1<p—7’1—27’3>

where as usual p is the fixed perimeter.

Remark 21. Note that the quantity R} — R; associated to an admissible T
is actually the Euclidean distance of r from the wall ). ,.r; > > .., 7. So
as r — r°, r° being the wall crossing point, R} — R, decreases (and it is zero

on the wall-crossing point).



Chapter 4

Crossing the Walls

In this chapter we will mainly focus our attention on the description of
M, as the symplectic quotient of the Grassmannians Gry,, of 2-planes in C"
by the action of the maximal torus Uj* (as in section 1.3) and we explicitly
describe how the diffeotype of the manifold M, changes as r crosses a wall
in 2= g, (Gran).

The image = = p,, (Gry,) via the moment map associated to the Uj'-
action is, by the convexity theorem ([At],[GS82]), a convex polytope; the
regions of regular values in &, which will be denoted by A;, are separated
by walls, i.e. by the images Hory (Gril,) of the sets of points fixed by the
subgroups H ~ S of UP. In section 4.1 we will describe how the wall-crossing
direction determines the orientation of the subgroup H associated to the wall;
in section 4.2 we show that crossing a wall can be interpreted in terms of blow
up and down of submanifolds, and characterize these submanifolds in terms

of moduli space of lower dimension.

4.1 Associate the orientation to the wall-crossing

direction

From now on, when this will keep the notation more handy, we will denote

by X the the complex Grassmannian Gry, and by 7" the maximal torus U}

95
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of diagonal matrices in the unitary subgroup U,,.
Let ¥ and 7! be regular values of the moment map pur : X — = C R®
lying in different regions, Ay and A; respectively, of regular values. From

remark 5 we know that the wall W between Ay and A; has equation

p q
dory=Yr,  ptq=n (4.1)
j=1 k=1

for some I, = {iy,...4,} and I, = {iy,...,%,} partition of {1,...,n}. It is
not restrictive to assume that r° € A, satisfies

Zr? > Zr? (4.2)

i€l iely

and r' € A, satisfies

ZT} < ZT} (4.3)

i€lp 1€l
Definition 4.1. A wall of equation (4.1) together with the data of a wall
crossing direction from Aj to Ay as in (4.2) and (4.3) is said a wall of type
(P, q).

Note that the change of the wall crossing direction changes the type of

the wall, i.e. a wall of equation (4.1) crossed from A; to Ag is a wall of type

(¢,p)-
For simplicity, let us first analyze in detail the case I, = {1,...,p} and

I,={p+1,...,n} when the wall W has equation
rmt+...+7rp="p1+ ...+ 7.
The directions normal to this wall are +vy = +(1,...,1,—1,...,—1) and
—_—— ———

p q
the subgroup H of T associated to the wall (i.e. such that W is a connected
component of pp (X)) is H = (+w), in other words

H = {diag(e*™, ... ¥ T . eF9)/0c S

S\

~
q

-
p
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It is clear that the choice of the sign + determines the orientation of the
subgroup H; we want to orient it accordingly with the wall crossing direction.
(We borrow the following notation from Martin [Ma]). Assume we want to
cross the wall W from Ay to A; and let Z be a transverse path from r°
to 7! (note that this defines an orientation on Z) which crosses the wall W
at ¢ = Z N pr(X*H). Then a positive tangent vector in 7,7, thought as an
element of t*, defines a linear functional on t which restricts to a non-zero
functional on the Lie algebra b of H. We orient H to be positive respect to
this functional.

In our case, let Z be the segment
Zt) =1 -ty +trt, tel0,1],

and assume we cross the wall at the time ¢, i.e. ¢ = Z(¢,). The tangent vector
%Z(t)h:tq = —rY + 7! in T,Z defines on b the functional that associates to
v € b the inner product (—r" + 7! v).

One between vy and —uv satisfy the condition that the above inner pro-
duct is positive, and that determine on H the orientation positive with re-

spect to the wall-crossing direction. Precisely

H={—v)=((~1,....,—1L,1,...,1)).

In fact, from (4.2) and (4.3) follows

n

p p
(=% 47, —vp) = Z'r?—Zr} — Z )+ z": ri > 0.
i=1 i=1

i=p+1 i=p+1

In the general case of a wall I of equations > ,.; i = > ;c; ri (as in
(4.1)) similar arguments hold. Precisely, let ¢, = 1if i € [, and ¢; = —1 if
i € I,, then the normals to the wall are £vy = (£1,...,&,).

The orientation of H positive with respect to the wall crossing from A,
to A; (as defined in (4.2) and in (4.3)) is the one determined by —uy.
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4.2 Crossing a wall of type (p, q)

In [GS89] Guillemin and Sternberg give a thorough analysis of wall cross-
ing problems relative to (quasi-free) S'-actions. They also point out that
their construction can be made H’-equivariant, when H’ is a compact group
commuting with the S'-action. In particular, this is the situation when
studying how things change as we cross a inner wall in the moment image by
the action of a torus - as it is our case, where U]' decomposes in the product

of the subgroup H ~ S associated to the wall and (one of) its complements.

In the more general setting of the action of a torus, Guillemin and Stern-
berg show that, as one passes through a inner wall of the momentum poly-
tope, the diffeotype of the associated reduced space changes a by blowing up
followed by a blowing down.

We want to point out some of the arguments from Guillemin and Stern-
berg (see [GS89] §11) that will be useful in our proof: recall that each linear
Sl-action on C" (which is the local model) is diagonalizable with eigenva-
lues ¢*: under the assumption that the action is quasi-free the weights are
k = +1 (the case k = 0 will not appear in the case of the moduli space of
polygons, and, even in the general case, the coordinates acted on with weight
0 corresponds to trivial actions which can be factored out). Moreover, 0 is
the only fixed point and the Hessian in 0 of the associated moment map has
signature (2x~,2x"), where x* is the number of positive weights and x~ is
the number of negative ones. Guillemin and Sternberg shows that crossing
a wall associated to this S'-action change the diffeotype of the associated
reduced manifold by blowing up a submanifold of complex dimension y* —1

followed by the blowing down of a submanifold of complex dimension y~ — 1.

Remark 22. Note that the wall-crossing direction is clear because S is in-
tended with its standard orientation. If we wish to cross the wall the other
way round, i.e. if we choose on S the “clockwise” orientation, this changes
the roles of x™ and y~ and -as we would expect- this wall crossing has the

effect to blow up a submanifolds of dimension x~ — 1 and then blow down a
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submanifold of dimension y* — 1.

Remark 23. On the nature of these two submanifolds, and how they are
related one to the other, we will be more explicit later on, giving all the
details for the specific case of moduli space of polygons. We can though
anticipate that these two submanifold are actually two possible resolution
of the (conic) singularities that correspond to lined polygons in the singular

quotient M.

In this section we will work out all the details in the case of the moduli
space M, and we will use its nice structure to give a characterization of the
blowed up and down manifolds in terms of (littler) moduli spaces.

Remember that in section 1.3 we described the Grassmannian as the sym-
plectic quotient of the manifold M, .»(C) of matrices n x 2 by the action of
the unitary group Us, when the level set is the Stiefel manifold of orthonormal
2-frames in C". The torus U7 of diagonal matrices in the unitary group U,
acts (by multiplication on the left) on M, .5(C); this action commutes with
the Us-action and thus descends to a (Hamiltonian) action on the Grassman-
nian Gry,. The symplectic quotient relative to this action at the level set r
is the moduli space M, of polygons with fixed side length r. This is summa-
rized by the following diagram, (where the vertical arrows are the symplectic

quotients):

StQ,n > Mn><2<(c)
\
AN
\
\\ Us
AN
\
\ Hen
-1 ur
IU/U{L (T)( GTQn = C Rﬁ
\
AN
AN
\ n
\ Ui
\
\
N\
M,

Let H be the oriented subgroup associated to the wall W and H’ be a
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complement of H, i.e. U = H x H'; then both H and H' acts on Gry,, (by
restriction of the U]' action), and these actions are still Hamiltonian with
moment maps jiyg := py © Fyp and pg = pyr o Hops where py and py are
the natural Lie algebra’s projections of t* onto h* and (h')* respectively. So
we want to determine the signature (2x™, 2y ™) of the Hessian of py at fixed
points “modulo H” (this can be formally described in terms of reduction in
stages, first quotienting by H’, then applying the analysis due to Guillemin
and Sternberg to the residual H-action).

Now on, when this will create no confusion, the moment map fiyp relative
to the action of the torus U7 will be denoted just by u. Let X be the set
of fixed points by the H-action on the Grassmannian and ¢ be the point of

wall crossing. Moreover let v := v X be the restriction to p~!(r¢)

‘XHﬁu_l(Tc)

of the normal bundle to the fixed points set X: then the normal bundle
v— XTpu (o)

splits under the H-action into the direct sum vt @ v~ of two subbundles
such that H acts on v with positive weights (the action is quasi-free, so the
positive weights are all +1), and on v~ with negative weights. So x™ and x~
are just the weights of the 7 action on v.X"| , ., .
As in section 4.1 we will first analyse the wall crossing of a wall W of

equations

p q

Zﬁ‘ = Z T, ptqg=mn.

=1 i=p+1
Moreover suppose again that we are crossing the wall W from A, to A, as
defined in 4.2 and 4.3, so that W is a wall of type (p,q) and the subgroup

H ~ S' associated to W is

H={(-1,...,—-1,1,...,1)),
——— —_——
p q
ie. H={diag(e ™ ...,e7® " ... ¢“)}. H acts on the space of matri-

-~ -~

p q
ces M, w2 by multiplication: V(a,b) € M, 2
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diag(e™,...,¢e") - (a,b) =

and, for each fixed point P, the weights of the H-action on TpM, « are

-1 -1

i.e. under the H-action the tangent space T,,M, 2 get decomposed in the di-
rect sum of four spaces, which we will call A, A, B,, B_; A, corresponds
to the directions of the a; coordinates acted on with weight +1; A_ corre-
sponds to the a;’s acted on with weight —1 and B, and B_ are similarly

defined with respect to the b;’s. Note that
dimcA, = ¢, dim¢B, = ¢, dimcA_ = p, dimcB_ = p.

The set X of points fixed by the H-action is

;=0 Vi>p+1 }

X7 .= {[(a,b)JGStM/UQ‘{ =0 Vi<p

p~(r¢) intersects X! in a submanifold of real dimension n — 1, in fact,
recalling that p(a,b) = (|ai|® + [b1|%, ..., |an]® + |ba]?) (see §1.3 and [HK97]),
the equations |a;|*> = 7§ and |bj|*> = 7§ do not determine the phases of a;

and b;. This submanifold is a U-orbit in p~!(r¢) N X for example it is the
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Up-orbit of P € p~'(r¢) N X* defined as follow:

C
r{ 0

P .= \/F; 0

C
0 Tp+1

0V
This, using the quaternionic Hopf map introduced in section 1.3, identifies
explicitly the quotient (u~1(r¢) N XH#)/U? with the degenerate (i.e. lined)
polygon [P] € M,, [P]| = (r14,...,7pi, —Tps1 8, ..., =7y 1), where i = (1,0,0).
By definition
vX"=TX| ,/TX"

and

H H
VX eonxy = TX 1 goynxtn) /T X -1 eynx):

By UP-equivariance, the weights of the H-action on vX*_ are constant

lo
for each Q € =1 (r¢)N X and precisely they are the weights of the H-action
on I/XH|(“—1(rc)mXH).

In this

situation we can identify the orthogonal to Tp X with the restriction of the

Thus we will calculate the weights of the H-action on vX*,,.

normal bundle to X¥ | i.e.
vXH  ~TE X"

Moreover, from the description of Gy, as the orbit space for the Us-

action on Sty ,, it follows
TPGTgm ~ T;‘(UQ . P)

(With a little abuse of notation we use the same symbol P for the element
in Sty ,, and its class in Gra,,).
So to calculate the weights of the H-action in vX* L, e will use the

following identifications:
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TpSty, = Tp(Uy-P) @& TH(Usy- P)
l

TpGry, = Tp X7 @ T]%XH
2
IJXH‘ .
P
Now, let
“oh 0 v 1
- S = ), >
XH = { € Stgm : @i r=p } - Stg,n,
an b,

then because the Us-action and the Uj-action (and thus also H-action) com-

mutes, the following identification holds

vXH  ~THXT N (U, P)) C TpSty.

P

We now determine the equations for T4 (X*), T (Us - P) and TpStyp;

let (a, b) € MnXQ

- =...=a,=0
(a,b) € TpXH = { ¢
by=...b,=0
thus
~ = =a,=0
(a,0) € TAXT «— ! o
bpy1=...=b,=0
Moreover
la| = >0 (@i, a;) = 1
(a,b) € Sty,, <= |b] = E’;:l(bi, by =1
<a’7 b> = ?:1<aiabi> = 0;

(4.4)

so, recalling that (u,v) is the standard Hermitian product, i.e. (u,v) =

%u@ + uv, and differentiating the relations above at P we get:
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> iy a0+ a0 =0
(a,b) € TpSty,, <= S biBi+ b =0 (4.5)
S i+ abi =0
Note that (4.5); and (4.5), are actually real equations while (4.5)3 is a
complex equation.
Choosed a basis for Tp(Us, - P), it is possible to compute the equations
for T¢ (U, - P), which are:

Lemma 4.2.1.
E?:l ai@i — C_LZ'OZZ' =0
(a,b) € Tp(Uz- P) <= { S2%  bifli — byl =0 (4.6)
S aifi — aib; =0

0

Proof. Let ( e ) be a generic element in Us, (u,v € C, § € S!).

- ue®
o : : [ v+if  n
Then, derivating, a generic element on the Lie algebrau, is
—7 v+ib
with v pure complex, i.e. v =i¢p, ¢ € R, and n € C. Thus the infinitesimal

action on P = («, f3) is

Z(9 —+ (b)Oél —?70[1
i(0+ @) n | U0+ Py —nay
< -9 ) CO= s 0= |
nﬁn Z<9 - ¢)ﬁn

The following choices

o=0  [o=—0 [o=0
B=0 " =0 0=0

determine a basis of the Lie algebra us. Thus a basis of Tp(Us - P) is deter-

mined by entering the choices above in 4.7. An element (a,b) € TpSty, is in
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T#(Uy - P) if it is orthogonal to each element of a basis of Tp(U, - P). This,
for the basis we chose, gives the following system:
?:1@%’7 aj) =0
> i—pi1$3B5,05) =0
T (=nag, by + 300 (B, a5) =0
from which, recalling that (u,v) = fuv + @v is the standard hermitian prod-

uct, the result follow.
U

Again (4.6); and (4.6), are pure imaginary equations, and sums up with

(4.5); and (4.5)2 to give two complex equations, one in the a;’s and one in

the b;’s !
Thus
( daia; =0
ZbiBi =0
(a,b) € THXP N (Uy - P)) C TpSta, < 2 i =0 (4.8)
> b =0
g =...=a,=0
bpi1 =...=b, =0

(4.8); and (4.8), becomes trivial when assuming (a,b) € T4 X (i.e. when
requiring (4.8)5 and (4.8)g).

(4.8)3 solves in A, and (4.8)4 solves in B_.

The p conditions (4.8)5 solve in A_ (and actually they kill it all), and the
q conditions (4.8)g solve in By.

Geometrically, this means:

dimg(Ay NvX?),)=q—1,
dimc(A- NvX*H,) =0,

dimc(B- NvXH ) =p—1,
dimc (B Nv X)) =0.

IThe fact that 4.5 and 4.6 combines to give four complex equations reflects that we are

actually considering the GIT quotient by the complexification G LoC of the real group Us.
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and thus the weights of the H-action on vX* |, are
1\
1 -1
q-— 1{ Do p—1
1 -1
-1/
Sox =p—1,xT=q¢g—1.
By [GS89], this mean that when 7 crosses the wall 7 r; = Y700 7
from 7 € Ay to r'A; the associated symplectic quotient M, changes by

blowing up a submanifold of M,o diffeomorphic to CP?~2 to a CP?~2-bundle
followed by blowing down this divisor, viewed as a CPP~2-bundle over a
submanifold of M,: diffeomorphic to CP¢—2.

These submanifolds will be characterized in terms of moduli spaces of
lower dimension in section 4.2.1.

The general case: let W be the wall of equation } ., i = > ;cp 7
for generic disjoint index subsets I,, I, C {1,...,n} of cardinality p and ¢
respectively, p + ¢ = n. By 4.1, the associated subgroup H to this wall is

H = <<€1,...,€n)>

where

—1 if iel
E; =
1 if iel,

and so the weights of the H-action on TpM, «2, P fixed point, are

€1 €1

€n En

As before, this means that under the H-action the tangent space TpM, x>
get decomposed into the direct sum of subspaces A, A_, B,, B_ such that
H acts on A, and B, with weight 1, and dim¢cA, = dim¢B, = ¢q; H acts
on A_ and B_ with weight —1, and dimcA_ = dim¢B_ = p.
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The set of fixed points X is

a; =0 Viel, }

X" = {{(a,b)] € Sto,/Us :
{l@ o) Z/Z{bﬁﬂ viel,

Again, X N 71(r¢) is a submanifold of real dimension n — 1 and it is the
U-orbit of P,
P = (6P, 890)

where ¢%a is the column vector (67ev, ..., 0fay) and 674 is the column vector
(6181, .. .,0483,), with

w1 it i€l s ] 0 i iel,

CoLoif el 1 if el

Now, arguments similar to the ones used before hold, and we can lift
both X# to X* inside the Stiefel manifold Stan. This let us calculate the
equations for Tﬁf( H C TpSt,,, and in the same way; so we get the following

conditions:
a; = 0 Vie [p

(a,b) € TEXH —

Z?:l aﬁfdi + dicsfozi =0
(a, b) - TpStgm < Z?:l bzéng + Z;Zégﬁl =0
S aibiBi+ bidla; = 0;

E?:l a;0; 0 — ;050 = 0
(a,b) € Tp(Us - P) <> S bi69B; — bisiB =0
S aisiB — biofa; = 0.

These sums up to the following system

Z aiéf@i =0
N 613, =0
a,b) € TH( XN (Uy- P)) C TpSts, < 2 aidif 4.9
(a,b) € T ( (Uz - P)) CTpSty, S bidai; = 0 (4.9)
a;=0Vi€l,
by =0Vi€ I,
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The systems (4.9); and (4.9)g solve in A_ and B, respectively. When
(4.9)5 and (4.9)¢ hold, the equations (4.9); and (4.9), are trivially verified.
(4.9)3 solves in A and (4.9)4 solves in B_, thus the weights of the H-action
on 1/X1H|P1 are (p—1,q—1):

-1
1 -1

q—l{ Do p—1
1 -1
-1

This calculation proves the following:

Proposition 4.2.2. Let W be a wall of type (p,q) and let H be the circle
subgroup generated by the normal direction to the wall, positive with respect
to the wall crossing direction. Then along Xy N pu~1(rc), the weights of the
H-action are —1, with real multiplicity 2(p—1), and +1, with real multiplicity
2(g—1).

Therefore, according to Guillemin and Sternberg [GS89], this means that
M,o and M, are related by a birational map which is the composite of a
blow-up and a blow-down.

Explicitly, first we blow-up a copy Cy of CPP~2 in M,o. This blow-up is a
new manifold M in which Cj is replaced by its projectivized normal bundle,
which is a CP?~2-bundle over C; = CPPP~2 called the exceptional divisor £ in
M (note that € has complex dimension n—4, hence has complex codimension
one in M ). There is a map po: M — M,o which is a bijection everywhere
except over (Y.

Second, & is also a CPP~2-bundle over CP?2 and we can blow-down M
by replacing this bundle with its base. We thus obtain a map p; : M — M.
which is the blow-up of a submanifold C; = CP92.

This is what the top half of the figure 4.2 describes.

Remark 24. Note that the wall-crossing analysis done so far applies to the

outer walls r; = 1 (which are just the walls with »_.;r; — 7 = 0). (Note
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that r is always a regular value if ;~!(r) is empty!) In this case, the wall
crossing has type (n — 1,1) or (1,n — 1), and so the weights are (n — 2,0) or
(0,n — 2). Hence wall crossing replaces the empty set by a copy of CP"~3 if
r crosses the wall from outside = to inside, or vice versa it replaces a copy of

CP"~3 with the empty set if r crosses the wall W from inside = to outside .

4.2.1 Crossing the walls in terms of moduli spaces of

polygons

In this section we will give a characterization of the blown up and blown
down submanifolds CP?~2 and CPP~2 in terms of moduli spaces of polygons.
This characterization arises very naturally by the geometry of M,., and can
be constructed by looking carefully at the birational map between Mo and
M1 described by [GS89)].

We already pointed out that the moduli space M, is a symplectic mani-
folds long as the lengths are chosen so that there are no polygons on a line.

Equivalently, this means that for every partition I,7¢ C {1,...,n}
eilr) =D =)
iel iele
must be nonzero. Moreover, let r¢ is a critical value of the momentum map
pop lying on a wall of type (p,q). Then, by the description of the walls

due to Kapovich-Millson (see section 1.3), there exists an index subset [, C
{1,...,n}, of cardinality |/| = p, such that

er,(r°) = 0.

As before, let 7° and 7! be regular values lying in different regions Ay and

Srds> "k Y <) ol

i€l icly il icly

A1, precisely:

When 7 moves along a path from r° to r! then &, (1) —=0, ¢, (r°) > 0

T—r"

and g, (r') <0.
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Let
Mlq<r):M(Ti17---7Tip7 TJ,>

Jely

be the moduli space of p+ 1-gons of fixed side length <r,1, e Ti D jer, Tis ),

M[p ( E TZ,le,...,qu>

i€lp

and similarly let

be the moduli space of ¢+ 1-gons of fixed side length (Eielp TisTjyy - ,rjq>.

When &;,(r) > 0, M, (r) has complex dimension p — 2 and M, (r) is
empty. When ¢; () < 0, My, (r) has complex dimension ¢ — 2 and M, (r) is
empty. When ¢, (r) = 0, My, (r) = M;,(r) and is a singular point (a polygon
on a line).

M;,(r) and My, (r) can be identified with (eventually empty) submanifolds
of M, as follow. If I, = {1,...,p} and I, = {p+1,...,p +q}, then M (r)
can be identified with the submanifold of M, such that the first p edges are
all oriented in the same direction (and hence collinear), i.e. M (r) is the

submanifold of polygons as in figure 4.1.

Figure 4.1: Polygon in M, (r).

Similarly, M, (r) is the submanifold in M, of polygons such that the last
q edges are collinear. If r = r* € W then M; (r) = M, (r) = P where P is
the singular point corresponding to the lined polygon in the singular quotient
M,e.

Lemma 4.2.3. When not empty, M, (r) ~ CP"? and M, (r) ~ CPP~2.

Proof. Let us first analyze My, (r). If >,.; ri — >2;cp r; > 0 then M (r) is
empty and we have nothing to prove.

Assume Zielp r; — Zjelq r; < 0, and let p := (Zielp Tis Ty - - - ,rjq> €
R%™ | so that M;p,(r) = M,. plies in an external region of = C R% | delimited
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by the outer wall W) of type (1, ¢q) of equation

p1= P2+ ...+ Pgi1.

Ay is the region of “regular values” p° such that p; > Zf;l pY. This imply

that 11 (p°) is empty for each p° € A,.

q+1
By groposition 4.2.2, or, more precisely, by remark 24, as p crosses the

wall W, from A, to A; the diffeotype of M, changes by replacing the empty

set with a copy of CP? 2. so M, = M, (r) ~ CP?? as we wanted to prove.
Similar arguments holds for M, (7).

O

For generic I, and I, this argument shows that the moduli space My, ()
can be identified with a submanifold of M(r;,...,r;,) = M) for some o €
S, permutation on n elements. Moreover M(r;,,...,r; ) ~ M, as observed
in section 1, and we can think M, (r) as a submanifold of M, isomorphic to
CPP2if r € Ay, empty if r € A.

For the same argument, M; (1) can be thought as a submanifold of M,
isomorphic to CP9~2 if r € Ay, empty if r € A,.

Note that as r — ¢, r € A, the width €7, (r) of polytopes in My, (r) C M,
goes linearly to zero, and it is zero for r = r°. So the (p — 2)-dimensional
submanifold M, (1) collapses to a point as r crosses the wall W. Similarly, as r
leaves from the wall 1V to the interior of Ay, the width £, (r) of the polytopes
in My, (r) increases, and M (r) is the (¢ — 2)-dimensional submanifold that
is born as crossing the wall W.

In figure 4.2, the map m, collapses M, (r) to the point P and the map
7, ! resolves the singularity in P by “blowing it up” to give M. 1, (7).

At the light of this analysis, proposition 4.2.2 implies:

Theorem 4.2.4. As the length vector r crosses a wall of type (p,q) in =, the
diffeotype of the moduli space of polygons M, change by blowing up the (q—2)-
dimensional submanifold M, ~ CP9~2 and blowing down the (projectivized
normal bundle) of M;, ~ CPP~2
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M, (r) and My, (r) are resolutions of the singularity corresponding to the

lined polygon P in M,., and both are dominated by the blow up of M, at the

singular point.

‘ 2 wall
CPr-

crossing

To

AN

P1

1

P

Figure 4.2: Crossing a wall of type (p, q)



Chapter 5

The Cohomology Ring of M,

In this section we will study how the cohomology ring of M, changes as
r cross a wall in the moment polytope = = fop (Gray), and we will apply
the Duistermaat-Heckman theorem together with the volume formula 3.3.1

to describe explicitly the cohomology ring H*(M,.).

The study of the cohomology ring structure of a reduced space MG
(even in the good case of a compact connect Lie group G acting on a compact
manifold M) has been since the 1980’s one of the leading and most interesting
topics in symplectic topology. Many beautiful results has been achieved, and
between them we like to cite the works of L. Jeffrey and F. Kirwan (in
particular [JK]) and of J.Kalkman [Ka|. The problem is not closed though,
in fact in practice to give an explicit description of the cohomology ring
H*(M)/G,Q) from the formulas mentioned above still some (non trivial) work
need to be done. This was already pointed out by Guillemin and Sternberg
in [GS95], who observed that in “nice” situations ( essentially when the Chern
class of the fibration u~'(¢) — M//G generates the cohomology ring), then
a good deal of information on its cohomology ring can be deduced from the
Duistermaat—Heckman theorem, if the polynomial that describe the volume
of a symplectic reduction is known. This is the point of view we will take in

our analysis.

73
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5. The Cohomology Ring of M,

5.1 The cohomology ring of reduced spaces

In this section we summarize the main ideas and theorems in [GS95] using
the notation of moduli spaces. These arguments are valid in more general
settings, and actually they have been applied in [GS95| to flag manifolds and
toric manifolds associated with a simplicial fan. For proofs and more details
we refer to Guillemin and Sternberg, [GS95]. As before, let T = U}* be the
maximal subtorus of diagonal matrices in the unitary group U, acting on the
compact manifold X = Gry,,(C) with associated moment map u. Moreover,
let r and r° be regular values of i lying in the same region of regular values,
and denote by (M,,w,) and (M,o,w,0) the associated symplectic quotients.
Using this notation we now state the Duistermaat-Heckman theorem ([DH]),
which relates the cohomology classes [w,| and [w,o] of the symplectic reduced

forms w, and w,o.
Theorem 5.1.1. (J.J. Duistermaat, G.J. Heckman) As differentiable mani-
folds M, = M,o, and
] = o] + 3 (s — 10
i=1

where ¢ = (1, ..., c,) is the Chern class of the fibration u='(r) — M,

By definition of symplectic volume, we have:
vol(M,) = / exp([w,]) = / exp([wyo] + Z('r’Z — 1),
, M,o i=1

Vol(M,) is a polynomial (on each region of regular values) of degree n—3
and
0« 1 A
%UOZ(MTMTO = E o O[LL)TO]

for o multindex, |o| =a; +...a, =n—3 —k, with 0 < k <n — 3.

Qn,

(03]
...Cl ...Cn

In particular, if || = n — 3 then

% fe! o
%'UOZ(MT)‘TO = /]‘w ) Cll ceec. (51)

T
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Thus the leading coefficients of the polynomial vol(M,.) determine the coho-
mology pairing 5.1
As Guillemin and Sternberg point out, if the ¢; generates the cohomology

ring H*(M,., Q) then it is possible to read from 5.1 the multiplicative relations

Z agc®™ (5.2)

18+|v|=n—3

between the generators c¢; and, by Poincaré duality?,

Zagcﬁ, 0< |8l <n—3. (5.3)

Writing the identities above as

o) (i) =1

where @ is the polynomial Q(z) = agz”®, then

Theorem 5.1.2. If the ¢y, ..., ¢, generate the cohomology ring H*(M,,Q),
then H*(M,,Q) is isomorphic to the abstract ring

Q[z1, - .., x,]/ann(vol)

where Q(x1, . ..,x,) € ann(vol) if and only ifQ( o . i)vol(M,ﬁ) = 0.

ory? " ) Orny

It is now clear that it is a central problem to determine when the c; gener-
ates the cohomology ring H*(M,.). When M, is toric it is well known that this
is the case (see for example [Fu]). We already observed that for n = 4, 5,6 the
toric action of bending along a system of (n — 3) non intersecting diagonals
realize M, as a toric manifold (for r’s such that M, is smooth). This is not the
case for higher dimensions; in general let A be the set of regular values of up
in the convex polytope = = pr(X). The connected components Ay, ..., A,
of A are themselves complex polytopes, and by Duistermaat-Heckman the-
orem the diffeotype of the reduced space M, (thus also its cohomology ring)

depends only on the region A; which contains r.

!Note that M, is compact, so its cohomology ring H*(M,., Q) is finite dimensional and

satisfy Poincaré duality
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Theorem 5.1.3. Suppose that the closure of A; contains a vertex of =, then

its associated reduced space is a toric manifold.

This result enlighten the importance of the wall crossing analysis we did
in chapter 4. In fact, we know that for 7¥ in a “external” region A, (i.e. such
that Ay contains a vertex of =), the cohomology ring H*(M,o) is generated
by the ¢;. To prove that this is true for each regular value » we will show
that crossing a wall has the effect to kill some relations, and so (very roughly
speaking) some of the generators that were “hidden” appear.

In 5.2 we will study how the cohomology ring H*(M,) changes as r crosses
a inner wall, before that let us calculate the cohomology ring for some exam-
ples in the case n = 5, where we already know that H*(M,) is generated by
the ¢;.

5.1.1 Some examples

In 3.4 we calculated that for r € Ag, Ay being the region of regular values

such that r® = (1,1,4,1,2) € A,,

vol(M,) = 2r*(p — 2r3)?

p being the (fixed) perimeter of the polygons in M,, i.e. p =" ;. From

the cobordism result it also follows that, for r € Ay, M, is cobordant CP?.
Because M, is toric, the generators of the cohomology ring H*(M,) are

c1,...,cs, and using the description 5.1 of the multiplicative relations between

them we get:

2 wol(M, e - - o
ar?arj Z% b=0 ifi,j # 3 = cc;=0 Vi,j#3
2 ol (M,
5, 4(7r2 L= e (—2(p—2r5) =4 = ci=4

So all the ¢; for i = 1,2,4,5 are “hidden” by the relations above, and we can

conclude

Q [03]

i
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Let us now analyze the second example we saw about both the cobordism
and volume formulas: let r! = (%, 2,4,1,2), and let p be the fixed perimeter
and A; be the region of regular values determined by r'.

From the volume formula it follows that for » € A,

UZ;]\jT =2ri(p —r1 — 2r3).
The only second partial derivatives which are not zero are 87'(:?(297’1 and a‘z—il, SO
CiCj = 0 if ’L,j ¢ {1, 3} and
B BZ wi(]\gm - 2
3071 7/ P N
a‘iil mi%r) 4 } = ci+acz=clcr+e3)=0

which gives us the multiplicative relation between the generators ¢y, c; + cs;
so, up to rescaling,

Qles, ¢ + c3)
{C% = —1, (Cl + 03)2 = 1,61(01 —+ 03) = 0}

H*(Mr) =

5.2 Wall crossing and Cohomology

By theorem 4.2.4, when r crosses a wall of type (p,q) the diffeotype of
the reduced manifold M, changes by replacing a copy of CP?~2 in M, by a
CP9~2 by means of a blow-up followed by a blow-down.

In this section we will study how the cohomology ring H*(M,.) changes as
r crosses a wall; the main tools to prove our result will be the Mayer—Vietoris
sequence and the Gysin sequence, for which we refer to [BT], together with
the decomposition theorem as presented in [BBD] and [CMO5].

Suppose r crosses a wall of type (p,q), let M be the moduli space of
polygons before the wall crossing and M’ be the moduli space of polygons

after the wall crossing.

Remark 25. Note that, because the diffeotype of the moduli space M, de-
pends only on the region of regular values A; which contains r, in the study
of the cohomology ring structure there is no lost of informations in forget-

ting the length vector r and keeping track just of the regular values’ region.



78 5. The Cohomology Ring of M,

Moreover, the type of the wall already determine the wall crossing direction
from A, (see (4.2)) to Ay (see (4.3)), thus M ~ M,o for all 7° € A, and
M' ~ M, for all ' € A;.

Let us fix some notation:

V = N.CPP~2 = tubular neightborhood of CP9~2 C M
V' = N.CP¢2 = tubular neightborhood of CP*~2 ¢ M’
U=M)\CPr?

U =M\ CPi2

By the wall-crossing theorem 4.2.4, U = U and UNV =U' NV’ := S.. The

Mayer—Vietoris sequences for the manifolds M and M’ are:
. — HFYS) — HY(M) — HYU) @ H*(V) — H*(S.) — ...

Because H*(U) = H*(U’) the change in the cohomology ring structure
is enclose in how H*(V’) and H*(V) map into H*(S.). These map will be
brought into the light in the proof the next proposition.

Proposition 5.2.1.
H* (Ss) — H* (C]P)min(p,q)f2) ® H* (SQmaX(p,q)f?))

Proof. By construction, N.CPP~2 is the total space of a fibration in disks

over CPPP~2, and S. is the total space of the associated fibration in spheres:

N,.CPr—2 Se
D2q—2 = SQq—S
CPpr—2 CPpr—2

SQq—S

The fibration in spheres 7 : S, CPP~2 induce the following Gysin

sequence

—>Hk(CPp72) ™ Hk(SE) LI Hk7(2q73)(C]PDpf2) Ne Hk+1(CPp—2)
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where 7* is the map induced in cohomology by the projection map w, 7, is
the integration along the fibers and Ae is the wedge product with the Euler
class.
Recall that
ifk=0,2,...,2(p—2
Hk<cpp—2) — @ 1 (p )
0 otherwise,
and suppose that ¢ > p, then the first bit of the Gysin map is

s

@ m* HO(Sa) T 0 Ne Q " HQ(SE) * 0 Ae

LOLH?’(SE)LO—»--

till & = 2p — 2 (in fact for all 0 < k < 2¢ — 3, H*(24=3)(CP?) ~ 0 for

dimensional reasons, i.e. k —2¢ — 3 < 0). So
H*(S.) ~ HF(CPP2) V0 <k <2(p—2).

At k = 2q — 3 the Gysin sequence goes as follow:

0 * H2q_3<S€) T Q Ne 0 * H2q_3<S€) T 0 e

Ne

0 T* H2q71(S€) Trx @ e 0

(to check this second bit of the Gysin sequence the only thing to keep in mind
is that H*(CPP~2) ~0 Vk >2¢—3,infact k > 2¢—3 > 2p—3 > 2(p—2)).
Observing that k —2¢+3=2(p—2) < k=2(p+¢q) — T,

H*(S.) ~ HFa=3)(CPP2) V2q—3<k<2n—T.
H*(S.)~0 Vk:2p—2)<k<2¢—3k>2n—6.
So, under the assumption ¢ > p we proved
H*(5.) = H*(CP"™?) @ H*(5%%)

it is easy to check that if we assume p > ¢ then p and ¢ exchange role, and

the result follow. O
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Because V retracts on CPP—2, H*(V) = H*(CPP~2); similarly H*(V') =
H*(CP¢~?), and we have all the ingredients to write the Mayer—Vietoris se-
quences for M and M’ :

H' M) —- HU)oQ—Q— H (M) - HU)®0—0—
— H*(M) - H*U)»Q—Q —
and
H'M) — HU)Y»Q—-Q— H'M)— H'(U)®0—0—
— H*(M') - H*U)oQ - Q—
so, till the degree 2(p — 2), the two sequences above are the same, thus
H*(M)=H*M') 0<k<2(p-—2).

At 2(p —2) + 1 the Mayer—Vietoris sequences of the manifolds of M and M’

are:
. H2p_3(M) N H2p—3(U) D0 —0— H2p—2(M) _ H2p—2(U) P0—0—

. H2p73<M/) - H2p73(U/)€B0 =0 — H2p72<Ml> N H2p72(U/) EBQ —0—

and, till the degree 2¢—3 the two sequences differ by the fact that H*(V’) = Q
for k even, 2p — 3 < k < 2¢— 3, and H*(V) ~ 0. Thus

dim(H*(M")) = dim(H"*(M)) + 1 ifkeven, 2p —3 <k < 2¢— 3
H*(M')y = H*(M) =0 forkodd.
At 2g — 3 the Mayer—Vietoris sequences for M and M’ are
— H* 73 (M) — H**3(U)®0 — 0 — H**(M) — H*7*(U) 90— 0 —
— H*3(M') — H* (U )®0 — 0 — H**(M") —» H**({U") &0 — 0 —
and so again (just as for 0 < k£ < 2(p — 2)) are

HY(M') ~ H*(M) k> 2q—3.
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If p > ¢ the same arguments holds, just exchanging the roles of p and ¢,
S0:
HY(M') = H*(M) =0 if k is odd;
B = HAY M) { 0 <k < 2(min(p, q) — 2),
k > 2max(p, q) — 3;
dim(H*(M")) = dim(H*(M)) + 1 { keven,
2min(p, q) — 3 < k < 2max(p, q) — 3.

This calculation, done using the Mayer—Vietoris sequences of the ma-
nifolds M and M’, tells us in which degree the cohomology groups of the
symplectic quotient M, change as r crosses a wall of type (p, q).

Even though it is quite natural- by the construction- to expect that the
new born cohomological classes are polynomial in the class of the blown
up manifold CP?~2, this calculation does not give us such precise informa-
tions. We use the decomposition theorem due to Beilinson—Bernstein—Deligne
[BBD] to identify precisely the new born classes that increase the dimension
of the cohomology groups of “middle” degrees.

Let f: X — Y be a map of algebraic manifolds (i.e. manifolds which are
the set of common zeros of a finite number of polynomials). For each k > 0,

let

Yi={y eV :dim(f'(y)) > k}. (5.4)

Definition 5.1.
f is small <= dimY} + 2k < dimX;; (5.5)
f is semi-small <= dimY} + 2k < dimX. (5.6)

Let 7 € W be a point of wall-crossing between Ay and Ay, and let M,
the singular symplectic quotient associated to r°. Let f be the inverse of the
resolution in M of the singularity in M,., and let f’ be the inverse of its

resolution in M’, i.e.
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and 3 y, € M, such that (f~(y,)) = CPP~2 and ((f")"'(ys)) = CP?2
Proposition 5.2.2. At least one between [ and [’ is small.
Proof. Assume ¢ > p, then

e fissmall, in fact Y, = {ys} V1 < k < 2(p— 2) and the “biggest” of the
inequalities 5.5 (i.e. corresponding to k = 2(p — 2)) is verified, in fact

it is
dp—2)<2(n—3) <= 4p—-8<2p+2q—6 <= p—1<gq.

e f’is not semi-small (thus even not small); in fact again YV, = {y € Y :
dim((f~ 1" (y)) > k} = {ys} and the “biggest” of the inequalities 5.6
is

Hg-2)<2(n-3) < ¢-1<p,

which is false.

If p > ¢, then f’ is small and f is not semi-small. Note that if p = ¢ then
both f and f’ are small. O

Suppose that f: M — M, is small, then
H*(M) =1H*(M,),

where I H*(M,.) is the intersection cohomology of the singular manifold M.,
see the survey paper by M. de Cataldo and L. Migliorini [CM].

We state the decomposition theorem just for the special situation of f
and f’ resolution of the singularity corresponding to the lined polygon in
M, .. For the statement in full generality, proofs and more details we refer to
the original paper by Beilinson-Bernstein-Deligne [BBD|, and to [CM05| by
de Cataldo-Migliorini, where an alternative proof is given.

In our setting, the decomposition theorem says that H*(M’) is isomorphic
to the intersection cohomology IH*(M,.) of M,. plus polynomials in the

cohomological classes of submanifolds C; of M. In the moduli space situation,
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these submanifolds are just the preimages of the points y; € Y}, as defined in
(5.4).

If we assume ¢ > p ( which is equivalent to assume f small), then Y, =
{ys} for 0 < k < 2(q —2). Thus C := f~!(ys) is the only submanifold in M’

such that its class was born in the wall-crossing. By theorem 4.2.4,

C = M(Zri,rjl,...,rjq> ~ CP? 2,

i€,
Similar arguments hold if p > q.

So, applying the decomposition theorem and the fact that one between f

and f’ is small, the following holds:

Theorem 5.2.3. o Ifq>p,
H(M') = H'(M) & D Q([CP2) A ;W)
a=0

where N is the normal bundle to CP?~2 C M’ and [CP?~%] € H**~2(M’)
1s the class of M(Eielp iy Ty - - ,qu> c M.

e Ifp=>q
p—q
1 (M) = H*(M) & @ o([CP A (V)
a=0
where N is the normal bundle to CPP~2 C M and [CPP~2] € H*72(M)
1s the class of M(’r’il, vy Ty Zje[q 7’]’) C M.

At the light of this result, to prove that H*(M,) is generated by the
Chern classes ¢; we need to express the classes [CP?2], [CPP~?] and their
wedge products [CPY72] A c®(N”) and [CPP~2] Ac$(N') as combinations of the
ci.

As before, let us assume ¢ > p. Then, by Poincaré duality, [CP9?]| €

H?=2(M’) and thus we want to show that, for some constants A,,

[CP?2] = Z Ayt o

> a;=2p—2
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To this aim, let us write explicitly who are the Chern classes ¢; that
appear in theorem 5.1.1.

Let r be a regular value in A; such that the reduced manifold M, has
the same diffeotype as M'. If p : Sty,, — Gy, is the projection of St,,, on
the orbit space St,,,/Us, denote by p~*(u~!(r)) the preimage on St,,, of the
r-level set in Gry,,. Then p~'(u~'(r)) is the set of (a,b) € Sty,, such that

each row has norm r;, i.e.
p Hu Tt (r) = {(a,b) € Ston, :|ail® + |bi|> =7 Vi=1,...n}.
Because a,b € C, this naturally defines an inclusion map
P ) T 8%
J
Recall now that the quaternionic Hopf map
H(ai, b;) = il(Ja;|* — |bi]*) — 2aibij]

as defined in section 1.3 gives us a way to associate to the i-th row of (a,b)
a vector of length r; in R3.

Thus the map

H":Hij’/,,—j — Hijj
(a,b) = (H(al,bl),...,H(an,bn))

maps p~'(p(r)) into the zero level set M, of the moment map relative to

the SO(3)-action on the product of spheres as seen in section 1,
H'(p~ (' (1) = {(er, .- en) € [ S2 0D i =0} = M,
j i

In fact, thinking at the description of M, as the quotient by the right
action of U; and by the left action of U on M,, o, it follows that to reach M,
from H™(p~'(u~1(r))) we still have to quotient by the residual U, /U;-action.
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Thus the following diagram enclose (somehow) the beautiness of the rich

geometric structure of M, :

Stan 2 p (1 () I1; 50
p
Grayn 2 p—1(r) H"
t H () C T1, 2
Mr /

It is now clear that the classes c¢; relative to the fibration u=1(r) — M,
are actually the classes ¢; relative to the fibration [, Sf’/r—j — I, Sfj (in fact
the fibration [[; S7 — M, is trivial), and these are well known to be the

pullbacks of the volume forms on each sphere, i.e.
cj = Pjw; (5.7)

where p; : [[; S? — S is the canonical projection on the j-th factor and w;
is the volume formula S7 .

In theorem 4.2.4 we characterized the blown up and down manifolds
CP¢2 and CPP~2 in terms of moduli spaces. Precisely, as crossing a wall
of type (p. ¢) the blown up manifold is M (3 ,c; 7i,7j, ..., 7j,) = CPa—2,

Let p= (X icr, 7i:7j1 - - - Tj,), then the moduli space M, verifies itself the

construction above, precisely there exists a fibration
3 2
H Sy = 5
J
which, identifying each S with CP*, looks as follow

(O(ri)) ® ... ® O(r;,)) K O(r;,) K ... R O(r;,) — | | CP*

q+1
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where, if pj, is the projection from []j_;S; onto S&
i€lp '

projections on the sphere Sfj_ foreach i =1,...,q, then

and if p;, is the

(O(Til)@...@O(Tip))@O(le)&...&O(qu) =

=5, (O(rsy) ® ... ® O(r3,)) ©p;, O(r;,) © ... D O(ry,).

We saw in section 4.2 that not just M, ~ CP? 2, but moreover p lies in an
and thus M,
is toric. So the cohomology ring of M, is generated by the components of
the first Chern class of the fibration

13 7 3
external” region of regular values for the moment map ng i

NU11+1 (p) - MP'

These Chern classes are
C; = Cl(O(TZ')) Vi € Iq

and

a=c(0(r,)®...e0(r,)) = [[aOw) =]« (5.8)

iel, i€ly
where the first Chern classes on the right hand side of 5.8 are the Chern
classes in 5.7.

So, if r € RY is such that M(Zielp T4, Tji, - - -, T;,) is an empty submanifold
of M., (as it is the case before the wall-crossing) then the calculation tells us
that

When r crosses the wall >, ., ri = >, rj, then M (3, rji,...,7r5,) is a
non empty submanifold of M, (and in fact it is a submanifold of dimension
(¢—2) isomorphic to CP?~2). So, crossing the wall, the multiplicative relation

Ciy ++ ¢, stops to be zero and in fact

[CP72] = [M(erl,rjl . ,rjq)] =iy ¢y, € HP2(M)

i€l

as we wanted to prove.
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Analogously we can prove that the other Chern classes are can be ex-
pressed as a product of ¢;’s, and thus, by theorem 5.1.2, we proved the

following:

Theorem 5.2.4. The cohomology ring H*(M,,Q) of the moduli space of
polygons M,., when M, is a smooth manifold, is generated by the first Chern

classes cy,...,c, of the n complex line bundles associated to the fibration
wt(ry, ..., ) — M,. So

H*(M,,Q) ~ Q[z1,...,x,]/ann(vol M,)

where a polynomial Q(x1, ..., x,) € ann(volM,) if and only if
Q( o0 . 0 )UOZ(MT) ~0.

ory’ ) Orn
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