Intensificazione di processi biologici per la Bioremediation aerobica di suoli contaminati

Di Toro, Sara (2011) Intensificazione di processi biologici per la Bioremediation aerobica di suoli contaminati, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Biologia cellulare, molecolare e industriale/cellular, molecular and industrial biology: progetto n. 3 Biocatalisi applicata e microbiologia industriale, 23 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (Italiano) - Accesso riservato - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (2MB)

Abstract

Enzyveba, a partially characterized complex consortium of not-adapted microorganisms developed through prolonged stabilization of organic wastes, was found to markedly intensify the aerobic remediation of aged PAH- and PCB-contaminated soil by acting as a source of exogenous specialized microorganisms and nutrients. Thus, Enzyveba was tested in the bioremediation of Diesel (G1) and HiQ Diesel (G2) contaminated soils under aerobic slurry-phase conditions by means of a chemical, microbiological, ecotoxicological integrated analytical procedure. The addition of Enzyveba resulted in a higher availability of cultivable specialized bacteria and fungi but this resulted in a slight intensification of soil remediation, probably because of the high content of nutrients and specialized microorganisms of the soil. In many cases, the biotreatability of soils impacted by diesel fuel is limited by their poor content of autochthonous pollutant-degrading microorganisms. Thus, bioaugmentation with stable and reproducible cultures with the required broad substrate specificity might be the solution for a successful remediation. Two microbial consortia, ENZ-G1 and ENZ-G2, were enriched from Enzyveba on G1 and G2. Both consortia consist of a similar composition of bacterial and fungal species. They exhibited a comparable and significant biodegradation capability by removing about 90% of 1 g/l of diesel fuel under liquid culture conditions. Given their remarkable biodegradation potential, richness of quite diverse microbes, stability and resistance after cryopreservation at -20 °C for several months, both consortia appear very interesting candidates for bioaugmentation on site. The mycoflora of a soil historically contaminated by high concentration of PCBs was characterised before, at the beginning and at the end of the biotreatment mentioned above. Several mitosporic fungi isolated from soil grew in presence of a mixture of three PCBs congeners when also glucose was provided. This is the first study in which 5 strains of mitosporic species able to biodegrade PCB are reported in the literature.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Di Toro, Sara
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze biologiche, biomediche e biotecnologiche
Ciclo
23
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
diesel suoli bioremediation bioaugmentation PCB
URN:NBN
Data di discussione
28 Giugno 2011
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^