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Preface

Forty years of experiments demonstrated the ability of Plasma Focus (PF) devices
to produce nuclear fusion reactions in magnetically pinched plasmas. Notwithstand-
ing the relative simplicity of the device and the wide literature on the subject, many
questions are still open both on the device design and on the understanding of the
physical processes characterizing the plasma formation, evolution a confinement.
The design of a device is a complex procedure based on multiple step of refinement

to reach the optimized working conditions. A first rough definition of the main elec-
trical parameters is essentially based on experimental observations and macroscopic
considerations. Few basic rules reveals themselves quite effective for small devices
(for bank energies up to few kJ), but fail for more powerful devices. Moreover,
an experimental optimization of the working parameters would represent a hard
work, not always leading to the best performances. Computer simulations can aid
in this task providing a low cost and rapid tool to tune the geometrical and electrical
parameters of the device.
The plasma dynamics equations have been collected in a simplified model and

coupled with the equivalent electric circuit equations in a highly non-linear problem.
The developed code allows to obtain the timing of the plasma dynamics and of the
electric circuit discharge, together with many other quantities of interest, like the
sheath axial velocity, known to be related with the sheath stability during the radial
collapse. The code has been fully tested simulating the PF device, operated at the
Nuclear Engineering Laboratory of Montecuccolino for neutron production from D-
D fusion reactions. The good agreement between experimental results and numerical
analysis has confirmed the reliability of the model.
Recent experimental activities both in the U.S. and in Italy have unquestionably

shown the occurrence of reactions whose cross sections have either high energy
threshold levels or too small values at the projectile energy predicted by theoretical
models. In particular, the attention has been drawn to the short-lived radioisotopes
breeding for medical applications. The machine shall be both highly energetic and
highly repetitive, to accomplish the proposed task: a 150 kJ Mather type PF with
repetition frequency of 1 Hz working in the MAcurrent range has been designed.
The developed code has been used for the electrodes optimization of the device,
and an iterative procedure of successive refinement has lead to a final solution quite
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different from the starting trial. Moreover, the high complexity of the machine has
required the design of a collector to connect the coaxial cables coming from the
capacitor bank with the electrodes. Particular attention has been drawn in main-
taining the collector inductance in the range fixed in the preliminary design; other
problems related to the insulation effectiveness, the electrodynamic forces and the
flexibility of the central core have been fully analyzed and solved.
The developed macroscopic code gives an accurate description of the current sheath

evolution and of the characteristic time of the discharge but is not a proper tool to
investigate in depth the physical phenomena. Also on this subject, the strength
of computer simulations is of help; in the past, many fluid codes were developed
and good results matching the physics of the macroscopic motion of the current
sheath were obtained. However, when the energy distribution function of the charged
species deviates from the assumed Maxwell-Boltzmann one, the fluid codes fail: a
microscopic approach, through fully kinetic models is needed.
In particular, a Particle-In-Cell Monte-Carlo-Collisional (PIC-MCC) code has been

developed to simulate the first stage of the gas breakdown in a PF device, which is
known to be a highly non-stationary phenomenon, far from the thermal equilibrium.
The very high multiplication rate of charged particles makes similar simulations com-
putationally expensive: innovative numerical techniques have been developed and
applied to control the number of simulation particles with a limited loss of preci-
sion and an high improvement in performances. The interest on similar numerical
techniques is growing in the field of electrically bounded plasma dynamics, due to
the recent expansion of industrial applications of plasma discharges for materials
processing.
The developed code have allowed to show the deviation of the electron energy

distribution function from the Maxwellian one. Comparisons with hydrodynamic
codes show a faster breakdown development than the expected one; the results con-
firm those obtained with similar kinetic simulations in hydrogen and the prominent
role played by the photo-electric effect in the first stage of the discharge evolution.
A sensitivity study on the PF working parameters (filling gas type and pressure,
electrodes geometry, external voltage ramp, insulator configuration, . . . ) has been
performed.
The dealt subjects can be naturally divided into two parts. After a brief introduc-

tion to the research activity (Chapter 1), aimed to define the current work placing
the the international scenery, a first part is devoted to the macroscopic simulation
oriented to the PF design. In particular, the basic rule of thumb generally ap-
plied in PF preliminary design are discussed in Chapter 2. A full description of the
implemented model and developed code for the electrodes optimization follows in
Chapter 3. The simulation tool has been tested on an existing machine and applied
to the design of new high energetic and repetitive one (Chapter 4), today under
preliminary test; a detailed description of the collector design and of the theoretical
and experimental evaluation of its electrical parameters closes the first part through
Chapter 5. A second part, fully dedicated to the microscopic simulations of the
electrical breakdown, then opens. The breakdown basis and many aspects of the
underlying physics are treated in Chapter 6, with particular attention to the PF
breakdown peculiarities. The developed numerical model and the code description
fully occupies Chapter 7, while the following Chapter 8 is entirely devoted to the
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description of the innovative numerical techniques for the control of the simulation
particle number. Chapter 9 closes the second part with a detailed description of the
microscopic simulation results and a sensitivity analysis on few working parameters.





CHAPTER 1

Introduction to the research activity

Abstract. The main subject of the present research activity is centered on the
simulation and design of Plasma Focus devices. A brief introduction on the historical
background and on the actual state of art will be presented showing how the present
work takes place in the international context.



6 1.1. The Dense Plasma Focus

1.1 The Dense Plasma Focus

A Dense Plasma Focus (DPF) is a device that can generate, accelerate and pinch a
plasma by electromagnetic forces. The short-lived pinched plasma is sufficiently hot
and dense to enhance nuclear fusion reactions, even with high threshold energies,
which make it a multi-radiation source. Since the whole discharge lasts few tens of
microseconds, the DPF works in pulsed mode and can be efficiently operated in a
repetitive regime.
The device was independently developed in the early 1960s by J. W. Mather [1]

(USA) and by N. V. Filippov [2] (ex-URSS) in two configuration, which mainly
differs in the macroscopic direction of motion of the accelerated plasma (axial and
radial respectively).

1.1.1 The device

In its best known “Mather” version, the PF is composed of two coaxial cylindrical
electrodes, closed and electrically insulated at one end and open at the other, as
depicted in Figure 1.1.
The electrodes assembly is contained in a vacuum chamber filled with a mixture

of low atomic number gases, at a pressure typically ranging from 0.5 to 10 Torr.
If operated (as usual) in the so called direct polarity, the inner electrode (IE), the
anode, is connected through a fast switch (spark-gap) to the high voltage source of an
external capacitor bank, while the outer electrode (OE), the cathode, is grounded.
As soon as the switch is closed, the energy EC stored in the capacitor bank is
released through the electrodes in a time that is generally of microsecond order. A
voltage of typically tens of kilovolts, impressed between the electrodes, produces an
electrical field strongly enhanced by the insulator sleeve that separate the electrodes;
here, an electrical overvolted discharge rapidly develops into a sheath of plasma,
which evolves axially along the electrode assembly under the effect of a J ×B force
density, until it collapses at the open end of the system where it is pinched. The
pinch has a duration of a few tens of nanoseconds, and coincides temporally with
a sudden, sharp drop in the total current signal, caused by a decrease in plasma
conductivity due to strong confinement. Although only charge of the order of a
Coulomb are involved, they are released in microsecond times, so that peak currents
flowing through the plasma can be of the order of MegaAmpere. Electrodes radiuses
and lengths are usually not greater than few tens centimeters; this means that radial
currents between two coaxial electrodes can be accelerated to velocities of the order
of 10 cm/µs, obtaining a very effective method to transform potential energy into
kinetic energy.
As first approximation, the electrical behavior of the device can be easily under-

stood by studying its equivalent lumped circuit, depicted in Figure 1.2. Neglecting
the problems of impedance mismatch, transmission lines delay and not-ideal switch
conditions, the external circuit consists in a capacitor bank C0, charged at a volt-
age V0, connected to the device through an ideal switch; the line presents a total
resistance R0 and a total inductance L0. During the sheath dynamics, the plasma
inductance Lp and its resistance Rp vary in time. The plasma resistance can be
usually neglected with respect to the external one.
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Central ElectrodeOuter Electrode

Insulator sleeve

Vacuum chamber

Figure 1.1: General scheme of a PF device in the Mather-
type configuration.

Neglecting the plasma resistance Rp(t), the equation describing the lumped RLC
circuit is [3]

d
dt

((L0 + Lp(t))I) +R0I = V0 −
1
C0

∫ t

0
I(t′) dt′ ; (1.1)

assuming also Lp constant in time, the equation can be easily solved by means of
Laplace transform. Usually, the PF device equivalent RLC circuit is strongly under-
damped, that means R0 � 2

√
L/C0 with L = L0 + Lp the total inductance. The

typical current waveform of a PF device in a short circuit test is, indeed, an expo-
nentially damped sinusoid as obtainable by solving equation (1.1) (see Appendix 5.A
for more details):

I(t) =
V0

ωL
exp(−ζt) sin(ωt) , (1.2)

where, for typical PFs electrical parameters,

ζ =
R0

2L
and ω ' 1√

LC0
. (1.3)
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C0

V0

L0

I

R0
SG

Lp

Rp

Figure 1.2: Lumped equivalent electrical circuit.

From the capacitor laws, under the simplifying hypothesis R0 � 2
√
L/C0 (equiva-

lent to ζ/ω � 1), the voltage drop over it is:

V (t) = V0 exp
(
−R0

2L
t

)
cos
(

t√
LC0

)
.

A better description of the electrical discharge, during normal operations, can be
obtained only by specifying the time-dependence of the inductance Lp(t) related to
the plasma sheath dynamics, as will be better investigated in the first part of the
present work.

1.1.2 The discharge phases

The PF dynamics can be ideally separated in four main phases [1, 4, 5] as shown in
Figure 1.3.
As soon as the spark-gap is triggered closing the circuit, a discharge develops. The

seed electrons present between the electrodes in the vacuum chamber are accelerated
by the electric field, strongly enhanced by the presence of the insulator sleeve and
by the cathode edge. Once the ionization energy of the background gas is reached,
multiple ionization avalanches make the charged particles grow exponentially as
predicted by the Townsend law for the electrical gas breakdown (breakdown phase);
the ionized gas develops suddenly in a plasma sheath onto the insulator sleeve. The
macroscopic flow of charges connects the electrodes providing a low resistance path
for the current flowing from the capacitor bank to the ground of the system.
The current density flowing through the electrodes and the plasma produce a cur-

rent loop. The magnetic field is, then, confined between the electrodes and the
axial-symmetric current sheet (CS); consequently, the magnetic pressure acts as a
sort of magnetic piston (MP) and pushes the sheath. As soon as the CS is formed
and carries the circuit current, the plasma detaches from the insulator and grows
in dimensions; its profile develops in a parabolic shape due to the dependence of
the magnetic pressure from the radial position. The sheath is then pushed towards
the open end of the electrodes (rundown phase). During this phase, the motion of
the CS is characterized by a roughly constant axial velocity (about 107 cm/s): the
sheath sweeps the background neutral gas it meets and grows in density, but also
looses part of the plasma in the region where its tail connects to the OE.
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Figure 1.3: Discharge phases.

As the open end of the electrodes is reached, the sheath is driven to collapse towards
the symmetry axis (collapse phase). The current profile inflates and accelerates; the
inductance grows rapidly lowering the peak current. When the axial-symmetric
shock-front reaches the symmetry axis, the plasma is radially compressed in a hot
and dense focus (pinch phase), in which fusion reactions occur depending on the
filling gas mixture. To maximize the compression effect of the pinching mechanism,
this should occur in time-coincidence with the first maximum of current. The gas
trapped in the focus is estimated as about 10% of that originally there. The pinch
phase is not yet well understood and multiple theories has been developed to explain
experimental results on radiation production and emission.
Since the pinch effect, even being the most efficient way of heating and compressing

a plasma, is not a stable magnetic confinement configuration, the short-lived focus
suddenly develops Magneto-Hydro-Dynamic (MHD) instability of zero-th and first
order and disrupts. Consequently, the current path is broken and the electrical
circuit is opened.
It is evident that the dynamics of the sheath is strictly related to the circuit dis-

charge, since the evolution of the plasma modifies the inductance parameter of the
equivalent circuit. The maximum of energy conversion is obtained if the coincidence
between the peak current and the radial collapse into the focus is reached.

1.1.3 Fields of application

As previously mentioned, PF devices are widely used and studied as multiple radi-
ation sources. Depending on the filling gas mixture, intense bursts of neutrons [6]
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and charged particles beams (relativistic electron beams [7] and ion beams [8]), as
well as hard and soft X-rays [9, 10] can be obtained. Moreover, the ongoing research
aim at demonstrating their potential application as x-ray sources for next genera-
tion micro-electronics lithography and surface micro-machining; their properties as
pulsed x-ray and neutron source are under investigation for medical applications
and security inspection analysis, while intense ion beams are of interest for materi-
als implantation. Other applications include nuclear explosion simulations (i.e. for
testing of the electronic equipment) and non-contact discovery and/or inspection of
the nuclear materials (fission products) by neutron activation analysis (NAA). In the
last years, they have been also studied as possible competitive breeder of short-lived
radioisotopes (SLR) [11, 12].
The advantages of PF devices as radiation sources are evident. Their main draw-

back is related to the repetition frequency, which usually make them less competitive
than other devices. Indeed, in order to move their technology from the applied re-
search environment to possible industrial application, PFs need to be operated at
high pulse repetition rate in the so called repetitive mode. However at each pulse,
or shot, part of the device input energy is converted into thermal loads on the struc-
tural components of the machine itself, and this could be a major cause for the PF
mechanical failure [13]. Proper cooling systems are therefore to be designed and
installed onto PFs to get them operate repetitively. Thermal loads are not only
problematic from a macroscopic point of view, given the induced thermal strain and
stress, but also from the microscopic point of view of plasma purity: metal particles
are ablated by the high temperature plasma from the electrodes and carried by the
sheath into the pinch region where nuclear reactions occur.
On the other hand, it is expected that, as well established for neutrons (see Sec-

tion 1.2.1), larger bank energies could produce higher SLRs yields. However, many
scientific and technological issues must be addressed for a high-energy Plasma Focus
device, especially if operating at high pulse repetition rates, e.g. 1 Hz [14].

1.2 Experimental evidences

The worldwide experimental activity on PF devices has leaded to many not yet well
understood experimental evidences and to interesting empirical laws. In particular,
the comparison between many devices, of different power, proves a relation between
bank energies and neutron yields; moreover, the breakdown phase seems to have
effect on the whole plasma discharge and, especially, on the pinch stage and fusion
reactions. Few theories have been developed to explain the anomalous emission from
the focus and the possibility of fusion reaction with high energy thresholds.

1.2.1 The scaling law

About forty years of tests on PF devices of different power operated in deuterium,
show the existence of proportionality laws relating the neutron yield Yn to the bank
energy EC or to the peak current Imax. In Figure 1.4 experimental data are presented
for many worldwide PF facilities.
The first scaling law [1, 4]

Yn = 106 ·E1.5÷2.5
C ,
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Figure 1.4: Empirical scaling law relating neutron yield and
bank energy (on the right) or peak current (on the left).

with EC measured in kJ, appears to be approximately followed over the whole range
of energy on which data are available (i.e. about 1 kJ÷1 MJ). The uncertainty on
the energy power depends mainly on the operating parameters of the PF device,
which should be optimized in term of external inductances, charging voltage, filling
pressure, gas purity . . .
From pressure balance pinch relation B2/8π = nkT (with B the magnetic field,
n the plasma density, k the Boltzmann constant and T the plasma temperature),
the maximum peak current appears to be the real important parameters that could
affect the total neutron yield. However, the uncertainties on the proportionality
constant and on the power, for an analogous current based scaling law, increase. A
typically accepted rule is

Yn = 10 · I3÷4
max ,

but it has to be used with even more care since the focus current is not easily
deducible from the measured one.
Many theories have been developed to justify the scaling laws, but the main un-

solved problem is related to the uncertainty on the fusion mechanism (thermonuclear,
beam-target, plasmoids, . . . ) and on the charged particles energy distribution func-
tions. In few cases, it was observed [1] that small fractions of high-Z contaminants
appear to have beneficial effects on the ion average temperature. Highly optimized
devices are shown to have a reproducibility of neutron production from the plasma
focus discharge within a factor of 0.1.
Recently, a new experimental campaign conducted to show the feasibility of a

suitably designed high energetic and repetitive PF as a SLR breeder [12, 14] could
produce interesting results to allow the extension of the scaling law to other reaction
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products, just like radioisotopes.

1.2.2 The role of the breakdown

It is well-known that the breakdown phase in a PF device is essential for good
plasma pinching and high neutron and X-rays emission yields [15, 16, 17]. The
geometrical and material insulator parameters are strictly connected with the oper-
ating conditions, such as gas filling pressure and maximum applied voltage [18, 19].
Modification of the insulator configuration is almost always needed in PF operation:
even though theoretical analyses and numerical simulations provide helpful hints,
the insulator optimized design comes mainly from experimental trials and fails, also
in connection with knife-edge insertion [20]. The physical phenomena related with
the electrical breakdown in PF devices are still under investigation, since strictly
connected with charge particles interaction with insulator and conductive materials;
experiments point out that the insulator surface conditioning is of fundamental im-
portance for a good discharge behavior, confirming the importance of the breakdown
development on the overall phenomenon [20].
One possible explanation of the breakdown role on the focus conditions was firstly

depicted in [21, 22]. By means of image converter photographs, the production of
plasma filaments was clearly shown. Maximum neutron yields were observed to occur
under initially fairly uniformly distributed striations around the IE. It was observed
that the evolution of the filamentary structure develops into an axial-symmetric
sheath with evident radial striations, which are thought to enhance the mechanism
of neutron production. At lower operating energies, the filamentary patterns persists
on the CS and the filamentary structures form a finite number of intense radial spikes
during the rundown and collapse phase; the radial structures were observed to occur
in pairs (force-free) and their final annihilation is thought to represent the main ion
and electron heating mechanism (magnetic field annihilation) causing higher X-ray
and neutron production.
Recently [23], the formation and the role of filaments in pinch type discharges was

revisited. It arises that the formation of distinct current filaments are a peculiar
feature of high-current pulsed discharges and comes from their earliest stages. Many
experimental data from high-speed cameras, soft X-ray pinholes and fast deuterons
angular distribution have been analyzed and explained on the basis of filamentary
structures.

1.2.3 High energy threshold fusion reactions

As previously stated, the failure of predictive models is primarily due to the lack
of a precise knowledge of the energy distribution of the reacting particles during
the pinch phase of dense magnetized plasmas. Feeding the up to today available
experimental data, as input parameters in the most reliable even complex models,
it seems that triggering of certain nuclear reactions should not be allowed.
However, recent experimental activities, both in the US and Italy, have unquestion-

ably shown the occurrence of reactions whose cross sections have either high energy
threshold levels or too small values of the projectile energy, as predicted by the
above mentioned models. Even considering the high energy tail of the Maxwellian
spectrum and an average pinch density of 1019 cm−3, the very high yields experimen-
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tally observed [24, 25, 12] are not justifiable. These considerations suggest that more
complex and yet unidentified reaction mechanisms play a key role in the physical
phenomena occurring in the pinch.
A possible solution could be represented by the in-pinch formation of many pecu-

liar and microscopic plasma domains of enhanced nuclear reactivity. These zones,
usually referred to as “plasmoids” or “hot spots”, are characterized by very high den-
sities (even above solid state values), fairly high temperatures (above 3 keV), small
dimensions (20÷300 µm), and magnetic fields sufficiently strong to trap ions with
energies of the order of 5 MeV/nucleon. The life-time of these structures is supposed
to be in the interval 0.5÷5 ns. If the reactants involved are captured within the plas-
moids, the density and temperature conditions are sufficiently high to produce high
nuclear reaction rates [26, 27, 28].
The reaction rate is given by

RR = α

∫ Emax

Emin

dφ
dE

σ(E)
√
E dE ,

with dφ/dE the projectile energy distribution function and σ the reaction cross
section; α is a proportionality constant depending on the target density and on
the projectile mass, while Emin is the threshold energy for the considered reaction.
Measured yields of high Z-low Z reactants were considered and compared with the-
oretically estimated values obtained combining the reaction rate with the density of
plasma target nuclei and the plasmoid life-time; the results were in good agreement
with experimental data for a variety of nuclear fusion reactions with threshold en-
ergies in the range 0.3÷4 MeV, when an energy distribution function in the form
of

dφ
dE

∼ Em , with m = 2.5 ,

was considered [25].
The filamentary structure of the CS could be a possible explanation of the plasmoids

formation in the pinched plasma [23].

1.3 Theoretical and numerical models

PF devices are quite predictable machines thanks to the simplicity of the equivalent
circuit and to the empirical scaling law for neutron yield. However, the underneath
physics is not yet completely clear. Few simple general considerations and models
are here presented.

1.3.1 The plasma scaling

An interesting feature of PFs is that the energy density of the focused plasma is
practically a constant over the whole range of devices, independently from their
bank energy if optimally designed. The more energetic is the machine the higher
is the focus volume, the corresponding lifetime and the outcoming radiation yield.
However, the scalability of plasma phenomena assures that the plasma dynamics,
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Physical property Scale factor
l, t; L, C x1

v; R, V , I x0

E, B; σ; nb x−1

J , n x−2

Table 1.1: Scale factors for each physical property in gas
discharges plasma similarity transformation.

and the consequent plasma and radiation characteristics, are mainly the same for
the smallest and largest PFs.
A first plasma similarity transformation was derived for gas discharges [29, 30], and

further applied to plasmas in cosmic astrophysics [31].
Being derived for gas discharges, the scaling applies best to plasmas with a rela-

tively low degree of ionization; the ionization energy of the neutral background gas
is an important explanatory scale parameter. Starting from the unchanged physi-
cal properties, it’s clear that the particles masses, m, are constant and, therefore,
invariant; consequently their velocities, v, are fixed. Since the particle charge, q,
is a constant, as well as the mass-to-charge ratio, the potentials must not vary if a
particles falling through an electric potential, V , gain the same energy. As direct
consequences, time and spatial scales (l, t) have to vary proportionally to keep veloc-
ities constants; moreover, the electric field, E, scales inversely with the distance. In
order to satisfy Faraday’s law of induction and Ampere’s law, also the magnetic field,
B, must scale inversely with the distance. It follows that current density, J , scales
with the particle density, n, and therefore that current itself, I, is invariant, since
from the Gauss’s law, densities must scale with the inverse square of the distance
(the same is deducible imposing the constant speed of the Alfvèn wave, which implies
that particle densities must scale with the square of the magnetic field). Electrical
conductivity, σ, obtained as the ratio between the current density and the electric
field, scales inversely with the distance. Finally the neutral gas density, nb, must
scale with the inverse of the length since the electrical conductivity is proportional
to the electron density and inversely proportional to the background gas density;
therefore the ionization fraction scales with the distance. Other scaling factor of
electrical macroscopic properties (inductance L, capacitance C and resistance R)
are easily deducible by their definition or by the previous relations.
The commonly used scaling rules are summarized in Table 1.1.

1.3.2 Design parameters: the snowplow model

Notwithstanding the advantages of scalability of the PF parameters, the design of a
device is a complex procedure based on multiple steps of refinement.
A first rough definition of the main electrical parameters is essentially based on

experimental observations and macroscopic considerations. It’s known to exist a
lower limit to the operating voltage of a PF device, essentially given by the voltage
drop across the focus tube during the axial acceleration phase. This parameter has
to be parallelly tuned with the axial speed of the CS. A suitable lower limit is fixed by
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the efficiency of the electromagnetic mechanism (3÷ 4 cm/µs for deuterium), related
to the ionization rate, shock temperature and electrical conductivity. On the other
hand, experimental data show focusing problems for too high axial speeds (about
10 cm/µs) due to current spokes development; the instability of the plasma flow has
been recently modeled solving the MHD equations on a fixed Eulerian mesh [32].
The consequent operating voltage results in the range of 20÷ 30 kV. Once chosen a
proper bank energy, from the RLC circuit theory, an inductance upper limit arises
to keep a sufficiently high current peak. This is one of the main problem to be
faced during PF design and optimization; when a current in the regime of the MAis
sought-after, many technological problems arise and have to be faced with care.
Once fixed the electrical parameter of the external circuit, a careful design of the

electrodes dimensions must follow. Many theoretical and numerical models exist and
give good results, but the best results are obtained through the so called snowplow
model. Under the hypothesis of stationary conditions, the magnetic pressure pB =
B2/(2µ0) is balanced by the kinetic energy of the background gas, given by pT =
nkT = ρv2, with v axial speed of the CS. Expressing the magnetic field B(r) as
a function of the dependent current I, by integration over the inter-electrode gap
(from the inner radius rint to the outer one rext), the axial speed of the sheet is
obtained as

v =

√√√√√ µ0 I
2 ln

(
rext

rint

)
4π2ρ(r2ext − r2int)

.

Under the hypothesis rext/rint . 3, a series expansion of the logarithm leads to the
approximate relation

v '

√
µ0 I

2

8π2ρr2int

. (1.4)

Using the equation of the momentum conservation in the transverse direction [33],
it can be shown that steady solutions can only exist if the axial speed of the layer
exceeds the minimum velocity given by equation (1.4). It is then easy to remap the
v variable on a dimensionless parameter a which is defined in the interval [0, 1]:

a =

√
µ0 I

2

8π2ρr2intv
2
. (1.5)

Comparing literature data, it appears that all focus tube are operated in a range
a ∈]0.5, 1[.
The analytical snowplow model is known to give good results only during the

rundown phase. Other theoretical models, like the slug model [4], can be used to
describe the radial phase to obtain a trial value for the electrodes radiuses. However,
even if the one-dimensional snowplow model fails for the collapsing phase, it can be
extended to the two-dimensional space (r, z) and numerically implemented, in order
to obtain a proper tool for electrodes design optimization.
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1.3.3 A microscopic description

As previously stated, the design of a PF device cannot be free from experimental
activities and physical understanding of the connected problems. The cited macro-
scopic models give quite accurate description of the CS profile, as well as of the
characteristic time of the discharge, but are not a proper tool for a deep investiga-
tion of the physical phenomena.
In the past, many authors developed two-dimensional MHD models to investigate

in better details the dynamics of the rundown and collapse phases [34, 35, 36, 37, 38].
Recently [39], an MHD code based on the modified free points method (i.e. a gridless
method, very useful for problems involving large deformations) has been developed
to solve the full dissipative set of MHD equations with Braginski transport [40].
A continuous refinement of the physical models has allowed to get an increasing
accuracy on the dynamics description.
Even if the fluid codes appear to match correctly the physics of the macroscopic

motion of the CS, they fail in the description of the breakdown and pinch phase,
where Maxwellian assumption of the energy distribution function of charged species
lead to misleading results. A microscopic approach, by kinetic models, is then
necessary.
The starting point of macroscopic simulations (both from snowplow and MHD

models) is the assumption of a well-formed plasma sheath on the insulator sleeve.
Moreover, the available experimental data [18, 19] describe the feature of this phase
mainly at an advanced temporal stage (hundred of nanoseconds), when the plasma
sheath is well-formed and current densities reach values of the order of hundreds
of kA/cm2. Due to the influence of the gas breakdown in the sheath development
and in the subsequent phases of the discharge, a more precise description of its
generation and evolution in the first stage of the discharge is needed. Up to today,
both fluid [41] and kinetic [42] codes have been developed to model the ionization
growth in a PF discharge, but many improvements are still needed.
Widely tested numerical methods, like the coupled Particle-In-Cell (PIC) Monte-

Carlo-Collisional (MCC) kinetic model [43, 44], can be successfully used for a mi-
croscopic description of the transport of the charged particles under strong electric
fields. The very high multiplication rate of charged particles makes such simulations
quite expensive even on modern computers, unless control techniques are developed
and applied to maintain an affordable number of simulation macro-particles. The
interest on such numerical techniques is relevant not only for PF application, but
even for other fields of plasma physics and dynamics.
One of the most important but hard aspect of similar simulation is the correct mod-

elization of the microscopic collisional events of charged particles with the boundaries
of the domain of interest. A deep investigation on the interaction of charged parti-
cle with conductive and insulating materials is needed. Experimental data are not
always readily available to allow comparisons.
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CHAPTER 2

Introduction to PF design

Abstract. The design and optimization of a PF device is a complex procedure,
which involves many connected subjects like the choice of the circuit parameters,
the electrode design and the careful choice of auxiliary components. After general
considerations on external circuit parameters, the attention will be drawn on the
electrodes design; at last, the optimization of a real device will be presented. This
brief introduction to the problem will guide the reader through the next sections in
the first part of the present work.
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2.1 External circuit parameters

The first step in the planning of a PF device is the estimation of the total bank energy
and peak current, on the basis of the expected operational capabilities. Since the
charging voltage can be chosen in a rather small interval, all the other electrical
parameters can be easily deduced.

2.1.1 Charging voltage and bank energy

PF devices usually are operated to very high voltages, extremely higher than those
strictly necessary to produce the gas breakdown. Indeed, there is a lower limit on
the charging voltage of the capacitor bank due to the inductive voltage drop during
the axial acceleration phase. It’s quite intuitive that the variable inductance of the
equivalent RLC circuit grows during the sheath motion, since the space filled by the
magnetic field increases with its axial position (see Section 3.1.4 for more details).
The voltage drop related to the inductance component of the circuit is given by the
first term d(LI)/dt of equation (1.1). During the first stages of the discharge, the
current grows rapidly but the inductance is mainly due to the external circuit term
(constant and of the order of tens of nH). To obtain the maximum compression effect
in the focus phase, the acceleration of the CS should end in temporal coincidence
with the first maximum of the current, roughly given by equation (1.2) (hundreds
of kA); then, it follows that the maximum value of the voltage drop is mainly given
by the varying inductance component, which means

d
dt

(L(t)I(t)) = L
dI
dt

+ I
dL
dt

∼ I
dL
dt

.

In this occasion, the CS profile can be considered in first approximation with no
curvature, connecting the IE of radius rint with the OE of radius rext. Simply
applying the formula to calculate the inductance between two coaxial cylinders of
length, the inductance of the focus tube can be written as

Lp(t) =
µ0

2π
ln
(
rext

rint

)
z(t) ,

where z(t) is intended to represent the axial position of the CS along the electrodes.
The inductive voltage drop is, then, given by

I
dL
dt

= I(t)
µ0

2π
ln
(
rint

rext

)
dz
dt
, (2.1)

with v = dz/dt the macroscopic velocity of the sheath during the rundown.
Typically the radiuses ratio lead to ln(rint/rext) ' 0.5÷ 1, while the peak current

is I ' 0.5÷ 1 MA; this gives an inductive voltage drop per axial speed of

1
v

dV ' 10−1 Vs/m ,

or, equivalently, about 1 kV per 1 cm/µs.
The range of suitable axis speeds in a PF tube is rather small [4, 45]: the lower limit

is fixed by the efficiency of the electromagnetic drive mechanism which is strictly
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related to the plasma conductivity, i.e. to the ionization rate (see Appendix 2.A for
more details).
Since, usually, the velocity of the CS is taken in the range 3÷ 8 cm/µs for a PF

tube operating in deuterium, the corresponding shock temperature is 2÷ 5 · 104 K.
Lowering the axial speed to 1 cm/µs, would reduce the plasma temperature to about
2 · 103 K (T2 ∼ v2

1, see equation (2.9)) and the plasma conductivity (σ ∼ v3
1, as

from equation (2.10)) to too low values, with certainly insufficient ionization for the
magnetic drive to be operative.
On the other hand, observations also show that it is difficult to obtain consistent

conversion of axial speed into focusing action when the first exceeds 10 cm/µs (if
the classical configuration of the electrodes is wanted to be preserved against more
exotic ones [45]).
Thus, from equation (2.1), it follows that the inductive tube voltage drop is in the

range 3÷ 10 kV, which is the main reason why most PF work with charging voltages
in the range 20÷ 30 kV.
Once fixed the charging voltage V0, the wanted bank energy E imposes the total

capacity C0 of the system, being

E =
1
2
C0V

2
0 . (2.2)

2.1.2 Inductance and peak current

As previously stated, a typical PF peak current Imax is in the range 0.2÷ 1 MA.
Referring to the maximum current of the equivalent RLC circuit, as deducible from
equation (1.2), one obtains

I0,max '
V0√
L0

C0

(2.3)

if only the external inductance L0 is considered and under the hypothesis of negligible
resistance R0 (perfect sinusoidal current).
From experience, the peak current during focus operation is typically 60% of the

maximum ideal current I0,max. It is therefore necessary to design the external circuit
parameter in order to obtain a maximum ideal current I0,max ∼ 1.6÷ 1.7 Imax.
By substitution of equation (2.2) into equation (2.3), a first estimation of the

maximum external inductance L0 can be immediately found as

L0 =
2E
I2
0,max

.

Therefore, the external inductance L0 of a PF device shall be of the order of few
tens of nH: obviously, lower is the inductance, greater is the obtainable peak current
for a fixed bank energy.
Typical inductances of 30÷ 40 nH can be achieved without much difficulty. One

easy way to both increase bank capacitance and decrease inductance is based on
the employment of parallel elements in the external circuit. Nevertheless, a similar
choice make all the system management very complex, as will be investigated in
more details in Section 2.3.
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2.2 Electrodes design

The condition for device optimization is the time coincidence between pinch and
maximum current. The electrodes design is therefore a fundamental aspect: the
radiuses ratio influences the focus tube inductance, while the total length is related
to the maximum current of the external circuit through the sheath axial speed. The
snowplow model is of great aid in such a nonlinear task, but few simple considerations
help in fixing a starting point.

2.2.1 A first rough solution

As already shown in Section 1.3.2, coupling the expressions of the magnetic and
gas pressure, the CS axial speed is given by equation (1.4). Since the velocity is
proportional to I, considering the I(t) in time of a typical lumped RLC circuit
and neglecting the damping exponential (see equation (1.2)), the CS axial average
velocity can be obtained integrating I(t) over the first quarter period and dividing
by π/2:

v =

√√√√√ µ0 ln
(
rext

rint

)
4π2ρ(r2ext − r2int)

2
π
I0,max

∫ π/(2ω)

0
sin(ωt) d(ωt) =

√√√√√ µ0 ln
(
rext

rint

)
π4ρ(r2ext − r2int)

I0,max ,

(2.4)

where I0,max is the maximum ideal current.
Assuming the average rundown velocity as the velocity of the whole phenomenon,

the CS approaches the end of the electrodes at about

tl =

√√√√√pi4(r2ext − r2int)

µ0 ln
(
rext

rint

) lρ1/2

I0,max
, (2.5)

where l represents the total length of the electrodes.
On the basis of the external inductance L0 and capacitance C0 (as derived in the

above section), the period of the sinusoidal current of the equivalent LC circuit (R0

is here neglected) can be evaluated as

T =
2π
ω

= 2π
√
L0C0 ,

ω being approximately given by the second of equations (1.3). The peak current
I0,max is reached at time t0 = T/4, which can be compared with CS axial transit
time of equation (2.5), leading to the scaling parameter

tl
t0

=
1

2π
√
L0C0

√√√√√π4ρ(r2ext − r2int)

µ0 ln
(
rext

rint

) l

I0,max
' 2√

L0C0

√
2π2r2intρ

µ0

l

I0,max
,

for rext/rint . 3, as showed in Section 1.3.2. The ratio should lie around the unity
to ensure the maximum transfer of external energy into compression strength.
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Another important design parameter is the good matching between the external
inductance L0 e the focus tube one Ll

Ll
L0

=
1
L0

µ0

2π
l ln
(
rext

rint

)
;

in this case, the approaching of the ratio to 1 ensure a good energy transfer from
external circuit to magnetic compression. Deviations from the ideal value of 1 could
induce the current shedding effect, common to all the type of shock tubes: a por-
tion of the tube current stays behind, near the backwall insulator sleeve, without
contributing to the effective current of the plasma sheath (even if measured by di-
agnostics).
The two scaling parameters represent a sort of figure of merit (FOM) for the PF

design. Typically an error of ±10% on their value can be assumed.
Practically, the two parameters are not enough to set the electrodes geometry.

However, experimental data and other theoretical aspects limit the variability range
of few variables. As previously shown, CS axial speed can vary in a rather small
range. Moreover, typical operating pressures are of the order of few Torr to improve
gas breakdown and maintain reasonable electrodes dimensions. These limits help in
determining an initial trial value for length l and radiuses rext and rint.
One should notice that the proposed solution needs many refinements. Mainly, no

information is yet available on the collapse phase, which is the most critical: the
peak current is wanted in time-coincidence of the pinch stage, rather than at the end
of the axial transit; moreover, during the last stages the inductance of the collapsing
sheath rapidly increases modifying the peak value and the inductive voltage drop.

2.2.2 Electrodes optimization

The global problem is clearly non-linear. Depending on the plasma shape and posi-
tion, the inductance related to the plasma gun changes (from a minimum correspond-
ing to the breakdown to a maximum at the pinch stage) modifying the parameters
of the equivalent circuit. Therefore, the current flowing in the plasma sheath is
not that of an ideal RLC circuit; it strongly influences the magnetic pressure which
drives the sheath in its axial rundown and collapse.
On the basis of the snowplow theory, a more complex model of partial differential

coupled equations can be written and numerically solved. To take correctly into
account the varying inductance due to the sheath motion, the mathematical model
must be based, at least, on a two-dimensional geometrical domain; the hypothesis
of perfect axial-symmetry is, indeed, a good approximation. The sheath profile can
hence be modeled as a sequence of conical finite elements connected to the electrodes,
which closes the electrical circuit. The inductance of the plasma gun depends strictly
on the sheath profile and the CS discretization allows a rather simple way to evaluate
it. Once known the total inductance of the circuit and the inductive voltage drop
due to the sheath advance, the equation (1.1) can be solved to obtain the current
flowing in the CS. The magnetic pressure is, then, immediately deduced and each
element of the sheath profile can be pushed through the solution of the equation of
motion, taking into account both its inertia and the momentum change due to the
swept gas.
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The model is still rather simple. The breakdown is not modeled and the CS is
initially created on the insulator sleeve. Initial and boundary conditions are not yet
completely clear, and still need to be investigated. Furthermore, no information is
available on the plasma properties in front of the shock. Consequently, no consid-
eration can be made on the pinch stage. Notwithstanding, the model gives good
results on the CS timing and its profile shape [46]. The method will be described in
detail in Chapter 3 and compared with experimental results in Chapter 4.
Starting from the first trial value obtained as proposed in the above section, a

code based on the snowplow model can help to find the best theoretical electrodes
configuration. However, adjustments of the electrodes and insulator geometrical
parameters, as well as of the filling gas pressure, should be possible on the basis of
experimental tests. This means that in the design of a new device, the electrical and
mechanical connections of the electrodes to the vacuum chamber must be planned
carefully providing a sufficient degree of flexibility. In Chapter 5, the subject will be
dealt in greater detail.

2.3 A real device

The above brief description of a PF design procedure is still not complete. The
planning of a new real device requires great care on auxiliary device management
and connection. In particular, the main goal and challenging technological problems
in the design of the PFMA1 (Plasma Focus for Medical Applications 1), a 150 kJ
repetitive plasma focus for the production of F18, will be here presented.

2.3.1 The goal and the needs

Experiments in the past five years have demonstrated production of short-lived
radioisotopes with a Plasma Focus device, using the so-termed endogenous mode [12,
24].
Short lived, positron emitting radioisotopes (SLRs), like F18 and O15, gain rapidly

growing interest for use in medical diagnostics, i.e. positron emitting tomography
(PET). However, severe difficulties are related to short half-life of the radioisotopes
and to the localization of the production facility. Only recent studies opened a new
perspective for the use of PF devices to produce SLRs. Starting from the results
obtained by Brzosko and coworkers [24, 25], a research activity has been planned
and started to validate and improve this promising technology. The preliminary
results appear consistent, confirming the viability of the technique [11, 12]. Due
to the high energy thresholds of few of the tested reactions, the observed results
seem to be an evidence of the plasmoids theory, already presented in Section 1.2.3.
While in conventional techniques targets are irradiated with charged particle beams
generated from outside, in endogenous production both projectile and target are
confined in the same region where they react.
Filling the PF chamber with He3 and O16 in gaseous form, the reactions

O16 + He3 → F18 + p

O16 + He3 → O15 + He4

can take place. The second reaction branch has a yield 2–3 times smaller.
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So far radioisotope activities of only a few micro-curies have been obtained from sin-
gle discharges in small scale PF machines (capacitor bank energies of approximately
7 kJ). Scaling laws for neutron yield in PF neutron generators are experimentally
well established up to 1 MJ of bank energy, as already stated in Section 1.2.1. If
similar laws are supposed to hold also for nuclear reactions that produce SLRs, it
could be expected that higher activities could be obtained with larger bank energies,
about 150 kJ, operating at high pulse repetition rates, e.g. 1 Hz.
The expected production rate is 1 Ci of F18 in 2 hours. One major advantage in

this use of a PF to breed short-lived radioisotopes is the neutron-free feature of
the O16 + He3 nuclear reaction (as well as of other similar ones), which reduces
considerably the activation of structural elements, clearly very undesirable, and also
makes the shielding required for radiation protection far less demanding than for
other devices. Moreover, the prompt production makes SLRs available on demand.
Notwithstanding the great advantages of a similar solution, many scientific and

technological issues must be addressed for a high-energy PF device to run at one
pulse per second [13, 14].

2.3.2 Working parameters

Due to the high demanding bank energy E = 150 kJ, it is convenient to work at
high charging voltage to reduce the needed total capacitance. Indeed, from the
definition of the electrostatic energy by equation (2.2), it follows that at a nominal
charging voltage V0 of 30 kV, in perfect agreement with the design limits described
in Section 2.1.1, the required capacitance is C0 ' 350 µF.
As previously stated in Section 2.1.2, a total external inductance L0 of few tens of

nH is usually achievable; the PFMA1 being a very large and complex device, the
total inductance L′0 (here intended as the sum of the external circuit and focus tube
inductances) can be safely estimated of the order of 40 nH. For low resistance value
(R0 ' 1÷ 10 mΩ), its the damping effect on the RLC discharge can be neglected
and the ideal short circuit maximum current I0,max estimated through equation (2.3)
to be of the order of 3 MA.
As stated, the production of F18 through in-vacuum endogenous reactions requires

a mixture of O16 and He3 as filling gas. Due to the high mass number of the oxygen
(in molecular form), its gas pressure must be kept sufficiently low. In order to
achieve a sufficient number of reactants in the focus, it’s preferable to have working
pressures pD2 equivalent to about 10 Torr of deuterium.
The working parameters of the PFMA1 are summarized in Table 2.1.

2.3.3 Challenging problems

A so high capacitance can be reached only employing more capacitors operating
simultaneously. In the choice of capacitors for typical PF operation, an important
feature is the life expectancy, as a function of the operating voltage, the discharge
frequency and the voltage reversal percentage. The severity of working parameters
can strongly reduce the capacitor life.
The discharge of the capacitors on the electrodes must take place through a fast

switch able to carry large currents, usually of the orders of few hundreds of kA. The
fast spark gap (SG) switches are nowadays considered the best choice in the field
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Working parameter Value
Charging voltage (V0) 30 kV
Bank capacitance (C0) 350 µF
Total inductance (L′0) 40 nH
External resistance (R0) 1÷ 10 mΩ
Bank energy (E) 150 kJ
Ideal peak current (I0,max) 3 MA
Discharge frequency (ω) 0.3 MHz
Filling gas (D2) pressure (p) 13.33 mbar
Repetition frequency (f) 1 Hz

Table 2.1: PFMA1 operational parameters.

of pulsed power applications. Another fundamental feature in addition to the high
voltage-current operability, is a very low time-jitter1 in their closure: having to use
multiple switches (one for each capacitor, due to the maximum sustainable current
limit), the simultaneity of the trigger is of great importance. Other requirements
are a good recirculating cooling system, a simple coupling with the capacitor and
a sufficiently low inductance (to reduce the magnetic energy losses, proportional to
1/2LI2).
Even the connections between elements of the bank must have a low inductance.

The elements parallelization is of great advantage also in this situation aiding to
reduce both inductance and resistance. The use of coaxial cables for high voltages
and currents is a safer and more flexible solution than that of clamped parallel plates.
The connection between the coaxial cables and the focus tube is a very delicate

problem, which usually requires the design of an ad-hoc collector.
When the limit of the MA is overcome as maximum current, great care is demanded

to minimize the detrimental effect of the magnetic field. The transient diffusion of
the magnetic field in conductor materials can explain the well-known skin-depth
effect ; at very high current densities, each electrical connection must be well defined
by means of the so called current gasketing and sharp edge must be smoothed to
avoid current paths with null bending radius which would induce too high magnetic
fields, able to vaporize the materials. In a pulsed regime, the eigenfrequencies of the
structure could be problematic if comparable with the operational ones, as well as
electrodynamic forces could induce too high maximum deformation compromising
the vacuum sealing.
On the other hand, highly transient over-voltage spikes impose to design with great

care the insulators. Moreover, everywhere a dielectric surface connects a high-voltage
element and grounded one, a favorable path for a surface discharge is created; its
effect represents a loss term in the energy transfer and can seriously damage the
insulating material.
All the above mentioned technological problems will be faced in Chapter 5, with a

special attention to the issues related to the collector design (inductance and capac-

1The jitter is the standard deviation of the breakdown time assumed to have a Gaussian distri-
bution, being based on a stochastic process.
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itance, current gasketing, surface tracking, flexibility, electrodynamical forces, . . . ).

2.A Plasma physics and shock dynamics

To better understand the evaluations on CS dynamics in a PF tube proposed in
Section 2.1.1, it’s preferable to recall few well-known equations of plasma physics
and shock dynamics.

2.A.1 Partial pressures and Saha equations

For a gas at temperature T consisting of multiple species, the partial pressure of
the i-th species is given by pi = nikT , where ni is its density and k the Boltzmann
constant, or equivalently by

pi = ρiRiT = ρi
R0

Mi
T ,

with ρi mass density, Ri gas constant for the i-th species, R0 universal gas constant
and Mi the molecular weight. Obviously, p =

∑
i pi. When the species are single or

multiple ionized particles of the same gas, the total pressure is given by

p =
R0

M
ρT

(
1 +

∑
i

iαi

)
= ρTχ ,

with αi as fraction of ionized particles over the total for the i-th ionization degree;
the quantity χ is known as the departure coefficient.
As well as the Saha equation can be written for a single ionized gas

nine

n
=
ZiZe

Z
exp

(
−Eion

kT

)
with ionization threshold energy Eion, a system of Saha equations can be obtained
recursively for a generic gas with multiple degrees of ionization. The generic equation
for the i-th species is

αi
αi−1

(1− χ) =
2k5/2

R0

(
2πme

h2

)3/2

M
Zi
Zi−1

T 3/2

ρ
exp

(
Ei
kT

)
, (2.7)

me being the mass of the electron and h the Plank’s constant. The above equation
can be easily found from the classic one, remembering that the density of the elec-
trons can be written as ne = n(1 − χ), with n = ρR0/k. The electrons partition
function Ze has been explicitly substituted for convenience.

2.A.2 Shock-jump equations

From the shock-jump theory for strong shocks [47, 48], in the coordinate system of
a 1-D shock front moving in a gaseous non-magnetic system, the following balance
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equations can be written

ρ1v1 = ρ2v2 mass continuity

ρ1v
2
1 = ρ2v

2
2 + p2 momentum continuity

1
2
v2
1 =

1
2
v2
2 energy continuity

p2 = ρ2
R0

M
T2χ thermal–pressure equilibrium

h2 =
γ

γ − 1
p2

ρ2
heat equation

where 1 and 2 label the ambient gas properties and the shocked particles ones
respectively (with ρ the mass density, p the pressure, v the velocity, h the enthalpy,
M the molecular weight and γ the effective specific heat of the gas while R0 being
the universal constant of gases,), the density ratio across the shock can be written
as

Γ =
ρ2

ρ1
=
γ + 1
γ − 1

,

which depends only on the specific heat ratio. The shock temperature is then given
by

T2 =
M

R0

Γ− 1
Γ2

v2
1

χ
(2.9)

where χ may be determined by the solution of the system of equations (2.7).
For example, for a fully ionized hydrogen gas (γ = 5/3, χ = 2), one obtains
T2 = 1.13 · 10−5v2

1 as the temperature of the plasma behind the shock.

2.A.3 The Spitzer resistivity

The plasma temperature is strictly related to the collision frequencies of charged
particles on which the plasma conductivity strongly depends. The simple Lorentz
gas resistivity, can be corrected to account for the effects of the collision range and
for the electron-electron interaction, leading to the Spitzer resistivity []:

η = σ−1 = 65.3Z lnΛT−3/2
e Ωm , (2.10)

where lnΛ is known as the Coulomb logarithm, related to the ratio between the
Debye length and the 90◦ electron-ion impact parameter.



CHAPTER 3

The 2D snowplow numerical code

Abstract. The dynamics of a PF device can be simulated using a so called snowplow
model, which solves the coupled equations of the external equivalent circuit and of
the plasma sheath motion. The model will be here presented in details describing
the set of partial differential coupled equations and the methods adopted to solve
them numerically.
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3.1 The snowplow model

As already stated in Section 1.3.2 and Section 2.2.2, the snowplow model can be a
valuable tool for the study of the PF dynamics and its design optimization, once
fixed the external circuit parameters.
The code developed is intended to solve the system of coupled equations for the

electrical circuit with time-varying parameters, for the motion of the sheath de-
scribed as a sequence of conical finite elements in cylindrical geometry and for the
continuity of mass to take into account the gas swept and ionized by the plasma
sheath. The breakdown phase has been modeled through an energetic balance: it is
supposed the discharge occurs on the insulator sleeve with perfect axial symmetry
when the internal energy due to the ohmic heating has reached a sufficiently high
value to ionize at least the 80% of the mass gas contained in the layer; then, at each
time-step, the system of partial differential equations is solved by means of finite
forward difference methods: the inductance of the new configuration is updated and,
from circuit equation, voltage and current are calculated; once the flowing current
is known, the magnetic pressure is immediately deduced; it acts normally on each
conical element, which is moved solving the momentum equation and taking into
account the effects of inertia; the type of gas and its pressure inside the vacuum
chamber make possible to evaluate the portion of it swept by each element in its
motion; the sheath is maintained connected to the electrodes imposing the bound-
ary conditions on its end-elements. At each time-step a reshape of the sheath is
carried out re-normalizing the length of elements, to keep the segment density per
unit length constant along the sheath; moreover, the portion of plasma crossing the
electrodes is considered lost, as if it recombined in neutral gas in the turbulent tail
in touch with the OE.
When the sheath reaches the axis of symmetry, the code stops, since the snowplow

model fails to simulate the shock-wave reflection and microscopic interaction inside
the focus. The main aim is to find the proper configuration that gives the time
correspondence between maximum current obtained by the circuit discharge and
plasma collapse in the pinch.
The code is written in modern Fortran 90 making deep use of its object-oriented

features and user-defined variable types [49, 50].

3.1.1 Equivalent circuit

The equivalent electrical circuit of a PF device can be modeled as in Figure 1.2:
the bank capacitor C0, charged at a voltage V0, is connected to a transmission line
with resistance R0 and inductance L0 through a fast spark-gap switch; during the
sheath dynamics, the plasma inductance Lp and resistance Rp vary in time. After
the breakdown, the plasma resistance can be usually neglected with respect to the
external one.
Letting RSG be constant resistance associated to the SG and acting during a switch-

ing period τSG, the equation describing the lumped RLC circuit is

d
dt

((L0 + Lp(t))I) + (R0 +RSG(t) +Rp(t))I = V0 −
1
C0

∫ t

0
I(t′) dt′ ;
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it can be split into two simple coupled differential equation in time as follows

d
dt

(L(t)I) +R(t)I = VC(t)

dVC(t)
dt

= − I

C

where VC(t) is the varying voltage on the capacitor bank, and, for convenience, it
has been assumed L(t) = L0 + Lp(t) and R(t) = R0 + RSG(t) + Rp(t). The initial
conditions are

I(t = 0) = 0
VC(t = 0) = V0

3.1.2 Equation of motion

The shape of the current sheath is described by the position in the plane (r, z) as
function of a local coordinate λ along the profile. In this way, the sheath can be
modeled as a sequence of infinitesimal elements1 δλ with normal unit vector n̂(λ)
located in ~r(λ). The plasma sheath has a variable thickness, but is considered neg-
ligible by the snowplow model: the dynamics of the sheath, and all the parameters
related to it, will be studied as if the ionization front coincides with the magnetic
piston which drives the current sheath.

�����
�

���
�

��

� �	

 
�pm

~r

λ

Figure 3.1: Generic plasma sheath profile under the action
of magnetic pressure.

Since the mass of each element δλ changes in time, the momentum equation is

∂(δ~p)
∂t

= δ ~F , (3.3)

where δ~p and δ ~F are referred to an infinitesimal element of length δλ and are func-
tions of the local coordinate λ and of the time t. The equation is obviously coupled
with

∂~r

∂t
= ~v .

The force ~F acting on each element of the sheath depends on the current density
flowing in it; as the breakdown occurs, the current density ~J flowing in the sheath

1The symbol δ will be used to indicate an infinitesimal quantity referred to the infinitesimal
element δλ of the sheath.
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interacts with the field of magnetic induction ~B self-induced in the toroidal region
of space closed by the current loop. The density of Lorentz’s force ~J× ~B per volume
unit can be considered as a pressure pushing the sheath away from the insulator
(detachment) and then towards the end of the electrodes.
In axial symmetry, the magnetic pressure is defined as

pm(r) =
| ~B(r)|2

2µ0
, (3.4)

where r is the radial component of vector ~r(λ); the field of magnetic induction is
related to the current inducing it by the Biot-Savart’s law :

| ~B(r)| = µ0I

2πr
, (3.5)

valid on the whole region at the back of the plasma sheath (independently on variable
z). Substituting the equation (3.5) into (3.4), it is readily shown that

pm(r) =
µ0I

2

8π2r2
(3.6)

is directly proportional to the square of current I and inversely proportional to the
square of the distance r from the axis of symmetry.
The magnetic pressure acts normally to each infinitesimal element δλ of the sheath;

the total force on each of them is then

δ ~F = pm δSn̂ , (3.7)

where the infinitesimal surface depends on the radial position of the element by

δS = 2πr δλ . (3.8)

Substituting the equations (3.6) and (3.8) in (3.7), the generic elementary force is

δ ~F =
µ0I

2

4πr
δλn̂ . (3.9)

From the definition of momentum ~p = m~v, the lhs of equation (3.3) can be manip-
ulated in

∂(δ~p)
∂t

=
∂(δm~v)
∂t

= δm
∂~v

∂t
+ ~v

∂(δm)
∂t

;

making use of equation (3.9) for the rhs of the same equation, equation (3.3) becomes

∂~v

∂t
=

1
δm

(
µ0I

2

4πr
δλn̂− ~v∂(δm)

∂t

)
.

The initial condition for position ~r and velocity ~v are

~v(t = 0) = 0
~r(t = 0) = ~rins

where ~rins is a function of (r, z) which defines the boundary of the insulator sleeve.
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Figure 3.2: Ideal motion of an infinitesimal sheath element
δλ sweeping part of the filling gas.

3.1.3 Mass continuity

The momentum equation contains the variation of mass in time for each sheath
element δλ. Its analytical expression can be easily obtained referring to Figure 3.2.
In an infinitesimal time interval dt, the sheath element δλ sweeps the gas contained
in a toroidal volume of rectangular section having δλ and ~v · n̂ dt as edges. Since ρ0

is the mass density of the unperturbed filling gas at the pressure p0 (considered as
an ideal gas), the mass swept is given by

d(δm) = ρ0 d(δV ) = 2πρ0 r δλ~v · n̂ dt ,

or, better, in the form of a partial difference equation

∂(δm)
∂t

= ρ0 d(δV ) = 2πρ0 r δλ~v · n̂ . (3.11)

The equation can be integrated over λ to obtain the variation in time of the total
mass of the plasma sheath Λ:

dm
dt

= 2πρ0

∫
Λ
r ~v · n̂ dλ .

Assuming s as the initial thickness for the plasma sheath, the condition at t = 0 is

m(t = 0) = m0 = 2πs
∫

Λ
rρ0 dλ .

3.1.4 Varying inductance

In Section 3.1.1, the inductance of the equivalent circuit was split in a constant
term L0 associated to the external circuit and in a varying contribute Lp(t) due to
the plasma sheath dynamics. This second term can be evaluated making use of the
classical formula for the inductance of two coaxial cylinders of radiuses rint, rext and
length l, crossed by the same current:

Lcyl =
µ0

2π
l ln
(
rext

rint

)
.
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The formula can be applied to the part of the electrodes already crossed by current
sheath, here called active part ; calling zend the z-coordinate in which the sheath is in
contact with the cathode, then the contribution of the active part of the electrodes
is given by

Lact =
µ0

2π
zend ln

(
rext

rint

)
.

Modeling the current sheath as a sequence of infinitesimal zero-thickness δλ ele-
ments, the equation can be applied to each of them projected along the z-direction,
considering another element of the same length, but different radius, crossed by
the same current in the opposite direction. During the rundown phase, the generic
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Figure 3.3: Inductance of two coupled infinitesimal ele-
ments of current.

element of the sheath can be considered having radius rmax, while the second ele-
ment is located on the inner electrode so that rmin = rint; as soon as the current
sheath crosses the end of the electrodes, it can be split into two parts as shown in
Figure 3.4: a first part is made by elements δλ with radius greater than rint and a
second funnel-shaped part is made by elements with radius lower than rint. If one
supposes that the IE is extended to cross the current sheath, than the inductance
can be calculated as the sum of the two contributes.
Each sheath element gives a contribution δL of the form

δL =
µ0

2π
δλ cos θ ln

(
rmax

rmin

)
,

where θ is the angle between the element δλ and the z-direction as a function of λ,
so that δλ cos θ = δz represents the projection of the element along z; rmin and rmax

depend on the position λ on the sheath profile, according to the following piecewise
functions of λ

rmax =

{
r(λ) if rint ≤ r(λ) < rext

rint if r(λ) < rint

rmin =

{
rint if rint ≤ r(λ) < rext

r(λ) if r(λ) < rint
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Taking into account the inductance of the active part of the electrodes and in-

Lact

rmax = r(λ)
rmin = rin

rmax = rin
rmin = r(λ)

Figure 3.4: Split of inductance calculation.

tegrating the δL contributions over the whole current sheath Λ, the total varying
inductance is given by:

Lp = Lact + Lcs =
µ0

2π

(
zend ln

(
rext

rint

)
+
∫

Λ
cos θ ln

(
rmax

rmin

)
dλ
)
, (3.12)

where the spatial coordinate zend, rmax and rmin are functions of time.
Before breakdown occurs, the inductance of the equivalent circuit is only due to

the external one, so the initial condition is given by

L(t = 0) = L0 .

3.1.5 Internal energy equation and breakdown model

The breakdown of both the SG and the PF have been modeled through simple
macroscopic considerations.
Due to the features of plasma fast switches, the SG is substituted by a constant

resistance RSG acting from t = 0 to t = τSG.
The breakdown model is based on the plasma sheath ohmic heating. Fixed a

thickness of the gas layer lying on the insulator sleeve, it mass is deduced by the
pressure of the filling gas. Its resistance can be experimentally related to the internal
energy of the gas through [51, 52]

Rp = R′
p

(
1− E

Eion

)
,

where E is the average internal energy of the layer and Eion is the energy necessary
to fully ionize it. The constant R′

p is related to the pressure p of the gas and is
experimentally given by

R′
p =

(
0.18
p

)1
3

with p expressed in mbar. The ionization energy density is about 6.5 · 108 J/kg for
diatomic deuterium.
The time variation of the gas layer internal energy is given by the ohmic law:

dE
dt

= RpI
2 = R′

p

(
1− E

Eion

)
I2 .
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when the internal energy reaches the 80% of Eion, the layer is assumed to have
developed into a CS, sufficiently conductive to be pushed by the MP.
The sheath internal energy is updated during the whole simulation, but, just after

the detachment phase, it results in a plasma resistance completely negligible if com-
pared to the external circuit one. Being a 0-dimensional property of the layer, the
internal energy is modified proportionally to the global mass of the CS.

3.1.6 System of coupled equations

From previous sections (3.1.1 to 3.1.4) the following system of coupled equations
can be built

dE
dt

= R′
p

(
1− E

Eion

)
I2

d(LI)
dt

= VC −RI

dVC
dt

= − I

C

L = L0 +
µ0

2π

(
zend ln

(
rext

rint

)
+
∫

Λ
cos θ ln

(
rmax

rmin

)
dλ
)

∂~v

∂t
=

1
δm

(
µ0

4π
I2

r
δλn̂− 2πρ0rδλ(~v · n̂ )~v

)
∂~r

∂t
= ~v

∂(δm)
∂t

= 2πρ0rδλ(~v · n̂ )

with initial conditions

E(t = 0) = 0
I(t = 0) = 0
L(t = 0) = L0

V (t = 0) = VC

~v(t = 0) = 0
~r(t = 0) = ~rins

m(t = 0) = m0 = 2πs
∫

Λ
rρ0 dλ

Moreover, the breakdown conditions reflects on the sheath as

~v(t ≤ t′) = 0
~r(t ≤ t′) = ~rins

with t′ given by the condition E(t′) = 0.8Eion.
Defining ~rint(r, z) and ~rext(r, z) as the functions describing the boundary of the

inner and OE respectively, the boundary conditions are simply given by

~r(λ = 0) ∈ ~rint

~r(λ = λend) ∈ ~rext

where λend(t) represents the last possible value for the local variable λ.



Chapter 3. The 2D snowplow numerical code 37

3.2 Numerical model

To solve the system of coupled equations numerically, a proper discretization in time
and space is needed. The logical sequence of instructions will be described in details.
The code is entirely written in modern Fortran 90 [49, 50]; the user-defined variable

types and the related functions and subroutines allow to have an easy-to-read code.

3.2.1 Time discretization

The obtained differential equations in time can be numerically solved only if dis-
cretized over the variable t. The derivatives in time are solved using the Euler
method with forward finite differences. The generic equation

dy
dt

= f(y) , (3.17)

becomes

y(h+1) = y(h) + f(y(h))∆t ,

where the superscript (h) is used to denote the generic time iteration and ∆t is the
time-step.
In the most general case, the function f will depend on time variable physical

quantities and on the local coordinate along the current sheath. To solve each
equation a subroutine based on the Euler method has been employed; it gets as
input parameters the rhs of the differential equation in the form of (3.17) and a
reference parameter for the segment of the sheath discretization.
The time-step must be small enough to ensure a good accuracy of the method and

avoid an excessive growth of the current in a single time-step. It can be chosen start-
ing from simple considerations on a lumped RLC circuit with constant parameters
R = R0, C = C0 and L = L0 + Lel where Lel is the inductance of the electrodes as
if short-circuited at their open end. Preliminary tests were performed and a time-
step was fixed as a function of the lumped RLC time-constant, in order to obtain a
relative error less than 3% with respect with the analytical solution.

3.2.2 Space discretization

Only the local variable λ is discretized, since the current sheath is modeled as a
sequence of connected finite elements with a fixed density η per unit length. The
subscript i will be used to denote the generic i-th segment of the sheath. Each one
is defined by the coordinates (r, z) of the two extreme points, called nodes; making
use of them, it is possible to define the geometrical characteristics of the segment:
length li, length ∆zi, ∆ri of the projections on z and r directions, normal direction
n̂i and mid point ~ri.
Making use of the user-defined variables and structures allowed by Fortran 90, the

sheath element has been defined as a structure containing all the just mentioned
properties of the segment and the physical quantities referred to it, like mass mi

and velocity ~vi. Moreover, the two nodes are defined as pointers (one of them as
target) linked to the same node on the adjacent sheath element; in this way the
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∆ri

∆zi

li

n̂i

~ri

Figure 3.5: Discretization of the current sheath in finite
elements.

~vi−1 · bni−1 dt

~vi · bni dt

~vi+1 · bni+1 dt

~vi d

bni

bni−1

~vi−1 dt

bni+1

~vi+1 dt

Figure 3.6: Motion and mass sweeping for the generic i-th
element.
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continuity of the sheath is always preserved, since moving the second node of i-th
segment is the same as moving the first of (i + 1)-th segment. Every-time a node
changes, the segment is reinitialized calling a specific subroutine which refers to
user-defined functions and operators.
Each equation depending on λ has to be rewritten for the generic i-th segment and

solved for i going from 0 to the (n− 1)-th segment, where n is the total number of
segments. At each time-iteration, the sheath is moved calculating the mean velocity
between adjacent elements and using it to evaluate the final position of the common
node. During its motion, each segment sweeps a portion of gas according to the
equation (3.11), where the scalar product is modified in ~vi · n̂i.
On the extreme nodes, the sheath is bounded to the inner and outer electrodes cut-

ting the part that eventually crosses the OE during the time-step. The corresponding
mass is considered lost as if the plasma recombines in neutral gas, interacting with
the grounded wall. The boundary conditions and sheath development at the end of
the inner electrode is a delicate subject and should be treated using the shock-wave
diffraction theory [47, 48]. In the case of closed IE it is known that, when reaching
a similar discontinuity, the shock-wave front starts moving downwards at half the
velocity in the z-direction. In the case of hollow electrode the correct condition is
still under investigation.
The main problem connected with the sheath discretization is related to its mo-

tion. While during the rundown phase the sheath approximately conserves its length,
entering the collapse phase the sheath starts growing. Moreover during the detach-
ment from the insulator, the discontinuity in curvature makes some elements growing
faster than others, depending on the direction of the velocity vector ~vi. At each time
iteration the sheath needs to be reshaped with elements of the same length: being η
the density of segments per unit length and l(h)tot the total length of the current sheath,
the number of segments is recalculated as η l(h)tot and the nodes redistributed on the
old elements starting from the inner boundary. Modifying the elements length, also
the mass and momentum have to be proportionally redistributed on the new sheath
on the basis of conservation principles.
The segment density η must be properly chosen to have a good discretization of

the sheath. The best way is to base it on the inter-electrode gap (rext − rint), by
subdividing it in a fixed number of parts and using the obtained length as the inverse
of η. As done for the time-step, this way to choose the discretization parameters is
strongly close to a sort of a-dimensionalization of the problem.
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3.2.3 Set of numerical equations

After time and space discretization, the system of coupled equation obtained in
Section 3.1.6 becomes

E(h+1) = R′
p

(
1− E(h)

Eion

)
(I(h))2∆t

I(h+1) =
1

L(h+1)
(L(h)I(h) + (V (h)

C −RI(h))∆t)

V
(h+1)
C = V

(h)
C − I(h)

C
∆t

L(h+1) = L0 +
µ0

2π

(
z(h+1)
n ln

(
rext

rint

)
+
n−1∑
i=0

cos θ(h+1)
i ln

(
r
(h+1)
i,max

r
(h+1)
i,min

))

~v
(h+1)
i = ~v

(h)
i +

1

m
(h)
i

(
µ0

4π
(I(h))2

r
(h)
i

l
(h)
i n̂

(h)
i − 2πρ0r

(h)
i l

(h)
i (~v(h)

i · n̂(h)
i )~v(h)

i

)
∆t

~r
(h+1)
i = ~r

(h)
i + ~v

(h)
i ∆t

m
(h+1)
i = m

(h)
i + 2πρ0r

(h)
i l

(h)
i (~v(h)

i · n̂(h)
i )

with initial conditions

E(h=0) = 0

I(h=0) = 0

L(h=0) = L0

V (h=0) = VC

~v(h=0) = 0

~r(h=0) = ~rins

m
(h=0)
i = 2πρ0sr

(h=0)
i l

(h=0)
i

Boundary conditions are treated as described in Section 3.2.2.

3.2.4 Flow chart

The sequence of operations followed by the code is summarized in Figure 3.7.
After reading the known parameters from a formatted input file, a sheath is gen-

erated with the same profile of the insulator sleeve and a fixed thickness. Calling
the general procedure for the reshape, the sheath is split into a proper number of
elements according with the fixed segments density η.
The internal energy is updated together with the circuit parameters, until the CS

is formed. Then, the inductance Lp can be calculated and used as new value to solve
the circuit equations calling the Euler routine. Then, the mass continuity equation
and the momentum equation are solved for each element of the current sheath; as
the nodes coordinates are updated, the segments properties are recalculated. Once
finished the iterative cycle over the elements, boundary conditions are applied to the
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h+1

Sheath reshape
Output file writing

i+1
Solution of the mass continuity equation
Solution of the momentum equation

Solution of the equation for space coordinates
Update of the elements properties

Initial Conditions
Variables assignment

from an input file
Creation of the sheath
over the insulator
Sheath reshape

Time iteration

Inductance calculation
Circuit equations solution

Cycle over the sheath

Application of Boundary conditions

Figure 3.7: Sequence of operation in the numerical code.

first and last node and the new sheath is reshaped. At the end of the time iteration
the physical quantities of interest are printed in an output file.
These operations are repeated until the minimum radial coordinate of the sheath

elements mid-points reaches a position close to the symmetry axis. The value ri = 0
is not allowed, since it would generate a divergent magnetic pressure.

3.3 Future improvements

The developed code presents some innovative features based essentially on geome-
try versatility: the IE can be hollow or closed at a specified z-coordinate and the
insulator sleeve can have an outer radius equal to the IE one (0-thickness) or even a
0-length and a thickness equal to rext − rint. Moreover the graphical user interface
improves the speed in the optimization procedure.
Even if simulations are in good agreement with experimental results, several aspects

could be improved.
A deep study on the shock wave propagation and reflection should be done to

improve the conditions at IE ending edge. Then, another interesting aspect could
be the analysis of non conventional electrodes layouts to improve the device perfor-
mances.
Mass continuity equation is not completely correct, since it is supposed the i-th

sheath element moves accordingly to ~vi · n̂i and not to ~vi. Even considering the
velocity vector and not its projection, the result wouldn’t change much, since the
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short time-step in use makes the differences negligible. A more accurate formulation
could be obtained evaluating the area of each quadrilateral having two adjacent
nodes at iteration h and h+1 as vertexes; however this would require the knowledge
of the new positions before calculating the swept mass: the new formulation of
momentum and mass continuity equation would change becoming strong coupled
and requiring an iterative method of subsequent approximation to be solved.
Also external circuit model could be improved. A crucial aspect in the design of

the PF external circuit is represented by the problem of impedance mismatch: if
the impedance of different branches in series are not equal, then part of the electric
power is not transmitted but reflected back producing a decrease in performances and
electromagnetic noise in probes signals. A correction factor less than 1 multiplying
current I could be introduced to decrease the nominal power transmitted from the
bank energy to the PF electrodes. However, the only way to evaluate the needed
correction is a proper study of the external circuit components and is not strictly
connected with the code optimization.
Looking at the numerical side, some improvements could be useful. The Euler

method to solve the system of coupled equations could be substituted by a corrector-
predictor one, by a Runge-Kutta higher order method, or by an implicit method
implementation. In each case, the main result would be a possible increase of the
time-step and a subsequent speed-up of the code, but it seems not so necessary on
modern computers.
Another little improvement could touch both the numerical and theoretical side.

As mentioned, the time-step ∆t and segment density η are chosen on the basis of the
external circuit characteristic time and inter-electrode gap respectively. This choice
is in some way similar to a dimensionless process on the physical quantities. Numer-
ically speaking, reducing the problem to a dimensionless one can have two different
aims: one is the decrease of computations obtained collecting multiplication factors;
the other one is that the code could be depurate by fixed parameters that could bring
to numerical instabilities for some particular configuration. From the physical point
of view, the a-dimensionalization process usually produces dimensionless numbers
which characterize the problem under examination. Starting from them, some rule
for optimization could be deduced.
Finally, the optimization procedure for the PF design could be made easier if

done automatically by the code itself. Defining a range of variability for the input
parameters and few behavioral rules, the code could change the device configuration
to reach an optimal configuration.

3.A Detailed description of the code

To make the code comprehension, usability and maintenance easier, the structure of
directories and the files content are examined in detailed. Moreover, a deep analysis
of subroutines and functions is proposed. Finally, a graphical user interface to the
program will be presented.

3.A.1 Directories and files

The root of the archive contains the following directories:
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− sources collects the source files (.f90, .mod, .o and a local Makefile);

− input contains an example for the input file;

− output will contain the output files (one directory for each project title);

− matlab collects the matlab script files for the GUI;

Moreover, a Makefile is given in the main directory. It refers to the Intel Fortran
Compiler for Linux platforms to resolve dependencies between modules (install
option) and to generate the executable file (all option) in the root directory; the
options cleanobj, cleanmod and cleanall provide a rapid tool to remove the .o
object files, the .mod files and both of them respectively.
The files dependencies are shown in Figure 3.8; the files contents will be readily

described.

PSsp2D_main

euler_subs

init_subs rhseqdiff_mod inpout_subs sheath_subs

sheath_mod

data_mod

Figure 3.8: Source files dependencies.

3.A.2 Source files and code structure

The modular capabilities of Fortran 90 have been widely used. The source file
names end with “_subs” if containing subroutines or modules of subroutines, and
with “_mod” if containing modules with data or user-defined constructors.

sheath_mod

The file contains the main module, called SEGfunction, used to model the plasma
sheath via user-defined variables and extended operators.
First of all, two user-defined structures are used to define a point (Coord2D) and a

vector (Vec2D) in the (r, z) plane of the sheath. In this way the nodes and vectors
characteristic of each segment can be declared and each component can be easily
referred to. Making use of these two structures, another one, called Seg2D, is defined
for the generic segment of the sheath. The first two elements (node1, node2) are
two pointers of Coord2D type used to define the nodes of the sheath: in this way
making the second one to point to the first of the adjacent segment, it is easy to avoid
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problems with the sheath continuity and one can refer to the first of the i-th segment
as well as to the second of the (i − 1)-th one. Moreover the structure contains the
coordinates of the segment mid-point (ptoM, Coord2D type), its normal unit vector
(nVEC, Coord2D type), the radial and axial components differences (rDELTA and
zDELTA, real) and its total length (lengthSEG, real); also physical quantities as
mass (mass, real) and momentum (vVEC, Vec2D type) are associated to the segment.
As last, two pointers of Seg2D type, named nextSeg2Dand prevSeg2D, point to the
previous and next segment along the sheath profile. The properties of the linked
lists are here very useful, most of all in the routine of the sheath remapping (see
SheathReshape).

z

Coord2D
r

Vec2D
r

z

Seg2D
node1

r
z

node2
r
z

ptoM

r
z

nVEC
r
z

rDELTA
zDELTA
lengthSEG
mass
vVEC

Figure 3.9: User-defined structures for 2D points, vectors
and sheath elements.

In the same module, the basic operators are extended to the user defined type
Coord2D and Vec2D. In particular

− FUNCrDELTA(SEG), FUNCzDELTA(SEG) act on a Seg2D to calculate its rDELTA
and zDELTA;

− FUNClenghtSEG(SEG) returns the length of the segment;

− FUNCptoM(SEG) returns the (r, z) coordinates of the segment;

− sumCoord2D(rz1,rz2) can be used to sum coordinate by coordinate two nodes;

− FUNCnormal(SEG) making use of rDELTA, zDELTA and lengthSEG calculates
the normal unit vector to the segment SEG;

− sumVec2D(VEC1,VEC2) sums component by component two 2D vectors;
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− vectorialAVERAGE(SEG1,SEG2) calculates the vectorial average of the two
momentum vectors of SEG1 and SEG2;

− divVec2Dscalar(VEC1,a) divides the two Vec2D components of VEC1 by a
scalar a;

− prodVec2Dscalar(VEC1,a) multiplies the two Vec2D components of VEC1 by
a scalar a;

− DOTproduct(VEC1,VEC2) makes the scalar product of two vectors VEC1 and
VEC2;

− CROSSr(SEG,ASCr) allows to calculate the intersection between a line perpen-
dicular to the z axis and passing for (0, ASCr) and the line that contains SEG;

− CROSSz(SEG,ORDz) the same of CROSSr but for the intersection with a line
parallel to z axis.

data_mod

This source file contains all the module of data definition. In particular,

− SEGdata contains the segment identity, the maximum length of each one and
the first node of the linked list representing the sheath;

− SHEATHvec contains mainly global and temporary variables and parameters
related to the sheath;

− GEOMdata fixes as global all the geometrical parameters that define the domain;

− GASdata contains data of the filling gas and other physical constants of interest;

− RLCdata define all the RLC electrical parameters;

− TIMEstep contains simulation parameters for the time dependent numerical
solution;

− IOoperation fixes few indexes for the input/output operations.

The modular definition of the variables allow to call for the proper modules where
necessary.

sheath_subs

The file contains all the subroutine related to the sheath development and reshape.
A brief description will follow for each of them:

− segSETUP initializes the generic segment, fed as dummy parameter, through
the functions contained in sheath_mod;

− FINDrMIN identify the minimum radial coordinate of the sheath profile, neces-
sary to stop the simulation;



46 3.A. Detailed description of the code

− MAP0 is used to initialize the plasma sheath over the insulator sleeve creating
two or one segments, depending on the insulator geometry; the subroutine
sheathRESHAPE will then redistribute the nodes over it;

− BOUNDARYnodes imposes the boundary condition of continuity between the
sheath and the electrodes; during the sheath motion the first node could detach
from the IE while the last usually crosses the OE, so their position must be
redefined and the total mass updated;

− sheathRESHAPE remap the sheath profile to maintain a fixed segment density
and to proportionally preserve the mass between the two profiles; this subrou-
tine acts independently from the geometrical parameters of the domain since
the call to BOUNDARYnodes has already fixed the boundary conditions;

− INDUCTANCE updates the inductance of plasma gun taking into account the
contributes of the sheath profile and the swept part of the IE.

init_subs and inpout_subs

The file init_subs contains few subroutines oriented to the check of the input
parameters and to the simulation and auxiliary initializations.

− initFILEinp checks the existence of the specified input file and stops the
program if it is not found;

− GEOMcheck checks the compatibility of the geometrical input parameters print-
ing error messages on the stdout in case of inconsistencies;

− initFILEout creates the output directories for the project specified in the
input file and initializes the units for the output operations;

− initPARAM performs few simple conversions and initializes the necessary simu-
lation parameters (density of segments, printing indexes, boundary conditions
indexes, . . . );

− initialCOND fixes the initial conditions for the simulation start up.

The file inpout_subs contains two main subroutines, one for the input (readINP)
and one for the output operations (printOUT). The first reads sequentially the file
fed in input skipping the lines starting with “!” that are considered as comments.
The subroutine printOUT prints on the proper files the sheath properties (nodes
coordinates, mass, velocity, . . . on sheath.dat), the circuit parameters (V , I, L,
dI/dt on electric.dat) and the frames for the animation of the sheath profile.
Other files (firstlastnodes.dat and sheathvel.dat) are used for the extreme
nodes position and velocities and for the sheath macroscopic velocity along the axial
and radial directions.

rhseqdiff_mod and euler_subs

As described in Section 3.2.3, the euler method allow to write each differential equa-
tion in a discrete form in time where the value at the next time instant is given by
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the previous one plus an advancing term multiplied by the time-step. Exploiting
the simple feature of the method, all the advancing functions of each differential
equation of interest are contained in a single file (rhseqdiff_mod). The external
subroutine contained in euler_subs, then, calls the external function passed as
dummy parameter and solves the differential equation.

PFsp2D_main

The main program follows the flow chart of Figure 3.7. After the check on the
input file, it is read and the initialization and control of the geometry and other
parameters are performed. The initial conditions are, then, calculated and imposed
and the main time cycle is started. The set of differential equations for the circuit
is solved for the inductance calculated for the initial sheath profile; iteratively the
nodes of the sheath are pushed and the boundary conditions imposed on the extreme
nodes, just before the sheath is reshaped to preserve the segment density. All the
time dependent variables are printed out. At last, the minimum radial coordinate
of the sheath profile is evaluated to stop or continue the time cycle.

3.A.3 Graphical User Interface (GUI)

To improve the code usability and increase the speed for the procedures of input
generation and output manipulation, a user-friendly graphical interface was devel-
oped exploring the capabilities of the Matlab UI-tools in a UNIX environment. In
Figure 3.10, the mask for the input parameters is presented.
The interface allows the user to generate a new input file or to load and modify

an old one through a generic file selection window (see Figure 3.11); a check on
the input parameters is made and a preview of the resulting geometry is created,
as shown in Figure 3.12. The execution is performed calling the stand-alone F90
compiled code, giving the chosen file as input or the just created one.
After the execution is terminated, a new interface window, shown in Figure 3.13,

is opened. A list of physical quantities is presented and the user can choose which
to plot in abscissas and ordinates.
Moreover, a script to generate the sheath profiles in a 2D geometry is accessible.

Another script is callable to create a rendered 3D movie of the sheath dynamics
(three merged snapshots are presented in Figure 3.17).
By the exam of the obtained results the user can simply go back and modify the

input parameters to improve the device performances.
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Figure 3.10: Graphical User Interface in the Matlab envi-
ronment.

Figure 3.11: Input file selection.
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Figure 3.12: Input parameters and geometry preview.

Figure 3.13: Plot utility.
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Figure 3.14: Plot of total inductance vs. time.

Figure 3.15: Plot of current vs. time.
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Figure 3.16: Plot of sheath profiles.

Figure 3.17: 3D profiles of the current sheath at three differ-
ent temporal stages (detachment, rundown, collapse).





CHAPTER 4

Electrodes design

Abstract. The results of the snowplow model presented in the previous Section are
here proposed. First of all, a real device, operated in the facility of the Laboratory
of Nuclear Engineering in Montecuccolino, is simulated and the results compared
with other theoretical and numerical models and with available experimental data.
Then, the design of the PFMA1 electrodes will be presented.
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Working parameter Value
Charging voltage (V0) 20÷ 25 kV
Bank capacitance (C0) 7.2 µF
Total inductance (L′0) 91 nH
Electrodes inductance (L0) 75 nH
External resistance (R0) 8.67 mΩ
Maximum bank energy (E) 3.24 kJ
Ideal peak current (I0,max) 220 kA
Discharge frequency (ω) 1.2 MHz
Filling gas pressure (pD2) 1.5÷ 3 mbar
Repetition frequency (f) 1 Hz
IE external radius (rint) 1.2 cm
OE external radius (rext) 2.4 cm
Electrodes length (l) 11.6 cm
Insulator length (lins) 3.4 cm
Insulator thickness (sins) 0.5 cm

Table 4.1: Electrical, operational and geometrical parame-
ters of the PF of Montecuccolino. The inner electrode
is hollow and a thickness of 1 mm is assumed for it. Ac-
cording to typical values for SG switches, it has been
chosen RSG = 0.25 Ω and τSG = 5 ns.

4.1 Test of the snowplow model

The snowplow code is run for a real device in order to better understand the behavior
of the PF discharge from the point of view of the plasma sheath and equivalent
electrical circuit. The numerical results are then compared with other available
models and experimental data.

4.1.1 The Plasma Focus of Montecuccolino

The Montecuccolino PF is a compact Mather type device designed to be a repetitive
pulsed source of neutrons from D2 fusion reactions [53]. Due to the reduced over-
all dimensions, bank capacitance is quite low and external inductance rather high:
massively parallelization was not possible and plates connections not so efficient as
coaxial configuration (see Chapter 5 for more details on the subject). The electrical
parameters are summarized, as obtained through short circuit tests [54], in Table 4.1
together with other operational parameters of interest and electrodes and insulator
dimensions.
The best experimental results on the neutron yield were obtained operating the PF

at a charging voltage of 25 kV and a filling deuterium pressure of 2.67 mbar. The
hereafter presented results will be referred to these working parameters.
Starting from the current profile in time, the first half quarter of a typical RLC can

be immediately identified in Figure 4.1. The maximum current Imax = 203.2 kA is
obtained at tmax = 1.1 µs; however the simulation does not stop at this point, but
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Figure 4.1: Current profile versus time as obtained through
the snowplow simulation of the Montecuccolino PF, op-
erating at 25 kV and a filling deuterium pressure of
2.67 mbar

the plasma sheath still advance and collapse introducing an high voltage drop due
to the inductance derivative, which is the main cause of the current dip at the end
of the waveform.
Dwelling upon the inductance profile (presented in Figure 4.2), it is easy to dis-

tinguish the three main phases of the sheath development: the inductance rises
strongly during the detachment of the sheath from the insulator; once reached the
outer electrode the sheath profile is essentially constant during the whole rundown,
thus producing a linear growth of the inductance; finally the collapse phase is charac-
terized by the greater inductance derivative, which induces the higher voltage drop.

Due to the breakdown model, even the overall resistance is time dependent. From
Figure 4.3, the three characteristic phases arise evident: in times of the order of few
ns, the spark gap switch is closed and its resistance suddenly decreases up to be
negligible. A second contribute comes from the plasma resistance, which is lowered
through dissipative ohmic heating proportionally to the current I, being related to
the internal energy of the plasma. Starting from values of the order of 0.1 Ω, it
results almost negligible after less than two hundreds of ns, and only the constant
contribute of the external circuit remains.
Other electrical quantities of interest are the voltage on the bank capacitors and

the current derivative, reported in Figure 4.4 and 4.5 respectively. As expected, the
voltage presents a cos-like behavior. The current derivative, instead, is an experi-
mental data of interest since obtained by not-self-integrated Rogowski coils; here,
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Figure 4.4: Capacitor voltage profile of the Montecuccolino
PF simulation.

its sudden drop can be easily related to the observed current dip. Splitting the
inductance into a constant contribute L0 and the time varying one Lp(t), sum of the
inductance of the active length of the electrodes Lact and of that associated with
the CS Lcs (see equation (3.12)), it is easy to derive the voltage drop between the
closed end of the electrodes, given by

Vp =
d(LpI)

dt
= Lp

dI
dt

+ I
dLp

dt
.

It is plotted in Figure 4.6, where a first discontinuity is evident corresponding to
that of the inductance derivative corresponding to the end of the detachment phase.
Moreover, while in the rundown phase a nearly constant value of Vp is preserved,
the collapse determines a drastic voltage drop: the minimum radial coordinate of
the sheath rapidly approaches the axis increasing rapidly the inductance, while the
current has almost reach its maximum (null derivative). This is the main reason of
the modeled current dip shown in Figure 4.1, even if the obtained over-voltage value
is rather overestimated, since the CS does not create a pinched plasma column of
null radius. When the axial-symmetric plasma layer pushed by the MP collapses,
the magnetic field starts diffusing inside the plasma and a shock-wave then induces
an expansion [4, 55]. An additional term due to an anomalous resistivity should be
considered for the particles trapped in the high magnetic field.
The exact time instant corresponding to the end of the discharge phases is directly

given as output from the code: the end of the detachment phase is determined
when the last node touches the outer electrode (0.51 µs); the end of the rundown is
obtained by the last instant for which the first node radial coordinate is still fixed
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it, as obtained from the Montecuccolino PF simulation.

at rint (1.28 µs); as last, the pinch time corresponds with the end of the simulation,
obtained from the comparison of the minimum radial coordinate of the sheath profile
with r = 0 (1.45 µs). The time instants perfectly match with the derivative changes
in the inductance profile. Moreover, it can be noted that the plasma resistance has
already reached negligible values at the end of the detachment phase, as confirmed
from the ratio between the internal energy and the ionization energy of the layer
presented in Figure 4.7. Even the total mass of the CS is strictly related to the
discharge phase, since the boundary conditions on its tail strongly influence it. In
Figure 4.8, the sudden drop of the sheath total mass is in time coincidence with the
detachment phase, where great part of the CS is lost at the impact with the OE.
The event can be better understood looking at the sheath dynamics, reported in

Figure 4.9 through its profiles evolution in time. The analysis of the radial and axial
position of the first and last node of the sheath, depicted in Figure 4.10 and 4.11,
allow to show the imposed boundary conditions. Moreover, it can be noticed that,
after an initial transition period, the rundown axial advance of the sheath is almost
linear.
The velocities of the first and last nodes of the modeled sheath are reported in

Figure 4.12 and 4.13. The sudden changes in their derivative is strictly connected
with the different phases the sheath goes through. It can be observed that the
radial velocity of the first node reaches the critical value of 10 cm/µs at the end of
the rundown. Due to the boundary condition imposed by the shock-wave diffraction
theory, it is converted in a strong initial radial velocity (half of the axial one just
before the shock jump), going to be strongly enhanced by the MP compression. At
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the end of the IE, the two velocity components of the first node of the CS obviously
change their signs from positive to negative.
In seek of completeness, the Montecuccolino PF simulation can be exploited to

show the different behavior of the CS during the transition from the rundown and
collapse phase in presence of a tapped or hollow IE. The time coincidence of the
discharge phases is slightly modified by the hollow or tapped IE geometry. In the
same way, even the insulator configuration does not modify the discharge behavior:
at the end of the rundown, the sheath profile assume the same shape and the macro-
scopic velocities are preserved. The main difference is represented by the inductance
increase in the case of OE of the same length of the IE: the blowing of the sheath
near the OE increases the inductance and, consequently, the voltage drop and the
current dip at the end of the discharge. In any case, the maximum current differs
for a maximum of a 2%, and the pinch instant for a 3%, which are comparable
with numerical , as well as experimental, errors. On the other hand, the focus time
is strongly influenced by the filling pressure of the working gas, as shown in Fig-
ure 4.15. The mass growth of the sheath, sweeping the background gas, reduces its
axial velocity increasing the time interval necessary for the rundown and collapse
phases.
The charging voltage of the capacitor bank is another working parameter of great

importance. While the inductance profile remains unchanged, an increasing voltage
implies both an increase of the maximum current and a reduction of the pinch time,
evidently, the second being an effect of the first: the current is roughly given by
V0

√
C0/L′0 and the magnetic pressure, that drives the CS, behaves proportionally
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to I2.

4.1.2 Comparisons with the theoretical model

In Section 1.3.2 a brief description of the theoretical snowplow model was given. It
is based on the experimental evidence that all relevant properties of a plasma layer
approach stationary state in a short time [56, 57]. Hence, the rundown phase of a
coaxial gun like the PF can be described by stationary equations.
As already shown, equation (1.5) represents a FOM of the PF. The parameter a

can be roughly evaluated by simple considerations: the peak current of the equiv-
alent RLC circuit is I0,max = V0

√
C0/L′0 ' 220 kA; the transit time of the CS

over the inner electrode can be evaluated both experimentally or numerically (see
Section 4.1.3) and, knowing the IE length, the resultant rundown average veloc-
ity vz is about 10 cm/µs (as confirmed even by Figure 4.13). By substitution in
equation (1.5), one obtains

a =
√

µ0

8π2ρr2int

I0,max

vz
=
√
µ0R0T

8π2Mm

I0,max

rintvz
√
p
' 1.1 ,

being
√
µ0R0T/(8π2Mm) ' 0.01 m2(mbar)1/2/sA, with R0 the universal constant

of ideal gases, Mm the molar mass of the gas; T is expressed in unit of Kand p in
mbar. The obtained value is greater than the upper limit theoretically derived, but
within a 10% which can be ascribed to rough evaluation of the involved parameters.
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From the snowplow simulations of the device, the parameter a can be evaluated
directly through the ratio between the current and the axial velocity of the sheath
(in output) scaled by a constant parameter depending on the inner radius dimension
and on the filling gas pressure. Considering both the axial velocities of the first and
the last node of the CS, the result is shown in Figure 4.16. The line corresponding
to the axial velocity of the first node, rapidly lies on a fixed value which perfectly
confirms what found from the above rough calculation; the dashed line does not
represent a stationary behavior, but this must not surprise since the axial velocity
of the CS tail is strongly influenced by the boundary conditions.
The obtained value of a at the end of the rundown, when the stationary state

of the CS advance is reached, is about 0.95. Remembering that a should lie in the
theoretical interval [0, 1], indicating better performances approaching 1, the obtained
value is an index of the optimal performances of the PF of Montecuccolino. Tuning
properly the charging voltage and the filling gas pressure, the same result can be
achieved in a reasonable range of operability. The increase of the charging voltage
implies an increase of the peak current and, to maintain the axial average velocity of
the CS under the maximum limit of about 10 cm/µs, the working pressure should be
increased too leading to a decrement of the multiplying constant. A further increase
of the filling gas pressure would compromise the time coincidence between the peak
current of the equivalent RLC circuit and the focus instant, worsening the pinch
conditions.
The steady state fluid model for a generic coaxial gun allows also to derive an

analytical expression for the profile of the CS z(r); it is found to depend on a and
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rint as follows

z(r)−z0 = −rint

2a

 r

rint

√(
r

rint

)2

− a2 −
√

1− a2 − a2 − ln

r

rint
+

√(
r

rint

)2

− a2

1 +
√

1− a2

 ,

(4.1)

where z0 is the axial coordinate of the sheath attachment to the IE at the considered
time instant, while z and r are the 2D coordinates of the profile.
The profile, as obtained from equation (4.1), is plotted in Figure 4.17 together with

that obtained from the simulation. The working parameters are those employed in
the analysis presented in Section 4.1.1, while a is here assumed equal to unity. The
discrepancy between the two profiles would increase reducing a. This is probably due
to the slightly different solution of the conservation equation and to the boundary
conditions of the numerical model, which modify the sheath shape at each time
iteration.

4.1.3 Comparison with experimental and numerical data

The comparison of the numerical data with those of theoretical models seems to
confirm the goodness of the implemented code. To dispel all doubts, the comparison
with experimental data or other numerical model is necessary.
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The PF device of Montecuccolino is equipped with a Rogowski coil which allows
to measure the current of the bank capacitor discharge on the PF load. The signal
obtained by a typical measure is plotted in Figure 4.18 and compared with the data
of the above described numerical code and with those of a mono-dimensional code
based on a combination of a 1D snowplow model for the rundown phase and of
a 1D slug model for the collapse phase [4, 55]. Even if the experimental signal is
quite noisy, due to a not perfect shielding of the diagnostic apparatus, the dip of
the current is quite evident; the pinch occurs at 1.5 µs from the triggering of the
discharge. The 1D model seems to fail in predicting both the focus instant and the
dip in the current profile; the steeper derivative of the current could derive from a not
sufficiently precise calculation of the CS inductance. The 2D model here presented
gives better results showing a perfect agreement in the less noisy middle part of the
discharge; the focus time is predicted with an error lower than 3% and even the
current dip is correctly modeled.
The pinch time instants dependence on filling gas pressure, presented in Figure 4.15,

are in good agreement with experimentally observed square-root-like behaviors.
The goodness of PF design, given by the a ' 1 parameter, is experimentally

confirmed by the measured neutron yield of the PF device which correctly matches
the one predicted on the basis of the scaling law [53].
Although simplified models for the SG and PF breakdown phases are used, the

set of differential equations presented in Chapter 3 leads to accurate results and
reproduce the experimental data. The sheath modeling and reshape algorithm and
the assumed boundary conditions appear a good choice able to avoid numerical
instabilities and to describe the sheath profile with good agreement with theoretical
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and experimental data from literature [1, 19, 33, 58].

4.2 Design of the PFMA1 electrodes

The 2D snowplow numerical code revealed itself a good tool in the simulation of the
macroscopic dynamics of the plasma in a PF device. Its potentialities can be further
exploited in the PF design field. In the present Section, the electrodes optimization
for the PFMA1 device will be described starting from a rough solution obtained by
the parameters presented in Section 2.2.1 and refining it through the code. Due to
the approximations of the numerical model, a fine tuning of the electrode dimensions
is possible only experimentally.

4.2.1 First trial values

The operational parameters of the PFMA1 device are summarized in Table 2.1 of
Section 2.3.2. As presented in the parent Section, they are derived from the needs of
the precise task and combined with the technological challenging problems connected
with power pulsed devices.
The electrical and working parameters of the device are a good starting point

towards the design of the electrodes tube. As previously stated in Section 2.2.1,
there are two main conditions to satisfy: the first is the temporal coincidence between
the maximum current of the RLC discharge and the focus of the collapsing CS; the
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second is the matching between the external device inductance L0 and the inductance
Ll of the focus tube, related to the power transmission between the two components.
When the device is operated at full power, the estimated peak current is I0,max =
V0

√
C0/L′0 = 2.8 MA. Following the equation (2.4), the average axial velocity of

the CS is

v '

√√√√√ µ0 ln
(
rext

rint

)
π4ρ(r2ext − r2int)

V0

√
C0

L′0
,

depending on the geometrical parameters of the focus tube and on the electrical
fixed ones.
The frequency of the discharge is about ω = (

√
L′0C0)−1 = 0.3 MHz corresponding

to a characteristic period of T = 2π/ω = 4t0 = 5.9 µs. Hence, the electrodes length
l can be approximately related to the maximum current time instant t0 by equating
this with the averaged transit time of the CS tl = l/v:

l = vt0 =

√√√√√ µ0 ln
(
rext

rint

)
4π2ρ(r2ext − r2int)

V0C0 . (4.2)

Since a good matching between the inductances of the external circuit L0 and
electrodes Ll is wanted, the total inductance can be written as L′0 = L0 +Ll = 2L0,
deriving Ll = L0. This last condition allows to write a new relation between the
total inductance and the geometrical parameters of the focus tube:

Ll =
L′0
2

=
µ0

2π
l ln
(
rext

rint

)
, (4.3)

where the formula for the inductance of two coaxial cylinders has been used (see
Section 5.2.1 for more details).
Deducing l from the rhs of equation (4.3) and equating it with equation (4.2), the

following expression containing all the parameters of interest can be found:√√√√√ r2ext − r2int

ln3

(
rext

rint

) =
(µ0

4π

)3/2 4
√
πρ
V0
C0

L′0
.

In the case of PFMA1, the fixed electrical parameters, collected in Table 2.1, lead
to the value of 41 cm for the rhs. Once fixed the radiuses ratio Rr = rext/rint as
independent variable, the above equations allow to deduce the IE radius rint and
the electrodes length l as functions of Rr. In Figure 4.19, the resultant curves are
reported in cm for convenience.
The electrical parameters of the PFMA1 lead to quite surprising values of the

geometrical dimension of the focus tube. For example, a radiuses ratio Rr = 1.2
would give rint = 4.8 cm, rext = 5.8 cm and l = 54.9 cm. In any case, it must be
remembered that these values are obtained under idealized hypothesis which could
lead to misleading conditions in particular cases. A refinement process based on few
basic rules is necessary and the snowplow code will help to reach the task.
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Figure 4.19: IE radius (left axis) and electrodes length
(right axis) as functions of the radiuses ratio in the
case of PFMA1.

4.2.2 Criteria of refinement

One of the main bond in the design of the PFMA1 core, is the volume reduction
of the vacuum chamber, the He3 component of the filling gas mixture being rather
expensive. Due to the refilling needs in repetitive operational mode, a maximum
volume of about 30 dm3 can be accepted. This fixes an upper limit to the OE radius
and to the electrodes length, even considering that the plasma sheath inflates during
the collapse (see for example Figure 4.9) and could touch the grounded walls of the
chamber; the high current would flow through a not properly designed discharge
path. In few cases, the vacuum chamber could be directly used as grounded elec-
trode, but this would make too complex the procedure to tune dimensions through
experimental tests. On the other hand, the IE must be closed to allow in internal
recirculating cooling (see Section 5.3.3).
The snowplow code can be used to evaluate the first trial solution proposed at the

end of the above Section. In particular, the attention can be drawn to the current
and inductance profiles presented in Figure 4.20 and to the CS first and last node
axial velocities of Figure 4.21. As first can be observed that the maximum current of
2.1 MA is obtained at 3.4 µs, which is quite lower than the evaluated quarter period
of the equivalent lumped RLC circuit. This can be explained giving a look at the
inductance profile: the initial inductance is the half of the constant assumed value
for L′0 and grows approximately linearly and slowly, due to the low electrode radiuses
ratio; the equivalent inductance of the first quarter of the discharge is about 3/4 the
total (obtained about at the end of the rundown). The increasing inductance then
reduces the obtainable peak current since it has reached in advance its maximum
(minimum derivative). Finally, in the collapsing phase, the inductance further grows
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Figure 4.20: Current and inductance profiles for the first
trial solution of PFMA1 electrodes design: rint =
4.8 cm, rext = 5.8 cm and l = 54.9 cm.

and the high voltage drop produces a marked current dip.
The axial velocities represented in Figure 4.21 confirm the proportional dependence

on I(t). However, the obtained maximum value of about 12 cm/µs is too high if
compared with the acceptable range 3÷ 8 cm/µs, discussed in Section 2.1.1.
Furthermore, even if the low radiuses ratio reduces the electrodes inductance, the

little gap (only 1 cm) could be too small to have a good breakdown on the insulator
sleeve [18, 19]. Therefore, it would be better to maintain the inner radius and to
increase the outer one to avoid an excessive inductance increase during the sheath
collapse; on the other hand, even the length should be reduced to keep constant the
electrodes inductance and reduce the transit time.
However, the resulting bigger outer radius would increase the varying inductance

of the collapsing phase (going with the natural logarithm of the radiuses ratio) and,
consequently, the voltage drop. These conditions of high time variability of the
equivalent circuit impedance are not negligible, since they were shown to influence
both the peak current and the characteristic period, used to evaluate the average
axial velocity and the electrodes length respectively.
As deducible, the problem is highly non-linear and the first trial value reveals itself

not representative in the case of the PFMA1. An iterative solution going through
a trial and fail method based on the above criteria is needed. The result presented
in the next Section takes into account also the real external inductance obtained
through the collector design, as calculated in Section 5.2.3.
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4.2.3 Optimized electrodes

The main two problems related to the first trial solution which arose in the pre-
vious Section are: the interelectrode gap is too low and leads to a reduced initial
inductance modifying the expected peak current value and instant; the electrode
length is too high for the equivalent RLC circuit characteristic quarter period with
time-dependent parameters.
Testing many configurations varying firstly the length and secondly the inter-

electrode gap (radiuses ratio), the following optimal geometrical parameters were
obtained:

rint = 5 cm
rext = 8.5 cm
l = 16 cm ,

which lead to an electrode inductance Ll ' 17 nH.
The resulting current and inductance profiles are reported in the double-axis plot

of Figure 4.22. As can be easily seen the peak current does not reach the predicted
maximum value. This has two main advantages: the current positive derivative has
still a not negligible value when the collapse starts and the inductive voltage drop
grows rapidly; the maximum current (I0,max(t = 2.8 µs) = 1.54 MA), flowing in the
circuit, is lower than the maximum predicted one reducing the problems connected
with both ohmic and plasma-wall-interaction heating, and with electrodynamics
forces (see Section 5.3.4 and 5.3.3 respectively). Notwithstanding, the pinch current
is still sufficiently high, about 1 MA.
The corresponding maximum sheath axial velocity is consequently lowered to values

comparable with the acceptable variability range.
The FOM, defined through equation (1.5) is plotted in Figure 4.24, making use of

the current and axial velocities data obtained from the snowplow simulation of the
PFMA1 under the assumed operational parameters. As seen for Figure 4.16, the
value approaches the theoretical maximum of 1 confirming the proper design of the
electrodes.
The electrode length can be even increased of 1÷ 2 cm leading to a little higher

inductance. A more visible plateau in the nearby of the maximum current and axial
velocity would be obtained. However, while the peak current would increase up
to near 1.6 MA, the focus current wouldn’t be modified, with no advantage on the
pinch performances.
The obtained length produces a lower inductance with respect to the external one

leading to Ll/L0 = 0.7. The value is still acceptable since it allows to maintain a
total inductance L′0 of about 44 nH and to keep low the dimensions of the vacuum
chamber.
The geometrical parameters of the focus tube will be used in the next Chapter for

the design of the PFMA1 collector.



CHAPTER 5

The PFMA1 design

Abstract. Starting from a summary on the choice of the auxiliary components
(capacitors, spark gap, coaxial cables, . . . ), a detailed description of the problems
related with the design of a high energetic and repetitive PF working in the MA
regime will be given. In particular, the reader attention will be driven towards the
inductance minimization, the insulator effectiveness, the electrodynamic forces and
the flexibility of the focus tube dimensions.
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5.1 The external circuit components

Once fixed the design parameters (bank energy, repetition rate, maximum operating
voltage, peak current), a careful choice of the components of the discharging line
must be done taking into account all the related technological limitations. Many
considerations on the collector and electrodes design will depend on it [14, 59]. The
ease of the components coupling is of great importance for the device mounting and
maintenance.
The basic principle of parallelization is widely used to increase total capacitance

while reducing inductance and resistance.

5.1.1 Operating voltage and bank capacitors

The capacitors choice is related to the maximum operating voltage, to the maximum
transfer current, to the ringing frequency and to the acceptable voltage reversal.
Since the voltage reversal is as more detrimental as higher the charging voltage,
it is convenient to choose a capacitor model with a maximum operating voltage
greater than that strictly needed. The number N of capacitors, besides scaling the
capacitance of each od them, influences also the maximum current flowing through
each DM.
The 350 µF bank capacitance can be achieved through a set of parallelly connected

General Atomics 32899, 11 µF capacitors rated at 36 kV and 150 kA. The number
N = 32 satisfy both the requirement on the total capacitance anche on the maximum
sustainable current: N = C0/Ccap = 350/11 ' 32 and Icap,max = I0,max/N '
94 kA < 150 kA. The equivalent series inductance (ESL) of the capacitors being
about 30 nH, the number N is sufficiently high to reduce the total inductance of the
whole bank to Lcap,tot ' 0.94 nH.
The capacitors are also compatible with the discharge repetition frequency of 1 Hz.

Their expected life is greater of about 3 million cycles at a charging voltage of 1 Hz
and a voltage reversal of about 60% of the charging voltage.
The optimal layout of the capacitor bank is found to be in a circular array of 2.2 m

of maximum encumbrance. The chosen arrangement ensures a symmetrical current
flux towards the electrodes and, in the meanwhile, it minimizes the pressure exerted
on the floor (each capacitor is about 140 kg).

5.1.2 Switches and triggering mode

Due to the high operating voltage and current and to the firing repetition rate, the
switch prerequisites are very demanding. To lower the maximum current (detrimen-
tal even because of its high time-derivative) and the total inductance per switch,
their parallelization is mandatory: each capacitor must be coupled with its own
switch.
The drawback of a similar choice lies in the increased complexity of the system

under both the electrical and operational viewpoints. As a matter of fact, the cou-
pling of a switch over the single capacitor must be as easy and effective as possible.
Moreover, the nominal jitter of the switch closure has to be of 10 ns as maximum.
A similar requisite is satisfied only by field-distortion or laser-triggered SG. On the
other hand, the recovery time of this kind of switch is of the order of ms which
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Component Inductance (nH) Capacitance (nF)
Capacitor 30 11.1 · 103

Spark-Gap 26 –
4 Coaxial cables 100 2

Table 5.1: Electrical properties of the components of each
discharge module.

is fully compatible with the required repetition frequency. Nevertheless, the fir-
ing frequency induces cooling problems, which become even worse due to the high
operating voltage: a circulating system of deionized water is the only solution.
The SG-183 “Montecuccolino type” has been specifically designed for this applica-

tion by REB3. Each spark gap is directly fitted onto its capacitor with a coupler;
the current return path is through a shield canister that couples with the ground
ring of the capacitor. SF6 fills the space between the spark gap and the canister to
prevent corona effects and allow to lower the inductance of the device (about 26 nH)
reducing the gap between high-voltage and grounded parts. The main cooling is
effected circulating deionized water in the switch-capacitor coupler. The dielectric
gas is purified dry air that flows at a rate of about 0.33 L/s per switch. Synchronous
triggering of the SGs is obtained through a trigger unit based on a trigatron spark
gap. Maximum parallel jitter is estimated at 6 ns.

5.1.3 Coaxial cables and connections

The SG-183 is designed to house up to 4 coaxial cables in parallel. Obviously, as
already stated multiple times, heavier is the parallelization lower are the maximum
current per path and the total inductance; hence, the choice of 4 cable per switch,
for a total of 128 discharging lines, is mandatory. The coaxial solution is extremely
important since this configuration of the transmission line makes its inductance the
lowest achievable. Furthermore the outer conductor of the cable partially screens
the electromagnetic noise induced by the current pulsed transition.
The chosen cables are the 2248 from Dielectric Sciences. These are roughly 8–9

AWG, rated for 100 kVDC and 30 kVAC.
The cables fit in the SG-183 shield canister through specifically designed connectors.

The inner conductor, instead, is housed in the high voltage (HV) plate of the switch
through a special connector based on the multilam technology: a series of thin
helical reeds encircle the metal point mounted on the cable and ensure an optimum
electrical contact minimizing the resistance.
The same solution has been chosen on the side of the home-designed cable collector.

5.1.4 The discharge module and the auxiliary components

The assembly of each capacitor, its switch and the corresponding four coaxial cables
will be hereafter termed as “discharge module” (DM). The main electrical properties
of their components are summarized in Table 5.1, as rated by the suppliers. It can
be easily shown that the total inductance from the 32 parallel DMs is only LDMs '
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5 nH. The corresponding resistance is assumed completely negligible. Clearly, even
if optimized to operate at full-power, the modularity of the system allow multiple
tests (like the short-circuit ones [59]) discharging a limited number of DMs.
In seek of completeness, few details on the auxiliary components are here reported;

even not strictly necessary for what will follow, they make clearer the high complexity
of the device.
Two main critical components of the system are the power supply (PS) and its

relative distribution box (DB). The first has to charge the whole bank at 30 kV
in less than one second and at a repetition frequency of one Hz. It is designed to
work in constant current but it can be regulated both in voltage (1÷ 30 kV) and
current (1÷ 12 A). The DB is a complementary oil cooled device through which the
charging of the capacitor bank takes place. It performs other two fundamental tasks:
it ensures that the capacitors are completely insulated from each other during the
discharge and it is intended to protect the PS from the effects of voltage reversal.
As previously mentioned, once the capacitors are charged they have to be triggered
synchronously to ensure the superposition of the stored energy in the discharge
onto the load. This task is fulfilled through 5 m long pulse-forming lines parallelly
connected to a trigger unit (TU) based on a trigatron spark gap. Finally, the vacuum
system comprises a maglev turbomolecular pump assisted by two oil-free scrolls for
the pre-vacuum; an active ion gauge and a capacitance manometer monitor the
pressure in the chamber, while a flowmeter is connected to two electronic control
valves to adjust the input of gases.
The main electrical diagnostic tools are a fast HV probe, based on a capacitor

divider, and a self-integrated Rogowski coil [4]. A proper seat for each probe has to
be foreseen in the design of the collector.

5.2 The collector preliminary design

The collector design has to meet two main requirements: to keep a sufficiently low
inductance of the external circuit and to realize an effective electrical connection
between the DMs and the electrodes. In the present section a preliminary electrome-
chanical design of the collector is presented: from the basic rules for the inductance,
resistance and capacitance calculations and the overall available space, an outline of
the layout is defined and the related electrical parameters are evaluated.

5.2.1 Few basic rules

The collector design cannot leave the related electrical properties out of considera-
tion. In particular, its inductance strongly influences the performances of the device
representing a loss term due to the conversion of the stored energy into a magnetic
energy (WB = 1/2LI2). Also the resistance is related to a waste of energy con-
verted in ohmic heating; it will be shown that this term is completely negligible.
Finally, the capacitance is relevant only on the analysis of the pre-breakdown dis-
charge phase: before the sheath formation, the collector behaves like a big charging
capacitor and both the voltage derivative on its plates and the overvoltage spike
preceding the discharge may induce surface discharges on the dielectric insulators
ahead the electrodes.
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Due to the axial-symmetry of the whole device (of both the focus tube and the
capacitor bank array), the collector will preserve the same property ensuring a good
symmetry of the current discharge. This means it will be made of axial-symmetric
elements like cylinders or circular plates.
Neglecting the boundary effects, the inductance due to a current flowing in similar

geometrical configurations is obtainable through the same formula:

L =
µ0

2π
d ln

(
rext

rint

)
,

where, in the case of coaxial cylinders

rint = external radius of the inner cylinder
rext = inner radius of the outer cylinder
d = height of the cylinders

while for circular plates

rint = inner radius
rext = outer radius
d = plates distance

The vacuum magnetic permeability µ0 = 1.26 · 10−6 F/m can be extended to whole
the insulator materials separating the conductors with no appreciable error. Because
of the skin effect [60] related to the high frequencies of the discharge phenomena,
the current is supposed to flow on a conductor of zero-thickness and the exponential
current density profile inside the conductor is neglected.
The total inductance is related to the magnetic flux through the closed surface S

crossed by the current following the law

LI = Φ =
∫
S
B dS ,

or to the magnetic energy density integrated over the volume V encircled by the
current as

1
2
LI2 = Wm =

1
2µ0

∫
V
B2 dV .

Due to the integral form of these relations, the application of the superposition
principle is justified. Moreover, volumes not interested by a current flow do not
contribute to the total inductance of the device.
Simply making use of the resistance definition for a conductor of length l and

section S, it’s possible to deduce a general expression of the resistance for a general
conductor in axial-symmetry through the general electrical relation of resistance
parallel and series. In particular, for a coaxial cylinder one obtains

Rcyl =
(

1
ρh

∫ 2π

0

∫ rext

rint

r dr dθ
)−1

= ρ
h

π(r2ext − r2int)
' ρ

h

2πrints
,
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where ρ represents the material resistivity and

rint = inner radius
rext = outer radius
h = cylinder height

s =
r2ext − r2int

2rint
= cylinder effective thickness for s� rint)

From analogous considerations, a circular plate resistance is given by

Rpla =

 1

ρ ln
(
rext

rint

) ∫ s

0

∫ 2π

0
dθ dz


−1

= ρ

ln
(
rext

rint

)
2πs

with

rint = inner radius
rext = outer radius
s = plate thickness

Both in the case of cylinders and plates, the skin depth [60] due to the high frequency
discharge is the effective thickness s to be considered in the above formulae.
The capacitance of cylinders and plates are commonly known and are simply re-

ported hereafter for an insulator material with a relative dielectric constant εr:

Ccyl = ε0εr
2πh

ln
(
rext

rint

) ,

and

Cpla = ε0εr
π(r2ext − r2int)

d
,

where the geometrical notations follow those used for the resistance. In the case of
capacitance, also the parts not crossed by a current contribute to the total value.
From the above simple relations, few basic design rules can be deduced:

− the inductance is reduced by lowering the cylinders height or plates distance
as well as the radiuses ratio; this means that for equal inter-cylinder gaps
rext − rint it’s convenient to increase the outer radius; in the case of circular
plates this rule is not easy to follow, but it is easier to reduce the plates distance
d (with detrimental consequences on the necessary electrical insulation);

− the resistance decreases with the cylinder height and the radiuses ratio of the
circular plate; the consequent rules are in good agreement with those deduced
for the inductance, but the resistance effect is not of great importance;

− the capacitance is directly proportional to the dielectric constant εr; from the
geometrical point of view, it increases with the height and decreases with the
radiuses ratio in the case of cylinders, while increases with the surface extension
and decreases with the distance in the case of circular plates.



Chapter 5. The PFMA1 design 81

It immediately follows that a reduction of the inductance and resistance is coupled
with an increase in the total capacitance.

5.2.2 The overall dimensions

From the previous rules, a first rough design of the collector can be devised taking
into account of the available space and of the coupling needs on the capacitor side
and on the focus tube one.
The two main constraints are imposed: the first is the available space inside the

capacitor bank array, taking into account the possibility to access the internal region;
the second is related to the maximum bending radius of the coaxial cables and to
the height of the capacitor+SG assembly. The dimensions of interest are reported in
Figure 5.1, where the capacitors disposal is depicted, and in Figure 5.2, which gives
a sketch of a DM. Obviously, the collector cannot be set at the height reported in

Figure 5.1: Layout of the capacitor array in plan (dimen-
sions in cm).

Figure 5.2 without a proper support; in order to ensure a good stability it has to
lay on, at least, three legs, sloping towards the axis of symmetry. This means that
the available space is reduced by the support needs.
It is quite evident that two huge cylindrical coaxial rings are the best solution to

connect both the grounded and HV conductors of the coaxial cables. A sufficient
distance between them has to be kept in order to avoid surface tracking along the
surface of the dielectric covering the inner conductor. In this specific case, 100 mm
are enough for voltage greater than 30 kV, as arising from experiments.
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Figure 5.2: View of the capacitor, spark-gap and coaxial
cable assembly with its relative bending radius (dimen-
sions in cm).

The previous considerations on the available space inside the capacitor array and
on the support stability have to match with the working space needed for the cables
mounting. A special threaded nut has to be screwed onto the housing of the grounded
conductor. The high number of cables (Ncables = 128) makes necessary to split in
the connectors into nrow = 2 rows. From the connector diameter φrmc and the
minimum working space dw, a minimum external radius can be found as

r′ext =
Ncables(φrmc + dw)

2πnrow
' 820 mm .

The inner radius is then deduced from the distance dst to avoid surface tracking and
from the thickness of s the external ring. It follows that

rext = r′ext − s ' 795 mm
rint = rext − dst = 695 mm .

The only constraint on the cylinder height is the working space, which lead to
h ' 100 mm. In Figure 5.3, two complementary views of the connector seats on the
outer ring are presented.
The two coaxial rings has then to be connected with the central core of the device

where the focus tube is sited. Two circular plates separated by a thin insulating
material are the best solution, in accordance with the practical rules above deduced
for inductance minimization. A separation d = 100 mm is practically sufficient as
volume insulation if a material with a high dielectric strength is used.
The central part of the collector increases in complexity, since a flexible way to

replace the insulator sleeve and to experimentally tune the electrodes dimensions
must be taken into account. The circular plates can then extend to an inner radius
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Figure 5.3: Housings for the HN88C connectors assembly
on the outer ring of the collector (dimensions in mm).

of about rint = 150 mm; here their separation has to increase to allow the connection
of the electrodes through a bolted coupling flange. A distance of about 100 mm must
be kept between HV and grounded conductors, but it can be decreased with a careful
choice of the insulators geometry and coupling.
The electrodes dimensions of the focus tube are those obtained by the snowplow

optimization presented in Section 4.2. The inner radius has been slightly increased
to fit with standard ceramic cylinders used as insulator sleeve.

5.2.3 Electrical parameters

From the above evaluations, the general sketch of the collector device, as reported
in Figure 5.4–5.5–5.6, can be depicted.
Making deep use of the relations presented in Section 5.2.1, a first rough estimation

of the electrical parameters can be performed. The analytical calculation needs few
simplifying hypothesis:

− negligible boundary effects (they influence mainly the capacitance);

− perfect axial symmetry (absence of holes and mechanical interconnection ele-
ments);

− perfect conductivity at the interfaces;

− currents flowing on a thin layer facing the autoinduced magnetic field (skin
effect);
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− current input and output at about 100 mm from the lower plate;

A self-inductance calculation requires a closed current path; the electrodes have
been short-circuited at their top to take into account their whole contribution. From
the values in Table 5.2 it’s clear that the greatest contribution comes just from the
electrodes (6). Moreover, it can be noticed that the circular plates and external ring
contributions is rather small notwithstanding their encumbrance. The higher values
are those of the central part, but nothing can be done if a sufficient flexibility is
wanted.
Usually, the resistance of the electrodes and of the plasma sheat is negligible if

compared with that of the external circuit. For this reason the electrodes are sup-
posed to be short-circuited at their closed end. The conductivity here used are those
of AISI304 for the whole collector (σ304 = 4.032 · 106 S/m) and of the copper for the
first part of the inner electrode (σCu = 5.998 · 107 S/m). The obtained value is surely
lower that the real one (evaluable only by shot circuit tests) due to the simplifying
hypothesis of null contact resistance.
From the values of the capacitance value reported in Table 5.4 it arises evident that

the greatest contribute is given by the circular plates, due to their high surface. The
delrin is here considered as dielectric material, for its workability with machine tools
and its thermal and electrical properties (high relaxing temperature, high dielectric
rigidity, . . . ); a dielectric relative constant εr = 4 is assumed from data-sheets.
The previous analytical results were compared with those of numerical simulations

obtained with a commercial finite element code (FemLab 3.1 – electromagnetical
module). The simulation domain is still considered perfectly axial-symmetric; the
modeled bidimensional geometry, proposed in Figure 5.7, was created by importing
directly the CAD drawings of a section of the collector. A current path of 6 mm was
imposed on the conductive surfaces facing the magnetic field to take into account
the skin effect. The simplifying hypothesis of the analytical calculation are still
assumed, even if the numerical simulation allow to better estimate the contribution
of boundary effects.
The PDE solver allows to obtain the electromagnetic quantities of interest, as

represented in Figure 5.7. In particular, the domain integration tool automatically
evaluates the total magnetic energy Wm = LI2/2 stored in the domain and the total
magnetic flux through a closed surface Φ = LI, as a consequence of a current flow.
Combining the two expression, the total inductance can be evaluated as

L =
Φ2

2Wm
= 39.09 nH .

Excluding the electrodes contribution, the inductance is lowered to 20.83 nH.
Applying the well-known Ohm’s law, the resistance of the whole collector is

R =
V

I
= 4.353 · 10−2 mΩ .

Removing the short-circuit at the open end of the electrodes, the electric potential
can be evaluated in the whole domain. Applying the generalized expression for the
electrostatic energy Wm with a space dependent electric rigidity εr(~r), one obtains

We =
1
2
ε0

∫
V
εr(~r)E(~r)2 d~r =

1
2
CV 2

0 ,
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Figure 5.4: Schematic sketch of the assembly (dimensions
in mm, not to scale); each zone is labeled and the cor-
responding number reported in Table 5.2 (1- ring for
coaxial cables connection; 2- circular plates of connec-
tion with the core; 3-3′,4-4′,5 - central part to match
the electrodes; 6- electrodes).

Zone d (mm) rext (mm) rint (mm) L (nH) Total (nH)
1 100 795 695 2.69
2 10 795 48 5.61

3-3′ 5 150 48 1.14
4-4′ 33 100 48 4.85
5 17 58 48 0.64 20.91
6 160 85 48 18.28 39.20

Table 5.2: Dimensions corresponding to each zone of inter-
est (refer to Figure 5.4) and calculated inductance.
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Figure 5.5: Schematic sketch of the collector assembly (di-
mensions in mm, not to scale) used for the resistance
calculation (refer to Table 5.3).

Cylinders

Zone h (mm) rint (mm) R (mΩ)
1|1′ 110|100 795|695 9.11 · 10−4|9.47 · 10−4

3-3′ 5 150 2.20 · 10−4

5-5′ 33 100 2.17 · 10−3

7 17 58 1.93 · 10−3

9 103 48 9.49 · 10−4

Circular plates

Zone rext (mm) rint (mm) R (mΩ)
2|2′ 795|695 150 1.10 · 10−2|1.01 · 10−2

4-4′ 150 100 2.67 · 10−3

6|6′ 100 58|48 3.59 · 10−3|4.83 · 10−3

8 58 48 1.25 · 10−3

Total: 4.56 · 10−2 mΩ

Table 5.3: Dimensions of each zone of Figure 5.5 separated
by shape. The layer interested by an uniform current
flow is assumed to have s = 6 mm as thickness.
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Figure 5.6: Schematic sketch of the collector assembly (di-
mensions in mm, not to scale), as used in the capaci-
tance analytical evaluation reported in Table 5.4.

Cylinders

Zone εr h (mm) rext (mm) rint (mm) C (nF)
1 1 100 795 695 4.14 · 10−2

5 4 17 58 48 2.00 · 10−2

6 1 160 85 48 1.56 · 10−4

Circular plates

Zone εr d (mm) rext (mm) rint (mm) C (nF)
2 4 10 695 150 5.12
3 4 20 150 100 6.95 · 10−2

4 4 86 100 48 9.95 · 10−3

Total: 5.28 nF

Table 5.4: Dimensions of each zone of Figure 5.6 and cor-
responding contribute to the total capacitance. The
table is split for the two cases of cylinders and circular
plates.
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Figure 5.7: Magnetic field (top, short-circuited electrodes)
and electric potential (bottom, open circuit) on the
simulation domain.
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and, consequently,

C =
2We

V 2
0

= 5.66 nF .

The percentual relative error between the analytical and numerical calculation is
about 1% for L, 5% for R and 7% for C. As previously stated, it can be assigned
to the boundary effects, clearly higher in the case of capacitance calculations.
The obtained value of inductance is in perfect agreement with the expected one

(see Section 2.3.2) of about 40 nH for the whole external circuit. Considering the
inductance of the DMs (LDMs ' 5 nH) and excluding that of the electrodes (Lel =
18 nH), the total inductance of the external circuit is about 25 nH. On the other
hand, the obtained resistance is safely considerable an approximation by defect;
reasonable values are of the order of few mΩ. Finally, the capacitance is an important
electrical parameter since it is strictly related with the initial phase of the discharge,
as it will be shown in Section 5.3.1.

5.2.4 Preliminary short-circuit tests

Short-circuit tests are typically conducted to evaluate experimentally electrical pa-
rameters of the external circuit. Assuming the nominal values of the DM parameters
to be reliable, the following results can be used to confirm the analytical and nu-
merical data [59].
Tests on PFMA1 machine were conducted firing a variable number N of parallel

DMs, with N = 1, 4 and 8. In all cases, the remaining 32 − N DMs were not
fired, but connected to the system. All tests were performed at a bank voltage
in the range 12÷ 13 kV, to maintain a sufficiently low spark-gap breakdown jitter.
To monitor triggering, 32 B-dot probes were used, each positioned close to one of
the four discharging cables of a module. Every transducer feeds into an optical
converter, whose signal is sent through fiber optic cables to a multiple input DAQ
analyzer. The latter is programmed to hold memory of the discharges and verify
that time jitter is within given tolerance. Filtering is needed to discriminate the
signal from the triggering pulse sent to the distortion ring, from that generated by
the discharging capacitor current.
Devices used to collect current and voltage data were a Rogowski coil and a fast

high voltage capacitive probe. The Rogowski coil encircles the high voltage collector
plate (in both frames of Figure 5.7 the site of the probe can be found in the upper-
left corner of the collector) on a diameter of about 161 cm and its conductor helix
has 4400 turns around a bakelite core. The high voltage capacitive probe consists
of an annular self-insulated copper slab 0.2 mm thick inserted between the upper
grounded collector plate and the Delrin slab. The device acts like a typical capacitive
AC voltage divider with an output voltage signal ideally following the law Vprobe =
V Ccoll/(Ccoll + Cprobe), where V is the voltage on the capacitor bank, Ccoll and
Cprobe the collector and probe capacitance respectively.
During the discharge, since the not firing DMs are connected, they still contributed

capacitance towards the ground, and the overall circuit can be schematized as shown
in Figure 5.8, where L1 and C1 are, respectively, the overall inductance of the N
firing DM and the overall capacitance of their N capacitors, L2 the inductance of
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V I3
I2

I1
C1 C2

L1 L2

Figure 5.8: Two meshes LC circuit scheme used to model
the short-circuit discharge.

the collector and head, and C2 the capacitance of the 32−N parasitic transmission
lines. With C0 being the capacitance of one single capacitor and L0 the inductance
of a single active DM, it results C1 = N C0 and L1 = L0/N . C2 is given by the sum
of the 32 parasitic capacitances Cp of each DM, essentially due to its 4 transmission
lines.
Once the circuit equations are solved, values for the currents I1, I2 and I3 are

found and likewise the voltage V across the PF head, i.e. the inductance L2 and
the capacitance C2. All the time dependent voltage and current functions can be
considered as resulting from the sum of two components: one at the fundamental
mode with essentially the frequency of the system without C2, and a ripple at a
much higher frequency and smaller amplitude. The fundamental mode matches the
solution of the simple LC through a series expansion of the solution for C2 � C1.
The great difference existing between the amplitudes of the two modes makes the
ripple appreciable only on the voltage V (t) and on the current I2(t).
Repeated firing with an increasing number of active DMs (N = 1, 4 and 8), gave a

series of short-circuit waveforms that were automatically analyzed by a simple FFT
algorithm to extract the two main frequencies modeled by the analytical solution.
Deducing the total inductance, Ltot, from the fundamental frequency, ω =

√
LtotC1

of the approximately equivalent single-mesh LC circuit, a best-fitting procedure,
based on a law of the type Ltot = a+ b/N , gave a perfect agreement (R2 = 0.9994),
with a = 36.63 nH and b = 168.1 nH as parameters. The first term is intended to
represent the collector inductance, while the second one the inductance of each DM.
Assuming L1 = 168.1/N nH and substituting the mean value of the fundamental
and the ripple frequencies, as experimentally obtainable from the voltage waveform,
in the solution of the two meshes circuit of Figure 5.8, it was possible to deduce the
values of L2 and C2.
The data of the two analysis are comparatively presented in Table 5.5. While the

collector inductance L2 is perfectly independent onN , the total parasitic capacitance
C2 can be considered constant, consistently with the model, inside a relative error
of the 7%, completely justifiable by the probes sensitivity and the data analysis
propagation errors.
The capacitance data give only a rough check of the total capacitance of the device,

making impossible a better estimation of the collector assembly contribution due to
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N 1 4 8
Ltot (nH ) 204.6 79.4 57.0
L2 (nH ) 36.61 36.60 36.66
C2 (nF ) 64 61 60

Table 5.5: Values of electrical parameters as determined
from experiments.

experimental errors.

5.3 Additional notes

After the overall design of the collector, few additional problem will be highlighted
focusing on the related solutions. In many cases, detrimental conditions cannot be
completely avoided and a compromise must be found.

5.3.1 Surface tracking

As already stated, the dielectric materials are extremely important to insulate HV
and grounded plates. Nevertheless, every time the edge of an insulator connects two
conductors at different voltage, a favorable path for surface discharges is introduced.
The most dangerous stage for this kind of phenomena is that preceding the break-
down: a voltage wave propagates through the collector towards the electrodes and
a very fast voltage ramp is imposed between each faced element. Analytical calcu-
lations are usually not possible, but few considerations will be proposed hereafter
together with the chosen solutions.
When the SGs are closed the capacitor bank is discharged on the capacitance of the

collector, until the breakdown occurs and the electrodes result short-circuited by the
plasma sheath. As shown in Section 5.A.2, event hough the charging voltage of the
bank capacitor C0 is V0, the voltage on the secondary capacitance Cload = Ccoll (here
the collector) can be rather higher than the first. Under the hypothesis Ccoll � C0

and ζ � ω′, typically verified for PF devices, the maximum voltage on Ccoll can
reach twice the value of V0 (see equation (5.6)).
Since the breakdown inside the vacuum chamber develops in hundreds of ns, the

voltage across the plates of the collector can reach values higher than the charging
voltage. Even the propagation velocity of an electromagnetic wave is finite and
given by v = (

√
LcollCcoll)−1; this means that, looking at the collector as at a

transmission line, the time needed to the propagation of the voltage wave is about
15 ns. The transient nature of the involved processes and the comparable time
scale make extremely difficult the evaluation of a safety path length to avoid surface
discharges on insulators above the focus tube. Experimental tests, performed by the
cable supplier, suggest to take a separation distance at least of 100 mm along each
dielectric surface. On the other hand, this distance must be kept as low as possible
being usually related to an inductance growth.
Another fundamental aspect of the problem is the electric field intensity along the

tangential direction of the insulating surface. The striking of a surface discharge
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is dramatically higher if the nearby conductors present a sharp edge. As shown in
Figure 5.9, obtained by a FEM simulation, the tangential electric field intensity can
be halved by an edge rounding of 3 mm radius.
A delicate region for current discharges is the central part of the collector, near the

electrodes. Here, the insulator must be split in more pieces to allow assembly and
disassembly of the electrodes and of the insulator sleeve. Moreover, the possibility
of electrodes tuning by experimental tests must be preserved. For these reasons, the
core dielectric is made of 4 parts: two L-shaped rings (one threaded), a central part
(to be screwed into the threaded ring) and the insulator sleeve, which is glued into
the central block. The consequent geometry produces a high contribution to the
total inductance (as shown in Table 5.2), but the radius of the inner electrode can
be changed requiring only the substitution of the central dielectric block and of the
electrodes flanges.
The design choices for the collector rings and for the central part are depicted and

described in Figure 5.10.

5.3.2 The current path: the current gasketing

As previously stated, the skin effect produces a condensation of the current on
the surfaces facing the magnetic field. In the case of interest, ω ' (

√
L0C0)−1 '

0.26 MHz and σ304 ' 1.4 Ω-1µm-1, the skin depth is

δ =
√

2
ωσ304µ

' 2 mm .

The current profile decreases exponentially with depth; hence, an effective thickness
of 3δ ' 6 mm can be considered for the current flow. In the design of the collector,
the current path at the interface between two pieces must be defined with maximum
care. To allow the disassembly, TIG welding cannot be used everywhere, even being
the best way to ensure a good electric contact.
The problem can be solved making use of the so called current gasketing : a delim-

ited region (with a thickness comparable with the calculated skin depth) is defined
near the predicted current path and a high pressure must be applied between the
two pieces to tighten the junction and reduce the contact resistance.
The best solution for the elements connection is through an high number of bolts

uniformly distributed on the clamping circumference to increase the uniformity of
pressure on the contact surface. Let nb the number of bolts, Sb the resistant surface
of each bolt, σb the tightening stress of the bolt, chosen a safety coefficient cs on the
yield stress σy for the material on the contact surface Scg, the local induced stress
is given, in first approximation, by

Scgcsσy = nbSbσb =⇒ σb =
Scgcsσy

nbSb

The presence of sharp edges is not only detrimental for the electric field on insu-
lating surfaces, but also all along the current path, since a null radius would induce
an infinite magnetic field with consequent vaporization of the material. Higher is
the current density worse is the condition. The best choice is the rounding of all
the sharp edges or cavities; everywhere possible, it’s better to avoid notches on the
surfaces interested by the current flow.



Chapter 5. The PFMA1 design 93

Figure 5.9: Isopotential lines and electric field vectors in
the region of coaxial cables insertion (top) and com-
parison between the tangential electric field intensity
in the case of a sharp edge (dashed line) and in that of
a rounded edge (continuous line) for the insertion hole
of the outer collector ring.
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Figure 5.10: Design solutions for the 100 mm gap between
the external collector rings in presence of the incoming
coaxial cable and delrin slab (top) and for the central
part of the device, where a high flexibility on electrodes
dimensions is required (bottom).
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For a better understanding of the practical solution, three sketches of the assembly
drawings are represented in Figure 5.11. The first on the left is relative to the
connection between the outer collector ring and the upper plate; the welding was
avoided to allow the possibility of disassembly of these two huge parts. On the
right, instead, the solution adopted for the electrodes connection is presented. For
the external one (top), it can be noticed the positioning of the vacuum sealing o-ring
in a region not interested by the current flow. In any case, the current path is defined
through the gasket by making a 1 mm gap in order to reduce the contact surface Sb

increasing the contact pressure; on the other side, a rounding with a radius of 3 mm
is always ensured.

Figure 5.11: Assembly design details of the current-gaskets
and edge roundings (dimensions in mm).

5.3.3 Ohmic and plasma heating

The evaluation of the device resistance made in Section 5.2.3 allow to estimate the
ohmic heating of the conductors crossed by the current density. Since the collector
plates are in direct contact with a delrin slab, few consideration on their heating are



96 5.3. Additional notes

of interest.
The resistance of the upper plate is Rp = 11 µΩ, as reported in Table 5.3. As

shown in Appendix 5.A, the current of the equivalent RLC circuit is

I(t) = V0

√
C0

L0
exp

(
− R0

2L0
t

)
sin
(

1√
L0C0

t

)
.

Neglecting the resistance damping and considering a full period of the discharge, to
take into account a part of the voltage reversal and to introduce a safety coefficient,
the thermal power dissipated on the resistance is

Pth =
∫ T

0
RpI

2 dt ' RpV
2
0

C0

L0

∫ T

0
sin2

(
1√
L0C0

t

)
dt

For the electrical parameters of the device (V0 = 30 kV, L0 = 43.4 nH, C0 =
350 µF), one obtains Pth = πRpV

2
0 C0/L0

√
L0C0 ' 978.7 W. The heating source

is concentrated in the skin depth of the plate of thickness s ' 3δ ' 6 mm (the
current profile is supposed uniform for convenience). The volume of interest is
hence Vp = π(r2ext − r2int)s = 11.5 · 10−3 m−3 which corresponds to a total mass
mp = ρVp = 90.2 kg for a stainless steel density ρ = 7850 kgm−3. Referring to a
specific heat cp = 475 Jkg-1K-1, the temperature increase due to a single shot (at
equilibrium and with no cooling) is

∆T 1shot
p =

Pth

mpcp
= 2.3 · 10−2 K .

When the device is operated at full regime (1 Hz) for two hours, the tempera-
ture increment would rise to 165 K, if no heat draining is considered. Such a high
temperature would compromise the electrical insulation of delrin rated for 175 ◦C.
However, it is enough to consider the total thickness of the plate s to coparticipate
to the heat diffusion in order to have a ∆T of only 13.2 K.
The simple 0D average calculation here presented doesn’t take into account the

real current density profile which increases with decreasing radial coordinate. For
precaution, a recirculating cooling system has been designed to remove any excessive
heating; 16 cooling pipes are welded to each plate along radial directions and a spiral
cave furrows the lateral wall of the vacuum chamber.
More interesting, but complex, is the heating due to the plasma-wall interaction

on the electrodes and insulator in the vacuum chamber [13]. The heating of walls by
direct plasma interaction has been studied in depth since the very beginning years
of fusion reactors design [61]. A simple model based on the Fourier diffusion of heat
into an infinitely thick wall subject to a uniform thermal power per unit surface W ,
constant in time, predicts a surface temperature increase ∆T given by

∆T = 2W

√
t

πkthρcp
.

With this formula it is easy to evaluate the time t at which, for a given W , melting
of a given material, represented by its conductivity kth, specific heat cp and density
ρ, occurs.
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This model doesn’t represent correctly the interaction of the heat source with the
wall in the case of a PF. In fact in a PF the heat source changes its position very
quickly in time as the plasma sheath moves at supersonic velocity towards the open
ends of the electrodes. However, since it is possible to estimate the thickness d of
the plasma sheath and its macroscopic axial velocity, it is possible to evaluate the
temperature increase for a surface extent of the order 2πrd where r is the inner
electrode outer radius. A much better estimate of the temperature increase for an
infinitely thick wall subject to a thermal power flux W is given by the exact solution
of the Fourier equation

∂T (x, t)
∂t

= α
∂2T (x, t)
∂x2

with α =
Kth

ρcp

T (x→∞, t) = T0

∂T

∂x
(0, t) = − 1

Kth
W

T (x, 0) = T0

where x is the coordinate along the axis orthogonal and inward to the wall and T0

is the temperature under no heat load. The solution of this equation is

T (x, t) = T0 +
W

Kth

[
−x erfc

(
x

2
√
αt

)
+ 2

√
αt

π
exp

(
− x2

4αt

)]
.

A simpler expression which can correlate time and position can be obtained by
second order series expansion about x = 0:

T (x, t) ' T0 +
W

Kth

[
2

√
αt

π
− x+ O(x2)

]
.

Conduction results to be the main cooling mechanism. In the analysis of the
experimental data it will be made reference to the s.c. Newton’s Law for Cooling [62];
this 0-D empirical law states that a given system ψ, immersed in its ambient A, cools
down according to

Tψ(t) = TA + ∆T e−ct

where Tψ is the system temperature at time t, TA is the constant environment (the
laboratory) temperature, ∆T is the initial temperature difference between system
(the electrode) and laboratory, and c is a real, positive defined, constant that de-
termines the cooling rate. This constant is independent of Tψ, TA and ∆T . In the
most general case of simultaneous presence of more than one cooling mechanisms it
is possible to determine the value of c only experimentally by making temperature
measurements. It is of course assumed that A behaves like a heat reservoir. This
assumption is well verified in practice because the external apparati, which the inner
electrode is connected to, have a heat capacity that is much larger than that of the
electrode itself.
An experimental campaign was conducted on a 7 kJ non repetitive PF. The detailed

description of the tests is out of the aim of this work, but can be found in [13].
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The main results will be here summarized. The temperature increase on the inner
electrode has been found to be independent from the filling gas pressure and from
the formation of a good pinch. Viceversa, it depends almost linearly with the PF
bank energy. The precise nature of the heating and cooling mechanisms for the
inner electrode has been investigated theoretically and a good agreement between
the above mentioned models and experiments has been found.
Even considering a single, isolated shot the knowledge of the energy dissipated

into heat on the electrodes is important to assess the problem of the choice of the
materials to be used in PF construction [63, 64]. The average heat flux on the inner
electrode of a PF device results:

W =
∆Q
τp2πrl

where τp is the time-to-pinch of the order of few µs. Physically, this is the time that
the plasma sheath takes to run over the whole active part of the inner electrode
of length l. It is possible to estimate the surface temperature increase due to the
heat flux W for a transit time τT. The transit time can be estimated using the
macroscopic axial velocity of the sheath, which in turn is given by measurements
or by theoretical and numerical calculations based on the snowplow model [1, 46].
For example, the insulator element surface temperature would rise at temperature
of thousands degree, depending on the stored energy. This means that during the
transit of the plasma sheath an extremely thin stratum of these materials is in-
stantaneously vaporized, leading to a contamination of the PF plasma and to the
embrittlement of the insulator itself.
In conclusion, proper cooling mechanisms must be foreseen for the inner electrode

of a highly repetitive PF. In the case of PFMA1 the cooling system is connected with
the hollow inner volume of the electrode and to the coupling flange of the external
one. Only experimental tests on the cooling water temperature rise will allow to
estimate correctly the electrode heating and the necessary mass flow to keep it at a
proper working temperature.

5.3.4 Electrodynamical forces

During the discharge, currents of the order of the MA flow through the collector
and produce intense magnetic fields; the interaction between them is the cause of
high electrodynamical forces which, if applied statically, would destroy the device.
In this case, the transient nature of the phenomena is of great advantage, reducing
the total maximum deformation.
The electrodynamical forces can be calculated by the integral evaluation of the re-

ciprocal interaction between each infinitesimal element of current. A simpler method
is based on the Maxwell stress tensor, which is equivalent to the pressure exerted by
the magnetic field on the conductors crossed by a current.
The magnetic field ~H in the volume between the two collector plates has only

the poloidal component Htheta. The current density, instead, flows in a radial or
axial direction on the plates or cylinders respectively. One can refer to the sketch
of Figure 5.4 under the hypothesis of perfect symmetry and current flowing on a
infinitesimal layer of the conductors. The Ampere’s law on a closed line of radius r
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encircling the axis of symmetry gives simply

Hθ(r) =
I

2πr
,

as well as a current I flowing through a wire along the axis (Biot-Savart’s law).
Under the simplifying (but conservative) hypothesis of a sinusoidal (undamped)
current I(t) = I0 sin(ωt), the resulting magnetic field is

Hθ(r) =
I0
2π

sin(ωt)
r

.

The consequent magnetic pressure pm is

pm =
1
2
µH2(r, t) =

I2
0µ

8π2

sin2(ωt)
r2

if the diffusion of the magnetic field along the conductor thickness is neglected [60].
For a peak current I0 = 1.5 MA the proportionality coefficient is a = I2

0µ/(8π
2) =

3.58 · 104 N. The integral of the maximum magnetic pressure between the IE and
outer collector ring radiuses lead to a total force of ∼ 0.7 MN, which would undoubt-
edly wreck the structure.
The static containment condition is strongly demanding. Nevertheless, in the

present case, a dynamic containment condition can be used: the deformation work
will be compared with the energy of the pulsed load leading to show that the static
containment condition has to be weighted through the ratio between the structure
vibration frequency and the characteristic time of the applied load.
If the lower plate of the collector is considered, it is possible to assume a perfect

constraint on the outer radius rext = 695 mm. The load is given by the magnetic
pressure, hence following the law p(r) = a/r2 up to the IE radius rint = 48 mm. The
plate is considered perfectly coplanar and axial-symmetric with a constant thickness
s = 15 mm. The Section 5.B.5 gives a static containment condition in a general case
analogous to the present one. From the analysis of the maximum acceptable stress
in static containment, the following condition on the coefficient a is derived:

astat ≤ csσy
2s2

3(1 + ν)

(
ln
(
rext

rint

)(
1− ln

(
rext

rint

))
+

1
2

(
r2int

r2ext

− 1
))−1

,

where a safety coefficient cs has been introduced. For the present geometrical pa-
rameters, one obtains astat ≤ cs1.33 · 104 N, which is evidently unacceptable even
for cs = 1.
An analysis based on an energetic method for a dynamic containment, in the case

of a load of the type p(r) = a/r2 sin2(ωt) applied for half a period T , allows to
obtain the condition

adyn ≤1.303
T1

T
astat ln−1

(
rext

rint

)
×

×
(

2 ln
(
rext

rint

)((
r2int

r2ext

+ 1
)

ln
(
rext

rint

)
−
(
r2int

r2ext

+ 2
))

−

−1
2

(
r4int

r4ext

+ 4
r2int

r2ext

− 5
))

.
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Figure 5.12: Maximum elastic deformed shape of the lower
plate in dynamic load conditions (dimensions in m).

where the static parameter astat and the ratio between the plate and load periods is
contained.
From the geometrical parameters of the present case (see Section 5.B.3 for more

details), the vibration period T1 = 0.023 s is obtained. The characteristic period
of the LC discharge is, instead, T = 2π

√
L0C0 ' 8.9 µs. Hence, the dynamic

containment condition is much less demanding, leading to adin ≤ cs2.70 · 108 N,
which means no plastic strain for a load p(r, t) with a = 3.58 · 104 N.
The elastic buckling of the circular plate can be obtained but comparison of the

momentum variation Pe (or the kinetic energy P 2
e /2M transfered to the structure)

with the deformation work Li:

Pe =
∫ T/2

0

∫
A
p(r, t) dAdt = π

∫ T/2

0
τ(t) dt

∫ rext

rint

p(r)r dr =
T

4
πa ln

(
rext

rint

)
,

con a = adin = 3.58 · 104 N effective constant; moreover, from the equation (5.18),
it follows

Li = a2
eq

π

16B
r2ext

(
2 ln

(
rext

rint

)((
r2int

r2ext

+ 1
)

ln
(
rext

rint

)
−
(
r2int

r2ext

+ 2
))

−

−1
2

(
r4int

r4ext

+ 4
r2int

r2ext

− 5
))

.

The equilibrium condition P 2
e /2M = Li allows to determine aeq as

aeq =0.651 adin
T

T1
ln
(
rext

rint

)(
2 ln

(
rext

rint

)((
r2int

r2ext

+ 1
)

ln
(
rext

rint

)
−

−
(
r2int

r2ext

+ 2
))

− 1
2

(
r4int

r4ext

+ 4
r2int

r2ext

− 5
))−1/2

,

where the equation (5.17) has been used.
From the previous data, the value aeq = 9.91 N is obtained, and a corresponding

maximum displacement of fmax ' 15.6 µm is deducted (see Section 5.B.2 for more
details). In Figure 5.12, the maximum analytical buckling of the lower circular plate
of the collector is depicted as obtained in the previously mentioned conditions.
The problem of the upper plate can be solved in an similar way, even if, strictly

speaking, it should be considered as an annular plate (no condition of null derivative
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on the axis of symmetry) with different geometrical parameters and load extension.
Notwithstanding, the insertion of radial stiffening bars would increase the structure
rigidity; the vacuum sealing can be considered safe even under the most demanding
operative conditions.
More interesting, but even simpler, is the dynamic containment check over the

copper OE. Under the hypothesis of free cylinder of thin thickness s, under an
internal pressure p(r, t) with r fixed to the inner radius rint of the cylinder, the
oscillating period is given by

T1 = 2π r0

√
ρ

E
.

The dynamic containment condition is here given by [60]

a

r2int

≤ cs
2
π

T1

T
σy

s

rint
or, equivalently, a ≤ cs

2
π

T1

T
σy s rint .

Assuming rint = 8.5 cm and s = 5 mm (E = 1.2 · 105 MPa, ρ = 8900 kgm−3, σy =
210 MPa for copper), it follows T1 ' 145 µs against a load period of T ' 8.9 µs.
Hence, the dynamic containment condition adyn ≤ cs9.26 · 105 N, is fully verified for
the case under exam (a = 3.58 · 104 N).
The above evaluations demonstrate that electrodynamical forces, even if extremely

high due to the high currents involved, don’t represent a problem since their transient
nature make their contribution to momentum transfer insufficient to cause strain and
stresses such as to overcome the yield point.

5.A RLC circuits of interest

The Laplace transform is a widely diffused method to solve typical transient electrical
circuit. Hereafter, the solution of the lumped circuits of interest will be presented.

5.A.1 The classical RLC circuit

Starting from the classical RLC circuit depicted in Figure 5.13, the circuit equation
is

V0 = L
dI(t)
dt

+RI(t) +
1
C

∫ t

0
I(t′) dt′ , (5.2)

with I(t = 0) = 0 and VC(t = 0) = V0 as initial conditions.
Applying the Laplace transform, the algebraic equation

LsĨ +RĨ +
1
C

1
s
Ĩ +

V0

s
= 0 ,

in the transformed space s is obtained. The denominator of the solution

Ĩ =
V0

Ls2 +Rs+ C−1
; (5.3)
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C V0
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Figure 5.13: Scheme of a classical lumped RLC circuit.

presents two possible roots (complex or real):

s1,2 = − R

2L
±
√

R2

4L2
− 1
LC

.

PF devices are characterized by electrical parameters which satisfy the condition
R < L (under-damping) and make s1,2 complex conjugate. Usually, the resonance
frequency ω and the damping factor ζ are defined as

ω =

√
− R2

4L2
+

1
LC

ζ =
R

2L
,

leading to the solution

I(t) =
V0

ωL
exp(−ζt) sin(ωt) . (5.4)

obtained by splitting the denominator of Ĩ and applying the Laplace inverse trans-
form rules.
The current flowing in the circuit has a damped sinusoidal behavior, with a char-

acterist period T defined as

T =
2π
ω

=
2π√

1
LC

− R2

4L2

=
4πL√

4L
C
−R2

.

Usual values of resistance, inductance and capacitance of PFs satisfy the relation
R2 � 4L/C letting the following approximations:

ω =
1√
LC

e T = 2π
√
LC .

The maximum current is then given by

Imax = I(t = T
4 ) =

2V0√
4L
C
−R2

exp

−2π
R√

4L
C
−R2

 ' V0

√
C

L
exp

(
−π

4
R

√
C

L

)
' V0

√
C

L
.
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Figure 5.14: Sketch of a RLC circuit discharging on a sec-
ondary capacitance Cload.

Applying the capacitor laws, the voltage drop over it is:

V (t) = V0 −
1
C

∫ t

0
I(t′) dt′ = V0 exp(−ζt)

(
cos(ωt) +

ζ

ω
sin(ωt)

)
' V0 exp

(
− R

2L
t

)
cos
(

t√
LC

)
,

out of phase of π/2 with respect of the current profile I(t).

5.A.2 Discharge on a secondary capacitance

Consider now the electrical circuit of Figure 5.14, where a secondary capacitance
Cload, initially uncharged, is charged by the capacitor bank C charged at a voltage
V0 through a purely active (RL) branch.
If a balance equation of the voltage drops is written, it can be easily reduced to

the following equation

V0 = L
dI(t)
dt

+RI(t) +
C + Cload

CCload

∫ t

0
I(t′) dt′ ,

with initial condition I(t = 0) = 0. Substituting C ′ = CCload/(C + Cload), the
equation assumes the same form of that for an RLC circuit with R, L and C ′ as
parameters, whose solution is already known from the previous section.
Applying the capacitor law to Cload, the voltage on its plates is given by

V (t) =
1

Cload

∫ t

0
I(t′) dt′ =

1
Cload

V0

ω′L

∫ t

0
exp(−ζt′) sin(ω′t′) ,

which leads to

V (t) =
C ′

Cload
V0

(
1− exp(−ζt)

(
cos(ω′t) +

ζ

ω′
sin(ω′t)

))
. (5.5)

The maximum voltage on Cload is given by

Vmax =
C ′

Cload
V0

(
1 + exp

(
−π ζ

ω′

))
, (5.6)
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which is grater than V0 if Cload < C.
Expanding in Taylor’s series equation (5.5) near t = 0 one can deduce the approx-

imate behavior

V (t) ' 1
2
(ζ2 + ω′2)

C ′

Cload
V0 t

2 + o(t2) .

Lower is Cload with respect to C, steeper will result the voltage growth. In the
simplifying, but realistic, hypothesis of Cload � C and ζ � ω′, one obtains

V (t) ' 1
2

1
LCload

V0 t
2 . (5.7)

5.B Circular plates: structural analysis

The present appendix will deal with the elastic theory of circular plates with axial
symmetric loads and boundary conditions. Consideration on the elastic deformed
shape in the most general case and evaluation of the deformation energy and eigen-
frequencies will follow for a circular plate fully bounded on the external radius. Par-
ticular attention will be devoted to the particular case of a r−2 distributed load for
its analogy with the magnetic pressure acting on the circular plates of the collector.

5.B.1 Hypothesis and basis

Let R be the external radius of a circular plate and s its thickness. The geometry,
the loads and the boundary conditions are perfectly axial symmetric, that means
no tangential stress (τθr = τθz = 0) on each radial section and normal stresses σθ
equally distributed. On the cylindrical surfaces, the tangential and normal stresses
τrz, σr are uniformly distributed. Refer to Figure 5.15, for a graphical representation
of the equilibrium forces on an element of the circular plate.
Under the hypothesis of negligible vertical strain, the stresses σr and σθ are null on

the mid plane of the plate (z = 0). For s� R, every rectilinear segment normal to
the mid plane can be considered rectilinear and normal to the deformed shape even
after the deformation (Bernoulli-Navier’s hypothesis). Following the Hooke’s law,
the stresses vary linearly and proportionally to the distance z from the mid plane.
For small vertical displacements ζ, the slope ϕ of the deformed line in the plane rz
is given by elastic deformed shape, from the equation

tanϕ ' ϕ = − dζ
dr

. (5.8)

The stresses are related to the deformed shape given by ζ(r) through [65]

σr =
E

1− ν2

(
dϕ
dr

+ ν
ϕ

r

)
z , (5.9a)

σθ =
E

1− ν2

(
ν

dϕ
dr

+
ϕ

r

)
z . (5.9b)
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tr
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s

Figure 5.15: Sketch of a generic element of a circular plate,
axial-symmetrically loaded.

The unitary moments on the faces normal to r and θ, are defined by

mr = B

(
dϕ
dr

+ ν
ϕ

r

)
(5.10a)

mθ = B

(
ν

dϕ
dr

+
ϕ

r

)
, (5.10b)

where

B =
E

1− ν2

∫ s/2

−s/2
z2 dz =

Es3

12(1− ν2)
, (5.11)

is termed bending stiffness of the plate.

5.B.2 Deformed shape of the circular plate

Referring to Figure 5.15, the equilibrium equation of the infinitesimal element in the
rz plane gives

tr = −B d
dr

(∇2
rζ(r)) ,

dtr
dr

+
tr
r

=
1
r

d
dr

(rtr(r)) = −p(r) .

as equilibrium equation for rotation and translation respectively [65]. Combining
the two equations, one obtains a fourth order differential equation

1
r

d
dr

(
r

d
dr

(∇2
rζ(r))

)
= ∇4

rζ =
p(r)
B

, (5.13)

describing the deformed surface through ζ(r) (Laplace’s equation).
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rint

rext

Figure 5.16: Circular plate on which a load proportional to
r−2 is applied for r in the range [rint, rext].

The boundary conditions of the differential problems depend on the bounds of the
circular plate. In the case of a fully bounded plate on the external radius R, it
follows

ϕ(R) = 0
ζ(R) = 0 ,

while, for axial-symmetry, a null derivative must be imposed on r = 0 by

ϕ(0) = 0 .

In the case of a distributed not uniform load p(r) = ar−2 applied from rint to
rext (refer to Figure 5.16), the equation (5.13) must be split onto the two parts
[0, rint] and [rint, rext] in a system of equations linked on rint by equal ϕ and ζ. By
substitution of p(r) in the equation (5.13), a first integration on r leads to

tr(r) =
1
r

∫ r

rint

p(r′)r dr′ =
a

r
ln
(

r

rint

)
.

as right hand side of the equation. Splitting the problem into the two domains the
system

d
dr

(
1
r

d
dr

(
r

dζ−

dr

))
= 0 per r ∈ [0, rint]

d
dr

(
1
r

d
dr

(
r

dζ+

dr

))
=

a

B

1
r

ln
(

r

rint

)
per r ∈ [rint, rext]
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is obtained, with boundary conditions

dζ−

dr

∣∣∣∣
0

= 0 (5.14a)

ζ−(rint) = ζ+(rint) (5.14b)
dζ−

dr

∣∣∣∣
rint

=
dζ+

dr

∣∣∣∣
rint

(5.14c)

m−
r (rint) = m+

r (rint) equivalent to
dϕ−

dr

∣∣∣∣
rint

=
dϕ+

dr

∣∣∣∣
rint

(5.14d)

ζ+(rext) = 0 (5.14e)
dζ+

dr

∣∣∣∣
rext

= 0 (5.14f)

The solution of the two coupled differential equations leads to

ζ−(r) =
a

8B
(c−1 r

2 + c−3 ) (5.15a)

ζ+(r) =
a

8B

(
r2 ln

(
r

rint

)(
ln
(

r

rint

)
− 2
)

+

+(c+1 + 1)r2 + 2c+2 ln
(

r

rint

)
− c+3

)
(5.15b)

where the coefficients c−1 , c−3 , c+1 , c+2 , c+3 are obtained through the boundary condi-
tions of the equations (5.14a)

c−1 = ln
(
rext

rint

)(
1− ln

(
rext

rint

))
+

1
2

(
r2int

r2ext

− 1
)

c−3 =
(

ln
(
rext

rint

)
− 1
)

(r2ext + r2int) + 2r2int

c+1 = ln
(
rext

rint

)(
1− ln

(
rext

rint

))
+

1
2
r2int

r2ext

c+2 = −1
2
r2int

c+3 = −
(

ln
(
rext

rint
− 1
))

(r2ext + r2int)−
1
2
r2int .

5.B.3 Circular plate oscillating frequencies

The oscillating behavior of a circular pate fully bounded on the boundary is obtained
by the equation (5.13), replacing the load p(r) with the inertia force

fi = −m d2ζ

dt2
,

where m = ρs represents the mass per surface unit (m · r dr dθ), s being the constant
thickness of the whole plate. The Laplace’s equation becomes

∇4
rζ(r) = −m

B

∂2ζ

∂t2
.
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Looking for a stationary solution in the form of

ζ(r, t) = ζ(r) sin(ωt) ,

the eigenvalue equation

∇4
rζ(r) = k4ζ(r) ,

is obtained, with

k4 =
mω2

B
.

By two order reduction of the previous equation, it can be substituted by

d2ζ(r)
d(kr)2

+
1
kr

dζ(r)
d(kr)

± ζ(r) = 0 ,

which represents a first order Bessel’s equation, having

ζ+(r) = c+1 J0(kr) + c+2 Y0(kr) (+)
ζ−(r) = c−1 K0(kr) + c−2 I0(kr) (−)

as solutions.
In the case of a circular plate fully bounded on r = rext (ζ(r = 0) finite, ζ(rext) = 0),

the property of the Bessel functions lead to c+2 = c−1 = 0 (Yn → −∞ and Kn →∞
for r → 0) and c−2 = 0 (In are monotonically increasing with r). The functions
Jn are, instead, oscillating and, neglecting the trivial solution for c+1 = 0, all the
conditions are verified for krext corresponding to the zeros of J0. The first eigenvalue
is

k1 =
2.405
rext

,

corresponding to the fundamental eigenfrequency

f1 =
ω1

2π
=

1
2π
k2

1

√
B

m
= 0.921

1
r2ext

√
B

ρs
. (5.17)

It can be noted that the eigenfrequencies don’t depend on the applied load, but
only on the geometrical parameters, material properties and boundary conditions of
the structure. In particular, the oscillation frequency increases proportionally to the
thickness s (being B/m ∝ s2) and to the inverse of the external radius r−1

ext (s� r−1
ext

by hypothesis).

5.B.4 Deformation work

The internal deformation work for a volume element dV is defined as

dLi =
1
2
~σ · ~ε dV
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which is reduced to

dLi =
1
2
(σrεr + σθεθ) dV ,

in the case of circular plates, being τrθ = 0.
By substitution of σr,θ and εr,θ with the unitary moments of equations (5.10)

following the Hooke’s law (σi = 12miz/s
3 and εi = 12z/(Es3)(mi − νmj) with

i, j = r, θ), the elementary work can be integrated over the thickness of the plate
(z ∈ [−s/2, s/2]) and over the poloidal angle (θ ∈ [0, 2π]), leading to

Li = πB

∫ rext

0

((
dϕ
dr

)2

+
(ϕ
r

)2
+ 2ν

dϕ
dr

ϕ

r

)
r dr ,

or, equivalently, from equation (5.8),

Li = πB

∫ rext

0

(
r

(
d2ζ

dr2

)2

+
1
r

(
dζ
dr

)2

+ 2ν
d2ζ

dr2
dζ
dr

)
dr .

For a circular plate fully bounded on its external radius, the third term in paren-
thesis is null [65], and the previous equation can be solved in

Li = πB

∫ rext

0

(
r

(
d2ζ

dr2

)2

+
1
r

(
dζ
dr

)2
)

dr .

By equating the internal deformation work to the external work of a generic load
p(r), given by

Le =
1
2

∫
A
p(r)ζ(r) dA = π

∫ rext

rint

p(r)ζ(r)r dr ,

one could obtain an integro-differential equation to deduce the deformed shape ζ(r)
of the plate. Since this result was already obtained in Section 5.B.2, the additional
information can be used to evaluate the maximum allowable load in dynamic con-
ditions.
In the particular case of interest of a load p(r) = ar−2 applied between rint and
rext, substituting the solution given by equation (5.15) in the just derived expression
of Li, the following result is obtained

Li = a2 π

16B
r2ext

(
2 ln

(
rext

rint

)((
r2int

r2ext

+ 1
)

ln
(
rext

rint

)
−
(
r2int

r2ext

+ 2
))

−

−1
2

(
r4int

r4ext

+ 4
r2int

r2ext

− 5
))

. (5.18)

5.B.5 Dynamic and static containment

When studying the structural analysis in the elastic field under static loads, the
maximum stress σmax has to be evaluated and compared with the maximum admis-
sible material yield stress σy, taking into account a proper safety coefficient cs. The
maximum stress of a circular plate is obtained by equations (5.9) for z = ±s/2 as

σmax = max{σr,θ(z), z} = ± 6
s2
mr,θ .
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In the case of a distributed load proportional to r−2 previously studied, the analysis
of the unitary moments allow to notice that they are constant where the load is not
applied (r ∈ [0, rint]) and decrease for increasing r in the range [rint, rext]. The
radial moment mr is null where the deformed elastic line presents an inflexion point
(second radial derivative of ζ equal to zero). The maximum is reached in unloaded
region:

mr = mθ = −a
4
c−1 (1 + ν) ,

where dϕ/ dr = ϕ/r. The maximum stress is hence given by

σmax = ± 6
s2
a

4
(1 + ν)

(
ln
(
rext

rint

)(
1− ln

(
rext

rint

))
+

1
2

(
r2int

r2ext

− 1
))

.

The safety condition σmax ≤ csσy can be converted in a condition on the propor-
tionality constant a of p(r) = ar−2, leading to the static containment condition

astat ≤ csσy
2s2

3(1 + ν)

(
ln
(
rext

rint

)(
1− ln

(
rext

rint

))
+

1
2

(
r2int

r2ext

− 1
))−1

. (5.19)

When the load is dynamically applied, an energetic method has to be applied: the
impulse theorem allow to evaluate the momentum transfer due to the load, as

Pe =
∫ t

0

∫
A
p(r, t′) dAdt, ; (5.20)

the kinetic energy P 2
e /(2M), with M mass of the plate, is associated with the mo-

mentum variation Pe. The yield point will not be exceeded if the internal energy
Ly (calculated as deformation work Li to reach the deformation ζ(r) related to the
yield stress σy) is less than the transferred kinetic energy.
Under the hypothesis of a time and spatially dependent load given by

p(r, t) = p(r)τ(t) =
a

r2
sin2(ωt) ,

applied for half a period T/2 = π/ω, the momentum transfer is given by

Pe =
∫ T/2

0

∫
A
p(r, t) dAdt = π

∫ T/2

0
τ(t) dt

∫ rext

rint

p(r)r dr =
T

4
πa ln

(
rext

rint

)
.

Ly is the internal deformation work that lead to the elastic deformed shape given
by in the static containment conditions σmax = csσy. Substituting the value of astat

of equation (5.19) into the expression of Li given by equation (5.18), one obtains

Ly =a2
stat

π

16B
r2ext

(
2 ln

(
rext

rint

)((
r2int

r2ext

+ 1
)

ln
(
rext

rint

)
−
(
r2int

r2ext

+ 2
))

−

−1
2

(
r4int

r4ext

+ 4
r2int

r2ext

− 5
))

.
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The containment condition is, therefore, obtained through P 2
e /(2M) ≤ Ly as

adyn ≤
√

2M
π

4
T

ln−1

(
rext

rint

)√
Ly .

In Section 5.B.3 the expression of the fundamental oscillating frequency for a circular
plate was derived. Substituting the corresponding characteristic period coming from
equation (5.17) into the above condition, a dynamic containment condition can be
derived:

adyn ≤1.303
T1

T
astat. ln−1

(
rext

rint

)
×

×
(

2 ln
(
rext

rint

)((
r2int

r2ext

+ 1
)

ln
(
rext

rint

)
−
(
r2int

r2ext

+ 2
))

−

−1
2

(
r4int

r4ext

+ 4
r2int

r2ext

− 5
))

, (5.21)

where the total mass of the plate, M = ρ(πr2exts) has been used.
When rint � rext, the condition can be approximated by

adyn ≤ 2.606
T1

T
astat.

(
ln
(
rext

rint

)
− 1− 5

4
ln−1

(
rext

rint

))
.

It is immediate to notice that the dynamic containment condition is much less
demanding than the static containment one, when the fundamental oscillating period
of the structural element is greater that that of the applied load: T1 � T .





Part II

Microscopic Simulation: the gas
breakdown





CHAPTER 6

Electrical breakdown in gases

Abstract. Each electrical discharge in gas is ignited by a transient process called
breakdown. In this introductory Chapter, a brief description of the phenomenon is
given, with a deep insight on the underlying kinetic physics processes. In particular,
the breakdown in PF devices will be described to present an overview of the problem
of interest.
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6.1 Transient gas discharges

Among laboratory plasmas, many types of sources exist, such as gas discharges
created by direct current, capacitively or inductively coupled RF and microwaves.
The increasing interest on these sources is mainly due to the large variety of their
technological applications (thin film deposition, semiconductor processing, materials
treatment, . . . ). The electrical breakdown, intended as the transition between the
dielectric and conducting state of a gas, is the common denominator for the plasma
ignition.
An electrical discharge is usually built up by few seed electrons, which are acceler-

ated by an external electric field. Their collisions with the neutral gas produce fresh
ion-electron pairs in Townsend avalanches. The transient discharge proceeds until a
steady-state condition is reached, in the sense that an equal number of charged parti-
cle is lost and produced: typically the maintenance mechanism consists in secondary
electrons emission from the cathode. The efficiency of electrons in the production of
new free charges depends on their energy distribution function (EDF) and on their
microscopic interaction with the background neutral gas and with the boundaries.
What follows assumes DC conditions, being the operation regime of PF devices. RF

breakdown is similar, except that, at high-frequency, the surface processes are not so
important: electrons are confined by field oscillations and multiplication replenishes
diffusive losses [66].

6.1.1 Breakdown

If an electric voltage V is applied between two plane parallel electrodes at a distance
d, the gas contained at the pressure p, suddenly switches from insulating dielectric
to conducting, if sufficiently high values of the electric field are reached.
From kinetic theory, the variation of the electron number N can be expressed as

dN = N dx/λ, with dx the thickness of any gas slab and λ = (nσ)−1 mean free
path of the electron in a purely scattering medium, n being the neutral gas density,
σ the total scattering cross section. Hence, the number N of electrons having free
path of length greater than x is

N = N0 exp
(
−x
λ

)
, (6.1)

with N0 the starting electron number.
If a multiplicating medium is considered, one electron produces on average an

electron-ion pair at each ionization collision, which has a threshold activation energy
eVi. However, a generic electron, accelerated by the electric field E, undergoes
scattering collisions which modify its energy; hence, λE is the energy gained by the
electron from the field. Exploiting the equation (6.1) with x = λi, Townsend [67]
related λ to λi through

α =
1
λi
∝ 1
λ

exp
(
− Vi

Eλ

)
which represents the number of ionizing collision per unit length of path, i.e. the
number of free paths multiplied by the chance that one of them results greater
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than ionizing length. The coefficient, named Townsend’s ionization coefficient, can
be then related to the gas pressure (inversely proportional to the mean free path)
through

α = Ap exp
(
−Bp
E

)
. (6.2)

The values of the constants A and B are reported in Table 6.1, for gases commonly
used in electrical discharges [30].
A more exact theoretical calculation of α must include consideration of the prob-

ability that an electron with a certain energy, sampled from its EDF, will ionize
a molecule by collision. However, by a judicious choice of the constant A and B,
equation (6.2) gives reasonable agreement with the experimental data [52].
The electrons produced by the Townsend α-mechanism wouldn’t be able to sustain

the discharge, being destined to be absorbed by the anode. Moreover, the produced
ion couldn’t be able to acquire sufficient energy to induce ionizations. However, the
electron collision with the background gas, besides giving ionization, also produce
excited and metastable molecules, which decay with the emission of one or more
photons [52, 68, 69]. Consequently, positive ions, photons and metastable atoms act
as producers of secondary electrons by direct impact on the cathode.
Let firstly consider Secondary Electron Emission (SEE) by ion collisions. The

number of electrons reaching the anode is N = (N0 +Ni) exp(αd), where N0 is the
number of seed electrons and Ni = γ(N−(N0+Ni)) the number of those released by
positive ion bombardment at the cathode, γ being the number of electrons released
from the cathode per incident positive ion. Then, eliminating Ni, it results

N = N0
exp(αd)

1− γ(exp(αd)− 1)
.

A similar expression can be obtained if even the secondary emission by photon
impact is considered. Letting Nν be the number of photons produced by an electron
per unit length, η the fraction of photons able to produce an electron at the cathode,
and Ω a geometrical factor giving the number of isotropically emitted photons which
reach the cathode, one obtains

N = N0
α exp(αd)

α− ηΩNν exp((α− µ)d)
,

with µ the absorption coefficient of photons in the gas.
Due to the similarity between the two equations, it is usual to consider the various

secondary ionization effects by the single ionization coefficient γ, knowing that it
may represent one or more of several mechanisms [69]. The coefficient γ strictly
depends on the gas and the cathode material; experimental behaviors as function of
the reduced field1 E/p can be found in literature [30, 52], as well as the dependence of
the only ion contribution on the incident energy [70]. Typical values range between
0.01 and 0.1.

1The quantity E/p is usually referred to as reduced electric field strength, and measured in
units of V/(cmTorr). In literature, E/n is also used as reduced electric field strength, with n the
density of the gas in cm−3; it is typically measured in Td, corresponding to 10−17 Vcm2. At room
temperature, for an ideal gas, 1 Td=0.32 V/(cmTorr).
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Gas A B E/p range
[1/(cm Torr)] [V/(cm Torr)] [V/(cm Torr)]

Air 15 365 100÷800
Ar 12 180 50÷600
CO2 20.0 465 100÷1000
H2 5.0 130 20÷1000
He 2.8 34 6÷150

Table 6.1: Characteristic values of constant A and B in
equation (6.2) for few commonly used gases.
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Figure 6.1: Dependence of α/p on the reduced electric field
E/p for various gases.
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Figure 6.2: Paschen’s curves for various gases.
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The condition of self-sustainance of the discharge, obtained from the equilibrium
between the initial electronsN0 and those given by secondary emission, γN0(exp(αd)−
1), leads to

αd = ln
(

1 +
1
γ

)
.

As far as the planar geometry is considered (Vb = Ed), by substitution of the
equation (6.2), the Paschen’s law

Vb =
Bpd

ln(Apd)− ln(ln(1 + γ−1))

is obtained. It relates the voltage breakdown Vb with the filling gas pressure and
the gap separation distance. As shown in Figure 6.2, the curve Vb(pd) presents a
minimum, known as Stoletov’s point [30], and increases both for decreasing (vacuum
insulation) and increasing (high-pressure insulation) pd values.
The so called multiplication factor M = exp(αd) is a typical parameter of break-

down. It is approximatelyM = γ−1 at the Paschen curve, V = Vb(pd), and increases
for voltages V/Vb > 1, which are named over-voltages. The Meek’s criterion [71]
fix M > 108 (or, equivalently, αd ' 20) as a threshold value for the development of
streamer channels [72, 73], i.e. localized space charge regions created by the intense
electron avalanches which concentrate the electric field driving the discharge.
At high values of the reduced electric field E/p, a decrease in the first Townsend

coefficient α is observed. An ideal threshold can be defined for a Lorentz gas
(like He), which shows that the effect is practically restricted to values between
60÷ 4000 V/(cm Torr) [74]. It can, then, be expected that the behavior presented
in Figure 6.1 for α/p, after reaching a maximum, starts to decrease rapidly for
increasing values of E/p. A microscopic description of the effect, known as the
runaway effect [75] will be presented in the following section.

6.1.2 Drift velocity and energy distribution function

The motion of charged particles is given by the superposition of a random thermal
activity and of a steady drift due to the electric field. Langevin published a theory of
the mobility of charged particles in gases based on the kinetic theory [76]: charged
and neutral particles were considered as solid elastic spheres and only repulsive
forces were considered at the instant of impact. Small values of E/p were assumed,
so that the field energy would be negligible if compared with the thermal one. The
rate of change of particle momentum mvν, depending on the collisional frequency
ν, balances the electric field force eE. If the particle mean free path is much less
than the dimension of any containing region, λ� d, the drift speed can be related
to the electric field through

vd =
e

mν
E = µE , (6.3)

where µ is the mobility. Kinetic theory links the diffusion coefficient D to the
mobility through D/µ = kT/e, known as Einstein’s relation.
The above equation (6.3) can be used only for rough calculations of the electronic

drift velocity, while for ions the linear dependence on the electric field is a good
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approximation. In fact, due to their lower mass, electrons gain energy from the
electric field faster than ions and lose little energy in elastic collisions, until they
reach the thresholds for inelastic ones. Even with only weak field imposed on the
gas, the average electronic energy may be far in excess of the thermal value associated
with the gas. Moreover, the electrons energy distribution function (EEDF) can be
approximated with a Maxwellian one, only for low values of E/p:

f(E) = C
√
E exp

(
− E
kT

)
,

with T the temperature and k the Boltzmann’s constant. On the other hand, the
cross sections for elastic scattering of electrons are strong function of the particles
energy; inelastic impacts assume an important role even for low energies, of the order
of 10 eV for atomic gases and of 1 eV for molecular ones, due to the vibrational and
rotational excitations.
The electron temperature definition Te is usually related to an ideal collisional

plasma with a Maxwellian EEDF. For moderate deviations from the Maxwellian
distribution, the term “temperature” can still be used, in the sense of an effective
collisional temperature, and related to the mean energy through the well-known
relation 〈E〉 = 3/2kTc. Generally, in gas discharges, the collisional temperature Tc

is less than the dissociation and ionization threshold energies of the gas molecules.
Nevertheless, these processes can occur for particles of the highly energetic tail of
the EEDF.
Considering the loss of energy for electrons by elastic collisions, but ignoring the

effects of inelastic ones, under the hypothesis of an electronic mean free path λ
independent of the energy E , Druyvesteyn [77, 78] deduced the following EEDF:

f(E) = C
√
E exp

(
−3me

M

E2

(λeE)2

)
, (6.4)

with me the electron mass and M mass of the molecules of the background gas.
Studying the conductivity of an ionized gas, Margenau [79] derived the EEDF and

the electronic drift velocity as a function of the gas pressure and the frequency of
the electromagnetic wave; the expression for the DC case can be obtained by setting
the frequency equal to zero:

f(E) = C
√
E

(
1 +

E
αkT

)α
exp

(
− E
kT

)
,

with α = M/(12me)(λeE/(kT ))2.
In Figure 6.3, the above mentioned distribution functions are plotted against en-

ergy, both as EEDF, f(E), and electron energy probability functions (EEPFs),
f(E)/

√
E , at the same mean energy. It can be observed that the Druyvensteyn

distribution function presents a depressed bulk and tail, with a more populated
middle energy range with respect of the Maxwellian one. The Margenau EDF has
a less evident similar behavior.
The above approximate EEDF are derived without any consideration on the anisotropy

of the scattering related to the momentum transfer cross section. This, combined
with the strong decrease of cross section with energy, is one of the reason of the
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observed runaway effect, above mentioned in Section 6.1.1. At high values of the
reduced electric field, the field acceleration on electrons is too strong and cannot
be balanced by collisional friction. The phenomenon was explained [80] comparing
the field acceleration of an electron, eE/me, with its mean deceleration by colli-
sions, vνm, where v is its velocity in the direction of the electric field and νm the
momentum-transfer collision frequency. Due to the intrinsic Coulomb nature of all
electron interaction, the related cross section decrease at a rate faster than 1/v2 and
the effect is increased at high applied electric field. The electron velocity distribution
function (EDVF) directed along the field lines can be thought as composed of three
contributions: an energy loss region, for very low velocities, dominated by ohmic
heating and collisional cooling; an angular scattering region, characterized by the
balance between field acceleration and momentum loss in collisions; a runaway region
where electrons are continuously accelerated with an arising strong anisotropy [74].

6.1.3 The distinction between a plasma and an ionized gas

It is convenient to introduce the concept of Debye length in order to distinguish a
true plasma from an ordinary ionized gas. Assuming negligible ion temperature, the
Debye length is defined as [81]

λD,e =
√
ε0kTe

nee2
' 7.43 · 106

√
Te

ne
,

where Te (in eV) and ne (in cm−3) are the electron temperature and density respec-
tively (ε0 = 8.854 · 10−12 F/m being the vacuum permittivity and e2 = 1.602 · 10−19 C
the electron elementary charge). The Debye length represents a “screening” distance,
i.e. the distance over which the Coulomb 1/r electric field is exponentially killed of
by the polarization of the plasma: V (r) ∝ exp(−r/λD)/r. It means that, when an
electric field is applied to a plasma, this polarizes and the new charge distribution
reduces the magnitude of the electric field inside it: λD is that distance at which
the electrostatic forces, which tend to impose charge neutrality, are balanced by the
kinetic forces, which tend to produce non-neutrality. Evidently, in order to have
the requisite electrostatic interaction between particles, the Debye length must be
considerable less than the minimum dimension of the ionized medium: λD � L.
The Debye length, thus, defines a minimum length for the independent motion of

electrons and ions: within a sphere of radius λD particle-to-particle processes take
place, while, outside the Debye sphere, the particles behavior is collective and deter-
mined by the ambipolar electric field, i.e. by the long-range term of the electrostatic
potential. In this case, the electric field induced by the effects of the spatial charge
densities becomes of the order of the external source.
While the Debye length governs plasma behavior in equilibrium, the dynamics

depends on another fundamental parameter called the plasma frequency, ωp. It
can be simply deduced in the case of an ideal infinite collisionless plasma by the
application of the dispersion law in planar geometry for a longitudinal electric wave,
as

ωp,e =

√
nee

2

ε0me
' 0.564 · 10−3√ne
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and corresponds to the typical electrostatic oscillation frequency of a given species
(in this particular case, the electrons) in response to a small charge separation.
The simple dispersion relation ω2 = ω2

p is modified if the plasma is finite in size
or if it has finite temperature, as well as for other non-ideal or non-linear effects.
The finite size effects depend on the complicated details of the geometry, but finite
temperature simply modifies the dispersion relation to the famous Bohm-Gross’s
relation:

ω2 = ω2
p(1 + 3k2λ2

D) ,

which links the Debye length to the plasma dynamics. For wavelengths much longer
than the Debye length (kλD � 1) the oscillations are basically still at frequency ωp.
A more detailed theory shows that short wavelength waves are strongly damped, so
any plasma waves is still basically near ω = ωp.
The presence of an electrical varying driving source, the binary collisions with the

background neutral gas, the interaction of charged particles with boundaries and
the sustaining neutral ionization make the weakly ionized plasma discharges not
ideal. The increasing density due to the Townsend avalanches multiplication and the
increasing energy gained from the electric field, redistributed in the system through
collisions, produce a transition from an ordinary ionized gas towards a collisional
plasma. Hence, the Debye length and the plasma frequency are strictly related to
the mean free path λ and to the collisional frequency ν with the background gas. If
a Druyvensteyn distribution function is assumed, once calculated the normalization
constant C, equation (6.4) can be used to derive the corresponding mean energy

〈E〉Druyv. =
π

12
Γ2

(
3
4

)√
6M
me

λeE ,

which is evidently related to the mean free path λ. Hence, the extended temperature
definition in the calculation of the Debye length implicitly links the two properties
of interest.

6.1.4 Electron equilibration scales

When electrons experience a sufficient number of collisions, they can be considered
in equilibrium with the local electric field: an electron loses a certain amount of en-
ergy at each collisional process and only if the energy gained by the electric field is
dissipated in small length and time scales, then the species can be considered in equi-
librium with the electric field. In this case, the EEDF can be assumed Maxwellian
with a good approximation.
The characteristic length scale of the discharge is typically the smallest gradient

length λE and has the smallest size of the vessel as upper limit. On the other hand,
the time scale that characterizes the discharge is affected by the rate νE at which
the field changes.
Collisions modify the electrons distribution through the typical length and time

scales over which they lose a substantial part of their energy in collisions, i.e. energy
relaxation length λE and frequency νE [82]:

λE = λ

√
ν

νE
and νE =

2me

M
ν + νi ,
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where λ = (ngσ)−1 is the electron mean free path, ν = ngσ
√

(2E/me) the collision
frequency for momentum transfer and νi that for inelastic impacts. Due to the
large mass ratio of electrons and ions, energy transfer in elastic collisions is strongly
inefficient producing long equilibration length and time scales for energy below the
first excitation level. This means that the corresponding characteristic length scale
is λexc = Eexc/(eE), with Eexc in eV. For the specific case of Argon, one can refer to
Figure 6.4. For molecular gases, the problem is less evident due to the low vibrational
and rotational excitation energy threshold.
Hence, it is required that both the conditions λE � min{λE, λexc} and νE � νE

in order to have the EEDF in equilibrium with the electric field and avoid locality
effects. However, the dependence of cross sections on energy makes λE and νE
strongly varying on the whole EEDF energetic range.

6.1.5 Flow of current through a ionized gas

Another macroscopic quantity of interest for electrical discharges in gases is the
current flowing through the circuit when the potential difference is applied. It can
be determined in two ways [30]: either by counting the number of charges arriving
and leaving the electrodes in unit time, or by determining the rate of charge change
induced by the moving charges on one of the electrodes, which corresponds to the
so called displacement current.
According to the first view, no current is recorded while the charge moves through

the gap and the whole charge is delivered exactly at the instant when the charge hits
the electrode. However, this model is not fully coherent, since the generic charge
e moving in the gas modifies the field lines (or lines of displacement) ending on
the anode and cathode. Thus, according to the second view, when a charge moves
through a gas, the induced charge on the electrodes varies as long as the motion
persists: the rate of change of the charge at the anode is opposite to that at the
cathode. In the meantime, the charge flow through the external circuit is equal to
the corresponding change of charge felt on the electrodes2.
Though the first approach is in principle inaccurate, it leads to the same numerical

result as those of the displacement current, if applied to a sufficiently large number of
charged particles flowing uniformly and continuously between the electrodes. How-
ever, under unsteady conditions, i.e. when the discharge current grows or decreases,
only the second approach gives the exact answer.
It is possible to evaluate the instantaneous value of current flowing through a circuit

as a charge e moves between two electrodes of general shape. The work done on e
by the electric field ~E when e moves of d~s along its path in dt corresponds to the
energy it receives from the source V of the applied potential. A general sketch of
the involved quantities is presented in Figure 6.5. Hence,

V I(t) dt = ~E · d~s = eE ds cosϑ or, equivalently, I(t) = e
E

V
v cosϑ .

It can be noted that the current at any instant t depends on the velocity v of
the charge e and on its position through the field configuration E/V , which is

2This approach is correct only if the acceleration of the charge is sufficiently small to make
negligible the radiation induced by the field change.
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independent of V . Obviously, integrating over time the current flowing in the circuit
one obtains the total charge deposited on the electrodes.
Returning to the first approach and looking at the current pulse produced by each

single charge hitting the electrodes, the total current can be seen as the superim-
position of two contributions: a steady component and a randomly fluctuating one,
which is the consequence of the discrete nature of the charges. If a large time inter-
val containing a high number of fluctuations is considered, then the time integral of
the random component of the current is approximately zero.

6.2 Kinetic description

The kinetic description of a stationary gas is based on a large population of gas
atoms, whose energy distribution is linked to the temperature kT through the mean
energy 〈E〉. For an ideal gas, p = ngkT at the thermal equilibrium. Similar concepts
apply to charged particles population, even if their charge is a source of electric
field through which every charge exerts forces on any other charge proportionally
to the inverse of the squared distance. Similarly, an external applied electric field
influences the motion of any charge immersed in it. The work done eV =

∫ x2

x1
eE dx

by the electric field on a particle modifies its energy eV = (mvd)2/2, imposing to it
the drift velocity vd.
Collisions and boundaries interactions strongly influences the particle motion and

distribution functions redistributing their velocity, even representing sources and
sinks for particles.

6.2.1 Scattering

The most common encounter in weakly ionized gases is between pairs of particles.
In particular, binary collisions between neutral particles are not considered since the
background gas is thought to be at the thermal equilibrium following a Maxwellian
energy distribution function at the temperature kT .
The collisional events in a complex multi-body system can be treated as statistical

processes based on the quantum mechanics principles [70, 83]: the collision proba-
bility, as well as the energetic and angular distribution of the emerging particle, are
governed by the differential cross sections Q(E ,Ω), defined such that Q(E ,Ω) dΩ
gives the number of particles per unit time falling into the solid angle dΩ(χ, ψ) per
unit flux density of an hypothetical incoming beam directed as the incident particle
(see Figure 6.6). The integral of the differential cross section over all solid angles
is the total cross section σ(E), related to the mean free path λ of the particle and
extensively used in Section 6.1. Usually, any target of interest can be considered
spherically symmetric allowing to integrate over the azimuthal angle ψ to obtain

1
σ(E)

∫
SΩ=4π

Q(E ,Ω) dΩ = 2π
∫ π

0
I(E , χ) sinχdχ = 1 .

I(E , χ) dχ is then the probability the particle has to be scattered in the range dχ
centered around χ. The precise form of I(E , χ) depends on the nature of the collision
and needs to be considered for each species pair and collision type.
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Figure 6.6: Scattering angles for a monoenergetic beam
colliding with a fixed target.

The differential cross section is typically known in the center of mass frame. The
collision itself is best described in the center of mass reference of the two colliding
particles making use of their relative velocity ~vr (see Appendix 6.A).
Once evaluated the new velocities in the center of mass frame, they have to be

rotated back to the laboratory frame. The velocity unit vector after collision, v̂scat,
depends on the direction of the incident one, v̂inc, and on the scattering angles χ, ψ
through

v̂scat
r = v̂inc

r cosχ+ v̂inc
r × î

sinχ sinψ
sin θ

+ v̂inc
r × (̂i× v̂inc

r )
sinχ cosψ

sin θ
, (6.5)

where the term sin θ just give a normalized expression for v̂scat
r , as deducible from

Figure 6.7. The scattered velocity has then to be projected on the laboratory ref-
erence, depending only on the angles θ and φ defining v̂inc. A detailed matrix
description is given in Section 6.A.2.
Each colliding particles undergo a change of momentum and energy depending on

the scattering angle. In the limit cases m1 � m2 and m1 = m2, a more rapid way
to evaluate the energy loss factor is to consider the frame where target particle is at
rest, as described in Section 6.A.3. In the case m1 � m2, the differential scattering
cross section is equally defined in the two frames, while in the case m1 = m2 an
isotropic scattering is usually considered in the center of mass frame.

6.2.2 Volume collisional processes

The collision between charged particles (assumed to be the projectile) and atoms or
molecules of the background gas (the target) can be elastic (the total kinetic energy



128 6.2. Kinetic description

x1

φ

θ
~vscat
r

~vinc
r

bvinc
r ×bi3

bvscat
r

bvinc
r

x2

x3

ψ

bi3
bvinc
r × (bi3 × bvinc

r )

χ

Figure 6.7: Velocity versors in the laboratory frame and
center of mass frame attached to the plane of collision.

of the system remains unchanged and momentum is redistributed between the two
particles) or inelastic (momentum is redistributed but a fraction of the initial kinetic
energy is transferred to internal energy of one or both particles).
The energy and momentum conservation laws have to be satisfied and all binary

collisions can be treated according to the theory presented in Section 6.2.1 and Ap-
pendix 6.A. In particular, electrons are characterized by very low mass if compared
with those of the gas particles (me � mg); due to the favorable mass ratio, even
without accounting for their ready gain of energy from the electric field, the tar-
get can be considered perturbed by the event, simplifying the model of the kinetic
collision (see Section 6.A.3). On the other end, the ions and gas particles are charac-
terized by roughly equal masses (mi = mg), which makes necessary that evaluation
of the relative velocity between the two approaching particles.
Inelastic collisions can be induced only when the relative energy between particles

is sufficiently high to overcome the characteristic threshold energy of the process: the
corresponding cross section is therefore zero for lower energies. When a molecular
background gas is considered, the number of possible excited states rises, while the
characteristic energies of the excited molecular states (vibrational and rotational)
decrease sensibly. Moreover, other processes involving the molecule dissociation
(dissociative excitation, dissociative recombination, dissociative attachment) may
arise.
A fundamental inelastic collision in gas discharges is represented by the ionization

process, induced by electron-neutral collisions. It cannot be considered a binary
collision: even if the neutral particle, becoming an ion, continues on its trajectory
virtually undisturbed (no change in momentum), the electron strips another electron
off the neutral and momentum and energy need to be conserved among the three
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bodies. An experimental expression [84] of the distribution function I(Eej, E) for the
partitioning of the excess energy E − Eexc between the scattered electron and the
ejected one is often used, as will be better discussed in Section 7.2.3. In conjunction
with the conservation laws, it allows to evaluate the flight directions of the scattered
and ejected electrons.
The ionization induced by ion-neutral, or even neutral-neutral, collisions becomes

not negligible at very high temperatures, which is the regime of high-pressure arcs
and thermal equilibrium [52, 66]. At lower energies, a typical collisional process
induced by ions is the charge exchange: an ion strips an electron from a neutral and
the roles of the two particles are reversed. This is an efficient mechanism for energy
redistribution on a time scale comparable with the ions one.
Other volume collisional phenomena like de-excitation or two-step ionization can

be considered negligible until sufficiently high values of excited densities and de-
excitation rates are reached [85]. The same can be stated for the Penning effect
(a long-lived metastable excited combines with a neutral producing de-excitation
and an ion-electron pair) and photo-ionization, since radiation energies from de-
excitation photons are typically lower than the ionization energies (except when
already excited neutrals are involved as targets).
Finally, recombination and dielectronic recombination could be considered. This

processes show a strong dependence of their microscopic cross section on some power
of the electron mean energy[30]; hence, even if charge density and and collision rates
increase in time, the growing kinetic energy induced by the electric field makes
these processes negligible, until thermal equilibrium and densities comparable with
the neutral gas are reached. Direct recombination with no radiation emission is
far less probable since it requires three incoming body to satisfy the energy and
momentum conservation laws.
The above mentioned gas phase reactions are summarized in Table 6.2 for electrons

and in Table 6.3 for ions.

6.2.3 Secondary electron emission

As observed in Section 6.1, boundary phenomena play an important role in the
sustaining of DC discharges, by SEE.
It is known from quantum mechanics [86] that the lowest energy required to remove

an electron from a solid is the so called work function, eψ. A less impinging energy
(thermal, radiative, potential or kinetic) results not sufficient to make the electron
overcome its potential barrier, that bounds it to the metal lattice; consequently the
particle, or radiation, will be simply adsorbed or reflected by the surface.
Traditionally [67, 68, 70], the first mechanism of SEE is by impact of ions and

metastable excited states on a surface (generally the cathode). Two main mecha-
nisms can be observed. The first is the direct emission of an electron from the most
outer metal atom shell, due to the particle impact and consequent kinetic energy
exchange. The second mechanism is the recombination of a particle (with a char-
acteristic potential energy: eVi for an ion, eV ∗ for an excited atom) on the surface:
when the projectile has a total energy mv2/2 + eV ≥ eψ, then it can interact with
the potential well of the material undergoing recombination or de-excitation, while
a secondary electron could be emitted thanks to the release of internal energy. This
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Reactions Description
e− + A → A + e− elastic scattering
e− + A → A∗ + e− inelastic scattering
e− + A → A + 2e− ionization
e− + A∗ → A + e− + hν de-excitation
e− + A∗ → A + 2e− two-step ionization
e− + AB → A + B + e− dissociation
e− + AB → A+ + B + 2e− dissociative ionization
e− + AB → A− + B dissociative attachment
e− + A+ + B → A + B volume recombination
e− + A+ → A+hν recombination with photo-emission
e− + A+ + B → A + B volume recombination

Table 6.2: Gas phase volume collisional processes involving
electrons.

Reactions Description
A+ + B → A+ + B elastic scattering
A+ + B → A + B∗ inelastic scattering
A+ + B → A + B+ charge exchange
A+ + B → A+ + B+ + e− ionization
A+ + B∗ → A+ + B + e− Penning ionization
A+ + BC → A+ + B + C dissociation

Table 6.3: Gas phase volume collisional processes involving
ions.

second mechanism takes place mainly on metals, their work function being generally
of the order of 4÷ 5 eV. The escape of the electron from the material is subject
to a statistical factor; the secondary emission coefficient γ takes into account the
effectiveness of electron release as the average number of electrons per incident ion.
Typical values range between 0.05 and 0.3; while depending on the interacting ion
and material, γ is not strongly affected by the incident kinetic energy.
Often the secondary emission coefficient is considered as the sum of four terms

related to ions, photons, metastables and neutrals [30, 52]. However, in the early
stage of the discharge, since heavy particles have not sufficient energy to travel
long distances, the photoelectric effect can be considered the main source of fresh
electrons [87, 88]. Photons are effective removers of electrons from surface, provided
that hν ≥ eψ, the excessive energy being transformed in kinetic energy of the emitted
electron as follows from the Einstein’s equation [89, 90]. The source of photons can
be external or internal, since characteristic decay times of short-lived excited states
and low values of work function in metals make the process possible. The energy
distribution function of photo-electrons has an ideal triangular shape at 0 K with
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hν − eψ as maximum energy, depending on the Fermi-Dirac electron distribution
function in the metal, which presents a sharp edge at the Fermi level EF(T = 0) [86].
When the temperature is raised, the Fermi energy drops slightly, following

EF(T ) ' EF(T = 0)

(
1− π2

12

(
kT

EF(T = 0)

)2
)
, (6.6)

and the Fermi level no longer represents a sharp energy cutoff. Hence, even the pho-
toelectrons spectral distribution deviates slightly from the 0 K triangular shape [87,
91, 92]. The photo-electric secondary emission coefficient lies in the range 10−3 ÷
10−1, strongly depending on the surface polishing and on the material [93].
Even in the case of electron impact on a surface, a secondary electron can be emitted

if the energy of the primary one is greater than the work function of the material. The
physics of surface reflection and secondary emission is quite complex [93, 94, 95, 96]:
some of the electrons impinging on a target are reflected at the surface barrier,
while most of them cross the potential barrier and interacts many times with the
target material nuclei and electrons. In low-Z targets the energy degradation of
primary electrons is rapid, while the opposite situation prevails in high-Z materials.
This means that even a primary electron could be scattered back to the surface
and escape if it has sufficient residual energy. However, highly energetic electrons
produce excitation and ionization within the solid and the emission of true secondary
is possible. The analysis of the spectrum of the outcoming electrons can be split in
three regions: a first peak at energies near that of primaries, Epr, corresponds to the
reflected electrons, while a second diffuse peak at low energies (few eV) contains the
true secondaries; the region of intermediate energies is less populated by multiple
scattered primaries [97]. The secondary emission coefficient δ can be split in two
contributions: the average number of the true secondaries per incident electron and
that of rediffused primaries. The coefficient δ depends on the energy of the primary
electron and on the angle of incidence: in particular, at low and high energies δ < 1
(Epr < eψ and no secondary is produced or Epr � eψ and secondaries are produced
too deep within the target), while, for energies in the range 200÷ 2000 eV (strongly
dependent on the material and its surface status), δ > 1 and secondaries start to
arise. Recently analytical formulas have been proposed [97, 98, 99] for δ and electrons
spectrum.
Because of their low conductivity, insulators usually tend to adsorb charged par-

ticles hitting their surfaces: i.e. at low and high energies (when δ < 1), a primary
electron will be adsorbed and the surface will charge negatively until it reaches the
primary electrons accelerating potential; then, other electrons will be accelerate with
difficulty to energies such that δ > 1; however, in this case, electrons will desorb
from the surface leaving on it a surplus of positive charge (maximum values of δ
can be greater than 2) [97, 100]. Consequently, charged dielectric surfaces are an
optimum situ for electron-ion recombinations.
The above described surface interactions are symbolically summarized in Table 6.4,

where the surface symbol is omitted on both sides.
Thermionic emission fluxes of electrons and ions from surface are strongly de-

pendent on the body temperature (je,i ∝ T 2 exp(−eψ/kT )), this being connected
with the vibrational energies of the particles in their shells and lattice respec-
tively [101, 102]. Therefore, it results not negligible only at high temperatures
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Reactions Description
hν→ e− secondary emission by photons
A∗ → A + e− secondary emission by excited
A+ → A + e− secondary emission by ions
e− + A+ → A recombination
A∗ → A de-excitation

Table 6.4: Surface enhanced reactions.

(T = 1000÷ 2000 K).
Lastly, another possible source of electrons from surfaces is the field emission:

an applied electric potential can interfere with the external potential barrier of a
solid increasing the probability of electrons emission by tunnel effect. Combining
the flux of electrons directed outwards the metal surface with the tunnel effect
probability, and using the Wentzel-Kramers-Brillouin approximation, which ignores
the temperature influence and the lowering of the barrier by the Schottky effect, the
Fowler-Nordheim current density can be written as [103, 104]

je =
C1(βE)2

eψ
exp

(
−C2

eψ3/2

βE

)
(6.7)

depending on the applied electric field E (in V/m) and on the work function eψ
(in eV), C1 = 1.54 · 10−6 and C2 = 9.83 · 109 being constants depending on the
mobility of electrons in the metal µ and on the Fermi level of equation (6.6). Only
for electric field values of the order of E=108 V/m, the electron current flowing
from the metal, and measured in A/cm2, becomes not negligible. Notwithstanding,
the dimensionless constant β is intended as a field enhancer to take into account
the microscopic harshness of the metal surfaces; typical values are of the order of
200÷ 300, but particularly sharp edges (like the s.c. knife-edge [20]) could increase
the value even of one order of magnitude.

6.3 The breakdown phase in PF devices

After the above general introduction to the breakdown in gases, the main features of
the phenomenon of interest will be hereafter examined. The characteristic operative
conditions of the device make critical most of the experimental analysis. Hence, the
numerical approach seems to be the best suited for breakdown investigations in PF
devices.

6.3.1 Operative conditions

As already seen in Chapter 1 and Chapter 2, the PF device is typically operated
with pressures ranging between 1 and 10 Torr and charging voltages of the order
of few tens of kV. The spatial distribution and time evolution of the ionization in
the first stage of the breakdown is essentially determined by the reduced electric
field ~E(~r, t)/p; ~E(~r, t) within the gun can be split in the product of time-dependent
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component τ(t) and in a spatial dependent one ρ(~r) which are independent from the
pressure.
The discharge breakdown is known to develop at the closed end of the electrodes

over the insulator sleeve. In this region, the electrical potential does not present a
uniform gradient over the interelectrode gap, as supposed in Section 6.1.1 deriving
the Paschen’s law; the presence of the dielectric and of the cathode backwall deter-
mine a strong electric field (high values of ρ(~r)) near the cathode edge facing the
insulator. Other regions of enhanced spatial component of the electric field are the
radial gap between the electrode at the end of the insulator and the open end of the
electrodes (edge intensification).
The discharge of the capacitor bank over the open load makes the PF behave like

a capacitor until a continuous current, flowing between the electrodes, closes the
circuit. Therefore, the applied voltage is not stationary and equal to the charging
one, but grows following the rules of a discharge over a secondary small capacitance
as presented in Section 5.A.2. A first order approximation of equation (5.5) can be
assumed; typical operating parameters of PF devices lead to a voltage increasing rate
(proportional to τ(t)) of about 200÷ 500 V/ns, in good agreement with experimental
data registered through voltage probes [15].
The spatial and temporal dependence of the electric field highly complicates any

attempt to find an analytical solution of the problem. Even if in a small region
of the domain, the strong local electric field, the relatively low pressure and the
rapid growth of the applied potential, very soon lead to an over-voltage condition
V/Vb > 1, which is known to induce very fast and inhomogeneous breakdowns.
Even if the Meek criterion is not reached, the high values of the reduced electric
field make the role of runaway electrons not negligible. Any solving model must
then take into account the anisotropy of the momentum transfer cross section which
reflects in decreasing values of α for increasing E/p.
Even if the development of pulsed, high-voltage gas discharges has been thoroughly

studied [105], the microscopic picture of the breakdown in a PF device is not yet
completely understood. The process starts with the acceleration of few seed electrons
(present in the gas with densities of 0.5 cm−3Torr−1[71]) to energies sufficiently
high to induce ionizing electron avalanches. Field emission from the cathode and
thermionic effect does not seem to play a relevant role in the initial stages of the
breakdown. The space charge effects start to be relevant on the electric field, when
the number of electrons produced in the head of an avalanche reaches a value of
108 cm−3 [52]. At this stage, also surface charge build-up on the insulator starts to
play an important role and cannot be neglected. The corresponding EEDF is far
from Maxwellian and the key parameter of the ionization growth is the local value of
~E(~r, t)/p [106]. When the density of charged particles n reaches values of the order
of 1013 cm−3, the energy equipartition time between electrons shortens to about
1 ns which is equal or lower than the characteristic time of electric power input (see
Section 6.1.4). The ionization evolution is no longer ruled by E/p but by Te and ne.
The input power is transferred through ionization and excitation processes plus the
heating of the new electrons up to Te. The mean energy and collisional rates reach
then a plateau.
The SEE by ion or excited impact seems to play a negligible role due to the short

characteristic time of the phenomenon. Until sufficiently high values of electric
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field are reached to enhance the electron field emission, the only reasonable way for
the production of secondaries is the photoelectric effect induced by the de-excitation
photons. Due to the low pressure, no photoionization and recombination is expected.

6.3.2 Experimental results

Experimental studies of the initial phase in PF devices concern mainly the macro-
scopic sheath formation (observed through image converter pictures and magnetic
probes) and electrical macroscopic quantities (measured with fast voltage dividers
and Rogowski coils) [15, 107, 108]. Usually, optical measurements allow to observe
the formation of rather uniform sheaths on the insulator surface. Sometimes they
are coupled with radial filamentary discharges at the end of the insulator length [19].
Others [15, 18] found the formation of a uniform sheath over the insulator only for
pressures ranging between 1 and few Torr; at lower pressures (p ∈ [0.1, 1] Torr)
a diffuse volume discharge filling the interelectrode gap above the insulator was
observed, extending to the electrodes open end for decreasing pressures; at high
pressures (p ∈ [5, 20] mbar) a second radial CS with filamentary structure devel-
ops at the end of the insulator. In the middle of this pressure range, in devices
with small electrode diameters (rint < 1 cm), a third filamentary CS bridges the
electrodes at their open end and further increasing values of p make the insulator
sheath disappear. It was observed that the minimum pressure, at which the static
voltage breakdown is minimum and the CS forms on the insulator, approximately
coincides with the values predicted from the standard Paschen’s curves, using the
interelectrode gap as d [15]; hence, at decreasing pressures, it is reasonable to find
that the discharge occupies large volumes since the electron mean free path increases
over d and the chance of producing ionization is uniformly increased.
The time delay td between the switching of the spark gap and the electrical break-

down in the gun was measured and observed to fit the empirical relation [18]

td = 220 p−1/3÷−1 ,

with [tp] = ns for [p] = mbar. In the pressure range in which CS forms on the
insulator, the values of td usually become comparable with, or even smaller than,
the voltage rise time, i.e. the breakdown occurs before the charging voltage is
reached.
The plasma resistance Rp, instead, decreases exponentially as Rp ∝ exp(−t/τ) with
τ ' 5/p in ns/mbar. When the EEDF starts to approach a Maxwellian distribution
and the ionization is no more ruled by E/p, assuming that a single CS forms on
the insulator of length l with a small thickness s compared with rint, its resistance
is approximately given by Rp = l/(2πrintsσ). The conductivity σ at low ionization
degrees was derived including electron and neutral collisions to be

σ ' 2760
(
T−3/2

e + 0.015T 1/2
e

ng

ne

)−1

,

with Te in eV and σ in Ω-1m-1. The electron-neutral collisions (second term in
parenthesis) depends on the ionization degree ng/ne and is relevant only for values
less than 1% and, under the hypothesis of slightly variable Te, σ changes only with
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ng/ne. Typical PF parameters (l/rint ' 1.5, R '
√
L0/C ' 0.05 Ω) and exper-

imental observations (s ' 0.5÷ 1 cm), allow to estimate σ ' 500÷ 1000 Ω-1m-1,
corresponding to an ionization degree of less than 1%.
Peak currents of few tens of kA were reached in tens of ns corresponding to current

densities of about 10 kA/cm2 [109].
The long delay times and relatively slow fall of the resistance cannot be explained

by well-known breakdown and spark models.
Analogous studies performed with different insulator materials showed that the

choice of the dielectric does affect the breakdown and the formation of the plasma
layer. Therefore, for various insulator materials there have been found different
ranges of the operational pressures [107]. Moreover, the insulator surface alteration
due to successive discharges (conditioning) was found to be responsible for an im-
proved stabilization in performances: the development of microscopic conductive
sites (size of the order of 1 µm) on the insulator surface, due to deposition of metal
ablated particles, increases the efficiency of the breakdown [16].
Even the geometry of the cathode and insulator sleeve strongly influences the break-

down initiation, being connected to the change in the spatial component ρ(~r) of the
electric field. The presence of proper field-intensifier (called knife-edge) seems to
enhance the initial breakdown process along the insulator surface [20] allowing to
extend the pressure ranges for a proper CS formation on the insulator sleeve [107].
Moreover, while the choice of a cylindrical OE or of a squirrel cage one does not
seem to influence the initial phase considerably, the choice of the insulator length is
more decisive [110].
All the above cited experimental activities have been conducted in order to bet-

ter understand the breakdown role in PF discharges. Numerous experiments have
shown that final PF characteristics depend considerably on the initial phase of the
discharge. Since, in the past, large PF facilities failed to reach the expected effi-
ciency [110], investigations of the current sheath formation are of primary impor-
tance for the optimization of high-current discharges. Similarly, the reproducibility
of the phenomenon is of primary importance in repetitive devices.
Experimental evidences are not enough to fully understand the PF breakdown,

since many physical processes concur to complicate data acquisition and analysis.
A deeper insight is needed.

6.3.3 Numerical models

Due to the not perfectly cylindrical geometry and to the nonlinear feature of the
equations, analytical solutions of discharge breakdown models cannot be faced even
at the initial stage, when space-charge effects are negligible and low current densities
are involved. Moreover, at high voltages and currents, the ionization coefficient make
non linear the set of equations. Many numerical fluid models have been developed for
discharge simulations, based on the method of characteristics [111], flux-corrected
transport algorithm [112, 113, 114] or finite elements methods [115]. The reader
is referred to [116] for an interesting review on discharge simulation through fluid
codes. Both one- and two-dimensional hydrodynamic models were developed in the
past years to simulate PF dynamics [34, 37, 40]; recently, particular interest has
been devoted to the breakdown phase [41, 117].
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The main drawback of fluid codes is the assumption of a Maxwellian EEDF, that
means the assumption of macroscopic parameters like temperature, mobility and dif-
fusion coefficient in the balance equations. Nevertheless, as shown in Section 6.1.2,
the presence of a strong electric field induces strong deviations from the thermo-
dynamic equilibrium. Moreover, at high values of the reduced electric field, the
first Townsend ionization coefficient shows a decreasing behavior, due to the above
described runaway effect. A kinetic approach, able to describe a generic local non-
stationary EEDF, appears more suited for the breakdown modeling of the very early
stage of gas discharge development, dominated firstly by elastic collisions and then
by electron impact ionizations.
The coupling of the Newton law to follow particles trajectories and of sampling

methods to describe microscopic interactions is an effective kinetic method, able to
treat species behavior with a minimal amount of assumptions. When space-charge
effects are not negligible a self-consistent treatment of electric field must be added.
The drawback of similar detailed and complete description is the significant calcu-
lation time required. Similar approaches have been widely used in the simulation
of RF and DC glow discharges [118, 119, 120, 121] at relatively low values of filling
gas pressures (1÷ 100 mTorr); even if coupled in few cases with chemical and diffu-
sive modules [122], the models are usually limited to mono-dimensional geometries
and seldom simulate all the breakdown evolution starting, at least, from a weakly
ionized condition. Other authors investigated the avalanche development and its
transition into streamers even at higher pressures with particular interest to local-
ized effects [123, 124, 125, 126]. Recently, interest was devoted even to fast ionization
waves and to nanosecond discharges [127, 128], characterized by very fast ramp of
applied potential (up to about 1013 V/s). Although more similar to the breakdown
development of interest for the important role played by runaway electrons, even the
results of these works were based on a simplified mono-dimensional geometry and
cannot be applied to the more complex case of PF devices.
In the present work, a PIC-MCC code has been implemented in order to simu-

late the gas breakdown in a bidimensional cylindrical geometry representative of the
closed end of a PF device electrodes. The model will be described in details in the
next chapter, while the following one will be devoted to the development of numer-
ical techniques able to keep under control the exponentially increasing number of
simulation particles. The code reveals an effective tool to study the microscopic time
evolution of the phenomenon, allowing to deduce the role played by each physical
mechanism and to obtain macroscopic quantities of interest.

6.A Classical collisions of smooth elastic spheres

Few considerations will follow on the subject of scattering processes between smooth
hard spheres. In particular, the relative velocity after the collision will be obtained
through a matrix analysis of angle rotations and the loss of energy will be derived
as a function of the mass ratio and scattering angle.
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6.A.1 Laboratory and center of mass frames

Consider two smooth spheres of masses m1 and m2 which are about to collide. Let
~v1 and ~v2 be their (intersecting) velocities in the laboratory frame. The total mass
M = m1+m2, momentum ~p = m1~v1+m2~v2 and kinetic energy E = (m1v

2
1+m2v

2
2)/2

are conserved after the impact, which is considered instantaneous. The system can
be described through the center of mass velocity ~vCM = ~p/M and the relative velocity
~vr = ~v1 − ~v2; the original velocities expressed as a function of these are

~v1 = ~vCM +
mr

m1
~vr (6.8a)

~v2 = ~vCM − mr

m2
~vr , (6.8b)

while the total kinetic energy results

E =
1
2
(Mv2

CM +mrv
2
r ) ,

with mr = m1m2/M the so called reduced mass.
The velocities can be rewritten in the center of mass frame, moving in the labo-

ratory one with velocity ~vCM. Denoting with ~u all the velocities in this reference
frame, then ~uCM = 0, while the velocities of the two particles are

~u1 = +
mr

m1
~vr

~u2 = −mr

m2
~vr ,

which means they are moving in opposite direction with a consequent zero momen-
tum (all given by ~p = M~vCM). Obviously, the relative velocity ~vr is independent of
the considered frame.

6.A.2 Scattering matrix

If the force between the two particles is a central force, they move in a fixed plane
within the laboratory frame on which both the velocities before and after the collision
lie. Hence, the relative velocity after the collision will belong to the same plane, being
rotated of the scattering angle χ from ~vr.
Let then consider the laboratory frame, defined by (̂i1, î2, î3), in which the relative

velocity is identified by the two angles φ, lying on the plane î1, î2 and measured
from î1 direction, and θ, measured from î3. A second frame, the center of mass
one, can be chosen in order to have ~vr directed as ι̂3; in this second reference, the
plane containing the relative velocity after the collision ~v′r is identified by the angle
ψ measured from ι̂1, and ~v′r fully identified by χ measured on it starting from ~vr as
the scattering angle. Since no particular limit is placed on the choice of ι̂1 and ι̂2,
one can select v̂r × î1 and v̂r × (̂i1 × v̂r) in order to form an orthonormal basis with
v̂r, as shown in Figure 6.7.
Since the collision is studied in the center of mass frame, the combination of two

3D rotations gives the expression of ~v′r in the laboratory reference, each given by a
double 2D rotation. The first is connected to the change of reference from i to ι,



138 6.A. Classical collisions of smooth elastic spheres

determined by the two rotations of φ around î3 and of θ around the new î′2 axis.
Hence the velocity ~vιr in the center of mass frame is obtained multiplying the one in
the laboratory frame, ~vir, by the double rotation matrix

~~Riφθ = ~~Riθ
~~Riφ =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 =

=

 cos θ cosφ cos θ sinφ − sinφ
− sinφ cosφ 0

sin θ sinφ sin θ sinφ cos θ

 .

through which: ~vιr = ~~Riφθ~v
i
r. The inverse rotation is obtained by

(~~Riφθ)
−1 =

 cos θ cosφ − sinφ sin θ cosφ
cos θ sinφ cosφ sin θ sinφ
− sin θ 0 cos θ

 .

Then, the new velocity ~vι′r can be obtain through the rotation by the scattering
angles χ and ψ around ι̂3 = v̂r, which simply gives

~~Rιχψ =

 0 0 sinχ cosψ
0 0 sinχ sinψ
0 0 cosχ

 .

The new relative velocity in the laboratory frame ~vi′r is, therefore, obtained from a

first rotation of ~vir to ~vιr through ~~Riφθ, composed with the scattering rotation ~~Rιχψ to

obtain ~~Rιφθ in the center of mass reference, and then again with (~~Riφθ)
−1 to go back

to the laboratory frame:

~v′r = (~~Riφθ)
−1 ~~Rιχψ

~~Riφθ~vr =

= |~vr|

 cos θ cosφ sinχ cosψ − sinφ sinχ sinψ + sin θ cosφ cosχ
cos θ sinφ cosχ cosψ + cosφ sinχ sinψ + sin θ sinφ cosχ

cos θ cosχ− sin θ sinχ cosψ

 .

6.A.3 Emerging velocities and energy loss

If the collision is not elastic, then an amount of the energy ∆E may become available
(positive, in the superelastic scattering) or may be lost (negative, in the inelastic
scattering). This modifies the magnitude of ~v′r, independently of the change of
direction, through the relation

|~v′′r | =
√
Er + ∆E
Er

~v′r .

Once the new relative velocity direction is determined and is scaled in magnitude,
the new velocities in the laboratory frame, ~v′1 and ~v′2, can be computed through
equations (6.8a), using ~v′′r instead of ~vr.
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When the interest is centered only on one of the two particles undergoing the
collision, it can be useful to change a little the approach as follows: a new reference
frame is defined to follow the target particle, which is, therefore, considered at rest
in it, while the projectile will move with the relative velocity ~vr = ~v1 − ~v2. In this
reference, the scattering angle χ0 is related to that in the center of mass frame
through [83]

tanχ0 =
sinχ

m1/m2 + cosχ
.

The projectile undergoes an energy loss factor

ε =
∆E
E

= 2
m1m2

(m1 +m2)2
(1− cosχ) = 2

mr

M
(1− cosχ) , (6.9)

which depends on the scattering angle in the center of mass reference, as easily
deducible by the momentum and energy conservation laws remembering that the
initial and final velocities lie on the same plane.
In the particular frame of interest, the particle will be scattered with the angle χ0

and the transformation rules of Section 6.A.2 can be directly applied to ~vr using χ0

instead of χ. Finally, the projectile is put back in the laboratory frame adding the
velocity ~v2 of the target.
Two limit cases can be of interest. The first is that of a small mass hitting a heavy

target (m1 � m2). In this case χ0 = χ. Once determined the scattering angle, the
energy loss of the lighter particle in the elastic recoil is computed as

ε = 2
m1

m2
(1− cosχ) , (6.10)

even if almost negligible due to the low mass ratio. If the target can be considered at
rest, then the projectile velocity has not to be modified before and after the collision
(there is no need to calculate the relative and center-of-mass velocities).
The second case is that of equally weighted particles (m1 = m2). In this case,
χ = 2χ0, while the energy loss factor is given by

ε =
1− cosχ

2
= sin2 χ0 . (6.11)





CHAPTER 7

The 2D electrostatic PIC-MCC code

Abstract. The microscopic description of the breakdown phase in a PF device is
performed coupling a bidimensional electrostatic PIC code with a MCC module: the
first allows to study the motion of the particles consistently with the space-charge
effects which modify the applied external field; the stochastic module is used to
sample the collisions between charged particles and a background uniform neutral
gas. After a brief introduction of the PIC methods, limited to the electrostatic
case of interest, the attention will be drawn to its coupling with the collisional
module. A brief description of the implemented code will follow, while few numerical
optimization will be collected in appendix.
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7.1 Particle In Cell method

The major strength of PIC methods is the absence of any particular assumption
on the distribution function of the simulation particles allowing to fully describe
the system from a microscopic point of view, including all the related nonlinear
and collective effects. The associated drawback is the low computational efficiency,
related to the high number of simulation particles which implies both a high demand
of CPU-time and memory resources.
The general flowchart of an electrostatic PIC code is presented in Figure 7.1: while

particles are described in a continuum phase space domain (both in position and
in velocity, but not in time), the fields are solved on the nodes of a discrete mesh.
Hence, the particles charge has to be assigned to the mesh as source term for the
electric field solution; on the other hand, this has to be interpolated on the particles
position to obtain the pushing force needed for their advance. The procedure is then
iterated for each timestep in a loop over time.
Since it is usually not possible to follow all the particles in a system, only a limited

number of them is treated assuming their behavior to be representative of all the
real particles. Hence, the difference between the term “simulation particles” and
“real particles” (see Chapter 8 for a more detailed explanation).

7.1.1 Interpolation schemes

The interaction between “continuum particles” and “discrete fields” is achieved by
means of interpolation schemes. All the physical quantities related to the particles
are weighted on the grid points through the so called shape factor [129, 130], this
being related to the effective finite shape of the particles as seen from the grid. The
charge density felt in the node of coordinate ~xg due to a charge in ~xp is changed
from qδ(~xg − ~xp) to qS(~xg − ~xp), where q =

∫
S(~xg − ~xp) d~xg is the total charge of

the particle and δ(~x) the ND dimensional Dirac delta function.
The grid charge density in the generic node {~xg} due to a set of Np particles

~F (~xp) −→ ~vp −→ ~xp

Interpolation of particles

Integration of the
equations of motion

Interpolation of the fields

Integration of Poisson
equation on the grid

charge on the grid nodeson the particle positions

ρ(~xg) −→ ~E(~xg)

~E(~xg) −→ ~F (~xp) ~xp −→ ρ(~xg)
∆t

Figure 7.1: Schematic flowchart of an electrostatic PIC
code.
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positioned in ~xp is obtained as

ρg = ρ(~xg) =
∑
p

qpS(~xg − ~xp) . (7.1)

Once solved the electric field of the space charge ρ(~xg) as described in more details
in the next section, the force ~F = q ~E acting on particles is exactly known only on
the grid nodes; hence, it has to be interpolated from the grid to the particle positions
as

~Fp = qp
∑

~EgS(~xg − ~xp) ,

where ∆xg,j is the cell width along the j-th of the ND directions. The use of the
same weight function eliminates the possibility of induced self-forces (gravitation-like
instability) and ensures conservation of momentum [43, 130].
For example, a widely diffuse choice in PIC code is the first order weighting (PIC-

CIC); in this case the shape factor assumes the form

S(~xg − ~xp) =


∏ND
j=1(∆xg,j − |xp,j − xg,j |)∏ND

j=1 ∆xg,j
if |xp,j − xg,j | ≤ ∆xg,j ∀j

0 otherwise

(7.2)

The first-order weighting is usually called area weighting in 2D codes, as easily
deducible from Figure 7.2. Even if more sophisticated and generalized weighting
schemes have been developed, with corrections intended to avoid systematic errors
in density calculation when curvilinear coordinates are involved [131], the induced
error for the area weighting in an uniform grid scales with ∆x2

g,j , which is considered
acceptable in the present case.
The particles can be viewed as having a finite size, with a box-shaped dimension

roughly of the order of the cell dimensions, resulting as a tenuous cloud-like charge
spot (hence the name Cloud In Cell or CIC) [43, 132, 133]. When two finite particles
belong to the same cell, the inter-particle force drops to zero and they can cross each
other. The zero, rather than infinite, force as r → 0 results in a loss of resolution
for the short-range Coulomb collisions at impact parameters less than a cell size.
This can be interpreted as a smoothing effect of the grid, and it is desirable when
primarily seeking long-range effects. As far as collisions with a background gas are
considered, in a breakdown process simulation, the effect of short-range Coulomb
collisions is usually negligible.

7.1.2 Electric field solution

When the dynamic coupling between electric and magnetic fields can be ignored,
the Maxwell’s equations system is reduced to the electrostatic case. Generally, both
its source term (charge density, ρ) and solution (electric potential, φ) are known at
the grid nodes. Combining the Gauss’ law (∇ · ~D = ρ) with the definition of the
scalar potential ( ~E = −∇φ), the Poisson’s equation

∇ · (ε∇φ(~x, t)) = ρ(~x, t) (7.3)
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Figure 7.2: Charge assignment for linear weighting in two
dimensions; areas are assigned in the PIC bilinear in-
terpolation interpretation (a) and in the CIC cloud one
(b). The two methods lead to the same result in carte-
sian geometry.

is obtained. Instead of solving the above elliptic partial differential equation (PDE)
through finite differencing, a finite volume approach is used. The Poisson’s equa-
tion is differenced through a Gaussian pillbox, which allows to include directly the
boundary conditions on both internal and bounding, conductive and dielectric sur-
faces [134]. The Gauss’ law can be written in integral form for each finite volume
surrounding a node of the mesh as∫

S
ε ~E · d~S =

∫
V
ρdV +

∫
S
σ dS = Q

or

2π∆z(ε
i+1/2,j

r
i+1/2

Eri+1/2,j
− ε

i−1/2,j
r

i−1/2
Eri−1/2,j

)+

+ π(r2
i+1/2

− r2
i−1/2

)(ε
i,j+1/2

Ezi,j+1/2
− ε

i,j−1/2
Ezi,j−1/2

) = Qi,j (7.4)

where an axial-symmetric problem in cylindrical coordinate (r, z), corresponding to
the couple of indexes (i, j) of the mesh, has been considered.
The dielectric constant ε is assigned to each center of the grid cells, assuming

it uniformly constant over the cell. The dielectric constant on the cell interface,
take ε

i−1/2,j
as reference, is then obtained as average between the ε

i−1/2,j−1/2
and

ε
i−1/2,j+1/2

. This assumption allows to have dielectric and conducting surfaces falling
exactly on the cell interfaces.
The total charge inside the volume Qi,j corresponds to the sum of all charged

particles weighted on the grid point (i, j). At an external boundary or internal
interface, Qi,j can be written as

Qi,j = ρi,j∆Vi,j + σi,j∆Si,j
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where ∆Vi,j is the volume containing all the free charges associated with the grid
point, while ∆Si,j is the area of the physical interface on which charge density can
accumulate. In principle, the method is perfectly coherent with the cloud interpre-
tation of charged particles (see Figure 7.2-(b)), where the charge occupies a volume
equivalent to the Gaussian pillbox of interest, but is centered on the i−th particle
position, only partially contributing to the charge contained in the finite volume.
A particle crossing a dielectric free-space boundary is split on the adjacent nodes
through a linear weighting procedure [130].
In the electrostatic approximation, the electric potential can be derived from the

electric field in finite difference form through

Eri−1/2,j
=
φi−1,j − φi,j

∆r
Eri+1/2,j

=
φi,j − φi+1,j

∆r
(7.5a)

Ezi,j−1/2
=
φi,j−1 − φi,j

∆z
Ezi,j+1/2

=
φi,j − φi,j+1

∆z
. (7.5b)

When substituting the above formulation in equation (7.4), a finite difference Pois-
son’s equation is obtained, having the electric potential as unknown, defined on
the grid nodes (while the electric field is defined at the interface between two finite
volumes).
The electric field in free-space, needed for advancing particles, is obtained by finite

central differencing over two cells1. On the dielectric free-space boundaries, the field
is obtained using half-Gaussian pill-boxes [134]: as the grid spacing approaches zero,
the equations reduce to the electrostatic jump condition ε1E1 − ε2E2 = σs, with σs

the surface charge density.
When an external potential is applied, the field can be solved by superposition of

two contributes: a Poisson’s equation ∇ · ε∇φPoisson = −ρ/ε with zero boundary
conditions is solved at each time-step to account for the space charge effect, while
a Laplace’s equation ∇ · ε∇φLaplace = 0, with a mix of Dirichlet (applied potentials
normalized to 1) and Neumann2 (applied surface charge densities) boundary condi-
tions needs to be solved only once to account for the field effects. Indicating with
φ

(t)
0 the external applied time varying potential, the electric potential in the system

at time t is then obtained as φ(t)
ij = φ

(t)
ij,Poisson + φ

(t)
0 φij,Laplace.

The unknown φ(t)
ij matrix can be obtained through many different solvers, both iter-

ative or direct [129]. In the present work, a classic Successive Over Relaxation (SOR)
method has been implemented exploiting the solution at the previous time-iteration
as first trial for the next one, as the iterative nature of the solver suggests [135].
The over-relaxation coefficient, for the elliptic problem in a uniform rectangular
grid Ni×Nj , is chosen as ω = 2(1−π

√
Ni/Nj) [129]. More efficient methods for el-

liptic problems, Multigrid as first, are under investigation for future implementation
and parallelization.

1The same strategy is followed on internal dielectric corners where a normal direction cannot
be defined.

2Mathematically, a Dirichlet boundary condition is required for a unique solution; often, one
chooses a reference potential of zero at the grounded electrodes.
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Figure 7.3: Schematic representation of the staggered
leapfrog scheme.

7.1.3 Particle advance scheme

Once obtained the total electric field as superposition of both the space-charge effect
and the external driving potential, the particles can be advanced through the solu-
tion of the Newton’s equation of motion d(γm~v)/dt = ~F , having the Lorentz’s force
~F = q( ~E + ~v × ~B) as pushing force. The Newton-Lorentz system in the discretized
form is often solved through a staggered second-order accurate center difference
scheme, often referred to as the leapfrog scheme [130], having the advantage of re-
quiring few operations and minimal storage, since the update can be done in place.
Neglecting the relativistic factor γ = (1 − (v/c)2)−1/2 and the contribution of the
magnetic field3 ~B, the finite difference form of the leapfrog method gives

~v(t+1/2) − ~v(t−1/2)

∆t
=

q

m
~E(t) (7.6a)

~x(t+1) − ~x(t)

∆t
= ~v(t+1/2) (7.6b)

where t±1/2 is used to label the time-instant t±∆/2. The value of ~E(t) is obtained
through the solution of the electric field and interpolated over the particle position
through the weight function, as described in Section 7.1.1.
As shown in Figure 7.3, integration starts from known ~x(t) and ~v(t−1/2) producing

later on ~x(t+1) and ~v(t+1/2). The charge density on the nodes, the electric potential
and the electric field are also known at integer multiple of ∆t. The simultaneous
solution of the two time-centered difference equations is second order accurate (∆t2

error term).
The initial conditions for t = 0, ~v(−1/2) being undefined, necessitate of a first half-

time integration of the first equation in the system. When a starting Maxwellian
distribution function is considered as stationary initial condition, before the appli-
cation of an external voltage V (t), the electrostatic problem under investigation can
be solved consistently.
Once the cycle over the simulation particles has been completed, the new charge

3In the case of an electromagnetic PIC, an efficient integration of the scheme, which avoids the
full cross product calculation is due to Boris [136].
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distribution on the grid nodes can be obtained through equation (7.1), and the
time-iteration is restarted.

7.1.4 Accuracy and stability limits

Many efforts have been devoted to the analysis of the numerical stability and ac-
curacy of the above proposed numerical methods based on the interaction between
particles and a discretized time-space [130, 131, 137]. The main conclusions of in-
terest will be reported hereafter.
The presence of a numerical grid is “felt” by the particles moving in it. The in-

teraction force F (x1, x2) acting on a particle at x2 due to a particle at x1 in a
mono-dimensional physical system depends only on the separation x = x2 − x1 and
is invariant under displacement. When a spatial grid is introduced, the displacement
invariance is lost since the particles can be displaced while the grid is fixed. Thus, F
also depends on the location relative to the grid of the midpoint xm = (x1 + x2)/2;
in a grid of uniform spacing ∆x, the force F (xm − x/2, xm + x/2) is periodic with
period ∆x. The Fourier integral transform in x and the Fourier series in xm can be
used to study the effect of nonuniformity on an infinite periodic plasma [130]:

F
(
xm −

x

2
, xm +

x

2

)
=
∫ ∞

−∞

dk
2π

exp( ikx)
∞∑

p=−∞
exp( ipkgxm)F̃p(k) ,

with kg = 2π/∆x the associated grid wave number, and

F̃p(k) =
∫ ∞

−∞
dxFp(x) exp(− ikx)

Fp(x) =
1

∆x

∫
∆x

dxm exp( ikgxm)F
(
xm −

x

2
, xm +

x

2

)
.

The difference δF = F − F0, between the real force F and the average force F0(x)
corresponding to the first mode p = 0 of the Fourier series, represents a nonphysical
grid force. Considering a system of particles with density n(x), the force F (x) on a
particle is the superimposition of all the contributions:

F (x) =
∫

dx′F (x′, x)n(x′) ,

which is transformed into

F̃ (k) =
∞∑
−∞

F̃p

(
k − 1

2
pkg

)
ñ(kp) ,

where kp = k − pkg. Comparing it with the expression of the force in a continuum
free space

F̃ (k) = ñ(k)F̃p=0(k) ,

it arises that the grid introduces a coupling of the force and density perturbations
which differs by integer multiples of the grid wave number kg. All the terms corre-
sponding to p 6= 0 are named aliases: the grid cannot solve properly the harmonics
having a wavenumber greater than the grid one [130].
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The analysis of the dielectric function for an unmagnetized electrostatic Vlasov
plasma leads to two dispersion relation for the gridless and gridded cases. The alias
coupling appears unimportant for λD/∆x = 1 and the averaged force appears to
properly work. Approximately, for linear weighting, λD/∆x ≥ 1/π ' 0.3 gives
an ignorable growth of this nonphysical instability [138]. In many applications, a
cold plasma component provides accurate, noise-free collective behavior even for
λD/∆x ' 0.1 [139, 43].
The stability of the leapfrog scheme can be derived for particles in simple mono-

dimensional harmonic motion:

d2x

dt2
= −ω2

0x .

Center differencing and combining the velocity and position equations as obtained
from the leapfrog scheme leads to

x(t+1) − 2x(t) + x(t−1)

∆t2
= −ω2

0x
(t) ,

whose solutions are in the form of

x(t) = C exp(−iωt) and x(t+1) = C exp(−iω(t+ ∆t)) .

By means of the Euler’s identity sin(ξ) = (exp(iξ) − i exp(−iξ))/2, by substitution
of the above solutions in the finite difference form of the differential problem, one
obtains

sin
(
ω∆t

2

)
= ±ω0∆t

2
;

it follows that the numerical stability of the method is limited by the condition
ω0∆t ≤ 2, since in the opposite case an imaginary component would be obtained [130].
Since the phase error is quadratic for small ω∆t� 1

ω∆t
2

(
1− 1

6

(
ω∆t

2

)2

+ O
(
ω∆t

2

)4
)

=
ω0∆t

2
,

ω0∆t ≤ 0.2 is usually assumed as good accuracy condition, with ω0 the maximum
plasma frequency [43].
The stability of the center difference methods employed both for the discretized

space and time can be analyzed through the wave equation

∂2ψ

∂t2
= c2

∂2ψ

∂x2

in the mono-dimensional space. Center differencing both in time and space with ∆t
as time-step and ∆x as grid-space, one obtains

ψ
(t+1)
j =

(
c
∆t
∆x

)2

(ψ(t)
j+1 − 2ψ(t)

j + ψ
(t)
j−1) + 2ψ(t)

j − ψ
(t−1)
j . (7.7)

The sinusoidal wave, ψ(x, t) = exp( i(ωt − kx)), is numerically translated into
ψ

(t)
j = exp( i(ωt− κ(j∆x)), with κ the numerical wavenumber. Substituting this in
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equation (7.7) for varying j and t and properly combining the arising exponential
terms, a dispersion equation is obtained:

cos(ω∆t) =
(
c
∆t
∆x

)2

(cos(κ∆x)− 1) + 1 .

For c∆t/∆x = 1 the numerical and theoretical wavenumbers coincide: κ = k =
±ω/c, as well as for ∆x → 0 and ∆t → 0. For c∆t/∆x > 1, as predicted by the
Courant-Levy stability condition, an imaginary root starts growing representing a
numerical instability [131]. In multiple ND dimensions, the time step given by the
Courant-Levy stability criterion is

∆t ≤ 1
c

ND∑
j=1

(∆xj)−2

−1/2

. (7.8)

Looking at the solver of the electric field, substituting the equations (7.5) into
equation (7.4) for a uniform electric constant ε, a Taylor expansion of ∇2φij −
∇2φ(r, z) gives a general expression of the truncation error. On a uniform mesh,
only the second order error term remains; even on a slowly varying mesh, the first-
order term may result smaller than the second-order one [131].
The above considerations fix few first limits both for the grid spacing and for

the time step through λD/∆x and ωp/∆t respectively as consequences of how the
particles “feel” the discretized space-time. Moreover, the two constraints are related
together by the Courant-Levy stability condition. Few rough rules of thumb have
been derived to avoid nonphysical behaviors. On the accuracy side, both the field
solver and the advance scheme are second order accurate.

7.2 Monte Carlo Collisional module

The match between the statistical nature of the microscopic collisions in the trans-
port equation and the basic spirit of the Monte Carlo (MC) methods is intuitive [140,
141, 142, 143]. Recently, the MCC has been showed to be a technique to solve the
linear Boltzmann equation (LBE) [144], including space- and time-dependent volume
forces (like the Lorentz’s force). Thus, the MC method can be effectively coupled
with a PIC module to take into account the collisions between charged particles and
a background uniform neutral gas.

7.2.1 Monte Carlo basic rules

Charged particles are assumed to experience only instantaneous binary collisions
with neutral particles of a background mixture of species and to move of free flight
between collisions. As stated above, even the MC method follows a statistically
representative sample of particles, since it would be unpractical to follow all the real
particles as soon as their number rises over 106 ÷ 107 on a commodity workstation.
Because of the disparity between the number of simulation particles and real parti-
cles, one has to deal with an output affected by statistical noise: the relative error
on the macroscopic quantities decreases slowly with the number N of contributing
samples, typically as 1/

√
N (assuming a Poisson distribution) [145].
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Each MC method is based on a pseudo-random sequence of numbers, i.e. a sequence
of numbers showing an apparent randomness appearing not related to any other
extracted number. From a uniform sequence of random numbers Ri in the interval
[0, 1[, a collection of random numbers ri distributed according to the function f(r)
in [r1, r2] can be obtained through the following probability theorem∫ ri

r1

f(r) dr = Ri

∫ r2

r1

f(r) dr , (7.9)

which results in an equation for ri. Depending on the case, the integrals have to be
evaluated analytically or numerically.
Thus, the MC method can be used to evaluate the free flight time of a particle from

the total sum of the collisional frequencies for all processes that it could experience.
During the free flight the equations of motion for the particle need to be solved in
order to calculate its trajectory. Once reached the collision time, a process need
to be selected among all the possible on the basis of its contribution to the total
collisional frequency. Finally the effect of the collision on the velocity vectors of the
particles and the loss and generation of new particles have to be evaluated.
Similarly, the stochastic nature of the charged particles interaction with a boundary

surface can be modeled through random numbers sampled from a proper distribution
function, while the position of the impact and of the eventually emerging particles
is determined by the intersection between the trajectories and the boundaries.
An outline of the algorithm here presented to follow the path of a single particle is

depicted in Figure 7.4. In the following sections a more detailed description of each
step will be given.

7.2.2 PIC coupling and free-flight

Since the cross sections σi(E) are function of the charged particle energy E in the
center of mass frame (see Section 6.2.2), they have to be evaluated after the particle
advance and acceleration performed in the PIC module, presented in Section 7.1.3.
The cross section is assumed to be constant along the path of the particle, until
the particle undergoes a collision or the next time-step is reached. The leap-frog
scheme perfectly matches this requirement if the linearly increasing velocity (being
the acceleration term fairly constant during the time-step) is approximated with a
constant velocity during [t, t+ ∆t] increasing like a step-wise function at t. Hence,
the flow-chart of the MCC module presented in Figure 7.4 can be integrated in that
of Figure 7.1 for the PIC code producing sequence depicted in Figure 7.5.
The collision probability of the i-th particle can be written as

Pcoll,i = 1− exp(−ngσtot(Ei)vitcoll) , (7.10)

where σtot(Ei) =
∑

j σj(Ei) is the total cross section obtained as the sum over all
the possible processes and vi =

√
2Ei/m is the particle velocity; the mean free flight

time is the inverse of the total collisional frequency given by

νtot(Ei) =

√
2Ei
m
ng

∑
j

σj(Ei) ,



Chapter 7. The 2D electrostatic PIC-MCC code 151

tflight,i = min{∆t, tcoll,i}

Particles interaction
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Figure 7.4: Schematic flow-chart of the MC method in a
plasma simulation.
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Figure 7.5: Schematic flow-chart of the PIC-MCC method
in a plasma simulation.



152 7.2. Monte Carlo Collisional module

having assumed ng uniform over all the volume of interest. Making use of Pcoll,i as
distribution function in equation (7.9), the time to next collision can be evaluated
as

tcoll,i = − 1
νtot(Ei)

ln(1−R1) , (7.11)

with R1 a random number sampled from a uniform distribution function in [0, 1[.
Once determined tcoll,i, the i-th particle is advanced of tflight,i = min{∆t, tcoll,i}

and if tflight,i < ∆t the particle trajectory will be evaluated for surface interaction
(Section 7.2.4); in the case the final position is inside the computational domain,
the collision event with the neutral gas will be evaluated (Section 7.2.3).
The next time-to-collision evaluation can be performed equivalently by sampling a

new random number or by employing the just used one by taking into account the
probability of no collision in the performed flight4 of duration tflight:

Pcoll,i = (1− exp(−ngσtot(Ei)vitcoll))
∏
j

exp(−ngσtot(E(j)
i )v(j)

i t
(j)
flight,i) ,

where the prime is used for the energy and velocity corresponding to the previous
time-of-flight, tflight being equal to ∆t for each j except j = 0.
A more performing algorithm strongly limiting the time-step length is presented in

details in Section 7.4.2, together with a slightly different selection technique known
as null collision.

7.2.3 Collision with the background gas

A number of electron/ion-neutral collisions are possible, as shown in Table 6.2 and
Table 6.3 of Section 6.2.2. Sampling a random number R2 from a uniform distri-
bution, the collision type k can be selected by scaling the partial cumulate of the
collision frequency with the total one:

1
νtot

k−1∑
i=0

νj ≤ R2 <
1
νtot

k∑
i=1

νj .

Once determined the collision type depending on the incident particle species, its
effect has to be evaluated.
As first, the electron-neutral elastic collisions are considered. As stated in Sec-

tion 6.2.1, the probability distribution of the poloidal angle ψ can be taken to be
uniform in [0, 2π[ and can be simply sampled through a uniformly distributed ran-
dom number

ψ = 2πR3 .

A normalized differential (azimuthally integrated) cross section I(E , χ) can be used
to generate a scattering angle χ, by inverting the corresponding equation (7.9), given

4The method is equivalent to that used in Monte Carlo transport simulation for multi-layer
screen; here the interfaces are only virtual being represented by the time-step, while the particle
energy can grow due to the external applied volume force.
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by

R4 = 2π
∫ χ

0
I(E , χ′) sinχ′ dχ′ .

Few commonly used approximations of I(E , χ) are listed together with the resulting
χ(R4) expression in Table 7.6 and plotted for comparison in Figure 7.7 for two ref-
erence energies. As can be seen, the scattering process results in a larger probability
in the forward direction for higher energies.
As widely explained in Appendix 6.A, the energy loss of the incident electron can

be evaluated through equation (6.10), while the scattered velocity components are
deducible from equation (6.5).
An inelastic process can be selected only if a particular threshold energy is over-

come by the incident electron. For excitation processes, the energy balance between
reactants and products is Eej + Eg = Einc + Eg∗ −Eexc, where “ej” and “inc” labels the
ejected and incident electron respectively. Since the mass of the electron is small
compared to the mass of the neutral, its energy is not perturbed by the collision
leading to the simplifying condition Eg = Eg∗ (see Appendix 6.A for a complete
treatment). The velocity components of the ejected electron are calculated as in the
case of elastic scattering.
For ionization, the process is ternary on the products side. Hence, the energy bal-

ance gives Einc + Eg = Eej + Esec + Eg+ − Eion, where “sec” stands for the secondary
electron produced by ionization, while Eg and Eion are the energies of the neutral
target and of the outcoming ion. Even in this case the energy conservation between
the neutral and the ion (Eg = Eg+) is assumed. The excess energy Einc−Eion is parti-
tioned between the ejected and the secondary electron according to the distribution
function

I(Esec, Einc) =
B(Einc)

E2
ej +B2(Einc)

arctan
(
Einc − Eion

2B(Einc)

)
,

where B(Einc) is a known function for many gases [84]. The inversion of the equa-
tion (7.9), using I(Esec, Einc) as distribution function, allows to obtain an expression
for the energy of the emitted electron

Esec = B(Einc) tan
(
R5 arctan

(
Einc − Eion

2B(Einc)

))
.

The energy of the primary scattered electron Eej is then given by the above discussed
energy balance. For high incident energies the incident electrons is likely to keep
most of their energy. The directions of the two electrons after the collision could
be obtained through the Surendra approximation [150], but the scheme would not
conserve the system momentum. Neglecting the ion in the interaction and treating it
as the collision between two electrons (one of which initially at rest), the momentum
and energy conservation laws state that the velocities of the scattered and ejected
electrons are perpendicular [151]:

χej = arccos
√

Eej

Einc − Eion
χsec = χej −

π

2
.
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Approximation I(E , χ) χ(R4) Ref.
Isotropic 1/4π arccos(1− 2R4) –

Born
η(η + 1)

π(2η + 1− cosχ)2
, η =

10.9Z2/3

E arccos

„
η + 1− (2η + 1)R4

η + 1−R4

«
[146]

Surendra
E

4π(1 + E sin2(χ/2)) ln(1 + E)
arccos

„
2 + E − 2(1 + E)R4

E

«
[147]

Okhrimovskyy
1 + 8η

4π(1 + 4η − 4η cosχ)2
, η =

E
27.21 eV

arccos

„
1− 2R4

1 + 8η(1−R4)

«
[148]

Kushner
n+ 2

8π
cosη χ

2
, η = η(E) 2 arccos

„
(1−R4)

1
η+2

«
[149]

Figure 7.6: Commonly used differential cross section ap-
proximations.
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Figure 7.7: Plot of the scattering angle χ arising from the
commonly used differential of Table 7.6 for E = 10 eV
(top) and 100 eV (bottom).
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Ion-neutral collisions are similar to the electron-neutral ones, except the momenta
of the involved particles are similar and, consequently, the collision mechanics has
to be performed in the rest frame of the neutral (see Section 6.A.3).
The ion velocity ~vi is converted into ~v′i = ~vi − ~vg sampling ~vg from a Maxwellian

distribution, and its energy E ′i is recomputed. For elastic scattering the scattered
ion energy can be deduced by equation (6.9), or by equation (6.11) for an atomic
single species gas (mi = mg), with cosχ = 1− 2R6. The poloidal angle ψ is chosen
uniformly and the scattered velocity in the rest frame of the neutral is calculated by
means of the angles χ and ψ. Lastly the resulting energy has to be converted back
in the laboratory frame.
Charge exchange is even simpler, since based on the identity exchange between a

sampled neutral and an ion.
All the emerging particles from a collision are then followed for the residual time
tres = ∆t− tcoll and checked for other collisions before the end of the time-step.

7.2.4 Surface interaction

If the charged particles reach a boundary or an internal surface during their free
flight, then they will undergo an interaction with a material instead of the neutral
gas. As stated in Section 6.2.3 and summarized in Table 6.4, many surface collisions
and interactions can produce particle losses and secondary electron emissions.
The secondary emission by ion impact is roughly treated sampling a random num-

ber R7 and comparing it with the emission probability γ depending on the colliding
ion and on the surface material. The energetic distribution function of the true
secondaries is assumed as a Maxwell-Boltzmann, while the angular distribution is
chosen randomly through

f(θ) =
cos θ

2
.

A more sophisticated method is used for the secondary emission due to electron
impact [97]; assuming

δ(θ, E) = 2.6δmaxε
2/3 1 + 2ε(cos θ)1/(n−1/3)

(1 + ε(cos θ)1/(n−1/3))3

as secondary emission coefficient, with ε = 0.72E/Emax depending on the incident
electron energy E and on the energy Emax corresponding to the maximum value of
the secondary emission coefficient, δmax; θ is the incident direction with respect to
the surface normal, while n is the angular exponent, typically in the range 4/3 ÷
5/3. A typical energy distribution of the emitted secondaries has been described in
Section 6.2.3: the 90% emission probability lies between 0 and 20 eV(low energy –
true secondaries), 7% for energies ranging between 20 and 90 eV(medium energy –
scattered primaries or secondaries produced in first layers) and the last 3% for higher
energies (high energy – reflected primaries). This characteristic shape is essentially
independent of the energy of the incident primary [152] and given by:

fse(Ese) =
6Ese(eψ)2

(Ese + eψ)4
. (7.12)



156 7.2. Monte Carlo Collisional module

For each primary electron striking a conducting surface, it is considered lost and
the number secondary emitted electrons, δ(θ, E), is computed. For each created
secondary, its energy is sampled through a random number R7 from the energy
distribution function given by equation (7.12). The angular distribution is assumed
to be uniform in the azimuthal plane and cosine in the polar angle relative to the
surface normal.

7.2.5 Photoemission by de-excitation

As previously described in Section 7.2.4, the SEE by ion impact is negligible at the
first stages of a discharge development. However, any inelastic collision produces
an excited state of a neutral molecule or atom. This will return to its ground state
isotropically emitting a photon ν with a characteristic vacuum radiative decay time
τ depending on the species and on the excitation type. The photons will travel
roughly unperturbed in the background gas, due to the low pressure of the medium
and to the low attenuation parameters µ (their characteristic energies being of about
10 eV); once colliding with a boundary or an external surface, a photon can induce
electron emission by photoelectric effect. The complete MC simulation of the photon
transport would be excessively demanding; a simplified model is required.
Since the characteristic time of the electrical discharge of interest are very short

(few tens to one hundred ns), the time evolution of the excited state densities can be
neglected (see Section 7.4.3 for a description of a possible implementation for longer
time scales).
The source of excited states is known from he MCC module which gives the time-

and space-dependent inelastic collision rate νk,exc(~r, t) for each species k:

∆N+
k = (Nk(~r, t+ ∆t)−Nk(~r, t))+ = νk,exc(~r, t)∆t .

The number of photons emitted at each time step ∆t depends on the number of
excited molecule Nk(~r, t) and on their characteristic life-time τk:

∆N−
k = (Nk(~r, t)−Nk(~r, t+ ∆t))− = −

∫ ∆t

0

Nk

τk
exp

(
− t′

τk

)
dt′

' Nk(~r, t)
(

1− exp
(
−∆t
τk

))
' Nk(~r, t)

∆t
τk

,

where the main approximation is the assumption of a sufficiently small ∆t to consider
a constant number of excited molecules during ∆t and to allow the substitution of
the exponential form with its first order series expansion. The net effect in ∆t is
then

∆Nk = ∆N+
k −∆N−

k ,

which is summed to Nk(~r, t) to obtain the number of excited states Nk(~r, t+ ∆t) at
the next time step.
Not all the photons by de-excitation will produce an electron through photo-electric

effect. At first, they must have an energy greater than the work function φ of the
material on which they collide; the energy depends only on the kind of de-excitation
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process and is fully deterministic. Secondly, assuming an isotropic source, a “sight-
factor” Ω(~r, ~r0) will give the portion of photons emitted from ~r and impinging the
boundary in ~r0. Lastly, the secondary emission coefficient γν gives the probability of
emission of an electron per each photon impacting on the surface. Thus, the number
of electrons emitted per de-excitation photon is

Ne(~r0) = Ω(~r, ~r0)γν(~r0)
∑
k

∆N−
k (~r) ,

where a nearest integer has to be calculated in order to obtain an integer number of
electrons.
The generic outcoming electron is isotropically sampled in direction as done for sec-

ondary emission by electron or ion impact. Under the hypothesis of a cool emitting
surface, the electron energy distribution function is approximately triangular-shaped
with EF(T = 0) as sharp maximum cutoff energy (see Section 6.2.3 for details).
Once sampled a random number R8, the energy is simply given by equation (7.9)
as E =

√
R8EF.

In many cases, the calculation of a precise sight factor is a hard task and a MC
ray-tracing procedure is often the only practicable solution. Alternatively, an ap-
proximate 0D model can be used, assuming a generic averaged sight factor for all
the excited molecules depending on the expected region of maximum concentration.

7.3 Microscopic simulation of PF breakdown

The PIC-MCC code description given in Section 7.1 and Section 7.2 is completely
general and, thus, applicable to any particle simulation. On the basis of the theoret-
ical models and experimental data presented in the Chapter 6, the main simulation
parameters, assumptions and approximations are hereafter discussed: domain defini-
tion, boundary and initial conditions, gas data and interaction models are described
and followed by a general flow chart scheme. The reader is referred to Appendix 7.B
for more details on the modules dependencies, input and output management and
post-processor tool.

7.3.1 Approximations and assumptions

While a one-dimensional radial simulation of the phenomenon would be excessively
coarser due to the presence of a finite length insulator and of a cathode back-wall,
a two-dimensional (r, z) model appears a worthwhile choice which allows to exploit
the axial-symmetry of the electrodes. Although computationally less expensive than
a fully three-dimensional simulation, the choice limits a bit the obtainable results
(no filamentary structures can be observed since the sheath is supposed azimuthally
symmetric).
The simulation domain is depicted in Figure 7.8. All the geometrical dimensions

are input parameters and can be modified to account for an insulator sleeve fully or
partially inserted in the inner electrode (sins ≥ sind), as well as completely lying on
it (sind = 0). The dielectric constant of the insulator material is tunable as input
parameter, while both the anode, partially enclosed in the simulation domain, and
the cathode are supposed to be perfect conductors. The driving potential is applied
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Figure 7.8: Sketch of the 2D simulation domain.

to the anode boundary, while the cathode is supposed at a null reference potential
(ground). On the “electrodes open end” contained in the simulation domain, a
symmetry boundary condition (both for potential and particles) is applied: if a
sufficient part of the electrodes active length is studied, the high-z region can be
considered unperturbed, at least, as far as sliding discharge on the insulator sleeve
are considered. The boundary condition on the insulator sleeve thickness is more
delicate: to derive a correct potential behavior along the radial direction an expanded
geometry including a portion of the cathode back-wall has been solved, leading to a
good agreement with the 1/r function of a cylindrical capacitor [135]. The solution
on the corresponding radial section is imposed as boundary condition in the problem
of interest, under the hypothesis that the region will be fairly influenced by the space-
charge evolution, being bounded between two surfaces with imposed potentials.
A first order approximation of the RLC circuit discharge on a secondary capacitance

is supposed (see Section 5.A.2), leading to a linearly increasing driving potential at a
rate of 200÷ 500 V/ns (input parameter), in good agreement both with experimental
data and with rough evaluation based on typical electric parameter for PF devices.
The anode potential is approximated to the potential of the external circuit, V (t) =
φ

(t)
0 ; this assumption is valid until a macroscopic ohmic current short-circuits the

secondary capacitance determining a relevant voltage drop on the external circuit
main capacitor; the coupling with an external circuit solver is the only way to observe
the phenomenon (refer to Section 7.4.1 for a possible implementation).
The filling pressure of the background gas is given in input in Torr and automat-

ically converted in a uniform particle density; moreover, a Maxwellian distribution
function at T = 300 K (input parameter) is sampled to define the initial conditions
for the simulation particles. A uniform spatial density of 0.5 cm−3Torr−1 is con-
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sidered for each charged species [71], corresponding to a number of real particles
linearly increasing with the radial coordinate.
The background gas is supposed to maintain an uniform and steady-state distri-

bution, even if, locally, ionization collisions depauperate neutral atoms; since the
ionization ratio is less than 10−4, the effect on the collisional frequency computed
in the MC module is neglected. Due to the low time-scales of interest, the evolution
of the excited states density is neglected (in Section 7.4.3 few details of a possible
implementation for transport of excited states is given).
From a strictly numerical viewpoint, few evaluations can be done on the limits for

grid spacing and time step.
As shown in Section 7.1.4, PIC models can be considered accurate as far as the grid

spacing is maintained lower than the shortest Debye length of the plasma species.
A value of 2.5 · 10−4 m represents a good compromise between accuracy and com-
putational time associated with the Poisson solver of the electric field. Moreover,
the relative error of the potential on the computational domain compared with the
solution obtained through a finite element solver is everywhere lower than 0.01.
The time-step must respect three main conditions. However, the maximum value

∆t = 1/(4ωp), associated with the plasma frequency of each plasma species, is
always larger than the maximum time-step given by collisional considerations: at 1
Torr, the condition νmax∆t ∼ 0.2 is satisfied by a value of 10−5 µs. The Courant-
Levy condition is permanently checked at each time iteration and the time-step is
adaptively tuned to avoid particles to travel more than one cell per ∆t.

7.3.2 Zero-dimensional model for photoelectric effect

Preliminary estimations show that the mean time needed for an ion, created in the
region of highest electric field, to impinge on the cathode is greater than tens of
nanoseconds: if collisions are neglected and a rise rate of 1011 V/s is assumed for
an uniform planar gap of d = 1 cm, the time-to-impact of an initially stationary ion
can be evaluated as t = 3

√
6md/(qE0,t) ∼ 10−7 s.

First simulations confirmed the result showing only spurious secondary emissions
due to ion impacts, which lead to a non-continuity between the sheath and the
cathode preventing the electrode short-circuiting. Since experimental data predict
characteristic closure times of the order of tens of nanoseconds, an alternative mean
of electrons emission from the cathode had to be investigated. As previously stated
in Section 6.2.3, UV photons from de-excitation or external sources can produce
electrons through the photoelectric effect when impinging on materials with low
work functions (like conductors).
The hypothesis of internal excited states decay as source of photons and secondary

electron has been recently confirmed [153]. A zero-dimensional model has been
developed to take into account an average global effect and to sample, via MC
techniques, a source of electrons from the back-wall of the cathode: since excitation
energy threshold is firstly reached in the region of highest electric field (the cathode
edge on the insulator sleeve), the excited gas atoms or molecules can be thought
localized on the insulator sleeve and following the maximum deposited charge on it
(mainly given by the more mobile electrons impacting on its surface). This allows
to easily calculate a global approximate sight-factor of the cathode wall from the
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Figure 7.9: Sketch of the closed end of the electrodes and of
the pointwise isotropic photon source used to estimate
a global sight factor.

pointwise isotropic source: as shown in Figure 7.9, less than one quarter of the
photons emitted in 4π are directed towards the wall, depending on the radial and
axial position (rν = rint, zν) of the emitting source. Referring to the notations of
Figure 7.9, one can estimate

Ω =
∫ π

0
dϕ
∫ ϑmax

0
sinϑ dϑ = π cos

(
arctan

(
rext − rint

zν

))
= π

zν√
z2
ν + (rext − rint)2

,

assuming rext ' rext − rint. In seek of a refinement step, one should consider the
distance of the source point from the generic element of the cathode wall in order to
define a source of secondary electrons to sample as a function of the radial coordinate
on the cathode back-wall.
The contribution on the insulator sleeve are neglected due to the high work function

of dielectric materials; the effect of photons directed towards the cathode cylindrical
electrode is assumed negligible due to the unfavorable sight factor, even lowered if
the cathode is made of rods.
An extension to a 2D case should start from a local count of the excited states and

decay fractions. The evaluation of a cell by cell sight factor would allow to calculate
the cumulate of impinging photons on each radial position of the cathode back-wall
and to define a more precise source distribution function. The same could be done
for all the boundary surfaces of the simulation domain.

7.3.3 Gas and material data

Argon (Ar) and hydrogen (H2) have been so far considered as filling gas for gas
breakdown simulations. While the first is commonly used in PF devices for x-ray
production and material processing [154, 155], the difficulties met to find deuterium
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Reaction Description Ref.
e + Ar → e + Ar Electron elastic scattering [161, 162, 163, 164, 165]
e + Ar → e + Ar∗ Electron impact excitation [159, 166]
e + Ar → e + Ar+ + e Electron impact ionization [158, 161]
Ar+ + Ar → Ar + Ar+ Ion-neutral charge exchange [167]
Ar+ + Ar → Ar+ + Ar Ion elastic scattering [167]

Table 7.1: Electron and ion collision types in Argon simu-
lations.

cross-sections databases have been overcome with the choice of hydrogen as di-
atomic low-weight; moreover, hydrogen has been used in the few simulations of the
PF device breakdown found in literature [41, 42, 117, 156], which have been used
as comparison cases [135]. For the same reason, copper has been considered as
conductive material.
The filling gas and conductive/dielectric material are input parameters, at user

choice.

Argon (Ar)

Argon is commonly used as filling gas in many PIC-MCC simulations [147, 150,
157]. Hence, it is quite easy to find reliable cross sections data both as tabulated
values [157, 158, 159] and as interpolating functions [157, 160].
The ion and electron collisions considered in the MCC module are summarized in

Table 7.1.
Since access to tabulated values is a strongly inefficient method from a numerical

point of view, analytical interpolating formulae are always preferable. The cross
sections in use are represented in Figure 7.10 and in Figure 7.11 for electrons and
ions respectively. The electron elastic scattering cross section presents a minimum
at low energies, related Ramsauer or Townsend effect, common to all the noble
gases: no good explanation for the phenomenon existed until the introduction of
quantum mechanics, which explains that the effect results from the wave-like prop-
erties of the electron. A simple model of the collision that makes use of wave
theory can predict the existence of the Ramsauer-Townsend minimum. Predicting
from theory the kinetic energy that will produce a Ramsauer-Townsend minimum
is quite complicated since the problem involves relativistic, electron exchange, and
spin polarization effects. However, the problem has been extensively investigated
both experimentally and theoretically, and today is well understood []. Here, the
inelastic electron collision has to be considered as the cumulate of all the possible
excitation processes, having as threshold value the lowest one of Eth = 11.62 eV
(Ar[1s2.2s2.2p6.3s2.3p6] + e → Ar[1s2.2s2.2p6.3p5.4s1] + e). The data of interest re-
lated to Ar excitation threshold energy and characteristic life-time are collected in
Table 7.2. Other collisions are possible, but characterized by a multiple de-excitation
path, which means an energy of the emitted photons lower than the metal work-
function, or by a too high life-time if compared with the time scales of the studied
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Figure 7.10: Electron-neutral cross section in Argon as ob-
tained by interpolating formulae.
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Figure 7.11: Ion-neutral cross section in Argon as obtained
by interpolating formulae.
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Excitation Eth [eV] τ [µs]
3s2.3p6 → 3s2.3p5.(2P ∗ 〈1/2〉).3d1 14.30 3.19
3s2.3p6 → 3s2.3p5.(2P ∗ 〈1/2〉).5s1 14.26 28.6
3s2.3p6 → 3s2.3p5.(2P ∗ 〈3/2〉).3d1 14.15 3.70
3s2.3p6 → 3s2.3p5.(2P ∗ 〈3/2〉).5s1 14.09 13.0
3s2.3p6 → 3s2.3p5.(2P ∗ 〈1/2〉).4s1 11.83 1.96
3s2.3p6 → 3s2.3p5.(2P ∗ 〈3/2〉).4s1 11.62 8.40

Table 7.2: Argon excitation inelastic scattering collisions of
interest and related threshold energy Eth, correspond-
ing to the energy of the emitted photon, and charac-
teristic life-time τ .

phenomenon.
Since only one inelastic scattering cross section is in use, a weighted average of

the life-time τk has been done on the basis of the excitation cross sections [168] for
the reactions listed in Table 7.2: a mean characteristic life-time of τ = 5.1 µs and a
mean energy of emitted photons of Eν = 13.03 eV is considered in the simulations.

Hydrogen (H2)

The multiplicity of allowed excited states for the hydrogen molecule makes quite
complex the scenario of possible collisions. Many tabulated data has been col-
lected [84, 169, 170, 171, 172, 173], while few interpolating functions have been
found, mostly for inelastic processes [174, 175, 176].
The events considered for electron and ion impact are summarized in Table 7.3.

Only impacts with ground state diatomic molecules have been considered, neglecting
the densities of excited states. Everywhere possible, analytical expressions [174, 175,
176] have been preferred to tabulated data [178].
The cross sections in use are reported in Figure 7.12 for electrons.
In the case of Hydrogen, many excitation processes can be distinguished, even if

only few of them are characterized by sufficiently high energies or sufficiently low
decay-time: the de-excitation of the c3Πu and d3Πu states are considered to be not
compatible with the photo-electron secondary emission process.

Conductor and dielectric materials

The insulator sleeve material can be chosen in input. Only SEE by electron impact
is considered, with characteristic energies such that δ(E) = 1 and to the maximum
number of secondaries δmax and its corresponding energy Emax (see Section 6.2.3 are
input parameters, depending on the chosen material. The surface parameters ksδ

and ksw complete the model presented in Section 7.2.4. No photo-electric effect is
considered on the insulator surface, while ion impacts contribute only to modify the
deposited charge. The parameters of interest are collected in Table 7.5 for pyrex.
The electrodes and the cathode back-wall inside the vacuum chamber are supposed
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Reaction Description Ref.
e + H2 → e + H2 Electron elastic scattering [173, 177, 178]
e + H2(X1Σ+

g ) → e + H∗
2(B

1Σ+
u ) Electron impact excitation [175, 179, 178]

e + H2(X1Σ+
g ) → e + H∗

2(C
1Πu) Electron impact excitation [175, 180, 178]

e + H2(X1Σ+
g ) → e + H∗

2(a
3Σ+

u ) Electron impact excitation [172, 176, 178]
e + H2(X1Σ+

g ) → e + H∗
2(b

3Σ+
u ) Electron impact excitation [172, 176, 178]

e + H2(X1Σ+
g ) → e + H∗

2(c
3Πu) Electron impact excitation [172, 176, 178]

e + H2(X1Σ+
g ) → e + H∗

2(d
3Πu) Electron impact excitation [172, 176, 178]

e + H2(v = 0) → e + H2(v = 1) Vibrational excitation [172, 176, 178]
e + H2(j = 0) → e + H2(j = 2) Rotational excitation [172, 176, 178]
e + H2 → e + H+

2 + e Electron impact ionization [174, 171, 178]
e + H2 → e + H + H+ + e Dissociative ionization [175, 181, 178]
H+

2 + H2 → H2 + H+
2 Ion-neutral charge exchange [169]

H+
2 + H2 → H+

2 + H2 Ion elastic scattering [169]

Table 7.3: Electron and ion collision types in Hydrogen
simulations.
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Figure 7.12: Electron-neutral cross section in H2 as ob-
tained by interpolating formulae and tabulated data.
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Excitation Eth [eV] τ [ns]
X1Σ+

g → B1Σ+
u 11.37 0.8

X1Σ+
g → C1Πu 12.41 0.6

X1Σ+
g → a3Σ+

g 11.90 11.1
X1Σ+

g → c3Πu 11.89 106

X1Σ+
g → d3Πu 13.98 68.0

Table 7.4: Hydrogen excitation inelastic scattering colli-
sions of interest and related threshold energy Eth, cor-
responding to the energy of the emitted photon, and
characteristic life-time τ .

Parameter Value
Work Functions (φ) 11.34 eV
Dielectric relative constant (εr) 5.0 eV
SEE lower energy (Einf) 40.0 eV
SEE higher energy (Esup) 2400.0 eV
SEE energy of maximum (Emax) 350.0 eV
SEE maximum number of secondaries (δmax) 2.3

Table 7.5: Dielectric material properties for pyrex.

Parameter Value
Work Functions (φ) 4.65 eV
Secondary emission coefficient for ions (γi) 0.15
Secondary emission coefficient for photons (γν) 0.075
SEE lower energy (Einf) 200.0 eV
SEE higher energy (Esup) 1500.0 eV
SSE energy of maximum (Emax) 600.0 eV
SEE maximum number of secondaries (δmax) 1.3
Fermi energy (EF) 7.0 eV

Table 7.6: Electrodes material properties for copper.
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made of copper, even if, in many cases stainless steel or copper-beryllium alloys are
used. The secondary emission coefficients strongly depend on the surface status:
they are listed in Table 7.6 for ion impact, photo-electric effect, and electron impact.
Other secondary emission processes, as listed in Section 6.2.3, are evaluated to be
negligible in the initial phase of the electrical breakdown in typical PF devices.

7.3.4 Flow chart

The global flow-chart of the developed code is represented in Figure 7.13. After the
initialization module, the classic scheme of a PIC-MCC is followed with collisional
instants evaluated for each particle during the main loop. An hybrid counting sort
technique, fully described in Section 7.A.1, is used to accelerate the code and to
obtain a particles array sorted by cell at each time-iteration. This is useful to call
the merging and splitting technique which will be presented in the next chapter. A
detailed description of the modules and file contents can be found in Appendix 7.B.

7.4 Future improvements

The here presented PIC-MCC code contains many well tested techniques and meth-
ods employed in particle plasma simulations. Particular care has been devoted to
the correct description of the binary collisions and to the complete treatment of
the surface interactions considered of interest for the problem under examination.
Innovative techniques for the particle control, surface events statistical enhancing
and variance induced noise reduction will be presented in the next chapter. Here-
after, few consolidate advanced numerical add-ons are described being under study
as possible future improvements.

7.4.1 Coupling with an external circuit

An external circuit model can be coupled with the Poisson’s equation solver [134,
182]. The model presented in Section 7.1.2 remains unchanged as well as the specified
Dirichlet and Neumann boundary conditions.
Supposing the driven electrode a perfect conductor, the potential φ(t)

0 on it is equal
to the voltage drop on the external circuit side. The electric field, normal to any
conductor, is proportional to the surface charge density through Ebn,ij = σij/ε, which,
in a discretized form, results in

E
(t)
i,1/2 =

φ
(t)
0 − φ

(t)
i1

∆xj
=
σ

(t)
i0 + ρ

(t)
i0 ∆xj/2
ε

.

Since the surface charge σi0 can be considered immediately redistributed on the
conductor surface, the total surface charge density σtot =

∑
el. σi0 time variation

depends on the deposited charge on the electrode as current I(t) flowing in the
external circuit and convective current density J(t) deposited at the boundary by
charged particles:

S
dσtot

dt
= I(t) + SJ(t) ,
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Figure 7.13: Flow chart of the developed code.
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finite differenced in

Sσ
(t)
tot = Sσ

(t−1)
tot + I(t) − S

t∑
t−∆t

J t ,

A general RLC circuit evolution can be studied solving the coupled equation for
the charge Q

L
d2Q(t)

dt2
+R

dQ(t)
dt

+
Q(t)
C

= V (t) + φJ(t)− φ0(t)

(for a discharging capacitor the voltage source V (t) is zero for t > 0). The potential
drop φJ − φ0 between the electrodes can be then computed starting from the total
charge σ(t−1)

tot , the charge on the capacitor Q(t−1) and the deposited charge Q(t)
conv by

plasma interaction.
A single second-order backward difference equation is obtained, having the property

of being stable over all values of numerical and real physical parameters.

7.4.2 Null collision

A more efficient [150, 183] method to study the collisional events needs a sufficiently
low simulation time step, such that a negligible probability exists for a particle
multiple scattering in the same ∆t. If collisions characterized by a nearly null
energy loss (e.g. elastic scattering with a high mass target), the probability of Ncoll

collisions in a time interval ∆t is given by PNcoll
coll , being

Pcoll = 1− exp(−ng(~r)σrmtot(E)v∆t)

the probability of collision in a time step for a particle having energy E . Thus, the
total number of possible missed collisions is

Nmiss ∼
∞∑
j=2

P jcoll =
P 2

coll

1− Pcoll
.

Being usually Pcoll � 1, then Nmiss ∼ P 2
coll provides a measure of the under-

representation of the approximated collision operator. Once fixed

νtot,max = max
∀E,∀~r

{ng(~r)σtot(E)v}

as the maximum collision frequency over all the possible energies and positions
(assuming ng varying with position, see Section 7.4.3), the discussed PIC-MCC
method is constrained by the supplementary condition νtot,max∆t� 1, which must
be added to those discussed in Section 7.1.4.
The alternative approach to the collisional time sampling strongly reduces the com-

putational time needed to study the particle histories making the method convenient
even if requiring a smaller time step of that strictly needed by the PIC module. The
computational effort can be further reduced, if the so called null collision is used. A
fictitious collision frequency can be added to νtot(~r, E) in order to have a constant
ν ′tot over the space and energy. The total number of particles undergoing collision is
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Figure 7.14: Electron-neutral collisional frequencies for Ar-
gon at 1 Torr.

then given by NPmax = N(1− exp(−ν ′tot∆t)), which can be randomly chosen from
the particle list. For each of them the cross sections at the corresponding energy
are calculated and the collision is chosen as described in Section 7.2.3 taking into
account also the null-collision probability, related to the added fictitious collision
frequency. In Figure 7.14, the collisional frequencies for Ar (single types and total)
is given at a pressure of 1 Torr as an explanatory example (refer to Figure 7.10 for
cross sections behavior).
This method avoids the need of computing the particle energy and all its cross

sections for all the studied particles, limiting these time consuming operations only
to the subset of randomly picked particles. Even in this case the method is efficient
only if the number of colliding particles is small with respect to the total number of
particles in the system, which means a small value of ν ′tot∆t.
If the cross sections are strongly variable with energy5 (or space) the null-collision

efficiency can be further improved by introducing ranges on which a local and rather
constant null-collision frequency is defined.

7.4.3 Radiation transport

When larger time-scales are involved, the evolution densities of the excited and
background species must be followed [184]. The transport of the fluid species is
solved through a propagator method [185] with characteristic time interval such

5It’s the case of Ar, characterized by the Ramsauer minimum in the elastic scattering cross
section
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that ∆t < ∆t∗ < ∆tg, where the time steps are related to the characteristic time
scales of the charged particles in the classical PIC, of the excited species and of the
neutral one.
The excited state density is given by the solution of

∂

∂t
n∗(~r, t) +∇ · ~Γ = S(~r, t)− n∗(~r, t)

τ
+

1
τ

∫
n∗(~r′, t)G(~r, ~r′) d~r′ ,

where n∗ is the excited state density, ~Γ the flux of the excited molecules and τ the
radiative decay frequency. The function G is the kernel of the radiation transport,
while S represents the source of excited species, already discussed in Section 7.2.5,
coupled to the MCC module and PIC grid.
The spatio-temporal discretized form of the equation can be numerically solved for

each excited species, usually considered to decay into the ground state. It results
in a time dependent and domain distributed isotropic and multi-energetic source
of photons. The definition of a rough model for the photons transport and for the
geometrical efficiency related to their impinging on the surfaces is advisable for a
more detailed study of the SEE.

7.4.4 Parallelization and AMR

The recent development of parallel computing techniques has improved the perfor-
mances in many field of numerics. A PIC-MCC code is amenable of performance
enhancement since it involves a large number of brief calculations which require pri-
marily localized data. Great care must be devoted to the decomposition choices in
order to achieve a good load balancing.
Three main approaches can be devised:

− particle decomposition: the whole spatial domain is assigned to each node
which completely solves a subset of particles; the load balancing is intrinsic and
no communication is needed for interface-crossing particles. Notwithstanding,
all the field properties must be common to each node with an useless waste of
memory; the charge assignment and the electric field solution are computed
locally, but each contribution must be communicated to all the nodes for su-
perimposition before the particle advance at the next time step.

− domain decomposition: different portions of the domain, together with the
particles properties and fields on them, are assigned to different nodes; the
memory consumption is limited since the data are localized, but the field so-
lution needs the communication of the data of the ghost regions between the
different nodes, as well as the communication of the particles crossing the vir-
tual interfaces of the decomposed domain is needed before their advance. The
number of sub-domain scales with the number of nodes: the spatial extension
decreases while the particle communications increase.

− domain cloning : it gathers the main advantages of the domain and particle
decomposition, but it is suited only for clustered SMP computers. The first
approach is used inside the same node in order to exploit the shared memory to
accelerate the particle and ghost regions communication; the second, instead,
is used on the different nodes.
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The particle decomposition method (commonly used in MC codes) is the simplest
way to transform a serial code into a parallel one. However, it is evident how much a
similar choice would be ineffective for a PIC-MCC code. The domain decomposition
requires a heavy programming effort, since the processes of interest are usually non-
stationary and the decomposition should be often redefined following the regions
with high particle densities and determining an unbalanced field solution. The
merging and splitting techniques proposed in the next Chapter could be of interest
to keep artificially uniform the number of particles in each region.
Nevertheless, in many cases, an increase in the particle densities and energies re-

quires a refinement of the mesh due to the limiting conditions presented in Sec-
tion 7.1.4. The Adaptive Mesh Refinement (AMR) would hence be a good solution:
the domain is decomposed and the mesh adaptively refined in the regions of highest
density through the definition of mesh patches on different levels of refinement. Mov-
ing from the finest to the roughest level, each cell is analyzed and labeled on the basis
of a refinement criterion, usually based on the particle density or on the gradient of
a particular property. Usually the cells of interest are regularly distributed but the
new patches must be initialized and organized in order to make sufficiently easy both
the vertical passage between levels and the horizontal one between communicating
patches.
The package of Fortran 90 subroutines PARAMESH [186] is under study to extend

the developed serial code into a parallel code with AMR.

7.A Accelerating techniques

A number of schemes have been implemented to improve performances of particle
simulations. The most common strategy is to exploit a basilar feature of particle
simulations, involving a large number of simple calculations (rather than one for each
particle). On the other hand, this requires primarily localized data. The parallel
computing is only one side of the solution, since this peculiar feature can be exploited
even on modern commodity workstations in order to enhance the cache-hits from
L2 cache memory. A consolidate and employed technique will be described as well
as common high performance computing hints in scientific applications. A quick
sight will be finally drawn on the possible parallelization techniques and domain
decomposition and refinement.

7.A.1 Hybrid counting sort

The memory subsystem of modern commodity workstation (main memory - L2 cache
- L1 cache - ALU registers) and cache-trashing during the advance and accumulate
procedure are known to severely limit the speed of PIC simulations.
Caches store recently used data through a paging techniques, responding to memory

transactions faster than main memory. Data requested by the CPU and found in
cache are called “cache-hits”; most processors automatically decide which data are to
be stored for future transactions (prefetching) transferring to the cache entire blocks
of data occupying continuous addresses on the main memory. Hence, randomly
accessing large amounts of data (as in the case of particles stored in an array and
accessed according to the position occupied on the mesh) increases cache-trashing
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Figure 7.15: Schematic flowchart of a hybrid counting sort
procedure.

lowering performances.
However, an out-of-place6 counting sort algorithm can be implemented in order to

keep the particle array following the same order of the mesh elements. A counting
sort is an algorithm for sorting N elements into M different baskets (order-N in time
and order-M in auxiliary storage) [187]. Recent developments have enhanced the
power of the method by hybridizing its two main steps (counting and sorting) in the
particle advance and particle accumulation procedures, resulting in a performance
increase of ∼ 80% for benchmark cases [188].
The main idea, shown in Figure 7.15, is to count the number of particles per cell

during the particle accumulate cycle (where the mesh cell must be deduced from
the particle position to accumulate its charge on the grid), to convert the counting
array into an allocation table in a dedicated loop on the mesh nodes, and to sort
the particle array (out-of-place) during the particle advance (the interpolation of the
electric field needs the cell nodes corresponding to the particle position).
In the present case, as it will be discussed in more detail in the next chapter, the

sort is done, not only for speed enhancement, but also to apply other algorithms
needing an exactly sorted particles array. The coupling with an MCC module and
the bounded system under analysis produce particle losses and sources, which force
to keep the count updated. This limitations make the method a bit slower due to
the increase of memory traffic, but it still results faster than sorting particles in an
independent routine.

6The out-of-place sorting increases the necessary memory of, at least, one more particle array
on the total of species.
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7.A.2 High performance computing hints

As it will described in the next chapter, the code is entirely written in Fortran90.
Few features of the object oriented programming have been exploited and particular
care has been devoted to the optimization of memory management and access.
The data related to the simulation particles (statistical weight, position, velocity

and other support parameters) are collected in user-defined data-type and stored in
dynamically allocated array of fixed size. All the data needed in many particle loops
(charge assignment, advance, collisions) are stored in contiguous block of memory
avoiding multiple access memory and cache trashing. The particle losses and cre-
ations are treated respectively by transferring an element from the end of the array
to the position left void or by adding a new element to the array tail, without any
swap operation. This method is preferable to the commonly used linked-lists [189],
since more effective from the point of view of memory management. The choice
perfectly matches the basis of the hybrid counting sort described in the previous
section.
To avoid useless numerical operations, all the data analysis has been deferred to

a post-processing tool (see Section 7.B.3 for a detailed description). Raw data
are written in binary format to output files to avoid expensive format conversion
operations; this allows to highly reduce the disc access times and the occupied space,
also enabling any desired estimation of microscopic or macroscopic properties.
All the data necessary to restart the simulation are periodically written onto a

dump-file creating a complete check-point; feeding in the file as input, the simulation
can be easily recovered if a forced or wanted break stopped it.

7.B Description of the code

The code development is not to be considered at its end, but a sufficiently mature
version has been reached. A detailed description of the file contents and modules de-
pendencies will follow, in order to make the code usability and future improvements
as easy as possible.

7.B.1 Directories and files

The main root of the directories structure contains the following sub-directories:

− src collects all the source files (.f90, .mod, .o and a local Makefile);

− input contains an example for the input file;

− output is the default directory for the output files (can be changed in input);

− data collects the cross sections libraries and the chemical properties tables for
the gas and both the insulator and electrodes materials used for the simulation
(at present, only molecular Hydrogen and monoatomic Argon).

An install script and a dedicated Makefile are also at disposal in the main directory.
The last one refers to the Intel Fortran Compiler for Linux platforms to resolve
dependencies between modules (install option) and to generate the executable file
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(all option) in the root directory, exploiting the inter-procedural, floating-point
operation, processor specific and fine tuning optimizations [190, 191]; in addition
to the classic cleanobj, cleanmod and cleanall modes, a debug option allows to
compile the program enabling all the format, array-bounds and floating-exception
checks and adding a route to traceback any segmentation-fault error (no optimization
option is available).
The modules, and related files, dependencies are shown in Figure 7.16, while the

files contents will be readily described.

chemical

inputdata

intfield

mover

merging clustering

sortingmt19937

extfield

shape

distributer

clustersmerging

Figure 7.16: Source files and modules dependencies.

7.B.2 Source files and code structure

A Main file contains the program declaration, while all the others (with the exception
of a single-subroutine file for the matrix problem solver) define the various modules
in use. Each module is related to a particular numerical or physical aspect (as
described below); it contains all the variable declarations together with a proper set
of subroutines and functions.
All the subroutines and the main variables names have a five characters prefix to

denote the module in which they have been declared. The prefix has the form MNnn_,
the first character standing for “Module”, the following three being an unique identi-
fier for the module name with an upper case first letter “Nnn”; the last character, “_”,
separates the prefix from the variable name. Usually, a single, lower case character
precede the main variable name to identify its kind, following the notation presented
in Table 7.7

Main.f90

The main file contains the program structure definition. Within this file, several
simulation parameters are defined, all the matrices and arrays for particles and
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Character Meaning
i integer
f real (float)
d double precision
c character
l logical

Table 7.7: Variable name prefix character used as kind iden-
tifier.

fields properties are allocated and the main functions for initial condition and time
iteration control are implemented.

chemical.f90

This file contains a single module directed to retrieve from proper tables in the
data directory all the chemical properties of the filling gas and of the insulator and
conductor materials.

inputdata.f90

The module contained in the file is called at the beginning of the code for the main
simulation parameters input read (both from file or by user input). In this module
all particles, materials and device properties are defined, in order to make them
easily available to all the other modules.
The module also contains a subroutine for the creation of both the spatial and

the temporal grid, and another one for the initial mapping of the dielectric relative
constant on the grid.

randomgen.f90

The file contains excluding modules based on different (Pseudo)Random Number
Generator ((P)RGN). The most tested one is the Marsenne-Twister 19937 RNG
recently developed by M. Matsumoto and T. Nishimura [192, 193, 194]. The module,
freely distributed under the GPL license, implements a fast and efficient generator
(most of all for systems with pipeline and cache memory) with far longer period
and higher order of equidistribution than other available generators (the period is
proved to be 219937 − 1 and 623-dimensional equidistribution property is assured).
Since the choice of the RNG is crucial in MC codes, other known generators have
been tested and left available as alternative modules: the ran1() generator from
Numerical Recipes for Fortran90 based on the Lagged-Fibonacci and coupled with
two Marsiglia shift sequences (period of 8.5 · 1037) is known to be a fast and reliable
choice for scalar code versions [195, 196]; for future parallel versions of the code
the SPRNG (Scalable Parallel Random Number Generators) library designed for
scalable and distributed architecture has been implemented [197, 198].
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shape.f90

Shape is the module dedicated to the computation related to the “numerical shape”
used for the interpolation scheme (see Section 7.1.1). The module contains the
subroutines, needed for charge assignment to grid nodes and field interpolation from
nodes to particle positions; the zeroth (Nearest Grid Point - NPG) and first order
(bilinear area weighting and Cloud In Cell - CIC) schemes are available to the user.

intfield.f90, extfield.f90

Within these modules are defined all the subroutines for the coefficient matrix def-
inition used in the self-consistent and the external field solvers respectively (see
Section 7.1.2). The extfield also contains a subroutine to calculate the potential
applied to the electrodes through the external circuit.

mover.f90

The file is one of the most complex in structure. It implements both the particles
advance (Section 7.1.3) and the collisional functions (described in Section 7.2.3 and
Section 7.2.4). The collision probability is computed from the cross sections tables
in a proper subroutine, then a random number is extracted to determine the collision
type. After moving the particle in the main subroutine of the module, proper calls
to subroutines for boundary check and collision event estimators are defined to treat
correctly the motion of the particle.

sorting.f90, clustering.f90, merging.f90, clustersmerging.f90

This set of files contains multiple modules used for particle clustering and merging
procedures. The reader is referred to Chapter 8 for a more detailed description of
the modules and for a dedicated flow-chart. The merging and splitting procedures
are here considered a sort of black-box.

distributer.f90

The Distributer module defines the initial distribution function for charged par-
ticles (both in position and velocity space) and is called for dynamic control of
simulation particles number. The main subroutine (LocalReshape) sorts the parti-
cles by cells through the hybrid counting sort, as described in Section 7.A.1. If a cell
is found to have a number of particles greater than an optimum number, the merging
technique is called. Similarly, if a cell undergoes an excessive depletion, the splitting
procedure is called instead. The thresholds for these checks are not general but they
have to be specifically tuned for the application of interest (as input parameters).

photo.f90

The Photo module collects all the subroutines necessary to evaluate the variation
of excited molecules and their impinging fraction on the back-wall cathode surface
in order to evaluate the number, the statistical weight and the energy distribution
function of emitted electrons through the photoelectric effect.
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plotter.f90

The last module contains all the output operations: it includes several subroutines
for formatted and unformatted data output. By default, raw binary data of the
simulation particles (positions, velocities and statistical weight) are printed every nt

time-steps, with nt at user choice. While the external field is printed only once in a
normalized form for a 1 V applied potential external, the potential induced by the
space-charge (as computed by the code on the grid) is written in unformatted form
every nt time-steps. The collisions with boundaries and neutral gas are monitored
at each time-step in two proper formatted output files, as well as the time-evolution
of the excited states and photo-electrons. All the simulation parameters (iteration,
time-step, time instant, number of simulation and real particles for each species, . . . )
are available in a specific formatted file. Finally, at each ndump time-step a dump
file containing the last checkpoint is created (or overwritten) in binary format.

7.B.3 Post-processor

A particle code gives information about the microscopic properties of the simulation
particles, which would be impossible to examine in details. Hence, macroscopic
informations have to be generated in order to facilitate an analysis of the results. A
suite of post-analysis subroutines in Fortran90 has been combined with a bash-shell
script to readily manipulate the unformatted output files and produce scientific plot
of the physical quantities of interest.
Few advanced features of shell-scripting [199] have been exploited to check the

directory paths and the files conformity under a set of input parameters chosen by
the user. Proper temporary files are created and fed into the compiled version of
the optimized analysis procedures. Mainly, the following quantities are derived from
the particle raw data:

− time-evolution quantities: growth of simulation and real particles numbers,
collisional frequencies for each collision type, frequency of boundary interac-
tions, excited states, contributes to secondary emission particles; mean energy,
mean velocity components; current and voltage;

− distribution functions: energy distribution function of all the species and their
comparison with Maxwell-Boltzmann, Druyvesteyn and Margenau distribution
functions (see Section 6.1.2); velocity distribution functions (velocity compo-
nents, planar velocity, direction of flight);

− meshed maps: number of particles/density per cell, mean energy/energy den-
sity per cell, number of simulation particles per cell, Debye length and plasma
frequency; charge density distribution, external electric potential, space-charge
potential, total potential, electric field components;

for each of them a plot is generated through the command-line driven data and
function plotting Gnuplot freeware utility [200].
The plot can be produced for a single time instant investigation or for a sequence of

multiple equally spaced iterations. In this case, the user can choose to automatically
create an animation of the color or contour maps combining a sequence of gif frames.
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The developed tool is quite simple to use and provided with a short-help on input
parameters and default values, automatically displayed in case of inconsistencies.
More graphical formats are available for plots. The modularity of the analysis pro-
cedures makes the tool easy to be extended.



CHAPTER 8

Merging and splitting techniques

Abstract. PIC simulations require large machine-time to process particles charge
assignment and motion. Moreover coupling such methods with MCC modules causes
another expensive computational cost to simulate particle collisions with background
gas and domain boundaries. Merging many particles in few particles with increased
weights is a widely used accelerating technique. A merging procedure based on
charge conservation on a spatial 2D domain is here proposed to avoid an expo-
nentially increasing number of particles per cell during the simulation. Particular
attention will be devoted to the particles selection, through a clustering procedure
extended to the phase space. If coupled with a splitting technique, the method re-
veals itself efficient to increase performances of both PIC and MCC module reducing
noise in electric field solution, making more uniform the variance on the distribution
functions and increasing samples representativeness in stochastic calculations.
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8.1 Introduction

Many simulation particles control procedure have been developed for kinetic simu-
lations. The concept of importance, or statistical weight, of Monte Carlo techniques
has been successfully extended to PIC codes in order to limit the number of simula-
tion particles used to represent the whole system. On the contrary, regions where the
number of particles diminishes could be characterized by a bad representativeness of
the statistical sample and be affected by numerical noise. In these cases, a splitting
technique could help allowing to increase the number of particles decreasing their
importance. The intuitive concepts here proposed can be better formalized from a
physical and mathematical point of view.

8.1.1 Particles number control techniques

The PIC method is based upon super-particles (or simulation) particles, which rep-
resent an ensemble of many real particles. A weight w, equal to the number of
real particles represented by the super-particle, can be assigned to each simulation
particle in order to account for the total charge of the collapsed ensemble and to
preserve the charge-mass ratio q/m.
PIC codes require considerably large computation time, since it scales with the

number of particles N , which must be kept sufficiently high to reduce the simula-
tion noise (proportional to 1/

√
N) [43]. In the case of plasma discharge evolution,

the number of charged particles increases exponentially, varying typically of several
orders of magnitude. This consequently leads to an increasing computation time
demand. When the number N of super-particles grows rapidly, a way to improve
considerably the simulation speed is the reduction of N with a consequent increase
of their weight w. Such a procedure has to be performed without the violation of
charge and energy conservation laws.
A first rough approach could be based on a typical variance reduction technique

of the Monte Carlo methods, called russian roulette [141]. When a threshold for
N is reached, a survival probability Ps is defined as the ratio between the reduced
number N ′ of super-particle and the actual number N . Cycling on the N simulation
particles, a survival probability Ps will be common to each one and a random number
R will be extracted from a pseudo-random sequence to check if the particle will
die or survive (by comparison with Ps). Moreover, each survived particle (∼ N ′

in total) will have an increased weight w′ = wN/N ′. The total charge will be
globally conserved if the sample of particles is sufficiently large. Nonetheless, little
fluctuations in the mean energy of the charged particles can be observed, since the
technique is careless of their energy; locally, any conservation law is not satisfied:
lower is the number of particles per cell, greater is the induced error. Finally, the
technique isn’t optimal from the point of view of the MCC module: if a region
of space undergoes a depletion of particles during the simulation, the application
of the russian-roulette will further decrease their density and, consequently, the
statistics associated to the possible events will result poorer and poorer. Similar
techniques, applied with different survival probabilities Ps on three portions of the
energetic axis, were successfully employed to study the avalanches and streamers
formation and evolution in the electrical breakdown in gases [123, 124, 126], where
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the simulation domain was relatively small and entirely occupied by the discharge.
In the past, particle splitting and shifting methods were developed in one-dimensional

systems [118, 201] to overcome the usual problem of particles rise and contemporane-
ous depletion in the cathode fall region. This method was based on the separation of
the particle into two species for the bulk and cathode regions of the system: large-
weighted particles are used in the bulk and small-weighted ones in the depleted
region. The net effect is a speed-up of the simulation and a reduction of spurious
fluctuations.
Shon et al. [202] presented an alternative approach aimed, not only to satisfy the

conservation laws, but also to reduce the time of simulation. If the particle number
reaches the limit suggested by a certain criteria, new large-weighted particle species
are created by meshing the phase space. The particle number is reduced without
discriminating the bulk and cathode fall region. The method was extended to two-
dimensional systems: at least two new super-particles are necessary to merge the
particles of a cell in order to conserve the charge densities on the nodes of the grid.
Lapenta [203], instead, proposed binary and ternary procedures for particle rezoning
in collisionless PIC with generic spline weighting functions.
In the next section, an analysis of a merging technique for the bidimensional spatial

coordinates of the phase space is presented together with an interesting analogy with
well-known mechanical properties. Only the PIC bilinear interpolation weighting is
studied in this first stage, since it can be successfully applied both in cartesian and
cylindrical coordinate systems.

8.1.2 Conservation rules

As shown in Section 7.1.1, all the physical quantities related to the particles are
weighted on the grid points through the so called shape factor. All the moments of
the particle distribution on the grid points are easily defined by [203]

Mg =
∑
p

qpS(~xg − ~xp)~f(~vp) ,

where qp is the particle charge and ~f(~vp) is a generic function of the particle velocity.
In particular, when ~f(~vp) = 1, ~vp and ~vp~vp one obtains the charge density, current
density and pressure tensor respectively.
In kinetic PIC codes, the equivalence between two sets of particles is based on two

conditions:

1. the two ensembles equally contributes to the grid moments appearing indis-
tinguishable;

2. the two sets sample the same velocity distribution function.

In electrostatic codes, the only moment involved in electric field calculation is the
first order one: in other words, if a set of N particles has to be merged in a set of
N ′ < N , the contribution to charge density on grid points must be the same for the
two sets. It will be shown that, for linear interpolation weighting in two dimensions,
at least two particles are required to merge an ensemble of N particles lying in the
same cell.
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The first criterion will be treated in the next section, postponing the distribution
function conservation rules and sampling to Section 8.3 and Section 8.4 respectively.
The same criteria must be respected when splitting simulation particles. When the

plasma is collisional, the MCC module reveals of great help as a tool to randomize
position and velocities through collisions. The main problem, treated in details in
Section 8.5, is then the choice of the particles to be split in the cell and the number
of new particles depending on their starting energy distribution in order to reduce
its variance on the whole energetic axis.

8.2 Spatial merging

It’s widely known [43] that linear-weighting (first-order) charge assignment with PIC
and CIC logic are equivalent in cartesian coordinates, while they differ in cylindrical
and spherical coordinate systems. The PIC bilinear interpolation is widely used as
weighting function both in cartesian and cylindrical coordinate systems.

8.2.1 Conservation laws

Referring to Figure 7.2-a for variables meaning, the generic i-th particle of local
coordinates inside the cell (xi, yi), weight wi and charge q (qi = wiq is the effective
charge of the simulation particle) contributes to node charges on the basis of the
following fractions:

qA,i = wiq
(∆x− xi)(∆y − yi)

∆x∆y
= qwiρA,i (8.1a)

qB,i = wiq
xi(∆y − yi)

∆x∆y
= qwiρB,i (8.1b)

qC,i = wiq
xiyi

∆x∆y
= qwiρC,i (8.1c)

qD,i = wiq
(∆x− xi)yi

∆x∆y
= qwiρD,i . (8.1d)

Assuming a generic subset of N particles in the cell, their total charge contribution
to the generic node P (with P=A,B,C or D) results

qP = q
N∑
i=1

wiρP,i ; (8.2)

then, the total charge in the cell is given by

D∑
P=A

qP = q
D∑

P=A

N∑
i=1

wiρP,i = q
N∑
i=1

wi

D∑
P=A

ρP,i = q
N∑
i=1

wi . (8.3)

The fraction of the total charge to each node can be defined by the ratio between the
total charge in P (equation (8.2)) and the total charge in the cell (equation (8.3)):

ρP =
qP∑D
P=A qP

=
∑N

i=1wiρP,i∑N
i=1wi

,
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which obviously represents a weighted average value.
By definition of ρP,i, it’s evident that

∑D
P=A ρP,i = 1 for each i; then, it follows

that

D∑
P=A

ρP =
D∑

P=A

∑N
i=1wiρP,i∑N
i=1wi

=
∑N

i=1wi
∑D

P=A ρP,i∑N
i=1wi

= 1 , (8.4)

as foreseeable by reasoning on superposition effects.
Finally, from equations (8.1) it arises also the identity

ρA,iρC,i = ρB,iρD,i ,

which cannot be extended by summation to ρAρC = ρBρD, because of crossed prod-
ucts between different particles.

8.2.2 Non dimensional quantities and change of reference

Generally speaking, the substitution of a set of N particles with a set of N ′ particles,
one should conserve the total charge on each grid node; shifting the problem to the
cell and summing the contributions of each cell on the corresponding nodes, the
condition can be expressed in terms of conservation of the charge fractions on the cell
nodes. For greater convenience, the local coordinates on the cell will be normalized
to ∆x and ∆y as

ξi =
xi
∆x

ηi =
yi
∆y

,

with ξi, ηi ∈ [0, 1]. Moreover, the weights wi will be referred to the total weight∑N
i=1wi introducing

ωi =
wi∑N
i=1wi

.

Making use of the prime to identify the merged particles properties, equations (8.1)
lead to the following conditions:

N∑
i=1

ωi(1− ξi)(1− ηi) =
N ′∑
i′=1′

ωi′(1− ξi′)(1− ηi′) = ρA (8.6a)

N∑
i=1

ωiξi(1− ηi) =
N ′∑
i′=1′

ωi′ξi′(1− ηi′) = ρB (8.6b)

N∑
i=1

ωiξiηi =
N ′∑
i′=1′

ωi′ξi′ηi′ = ρC (8.6c)

N∑
i=1

ωi(1− ξi)ηi =
N ′∑
i′=1′

ωi′(1− ξi′)ηi′ = ρD . (8.6d)



184 8.2. Spatial merging

where the leftmost and rightmost sides are known. The normalization condition of
equation (8.4) makes the four equations linearly dependent. A further condition
must be added in order to conserve the total weight of the ensemble:

N∑
i=1

ωi =
N ′∑
i′=1′

ωi′ = 1 .

A total of 4 equations, is obtained for the unknowns (ωi′ , ξi′ , ηi′). One particle is not
enough to satisfy all of them: it would indeed introduce a second closure equation
given by ρ′Aρ

′
D = ρ′Bρ

′
C which, in general, is not satisfied by an ensemble of more

than one particle: ρAρD 6= ρBρC.
Hence, at least two particles are necessary to solve the system. Having only 4

equations in 6 unknowns, one can chose arbitrarily 2 of these. While it would be
wise to mergeN particles into two equally weighted particles, no particular condition
can be imposed on the particles coordinates a priori. Only bounding conditions could
be used: the two new particles must belong to the same cell of the old set.
Summing equation (8.6c) with equation (8.6b) and equation (8.6d) respectively,

the system is simplified in

N∑
i=1

ωi =
N ′∑
i′=1′

ωi′ = 1 (8.7a)

N∑
i=1

ωiξi =
N ′∑
i′=1′

ωi′ξi′ = ρB + ρC (8.7b)

N∑
i=1

ωiηi =
N ′∑
i′=1′

ωi′ηi′ = ρC + ρD (8.7c)

N∑
i=1

ωiξiηi =
N ′∑
i′=1′

ωi′ξi′ηi′ = ρC . (8.7d)

The first two equations represent the equivalence between the barycenter (or cen-
troid) coordinates of the two sets of particles, being

ξG =
1

∆x

∑N
i=1wixi∑N
i=1wi

=
N∑
i=1

ωiξi (8.8a)

ηG =
1

∆y

∑N
i=1wiyi∑N
i=1wi

=
N∑
i=1

ωiηi . (8.8b)

This shouldn’t astonish the reader since the two terms ρB+ρC and ρC+ρD represent
respectively the fraction of the total charge in the second horizontal and vertical
halves of the cell.
Since

∑N
i=1 ωi = 1, it’s useful to change the reference shifting it to the barycenter
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of the ensembles:

N ′∑
i′=1′

ωi′(ξ′i − ξG) =
N ′∑
i′=1′

ωi′ζi′ = 0 (8.9a)

N ′∑
i′=1′

ωi′(η′i − ηG) =
N ′∑
i′=1′

ωi′γi′ = 0 , (8.9b)

with ζi′ ∈ [−ξG, 1−ξG] and γi′ ∈ [−ηG, 1−ηG]. Working on equation (8.7d) in order
to obtain ζi and γi, it follows that

ρC =
N∑
i=1

ωiξiηi =
N∑
i=1

ωi(ζiγi+ γiξG + ηGζi+ ξGηG) =
N∑
i=1

ωiζiγi+ ξGηG , (8.10)

where equations (8.9) have been used. Equation (8.7d) can thus be substituted by

N∑
i=1

ωiζiγi =
N ′∑
i′=1′

ωi′ζi′γi′ = ρC − (ρB + ρC)(ρC + ρD) . (8.11)

8.2.3 The inertia tensor analogy

In addition to the centroid conservation, equation (8.11) represents a sort of non-
diagonal component of a pseudo-inertia tensor. In classical mechanics, the inertia
tensor is defined as a symmetric matrix in the form of

~~I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 ,

with components Ijk given by

Ijk = δjk

N∑
i=1

wi(x2
l,i + x2

m,i) + (δjk − 1)
N∑
i=1

wixj,ixk,i ,

where xj,i is the coordinate along the j-th direction (x, y or z) of the generic i-th
particle with weight wi in the system (k, l, m having the same meaning of j); δlm is
the Kroneker delta function. If the moment of inertia tensor has been calculated for
rotations about the centroid of the system, it is relatively easy to compute the tensor
for rotations offset from the centroid, by the shifting formula (known as Huygens
law)

Idisplaced
jk = Icentroid

jk + w(r2δjk − rjrk) , (8.12)

~r = (rx, ry, rz) being the 3D vector by which the rotation axis is displaced from the
centroid. Equation (8.12) explains the meaning of equation (8.10) which modifies the
ξη component of the inertia tensor changing reference to the barycenter G centered
(ζ, γ) one. The mechanical analogy suggests to consider the fourth conservation
equation (8.13d) as describing the particles distribution disuniformity in the cell: its



186 8.2. Spatial merging

sign depends on the particles distribution in the four quarters defined by the (ζ, γ)
axis.
The conservation of the charge fractions on the nodes doesn’t require any other

condition if a first order interpolation is used. The system obtained by imposition
of charge conservation on the nodes has multiple acceptable solutions. However,
it would be wise to choose the lower number of equally weighted merging particles
in order to optimize the particles number reduction and to homogenize weights
distribution. The choice N ′ = 2 allows to reduce the number of unknowns to the 6
particles coordinates; it will be shown that equal weights ω1′ = ω2′ = 1/2 is a not
always acceptable choice.

8.2.4 The merged particles coordinates

The system of conservation equations (8.13) can be easily rewritten for N ′ = 2
particles, leading to

ω1′ + ω2′ = 1 (8.13a)

ζ1′ = −ω2′

ω1′
ζ2′ (8.13b)

γ1′ = −ω2′

ω1′
γ2′ (8.13c)

ω1′ζ1′γ1′ + ω2′ζ2′γ2′ = Iζγ . (8.13d)

Having four equations in six unknowns, the system is not closed. One of the particles
coordinates and one of their weights can be arbitrarily chosen as parameters; then
the other three coordinates will be expressed as functions of them. Moreover, it can
be noticed by the first two equations (conservation of the system barycenter) that
the particles must lie on a line containing the charge centroid, on opposite sides of
it, at distances from it depending on their weights. The symmetry of the system
allows to reduce the field of variability for the coordinate chosen as parameter to
positive values only. Once fixed ζ1′ > 0, the other three coordinates are

ω2′ = 1− ω1′ (8.14a)

ζ2′ = − 1
ωr
ζ1′ (8.14b)

γ1′ = ωr
Iζγ
ζ1′

(8.14c)

γ2′ = −
Iζγ
ζ1′

, (8.14d)

with ωr = ω2′/ω1′ = (1− ω1′)/ω1′ . To assure that particles belong to the same cell,
a bounded interval of variability must be defined for ζ1′ and ω1′ .

8.2.5 Cell coordinates limits

The new particles coordinates are not free in the whole 2D space, but must be
bounded by the cell limits. For the coordinate systems considered up to now, one
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has

x ∈ [0,∆x] , ξ ∈ [0, 1] , ζ ∈ [−ξG, 1− ξG] ,
y ∈ [0,∆y] , η ∈ [0, 1] , γ ∈ [−ηG, 1− ηG] .

Working in the (ζ, γ) reference for convenience, the coordinates limits on ζ1′ , ζ2′ ,
γ1′ and γ2′ and the assumptions on ζ1′ affect the restriction limits over ζ1′ as follows

ζ1′ ∈ [−ξG, 1− ξG] ⇒ ζ1′ ∈ ]0, 1− ξG]
ζ2′ ∈ [−ξG, 1− ξG] ⇒ ζ1′ ∈ ]0, ωrξG]

γ1′ ∈ [−ηG, 1− ηG] ⇒

{
ζ1′ ∈ ]− ωr

Iζγ

ηG
,∞[ if Iζγ < 0

ζ1′ ∈ ]ωr
Iζγ

(1−ηG) ,∞[ if Iζγ > 0

γ2′ ∈ [−ηG, 1− ηG] ⇒

{
ζ1′ ∈ ]− Iζγ

1−ηG ,∞[ if Iζγ < 0

ζ1′ ∈ ] Iζγ

ηG
,∞[ if Iζγ > 0 .

The multiple conditions obtained for ζ1′ can be gathered in

max
{
−ωr

Iζγ
ηG

,−
Iζγ

1− ηG

}
< ζ1′ < min{ωrξG, (1− ξG)} if Iζγ < 0 (8.15a)

max
{
Iζγ
ηG

, ωr
Iζγ

1− ηG

}
< ζ1′ < min{ωrξG, (1− ξG)} if Iζγ > 0 (8.15b)

where the min and max functions allow to obtain the smallest variability interval.
A solution can exist if and only if the obtained variability interval for ζ1′ is not

void. Each of the two cases Iζγ < 0 and Iζγ > 0 can be exploded in four conditions,
two not depending on ωr and two depending on it, then giving a variability interval
for it. In the case Iζγ > 0, the following four disequations are obtained:

ξG >
Iζγ

1− ηG
⇔ ξG =

N∑
i=1

ωiξi > Iξη =
N∑
i=1

ωiξiηi

1− ξG >
Iζγ
ηG

⇔ ηG =
N∑
i=1

ωiηi > Iξη =
N∑
i=1

ωiξiηi

ωrξG >
Iζγ
ηG

⇔ ωr >
Iζγ
ξGηG

1− ξG > ωr
Iζγ

1− ηG
⇔ ωr <

(1− ξG)(1− ηG)
Iζγ

.

In the first two cases, the definition of the centroid coordinates (equations (8.8)),
the Huygens law for the centrifugal moment, Iζγ = Iξη − ξGηG, and its definition
(equation (8.10)) have been used; the obtained condition are immediately verified
being both ξi and ηi less than 1 for each i. The last two conditions give a variability
interval for ωr

Iζγ
ξGηG

< ωr <
(1− ξG)(1− ηG)

Iζγ
, (8.16)

non-void thanks to the combination of the first two just verified disequations.
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Paying attention to the disequations inversion due to negative signs, something
analogous can be obtained in the case Iζγ < 0:

ξG > −
Iζγ
ηG

⇔ Iξη =
N∑
i=1

ωiξiηi > 0

1− ξG > −
Iζγ

1− ηG
⇔ 1− ξG =

N∑
i=1

ωi(1− ξi) > ηG − Iξη =
N∑
i=1

ωiηi(1− ξi)

ωrξG > −
Iζγ

1− ηG
⇔ ωr > −

Iζγ
ξG(1− ηG)

1− ξG > −ωr
Iζγ
ηG

⇔ ωr < −(1− ξG)ηG

Iζγ
.

The first condition is verified being ωi, ξi, ηi ≥ 0 in general and ωi, ξi, ηi > 0 for at
least one i ∈ [1, N ]; the second one is true since ηi ≤ 1∀i (at least for one i, ηi must
be strictly less than 1, otherwise Iξη would be null). The last two disequations give
a variability interval for ωr

−
Iζγ

ξG(1− ηG)
< ωr < −(1− ξG)ηG

Iζγ
, (8.17)

which can be easily verified to be not void combining the first two conditions.
The last case Iζγ = 0 is trivial, since one can choose one of the following solutions:

ζ1′ = ζ2′ = 0, ωr = 1, 0 ≤ γ1′ = −γ2′ ≤ max{ηG, 1− ηG} ;
γ1′ = γ2′ = 0, ωr = 1, 0 ≤ ζ1′ = −ζ2′ ≤ max{ξG, 1− ξG} .

8.2.6 A graphical interpretation

The previous evaluations of the variability interval for ζ1′ and ωr can be graphically
represented in seek of a greater clearness. From equations (8.14), one can immedi-
ately note that the coordinates of the two new particles lie on one branch of the two
hyperbola in the centroid reference (see Figure 8.1), given by:

ζ1′γ1′ = ωrIζγ

ζ2′γ2′ =
1
ωr
Iζγ .

The distance of each branch from the reference center depends on the two weights
through ωr. If, for a fixed value of ωr, one of the two branches falls completely
outside the cell, then no solution is acceptable. The value of ωr has to be contained
in the interval given by equation (8.16) if Iζγ > 0 or in those of equation (8.17) in
the opposite case of Iζγ < 0. Within this choice of ωr, the two hyperbola weighted
branches have at least one point inside the cell allowing an acceptable solution. As
shown in Figure 8.1, the first new particle will fall always on the right branch (being
ζ1′ > 0). For each choice of ωr, many possible solutions are acceptable since no other
hypothesis is done. When ωr is chosen as the maximum or minimum value of the
allowed interval, only one solution is possible since one of the two weighted branches
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Figure 8.1: Graphical interpretation of the weight and co-
ordinate choices in the two cases of Iζγ > 0 (a) and
Iζγ < 0 (b). The dotted lines represent the limiting
hyperbola branches.

of the hyperbola crosses one cell vertex. The two cases Iζγ > 0 and Iζγ < 0 are
completely analogous.
The graphical interpretation of the variability interval and new particles position-

ing, can be effectively used to show that the choice of equally weighted particles
ωr = 1 is not always acceptable.
In the case Iζγ > 0, one should show that it exists at least one configuration
{ωi, ξi, ηi}i=1,N such as 1 is not contained in [ Iζγ

ξGηG
, (1−ξG)(1−ηG)

Iζγ
]. Giving a look at

the case (a) of Figure 8.1, in order to make the lower limit greater than one, one
should try to place the centroid near to the lower-left corner of the cell and place
particles near the opposite corner increasing the centrifugal moment. Therefore,
choosing

ωi =
ε

N − 1
, ξi = ηi = 1− ε ∀i = 1, N − 1

ωN = 1− ε, ξN = ηN = ε

with ε� 1, it’s easy to show

1 <
Iζγ
ξGηG

⇔ 2ξGηG < Iξη ⇔ 8(ε(1−ε))2 < ε(1−ε) ⇔ ε(1−ε) < 1
8
,

which can be true due to the arbitrariness on ε.
Analogous is the case for Iξγ < 0.
When the variability interval for ωr contains the unit value, it’s convenient to

choose equally weighted particles: once fixed ωr = 1, the ζ1′ positive coordinate
can be extracted in the interval given by the proper one of equations (8.15). In the
opposite case, ωr has to be randomly extracted in its variability interval and then
ζ1′ between the bounds depending on the chosen ωr.
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8.2.7 Correction to the first coordinate random choice

By definition, the centrifugal inertia moment Iζγ =
∑
ωiζiγi is independent from the

choice of the reference axis: an exchange between ζ and γ would preserve Iζγ thanks
to the commutative property of the product. Moreover, the variability interval
for ζ1′ , given by equations (8.15), fixes a non-zero lower limit for the coordinate
randomly extracted and assumed positive.
The combination of the two factors lead to a polarization of the solution: when
|Iζγ | assumes high values, ζ1′ is sampled uniformly on a tight interval containing only
high values, which would give low values for γ1′ , obtained through equation (8.14c);
on the other hand, if |Iζγ | is low, the variability interval for ζ1′ is wider, but all the
high values sampled for ζ1′ would lead to low values for γ1′ . In most cases, the new
merged particles occupy a narrow strip along the ζ axis resulting in a not-uniformly
distributed spatial configuration inside the cell.
To solve the problem, the Iζζ and Iγγ inertia moments, defined through (see Ap-

pendix 8.A for more details)

N∑
i=1

ωiζ
2
i =

N ′∑
i′=1′

ωi′ζ
2
i′ = Iγγ

N∑
i=1

ωiγ
2
i =

N ′∑
i′=1′

ωi′γ
2
i′ = Iζζ ,

can be of help. The two additional moments give a sort of quadratic deviation for
each main coordinate ζ and γ of the set of particles. Comparing the two inertia
moments, one has information about the spatial distribution of the particles in the
cell: higher is the value of Iγγ higher are the particles ζ coordinates, and analogously
for Iζζ and the γ coordinates. Hence, when Iγγ ≥ Iζζ the ζ coordinate can be chosen
randomly leading to higher values of ζ1′,2′ , while, if Iγγ < Iζζ , the γ coordinate will
be sampled to better reproduce the spatial distribution.
The variability interval for ζ1′ and ωr of equations (8.15) and (8.16)-(8.17) can

be similarly obtained for the randomly sampled γ1′ . Due to the above mentioned
symmetry between ζ and γ in the Iζγ definition, the two coordinates of the main
reference can be exchanged (ξ ↔ η and ζ ↔ γ) to obtain the γ1′ variability interval:

max
{
−ωr

Iζγ
ξG

,−
Iζγ

1− ξG

}
<γ1′ < min{ωrηG, (1− ηG)} if Iζγ < 0 ,

max
{
Iζγ
ξG

, ωr
Iζγ

1− ξG

}
<γ1′ < min{ωrηG, (1− ηG)} if Iζγ > 0 .

Consequently, the lower and upper bounds for ωr are given by

Iζγ
ξGηG

<ωr <
(1− ξG)(1− ηG)

Iζγ
if Iζγ < 0 ,

−
Iζγ

(1− ξG)ηG
<ωr < −ξG(1− ηG)

Iζγ
if Iζγ > 0 .
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8.3 Velocities merging

When a particle substitution is performed, as proposed in the previous section,
charge and mass are not the only physical properties to be conserved. To avoid
numerical heating of the system, even the energy and momentum of the starting set
has to be preserved. Two possible solution will be here proposed to close the system
of four equation in six unknowns.

8.3.1 Momentum and energy conservation

The presented two-dimensional PIC-MCC code follows particles with two position
coordinates and three components of velocities (equivalent to two components plus
total energy). When merging N particles, the momentum must be conserved in all
its components and total energy as a scalar. Following the same notation used in the
previous section and labeling the new N ′ particles with the prime, the conservation
laws can be written as

N∑
i=1

mivj,i =
N ′∑
i′=1

mi′vj,i′ = Mj ∀ j = 1, 2, 3

N∑
i=1

1
2
mi

3∑
j=1

v2
j,i =

N ′∑
i′=1

1
2
mi′

3∑
j=1

v2
j,i′ = E ,

where vj with j = 1, 2, 3 are the three components of velocity, Mj the total momen-
tum in the j-th direction and E the total energy of the set. The conservation of the
momentum in the third direction could be neglected, but it must be remembered
that the poloidal velocity contributes to the total energy of the particles.
In the previous section, it was derived that to replace a generic set of N particles

the number of new particles cannot be lower than N ′ = 2 to guarantee the charge
conservation on the grid nodes. The resultant system can be rewritten as

m1′vj,1′ +m2′vj,2′ =
N∑
i=1

mivj,i = Mj ∀ j = 1, 2, 3 (8.19a)

3∑
j=1

(m1′v
2
j,1′ +m2′v

2
j,2′) =

3∑
j=1

N∑
i=1

miv
2
j,i =

3∑
j=1

(2Ej) (8.19b)

Mj and Ej being respectively the momentum and energy in the j-th direction.
Moreover, the spatial merging already conserves the total mass of the system,

since the ratio q/m must be preserved for each species apart of the particle weight.
The mass mi of the i-th generic particle is given by mi = wim, where m is the
mass of the particle species. Denoting the total weight of the considered set of
particles with w, and their total mass with mw = m

∑N
i=1wi, equations (8.19)

can be made dimensionless, by dividing each mass mi by the total mass mw and
each velocity component vj,i by the ratio of the total momentum and total mass
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Mj/(mw), obtaining

ω1′νj,1′ + ω2′νj,2′ = 1 ∀ j = 1, 2, 3 (8.20a)
3∑
j=1

(ω1′ν
2
j,1′ + ω2′ν

2
j,2′) =

3∑
j=1

εj , (8.20b)

where

ωi =
mi

mw
=
wi
w

νj,i = mw
vj,i
Mj

εj = 2mw
Ej
M2
j

. (8.21)

The system of equations (8.20) contains 6 unknowns but only 4 equations. Two
additional conditions must be imposed to avoid the arbitrariness on the solution, or
two random numbers can be extracted to fix two unknowns. Since the particles are
firstly collected in clusters on the basis of similar velocity components (as widely
described in Section 8.4), the random extraction of velocity components should be
limited to the same interval of variability of the starting set. To avoid the sampling
of particles velocities, two fictitious conservation rules can be added to have a system
of equations in a closed form. Two different methods will be proposed.

8.3.2 Equal velocities

A first simple way to deceive the arbitrariness problem of the system of equa-
tions (8.20) consists in reducing the number of unknowns. Since the third velocity
component is strictly necessary only to correctly estimate the particles energy, the
momentum conservation in the poloidal direction can be neglected. In this way,
the number of equations is reduced to three giving a closed system if the three ve-
locity components of only one particle are considered. Under the hypothesis that
the merged particles have equal velocities in the three directions (vj,1′ = vj,2′ for
each j = 1, 2, 3) and, consequently equal energies (E1′ = E2′), the system of equa-
tions (8.20) can be easily solved obtaining

νj,1′ = νj,2′ = 1 ∀ j = 1, 2

ν3,1′ = ±ν3,2′ = ±

√√√√ 3∑
j=1

εj − 2 .

Going back to the dimensional quantities of interest, by inversion of the equa-
tions (8.21), the new particles velocities are

vj,1′ = vj,2′ =
Mj

w
∀ j = 1, 2

v3,1′ = ±v3,2′ = ± 1
w

√
wE − (M2

1 +M2
2 ) .

The argument of the square root in the expression of v3,i′ is clearly positive, even if,
numerically speaking, care must be devoted to protect from negative values caused
by truncation or rounding errors. Two random numbers can be extracted to define
the sign of v3,1′ and ±v3,2′ .
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The main drawback of this first rough but effective method is the loss of any sep-
aration of the two particles in the velocity space. However, this is not a problem
since the two merged particles occupy different positions inside the cell and will,
therefore, feel different pushing forces. Moreover, in PIC-MCC simulations, the col-
lisions between charged particles and the background gas will accelerate the particles
spreading them in the 3D velocity space.

8.3.3 Conservation of energy in three directions

A second strategy to close the system of equations (8.20) is to split the equa-
tion (8.20b) in a set of three equations, one for each direction of the velocity space.
The resulting system of 6 equations is

ω1′νj,1′ + ω2′νj,2′ = 1 ∀ j = 1, 2, 3 (8.24a)

ω1′ν
2
j,1′ + ω2′ν

2
j,2′ = εj ∀ j = 1, 2, 3 , (8.24b)

where a pair of two equations is obtained for each j with different known εj .
Extracting νj,2′ from equation (8.24a) and substituting it into equation (8.24b), a

quadratic equation in νj,1′ is obtained, having

νj,1′ = 1±
√
ω2′

ω1′
(εj − 1) , (8.25)

as possible solutions (ω1′ + ω2′ = 1 have been extensively used). The velocity
components of the particle 2′ are derived by equation (8.24a):

νj,2′ =
1
ω2′

(1− ω1′νj,1′) = 1∓
√
ω1′

ω2′
(εj − 1) . (8.26)

Note that the weight fractions ω1′ are defined by the spatial merging procedure of
Section 8.2; in particular, for equally weighted merging particles, the ratio ω1′/ω2′

is equal to 1, leading to simplified expressions.
Looking at, equation (8.25) and equation (8.26) it arises necessary to show that
εj − 1 ≥ 0 in order to obtain real valued νj,1′ and νj,2′ . The mentioned condition is
equivalent to

2mw
Ej
M2
j

≥ 1 ;

multiplying both hands by M2
j ≥ 0 and applying the definition of Ej and Mj for the

initial set of N particles, the relation becomes

N∑
k=1

wk

N∑
i=1

wiv
2
j,i ≥

(
N∑
i=1

wivj,i

)2

.

The square terms of the rhs equal the terms of the lhs for k = i, then the two
summations can be simplified in

N∑
k=1

N∑
i=1,i6=k

wkwiv
2
j,i ≥ 2

N∑
k=1

N∑
i=k

wkwivj,kvj,i =
N∑
k=1

N∑
i=1,i6=k

wkwivj,kvj,i ;
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moving all the terms to the lhs and adding the generic terms given by the couple of
indexes k = l, i = n 6= l and k = n, i = l 6= n, the generic addendum wlwm(vj,l −
vj,m)2 is obtained. Therefore, the disequation containing the double summation
assumes the form

N∑
k=1

N∑
i=k

wkwi(vj,k − vj,i)2 ≥ 0 ,

which is evidently verified being the summation of positive terms.
It’s, finally, trivial to go back from equations (8.25)-(8.26) to the real velocity

components:

vj,1′ =
Mj ±

√
m2′

m1′

(
2(m1′ +m2′)Ej −M2

j

)
m1′ +m2′

vj,2′ =
Mj ∓

√
m1′

m2′

(
2(m1′ +m2′)Ej −M2

j

)
m1′ +m2′

.

Three random numbers can be extracted to fix the plus or minus sign of the three
square roots in vj,1′ for j = 1, 2, 3, those of vj,2′ being the opposite. For example,
the second term could be multiplied by (−1)nint(R), with nint(R) the nearest integer
of the random number R chosen in [0, 1] with a uniform distribution.

8.4 Particles clustering

The conservation of grid moments, momentum and energy is not enough to assure
the equivalence between the starting and final set of particles, since the two sets
must sample the same distribution function in the phase space (rule 2. stated in
Section 8.1.2). In the present section, a hybrid method will be proposed to select
“near” particles.

8.4.1 Mesh-free particles selection

Three are the main general strategies to select similar particles, which could undergo
a merging procedure avoiding too strong perturbation in the initial distribution
function:

- mesh-based methods: the phase space is meshed into small multi-dimensional
bins which create a sort of containment box for the simulation particles;

- mesh-free methods: the particles are selected on the basis of a proximity prin-
ciple looking for “near” particles in the phase space;

- hybrid methods: the mesh and mesh-free methods can be combined together to
exploit the advantages of each one in connection with the PIC-MCC algorithm
structure.
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The first approach appears simpler: a grid of the 2D space domain is already
available for the solution of the fields on the nodes; the addition of a 3D mesh in
the velocity space can be easily added to create bins able to contain particles with
similar velocity components. The mesh could be uniform or not, and for a 2D-3V
simulation, the first two components could be substituted by the direction of flight
and the planar velocity of the particles, while the third by their energy.
The mesh-free methods are more complex but even more flexible. The particles can

be selected grouping a fixed (or free) number of them into clusters having similar
properties in the phase space and then merged together in a new pair. The main
advantage of this method is the absence of a mesh bounding the particles, indepen-
dently from the real distance. However, the absence of a mesh makes necessary the
definition of searching rules to select “near” particles.
Finally, hybrid techniques could be used to exploit the advantages of both the

methods, like the presence of a spatial grid proper of the PIC codes and the flexibility
of the mesh-free selection for the continuous velocity components.
As proposed by Shon et al. [202], the particles could be grouped in the two-

dimensional velocity sub-domain phase space corresponding to the plane of sim-
ulation. The method is based on a meshing of the vx − vy phase space into several
domains through the direction of flight of the particles. After grouping particles,
they are sorted out separately by velocity magnitude (

√
v2
x + v2

y) and ordinately
grouped in ensemble containing an a priori fixed number of particles. If a MCC
module is coupled with the PIC one, energy of the particles is of fundamental im-
portance being related to the cross sections of the interactions with the background
gas. No consideration was found about this issue; furthermore, apparently, after the
angular binning, the particles are grouped together in a sorted order without any
check on their real proximity in planar velocity magnitude.
Lapenta [203] proposes two algorithms for generic spline weighting function. The

first coalesces N = 2 particles into N ′ = 1 ones for 1D, 2D or 3D systems allowing to
preserve the overall charge and momentum and charge densities but perturbing the
velocity distribution function; a diatomic search is performed to sort the particles
into two bins and select the largest one; then the binning is repeated in sequence
for each spatial direction and component of velocity until the number of particles
in the largest bin is small enough to use a pair search. The second scheme is valid
only in 1D systems.
The main drawbacks of the existing methods are the rigidity in the choice of a

fixed number of starting, equally-weighted particles, and the complete absence of
any consideration about the MCC module.
The schemes hereafter proposed are quite different since based on clustering pro-

cedures typical of the statistical analysis. Using the particle velocity components
(or related quantities like direction of flight, planar velocity and total energy) as
attributes, a multi-property data clustering procedure is presented to group closer
particles in the velocity phase space. The method is hybrid: the PIC grid is used as
spatial mesh, while the velocity dependent attributes are considered as continuous;
moreover, the number of particles in each group is not fixed a priori: this allows to
reduce the number of residual particles and maximize the effectiveness of the merg-
ing method. After a brief introduction on the data clustering topic, two general
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algorithms are described.

8.4.2 Data mining basis

Data clustering is a common technique for statistical data analysis [204]. It is
commonly used in many fields, including machine learning, data mining, pattern
recognition, image analysis and bioinformatics. Clustering is the classification of
similar objects into different groups, or more precisely, the partitioning of a data set
into subsets (clusters), so that the data in each subset (ideally) share some common
trait – often proximity according to some defined distance measure.
If each object in a set of N objects is represented by a set of D measurements (or

attributes), each object is represented by a pattern, or D-place vector. The set itself
is viewed as a N×D pattern matrix, whose rows define a pattern and each column a
feature (or measurement). One can figure the D features as a set of orthogonal axes
defining a D-dimensional pattern space. A cluster can be thought as a collection of
patterns which are close to one another or which satisfy some spatial relationships.
The task of a clustering algorithm is to identify such natural groupings in spaces
of many dimensions. Clustering methods require the establishment of an index of
proximity (alikeness, affinity or association) between pairs of patterns. This index
can be computed from a pattern matrix or from raw data.
A proximity index between the i-th and k-th patterns is denoted di,k and must

satisfy the following three properties:

1. di,i = 0 ∀i

2. di,k = dk,i ∀i, k

3. di,k ≥ 0 ∀i, k

Let [xij ] be a pattern matrix, where xij is the j-th feature of the i-th pattern. Usu-
ally the proximity index is based on a metric distance, which measure dissimilarity.
Denoted the i-th pattern, i.e. the i-th row of the pattern matrix, by the column
vector ~xi

~xi = (xi1 xi2 . . . xiD)T for i = 1, 2, . . . , N

where T is used as symbol of transpose, the Minkowski metric is defined as

d(i, k) =

 D∑
j=1

|xij − xkj |r
1/r

for r ≥ 1 .

All the Minkowski metrics satisfy two additional properties for di,k:

4. di,k = 0 only if ~xi = ~xk

5. di,k ≤ di,m + dm,k ∀i, k,m (triangle inequality)

The three most common Minkowski metrics are obtained for r = 1, r = 2 and
r → ∞, respectively known as Manhattan distance, Euclidean distance and “Sup”
distance [204]. The Euclidean distance is the most common metrics, even because
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the familiar geometric notions of invariance to translations and rotations of the
pattern space are valid only for it.
Making use of a metric distance as index of patterns dissimilarity, different methods

can be developed to collect the objects into clusters [204].
Data clustering algorithms can be exclusive or non-exclusive (overlapping): an

exclusive classification is a partition of the set of objects and each object belongs
to exactly one subset; on the contrary, non-exclusive classification can assign the
same object to several classes. The first category is then splittable into intrinsic
(or unsupervised) and extrinsic (or supervised) classification, the first using only
the proximity matrix to perform the classification (also called unsupervised since no
category labels denoting an a priori partition of the objects are used). Exclusive,
intrinsic classifications are subdivided into hierarchical and partitional. Hierarchical
algorithms find successive clusters using previously established clusters, whereas
partitional algorithms determine all clusters at once. Hierarchical algorithms can
be agglomerative (bottom-up) or divisive (top-down). Agglomerative algorithms
begin with each element as a separate cluster and merge them in successively larger
clusters. Divisive algorithms begin with the whole set and proceed to divide it into
successively smaller clusters.

8.4.3 Hierarchical agglomerative clustering

The above general considerations about data mining allow to deduce that hierarchi-
cal clustering methods represent a procedure for transforming a proximity matrix
into a sequence of nested partitions. A mathematical formulation of the present
concept can be devised.
The N objects to be clustered are denoted by S = {x1, x2, . . . , xN}, where xi is

the i-th object. A partition C of S breaks S into subsets {C1, C2, . . . , CM} which
satisfy the following properties:

Ci ∩ Cj = � for i, j = 1, . . . ,M i 6= j

C1 ∪ C2 ∪ . . . ∪ CM = S .

The generic component Ci of the partition C is called cluster. Partition C(l−1) is
nested into partition C(l) if every component of C(l−1) is a subset of a component
of C(l). In other words, C(l) is formed by merging components of C(l−1). Hence, a
hierarchical clustering is a sequence of partitions in which each partition is nested
into the next partition in the sequence; an agglomerative algorithm for hierarchical
clustering starts from the set of disjoint objects S ≡ C(0) (which can be seen as a
set of clusters containing a single object each) and, on the basis of the proximity
matrix, merges two or more of these trivial clusters into higher order partitions. The
process lead to a sequence of nested clusters containing all N objects. At last, the
partition C(N) contains a single cluster of all the N starting objects.
A picture of a hierarchical clustering is more readable and intuitive: a dendrogram

is a special type of tree structure which provides a convenient representation of
all the steps of a hierarchical clustering. Starting from the leaves (elements of S),
several branches are created to connect them on the basis of dissimilarity rules.
The branches are then nested into one another creating a multi-level clustering.
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�� �� �� �� �	 
� �x1 x2 x3x4 x5 x6x7

S = C(0) = {x1, x2, x3, x4, x5, x6, x7}

C(1) = {(x1), (x2), (x3), (x4), (x5), (x6, x7)}

C(2) = {(x1), (x2), (x3, x4), (x5), (x6, x7)}

C(3) = {(x1, x2), (x3, x4), (x5), (x6, x7)}

C(4) = {(x1, x2), (x3, x4, x5), (x6, x7)}

C(5) = {(x1, x2), (x3, x4, x5, x6, x7)}

C(6) = {(x1, x2, x3, x4, x5, x6, x7)}

Figure 8.2: Example of a dendrogram. The subsequent
clustering of an agglomerative method can be seen
reading it top-bottom, while a divisive algorithm (not
discussed here) is obtained scrolling bottom-up.

Cutting the dendrogram horizontally, a generic partition C(l) of S is created. Refer
to Figure 8.2 for a simplified example starting with 7 objects.
The creation order for the nested partitions is usually based on few simple rules

which allow to fix criteria to merge clusters starting from the data collected in
the proximity (or dissimilarity) matrix. The main problem is how to modify the
proximity matrix when a cluster is created, or, in other terms, how to define the
distance d(i(l), j(l)) between two clusters C(l)

i , C
(l)
j ∈ C(l). Many strategies can be

followed when a Minkowski metric is used:

d(i(l), j(l)) = min{d(i, j) : xi ∈ C(l)
i , xj ∈ C(l)

j } Single-linkage

d(i(l), j(l)) = max{d(i, j) : xi ∈ C(l)
i , xj ∈ C(l)

j } Complete-linkage

d(i(l), j(l)) =
1

card(C(l)
i )card(C(l)

j )

∑
xi∈C

(l)
i

∑
xj∈C

(l)
j

d(i, j) Average-linkage

which correspond respectively to the minimum distance, maximum distance and
average distance between elements of two different clusters. More complex rules
can be defined (sum of all intra-cluster variance, increase in variance for the cluster
being merged, probability that candidate clusters spawn from the same distribution
function, . . . ) but their detailed description is out of the aim of the present work.
In particular, when trying to merge objects in a physical space, the interest is to

obtain sets of “near” objects, where “near” is intended in term of Euclidean distance
for the considered property (space coordinate, velocity, energy, mass, . . . ). Moreover,
an upper limit dth can be fixed on the distance, in order to obtain clusters which
contain as many elements as possible but all inside a maximum distance. Under this
viewpoint, the complete-linkage agglomerative clustering method is considered the
most suitable.
Hence, a simple algorithm can be implemented to iteratively modify the proximity
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Y

merging C(l)
i and C(l)

j

Exit with the new
clusters set C(L)

N

Creation of the
proximity matrix

d(i(l), j(l)) = min{d(k(l),m(l)), ∀k,m}
Find (C

(l)
i ;C

(l)
j ) for which

d(i(l), j(l)) ≤ dth

Generate C(l+1)

Modify the
proximity matrix

l + 1

C(l) with l = 0

Figure 8.3: Flow chart of the hierarchical agglomerative
complete-linkage clustering iterative procedure.

matrix when a new cluster is created. Starting from the disjoint clustering of zero-
th level, the proximity matrix is generated for C(l) with l = 0. The most similar
pair (C(l)

i ;C(l)
j ) is found in the current clustering configuration C(l) looking for the

minimum of the proximity matrix

d(i(l), j(l)) = min{d(k(l),m(l)) ∀k,m} ,

and asking for d(i(l), j(l)) ≤ dth. The clustering level l is incremented to l+1 and the
clusters C(l)

i and C(l)
j merged together to obtain the new configuration C(l+1), which

corresponds to C(l) where C(l)
i and C(l)

j has generated C(l+1)
r . The proximity matrix

is then updated for the new configuration following a complete-linkage clustering
strategy: the rows and columns corresponding to C

(l)
i and C

(l)
j are deleted and a

new row-column corresponding to C(l+1)
r is added; moreover, the distance between

the new cluster C(l+1)
r and the generic C(l+1)

s = C
(l)
k (which has not been modified

from the previous level l) is updated to

d(r(l+1), s(l+1)) = max{d(i(l), k(l)), d(j(l), k(l))} .

If all the distances d(r(l+1), s(l+1)) are greater than dth for each r(l+1), s(l+1) or if
all the objects are in one single cluster, then the algorithm ends with C(L) as last
cluster configuration, else the level index l is again incremented and the iterative
procedure continues.

8.4.4 Multi-properties clustering

Basically, the above described clustering method can be used to create group of
“near” elements in a generic D-dimensional space where a Minkowski metric can be
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defined. For instance, if the six dimensional phase space of particles positions and
velocities is considered (D = 6), the method could be employed to obtain clusters of
particles in it: they would be contained in hyper-spheres with a maximum threshold
radius which combine both properties of positions and velocities spaces. To maintain
a physical meaning for the threshold distances, the starting attributes have usually
to be renormalized through a scaling constant: returning to the original phase space,
the hyper-sphere defined for the scaled properties is transformed in a hyper-ellipsoid
with not equal axis along the main directions. In similar cases, a more intuitive and
physical way to select particles is to subdivide the 6D phase space into a 3D spatial
space and a 3D velocity space, defining two threshold distances, one for the spatial
coordinates and one for the particles velocities. Hence, the proposed technique can
be generalized to nest more than one clustering procedure applied to the clusters
obtained for the previous property.
Let (k)P be the set of clusters (k−1)C ≡ C((k−1)L) obtained as last configuration

of the hierarchical agglomerative complete-linkage clustering method applied to the
elements for the generic k − 1 property (or set of properties), (k−1)L being the last
level index of the clustering, corresponding to condition d(r((k−1)L+1), s(

(k−1)L+1)) >
(k−1)dth ∀r, s. The above denoted S set corresponds to the only element of the
starting set for k = 0: (0)P ≡ {(0)S}. The clustering procedure is firstly applied
to the set (0)S of single elements, with a threshold distance (0)dth, leading to a new
set of clusters (0)C ≡ C((0)L), whose elements represents the starting sets (k)S for
the next property, all collected in (k)P for k = 1; then, for each element (k)Si ∈
(k)P, equivalent to one of the clusters (k−1)Ck ≡ C

((k−1)L)
i collected in (k−1)Ci,

the clustering procedure is repeated with the next threshold distance (k)dth. Once
terminated the sequence of new starting sets (k)Si, the clustering is completed for
the properties k and the new sub-clusters are recollected in (k+1)P. The index k is
then incremented to k + 1 and the procedure repeated for the new sub-cluster sets.
A sketch of the flow chart of the procedure is reported in Figure 8.4.
The described sub-clustering technique will produce new clusters for a new property

starting from the old ones obtained for the previous attribute. Hence, the elements
of each cluster cannot be exchanged between clusters pertaining to different property
levels.
The main advantage of this second approach to multi-dimensional clustering is

the possibility to define separate threshold distances for the physical properties of
interest. The main drawback lies in the need of defining a fixed order in clusters
creation: two particles very closed in velocity cannot be merged together if belonging
to different clusters obtained for spatial separation, even if their velocity distance is
lower than the threshold distance for the velocity clustering.

8.5 Splitting

In PIC codes, when the charge spatial distribution fluctuates rapidly on the grid,
usually because of a too low number of particles per cell, the solution of the electric
field is affected by numerical noise. Moreover, it’s widely known that Monte Carlo
techniques effectiveness depends on a sufficiently high number of sample. Great care
must be devoted to avoid local depletion of simulation particles, due to adsorbing
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Final configuration

C((p)L)
i ≡ (p)Ci

Collection of (p)Ci ∀i in

as new starting set
(p+1)P ≡ {(p+1)Si, i = 1, . . . , N}

l + 1

Starting set:
p = 0, i = 1

(0)P ≡ {(0)S}

Hierarchical agglomerative
complete-linkage

sub-clustering procedure

with l = 0∀C(p)l
i ∈ (p)Si

i+ 1

p+ 1

(see Figure 8.3)

Figure 8.4: Flow chart of the multi-properties sub-
clustering iterative procedure. The reader is referred
to Figure 8.3 for a detailed flow chart of the main block
(dth has to be intended for the k-th property, (k)dth).

events or charge neutralization. A splitting technique, successfully employed in
Monte Carlo simulations, can be adapted to hybrid PIC-MCC codes in order to
reduce noise and to improve representativeness in the phase-space domain.

8.5.1 Introduction

In many simulation of industrial plasma application a depletion of particles in cer-
tain domain regions is observed [118]. This phenomenon is essentially related to
an excessive weight of the simulation particles: typically 107 ÷ 108 real charges are
represented by one simulation particle, seeking a reduction of total computation
time. Nevertheless, plasma dynamics simulations could lead to a not uniform distri-
bution of simulation particles in the domain of interest; moreover, if weight-based
technique are implemented to randomly reduce the number of simulation particles
(for instance, russian roulette), some specific region (like the cathode-fall one [118])
could undergo a heavy depletion of particles.
Since the MC technique [140, 141, 142, 143, 145] requires a sufficiently high sam-

pling to reduce the variance of the stochastic processes, the problem of low number
of particles per cell does not influence only the solution of the electric field. For a
classical MC model, the variance is proportional to inverse of the square root of the
number of samples (if no variance reduction technique is used and a Poisson distri-
bution is assumed), which means that the representativeness of the results is heavily
influenced by the particles number Np; on the other hand, as mentioned before, the
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CPU-time is directly proportional to Np (in unbiased simulations). Moreover, the
study of phenomena characterized by a threshold energy (i.e. ionization, inelastic
scattering, . . . ) usually makes the statistics of high energy particles less representa-
tive with respect to those of bulk energy ones.
A logical approach of the problem is the development of weight-based variance

and noise reduction techniques acting on the whole phase-space and combined with
proper conservation rules.
In the past, few authors developed similar techniques [118] based on ion splitting at

the interface between cathode-fall and bulk regions in glow discharges. The method
presented can be extended and generalized to the whole phase space defining few
basic rules not specific for a particular simulation.

8.5.2 Spatial splitting

Splitting technique are widely used in MC simulations. Here they will be briefly
presented underlining the weight meaning and its importance for conservation rules.
The weight wi of the i-th simulation particle is exactly the number (or fraction) of

real charges it represents. During its motion the particle can be splitted into N split
c ;

consequently its weight has to be updated to the value

wnew
i =

wold
i

N split
c

, (8.27)

since the number of simulation particles increases artificially while that of real
charges is unchanged. Particles weight acts on both charge q and mass m of the
species: it means that qi = qwi and mi = mwi, while the ratio q/m = qi/mi remains
unchanged. As far as energy and momentum are considered, the new weighted par-
ticle represents a particle of the same species of the original one with its energy and
momentum properties but a reduced importance wi. A rigorous weighting manage-
ment assures the satisfaction of all conservation laws and the right values of tallied
quantities.
After the splitting procedure, all the splitted particles will have the same velocity

and position of the unsplit original one: conservation laws of momentum, energy,
mass and charge are all satisfied and no noise effect is artificially introduced. This
implies that, at a first stage, all the reduced weight particles will move along the same
trajectory; the randomness of the collisions with the neutral gas, governed by the
Pcoll of equation (7.10), will then separate the particles histories. In a collisionless
system, the splitting technique wouldn’t lead to any different result. The degree of
homogenization, and thus the efficiency of the scheme, increases with L/λ, where
L is the characteristic length of the low-density region and λ the mean free path of
the charged particle in the background gas.
Inside the MCC module, the simulation particles will undergo collisions as real

charged particles and not as simulation weighted particles. Consistently, a simulation
particle with weight wi generates wi-weighted electrons and ions in an ionization
event.
In MC simulations the splitting technique is applied when a particle undergoes

an event or when it crosses an interface (real or virtual). The second criterion
was followed in [118] by separation of the domain in a bulk and cathode-fall re-
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gion. Nevertheless, in addition to MC models, PIC algorithms introduce the time
discretization and, consequently, the virtual time-interfaces to call the splitting pro-
cedure. Every Nt time steps a check is made over the number of particles Nc per
each cell; if it is less than a threshold value Nmin

c , the particles will be splitted in
order to obtain an optimum number Nopt

c > Nmin
c of simulation particles per cell;

chosen a number of splitted particle N split
c per each original one, they will gain new

weights given by equation (8.27).
A slightly different approach let to calculate how many particles in the cell (N c of
Nc) have to be splitted into N split

c = floor(N res
c /Nwi>wmin

c ) and how many (N c) in
N

split
c = N split

c + 1 = ceiling(N res
c /Nwi>wmin

c ) in order to obtain exactly Nopt
c . The

answer is given by the solution of the following system

N cN
split
c +N cN

split
c = N res

c

N c +N c = Nwi>wmin
c .

Combining the two equations, one obtains

N c = Nwi>wmin
c N

split
c −N res

c (8.28a)

N c = Nwi>wmin
c −N c . (8.28b)

A sorting of the particle on the basis of their weight would be useful seeking maxi-
mum uniformity. Since the weights of the splitted particles are obtained by dividing
the old weights by the number of particles in which the original has been splitted,
they will vary of 1/N split

c − 1/N split
c (1/2 − 1/3 ' 0, 1667 as maximum) between

the two ensemble of N split
c and N

split
c particles. It is easy to show that the number

N c is simply given by the remainder of the ratio between the number of particles
wanted after the splitting, N res

c , and the number of splittable ones, Nwi>wmin
c : by

substitution of equation (8.28a) in equation (8.28b) one obtains

N c = Nwi>wmin
c −N c = Nwi>wmin

c (1−N
split
c ) +N res

c =

= N res
c −Nwi>wmin

c N split
c

as well as through the definition of the remainder function

mod(N res
c , Nwi>wmin

c ) = N res
c − floor

(
N res

c

Nwi>wmin
c

)
Nwi>wmin
c =

= N res
c −Nwi>wmin

c N split
c .

8.5.3 Energetic splitting

As seen in Section 6.1.2, plasma electron species in rapidly varying and highly intense
electric fields is usually characterized by Maxwellian-shaped EEDF, with a more
populated energetic tail. Notwithstanding this, the number of particles with high
energies is sensitively lower than that of the bulk ones. In plasma simulations with
particle-codes, this affects the variance of the obtained EEDF. A way to reduce
the arising fluctuations is the artificial increase of energetic particles, achievable by
particle splitting based on an energetic-check.
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While, in real space, the grid helps the splitting technique by definition of cells,
PIC codes treat energy in continuum. Then, the first step is the discretization of
energy in proper bins ∆Eb(E) and the definition of the optimum number of particles
per bin Nopt

b . The total number of particles should be substituted by their density
ρopt
b = Nopt

b /∆Eb in the energetic bin b of width ∆Eb: asking for a constant ρopt
b ,

it follows that Nopt
b varies over b. Following a strategy similar to that of spatial

splitting, a minimum acceptable density ρmin
b is defined as a threshold and Nwi>wmin

b

is the number of particles to be splitted into N split
b new particles, for each energetic

bin. Since Nopt
b must be an integer, it has to be defined as

Nopt
b = int(ρopt

b ∆Eb) ,

where the choice of the int(x) seems here the best one. Note that Nwi<wmin
b particles

cannot be splitted having a too low weight; then the number of particles to be
obtained from the splitting is given by

N res
b = Nopt

b −Nwi<wmin
b = int(ρopt

b ∆Eb) +Nwi>wmin
b −Nb .

If an energy bin results completely emptied of particles, then the constant density
ρopt
b cannot be achieved over it in any way. To avoid this, the void bins should be

merged together adjacent ones until they contain at least one particle: broadening
the width of the energy bin, the optimum number of particles Nopt

b increases. Note
that the splitted particles will have the same energy of the original one and only
after few collisions they will be redistributed in space and velocity components.
A higher sampling rate for energetic particles improves the representativeness of

high energy events, like ionization and inelastic scattering, reducing the variance
of the high energetic distribution tail. In any case, this does not modify the time-
evolution of the species: collisions will redistribute energies with no influence on
the exponential growth due to ionization phenomenon. From the collisional point
of view, there is no reason to discretize the whole velocity field, since cross sections
depend only on the incident particle energy (see equation (7.10)).

8.5.4 Spatial and energetic splitting

The procedures presented in Section 8.5.2 and Section 8.5.3 are not mutually exclud-
ing. On the contrary, it’s reasonable to apply both of them. If the spatial splitting
is applied as first, the energetic splitting could modify the number of particles per
cell increasing it over Nopt

c , or, also, over Nmax
c ; the reverse order would modify the

optimum choice for ρopt
b . This means that a coupled technique has to be developed.

The three dimensional space of coordinates (x1, x2, E) can be easily meshed by
composition of the spatial grid and of an energetic binning. The possible strategy is
based on the definition of an optimal density ρopt

c,b of simulation particles per each 3D
∆x1∆x2∆Eb element of the virtual phase space, which corresponds to an optimal
varying total number Nopt

c,b . The same strategy followed in the energetic splitting
should be followed locally for each grid cell.
The new number of particles per spatial cell is obtained as the projection of the

particles of each bin under the same cell in the spatial plane or, in other terms, as
the summation of Nopt

c,b .
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Since the preservation of an optimum number of particles per cell Nopt
c is the main

task, the density of particle per 3D element has to be defined in order to obtain

Nopt
c =

∑
b

ρopt
c,b ∆x1∆x2∆Eb = ρopt

b

∑
b

∆Eb = ρopt
b (Emax − Emin) ,

since ∆x1∆x2 is independent of b: ρopt
b = ρopt

c,b ∆x1∆x2; this means

ρopt
b =

Nopt
c

Emax − Emin
,

known for a fixed Nopt
c .

The splitting procedure has to be applied to each 3D element, producing the total
number of particle Nopt

c,b , given by

Nopt
c,b = int(ρopt

c,b ∆x1∆x2∆Eb) = int(ρopt
b ∆Eb) .

The choice of the function int(x), instead of floor(x) or ceiling(x), modifies the
number of Nopt

c,b of ±1 and, then, could drastically modify the total value of Nopt
c or

produce a compensation of the effects. If the energetic bins are equally spaced, the
local effect is always the same, being ρopt

b constant, and so the total effect (in excess
or defect) is equal to the total number of energetic bins. To artificially avoid this,
one could use alternatively the floor(x) and ceiling(x) function varying the index b.
This can be mathematically translated in

Nopt
c,b = floor(ρopt

b ∆Eb) +
1 + (−1)b

2
,

where the second addendum gives an exceeding particle when b is even and no
exceeding particle when it is odd.
Once Nopt

c,b is known, the number of particles N res
c,b to be obtained by splitting, per

each bin b over the cell c, is given by

N res
c,b = Nopt

c,b −Nwi<wmin
c,b = floor(ρopt

b ∆Eb) +
1 + (−1)b

2
−Nwi<wmin

c,b , (8.29)

where subscripts and superscripts have the usual meaning. Following a strategy
similar to the one presented in the spatial case, the number of particle N split

c,b in
which each particle of the 3D element with indexes b, c have to be splitted can be
defined as:

N split
c,b = int

(
N res
c,b

Nwi>wmin
c,b

)
, (8.30)

or, even better, the couple of values N c,b and N c,b can be obtained starting from

Nwi>wmin
c,b and N res

c,b and defining N split
c,b = floor(N res

c /Nwi>wmin
c ) and N split

c,b = N split
c +

1 = ceiling(N res
c /Nwi>wmin

c ), as presented in equations (8.28).
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8.5.5 Implicit splitting and forced generation

Another MC technique which could be superimposed to the just described splitting
procedure, is the implicit splitting. Usually the depletion of particles arises in the
cathode-fall region; right here secondary electrons are produced by interaction of
ions with the cathode boundary. Then, whenever an ion hits the cathode, it can
be supposed as composed of N split ions of weight 1/N split increasing artificially the
number of samples on which the secondary electron emission test will be made by
comparison of its probability γ with a random number R.
Alternatively, the forced generation can be implemented: every time an ion hits

the cathode boundary it will produce a secondary electron with weight given by the
product of the ion weight and the secondary emission probability, only if the ion
weight is greater than the inverse of the related emission probability. In this way a
secondary electron able to sustain the discharge will be certainly produced but with
a reduced weight proportional to the real probability associated to its production.
Even without increasing the samples number, the statistics is improved acting on
particle weight.
The same strategy can be successfully adopted in the case of secondary electron

emission by photons hitting the cathode (photoelectric effect). Since excited atoms
emitting UV photons increases exponentially in time, the contribution of emitted
secondary electrons could lead to overcome the maximum allowable number of sim-
ulation particles. This can be easily avoided defining a threshold value Nth for the
number of emitted electrons: when the number of secondary electrons Nνe is greater
than Nth, then it is artificially imposed equal to Nth, while the weight of emitted
electrons is increased by a factor Nνe/Nth.

8.6 Algorithms details

In Section 7.3, the global description of the developed code was given together with
the assumptions and approximations of the model. In particular, the flowchart of
Figure 7.13 included a last block related to merging and splitting technique as a
black-box. Now that the basic theory of the two methods have been worked out, a
more detailed description of their implementation and code integration will be given.

8.6.1 Clustering and merging

The data clustering techniques proposed in Section 8.4 can be successfully used to
select particles with similar properties in the phase space.
A hybrid method was chosen to exploit the presence of the uniform spatial grid.

The hybrid counting sort, implemented to accelerate the simulation, increasing the
number of cache-hits (see Section 7.A.1), allows to obtain particles already divided
into cells.
A hierarchical agglomerative complete-linkage sub-clustering technique is, instead,

used to select near particles in the velocity space. Many tests were done combining
velocity components in multiple sets of attributes. In particular, the direction of
flight (θv = ± arctan(v1/v2)), the planar velocity (v1,2 =

√
v2
1 + v2

2) and the total
energy (E = 1/2m(v2

1,2 + v2
3)) were chosen as final properties: the direction of flight
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and planar velocity are of great importance to maintain a good representativeness
of the macroscopic motions in the 2D spatial domain of the simulation; on the other
hand, the cross sections of the collisional module are strictly connected with the
energy of the particles. In many cases, the cross sections energy dependence is
smoother if the logarithm of the energy is considered; therefore the total energy
attribute has been substituted with a sort of particle lethargy property, log E .
Once the hybrid counting sort and the hierarchical sub-clustering have grouped

particles by cells and (θv, v1,2, log E) properties, the merging techniques described
in Section 8.2 and Section 8.3 can be applied to each set containing more than
two particles. The spatial merging guarantees the grid moments conservation for
starting particles belonging to the same cell, while the velocities merging preserves
the momentum components and the total energy of the set. In particular, the
formulation of Section 8.3.2 appears as accurate as that of Section 8.3.3, at a lower
computational cost: the MCC module is effective in redistributing the new equal
velocities of the particles.
One of the main disadvantage of the method is a variance increase in the distri-

bution functions of the particles, since the merging procedure imply a decrease in
the number of samples. However, the net effect is a homogenization of the variance
over the whole distribution spectrum: the merging is more effective in overpopulated
regions being easier to find particles with similar properties, while is rather useless
in low density regions of the velocity space where the number of samples would re-
main unchanged. Hence, the method can be defined as a variance “homogeneization”
technique. The reader is referred to Chapter 9 for a detailed analysis of the results,
both from a physical and numerical point of view.

8.6.2 Splitting algorithm

The effectiveness of the splitting algorithm cannot be fully tested in the application
of interest: the high values of the external electric fields reduces the numerical
noise induced by depleted regions, where the particle number per cell decreases;
moreover, the electron secondary emission by ion impact is negligible in the first
stage of the discharge, thus reducing the importance of a good statistics in the
regions near the cathode. Moreover, the implementation of a local merging technique
against a global particle number reduction of the “russian roulette” type, prevents
from an excessive particle depletion. In any case, the splitting technique has been
implemented in order to test if any bias on the solution is introduced or not. The
results show no appreciable perturbation; since the splitting increases the global
number of particles (and then the CPU-time and memory consumption) without
any essential improvement, the technique has not been intensively employed.
On the other hand, the forced emission technique described in Section 8.5.5 has

revealed itself an effective method to make the most of the low number of ions
colliding on the cathode surface. The opposite approach is exploited from secondary
electrons emission for photo-electric effect (see Section 7.2.5): when the number of
impinging photons is so high to induce the emission of too many electrons, these are
merged together before being emitted increasing their statistical weight in order to
keep under control their contribution to the total number of simulation particles in
the system.
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8.6.3 Code integration and flowcharts

The above described technique have to be integrated in the developed code. The
already mentioned hybrid counting sort has been implemented, not only to accelerate
the code improving the number of cache hits, but even to obtain an sorted array
of particles grouped by spatial cell of the simulation domain. The allocation table
built in the intermediate cycle over cells (see Figure 7.15) contains the total number
Nc of particles for each cell. Once fixed a maximum acceptable number Nmax and
a minimum number Nmin of particles contained in the generic cell, the comparison
of Nc with these threshold values is performed in order to decide if a merging or
splitting procedure has to be applied or if any action is required.
In the case Nc > Nmax, the grouping of particles in the phase-space is per-

formed. The counting sort is slightly modified to maintain the particles with a
weight wi > wmax separated from the others, to avoid an excessive increase of their
weight through the merging with other super-particles. Hence the subset of particles
in the cell with wi < wmax are analyzed: the properties of interest are evaluated
from the velocity components for each particle and the hierarchical agglomerative
sub-clustering technique is performed on the multi-properties array. To avoid time
and memory losses a sorting is performed on the initial array and on any sub-array
corresponding to the generic sub-cluster (k)Ci of (k+1)P for the k-th property (see
Section 8.4), in order to allow the evaluation of the distance between adjacent el-
ements without the need of a distance matrix allocation. The employed sorting
routine is a classic quick-sort through index-array key-table [195], which avoids the
swap of elements, simply sorting their array indexes in a pointer-like viewpoint.
Once the loop on properties k is ended, the final cub-clusters are cycled: if the
generic l-th cluster contains more than 2 particles, the spatial and velocities merg-
ing is performed and the new particles data are written on the original particle array
closing the out-of-place counting sort; if the cluster contains only 1 or 2 particle, the
merging routine resulting ineffective, they are simply swapped back to the original
particle array together with the particles having wi > wmax. All the operations of
the clustering and merging procedures are performed making deep use of the masked
packing (PACK(Array,Mask) function) of the Fortran90.
On the other hand, if Nc < Nmin, the splitting routine is called. A first loop on

the particles is performed to count the number Nw>wmin
c,b of them contained in each

energy bin, having a weight greater than wmin, and their array indexes are stored.
If the energetic binning and the spatial grid are not modified during the simulation,
the optimum number of particle Nopt

c,b is fixed, and the number of particles N split
c,b

can be evaluated combining equation (8.29) and equation (8.30). The weight of the
original particles are modified and the properties rewritten to the original particle
array together with the new splitted particles.
Obviously, if Nmin < Nc < Nmax then nothing is done, but the particles properties

are swapped back to the original array.
A sketch which schematize the above description is given in Figure 8.5; the flowchart

is intended to be added to that of Figure 7.13, expanding the black-box correspond-
ing to the last cycle over grid nodes.
The characteristic numbers employed in the clustering, merging and splitting pro-

cedures are summarized in Table 8.1. They have been tuned on the particular case
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of interest and cannot be considered of general validity.

8.A Spatial merging: looking for an alternative solution

The solution presented in Section 8.2 is self-consistent but allows a degree of freedom
in the choice of the weight and one coordinate for one of the particles. Exploiting
the inertia tensor analogy, one could expect that the conservation of higher order
moments allow to determine exactly the position of the two particles in the cell
without any arbitrarily chosen parameter. Unfortunately, it will be shown that this
is not possible and, moreover, the additional conditions could lead to unacceptable
solutions when mixed with the cell bounds.

8.A.1 Second order moments for two particles

In Section 8.2.3, it was shown that the system of conservation equations (8.13) is
equivalent to total charge, charge centroid and centrifugal pseudo-inertia moment
conservation.
The analogy with the inertia tensor and the not closed form of the system suggest

to add more inertia moments conservation laws in order to determine univocally all
the 6 unknowns. Therefore, three further conditions can be written:

N∑
i=1

ωiζ
2
i =

N ′∑
i′=1′

ωi′ζ
2
i′ = Iγγ (8.31a)

N∑
i=1

ωiγ
2
i =

N ′∑
i′=1′

ωi′γ
2
i′ = Iζζ (8.31b)

N∑
i=1

ωi(ζ2
i + γ2

i ) =
N ′∑
i′=1′

ωi′(ζ2
i′ + γ2

i′) = Iςς , (8.31c)

where ς betoken the third direction, perpendicular to the plane (ζ, γ); the other
components are all zero since ςi = 0 ∀ i. It’s clear that equations (8.31) are linearly
dependent: for a system of particles lying on a plane, Iςς is known as polar moment
and it represents the invariant of the reduced 2×2 tensor for the ζ and γ components.
Then, for N ′ = 2 particles, a system of 6 equations in 6 unknowns is obtained. It
can be shown that it is not closed. As far as a system of 2 particles is considered,
they lie on a line passing through the centroid of the system and have distances
inversely proportional to their weights . This condition implies

IγγIζζ = I2
ζγ , (8.32)

not valid, in general, for a system of N ′ > 2 particles. Then, one must conclude
that a system of N > 2 particles cannot be replaced by only two particles on the
basis of total weight, centroid position and inertia moments conservation.

8.A.2 Polar inertia moment conservation

Since the axial inertia moments cannot be both conserved, one could ask for the
conservation of the polar one, at least.
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Figure 8.5: Flowchart of the merging and splitting tech-
niques as integrated in the developed code of Fig-
ure 7.13.

Description Expression Value
Threshold distance on direction of flight dθv

th 0.15π
Threshold distance on planar velocity d

v1,2

th 106 for electrons
500 for ions

Threshold distance on lethargy dlog E
th 0.3

Maximum weight for particles undergoing merging wmax 109

Minimum weight for particles undergoing splitting wmin 10−3

Optimum number of particles per cell Nopt
c 60

Maximum number of particles per cell Nmax
c 100

Minimum number of particles per cell Nmin
c 5

Table 8.1: Values of threshold distances, maximum and
minimum weight, maximum, minimum and optimum
number of particles per cell used in clustering, merging
and splitting procedures.
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Figure 8.6: Position of the two merged particles in the nor-
malized reference (ξ, η)− (ζ, γ).

If one considers N ′ = 2 and works with ω1′ and ω1′ as parameters, the two particles
coordinates would then be given by the system of equations (8.14) with the additional
condition

ζ2
1′ + γ2

1′ = ωrIςς (8.33)

where the first two equations define the positions of the two particles as aligned with
the centroid on opposite sides of it; the third equation gives the direction in the plane
(ζ, γ) of the line connecting the two particles and containing the centroid, while the
last equation represents a weighted distance of the particles with respect to their
barycenter. Introducing %1′ =

√
ζ2
1′ + γ2

1′ =
√
ωrIςς and the angle ϑ between the

line containing the two particles and the direction of ζ, as represented in Figure 8.6,
by trigonometric relations, equations (8.14b) and (8.14c) are rewritten in the form

ζ1′ = −ωrζ2′ = %1′ cosϑ (8.34a)
γ1′ = −ωrγ2′ = %1′ sinϑ (8.34b)

and, then, equation (8.14d) gives

Iζγ =
1
ωr
ζ1′γ1′ =

1
ωr
%2
1′ cosϑ sinϑ =

1
2
Iςς sin(2ϑ) , (8.35)

with ϑ ∈ [−π/2, π/2[, due to symmetry reasons. The last equation can be inverted
in order to obtain the angle ϑ defined as

ϑ =
1
2

arcsin
(

2Iζγ
Iςς

)
; (8.36)

the sine inverse function is defined only for arguments in the interval [−1, 1], but it
is easy to show that∣∣∣∣2IζγIςς

∣∣∣∣ ≤ 1 ⇔ Iςς ≥ ±2Iζγ ⇔
N∑
i=1

ωi(ζ2
i + γ2

i )± 2
N∑
i=1

ωiζiγi ≥ 0 ⇔

⇔
N∑
i=1

ωi(ζi ± γi)2 ≥ 0
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is always true for each (ζi, γi) being a summation of squared terms. Moreover, the
angle given by the sine inverse function is inside the interval [−π/2, π/2] that implies
ϑ ∈ [−π/4, π/4].

8.A.3 The inertia main reference analogy

For a system of two particles, the obtained value of ϑ corresponds to the reference
rotation angle which gives the main inertia axis. In general, this doesn’t coincide
with the reference rotation angle of the initial system containing N particles. The
main reference is, indeed, defined as that reference in which the centrifugal inertia
moment Iζγ = Iγζ is zero; in the rotated reference, the new coordinates are given by(

ζ∗

γ∗

)
=
(

cosϑ sinϑ
− sinϑ cosϑ

)(
ζ
γ

)
with ~~N =

(
cosϑ sinϑ
− sinϑ cosϑ

)
,

and, consequently, the characteristic tensor transformation is

~~I∗ = ~~N
~~I
~~NT ,

which leads to

Iζ∗ζ∗ =
Iζζ + Iγγ

2
+
Iζζ − Iγγ

2
− Iζγ sin(2ϑ)

Iγ∗γ∗ =
Iζζ + Iγγ

2
−
Iζζ − Iγγ

2
+ Iζγ sin(2ϑ)

Iζ∗γ∗ =
Iζζ − Iγγ

2
sin(2ϑ) + Iζγ cos(2ϑ) .

Note that again Iγ∗γ∗ +Iζ∗ζ∗ = Iγγ +Iζζ = Iςς , the polar moment being an invariant
of the system. The main reference is obtained by imposing Iζ∗γ∗ = 0, this condition
giving

tan(2ϑ) = −
2Iζγ

Iζζ − Iγγ
, (8.38)

which defines the rotation angle ϑ that nullify the centrifugal moment Iζ∗γ∗ and
maximize the axial ones Iζ∗ζ∗ and Iγ∗γ∗ . It was shown that equation (8.32) is always
true for a system of 2 particles; then, from equation (8.35), applying cos(2ϑ) =√

1− sin2(2ϑ), it follows that

tan(2ϑ) =
sin(2ϑ)
cos(2ϑ)

=
2Iζγ√

I2
ςς − 4Iζγ

,

which results equal to equation (8.38) if and only if

Iγγ − Iζζ =
√
I2
ςς − 4I2

ζγ =
√
I2
γγ + 2IγγIζζ + I2

ζζ − 4I2
ζγ ⇔ IγγIζζ = I2

ζγ ,

as previously stated. The conclusion must not surprise, since the main reference for a
system of two particles is identified by the axis coincident with the line connecting the
particles: in this case, it results Iγ∗γ∗ = Iζ∗γ∗ = 0 and only Iζ∗ζ∗ 6= 0 (maximized),
while for a system of more than 2 particles the inertia ellipses has two main axes
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with both Iγ∗γ∗ 6= 0 and Iζ∗ζ∗ 6= 0. Moreover, it can be noted from equation (8.38)
that, since the tangent function has a periodicity of π, both ϑ and ϑ + π/2 would
lead to the same main reference with an inversion of ζ∗ and γ∗. In the particular
case of two particles, a rotation of π/2 would nullify the main inertia moment Iζ∗ζ∗
and maximize Iγ∗γ∗ .

8.A.4 The merged particles coordinates

The distances %1′ and %2′ of the two particles along the main axis are still unknown
and strictly dependent on their weights ω1′ and ω2′ . Due to the arbitrariness of
particles labeling, one can ask the first particle to fall in positive ζ half plane.
Paying much attention to the signs, one obtains

ζ1′ = %1′ cosϑ = %1′

√
1− sin2 ϑ

γ1′ = %1′ sinϑ = ±%1′

√
1− cos2 ϑ ,

cosϑ being always positive for each ϑ ∈ [−π/2, π/2] and sinϑ ≥ 0 only for ϑ ∈
[0, π/2]. Then, working on the squares of sine and cosine, it follows

sin2 ϑ =
1− cos(2ϑ)

2
⇒ cosϑ =

√
1
2
(1 + cos(2ϑ))

cos2 ϑ =
1 + cos(2ϑ)

2
⇒ sinϑ =

√
1
2
(1− cos(2ϑ)) .

In order to use equation (8.35), the cos(2ϑ) has to be converted in ±
√

1− sin2(2ϑ)
where the positive sign is obtained for ϑ ∈ [−π/4, π/4] and the negative one outside.
By substitution, the two coordinates of the first merging particle are

ζ1′ = %1′

√
1
2

(
1±

√
1− sin2(2ϑ)

)
=

√√√√
ωr

Iςς + χ
√
I2
ςς − 4I2

ζγ

2
(8.39a)

γ1′ = ±%1′

√
1
2

(
1∓

√
1− sin2(2ϑ)

)
= κ

√√√√
ωr

Iςς − χ
√
I2
ςς − 4I2

ζγ

2
, (8.39b)

where χ and κ depends on ϑ and modifies only the signs in the expressions as given
in the following scheme

ϑ ∈ [−π/2,−π/4] [−π/4, 0] [0, π/4] [π/4, π/2]
χ − + + −
κ − − + +

The position of the second particle is immediately obtained by equations (8.34).
It arises evident that the coordinates expressions are in the form of solutions of an

equation of the fourth order directly obtainable from the system of Section 8.A.2.
Looking at the table summarizing the signs of χ and κ, one could complain that

the interval for ϑ as obtained from equation (8.36) must be [−π/4, π/4] due to the
invertibility of sine function. The ϑ interval of variability can, indeed, be limited to
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[−π/4, π/4] without lack of generality: the complementary interval over [−π/2, π/2]
is completely equivalent. In both cases, |Iζγ | and Iςς are still conserved. Obviously,
inverting the ζ and γ coordinates produces an inversion of Iζζ and Iγγ , which are
not included in the considered system of equations.

8.A.5 Unique choice of the rotation angle

The Iγγ axial moment can be used to determine univocally the rotation angle in
[−π/2, π/2] rather than in [−π/4, π/4]. From equation (8.31a) it follows that

ω1′ζ1′ + ω2′ζ2′ = Iγγ ⇒ ζ1′ = %2
1′ cos2 ϑ = ωrIγγ ;

an expression for cosϑ can be immediately derived:

cosϑ =

√
Iγγ
Iςς

. (8.40)

The assumption ζ1′ > 0 implies cosϑ > 0, which means ϑ ∈ [−π/2, π/2]. Therefore,
it’s enough to evaluate if

cosϑ ≷

√
2

2

to know if ϑ ∈ [−π/4, π/4] or ϑ ∈ [−π/2,−π/4[∪ ]π/4, π/2] respectively; the sign of
sin(2ϑ) will then allow to discriminate ϑ ≷ 0.
Practically speaking, if cosϑ <

√
2/2, then sinϑ and cosϑ has o be exchanges. If

sin(2ϑ) < 0 the new angle is given by ϑ′ = −π/2 + ϑ < 0 and, then, also the signs
must be inverted; in the opposite case, the new angle is ϑ′ = π/2 − ϑ > 0 and no
sign exchange is needed. Remembering that sign(sin(2ϑ)) = sign(Iζγ), it can be
synthetically written

sinϑ′ =
Iζγ
|Iζγ |

cosϑ and cosϑ′ =
Iζγ
|Iζγ |

sinϑ .

The reader should observe that the exact conservation of Iγγ (or Iζζ) wouldn’t
supply any additional information on the particles weights or on their distances
from the charge centroid. Moreover, the two angle obtained by conservation of axial
moments or centrifugal and polar moments are generally different for a system of
more than two particles.
Anyway, the condition on Iγγ allows to fix univocally th rotation angle ϑ, that, in

the case of two starting particles, means to identify exactly their orientation in the
cell. The arbitrariness on weights still remains.

8.A.6 Cell coordinates limits

Working in the local reference centered in G, each particle position strictly depends
on the direction on which it lies, as defined by ϑ. The bounds for (ζ1′ , γ1′) and
(ζ2′ , γ2′) are summarized in the following table:
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Figure 8.7: Coordinates limits depending on ϑ and centroid
position.

ϑ ∈ [−π/2, 0] (Iζγ < 0) [0, π/2] (Iζγ > 0)

ζ lim
1′ min{1− ξG, ηG cotϑ} min{1− ξG, (1− ηG) cotϑ}
γlim

1′ max{−ηG, (1− ξG) tanϑ} min{1− ηG, (1− ξG) tanϑ}

ζ lim
2′ max{−ξG,−(1− ηG) tanϑ} max{−ξG,−ηG cotϑ}
γlim

2′ min{1− ηG, ξG cotϑ} max{−ηG,−ξG tanϑ}

(refer to Figure 8.7 and remember the assumption ζ1′ > 0).
Moving from the cartesian (ζ, γ) reference system to the polar (%, ϑ) one with origin

in G, the mentioned bounds reflects on %1′ and %2′ , being ϑ fixed by the conservation
of centrifugal and polar inertia moments (refer to equation (8.35)). The previous
summarizing table can, then, be compressed in the following one:

ϑ ∈ [−π/2, 0] (Iζγ < 0) [0, π/2] (Iζγ > 0)

%lim
1′ min

{
1− ξG
cosϑ

,− ηG

sinϑ

}
min

{
1− ξG
cosϑ

,
1− ηG

sinϑ

}

%lim
2′ min

{
ξG

cosϑ
,−1− ηG

sinϑ

}
min

{
ξG

cosϑ
,
ηG

sinϑ

}
(the minus signs is due to sinϑ < 0 for ϑ < 0).
In Section 8.A.4 the coordinates of the system of new particles {1′, 2′} were derived

by conservation of centrifugal and polar inertia moments, for weights ω1′ and ω2′

treated as parameters.
It was stated in Section 8.2 that the assumption of equal weighted merging particles

appears a wise decision: unfortunately, this condition is not sufficient to assure both
particles fall inside the cell of interest. The conservation laws for Iζγ and Iςς fix
the rotation angle ϑ; then, the just derived bounding limits on %1′ and %2′ define
a limited interval for the weights of the two particles. These conditions must be
observed in order to place both of them inside the cell.
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The system of conservation equations (8.13) initially considered can be rewritten
in terms of distances from the barycenter

ω1′ + ω2′ = 1 (8.41a)

%2′ =
1
ωr
%1′ (8.41b)

%2
1′ = ωrIςς . (8.41c)

The two distances are easily derivable from the polar inertia moment and particles
weights as

%1′ =
√
ωrIςς and %2′ =

√
1
ωr
Iςς .

Since

0 < %1′ < %lim
1′ and 0 < %2′ < %lim

2′ ,

equation (8.41c) allows to write two conditions for the weights ratio which can be
merged in the following one:

Iςς

(%lim
1′ )2

<
1
ωr

<
(%lim

2′ )2

Iςς
,

and, by substituting ωr with ω2′/ω1′ = (1− ω1′)/ω1′ , it follows that

ωmin
1′ =

Iςς

(%lim
1′ )2 + Iςς

< ω1′ <
(%lim

2′ )2

(%lim
2′ )2 + Iςς

= ωmax
1′ . (8.42)

The rightmost-hand of the disequation is not always greater than the leftmost one.
In few cases, the weight interval [ωmin

1′ , ωmax
1′ ] for ω1′ is void, i.e. it is not possible

to obtain both the new particles inside the cell of interest and to conserve both the
centrifugal and polar moment. A graphical interpretation of the imposed condition
can help to find a starting set of particles which cannot be merged into two new
particles belonging to the cell.

8.A.7 A graphical interpretation

As previously discussed in Section 8.2.6, the obtained results can be graphically
represented in the cell domain. In the present case, the conservation of the polar
inertia moment has allowed to define a circle on which each of the two new particles
lies; moreover, even the centrifugal moment has still to be preserved impling that
only the points of two hyperbola branches can be acceptable solutions. Therefore,
the intersection of the two curves (characteristic of each new particle) leads to two
possible solutions (only one in the case of tangency), as shown in Figure 8.8. This
is the explanation of the two acceptable values for the rotation angle ϑ: it’s now
evident why they result symmetric with respect of the π/4 angle, corresponding to
the circle-hyperbola tangency case; symmetric values of ϑ leads to not symmetric
solutions since the cell bounds aren’t symmetric in any way. Only the study of the
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Figure 8.8: Graphical interpretation of the second spatial
merging technique. Dotted lines represent the limit-
ing curves on which the particles lie (depending on the
fixed ϑ).

Iγγ inertia moment of the original particles system can add a simple condition to
univocally fix the value of ϑ.
Weights variations modifies the curves parameters: concentric homothetic circles

and coasinthotic hyperbola are obtained; their two intersections are preserved on
the conjunction lines for ϑ and its symmetric ±(π/4± ϑ). This fact can be noticed
in Figure 8.8, where the chosen curves and the limiting ones present the mentioned
feature.
Even in this case, the equal-weighted particles are not always an acceptable choice.

The limiting weights are those which allow the intersection between the correspond-
ing circle and hyperbola to fall inside the cell. As shown in Section 8.2.6, particular
configurations of starting particles could entirely push out of the cell one of the
hyperbola branches, or give an intersection on one side and not on the other one:
even thought still partially contained in the cell, at least one of the intersections be-
tween the hyperbola branches and the corresponding circle (or, equivalentely, with
the ϑ conjunction line) does not fall inside the cell bounds, making the solution
unacceptable.

8.A.8 Example of an unacceptable solution

Only a counter example is enough to show that the ω1′ variability interval of equa-
tion (8.42) can be void.
Let consider 4 starting particles equally weighted (ωi = 1/4 ∀i = 1, . . . , 4) and
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symmetrically positioned inside the cell:

(ξ1, η1) = (ε, ε) (ζ1, γ1) = (−1
2

+ ε,−1
2

+ ε)

(ξ2, η2) = (1− ε, ε) (ζ2, γ2) = (
1
2
− ε,−1

2
+ ε)

(ξ3, η3) = (ε, 1− ε) (ζ3, γ3) = (−1
2

+ ε,
1
2
− ε)

(ξ4, η4) = (1− ε, 1− ε) (ζ4, γ4) = (
1
2
− ε,

1
2
− ε)

being (ξG, ηG) = (1/2, 1/2) the barycenter coordinates. The centrifugal and polar
inertia moments are given by

Iζγ =
∑
i

ωiζiγi = 0 ,

Iςς =
∑
i

ωi(ζ2
i + γ2

i ) = 2
(

1
2
− ε

)2

.

Solving the system of equations (8.14) and (8.11) directly, the two equations

ζ1′γ1′ = ωrIζγ = 0

ζ2
1′ + γ2

1′ = ωrIςς = 2ωr

(
1
2
− ε

)2

are obtained. They represent respectively the equation of a degenerate hyperbola
and that of a circle in the plane (ζ, γ). The possible solutions are{
ζ1′ = 0 and γ1′ =

√
2ωr

(
1
2
− ε

)}
or

{
ζ1′ =

√
2ωr

(
1
2
− ε

)
and γ1′ = 0

}
.

Since the centroid fall in the center of the cell, the coordinates bounds for the
particle 1′ are immediately deduced; the solution exists if and only if a weight ratio
ωr can satisfy the condition

√
2ωr

(
1
2
− ε

)
<

1
2
.

It can be easily shown that any value of ωr < (8(1/2−ε)2)−1, for example ωr = 1/2,
would lead to an unacceptable solution for the coordinate of the opposite particle 2′.
Intuitively, since the centroid is in (1/2, 1/2), for symmetry reasons, equal weights
(ωr = 1) must make both the particles falling inside the cell. Otherwise, it means
that the problem does not have any solution: the choice ωr 6= 1 would bring one
particle nearer to the centroid, but, at the same time, would push the other one far
away from it. If for ωr = 1 both the particles fall outside the cell, then any value
would satisfy the relation. In the present case, ωr = 1 leads to

√
2ωr

(
1
2
− ε

)
.

√
2

2
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which1 is fairly greater than the limiting value of 1/2.
The second alternative method here proposed has the main advantage to better

represent the spatial distribution of the starting set of particles. When only two
equally weighted particles are considered, the coordinates of the new particles ex-
actly match those of the starting ones. Moreover, if equal weights are acceptable,
no variable has to be chosen randomly. As seen, the main drawback is the incom-
patibility of the inertia moments conservation with the cell bounds: for those few
cases, one could accept the induced perturbation of the charge on the nodes or go
back to the procedure proposed in Section 8.2.

1The above condition is completely equivalent to that of equation (8.42), obtained as variability
interval for ω1′ , being ρlim

1′ = ρlim
2′ = 1/2.





CHAPTER 9

PF breakdown simulation

Abstract. The model described in Chapter 7, improved with the particle control
techniques of Chapter 8, has been used to simulate the early stages of the electrical
breakdown in a PF device. A reference case has been, firstly, considered and exam-
ined in details pointing out the physical results of interest. A numerical analysis of
the implemented techniques for particle number control is then performed in order
to show their essential role and effectiveness. At last, a sensitivity analysis will be
proposed by varying few operating parameters.
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9.1 Discharge evolution

The nature of particle codes allows to have a deeper insight into the microscopic be-
havior of the modeled system. Moreover, macroscopic quantities can be deduced by
integration following the moment definition. The discharge formation and evolution
in a PF device will be hereafter examined in details, pointing out the effectiveness of
the model in reproducing the physical phenomena described in Chapter 6 and their
role in the discharge [205].

9.1.1 Reference operative conditions

The geometric configuration and the operating conditions of the device slightly mod-
ifies the discharge formation and evolution, as far as they are in proper ranges (see
Section 6.3.1). Any well-working device can then be chosen as reference case; a qual-
itative description of the phenomenon is provided by many authors [15, 18, 106, 107],
while the only experimental data available (photographs, time delay, pressure de-
pendence, . . . ) are referred to a Mather type PF operating in the Institute für
Angewandte Physik (Technische Hochschule Darmstadt) in the early 1980s [19, 20],
but, unfortunately, they are referred to an advanced temporal stage of the discharge
(hundreds of nanoseconds) still far to be reached by present simulations. To allow
a comparative analysis of the results, the geometry used in [41, 42, 117, 156] for
hydrodynamic and particle simulations will be considered. Only two parameters
will be here modified in order to simplify the analysis of the results and accelerate
the simulation: Argon will be used as filling gas instead of Hydrogen, since it is
characterized by a lower number of less complex collisions and the corresponding
cross sections are commonly used in particle simulations (interpolation formulae are
available); the insulator length will be halved, resulting still greater than the inter-
electrode gap, allowing to deduce the total simulation domain length. A unitary
pressure (in Torr) will be considered as reference, still being in the range of gliding
discharge over the insulator and reducing the number of collisions to be simulated,
as follows by definition from equation (7.10). A linear voltage ramp of 200 V/ns is
applied between the electrodes, being in good agreement with experimental data (as
stated in Section 6.3.1).
The geometry dimensions, operative conditions and simulation parameters are sum-

marized in Table 9.1 for the case of reference.

9.1.2 Macroscopic quantities

As already stated in Chapter 6, the electrical breakdown in gases is characterized by
an exponential growth in the particle number. This condition is purely ideal, since
deduced for a gas in a uniform electric field and not interacting with the boundaries.
In a real device like the PF, however, these conditions are not fully verified: as seen
in Section 6.3.1, the electric field is neither uniform nor stationary but presents a
more intense region just over the insulator sleeve near the cathode edge.
The charged particle densities over the whole domain are plotted in Figure 9.1,

while Figure 9.2 and 9.3 contains the collisional fraction frequencies of electrons
with the background gas and boundary surfaces respectively. During the first 1.5 ns,
only elastic collisions take place since particles have not yet been accelerated by the
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Parameter Value
CE radius (rint) 5.0 cm
OE radius (rext = rex,domain) 7.5 cm
Insulator outer radius (rins = rint) 5.0 cm
Insulator length (lins) 5.0 cm
Insulator thickness (sins) 0.5 cm
Simulation domain internal radius (rin,domain) 4.5 cm
Simulation domain length (ldomain) 10.0 cm
Dielectric material Pyrex
Electrodes material Copper
Filling gas pressure (p) Ar at 1 Torr
Voltage ramp ( dV/ dt) 200 V/ns
Mesh spacing (∆r = ∆z) 0.2 mm
Time step (∆t) 10−2 ns

Table 9.1: Simulation parameters for the reference case of
interest. The reader is referred to Figure 7.8 for the
geometry sketch of the simulation domain, and to Ta-
ble 7.5 and 7.6 for material properties. The parameters
of the clustering and merging procedures are collected
in Table 8.1.
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external field up to the threshold energies for inelastic collisions. Just before 1 ns the
mean energy of the system reaches values corresponding to the Ramsauer minimum
in elastic cross section (as described in Section 7.3.3 and evident in Figure 7.10):
the collective behavior of the species in the first stages of the phenomenon makes
this effect evident even over the average collisional rate frequency, which undergoes a
slight drop when the mean energy reaches a value of about 0.2 eV. Isolated excitation
or ionization processes are possible only for particles of the high energetic tail of the
initial Maxwellian distribution, but just one collision would be sufficient to slow down
the particle below the threshold. While the number of ions is perfectly constant, the
higher mobility of electrons make them interact with the domain boundaries and a
loss of about 2.5% is, consequently, observed. Notwithstanding the loss of energy per
collision, the charged particles are accelerated by the increasing external field and,
rapidly, some of them reach the ionization threshold energy: new electron-ion pairs
are produced and 1.5 ns is enough to restore the initial condition on the electron
number. The initial seed electrons induce a series of electron avalanches and the
particle number rapidly grows with an exponential trend: the newborn particles
are similarly accelerated and rapidly overcome the ionization energy, producing new
charge-pairs.
As shown in Figure 9.2, the elastic collisional fraction increases steeply in the first

instants of the discharge, because of the perturbation induced by the applied electric
field; then, a change of derivative and statistical oscillations are observed. In the
meanwhile, the inelastic collisional frequencies become not negligible: excitation
processes are the first to appear, having a lower threshold energy(see Figure 7.10);
the ionization collisional frequency soon overcomes the excitation rates (having a
higher cross section at higher energies) and starts increasing almost linearly following
the temporal derivative of the external electric field: the introduced energy is readily
converted into particle kinetic energy, as shown in Figure 9.4.
The surface collisions are dominated by dielectric impact: as already highlighted,

the electric field has its maximum intensity near the cathode edge, just over the
insulator sleeve; this means the charged particles multiplication is localized in a
small region close to the dielectric surface. The electrons are attracted by the driving
electric potential of the anode; when hitting the dielectric surface, their electric
charge is accumulated here as a surface negative charge density, which screens the
anode positive potential below it. In the meanwhile, secondary avalanches develop in
the interelectrode gap over the uncovered part of the anode, producing an increasing
rate of electron impacts over it (see Figure 9.3, dotted line).
Even the mean electron velocity components confirm the macroscopic motion of

the charge particles: as shown in Figure 9.5, the electrons are attracted from the
anode, hence move in the positive axial direction and the negative radial one (see
Figure 7.8 for a sketch of the simulation domain and reference system). In this
first stage the mean energy is dominated by the radial velocity component, which is
predominant over the axial one. The polar mean velocity component, as expected
by the 2D-3V nature of the code, is slightly oscillating around the null value.
The highly energetic electrons, the so called runaway electrons, after having accel-

erated the ionization process, are no more slowed down, since the elastic scattering
exhibits high anisotropy in the forward direction, thus with a negligible loss of en-
ergy (see Section 7.2.3 for more details), and the cross sections of inelastic processes
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are monotonically decreasing at high energies (see Figure 7.10). The increase in the
mean free path length promotes the interaction of the particles with the boundaries
of the domain and reduces the exponential growth. Moreover, the space and surface
charge become not negligible and the external electric field is locally modified: the
slower ions, not following the highly mobile electrons, produce a positively charged
sheath which compensates the negative surface charge density accumulated over the
insulator sleeve. The net effect is a strong reduction of the mean electron energy,
as shown in Figure 9.4; looking at Figure 9.5, the main velocity drop is observed
in the radial component. The accumulated surface charge over the dielectric is the
main cause of the potential screening: from this point (approximately 15 ns), the
ionized gas spot won’t move radially towards the insulator, but axially over it devel-
oping into a gliding discharge. The rapid drop in the mean electron energy worsen
the ionization rate, which is lowered down to the level of the excitation one, in
few nanoseconds. Even the dielectric and anode collisional rates suffer a steep fall
reaching their minimum at about 20 ns: the deposited surface charge on the insu-
lator opposes to new electron depositions, while the avalanches over the anode are
vanishing; the positive space charge they leave at their back contributes in the axial
attraction of the electrons located over the insulator sleeve.
Just after 15 ns, the number of fresh electrons produced by photoelectric effect

on the cathode backwall becomes not negligible; the charged particles are axially
accelerated and develop in new avalanches, which contribute to feed the discharge.
The positive screening charge left by the slower ions expands towards the cathode
edge increasing the axial electric field. In the meanwhile the discharge develops up
to the end of the insulator sleeve approaching the uncovered part of the anode; the
electrons are strongly accelerated by the positive potential, since they find a region
of highly intense electric field due to the dielectric edge and material transition.
These two contributions produce an increase in the particles growth; at the same
time the mean energy presents a secondary peak, mainly due to the axial velocity
component (see Figure 9.4 and 9.5). While the electron impact over the dielectric
still maintains negligible, the electrons approaching the end of the insulator sleeve
contributes to the charge deposition over the anode. Soon, this transient situation
extinguishes and a more self-sustaining condition is reached.
A last macroscopic quantity of interest in the breakdown analysis is the current

flowing between the electrodes. As discussed in Section 6.1.5, the charge deposited
over the electrodes in the unit time is not fully representative of the flowing current
if the system hasn’t yet reached a stationary condition; the displacement current
is a more reliable quantity, which is not affected by accumulated discrete pulses
of charge deposition, but takes into account the charged particles motion and their
interaction with the electric field. In Figure 9.6, the two quantities are compared: the
integral over time is approximately comparable, while the deposited charge presents
a strong instantaneous variability. Values of about ten amperes are reached when
the simulation is stopped. At an advanced stage, other SEE processes have to be
considered to feed the discharge with fresh electrons and increase the flowing current.
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9.1.3 Local quantities

A clearer picture of the discharge development, described in the previous section on
the basis of average quantities and macroscopic quantities, can be obtained following
the evolution of the charged particle density and electric potential profiles.
As shown in Figure 9.7-a, at about 7 ns, a first ionization process has started in

the localized region of most intense electric field, i.e. where the isopotential lines are
denser, near the cathode edge over the insulator sleeve. The position and the electric
field configuration justify the observed collisional rates on the dielectric surface, as
shown in Figure 9.3. The low electron densities (maximum values reach approxi-
mately 8 · 103 cm−3) are not yet high enough to perturb the external applied electric
field; the spatial derivative change at the insulator surface, due to the dielectric
properties, can be appreciated.
After about ten nanoseconds (see Figure 9.7-b), the electron density reaches a

maximum value of approximatively 1011 cm−3. The surface charge deposited on the
insulator surface and the net space charge over it become sufficiently high to perturb
the electric field, which, in the meanwhile, has increased in magnitude because of
the externally imposed voltage ramp (at a rate of 200 V/ns, a potential of more than
3 kV is reached on the driving electrode).
As shown in Figure 9.7-c), in a little more than 1 ns, the electron density ap-

proximately doubles, while the shape of the ionized gas spot develops towards the
cathode backwall, being fed by fresh electrons produced by the photoelectric effect;
the isopotential lines are expelled out of the spot, producing an increasing axial elec-
tric field at the cathode backwall, which rapidly accelerated the emitted electrons up
to energies higher than the ionization threshold: the new electron avalanches reach
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the plasma spot enlarging it towards the cathode, while the positive space charge
left by the slower ions increments the effect. On the opposite side of the spot, the
initial seed electrons uniformly distributed in the interelectrode gap are accelerated
by the increasing electric field; when they overcome the ionization threshold energy,
new avalanches are produced both on the insulator sleeve and on the uncovered part
of the anode.
Again, in the following nanosecond, the discharge continues to expand both towards

the cathode backwall and over the insulator sleeve, reaching densities of the order
of 4 · 1011 cm−3. As shown in Figure 9.8-a, the external electric potential is further
distorted by the space charge and by the surface charge density accumulated on the
insulator sleeve; the net effect is an axial gradient (more intense in the region at
lower density), which attracts the electrons towards the uncovered anode; here the
electron density has increased to values of about one order of magnitude lower than
those of the bulk spot, over the insulator sleeve.
After about 1 ns (see Figure 9.8-b), the expansion of the discharge, driven by the

induced axial component of the electric field, reaches the end of the insulator sleeve,
where the potential gradient is even more intense. The electron density increases
at a lower rate reaching values of approximately 6 · 1011 cm−3 as maximum in the
discharge region; the ionized gas, produced over the anode by later avalanches, is
no more fed by new electrons and the anode charge deposition makes negligible its
density.
In the following 5 ns, the shape of the discharge doesn’t undergo strong variations,

while its density increases of about two order of magnitude (see Figure 9.8-c). The
accumulated surface charge density on the insulator surface strongly modifies the
electric potential, screening it in the whole region of the discharge. The axial gradi-
ent along the sheath over the insulator sleeve disappears, while the electric field is
strongly enhanced in about 1÷ 2 mm of the domain faced to the cathode backwall.
At this stage the sheath appears about one order of magnitude denser at the end of
the insulator sleeve, just over it, while it seems to undergo a gradual depletion in
the first 2 cm.
This spurious effect, not consistent with the breakdown condition, could have two

possible reasons still under investigation: the first, purely numerical, is the excessive
increase in local densities and mean energies which would require a finer grid to
correctly match the accuracy and stability conditions of PIC methods, as mentioned
in Section 7.1.4; the second, more physical, could be the absence in the model of
the field emission as additional source term of fresh electrons from the cathode edge
over the insulator. Even if a value of about 5 · 104 V/cm, is still too low to sustain
an electron current density, two aspects must be highlighted: the axial electric field
in the emitting region is so high that few electrons extracted from the metal would
generate a strong ionizing avalanche which would feed the discharge; the presence of
an edge highly enhances the electric field and the field emission effect, through the
β parameter of equation (6.7). Further analysis and tests are under investigation.

9.1.4 Energetic distribution functions

The EEDF evolution is plotted in Figures 9.9 to 9.12, for four different simulation
time instants: the first corresponds to the first frame of Figure 9.7; the second is
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representative of the particle exponential growth; while the third has been chosen
at the maximum mean energy, the fourth, and last, corresponds to the following
minimum. The EEDFs are built starting from the simulation particle properties
and plotted in comparison with the Maxwell-Boltzmann ones at the same mean
temperature.
It appears how the EEDF is characterized by an excess of slow and high energetic

electrons, already in the first ten nanoseconds (Figures 9.9 and 9.10): the fresh elec-
trons produced in the ionization processes are the first, followed by those accelerated
by the electric field which reach energetic regions where the inelastic cross sections
start to decrease allowing longer mean free path and, hence, further acceleration.
Moreover, at this stage, the photo-electrons starts to become not negligible. The

electrons emitted from the cathode backwall are immediately accelerated by the
intense electric field between the electrode and the positive space charge of the
slower ions accumulated over the insulator sleeve (as evident from Figure 9.8-a). In
addition, a bulk region of ionized gas is formed and partially self-screened by the ion
positive charges. While the electrons emitted by the cathode feed the energetic tail
of the distribution, the new ones in the bulk region are confined in an equipotential
region and start to redistribute their energy by elastic and inelastic collisions, moving
towards lower energies (Figure 9.11).
After approximately 15 ns, the average energy of the system reaches its maximum

and starts to decrease as a consequence of the above described processes. The
EEDF of Figure 9.12 can be seen as composition of two main contributions: a
thermal component near the equilibrium and a high energetic one, located in the
less dense electron avalanches which feed the discharge. This also explains the drops
in inelastic collisional fractions and dielectric impacts observable in Figure 9.3.

9.2 Numerical analysis

The results discussed in the previous section were obtained making deep use of the
particle control techniques presented in Chapter 8. Indeed, even accepting an ex-
tremely long computational time, the exponential growth of the simulation particle
number, characteristic of electrical discharges, represents a tight bond on the sim-
ulated time-interval of the phenomenon, the finite amount of memory in modern
workstations being the limit. The only way to deceive the obstacle is the use of
a particle number control technique. The effectiveness of the implemented method
is hereafter analyzed showing how the basic rules presented in Section 8.1.2 are
satisfied and focusing on the induced perturbations.

9.2.1 Memory and time limits

As previously stated, particle simulations are affected by a main drawback: larger
is the number of particles, necessary to avoid numerical noise and to obtain a suf-
ficiently accurate statistical description, more memory- and time-consuming results
the code.
The total computational time related to a PIC method is proportional to the sum

of the number of particle Np and ND
g logND

g , with Ng number of grid points in D
dimensions [130, 129]; when variance reduction techniques are not employed, the
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MCC module contributes with an additional term proportional to Np [145, 140]).
Thus, the number of simulation particles doubly weigh upon the computational cost.
On the other hand, the statistical error associated with any quantity deduced from
a discrete set of elements can be assumed to be inversely proportional to the square
root of their number. In a coupled PIC-MCC method, a numerical technique, which
aims to reduce the computational time through an artificial control of the simulation
particle number, cannot set aside the variance changes induced in the whole phase-
space.
The computational time is not the only performance that affects particle simula-

tions: the finite amount of memory sets a limit to the number of simulation particles.
In a 2D-3V PIC-MCC code, as that here in use, each simulation particle requires
at least 6 (weight, 2 spatial coordinates, 3 velocity components) real properties. If
double precision is used, each stored variable occupies 8 bytes, hence, a modern
commodity workstation with 4 GB (usually combined to obtain cluster PCs) can
manage up to few tens million of simulation particles. The results presented in
Section 9.1.2 makes evident that the time-interval which could be simulated with
real particles is approximately of ten nanoseconds: the statistical weight associated
with each simulation particle is of great importance and largely used since the first
PIC-MCC simulations.
For better understanding, a comparative test can be performed running two simu-

lations with identical input parameters. In the first case the simulation handles only
real particles: the hybrid counting sort, the clustering procedure and the merging
method are inhibited in order to maximize the available memory and the run is
stopped by memory saturation. The second case exploits the clustering and merg-
ing techniques to reduce the number of simulation particles, while the number of
real particles is deduced by the weight conservation law. The electron and ion den-
sity growths are plotted in Figure 9.13: the simulation of purely real particles ends
when the limit of about 20 · 106 particles is reached, at less than 11.9 ns; the parti-
cle growth rate appears to be correctly preserved, while a small temporal shift can
be observed, probably due to the different random number sampling already in the
first stages of the simulation, the particle sorting being turned off in one case. On
the other hand, the number of simulation particles settles down on a value in the
range 2.5÷ 3.0 · 106 both for ions and electrons, not only allowing to go on with the
simulation, but also strongly reducing its computational cost.
A parallel code could improve the computational time and slightly overcome mem-

ory costs, but it could not represent a totally effective solution. The developed
merging technique fully exploits the simulation macro-particle concept and the sta-
tistical importance property allowing to extend the simulated time-interval up to
tens of nanoseconds, where the stopping limit is purely numerical and under deeper
investigation. The following sections will deal with the a numerical analysis of the
results highlighting the effectiveness of the employed methods.

9.2.2 Merging analysis

The merging technique is based on two fundamental rules, as described in Sec-
tion 8.1.2: the starting and final sets have to equally contribute to the grid moments
and the to sample the same velocity distribution functions. These conservation
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rules can be checked for a typical case of interest: a simulation was run starting
from equally weighted simulation particles and the merging routine was called as
soon as 5 · 105 particles were reached. The population has been printed out just
before and after the merging in order to make the starting and final sets fully com-
parable. The spatial coordinates are made dimensionless inside the corresponding
cell; the planar velocity has been normalized with the maximum value of the two sets
(v12,max = 5.7 · 106 m/s), while the energy has been modified into lethargy, firstly
dividing it by its maximum value (Emax = 105.1 eV) and then operating on it with
the log function.
Firstly, the clustering algorithm will be examined. The method works on the

direction of flight, planar velocity and energy logarithm as explained in Section 8.6.1,
making use of the threshold values summarized in Table 8.1. It will be referred the
case of a typical cell, having a not too large number of particles (electrons) to make
the data more readable. The staring set is compared with the final one in Figure 9.14,
9.15 and 9.16: the particles falling in the same cluster are depicted with the same
symbol, which is unchanged between different graphs, and is maintained also for the
two particles arising from the merging procedure, as described in Section 8.2 and 8.3.
As can be seen in Figure 9.14, particles are collected in clusters independently from
their spatial position, the only condition being to belong to the same cell. The polar
plot of Figure 9.15, instead, highlight the proximity condition both on the planar
velocity and on the direction of flight of the particles: the comparison between
the starting and the final sets makes evident the effectiveness of the clustering and
merging procedures both in the collection of “near” particles and in the conservation
of the velocities between the two sets. Finally, in Figure 9.16 the weight modification
and energy conservation are highlighted: the starting clusters of real particles (w =
1) are merged producing equally weighted pairs of new particles; in the specific case,
the maximum number of particles in a cluster is 5, which leads to a weight of 2.5
per particle.
A three-dimensional representation of the particle sets separated in clusters by

different symbols is proposed in Figure 9.17, where each point represents a particle
in the velocity space; in particular, the poloidal component is here replaced by the
third property of the clustering procedure, i.e. the particle lethargy, defined as
log(E/Emax) for normalization reasons1.
While the charge conservation on the grid nodes is checked inside the code “a

posteriori” for each cell (only in this test case, the operation being as useless as time-
consuming), the velocity distribution functions are built and plotted to make easier
their comparison. The distribution functions are built using a uniformly meshed
reference axis having characteristic spacing comparable with the threshold distances
used in the clustering procedure; this allows a more intuitive interpretation of the
plots, even if it could be a little misleading: the clustering method is mesh-free, that
means it is independent from a discretization of the property of interest. Thus the
proposed comparative graphs, and corresponding maximum relative errors, must be
intended as purely indicative. Moreover, the distribution functions are normalized
in order to give 1 as integral over the corresponding property range; the error-bars
corresponds to the square root of simulation particles falling in the bin.

1The poloidal component of the particle velocity is of no matter in a 2D3V particle code: it
contributes only to the total energy, of great importance in cross section evaluation.
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The first property to be examined is the direction of flight ϑv: as proposed in
Figure 9.18, the polar direction of velocities is correctly preserved with a maximum
relative error of about 14% over a single bin. A good distribution preservation can
be observed also for the planar velocity v12 property in Figure 9.19: the correspond-
ing maximum relative error is less than 23%. Finally, the most delicate conservation
rule is that based on the particle energy (or lethargy), this being strictly related
with the gas cross sections. Even in this case (see Figure 9.20), the relative error is
lower than 25%. A similar analysis could be extended to the two main velocity com-
ponents v1 and v2, but it would not add much more information. In general, a good
compensation of the discrepancies is observed for adjacent bins, as a confirmation
of the mesh-free feature of the clustering method.
Globally, the starting set contains 237 particles, which are reduced to 197 after the

merging procedure with an efficiency of about the 17%. About 170 clusters have
been identified, many containing only 1 or 2 particles, on which the merging would
not have any effect. Obviously, the increase of the chosen threshold distances would
increase the efficiency in the particle number reduction with a lack of precision in
distribution function conservation as main drawback. The thresholds in use have
been tuned to find a good compromise between the efficiency and precision.
The above analysis has been entirely devoted to the electron species. Similar re-

sults can be obtained for ions, tuning the proper threshold values for the clustering
procedure.

9.2.3 Merging effectiveness

In a typical simulation, the local number of particles per cell largely varies: the
temporal growth of charged particles is governed by ionization, then localized in
region with higher electric field. In the previous section, a low populated cell was
chosen to make more readable the presented plots; if the whole domain is considered,
the total number of simulation particles is reduced of about the 47% (from 50004
to 26382). In fact, higher local densities of particles per cell increase the method
efficiency, producing better results where it is precisely needed, i.e. where a more
intense charges multiplication takes place.
The analysis of the probability distribution functions, performed in the previous

section for the single cell, can be extended to the whole spatial domain in order to
obtain an estimate of their average deviations. Since the total number of particles is
sufficiently high, the mesh on the three properties of interest can be strongly reduced.
The comparison between the distribution functions of the three properties of interest
is plotted in Figure 9.21-9.23. The local relative error is lower than 20%; the value
could appear quite high but one must consider the finer meshing, which leads to a
bin width quite lower than the threshold distances of the clustering method.
Since the number of particles per bin is much higher than in the case of the single

cell examined in the previous section, the error-bars become so small that they
are no more distinguishable. However, one should remember they are related to the
number of simulation particles falling in the bin, independently from their weight. In
Figure 9.24-9.26, the comparison between the distribution functions of the initial set,
final set and final set for simulation particles is proposed. The distribution function
on the direction of flight in Figure 9.24 shows a flattening over the whole axis:
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Figure 9.20: Distribution functions of the starting and final
sets of particles, processed through the clustering and
merging routines, with respect to the lethargy (third
property of interest).

the clustering is more effective where the number of particles is higher, then peaks
are lowered and valleys are increased. This makes the standard deviations more
uniform over the whole distribution function. Looking at the distribution functions
for the planar velocity property in Figure 9.25, one can observe a shift towards
lower velocities of the curve for the simulation particles after merging. This can
be interpreted also considering the third property on which the clustering is based:
since the lethargy is used instead of the energy, the corresponding linear energetic
bin has a lower width at lower energies; thus, the planar velocity being strictly
related to the total energy, the lethargy clustering reflects on the efficiency at lower
planar velocities. Despite the logarithmic mesh, the energetic distribution function
of the particles of the starting set allows to obtain a higher efficiency at low energies
where the number of particles is sensibly higher, and a lower efficiency on the low
populated energetic tail. This result is of great importance: even if the total number
of the simulation particles is reduced, the statistics of the collisional processes is not
uniformly reduced, taking advantage of the redistribution of simulation particles at
higher energies.
From the above considerations, it arises evident that the merging procedure not

only reduces the number of simulation particles but also redistributes them over the
spatial domain. The dependence of the effectiveness of the method on the number of
particles per cell increases its performances where the particle densities are greater.
In Figure 9.27, the number of particles per cell for the starting and final sets are
presented for the spatial domain region of greatest interest: not only the maximum



Chapter 9. PF breakdown simulation 245

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

di
st

ri
bu

ti
on

fu
nc

ti
on

θv[π]

Starting set
Final set

Figure 9.21: Distribution functions of the starting and fi-
nal sets of particles on the whole domain, processed
through the clustering and merging routines, with re-
spect to the direction of flight (first property of inter-
est).

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

di
st

ri
bu

ti
on

fu
nc

ti
on

v12/v12,max

Starting set
Final set

Figure 9.22: Distribution functions of the starting and fi-
nal sets of particles on the whole domain, processed
through the clustering and merging routines, with re-
spect to the planar velocity (second property of inter-
est).



246 9.2. Numerical analysis

1e-05

1e-04

0.001

0.01

0.1

0 2 4 6 8 10

di
st

ri
bu

ti
on

fu
nc

ti
on

| log(E/Emax)|

Starting set
Final set

Figure 9.23: Distribution functions of the starting and fi-
nal sets of particles on the whole domain, processed
through the clustering and merging routines, with re-
spect to the lethargy (third property of interest).

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

di
st

ri
bu

ti
on

fu
nc

ti
on

θv[π]

Starting set
Final set

al unweighted set

Figure 9.24: Distribution functions of the starting and final
sets of particles on the whole domain with respect to
the direction of flight; the distribution function of the
simulation particles (not weighted) of the final set is
also plotted.



Chapter 9. PF breakdown simulation 247

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

di
st

ri
bu

ti
on

fu
nc

ti
on

v12 [m/s]

Starting set
Final set

Final uweighted set

Figure 9.25: Distribution functions of the starting and fi-
nal sets of particles on the whole domain with respect
to the planar velocity; the distribution function of the
simulation particles (not weighted) of the final set is
also plotted.

1e-05

1e-04

0.001

0.01

0.1

1

0 50 100 150 200

di
st

ri
bu

ti
on

fu
nc

ti
on

E [eV ]

Starting set
Final set

Final unweighted set

Figure 9.26: Distribution functions of the starting and final
sets of particles on the whole domain with respect to
the energy; the distribution function of the simulation
particles (not weighted) of the final set is also plotted.



248 9.3. Sensitivity analysis

number of particles per cell is decreased (approximately from 103 down to 350), but
also the number of particles is made more homogeneous over the spatial region.

9.2.4 A case of interest

To better understand the effectiveness of the method when applied multiple times,
a short analysis of the simulation of Section 9.1 will be proposed.
The plot of Figure 9.13 is extended to the whole simulation time: even if the num-

ber of real particles would increase of many orders of magnitude, the number of
simulation particles is preserved essentially constant. This prevents excessive mem-
ory consumption and reduces computational time, as already stated in Section 9.2.1.

The evolution of the particles number per cell is shown in Figure 9.29. For compar-
ison of the first frame with that of Figure 9.7-a, a perfect correspondence between
the number of simulation particle and the electron density is observed, being the
merging not yet started at this temporal stage. The other two frames corresponds
to the same simulation instants of the first and last ones of Figure 9.8: as evident,
the number of simulation particles has been redistributed over the spatial domain
with higher values in strongly unstationary regions; notwithstanding the local higher
densities would help the clustering procedure increasing the number of treated par-
ticles per cell, the velocity distribution function plays an essential role, representing
a limit to the clusters extension.
The comparison between the real EEDF and the numerical distribution function

obtained assuming equally-weighted simulation particles, independently from their
statistical importance, is proposed in Figure 9.30 and 9.31. The redistribution of the
simulation particles over the energetic axis improves the representativeness of the
sample used in the MCC module, reducing the variance associated to the simulated
statistical events. The effect becomes more and more evident as the simulation time
increases, the merging and clustering techniques being applied at each time iteration.

9.3 Sensitivity analysis

The simulation examined in Section 9.1 is here taken as reference case for a sensitivity
analysis. One simulation parameter per time will be modified in order to show
which role it plays in the discharge initiation and evolution. Particular attention
will be drawn on the filling gas pressure, voltage ramp, insulator configuration and
background gas; as last, the photo-electric effect will be turned off to show how the
SEE process is fundamental in feeding the discharge.

9.3.1 Pressure and voltage ramp

As discussed in Section 6.1.1 for the particular case of parallel plane electrodes, the
Townsend’s ionization coefficient α strictly depends on the reduced electric field.
Moreover, the coefficients A and B, which are present in equation (6.2) and concur
in the deduction of the Paschen’s law , can be considered constant on a limited range
of E/p (see Table 6.1 and Figure 6.1). In order to better understand the role played
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by the filling gas pressure and how the macroscopic quantities are influenced, three
simulations have been performed at p = 1, 3 and 5 Torr respectively.
In Figure 9.32, the electron density growth is scaled over the gas pressure and plot-

ted against time. What arises evident is the gradual temporal shift in the particles
growth. This can be easily explained looking at the collisional fraction frequencies
proposed in Figure 9.33 and 9.34 for the elastic and ionization processes respectively:
since the collisional frequency is proportional to the neutral background density, at
higher pressures the energy losses through elastic scattering is stronger and delays
the acceleration of electrons to the threshold energy for ionization; even if starting
at a more advanced temporal stage, the ionization collisional rate grows steeper for
higher pressures and the three curves of Figure 9.34 are reversed after approximately
10 ns.
The growth in the particle densities presented in Figure 9.32 does not intersect

their trend, as one could expect as a consequence of the ionization rate inversion,
due to the impact with boundaries. Since the ionization process starts just over
the insulator sleeve, the impact over the dielectric surface is predominant: as shown
in Figure 9.35, a behavior similar to that of ionization rate is obtained even for
the dielectric impinging. The two effects compensate producing a particle growth
derivative approximately independent on the filling gas pressure.
More intuitive is the comparison between cases with different applied voltage ramps

( dV/ dt = 100, 200 and 300 V/ns respectively). The analysis allows to scale the
value of the reduced electric E/p field at each instant, with any change in the
background gas properties.
A higher time derivative of the applied electric field induces higher accelerations

in the seed electrons already in the first instants of the discharge: as shown in



Chapter 9. PF breakdown simulation 251

4.5
5

5.5
6

6.5
7

7.5

0 2 4 6 8 10

r
[c

m
]

z [cm]

(a) t=7.0 ns

50 10

5

4.5
5

5.5
6

6.5
7

7.5

0 2 4 6 8 10

r
[c

m
]

z [cm]

(b) t=19.0 ns

600

400

200
50

4.5
5

5.5
6

6.5
7

7.5

0 2 4 6 8 10

r
[c

m
]

z [cm]

(c) t=26.6 ns

200
50

Figure 9.29: Particle number contour lines at fixed time
instants during the simulation: the redistribution over
the spatial domain obtained through the merging and
clustering techniques is evident.



252 9.3. Sensitivity analysis

1e-05

1e-04

0.001

0.01

0.1

0 50 100 150 200 250 300 350

E
E

D
F

E [eV]

EEDF (simulation)
EEDF (sim. particles)

Figure 9.30: EEDF at t = 10.8 ns, compared with the
distribution function of the simulation particles not
weighted on their importance.

1e-05

1e-04

0.001

0.01

0.1

0 50 100 150 200 250 300 350

E
E

D
F

E [eV]

EEDF (simulation)
EEDF (sim. particles)

Figure 9.31: EEDF at t = 20.0 ns, compared with the
distribution function of the simulation particles not
weighted on their importance.



Chapter 9. PF breakdown simulation 253

0.01

1

100

10000

1e+06

1e+08

1e+10

1e+12

0 5 10 15 20 25

n
/p

[c
m
−

3
T
or

r−
1
]

t [ns]

p = 1 Torr
p = 3 Torr
p = 5 Torr

Figure 9.32: Electron density growth scaled over pressure
of the filling gas, for three different values.

0

10

20

30

40

50

60

0 5 10 15 20 25

ν
[n

s-
1 ]

t [ns]

p = 1 Torr
p = 3 Torr
p = 5 Torr

Figure 9.33: Elastic collisional fractions frequencies for the
electrons at three different pressure values of the filling
gas.



254 9.3. Sensitivity analysis

-1

0

1

2

3

4

5

6

0 5 10 15 20 25

ν
[n

s-
1 ]

t [ns]

p = 1 Torr
p = 3 Torr
p = 5 Torr

Figure 9.34: Ionization collisional fractions frequencies for
the electrons at three different pressure values of the
filling gas.

-1

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

ν
[n

s-
1 ]

t [ns]

p = 1 Torr
p = 3 Torr
p = 5 Torr

Figure 9.35: Electron impact frequency over the surface of
the insulator sleeve at three different pressure values of
the filling gas.



Chapter 9. PF breakdown simulation 255

dV/ dt Time range Voltage range αt

[V/ns] [ns] [kV] [ns-1]
100 15.0÷ 20.0 1.5÷ 2.0 1.59
200 11.0÷ 17.5 2.2÷ 3.5 1.77
300 7.5÷ 13.7 2.3÷ 4.1 2.23

Table 9.2: Ionization growth rate corresponding to the ex-
ponential growth of the particle densities for three dif-
ferent values of the externally applied linear voltage
ramp.

Figure 9.36, the particle densities rise more rapidly for higher voltage ramps, until
the interaction with the boundaries limits the ionization growth. A rough estimate
of α for an exponential growth rate of the type n = n0 exp(αtt) is proposed in
Table 9.2 for the three cases of interest.
Unlike the above case, since the pressure is unchanged in the three simulations, the

elastic collisional rates, plotted in Figure 9.37, are of the same order, but shifted in
time, due to the different growth of the mean kinetic energy of the colliding particles.
On the other hand, the ionization collisional frequencies are affected by the boundary
interaction (see both Figures 9.38 and 9.39): the more energetic particles, which are
scattered mainly in the forward direction with a limited loss of energy, will be the first
to reach the insulator sleeve, being eliminated from the system; higher is the voltage
ramp, higher will be the mean energy reached by the system and, consequently, the
ionization collisional rate. The dielectric impact frequency is only shifted in time,
similarly to the elastic collision rate.

9.3.2 Insulator configuration

In order to examine how the geometry of the insulator influences the discharge
development, the reference input geometrical parameters collected in Table 9.1 have
been modified moving the insulator over the anode: while the radius of the CE rint

and the insulator thickness sins have been maintained, its outer radius has been
increased to rins = 5.5 cm. The obtained geometrical configuration is widely used in
many PF designs, the manufacturing and maintenance operations being easier.
Comparing the growth of particle densities over the whole domain, in the first stage

of the discharge, the multiplication rate results slightly increased in the alternative
insulator configuration, due to the higher enhancing of the electric field at the closed
end of the electrodes, near the cathode edge. At approximately 14 ns the trend is
inverted and, while in the reference case the particle number continues to grow,
in that under consideration the particles multiplication slows down. The fact is
confirmed by the comparison between the electron mean energy evolution: while
in the first case it grows up to 63.3 eV at about 15 ns, in the insulator alternative
configuration, 〈E〉 presents a plateau at about 49 eV between 10 and 16 ns and drops
down to 15 eV in less than 5 ns. This reflects on the ionization collisional rate which
does not reach the values observed in Figure 9.2 with a reduction of about 30% on
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the maximum. A similar reduction is observed even on the dielectric impact events,
while the negative charge deposition over the anode is increased of about four times.
A better interpretation of the phenomenon is made easier if the evolution of the

electric field and of the density profiles is examined over the whole domain. The
isopotential lines of Figure 9.44, not yet modified by the space charge and the surface
charge deposited over the dielectric, show the differences in the spatial dependence of
the external electric field, ~E(~r): due to the dielectric properties, the thickness of the
insulator sleeve substantially reduces the interelectrode gap to 2.0 cm over the first
5.0 cm in the axial direction inducing thickening of the isopotential lines (increased
electric field along the radial direction); on the residual part of the uncovered an-
ode, the gap is restored to 2.5 cm, with a consequently less intense electric field. The
first ionization events occur diffusely over the whole insulator sleeve, and not con-
centrated near the cathode edge, producing a first layer of ionized gas with densities
in the range 2÷ 12 · 104 cm−3. At a time instant corresponding with the maximum
of the dielectric collisional rate frequency (Figure 9.44-b), the density of the layer
results increased up to 7 · 108 cm−3, with a very low thickness of few mm. In few ns,
the electric field reaches sufficiently high values to induce electron avalanches over
the uncovered part of the anode: the charge particles, attracted towards the positive
electrode, produce a second layer of ionized gas over it with densities of the order of
5 · 109 cm−3, comparable with those of the residual part over the insulator, in great
measure deposited over its surface. The positive space charge, left by ionization and
surface impact events, becomes soon high enough (3 · 1010 cm−3 in Figure 9.45-a)
to modify the electric field: in particular, the interelectrode gap over the uncovered
part of the anode is actually reduced to 2.0 cm, with a net effect similar to the pres-
ence of the insulator. In the meantime, a new ionization avalanche is started at the
cathode edge and rapidly reaches densities 2 · 1011 cm−3, overcoming the densities
over the uncovered anode; the time instant corresponds to the secondary peak in the
electron collisional frequency over the dielectric, observable in Figure 9.43. Here-
after, the ionized gas will develop into a discharge over the insulator surface with
a lower density growth rate: the axial potential gradient, produced by the space
charge and the deposited one over the insulator, pushes the charged particles along
the insulator sleeve towards the perturbed region of the uncovered anode, where
density becomes negligible if compared to those of the evolving discharge.

9.3.3 Background gas

As shown in Section 7.3.3 on page 163, many possible excitation processes have been
considered for hydrogen.
What arises evident from the evolution of particle densities plotted in Figure 9.46

is a much less growth rate than in the case of argon as background gas. Even if
the ionization threshold energies of the ionization process are comparable for argon
and hydrogen, as well as their energy dependence (see Figure 7.10 and 7.12), the
maximum value for H2 is 3 times lower than that of Ar. Moreover, the Ramsauer-
Townsend effect, characteristic of noble gases, is completely absent in the case of
interest: the progressively accelerated electrons never see an almost transparent
background medium when they move in an hydrogen gas, in spite of the electrons in
an Argon gas (whose elastic scattering cross section is almost zero at approximately
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0.2 eV). This is evident comparing the very first instants of the elastic scattering col-
lisional fractions plotted in Figure 9.2 and 9.47, for argon and hydrogen respectively:
no decreasing slope is observed in the second case. The large number of inelastic
cross sections is another reason of the lower growth rate: the contribution due to
all the inelastic scattering processes is comparable with the that corresponding to
ionization, resulting even greater collisional up to 10 ns (Figure 9.47).
The strong variation in the slope of densities growth between 10 and 15 ns is related

to the loss of a large number of particles at the anode surface; while the dielectric
impacts are monotonically increasing in time, as shown in Figure 9.48, the anode
collisional fraction frequency reach its maximum at about 13 ns; this is due to an
homogeneous ionization even in the region above the CE: the increasing applied
potential attracts the negative charges so rapidly that losses are not compensated
by ionizations. The effect was present even in the case of argon, but the higher
ionization rate mitigated it.
A larger number of possible decay channels corresponds to the larger number of ex-

citation processes; the time evolution of three excited species is plotted in Figure 9.49
and compared with the total number of emitted photo-electrons. In particular, it
arises evident the difference between the evolution of the B1Σ+

u and c3Πu species
due to their completely different characteristic decay times (see Table 7.4).

9.3.4 Photoemission

As stated in Section 6.1, the SEE plays a fundamental role in the breakdown devel-
opment and, in particular, in the discharge maintainance. In Section 6.2.3, many
processes are considered for the interaction of both electrons and ions on the cath-
ode, anode and dielectric surfaces. Due to the low mobility of ions, most of all in the
first stages of the PF breakdown, when the voltage applied between the electrodes is
lower than 10 kV, the SEE by ion impact on the cathode surface can be neglected:
as shown in Figure 9.50, only sporadic events are detected. At about 25 ns, the
evolution of the space charge has drastically modified the electric field near the
cathode back-wall (see Figure 9.8-c) and electrons emitted by photo-electric effect,
are rapidly accelerated to energies over the ionization threshold; as a consequence,
the ions, produced near the cathode, are accelerated by a very high electric field
(approximately 45 kV/cm) and impact on the cathode back-wall with an increasing
frequency.
On the contrary, the SEE by photo-electric effect induced by photons produced

inside the system by decay of exited states plays a fundamental role feeding the dis-
charge with fresh electrons from the cathode back-wall. In Figure 9.51, the density
of excited states and produced photo-electrons is plotted at 1 Torr in Argon (the
comparison with the total density of ions and electrons was proposed in Figure 9.1,
for the same input parameters). The photon and photo-electron densities are also
compared to show the effect of the sight factor and of the secondary emission coeffi-
cient; the number of emitted simulation particles, which follows the basic principles
explained in Section 8.5.5, is also plotted.
To fully understand the role of photo-electrons, a simulation with the same op-

erational parameters of that proposed in Section 9.1 was run deactivating the call
to the photo-emission routine. The particle density growth is the first representa-
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tive macroscopic quantity of interest: in Figure 9.52, the time when photo-emission
starts to become not negligible is evident by comparison. Other quantity of interest,
about which the effects of the photo-emission were discussed, is the time-evolution
of mean energy for the electron species: in Figure 9.53, a steeper decrease with no
oscillation is observed when photo-electrons don’t perturb the system.
As far as the fractional collisional frequencies of the electrons with the background

gas are compared, it appears clear the similarity between the two cases and their
dependence on the mean energy of the species: the only appreciable difference be-
tween Figure 9.2 and Figure 9.54 lies beyond the threshold of 20 ns, where the little
peaks of ionization, observed in the first case with photo-emission, disappear in the
present one. More differences characterize the collisional frequencies with the do-
main boundaries: as evident comparing Figure 9.3 and Figure 9.55 (please note the
different scales in ordinates), the impacts over the dielectric are strongly enhanced
when photo-electrons are emitted from the cathode back-wall (a factor 3 separates
the two cases at about 15 ns). The differences between the negative charges imping-
ing on the anode (a factor 2 higher in the case without the photo-emission at about
5 ns) have to be interpreted in relative terms, the collisional fractions frequencies
being calculated as the ratio between the colliding particles and the total number
of particles; this means that, when the photo-electric effect is absent, the discharge
develops more uniformly over the whole electrode length, both on the dielectric and
on the anode.
The fact becomes more evident if the sheath density profiles and isopotential lines

are examined (Figure 9.56) and compared with the corresponding time-instant of
Figure 9.7 and 9.8. It is evident how the absence of electrons emitted from the
cathode back-wall modify the sheath development: the connection with the cathode
edge is completely lost.
The absence of photo-electrons modifies also the EEDF, as shown in Figure 9.57-

9.60, at time instants corresponding to those of Figure 9.9-9.12. While at a first
stage the distribution functions perfectly correspond (as deducible by above con-
siderations), the EEDFs corresponding to the maximum of the mean energy, at ap-
proximately 15 ns, and after the consequent rapid decrease, deviates from those ob-
tained in the reference case with photo-emission. The deviation from the Boltzmann-
Maxwell distribution function at the same mean energy is still evident, but the con-
tribution at low energies (few eV) and high energies (more than 150 eV) is slightly
lower, due to the decrease in particles multiplication and in their acceleration by the
electric field, modified by the spatial charge density.
The role of the photo-electrons in sustaining the breakdown and in connecting the

discharge to the cathode edge is now more evident, but it merits further deeper
investigations.
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Concluding remarks

A Dense Plasma Focus (DPF or, simply, PF) is a compact device in which the energy
stored in a capacitor bank is discharged through gas mixtures inside a vacuum cham-
ber in order to ignite, accelerate and then radially collapse a plasma sheath through
self-induced electromagnetic forces. The short-lived pinched plasma is sufficiently
hot and dense to enhance nuclear fusion reactions, even with high threshold energies.
The multiplicity of possible reactions and secondary effects make the PF an efficient
multi-radiation source, mostly when operated in a repetitive regime (thanks to the
very short time-duration of the whole discharge).
In spite of all the accumulated research related to PFs, there are several ques-

tions still waiting for answers. Two of these subjects are deeply investigated in the
present work. The first, more practical, is the optimization analysis of powerful
devices: a numerical tool has been developed to simulate the macroscopic dynamics
of the discharge and its coupling with the external electric circuit; tuning the input
parameters makes the optimization of the device possible, in order to maximize the
transfer of energy in the pinch phase; many related subjects are touched, describing
the preliminary design of a PF for the production of short-lived radioisotopes for
medical applications. The second, more theoretical, is the investigation of the micro-
scopic phenomena governing the gas breakdown and its development into a plasma
discharge; the well-suited and tested Particle-In-Cell Monte-Carlo-Collisional (PIC-
MCC) numerical method has been successfully applied to the physical problem of
interest. The non-standard problem under investigation has required the develop-
ment of innovative techniques to control the simulation particle number, during the
exponential growth characteristic of breakdown phenomena.
For each of the discussed topic, the main results obtained through computer sim-

ulations and their comparison with available data will be hereafter summarized.

Macroscopic simulation and design optimization

In high power apparatus, low inductance, minimum jitter, fast spark-gap switches
are needed to transfer currents of hundreds of kA to the electrodes inside the vacuum
chamber. When the switch is triggered a potential surge charges the central electrode
so that in some hundreds of nanoseconds the full breakdown of the filling gas develops
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on the insulator sleeve. As the plasma sheath is formed, the self-induced magnetic
pressure forces its detachment from the insulator, then drives it axially toward the
open end of the electrodes. As long as it runs, the ionized gas sweeps the neutral
gas on its path, ionizing and incorporating it in a sort of snowplow effect.
Once the external circuit electrical parameters have been established, the opti-

mization of electrodes design can be performed. This task consists in finding the
right length to synchronize the pinch with the maximum current. The problem is
highly non linear since during the plasma motion the total inductance varies with the
sheath position. A numerical code was developed to model the 2-D axial-symmetric
problem of the sheath motion coupled with external circuit equations. Plasma mo-
tion is modeled through snowplow approximation, starting from the initial condition
of sheath formation upon the insulator sleeve as given by a macroscopic breakdown
model. Circuit equation is solved globally, while equations of motion and mass
continuity allow to obtain the shape of the plasma sheath driven by the magnetic
pressure; at each iteration, the inductance of the coaxial gun, short-circuited by
the current sheath, is recomputed and substituted into the circuit equation closing
the time loop. Feeding in the external circuit parameters and following few simple
rules of thumb, the optimum configuration can be found. Electrical parameters and
sheath evolution are given as output data and can be easily plotted through a ded-
icated graphical user interface. The physical, mathematical and numerical models
have been described in details, as well as the code structure, in order to facilitate
future maintenance.
Preliminary tests are proposed: a real device, operated at the Nuclear Engineer-

ing Laboratory of Montecuccolino (University of Bologna) for neutron production
through D-D nuclear fusion reactions, has been performed. Good results have been
obtained both for the measured maximum peak current and global discharge timings.
In particular, the developed code reveals itself more accurate than concurrent ones,
thanks to the additional modeling of the gas breakdown, two-dimensional current
sheath motion and gas sweeping, electrodes round-going and geometrical descrip-
tion. The comparison with analytical simplified models gives a good agreement and
allow to numerically estimate a figure of merit for the device performances.
The promising developed tool has been employed for the design of a 150 kJ repet-

itive at 1 Hz PF device for the production of short-lived radioisotopes for medical
applications. A first preliminary set of operating parameters, obtained through com-
monly used practical rules, revealed itself quite distant from the optimal condition:
the input data have been tuned by successive iterations up to the proposed config-
uration. A peak current of 1.5 MA is expected, while the total inductance rapidly
grows up from 20 to about 75 nH.
Several arduous tasks are involved in trying to enhance the energy that can be

transferred to the load in a single PF shot; these concern the control of thermal
and mechanical stresses, the prevention from surface currents at so high voltages
and the reduction of electrodes material ablation strongly affecting the production
efficiency. Similarly the accumulation of thermal energy from resistive dissipation
on structural parts poses limits on the maximum repetition frequency. To obtain a
maximum stored energy of 150 kJ, assuming to work at a 30 kV, a total capacity of
350 µF (composed by 32 modules of 11.1 µF each, parallel connected) is required. A
total of 128 HV coaxial cables connect the capacitor bank to the plasma focus load
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through a collector assembly. Very strong, pulsed, electro-dynamical forces arise at
each shot producing remarkable stresses. Finite elements numerical simulations have
been performed to study the mechanical response of the collector. The current den-
sities involved, enhanced by fast transient skin depth phenomena, produce strongly
localized heat generation able to melt the interested materials. To solve all these de-
manding issues, a stainless steel assembly was designed. The most demanding issue
is very demanding limit of the external circuit inductance (assumed not greater than
40 nH) which is strongly affected by the collector contribution and shall be kept as
low as possible in order to obtain high pulsed currents. Analytical and numerical
analysis have been performed and compared; preliminary experimental data have
confirmed the design values. The high pulsed currents arising during each discharge
requires the use of current gasketing techniques. Special care was also devoted to the
electrical insulation between high voltage and grounded elements as well as the pre-
vention of current tracking along insulator surfaces. To allow electrodes dimensions
fine tuning through experimental tests, great care has been devoted to maximize the
flexibility of the central core.
The designed device has been realized and set up thanks to an ongoing, joint col-

laboration between the University of Bologna and the University of Ferrara. Prelim-
inary tests have shown a good agreement with the here presented design data (peak
current, pinch time, collector inductance, . . . ). Experiments for the production of
sort-lived radioisotopes at full power are programmed for the next future.

Microscopic simulation: the gas breakdown

To better understand the underlying physics of plasma discharge in a PF device,
the breakdown phase has been investigated, being a not yet completely understood
phenomenon, even if widely known to be of great importance in the subsequent
evolution of the discharge. A PIC method coupled with a MCC module has been
used to study the time evolution of electron density and Electron Energy Distribution
Function (EEDF) up to few tens of nanoseconds.
At the breakdown of the filling gas a plasma layer is formed on the insulator sleeve,

short-circuiting the electrodes; high current densities (of the order of hundreds of
kA/cm2) are reached before the sheath detachment from the insulator sleeve and its
acceleration along the focus tube. The available experimental data describe the fea-
ture of this phase mainly at an advanced temporal stage (hundred of nanoseconds),
when the plasma sheath is well-formed. Due to the nonlinearity of the equations,
analytical solutions of discharge breakdown cannot be faced, if not in the simplest
1D case.
Many numerical fluid models have been developed for discharge simulations. The

main drawback of fluid codes is the assumption of a Maxwellian EEDF, while it’s
widely known that, in presence of strong electric fields, the electronic species cannot
be considered at the thermodynamic equilibrium. Moreover, at high E/p values,
the first Townsend ionization coefficient shows a decreasing behavior, due to the
“runaway effect”. A kinetic approach, able to describe a generic local non-stationary
EEDF, appears more suited for the breakdown modeling of the very early stage
of gas discharge development, dominated firstly by elastic collisions and then by
electron impact ionizations.
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Among all the kinetic numerical models, the PIC-MCC one has been chosen due
to its high suitability in plasma discharge simulations. Many of the problems to
be faced are connected to the efficiency and reliability of the method. In break-
down evolution, the total number of simulation particles grows exponentially when
the ionization threshold energy is reached by the electronic species. Moreover, the
cathode-fall region quickly undergoes a depletion due to the macroscopic motion of
the electrons towards the anode. Therefore, a method to dynamically control the
number of particles must be implemented, assuring a sufficiently high local accuracy
and representativeness of the stochastic events.
Rough methods based on russian-roulette or splitting in the whole domain of inter-

est are known to introduce numerical noise and to worsen the statistics in depleted
regions. In the past, few authors developed techniques for particles splitting and
sifting in one-dimensional domains; virtual interfaces were used to separate the spa-
tial domain (for example the cathode-fall and the bulk regions in glow discharges)
and two additional species (large- and low-weighted) were used in the two regions
to control the number of particles. Recently, new techniques have been proposed for
PIC codes. Their main drawbacks are the stiffness in the choice of a fixed number of
equally-weighted particles; moreover and the absence of a thorough analysis on the
MCC module statistics. An innovative dynamic control on the simulation particles
number is developed.
A merging technique based on a Sorted Hierarchical Agglomerative Sub-Clustering

is performed to collapse clusters of particles in the phase space. Great care must be
paid to the equivalence of the starting and final sets of particles, which is based on
two conditions: the two ensembles have to equally contribute to the grid moments
(charge densities on the grid nodes for an electrostatic code) and to sample the same
velocity distribution function. As far as merging with linear interpolation weighting
in two dimensions is concerned, the spatial grid is used to separate particles into
local ensembles by means of a hybrid counting sort algorithm, which is also known
to increase performances avoiding cache trashing. Once a cell containing a too-high
number of particles is found, a mesh-free complete linkage hierarchical agglomerative
clustering is used to select the closest sets of particles in the velocity space. Properly
choosing the maximum acceptable distances, a more severe condition can be used
to avoid merging in the low populated high energy tail of the energy distribution
function. At least two particles are required to merge a set of N particles lying in
the same cell in order to exactly preserve the charge fractions on the grid nodes.
The new particles coordinates and weights are derived and an interesting analogy
with well-know mechanical properties of substitutional mass systems is presented.
Secondly momentum and energy conservation laws are imposed between the starting
and final sets in order to obtain the new velocity components.
Moreover, in order to avoid particles depletion in the cathode-fall region, a split-

ting procedure is proposed to preserve a sufficiently high sample representativeness
for the stochastic secondary emission events and to limit local fluctuations in the
electric field solution. Virtual temporal interfaces, provided by the simulation time-
step, give a global breakpoint to check the number of particles per cell. If it is
lower than a threshold, each single particle in the cell is split into N ′ new parti-
cles perfectly identical to the starting one, with no perturbation on the distribution
function in the phase-space nor on the grid moments. The collisional events will
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randomly spread them in time-of-flight, direction and energy. Depleted regions can
be artificially populated with no addition of numerical noise. Since Secondary Elec-
tron Emission (SEE) is a fundamental aspect of Townsend discharges, the splitting
technique is useful to enhance the related statistics. Moreover, the technique can
be improved choosing an energy dependent splitting factor and adding a forced or
multiple generation at ion-cathode interactions.
The large external voltage pulse applied between the electrodes accelerates the

seed electrons of the filling gas mixture; once reached a sufficiently high energy,
they induce ionization events of the neutral particles leading to a series of electron
avalanches. Since the phenomenon is enhanced by the electric field strength, the
initially weakly-ionized gas rapidly develops at the closed end of the electrodes, near
the insulator-cathode edge, then spreading in a plasma sheath over the insulator
sleeve. A prominent role is played the photo-electrons: the photons emitted by
decay of excited atoms of the background gas produce fresh electrons by photo-
electric effect on the cathode back-wall, feeding the discharge and connecting it to
the grounded electrode.
The EEDF evolution is analyzed in conjunction with collision cross sections. The

electron density increases exponentially in the first stages of the breakdown. As soon
as threshold energies of inelastic reactions are reached, it appears clear the deviation
of the EEDF from the Maxwellian distribution. Comparisons with hydrodynamic
codes show a faster breakdown development than the expected one, followed by a
relaxation of the Townsend avalanche due primarily to runaway electrons of the high
energetic tail. The results confirm those obtained with similar kinetic simulations.
Additionally, the proposed techniques improve performances of the numerical code.

The local control on the number of particles and the improved statistics on SEE al-
low to overcome not-physical discharge extinction. A sensitivity study on the PF
working parameters (filling gas type and pressure, electrodes geometry, external volt-
age ramp, photoelectric effect, . . . ) is proposed to show their role in the discharge
development. Improvements on both the numerical (adaptive mesh refinement, par-
allelization, . . . ) and the physical model (field emission, excited species evolution,
space dependent sight factor, . . . ) are under deeper investigation, being aimed to
give even better results and to push the simulation towards time comparable with
experimental results.





Acronyms

AC Alternate Current
AMR Adaptive Mesh Refinement
AWG American Wire Gauge
CIC Cloud In Cell
CS Current Sheath
DB Distribution Box
DC Direct Current
DM Discharge Module

(D)PF (Dense) Plasma Focus
EDF Energy Distribution Function

EEDF Electron Energy Distribution Function
EPDF Electron Probability Distribution Function

ESL Equivalent Series Inductance
EVDF Electron Velocity Distribution Function
FEM Finite Element Method
FFT Fast Fourier Transform
FOM Figure Of Merit
GPL General Purpose License

(G)UI (Graphical) User Interface
HIPGD High Intensity Plasma Gun Device

HV High Voltage
IE Inner Electrode

LBE Linear Boltzmann Equation
MC Monte Carlo

MCC Monte Carlo Collisional
MHD Magneto-Hydro-Dynamics

MP Magnetic Piston
NGP Nearest Grid Point

OE Outer Electrode



280 Acronyms

PDE Partial Differential Equation
PET Positron Emitting Tomography
PIC Particle In Cell

(P)RNG (Pseudo)Random Number Generator
PS Power Supply
RF Radio Frequency
SG Spark Gap

SEE Secondary Electron Emission
SHASC Sorted Hierarchical Agglomerative Sub-Clustering

SLR Short Lived Radioisotopes
SMP Symmetric Multi Processor
SOR Successive Over Relaxation

SPRNG Scalable Parallel Random Number Generator
TU Trigger Unit
UV Ultra Violet
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