
Alma Mater Studiorum
Università degli studi di Bologna

Facoltà di Scienze Matematiche, Fisiche e Naturali
Dottorato di Ricerca in Matematica

XIX ciclo

Local Risk-Minimization
for

Defaultable Markets

Dottorando: Dr. Alessandra Cretarola

Relatore: Prof. Francesca Biagini

Coordinatore del Dottorato: Prof. Alberto Parmeggiani

Settore Scienti�co-Disciplinare: MAT 06

Parole Chiave: defaultable markets, local risk-minimization, minimal mar-
tingale measure, pseudo-locally risk-minimizing strategy, pre-default value.

Esame Finale anno 2007



2



Contents

Introduction 5

Acknowledgements 10

1 Quadratic Hedging Methods in Incomplete Markets 13
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Local risk-minimization . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 The martingale case . . . . . . . . . . . . . . . . . . . 16
1.3.2 The semimartingale case . . . . . . . . . . . . . . . . . 18

1.4 Mean-variance hedging . . . . . . . . . . . . . . . . . . . . . . 22

2 Quadratic Hedging Methods for Defaultable Markets 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Quadratic Hedging Methods for Defaultable Claims . . . . . . 32
2.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Local Risk-Minimization for a Defaultable Put 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Reduced-form model . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Local risk-minimization . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Mean-variance hedging . . . . . . . . . . . . . . . . . . . . . . 51

3



4 CONTENTS

4 Local Risk-Minimization for Defaultable Claims with Reco-
very Scheme at Maturity 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Local risk-minimization for defaultable claims . . . . . . . . . 56
4.3 Example 1: τ dependent on X . . . . . . . . . . . . . . . . . . 65
4.4 Example 2: X dependent on τ . . . . . . . . . . . . . . . . . . 68

5 Local Risk-Minimization for Defaultable Claims with Reco-
very Scheme at Default Time 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Local risk-minimization for defaultable claims . . . . . . . . . 76

5.2.1 Local risk-minimization with Gt-strategies . . . . . . . 77
5.2.2 Local risk-minimization with Ft-strategies . . . . . . . 84

5.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A The predictable projection 93

Bibliography 97



Introduction

Over the last thirty years, mathematical �nance and �nancial engineering
have been rapidly expanding �elds of science. The main reason is the success
of sophisticated quantitative methodologies in helping professional manage
�nancial risk. Hence it may be reasonable that newly developed credit deriv-
atives industry will also bene�t from the use of advanced mathematics. What
does it justify the considerable growth and development of this kind of in-
dustry?
The answer is given by the need to handle credit risk, which is one of the
fundamental factors of �nancial risk. Indeed, a great interest has grown in
the development of advanced mathematical models for �nance and at the
same time we can note a tremendous acceleration in research e�orts aimed
to a better understanding, modelling and hedging this kind of risk.
But what does credit risk mean exactly?
A default risk is the possibility that a counterparty in a �nancial contract
will not ful�ll a contractual commitment to meet her/his obligations stated
in the contract. If this happens, we say that the party defaults, or that a
default event occurs.
More generally, by credit risk we mean the risk associated with any kind of
credit-linked events, such as: changes in the credit quality (including down-
grades or upgrades in credit ratings), variations of credit spreads and default
events (bankruptcy, insolvency, missed payments).
It is important to make a clear distinction between the reference (credit) risk
and the counterparty (credit) risk. The �rst term refers to the situation where
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6 Introduction

both parties involved in a contract are supposed to be default-free, but the
underlying assets are defaultable. Credit derivatives are recently developed
�nancial instruments that allow to trade and transfer the reference credit
risk, either completely or partially, between the counterparties.
Let us now consider the counterparty risk. This kind of risk emerges in a clear
way in such contracts as defaultable claims. These derivatives are contingent
agreements that are traded over-the-counter between default-prone parties.
Each side of contract is exposed to the counterparty risk of the other party
but we should stress that the underlying assets are assumed to be insensitive
to credit risk (for an extensive survey of this subject see [13]).
A classical example of defaultable claim is a European defaultable option,
that is an option contract in which the payo� at maturity depends on whether
a default event, associated with the option's writer, has occurred before ma-
turity or not (see for instance Chapter 3 which deals with the case of a
defaultable put).
The main objective of this thesis is right the study of the problem of pri-
cing and hedging defaultable claims, in particular by using the local risk-
minimization, one of the main competing quadratic hedging approaches. The
thesis is divided into six parts, consisting of Chapters 1-5 and a �nal Appen-
dix.

Chapter 1 is completely devoted to a review of the main results of the
theory of the so-called quadratic criteria: the local risk-minimization and
the mean-variance hedging. For an exhaustive survey of relevant results we
refer to [22], [25] and [35], while a numerical comparison study can be found
in [26].
The local risk-minimization approach was �rst introduced by Föllmer and
Sondermann in [23] when the risky asset is represented by a martingale. Suc-
cessively it was extended to the general semimartingale case by Schweizer in
[32] and [33] and by Föllmer and Schweizer in [22].
The main feature of the local risk-minimization approach is the fact that one
has to work with strategies which are not self-�nancing. Given a contingent
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claim H, according to this method, we look for a hedging strategy that per-
fectly replicates H, but renouncing to the self-�nancing constraint. Under
this assumption, the strategy needs an instantaneous adjustment represented
by the cost process. It is clear that a �good� strategy should have a minimal
cost. The locally risk-minimizing strategy is characterized by two properties:

• the cost process C is a martingale (so the strategy is at least �mean-
self-�nancing�);

• the cost process C is strongly orthogonal to the martingale part of the
underlying asset.

A locally risk-minimizing strategy exists if and only if the contingent claim H

admits the so-called �Föllmer-Scweizer decomposition�, that can be seen as
generalization of the Galtchouk-Kunita-Watanabe decomposition from mar-
tingale theory. In particular, if the discounted risky asset price X is con-
tinuous, the Föllmer-Scweizer decomposition can be obtained as Galtchouk-
Kunita-Watanabe decomposition computed under the so-calledminimal mar-
tingale measure.
The mean-variance hedging method insists on the self-�nancing constraint
and looks for the best approximation of a contingent claim by the terminal
value of a self-�nancing portfolio. The use of a quadratic criterion to mea-
sure the quality of this approximation has been proposed for the �rst time
by Bouleau and Lamberton in [14], in the case of assets represented by mar-
tingales which are also functions of a Markov process. We can obtain the
mean-variance optimal strategy by projecting the discounted value of a con-
tingent claim H on a suitable space of stochastic integrals, which represents
the attainable claims. The dual problem is to �nd the so-called variance op-
timal measure. It can be proved (see [16] and [31]) that if the density of this
martingale measure is known, the variance-optimal portfolio and its initial
value are completely characterized. The mean-variance hedging has been ex-
tensively studied in the context of defaultable markets by [7], [8], [9] and [10].
In Chapter 3 we extend some of their results to the case of stochastic drift
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µ and volatility σ in the dynamics (2.5) of the risky asset price, and random
recovery rate. Empirical analysis of recovery rates shows that they may de-
pend on several factors, among which default delays (see for example [15]).

In Chapter 2, we describe our general framework into details, emphasizing
in particular the presence of defaultable claims in the market. We consider
a simple market model with two non-defaultable primary assets (the money
market account B and the discounted risky asset X) and a (discounted)
defaultable claim H. Then we discuss our choice to investigate defaultable
markets by means of quadratic hedging criteria and in particular the choice
of the local risk-minimization. Finally, the last section presents an outline of
the thesis.

In Chapter 3 we start the study of defaultable markets by means of local
risk-minimization. According to [1], we apply the local risk-minimization ap-
proach to a defaultable put option with random recovery at maturuty and we
compare it with intensity-based evaluation formulas and the mean-variance
hedging. We solve analytically the problem of �nding respectively the hedg-
ing strategy and the associated portfolio for the three methods in the case
where the default time and the underlying Brownian motion are supposed to
be independent.
The following two chapters are devoted to the application of the local risk-
minimization in the general case. First we study defaultable claims with
random recovery scheme at maturity, then at default time.

In Chapter 4 we extend the previous results and consider a more general
case: according to [2] we apply the local risk-minimization approach to a
generic defaultable claim with recovery scheme at maturity in a more general
setting where the dynamics of the discounted risky asset X may be in�u-
enced by the occurring of a default event and also the default time τ itself
may depend on the assets prices behavior.

In Chapter 5 we study the problem of pricing and hedging a defaultable
claim with random recovery scheme at default time, i.e. a random recovery
payment is received by the owner of the contract in case of default at time of
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default. Here according to [3], we provide the pseudo-locally risk-minimizing
strategy in the case when the agent information takes into account the pos-
sibility of a default event. We conclude by discussing the problem of �nding
a pseudo-locally risk-minimizing strategy in the case when the agent obtains
her information only by observing the asset prices on the non-defaultable
market before the default happens.

In the Appendix, we summarize for the reader's convenience the de�nition
and the main properties of the predictable projection, an important subject
of Probability Theory that we have used in Chapter 4.
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Chapter 1

Quadratic Hedging Methods in
Incomplete Markets

1.1 Introduction

In this chapter we provide a review of the main results of the theory of local
risk-minimization and mean-variance hedging. These are �quadratic� hedging
methods used for valuation and hedging of derivatives in incomplete markets.
For an extensive survey of both approaches, we refer to [22], [35] and [25]. A
numerical comparison can be found in [26].
If we deal with non-attainable contingent claims, it is by de�nition impossible
to �nd a hedging strategy allowing a perfect replication which is at the same
time self-�nancing. From a �nancial point of view, this means that such a
claim will have an intrinsic risk.
The main feature of the local risk-minimization approach is the fact that
one has to work with strategies which are not self-�nancing and the purpose
becomes to minimize the riskiness in a suitable way. If we consider a not
attainable contingent claim H, a defaultable claim for instance, according to
this method we look for a hedging strategy with minimal cost that perfectly
replicates H.
The mean-variance hedging approach insists on the self-�nancing constraint
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14 Quadratic Hedging Methods in Incomplete Markets

and looks for the best approximation of a contingent claim by the termi-
nal value of a self-�nancing portfolio. The use of a quadratic criterion to
measure the quality of this approximation has been proposed for the �rst
time by Bouleau and Lamberton in [14], in the case of assets represented by
martingales which are also functions of a Markov process.

1.2 Setting
This section lays out the general background for the two approaches in an
uniform framework.
We start with a probability space (Ω,G,Q) and a �xed time horizon T ∈
(0,∞). We consider a simple model of �nancial market in continuous time
with two non-defaultable primary assets available for trade a risky asset and
the money market account described by the processes S and B respectively,
and a contingent claim whose discounted value H is given by a random
variable on (Ω,G,Q).

• We assume that the processes S and B are adapted to a �ltration
(Gt)0≤t≤T satisfying the usual hypotheses of completeness and right-
continuity. Adaptedness ensures that the prices at time t are Gt-
measurable. In particular the money market account is given by Bt =

exp
(∫ t

0
rsds

)
, where rt is a Gt-predictable process and used as discoun-

ting factor

• Furthermore we assume that r and the dynamics of S are such that
the discounted price process Xt :=

St

Bt

belongs to L2(Q), ∀t ∈ [0, T ].
In addition, we assume that there exists an equivalent martingale mea-
sure Q∗ with square-integrable density for the discounted price process
X. Hence we can exclude arbitrage opportunities in the market. Ma-
thematically, this implies that X is a semimartingale under the basic
measure Q.

• Finally we suppose that the discounted payo� H at time T is described
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by a GT -measurable square-integrable random variable. Hence H ∈
L2(GT ,Q).

It should be clear that completeness now means that any contingent claim H

can be represented as a stochastic integral with respect to X. The integrand
provides the hedging strategy which is self-�nancing and which creates the
discounted payo� at the maturity T of the contract without any risk.
Generally, given a contingent claim H with expiration date T , there are at
least two things a trader may want to do: pricing by assigning a value to
H at times t < T and hedging by covering himself against potential losses
arising from a sale of H, in particular by means of dynamic trading strategies
based on X. Since under the previous assumptions X is a Q-semimartingale,
we can use stochastic integrals with respect to X and introduce the set L(X)

of all G-predictable X-integrable processes.

De�nition 1.2.1. An admissible strategy is any pair ϕ = (ξ, η), where ξ ∈
L(X) and η is a real-valued G-adapted process such that the discounted value
process Vt(ϕ) := ξtXt + ηt, 0 ≤ t ≤ T , is right-continuous.

In an incomplete market a general claim is not necessarily a stochastic
integral with respect to X. For instance, in the case of defaultable claims,
the presence of default adds an ulterior source of randomness that makes the
market incomplete. Hence it is interesting to introduce the main quadratic
hedging approaches used to price and hedge derivatives in incomplete �nan-
cial markets.

1.3 Local risk-minimization
Problem: in the �nancial market outlined in Section 1.2, we look for an
admissible strategy with minimal cost which replicates a given contingent
claim H.

If H is not attainable we cannot work with self-�nancing strategies and
so the purpose is to reduce the risk. The local risk-minimization criterion
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for measuring the riskiness of a strategy was �rst introduced by Föllmer
and Sondermann in [23] when the risky asset is represented by a martingale.
Successively it was extended to the general semimartingale case by Schweizer
in [32] and [33] and by Föllmer and Schweizer in [22].
First we brie�y discuss the simple special case where X is a Q-martingale.
Consequently we motivate and investigate the general case. We address the
�rst problem in the following section, the second in Section 1.3.2.

1.3.1 The martingale case
For the case where X is a Q-martingale, this method has been de�ned and
developed by Föllmer and Sondermann under the name of risk-minimization.
In the market model outlined in Section 1.2 we introduce L2(X), the space
of all G-predictable processes ξ such that

‖ξ‖L2(X) :=

(
E

[∫ T

0

ξ2
sd[X]s

]) 1
2

< ∞.

De�nition 1.3.1. An RM-strategy is an admissible strategy ϕ = (ξ, η) with
ξ ∈ L2(X) and such that the discounted value process Vt(ϕ) = ξtXt + ηt,
0 ≤ t ≤ T is square-integrable.

De�nition 1.3.2. For any RM-strategy ϕ, the cost process is de�ned by

Ct(ϕ) := Vt(ϕ)−
∫ t

0

ξsdXs, 0 ≤ t ≤ T. (1.1)

Ct(ϕ) describes the total costs incurred by ϕ over the interval [0, T ]. The risk
process of ϕ is de�ned by

Rt(ϕ) := E
[
(CT (ϕ)− Ct(ϕ))2

∣∣Gt

]
, 0 ≤ t ≤ T. (1.2)

De�nition 1.3.3. An RM-strategy ϕ is called risk-minimizing if for any
RM-strategy ϕ̃ such that VT (ϕ̃) = VT (ϕ) Q-a.s., we have

Rt(ϕ) ≤ Rt(ϕ̃) Q− a.s. for every t ∈ [0, T ].
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The following results provide a characterization of a risk-minimization stra-
tegy.

Lemma 1.3.4. An RM-strategy ϕ is risk-minimizing if and only if

Rt(ϕ) ≤ Rt(ϕ̃) Q− a.s.

for every t ∈ [0, T ] and for every RM-strategy ϕ̃ which is an admissible
continuation of ϕ from t on in the sense that Vt(ϕ̃) = Vt(ϕ) Q-a.s., ξ̃s = ξs,
for s ≤ t and η̃s = ηs for s < t.

Proof. See Lemma 2.1 of [34] for the proof.

De�nition 1.3.5. An RM-strategy ϕ is called mean-self-�nancing if its cost
process C(ϕ) is a Q-martingale.

Lemma 1.3.6. If ϕ is a risk-minimizing strategy, then it is also mean-self-
�nancing.

Proof. See Lemma 2.3 of [35].

If X is a Q-martingale, the risk-minimization problem is always solvable
by applying the Galtchouk-Kunita-Watanabe decomposition. Since the set
I2(X) = {∫ ξdX|ξ ∈ L2(X)} is a stable subspace of M2

0(Q), i.e. the space
of square-integrable Q-martingales null at 0 (see Lemma 2.1 of [35]), any
H ∈ L2(GT ,Q) can be uniquely written as

H = E [H] +

∫ T

0

ξH
s dXs + LH

T Q− a.s. (1.3)

for some ξH ∈ L2(X) and some LH ∈ M2
0(Q) strongly orthogonal to I2(X).

The next result was obtained by Föllmer and Sondermann in [23] for the
one-dimensional case under the assumption that X is a square-integrable Q-
martingale. Schweizer has proved this result for a general local Q-martingale
X.
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Theorem 1.3.7. If X is a Q-martingale, then every contingent claim H ∈
L2(GT ,Q) admits a unique risk-minimizing strategy ϕ∗ such that VT (ϕ∗) = H.
In terms of decomposition (1.3), the risk-minimizing strategy ϕ∗ is explicitly
given by

ξ∗ = ξH ,

Vt(ϕ
∗) = E [H|Gt] , 0 ≤ t ≤ T,

C(ϕ∗) = E [H] + LH .

Proof. See Theorem 2.4 of [35] for the proof.

1.3.2 The semimartingale case
The generalization to the semimartingale case is due to Schweizer (see [32]
and [33]), who called the resulting concept local risk-minimization. When
X is a semimartingale under Q, a contingent claim H admits in general no
risk-minimizing strategy ϕ with VT (ϕ) = H Q-a.s. The proof is based on an
explicit counterexample in discrete times and can be found in [32].
We analyze here only the continuous-time framework. The basic idea of
this approach is to control hedging errors at each instant by minimizing the
conditional variances of instantaneous cost increments sequentially over time.
This involves (local) variances and so we require more speci�c assumptions
on the discounted price process X.

• We remark that in our model X belongs to the space S2(Q) of semi-
martingales so that it can be decomposed as follows:

Xt = X0 + MX
t + AX

t , t ∈ [0, T ],

where MX is a square-integrable (local) Q-martingale null at 0 and AX

is a predictable process of �nite variation null at 0.

• We say that the so-called Structure Condition (SC) is satis�ed in
our model if the mean-variance tradeo� process

K̂t(ω) :=

∫ t

0

α2
s(ω)d〈MX〉s (1.4)
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is almost surely �nite ∀t ∈ [0, T ], where α is a G-predictable process.
Since there exists an equivalent martingale measure for X by hypoth-
esis, it is automatically satis�ed if X is continuous (see [35]).

We denote by Θs the space of G-predictable processes ξ on Ω such that

E

[∫ T

0

ξ2
sd[MX ]s

]
+ E

[(∫ T

0

∣∣ξsdAX
s

∣∣
)2

]
< ∞. (1.5)

De�nition 1.3.8. An L2-strategy is an admissible strategy ϕ = (ξ, η) such
that ξ ∈ Θs and the discounted value process V (ϕ) is square-integrable, i.e.
Vt(ϕ) ∈ L2(Q) for each t ∈ [0, T ].

De�nition 1.3.9. An L2-strategy ϕ is called mean-self-�nancing if its cost
process C(ϕ) is a Q-martingale.

Remark 1.3.10. We should stress that we consider strategies which are in
general not self-�nancing. It is clear that an admissible strategy is self-
�nancing if and only if the cost process C is constant and the risk process R

is identically zero. Hence the cost process represents the instantaneous ad-
justment needed by the self-�nancing part of the portfolio in order to perfectly
replicate the contingent claim H at time T of maturity.

A small perturbation is an L2-strategy ∆ = (δ, ε) such that δ is bounded, the
variation of

∫
δ(µ−r)Xdt is bounded (uniformly in t and ω) and δT = εT = 0.

Given an L2-strategy ϕ a small perturbation ∆ and a partition π ∈ [0, T ],
set

rπ(ϕ, ∆) :=
∑

ti,ti+1∈π

Rti

(
ϕ + ∆|(ti,ti+1]

)−Rti(ϕ)

E[〈(σX) ·W 〉ti+1
− 〈(σX) ·W 〉ti|Gti ]

I(ti,ti+1].

The next de�nition formalizes the intuitive idea that changing an optimal
strategy over a small time interval increases the risk, at least asymptotically.

De�nition 1.3.11. We say that ϕ is locally risk-minimizing if

lim inf
n→∞

rπn(ϕ, ∆) ≥ 0 (Q⊗ 〈MX〉)− a.e. on Ω× [0, T ],
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for every small perturbation ∆ and every increasing sequence (πn)n∈N of par-
titions going to zero.

In particular, how to characterize a locally risk-minimizing strategy is shown
in the next result valid for the one-dimensional case.

Theorem 1.3.12. Suppose that X satis�es (SC), 〈MX〉 is Q-a.s. strictly
increasing, AX is Q-a.s. continuous and E

[
K̂T

]
< ∞. Let H ∈ L2(GT ,Q)

be a contingent claim and ϕ an L2-strategy with VT (ϕ) = H Q-a.s. Then
ϕ is locally risk-minimizing if and only if ϕ is mean-self-�nancing and the
martingale C(ϕ) is strongly orthogonal to MX .

Proof. See Proposition 2.3 of [33] for the proof.

Theorem 1.3.12 motivates the following:

De�nition 1.3.13. Let H ∈ L2(GT ,Q) be a contingent claim. An L2-strategy
ϕ with VT (ϕ) = H Q-a.s. is called pseudo-locally risk-minimizing for H if
ϕ is mean-self-�nancing and the martingale C(ϕ) is strongly orthogonal to
MX .

De�nition 1.3.13 is given for the general multi-dimensional case. If we con-
sider a one-dimensional model and X is su�ciently well-behaved, then pseudo-
locally and locally risk-minimizing strategies coincide. But in general, pseudo-
locally risk-minimizing strategies are easier to �nd and to characterize, as
shown in the next result.
Let M2

0(Q) be the space of all the square-integrable Q-martingale null at 0.

Proposition 1.3.14. A contingent claim H ∈ L2(GT ,Q) admits a pseudo-
locally risk-minimizing strategy ϕ (in short plrm-strategy) if and only if H

can be written as

H = H0 +

∫ T

0

ξH
s dXs + LH

T Q− a.s. (1.6)

with H0 ∈ R, ξH ∈ ΘS, LH ∈ M2
0(Q) strongly Q-orthogonal to MX . The

plrm-strategy is given by

ξt = ξH
t , 0 ≤ t ≤ T
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with minimal cost

Ct(ϕ) = H0 + LH
t , 0 ≤ t ≤ T.

If (1.6) holds, the optimal portfolio value is

Vt(ϕ) = Ct(ϕ) +

∫ t

0

ξsdXs = H0 +

∫ t

0

ξH
s dXs + LH

t ,

and
ζt = ζH

t = Vt(ϕ)− ξH
t Xt.

Proof. It follows from the de�nition of pseudo-optimality and Proposition
2.3 of [22].

Decomposition (1.6) is well known in literature as the Föllmer-Schweizer
decomposition (in short FS decomposition). In the martingale case it coin-
cides with the Galtchouk-Kunita-Watanabe decomposition. We see now how
one can obtain the FS decomposition by choosing a convenient martingale
measure for X following [22].

De�nition 1.3.15 (The Minimal Martingale Measure). A martingale
measure Q̂ equivalent to Q with square-integrable density is called minimal
if Q̂ ≡ Q on G0 and if any square-integrable Q-local martingale which is
strongly orthogonal to MX under Q remains a local martingale under Q̂.

The minimal measure is the equivalent martingale measure that modi�es the
martingale structure as little as possible.

Theorem 1.3.16. Suppose X is continuous and hence satis�es (SC). Sup-
pose that the strictly positive local Q-martingale

Ẑt = E

[
dQ̂
dQ

∣∣∣∣Gt

]
= E

(
−

∫
αdMX

)

t

is a square-integrable martingale and de�ne the process V̂ H as follows

V̂ H
t := Ê[H|Gt], 0 ≤ t ≤ T,



22 Quadratic Hedging Methods in Incomplete Markets

where Ê[ · |Gt] denotes the conditional expectation under Q̂. Let

V̂ H
T = Ê[H|GT ] = V̂ H

0 +

∫ T

0

ξ̂H
s dXs + L̂H

T (1.7)

be the GKW decomposition of V̂ H
t with respect to X under Q̂. If either H

admits a FS decomposition or ξ̂H ∈ Θs and L̂H ∈ M2
0(Q), then (1.7) for

t = T gives the FS decomposition of H and ξ̂H gives a plrm-strategy for
H. A su�cient condition to guarantee that Ẑ ∈ M2

0(Q) and the existence of
a FS decomposition for H is that the mean-variance tradeo� process K̂t is
uniformly bounded.

Proof. For the proof, see Theorem 3.5 of [35].

Theorem 1.3.16 shows that for X continuous, �nding a pseudo-locally risk-
minimizing strategy for a given contingent claim H ∈ L2(GT ,Q) essentially
leads us to �nd the Galtchouk-Kunita-Watanabe decomposition of H under
the minimal martingale measure Q̂.

1.4 Mean-variance hedging
This sections presents the second of the two main quadratic hedging ap-
proaches: mean-variance hedging. While local risk-minimization insists on
the replication requirement VT = H Q-a.s., mean-variance hedging is con-
cerned on the self-�nancing constraint.
In this method, hedging performance is de�ned as the L2-norm of the di�e-
rence, at maturity date T , between the discounted payo� H and the hedging
portfolio VT : ∥∥∥∥H − V0 −

∫ T

0

ξsdXs

∥∥∥∥
2

L2(Q)

.

Given an admissible self-�nancing hedging strategy ϕ = (ξ, η) according to
De�nition 1.2.1, the discounted value process V (ϕ) is given by

Vt(ϕ) = V0 +

∫ t

0

ξsdXs.
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Then η is completely determined by the pair (V0, ξ):

ηt = V0 +

∫ t

0

ξsdXs − ξtXt, 0 ≤ t ≤ T.

The di�erence H − V0−
∫ T

0
ξsdXs is then the net loss at time T from paying

out the claim H after having traded according to (V0, ξ) and mean-variance
hedging simply minimizes the expected net squared loss. Hence we can for-
mulate the mean-variance problem as follows:
Problem: �nding an admissible hedging strategy (V0, ξ) which solves the
following minimization problem:

min
(V0,ξ)

E

[(
H − V0 −

∫ T

0

ξsdXs

)2
]

,

where ξ belongs to

Θ =

{
ξ ∈ L(X) :

∫ t

0

ξsdXs ∈ L2(GT ,Q)

}
,

where we recall that L(X) denotes the set of all G-predictable X-integrable
processes. If such strategy exists, it is calledMean-Variance Optimal Strategy
(in short mvo-strategy) and denoted by (Ṽ0, ξ̃). V0 is called approximation
price.
To give another interpretation, we note that H − V0 −

∫ T

0
ξsdXs is the cost

on (0, T ] of an admissible strategy ϕ with VT (ϕ) = H, initial capital V0 and
stock component ξ. Hence we minimize the risk at time 0 only instead of the
entire risk process as in the previous section. Since R0 depends only on V0

and ξ, it is not necessary to minimize over the entire pair ϕ = (ξ, η).
Dual Problem: �nding an equivalent martingale measure Q̃ such that its
density is square-integrable and its norm:

∥∥∥∥∥
dQ̃
dQ

∥∥∥∥∥

2

= E




(
dQ̃
dQ

)2



is minimal over the set of all the equivalent probability measures P2
e(X) for

X. By [16] this probability measure exists if X is continuous and P2
e(X) 6= ∅



24 Quadratic Hedging Methods in Incomplete Markets

and it is called Variance-Optimal Measure since:
∥∥∥∥∥

dQ̃
dQ

∥∥∥∥∥

2

= 1 + V ar

[
dQ̃
dQ

]
.

Remark 1.4.1. From a mathematical point of view, mean-variance hedging
leads us to project the random variable H on the linear space generated by
constants and stochastic integrals with respect to X. In the case where X is a
local Q-martingale, the problem is solved by the Galtchouk-Kunita-Watanabe
decomposition. Moreover the mvo-strategy coincides with the plrm-strategy
in the martingale case, but it is not necessarily true in the semimartingale
case.

The main result is given by the following Theorem:

Theorem 1.4.2. Suppose Θ is closed and let X be a continuous process
such that P2

e(X) 6= ∅. Let H ∈ L2(GT ,Q) be a contingent claim and write
the Galtchouk-Kunita-Watanabe decomposition of H under Q̃ with respect to
X as

H = Ẽ[H] +

∫ T

0

ξ̃H
u dXu + L̃T = ṼT , (1.8)

with
Ṽt := Ẽ[H|Gt] = Ẽ[H] +

∫ t

0

ξ̃H
u dXu + L̃t, 0 ≤ t ≤ T, (1.9)

where Ẽ[ · |Gt] denotes the conditional expectation under Q̃. Then the mean-
variance optimal Θ-strategy for H exists and it is given by

Ṽ0 = Ẽ[H]

and

θ̃t = ξ̃H
t − ζ̃t

Z̃t

(
Ṽt− − Ẽ[H]−

∫ t

0

θ̃udXu

)

= ξ̃H
t − ζ̃t

(
Ṽ0 − Ẽ[H]

Z̃0

+

∫ t−

0

1

Z̃u

dL̃u

)
, 0 ≤ t ≤ T,

where
Z̃t = Ẽ

[
dQ̃
dQ

∣∣∣∣Gt

]
= Z̃0 +

∫ t

0

ζ̃udXu, 0 ≤ t ≤ T (1.10)
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Proof. The proof can be found in [31].

It is clear that the solution of the mean-variance hedging problem depends
on Q̃, Z̃ and ζ̃.
It should be clear that both approaches aim at minimizing squared hedging
costs. The only di�erence is that mean-variance hedging does this over a
long term whereas local risk-minimization approach applies the quadratic
criterion �on each in�nitesimal interval�.
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Chapter 2

Quadratic Hedging Methods for
Defaultable Markets

2.1 Introduction
In this chapter we motivate our choice to study defaultable markets by means
of quadratic hedging criteria and in particular by applying the local risk-
minimization.
First we provide a careful description of the general setting of our model,
in particular emphasizing the presence of the possibility of a default event
in the �nancial market. Then we explain why the market extended with
the defaultable claim is incomplete and our idea to apply the local risk-
minimization approach and its role in literature. Finally Section 2.4 lays out
the outline of the thesis.

2.2 General setting
This section describes the general framework of our model and in particular
it emphasizes the presence of defaultable claims that make the market in-
complete.
We start with a probability space (Ω,G,Q) and a �xed time horizon T ∈

27
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(0,∞). We consider a simple model of �nancial market in continuous time
with two non-defaultable primary assets available for trade, a risky asset
and the money market account, and with defaultable claims, i.e. contingent
agreements that are traded over-the-counter between default-prone parties.
Each side of contract is exposed to the counterparty risk of the other party
but the underlying assets are assumed to be insensitive to credit risk.
The random time of default is represented by a stopping time τ : Ω → [0, T ]∪
{+∞}, de�ned on the probability space (Ω, G,Q), satisfying: Q(τ = 0) = 0

and Q(τ > t) > 0 for any t ∈ [0, T ] . For a given default time τ , we intro-
duce the associated default process Ht = I{τ≤t}, for t ∈ [0, T ] and denote by
(Ht)0≤t≤T the �ltration generated by the process H, i.e. Ht = σ(Hu : u ≤ t)

for any t ∈ [0, T ].
Let Wt be a standard Brownian motion on the probability space (Ω,G,Q)

and (Ft)0≤t≤T the natural �ltration of Wt. The reference �ltration is then
Gt = Ft ∨ Ht, for any t ∈ [0, T ], i.e. the information at time t is captured
by the σ-�eld Gt. In addition we assume that τ is a Gt-totally inaccessi-
ble stopping time (see [13]).It should be emphasized that the default time τ

is a stopping time with respect to the �ltration (Gt)0≤t≤T and not with re-
spect to the Brownian �ltration (Ft)0≤t≤T , otherwise it would be necessarily
a predictable stopping time. Moreover we postulate that the Brownian mo-
tion W remains a (continuous) martingale (and then a Brownian motion)
with respect to the enlarged �ltration (Gt)0≤t≤T . In the sequel we refer to
this assumption as the hypothesis (H). We remark that all the �ltrations are
assumed to satisfy the usual hypotheses of completeness and right-continuity.

• We introduce the F-hazard process of τ under Q:

Γt = − ln(1− Ft), ∀t ∈ [0, T ],

where
Ft = Q(τ ≤ t|Ft) (2.1)

is the conditional distribution function of the default time τ . In parti-
cular Ft < 1 for t ∈ [0, T ]. Let, in addition, the process F be absolutely
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continuous with respect to the Lebesgue measure, so that

Ft =

∫ t

0

fsds, ∀t ∈ [0, T ],

for some F-progressively measurable process f . Then the F-hazard
process Γ of τ admits the following representation:

Γt =

∫ t

0

λsds, t ∈ [0, T ], (2.2)

where λt is a non-negative, Ft-adapted process given by

λt =
ft

1− Ft

, ∀t ∈ [0, T ]. (2.3)

The process λ is called F-intensity or hazard rate. By Proposition 5.1.3
of [13] we obtain that the compensated process M̂ given by

M̂t := Ht −
∫ t∧τ

0

λudu = Ht −
∫ t

0

λ̃udu, ∀t ∈ [0, T ] (2.4)

follows a martingale with respect to the �ltration (Gt)0≤t≤T . Notice
that for the sake of brevity we have denoted λ̃t := I{τ≥t}λt. We note
that since Γt is a continuous increasing process, by Lemma 5.1.6 of [13]
the stopped process Wt∧τ follows a Gt-martingale.

• We denote the money market account by Bt = exp
(∫ t

0
rsds

)
, where

rt is a Gt-predictable process, and represent the risky asset price by a
continuous stochastic process St on (Ω,G,Q), whose dynamics is given
by the following equation:

{
dSt = µtStdt + σtStdWt

S0 = s0, s0 ∈ R+
(2.5)

where σt > 0 a.s. for every t ∈ [0, T ] and µt, σt, rt are Gt-adapted
processes such that the discounted price process Xt :=

St

Bt

belongs to
L2(Q), ∀t ∈ [0, T ]. Furthermore we assume that the dynamics of St is
such that it admits an equivalent martingale measure Q∗ for Xt and
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this implies that X is a semimartingale under the basic measure Q. We
denote by

θt =
µt − rt

σt

(2.6)

the market price of risk and we also assume that µ, σ and r are such
that the density dQ∗

dQ
:= E

(
−

∫
θdW

)

T

is square-integrable. Hence
we can exclude arbitrage opportunities in the market.

In addition we make the following assumptions, in order to apply the local
risk-minimization and the mean-variance hedging.

• We remark that in our model the discounted risky asset price X =
S

B
belongs to the space S2(Q) of semimartingales so that it can be

decomposed as follows:

Xt = X0 +

∫ t

0

(µs − rs)Xsds +

∫ t

0

σsXsdWs, t ∈ [0, T ],

where
∫ t

0
σsXsdWs is a square-integrable (local) Q-martingale null at 0

and
∫ t

0
(µs − rs)Xsds is a predictable process of �nite variation null at

0. Moreover, in our case we recall that X is a continuous process.

• In our model we have that the so-called Structure Condition (SC)
is satis�ed, i.e. the mean-variance tradeo�

K̂t(ω) :=

∫ t

0

θ2
s(ω)ds (2.7)

is almost surely �nite, where θ is the market price of risk de�ned in
(2.6), since X is continuous and P2

e(X) 6= ∅ by hypothesis (see [35]).
In particular, from now on we assume that K̂t is uniformly bounded in
t and ω, i.e. there exists K such that

K̂t(ω) ≤ K, ∀t ∈ [0, T ], a.s. (2.8)

Remark 2.2.1. This assumption guarantees the existence of the minimal
martingale measure for X (see De�nition 1.3.15). It is possible to choose
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di�erent hypotheses. However assumption (2.8) is the simplest condition
that can be assumed. For a complete survey and a discussion of the others,
we refer to [35].

In this context Θs denotes the space of all G-predictable processes ξ on Ω

such that

E

[∫ T

0

(ξsσsXs)
2ds

]
+ E

[(∫ T

0

|ξs(µs − rs)Xs|ds

)2
]

< ∞. (2.9)

As mentioned above, in this market model we can �nd defaultable claims,
which are represented by a quintuple (X̄, X̃, Z, A, τ), where:

- the promised contingent claim X̄ represents the payo� received by the
owner of the claim at time T , if there was no default prior to or at
time T . In particular we assume it is represented by a GT -measurable
random variable X̄ ∈ L2(Q);

- the recovery claim X̃ represents the recovery payo� at time T , if default
occurs prior to or at the maturity date T . It is supposed to be a GT -
measurable random variable X̃ ∈ L2(Q);

- the recovery process Z represents the recovery payo� at the time of
default, if default occurs prior to or at the maturity date T . We pos-
tulate that the process Z is predictable with respect to the �ltration
(Ft)0≤t≤T ;

- the process A represents the promised dividends, that is the stream of
cash �ows received by the owner of the claim prior to default. It is
given by a �nite variation process which is supposed to be predictable
with respect to the �ltration (Ft)0≤t≤T .

We restrict our attention to the case of A ≡ 0. Hence the discounted value
of a defaultable claim H can be represented as follows:

H =
X̄

BT

I{τ>T} +
X̃

BT

I{τ≤T} +
Zτ

Bτ

I{τ≤T}. (2.10)

In particular we obtain that H ∈ L2(Ω,GT ,Q).
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2.3 Quadratic Hedging Methods for Default-
able Claims

In this section, we explain why we have decided to investigate defaultable
markets by means of quadratic hedging criteria and in particular the choice
of the local risk-minimization.
We recall that we consider a �nancial market model with two non-defaultable
primary assets, the risky asset S and the money market account B. The pre-
sence of a possible default event adds a further source of randomness in the
market. Hence the market model extended with the defaultable claim is in-
complete since it is impossible to hedge against the occurrence of a default
by using a portfolio consisting only of the (non-defaultable) primary assets.
Moreover, even if we assume to trade with Gt-adapted strategies, the process
M̂t does not represent the value of any tradable asset. Then it makes sense to
apply some of the methods used for pricing and hedging derivatives in incom-
plete markets. In particular we focus here on quadratic hedging approaches,
i.e. local risk-minimization and mean-variance hedging whose theory and
main results have been provided in the previous chapter. The mean-variance
hedging method has been already extensively studied in the context of de-
faultable markets by [7], [8], [9] and [10]. For instance in [8], they provide
an explicit formula for the optimal trading strategy which solves the mean-
variance hedging problem, in the case of a defaultable claim represented by
a GT -measurable square-integrable random variable.1Moreover they compare
the results obtained using strategies adapted to the Brownian �ltration, to
the ones obtained using strategies based on the enlarged �ltration, which
encompasses also the observation of the default time.
In the next chapter we extend some of their results to the case of stochastic
drift µ and volatility σ in the dynamics (2.5) of the risky asset price, and

1Gt denotes the enlarged �ltration Ft ∨Ht generated by the Brownian motion and the
natural �ltration of the jump process H. This is a usual setting in the literature concerning
defaultable markets (see for example [13] and related works)
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random recovery rate.
We should stress that in our model we have introduced the �ltration (Ft)0≤t≤T

in order to distinguish between the di�erent sources of randomness that an
agent faces on the market:

1. the variation in value of the non-defaultable assets is represented as
depending on the �uctuation of the driving Brownian motion W ;

2. the loss arising from the trading of a defaultable claim, if the coun-
terpart fails to ful�ll her/his contractual commitments, is modelled
through the default time τ and its associated �ltration (default risk).

Even if we admit a reciprocal in�uence between the occurring of the default
and the asset prices (we will consider this situation into details in Chapter 4),
two di�erent kinds of risk a�ect the market. Mathematically this is re�ected
by the fact that the martingale structure is generated by W and H.
The main contribution of this thesis is to collect and discuss extensively
our results (see [1], [2], [3]), where, to the best of our knowledge, we have
applied for the �rst time in literature the local risk-minimization method to
the pricing and hedging of defaultable claims.

2.4 Outline
The thesis is organized as follows. First we are going to apply the local risk-
minimization approach to the case of a defaultable put, where we also make
a comparison with the intensity-based evaluation formulas and the mean-
variance hedging. We solve analytically the problem of �nding respectively
the hedging strategy and the associated portfolio for the three methods in
the case of a defaultable put option with random recovery at maturity.
Then we study the general case by considering two di�erent possible recovery
schemes for a generic defaultable claim.

• We apply the local risk-minimization approach to a defaultable claim
with recovery scheme at maturity in a more general setting where the
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dynamics of the risky asset X may be in�uenced by the occurring of
a default event and also the default time τ itself may depend on the
assets prices behavior. We are able to provide the Föllmer-Schweizer de-
composition and compute explicitly the pseudo-locally risk-minimizing
strategy in two examples.

• Finally, we study the local risk-minimization approach for defaultable
claims with random recovery scheme at default time, i.e. a random
recovery payment is received by the owner of the contract in case of
default at time of default. Even in this case we are able to provide the
Föllmer-Schweizer decomposition and in particular we apply the results
to the case of a Corporate bond. Moreover we discuss the problem
of �nding a pseudo-locally risk-minimizing strategy if we suppose the
agent obtains her information only by observing the non-defaultable
assets.



Chapter 3

Local Risk-Minimization for a
Defaultable Put

3.1 Introduction

In this chapter we start the study of defaultable markets by means of local
risk-minimization. As a �rst step, we apply the local risk-minimization ap-
proach to a certain defaultable claim and we compare it with intensity-based
evaluation formulas and mean-variance hedging, only in the case where the
default time and the underlying Brownian motion are supposed to be in-
dependent. More precisely, under this assumption we solve analytically the
problem of �nding respectively the hedging strategy and the associated port-
folio for the three methods in the special case of a defaultable put with
random recovery at maturity.
In the market model outlined in Section 2.2, by following the approach
of [8], [11] and [13], we �rst consider the so-called �intensity-based approach�,
where a defaultable claim is priced by using the risk-neutral valuation for-
mula as the market would be complete. However we recall that the market
model extended with the defaultable claim is incomplete since it is impossible
to hedge against the occurrence of a default by using a portfolio consisting
only of the (non-defaultable) primary assets. Hence this method can only

35
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provide pricing formulas for the discounted defaultable payo� H, since it is
impossible to �nd a replicating portfolio for H consisting only of the risky
asset and the bond. Then it makes sense to apply the quadratic hedging
methods introduced in Chapter 1, used for pricing and hedging derivatives
in incomplete markets. Local risk-minimization and mean-variance hedging
provide arbitrage-free valuations and in the case of a complete market repro-
duce the usual arbitrage-free prices and riskless hedging strategies. Hence
they can be considered as a consistent extension from the complete to the
incomplete market case.
The main goal of this chapter is to apply the local risk-minimization method
to the pricing and hedging of a certain defaultable claim and provide a com-
parison with other two hedging methods. According to [1], we investigate
the particular case of a defaultable put option with random recovery rate
and solve explicitly the problem of �nding a pseudo-local risk-minimizing
strategy and the portfolio with minimal cost. As mentioned previously, the
mean-variance hedging method has been already extensively studied in the
context of defaultable markets by [7], [8], [9] and [10]. Here we extend some
of their results to the case of stochastic drift µ and volatility σ in the dy-
namics (2.5) of the risky asset price, and random recovery rate. Empirical
analysis of recovery rates shows that they may depend on several factors,
among which default delays (see for example [15]). For the sake of simplicity
here we assume that the recovery rate depends only on the random time of
default.

3.2 Setting
Since the default time and the underlying Brownian motion are supposed to
be independent and we consider here only the case of a defaultable put, we
need additional assumptions:

• the risky asset price S and the risk-free bond B are both de�ned on
the probability space (Ω̃,F,P), endowed with the Brownian �ltration
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(Ft)0≤t≤T ;

• the default time τ is represented by a totally inaccessible stopping
time on the probability space (Ω̂, H, ν), endowed with the �ltration
(Ht)0≤t≤T .

Hence we consider the following product probability space

(Ω, G,Q) = (Ω̃× Ω̂,F ⊗H,P⊗ ν)

endowed with the �ltration

Gt = Ht ⊗ Ft, ∀t ∈ [0, T ].

Since Ht is independent of Ft for every t ∈ [0, T ], the cumulative distribution
function of τ is given by:

Ft = Q(τ ≤ t) = ν(τ ≤ t) (3.1)

and the intensity λ is a non-negative, integrable function. Furthermore:

• the short-term interest rate r is a deterministic function, µ = µ(ω̃),
σ = σ(ω̃) are F-adapted processes.

• µ is adapted to the �ltration FS generated by S. We remark that if σ

has a right-continuous version, then it is FS-adapted (see [22]) since

∫ t

0

σ2
sS

2
sds = lim

supi |ti+1−ti|→0

n∑
i

|Sti+1
− Sti|2,

where 0 = t0 ≤ t1 ≤ · · · tn = t is a partition of [0, t]. Hence we obtain
that FS

t = Ft for any t ∈ [0, T ] and from now on we assume Ft as the
reference �ltration on (Ω̃,F,P).

• µ, σ and r are such that there exists a unique equivalent martingale
measure for the discounted price process X whose density dP∗

dP
:=

E

(
−

∫
θdW

)

T

is square-integrable. Hence the non-defaultable mar-
ket is complete.
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De�nition 3.2.1. The buyer of a defaultable put has to pay a premium to
the seller who undertakes the default risk linked to the underlying asset. If a
credit event occurs before the maturity date T of the option, the seller has to
pay to the put's owner an amount (default payment), which can be �xed or
variable.

If we restrict our attention to the simple case of

Z ≡ 0,

the defaultable put is given by a triplet (X̄, X̃, τ), where

1. the promised claim is given by the payo� of a standard put option with
strike price and exercise date T :

X̄ = (K − ST )+; (3.2)

2. the recovery payo� at time T is given by

X̃ = δ(K − ST )+, (3.3)

where δ = δ(ω) is supposed to be a random recovery rate.

In particular we assume that δ(ω) = δ(ω̃, ω̂) = δ(ω̂) is represented by a
HT -measurable random variable in L2(Ω̂,HT , ν), i.e.

δ(ω) = h(τ(ω) ∧ T ) (3.4)

for some square-integrable Borel function h : (R, B(R)) → (R,B(R)), 0 ≤
h ≤ 1. Here we di�er from the approach of [13], since we assume that X̃ is
GT -measurable and not necessarily FT -measurable. This is due to the fact
that in our model we allow the recovery rate δ to depend on the default time
τ . This represents a generalization of the models presented in [8] and [13].

Example 3.2.2. We remark that here we restrict our attention to the case
when the recovery rate depends only on the random time of default. For
example δ(ω) can be of the form:

δ(ω) = δ1I{τ≤T0} + δ2I{T≥τ>T0},



3.3 Reduced-form model 39

when δ1, δ2 ∈ R+
0 and 0 < T0 < T . In this example we are considering a case

when we obtain a portion of the underlying option according to the fact that
the default occurs before or after a certain date. The recovery claim is always
handled out at time T of maturity.

In this case the discounted value of the defaultable put can be represented
as follows:

H =
X̄

BT

I{τ>T} +
X̃

BT

I{τ≤T}

=
(K − ST )+

BT

(
I{τ>T} + δ(ω)I{τ≤T}

)

=
(K − ST )+

BT

(
1 + (δ(ω)− 1)I{τ≤T}

)
, (3.5)

where δ is given in (3.4). Our aim is now to apply the local risk-minimization
in this framework and compare the results with the ones obtained through
the intensity-based approach and mean-variance hedging.

3.3 Reduced-form model
In this section we present the main results that can be obtained through the
intensity-based approach to the valuation of defaultable claims and then we
apply them to the case of a defaultable put. We follow here the approach
of [8], [11] and [13].
We remark that under the assumption of Section 3.2 the non-defaultable
market is complete since there exists a unique equivalent martingale measure
P∗ for the discounted price process Xt =

St

Bt

. See [28] for further details. We
put

Q∗ = P∗ ⊗ ν

in the sequel. Note that by hypothesis (H), Q∗ is still a martingale measure
for Xt with respect to the �ltration Gt.
By using no-arbitrage arguments, in Section 8.1.1 of [13] they show that a
valuation formula for a defaultable claim can be obtained by the usual risk-
neutral valuation formula as follows.
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Let H be the defaultable claim given in (2.10). We restrict our attention to
the case of X̃ = 0 since the more general case can be handled with similar
techniques. The following result provides an alternative representation for
the price process of a defaultable claim whose discounted value is given by

H =
X̄

BT

I{τ>T} +
Zτ

Bτ

I{t<τ≤T}. (3.6)

Lemma 3.3.1. The price process V of a defaultable claim H given in (3.6)
admits the following representation:

Vt = BtE
∗
[∫ T

t

Zu

Bu

λ̃udu +
X̄

BT

I{τ>T}

∣∣∣∣Gt

]
. (3.7)

Proof. See Proposition 8.3.1 of [13] for the proof.

The next result plays a key role in the martingale approach to valuation
of defaultable claims.

Theorem 3.3.2. Let Z and X̄ be an F-predictable process and an FT -
measurable random variable respectively. Consider the process

Ut = B̃tE
∗
[∫ T

t

Zu

B̃u

λudu +
X̄

B̃T

∣∣∣∣ Gt

]
(3.8)

where
B̃t = exp

(∫ t

0

(r(u) + λu)du

)

(Rt = r(t) + λt denotes the default-risk-adjusted interest rate). Then

I{t<τ}Ut = BtE
∗
[
(Zτ + ∆Uτ )

Bτ

I{t<τ≤T} +
X̄

BT

I{τ>T}

∣∣∣∣ Gt

]

= Bt

(
E∗ [H|Gt] + E∗

[
∆Uτ

Bτ

I{t<τ≤T}

∣∣∣∣ Gt

])
.

Proof. See Proposition 8.3.2 of [13] for the proof.

The following Corollary appears to be useful in the study of the case of
Brownian �ltration.
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Corollary 3.3.3. Let the processes V and U be de�ned by (3.7) and (3.8),
respectively. Then

Vt = I{t<τ}

(
Ut −BtE

∗
[
∆Uτ

Bτ

I{t<τ≤T}

∣∣∣∣ Gt

])
.

If ∆Uτ = 0, then

Vt = I{t<τ}Ut for every t ∈ [0, T ]

and
Vt = I{t<τ}B̃tE

∗
[∫ T

t

Zu

B̃u

λudu +
X̄

B̃T

∣∣∣∣ Gt

]
.

Remark 3.3.4. The continuity condition ∆Uτ = 0 seems to be rather dif-
�cult to verify in a general set-up. It can be established, however, if cer-
tain additional restrictions are imposed on underlying �ltrations (Ft)0≤t≤T

and (Gt)0≤t≤T . For instance, when the �ltration (Ft)0≤t≤T is generated by a
Brownian motion under Q∗, the continuity of U is trivial.

Example 3.3.5. We compute now the price process of a defaultable put whose
recovery process Z is given by a constant d. We assume in addition that the
intensity λ, drift µ and volatility σ are constant.Hence the discounted value
H can be represented as follows:

H = e−rT (K − ST )+I{τ>T} + de−rτ I{t<τ≤T}. (3.9)

By applying Theorem 3.3.2 and Corollary 3.3.3, the price process V at time
t of a defaultable put de�ned in (3.9) is given by:

Vt = I{t<τ}Ut

= I{t<τ}e
(r+λ)tE∗

[
(K − ST )+e−(r+λ)T +

∫ T

t

de−(r+λ)sλds

∣∣∣∣ Gt

]

= I{t<τ}e
(r+λ)tE∗

[
(K − ST )+e−(r+λ)T − λd

r + λ
e−(r+λ)t

(
e−(r+λ)(T−t) − 1

)∣∣∣∣Gt

]

= I{t<τ}

(
e−(r+λ)(T−t)E∗ [

(K − ST )+
∣∣ Gt

]
+

λd

r + λ

(
1− e−(r+λ)(T−t)

))

= I{t<τ}

(
e−(r+λ)(T−t)Pt +

λd

r + λ

(
1− e−(r+λ)(T−t)

))
,
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where P represents the well-known price of a standard put option:

Pt = BtE
∗
[
(K − ST )+

BT

∣∣∣∣Gt

]
= Ke−r(T−t)N(x1)− StN(x2),

with

x1 =

lg

(
K

St

)
−

(
r − σ2

2

)
(T − t)

σ
√

T − t

x2 =

lg

(
K

St

)
−

(
r +

σ2

2

)
(T − t)

σ
√

T − t
.

Let us turn on the defaultable put H de�ned in (3.5). Under the probability
measure Q∗, the discounted price process of the defaultable put at time t is
given by:

Vt

Bt

= E∗
[

X̄

BT

I{τ>T} +
X̃

BT

I{τ≤T}

∣∣∣∣∣ Gt

]

= BtE
∗
[
(K − ST )+

BT

(
1 + (δ(ω)− 1)I{τ≤T}

)∣∣∣∣Gt

]

= BtE
∗
[
(K − ST )+

BT

∣∣∣∣ Gt

]

︸ ︷︷ ︸
a)

E∗ [(1 + (δ(ω)− 1)HT )|Gt]︸ ︷︷ ︸
b)

,

where the last equality follows from the fact that ST and HT are independent.
We compute separately the terms a) and b).
a) This term represents the well-known price Pt of a standard put option:

Pt = BtE
∗
[
(K − ST )+

BT

∣∣∣∣ Gt

]
= E∗

[
e−

R T
t r(s)ds(K − ST )+

∣∣∣ Gt

]
(3.10)

= E∗
[
e−

R T
t r(s)ds(K − ST )+

∣∣∣ Ft

]

= Ke−
R T

t r(s)dsE∗ [IA|Ft]− StE
Q∗,X

[IA|Ft] ,

where by [24] we have
dQ∗,X

dQ∗
=

XT

X0

.
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b) It remains to compute the second term:

E∗ [1 + (δ(ω)− 1)HT |Gt] = 1 + E∗ [δ(ω)HT |Gt]︸ ︷︷ ︸
c)

−E∗ [HT |Gt] .

Then, we have to examine the conditional expectation E∗ [HT |Gt]. First we
note that

E∗ [HT |Gt] = E∗ [HT |Ht] .

Lemma 3.3.6. The process M given by the formula

Mt =
1−Ht

1− Ft

, ∀t ∈ R+ , (3.11)

where Ft is given by (3.1), follows a martingale with respect to the �ltration
(Ht)0≤t≤T . Moreover, for any t < s, the following equality holds:

E∗ [1−Hs|Ht] = (1−Ht)
1− Fs

1− Ft

. (3.12)

Proof. We refer to Corollary 4.1.2 of [13].

Note that the cumulative distribution function of τ is the same both under
Q∗ and Q since Q∗(τ ≤ t) = ν(τ ≤ t) = Q(τ ≤ t). We apply (3.12) to get

E∗ [HT |Ht] = 1−
(

1−Ht

1− Ft

)

︸ ︷︷ ︸
Mt

(1− FT )

= 1− (1− FT )Mt. (3.13)

To complete the computations, we evaluate the conditional expectation c).

c) In view of the Corollary 4.1.3 and the Corollary 5.1.1 of [13], using (3.4)
we have:

E [δ(ω)HT |Gt] = E [h(τ ∧ T )HT |Gt]

= h(τ ∧ T )Ht + (1−Ht)e
R t
0 λuduE∗ [

I{τ>t}h(τ ∧ T )HT

]

= h(τ ∧ T )Ht + (1−Ht)e
R t
0 λuduE∗ [

I{t<τ<T}h(τ ∧ T )
]

= h(τ ∧ T )Ht + (1−Ht)

∫ T

t

h(s)λse
− R T

t λududs.

Finally, gathering the results, we obtain the following Proposition.
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Proposition 3.3.7. In the market model outlined in Sections 2.2 and 3.2, we
obtain that the discounted value at time t of the replicating portfolio according
to the intensity-based approach is:

Vt

Bt

= E∗
[

X̄

BT

I{τ>T} +
X̃

BT

I{τ≤T}

∣∣∣∣∣Gt

]

= Pt

[
Hth(τ ∧ T ) + (1−Ht)

(∫ T

t

h(s)λse
− R s

t λududs

)
+ (1− FT )Mt

]
,

(3.14)
where Pt is the hedging portfolio value for a standard put option given in
(3.10).

Example 3.3.8. In this simple example we compute explicitly the replicating
portfolio of a defaultable put whose recovery claim X̃ is given by δ(t)(K −
ST )+, for t ∈ [0, T ], where δ is a deterministic function. In addition, we
suppose that the intensity λ is constant. This implies that Ft = F , for every
t ∈ [0, T ], i.e. the conditional distribution function of τ is constant. Hence,
by Proposition 3.3.7, we obtain that the discounted value at time t of the
replicating portfolio is given by:

Vt

Bt

= Pt

(
δ(t) + I{τ>t}

(
1− δ(t)e−λ(T−t)

))
, 0 ≤ t ≤ T.

If the intensity λ is supposed to be a deterministic function, we have:
Vt

Bt

= Pt

(
δ(t) + I{τ>t}

(
1− F (T )

1− F (t)
− δ(t)e−

R T
t λ(s)ds

))
, 0 ≤ t ≤ T.

Remark 3.3.9. Since in our market there are non-defaultable primary as-
sets, �nding a self-�nancing portfolio that replicates our put option perfectly
is not possible (see [8] for further details). Hence, we have restricted our
attention to the pricing problem, according to [13].

3.4 Local risk-minimization
In Section 3.3 we have computed in Proposition 3.3.7 the discounted portfolio
value that replicates our defaultable option. The main idea of the intensity-
based approach is to assume that the market is complete. However, due to
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the possibility of default, one cannot perfectly hedge a defaultable claim in
this framework, since only non-defaultable assets are present in our market
model and M̂ does not represent the value of any tradable asset. Now we are
going to apply the local risk-minimization to particular case of a defaultable
put de�ned in (3.5). We wish to �nd a portfolio �with minimal cost� that
perfectly replicates H according to the local risk-minimizing criterion. We
remark that we focus on the case of trading strategies adapted to the full
�ltration Gt (see [8]).

Lemma 3.4.1. The minimal martingale measure for Xt with respect to Gt

exists and coincides with Q∗.

Proof. Since W and M̂ de�ned in (2.4) have the predictable representation
property for the space of square-integrable local martingale on the product
probability space (Ω,G,Gt,Q) = (Ω̃ × Ω̂, F ⊗H,Ft ⊗Ht,P ⊗ ν), the result
follows by De�nition 1.3.15. See also [5] and [27]. In fact by De�nition 1.3.15,
the minimal martingale measure is the unique equivalent martingale measure
for X with square-integrable density such that any square-integrable Q-local
martingale strongly orthogonal to

∫
σXdW remains a Q-local martingale.

Consider a square-integrable local martingale L under Q strongly orthogo-
nal to

∫
σXdW . We note that the Brownian motion W and M̂ de�ned in

(2.4) have the predictable representation property for the space of square-
integrable local martingale on the product probability space (Ω,G, Gt,Q) =

(Ω̃× Ω̂, F ⊗H,Ft ⊗Ht,P⊗ ν). Hence

Lt = L0 +

∫ t

0

ϕW
s dWs +

∫ t

0

ϕM̂
s dM̂s, ∀t ∈ [0, T ].

Since L is strongly orthogonal with respect to the martingale part of X, we
have ϕW

t ≡ 0, ∀t ∈ [0, T ]. Hence

Lt = L0 +

∫ t

0

ϕM̂
s dM̂s.

If Zt = E

[
dQ∗

dQ

∣∣∣∣ Gt

]
is the density process associated to this change of mea-
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sure, then we obtain
Zt = E

(
−

∫
θdW

)

t

where θ is the market price of risk, because this change of law does not a�ect
ν. Then LZ is a local martingale since (W, M̂) are strongly orthogonal. Since
the density of P∗ is supposed to be square-integrable, then

Q̂ = Q∗ = P∗ ⊗ ν

is the minimal measure for X.

Proposition 3.4.2. Let M̂ be the compensated process de�ned in (2.4) and
X the discounted price process. The pair (X, M̂) has the predictable repre-
sentation property on (Ω, G,Gt,Q∗), i.e. for every H ∈ L1(Ω,GT ,Q∗), there
exists a pair of G-predictable processes (Φ̃, Ψ̃) such that

H = c +

∫ T

0

Φ̃sdXs +

∫ T

0

Ψ̃sdM̂s (3.15)

and ∫ T

0

Φ̃2
sd〈X〉s +

∫ T

0

Ψ̃2
sd[M̂ ]s < ∞ a.s.

Proof. Since there exists a unique equivalent martingale measure P∗ for the
continuous asset process Xt on (Ω̃,F,Ft), then by Theorem 40 of Chapter IV
of [29] we have that Xt has the predictable representation property for the
local martingales on (Ω̃, F,Ft,P∗).
By Proposition 4.1 of [4] the compensated default process M̂ has the pre-
dictable representation property for the local martingales on (Ω̂, H,Ht, ν).
Hence, since X and M̂ are strongly orthogonal, by Proposition A.2 of [5]
and by using a limiting argument we obtain that (X, M̂) has the predictable
representation property on the product probability space

(Ω,G,Gt,Q∗) = (Ω̃× Ω̂,F ⊗H,Ft ⊗Ht,P∗ ⊗ ν).
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We remark that the market is incomplete even if we trade with Gt-adapted
strategies since M̂ does not represent the value of any tradable asset.
We can apply Proposition 3.4.2 to obtain a plrm-strategy for H ∈ L2(Ω,GT ,Q).

Proposition 3.4.3. Let H ∈ L2(Ω,GT ,Q) be the value of a defaultable claim.
Then a plrm-strategy for H exists and it is given by

Φt = Φ̃t

with minimal cost
Ct = c +

∫ t

0

Ψ̃sdM̂s,

where Φ̃t, Ψ̃t are the same as in Proposition 3.4.2.

Proof. Let H ∈ L2(Ω,GT ,Q). We note that since dQ̂
dQ

∈ L2(Q), we have that

L2(Ω,GT ,Q) ⊂ L1(Ω,GT , Q̂). Then H ∈ L1(Q̂) and we can apply Proposition
3.4.2 to obtain decomposition (3.15) for H given by

H = c +

∫ T

0

Φ̃sdXs +

∫ T

0

Ψ̃sdM̂s. (3.16)

The martingale M̂ is strongly orthogonal to the martingale part of X, hence
(3.16) gives the Galtchouk-Kunita-Watanabe decomposition of H under Q̂.

Since by hypothesis dQ̂
dQ

=
dQ∗

dQ
∈ L2(Q) and X is continuous, then by

Theorem 3.5 of [22] the associated density process

Zt = Ê

[
dQ̂
dQ

∣∣∣∣∣ Gt

]
= Ê

[
dQ̂
dQ

∣∣∣∣∣ Ft

]

is a square-integrable martingale. Moreover since hypothesis (2.8) is in force,
we can apply Theorem 1.3.16 and conclude that (3.15) is the FS decomposi-
tion of H.

Remark 3.4.4. It is possible to choose di�erent hypotheses that guarantee
that decomposition (3.15) gives the FS decomposition. We recall that assump-
tion (2.8) is the simplest condition that can be assumed.
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Under the equivalent martingale probability measure Q̂, the discounted price
process V̂t of the defaultable put at time t, is given by:

V̂t = Ê [H|Gt]

= Ê

[
X̄

BT

I{τ>T} +
X̃

BT

I{τ≤T}

∣∣∣∣∣ Gt

]

= Ê

[
X̄

BT

∣∣∣∣Gt

]
· Ê [1 + (δ(ω)− 1)HT |Gt]

= Ê

[
(K − ST )+

BT

∣∣∣∣ Gt

]

︸ ︷︷ ︸
a)

· Ê [(1 + (δ(ω)− 1)HT )|Gt]︸ ︷︷ ︸
b)

. (3.17)

We need only to �nd the Föllmer-Schweizer decomposition of V̂t as illustrated
in (1.6).

a) By Section 5 of [6] and using the �change of numéraire� technique of
[24], we have

Ê

[
X̄

BT

∣∣∣∣ Gt

]
= Ê

[
(K − ST )+

BT

∣∣∣∣ Gt

]

= Ê


(K − ST )

BT

I{K ≥ ST}︸ ︷︷ ︸
A

∣∣∣∣∣∣∣
Gt




= KÊ

[
1

BT

IA
∣∣∣∣ Gt

]
− Ê

[
ST

BT

IA
∣∣∣∣ Gt

]

=
K

BT

Ê [IA|Gt]− Ê [XT IA|Gt]

=
K

BT

Ê [IA|Gt]−XtÊ [IA|Gt] ,

where
dQ̂X

dQ̂
=

XT

X0

is well-de�ned since XT ∈ L2(Q) by hypothesis and hence XT ∈ L1(Q̂).
In addition by (3.15) we obtain that Ê

[
X̄

BT

∣∣∣∣ Gt

]
admits the decompo-

sition
Ê

[
X̄

BT

∣∣∣∣Gt

]
= c +

∫ t

0

ξsdXs. (3.18)
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Since
E
bQX

[IA|Gt] = E
bQX

[IA|Ft]

because IA is independent of τ , by [24] we have that

ξt = E
bQX

[IA|Ft] . (3.19)

b) It remains to calculate the term Ê [1 + (δ(ω)− 1)HT |Gt]. First we note
that

Ê [1 + (δ(ω)− 1)HT |Gt] = 1 + Ê [δ(ω)HT |Gt]− Ê [HT |Gt]

= 1 + Ê [δ(ω)HT |Gt]− (1− (1− FT )Mt)

= Ê [δ(ω)HT |Gt] + (1− FT )Mt,

by (3.13). Since δ(ω)HT = f(τ) for some integrable Borel function
f : R+ → [0, 1], by Proposition 4.3.1 of [13], we have

Ê [1 + (δ(ω)− 1)HT |Gt] = ch +

∫ t

0

f̂(s)dM̂s + (1− FT )Mt,

where ch = E
bQ[f(τ)] and the function f̂ : R+ → R is given by the

formula
f̂(t) = f(t)− eΓtE

bQ[I{τ>t}f(τ)]. (3.20)

Note that
f(x) = h(x ∧ T )I{x<T},

where h is introduced in (3.4). We only need to �nd the relationship
between Mt and M̂t.

Lemma 3.4.5. Let M and M̂ be de�ned by (2.4) and (3.11) respec-
tively. The following equality holds:

dMt = − 1

1− Ft

dM̂t, 0 ≤ t ≤ T. (3.21)

Proof. To obtain (3.21), it su�ces to apply Itô's formula. For further
details see Section 6.3 of [13].
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Finally, gathering the results we obtain

V̂t = Ê [H|Gt]

=


c +

∫ t

0

ξsdXs

︸ ︷︷ ︸
Φt


 ·

(
E
bQ[f(τ)] +

∫ t

0

f̂(s)dM̂s + (1− FT )Mt

)

= Φt ·


E

bQ[f(τ)] +

∫ t

0

(
f̂(s)− 1− FT

1− Fs

)
dM̂s

︸ ︷︷ ︸
Ψt


 .

Since
d[Φ, Ψ]t = ξt

(
f̂(t)− 1− FT

1− Ft

)
d[X, M̂ ]t = 0,

applying Itô's formula we get

dV̂t = ΦtdΨt + Ψt−dΦt + d[Φ, Ψ]t

=

(
c +

∫ t

0

ξsdXs

)(
f̂(t)− 1− FT

1− Ft

)
dM̂t

+

(
E
bQ[f(τ)] +

∫ t

0

(
f̂(s)− 1− FT

1− Fs

)
dM̂s

)
ξtdXt.

(3.22)

Hence we can conclude that:

Proposition 3.4.6. In the market model outlined in Sections 2.2 and 3.2,
under hypothesis (2.8) the local risk-minimizing portfolio for H de�ned in
(3.5) is given by

V̂t = c1 +

∫ t

0

Φ1
sdXs + L̂t, (3.23)

where the plrm strategy is

Φ1
t =

(
E
bQ[f(τ)] +

∫ t

0

(
f̂(s)− 1− FT

1− Fs

)
dM̂s

)
ξt (3.24)

and the minimal cost is

L̂t =

∫ t

0

(
c +

∫ s

0

ξudXu

)(
f̂(s)− 1− FT

1− Fs

)
dM̂s, (3.25)

where ξt is given by (3.19), f̂(s) by (3.20) and Ft by (3.1).
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Proof. Proposition 3.4.3 guarantees that (3.22) provides the FS decompo-
sition for H, i.e. that Φ1

t and L̂t satisfy the required integrability condi-
tions.

3.5 Mean-variance hedging
Finally to conclude this chapter, we consider the mean-variance hedging
approach. This method has been already applied to defaultable markets
in [7], [8], [9] and [10]. Here we extend their results to the case of general
coe�cients in the dynamics of X and random recovery rate and compute
explicitly the mean-variance strategy in the particular case of a defaultable
put option. Again we focus on the case of G-adapted hedging strategies.
We can interpret the presence on the market of a default possibility as a
particular case of �incomplete information�. Hence the results of [5] and [4],
where the variance-optimal measure is characterized as the solution of an
equation between Doléans exponentials, can also be applied in this context
to compute Q̃. In particular by Theorem 2.16 and Section 3 (α) of [5], it
follows that the variance-optimal measure coincides with the minimal one.
In this case

Q̃ = Q̂ = Q∗. (3.26)

First of all we check that the space Θ is closed.
By Proposition 4.2 of [5], we have that Θ is closed if and only if for every
stopping time η, with 0 ≤ η ≤ T , the following condition holds for some
constant M

Ē

[
exp

(∫ T

η

θ2
sds

) ∣∣∣∣Gη

]
≤ M, (3.27)

where dQ̄
dQ

:= E

(
−

∫
2θdW

)

T

. Note that since we are assuming that Q̂

exists and it is square-integrable, then Q̄ also exists and exp
(∫ T

0
θ2

t dt
)

is
Q̄-integrable ( [5], Section 3(α)). Here we obtain that condition (3.27) is a
veri�ed for every G-stopping time η such that 0 ≤ η ≤ T as a consequence
of our assumption (2.8). Then we need to check that condition (3.27) holds
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for every G-stopping time η such that 0 ≤ η ≤ T . Let A ∈ Gη, then we have
that ∫

A

Ē

[
exp

(∫ T

η

θ2
sds

) ∣∣∣∣Gη

]
dQ̄ =

∫

A

e
R T

η θ2
sdsdQ̄

=

∫

A

e
bKT− bKηdQ̄

≤ K · Q̄(A),

where the last inequality is a consequence of (2.8).
Hence Ē

[
exp

(∫ T

η
θ2

sds
) ∣∣∣∣Gη

]
is uniformly bounded and we conclude that

Θ is closed. Then we can use Theorem 1.4.2 to obtain the mean-variance
optimal Θ-strategy for H. The process Ṽt at time t, is given by:

Ṽt = Ẽ [H|Gt]

= Ẽ

[
X̄

BT

I{τ>T} +
X̃

BT

I{τ≤T}

∣∣∣∣∣Gt

]

= Ẽ

[
(K − ST )+

BT

(
1 + (δ(ω)− 1)I{τ≤T}

)∣∣∣∣ Gt

]
.

By Section 3 (α) in [5], we also obtain that

dQ̃
dQ

= E

(
−

∫
βdX

)

T

1

E [(−βdX)]
,

where βt =
θt − ht

σtXt

and ht solves the equation

E

(∫
hdW̄

)

T

=
exp(

∫ T

0
θ2

t dt)

Ē
[
exp

(∫ T

0
θ2

t dt
)]

with W̄t := Wt + 2
∫ t

0
θsds and dQ̄

dQ
= E

(
−

∫
2θdW

)

T

. Hence we have that

Z̃t = Ẽ

[
dQ̃
dQ

∣∣∣∣∣Ft

]
=

E
(− ∫

βdX
)

t

E
[
E

(− ∫
βdX

)
T

] (3.28)

and dZ̃t = βtZ̃tdXt. Consequently we can compute decomposition (1.10)
and obtain

ζ̃t = Z̃tβt. (3.29)
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Since Q̃ = Q̂ = Q∗, we can use (3.23), (3.24) and (3.25), to obtain the
mean-variance optimal Θ-strategy (Ṽ0, θ̃) for H.

Proposition 3.5.1. In the market model outlined in Sections 2.2 and 3.2,
under hypothesis (2.8) the mean-variance hedging strategy for H de�ned in
(3.5) is given by:

• Approximation Price

Ṽ0 = Ẽ[H] = Ẽ

[
X̄

BT

I{τ>T} +
X̃

BT

I{τ≤T}

]
.

We note that the optimal price for the mean-variance hedging criterion
coincides with the optimal price for the locally risk-minimizing crite-
rion.

• Mean-Variance Optimal Strategy

θ̃t = Φ1
t − ζ̃t

∫ t−

0

1

Z̃u

dL̃u, (3.30)

where Φ1, Z̃ and ζ̃ are given by (3.24), (3.28) and (3.29) respectively
and

dL̃t = dL̂t =

(
c +

∫ t

0

ξsdXs

)(
f̂(t)− 1− FT

1− Ft

)
dM̂t. (3.31)
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Chapter 4

Local Risk-Minimization for
Defaultable Claims with Recovery
Scheme at Maturity

4.1 Introduction

In the previous chapter, according to [1] we have investigated the local risk-
minimization method but only in the case of a defaultable put and under the
assumption that the default time and the underlying Brownian motion were
independent. Here according to [2], we extend these results and consider a
more general case: we apply the local risk-minimization approach to a generic
defaultable claim with recovery scheme at maturity in a more general setting,
where the dynamics of the discounted risky asset X may be in�uenced by
the occurring of a default event and also the default time τ itself may depend
on the assets prices behavior. The main goal of this chapter is to provide the
Föllmer-Schweizer decomposition of a generic defaultable claim with random
recovery rate in this general setting.
In particular we focus on two cases where we compute explicitly the pseudo-
locally risk-minimizing strategy and the optimal cost. First we consider the
situation where the default time τ depends on the behavior of the risky

55
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asset price, but not vice versa. In the second case we assume that drift µ

and volatility σ of the underlying discounted asset are a�ected by τ and we
show how our result �ts in the approach of [22] of local risk-minimization for
�nancial markets a�ected by incomplete information.

4.2 Local risk-minimization for defaultable claims
All the hypotheses outlined in Section 2.2 are supposed to hold in this frame-
work. In particular we should emphasize that here the default time occurring
and the risky asset behavior can in�uence each other. Mathematically this
means that (Ω,G,Q) is not necessarily a product probability space and the
reference �ltration is then

Gt = Ft ∨Ht, for any t ∈ [0, T ].

Under the hypotheses of Section 2.2, we study now the local risk-minimization
approach for a defaultable claim H with random recovery scheme at maturity.
In this case the discounted value of H can be represented as follows:

H =
X̄

BT

I{τ>T} +
X̃

BT

I{τ≤T}

=
X̄

BT

(
I{τ>T} + δ(ω)I{τ≤T}

)

=
X̄

BT

(
1 + (δ(ω)− 1)I{τ≤T}

)
, (4.1)

where δ is given in (3.4) and the promised contingent claim X̄ is given by a
GT -measurable random variable. The next result guarantees the existence of
a pseudo-locally risk-minimizing strategy for H.

Proposition 4.2.1. Assume that the hazard process Γ is continuous. Then
for any Gt-martingale Nt under Q we have

Nt = N0 +

∫ t

0

ξN
u dWu +

∫

]0,t]

ζN
u dM̂u = N0 + MN

t + LN
t ,
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where ξN and ζN are G-predictable processes such that for every t ∈ [0, T ]

∫ t

0

(ξN
u )2du +

∫ t

0

(ζN
u )2λudu < +∞.

The continuous Gt-martingale MN
t and the purely discontinuous Gt-martingale

LN
t are mutually orthogonal.

Proof. See Corollary 5.2.4 of [13] for the proof.

Under assumption (2.8) we know that the minimal martingale measure Q̂
exists and it is unique. In particular we have

Proposition 4.2.2. Assume hypothesis (2.8) is in force. Consider the pro-
bability measure Q̄ with Radon-Nykodym density

dQ̄
dQ

= E

(
−

∫
θdW

)

T

,

where θ is de�ned in (2.6). Then Q̄ = Q̂.

Proof. It follows by hypothesis (2.8), De�nition 1.3.15 and Proposition 4.2.1.

By Proposition 4.2.2 we have that Ŵt = Wt +
∫ t

0
θsds is a Gt-Brownian

motion under Q̂ and the results of Proposition 4.2.1 can be reformulated in
terms of (Ŵ , M̂). In fact M̂t = Ht −

∫ t

0
λ̃sds is also a Q̂-martingale since

the orthogonal martingale structure is not a�ected by the change of measure
from Q to Q̂. Hence we obtain that, since the hazard process Γt is continuous
by hypothesis (2.2), every Gt-martingale N̂t under Q̂ is of the form

N̂t = N̂0 +

∫ t

0

ξN̂
u dŴu +

∫

]0,t]

ζN̂
u dM̂u. (4.2)

We now �nd the plrm-strategy for H by computing the decomposition (4.2)
for Ê [H|Gt] under Q̂. Theorem 1.3.16 and our hypothesis (2.8) guarantee
that this is indeed the FS-decomposition for H.
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Under the equivalent martingale probability measure Q̂, the discounted op-
timal portfolio value V̂t of the defaultable claim H at time t, is given by:

V̂t = Ê [H|Gt]

= Ê

[
X̄

BT

(1 + (h(τ ∧ T )− 1)HT )

∣∣∣∣ Gt

]

= Ê

[
X̄

BT

∣∣∣∣ Gt

]

︸ ︷︷ ︸
a)

+ Ê

[
X̄

BT

(h(τ ∧ T )− 1)HT

∣∣∣∣ Gt

]

︸ ︷︷ ︸
b)

. (4.3)

a) Since X̄ ∈ L1(GT , Q̂), by (4.2) we have

Ê

[
X̄

BT

∣∣∣∣Gt

]
= Ê

[
X̄

BT

]
+

∫ t

0

ξ̄sdŴs +

∫ t

0

η̄sdM̂s, (4.4)

where ξ̄t and η̄t are Gt-predictable process for every t ∈ [0, T ] and Ŵt =

Wt +
∫ t

0
θsds is a Brownian motion under Q̂.

b) It remains to compute the term Ê

[
X̄

BT

(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
. First by

Corollary 5.1.2 of [13] we can obtain the following decomposition

Ê

[
X̄

BT

(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
= HtÊ

[
X̄

BT

(h(τ ∧ T )− 1)HT

∣∣∣∣Ft ∨HT

]
+

+(1−Ht)Ê

[
(1−Ht)e

R t
0 λsds X̄

BT

(h(τ ∧ T )− 1)HT

∣∣∣∣Ft

]
=

= Ht(h(τ ∧ T )− 1)Ê

[
X̄

BT

∣∣∣∣Ft ∨HT

]
+ (1−Ht)e

R t
0 λsds·

·E∗
[
I{t<τ≤T}(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣ Ft

]

︸ ︷︷ ︸
c)

(4.5)

We focus now on the conditional expectation c). We introduce here the
σ-algebra

Fτ− = σ (A ∩ {τ > t}, A ∈ Ft, 0 ≤ t ≤ T )

of the events strictly prior to τ . We set

N := Ê

[
(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣ Fτ−

]
(4.6)
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and note that

N = Ê

[
(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣ Fτ−

]
= (h(τ ∧ T )− 1)Ê

[
X̄

BT

∣∣∣∣ Gτ−

]

since Fτ− = Gτ− and the G-stopping time τ is Gτ−-measurable by Theorem
5.6 on page 118 of [18].

Lemma 4.2.3. Let N be de�ned in (4.6). Then

Ê

[
I{t<τ≤T}(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣ Ft

]
= Ê

[
I{t<τ≤T}N

∣∣Ft

]
, ∀t ∈ [0, T ].

Proof. Consider an arbitrary event A ∈ Ft. By using the de�nition of the
conditional expectation, we have
∫

A

I{t<τ≤T}(h(τ ∧ T )− 1)
X̄

BT

dQ =

∫

A∩{τ>t}
I{τ≤T}(h(τ ∧ T )− 1)

X̄

BT

dQ

=

∫

A∩{τ>t}
Ê

[
I{τ≤T}(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣ Fτ−

]
dQ

=

∫

A∩{τ>t}
I{τ≤T}NdQ

=

∫

A

I{t<τ≤T}NdQ,

since the event {τ ≤ T} is in Fτ− and Fτ− = Gτ− (see Lemma 5.1.3 of [13]).

By Theorem 67 page 125 in [18] and since Fτ− = Fτ by Chapter XX of [17],
page 148, we know that there exists an Ft-predictable1 process Z̄t such that

Z̄τ = N. (4.7)
1By Theorem 67 on page 125 in [18], there exists a Gt-predictable process ZG such

that ZG
τ = N . Since Fτ− = Fτ by Chapter XX of [17], page 148, we have that N is also

Fτ -measurable. But for every A ∈ Fτ the process At = IAI{τ≤t} is càdlàg, Ft-adapted
and Aτ = IA. Hence Fτ ⊆ σ(Yτ , Y càdlàg Ft − adapted processes) and there exists a
Ft-predictable process Z̄t such that Z̄τ = N .



60
Local Risk-Minimization for Defaultable Claims with Recovery

Scheme at Maturity

Hence we obtain

Ê

[
I{t<τ≤T}(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣Ft

]
= Ê

[
I{t<τ≤T}N

∣∣Ft

]

= Ê
[
I{t<τ≤T}Z̄τ

∣∣ Ft

]

= Ê

[∫ T

t

Z̄se
− R s

0 λuduλsds

∣∣∣∣ Ft

]
, (4.8)

where the last equality holds in view of Proposition 5.1.1 (ii) of [13] and the
F-predictability of Z̄ (see page 148 of [13]). Hence we can rewrite (4.5) as
follows:

Ê

[
X̄

BT

(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
= Ht(h(τ ∧ T )− 1)Ê

[
X̄

BT

∣∣∣∣Ft ∨HT

]
+

+ (1−Ht)e
R t
0 λsdsÊ

[∫ T

t

Z̄se
− R s

0 λuduλsds

∣∣∣∣ Ft

]
. (4.9)

We put
Dt := e

R t
0 λsdsÊ

[∫ T

t

Z̄se
− R s

0 λuduλsds

∣∣∣∣ Ft

]
(4.10)

and we introduce the Ft-martingale mt by setting

mt = Ê

[∫ T

0

Z̄se
− R s

0 λuduλsds

∣∣∣∣ Ft

]
. (4.11)

Following the proof of Proposition 5.2.1 of [13], we write Dt in terms of the
Ft-martingale mt

Dt = e
R t
0 λsdsmt − e

R t
0 λsds

∫ t

0

Z̄se
− R s

0 λuduλsds.

By applying the Itô integration by parts formula, we obtain

Dt = m0 +

∫

]0,t]

e
R s
0 λududms +

∫ t

0

mse
R s
0 λuduλsds−

∫ t

0

Z̄sλsds

−
∫ t

0

e
R s
0 λudu

∫ s

0

Z̄ve
− R v

0 λuduλvdvλsds

which implies that

Dt = m0 +

∫

]0,t]

e
R s
0 λududms +

∫ t

0

(Ds − Z̄s)λsds,
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Furthermore, since Dt is a continuous process, we have

(1−Ht)Dt = m0 +

∫

]0,t∧τ ]

dDs − I{τ≤t}Dτ .

Hence

(1−Ht)Dt = m0 +

∫

]0,t∧τ ]

e
R s
0 λududms +

∫ t∧τ

0

(Ds − Z̄s)λsds− I{τ≤t}Dτ

= m0 +

∫

]0,t∧τ ]

e
R s
0 λududms −

(
I{τ≤t}Dτ −

∫ t∧τ

0

Dsλsds

)
−

∫ t∧τ

0

Z̄sλsds

= m0 +

∫

]0,t∧τ ]

e
R s
0 λududms −

∫ t

0

DsdM̂s −
∫ t∧τ

0

Z̄sλsds.

Consequently we can rewrite (4.9) as follows:

Ê

[
X̄

BT

(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
= Ht(h(τ ∧ T )− 1)Ê

[
X̄

BT

∣∣∣∣Ft ∨HT

]
+

m0 +

∫

]0,t∧τ ]

e
R s
0 λududms −

∫ t

0

DsdM̂s −
∫ t∧τ

0

Z̄sλsds. (4.12)

A useful result is given by the following Lemma stated in [2].

Lemma 4.2.4. Let Zt be the Ft-predictable process given by (4.7). Then the
following equality holds:

HtZτ = Ht(h(τ ∧ T )− 1)Ê

[
X̄

BT

∣∣∣∣Ft ∨HT

]
, ∀t ∈ [0, T ]. (4.13)

Proof. It is clear that

HtZτ = Ê

[
Ht(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣ Fτ−

]
.

Hence we need only to show that

Ê

[
Ht(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣ Fτ−

]
= Ht(h(τ ∧T )−1)Ê

[
X̄

BT

∣∣∣∣Ft ∨HT

]
. (4.14)

By using the de�nition of conditional expectation and the fact that condi-
tioning with respect to Gt can be replaced by conditioning with respect to
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Ft ∨HT on the event {τ ≤ t} (see Lemma 5.1.5 of [13]), given an arbitrary
event A in Fs, with 0 < s ≤ t, for any t ∈ [0, T ], we have
∫

A∩{τ>s}
Ht(h(τ ∧ T )− 1)

X̄

BT

dQ =

∫

A∩{s<τ≤t}
(h(τ ∧ T )− 1)

X̄

BT

dQ

=

∫

A∩{s<τ≤t}
Ê

[
(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣Gt

]
dQ

=

∫

A∩{τ>s}
Ht(h(τ ∧ t)− 1)Ê

[
X̄

BT

∣∣∣∣Gt

]
dQ

=

∫

A∩{τ>s}
Ht(h(τ ∧ T )− 1)Ê

[
X̄

BT

∣∣∣∣Ft ∨HT

]
dQ,

since
Ht(h(τ ∧ T )− 1) = Ht(h(τ ∧ t)− 1), ∀t ∈ [0, T ].

Then the statement is proved since (4.14) is veri�ed on the generators.

Finally gathering the results, we obtain by using (4.13)

Ê

[
X̄

BT

(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
=

HtZτ + m0 +

∫

]0,t∧τ ]

e
R s
0 λududms −

∫ t

0

DsdM̂s −
∫ t∧τ

0

Z̄sλsds =

m0 +

∫ t

0

Z̄sdM̂s +

∫

]0,t∧τ ]

e
R s
0 λududms −

∫ t

0

DsdM̂s =

m0 +

∫

]0,t∧τ ]

e
R s
0 λududms +

∫ t

0

(Z̄s −Ds)dM̂s =

m0 +

∫ t

0

(1−Hs)e
R s
0 λuduξm

s dŴs +

∫ t

0

(Z̄s −Ds)dM̂s, (4.15)

where we have used the fact that the continuous Ft-martingale mt admits the
following integral representation with respect to the Brownian motion Ŵt

mt = m0 +

∫ t

0

ξm
s dŴs, (4.16)

for some Ft-predictable process ξm, such that ∀t, ∫ t

0
(ξm

s )2ds < +∞.
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Proposition 4.2.5. In the market model outlined in Section 2.2 and under
the assumption of Section 4.2, the FS decomposition for H de�ned in (2.10)
is given by

V̂t = Ê

[
X̄

BT

]
+ m0 +

∫ t

0

(
ξ̄s + I{τ≥s}ξ

m
s e

R s
0 λudu

)
dŴs+

+

∫ t

0

(Z̄s −Ds + η̄s)dM̂s (4.17)

= Ê

[
X̄

BT

]
+ m0 +

∫ t

0

1

σsXs

(
ξ̄s + I{τ≥s}ξ

m
s e

R s
0 λudu

)
dXs+

+

∫ t

0

(Z̄s −Ds + η̄s)dM̂s, (4.18)

where the processes m, Z̄, D, ξ̄, η̄, ξm and M̂ are de�ned in (4.11), (4.6),
(4.10), (4.4), (4.16) and (2.4). In particular we have that the plrm-strategy
is given by

ξH
t =

1

σtXt

(
ξ̄t + I{τ≥t}ξ

m
t e

R t
0 λsds

)
(4.19)

and the minimal cost is

CH
t = Ê

[
X̄

BT

]
+ m0 +

∫ t

0

(Z̄s −Ds + η̄s)dM̂s. (4.20)

Proof. It follows by hypothesis (2.8) and Theorem 1.3.16.

Proposition 4.2.5 extends the main result of [1], where decomposition (5.23)
was already proved in the case when the trajectories of Xt are Ft-adapted
and Ft and Ht are independent for every t ∈ [0, T ].
In general if X̄

BT

is FT -measurable, we have η̄t = 0 in decomposition (4.4)
and

Z̄t = (h(t ∧ T )− 1)

(
Ê

[
X̄

BT

]
+

∫ t

0

ξ̄sdŴs

)
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in equation (4.8). In fact by (4.4) and Theorem 67 page 125 in [18], we get

Ê

[
X̄

BT

∣∣∣∣Fτ−

]
= Ê

[
X̄

BT

∣∣∣∣ Gτ−

]

= Ê

[
Ê

[
X̄

BT

∣∣∣∣ Gτ

]∣∣∣∣ Gτ−

]

= Ê

[
Ê

[
X̄

BT

]
+

∫ τ

0

ξ̄sdŴs

∣∣∣∣ Gτ−

]

= Ê

[
X̄

BT

]
+

∫ τ

0

ξ̄sdŴs. (4.21)

Note that here we are using implicitly hypothesis (H) under Q̂.

Remark 4.2.6. The introduction of the process Z̄ in (4.7) may appear arti-
�cial. However it is necessary to �nd decomposition (4.8). We have already
seen that Z̄t can be explicitly calculated if X̄

BT

is FT -measurable. This is al-
ready a quite general case since we do not require the trajectories of Xt to be
Ft-adapted or the independence of τ from Ft.
Another example is the following. We suppose that under Q̂, the discounted
asset price Xt is of the form

Xt = x0e
σ(τ)Wt− 1

2
σ(τ)2t, x0 > 0,

where σ is a su�ciently integrable positive Borel function, and X̄

BT

= X2
T .

In this case X̄

BT

is (strictly) GT -measurable. We obtain

Ê

[
X̄

BT

∣∣∣∣ Fτ−

]
= Ê

[
x2

0e
2σ(τ)WT− 1

2
σ(τ)2T

∣∣∣Gτ−
]

= x2
0e
−σ(τ)2T Ê

[
e2σ(τ)WT

∣∣ Gτ−
]

= x2
0e

σ(τ)2T Ê
[
e2σ(τ)WT−2σ(τ)2T

∣∣∣Gτ−
]

= x2
0e

σ(τ)2T e2σ(τ)Wτ−2σ(τ)2τ

and
Z̄t = x2

0(h(t ∧ T )− 1)eσ(t)2T e2σ(t)Wt−2σ(t)2t.
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We remark that Z̄t is not uniquely de�ned. However in the case that several
possible Ft-predictable process Z̄t exist satisfying equation (4.7), they all pro-
vide the same conditional expectation (4.8). We refer also to [13], page 148,
for a further discussion of this issue.

We compute decomposition (4.18) in two particular cases.

4.3 Example 1: τ dependent on X

We consider �rst the case where the default process may depend on the
evolution of the asset price, but the dynamics of the money market account
and of the stock are not in�uenced by the presence of the default in the
market. We represent this fact by assuming that the interest rate, the drift
and volatility in (2.5) are Ft-adapted processes.
Since the promised contingent claim X̄ is written on the underlying non-
defaultable assets St and Bt, in this setting X̄ is FT -measurable and we have

Ê

[
X̄

BT

∣∣∣∣ Gt

]
= Ê

[
X̄

BT

∣∣∣∣ Ft

]
,

as a consequence of our hypothesis (H) under Q̂. Hence we get η̄ = 0 in
(4.4).
We show now how to hedge a Corporate bond with a Treasury bond by using
the local risk-minimizing approach, i.e. we compute the plrm-strategy for a
defaultable claim H whose promised contingent claim X̄ is equal to 1, i.e.
X̄ = p(T, T ) = 1, where the process p(t, T ) represents the price of a Treasury
bond that expires at time T . For the sake of simplicity we put

Bt ≡ 1, ∀t ∈ [0, T ].

Hence the discounted value of H can be represented as follows:

H = 1 + (h(τ ∧ T )− 1)HT . (4.22)

In addition we assume the following hypotheses:
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• λt is an a�ne process, in particular it satis�es the following equation
under Q̂: {

dλt = (b + βλt)dt + α
√

λtdŴt

λ0 = 0,
(4.23)

where b, α ∈ R+ and β is arbitrary. It is the Cox-Ingersoll-Ross model
and we know it has a unique strong solution λ ≥ 0 for every λ0 ≥ 0.
You can see [20] for further details.

• The Borel function h : R→ R is de�ned as follows:

h(x) = α0I{x≤T0} + α1I{x>T0}, (4.24)

where α0, α1 ∈ R+ with 0 ≤ α0 < α1 and T0 is a �xed date before the
maturity T .

Under the equivalent martingale probability measure Q̂, the discounted op-
timal portfolio value V̂t of the defaultable claim H given in (5.33) at time t,
is given by:

V̂t = Ê [H|Gt]

= 1 + Ê [(h(τ ∧ T )− 1)HT |Gt]

= 1 + m0 +

∫

]0,t∧τ ]

e
R s
0 λududms +

∫ t

0

(h(s)− 1−Ds)dM̂s, (4.25)

where h is given in (4.24) and m, D and M̂ are the processes introduced
in (4.11), (4.10) and (2.4) respectively (see also Corollary 5.2.2 of [13]). We
focus now on the Ft-martingale mt, that means we compute the conditional
expectation Ê

[∫ T

0
(h(s)− 1)e−

R s
0 λuduλsds

∣∣∣ Ft

]
.

mt = Ê

[∫ T

0

e−
R s
0 λudu

(
(α0 − α1)I{s≤T0} + (α1 − 1)I{s≤T}

)
λsds

∣∣∣∣Ft

]

= (α0 − α1)Ê

[∫ T0

0

e−
R s
0 λuduλsds

∣∣∣∣Ft

]
+ (α1 − 1)Ê

[∫ T

0

e−
R s
0 λuduλsds

∣∣∣∣ Ft

]

= (α1 − α0) Ê
[
e−

R T0
0 λsds

∣∣∣Ft

]

︸ ︷︷ ︸
a)

+(1− α1) Ê
[
e−

R T
0 λsds

∣∣∣ Ft

]

︸ ︷︷ ︸
b)

+α0 − 1.
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b) Since λ is an a�ne process whose dynamics is given in (5.35) , we have

Ê
[
e−

R T
0 λsds

∣∣∣ Ft

]
= e−

R t
0 λsdsÊ

[
e−

R T
t λsds

∣∣∣Ft

]

= e−
R t
0 λsds · e−A(t,T )−B(t,T )λt ,

where the functions A(t, T ), B(t, T ) satisfy the following equations:

∂tB(t, T ) =
α2

2
B2(t, T )− βB(t, T )− 1, B(T, T ) = 0 (4.26)

∂tA(t, T ) = −bB(t, T ), A(T, T ) = 0, (4.27)

that admit explicit solutions (see for instance [21]). It is clear that the Ft-
martingale Ê

[
e−

R T
0 λsds

∣∣∣Ft

]
admits the integral representation with respect

to the underlying Brownian motion Ŵt, then it must be of the form

Ê
[
e−

R T
0 λsds

∣∣∣ Ft

]
= Ê

[
− R T

0 λsds
]

+

∫ t

0

ϕsdŴs,

for a suitable ϕ. The Itô formula yields

d
(
e−

R t
0 λsds · e−A(t,T )−B(t,T )λt

)
=

= e−
R t
0 λsds d

(
e−A(t,T )−B(t,T )λt

)
︸ ︷︷ ︸

c)

−e−A(t,T )−B(t,T )λte−
R t
0 λsdsλtdt. (4.28)

We focus now on c).applying Itô formula we get

d
(
e−A(t,T )−B(t,T )λt

)
= e−A(t,T )d

(
e−B(t,T )λt

)
+ e−B(t,T )λtd

(
e−A(t,T )

)

= e−A(t,T )−B(t,T )λt

[(
− ∂

∂t

B(t, T )λt − bB(t, T )− βB(t, T )λt+

+
1

2
α2B2(t, T )λt − ∂

∂t

A(t, T )

)
dt− αB(t, T )

√
λtdŴt

]
. (4.29)

By plugging (4.29) into (4.28) and by (4.26) and (4.27), we obtain

d
(
e−

R t
0 λsds · e−A(t,T )−B(t,T )λt

)
= −e−

R t
0 λsds−A(t,T )−B(t,T )λt

(
αB(t, T )

√
λtdŴt

)
.

Hence

Ê
[
e−

R T
0 λsds

∣∣∣ Ft

]
= e−A(0,T ) −

∫ t

0

αe−
R s
0 λudu−A(s,T )−B(s,T )λsB(s, T )

√
λsdŴs

(4.30)
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Similarly we can compute a) and we get

Ê
[
e−

R T0
0 λsds

∣∣∣Ft

]
= e−A(0,T0)+

−
∫ t

0

αI{s≤T0}e
− R s

0 λudu−A(s,T0)−B(s,T0)λsB(s, T0)
√

λsdŴs. (4.31)

Finally gathering the results, we obtain

mt = α0 − 1 + (α1 − α0)e
−A(0,T0) + (1− α1)e

−A(0,T )+

−
∫ t

0

αe−
R s
0 λudu

(
(α1 − α0)I{s≤T0}e

−A(s,T0)−B(s,T0)λsB(s, T0)+

+ (1− α1)e
−A(s,T )−B(s,T )λsB(s, T )

)√
λsdŴs.

Consequently Dt is given by

Dt = e
R t
0 λsdsmt − e

R t
0 λsds

∫ t

0

(h(s)− 1)e−
R s
0 λuduλsds

= e
R t
0 λsdsmt + (α0 − α1)(1− e−

R T0
t λsds)I{t≤T0}

+ [(α0 − α1)e
− R T0

t λsds − (α0 − 1)e
R t
0 λsds + α1 − 1]

(4.32)

Finally we can write explicitly decomposition (4.25) that provides the FS
decomposition for H:

V̂t = α0 + (α1 − α0)e
−A(0,T0) + (1− α1)e

−A(0,T )+

−
∫

t∧τ

α

σsXs

(
(α1 − α0)I{s≤T0}e

−A(s,T0)−B(s,T0)λsB(s, T0)+

(1− α1)e
−A(s,T )−B(s,T )λsB(s, T )

)√
λsdXs +

∫ t

0

(h(s)− 1−Ds)dM̂s, (4.33)

where A, B, h, D and M are given in (4.27), (4.26), (4.24), (4.32) and (2.4)
respectively.

4.4 Example 2: X dependent on τ

We study now the case when the default time may in�uence the dynamics
of the asset price but not vice versa. We suppose then that the default time
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τ = τ(η) and the underlying Brownian motion W = W (ω̃) are independent
and de�ned on the product space Ω = Ω̃ × E, endowed with the product
�ltration Gt = Ft⊗Ht, ∀t ∈ [0, T ] and the product probability Q = QW ⊗ ν,
where QW is the Wiener measure and ν is the law of Ht = I{τ≤t}. Note that
now with respect to the previous setting we have ω = (ω̃, η). In particular
following [6], we assume that the dynamics of St are of the form

dSt = St [µt(η)dt + σt(η)dWt] , (4.34)

and that the hypotheses outlined in Section 2.2 still hold. Note that here we
are focusing on the case where drift and volatility depend only on η, seen as
an exterior source of randomness.
Consider now the larger �ltration G̃t := Ft ⊗HT , obtained by adding to Gt

the full information about η since the initial instant t = 0: it follows that
Gt ⊂ G̃t, 0 ≤ t < T . We suppose that Wt is a Brownian motion with respect
to G̃t.

Proposition 4.4.1. Under the hypotheses outlined above the process ξH
t

given in (4.19) coincides with the predictable projection2 of the G̃t-predictable
process ξ̃H

t such that
∫ T

0
(ξ̃H

s )2ds < ∞ a.s. and

X̄

BT

= Ê

[
X̄

BT

∣∣∣∣G̃0

]
+

∫ T

0

ξ̃H
s dŴs.

Proof. Since GT = FT ∨HT , we may prove the Proposition in the case when
the GT -measurable random variable X̄

BT

is of the form X̄

BT

= (1−HT )F , for
some FT -measurable random variable F . We compute �rst decomposition
(4.4) for X̄

BT

. We note that

X̄

BT

= (1−HT )F = (1−HT )e
R T
0 λuduF̄ = LT F̄ ,

where the process Lt = (1−Ht)e
R t
0 λudu is a Gt-martingale (see Lemma 5.1.7

of [13] for further details) and F̄ = e−
R t
0 λuduF is an FT -measurable, integrable

2For an extensive discussion of this subject we refer to Appendix A
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random variable. First by the martingale representation property of the
Brownian �ltration, we have

F̄ = Ê
[
F̄

]
+

∫ T

0

ξudŴu,

where ξt is a Ft-predictable process. Then

X̄

BT

= LT

(
Ê

[
F̄

]
+

∫ T

0

ξudŴu

)
= LT Ê

[
F̄

]
+

∫ T

0

LT ξtdŴt, (4.35)

i.e. X̄

BT

is attainable with respect to the larger �ltration G̃t. If we put

Gt := Ê
[
F̄

∣∣ Ft

]
, we have

X̄

BT

= LT F̄ = LT Ê [F |FT ] = LT GT .

By Proposition 5.1.3 of [13] we have Lt = E(−M)t, where M̂t = Ht −∫ t∧τ

0
λudu. Hence [L,G]t = 0, for every t ∈ [0, T ] and the Itô integration

by parts formula yields

X̄

BT

= L0G0 +

∫ T

0

Lt−dGt +

∫ T

0

GtdLt + [L,G]T

= Ê
[
F̄

]
+

∫ T

0

Lt−ξtdŴt +

∫ T

0

Ê
[
F̄

∣∣ Ft

]
dLt

= Ê
[
F̄

]
+

∫ T

0

Lt−ξtdŴt −
∫ T

0

Ê
[
F̄

∣∣ Ft

]
LtdM̂t, (4.36)

since Gt = Ê
[
F̄

∣∣ Ft

]
is continuous. On the other hand by (4.2), we get

X̄

BT

= LT F̄ = Ê
[
LT F̄

]
+

∫ T

0

ξ̄tdŴt +

∫ T

0

η̄tdM̂t, (4.37)

and the uniqueness of the decomposition implies that

ξ̄t = Lt−ξt = (LT ξ·)
p
t ,

i.e. ξ̄ coincides with the predictable projection of the process LT ξt.
Analogously we compute the decomposition of Ê

[
X̄

BT

(h(τ ∧ T )− 1)HT

∣∣∣G̃t

]
,
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that is given by

Ê

[
X̄

BT

(h(τ ∧ T )− 1)HT

∣∣∣∣G̃t

]

= (h(τ ∧ T )− 1)HT

(
Ê

[
X̄

BT

∣∣∣∣G̃0

]
+

∫ T

0

LT ξudŴu

)

= (h(τ ∧ T )− 1)HT Ê

[
X̄

BT

∣∣∣∣G̃0

]
+

∫ T

0

Lsξu(h(τ ∧ T )− 1)HT︸ ︷︷ ︸
Ψ̃u

dŴu.

With a similar argument as before we can conclude that the integrand

Ψt = (1−Ht)e
R t
0 λsdsξm

t

appearing in decomposition (4.15) of Ê
[

X̄

BT

(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
is the pre-

dictable projection of Ψ̃t.

In particular we note that we obtain again the results of Theorem 4.6 and
Theorem 4.16 of [22]. Hence (4.36) is the FS decomposition in the case of
incomplete information. Namely if the trader would have access to the larger
�ltration G̃t which contains at any time the information on past and future
behavior of the default time, the market would be complete because the
volatility and drift are deterministic with respect to G̃t.

Example 4.4.2. We apply these results to �nd the plrm-strategy for a de-
faultable claim H whose promised contingent claim X̄ is given by the standard
payo� of a call option, i.e. X̄ = (ST −K)+, where K ∈ R+ represents the
exercise price. Hence the discounted value of H can be represented as follows:

H =
(ST −K)+

BT

(1 + (h(τ ∧ T )− 1)HT ) (4.38)

and with respect to G̃t, the discounted replicating portfolio Ṽt for H is given
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by:

Ṽt = Ê[H|G̃t]

= Ê

[
(ST −K)+

BT

(1 + (h(τ ∧ T )− 1)HT )

∣∣∣∣G̃t

]

= (1 + (h(τ ∧ T )− 1)HT )Ê

[
(ST −K)+

BT

∣∣∣∣G̃t

]

= (1 + (h(τ ∧ T )− 1)HT )

(
XtÊ

X [IA|G̃t]− K

BT

Ê[IA|G̃t]

)

= (1 + (h(τ ∧ T )− 1)HT )ÊX [IA|G̃t]Xt

− (1 + (h(τ ∧ T )− 1)HT )
K

BT

Ê[IA|G̃t], (4.39)

where A denotes the event {ST ≥ K} and by [6] we have that the minimal
martingale measure under the numéraire Xt satis�es

dQ̂X

dQ̂

∣∣∣∣
G̃t

=
XT

X0

since Xt is a square-integrable G̃t-martingale under Q̂. By standard delta-
hedging arguments the process ξ̃H

t = (1 + (h(τ ∧ T )− 1)HT )ÊX [IA|G̃t] repre-
sents the component invested in the discounted risky asset Xt of the replicat-
ing portfolio with respect to the �ltration G̃t.
By Proposition 4.4.1 we only need to compute the predictable projection ξH

of the process ξ̃H .
By Theorem VI.43 of [19], we need to check that for every predictable Gt-
stopping time τ̂

ξτ̂ I{τ̂<∞} = Ê
[
(h(τ ∧ T )− 1)HT ÊX [IA|G̃τ̂ ]I{τ̂<∞}

∣∣Gτ̂−
]
,
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i.e.

ξτ̂ I{τ̂<∞} = Ê

[
(h(τ ∧ T )− 1)HT

Ê[XT IA|G̃τ̂ ]

Ê[XT |G̃τ̂ ]
I{τ̂<∞}

∣∣∣∣Gτ̂−

]

= Ê

[
(h(τ ∧ T )− 1)HT

1

Xτ̂

Ê[XT IA|G̃τ̂ ]I{τ̂<∞}

∣∣∣∣Gτ̂−

]

= Ê

[
Ê

[
(h(τ ∧ T )− 1)HT

XT

Xτ̂

IA
∣∣∣∣G̃τ̂

]
I{τ̂<∞}

∣∣∣∣Gτ̂−

]

= Ê

[
(h(τ ∧ T )− 1)HT

XT

Xτ̂

IAI{τ̂<∞}

∣∣∣∣Gτ̂−

]

= ÊX

[
(h(τ ∧ T )− 1)HT IAI{τ̂<∞}

∣∣∣∣Gτ̂−

]
.

If we suppose that the process ÊX [(h(τ∧T )−1)HT IA|Gt−] has a left-continuous
version, then it coincides with the Gt-predictable projection under the proba-
bility Q̂X . Hence the plrm-strategy for H, whose promised contingent claim
X̄ is given by the standard payo� of a call option, is given by

ξH
t = ÊX

[
IA (1 + (h(τ ∧ T )− 1) HT )

∣∣∣∣Gt−

]
. (4.40)
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Chapter 5

Local Risk-Minimization for
Defaultable Claims with Recovery
Scheme at Default Time

5.1 Introduction

In this chapter we study the local risk-minimization approach for defaultable
claims with a random recovery scheme at default time, i.e. a random recovery
payment is received by the owner of the contract in case of default at time
of default.
In Chapter 3 we have applied for the �rst time the local risk-minimization
approach to defaultable markets, in particular to price and hedge a default-
able put only under the assumption that the default time occurring and the
risky asset behavior are independent. In Chapter 4 we have extended these
results to the case of a general defaultable claim with random recovery at
maturity, in a more general setting, assuming a mutual dependence of the
risky asset behavior and the default time.
Here according to [3], we consider a general defaultable claim with random
recovery at default time, represented by a predictable stochastic process. Our
goal is to provide the pseudo-locally risk-minimizing strategy in the case when

75
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the agent information takes into account the possibility of a default event.
Moreover in Section 5.2.2 we discuss the problem of �nding a pseudo-locally
risk-minimizing strategy if we suppose the agent obtains her information only
by observing the non-defaultable assets.

5.2 Local risk-minimization for defaultable claims
All the hypotheses outlined in Section 2.2 are supposed to hold in this frame-
work. In particular we assume that the short-term interest rate r is a F-
predictable process and that the promised contingent claim X̄ is represented
by a FT -measurable random variable. Under the hypotheses of Section 2.2,
we investigate now the local risk-minimization approach for a defaultable
claim H with random recovery scheme at default time and zero-recovery at
maturity. Hence the discounted value of H can be represented as follows:

H =
X̄

BT

I{τ>T} +
Z

Bτ

I{τ≤T} (5.1)

where the recovery process Z is given by a F-predictable process. In particu-
lar we obtain that H ∈ L2(GT ,Q). In this setting we study the problem of a
trader wishing to price and hedge a defaultable claim H which pays a positive
random recovery in case of default at default time τ . We recall that our mar-
ket model is incomplete even if we assume to trade with Gt-adapted strategies
because M̂t does not represent the value of any tradable asset. According
to [3], we are able to provide a pseudo-locally risk-minimizing strategy for
such defaultable claim. Since in practice hedging a credit derivative after
default time is usually of minor interest and in our model we have only a
single default time, we follow the approach of [12] and assume that hedging
stops after default. Hence we need to reformulate the local risk-minimization
approach, that can be applied to contingent claims that ensure one payment
at a �xed date. Here we have a defaultable claim which guarantees a pay-
ment at a �xed date, but in this case it can be maturity or default time, if
a default event occurs before the expiration date of the contract. Hence we
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look for a hedging strategy ϕ for H given in (5.1) with minimal cost C and
such that the discounted value process satis�es

Vτ∧T (ϕ) = H.

First we look for Gt-strategies, i.e. we admit that the agent information takes
into account the possibility of a default event. Then we wish to investigate
the problem of �nding a pseudo-locally risk-minimizing strategy in the case
when the agent obtains her information only by observing the asset prices on
the non-defaultable market before the default happens. This is equivalent to
look for a pseudo-locally risk-minimizing strategy in the class of Ft-strategies,
i.e. adapted to the smaller �ltration generated by the Brownian motion. We
discuss this issue in Section 5.2.2.

5.2.1 Local risk-minimization with Gt-strategies
By following [22] and [35] we introduce the G-pseudo-locally risk-minimizing
strategy for defaultable claims with recovery scheme at default time. We
denote by ΘG

s the space of G-predictable processes ξ on Ω such that

E

[∫ T

0

(ξsσsXs)
2ds

]
+ E

[(∫ T

0

|ξs(µs − rs)Xs|ds

)2
]

< ∞. (5.2)

De�nition 5.2.1. Let H =
X̄

BT

I{τ>T} +
Zτ

Bτ

I{τ≤T} ∈ L2(Ω,GT ,Q) be the
discounted value of a defaultable claim. A pair ϕG = (ξ, η) of stochastic
processes is said a G-pseudo-locally risk-minimizing strategy (in short G-
plrm-strategy) if

1. ξt ∈ ΘG
s ;

2. ηt is Gt-adapted;

3. The discounted value process Vt(ϕ
G) = ξtXt + ηt is such that

Vt(ϕ
G) =

∫ t

0

ξsdXs + Ct(ϕ
G), t ∈ J0, τ ∧ T K (5.3)
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where Ct is the cost process and it is a square-integrable Gt-martingale
strongly orthogonal to the martingale part of Xt, and Vτ∧T (ϕG) = H,
i.e.

VT (ϕG) =
X̄

BT

if τ > T, Vτ (ϕ
G) =

Zτ

Bτ

if τ ≤ T. (5.4)

In the next result we can see how to characterize a G-plrm strategy for the
defaultable claim H given in (5.1).
We recall that M2

0(Q) is the space of all Q-square-integrable martingales with
zero initial value.

Proposition 5.2.2. A defaultable claim H =
X̄

BT

I{τ>T}+
Zτ

Bτ

I{τ≤T} belonging
to L2(Ω,GT ,Q) admits a G-plrm-strategy ϕG = (ξ, η) if and only if H can be
written as

H = H0 +

∫ τ∧T

0

ξH
s dXs + LH

τ∧T Q− a.s. (5.5)

where H0 ∈ R, ξH ∈ ΘG
s and LH ∈ M2

0(Q) is strongly orthogonal to the
martingale part of X. The G-plrm-strategy ϕG is given by

ξt = ξH
t , t ∈ J0, τ ∧ T K

with minimal cost

Ct(ϕ
G) = H0 + LH

t , t ∈ J0, τ ∧ T K.

If (5.5) holds, the optimal portfolio value is

Vt(ϕ
G) = Ct(ϕ

G) +

∫ t

0

ξsdXs = H0 +

∫ t

0

ξsdXs + LH
t , t ∈ J0, τ ∧ T K

and
ηt = ηH

t = Vt(ϕ
G)− ξH

t Xt, t ∈ J0, τ ∧ T K.

Decomposition (5.5) is the (stopped) Föllmer-Schweizer decomposition (in
short FS decomposition) of H. Again we need to �nd the minimal martingale
measure (see De�nition 1.3.15) in this framework. Under assumption (2.8)
we know that the minimal martingale measure Q̂ exists and it is unique by
Proposition 4.2.2. In addition, we recall that by Proposition 4.2.2 the pair
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(Ŵ , M̂), where Ŵt = Wt +
∫ t

0
θsds, for every t ∈ [0, T ], has the predictable

representation property under Q̂. Hence every Gt-martingale Nt under Q̂ can
be written as

Nt = N0 +

∫ t

0

ξN
s dŴs +

∫

]0,t]

ζN
s dM̂s, (5.6)

for every t ∈ [0, T ]. Again, how to use Q̂ to characterize the G-plrm strategy
is shown in Theorem 1.3.16. The next result guarantees the existence of the
pseudo-locally risk-minimizing strategy for H.

Proposition 5.2.3. Let H ∈ L2(Ω, GT ,Q) be the defaultable claim given in
(5.1) and de�ne the Gt-martingale GH

t = Ê [H|Gt], t ∈ [0, T ]. Then there
exists a pair of G-predictable processes (ξ̃, ζ̃) satisfying

∫ t

0

ξ̃2
sds +

∫ t

0

ζ̃2
s d[M̂ ]s < ∞ t ∈ [0, T ] a.s.

such that

GH
t = GH

0 +

∫ t

0

ξ̃sdŴs +

∫

]0,t]

ζ̃sdM̂s, ∀t ∈ J0, τ ∧ T K (5.7)

under Q̂, where Ŵt = Wt +
∫ t

0
θsds, for every t ∈ [0, T ].

Proof. We can rewrite H as follows:

H =
X̄

BT

(1−HT )
︸ ︷︷ ︸

a)

+
Zτ

Bτ

HT

︸ ︷︷ ︸
b)

.

a) We note that

(1−HT )
X̄

BT

= (1−HT )e
R T
0 λsdsF = LT F,

where we have put
F = e−

R T
0 λsds X̄

BT

, (5.8)

and the process Lt = (1 − Ht)e
R t
0 λsds is a Gt-martingale (see Lemma 5.1.7

of [13] for further details) such that
∫ t

0

(
(1−Hs)e

R s
0 λudu

)2
ds < ∞, ∀t ∈
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[0, T ]. By decomposition (46) that can be found in the proof of Proposition
6.1 of [2], we obtain the following representation of (1−HT )

X̄

BT

:

(1−HT )
X̄

BT

= Ê [F ] +

∫ T

0

I{τ>t}e
R t
0 λuduξtdŴt −

∫

]0,T ]

I{τ≥t}e
R t
0 λuduÊ [F |Ft] dM̂t

= Ê [F ] +

∫ τ∧T

0

e
R t
0 λuduξtdŴt −

∫

]0,τ∧T ]

e
R t
0 λuduÊ [F |Ft] dM̂t, (5.9)

where ξt is the Ft-predictable process such that
∫ t

0
(ξs)

2ds < ∞ for every
t ∈ [0, T ], that appears in the following integral representation of the Ft-
martingale Ẽ [F |Ft] with respect to the Brownian motion Ŵt given by

Ê [F |Ft] = Ê [F ] +

∫ t

0

ξsdŴs. (5.10)

b) It remains to decompose the term Zτ

Bτ

HT . By following Section 4 of [2],
we have:

Ê

[
Zτ

Bτ

HT

∣∣∣∣ Gt

]

= HtÊ

[
Zτ

Bτ

HT

∣∣∣∣Ft ∨HT

]
+ (1−Ht)Ê

[
(1−Ht)e

R t
0 λsds Zτ

Bτ

HT

∣∣∣∣ Ft

]

= HtÊ

[
Zτ

Bτ

∣∣∣∣Ft ∨HT

]
+ (1−Ht)e

R t
0 λsds · Ê

[
I{t<τ≤T}

Zτ

Bτ

∣∣∣∣Ft

]

︸ ︷︷ ︸
c)

. (5.11)

We focus now on the conditional expectation c). Since Z

B
is a F-predictable

process, in view of Proposition 5.1.1 of [13] the following equality holds

Ê

[
I{t<τ≤T}

Zτ

Bτ

∣∣∣∣ Ft

]
= Ê

[∫ T

t

Zs

Bs

e−
R s
0 λuduλsds

∣∣∣∣Ft

]
. (5.12)

Hence we can rewrite (5.11) as follows:

Ê

[
Zτ

Bτ

HT

∣∣∣∣ Gt

]

= HtÊ

[
Zτ

Bτ

∣∣∣∣Ft ∨HT

]
+ (1−Ht)e

R t
0 λsdsÊ

[∫ T

t

Zs

Bs

e−
R s
0 λuduλsds

∣∣∣∣ Ft

]
.

(5.13)
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We consider the process D introduced in (4.10) that is given in this case by

Dt = e
R t
0 λsdsẼ

[∫ T

t

Zs

Bs

e−
R s
0 λuduλsds

∣∣∣∣ Ft

]
(5.14)

and the Ft-martingale mt introduced in (4.11):

mt = Ê

[∫ T

0

Zs

Bs

e−
R s
0 λuduλsds

∣∣∣∣ Ft

]
. (5.15)

Following the same procedure applied in the previous chapter, we write Dt in
terms of the Ft-martingale mt and by applying the Itô integration by parts
formula, we obtain

Dt = m0 +

∫

]0,t]

e
R s
0 λududms +

∫ t

0

(
Ds − Zs

Bs

)
λsds.

Furthermore, since Dt is a càdlàg process, we have

(1−Ht)Dt = m0 +

∫

]0,t∧τ ]

dDs − I{τ≤t}Dτ .

Hence

(1−Ht)Dt = m0 +

∫

]0,t∧τ ]

e
R s
0 λududms −

∫ t

0

DsdM̂s −
∫ t∧τ

0

Zs

Bs

λsds.

Consequently we can rewrite (5.13) as follows:

Ê

[
Zτ

Bτ

HT

∣∣∣∣ Gt

]
= HtÊ

[
Zτ

Bτ

∣∣∣∣Ft ∨HT

]

+ m0 +

∫

]0,t∧τ ]

e
R s
0 λududms −

∫ t

0

DsdM̂s −
∫ t∧τ

0

Zs

Bs

λsds.

(5.16)

To express the right-hand side of (5.16) as a stochastic integral with respect
to m and M̂ , we need the following Lemma.

Lemma 5.2.4.

HtÊ

[
Zτ

Bτ

∣∣∣∣Ft ∨HT

]
=

∫ t

0

Zs

Bs

dHs = Ht
Zτ

Bτ

, ∀t ∈ [0, T ]. (5.17)
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Proof. We recall the σ-algebra

Fτ− = σ (A ∩ {τ > t}, A ∈ Ft, 0 ≤ t ≤ T )

of the events strictly prior to τ . We note that since Fτ− = Gτ− by Lemma
5.1.1 of [13] and the recovery process Z refers to a recovery payment in the
interval [0, T ] only, then the following holds:

Ê

[
Zτ

Bτ

∣∣∣∣Fτ−

]
= Ê

[
Zτ

Bτ

∣∣∣∣Gτ−

]
= Ê

[
Zτ

Bτ

I{τ<∞}

∣∣∣∣ Gτ−

]
. (5.18)

Moreover Zt

Bt

is in particular a Gt-predictable process and τ is a Gt-stopping
time. Therefore we can apply Theorem 88C page 141 of [18] and obtain

Ê

[
Zτ

Bτ

I{τ<∞}

∣∣∣∣Gτ−

]
=

Zτ

Bτ

. (5.19)

Lemma 4.4 of [2] guarantees that

HtÊ

[
Zτ

Bτ

∣∣∣∣ Fτ−

]
= HtÊ

[
Zτ

Bτ

∣∣∣∣Ft ∨HT

]
, ∀t ∈ [0, T ].

Hence, the equality (5.17) follows.

Finally gathering the results, we obtain by Lemma 5.2.4

Ê

[
Zτ

Bτ

HT

∣∣∣∣ Gt

]

= Ht
Zτ

Bτ

+ m0 +

∫

]0,t∧τ ]

e
R s
0 λududms −

∫ t

0

DsdM̂s −
∫ t∧τ

0

Zs

Bs

λsds

= m0 +

∫ t

0

Zs

Bs

dM̂s +

∫

]0,t∧τ ]

e
R s
0 λududms −

∫ t

0

DsdM̂s

= m0 +

∫

]0,t∧τ ]

e
R s
0 λuduξm

s dŴs +

∫ t

0

(
Zs

Bs

−Ds

)
dM̂s, (5.20)

where we have used the fact that the continuous Ft-martingale mt admits the
following integral representation with respect to the Brownian motion Ŵt

mt = m0 +

∫ t

0

ξm
s dŴs, (5.21)
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for some Ft-predictable process ξm, such that Ê
[∫ t

0
(ξm

s )2ds
]

< +∞, ∀t ∈
[0, T ]. Moreover, since all the integrability conditions are satis�ed we have

Zτ

Bτ

HT = m0 +

∫

]0,τ∧T ]

e
R s
0 λuduξm

s dŴs +

∫ T

0

(
Zs

Bs

−Ds

)
dM̂s.

We conclude that the asserted formula holds, with the following processes:

ξ̃t = e
R t
0 λsdsI{τ≥t}(ξt + ξm

t ) and ζ̃t = e
R t
0 λsdsÊ [F |Ft] +

Zt

Bt

−Dt. (5.22)

for every t ∈ J0, τ ∧ T K.

We use now Proposition 5.2.3 to �nd the G-plrm-strategy for H by comput-
ing the Galtchouk-Kunita-Watanabe decomposition of H under Q̂. Theorem
1.3.16 and hypothesis (2.8) guarantee that this is indeed the FS-decomposition
for H.

Proposition 5.2.5. In the market model outlined in Section 2.2 and under
the assumptions of Section 5.2, the FS decomposition for H de�ned in (5.1)
is given by

V̂t = Ê [F ] + m0 +

∫ t

0

I{τ≥s}

(
e
R s
0 λudu(ξs + ξm

s )

σsXs

)
dXs

+

∫ t

0

(
e
R s
0 λuduÊ [F |Fs] +

Zs

Bs

−Ds

)
dM̂s,

(5.23)

where m, ξ, ξm, F and D are given in respectively in (5.15), (5.9), (5.21),
(5.8) and (5.14). In particular we have that the G-plrm-strategy ϕG is given
by

ξH
t = I{τ≥t}

e
R t
0 λsds(ξt + ξm

t )

σtXt

, ∀t ∈ J0, τ ∧ T K (5.24)

and the minimal cost is

CH
t = Ê [F ] + m0 +

∫ t

0

(
I{τ≥s}e

R s
0 λuduÊ [F |Fs] +

Zs

Bs

−Ds

)
dM̂s, (5.25)

∀t ∈ J0, τ ∧ T K.
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Proof. Since σt > 0 for every t ∈ [0, T ], by Proposition 5.2.3 we can rewrite
decomposition (5.9) in terms of Xt:

(1−HT )
X̄

BT

= Ê [F ] +

∫ T

0

I{τ≥s}e
R s
0 λuduξsdŴs −

∫

]0,T ]

I{τ≥s}e
R s
0 λuduÊ [F |Ft] dM̂s

= Ê [F ] +

∫ T

0

I{τ≥s}

(
e
R s
0 λuduξs

σsXs

)
dXt −

∫

]0,T ]

I{τ≥s}e
R s
0 λuduÊ [F |Ft] dM̂s.

Analogously we have

Zτ

Bτ

HT = m0 +

∫

]0,T ]

I{τ≥s}e
R s
0 λuduξm

s dŴs +

∫ T

0

(
Zs

Bs

−Ds

)
dM̂s

= m0 +

∫

]0,T ]

I{τ≥s}

(
e
R s
0 λuduξm

s

σsXs

)
dXs +

∫ T

0

(
Zs

Bs

−Ds

)
dM̂s.

Then hypothesis (2.8) and Theorem 1.3.16 guarantee that (5.23) gives the
FS decomposition of H.

5.2.2 Local risk-minimization with Ft-strategies
We remark that we have assumed that replication refers to the behavior of the
discounted value process on the random interval J0, τ∧T K only. The following
Lemma is essential to introduce the problem of local risk-minimization with
Ft-strategies.

Lemma 5.2.6. Let Gt = Ft ∨ Ht, t ∈ [0, T ] and F be the process de�ned
in (2.1). Then for any Gt-predictable process φ̃t there exists a Ft-predictable
process φt such that

I{τ≥t}φt = I{τ≥t}φ̃t, t ∈ [0, T ]. (5.26)

If in addition, the inequality Ft = Q(τ ≤ t|Ft) < 1 holds for every t ∈ [0, T ],
then the process φt satisfying (5.26) is unique.

Proof. See [17], page 186, for the proof.
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By Lemma 5.2.6 we obtain that there exists a Ft-predictable process X̃t such
that

X̃tI{τ≥t} = XtI{τ≥t}, t ∈ [0, T ].

Following [10] and [12] we refer to X̃t as the pre-default value of Xt. In
practice, the agent observes the pre-default (discounted) value X̃ and hedges
by using X̃ until the default happens. Hence it is su�cient to consider
the prices of primary non-defaultable assets stopped at τ ∧ T in order to
hedge defaultable claims of the form (X̄, Z, τ), following the approach of [10]
and [12]. In addition, Lemma 5.2.6 allows us to assume in the dynamics of
X that the processes µ and σ are F-predictable. This also justi�es that in
Section 5.2 we are already supposing the promised contingent claim X̄ to be
FT -measurable. If it wouldn't be the case, by Lemma 5.2.6 we can always
replace X̄ by its pre-default value, since X̄ appears multiplied by (1 −HT )

in the de�nition (5.1) of the defaultable claim H.
We denote by ΘF

s the space of F-predictable processes ξ on Ω such that

E

[∫ T

0

(ξsσsXs)
2ds

]
+ E

[(∫ T

0

|ξs(µs − rs)Xs|ds

)2
]

< ∞. (5.27)

We observe that there not exist Ft-pseudo-locally risk-minimizing strategies.
In fact, �nding a Ft-pseudo-locally risk-minimizing strategy φF = (ξ, η) is
equivalent to �nd a pair a processes (ξ, C) such that:

- ξt ∈ ΘF
s ;

- the cost process Ct is a Ft-martingale strongly orthogonal to the mar-
tingale part of Xt,

with
Vt(φ

F) =

∫ t

0

ξsdXs + Ct(φ
F), t ∈ J0, τ ∧ T K

and Vτ∧T (φF) = H. Clearly, since H is a GT -measurable random variable, it
may be not replicable by the FT -measurable random variable VT . In fact we
cannot hedge against the occurring of a default by using only the information
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contained in the pre-default asset prices. This is one of the di�erences with
respect to the mean-variance hedging, where the optimal Ft-strategy is given
by the replicating strategy for E [H|Ft], (if it exists). See [7] for further
details.
However, one can think that the agent invests in the risky asset according
to the information provided by the asset behavior before default and adjusts
the portfolio value (by adding or spending money, i.e. modifying the cost),
depending on the occurrence or not of the default. Then it may be reasonable
to give the following de�nition.

De�nition 5.2.7. Let H =
X̄

BT

I{τ>T} +
Zτ

Bτ

I{τ≤T} ∈ L2(Ω,GT ,Q). A pair
ϕF = (ξ, C) of stochastic processes is said a F-pseudo-locally risk-minimi-
zing strategy (in short F-plrm-strategy) if

1. ξt ∈ ΘF
s ;

2. Ct is Gt-martingale strongly orthogonal to the martingale part of Xt;

3. The discounted value process Vt(ϕ
F) = ξtXt + ηt is such that

Vt(ϕ
F) =

∫ t

0

ξsdXτ
s + Ct(ϕ

F), (5.28)

where Vτ∧T (ϕF) = H, i.e.

VT (ϕF) =
X̄

Bτ

if τ > T, Vτ (ϕ
F) =

Zτ

Bτ

if τ ≤ T. (5.29)

Clearly the component η invested in the money market account, is given by

ηt = Vt(ϕ
F)− ξtX̃t = Ct(ϕ

F), t ∈ J0, τ ∧ T K.

The key result to �nd a F-plrm strategy for H is given by the following
Lemma.

Lemma 5.2.8. Given a G-predictable process φ such that Ê
[∫ T

0
φ2

sd〈X〉s
]

<

∞, let φ̃ be the F-predictable process such that I{τ≥t}φt = I{τ≥t}φ̃t. Then for
every t ≤ T ∫ t

0

φ̃sdXτ
s =

∫ t

0

φsdXτ
s , ∀t ∈ [0, T ].
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Proof. Since X is a continuous martingale under Q̂ and φ is square-integrable
with respect to X, we have that for t ≤ T

∫ t

0

φsdXτ
s =

∫ τ

0

φsdXs =

∫ t

0

I{s≤τ}φsdXs =

∫ t

0

I{s≤τ}φ̃sdXs =

∫ t

0

φ̃sdXτ
s .

We only need to check that the integral
∫ t

0
φ̃sdXτ

s exists and it is well-de�ned
if the integral

∫ t

0
φsdXτ

s exists and it is well-de�ned. This is clear since if
Ê

[∫ T

0
φ2

sd〈Xτ 〉s
]

< ∞, we have

∞ > Ê

[∫ T

0

φ2
sd〈Xτ 〉s

]
= Ê

[(∫ T

0

φsdXτ
s

)2
]

= Ê

[(∫ T

0

φsI{τ≥s}dXs

)2
]

= Ê

[∫ T

0

φ̃2
sd〈Xτ 〉s

]
,

since I{τ≥t}φt = I{τ≥t}φ̃t by hypothesis.

Proposition 5.2.9. In the market model outlined in Section 2.2, under the
assumptions of Section 5.2, the FS decomposition for H de�ned in (5.1) is
given by

V̂t = Ê [F ] + m0 +

∫ t

0

ξ̂s(ξs + ξm
s )dXτ

s

+

∫ t

0

(
e
R s
0 λuduÊ [F |Fs] +

Zs

Bs

−Ds

)
dMs,

(5.30)

where m, ξ, ξm, F and D are introduced respectively in (5.15), (5.9), (5.21),
(5.8) and (5.14) and the process F-predictable process ξ̂ is given by

ξ̂t =
e
R t
0 λsds

σ̃tX̃t

∀t ∈ J0, τ ∧ T K,

where σ̃ and X̃ are the pre-default values of σ and X respectively. In parti-
cular we have that the pre-F-plrm-strategy is given by

ξH
t = ξ̂t(ξt + ξm

t ), ∀t ∈ J0, τ ∧ T K (5.31)
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and the minimal cost is

CH
t = Ê [F ] + m0 +

∫ t

0

(
e
R s
0 λuduÊ [F |Fs] +

Zs

Bs

−Ds

)
dM̂s, (5.32)

∀t ∈ J0, τ ∧ T K.
Proof. It follows by Proposition 5.2.5 and Lemma 5.2.8.

5.3 Example
In this example, we wish to �nd the G-plrm strategy for a Corporate bond
that we hedge by using a Treasury bond. This example is similar to one
computed in the previous chapter, but now we suppose to have a recovery
at default and we work under a di�erent model for rt. To simplify the com-
putations, we assume that hypothesis (2.8) is satis�ed and we work out the
example directly under Q̂.
We �x T > 0 and assume that the discounted price process Xt is Ft-adapted.
Here we assume that the process X represents the discounted price of a
Treasury bond that expires at time T with the following representation

Xt = Ê
[
e−

R T
0 rsds

∣∣∣ Ft

]
, (5.33)

and that the discounted recovery process Z

B
is given by

Zt

Bt

= δXt, t ∈ [0, T ],

where δ is a constant belonging to the interval ]0, 1[. As we said, we put
X̄ = 1 and the discounted value of H can be represented as follows:

H =
1

BT

(1−HT ) + δXτHT . (5.34)

We make also the following hypotheses:

• r is an a�ne process, in particular it satis�es the following equation
under Q̂: {

drt = (b + βrt)dt + α
√

rtdŴt

r0 = 0,
(5.35)
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where b, α ∈ R+ and β is arbitrary. This is the Cox-Ingersoll-Ross
model and we know it has a unique strong solution r ≥ 0 for every
r0 ≥ 0. See [20] for further details.

• The F-intensity λ is supposed to be a positive deterministic function.

Under the equivalent martingale probability measure Q̂, the discounted op-
timal portfolio value V̂t of the defaultable claim H given in (5.34) at time t,
is given by:

V̂t = Ê [H|Gt] = Ê

[
1

BT

(1−HT ) + δXτHT

∣∣∣∣Gt

]

= e−
R T
0 λ(s)dsÊ

[
1

BT

]
+ m0 +

∫ t

0

I{τ≥s}

(
e
R s
0 λ(u)du(ξs + ξm

s )

σsXs

)
dXs

+

∫ t

0

(
e−

R T
s λ(u)duÊ

[
1

BT

∣∣∣∣Fs

]
+ δXs −Ds

)
dM̂s, (5.36)

where m, ξ, ξm, and D are given in respectively in (5.15), (5.9), (5.21) and
(5.14).
We compute now the terms appearing in decomposition (5.36). First, we
note that in this case the FT -random variable F introduced in (5.8) is given
by

F = e−
R T
0 λ(u)du 1

BT

.

Hence
ξt = e−

R T
0 λ(u)duξX̄

t ,

where ξX̄
t is the Ft-predictable process appearing in the integral representa-

tion of 1

BT

with respect to the Brownian motion Ŵt:

1

BT

= Ê

[
1

BT

]
+

∫ T

0

ξX̄
t dŴt. (5.37)

By following Section 4.4 of the previous chapter, since r is an a�ne process
whose dynamics is given in (5.35), we have

Ê

[
1

BT

∣∣∣∣ Ft

]
= e−

R t
0 rsdse−A(t,T )−B(t,T )rt

= e−A(0,T ) −
∫ t

0

e−A(s,T )−B(s,T )rs
B(s, T )

Bs

√
rsdŴs, (5.38)
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where the functions A(t, T ), B(t, T ) satisfy the following equations:

∂tB(t, T ) =
α2

2
B2(t, T )− βB(t, T )− 1, B(T, T ) = 0 (5.39)

∂tA(t, T ) = −bB(t, T ), A(T, T ) = 0, (5.40)

that admit explicit solutions (see for instance [21]). Hence we can rewrite
decomposition (5.36) as follows:

V̂t

= e−
R T
0 λ(u)du−A(0,T ) + m0

+

∫ t

0

I{τ≥s}
1

σsXs

(
−e−

R T
s λ(u)du−A(s,T )−B(s,T )rs

B(s, T )

Bs

√
rs + e

R s
0 λ(u)duξm

s

)
dXs

+

∫ t

0

[
Xs

(
e−

R T
s λ(u)du + δ

)
−Ds

]
dM̂s. (5.41)

We focus now on the process D. By applying the Fubini-Tonelli Theorem,
we have

Dt = e
R t
0 λ(s)dsẼ

[∫ T

t

δXse
− R s

0 λ(u)duλ(s)ds

∣∣∣∣ Ft

]

=

∫ T

t

e−
R s

t λ(u)duλ(s)δẼ [Xs|Ft] ds

=

∫ T

t

e−
R s

t λ(u)duλ(s)δXtds

= δXt

∫ T

t

e−
R s

t λ(u)duλ(s)ds

= δXt

(
1− e−

R T
t λ(s)ds

)
,

since λ is a deterministic function. We can modify the integral with respect
to M in decomposition (5.41), as follows:

V̂t

= e−
R T
0 λ(u)du−A(0,T ) + m0

+

∫ t

0

I{τ≥s}
1

σsXs

(
−e−

R T
s λ(u)du−A(s,T )−B(s,T )rs

B(s, T )

Bs

√
rs + e

R s
0 λ(u)duξm

s

)
dXs

+ (δ + 1)

∫ t

0

Xse
− R T

s λ(u)dudM̂s. (5.42)
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It only remains to compute the Ft-martingale mt introduced in (5.15) and
in particular its integral representation with respect to the Brownian motion
Ŵt. Since

Dt = e
R t
0 λ(s)dsmt − e

R t
0 λ(s)ds

∫ t

0

δXse
− R s

0 λ(v)dvλ(s)ds,

we can rewrite mt in terms of Dt:

mt

= e−
R t
0 λ(s)dsDt + δ

∫ t

0

Xse
− R s

0 λ(v)dvλ(s)ds

= δ

[
Xt

(
e−

R t
0 λ(s)ds − e−

R T
0 λ(s)ds

)
+

∫ t

0

Xse
− R s

0 λ(v)dvλ(s)ds

]

= δ

[(
e−A(0,T ) −

∫ t

0

e−A(s,T )−B(s,T )rs
B(s, T )

Bs

√
rs

︸ ︷︷ ︸
ϕs

dŴs

)(
e−

R t
0 λ(s)ds − e−

R T
0 λ(s)ds

)

+

∫ t

0

(
e−A(0,T ) −

∫ s

0

ϕudŴu

)
e−

R s
0 λ(v)dvλ(s)ds

]

= δ

[
e−A(0,T )

(
1− e−

R T
0 λ(s)ds

)
−

(
e−

R t
0 λ(s)ds − e−

R T
0 λ(s)ds

) ∫ t

0

ϕsdŴs

−
∫ t

0

∫ s

0

ϕue
− R s

0 λ(v)dvλ(s)dŴuds

]
,

where ϕt is a Ft-predictable process such that

Ê

[∫ T

0

(e−A(s,T )−B(s,T )rs
B(s, T )

Bs

√
rs)

2ds

]
< +∞.

Moreover we note that

Ê

[∫ T

0

∫ T

0

ϕ2
ue
− R s

0 λ(v)dvλ(s)duds

]
=

∫ T

0

∫ T

0

Ê
[
ϕ2

u

]
e−

R s
0 λ(v)dvλ(s)duds < ∞,

since Ê [ϕT ] is bounded because X takes values in (0, 1) (see (5.38)). Since all
the integrability conditions are satis�ed, by applying the Fubini's Theorem
for stochastic integrals, we have

−
∫ t

0

∫ t

0

e−
R s
0 λ(v)dvλ(s)ϕuI{u≤s}dŴuds =

∫ t

0

(
−

∫ t

u

e−
R s
0 λ(v)dvλ(s)ds

)
ϕudŴu

=

∫ t

0

(
e−

R t
0 λ(v)dv − e−

R u
0 λ(v)dv

)
ϕudŴu.
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In particular
m0 = δe−A(0,T )

(
1− e−

R T
0 λ(s)ds

)

and

mt = δ

[
e−A(0,T )

(
1− e−

R T
0 λ(s)ds

)
+

∫ t

0

(
e−

R T
0 λ(v)dv − e−

R u
0 λ(v)dv

)
ϕudŴu

]

(5.43)
Finally, gathering the results we obtain

V̂t

= e−A(0,T )
[
e−

R T
0 λ(u)du + δ

(
1− e−

R T
0 λ(u)du

)]

−
∫ t

0

I{τ≥s}
1

σsXs

ϕsdXs + (δ + 1)

∫ t

0

Xse
− R T

s λ(u)dudM̂s. (5.44)

where the function A(t, T ) and B(t, T ) are provided by (5.40) and (5.39)
respectively. In particular the G-plrm-strategy is given by

ξH
t = − 1

σtXt

ϕt (5.45)

and the minimal cost is

CH
t = e−

R T
0 λ(u)du−A(0,T ) + δe−A(0,T )

(
1− e−

R T
0 λ(s)ds

)

+ (δ + 1)

∫ t

0

Xse
− R T

s λ(u)dudM̂s

(5.46)

for every t ∈ J0, τ ∧ T K.

Remark 5.3.1. The pair (ξH , CH) also provides a F-plrm strategy for H.
In fact the process ξH belongs to ΘF

s , since we have assumed that the drift
and volatility in (2.5) are F-predictable processes.



Appendix A

The predictable projection

We recall the de�nition of predictable projection of a measurable process
endowed with some suitable integrability properties and the main properties.
Let (Ω, F,P) be a probability space endowed with a �ltration (Ft)t≥0.

Theorem A.0.2 (Predictable Projection). Let X be a measurable process
either positive or bounded. There exists a predictable process Y such that

E
[
Xτ I{τ<∞}|Fτ−

]
= Yτ I{τ<∞} a.s. (A.1)

for every predictable stopping time τ .

The process Y is called the predictable projection of X and it is denoted by
Xp.

Proof. See [19] or [30] for the proof.

The predictable projection has the following fundamental properties:

1. In the discrete case, where the space Ω is endowed with a �ltration
(Fn)n≥0, the predictable projection of a process (Xn)n≥0 is the process

Yn = E [Xn|Fn−1] , (n ≥ 0),

with the convention F−1 = F0, if F−1 is not otherwise speci�ed.
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2. To prove (A.1) it is su�cient to prove that, without conditioning,

E
[
Xτ I{τ<∞}

]
= E

[
Yτ I{τ<∞}

]
, for every predictable stopping time τ.

(A.2)

3. If X is measurable and H is a bounded predictable process, then

(HX)p = HXp,

i.e. the predictable projection of an integrable and predictable process
is the process itself.

4. It is possible to give a de�nition of predictable projection also for mea-
surable processes which are neither positive or bounded. We say that
the predictable projection of a measurable process X exists if the pre-
dictable projection of the positive measurable process |X| is indistin-
guishable1 from a �nite process and then we set

Y = Xp = (X+)p − (X−)p.

To check that |X|p is indistinguishable from a �nite process, it is su�-
cient to verify that

[Xτ I{τ<∞}|Fτ−] < ∞, a.s.

for every predictable stopping time τ , i.e. the generalized conditional
expectation2 E[Xτ I{τ<∞}|Fτ−] exists, and then

Yτ I{τ<∞} = E
[
Xτ I{τ<∞}|Fτ−

]
a.s.

1Let (Xt)t≥0 and (Yt)t≥0 be two stochastic processes de�ned on a probability space
(Ω,F,P). We say that X and Y are indistinguishable if for almost all ω ∈ Ω

Xt(ω) = Yt(ω) for all t.

2Given an arbitrary random variable X on a probability space (Ω,F,P) endowed with
the �ltration (Ft)t≥0, we say that X has generalized conditional expectation if E[X+|Ft]

and E[X−|Ft] are �nite a.s. ∀t ≥ 0, and then we set

E[X|Ft] = E[X+|Ft]− [X−|Ft].
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The de�nition of Y is formally the same as (A.1) and characterizes Y

uniquely.

5. If H is an integrable random variable and (Ht)t≥0 denotes a càdlàg
version of the martingale E[H|Ft], the predictable projection of the
process Xt(ω) = H(ω), which is constant through time, is the process
(Ht−)t≥0. More generally, if H is a local martingale and τ a predictable
stopping time, the conditional expectation E[Hτ |Fτ−] exists and takes
the value Hτ−. According to (4), this means that H has a predictable
projection, which is the process (Ht−)t≥0.

De�nition A.0.3. An increasing process is any process (At)t≥0 adapted
to the �ltration (Ft)t≥0, whose paths are positive, increasing, �nite, right-
continuous on [0,∞[.

The di�erences of increasing processes are called processes of �nite varia-
tion. The following Theorem which involves increasing processes, provides
the characteristic properties of predictable projections.

Theorem A.0.4. Let X be a positive measurable process and Y its pre-
dictable projection. Let A be an increasing predictable process. Then

E

[∫

[0,∞[

XsdAs

]
= E

[∫

[0,∞[

YsdAs

]
. (A.3)

Proof. See Theorem 57, page 122 of [19] for the proof.

We note that if we take At = I{τ≤t}, where τ is a predictable stopping
time, formula (A.3) reduces to E

[
Xτ I{τ<∞}

]
= E

[
Yτ I{τ<∞}

]
and this prop-

erty is equivalent to the de�nition of the predictable projection.
Moreover we note the analogous formula on an interval [τ,∞[

E

[∫

[T,∞[

XsdAs

∣∣∣Fτ−

]
= E

[∫

[T,∞[

YsdAs

∣∣∣Fτ−

]
,

where in particular τ and A are predictable.
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We conclude with an intuitive interpretation of this projection. The σ-�eld
Ft describes the entire information available at time t. If we consider a
measurable process H which is not adapted, it is not possible to capture X

behavior but we can estimate it. Theorem A.0.2 says that we can estimate
the whole path of X and the computation of the evaluation at time t should
not depend on what the process is doing at that time, but only on its behavior
strictly before t.
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