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Chapter 1
Music and representations: an introduction

Musica est exercitium arithmeticae occultum
nescientis se numerare animi.

Gottfried Leibniz

Abstract

The chapter provides an introduction to the context of this research, that is
based on the essential relation between music and mathematics. After an his-
torical overview, the main motivation of this work is explained.

usic has a dual nature. From one side, it is irrational and related to
M emotions. For this reason it’s difficult to describe music by means of
formalized languages; the process of musical creation is not linear and many
steps of it are not representable by any kind of algorithmic procedure. From
another side, however, music follows strict systems of rules based on for-
mal reasoning. Many musical elements, moreover, are defined only through
mathematics and the relation between the two fields seems to be really close.

The dichotomy created by the interpretation of music as a purely mathe-
matical theory or as a perceptually-related field is central to the development
of musical theory; it is of philosophical nature and can be considered related
to the contrast between rationalism and empirism. This dichotomy is also at
the origin of the interpretation of music as an art appeared in late XVI cen-
tury.

Following sections will give an overview of the relation between music
and mathematics, in order to provide the right context for this research. At
the end of this chapter, a motivation for this work will be also given through
the notion of symbolic representation.



2 1. Music and representations: an introduction

1.1 Mathemathics and music: an historical perspective

Despite common thinking, the link between mathematics and music has an-
cient roots. Many researchers and musicians, such as Douglas R. Hofstadter
and Edward Rothstein, produced interesting works showing how both dis-
ciplines share, on the technical level, common attributes of abstraction and
beauty. The difficulties of understanding the link between mathematics and
music are mainly due to the interpretation of music as an art appeared in late
XVI century. As a consequence of this interpretation music has been treated
more in expressive terms, as a language to be handled pedagogically, losing
its original scientifc connotation. The two fields are actually so closed that
what is surprising is, in fact, their separation: following sections will provide
a short historical overview of this astonishing link.

1.1.1 From Pythagoras to Middle Ages

Even the simpler musical activity, not influenced by education or by training,
is based on the identification of the relationship between adiacent tones. This
relationship, the distance between two musical tones, is called interval.
Between all the possible intervals, there is one that is very special: it’s
called the octave and represent two tones that are expressed by the ratio 2 : 1.
The octave is a real class of equivalence for tones: even an untrained listener
will say that two tones at the distance of octaves are essentialy the same; other
important intervals are the fifth and the fourth. The beginning of the relation
between music and mathematics is centered on the definition of intervals.

The problem of intervals

Pythagoras of Samos was probably the first, in VI century B.C., to define
a clear connection between mathematics and music. According to legend,
Pythagoras heard different tones being emitted from the striking of the anvils
while passing by a blacksmith’s shop. He thought that some mathematical
reasons should have been at the origin of this phenomenon and that these
reasons could have been applied to music too: after some observations, he
discovered that it was because the hammers were:
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[...] simple ratios of each other, one was half the size of the first, another
was % the size, ....

The legend has been proven to be false for many reasons. Nonetheless, it
is true that Pythagoras elaborated a complex system of ratios to mathemati-
cally define musical entities, related to the length of the string of a theoretical
instrument called monochord.

Pythagoras discovered that the intervals of octave, fifth and fourth can be
expressed by simple ratios, namely 2 : 1, 3 : 2 and 4 : 3. All intervals can be
expressed, in the Pythagorean system, by means of the tetractys, or pyramid
of dots, a geometrical figure made up of the first four numbers.

The system developed by Pythagoras will not be examined further here;
suffice it to say that the connection between mathematics and music pro-
vided by Pythagoras had great fortune and lead to the inclusion of music
into the quadrivim, a curriculum of study for liberaral arts outlined by Plato
and by Martianus Capella and constituted by arithmetic, geometry, music,
and astronomy.

During Middle Ages, the quadrivium assumed a relevant part of edu-
cation in universities and consequently music gained a lot of development:
one major advance was the establishment of mensural notation.

Mensural notation

Music, like mathematics, depends on a specialized system of notation based
on symbols that encode information. While the origin of musical notation
can be traced back to the alphabet of ancient Greek, it’s during the medieval
period that a series of important developments changed it significantly and
led to the mensural approach.

Mensural notation is a clear example of the link that binds together math-
ematics and music: it’s a new form of musical notation that enable musicians
to precisely write any kind of rhythm and it’s basically impossible to under-
stand it without understanding medieval arithmethics. The main features of
medieval musical notation are in fact directly connected to the coeval system
of measures. There are two main variants of mensural notation: the french
variant was probably elaborated by Philippe de Vitry (1291-1361), while the
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italian variant was described from the theoretician Marchetto da Padova
(1274?-1305 or 1319). While this types of notation handles both pitches and
durations, the discussion below will only focus on the second aspect .

In the french system, there are five differents values for notes: maxima,
longa, brevis, semibrevis and minima. Except the minima, each one of them
can be subdivided into two or three parts (binary and ternary subdivisions).
This double possibility is ambiguous: without context information, it is not
possibile to understand the real value of a note. The hierarchy of the values,
moreover, is centered on the brevis: other values can be thought as multiples
or submultiples of it.

The italian system, also centered on the brevis , is even more complex:
the first subdivision (called tempus perfectum secundum divisionem duodenar-
iam) decomposes the brevis into three semibreves maiores, each one of them
being decomposed into two semibreves minores for a total of twelve semibreves
minimae. Other subdivisions are:

o tempus imperfectum secundum italicos: in which the brevis is decomposed
into eight semibreves minimae;

o tempus perfectum secundum divisionem nonariam: in which the brevis is
decomposed into nine semibreves minores;

o tempus imperfectum secundum gallicos: in which the brevis is decomposed
into six semibreves minores.

It’s worth noting that all subdivisions are duodecimal fractions, that is
fractions with twelve as denominator. Like in the french system, also in the
italian all the values can be subdivided into two or three parts.

Figure 1.1 shows an example of mensural notation: it depicts a page from
Nicolas Gombert’s Le chant des oyseaux (1545). Even from the basic exposition
given above, it’s clear that mensural notation is not an easy matter. Probably,
it has been developed inside universities in Paris and in Padova and only
very specialized musicians were able to use it. Why medieval theoreticians
developed such a complex system? Why they used duodecimal fractions
with binary and ternary subdivisions? Why the brevis was the central value
of the system? The answers to these questions are in the coeval system of
measures.
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Figure 1.1: A page from Nicolas Gombert’s Le chant des oyseaux (1545)

The medieval system of measures

Until late Middle Ages, arithmetical operations were performed using ro-
man numbers: even if Fibonacci in his book Liber abaci (1202) clearly showed
the supremacy of indo-arabic symbols (cyffras), the Church constantly fought
their usage. While roman numbers were good to perform additions and
substractions, multiplications and divisions where very slow with them and
were only possibly by using mnemonic tables. Operations with fractions
were even worst: they required multiple passages and were sometimes im-
possible. A fraction like £ was in fact notated literally like suboctuplasu-
perquadripartiens nonas and was obviously very easy to make errors in com-
putations.

One peculiarity of the roman system of fractions was the duodecimal
base, that was also used by the medieval system of weights and by the mon-
etary system. The bigger monetary unit was the libra and was possible to
divide it into twelve uncige. Each uncia was divisible into semnuciae, that
on their hand were divisible into duellae and so on. The measuring of time,
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called chronaca, was also based on duodecimal fractions: the year was also
called libra and was divided into twelve months. The hours (horae) were sub-
divided into momenti that were themself subdivided again into twelve unciae.

Common aspects

It should be clear, at this point, that the medieval system of musical notation
was clearly correlated to the coeval system of measures. Both systems are
based on a central value, the brevis and the uncia respectively, that can be
multiplied to obtain bigger values or subdivided to have smaller ones; in
this sense, both systems are organized into hierarchies.

Finally, both systems are based on values that can be subdivided by two
or by three (binary and ternary subdivisions). Many other similarities exist
between the two system (for one, also the graphical symbols used in mensu-
ral notation derived from coeval mathematics) but they will not be consid-
ered here.

Nonetheless it is evident that, during the Middle Ages, music and math-
ematics were really close each other and shared many common aspects.

1.1.2 From Rameau to Riemann

The period between XVIII and XIX century is characterized by the consoli-
dation of the modern major/minor tonality, that will be the reference system
for occidental classical music at least until the beginning of XX century. In
the modern tonal system, mathematics also plays a central role. Harmonic
theory of this historical period has been greatly influenced by two major
theroticians: Jean-Philippe Rameau (1683-1764) and Hugo Riemann (1849-
1919); both based their theories on the coeval mathematical theory.

The corps sonore and the physics of sound

Rameau has been a dominant figure in the musical panorama of XVIII cen-
tury: on his books Traité de I'harmonie reduite a ses principes natuerls (1722)
and Code de musique pratique (1760) he defined the bases of contemporary
harmonic theory.
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Figure 1.2: The Tabula mirifica by A. Kircher.

Following Pythagoras, he defined musical intervals by means of ratios
derived from the division of an ideal string. He also showed an interest in
practical aspects of music for the first time. While his predecessors, such as
Athanasius Kircher (1602-1680), considered the monochord as a mechanical
model of universal harmony (for example like the one represented in figure
1.2), Rameau considered the monochord not only an abstract tool but used
it to define simultaneous sets of tones (called chords), throught the notion of
accord parfait.

Rameau described, using integer ratios, the structure of major (perfect)
chords calling fundamental the most important! note of the chord and num-
bering it as 1. In this way he has been able to create classes of equivalences for
chords, grouping together all chords described by the same ratios. Moreover,
he defined the equivalence of the positions of chords, a concept that not will
be examined here, showing interesting links between the rational theory of

The concept of fundamental of a chord is really important in occidental music. In music
theory, the fundamental (or root) of a chord is the note or pitch upon which a triadic chord is
built. For example, the root of the major triad C-E-G is C.
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chords and musical praxis.

Rameau didn’t know, at the time he was writing his Traite, the recent sci-
entific discoveries about upper harmonics described by Joseph Sauveur (1653-
1716). Throught vibration theory, Saveur showed that each musical tone was
made of several harmonics, whose ratios correspond to the division of the
string. Formally, a musical tone can be described by the sum of all integer
fractions from 1 to oo:

o0

1 1 1 1 1
144444, .
Zn otz tytEt (1.1)

n=1

Figure 1.3 shows the so-called series of harmonics? from the note C corre-

sponding to the application of equation 1.1. Each element of the summation

series corresponds to a vibration mode of the string and the first element (1/1)
correspond to the fundamental as defined by Rameau.

40 =31 -12

2% 5 = -49 2 '
- .~ e G-I-l 2 3 _4 1-4 iy @ be be he =
ll'- s r‘é’\_ — e [ J
- e
2 3 5 6 7 8 9 10 11 12 13 14 15 16

e 2 3 4
1

*in cents

Figure 1.3: The series of harmonics.

This discovery gave an important physical justification to Rameau’s the-
ory and led him, in his Generation harmonique ou traite de musique theorique et
pratique (1737), to the formulation of a new metaphysical concept: the corps
sonore, final unification of the abstract theory of ratios and the coeval musi-
cal praxis. An example of this unification are geometrical progressions, that
Rameau used to describe harmonic movements of the fundamental: these pro-
gressions were purely theoretical originally, but with the introduction of the
corps sonore they became linked to musical praxis.

*The small numbers above the notes in figure 1.3 are the difference in cents between the
natural frequency and the equal-tempered frequency. A cent is a logarithmic unit of measure
used for musical intervals; in twelve-tone equal temperament each octave is divided into 1200
cents. More information about the equal temperament will be given in section 1.1.3.
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Although Rameau’s theory produced important results, they hadn’t been
accepted initially from the scientific community: he submitted his Generation
harmonique to the Academie Royale de Sciences but didn’t get good reviews.
Only in 1750 Rameau managed to have some recognition, thanks to some
comments from D’ Alembert: he wrote that harmony, with Rameau’s research,
gained a new rational status not subject anymore to arbitrary laws.

Ratio, sensus and the classification of intervals

Rameau’s important theoretical formulations of the fundamental and of the
corps sonore and his efforts to merge the mathematical theory of ratios with
musical praxis is a good example of the eighteenth-century dicothomy be-
tween ratio and sensus.

A few years after Rameau’s books, there were still theoreticians that pro-
posed purely mathematical theories for the classification of intervals. Giuseppe
Tartini, for example, in his Trattato di musica secondo la vera scienza dell’armonia
(1754) described musical intervals and chords using the ratio between the
circumference and its diameter. Leonard Euler (1707-1783), in his Tentamen
novae theoriae musicae (1739), described a general algorithm to compute the
consonance degree for any interval of the form 1/P, where P is a positive
integer number, decomposing it into its prime factors. The classification of
intervals proposed by Euler, assigned a higher degree of consonance to in-
tervals containing prime numbers: the octave (2 : 1), that was unanimously
considered the most consonant of all intervals, gained for this reason a low
degree of consonance. This was in contrast to the coeaval musical praxis
and his contemporary Johann Mattheson (1681-1764) criticized a lot Euler’s
approach, claiming that a musician doesn’t need any kind of mathematical
knowledge to evaluate and classify intervals.

The birth of musical logic

While Rameau, with his theory, established a clear connection between the
rational interpretation of chords and their physical properties, his illuminis-
tic approach stressed the importance of a logical foundation for musical the-
ory.
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The application of reason to mathematics is prominent in the work of the
theoretician Hugo Riemann and of his predecessors Hauptmann and Oet-
tingen. They explored the logical relations present inside and between con-
sonant chords: they probably didn’t know Boole’s work; nonetheless they
proposed the idea of mathematical logic in music as an instrument to evalu-
ate the syntax of the language.

Riemann’s work is focused primarily on two phenomena: the harmonic
dualism and the system of tonal relations . The harmonic series presented in
figure 1.3 is very imporant in the definition of the major chord. However, it
is not possible to define minor chords using this series. Riemann solved this
problem by defining minor chords as the dual of major chords: the latter are
generated by the harmonic series on the fundamental, while the former are
generated by the harmonic series on the fifth harmonic of the latter. In other
words, he organized a dualistic construct made of major and minor chords
sharing the fundamental (for example: the note C in the structure F-Ab-C-E-
G) thus merging the physics of chords with a logical structure.

Riemann’s system of tonal relations illustrates the modularity and finite-
ness of the major/minor tonalities, organizing all tones in twelve pitch classes.
This approach is the bases of all modern theories of the tonal pitch space and
will be extensively illustrated in following chapters. Table 1.1 shows the sys-
tem of tonal relations defined by Riemann.

Table 1.1: Riemann’s system of tonal relations.

es/f| ¢ | g|d] a e b | f;| ¢ |g|ds|ay

Cy g |dy|ay |e |bg/c|g|d| a |e|Db|f

e | b |fy|c| g |dy|ag|e/f|c|g|d
f c |g|d|a e b | fs| o |g|ds|ay
d, a |e |b,| f C g | d a e | b |f
a |e/f,|c |g|d| a |e |Db f c|g|d

The expression musical logic appears, for the first time, in the title of Rie-
mann’s first work Musicalische Logik: Ein Beitrag zur Theorie der Musik. In this
book Riemann tries to define the application of logic to music as a device to
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control the grammar of the harmonic syntax. He defines special symbols to
represent movements on the system of tonal relations: @ for a fifth up and
T for a major third down (and relative inversions as —@) = é and —T = %).
He considered harmonic progressions as operations on the system that can
be precisely measured as movement on the table 1.1. More information on
this approach will be given in chapter 3.

1.1.3 The XX and XXI centuries: the compositional perspective

The efforts done by Riemann to logically organize the syntax of musical har-
mony had a great impact on the development of the domain, bringing the
link between mathematics and music at a clear and established level.

Unitll XX century, however, this relation was mainly unidirectional: the
music was based on mathematics and used it in order to organize its pro-
cesses. In other words, the role of mathematics has always been secondary
and it has been used only as description of musical phenomena.

At the beginning of XX century the situation changed: composers started
using actively mathematical concepts to create new music and the link be-
tween the two domains became even stronger than before. Mathematics en-
tered the inner mechanics of musical creation: it actually replaced traditional
musical rules such as harmony, counterpoint and so on.

Serialism and pitch-class set theory

The intellectual movement that initially promoted this new usage of mathe-
matics is called serialism. This movement has its roots in the european mu-
sical tradition and is directly connected to the work of Arnold Schonberg on
twelve-tone technique; the main composers involved in its development were,
among the others, Anton Webern, Pierre Boulez, Karlheinz Stockhausen and
Luigi Nono.  Around 1950, in the United States, a parallel movement ex-
ploited the usage of set-theory in music: its name is pitch-class set theory and
has been mainly developed by Milton Babbitt, Allen Forte, Howard Hanson
and many others®. The results produced by pitch-class set theory have been

3For a more detailed historical introduction to serialism and pitch-class set theory please
see (Verdi 1998)
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greatly influential in the context of contemporary musical theory and will be
examined in a dedicated chapter.

The massive usage of mathematics for musical creation, raised problems
in the estethic domain. Many musicians started thinking that the music cre-
ated with such a system would have suffered of some form of mechanicism.
It must be noted, however, that the dialectic between the objective generative
procedures and their subjective musical application is probably the distinc-
tive feature of contemporary musical theory and it’s not an easy matter to
decide how much matemathics affects the estethics of creation; for this rea-
son, this problem will be not discussed further on.

Equal temperament and Z;»

The new relation between mathematics and music in the modern era, is di-
rectly linked to the new way of representing intervals appeared around XVII
century: the equal temperament. This is a new system of tuning in which ev-
ery pair of adjacent elements has the same ratio. In other words, in equal
temperament tunings the octave (whose ratio is 2 : 1) is divided into a series
of equal steps. For european classical music the number of steps is usually
12, each division being represented by /2.

In equal temperament, any interval can be reduced to a quantity smaller
then the octave through the modulo operator; moreover, any set of intervals
can be transformed by different operators still preserving its properties. This
lead to a completely new conception of the space of musical pitches, based
on the properties of ciclicity and simmetry. Musical intervals and chords can
finally be represented as integers in a mathematical structure called group,
denoted by the symbol Z;5. The structure has many interesting properties
and all operations on intervals can be now defined formally as operations in
a group.

As a matter of facts, the system of tonal relations presented by Riemann
depicted in table 1.1 is also isomorphic (equivalent) to a group, exploiting
the properties of finiteness and inversion. More on this isomorphism and on
the group Z;2 will be shown in chapter 3.
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1.2 The need of symbolic representations

As appears from the above discussion, music and mathematics are intimately
linked, both from physical and historical points of view. The key aspect
of this link is symbolic representation: musical entities (such as intervals or
chords) are represented in the formal language of mathematics with sym-
bols. Through a symbolic language, the constitutive elements of musical
syntax are organized in a logical way: the fruition of music is directly con-
nected with the possibility of representing it in a symbolic way.

Symbolic representations have been used, initially, as a mean to describe
the harmonic syntax; more recently, the formalism entered actively the cre-
ative process. The new usage of formalism exploited, principally, in two
different but related ways coming from Riemann’s theories: the algebraic ap-
proach and the logical one. The former has been mainly developed by the
pitch-class set theory beginning from the fifties; the latter, has its roots in
the application of formal logic to other fields happened during the seven-
ties. Since both approaches massively affected musical creation, they will be
extensively discussed in the following chapters.

Both approaches, however, share an important feature: they apply sym-
bolic descriptions to object that are already symbolic. Music has its own lan-
guage and special symbols: the notes on a score, the rhythm notation, the
dynamics are complex entities that are described by ad-hoc symbols.

Music and musical signals

Music, takes place thanks to performance: the player decodes ad-hoc sym-
bols and converts them into real sounds. There is, here, an essential separa-
tion: written music is not actual music; only in the final stage of performance
music becomes physically real, when it become a musical signal*. The prob-
lem with both the algebraic approach and the logical one is that they only
analyze music in the form of score: in other words, they symbolically repre-
sents objects that are already symbolic.

The main purpose of this research is to find a new representation method

4This expression involves many research fields and will be examined in details in chapter
4.
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Figure 1.4: Outline of the chapters.

for music that takes into account both dimensions of music: the score (sym-
bol) and the sound (signal). The reserach, moreover, tries to find answers to
the following questions:

1. Which is the relationship between mathematical logic and musical logic?

2. Has the formalism based on musical reasoning something in common
with logic formalism?

3. Can mathematical logic be useful to musicians, in order to clarify their
reasoning?

The central idea of the approach proposed in this context is mixing the
abstract level of symbolic logic with a computational level based on signal
processing techniques and statistical analysis: it takes inspiration from types
theory and particularly from the System F by the french logician ].Y. Girard.

1.3 OQutline of the work

The organization of this work is the outlined in figure 1.4 and will be shortly
described below.

Chapter 2 presents the results related to the so-called logical approach.
The first attempts dates back to early XX century: they are due to Susanne
Langer, an american philosopher that described a set of postulates for repre-
senting music using elementary logic; this approach has been expanded in
the seventies by the logician Lennart Aqvuist. Other examined approaches
are the one based on modal logic by Jos Kunst, the one based on temporal
logic by Alan Marsden and the linguistic approach by Charles Seeger.
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Chapter 3 outlines all attempts for representing music throught algebraic
structures: it starts from the pitch-class set theory and describes also the
transformational theory by David Lewin. Some selected topic of this ap-
proach are also presented.

Chapter 4 presents the novel contribution of this work, describing a method
for representing music in a quasi-symbolic way using a mixture of symbolic
and computational methods; this method is called the theory of sound-types.

Chapter 5, finally, tries to summarize the results obtained and discusses
them in the perspective of musical creation: the final aim of the chapter is un-
derstanding if any of the presented approaches helps composers, perform-
ers, theoreticians and listeners to better understand and manipulate music.

A note on the used symbolism

This work connects different fields which have different formalisms. For this
reason, it has not been possible to find a single style for the used symbolism.

In chapter 2 the formalism comes from logic and in particular from ax-
iomatic set theory and A-calculus. In chapter 3 the formalism has been taken
from algebra and in particular from groups theory. In chapter 4, finally, the
formalism is mainly related to digital signal processing and statistical data
analysis. In the chapter, however, there is also the introduction of simple
type theory that comes with its specific formalism.

While music has a natural symbolic representation in the score, this work
deals principally with highly formalized representations related to the math-
ematical language; for this reason, no scores will be used to represent music.






Chapter 2

Logical approaches

Sometimes it seems as though each new step towards
Al rather than producing something which everyone
agrees is real intelligence, merely reveals what real
intelligence is not.

Douglas R. Hofstadter

Abstract

This chapter will present some attempts of representing music with logical
formalism. The approaches being discussed are based, respectively, on the defi-
nition of postulates, on set-theoretic structures and on A-calculus.

2.1 Susanne Langer’s logic of music

n1929, the american journal The Monist published an article titled A set
Iof postulates for the logical structure of music by Susanne K. Langer (Langer
1929). That article put new light on the problem of the foundation of music.
After the conceptual revolution operated by Schénberg and his school in
early XX century, it was clear that a deep inquiry into the metalevel of mu-
sic was needed and composers started thinking about composition theories.
One of the first and more formalized answers to this problem was given by
Langer’s logical approach.

2.1.1 Complexity and abstract form

Each universe of discourse has its logical structure and there is a finite num-
ber of possible situations that may happen in it. For simple universes, the
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empirical discovery of situations could be affordable. There are cases, how-
ever, in which complexity is so high that an exhaustive approch is not possi-
ble. Arts, ethics and science in general are usually so complex that is almost
useless to interpret them as purely logical situations. It’s very difficult, for
example, to study all their possibilities by means of logical deduction; the only
solution is looking for some simple relations between basic elements.

A part of modern logic also focuses on the research of general funda-
mental properties that can be used as postulates to describe all situations of a
universe of discourse. The reduction of a great number of situations to few
postulates decreases the general complexity and creates an abstract form of
the universe being represented. In most cases, of course, this possibilty re-
mains purely theoretical because of the huge amount of material to be anal-
ysed. There are situations, however, in which the reduction to an abstract
form is feasible. Susanne Langer supposes that music is such a situation.

2.1.2 The fifteen postulates

Langer supposes that there are relatively little elements involved in music
and that there are only a few possibilities to combine them following definite
principles. This set of postulates should represent the abstract form of music
(the logic of music) and should be able to describe all possible musical situa-
tions. The abstract form of music is itself similar to a special algebra, neither
numerical or Boolean, but of equally mathematical form and for which there
exists at least one interpretation.

The following set of postulates aims to define such abstract form.

Let K be a class of elements a,b,c, ..., - and — binary operations, C' a
monadic relation and < a dyadic relation. Then:

1. ifa,be Kthena-b <€ K;

2. Vae K,a-a=a;

3. ifa,bec Kthena — b e K;

4. Va,be K,a—-b=b—a = a =1

5. Va,b,ce K,(a-b)-c=b-(a-c);
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10.

11.

12.

13.

14.

15.

Va,b,c € K,3d € K such that (a = b)-(c = d)=(a-¢c) — (b-d);
dr € KsuchthatVa € K,a-r = a;

there is a K-subclass T such that Va,b € K other than r and Ve € K, if
a=b-¢c = b=canda=b—c = b=rVec=rthenaeT;

VaeT,C(a-a);
Va,b,c € K,-C(a-b) = —C(a-b-c);

Va € K there exists K-subclass A such that Vb,c € K,b € A <=
Cla)-b=C(b) ¢

Va,b € T witha # b, —(a < b) = (b < a);
Va,b,ceT,a <bANb<c = a<gc

VYa,b € T'where b € A and Va/ € A, b1 € B such that if a < a/ then
—la<b<a) = (a<b<al);

Va € T,3a® € AsuchthatVb € Awithb #a,b#a°,a<bha<a® =
a°<banda<a°ANb<a® = b<a.

Differences with Boolean algebras

The set of postulates described above is very similar to a Boolean algebra.

The operations - and — are similar to common sum and multiplication. While

- is commutative and associative like Boolean x, however, — is not commu-
tative and differs from Boolean +. Morover, while 7 corresponds to Boolean
0 there is not the equivalent to Boolean 1. The dyadic relation < has similar
properties to Boolean inclusion but < is only applied to K-subclasses.

Summarizing, the major differences between the set of postulates de-
scribed above and a Boolean algebra are:

e non commutativity of —;

e incomple nature of the neutral element r;

o the lack of neutral element for - (corresponding to Boolean 1).
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These divergences make the new algebra less symmetric than the logical
calculus. Duality of + and x is not preserved; moreover, the tidiness of the
system is lost due to the incomplete nature of the neutral elements.

2.1.3 Interpretation of the new algebra

The interpretation of the given postulates leads to the definition of the formal
structure of music. In order to properly understand this interpretation, it’s
needed to rethink musical elements in a more general sense. The logical
approach proposed by Langer, in fact, deals not only with major or minor
intervals (that are linked to a specific musical context) but is general enough
to handle non tempered systems, harmonic theories not based on triads and
so on. For this reason, no elements of any specific compositional theory or
style have been included, in order to keep the interpretation general enough.
The basic postulates can be interpretated as follows:

1. if a and b are musical elements, the interval a - b is a musical element;
2. if a is a musical element, it is equal to the unison a - a;

3. if a and b are musical elements, the progression a — b is a musical ele-
ment;

4. if a and b are musical elements and if a — b = b — a than a and b are
the same musical element;

5. if a,b and c are musical elements, then the interval (a-b)-c=b-(a - ¢).

6. if a,b and ¢ are musical elements, then exists the musical element d
such that the interval of progressions (a — b) - (¢ — d) is equal to the
progression of intervals (a - c) — (b-d)};

7. there is at least one musical element r such that, if a is a musicale ele-
ment other than r, the interval a - r = q;

8. there is a subclass T of musical elements (called tones) such that, if a
and b are musical elements other than r, ¢ is a musical element and if

'Langer suggests that this postulate embodies the principle of counterpoint.
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(a=b-¢) = (b=cJand(a =b —¢) = b=rVc=r, thena
is a tone (in other words, if a is an interval it is a unison, and if ¢ is a
progression every memebr but one is a rest);

9. if a is a tone, the unison «a - a is consonant;

10. if a, b and ¢ are musical elements and « - b - ¢ is consonant then « - b is
consonant;

11. for any musical element a other than r, there is a subclass A (called
recurrences) such that for any b and ¢, b is the recurrence of a if and only
if (a - ¢ is consonant) is equivalent to (b - ¢ is consonant);

12. if a and b are two different tones and a is not before b in order of pitch,
then b is before q;

13. if a,b and c are tones, then if a is before b and b is before ¢ then a is
before c;

14. if a and b are distinct tones with b not being recurrence of a and a/ is a
recurrence of a, then there is at least one b/, recurrence of b, such that if
a is before a/ and b is not between a and a/, then b/ is between a and a/
in order of pitch;

15. For any tone q, there is a tone a°, recurrence of a, such that if b is any
other recurrence of a and if a is before b and also a is before a° then a°
is before b; and if a is before a° and b is before a°, then b is before a in
order of pitch (in other words, there is at least a recurrence of a (called
octave) such that no other recurrence can lie between it and a).

2.1.4 Fundamental theorems

The essential relations between musical elements, such as the repetitional
character of the order of tones within the octave or the equivalence of consonance-
values of any interval and any repetition of iteslf, can be deducted from the
given postulates. The following is a list of the most important theorems that

can be deducted from the postulates; they are given without proof, for more
information see (Langer 1929).
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1. THEOREM. Foranya,be K:a-b=10-a.

2. THEOREM. Foranya,b,c€ K: (a-b)-c=a-(b-c).

3. THEOREM. Foranya,b e T,any a/ € Aand any b/ € B: C(a)-b= C(at) - b/
4. THEOREM. Forany a € T and any a/ € A: C(a) - a/.

5. THEOREM. Foranya,becT:bc A = ac€ B.

6. THEOREM. Forany a,a®,b € T andany bl € B: (a <b<a®)-(a <b) =
a® < b

7. THEOREM. For any a,b,c,a°,b° € T: 3¢® € C such that (a < b < a® <
b°)-(a<c<b) = (a® <c® <b°).

2.1.5 Generalization to particular musical systems

There are, probably, many other relations between musical elements that can
be derived from the given postulates. Nonetheless, even a complete devel-
opment of the theory would only lead to the formalization of general musical
possibilities. More specifications are needed, for example, to deal with occi-
dental classical music:

o the next-member for the series generated by <;

e the determination of consonant intervals other than the unison and the
octave (and eventually also a way to order consonances);

e the introduction of the specific T-functions £ and b.

It is possible to formalize different music systems by imposing special
constraints on K. For example, to describe Hawaiian music it would be needed
a postulate for continuous-series on pitch; in Gaelic music, the concept of
consonance should be redefined since adiacent tones do not produce disso-
nanaces; and so on.

At the end of her paper, Langer wonders if it could be possible to apply
this approach also to other arts in order to find a common background for
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comparisons. Philosophycal implications of such a background would be
enormous: psychology and metaphysics have failed to put aestethics on any
better basis than the empirical one. Could logic fill the gap? Langer’s paper
ends leaving this question open.

While Susanne Langer proposed the described approach in an historical
focused on compositional theories, her paper did not receive so much atten-
tion. Only after about fifty years other researchers used her ideas to develop
new tools for defining a logic of music; next sections will outline such at-
tempts.

2.2 A set-theoretical point of view

The method proposed of by Susanne Langer is mainly focused on the har-
monic paramter and does not pay attention to temporal evolution of musi-
cal elements. In order to add time to the formalization, it is possible to de-
scribe music from a set-theoretical point of view, by defining specific alge-
braic structures. This section will propose an approach based on the work
done in the late twenties by Susanne Langer and expanded in the seventies
by Lennart Aqvuist; see (Langer 1929) and (Aqvist 1979).

2.21 Abstract musical systems

With time-limited frame is defined an ordered quadruple (T, t—, —t, <) such
that (¢, ¢, ¢") € T

TL T #0

T2. t—,—teT

T3. t— £ —t

T4. <e T x T (linear ordering)

T5. t— <t

Te. t < —t

T7. t <t (reflexivity)

T8. if t <t and t' < t” thent < ¢” (transitivity)
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T9. if t <t'and ¢’ < t thent = ¢’ (antisymmetry)
T10. t <t ort' <t.

Similarly, a frequency-limited frame is an ordered quintuple (P, p—, —p, §, <)
such that ¥(p,p’,p”) € P hold axioms P1 - P10 defined in the same way as
axioms T1 - T10 and also holds:

P11. § ¢ P (namely, the null-frequency).

Then, a musical frame is the structure
<<Ta t_a _ta §>7 <P7p_a —-bp, §7 §>’ V> where:

(i). (T,t—, —t, <) is a time-limited frame;
(ii). (P,p—,—p,§, <) is a frequency-limited frame;
(iii). V # © (namely, the set of voices).

A musical frame with voice-indexed temporal partitions is the structure
F= <<T7 t—, —t, S)) <P7p_a -bp, §7 §>7 V7 SU> such as:

W. (T,t—,—t,<),(P,p—,—p,§,<),V) is a musical frame;
(ii). S, is a function from V' to the power-set of T' (namely, the point-selector)
such as Vv € V, S, is a finite subset of T and ¢t—, —t exist both in S,,.

With S, it is possible to define the notions of temporal segments and time
interval ¢(S,): this second concept is really important in the definition of
temporally quantified systems given in paragrah 2.2.2.

On structure F', defined above, it is possible to define the melodic-rhythmic
specification as the ordered couple of functions (On, Att) on V suchas Vv € V,
holds:

On, and Att, CT x (P U{§}).
Intuitively, On, is a binary relation that associates time-points to frequen-

cies specifying if a given frequency sounds at a given time in a given voice;
in other words: Vt € T,Vp € P U {§}, (t,p) € On, means that frequency p
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sounds in the voice v at time ¢. In the same way, Att, is a binary relation that
specifies when a frequency starts in a given voice.

It is now possibile to define the abstract musical system as the structure
M = (F, (On,, Att,)), such as:

(i). F is a musical frame with voice-indexed temporal partitions;

(ii). (On,, Att,) is a melodic-rhytmic specification on F.

Then, the stream of musical events of voice v € V in M is the relation ON,, C
T x (P U{8§}) that, intuitively, selects from T all the time-points in which voice
v sounds, starting from a given time. Similarly, the chord at time t € T in M is
the relation CH, C T x (P U {§}) that selects all the positive frequencies that
sound in any of the given voices of M at the given time ¢.

Finally, it is possible to define the texture of M as the set of all the streams
of musical events on M, i.e. Texture(M) = {ON, : v € V} and also the
chords progression of M as the set of all chords on M?.

From a musical point of view, the texture represents the counterpoint of a
musical composition, while the chord progression represent the harmony.

2.2.2 Temporally quantified abstract musical systems

LetF=((T,t—, —t, <), (P,p—, —p,§, <), V, S) be any musical frame with voice-
indexed temporal partitions and 7' = |,y s(s.) UO(U,ey 5. ) the set of time-
intervals determined by V' and S.

With measurement of duration on F' it’s defined the ordered quadruple
(E,L,E*,m), where:

i £ and L are the binary relations is of the same length and is shorter than,
respectively in T'1;

ii E* is a ternary relation on 71 such that for any z,y,z € TI: < x,y,z >€
Et <« E(z,y+ z) = true, ie. x is of the same length of y and z taken
together;

?Formal definitions of all the concepts presented are beyond the scope of this chapter and
can be found in (Aqvist 1979).



26 2. Logical approaches

iii m is an additive measure for the structure (T'I, E, L, E™) in the sense of be-
ing function of 7'/ onto some subset of the non-negative real numbers
such that for all x,y, z € T1 hold:

=m(y) < <uz,y >€ E;
<m(y) <= <uz,y>€L;

e m(z) =m(y) + m(z) < <=z,y,2 >€ ET.

The relations defined above must be valid not only on the union of all
interval-sets ¢(5,) for v € V but also on the result of adding to that union
every member of the interval-set ¢(|J,cy Sv)-

This condition is weak but necessary to be able to adequately measure
the length of the time-intervals given by V' and S£. Moreover, to have a
complete notion of measure of duration in F'it’s also necessary that F, L and
E™ satisfy some minimal conditions for the existance of a measure in the
structure (T'I, E, L, E™). For instance, £ must have an equivalence relation
on T'I and L must be a strict partial order in that set.

To that conditions must be added one for which the null-stretch —t has
to be such that (—t, —t, —t) whence by virtue of the condition (iii)) above
m(t) = 0.

Also, —t must be the only member of T'T that satisfies this condition; this
condition is really important for the following situation. It is theoretically
possible to use T as a finite set of discrete moments; in this case, the condition
above imposes a strong restriction on the choice of the point-selector S: its
cardinality must be at least

Finally, with temporally quantified abstract musical sysyem is defined the
strucure M; = (F, (On, Att),(E, L, E*,m)) such that:

e (F,(On, Att)) is an abstract musical system;

e (E,L,E",m) is the measurement of duration of F.

Given any pair of abstract musical systems, either temporally quantified
or not, the conditions for which they are identical are the standard ones from
ordinary set theory. Nonetheless, many problems arise in practice when two
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system must be compared: the reason of these problem is in the actual na-
ture of music that appears after performance. More on this problem will be
discussed in chapter 4.

Other important musical concepts can be defined by expanding the pre-
sented formalism, but this should be enough to sketch out main possibilities
of the approach.

2.2.3 Perfect instantiation of abstract musical systems

It is worth, at this point, to notice an important fact about the formal the-
ory presented above. So far, it has been assumed that a musical composi-

3. This is of course a

tion can be represented by an abstract musical system
very strong assumption and outlines one of the major problems of symbolic-
level representations: a formal system, must have a connection to reality to
be somehow useful; this connection is usually called model of the system. In
a very general sense, a model is a set of relations that map each element of
a theory to some truth values*. Any formal system needs to be instantiated
in a possible situations over a world of possible situation to be effectively
used as means of representation. An instance of the system described above
could be, for example, a particular performance (of some music being anal-
ysed) over a world of existing performances; the instantiation process can
be also formalized. Let M = (F, (On, Att)) be an abstract musical system
and w € W a possible instantiation of M over a world of instantiations .
With Per fConc, (M) (perfect concretization of M in w), it's defined the struc-
ture M™ = (((T,t—", —t¥, <¥), (P¥, p—", —p¥, §*¥ <¥),

Vv S, (On", Att™)), such as:

D). T =T x {w};

(ii). t—" = (t—,w) and —t* = (—t, w) respectively;

(iii). P¥ =P x {w};

(iv). p—" = (p—,w), —p" = (—p,w) and §* = (§, w) respectively;

3In this context, a musical composition could even be a written score and doesn’t need to
be in the state of performance.

“This definition is of course very imprecise; in this context, anyway;, it is only needed to
present main ideas about model theories.
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Ww). V¥ =V x {w};

(vi). <" is a binary relation on 7' x {w} such as V(¢,t') € T : (t,w) <V
(thw) <= t<t;

(vii). <% is a binary relation on P x {w} such as V(p,p’) € P : (p,w) <"
(P w) <= p<p/;

(viii). S" is a function from V x {w} to the power-set of 7' x {w}, such as
YoeV,VteT: (t,w) € Sggw — te S,

(ix). (Ony, Att,,) is an ordered couple of functions on V' x {w} such as Vv €
ViteT,pe (PU{§}): ((t,w), (p,w)) € OnY ) = (t,p) € On, and

(v,w

({t,w), (p,w)) € Att’(j}@> < (t,p) € Att,.
The perfect concretization determines an isomorphism for each v € V, by
projecting M onto M,, while preserving all releations and functions.
With musical model, finally, it's defined ordered triple p = (X, W, inst)
such as:

(i). Nis a set of abstract musical systems;

(ii). W is a non-empty set (world) of possible instantiations;

(iii). inst C {PerfConcy,(M) : w € W, M € R} (i.e. is a selected subset of
all perfect concretizations of M in w with Yw € W, while all M € R are
the selections of the perfect concretizations really exhibited in w € W).

Roughly, all this formalism means the following;:

e for each realistic inst set, Per fConc,, (M) ¢ inst, since there are no per-
fect concretizations of M in any real performance; however, W could
contain some situations w’ such as Per fConc, (M) € inst;

e it should be possible to define an abstract system M’ € X that formalizes
a particular instance w, since Per fConc is an isomorphism and it is in-
vertible; this means that it should be possibile to recover the underlying
abstract system M’;

e the outlined representation of musical systems is not based only on
scores but also on some concretizations of them (namely, the performances).
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The last point is important for our purposes: the presented approach can
have enough expressivity to describe music both in its static and dynamic
states (i.e. the scores and the performances). However, to be useful, it always
needs a verifiable semantics: to validate the expressions in the theory it is
mandatory to provide a model that maps to truth values. In the proposed
formalization, the problem of providing such mapping is still open.

Moreover, there is a strong knowledge imposition from the theory: it mod-
elizes music in terms of harmony and counterpoint, for example, even if these
concepts could be completely irrelevant to the particular music being mod-
eled. In other words, the supposed ontology of the theory is fixed a-priori
and is transferred to the analysed domain.

In the following section, a different approach to music description based
on modal logic will be presented.

2.3 A modal approach

In the late seventies, Jos Kunst proposed a theory to model the dynamics of
music (Kunst 1976). His starting point was an approach based on modal-
ities, with operators like necessary () and possible (¢), applied to proposi-
tions about musical concepts over time. The propositions can refer to any
kind of heard sonic object and the modalities help to change the modeliza-
tion over time. For example, proposition Clc stands for c is true always in past
and present, while oc stands for c is true at some time in past or present; these
propositions can always be stated whatever is the concept represented by c.
While listening to the musical flow, an object can change its modality pass-
ing from, say, Lc to olc: this change is also embedded in the proposed for-
malism through a special non-monotonic function called bi-valence (BivFunc).
The main purpose of the bi-valence function is to formally describe the pro-
cess of learning and unlearning concepts. The expression [c may be valid at
time ¢¢ but not at time ¢;: then, due to —c, the new expression —c A oc is
derived. The learning part of the bi-valence function introduces a new con-
cept with its modality and produces a new law, say Od. Subsequently, c is
unlearned by means of a different time line from the one used for concep-
tualization of d. The bi-valence function BivFunc(c,d) then, crosses both
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time lines and expresses the change of conceptualizations as an unlearning
and learning process. Figure 2.1 represents a typical Kunst’s diagram for the
following expression:

BivFunc(c — —e,e — b, (-bAe) — aAd)).

Wg (1) c—-e Wé (1)e=2{b¥e)
(2)e—b
1
o (1)e=-e " 8 i
1
w, A (1)che
(2) af-bAdAe

0 1 (1) e=(bVc)

wy (1) =(c=-e)AO(c=e) W, (2)~(e=b)AO(e=b)

(3) (GbAe)=(aAd)

Figure 2.1: A typical Kunst’s diagram for his BivFunc.

Musical applications

In a general sense, this theory is a sort of propositional calculus with tem-
poral quantifiers; this gives to the theory an enormous expressive power:
formal propositions could stand for we hear section B of the composition, for
the sound of the violin or the pitch D is not sounding any more and so on. Such
kind of expressions can be, of course, extremely useful to manipulate, in a
very compact way, concepts that can be difficult to define in other ways:
many composers, for example, admit to use metaphorical descriptions in
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some phases of their activity. On the other hand, between the expression U,
meaning the sound of the violin, and the real sound of the violin there are no
evident relationships. We return to the original problem of finding a model
to the theory: there is no evident criterion to map the theorems to truth val-
ues; the only thing the theory can express are formal relations between empty
symbols through logical operators.

2.3.1 Models by musical images

Symbolic-level representations can be expressive enough to describe com-
plex relationships and hierarchies between concepts but are hardly related to
the physical nature of sound and are usually non-invertible: they are based
on logical rules that cannot be easily verified by any model.

A possible solution to provide a model to formal theories of sound has
been proposed in (Leman 2002) in the context of logical formalization of mu-
sical coherence and is based on perceptual models.

The basic idea is to build an interpretation of expressions involving mu-
sical coherence through computational descriptions of musical content; this
is achieved by defining the notion of musical image, a spatio-temporal repre-
sentational entity that provides a link between sounds and their conceptual-
izations.

The creation of a musical image is the result of low-level features extrac-
tion processes applied to sound signals (see section 4.4.1). For this reason
musical images formally represent properties closely related to sound. In or-
der to create a perceptual model, musical images must be processed through
the so-called auditory system; in terms of signal processing this corresponds
to the application of operations such as filtering, correlation and so on. Mu-
sical images can be created at different time scales, since they relate to dif-
ferent aspects of perception and can involve memory. Moreover, each image
can have a different degree of abstracion from the signal itself. Once images
are defined, it is possible to transform them by means of special functional
operators: this leads to a versatile model in which modal and temporal for-
malizations are possible.

A simple example will clarify the process. Let ¢ — n be a valid expres-
sion of a formal propositional language; if ¢ means sound of the clarinet and
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n means nasal timbre then we can say that the whole expression states that
the sound of the clarinet implies the nasal timbre. As specified in section 2.3
the expression is a simple relation between empty logical symbols; however,
with musical images and their transformations it is possible to provide a
model to that expression. It is possible to, for exam_lgle, the_)image of sound of
the clarinet and the image of nasal timbre as vectors A and B of low-level fea-
tures computed from real signals and filtered through the auditory system.
If, after a computatiorEl stage, it’s discovered that it is possible to transform
vector A into vector B then the formal expression ¢ — n is said to be valid
for that model.

This method is really promising: providing formal models by means of
low-level features is an extremely strong idea. In the described approach the
underlying logic assumes statically predefined concepts that are imposed onto
the described sound: the concept of nasal timbre must be explicitly defined
and the corresponding musical image must be deliberately created from the
signal. Unfortunately, this clashes with the requirements for music represen-
tations defined in section 4.1: the semantics of the underlying logic should
be signal-dependent in order not to impose predefined concepts.

24 A functional approach

Logical formalization showed in previous sections were mainly based on
abstract formal logic. The developments of computers in the last century,
created a new approach to logic based on computation: programming lan-
guages.

Basically, any programming language descends from a theoretical lan-
guage called A-calculus, proposed by Alonso Church (Church 1985). With
programming languages, many problems have been formalized in a practi-
cal way and have been successfully solved; also music has been formalized
through this approach.

In 1994, Orlarey, Fober, Letz and Bilton (Orlarey et al. 1994) proposed a
new model to apply programming languages to music: instaed of building
music data structures and functions on existing languages, they suggested
to build suitable programming languages on music data structures. The pro-
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posed approach is based on two main steps:

o extend a descriptive language by means of A-abstraction and A-application;

o extend the A\-calculus reduction rules in order to deal with specific lan-
guage constructions.

In order to illustrate their approach, they initially create a graphical cal-
culus that deals with 3D objects; later on, they transfer this model to music.
2.4.1 A graphic calculus

The following syntax defines a descriptive language that handles coloured
cubes and relative operators:

cube ::= color

| [cubeq|cubes)
| cubeq
cubey

| [cubey / cubes)

color ::= white | red | green | invisible | . ..

The meaning of the rules of the language is depicted in figure 2.2: this
kind of interpretation is very important when dealing with practical appli-
cations. An more complex example is the following:

whitelinvisible invisible|green

invisible /white’ green|invisible
whose meaning is depicted in figure 2.3.

While the described language is powerful enough to create coloured cubes,
it is not generative. In other word, it is not possible to create objects other than
the ones defined in the rules of the language. In order to add expressivity to
the language and to transform it from a descriptive-only to a real program-
ming language, the following extensions should be added:

o abstraction and application rules;
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Figure 2.2: The meaning of the descriptive graphic language.

Figure 2.3: An extended example of the graphic language.

e reduction rules to deal with the application of colored cubes.

This modifies the grammar of the language and create and extended syn-
tax, described below:
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cube ::= color

| [cubey|cubes)
| cubey
cubes

| [cubey /cubes)

| Acolor.cube (abstraction)
| (cubejcubesy) (application)

color ::= white | red | green | invisible | ...

A [-reduction example

Applying the new rules to expressions of the language, it is possible to create
variables that handle colors. The example given above becomes then:

, whitelinvisible invisible|green
Awhite Agreen. | —— - ——
invisible/white’ greenlinvisible

] blue red =

blue|invisible  invisible|green

Agreen. [ ] red =4

invisible/blue’ greenlinvisible
[blue|inm’sible invisible|r€d]

invisible/blue’ green|red

where white and green are now variables.

Construction of a diagonally divided cube

Itis now possible to use recursion properties of the new language by defining
an object as the application on itself; this leads to the creation of new objects.
The following objects A and B will help to undestand this process:

green|red
_ [greenjred B green| red[white
red|white green|red lwhite

red|white
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They are depicted in figure 2.4 (a): it is obvious that in B the object A is
repeated twice. In other words, it is possible to find a general expression that
handles both objects:

green| X
X=|"%———
[X|white]

w '

Figure 2.4: Figure (a) represents the repetition of cube A into cube B; figure
(b) represents a diagonally divided cube.

This opens the possibility of creating objects that are not described in the
rules in the language, such as the diagonally divided cube depicted in figure
2.4 (b); by applying the rule sketched above, the corresponding program will
be:

green|(red red) green|(red red)
X = | Ared. Ared.
( e [(red red)|white e (red red)|white

2.4.2 A music calculus

The application of the presented ideas to musical description can be done by
redefining the atomic element of its grammar. Instead of colors and cube, the
new language will deal with pitches, octaves and so on. The grammar of this
new calculus is defined below:
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score := ¢| event | [scorey; scores)
| scorey
scorez

| Aevent.score | (scorey scoresy)

event ::= r| note| event tmodi fier
note ::= pitch | pitch octave | note nmodi fier
pitch :=c|d|e| f|g|al|b
octave :=0]11]2]3[4|5|6|7|8]9
tmodifier == .| % |t|/
nmodifier =+ | — | > | <

Some (-reductions for music

The following example show the expression for a 3 time repetition:

c4 c4 c4 cd
ed ed e4 e4
Ae.Je; e ] = 3 : : :
g4 g4 g4 g4
b5 b5 b5 b5

A canon form can be expressed, instead, with the following formula:

o [c4;e4;g4;c3]
()\c. [ i d ] [c4; e4,g4,c4]> = 3 [[C4;e4;g4;C3] ] : (2.1)

The real power of this approach, however, appears when using recursion
to generate infinite sequences:

X = (\fed; (FHOIN[c4: (]

whose meaning is depicted in figure 2.5; these kind of expressions are really
convenient for some musical activities that are related to repetition.
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Figure 2.5: An infinite sequence using the described music calculus

Elody: a real implementation

Real implementations of functional music calculi exist: among the most im-
portant there are, for example, Elody (?) and Haskore (?). The following are a
tipical sentences in Elody, expressing equivalences:

C/4+7 = C+7/4 = Gx1/4

(C,_,E,F1/8 = [C/8,_/8,E/8,F/8]

{C,E,G}+2 = {D,F#,A}

Lambda x:M.{x,x+4,x+7,x+11}%2 Lambda x:M * 2.{x,x+4,x+7,x+11}
Lambda x:M. {x,x+4,x+7,x+11} N = {N,N+4,N+7,N+11}

The Elody programming language is essentially a music language ex-
tented with A-calculus; it clearly shows that the functional programming
model is of great interest for music languages. A real interesting feature
of this approach is that, being musical objects, functions can be represented
as real music objects. In this way, programming becomes naturally linked to
musical composition.
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2.5 Summary

This chapter showed some possible approaches to represent and manipulate
musical structures with formal logic.

The first approach discussed dates back to 1929 and is due to Susanne
Langer. She defined a set of fifteen postulates with which represent most
basic musical elements such as intervals, progressions and tones. Unfortu-
nately, her ideas are very general and should be specialized with the addition
of dedicated operators in order to be really useful for a particular musical
system

Langer’s ideas have been expanded in the second approach discussed,
due to Aqvuist. He focused on the concept of abstract musical system and
defines all its properties. This approach is more powerful of Langer’s be-
cause it also add time to the represented object, becoming more suitable for
musical purposes.

Finally, a more practical approach has beed presented. It is based on
functional languages, namely on A-calculus. Through A-application and A-
abstraction is possible to create generative languages that are able to perform
recursion. A real implementation has been also showed, Elody, with some
examples related to music.






Chapter 3

Algebraic approaches

How I need a drink, alcoholic of course, after the heavy
chapters involving quantum mechanics.

Gyorgy Pélya, using the pilish language

Abstract

3.1 Introduction

Chapter 1 outlined the relation between music and mathematics from an
historical standpoint. This relation has been interpreted, traditionally,
as the application of mathematical methods to music in order to describe phe-
nomena. Since XX century, however, this perspective changed in favour of a
new dynamic interaction creating a new research field called mathemusic.

This new world brought developments in both the original fields: musi-
cal problems can be formalized into mathematical statements; then, through
the process of generalization, they became theorems. It’s finally possible to
apply theorems to describe new musical theories. Figure 3.1 depicts the dis-
cussed concepts.

Chapter 2 showed how the process of formalization has been done us-
ing logical tools; another possible approach to perform this formalization
is through algebraic methods. The main fields of application for algebraic
methods have been, historically, theoretical aspects, musical analysis and
musical composition. In the recent developments the processes of analysing
and writing music became very close and influenced each other.
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Mathematical | #merlization | General

statements o theorems
Mathematics 1 application
formalization Music
4
Musical Musical
problems theory

Figure 3.1: The dynamic interaction between mathematics and music.

Among the composers/theoreticians that mainly influenced this approach,
there are Milton Babbitt (Babbit 1960) , Allen Forte (Forte 1977) , George Perle
(Perle 1991) , David Lewin (Lewin 2007) and, more recently, Henry Klumpen-
houwer (Jedrzejewski 2006) . They produced important results for the main
mathemusical theories: the pitch class set theory and the transformational the-
ory. For an historical introduction see (Verdi 1998).

Almost all the approaches based on algebraic methods rely on the pos-
sibilty of representing music thorugh the group mathematical structure; this
possibility comes from the organization of the pitch with tempered-tuning
systems (described in paragraph 1.1.3) and is directly connected to the ap-
proach proposed by Riemann'. In particular, the used groups are the cyclic,
the dihedral, the affine and the symmetric one.

The following is a (partial) list of problems and theories that have been
studied through the algebraic approach:

e classification of chords;

o set theory applied to pitches (pitch class set theory);

e generalization of set theory by transformations (transformational theory);
e musical mosaicing (for rhythms and pitches);

e Z-relation and homometric sets.

! All these theories are often called neo-rimannian approaches.
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In the following sections, only some of them will be dicussed. After a
short recall of the involved algebraic structures, it will be given a technical
overview of the problem of counting chords, of the pitch class set theory and
of the transformational theory. The problem of musical mosaicing will only
be partially sketched out at the end of the chapter through a specific example
regarding hexachords and their trichordal generators.

3.2 Algebraic background

The following section will summarize the required algebraic background to
formulate Pdlya’s enumeration theory, needed to solve the problem of count-
ing chords. Basic algebraic knowledge is required, in particular regarding
groups theory.

3.2.1 Group actions

It’s called group action of a multiplicative group G on a set X the mapping
G x X on X, (g9,z) — g.x that satisfies:

1. 1.z = z Vo € X, where 1 is the unit element of G;

2. (gh).x = g(h,x) Vg,h € Gand z € X.

Group actions induce the equivalence relation x ~ y givenby 39 € G,y =
g.xz, whose equivalence classes G(x) are called the orbits of G on X and are
defined as G(z) = {g.z|g € G}, two elements =,y € X are said to be in
the same orbit if 39 € G such that y = g.x. The set of all possible orbits is
denoted by G\\X = {G(z)|z € X}. An action is said to be transitive if there
exists only a single orbit.

The set G, is called stabilizer for x € X and is defined as

Gy ={9 € Glg.x = z}. (3.1)

The set X, for g € G is called fixed points and is defined as

Xy ={z € X|g.x = z}. (3.2)
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The following results about subgroup properties are necessary to under-
stand Pélya’s theorem discussed in next section and will be given without
proofs; for more information see (Jedrzejewski 2006).

1. LEMMA. If H is a subgroup of G, then the set G/H of the right cosets and the
set H\G of the left cosets have the same cardinality: |G/H| = |H\G|.

It's called index of the subgroup H of G the cardinal of the left/right
cosets defined as

(G H)| = |G/H| = |H\G|. (3.3)

The index of the trivial subgroup H = {1} is called order of G and is
denotated by |G|. A subgroup is defined normal if the right cosets are equal
to the left cosets:

Vge G, gH = Hy. (3.4)

8. THEOREM (LAGRANGE). The order and the index of a subgroup H of a finite
group G are both divisors of the order of the group:

(G H)| = |G|/|H]. (3.5)

9. THEOREM. The order of the orbit of = is equal to the index of the stabilizer of one
of its elements:

[(G(2)| =G : Gal. (3.6)

10. THEOREM. A group action of a finite group G on a set X induces a group
homomorphism from G to the symmetric group Sx by g — g, where g is called the
permutation representation of G on X and is denoted by the mapping x — g.x.

It's now possible to introduce two important lemmas that are funda-
mental for understanding Pélya’s enumeration; while they’re named after
William Burnside, they’re not due to Burnside himself but probably to Frobe-
nius (1887).
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2. LEMMA (BURNSIDE I). The number of the G-orbits on the multiplicative finite
group G acting on a finite set X is given by the average number of fixed points:

G\\X| = ,1G| 3 1%, (3.7)

geG

where X, = {x € X, gx = x} is the set of all fixed points of g € G.

This lemma has an important generalization. In order to introduce it, it’s
possible to define a weight function w : X — R as a constant function for each
G-orbit:

w(g.x) =w(x) Vg € G,Vr € X (3.8)

where R is a commutative ring such that Q is a subring of R and G is a finite
group acting on the finite set X. The weight of an orbit is equal to the weight
of any of its element w(G(x)) = w(z).

3. LEMMA (BARNSIDE II). The sum of the weights of G-orbits is given by the av-
erage number of weighted fixed points:

Z w(u) = ’(1;‘ Z Z w(z). (3.9

ueG\\X geG zeX,

3.2.2 Pélya’s theorem

This section will introduce one of the milestone results in the field of configuration-
counting problems. The results are mainly given to Fripertinger ((Jedrzejewski
2006)).

In the whole section R is a commutative ring such that Q is a subring of
it, X, Y are two finite sets and G is a finite group acting on X.

The set of functions YX : X — Y is called set of configurations from X; the
group action of G on X induces an action of G on the set YX by G x Y X —
v,

(9. f)— fog (3.10)
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where g is a permutation representation of g acting on X and the weight
function by w : Y¥ — R on Y¥, induced by the weight function 2 : Y — R
and defined as:

w(f) =[] n(f ). (3.11)

zeX

The function w is always constant on the G-orbits on Y X then for each
g € G:

wigf) =[] n(f(g " 2) = [ h(f(2)) = w(f). (3.12)

zeX zeX
It’s called cycle index of an action G on X the polynomial P x) of Q[t1, ..., #x|]
defined by:

| X

1 R
Pty tx) = ST e (3.13)
geG k=1

where jk(g) is the number of cycles of length % of the permutation g in its
decomposition as a product of independent cycles.

11. THEOREM (POLYA’S ENUMERATION). The sum of weights of G-orbits on Y
is given by

> uw =gy ﬁ (Z h(y)k) (3.14)

ueG\\YX geG k=1 \y€eY

where jk(g) is as before.

The cycle index of the symmetric group S, of the set X = {1,2,...,n} of
n elements is:

1 ik gk
P =S 5 (%) 619
j ok

where the sum is verifying Y ;' kj; = nand is takenoverall j = (j1, 2, ..., Jn)-
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3.3 Classification of tempered chords

All the theory discussed above and expecially Pélya’s theorem can be fruith-
fully used to enumerate chords in tempered-tuning systems made on n dis-
tinct notes, as described in paragraph 1.1.3. The results of this section are due
to George Halsey and Edwin Hewitt and to Harald Fripertinger ((Jedrzejewski
2006)).

In order to numerically represents notes, it's important to define some
concepts. It’s called pitch class (pc) an integer number in Z;2 = {0,1,...,11}
representing a note in a tempered-tuning system made of 12 steps, with the
following association: C' = 0,Ct = 1,..., B = 11. Enharmonic equivalents
(such as Ff and Gb) are numbered with the same integer. A set of pitch
classes of cardinality k is called k-chord.

To enumerate k-chords, it’s important to define the following;:

e former set X is now identified with Zs;

e former group G is now one of the followingzz cyclic C,,, dihedral D,,, or
affine A,,;

e a pitch class set corresponds to a characteristic function that maps the
pitches in the set to 1 and other pitches to 0;

e F(Zy2) = Y¥ is the sets of all pcsets;

e G acts of F(Z12) inducing an equivalence relation on sets made of k
notes (k-chords);

e each k-chord is a subset of the Cartesian product X*.

The definition of pcset given above can be generalized for any temper-
ament made of n pitch classes. If G is a group acting on F(Z12), the pcset
classes relatively to GG are defined by the quotient set F'(Z12/G). If the acting
group is the dihedral D, the pcset classes F'(Z12/D,,) are called d-classes ; if
the acting group is instead the cyclic C,, then che pcset classes F'(Z;2/C,,) are
called c-classes or musical assemblies .

’The case for the symmetric group S,, will not be discussed in this context.
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Operations and group equivalence
Using some operations, it’s possible to create equivalences under specific
groups. It’s called transposition the mapping 7T, defined as:

To:Zp — Ly, To(z) =2+ a modn (3.16)

while it’s called inversion the mapping I defined as:

I:Zy—Z, I(x) =—2 modn. (3.17)

Finally, it’s called affine transformation M, ; the following mapping:

Map: Ly — Zn Myp(x) = ax+b modn. (3.18)

If two pcsets are reducible to each other by transposition they are equiv-
alent under the cyclic group C,; if the are reducible to the same form by
transposition or by inversion followed by transposition they are equivalent
under the dihedral group D,,. Finally, if the two pcsets are reducible to the
same form by affine transformation the are equivalent under the affine group

Ap.

Computing cycle indexes

The number of k-chord classes is the number of G-orbits which is the coeffi-
cient of zj, in the cycle index for variables ¢, = 1 + 2k
The cycle index of the cyclic group C,, is given by the polynomial

Pien 2y (b oo tn) = % > e (5)th (3.19)
din

where ¢ is the Euler’s totient function 3.
The cycle index of the dihedral group D,, depends on the oddity of n and
is given by:

3Briefly, the Euler’s totient function ¢ for integer m is the number of positive integers not
greater than and coprime to m.
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. %P(szn) —+ %tltgn_l)/Q lf n is Odd
(P Za) 3Pz + %t%ténﬂ)/? + t§/2 if n is even.
The case of the affine group is more complicated (see (?)) since it splits

into two distinct cases:

1. n = 2% the cycle index of the affine group A, is given by

-1
1 2(a—1)—1 X 2(i—1 a1 20—
PlgeZa) = 53271 (2 (a—1) t2a+2(2 (i=1) 4 (27120 )tQi +
=1
' 9a—i—1

a—2 i
Z (,D(Qi) <2it%a—z 4 2a_1t%t%a_l_l_l) (H t2k>
1=0 k=1

for a > 3. For a = 2 and a = 4, however, there are smaller solutions:
1
Playz,)(t1,t2) = 5@% + t2)
P bty tata) = ~(#4 1+ 22t + 362 + 21
(Aa,Z0) (L1, 12,13, t4) = 8( 1 2t5ts + 3t + 2tq).

2. n = p® with p prime and a > 1: the cycle index of the affine group A,
is given by

]_ a . a—1
Paeze) = 55—+ p2(171) p—1tY +
(Ap ’Zp ) p2a71(p _ 1) (; ( ) p

=il (p-1)/d

a—1 i p
. . . a—i—1__
§ : 2 : pz+6(d>(a_z)sﬁ(pld)t1t£lp 1)/d (l | t;ﬂ“d)
k=1

1=0 d|p—1
where §(z) = 1ifx > 1and (1) = 0.

Using the cycle indexes introduced above, it’s finally possible to com-
pute the number of assemblies from each class of k-chords in Zi»; table 3.1
summarizes the obtained results and indicates the common name for each
k-chord. Note that the problem is always symmetric with the center of ; in
class 6: each chord of k notes has a complementary chord of (12 — k) notes;
the 12-chord is unique. For more details see (Jedrzejewski 2006).

Other typologies of classification are also possible; section 3.4.5 will show
a classification of hexachords using combinatoriality.
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Table 3.1: The total number of assemblies for any k in Z1.

’ ‘ k-chords Group A,, | Group C,, | Group D,
1 | Unison 1 1 1
2 | Intervals 5 6 6
3 | Trichords 9 19 12
4 | Tetrachords 21 43 29
5 | Pentachords 25 66 38
6 | Hexachords 34 80 50
7 | Eptachords 25 66 38
8 | Octochords 21 43 29
9 | Ennachords 9 19 12
10 | Decachords
11 | Endecachords
12 | Dodecachords

|| Total | 157 [ 351 223

3.4 The pitch class set theory

This section will review the basic results of the pitch class set theory, follow-
ing the approach presented by Allen Forte (Forte 1977).

3.4.1 Ordering

The pitch class sets defined in section 3.3 were unordered; if a set is also or-
dered it’s called tone row (or k-row if its cardinality is k). A pitch class set is in
normal order when, arranged in ascending order, it’s also put in the more com-
pact form by a cyclic permutation. Formally: let A = {4, Ay,..., Ay_1} be
a pcset. For each cyclic permutation ¢, the index vector from the permuted
set o(A) = {Au0), Ap(1)s - - - » Ap(r—1) } is defined by the vector (u1, ..., ux1)
with

Uk—j—1 = ALP(J') - A<p(0) mod 12. (320)



3.4. The pitch class set theory 51

A given permutation ¢y produces the normal order if the compact number
N (pp), or the number built on the coordinates of the index vector, is as small
as possible:

N(p0) =uy - 10872 4 ug - 10573 4+ -+ g - 10 + upy. (3.21)

The number of transposition semitons of the normal order from the ref-
erence pcset is given by the index number A 9)— 4,-

A pcset is in prime form (dihedral or Forte’s prime forme) if its first integer
is 0 and it’s the most compact form among its inversion. Two pcsets are
equivalent (or Dq2-equivalent, where D5 is the dihedral group that acts on
the set of all pcsets) if they are reducible to the same prime form by means of
transposition or inversion followed by transposition.

3.4.2 Operations on pitch class sets

The set matrix of the prime form A = {A, Ay, ..., Ax_1}is a matrix U of size
k x k as defined below:

Uij =A;_1+ Ajfl mod 12. (3.22)
1. PROPOSITION. Given the pcset A = {Ao, A1, ..., Ar—1} of length k and the

counting function 1x (where 1x = 1if X is true, 1x = 0 otherwise) if there is a
number m such that

k=Y 1w,—m) (3.23)
4]

then I, (A) = T,,I1(A) = A; in other words, the pcset has the same pitch classes of
its m-transposed inversion.

The comparison matrix of the pcset A given above is the matrix C of size
k x k defined as:

Cij = Sigl’l(Aj_l — Ai—l)- (324)
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2. PROPOSITION. Assuming that each comparision matrix is skew-simmetric (CT =
—C), the following cases hold:

e inversion : the comparison matrix of the inverse set I(A) is the transposition
matrix of C:
C(I(A)) = CT; (3.25)
e retrograde : the comparison matrix of the retrogade set R(A) is the m-rotation
of the elements of the matrix around its center C*:
C(R(A)) =C*E (3.26)
where Cf} = Crt1-ik+1-j
e retrograde-inversion : the comparison matrix of the retrogade-inversion set
RI(A) is the codiagonal transposition of the matrix:
C(RI(A)) = CFT = TR (3.27)
where CII;”T = Ck+1fj,k+1fi~

A pcset A¢ is called complement of the pcset A if it’s made of the elements
of Z12 not contained in A; it's sometimes indicated by A = Zj2/A. A set is
said to be self-complement if both A and A€ are reducible to the same prime
form.

3.4.3 Intervallic content

It’s called interval class (ic) of two pcsets the function d that maps Z12 x Z12 —
{0,1,2,3,4,5,6} as follows:

i) |z —y|lmod12 if|z—y| <6
T, Y) =
—|z —y|mod 12 if |[x —y| > 6.

Given the (k + 1)-row S = [Sp,...,Sk] with S1 < .-+ < S, it’s called
derivation of S the pcset D defined by:
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Dj = d(Sj, Sj+1) = Sj+1 - Sj mod 12 (328)

forallj =0,...,k—1and Dy = Sy,...,Sk. It's also defined iterated derivation
D™ the derivation applied recursively m times on S.

The interval vector (iv) of a pcset A is a 6-tuple representing all individual
interval classes present in A. The first entry of the vector counts the num-
ber of the smallest interval (semitone), the second entry counts the second
smallest and so on.

With interval class content vector (ivc) of two pcsets A, B is defined the 7-
tuple ivc(A, B) = [vg,...,vs] where vg = [AN Bland fori =1,...,6,v; =
|ANg B|/2. ANy B is the set of all pairs of intervals class k:

AN B ={(x,y) € Ax B,d(xz,y) = k}. (3.29)

12. THEOREM (Z-RELATION). Two pcsets A, B are said to be Z-related if they
have the same interval vector (iv(A) = iv(B)) but they are not reducible to the
same prime form.

3.4.4 Similarity

Two pesets A and B of the same cardinality m are p-similar (~),) if there exists
at least a common subset of cardinality m — 1 in the union of two represen-
tatives A and B:

A~y B < 3C |Cl=m—-1,C C AUB. (3.30)

It’s also useful to define the the degrees of similarity ~¢, ~; and ~3. Two
pcesets of the same cardinality will be O-similar if they have no equal values
in the corresponding entries of the interval vector:

A~y B <= Vi, l’U(A)Z 75 ZU(B)Z (331)

Two pcsets of the same cardinality will be 1-similar A ~; B if they have
four equal corresponding entries in the inverval vector out of six and two
inverted entries; in a similar way, they will be 2-similar if the have two equal
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corresponding entries in the inverval vector out of six but two different en-
tries.

Two sets classes A and B are said to be in subset relation (D C) if they have
different cardinalities and one is included into the other:

ASCB & ACBVBCA. (3.32)

The set complex K (A, A°) of the set class A is the set of all set classes B in
subset relation with A or with its complement A°:

B e K(A A°) < B DC AV B DC A" (3.33)

Finally, the set subcomplex Kh(A, A¢) of a set class A is the set of all set
classes B in subset relation with A and with its complement A°:

B e Kh(A, A°) < B >C AAB DC A (3.34)

3.4.5 Hexachordal combinatoriality and classification

Hexachords are special structures because of their intrinsic property of using
half of the possible notes in Z3. For this reason they have been investigated
a lot in term of combinatoriality. This paragraph will provide an overview of
the basic results and will give different classifications of hexachords.

Combinatoriality is defined through the basic transformations on k-rows
defined in section 3.3 and in paragraph 3.4.2: P (original row), I (inversion),
R (retrograde), RI (retrograde of the inversion), T' (transposition) and affine
transformations M5/7 4. The transformations P, I, R and RI constitute a
Klein group, whose multiplicative table is showed in table 3.2.

It’s called all-combinatorial a k-row whose first hexachord forms a twelve-
tone row with any of its basic transformations transposed. It's known that
the second hexachord of all-combinatorial rows is always a transposition 7;
with ¢ # 0 of the first hexachord. The following theorem will define hexa-
chordal all-combinatoriality 7; for more information see (Forte 1977).

*This transformations operate a multiplication of each element by 5 and 7 respectively;
these are the only multiplicative transformations that preserve the cardiality of the original
setin Zjo.
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Table 3.2: The multiplicative table for the Klein group made by P, I, R and
RI.

RI|RI|R | I | P

13. THEOREM (HEXACHORDAL 7-COMBINATORIALITY). There are only six types
of all-combinatorial row and they can be organized into four categories. If A if the
first hexachord of the twelve-tone row S then:

1. 1i-combinatoriality: A combines only with its transposition Ts: S = AU
Ts(A);

2. mp-combinatoriality: A combines with transpositions T3 and Ty: S = A U
Tg(A) =AU TQ(A),

3. m3-combinatoriality: A combines with transpositions Ty, Ts and Thg: S =
AU TQ(A) =AU TG(A) =AU Tlo(A),'

4. Ty-combinatoriality: A combines with all odd transpositions: S = AUT,(A) =
AU Tg(A) =AU T5(A) =AU T7(A) =AU TQ(A) =AU TH(A).

4. LEMMA. An hexachord A has the same interval vector of its complementary set
A°,

A k-row is called semi-combinatorial if any of its transformations other
than the retrograde can be transposed so that the first six notes are equivalent
to the last six of the original set, even if in different order. The following
theorem will define the categories of semi-combinatorial properties.

14. THEOREM (HEXACHORDAL SEMI-COMBINATORIALITY). An hexachord A
that is not all-combinatorial can have four categories of semi-combinatoriality:

o «a-combinatoriality: if A = A®and A # 1(A);
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o [(-combinatoriality: if A # A°and A = I(A);
o y-combinatoriality: if I(A) = A€ but they differ from A;

o v-combinatoriality (empty): if I(A) # A and they also differ from A.

Orthogonality of hexachordal taxonomies

In order to know the total number of hexachords present in Z;, is also possi-
ble to apply the formula of binomial coefficients:

n n!
(k) = m (3.35)

With equation 3.35 is possible to compute how many different combi-
nations of k elements can be created using n different elements. The total
number of hexachords in Z;, is then given by:

12 12! 479001600
<6> ~6!-(12—6)!  720-720 924. (3:36)

The classification in 924 classes is, however, not used; a more common
taxonomy is found, among the others, in (Martino 1961) and in (Forte 1977)
and is the one given in section 3.3 under the cyclic group C,; it reports 80
hexacords.

Looking carefully to the hexachords present in such a catalog it’s possible
to notice that some of them have the same interval vector; in other words,
they are essentially identical.

It is then possible to apply another quotientation by means of the I trans-
formation in order to create a smaller taxonomy in which all the interval
vectors are different. After this operation, the number of hexachords shrinks
to 35 classes E; in which each class has a different interval vector; table 3.3
shows the new taxonomy.

It’s really important to point out the following: combinatorial properties
propagates from the 80-classes taxonomy to the 35-classes taxonmy. In other
words, if an hexachord A belongs to a class of the original catalog with a
given combinatorial property, that hexachord will belong to a class e € E;
that has the same combinatorial property.
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35-class | 80-hexachords ‘ Interval vector ‘ Combinatoriality

Ei |1 (5,4,3,2,1,0) T
By |26 (4,4,32,1,1) ~
Es |3,5721 (4,33,2,2,1) v
B, | 4,22 (4,3,2,3.2,1) B
Es |820 (3/4,2,2,3,1) v
Es | 9,18,23,54 (3,3,3,2,3,1) v
E; | 10,15,26,36 (3,3,3,32,1) v
By |11 (3/4,3,2,3,0) T
By | 12,19 (4,2,2,2,3,2) v
Ew | 13,17,27,53 (3,3,2,2,3,2) v
Eu | 14,55 (3,2,4,2,2,2) 3
Ei» | 16,37 (4,2,1,24,2) 3
Ei3 | 24,52 (3,2,3,4.2,1) v
Eu | 25,46 (3,2,3,4,3,0) o
Eis | 28,51 (2,4,1,4,2,2) ~
Eis | 29,45,56,63 (2,3,3,3,3,1) v
Eir | 30,35 (2,4,2,4,1,2) v
Eis | 31,38,49,50 (3,2,2,3,3,2) v
Eig | 32,43, 64,66 (2,33,2,4,1) v
Es | 33,58 (2,3/4,2,2,2) 3
By | 34,40 (3,2,24,3,1) v
Esy | 39,44,59, 62 (3,1,3,4,3,1) v
Eoy | 41,48 (3,2,2,24,2) ~
Eo | 42,67 (2,32,34,1) 3
By | 47 (4,2,02,4,3) T
Ess | 57,61 (2,2,5,2,2,2) v
Esr | 60,65 (2,2,4,3.2,2) 3
Ess | 68,79 (14,2,4,.2,2) ~
By | 69,75 (14,32,4,1) v
Eso | 70,77 (2,2,343,1) ~
By | 71 (14,3,2,5,0) T
By | 72,78 (2,2,4,2,2,3) ~
Es3 | 73,74 (2,2,4,2,3,2) 3
B | 76 (3,0,3,6,3,0) T
Es; | 80 (0,6,0,6,0,3) T

Table 3.3: Taxonomy of hexachords in 35 classes by means I.
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While in the new taxonomy there aren’t classes with the same interval
vector it’s still possibile to apply another quotientation by means of the affine
transformations M 5/7. This leads to a new classification made of 26 classes
F;; table 3.4 shows the new shrinked taxonomy:.

Looking at the interval vectors of classes F; it’s possible to notice that
after the application of M 5/7 the entries number 1 and 5 are exchanged. For
example, hexachord 69, whose interval vectoris (1,4, 3, 2, 4, 1) geneteres (un-
der M5) hexachord 2, whose interval vector is (4,4, 3,2,1,1). This new tax-
onomy, then, assumes as equivalent all classes whose interval vector are
equal except for the exchange of entries 1 and 5.

Amazingly enough, also in this case the combinatorial properties pre-
serve. This is an indirect proof that quotientations by basic transformations
are correct; all these hexachordal taxonomies are said to be orthogonal.

3.5 Transformational theory

The results of this section are mainly due to D. Lewin; he was the first to
introduce the notion of generalized interval system (GIS) in (Lewin 2007).

3.5.1 Generalized interval system

Given a set X with finite elements and a multiplicative group G of intervals
on X, it’s possible to define a generalized interval system as a triple (X, G, int)
where int is the function X x X — G such as:

o int(x,y)oint(y,z) =int(z,2) Vr,y,z € X;
o Vz € X, Vg € G there exists a single value y € X such thatint(z,y) = g.

With 1x is defined the characteristic function of the non-empty pcset X,
such that:

Ly (1) 1 ifueX
xX\u)=
0 otherwise.

The function 1% (u) = 1x(—u) is called the adjoint function of 1x.
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’ 26-class ‘ 35-class | 80-hexachords ‘ Interval vector ‘ Comb. ‘
b3 E,E31 | 1,71 (5,4,3,2,1,0) T
b Es Esg | 2,6,69,75 44,3,2,1,1) ~
F3 Es, Eyg | 3,5,7,21,32,43, 64, 66 4,3,3,2,2,1) v
Fy Ey, Eoy | 4,22,42,67 4,3,2,3,2,1) I}
F5 E5 8,20 (3,4,2,2,3,1) y
s Eg 9,18,23,54 (3,3,3,2,3,1) v
Fy E7, E1g | 10,15, 26,29, 36, 45, 56, 63 (3,3,3,3,2,1) v
Fy Eg 11 (3,4,3,2,3,0) T
Fy Ey, Eo3 | 12,19,41,48 (4,2,2,2,3,2) ~y
Fyg Eq 13,17,27,53 (3,3,2,2,3,2) v
i Evq, E33 | 14,55,73,74 (3,24,2,2,2) I}
D) Eys 16, 37 (4,2,1,2,4,2) I}
Fis FEqs, Eso | 24,52,70,77 (3,2,34,2,1) v
Fyy Eyy 25,46 (3,2,3,4,3,0) Q@
Fis Eqs 28,51 (2,4,14,2,2) ~y
Fig FE17, Eas | 30,35,68,79 (2,4,2/4,1,2) ~
Fir FEig 31, 38,49, 50 (3,2,2,3,3,2) v
Fig Ey 33,58 (2,3,4,2,2,2) I}
Fig Eo 34,40 (3,2,24,3,1) ~
Fy By 39, 44, 59, 62 (3,1,34,3,1) v
Fy Eos 47 (4,2,0,2/4,3) T
Fy Eo 57, 61 (2,2,5,2,2,2) ~
Fos Eyr 60, 65 (2,24,3,2,2) I}
Fyy Es 72,78 (2,2/4,2,2,3) ~
F25 E34 76 (3,0,3,6,3,0) T
Fog Ess 80 (0,6,0,6,0,3) T

Table 3.4: Taxonomy of hexachords in 26 classes by means M 5.

The interval function ifuncixy) for two non-empty pcsets X and Y is
defined as the convolution of the characteristic functions 1% x 1x:
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ifunc x,y)( ZlX Ay(i—7) = le(k‘) 1y (i + k). (3.37)

k

Using the interval function is possible to find how many times the note
k in the pcset X has its i-transpose in Y. In this context, the interval vector
is the 12-tuple whose entries are represented by the functions i func x y (7)
for i = 0,...,11. Finally, with injection function inj x y)(f) it's defined the
number of elements x € X relative to the transformation f(z) € Y such that:

injoxy)(f) = Y Lwer)- (3.38)
zeX

The following theorems represent important milestones in the trasforma-
tional theory. They will be presented without proof; for more information
see (Jedrzejewski 2006) and (Lewin 2007).

15. THEOREM (TRANSLATION PROPERTY). IfTj is the translation if i and X and
Y are two non-empty pcsets then

injxy)(f) = ifuncxy) (7). (3.39)

16. THEOREM. If A is a pcsets whose cardinality is 6 (hexachord) and |A| = |A€|,
then for all bijections f:

injia,a)(f) = injae ae)(f) (3.40)

and in particular
ifunciq,ay = ifuncige gc). (3.41)

17. THEOREM. If A is a pcsets whose cardinality is 6 (hexachord) and |A| = |A¢| =
6, then for all bijections f:

injia,a)(f) +injac ae)(f) = 6 (3.42)

and in particular
ifuncia.a,) =6 —ifuncea a)- (3.43)
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3.5.2 Relations with the discrete Fourier transform

There are some important relations between the characteristic function and
the discrete Fourier transfom (DFT) °.

It's indeed possible to define the Fourier transform of the characteristic
function such as:

Flx)w) =53 1x(u)-e 12 . (3.44)

For the theorem of convolution (see (Oppenheim and Schafer 2009)), it’s
known that a convolution in time domain corresponds to a pointwise multi-
plication in frequency domain. For this reason, the DFT of the interval func-
tion is the pointwise multiplication of the complex conjugates of 7 (1x ) with
F (1y):

F(X,Y)=F(x) F(ly). (3.45)

The following important results have been proved by D. Lewin in (Lewin
2007).

18. THEOREM. If the Fourier transform F(X,Y ) (i) of the interval function of two
non-empty pcsets X and Y is equal to zero for i = 1,...,11 then the interval
function is constant.

19. THEOREM. If the Fourier transform F(X,Y ) (i) of the interval function of two
non-empty pcsets X and Y is equal to zero for all i excepts than 0 and 6, then the
interval function is made of alternate entries:

ifuncix,yy = (P, 4P, 404 4P, 4D q) (3.46)

where p and q are integers.

20. THEOREM. If XY, Z are non-empty pcsets, then i func x yy = ifunc(x,z) if
and only if the Fourier transforms F(1x) or F(ly — 1) are always equal to zero
for any i.

*More information about the DFT can be found in paragraph 4.3.
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3.5.3 Riemannain transformations and K-nets

Riemann’s theory has been introduced in paragraph 1.1.2: in his work he
developed a new analytical approach to musical theory defining three trans-
formations on his table of tonal relations. These transformations are Parallel,
Relative and Leittonwechsel (P, R, L) ; they act on triads (pcsets of cardinality 3)
and maintain two fixed points. A short review of them will be given below:

e Parallel: exchanges major and minor triads and it’s defined as [a,a +
4,b] «——p [a,a+ 3,b)];

e Relative: exchanges a major triad with its relative minor triad and it’s
defined as [a,b,b + 3] «—r [a — 3, a,b];

o Leittonwechsel: exchanges a major triad with the minor triad located a
major third up and it’s defined as [a, b, b+ 3] <R [a — 3, a, b].

It’s possible to define new transformations as composition of the three
discussed above:

e subdominant (S): transforms a major triad to a major triad transposed a
tifth up and a minor triad to a minor triad transposed a fifth down; it’s
defined as S = Ro L;

e dominant (D): transforms a minor triad to a minor triad transposed a
tiftth up and a major triad to a major triad transposed a fifth down; it’s
defined as D = L o R.

The three fundamental transformations P, L and R generate a group iso-
morphic to the dihedral group of order 24 created by the translations 7, :
x — x +n mod 12 and the inversions I,, : x — —x +n mod 12.

H. Klumphenhouwer showed in (Jedrzejewski 2006) that any set of pitch
classes can be represented as a network (called Klumphenhouwer network or
K-net ) of T' and I transformations. This new perspective focuses on the
structural morphology and on the logical progressions of chords interpreting
them as graphs in wich pitch classes are linked by the 7}, and I,, transforma-
tions. Figure 3.2 depicts the K-net for the three pcsets {0, 1,4, 6,7}, {0,4,6,7,10}
and {0,1,6,7,10} showing how they actually can be derived using the T3
transformation.



3.6. Selected topics 63
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Figure 3.2: A ket showing the transformations of the pcsets
{0,1,4,6,7},{0,4,6,7,10} and {0, 1,6, 7, 10}.

3.6 Selected topics

3.6.1 Hexachords and trichordal generators

Regular subdivisions of twelve-tone rows have been studied by different the-
oreticians such as, among the others, Donald Martino in his The source set and
its aggreate formations (1961) (Martino 1961). The problem falls into the more
general category of musical mosaicing, that will not be discussed in this con-
text; for more information see (Jedrzejewski 2006).

The specific case of subdividing the twelve-tone row into four chords
of three notes (trichords) had many connections with compositional designs
thanks to composers such as Francesco Valdambrini, Peter Schat (Schat 1993)
and Steve Rouse (Rouse 1984). The following results are due to Rouse; his
point of view is particularly interesting because he studied the relations be-
tween twelve-tone rows (also called aggreates), hexachords and trichords un-
derstanding their combinatorial properties.

In the following discussion, the sets are numbered using Forte’s catalog
in which there are 12 trichords and 50 hexachords (see (Forte 1977)).

Each hexachord can be divided into 10 pairs of trichords; figure 3.3 shows
the composition of hexachord H = [0, 1,2, 3,4, 5] into the 10 trichordal cou-
ples.

If an hexachord is made of two trichords belonging to the same class (ie.
with the same prime form) then it has a single generator , otherwise it has a
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[0,1,2]+[3,4,5]

[0,2,3]+[1,4,5]

[0,1,3]+[2,4,5] [0,3,4]+[1,2,5]

[0,2,41+[1,3,5] [0,4,5]1+[1,2,3]

[0,1,4]1+[2,3,5] [0,3,5]1+[1,2,4]

[0,2,5]+[1,3,4]

[0,1,5]+[2,3,4]

Figure 3.3: The decomposition of hexachord H = [0, 1, 2, 3,4, 5] into the gen-
erating couples of trichords.

dual generator . Rouse presents three important tables showing the following
information:

e given an hexachord H, all the trichordal generators ;
e given two trichords 77 and 75, all the hexachords that they generate;

e a mixed table with the hexachords in the horizontal axis and the tri-
chords in the vertical axis.

The possible trichordal generators are 78: the 12 existing trichords are
coupled such as 12+ 11410+ ---+ 1 = 78. It's possible, however, that some
generators mix up in different ways (ie. using different transformations): in
that case Rouse uses the power symbol to indicate the number of occurences
(for example 12 — 252 is used to indicate the trichords 12 and 15 combine in
two different modes®).

Ttable 3.5 lists the beginnig of the hexachordal point of view (correspond-
ing to Rouse’s first table); table 3.6, on the other hand, shows the trichordal

*To improve readibility, the trichord [0, z, y] will be indicated simply as zy; for example
[0, 1,2] becomes 12.
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Table 3.5: Hexachords and their trichordal generators.

’ Hex. ‘ Prime form | Int. vector | Single generators

Dual generators

1 012345

543210

12,13,14, 24

12-152,13-142, 13-
252

2 012346

73 012356

443211

433221

14

25

12-13, 12-16, 12-
26, 13-24, 13-25,
13-26, 13-36, 14-
15, 24-25

12-13, 12-16, 13-
14, 13-15, 13-16,
14-15, 14-36, 15-
25, 24-26

736 012347

433221

12-13, 12-16, 13-
37, 13-25, 13-27,
13-36, 13-37, 14-
15, 14-16, 24-26

point of view (corresponding to Rouse’s second table).

The information provided by Rouse’s tables is really interesting. Nonthe-
less, the tables only list abstract forms of trichords and hexachords without
giving any information about the real transformations applied to the sets.

For example, hexachord 1 is made by generator 12-15 in two ways:

e 012ab3, made by 12 + To(15);

e 01243b, made by 1217(15).

The constructive information is really important for actual use since its

computation can be really complex. There are softwares that can compute
actual forms of the generators7; table 3.8 shows some of the actual transfor-

7 A software has been written by the author of this work; it’s called OpenMosaic and can be

found online.
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mations for the generatators of hexachord [0, 1,2, 3,4, 5].

Compositional use of hexachords

It’s possible to create sequences of hexachord using the musical principle
of modulation : an hexachord is followed by another one that shares com-
mon generators. This method guarantees continuity of the hexachordal level
while changes the trichordal level and has been used from composers in or-
der to create harmonic successions. Table 3.7 illustrates this process showing
common generators; the same hexachords are also depicted in figure 3.4, in
which the circularity of the process appears more clearly.

Table 3.6: Trichords and generated hexachords

Trichords | Generated hexachords

12-12 1,74,76,7

12-13 2,73,711,712, 743, 18
12-14 736,5,15,717, 744
12-15 12,7372,7382, 14, 16

It’s also possible to create hierarchies of hexachords depending on the
number of shared trichords. Figure 3.5 illustrates this process for trichords
[0,1,2] and [0, 1, 5).

Table 3.7: A hierarchy of hexachords by means of shared generators.

’ Modulated hexachords | Shared generators
6-2 / 6-23 12-13,12-16, 14-15
6-23 / 6-5 12-16, 13-15, 13-16
6-5 / 6-Z12 13-16, 15-37, 25-27
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Trichordal mosaics

The following theorems, also due to Rouse, will define the trichordal mosaics
and will give some important properties.

6-Z41 6-5
/ ‘ \
6-7Z36 6-Z12
6-2 6-Z3

Figure 3.4: An example of modulation of hexachords.

21. THEOREM. A trichordal mosaic is a set of four trichords that combine into an
aggregate. Let A be an aggqreate and X,Y, Z, W trichords; there are five different
types of mosaics:

o A= XUXUX U X: the aggregate made by four identical trichords;

o A= XUXUXUY: the aggregate made by three identical trichords and one
different;

o A= XUXUYUY: theaggregate made by two couples of identical trichords;

e A= XUXUY UZ: the aggregate made by three different thrichords, the
first being used twice;

o A= XUY UZUW: the aggregate made by four different trichords.

22. THEOREM (TRIANGULAR RELATION). In any trichordal mosaic, the combi-
nation of vertical or diagonal pairs of trichords produces either the original hexa-
chord or a pair of derived heaxhord. Derived hexachords will always be either a dual
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Table 3.8: Actual generators for hexachord [0, 1, 2, 3, 4, 5].

Forms of [0, 1, 2, 3, 4, 5] ‘ Actual generators ‘

012345 t0(12) t3(12)
0129ab t0(12) t9(12)
012543 t0(12) it5(12)
012ba9 t0(12) itb(12)
012ab3 t0(12) ta(15)
01243b t0(12) it4(15)
012b34 t0(12) th(45)
0123ba t0(12) it3(45)
013542 t0(13) it5(13)
013245 t0(13) t2(23)

representation of a single, non Z-related hexachord, or a pair of Z-related hexachords
because they are necessarily complementary.

There are 3081 (142434 - -+78 = 3081) couples of trichordal generators,
but only some of them can be used to generate aggregates. The combinato-
rial computation of these couples is complex and is possible by means of
specialized algorithms.

Compositional use of mosaics

Musically speaking, one of the most interesting possibility of trichordal mo-
saics is creating sequences of mosaics that preserve the hexachordal level while
changes the trichordal level. With this approach is possible to control the
color of the harmony used, while changing the actual notes.

Figure 3.6 shows a sequence of trichordal mosaics; the hexachord 6-2
propagates in the horizontal level from aggregate to aggreate on the hori-
zontal level, while vertical and diagonal hexachords always change. The se-
quence as a generation period that depends on the number of thricordal gen-
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[0, 1,2]+[0,1,5]:

6-74,6-76,7
[0, 1, 2] only: [0, 1, 5] only: no shared generators:
6-1 6-738, 8,9, 14, 20, 6-720 all other hexachords

Figure 3.5: An example hierarchy of hexachords depending on shared tri-
chords.

erators of the horizontal hexachord. It's possible, however, to concatenate
several sequences changing the direction of the generation from horizontal
to either horizontal or vertical.

6-Z6 6-Z38 6-1 6-1 6-Z42 6-Z13
6-2 —»| 234 016 » 012 346 > 146 023 — 6-2...
| | | | | |
6-2 —| ab5 789 » 578 9ba > 89a 57a —> 6-2...
6-5 6-5 6-18 6-18 6-32 6-32

' '

Figure 3.6: An example device for trichordal mosaics
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3.7 Summary

In this chapter, the main results coming from the application of algebraic
methods to music have been showed.

At the beginning of the chapter, a general review of the needed theoretical
background has been given from the concept of group action to the Pélya’s
enumeration theory. These results have been used to classify and enumerate
chords, a problem that received always a lot of attention from composers.

Then, pitch class set theory has been illustrated and the main theorems
and results have been provided. The concepts of intervallic content and sim-
ilarity have been discussed and a short review of combinatoriality of hexa-
chords has also been given.

The transformational theory has been then presented, following David
Lewin’s approach. The concept of generalized interval system has been pre-
sented and its relations with the discrete Fourier transform have been showed.
A short presentation of k-nets has also been given.

At the end of the chapter, the trichordal mosaics have been presented
showing also some possible compositional applications.



Chapter 4

The theory of sound-types

The best way to predict the future is to invent the
future.

Dennis Gabor

Abstract

Sound-types are a new method to represent and manipulate sounds in a quasi-
symbolic way by means of low-level features and subsequent analysis stages.
After the presentation of the basic ideas, a full analysis-synthesis framework
and some applications will be shown.

4.1 The levels of representation

ymbolic representations described in chapters 2 and 3 have been exten-
S sively used in latest developments of musical theory. Algebraic approaches,
in particular, entered the compositional process and changed the way musi-
cal creation is done.

As showed in chapter 1, however, all these representations have been ap-
plied to symbolically represent objects that are already symbolic. Musical
notation, in fact, is configured to handle notes, chords, rests and other musi-
cal elements as symbols to be decoded. Nonetheless, music is not completely
represented by the score: it exists in the final stage of performance'. Is it pos-
sible to apply symbolic representations on musical audio signals in the stage
of performance? In other words, is it possibile to describe musical signals in
a symbolic way?

'While music can exist at the statical level of the score, this chapter will only deal with
played music, considering it as an acoustical phenomenon.
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Music can be described in many ways: it can be viewed as a time-varying
signal and can be described by expressing the evolution of its physical prop-
erties over time. Music can be also viewed as a symbolic system exploiting
relationships between sonic-objects> and can be described by a formal lan-
guage able to express these relationships over time?.

Common approaches for music description generally take into account
the different points of view by selecting a particular degree of abstraction in
the domain of the representation: either they rely on the signal level, either on
the symbolic level or on a fixed mixture of both*. The latter case is generally
known as mid-level representation: this term is used in the computer audition
community to indicate intermediate modelings of hearing usually based on
perceptual criteria; see (Ellis and Rosenthal 1995).

>
—
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Figure 4.1: An example of symbolic-level representation; this a Schenkerian
analysis in which symbols generically represent musical entities with repeti-
tions and hyerarchies.

While signal-level representations are computationally efficient, invert-
ible® and express some physical properties associated to the signal, they lack
in abstraction and usually do not provide much of information about hi-
erarchies, formal relationships between sonic-objects and so forth; they are

*With this expression, intuitively, it is referred any kind of event that appears in the musi-
cal flow; a precise definition of sonic-objects is exactly the scope of any representation.

*Understanding the formal properties of music can also involve perceptual aspects and
memory, that will not be considered here.

*In (Vinet 2003) four different levels of representation are introduced, from specific to ab-
stract: physical representations, signal representations, symbolic representations, knowledge represen-
tations; physical and knowledge represenations are beyond the scope of this research.

>Invertibility is the possibility to go back to the signal domain from the representation itself.
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unable to manipulate concepts other than the basis of the analysis itself (such
as sinusoids). A more detailed overview of signal-level representations will
be given in section 4.3.

Symbolic-level representations can express complex relationships and hi-
erarchies (structure analysis, repeated patterns, etc.) but are inefficient, non-
invertible and are hardly related to the physical nature of sound. A typ-
ical example is depicted in figure 4.1: it represents a Schnkerian analysis
where the symbols encode musical entities with repetitions and hierarchies.
Symbolic-level representations are often based on logical rules that cannot al-
ways be verified by a computational model. Moreover, the underlying logic
generally assumes statically predefined concepts that are imposed onto the
signal. The form of representations described in chapters 2 and 3 are all ex-
amples of this level.

Mid-level representations try to address the issue related to the lack of
generality by focusing on relatively simple concepts that are, however, more
abstract than the bases of the analysis. These concepts are usually based on
perceptual criteria related to the low-level hearing and are situated in be-
tween the constraints imposed on them by lower and higher levels. The
power of this kind of representations stands in the fact that they are usually
invertible and that the logical rules they involve are generally verifiable by
some models related to perception. Mid-level representations, moreover, be-
long to a full network of representations spanning between the signal level
and the symbolic level; it is always possible to create new types of mid-level
representations to express desired concepts. Nevertheless, the concepts are
imposed onto the signal from the representation itself in this case as well.

41.1 A new representation method

All the representation levels discussed so far have a common feature: a fixed
degree of abstraction. In other words, they focus on a particular point of view
and are not scalable: once a representation level has been selected it is not
possible to go smoothly to another level.

Most of them, moreover, impose their own concepts onto the signal: each
representation models the signal with its own concepts, even if they are com-
pletely irrelevant to that particular signal; figure 4.2 roughly depicts the de-
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scribed ideas.

physical P abstractness

connection

‘ [
Signallevel |4  Mid-levels Hq—» Symbolic level

generality g P cxpressivity

Figure 4.2: The levels of representation.

The main purpose of this chapter is to propose a connection between
the signal and the symbolic-level by defining a new representation method
based on specific signal processing techniques able to retrieve information
from a signal and model that information statistically to find salient proper-
ties.

4.1.2 Properties for a representation

Defining a representation method for music and musical signals involves
the establishment of essential properties that the representation must satisfy.
Many years of research have been devoted to such a task in the field of cog-
nitive musicology, a branch of cognitive sciences focused on the modeling of
musical knowledge by means of computational methods (Laske et al. 1992);
among the main researchers of the field there are Otto Laske, Mira Balaban,
Bernard Bel, Francis Courtot, Fred Lerdahl and Ray Jackendoff.

The following is a partial list of important properties for musical repre-
sentations arised from the examination of the literature in the field, orga-
nized by researcher:

e Francis Courtot in (Laske et al. 1992):
— subdivision of the objects in simple and complex: music is necessarily
built of elements with various degrees of complexity;

— horizontal and vertical associations between objects: in music it is im-
portant to be able to express both time and hierarchy;
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— heuristics to produce new objects: as a generative language, music
can create new objects;

— rules should be learned from the context: not all the rules in music
are defined from the beginning and some of the can arise during
musical creation;

e Bernard Bel, in (Bel 1989):

— mapping between symbolic (prescriptive) and numeric (descriptive) rep-
resentations: this property is related to the possibility of describing
music both as a score and as performance;

— terminal objects of the language have acoustical properties: in a repre-
sentaiton conceived for music it should be possibile to listen to the
atoms of the language.

e Mira Balaban, in (Laske et al. 1992):

— musical operators are needed: music performs transformation on its
objects (such as transposition, time shifting, etc.);

— support for incomplete description: many elements in music cannot
be properly described.

The key-points of these properties are three. First, the representation
should handle simple and complex objects. Second, the relations among the
objects should be hierarchical and temporal. Third, atomic elements should
have an acoustical counterpart.

Section 4.5 will present a new method for music representation called the
theory of sound-types. The basic features of this representation have been de-
fined keeping into consideration the properties given above. The core idea is
to represent music using common entities that can be instantiated into specific
elements. These common entities act as classes of equivalences for sounds
and can therefore considered as types; the types are instantiated in time and
relations and operations are defined over them.

The general theoretical background of the approach presented here takes
its inspiration from simple type theory and from the System F by the french
logician J.Y. Girard. Theory of sound-types, nontheless, rely on some signal
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processing techniques and on some statistical techniques. The comprehen-
sion of all the background is needed in order to understand the theory. For
this reason, following sections will introduce the basics of required fields.

Finally, a theoretical formulation of the proposed representation method
will be given through the sound-types transform and a real implementation
will be presented, showing how this method is a full framework for sound
analysis and synthesis.

4.2 Inspiration: simple type theory

In order to avoid some set-theoretical paradoxes such as the one about classes
of all classes that are not members of themselves, Bertrand Russell proposed
in 1908 a logic now known as ramified theory of types; in the twenties, this the-
ory has been simplified by the addition of the axiom of reducibility becoming
the so-called simple type theory. In 1940, Alonzo Church (Church 1985) for-
mulated simple type theory in terms of functions creating a special notation
called A\-notation. Subsequently, this elegant formulation has been expanded
in many ways becoming one of the most influential theories on modern com-
puter science and on general theory of functions. There are many variants
of simple type theory; the presentation given here is a version of Church’s
theory and is due to Farmer.

Simple type theory syntax is made of two principal objects: types and
expressions . The former is a nonempty set of values and is used to build
expressions, to validate them by value and to restrict the scope of variables.
The latter, instead, denotes values including true and false values and be-
haves like terms and formulas in first-order logic.

A type of simple type theory is defined by the following formation rules:

T1. i is the type of individuals;

T2. «is the type of truth values;

T3. if o, B are types, then a — (3 is the type of functions from elements of
type a to elements of type (.

Rules T1 and T2 define he so-called atomic types while rule T3 defines
compound types. The logical symbols of simple type theory are defined as
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follows:

1. function application: Q
2. funcion abstraction: \
3. equality: =

4. definite description: ¢

5. an infinite set of symbols called variables: v

it is now possible to define a language of simple type theory as the ordered
pair L = (C, ¢) where:

1. Cis a set of symbols called constants;
2. vUC = © (the sets are disjoint);

3. ¢ : C — 7 is a total function, where 7 is a set of types of simple type
theory.

In other words, a language is a set of symbols with types that have been
assigned. It is now possible to define an expression of the language L with
another set of formation rules:

El. if ais a type and x € v, then z : v is an expression of type o (variable);

E2. if ¢ € C, then cis an expression of type ¢(c) (constant);

E3. if A is an expression of type a and F is an expression of type o — (3, then
F@QA is an expression of type 3 (function application);

E4. if z € v, ais a type and B is an expression of type 3 then Az : a.B is an
expression of type av — [ (function abstraction);

E5. if Fy and E» are expressions of type «, then E; = Ej is an expression of
type * (equality);

Eé6. if z € v, ais a type and A is an expression of type %, then tx : @.A is an
expression of type « (definite description).

All expressions, here, are differentiated by type and not by form. For
example, an individual constant of L is a constant ¢ € C such that ¢(c) = ¢; a
formula of L is an expression of type x while a predicate of L is an expression
of type av — *.
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4.2.1 Models for simple type theory

For the languages of simple type theory, like for first-order languages, it is
possible to define a semantics based on models. A standard model for a lan-
guage L = (C, ¢) of simple type theory is an ordered triple M = (D, E,I)
such that:

D ={D, : « € 7} is a set of nonempty domains;
D, = {true, false};
for o, B € 7, D, p is the set of all functions from D, to Dg;

=L N

E = {eq : a € 7} is a set of values such that e, € D,,Va € T (e, is
called the canonical error for «);

5. I maps each ¢ € C' to a member of D).

Given a model M = (D, E,I) for a language of simple type theory, the
variable assignment into M is a function 1 that maps each variable expression
x : o to a member of D,. Given a variable assignment 1 into M, an expres-
sionz : o and d € D,, let ¢)(x : @ — d) be a variable assignment ¢/ into M
such that ¢¥(z : @) = dand ¥/(v) = (v),Vv # = : a. The valuation function,
then, is the binary function VM that, for all variable assignments 1 and all
expressions E of L, satisfies the following conditions:

1. if E=2:a, then VwM(E) =Yz : a);

2. if E = C, then V) (E) = I(E);

3. if Eis of the form FQA, then V) (E) = V) (F)V,} (A);

4. if F is of the form Az : a. B with B of type 3, then qu\/[ (E) is the function
f: Dy — DgsuchthatVd € Dy, f(d) = Vq%ﬁ:aﬂd)(B);

5. if E is of the form E; = E5 and Vqé‘/[(El) = Vl/fw(Eg), then Vé‘/[(E) =
true; otherwise Vlf/[ (E) = false;

6. if E is of the form Iz : o.A with A of type a and there is a unique
d € D, such that V%I:QH d)(A) = true, then Vdf‘/[ (E) = d; otherwise

quw(E) = eq.

Let E be an expression of type o of L and A be a formula of L. Then
quv[ (E) is the value of E in M with respect of 9. it is also possible to say
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that A is valid in M (M E A) if szw (A) = true for all variable assignments 1
into M. A sentence is a closed formula of L; A is a semantic consequence of a
set of sentences ¥ (X F A) if M F A for every standard model M such that
M E B for all B € 3. Finally, a theory of simple type theory is an ordered
pair T' = (L,T') where L is a language of simple type theory and I" is a set of
sentences called axioms of T'; a formula A, therefore, is a semantic consequence
of T'(I' F A) if I' F A. Finally, a standard model of T is a standard model M
for L such that M F B,VB €T

Main elements on which this semantics is based are well established ideas,
also used in first-order languages, such domains of individuals, truth val-
ues, models for languages, variable assignments and valuation functions de-
fined recursively on the syntax of expressions. In the following section, an
overview of the audio indexing theory will be presented.

4.2.2 Girard’s System F

An interesting extension of the simple type theory is the System F by Girard
(Girard 2006): The language is obtained by generalizing A~ by adding the
abstraction on types; the types are defined from type variables X, Y, Z, ... by
means of two operations:

1. if Uand V are types, then U — V is a type

2. if Vis a type, and X a type variable, then [[ X.V is a type

There are 5 schemes to create terms:

1. variables: 27, yT 2T, ... of type T

2. application: ¢(u) of type V, where tis of type U — V and u is of type U

3. A-abstraction: \zY.v of type U — V, where zY is a variable of type U
and v is of type V

4. universal abstraction: if v is a term of type V, the it is possible to form
AX.vof type [[ X.V so long as the variable X is not free in the type of
a free variable of v
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5. universal application (exctraction): if t is a term of type [[ X.V and U
is a type, then t(U) is a term of type V[U — X]

The A operator represents the abstraction in the language: it does not
operate on functions but on types of functions, promoting types to first-class
objects. It actually operates as a second order universal quantifier; System F
is then a second order calculus with types and is often called \2.

This calculus is one of the frameworks proposed by H. Barendregt (1991)
to organize various calculi depicted in figure 4.3; each edge of the cube is
actually the relationship of inclusion.

Figure 4.3: The A-cube as proposed by Barendregdt
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Most of the 8 A-calculi are known: A7 is the calculus with types; A2 is
the second order polymorphic calculus (ie. System F); Aw is the System Fw
by Girard; AP is the AUTOMATH language for demonstrations; AP2 has
been studied by Longo and Moggi (1988); AC' is the calculus of constructions
introduced by Coquand and Houet (1986); Aw is related to the POLYRET
system by R. de Lavalette (1985). The calculus APw has been studied less
than the others. Each axis represent a form of abstraction:

1. types depending on terms, or dependent types (AP)

2. terms depending on types, or polymorphism (System F)
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3. types depending on types, or type operators (System Fw)

For all the calculi of the A-cube is valid the Church-Rosser theorem for
strong normalization; for the Curry-Howard isomorphism they are also iso-
morphic to natural deduction and sequent calculus.

4.3 Basic signal models

This section will give a short overview of digital signal processing techniques
(DSP) and only basic information will be provided. For a more detailed
overview, there are excellent books on the topic such as (Oppenheim and
Schafer 2009).

In a general sense, a discrete-time signal % is a vector of n values repre-
senting the change of a variable over time (time series). Most commonly, for
audio signals, the variable represented is amplitude: in digital audio signals
both time and amplitude are quantized in discrete quantities. The quanti-
zation of time is called sampling rate (fs) and its reciprocal is called sampling
time (ts = i). In short, the sampling rate defines the space of a signal and
determines which operations are possible.

Most of signal processing techniques assume that a given signal can be
approximated by a weighted sum of functions. A signal-level representa-
tion is, therefore, a decomposition of a signal 7 into a linear combination of
expansion functions:

13

. (4.1)

Qs

K
=2

=1

8

This is a time-domain decomposition, since the signal % is a vector of n
discrete values measuring amplitude over time, where K is the total number
of decomposition functions. From the superposition property of linear time-
invariant systems (LTT), it follows that any linear operation P applied on the
signal is equivalent to the same operation applied on each single element of
the decomposition:
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K K
P> oy i) = > 0P (3). (4.2)
k=1 k=1

The coefficients oy, in equation 4.2 are derived from an analysis stage,
while the functions QT'Lk can be determined by the analysis stage or fixed be-
forehand and are used during a synthesis stage; both stages are related to a
particular signal model. The choice of the decomposition functions is depen-
dent on the particular type of application needed.

Taken together, the coefficients and the functions build the complete rep-
resentation (expansion) of a signal: the more compact (sparse) this represen-
tation is, the more the functions are correlated to the signal (see (Goodwin
1998)).

If the functions 7, used in equation 4.2 are linearly independent then they
constitutes a basis of the signal space and the expansion is unique and math-
ematically invertible.

The major feature of basis expansions is that, because of their linear in-
dependence, they are very useful for certain classes of signals: some expan-
sions, for example, provides little information about time-localized signals
while they are very good for frequency-localized signals. More on this topic
will be discussed in paragraph 4.3.1.

If the selection of the decomposition functions is not fixed beforhand but
it is derived from an analysis stage, the decomposition is called adaptive .
A typical way, in adaptive decompositions, to reconstruct a signal is to se-
lect from a dictionary of functions the ones that best match the given signal®.
When the dictionary is made of linearly independent functions it is said to
be complete, otherwise it is said to be overcomplete.

From a foundational point of view, equation 4.2 involves the following
symbolic entities: a set of elements oy, two binary operations + and -, a set

of unary functions é}k It is worth pointing out some important facts:

e binary operations + and - are supposed to be commutative (i.e. g

+ go=g> + g1 and o1 G1=G1 a1);

®This is the basic principle of sparse decomposition methods such as basis pursuit and
matching pursuit (Goodwin 1998).
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o the set of functions é}k is made of elements of the same type, so it is an
homogeneous collection.

The last point is particularly important: the representation operates on
the signal in a unique way and consequently it applies only a certain amount
of knowledge to it. Equation 4.2 belongs to a symbolic world in which only a
single type of concepts is manipulated.

The discrete Fourier transform (DFT)

A typical example of signal-level decomposition is the discrete Fourier trans-
form , given in the equation below:

n—1
Ke=) @@k, (43)
=0

Equation 4.3 decomposes a signal into oscillatory functions represented
by complex sinusoids where k is a frequency (dependent on the sampling
rate f;). In the equation above a single decomposition function k (called
channel) is represented by g, = e/ Ak,

The modulus | X | and the angle Z X}, represent, respectively, the so-called

magnitude and phase spectrum of the observed signal.

43.1 Time-frequency representations

Signal-level decompositions prefer a particular point of view on the signal.
The DFT, for example, favours frequency over time because the basis func-
tions have a definite frequency position given by fi = £ f, where f; is the
sampling rate. Time localization in DFT, however, is much poorer since it
is the same for all basis functions. If the observed signal has temporally-
localized event, such as a spike or any kind of quick change, the DFT will
not be able to correctly represent the event that will spread in the transformed
domain.

A possible way to practically overcome this problem is to slice a time se-
ries of N samples into small segments of n samples and separately transform
each of them with the DFT, thus producing a time-frequency representation .
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The segments, or chunks, must not be necessarily adjacent in time but
they can overlap by a given amount: it is possible to take a new slice by
hopping t samples from the previous slice, with ¢t < n. There is an important
trade-off between time and frequency localizations that will not be discussed
further here; suffice it to say that time and frequency localizations strictly
depend on the kind of signal analysed and must be chosen consequently.

An important time-frequency representation is the short-time Fourier trans-
N

form (STFT) defined as a function of both time and frequency X, of a signal
k

7 of length N-samples taken n at a time while hopping by t-samples:

=z

S

N /

XE:
k ;

3

S 2T,

n
- Tit € ) n

(4.4)

~
I
o

where h is a window of length n-samples (Oppenheim and Schafer 2009) and

k is as above. Since the basis functions are linearly independent, the STFT is
invertible; a general resynthesis equation is then given by:
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(4.5)

N
The matrix | X» | is called the spectrogram of a signal and is one of the
k

mostly used time-frequency representations.

4.3.2 The phase-vocoder

The phase-vocoder is a very well-known technique to perform transforma-
tions on audio signals (such as time-stretching, pitch-shifting, etc.) using
the STFT frequency domain representation. Since its theory is vastly docu-
mented (see (Laroche and Dolson 1999) for more information), it will be just
summarized here.

The phase-vocoder operates by performing short-time Fourier transforms
(STFT) on a time-domain real signal to obtain a succession of overlapped
spectral frames (analysis) . The time between two spectral frames is called
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hop size. The original signal can be recreated by performing an inverse Fourier
transform on all frames and then adding them together (resynthesis) . Be-
tween the analysis and the resynthesis stage a number of transformations
may be performed to obtain different effects on all parameters of the signal
(frequency, time, etc.).

Some important improvements are possible on the phase-vocoder. First,
a techinque of phase management called phase locking can be applied in order
to improve the audio quality of the resynthesized signal. Second, a technique
of amplitude management called envelope preservation can be applied in order
to maintain the main morphology of a sound after the operation of pitch-
shifting. A small review of both techniques will be given below.

Phase locking

When a signal is analysed by the DFT, each component of the signal fall in
a specific channel k of the transformed domain (eq. 4.3) and has a specifc
phase. Intuitively, if the component change frequency between one frame
and the other, it is needed to handle its phase in order to preserve coherence
in time.

One of the best approaches to preserve phase coherence in time has been
proposed in (Laroche and Dolson 1999) and it is related to the estimation
of the peaks in the magnitude spectrum. The basic idea is to create an en-
tity that preserve phase coherence for each frequency analised called phasor.
The algorithm to apply phase locking is outlined below; the steps are only
intuitively described:

n
1. for each magnitude spectral frame Xf compute the positions of the

peaks (peak-map);

2. for each peak k; in the peak-map calculate its true analysis frequency
wq, then map this to the true synthesis frequency and synthesis phase;
calculate the phasor zj, = e/%;

n n

3. for each k calculate the synthesis frame Y= z;,- XF.
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Spectral envelopes preservation
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Figure 4.4: Spectral envelopes computed with the cepstrum method and
with peaks interpolation.

The spectral envelope is a smooth function in the frequency-amplitude
plane that matches, to a certain degree, the peaks of the amplitude spec-
trum. Many studies (Schwarz 1998), (Burred et al. 2006) show how spectral
envelope is closely related to the of timbral information for musical signals.
Spectral envelope, moreover, is quite independent of the pitch. However,
by applying pitch-shifting with the phase-vocoder the spectral envelope will
necessarily be transposed also. This leads to unnatural sounds that, some-
times, are really different from the original ones. To avoid this, the spectral
envelope has to be kept constant, while the partials slide along it to their new
position in frequency.

Two simple methods for envelope computation are interpolations be-
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tween the peaks and the use of the cepstrum . The cepstrum is calculated
from the discrete Fourier transform by taking the inverse transform of the
magnitude of its logarithm:

1 Z 2T .
ep =7 D _log(| X |) - €k (4.6)
k=0
where X, is the DFT of the signal and p is the number of coefficients used

in the transformation. The spectral envelope is then computed by applying
a lowpass window to the cepstrum (called liftering) and by taking again the
Fourier transform; briefly, given the signal S:

E = DFT(Wp(c)) (47)

where W is the lowpass window. Figure 4.4 shows a magnitude spectrum
and the corresponding spectral envelopes computed by means of peaks in-
terpolation and cepstrum. These methods present, however, several draw-
backs that will not be examined here. Important extentions to the cepstral
method have been proposed in literature through the concepts of discrete cep-
strum and true envelope; see in (Galas and Rodet 1991) and in (Robel and
Rodet 2005) a for more information.

4.4 Clustering techniques

As pointed out in section 4.1.2, the basic idea of the approach described in
this chapter is to represent music using common entities that can be instan-
tiated into specific elements. The orthogonal way to express this concept is
saying that specific elements should be grouped into common entities in order
to have a more compact representation. The operation of grouping is related,
mathematically, to the creation of classes of equivalence. In the domain of
digital signals this is also related to classification (deciding the pertenance of
an element to a given class) and is known with the name of clustering .
Clustering is the identification of groups, or clusters, of data points in a
multidimensional space (usually called feature space ). More formally, being
{z1,...,xNn} asetof N observations of a random variable = in D-dimensions,
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clustering consists of partitioning the data set into a number K of groups
(called model), with K given.

Intuitively, it is possible to define a cluster as the set of data points whose
inter-point distances are small compared with the distances to points belong-
ing to other clusters. Figure 4.10 depicts an hypothetical situation in which
there are three evident clusters rounded by three ellipses; the radii of the el-
lipses represent the variance of the cluster, while the centers represent the
mean. Usually, the data sets being clusterized consists of features describing
a problem.

Two-dimensional feature space
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16 |

14 |

Feature 2
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10+
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Feature 1

Figure 4.5: Three hypothetical clusters in a two-dimensional space; this pro-
cess can be also applied to multidimensional spaces.

A possible approach to compute clusters is by using techniques such as
K-means algorithm or Gaussian Mixture Models (GMM), using any kind of
distances. In order to decrease the complexity of the analysis, moreover, it is
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possible to reduce the dimensionality of the feature space by applying special
techniques such as Principal Component Analysis (PCA).

To evaluate the quality of the clustering, finally, it is possible to use tech-
niques such as the gap statistic or the Bayesian Criterion Information (BIC)
that measure the geometrical dispersion of a given clustering model.

Next paragraphs will give a short overview of the techniques discussed
above, that will be used in the theory of sound-types.

44.1 Low-level features for audio signals

The first important step to perform any kind of clustering is measuring a
problem through specific features, in order to have an initial data set. In
audio indexing, such measures are often called low-level features .

Low-level features are numerical values describing the contents of an
audio signal according to different kinds of inspection: temporal, spectral,
perceptual, etc. (Peeters April 2004) A typical example of low-level feature
is the so-called spectral shape, represented by the statistical moments of the
spectrum: mean, variance, skewness and kurtosis. The probabilistic mean over
the spectrum is usually called centroid or brightness and is defined as follows:

w= /:c -p(x)dx. (4.8)

Here z are the observed data (i.e. the frequencies of the spectrum) while
p(x) are the probabilites to observe x (i.e. the amplitudes of the spectrum).
Similarly, the variance is usually called spread or bandwidth and is defined
following the previous definition:

o? = /(m —u)? - p(x)dz. (4.9

The definition of the third and the fourth statistical moments is similar;
they represent respectively the asymmetry and the flatness of the distribu-
tion.
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Audio indexing

A typical field of application of clustering is audio indexing : by combining
different techniques it is possible to group together signals that share com-
mon properties. A typical approach to audio indexing is based on the pro-
jection of some low-level features computed over a set of sounds in a multidi-
mensional space; similar sounds, then, tend to project onto similar positions
of the space, producing clusters.

4.4.2 K-means and Gaussian Mixture Models

Two of the most important clustering algorithms are K-means and Gaussian
Mixture Models (GMM); both will be reviewed shortly.

Given a data set {x1,...,xx} of N observations the D-dimensional vari-
able xz, K-means performs the partitioning of it into k sets {s1, ..., si} with
k < N, minimizing the within-cluster sum of squares J:

k
J = arg minz Z |z — il (4.10)

=1 Tj €S;

where 1; is the mean of the points in .S;.

A typical way to compute clusters with K-means is a through a refine-
ment procedure called expectation-maximization algorithm (EM). Given an ini-
tial set of means {m, ..., m;}, a two-fold procedure is applied:

e expectation: assign each element of the original data set to the cluster
m; with the closest mean

Si(t) ={zj:|z; — mgt)\ <|zj — ml@wi* =i,...,k}; (4.11)

o maximization: calculate the new means to be the next centroid of the
observations in the cluster

@+ _ 1 .
m = > (4.12)
’ ‘@7‘650)

1
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A Gaussian Mixture Model is a weighted sum of M component Gaussian
densities”:

M
p(z|A) = wa(ﬂm,&) (4.13)
i=1

where z is a D-dimensional variable, w; are the weights for each mixture
and g(z|u;, ¥;) are the component Gaussian densities. Each component is a
D-variate Gaussian function of the form:

1

— 3 @—p)' S -
el i) = (@m) P[5, |12 3 (emim) % e (4.14)

where 1, is the mean vector and ¥; is the covariance matrix. As appears from
above equations, the GMM is completely described by the mean vectors, the
covariance matrices and the mixture weights and can be expressed in the
form A = {w;, pi, X;}, withi = 1,..., M. The GMM provides a smooth over-
all distribution fit of a data set and its components detail the multi-modal
nature of the density. The computation of the parameters of the GMM can be
also done with a two-fold procedure, aimed to maximize the likelilood of the
model given a data set. For a sequence of training vectors X = {z1,..., 27},
the GMM likelihood can be written as:

T
p(XIA) =[] ozl V). (4.15)
t=1
The likelihood is a non-linear function, therefore direct maximization is
not possible. The parameters of the model, however, can still be estimated
using a specific variant of the expectation-maximization showed above (Bishop
2006).

Distance measures

Most of clustering methods applied on a feature space rely on the selection of
a specific distance measure used to decide the pertenance of a data point to a
specific cluster. Beyond Euclidean distances, other metrics are also possible

"For more information about Gaussian densities please see (Bishop 2006).
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such as the Manhattan and the Mahalanobis distances; both will be discussed
below.

The taxicab (or Manhattan) distance between two vectors in an n-dimensional
real vector space with fixed Cartesian coordinate system, is the sum of the
lengths of the projections of the line segment between the points onto the
coordinate axes. More formally,

di(p,q) =Y Ipi — ail (4.16)
i=1
where p and ¢ are vectors.

The Mahalanobis distance between two vectors in an n-dimensional real
vector space with fixed Cartesian coordinate system is defined as follow:

(4.17)

where p and ¢ are vectors and % is the standard deviation. This formulation
is often called normalized euclidean distance.

4.4.3 Dimensionality reduction

The clustering methods discussed above can be applied on variables of any
number of dimensions. In some circumstances, however, can be useful to
reduce the number of dimensions used in the analysis.

Dimensionality reduction can be applied by means of two main approaches:
feature selection and feature extraction.

Generically, feature selection tries to find a subset of n features from the
original set of D features with n < D by minimizing or maximizing some
cost functions. In feature extraction, on the other hand, the original set of
D features is transformed into a new set with less dimensions. Among the
most important techniques for dimensionality reduction by feature extrac-
tion there is principal compoment analysis (PCA) .

PCA (also called Karhunen-Loéve transform) is a linear and orthogoanl
transform that looks for a number of uncorrelated variables (called princi-
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pal components) from a set of correlated variable, without assuming any
particular distribution property. It is defined as an orthogonal linear trans-
formation that transforms the data to a new coordinate system such that the
greatest variance by any projection of the data comes to lie on the first coor-
dinate (called the first principal component), the second greatest variance on

the second coordinate, and so on. Figure 4.6 shows an example application
of PCA.

Component 3

0.5

05
1 05 Component 2
Component 1

Figure 4.6: Principal compoments computed on a set of correlated variables.

Briefly, for a data matrix X T with zero empirical mean, where each row
represents a different repetition of the experiment, and each column gives
the results from a particular probe, the PCA transformation is given by:

Yy =xTw =vx? (4.18)

where the matrix X is an m-by-n diagonal matrix with nonnegative real num-
bers on the diagonal and WXV is the singular value decomposition (SVD)
of X. See (Bishop 2006) and (Press et al. 2007) for more information.
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44.4 Model evaluation

With clustering, a particular problem is described by partinioning it into K
subclasses that should represent it adequately. Anyway, it is not easy to de-
termine if a particular model is a good representation of a problem. There
exist methods, however, to measure the relative goodness of fit of a statisti-
cal model. Such methods can be used to compare how well different cluster-
ings perform on a given data set. Usually, two main approaches are used to
evaluate a model:

e internal criterion of quality: it is possible to assign a score to an algorithm
by analysing the relations between the produced clusters, where mod-
els with high similarity within a cluster and low similarity between
clusters will get a good scoring; high scores, however, not always re-
sult in effective information retrieval applications;

o external criterion of quality: the score is assigned to a model by com-
paring the results of the clustering against some external benchmark
(pre-classified items) often created by humans (experts).

In the first category there are two important quality measures for a model:
gap statistic and Bayesian information criterion (BIC).

The gap statistic is an error measure for clustering that looks at the within-
cluster dispersion W, = 3", k%le, where D; is the pairwise squared dis-
tance of all points in a given cluster. Formally:

B
dn(p,q) = (1/B) Y log(Wy) — log(Wy) (4.19)
b=1

where B is a reference data set in the range of the observed data and W} is
its within-cluster dispersion.

The Bayesian information criterion (BIC) is a criterion for model selection
among a class of parametric models with different numbers of parameters
defined as:

BIC = —-2-In(L) + k- In(n) (4.20)
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where L is the maximum likelihood for the model, & is the number of clus-
ters and n is the number of data points.

Automatic estimation of K

By assessing a quality measure for models, it is also possible to automati-
cally select a model for a given problem. A simple approach is to iteratively
change the number K of clusters and compute a quality measure for each K.
it is then possible to study the function of quality measures to select the best
model.
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Figure 4.7: A plot of the variation of the within-cluster dispersion changing
the number of clusters.

In many situations an automatical estimation of the best fitting model
is also feasible. As an example, figure 4.7 represents a model evaluation
based on the gap statistic. The left plot depicts the change of the within-
cluster dispersion depending on K; the right plot, instead, the corresponding
value of the gap statistic. The fast drop on the left plot (that represents the
best fitting model) corresponds, in the right plot, to the maximum of the gap
statistic. Taking the maximum of the gap statistic, then, can be an approach
to automatic selection of K.
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4.4.5 Markov models

The clustering analysis described above can be very useful in describing
problems in a static way. Some problems, however, happens in time and
have a dynamic nature. Markov models , while not directly connected with
clusterings, are useful tools to describe sequential properties of a problem.

A Markov model is a stochastic model represented by a directed graph that
can have infinite loops. The edges of the graph are labelled with transition
probabilities such that the sum of outgoing probabilities from a single node
is 1. A realization of a Markov model is a random path that moves from
state to state according to model’s probabilites. These can be represented as
a transition matrix T in which each element T;; is the probability of moving
from state ¢ to state j. A valid transition matrix must satisfy the following
properties: 0 <T;; < land ), Tj; = 1.

Table 4.1: Transition probabilites for principal harmonic families.

H Tonic ‘ Subdominant | Dominant

Tonic 25 D .35
Subdominant .35 25 D
Dominant 5 .35 25

An example will clarify the exposed ideas: table 4.1 represent an hypotet-
ical transition table for the principal functions in tonal harmony; the corre-
sponding graph is depicted in figure 4.8.

In the so-called hidden Markov model (HMM) there is no direct observation
of the state of the model. From a given state i of a total of M states, the model
emits a symbol k probabilistically chosen from a set of K symbols, whose
probability is denoted by:

hi(k) = P(k|i) (4.21)

with (0 < i < M,0 < k < K). More on HMM can be found in (Rabiner
February 1989).
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G T

Figure 4.8: A graph representing transition probabilities of table 4.1.

4.5 Sound-types

After the presentation of the needed theoretical background, given in the
above sections, it is now possible to formulate the central argument of this
chapter: the theory of sound-types.

The theory of sound-types is a new representation method for musical sig-
nals that, while being generic enough to be used for different signals, fulfills
by-design the following requirements:

e signal-dependent semantics: the basis of the representation are in-
ferred from the signal, using learning techniques; this creates the pos-
sibility to describe concepts that are really related to the sound being
analysed (adaptive dictionary);

e scalability: it is possible to change the degree of abstraction in the rep-
resentation, ranging from the signal level to the symbolic- level in a
continuous manner; the degree of abstraction becomes a parameter of
the representation;

e weak invertibility: the representation method is able to generate the
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represented signal; this possibility does not imply, however, that the
generated signal must be waveform-identical to the original one, but
only that perceptually relevant parts of it can be reconstructed (that’s
why it is called weak);

e generativity: it is possibile to generate sounds other than the original
one, according to some parameters in the domain of the representation
that can be estimated from a given signal or deliberately created.

451 The typed model

The basic idea of sound-types is to represent sounds by means of types and
rules inferred by some low-level descriptions of signals (Peeters April 2004)
and subsequent learning stages. The types represent classes of equivalences
for sounds, while the rules represent transition probabilities that a type is
followed by another type.

This means, mathematically, to translate a signal-level representation into
other forms involving different elements and operators (mid to symbolic-
level representations); more formally:

z[n] = iy argrln]
= aigi[n] + ... + argr[n]
= pifiln] + ... + Bjfin]

=wihi[n] + ... + wihen].

In the equations above «, 3,...,w could be any kind of weighting coef-
ficients, gi, fj, ..., s are variables belonging to different types, + and - are
relations defined for each typeand ¢t < j < ... < k (i.e. last equation has less
elements than first equation). Notice that + and - are not algebraical sum
and multiplication and are not required to be commutative: they can be any
kind of binary relation defined over specific types. As long as it is possible to
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convert from type g;, to type h; and to define relations on both, it is possible
to perform the translation. Since the + relation is not the algebraical sum,
it is possibile to suppose that a symbolic-level representation is a sequence of
types and that + is the successor function (i.e. ¢ + f means that variable f
of type F follows variable g of type G®; remember that if ' and G are types
then G — F'is a type).

4.5.2 The sound-types transform

From a purely theoretical standpoint, all the theory presented above is based
on a particular equation called sound-types transform. This section will define
such a transform, will examine some of its properties and will relate it to the
short-time Fourier Transform. In paragraph 4.5.4 it will be shown how this
transform is used in the whole process.

Given a signal 7 of length N-samples and a window h of length n-samples,
it is possible to define an atom as a windowed chunk of the signal of length
n-samples (the starting position of the chunk is not indicated here):

a=h - ¥ (4.22)
where the operator - is a multiplication element-by-element. Using an ade-
quate hop-size ¢ during the analysis stage (for example ¢ < n/4), it is possible

N
to reconstruct a perfect’ version @’ of the original signal with a sum of atoms

as a function of time!0:

7= (4.23)

N
where N/t is the total number of atoms present in the signal . It is possible,

after the computation of a set of low-level features on each atom of clili, to

8The successor relation is evidently non-commutative.
°As in STFT, the reconstruction can be perfect only under special conditions (not detailed
here) deriving from the type of window used and from the overlapping factor.
!The positions in time of the blocks of n-samples are given by an index 4 that counts the
number of hops (ie. 1 =4 = 4-1).
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define a sound-cluster as a set of atoms that lie in a defined area of the feature
space (ie. that share a similar set of features):

k’l‘ n n
Cr=A{ar 1, Arp, ) (4.24)

The content of g’; is given by a statistical analysis applied on the fea-
ture space that decides the position of each sound-cluster and its belonging
atoms. N

A model My of the signal 7 is the defined as the set of the clusters dis-

T

covered on it:
]ﬁl ]i'r
My ={c1,...,G} (4.25)
T
The cardinality | My | of the model is also called the abstraction level of
xT
the analisys; since the number atoms is N/t itis evident that 1 < [My| < N/t
x
with higher abstraction being 1 and lower abstraction being N/t.

n
Each sound-cluster in the feature space has an associate sound-type 7, in
the signal space, defined as the weighted sum of all the atoms in the sound-

kr.
cluster where the weights &, are the distances (any kind of Bregman’s diver-
gences) of each atom to the center of the cluster:

kr
F= Yl wry (4.26)

Jj=1

kr N
with w,.; €d,. The whole set of sound-types in the signal ¥ is called dictio-
nary and is the equivalent, in the signal-space, of the model in the feature-
space:

Dy = {T1,..., 7o} (4.27)

The creation of a sound-type from a sound-cluster is also called collapsing
kr

—

n
and can be indicated with the symbol (¢,) =7,: this operation represents an
interesting connection between the feature space and the signal space that
leads to the equivalence (My) = Dy.
T x



4.5. Sound-types 101

It is possible to define a function ¥ that maps an atom to its correspond-
ing sound-type as:

n k-

For a complete decomposition of the signal, it is also useful to define a
function © that returns the original time position of each atom:

a;

N
It is now possible to define the sound-types decomposition 7’ of a signal
by replacing each atom of equation 4.23 with the corresponding sound-type
defined through ¥, in the right time position given by ©:

N Nt
= "7, (4.30)
=0

where p = ©x. Finally, it is possible to define a function of time and fre-
quency by muftiplying the sound-types in a given dictionary with complex
sinusoids:

N n -
Boy= D Ty e (4.31)
kico
n
where k= {f1,..., fn } is a vector of frequencies. Equation 4.31 is called the

forward sound-types transform (STT) ; the inverse transform can recreate
the sound-types decomposition and is given by:

n
Aﬂ]‘g'

N n ,
== O el
n 4

[

(4.32)

As the next section will show, equation 4.31 is connected to STFT.
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453 STT and STFT

Equations 4.31 and 4.4 have a strong resemblance. As observed in the previ-
ous section, the abstraction level of a model can be at most equal to the num-
ber of atoms (NV/t) in the original signal. The extreme case for |[M| = N/t is
interesting: for that abstraction level, each sound-cluster is a singleton made
of a single atom and consequently each sound-type reduces to that single
atom scaled in amplitude:

M| = Njt = &= {@} = To=d, wr.. (4.33)

For equation 4.22, an atom is defined simply a windowed chunk of the
original signal. Not considering the amplitude scaling factor, this also makes
the sound-types decomposition #” equivalent to the simple decomposition

7', leading to the important consequence that STT is a generalization of
STFT:

N/t
_» n 7.77\-
X = 5 T’rp n

13
?w:
3

n
— ,‘J
x n

3‘13

(4.34)

with p defined as above. This property also holds for the inverse transform
case but the prove will not be given here. The abstraction level of a model
is directly connected to the goodness of the representation: the higher the ab-
straction (closer to 1) the more compact the representation. On the contrary,
the quality of the synthesis given by the inverse transform degrades with
high abstractions and increases with low abstractions becoming a perfect re-
construction for |M| = N/t as proved above.

454 The computation of sound-types

In order to provide a verifiable model for the proposed theory, some func-
tions are needed to clearly define whether a given variable belongs to a given
type and how it is possible to convert from a type to another. A possible way
to achieve these requirements is through a two-fold process divided into the
following stages:
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e types inference: during this stage the types involved in the represen-
tations are discovered;

e rules inference: a second stage is needed to discover the relations be-
tween the types.

This is an iterative process and must be repeated until there are no more
rules to discover; this will be cleared later on.

n-types, n-rules

1-types, 1-rules 2-types, 2-rules

0-types (atoms) types types types

inference inference inference

temporal

sounds

segmentation

|

rules
inference

rules
inference

v

v

rules
inference

v

symbolic
representation 1

symbolic
representation 2

signal-level
representations

symbolic
representation n

Figure 4.9: An outline of the proposed algorithm for types and rules infer-
ence

The analysis stage

The following procedure shows a possible realization of the two-fold pro-
cess, using low-level descriptors plus statistical learning for types inference
and Markov models for rules inference; the first step of the algorithms is
represented by temporal segmentation:

1. atoms creation: subdivide a sound into small chunks of approximately
40 ms called atoms or 0-types overlapping in time and frequency (la-
belled them with integer numbers); these atoms can be produced ei-
ther by simply overlapped windows, by onsets separations or by other
approaches such as atomic decomposition;
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2. 1-types inference: compute a set of low-level descriptors on each atom
obtained in the previous step, project the descriptors in a multi-dimensional
space and compute the clusters by means of statistical techniques; each
cluster will represent a 1-type (let’s label them g1, f1,...);

3. 1-rules inference: implement a Markov model to describe the sequences
of types present in the analysed sound (1-rules);

4. 1-level representation: represent the sound in a symbolic language us-
ing the discovered 1-types and 1-rules and create sequences of types
depending on the rules;

5. n-types inference: compute a set of low-level descriptors on the whole
sequences found in previous steps (for example g1 + f1); project again
the descriptors and compute again the clusters: each cluster will repre-
sent a n-type (let’s label them g,,, fy,...);

6. n-rules inference: implement a Markov model to describe the sequences
of types present in the analysed sound (n-rules);

7. n-level representation: represent the sound in a symbolic language
using the discovered n-types and n-rules and create sequences of types
depending on the rules;

8. repeat n-rules and r-types: until valid rules are found.

Algorithm 2 details the described procedure in pseudo-code.

The number of iterations of the whole process are called the abstraction
levels of the representation”. In terms of atomic decomposition, all the sets
of the discovered types are time-frequency atoms with different time scales
and spectral content; the higher the level of a type the less it is generic, the
more expressive. Figure 4.9 illustrates the proposed approach. Low-level de-
scriptors and statistical techniques are not used to classify different sounds,
but parts of a single sound; another approach could take into account a real
population of sounds and compute sound-types over a whole database; since
different atoms and sequences (moleculae) belong to the same type as long as

"For a formal definition of abstraction see paragraph 4.5.2
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Algorithm 1 Sound-types analysis

Require: signal s
decompose s in atoms a[n]
repeat
for every atom in a[n] do
compute m-dimensional feature space f;, .,
end for
compute optimal number of clusters &k
compute clusters c[k] on f, 1,
synthesize k types from c[k]
create a representation r of s using clusters c[k]
for every cluster in c[k] do
compute transition probabilities py,
end for
synthesize sequences of types with non-null probability
a[n] <= synthesized sequences of types
n<k
until no more transitions

they share common properties (defined by the set of descriptors), they could
theoretically be shared between different sounds. From an acoustical point
of view, the information amount increases dramatically from level to level,
ranging from the so-called acoustical quanta to segments of sounds that could
be even recognized as sections of a musical composition. The representaion
created on each level can be done on a symbolic language of choice, even
with simple strings of labels.

The synthesis stage

The synthesis of the discovered types is a relatively easy task and can be
done either in time of frequency.

In time it is basically the application of the sound-types decomposition,
a weighted sum of all the atoms belonging to the same cluster, in which the
distance of the cluster is the weight. In frequency, on the other hand, is done
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through the application of the sound-types transform. While the both STT
and sound-types decomposition are formally defined using weighed sums,
other methods are also possible. For example, a witness of a type can be
selected from the cluster (either randomly or by its distance to the center of
the cluster).

Algorithm 2 details the synthesis procedure in pseudo-code, for the case
of frequecny domain reconstruction.

Algorithm 2 Sound-types synthesis

Require: n-level representation r
Require: dictionary of n-types a[n]
for every symbol in r do
compute the forward sound-types transform on a[n]
apply needed transformations on sound-types
compute the inverse sound-types transform
overlap-add corresponding type
end for

The overall quality of the reconstructed signal strictly depends on the
number of types used and on the synthesis method selected. More on this
problems will be discussed in section 4.6.

4.5.5 The link with the phase-vocoder

The whole mechanism for sound-types analysis and synthesis described above
is really close to the one performed by the phase-vocoder, described in para-
grah 4.3.2. The big difference between the two approaches is that in the
former the sound-types transform is used instead of the short-time Fourier
transform. Since in paragraph 4.5.3 has been proved that STT is a general
case of STFT, it is possible to adfirm that the theory of sound-types is a sort
of extension of the phase-vocoder. For this reason, it also configures as a full
framework for sound analysis and synthesis.
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4.6 Current status

At the moment of the writing of this work, the available implementation
does not cover all the parts of the analysis-synthesis algorithm for sound-
types analysis. A partial implementation can compute, however, low-level
features, clusters in the feature space and transition probabilies up to the first
level.

The analysis-synthesis framework is perfectly functional but the sym-
bolic representation is only possibile with 1-types and 1-rules thus proving
the theory of sound-types only partially.

A typical types-inference stage (performed by clustering) is represented
in figure 4.10: common sound-atoms are grouped in the same cluster and rel-
evant elements of the clusters (such as centroid, spread, etc.) are computed.

A rules-inference stage (performed by a Markov model), is depicted in
figure 4.11: the nodes are the sound-types, while the connections are the
transitions between them.

With the two stages computed for the first level (1-types, 1-rules), it is
possible to represent a signal in a pseudo-symbolic way through a string of
labels. After the analysis stage, a dictionary of the found types (basically
sound grains created as described in section 4.5.4) and a simple string are
produced: each label at position k in the string represents the corresponding
type (through a numeric index that refers to the position in the dictionary).
In general, the algorithm creates a compact representation of the given sound;
the size of the representation is directly connected to the number of types dis-
covered. If a sound is represented with 33% of sound-types (i.e. a type each
three atoms) the compression ratio will be roughly 60%.

Implemented features
The complete list of implemented features in the current version is the fol-

lowing:

e low-level features: spectral centroid, spectral spread, spectral skew-
ness, spectral kurtosis, spectral irregularity, specrtal slope, spectral de-
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Figure 4.10: A typical clustering stage in the feature space; here the sound has
been analysed with spectral centroid, spectral spread and sectral skewness.

crease, high frequency content, spectral flux, energy, zero-crossing rate,
fundamental frequency, inharmonicity;

o clustering algorithms: K-means, gaussian mixture models (GMM);

¢ auto-estimation of number of clusters: it is possible to automatically
estimate the optimal number of clusters by means of two distinct tech-
niques for each clustering algorithm (gap statistic for K-means and BIC
measure for GMM);

¢ dimensionality reduction: by means of principal component analysis
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(PCA) it is possible to compute as many features as wanted and then
reduce the analysis to a smaller number of dimensions;

e transition probabilities: Markov models;

e resynthesis algorithm: the resynthesis algorithm works both in fre-
quency and in time domain with types interpolation. In the recon-
structed signal, where a long sequence of the same type is found, it
is possible to create linear interpolation with next appearing type, im-
proving sound quality;

o distance measures for resynthesis: euclidean, Manhattan distance (taxi-
cab), Mahalanobis distance, cosine similarity;

e symbolic representations: strings of labels.

o
bSO °@

Figure 4.11: Transitions probabilities for the first level.
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4.7 Applications

Several applications of the algorithm are currently possible on musical sig-
nals. Since the theory is still under development, however, not all the pos-
sibilities have been thoroughly tested. Nontheless, to show the potential of
sound-types, a short list of experimented applications is given below.

Audio compression

While not being the main purpose of the approach, it is possible to apply a
lossy compression to a sound by a given ratio'?. This possibility comes from
the fact that a signal is represented with few sound-types instead of many
atoms.

The quality of compression, anyway, is not comparable with dedicated
algorithms such as MP3. Intuitively, increasing the compression ratio pro-
duces a sort dispersion effect on the signal.

¥

2000 3000 5000 7000

70 1000

W 200 0 400

% T

Figure 4.12: A comparison of the spectrogram between an original sound (a)
and it is compressed version (b).

Figure 4.12 shows a comparison between an uncompressed sound (a) and
it is compressed version (b). The compression ratio is about 90% and in plot
(b) it is possible to see how the reconstruction of the partials is a bit fuzzy.

!2For more information about lossy and loseless compressions see (Press et al. 2007).
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This is a clear example of bad reconstruction: after some experiments and
consequent acoustic inspection it has been possible to determine the ratio
1 : 10 as the maximum compression value for preserving the intellegibility
of the audio signal.

More formalized experiments, however, should be done in order to effec-
tively evaluate the compression capabilities of the theory of sound-types.

Time and frequency transformations

Since the theory of sound-types is an extension of the phase-vocoder, it is
possible to perform various transformations such as time-stretch, denoising
and pitch-shift; for the latter, formant preservation by means of cepstral en-
velope and phase locking have been also implemented. Other exotic effects
are also possible, such as robotization.

Some samples processed by the proposed method can be found online at
http:/fwww.soundtypes.com.

Probabilistic generation

Using the discovered probabilities and types it is possible generated sounds
affine to the original ones, by means of a biased random generator; this cor-
responds to a realization of the Markov model created during the analysis.
This approach has been tested on a small jazz corpus (including several
instruments) to imitate the style of improvisations. While no extensive test-
ing has been done, the results on the jazz corpus are promising: some instru-
mental solos (for example on double-bass) are exceptionally well imitated.

Quasi-symbolic description

By analysing the created string of labels, it is possible to acquire informa-
tion of salient properties of the sound and represent such information in a
meaningful way. Figure 4.13, for example, shows a comparison between a
circular graph created with collected types and probabilities (using the same
approach as figure 4.11) and a typical structure representation from the soft-
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ware OpenMusic'3.

Figure 4.13: A comparison between sound-types and OpenMusic graphs

The integration of the purely symbolic world of OpenMusic and of the
quasi-symbolic approach of sound-types could be very interesting for musi-
cal representations.

4.8 Open problems

Since the theory discussed above is in an early development stage, many
problems are still open. Two, among the others, are really imporant: the
reduction effect and the lack of evaluation procedures.

Reduction effect

The reduction effect is not a real problem of the theory, since it can be consid-
ered as a feature. Shortly, the more the number of clusters reduces (meaning
that more entities are grouped in the same sound-type) the better will be the

BThis is software is a well known tool developed at IRCAM to perform computer-
aided composition; for more information see chapter 3. It can be found at
http://repmus.ircam.fr/openmusic/home.
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representation but on the same time, however, the worst will be the sound
resynthesis. Sound quality is directly linked to the number of clusters: in-
creasing the latter produce an improvement of the former. Nontheless, aug-
menting number of clusters reduces the possibility of having many levels
in the analysis. No easy solutions have been found at the moment for this
effect.

Evaluation procedures

It is not easy fo find evaluation procedures for the proposed method; since
there are several possible applications, each of them should be carefully tested.
The only technique adopted for testing is, at this stage, acoustic inspection
of reconstructed signals after full analysis and synthesis. Sound transforma-
tions, audio compression and probabilistic generation can all be evaluated
by comparing the results with the expectations. However, more scientific
procedure to evaluate sound quality should be applied.

nnnnnnnn

Figure 4.14: A plot of clusters dispersions as a quality measure of the method;
the highest peaks signify bad clusters.

A possible measure of the clustering quality could be created by means
of the gap statistic. Using that technique, in fact, it is possible to evaluate
bad clustering looking at dispersions: in figure 4.14 the highest peaks signify
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bad clusters. Anyway, this quality measure is hardly related to the quality
of the reconstructed signal and a good evaluation procedure is still under
investigation.

4.9 Summary

In this chapter, the theory of sound-types has been presented. A review of
the main conceptual tools used by the theory has also been given and both
the logical and computational backgrounds have been discussed.

The theory takes inspiration from the simple type theory and from the
System F by Girard. The central idea is to represent sound and music using
types and rules. To effectively compute these entities, many signal processing
techniques are used.

After a presentation of basic signal models, a review of clustering meth-
ods is given. The main topics discussed are: low-level features for audio de-
scription, K-means and GMM, dimensionality reduction through PCA and
model evaluation with gap statistic and BIC measure.

The theory is based on the sound-types transform (STT). The relation be-
tween STT and SFTF is also given, showing that the former is a general case
of the latter.

At the end of the chapter, a concrete implementation of the theory of
sound-types is showed and the list of possible applications is given. Since the
theory of sound-types can be thought as an extension of the phase-vocoder,
many sound trasformations are available. While extensive testing of the
method has not been done yet, among possible applications there are: au-
dio compression, phase-vocoder effects, probabilistic generation and quasi-
symbolic representation of audio signals. All these applications are exper-
imental and could be interesting, in future developments, to select and ex-
pand only some of them.



Chapter 5

Conclusions and perspectives

Why do rhythms and melodies, which are composed of
sound, resemble the feelings, while this is not the case

for tastes, colors or smells? Can it be because they are

motions, as actions are also motions?

Aristotle, Prob. xix. 29

Abstract

This chapter will summarize main results of this research and will outline some
possible expansions of the proposed theory.

5.1 From theoretical to computational models

usic has always been linked to symbols. Any musical score is, essen-

tially, a set of symbols that musicians decode and interpret. This im-
portant connection is probably related to the dual nature that music mani-
fests.

On one side, it is purely emotional and escapes any formalization. On
the other side, however, music is intimately connected to mathematics and
its interpretation as an art is relatively recent.

This work tried to investigate principal attempts done in formalizing mu-
sic with mathematical languages of various kinds. All these methods have,
probably, a common root in Riemann’s interpretation of music. In his work
Musicalische Logik: Ein Beitrag zur Theorie der Musik the expression musical
logic appears for the first time. This new point of view originated two main
paths: one oriented to music representation by means of symbolic logic, the
other more focused on algebraic methods. Both applied a symbolic analysis
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to objects that were, intrinsecally, already symbolic. Nonetheless, their for-
tune has been very different.

The former did not have much luck. After first developments at the be-
ginning of last century, it stopped for more than fifty years. New devel-
opments started again in the seventies but, unfortunately, not so many re-
searchers and composers showed much interest. The latter, instead, devel-
oped continuously during last century and enter the compositional process
directly, merging the theoretical level of music with the practical one.

The motivations for such a different fortune are not easy to be found. It is
reasonable to suppose, however, that logical approaches are mainly related
to musical representation while algebraic methods are connected with both
musical representation and musical creation. For some reasons, it seemed ap-
pealing to apply symbolic logic to music even if this was not really effective.

Nonetheless, the situation is different for the last method described in
chapter 2: the functional approach. This attempt evolved, in the last twenty
years, in actual computer programs that helped musicians to create, under-
stand and manipulate musical objects. Again, it seems that the process of
music creation is fundamental to evaluate the effectiveness of any representa-
tion.

Creation is directly linked to one of the most important dimensions of
music: performance. Symbolic representations of music are not really useful
if they cannot deal with such a dimension.

The basic assumption of this reserch is, in fact, that musical representa-
tions must deal, in order to be effective, not only with music in its static stage
as described by scores. They must be able to handle also the final stage of
performance; in other words, symbols should be applied on objects that are
not symbolic, such as signal.

For this reason, a new representation method has been proposed: the the-
ory of sound-types. The core idea of the new method is the creation of high level
concepts that group together entities that are at a lower level in the abstrac-
tion process. Since music happens in time, moreover, the new representation
also express the temporal evolution of such high level concepts.

Musical information incapsulated into two interacting entities: types and
rules. While types represent concepts, rules encodes their evolution over
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time. This approach takes inspiration from theoretical models (simple type
theory and System F) but is realized by means of computational models (sig-
nal descriptions and statistical analysis).

This proposes the hypothesis that the inquiry into symbolic representa-
tions of music must change paradigm, moving from a theoretical approach
to a computational one.

At the beginning of this work, some important question have been pre-
sented:

1. Which is the relationship between mathematical logic and musical logic?

2. Has the formalism based on musical reasoning something in common
with logic formalism?

3. Can mathematical logic be useful to musicians, in order to clarify their
reasoning?

Whether the theory of sound-types is able to answer to these questions is
not easy to say. It is not wrong to say, however, that most of logical represen-
tations of music, in a sense, failed.

The paradigm change discussed above put new light on the relation be-
tween music and symbols, shifting the attention from abstract formalization
to effective computation of musical parameters. This transformation is still
evolving and many important results will be found only with future devel-
opments.

Next sections will focus on possible extensions of the proposed theory
and will also outline future work in order to formulate a full framework for
the analysis and the synthesis of music.

5.2 Generalization of the theory of sound-types

Sound-types seem to be promising entities to represent music because they
are physically related to sound, are invertible and are also capable to repre-
sent formal relationships and hierarchies. It’s important to point out, how-
ever, that the proposed algorithm is only a possible realization of a general
idea (see (Cella 2009b)). The low-level features to be used can be many more
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and so can be the clustering techniques. Other concatenation methods are
also possible (see (Cont 2007), (Peeters 2007)) and, finally, the symbolic lan-
guage for the sound representation is a matter of choice. The more expressive
the language, the more the possible manipulations on the symbolic-level.

The whole problem of representing signals in symbolic ways is built of
three major parts: a back-end, a concatenation layer and a front-end.

Back-end » Front-end
) J Classes and
Sound pr?babilities
n-types,
SIGNAL (atqms) CLXSNTSRS n-rules) SYMBOLIC
LEVEL SEQUENCES LEVEL
\
Onset GMM, HMM,
Atomic nsets K-means, Factor Strings .
decomposition etc. oracle, E;I;Lt)lldl:-llke
Windowing etc.

Figure 5.1: A global framework for the sound-type theory.

The main aim of the back-end is to provide chunks of sounds (atoms) to
be subsequently analysed; this can be done simply by windowing or by us-
ing more complex techniques such as atomic decomposition or onsets sepa-
ration. Once atoms have been defined, it’s possible to look for classes of equiv-
alence for sound and concatenation rules between classes in order to decom-
pose a signal; this should be done in the second layer. Once classes and rules
have been collected it’s then possibile to represent them through a grammar
of any symbolic language, either descriptive only or generative!; this is, fi-
nally, the aim of the front-end.

For each level there could be plenty of possibilities in terms of algorithms
and techniques; it’s therefore mandatory to define a sort of interface between
levels, in order to have a modular system into which plug different tools on
demand. Figure 5.1 depicts the described ideas.

'With the word grammar, here, we simply mean a corpus of syntactic rules that define any
formal system.
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In the context of this generalized framework, table 5.1 summarize the
implemented features.

Table 5.1: Implemented techniques for each layer.

LAYER | TECHINQUES

Back-end Windowing, onsets separation

Concatenation layer | Low-level features + GMM
Low-level features + K-means

Markov models
Front-end Descriptive language (strings)

Obviously, one of the main lacking features in the current implementa-
tion is a powerful symbolic language. Representing signals with a sequence
of labels is not enough to permit advanced manipulations in the symbolic-
level.

An hypothetical language

A possible front-end language for the theory could take inspiration from the
music calculus presented in section 2.4.2. With such a language, more trans-
formations on musical signal would be possible; its grammar could be some-
thing similar to the following one:

type ::= atom
| [typer|types]
| [typel]
typez
| Aatom.type (abstraction)

| (typeitypes) (application)
atom ==0]1]2]3]...
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where [type; |types] represents the successor operator, Aatom.type represents
the type creation by classification and [%} represents the summation of
types. Many other operations can be defined in order to manipulate types,
such as time-shift, time-stretch and so on.

If s; = [01234] is the atomic decomposition of a signal and Az.x — X
is the X-typization operator (that create the type X give a type) and \zv.x —
Y is the analogous Y-typization operator, then it’s possible to express the
following sentences:

s1 = [01234]
=[x — X0 zx - Y1l rx - Y2 o — Y3 zv.x — X4
=5 [XYYYX]

then, by defining the operator Az.z — X1 it’s possible to translate them an
higher level of abstraction:

s1 =[x — X1X Az.x — X1Y Az.x — X1Y Az.x — X1Y Aer — X1X]
=5 [X1X1X1X1].

In this simple example, only types creation by means of classification has
been considered and Markov models have not been represented. Moreover,
a simply untyped A-calculus have been used while many other possible lan-
guages could be adopted.

5.3 Future work

The theory of sound-types presented in chapter 4 is still in an early stage of
development and needs expansions and improvements both in the symbolic-
level and in the signal-processing level.

This is a partial list of possible relevant research directions; figure depicts
some possible expansions of the theory.
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Figure 5.2: An overview of the possible expansions.

Typed languages

The representation on the symbolic-level is now a simple string while it
should be done in a appropriate language that can handle types. For this
reason an investigation in simply-typed languages should be done and a
more expressive language for symbolic representation should be supported.

Higher levels

Higher levels are still not implemented; this could put into the game the
transition probabilites and lead to a complete mathematical formulation of

the theory.
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Symbolic-level transformations

It should be possible to transform a sound working on the string of labels.
For example, pitch-shift or time-stretch only selected types or extract some
given types to perform semantic source separation.

Pattern recognition and alignment

It should be possible to analyse the symbolic-level representation created by
the algorithm, in order to discover patterns by mean of dedicated techniques.
Moreover, it could be interesting to align different representations of the same
signal in order to discover structure information.

Applications and evaluation

More important applications of the proposed method should be found; this
would also lead to the definition of more appropriated evaluation techniques
in order to understand the real power of the proposed approach.



Appendix A

Source code

The following listings are the source code in C++ of the analysis and of the
synthesis routines of the framework described in chapter 4. A typical config-
uration script to control the analysis process is also reported below.

The full implementation is made of other important parts, such as con-
figuration, data exporting and so on, but they will not be listed here.

Listing A.1: The analysis routine

// analysis.h
//

#ifndef ANALYSIS_H
#define ANALYSIS_H

//#define USE_SLOW_FFT

#include "Matrix.h"
#include "algorithms.h"
#include "FFT.h"
#include "features.h"
#include "ModelingSpace.h"
#include <vector>
#include <cassert>
#include <cmath>
#include <stdexcept>
#include <iostream>
#include <cstring>

//#include "memCheck.h"
void analyse (floatx data, doublex window, doublex workspace,

doublex buffer,
doublex amp, doublex oldAmp,
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doublex freq, doublex phi,
ModelingSpace<double>& p, AbstractFFT<double>x ft,
double sr, int nchnls, int maxBin,
int totSamp, inté& frames) {

int pointer = 0;

double tmp = 0, ctrd = 0, sprd = 0, £f0 = 0;

double winEnergy = 0;

for (int 1 = 0; 1 < p.N; ++1) {

winEnergy += (window[i] * window([i]);

do {
memset (workspace, 0, sizeof (double) *x 2 % p.N);
memset (buffer, 0, sizeof (double) * p.N);

//int r = p.N > totSamp - pointer ? totSamp - pointer : p.N;
int r = pointer + p.N > (totSamp) ? pointer + p.N - (totSamp
)+ 05
pointer -= r;
for (int i = 0; 1 < p.N; ++1i) {
for (int j = 0; j < nchnls; ++3) {
int pp = nchnls * (i + pointer) + J;
// int pp = (nchnls * pointer) + (nchnls x i + j);

workspace([2 x 1] += (double) datalpp]l;

workspace[2 x 1] = window[i];
workspace[2 x 1] /= nchnls;
buffer[i] = workspace[2 * 1];

#ifdef USE_SLOW_FFT
fft<double> (workspace, p.N, -1);
#else
ft->forward (workspace);
#endif
convert<double> (workspace, amp, freqg, phi, p.N, p.hop, sr);

switch (p.scale) {
case Features::LINEAR:
// nothing to do for linear



125

break;
case Features::LOG:
for (int i = 0; 1 < p.N; ++1) {
amp[i] = logAmplitude (amp[i]);
}
break;
case Features::POWER:
for (int i = 0; 1 < p.N; ++1) {

double a = amp[i];
amp[i] = a * a;

}

break;

if (p.switches[Features::SPECTRAL_CENTROID]) {
ctrd = speccentr<double> (amp, freq, maxBin);
p.matrix[Features: :SPECTRAL_CENTROID] .push_back (ctrd);
}
if (p.switches[Features::SPECTRAL_SPREAD]) {
sprd = specspread<double> (amp, freq, maxBin, ctrd);
p.matrix[Features::SPECTRAL_SPREAD] .push_back (sprd);
}
if (p.switches[Features::SPECTRAL_SKEWNESS]) {
tmp = specskew<double> (amp, freq, maxBin, ctrd, sprd);
p.matrix[Features: :SPECTRAL_SKEWNESS] .push_back (tmp);
}
if (p.switches[Features::SPECTRAL_KURTOSIS]) {
tmp = speckurt<double> (amp, freq, maxBin, ctrd, sprd);
p.matrix[Features::SPECTRAL_KURTOSIS] .push_back (tmp);
}
if (p.switches[Features::SPECTRAL_FLUX]) {
tmp = specflux<double> (amp, oldAmp, maxBin);
p.matrix[Features: :SPECTRAL_FLUX] .push_back (tmp);
}
if (p.switches[Features: :SPECTRAL_IRREGULARITY]) {
tmp = specirr<double> (amp, maxBin);
p.matrix[Features: :SPECTRAL_IRREGULARITY] .push_back (tmp);
}
if (p.switches[Features::SPECTRAL_DECREASE]) {
tmp = specdecr<double> (amp, maxBin);
p.matrix[Features: :SPECTRAL_DECREASE] .push_back (tmp);
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if (p.switches[Features::SPECTRAL_SLOPE]) {
tmp = specslope<double> (amp, freq, maxBin);
p.matrix[Features::SPECTRAL_SLOPE] .push_back (tmp);
}
if (p.switches[Features::HIGH_FREQUENCY_CONTENT]) {
tmp = hfc<double> (amp, maxBin);
p.matrix[Features: :HIGH_FREQUENCY_CONTENT] .push_back (tmp)
2
}
if (p.switches[Features::TOTAL_ENERGY]) {
tmp = energy<double> (buffer, p.N, winEnergy);
p.matrix[Features: :TOTAL_ENERGY] .push_back (tmp);
}
if (p.switches[Features::ZERO_CROSSINGS]) {
tmp = zcr<double> (buffer, p.N);
p.matrix[Features::ZERO_CROSSINGS] .push_back (tmp);
}
if (p.switches[Features::F0]) {
// f0 = acfFOEstimate<double> (sr, buffer, result, p.N);
f0 = fftFOEstimate<double> (amp, freq, maxBin);
p.matrix[Features::F0].push_back (£0);
}
if (p.switches[Features::INHARMONICITY]) {
double maxAmp = 0;
tmp = inharmonicity<double> (amp, freq, maxBin, f0, sr,
maxAmp) ;
p.matrix[Features: :INHARMONICITY] .push_back (tmp);
}
pointer += p.hop;
++frames;
if (r != 0) break;
} while (true); //pointer <= (totSamp));

double clusterDispersion (ModelingSpace<double>& p, Matrix<

double> data, int m,
std::vector <double>& dispersions,
DynamicMatrix<double>& classes) {
double W = 0;
for (int 1 = 0 ; 1 < p.clusters ; ++i) {
double sumDist = 0;
for (unsigned int j = 0 ; j < classes[i].size () ; ++3) {
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for (unsigned int k = j + 1; k < classes[i].size () ; ++k)
{
int pl = classes[i][]];
int p2 = classes|[i] [k];
double d = p.distFun (datal[pl], datalp2], m);
sumDist += (d = d);
}
}
double cd = (sumDist / (2. * classes[i].size ()));
dispersions.push_back (cd);
W += cd;
}
// check
if (std::isnan (W) || std::isinf (W)) return -1;

else return W;

void getLabels
int* labels,
Matrix<double>& centroids,
dispersions,
double& W, double& loglike,
classes) {

//FILE* stream fopen

datal.rows
datal.cols

()i
()i

int n
int m

// PCA reduction
int dimsAfterReduction

if (p.dimensions) {
Matrix<double> symmat (m, m);
covmat (datal.data (), n, m,

doublex evals new double[m];

double* interm

tred2
tgli

()I

interm -

(symmat .data
1,

m,

(evals - 1,

(ModelingSpace<double>& p,

p.dimensions ? p.dimensions

symmat .data

new double[m];

evals - 1,

m,

Matrix<double>& datal,

std: :vector<double>&

DynamicMatrix<double>&

("work/data.txt","r");

m;

)

interm - 1);

symmat.data ());
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// projection to eigenvector
for (int i = 0; i < n; i++) {
for (int j = 0; J < m; J++) {
interm[j] = datalli]l[3j];
}
for (int k = 0; k < m; k++) {
datalli] [k] 0.;
for (int k2 = 0; k2 < p.dimensions; k2++) {
datal[i] [k] += interm[k2] * symmat[k2][m - k]; // +
11;

}
delete [] evals;
delete [] interm;

datal.resize (datal.rows (), dimsAfterReduction);
p.pca.clear ();
p.pca.resize (dimsAfterReduction);

for (int i = 0; 1 < dimsAfterReduction; ++1i) {
std::vector<double> tt;
for (int j = 0; j < n; ++3) {
tt.push_back (datal([j]l[i]);
}

p.pcali] = (tt);
}
}
int h = (int) p.clusters;
if (p.clustAlgo == Features::KMEANS) {
kmeans <double> (datal.data (), n, dimsAfterReduction, h,
0.00001, labels, centroids.data ());
} else if (p.clustAlgo == Features::GMM) {
// for (int h =1 ; h < clusters ; ++h) {
double ratio = (double) datal.rows () / h;

// initial guess for gmm
Matrix<double> means (h, dimsAfterReduction);

for (unsigned int i = 0; 1 < means.rows (); ++1i) {
for (unsigned int j = 0; j < means.cols (); ++3j) {
int pos = i % ratio;

// int pos = ((rand () % datal.rows ()) + (rand () % 10)
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) % datal.rows ();
means[i] [j] = datal[pos][j];

}
GMM<double> gmm (datal, means);
for (int 1 = 0; i1 < (int) p.clusters; ++i) {
for (int j = 0; J < dimsAfterReduction; ++j) {
]

centroids[i] [j] = gmm.means[i][J];

for (int i = 0; i < n; ++i) {
int max = 0;
maximum (gmm.resp[i], p.clusters, max);
labels[i] = max;

}

loglike = gmm.loglike;

//cout << h << " " << gap << endl;

/7%

classes.clear ();

classes.resize (h);

for (int j = 0; j < n; ++3) {
classes[labels[]j]].push_back (3j);

W = clusterDispersion (p, datal, dimsAfterReduction,

dispersions, classes);

void markovChain (Matrix<double>& markov, intx labels, int N) {
for (int i = 0; 1 < N = 1; ++i) {
++markov([labels[i]] [labels[i + 1]1;

#endif // ANALYSIS_H

// EOF

Listing A.2: The synthesis routine
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A. Source code

// synthesis.h
//

#ifndef SYNTHESIS_H
#define SYNTHESIS_H

#include "Matrix.h"
#include "BlockVocoder.h"
#include "ModelingSpace.h"
#include "FFT.h"

#include <vector>

#include <cstring>
#include <iomanip>

//#include "memCheck.h"

//#define GRANULAR_SYNTHESIS
//#define USE_SLOW_FFT

#define MAX_REPETITIONS (5)

struct SoundPacket {
int typeNumber;
int instances;

bi

double fran (double min, double max) {
static double RMAX = Ox7fffffff;
return ((max — min) * (rand () / RMAX) + min);

int wchoice (doublex dist, int n) {
double R = fran (0., 1.);
for (int i = 0; i1 < n; ++1i) {
if (dist[i] >= R) return 1i;

return (int) fran (0, n);

void synthesize (floatx data, doublex window, doublex workspace,

doublex workspace2,
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DynamicMatrix<double>& classes,

centroids, intx labels,
Matrix<double>& types,
ModelingSpace<double>& p,

Matrix<double>& probabilities,

Matrix<double>é&

doublex* synth,
AbstractFFT<double>x ft,

int nchnls,

// types building

for (int t = 0; t <

int totSamp,

(int) p.clusters;

int frames) {

++t) |

// compute distances from the center of the cluster

std::vector <double> distances
= 0;

double totDistanc

for (unsigned int

e

]

(classes[t].size ());

=0 ; Jj < classes([t].size (); ++3) {

std::vector <double> features;

if (p.dimensions == 0) { // pca not applied
for (unsigned int 1 = 0 ; i1 < p.descriptors.size (); ++1i
) |
if (p.switches[i] == true) {
features.push_back (p.matrix[i][classes[t][]]]);
}
}
} else { // pca applied
for (unsigned int i = 0; 1 < p.pca.size (); ++i) {
features.push_back (p.pcali]lclasses[t][]]]);
}
}
double d = p.distFun (&features[0], centroids([t], features
.size ());
distances[j] = d;
totDistance += d;
}
if (p.algorithm == Features::RANDOM) ({
if (classes([t].size ()) { // skip empty centriods
int rv = (int) rand ();
double gr = (double) rv / RAND_MAX;
gr *= classes|[t].size ();
int g = (int) gr;
int pointer = (int) ((double) p.hop * <classes([t][q]);

int r

pointer + p.N >

(totSamp) ? pointer + p.N -

(
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totSamp) : 0;
pointer -= r;
for (int 1 = 0; i < p.N; ++1i) {
double sample = 0;
for (int j = 0; J < nchnls; ++3) {
int pos = (nchnls % pointer) + (nchnls = i + 3j);
]

sample += (double) datal[pos

’

}

types[t] [i1] = (sample / nchnls) % window[i];
}
}
} else if (p.algorithm == Features::AVERAGE || p.algorithm
== Features::WEIGHTED) {
for (unsigned int g = 0; g < classes|[t].size (); ++qg) {
double cnorm = 1. / classes[t].size ();
if (p.algorithm == Features::WEIGHTED) cnorm = distances
[a] / (totDistance != 0 ? totDistance : 1);
int frame = classes[t] [q];

int pointer = (int) ((double) p.hop * frame);
//int r = p.N > totSamp - pointer ? totSamp - pointer

p.N;

int r = pointer + p.N > (totSamp) ? pointer + p.N - (
totSamp) : 0;

pointer -= r;

for (int 1 = 0; i < p.N; ++1i) {

double sample = 0;
for (int j = 0; j < nchnls; ++3) {
sample += (double) datal (nchnls x pointer) + (nchnls
* i+ 3)1;
}

types[t] [1] += (sample / nchnls % cnorm) * window[i];

}

} else if (p.algorithm == Features::CLOSEST) {
if (classes[t].size ()) { // skip empty centriods
int g = 0;

minimum (&distances[0], distances.size (), q9);

int pointer = (int) ((double) p.hop » classes[t][qgl);
//int r = p.N > totSamp - pointer ? totSamp - pointer
p.N;

int r = pointer + p.N > (totSamp) ? pointer + p.N - (
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totSamp) : 0;
pointer -= r;
for (int 1 = 0; i < p.N; ++1i) {
double sample = 0;
for (int j = 0; J < nchnls; ++3) {

sample += (double) datal (nchnls x pointer) + (nchnls

* 1+ 3)1;
}
types[t][i] = (sample / nchnls) * window[i];

// probabilistic generation

Matrix<double> dist (probabilities.rows (), probabilities.rows

0);

if (p.decompose == 2) {
unsigned int k = 0;
for (unsigned int i = 0; 1 < probabilities.rows (); ++1i) {
for (unsigned int j = 0; j < probabilities.rows (); ++3)
for (dist[i][j] = k = 0; k <= J; k++) {

dist[i][J] += probabilities[i] [k];

int outhop = (int) ((double) p.hop * p.stretch);

#ifdef GRANULAR_SYNTHESIS
// FIMXE: not updated for probabilistic generation
if (!p.interp) {
// granular synth
for (int t = 0; t < frames ; ++t) {

int Jjitter = p.jitter == 0 ? p.jitter : rand () % p.jitter

4

int pointer = (t *» outhop) + jitter;

for (int j = pointer; j < pointer + p.N; ++7j) {
//synth[j] += data[]j] * window[j - pointer] / 4;

synth[J] += types[labels([t]][]j - pointer]/x » window[] -
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pointer]*/ % p.normalization;

}

} else {
int pointer = 0;
for (unsigned int t = 0; t < packets.size () - 1; ++t) {

SoundPacket pk = packets|[t];
SoundPacket pk_next = packets[t + 1];

double interp = 1. / pk.instances;
for (int i = 0; i1 < pk.instances; ++1i) {
int Jjitter = p.jitter == 0 ? p.jitter : rand () % p.
Jitter;
pointer += outhop;
double alpha = (double) i x interp;
for (int j = pointer; j < pointer + p.N; ++7j) {
double sample = (1. - alpha) * types|[pk.typeNumber] []

- pointer] +
alpha * types[pk_next.typeNumber][]j - pointer];
synth[j + jitter] += sample * /xwindow[]j — pointer] =
x/ p.normalization;

}

#else
BlockVocoder<double> pv (p.N);
int NN = p.N << 1;

double norm = 0;
for (int 1 = 0; 1 < p.N; ++1) {
norm += (window([i]);
}
norm = 1. / ((norm * ((p.N /2) / outhop)) * (p.pitch < 1 ? p.
pitch : 1));

if (!'p.interp) {
std::cout << "not interp " << (p.decompose == 1 ? "rebuild"
"generate");

int state = 0;
int prevState = 0;
int delooper = 0;
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// phase vocoder

for (int t = 0; t < frames; ++t) {
int jitter = p.jitter == 0 ? p.jitter : rand () % p.jitter
int pointer = (t x outhop) + Jjitter;
state = (p.decompose == 2 ? wchoice (dist[state],
probabilities.rows ()) : labels[t]);
if (state == prevState && p.decompose == 2) delooper++;
if (delooper == MAX_REPETITIONS) {
state = (int) fran (0, probabilities.rows ());

}

delooper = 0;

prevState = state;

memset (workspace, 0, sizeof (double) % NN);
for (int j = 0; J < (int) p.N; ++73) {

workspace([2 x j] = types|[statel] []];
workspace[2 * j + 1] = 0;

// transformation: in -> workspace, out -> workspace2

pv.process (workspace, workspace2, p.pitch, p.hop, outhop,

p.C, p.threshold);

// overlapp-add
for (int j = 0; j < p.N; ++3) {

}

synth[j + pointer] += (workspace2[2 % Jj] * window[]j] =
norm) * p.normalization;

} else {

std

std:

int
int
int

c:cout << "interp " << (p.decompose == 1 ? "rebuild" : "

generate");

:vector<SoundPacket> packets;
lastType = -1;

state = 0;

prevState = 0;
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int delooper = 0;
for (int i = 0; i < frames; ++1i) {
if (packets.size () == || labels[i] != lastType) {
state = (p.decompose == 2 ? wchoice (dist([state],
probabilities.rows ()) : labels[i]);
if (state == prevState && p.decompose == 2) ++delooper;
if (delooper == MAX_REPETITIONS) {
state = (int) fran (0, probabilities.rows ());

delooper = 0;
}

prevState = state;

SoundPacket pk;

pk.typeNumber = state;

pk.instances = 1;

packets.push_back (pk);
} else {

++packets[packets.size () - 1l].instances;
}
lastType = state;

}
// last packet guard point for interpolation

packets.push_back (packets[packets.size () - 11);
int pointer = 0;
for (unsigned int t = 0; t < packets.size () - 1; ++t) {

SoundPacket pk = packets[t];
SoundPacket pk_next = packets[t + 1];

double interp = 1. / pk.instances;
for (int i = 0; i1 < pk.instances; ++1i) {
int Jjitter = p.jitter == 0 ? p.jitter : rand () % p.
Jitter;

pointer += outhop;

double alpha = (double) i = interp;
memset (workspace, 0, sizeof (double) % NN);
for (int 7 = 0; J < (int) p.N; ++3) {
workspace([2 * j] = (1. - alpha) * types[pk.typeNumber
1031 +
alpha * types|[pk_next.typeNumber] []j];
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workspace([2 « J + 1] = 0;

// transformation: in -> workspace, out -> workspace2
pv.process (workspace, workspace2, p.pitch, p.hop,
outhop, p.C, p.threshold);

// overlapp-add
for (int J = 0; J < p.N; ++73) {
synth[j + pointer + jitter] += (workspace2[2 x j] =
window[j] % norm) * p.normalization;

#endif // SYNTHESIS_H

// EOF

Listing A.3: Configuration script

2

; clusters - configuration file
;

analysis.wintype hanning
analysis.winsize 4096
analysis.hopsize 512
analysis.maxfreq 5512.5
analysis.ampscale log
analysis.descriptors centroid spread skewness
analysis.modeling 1
analysis.savedesc 1
clustering.algorithm gmm
clustering.centroids .1

clustering.dimensions 0
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clustering.showlabels 0

decomposition.performance rebuild
decomposition.distance taxicab
decomposition.algorithm average

decomposition.stretch 1
decomposition.pitch 1
decomposition.envelope 0

decomposition.threshold 0
decomposition.interpolate 1
decomposition.normalization .75

decomposition. jitter 0

global.verbose 0

; * help «*

;

; — max analysis frequency is nyquist

; — available features: centroid spread skewness kurtosis

; irreqgularity slope decrease energy hfc zcr flux f0
inharmonicity

; — available windows: hanning hamming blackman bartlett

; — available amplitude scales: lin log pow

; — available clustering algorithms: gmm, kmeans

; — the number of centroids is a ratio of the number of frames;

; max is 1, 0 means no clustering

; — 1f dimensions are 0 pca reduction is not applied, otherwise
is the # of pcas

; — types of performances are: none, rebuild, generate

; — available distance measures: euclid mahalanobis taxicab
cosim

; — available algorithms for decomposition: average weighted
random closest

; — pitch and stretch are ratios of original file

; — threshold is used for denoising

; — envelope 1s the number of coefficient for envelope
preservation

; — Jjitter is specified in samples
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