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Chapter 1

Introduction

An increasing number of multimedia services (e.g., multi-view video or

multiband wireless protocols) are being implemented on embedded consumer

electronics thanks to the fast evolution of process technology. These new

embedded systems demand complex multi-processor designs to meet their

real-time processing requirements while respecting other critical embedded

design constraints, such as low energy consumption or reduced implemen-

tation size. Moreover, the consumer market is reducing more and more the

time-to-market and price [57], which does not permit anymore complete

redesigns of such multi-core systems on a per-product basis. Thus, Multi-

Processor Systems-on-Chip (MPSoCs) have been proposed as a promising

solution for this context, since they are single-chip architectures consisting

of complex integrated components communicating with each other at very

high speeds [57]. Nevertheless, one of their main design challenges is the fast

exploration of multiple hardware (HW) and software (SW) implementation

alternatives with accurate estimations of performance, energy and power to

tune the MPSoC architecture in an early stage of the design process.

The scope of this dissertation is to explore the MPSoCs design space,

explain the work needed to develop a simulation platform and finally shows

a real design case. It’s divided into two parts, the first one deals with network

connectivity at the micro-architectural level and memory architecture. To

this purpose, chapters II and III describe the steps for developing a complete

on-chip multi-processor simulation platform. Respect to previous work

reported in the literature, this simulation environment exhibits very high

levels of accuracy in that approximation margins have been reduced to the

minimum with respect to real hardware and software architectures. The plat-

form has been described in SystemC [10], a tool that models both hardware
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and software by means of a common description language. The developed

platform allows cycle-accurate simulation of state-of-the-art multi-processor

SoCs, wherein only a few functional units are integrated and therefore a

shared bus based communication architecture can still be used. In particu-

lar, an AMBA-compliant infrastructure is simulated [36], with the relevant

characteristic of allowing the implementation of different arbitration policies

as contention resolution schemes for the serialization of simultaneous bus

access requests. Chapter IV evaluates the impact of three arbitration policies

on system performance (round robin, TDMA and slot reservation) under

different traffic patterns on the bus.

Once the simulation platform has been developed, mapping abstract

programming models onto tightly power-constrained hardware architectures

imposes overheads which might seriously compromise performance and

energy efficiency. Therefore, in the second part, we have first performed

a comparative analysis of message passing versus shared memory as pro-

gramming models for single-chip multiprocessor platforms. Our analysis is

carried out from a hardware-software viewpoint: we carefully tune hardware

architectures and software libraries for each programming model. We analyze

representative application kernels from the multimedia domain, and identify

application-level parameters that heavily influence performance and energy

efficiency. Then, we formulate guidelines for the selection of the most appro-

priate programming model and its architectural support.

Finally we have studied the tuning of a specific application onto a MPSOC

platform. Since high performance chip architectures for biomedical applica-

tions is gaining a lot of research and market interest, we have chosen ECG

analysis. Our Hardware-Software (HW/SW) Multi-Processor System-on-Chip

(MPSoC) design improves upon state-of-the-art mostly for its capability to per-

form real-time analysis of input data, leveraging the computation horsepower

provided by many concurrent DSPs, more accurate diagnosis of cardiac dis-

eases, and prompter reaction to abnormal heart alterations. We have focused

on the design methodology to go from the 12-lead ECG application specifica-

tion to the final HW/SW architecture. We explore the design space by consid-

ering a number of hardware and software architectural variants, and deploy

industrial components to build up the system.

At the end, conclusions are drawn, reporting the main research contribu-

tions that have been discussed throughout this dissertation.



Chapter 2

SoC Co-Simulation

2.1 abstract

We present a co-simulation environment for multiprocessor architectures, that

is based on SystemC and allows a transparent integration of instruction set

simulators (ISSs) within the SystemC simulation framework. The integration

is based on the well-known concept of bus wrapper, that realizes the inter-

face between the ISS and the simulator. The proposed solution uses an ISS-

wrapper interface based on the standard gdb remote debugging interface, and

implements two alternative schemes that differ in the amount of communica-

tion they require. The two approaches provide different degrees of tradeoff

between simulation granularity and speed, and show significant speedup with

respect to a micro-architectural, full SystemC simulation of the system descrip-

tion.

2.2 Introduction

Today’s complex systems-on-chip (SoCs) are usually built from processor

based templates, and contain one or more processor cores, with a significant

amount of on-chip memory and complex communication busses. Core proces-

sors for on-chip integration are often legacy or third-party components, and

are viewed as resources. Therefore, designers do not need a detailed descrip-

tion of the processor micro-architecture, but they do require correct functional

(behavioral) models and I/O interface descriptors to accurately track the inter-

action of the core with the rest of the chip. These models should also provide

information about the run-time of the software application they execute; such

estimates should be reliable enough to cross-validate a design against perfor-

mance specifications.
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Embedded software designers working on processor cores routinely em-

ploy cross-development toolkits to validate functionality and assess perfor-

mance of applications. A minimal cross-development toolkit contains a cross-

compiler, a timing-accurate instruction-set simulator (ISS) and a debugger.

On the other hand, hardware designers validate their work using hardware-

description language (HDL) simulators. The latter are quite inefficient in sim-

ulating complex processor cores, because they model their micro-architecture

in too much detail.

Designing a complex system-on-chip requires thus a single, integrated

hardware-software simulation platform, for both exploration and validation.

For this reason, a large number of co-simulation platforms has been developed

both by academic groups and EDA vendors [1], [2], [3], [4], [5], [6], [7], [8].

Initially, co-simulation focused establishing a solid link between event-driven

hardware simulators and cycle-based ISSs. In the last few years, hardware

descriptions and design flows based on C/C++ have gained momentum be-

cause of their potential for bridging the gap between hardware and software

description languages [9], [10], [11], thanks to the possibility of using the same

language for describing software and hardware. In addition, co-simulation be-

comes easier and more efficient, because the entire system can be simulated

within a single simulation engine, eliminating the overhead of communication

between different simulators.

SystemC is one of the leading C/C++ design environments: it provides

an open-source, free simulation environment and several class packages for

specifying hardware blocks and communication channels [10]. Software in

SystemC can be specified algorithmically, as a set of functions embedded in

SystemC abstract modules. Software modules can communicate among them-

selves and with hardware components via abstract SystemC communication

channels. When software is specified at this level of abstraction, it is very hard

to estimate its execution time and analyze its detailed synchronization with

hardware.

Excluding the possibility of resorting to cycle-accurate, micro-architectural

description of the core, because of its high inefficiency, two approaches are

possible. One possibility is that of resorting to a description of the core in

SystemC, so that the execution of the software can be modeled consistently

with the rest of the system. We will refer to this solution as RTL simulation, to

emphasize its cycle-based accuracy. The other option is to simulate the core at

a higher abstraction level, by embedding instruction-set simulators within the

co-simulation environment.

Most previously published approaches [11], [8], [13], [14], [15] are based on

inter-process communication (IPC) and the concept of bus wrapper. The ISS
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and the C/C++ co-simulator run as distinct processes on the host system, and

they communicate via IPC primitives. The bus wrapper has two key functions:

(i) it ensures synchronization between the system simulation and the ISS;

(ii) it translates the information coming from the ISS into cycle-accurate bus

transactions that are exposed to the rest of the system.

Two are the main limitation of these approaches. First, the IPC paradigm

is effective when the communication between the ISS and the rest of the sys-

tem is sparse in time. This is the case when the ISS model includes not just the

core but also a significant amount of local memory (e.g., the D-cache), so that

communication with the rest of the system is required only for few instructions

(e.g., on explicit reads and writes on memory-mapped I/O). Second, most ap-

proaches define a proprietary interface between the bus wrappers and the ISS.

This choice greatly complicates the integration of new processor cores within

the co-simulation framework: the ISS needs to be modified to support the IPC

communication primitives defined by the co-simulation system.

This work addresses the two above-mentioned limitations. Our first con-

tribution is an implementation of the IPC interface between bus wrapper and

ISS based on the remote debugging primitives of gdb [16]. This can be consid-

ered a de-facto standard for IPC, since almost every core processor is provided

with a GNU-based software cross-development environment (cross-compiler,

ISS and debugger). In this way, any ISS that can communicate with gdb can

also become part of a system-level co-simulation environment.

In addition, we address the performance bottleneck created by IPC when

the processor interacts very tightly with the rest of the system. We leverage the

standardized structure of GNU s instruction-set simulators to develop a small

library of functions to be called from within the top module of a legacy GNU’s

ISS. This top-level module is embedded as a process in the SystemC simulator,

and it calls the standard GNU’s ISS interface functions, whose implementation

is ISS specific. In this way, the ISS is fully embedded in the system simulator

executable, and slow interprocess communication is completely eliminated.

Results on a system consisting of two processor cores with local and shared

memories show the effectiveness of the two proposed co-simulation schemes.

2.3 Co-Simulation Methodology

The proposed co-simulation methodology targets heterogeneous, multi-

processor architectures, and is based on the SystemC simulation environ-

ment [10]. With respect to the design flow, we assume that the assignment

of tasks to either hardware or software (HW/SW mapping) has already been

decided. In practice, the multi-processor architectures under analysis consist
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Figure 2.1: Architectural template (a) and simulation alternatives: full SystemC simu-
lation (b) and ISS-SystemC co-simulation (c).

of a set of hardware blocks that implement part of the tasks, and a set of pro-

cessor cores that execute the other part. Processor mapping is also given, in the

sense that specific core platforms have been decided. In this context, the term

core identifies a generic programmable resource for which either an ISS or a

HDL model is available.

The generic architectural template is shown in Fig. 2.1-(a), where the tasks

of the system have been mapped to four cores and two generic hardware block

(labeled HW). Fig. 2.1-(b)) shows the case of a full SystemC, cycle-accurate sim-

ulation. The co-simulation scheme is depicted in Fig. 2.1-(c)), where, as an ex-

ample, the SystemC models of some cores are replaced by the corresponding

ISSs (the light grey blocks), communicating via IPC with the SystemC simu-

lation back-end. The latter co-simulation scheme is the one followed by most

existing approaches [8], [12], [14], that are based on IPC and on the instantia-

tion of bus wrappers; the ISS and the co-simulator run as distinct processes on

the host system, and communicate via IPC primitives.
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Figure 2.2: Bus wrappers as SystemC modules

The methodology proposed in this work is based on the idea proposed by

Semeria and Ghosh, [10]. The use of SystemC allows to eliminate the need of

an explicit distinction (from the simulator point of view) between the wrapper

and the ISS. The integration of wrappers as SystemC objects allows to restrict

the use of IPC just between the bus wrappers and ISS, rather than between

bus wrappers (Fig. 2.2). In particular, our methodology overcomes some of the

limitations of previous approaches, and has two distinctive features:

• The implementation of the IPC interface between the bus wrapper and

the ISS through non-proprietary interface, namely, the remote debug-

ging primitives of the GNU gdb. Compliance of an ISS to this interface

becomes then the only constraint for its inclusion in the co-simulation

environment. The issue of non-proprietary interfaces for an ISS in co-

simulation environments was mentioned in [12], but it was not imple-

mented inside the wrapper abstraction of Fig. 2.2.

• The complete elimination from the co-simulation of the bottleneck of

IPCs. This is achieved by adapting the ISS code so that it can be directly

embedded as a process in the SystemC simulator. This solution requires

the availability of the ISS source code, hence, although most core pro-

cessors are supported by the GNU cross-development toolkits, it is not

viable in the case of proprietary ISSs.

The proposed co-simulation can be realized under two different strate-

gies, that span different degrees of granularities of execution, and are both
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Figure 2.3: Trigger-based co-simulation scheme

based on the integration of wrappers into SystemC. The first strategy, called

triggered co-simulation is based on the instantiation of an ad-hoc wrapper

that exchanges gdb commands via IPC. The second strategy, called legacy co-

simulation implements the scheme that embeds the ISS within the SystemC

simulator.

2.4 ISS-SystemC Co-Simulation

2.4.1 Triggered Co-Simulation

The conceptual architecture of the triggered co-simulation approach is de-

picted in Fig. 2.3. The wrapper consists of a class gdbAgent whose main func-

tion is that of executing the gdb and controlling its execution. This class is an

extension of a similar class contained in the DDD package, [17], a GNU GUI

for the gdb. The constructor of the gdbAgent class first loads and executes the

gdb, and creates two UNIX pipes to establish a bidirectional communication

channel with gdb, over which conventional gdb commands are exchanged.

The class implements then the various methods for driving the execution of

the gdb:

• Quit, Run, Next: send the corresponding gdb commands, terminated by

a newline;

• setFile: send the command ”file <filename>;”

• setBreakpoint, setBreakOnCondition: sets breakpoints on a source line or on

some specified condition;
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Figure 2.4: Typical operation sequence of triggered simulation

• sendCommand: sends a gdb command to the ISS;

• contBreak: continues after a breakpoint, and return the breakpoint identi-

fier;

• getVariable, setVariable: allows to read or modify the value of a variable

(correspond to print var and set var=val commands).

The gdbAgent is compiled within the SystemC environment simulation to-

gether with the descriptions of the other modules (possibly with other wrap-

pers), to get a single executable of the whole system description. The granular-

ity of the simulation depends on which gdb command are used to synchronize

the execution of the program, and on the system architecture. Fig. 2.4 shows an

example of the typical sequence of operations of the triggered scheme, where

an object cpu of the gdbAgent class is communicating with the ISS.

Notice the breakpoints in correspondence of two auxiliary functions that

expose memory reads and writes. In the case of multiprocessor systems, for

instance, synchronization between processors is realized through the access

to specific variables in the shared memory. In this case, the coarsest possible

granularity is obtained by setting breakpoints in correspondence to reads and

writes to those memory cells. The finest granularity is clearly equivalent to
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SC_METHOD(Bus_Iface_Out);
sensitive<<cpu.mem_access;
}

uint Memory_Read(uint add)
{
_____
address = add;
mem_access.write(true);
while (return_from_mem_access == 0)
wait();
______
}

sc_signal<bool> return_from_mem_access;
sc_signal<bool> mem_access;
uint address;
uint data;
.........
}

FILE WRAPPER.CPP (SYSTEM_C MODULE) 

#include <systemc.h>
#include "CPU.H"

SC_MODULE(WRAPPER){
  sc_in .....
  sc_out  ...
  sc_inout ...

CPU cpu; // ISS Class allocation

void Start_Simulation();

void Bus_Iface_Out();
void Bus_Iface_In();

SC_CTOR(WRAPPER) {
SC_THREAD(Start_Simulation);

SC_CTHREAD(Bus_Iface_In, clock.pos());

sensitive_pos << clock;

CPU::CPU(..) {
// Initialize simulation

}

FILE CPU.H

FILE CPU.CPP
#include <systemc.h>
#include "CPU.H"

Class CPU {
..........
public:

CPU(..); // Constructor

CPU::Run()
{
_____
_____
_____
}

Figure 2.5: SystemC wrapper architecture

tracing instructions step-by-step (via the next command). In this case, however,

the overhead due to the IPC becomes non-negligible.

2.5 Legacy ISS Co-Simulation

When the interaction between a processor instance and the rest of the system is

very tight, interprocess communication becomes burdensome. In these cases,

a tighter link between ISS and SystemC simulations is sought, in an effort to

alleviate the speed penalty caused by frequent IPC calls.

An alternative approach to the triggered approach is to completely embed

the ISS within the SystemC simulator: in other words, we want to transform

the ISS into a C++ class. Upon instantiation of an object of the ISS-class, an

instruction set simulation can be started, managed and synchronized with the

rest of the system.

More specifically, we define two entities, namely a CPU wrapper SystemC
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SC MODULE WRAPPER and the ISS simulator class CPU. The function of

WRAPPER is to instantiate a CPU object, launch the ISS simulation (a method

of the CPU object) and synchronize it with the signals from the environment

(e.g. from memories and/or peripherals). At the same time, the wrapper im-

plements a virtual socket interface that translates ISS interface events into legal

system bus transactions.

The internal organization of the WRAPPER and CPU is outlined next. The

CPU class is created starting from a stand-alone ISS (in C or C++). The class

declaration is shown in Fig. 2.5. All global variables in the stand-alone ISS

must be made internal variables of the CPU class. Locally-scoped variables

can remain untouched. Two methods are defined: the CPU constructor and

run. The constructor performs all initialization procedures of the standalone

ISS, and prepares all data structures required for simulation. The run method

performs the simulation. The SystemC SC MODULE WRAPPER instantiates a

CPU object, and initializes it in its constructor. The ISS simulation is started by

a dedicated process (a SystemC SC THREAD), called Start simulation. Clearly,

if no provisions are made, the run method would run until simulation comple-

tion, with no interaction between ISS and its environment. To enable interac-

tion, the code within the run method must be marginally modified. In detail,

we change the code around ISS memory and I/O access functions, in such a

way that accesses to specific memory or I/O regions can be detected.

An example of this is shown in Fig. 2.5: when an access is detected, some

information is made available to the wrapper and execution is suspended with

a call to the SystemC wait function. In particular, the SystemC wrapper has to

receive information about external memory or I/O addresses, data to write on

the bus and the type of bus request (read or write access). Moreover, data read

from the bus must be passed back to the ISS. This communication between the

ISS and the SystemC wrapper is implemented by allocating the parameters of

interest as public variables of the CPU class. In these way, they can be accessed

by both sides.

Two other public variables have been used. Mem access triggers the Sys-

temC Bus Iface Out process, which in turn generates the cycle accurate bus

configuration. Return from mem access is the variable watched by the ISS

at each recovery from the sleep state, indicating whether the bus access has

been completed or not. In this way, the timing penalty for accessing an exter-

nal memory is taken into account. It is important to note that synchronization

between the SystemC time and the ISS simulated time has been implemented.

The ISS simulation is suspended by means of wait calls until the SystemC time

tracks the simulated time. Only at that time the bus transaction is carried out,

thus generating a realistic bus traffic.
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Figure 2.6: Block diagram of the test architecture

2.6 Experimental Results

We have implemented the proposed methodology in the SystemC 2.0 simu-

lation framework, and we have applied it to a system consisting of two core

processors accessing to a shared memory through a bus. A block diagram of

the system is shown in Fig. 2.6. The bus arbitration mechanism is managed by

the module labeled Bus controller.

The interface between the bus and the cores consists of five signals: a

read/write signal rwIn, a chip select csIn, an address addressIn, the data data,

and an acknowledge signal from the bus ACK, asserted upon completion of a

read/write to memory. A similar interface exists between the bus controller

and the memory.

Access to the bus is based on a priority mechanism. In order to avoid the

chance that one of the processors can be granted the access to the memory for

the whole duration of its computation, the bus controller implements a sort of

aging mechanism that decreases priorities as the number of memory accesses

increases. The application executed by the two processors are stored in a lo-

cal ROM, and consists of the manipulation (a variant of the computation of a

moving average) of an array of integers, executed in a parallel fashion: data
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are partitioned in two subsets that are processed concurrently by the two pro-

cessors.

The processors are synchronized by testing the value of a shared memory

cell, used as a semaphore. The availability of a SystemC description of a DLX

processor, a simplified version of the MIPS [61], has determined the choice of

the target architecture. The relative ISS has been built by means of the GNU

cross-compiler (gcc Version 2.95.3) and cross-debugger (gdb Version 5.0) with

the MIPS as a target. We have run three different simulation experiments: The

first one represents the reference simulation, and consists of a plain SystemC

simulation of the architecture of Fig. 2.6.

SIMULATION TYPE

CPU TIME (s)

RTL

TRIGGERED

LEGACY

10010 1000

9.4 100.3 968

646.864.72.5

63.06.60.7

Table 2.1: Co-simulation results

All blocks have thus been implemented as SystemC modules, and are syn-

chronized on the same clock. The cores read the respective instructions as bi-

nary code from the ROMs, and access the bus according the memory access

pattern.

The other two experiments realize the two co-simulation schemes described

in Section 3. One experiment uses the triggered approach: the two cores are

replaced by two GDBAgent classes, and are driven by the standard GDB in-

terface. Processors are synchronized (i.e., a breakpoint is set) every time a lo-

cation in the shared memory is modified. In practice, the user issues a con-

ventional GDB break on <condition> command to synchronize the execution.

Notice that only accesses to the shared memory require an explicit interaction

via IPC with GDBAgent. Accesses to the local memories always occur through

the gdb memory.

The other configuration uses the legacy simulation approach: the two cores

are replaced by two CPU classes. The simulation is synchronized, as in the

previous case, in correspondence of accesses to locations in the shared mem-

ory. Table 2.1 compares the results of the various simulation approaches. The

plot reports CPU time, measured on a Pentium II 400 with 256 MB of memory,

running Linux Red-Hat 7.2. The table shows three columns 10, 100, and 1000,

corresponding to the number of iterations of the algorithm implemented by

the application.

The results show that the two co-simulation approaches offer different
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Figure 2.7: Speedup scaling versus number of clock cycles

trade-offs between flexibility and simulation speed. As expected, the legacy

approach is much faster, and should always be the choice when the type of

synchronization is clearly defined and the target ISS source code is available.

The speed-up is more than one order of magnitude with respect to a full Sys-

temC simulation (raw RTL). The triggered approach is slower than legacy sim-

ulation, yet still faster than SystemC simulation of a factor of about 2. Notice

that, although we labeled the full SystemC simulation as RTL , the implemen-

tation is far from being a synthesizable description. As a reference data, the

case of 1000 iterations corresponds to the execution of more than 2 million in-

struction, definitely much faster than a RTL simulation. Therefore, we expect

more sizable speed-ups in case of a true RTL simulation of the system.

Fig. 2.7 shows how the speedup scales with respect to the number of iter-

ations of the algorithm (i.e., the number of cycles). Plots have been obtained

by spline extrapolation of the data in the table, and shows that, for this specific

application, the speed-up increases for larger values of the number of cycles.
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2.7 Conclusions

Application of conventional co-simulation paradigms to multi-processor ar-

chitectures requires efficient mechanisms for the communication between ISSs

and the simulation engine. The adoption of a C++-based simulation environ-

ment such as SystemC allows to develop effective solution, because the entire

system executes within a single simulation environment. In this work, we pro-

pose two co-simulation approaches, that are based on the use of a standard

interface (namely, the gdb remote debugging interface, supported by most ISS)

between the ISS and the wrapper used to link it to the simulation environment.

The two proposed solutions provide various degrees of simplification of the

ISS/wrapper interface, up to a minimum-overhead scheme that completely re-

moves the need of IPC on the interface, obtained by transparently embedding

the ISS within the simulation environment. Simulation results, with respect to

a full SystemC simulation of a two-processor test case, shows speed improve-

ments by a factor of 1.5x to 15x, depending on the chosen solution.





Chapter 3

MPARM: a complete

Multi-Processor Simulation

Platform

3.1 abstract

Technology is making the integration of a large number of processors on the

same silicon die technically feasible. These multi-processor systems-on-chip

(MP-SoC) can provide a high degree of flexibility and represent the most effi-

cient architectural solution for supporting multimedia applications, character-

ized by the request for highly parallel computation. As a consequence, tools

for the simulation of these systems are needed for the design stage, with the

distinctive requirement of simulation speed, accuracy and capability to sup-

port design space exploration. We developed a complete simulation platform

for a MP-SoC called MP-ARM, based on SystemC as modelling and simula-

tion environment, and including models for processors, the AMBA bus com-

pliant communication architecture, memory models and support for parallel

programming. A fully operating linux version for embedded systems has been

ported on this platform, and a cross-toolchain has been developed as well. Our

MP simulation environment turns out to be a powerful tool for the MP-SOC de-

sign stage. As an example thereof, we use our tool to evaluate the impact on

system performance of architectural parameters and of bus arbitration policies,

showing that the effectiveness of a particular system configuration strongly de-

pends on the application domain and the generated traffic profile.
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3.2 Introduction

Systems-on-chips (SoC) are increasingly complex and expensive to design, de-

bug and fabricate. The costs incurred in taking a new SoC to market can be

amortized only with large sales volume. This is achievable only if the archi-

tecture is flexible enough to support a number of different applications in a

given domain. Processor-based architectures are completely flexible and they

are often chosen as the back-bone for current SoCs.

Multimedia applications often contain highly parallel computation, there-

fore it is quite natural to envision Multi-processor SoCs (MPSoCs) as the plat-

forms of choice for multimedia. Indeed, most high-end multimedia SoCs on

the market today are MPSoCs [18], [19], [20]. Supporting the design and ar-

chitectural exploration of MPSoCs is key for accelerating the design process

and converging towards the best-suited architectures for a target application

domain.

Unfortunately we are today in a transition phase where design tuning, op-

timization and exploration is supported either at a very high-level or at the

register-transfer level. In this chapter we describe a MPSoC architectural tem-

plate and a simulation-based exploration tool, which operates at the macro-

architectural level, and we demonstrate its usage on a classical MPSoC design

problem, i.e., the analysis of bus-access performance with changing architec-

tures and access profiles.

To support research for general-purpose multiprocessors in the past, a num-

ber of architectural level-multiprocessor simulators have been developed by

the computer architecture community [21], [22], [23] for performance analysis

of large-scale parallel machines. These tools operate at a very high level of ab-

straction: their processor models are highly simplified in an effort to speedup

simulation and enable the analysis of complex software workloads. Further-

more, they all postulate a symmetric multiprocessing model, which is univer-

sally accepted in large-scale, general-purpose multiprocessors.

To enable MPSoC design space exploration, flexibility and accuracy in hard-

ware modeling must be significantly enhanced. Increased flexibility is required

because most MPSoC for multimedia applications are highly heterogeneous:

they contain various types of processing nodes (e.g. general-purpose embed-

ded processors and specialized accelerators), multiple on-chip memory mod-

ules and I/O units, an heterogeneous system interconnect fabric.

These architectures are targeted towards a restricted class of applications,

and they do not need to be highly homogeneous as in the case of general-

purpose machines. Hardware modeling accuracy is highly desirable because it

would make it possible to use the same exploration engine both during archi-
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tectural exploration and hardware design.

These needs are well recognized in the EDA community and several sim-

ulators have been developed to support SoC design [24], [25], [26], [27], [28].

However, these tools are primarily targeted towards single-processor archi-

tectures (e.g. a single processor cores with many hardware accelerators), and

their extension toward MPSoCs, albeit certainly possible, is a non-trivial task.

In analogy with current SoC simulators, our design space exploration engine

supports hardware abstraction level and continuity between architectural and

hardware design, but it fully supports multiprocessing.

In contrast with traditional mixed language co-simulators [24], we assume

that all components of the system are modeled in the same language. This mo-

tivates our choice of SystemC as the modeling and simulation environment of

choice for our MPSoC platform. The primary contribution of this chapter is

not centered on describing a simulation engine, but on introducing MP-ARM,

a complete platform for MPSoC research, including processor models (ARM),

SoC bus models (AMBA), memory models, hardware support for parallel pro-

gramming, a fully operational operating system port (UCLinux) and code de-

velopment tools (GNU toolchain). We demonstrate how our MPSoC platform

enables the exploration of different hardware architectures and the analysis

of complex interaction patterns between parallel processors sharing storage

and communication resources. Previous work on this topic can be found in

[29], [30], [31], [32].

The chapter is organized as follows: Section 2 describes the concepts of the

emulated platform architecture and its subsystems (network, master and slave

modules), Section 3 shows the software support elements developed for the

platform (compiler, peripheral drivers, synchronization, O.S.), Section 4 gives

some examples of use of the tool for hardware/software exploration.

3.3 Multiprocessor simulation platform

Integrating multiple ISSs in a unified system simulation framework entails sev-

eral non-trivial challenges, such as the synchronization of multiple CPUs to a

common time base, or the definition of an interface between the ISS and the

simulation engine.

The utilization of SystemC [33] as back-bone simulation framework repre-

sents a powerful solution for embedding ISSs in a framework for efficient and

scalable simulation of multiprocessor SoCs. Besides the distinctive features of

modeling software algorithms, hardware architectures and SoC or system level

designs interfaces, SystemC functionalities make it possible to plug an ISS into

the simulation framework as a system module, activated by the common sys-
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Figure 3.1: System architecture

tem clock provided to all of the modules (not physical clock).

SystemC provides a standard and well defined interface for the descrip-

tion of the interconnections between modules (ports and signals). Moreover,

among the advantages of C/C++ based hardware descriptions, there is the

possibility of bridging the hardware/software description language gap [34].

SystemC can be used in such a way that each module consists of a C/C++

implementation of the ISS, encapsulated in a SystemC wrapper. The wrap-

per realizes the interface and synchronization layer between the instruction

set simulator and the SystemC simulation framework: in particular, the cycle-

accurate communication architecture has to be connected with the coarser

granularity domain of the ISS.

The applicability of this technique is not limited to ISSs, but can be extended

to encapsulate C/C++ implementations of system blocks (such as memories

and peripherals) into SystemC wrappers, thus achieving considerable speed-

ups in the simulation speed. This methodology trades-off simulation accuracy

with time, and represents an efficient alternative to the full SystemC descrip-

tion of the system modules (SystemC as an hardware description language) at

a lower abstraction level. This former solution would slow-down the simula-

tion, and for complex multiprocessor systems this performance penalty could

turn out to be unacceptable.

A co-simulation scenario can also be supported by SystemC, where mod-

ules encapsulating C++ code (describing the simulated hardware at a high

level of abstraction, i.e. behavioural) coexist with modules completely written

in SystemC (generally realizing a description at a lower level of abstraction).

In this way, performance versus simulation accuracy can be tuned and differ-

entiated between the modules.

Based on these guidelines, we have developed a multiprocessor simulation

framework using SystemC 1.0 as simulation engine. The simulated system cur-

rently contains a model of the communication architecture (compliant with the
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Figure 3.2: Processing module architecture

AMBA bus standard), along with multiple masters (CPUs) and slaves (mem-

ories) (Fig. 3.1). The intrinsic multi-master communication supported by the

AMBA protocol has been exploited by declaring multiple instances of the ISS

master module, thus constructing a scalable multiprocessor simulator.

3.3.1 Processing modules

The processing modules of the system are represented by cycle accurate mod-

els of cached ARM cores. The module (Fig. 3.2) is internally composed of the

ARM CPU, the first-level cache and peripheral (UART, timer, interrupt con-

troller) simulators written in C++.

It was derived from the open source cycle accurate SWARM (software

ARM) simulator[18] encapsulated in a SystemC wrapper. The SWARM sim-

ulator is entirely written in C++. It emulates an ARM CPU and is structured as

a C++ class which communicates with the external world using a Cycle func-

tion, which executes a clock cycle of the core, and set of variables in very close

relation to the corresponding pins of a real hardware ARM core. Along with

the CPU, a set of peripherals is emulated (timers, interrupt controller, UART)

to provide support for an Operating System running on the simulator.

The cycle-level accuracy of the SWARM simulator simplifies the synchro-

nization with the SystemC environment (i.e. the wrapper module), especially

in a multiprocessor scenario, since the control is returned to the main system

simulator synchronizer (SystemC) at every clock cycle [35].

The interesting thing about ISS wrapping is that with relatively little effort,

other processor simulators can be embedded in our multiprocessor simulation

back-bone (e.g. mips). Provided they are written in C/C++, their access re-

quests to the system bus need to be trapped, so to be able to make the com-

munication extrinsic and generate the cycle accurate bus signals in compliance

with the communication architecture protocol. Moreover, the need for a syn-
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chronization between simulation time and ISS simulated time arises only when

the ISS to be embedded has a coarse time resolution, i.e. when it does not sim-

ulate each individual processor clock cycle.

Finally, the wrapping methodology determines negligible communication

overhead between the ISS and the SystemC simulation engine, because the ISS

does not run as a separate thread and consequent communication primitives

are not required, that would otherwise become the bottleneck with respect to

the simulation speed.

3.3.2 AMBA bus model

AMBA is a widely used standard defining the communication architecture for

high performance embedded systems [36]. Multi-master communication is

supported by this back-bone bus and requests for simultaneous accesses to the

shared medium are serialized by means of an arbitration algorithm.

The AMBA specification includes an advanced high-performance system

bus (AHB), and a peripheral bus (APB) optimized for minimal power con-

sumption and reduced interface complexity to support connection with low-

performance peripherals. We have developed a SystemC description only

for the former one, given the multi-processor scenario we are targeting. Our

implementation supports the distinctive standard-defined features for AHB,

namely burst transfers, split transactions and single-cycle bus master han-

dover.

The model has been developed with scalability in mind, so to be able to

easily plug-in multiple masters and slaves through proper bus interfaces. Bus

transactions are triggered by asserting a bus request signal. Then the mas-

ter waits until bus ownership is granted by the arbiter: at that time, address

and control lines are driven, while data bus ownership is delayed by one clock

cycle, as an effect of the pipelined operation of the AMBA bus. Finally, data

sampling at the master side (for read transfers) or slave side (for write trans-

fers) takes place when a ready signal is asserted by the slave, indicating that

on the next rising edge of the clock the configuration of the data bus can be

considered stable and the transaction can be completed.

Besides single transfers, four, eight and sixteen-beat bursts are defined in

the AHB protocol too. Unspecified-length bursts are also supported. An im-

portant characteristic of AMBA bus is that the arbitration algorithm is not

specified by the standard, and it represents a degree of freedom for a task-

dependent performance optimization of the communication architecture. A

great number of arbitration policies can be implemented in our multiprocessor

simulation framework by exploiting some relevant features of the AMBA bus.
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For example, the standard allows higher priority masters to gain ownership

of the bus even though the master which is currently using it has not completed

yet. This is the case of the early burst termination mechanism, that comes into

play whenever the arbiter does not allow a master to complete an ongoing

burst. In this case, masters must be able to appropriately rebuild the burst

when they next regain access to it.

Our multiprocessor simulation platform allows design space exploration

of arbitration policies, and to easily derive the most critical parameters deter-

mining the performance of the communication architecture of a MP-SoC. This

capability of the simulation environment is becoming of critical importance,

as the design paradigm for SoC is shifting from device centric to interconnect

centric [20]. The efficiency of a certain arbitration strategy can be easily as-

sessed for multiple hardware configurations, such as number of masters, dif-

ferent master characteristics (e.g. cache size, general purpose versus applica-

tion specific, etc.).

3.3.3 Memory sub-system

The system is provided with two hierarchies of memories, namely cache mem-

ory and main memory. The cache memory is contained in the processing mod-

ule and is directly connected to the CPU core through its local bus. Each pro-

cessing module has its own cache, acting as a local instruction and data mem-

ory; it can be configured as a unified instruction and data cache or as two sep-

arate banks of instruction and data caches. Configuration parameters include

also cache size, line length and the definition of non cacheable areas in the ad-

dress space.

Main memory banks reside on the shared bus as slave devices. They consist

of multiple instantiations of a basic SystemC memory module. Each memory

module is mapped on its reserved area within the address space; it commu-

nicates with the masters through the bus using a request-ready asynchronous

protocol; the access latency - expressed in clock cycles - is configurable.

3.3.4 Multiprocessor synchronization module

In a multiprocessing system there is the need for an hardware support for pro-

cess synchronization in order to avoid race conditions when two or more pro-

cesses try to access the same shared resource simultaneously. The support for

mutual exclusion is generally provided by ad hoc non-interruptible CPU in-

structions, such as the test and set instruction.

In a multiprocessor environment the presence of non-interruptible instruc-

tions must be combined with external hardware support in order to obtain



24 MPARM: a complete Multi-Processor Simulation Platform

mutual exclusion of shared resources between different processors. We have

equipped the simulator with a bank of memory mapped registers which work

as hardware semaphores. They are shared among the processors and their be-

havior is similar to that of a shared memory, with the difference that when one

of these 32 bit registers is read, its value is returned to the requester, but at

the same time the register is automatically set to a predefined value before the

completion of the read access. In this way a single read of one of the registers

works as an atomic test and set function. This module is connected to the bus

as a slave and its locations are memory mapped in a reserved address space.

3.4 Software support

The cross-compilation toolchain includes the GNU gcc-3.0.4 compiler for the

ARM family of processors ad its related utilities, compiled under Linux. The

result of the compilation and linking step is a binary image of the memory,

which can be uploaded into the simulator.

3.4.1 Operating system support: uCLINUX

Hardware support for booting an operating system has been provided to the

simulator through the emulation of two basic peripherals needed by a mul-

titasking O.S.: a timer and an interrupt controller. An additional UART I/O

device allows to display startup, error and debug information on a virtual con-

sole. Linux-style drivers have been written for these devices, running under

the linux 2.4 kernel.

The kernel version ported onto the emulation platform consists of a reduced

version of linux (uClinux) for embedded systems without memory manage-

ment unit support [38]. Our simulation platform allows to boot multiple par-

allel uCLinux kernels on independent processors and to run benchmarks or

interactive programs, using the UART as an I/0 console.

3.4.2 Support for multiple processors

The software support for multiprocessors includes the initialization step and

synchronization primitives, together with some modifications of the memory

map. When a processor performs an access to the memory region where it ex-

pects to find the exception vectors, the address has been shifted to a different

region in the main memory, so that each processor can have its own distinct

exception table. The result is a virtual memory map specific for each processor

(Fig. 3.3), which must not be confused with a general purpose memory man-

agement support.
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Figure 3.3: Memory map

Having its own reset vector, each processor can execute its own startup code

independently on the others. Each processor initializes its registers (e.g. stack

pointer) and private resources (timers, interrupt controllers). Shared resources

are initialized by a single processor while the others wait using a semaphore

synchronization method. At the end of the initialization step, each processor

branches to its own main routine (namely main0, main1, main2, etc.).

The linker script is responsible for the allocation of the startup routines and

of the code and data sections of the C program. Synchronization software fa-

cilities includes definitions and primitives to support the hardware semaphore

region (multiprocessor synchronization module) at C programming level. The

routines consists of a blocking test and set function, of a non-blocking test

function and of a free function.

3.5 Experimental results

Our simulation environment can be used for different kinds of design explo-

ration, and this section will give some examples thereof. To this purpose, we

used the aforementioned software toolchain to write some benchmark pro-

grams for a two-processors system with different levels of data interaction

between the two processors. Fig. 3.4 shows the common system architecture

configuration used for the examples.

Two processing ARM modules are connected to the AMBA bus and act as

masters, and two identical memory modules are connected as slaves and can
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Figure 3.4: System architecture for benchmark examples

Figure 3.5: Matrix multiplication

be accessed by both processors. The third slave module is the semaphore unit,

used for synchronization in one of the following benchmark programs.

3.5.1 Benchmark description

1. same data set program (shared data source)

The two processors execute the same algorithm (matrix multiplication)

on the same data source. In this program half the result matrix is gener-

ated by the first processor while the other half is generated by the other

processor (Fig. 3.5). The two processors share the source data (the two

matrixes that have to be multiplied), but there are no data dependencies

between them, so there is no need to use synchronization functions be-

tween the processors.
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Figure 3.6: (a) Contention free bus accesses versus cache size (b) Average waiting time
for bus access versus cache size

2. data dependent program (producer-consumer algorithm)

The first processor execute a one-dimensional N-size integer FFT on a

data source stream while the second execute a one-dimensional N-size

integer IFFT on the data produced by the first processor. For each N-size

FFT block completed, a dedicated semaphore is released by the first CPU

before initiating data elaboration of the subsequent block. The second

CPU, before performing the IFFT on a data block will check its related

semaphore and will be locked until data ready will be signaled.

3.5.2 Architectural exploration

In this example we show the results obtained running the above-mentioned

benchmarks and varying architectural or program parameters. The explored

parameters are two, one related to the system architecture, cache size, and the

other related to the program being executed, FFT size (which affects data local-

ity). The FFT performed on an N-size block will be hereafter indicated as ”FFT

N”.

In Fig. 3.6 and Fig. 3.7 we graphically illustrate the results relative to

contention-free bus accesses (percentage of times a CPU is immediately
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Figure 3.7: Cache miss rate versus cache size

granted the bus against its access requests, with respect to the total number

of bus access requests), average waiting time before gaining bus ownership

(this delay is a side-effect of the arbitration mechanism and of the serialization

of bus requests), average cache miss rate for the two processors.

3.6 Conclusions

We have developed a complete platform for the simulation of a MP-SoC, al-

lowing investigation in the parameter space (related to the architecture config-

uration or to the protocols) to come up with the most efficient solution for a

particular application domain. Our platform makes use of SystemC as simula-

tion engine, so that hardware and software can be described in the same lan-

guage, and is based on an AMBA bus compliant communication architecture.

ARM processors act as bus masters (like in commercial high-end multimedia

SoCs), and the simulation platform includes memory modules, synchroniza-

tion tools, and support for system software (porting of the uClinux OS and

development of a cross-toolchain.) We have shown examples of applications

wherein our simulation environment is used to explore some design parame-

ters, namely cache parameters and bus arbitration policies. The applications

involve data-independent or data-dependent tasks running on different ARM

CPUs sharing the main memory through a common AMBA bus. The exam-

ples show how to derive important metrics (cache size, average waiting time

for accessing the bus since the request is asserted, etc. ) that heavily impact

system performance, proving its effectiveness in supporting the design stage

of a multi-processor system-on-chip.



Chapter 4

Performance Analysis of Bus

Arbitration Schemes

4.1 abstract

As technology scales toward deep submicron, the integration of a large num-

ber of IP blocks on the same silicon die is becoming technically feasible, thus

enabling large-scale parallel computations, such as those required for multi-

media workloads. The communication architecture is becoming the bottleneck

for these multiprocessor Systems-on-Chip (SoC), and efficient contention reso-

lution schemes for managing simultaneous access requests to the shared com-

munication resources are required to prevent system performance degrada-

tion. The contribution of this work is to analyze the impact on multiprocessor

SoC performance of different bus arbitration policies under different commu-

nication patterns, showing the distinctive features of each policy and the strong

correlation of their effectiveness with the communication requirements of the

applications. Beyond traditional arbitration schemes such as round robin and

TDMA, another policy is considered that periodically allocates a temporal slot

for contention-free bus utilization to a processor which needs fixed predictable

bandwidth for the correct execution of its time-critical task. The results are

derived on a complete and scalable multiprocessor SoC simulation platform

based on SystemC, whose software support includes a complete embedded

multiprocessor OS (RTEMS). The communication architecture is AMBA com-

pliant, and we exploit the flexibility of this multi-master commercial standard,

which does not specify the arbitration algorithm, to implement the explored

contention resolution schemes.
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4.2 Introduction

Deep submicron technologies are making the integration of a large number of

IP blocks on the same silicon die technically feasible. As a consequence, sev-

eral heterogeneous cores can be combined through sophisticated communica-

tion architectures on the same integrated circuit, leading to the development

of flexible hardware platforms able to accommodate highly parallel computa-

tion. The application domain of these Systems-on-Chip (SoC) includes mobile

terminals (e.g. for multimedia applications), automotive, set-top-boxes, game

processors, etc. [39].

The SoC design paradigm relies heavily on re-use of intellectual property

cores (IP cores), enabling designers to focus on the functionality and perfor-

mance of the overall system. This is possible if the IP cores are equipped with

a highly optimized interface for their plug-and-play insertion into the com-

munication architecture. To this purpose, the Virtual Socket Interface Alliance

(VSIA) represents an attempt to set the characteristics of this interface industry-

wide, thus facilitating the match of pre-designed software and hardware blocks

from multiple sources [41] [40].

The most widely adopted interconnect architecture for the SoC IP blocks is

bus-based, and consists of shared communication resources managed by dedi-

cated arbiters that are in charge of serializing access requests. This architecture

usually employs hierarchical buses, and tends to distinguish between high per-

formance system buses and low complexity and low speed peripheral buses.

Many commercial on-chip architectures have been developed to support the

connection of multiple bus segments in arbitrary topologies, providing at the

same time a moderate degree of scalability: Wishbone [44], AMBA [43] and

CoreConnect [42] are relevant examples.

As the complexity of SoCs increases, the communication architecture be-

comes the performance bottleneck of the system. The performance of multipro-

cessor systems depends more on the efficient communication among proces-

sors and on the balanced distribution of the computation among them, rather

than on pure CPU speed. For integration levels in the order of hundreds of

processors on the same SoC, the most efficient and scalable solution will be the

implementation of micronetworks of interconnects [46], but below that limit

bus-based communication architectures remain the reference solution for state-

of-the-art multiprocessor systems because of the lower design effort and hard-

ware cost. This forces designers to push the performance of these architectures

to the limit, within the architectural degrees of freedom made available by ex-

isting commercial bus standards.

The arbitration process plays a crucial role in determining the performance
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of the system, as it assigns the priorities with which processors are granted

the access to the shared communication resources. The increasing integration

levels of a SoC translate to an increase of contention among the processing ele-

ments for the bus, and this might lead to the violation of real-time constraints

and more in general to performance degradation. An efficient contention reso-

lution scheme is therefore required to support real-time isochronous data flows

associated with networking and multimedia data streams.

4.3 Contribution of this work

An effective bus arbitration policy should satisfy several requirements: (i) en-

able fast, high-priority communication, while avoiding starvation of low prior-

ity transactions; (ii) provide fine-grained control of the communication band-

width allocated to individual system components; (iii) reduce sensitivity of

system performance to variations of the communication pattern induced by

an application on the bus. Traditional arbitration policies used both by cen-

tralized and by distributed arbiters to address the bus contention problem in

multi-master SoCs include priority based selection, round robin and time divi-

sion multiple access (TDMA). More advanced arbitration algorithms have been

also proposed [45].

The main contribution of this work is to point out the correlation between

the effectiveness of an arbitration policy and the traffic pattern induced on the

bus by the communication requirements of an application. In particular:

• Beyond investigating how system performance is affected by conven-

tional arbitration policies such as round robin and TDMA, we extend

our analysis to a ”slot reservation” policy, wherein a temporal slot for

contention-free bus utilization is periodically reserved to a specific pro-

cessor which needs a guaranteed bandwidth for the correct execution of

its task. During the inter-slot time, all other processing elements compete

for accessing the bus in a round-robin fashion.

• We show that the optimal contention resolution scheme is not unique,

and we analize three case studies which are representative of different

communication patterns where the considered arbitration policies com-

pare differently. For each scenario, we use a performance metric indicat-

ing how efficiently an application (or a set of applications) running on

top of a multiprocessor platform is executed, and we show the impact of

the arbitration policies on this metric.

• We provide experimental results obtained by means of extensive simu-

lations on a complete and scalable multiprocessor SoC simulation plat-



32 Performance Analysis of Bus Arbitration Schemes

form, hereafter denoted as MPARM [47]. The simulation backbone is

SystemC, that allows the description of both hardware and software in a

common language (C++). The hardware platform consists of a scalable

number of cycle-accurate ARM instruction set simulators, embedded into

SystemC wrappers implementing the interface between the cores and an

AMBA-based communication architecture.

• We developed a complete software development and run-time support

infrastructure for MPARM, including a complete port of an embedded

multiprocessor operating system (RTEMS).

The chapter is structured as follows: Section 4.4 provides an overview of previ-

ous work, Section 4.5 describes bus arbitration policies, Section 4.6 summarizes

the key features of the AMBA bus specification, Section 4.7 describes the mul-

tiprocessor simulation platform used for our experiments, Section 4.8 presents

experimental results and Section 4.9 concludes the chapter.

4.4 Previous work

Communication architectures defined by commercial standards always pro-

vide a certain degree of flexibility in arbitration policies. This allows end users

or SoC manifacturers to tailor the hardware architecture to the particular ap-

plication domain of interest.

The CoreConnect interconnect architecture from IBM makes use of a fixed

priority arbiter, but the priority fairness is programmable [42]. Therefore de-

signers must analyze the application and determine the priorities among de-

vices. Up to 8 masters on the same system bus can be managed, and address

pipelining is supported.

AMBA specification from ARM [43] shares many characteristics with Core-

Connect, e.g. the pipelined operation of the bus and bus segmentation and

bridging to support communication diversity. However, the arbiter implemen-

tation is more flexible: although the arbitration protocol is fixed, any arbitra-

tion policy can be implemented depending on the application requirements.

Wishbone from Silicore Corp.[44] is another bus specification wherein arbitra-

tion is defined by the end-user. Silicon Backplane from Sonic Inc. [48] is a

solution for communication among IP cores that guarantees fixed bandwidths

and latencies by means of TDMA-based arbitration.

A significant effort has been recently devoted to enabling the effective de-

sign of multicore SoC starting from pre-designed and pre-verified IP blocks.

An overview of design methodologies and tools proposed to address the prob-

lem is provided by [53] [54]. The communication architecture is a key point of
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the design stage, and the final goal of many works is to extract the communi-

cation requirements from the application and to map them to the underlying

communication architectures by looking for the solution that enables to meet

application-perceived performance constraints [50]. To this purpose, a design

space exploration technique for SoC communication architectures is proposed

in [49].

A comparison between SoC bus architectures is made in [51], where se-

lection guidelines for such architectures are also provided. [52] proposes an

adaptive SoC communication infrastructure that can be easily reconfigured

as application-level communication pattern changes: it provides support for

compile-time predicted inter-node communication.

Finally, a new high performance architecture for SoC design is presented

in [45], called ”Lotterybus”. It consists of a randomized arbitration algorithm

implemented in a centralized ”lottery manager”, which collects requests for

bus ownership from multiple masters. The manager probabilistically chooses

one of the contending masters which is granted the bus for one or more cycles.

The performance of this policy is compared to that of conventional communi-

cation architectures for different traffic classes.

The main shortcoming of previous explorative work in bus arbitration is

that system functionality is taken into account in a highly abstract fashion.

Most previous works employ stochastic traffic generators as bus masters, while

others use high-level functional models for software tasks, that do not account

for non-ideality of software execution on a target processor (e.g., instruction

misses, operating system overhead). Our single-chip multiprocessor simula-

tion platform is cycle accurate both at the bus transaction level and at the soft-

ware execution level, and fully functional applications and OS are executed

without any abstraction or simplification (no instructions are emulated on the

simulation host). The approximation margins in our explorative analysis are

therefore reduced to a minimum.

4.5 Contention resolution schemes

In this section we briefly present and discuss the key features of the arbitration

policies analyzed in the remainder of the chapter.

4.5.1 Round-robin

A round-robin arbitration policy is a token passing scheme wherein fairness

among masters is guaranteed, and no starvation can take place (in constrast

with a static fixed priority scheme) [56]. In each cycle, one of the masters (in
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round-robin order) has the highest priority for access to a shared resource. If

the token-holding master does not need the bus in this cycle, the master with

the next highest priority who sends a request can be granted the resource. The

advantages of round-robin are twofold:

• Unused time slots are immediately re-allocated to masters which are

ready to issue a request, regardless to their access order. This reduces

bus under-utilization in comparison with a statically fixed slot allocation,

that might grant the bus to a master which is not going to carry out any

communication.

• The worst-case waiting time for the bus access request of a master is re-

liably predictable (being proportional to the number of instantaneous re-

quests minus one), even though the actual waiting time is not. The un-

certainty on the actual bandwidth that can be granted to a master is the

major drawback of this scheme.

4.5.2 TDMA

A time division multiple access scheme is based on the fixed allocation of a

slot to each master, so that each of them is guaranteed fixed and predictable

bandwidth. Unfortunately, high priority communications in a TDMA-based

architecture may incur significant latencies, because the performance provided

by this scheme strongly depends on the time-alignment of communication re-

quests and slot allocation, and therefore on the probability of dynamic varia-

tions of the request patterns.

4.5.3 Slot reservation

This arbitration policy can be seen as a limit case of TDMA, in that only one

master is periodically allocated a slot for the contention-free access to the bus.

For the inter-slot time, we decided to manage the contention among the re-

maining masters in a round-robin fashion. Although this is not a conventional

scheme for SoC communication architectures, we propose this policy to com-

bine the advantages of the above mentioned schemes: one master is given a

priviledge in the competition for bus access (in terms of guaranteed fixed band-

width), while all other masters can contend for the shared communication re-

source avoiding the risk of starvation.

The highest priority master (the one to which the slot is allocated) can there-

fore complete its transfers without incurring contention-related delays, which

are likely to considerably increase as the number of competing masters in-

creases. This translates to a performance degradation for the lower priority
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Figure 4.1: A typical AMBA system

masters (those managed in a round-robin fashion), which are excluded from

bus access during the slot allocation. The effectiveness of this scheme is tightly

related to the ratio between the performance improvement of the highest pri-

ority master and the performance degradation suffered by the lowest priority

ones, which must be as high as possible.

4.6 AMBA bus

The Advanced Microcontroller Bus Architecture (AMBA) defines an on-chip

communication standard for designing high-performance multi-master SoCs.

Three distinct buses are defined within the AMBA specification, as illustrated

in Fig. 4.1: (i) the Advanced High-Performance Bus (AHB), which is the highly

optimized system backbone bus; (ii) the Advanced System Bus (ASB), an alter-

native system bus used whenever less aggressive performance is required; (iii)

the Advanced Peripheral Bus (APB), which is a low complexity and low power

bus for communication with general purpose peripherals. The system and the

peripheral bus are connected to each other by means of a bridge which reduces

global wires load capacitances and hence switching power consumption.

4.6.1 Arbitration protocol

In this work we will focus on AHB, which exhibits high performance features

such as support for multiple masters and multiple slaves, for pipelined bus

operation and burst transfers, as well as for split transactions.

As already mentioned, AMBA defines the arbitration protocol but it does

not define the contention resolution policy. A bus master requests to access

the bus by asserting a HBUSREQ signal, as illustrated in Fig. 4.2. The arbiter

observes the different simultaneous requests and grants the bus to the highest

priority master by asserting its HGRANT signal. The master effectively gains
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Figure 4.2: Bus handover within the AMBA specification

control of the address bus when both the HGRANT and the HREADY signals

(indicating that the last transfer has completed) are sampled high. The own-

ership of the data bus is delayed with respect to the ownership of the address

bus, thus allowing pipelined operation.
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4.6.2 Implementation of arbitration policies

The implementation of a round-robin based contention resolution scheme is

straightforward, because the bus arbitration process can take place at the

penultimate cycle of an outstanding transfer. At that time, the priority is given

by examining the pending access requests.

Embedding TDMA or slot-reservation schemes into a bus arbiter is instead

a non-trivial task, because in these cases the arbitration process must take place

at predefined instants of time, and this might result in a bus preemption for the

master that owns it. For single outstanding transfers this is not too much of an

issue, because they are so short that they can be considered as atomic and the

arbiter has a sufficiently fine-grained control of the bus. The main difficulty

lies in the need to support bus preemptions during burst transfers. The master

that looses bus ownership in the middle of a burst must be able to properly

complete the remaining tranfers once it re-gains access to the bus.

We found that TDMA and slot-reservation based arbitration policies can be

implemented in an AMBA arbiter without loosing compliance with the stan-

dard by exploiting an option of the AMBA specification called Early Burst Ter-

mination (EBT). This option was originally meant to support bus preemption

so to be able to set an upper bound on the bus ownership time for each mas-

ter and to prevent other masters from incurring unacceptable access waiting

times. Providing support for EBT is a responsibility of the designers of AMBA

compliant masters and slaves. The AMBA specification only states that the

master that looses bus ownership must re-arbitrate for it in order to complete

the burst, and this has to be done by means of any legal burst encoding (e.g.

incremental burst of unspecified length).

4.7 Multiprocessor simulation platform

Our experiments have been performed on a complete multiprocessor SoC sim-

ulation platform, called MPARM [47]. SystemC [10] is used as backbone sim-

ulation engine, and this provides the advantage of describing both hardware

and software in a common language (C++).

4.7.1 Hardware support

The efficient integration into the simulation platform of a scalable number

of instruction set simulators (ISSs) can be easily carried out by encapsulating

them into SystemC wrappers. The ISSs used in our architecture are cycle accu-

rate simulators of cached ARM cores, written in C++ and called SWARM [35].
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Figure 4.3: Multiprocessor SoC architecture

Along with the CPU, a set of peripherals is emulated (timers, interrupt con-

troller, UART) to provide support for an operating system running on the plat-

form.

The cycle accuracy of SWARM greatly simplifies the synchronization with

the SystemC environment, as the control is returned to the SystemC process

scheduler at every clock cycle. The simulation platform also includes hard-

ware support for parallel programming. In fact, in this multiprocessor sys-

tem process synchronization must be ensured, to allow mutually exclusive ac-

cess of the processes to shared memory resources. To this purpose, we have

equipped the simulator with a bank of memory-mapped registers, connected

to the AMBA bus as a slave, working as hardware semaphores.

The platform simulates two memory hierarchies: instruction and data

caches and main memories. While cache memories are simulated within

SWARM, each processing element has its own external private memory which

is instantiated as an AMBA slave. Therefore, read or write accesses to the pri-

vate memory take place through the AMBA system bus and incur contention-

related latency. An overview of the system is reported in Fig. 4.3. Up to 32

cores can be instantiated in the system.

Besides private memories, the system includes one shared memory which

is used, at the hardware level, only to implement application-level inter-

processor communication. For the same purpose, interrupt slaves are instanti-

ated, as outlined in the next subsection.
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4.7.2 Software support

The software support for this simulation platform includes a complete port of

an embedded OS, RTEMS [55]. RTEMS is a real-time OS that features POSIX

APIs, synchronization and inter-task communication primitives for a multipro-

cessor scenario.

Inter-processor communication at the application layer takes place through

message passing, according to the procedure briefly illustrated in Fig. 4.4. By

means of high-level send and receive communication primitives called by a

task, the message to be exchanged is read by RTEMS kernel and transferred, in

packets, at the MPCI layer. Packets are then written into the shared memory.

At this point, we have configured the kernel to use an interrupt based notifica-

tion technique to signal the destination processor that there is an outstanding

packet for it, and we have provided hardware support for this methodology.

In particular, we force the source processor to carry out a write transfer to a

memory-mapped slave, which asserts a dedicated interrupt of the destination

processor. The assertion of this external interrupt triggers a service routine that

reads the message from the shared memory, thus completing communication.

It is important to note that inter-processor communication can contribute

to a large fraction of bus transactions, increasing the contention for accessing

the shared bus. In multiprocessor scenarios wherein synchronization among

processors is required for task execution (e.g. exchange of data among pro-

cessors in distributed signal processing applications), communication-related
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traffic could be dominant and the way it is handled by bus arbitration policies

could play a key role in determining the overall system performance.

4.8 Performance analysis of arbitration algorithms

Our objective was to stress the distinctive features of the considered arbitra-

tion algorithms so to come up with selection guidelines under different system

workloads. To this purpose, we identified three scenarios at the application

level, corresponding to three different communication patterns: mutually de-

pendent tasks, independent tasks and pipelined tasks.

4.8.1 Mutually dependent tasks

Let us assume a workload wherein one task is running on each processor and

that the correct execution of each task involves synchronization with the other

ones. In particular, let us assume that all tasks have to synchronize with each

other at predefined points of the multiprocessor benchmark. In this case, sys-

tem performance optimization translates to avoiding that some tasks reach the

synchronization point much earlier or much later than the others, because this

would generate idle waiting time for the unsynchronized task.

An example thereof is represented by the bootstrap stage of RTEMS on the

multiprocessor system. RTEMS selects one processor to act as a master and

all other ones are considered as slaves, and they play a slightly different role

in the booting operation. Each processor (master and slaves) at first indepen-

dently initializes its private memory and hardware devices, then synchroniza-

tion has to take place at the shared memory. In fact, the master processor is

in charge of initializing the shared memory and of allocating the structures for

inter-processor communication. Then it starts polling the status variables of the

slave processors, untill they are all set to ”ACTIVE”, indicating that the slave

processors have defined their own data structures in the shared memory. When

this synchronization condition occurs, the master processor sets those variables

to ”FINISHED”, notifying the slaves that the initialization of the shared mem-

ory is over and that each processor can independently complete its bootstrap

stage and load its tasks.

We ran the RTEMS bootstrap routine several times, with different arbitra-

tion policies implemented in the AMBA arbiter. The performance metric in this

scenario is the bootstrap execution time. Each contention resolution scheme is

assessed based on its ability to minimize this time and on the associated cost.

Results are shown in Fig. 4.5, where the execution time for a bootstrap on

5 processors is plotted as a function of the slot duration. With slot reservation,
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Figure 4.5: Execution time of the bootstrap routine of RTEMS on the multiprocessor
platform

the contention-free slot is assigned to the master processor, denoted as Proc#1.

Its slot duration is reported on the x-axis, while the inter-slot period is kept

constant at 1000 cycles. With TDMA, the x-axis refers to the slot allocated to

each processor. Finally, with round robin we have no parameters to set, and

this corresponds to the constant value observed on the plot.

Round robin exhibits a good performance, depending on the contention

level for accessing the bus. Due to asymmetric workload associated to mas-

ter and slave processors, with a round robin policy we observe that the slaves

have to wait for the master (which has more operations to carry out, and in

general is more computation-intensive) at the synchronization point, and this

slows down the overall RTEMS bootstrap on the multiprocessor system. This

suggests to allocate the slot for contention-free access to the bus to the master

processor. In fact, for a slot duration of about half the inter-slot period, the slot

reservation arbitration policy outperforms round robin, because the increased

bandwidth given to the master processor makes up for the asymmetric work-

load. This minimizes the waiting time of the processors at the synchronization

point.

For higher values of the slot duration, too much bandwidth is assigned to

the master respect to its needs: the effect is that this time the master reaches the

synchronization point much in advance respect to the slaves, and has therefore

to wait for them. On the other hand, the small amount of time reserved to

slave processors for bus utilization significantly degrades their performance,

and the overall execution time increases. An excessively small slot duration



42 Performance Analysis of Bus Arbitration Schemes

Processor#1 Slot duration (ns)

0

20

40

60

80

100

120

140

A
v
g

 W
a

it
in

g
 T

im
e

 (
in

 c
lo

c
k
 c

y
c
le

s
)

2000 5000 10000 12000 15000

PROCESSORS
#2-5

AVG TDMA

AVG. ROUND ROBIN

PROCESSOR WITH SLOT

Figure 4.6: Average waiting time of the processors for accessing the bus

causes the same effect, because the master operation slows down respect to a

round robin arbitration, and the negative impact on the execution time is even

more remarkable because of its asymmetric workload.

Finally, TDMA exhibits the worst performance, in that no balancing effect

takes place but only a redistribution of the bus request patterns.

Next, we analyzed the cost incurred by slot reservation for the offered per-

formance. This cost is assessed in terms of average waiting time, defined as

the period between the time a processor asserts its bus request signal and the

time its grant signal is asserted by the arbiter, indicating that the ownership of

the bus has been actually granted. Results are reported in Fig. 4.6. The average

waiting time of the master processor is compared to that of the other processors

when slot reservation is activated. With the other policies, as the average wait-

ing times of all processors are more balanced, only the overall average value is

reported.

It is interesting to observe that for an optimal slot duration of about 12000 ns

(600 clock cycles, the clock period being 20 ns) derived from the previous plot,

the average waiting time of the high priority master is more than halved and

that of the other processors is more than doubled respect to the round robin

case. This effect does not play any role in this context, as the performance

metric of interest is the minimization of the total execution time. Therefore,

an increase of the latency for accessing the bus can be sometimes tolerated,

provided it is not directly related to the system performance perceived at the

application level.
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Figure 4.7: Execution time for a benchmark made by independent task

4.8.2 Independent tasks

The second scenario we investigated makes use of a benchmark consisting of

independent tasks, each running on a specific processor. This system work-

load does not have any synchronization point, nor it involves inter-processor

communication.

The above scenario has been implemented on our simulation platform by

executing the same matrix multiplications on each processing element. Ma-

trixes are initially stored in each processor’s private memory, and the traffic

generated on the bus is associated with read operations of matrix elements and

to write transactions storing the results back in the memory. Tasks execution

and consequent measurements are triggered once RTEMS has booted on all of

the processors.

The performance metric we select for this class of benchmarks is the average

task execution time, given the independent nature of the tasks themselves. Our

experiments have been carried out ranging the number of processors from 2 to

10, analyzing the scaling properties of the performance metric.

Results relative to the tasks execution times are reported in Fig. 4.7, for the

cases of 4 and 8 active processors. When 4 tasks are running, we observe that

round robin outperforms the other schemes. In fact, if we randomly select one

processor (e.g. processor no.1) and periodically grant it a slot for contention-

free access to the bus, the improvement of its execution time translates to a

relevant degradation of the performance for the other processors, and the av-
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Figure 4.8: Comparison between performance of round robin and TDMA for small val-
ues of TDMA slot

erage task execution time of the system increases. Though it is interesting to

observe that a slot allocation of 9000 ns manages to balance the execution times

of all processors, so that on average all tasks complete within the same time,

similarly to what happens with round robin or TDMA, and this is the most

efficient approach for this scenario. The relevant difference between the three

arbitration algorithms is in the average execution time that can be obtained

by each of them under the hypothesis of balanced task execution times. The

balancing effect for slot reservation (achieved by properly tuning the slot du-

ration) occurs at an average execution time which lies between that provided

by round robin (the optimal one) and that provided by TDMA (worst case).

The same effect can be observed with 8 processors, even though the av-

erage values increase and the gap between round robin and slot reservation

decreases.

One might guess that the performance of TDMA is likely to increase for

smaller values of TDMA slot respect to those reported in Fig 4.7, so to reduce

bus idleness. The answer to this question is reported in Fig. 4.8, where the

average execution time of the tasks is plotted as a function of (smaller) TDMA

slot. Although the performance offered by TDMA actually increases, it never

performs like round robin. The shortest execution time occurs when the TDMA

slot is in the order of the duration of a burst transfer. For smaller values, bus

preemptions start playing a dominant role and their high frequencies (and their

associated costs in terms of bus cycles) determine a performance degradation.

The behaviour showed in Fig. 4.8 can be explained with the redistribution of

request patterns operated by TDMA and by the misalignment of such patterns
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Figure 4.9: Bus access delays for the benchmark with independent task

with the slot allocation.

Going back to Fig. 4.7, another consideration is worth mentioning. Let us

assume that one processor has to be allocated more bandwidth, tolerating the

performance degradation of other schemes. For this processor, a slot must

be allocated such that its final execution time be less than that exhibited in

the round robin case. Therefore, if we check the crossing point between the

”Proc#1” curve and the round robin curve, we see that as the number of pro-

cessors increases, the slot duration that ensures such a performance decreases

(it is almost halved from 13000 ns to 7000 ns), and this is tightly related to the

increased contention levels on the bus.

As regards the average waiting time for accessing the bus, an histogram is

reported in Fig. 4.9. For a slot value of 8000 ns, close to the optimal value that

balances the execution times, the average waiting times of the processors are

balanced as well, but higher than that achievable by means of a round robin

arbitration. Note the very poor performance of TDMA for such values of the

slot.

Finally, we want to show how the execution times of the processors scale

as a function of the number of active processors. This result is reported in

Fig. 4.10: the values for the high priority processor (e.g. ”slotx-I”, where x is

the slot duration) are compared with the average ones of the remaining proces-

sors (”slotx-avg”) when slot reservation is used, and with the average round

robin and TDMA values (”tdmax”). It is interesting to observe the rapidly

degrading performance of TDMA, while round robin and slot reservation are
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Figure 4.10: Scalability property of the execution times with different arbitration poli-
cies

more scalable under this point of view.

4.8.3 Pipelined tasks

A last scenario that is worth investigating is the one wherein the impact of

arbitration policies on the throughput of a distributed signal processing appli-

cation can be assessed. While in the previous subsection we analyzed a system

workload wherein the traffic across the bus did not depend on inter-processor

communication at all, but was only related to computation (e.g. cache line re-

fills), now we want most of bus transactions to be related to communication

among processors. We want to relate the performance of such a system to the

way communication related traffic is accommodated on the bus by the different

arbitration policies.

To this purpose, we set up a multiprocessor system wherein different tasks

execute in a pipelined fashion, with balanced computation workloads for all

of the processors (they execute matrix multiplications). On top of the first pro-

cessor, a task generates matrixes that are handed over to the second processor

of the pipeline. At each stage, the computation is carried out and the result

transmitted to the next stage. In other words, the pipeline consists of couples

of producer-consumer tasks, and the communication occurs, at a high level of

abstraction, by means of FIFO queues.

The performance metric for this system is the throughput, defined as the

number of matrixes per second produced by the last processor of the pipeline

(i.e. frame rate).

Fig. 4.11 shows the frame rate provided by the arbitration policies, chang-
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Figure 4.11: Throughput of the system for different arbitration schemes.

ing the value of the slot duration for slot reservation and TDMA. While the

performance of slot reservation is highly sensitive to the slot time, the perfor-

mance of TDMA is almost independent of it. Surprisingly enough, although

both the workload and the communication needs of the pipelined processors

are perfectly balanced, slot reservation performs better than TDMA for a wide

range of slot durations. This can be explained by looking at the performance of

round robin, that is always much better than TDMA. Since our slot reservation

algorithm implements a round robin arbitration policy during inter-slot times,

as long as the slot duration is much shorter than the inter slot time, the per-

formance of slot reservation is dominated by the performance of round robin,

while it becomes much worse when larger slots are used. Therefore, in Fig. 4.11

only two experiments for slot reservation have been carried out, because they

are sufficient to clarify the dependence of execution time as a function of the

slot duration.

Since the frame rate provided by slot reservation is always smaller than

that of round robin, we can say that slot reservation is counter productive in

this case. In fact, there is no reason for guaranteeing a constant bandwidth to

a single stage of a pipeline if the same bandwidth cannot be guaranteed to all

stages.

On the other hand, TDMA guarantees a constant bandwidth to all proces-

sors in the pipe, but its overall performance is lower than that of round robin.

This fact can be explained only by looking at the hardware implementation of

high level inter-processor communication primitives.

In our system, the producer-consumer paradigm is implemented by means

of the RTEMS message manager, which makes use of a communication proto-
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col among tasks based on message queues. At the core of this protocol there is

the inter-processor communication mechanism seen in Fig. 4.4. The procedure

is initiated by the producer, which creates a global queue in its private memory,

and writes messages to be sent in it.

When the consumer is ready to receive a message, a notification is given

to the producer by writing a request message into the shared memory and by

generating an interrupt for the producer itself. The interrupt service routine of

the producer reads the message from shared memory and assembles data to

be sent in a message which is written back to shared memory. Finally, a write

transaction to the consumer interrupt slave asserts an interrupt which allows

the consumer to pick up its message from shared memory.

In thix context, TDMA poor performance can be explained in terms of

its inability to support the communication handshake between the producer

and the consumer, which is necessary for the hardware implementation of the

high level inter-processor message passing. This handshake involves a ping-

pong interaction between the two tasks, and is inefficiently accommodated in

a TDMA based architecture, wherein only one processor is active during each

slot. This results in a higher latency for the interaction respect to the round

robin case, and this explains the poor performance of TDMA observed in the

experiments.

This low level implementation of message passing primitives made avail-

able by RTEMS to the applications involves a large overhead in terms of bus

transactions. This overhead may result in a relevant system performance

penalty, and derives from a mismatch between the software architecture and

the underlying hardware platform. In other words, these two layers should be

aware of each other to maximize system performance.

As an example, it is worth mentioning that our multiprocessor simulation

platform does not support global cache coherency, therefore the shared mem-

ory is declared ”non-cacheable”. Furthermore, the ARM ISS embedded into

our platform does not support burst transfers except for cache line refills (ac-

cessing only private memories). As a consequence, reading or writing data to

shared memory is a highly inefficient operation, because it only takes place by

means of single transfers instead of burst transfers.

Finally, we observe that the poor performance exhibited by TDMA is also

related to the fact that it is inefficiently accommodated in an AMBA based

communication architecture. In fact, the ultimate objective of the AMBA bus

protocol is contention avoidance, and the signals used by masters and slaves

have to be seen under this perspective (e.g. HBUSREQ, etc..). On the contrary,

TDMA would require a simpler communication protocol, as the whole con-

tention management procedure is arbiter driven. As a consequence, TDMA
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might outperform other arbitration algorithms in proprietary communication

architectures.

Despite the lower performance, TDMA-based arbitration is also attractive

in many real-time applications where predictability is a critical requirement.

In fact, TDMA reserves a slot to each processor regardless of the current work-

load, thus making constant in time the bandwidth perceived by each processor,

independently of the traffic generated by the other masters. Consider, for in-

stance, a system composed of 10 processor cores. If 5 of the cores are used to

implement the pipelined streaming application described in this subsection the

frame rate achieved will be constant and predictable, independently of the traf-

fic generated by the processors that do not take part in the pipeline (hereafter

called external processors). Using round robin, the frame rate would be much

better than that provided by TDMA when the traffic generated by the exter-

nal processors is negligible, but it would be strongly dependent on the overall

workload, possibly becoming worse than that of TDMA when external pro-

cessors perform memory/communication intensive tasks. Non-determinism

is not acceptable in many real-time situations.

4.9 Conclusions

In this work we analyze the impact on multiprocessor SoC performance of dif-

ferent bus arbitration policies under different communication patterns, show-

ing the distinctive features of each policy and the strong correlation of their

effectiveness with the communication requirements of an application.

Beyond two traditional bus arbitration policies (round robin and TDMA)

we consider another technique that periodically allocates fixed predictable

bandwidth to time-critical processors (”slot reservation”). Three workloads

are analyzed on our multiprocessor simulation platform (mutually dependent

tasks, independent tasks and pipelined tasks), and some important guidelines

for designers of SoC communication architectures have been derived:

(i) the optimal bus arbitration policy is not unique, but strongly depends on the

traffic conditions (computation-dependent, communication-dependent,etc..).

(ii) The software support for inter-processor communication plays a crucial

role in determining system performance, as it has to be matched with the un-

derlying hardware platform. High level communication primitives, although

facilitating the programming step, could be inefficiently implemented on the

available platform, degrading system performance.

(iii) There exists a trade-off between contention-resolution bus arbitration poli-

cies (such as TDMA) and contention-avoidance bus protocols (such as AMBA

bus). Even though commercial standards provide degrees of freedom for per-
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formance optimization, the performance achievable by contention-resolution

policies implemented within contention- avoidance protocols cannot be fully

exploited, because of the different characteristics of these two elements.



Chapter 5

Exploring Programming

Models and their

Architectural Support

5.1 Abstract

In today’s multi-processor SoCs (MPSoCs), parallel programming models are

needed to fully exploit hardware capabilities, and to achieve the 100 Gops/W

energy efficiency target required for Ambient Intelligence Applications. How-

ever, mapping abstract programming models onto tightly power-constrained

hardware architectures imposes overheads which might seriously compromise

performance and energy efficiency.

The objective of this work is to perform a comparative analysis of message

passing versus shared memory as programming models for single-chip mul-

tiprocessor platforms. Our analysis is carried out from a hardware-software

viewpoint: we carefully tune hardware architectures and software libraries for

each programming model. We analyze representative application kernels from

the multimedia domain, and identify application-level parameters that heavily

influence performance and energy efficiency. Then, we formulate guidelines

for the selection of the most appropriate programming model and its architec-

tural support.

5.2 Introduction

The traditional dichotomy between shared memory and message passing as

programming models for multi-processor systems has consolidated into a well-
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accepted partitioning. For small-to-medium scale multi-processor systems

there is an undisputed consensus on cache-coherent architectures based on

shared memory. In contrast, large-scale high-performance multi-processor sys-

tems have converged towards non-uniform memory access (NUMA) architec-

tures based on message passing (MP) [60, 61].

The appearance of Multi-Processor Systems-on-Chip (MPSoCs) in the

multi-processing scenario, however, has somehow put this picture in discus-

sion. Several peculiarities differentiate in fact these architectures from classical

multiprocessing platforms. First, their “on-chip” nature reduces the cost of

inter-processor communication. The cost of sending a message on an on-chip

bus is in fact at least one order of magnitude lower (power- and performance-

wise) than that of an off-chip bus, thus pushing towards message passing-

based programming models. On the other hand, the cost of on-chip memory

accesses is also smaller with respect to off-chip memories; this makes cache-

coherent architectures based on shared memory competitive.

Second, MPSoCs are resource-constrained systems. This implies that while

performance is still critical, other cost metrics such as power consumption

must be considered. Unfortunately, it is not usually possible to optimize power

and performance concurrently, and one quantity must typically be traded off

against the other one.

Third, unlike traditional message passing systems, some MPSoC architec-

tures are highly heterogeneous. For instance, some platforms are a mix of

standard processor cores and application-specific processors such as DSPs or

micro-controller [76, 65]. Conversely, other platforms are highly modular and

reminiscent of traditional multi-processor architectures [79, 81]. While in the

former case message-passing is the only viable alternative (some of the pro-

cessing engines may even be cacheless), in the latter case a cache-coherence

model seems to be the most intuitive choice.

All these issues indicate that the choice between the two programming

models is not so well-defined for MPSoCs. The objective of this work is pre-

cisely that of exploring what factors may affect this choice, yet from a novel and

more exhaustive perspective. Although our analysis considers the two tradi-

tional dimensions of the problem, namely, the architecture and the software, they

are both considered from the software perspective. In particular, we assume

that the variable ‘”architecture” is determined by the programming model.

The actual dimension becomes then the programming model (shared-memory

vs. message-passing), under the assumption that to each model corresponds an

underlying architecture that is optimized for it.

This assumption, which is at the core of this work, stems from considering

the inefficiency incurred when mapping high-level programming models (such
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as message passing) onto generic architectures, in terms of software and com-

munication overhead. This conflicts with the trend of designing optimized,

custom-tailored architectures showing very high power and communication

efficiency in a restricted target application domain (application-specific MP-

SoCs).

On the software side, conversely, we consider more traditional parameters,

the most important being the workload allocation strategy. However, we also

consider more application-specific parameters that affect the communication

(e.g., the size of the messages or the communication/computation ratio).

Unlike previous works, we do not simply do a re-writing of benchmarks

under different programming models for a given architecture. In our case,

using a different model implies using a different architecture, and the software

is modified accordingly so as to exploit the optimized communication features

provided by the hardware. It is worth emphasizing that we do not want to

demonstrate the superiority of one paradigm over the other. Rather, we show

that, for a given target application, there may not be a programming model

which is consistently better than the other. Our focus is on media and signal

processing applications commonly found in MPSoC platforms.

Our exploration leverages an accurate multi-processor simulation environ-

ment that provides cycle-accurate simulation and estimation of power con-

sumption, based on 0.13µm technology-homogeneous industrial power mod-

els, see [97].

In summary, the main contributions of our work are: (i) the creation of a

flexible and accurate MPSoC performance and power analysis environment;

(ii) the development of highly optimized hardware assists and software li-

braries for supporting message passing and shared memory programming ab-

stractions on an MPSoC platform; (iii) comparative energy and performance

analysis of message passing and shared memory hardware and software tuned

MPSoC architectures for coarse-grain parallel workloads typical of the multi-

media application domain; (iv) derivation of general guidelines for matching a

task-level parallel application with a target hardware-software platform.

5.3 Related Work

Parallel programming and parallel architectures have been extensively stud-

ied in the past forty years in the domain of high-performance general-purpose

computing [60]. Our review of related works focuses primarily on multi-

processor SoC architectures for embedded applications [80, 76, 77, 78, 74].

From the software view-point, there is little consensus on the programmer

view offered in support of these highly parallel MPSoC platforms. In many
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cases, very little support is offered and the programmer is in charge of explic-

itly managing data transfers and synchronization. Clearly, this approach is

extremely labor-intensive, error-prone and leads to poorly portable software.

For this reason MPSoC platform vendors are devoting an increasing amount

of effort to offering more abstract programmer views through middleware li-

braries and their APIs. Message passing and shared memory are the two most

common approaches.

Message passing has first been studied in the high-performance multi-

processor community, where many techniques have been developed for re-

ducing message delivery latency[67, 68, 66]. Message passing has also entered

the world of embedded MPSoC platforms. In this context it is usually im-

plemented on top of a shared memory architecture (e.g. TI OMAP[78], Philips

Eclipse [65], Toshiba Kawasaki[64], Philips Nexperia[76]). Hence, shared mem-

ory is likely to become a performance/energy bottleneck, even when DMAs

are used to increase the transfer efficiency.

Therefore, several authors have recently proposed support for message-

passing on a distributed memory architecture. Two interesting case studies

are presented in [63, 62] The above approaches have limited support for syn-

chronization and limited flexibility in matching the application to the commu-

nication architecture. E.g., in [62] remote memories are always accessed with a

DMA-like engine even though this is not the most efficient strategy for small

message sizes.

Even though message passing has received some attention, shared memory

is the most common programmer abstraction in today’s MPSoCs. However,

the presence of a memory hierarchy with locally cached data is a major source

of complexity in shared-memory approaches. Widely speaking, approaches

for solving the cache coherence problem fall into two major classes: hardware-

based approaches, and software-based ones. The former imposes cache coher-

ence by adding suitable hardware which guarantees coherence of cached data

[103, 104, 60], whereas the latter imposes coherence by limiting the caching of

shared data [105]. This can be done by the programmer, the compiler, or the

operating system.

In embedded MPSoC platforms, shared memory coherence is often sup-

ported only through software libraries which rely on the definition of non-

cacheable memory regions for shared data or on cache flushing at selected

points of the execution flow. However, there are a few exceptions that rely on

hardware cache coherence, especially for platforms which have a high degree

of homogeneity in computational node architecture [81].

The literature on comparing message passing and shared memory as pro-

gramming models in large-scale general-purpose multiprocessors is quite rich
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([82]–[89]). Early works ([82, 83, 84]) compare a shared memory program

against a similar program written with a message passing library that was

implemented in shared memory on the same machine. The first two works

provide strong evidence of the superiority of message passing, a conclusion

which the third work partially puts in discussion.

These works do not actually explore programming styles, since they do not

use the architectural variable. The performance of a message passing library

simulated on a shared memory computer is likely to be quite different from the

more complex library on message passing hardware. Also, the programs were

executed on a real machine, which limited the comparison to elapsed time.

Simulation was used in [85] to compare message traffic in the two program-

ming models, by writing applications in a parallel language that supports high-

level communication primitives of the two types. Translation onto the target

architecture is done through a compiler, which however affects the interpreta-

tion of the comparison. Chandra et al. [86] did a more predictable analysis by

careful writing of the application onto the same hardware platform. Their con-

clusions partially upset the superiority of message passing in favor of a shared

memory paradigm. More recent works ([87, 88, 89]) focused again on specific

platforms such as high-end SMPs.

From our perspective, these works have several limitations, which we ad-

dress in our analysis. First, and foremost, all methods but [86] refer to a spe-

cific architecture, which is thus not considered as a dimension of the explo-

ration. Second, none of them explicitly refers to MPSoCs as an architectural

target, therefore power or energy are never considered as valuable design met-

rics. Third, non-realistic software architectures are sometimes considered (e.g.,

[108, 109]).

5.4 Hardware Architectures

The architecture of the hardware platform is designed to provide efficient sup-

port for the different styles of parallel programming. Therefore, our MPSoC

simulation platform was extended in order to model and simulate the follow-

ing architectures:

5.4.1 Shared memory architecture

This architecture consists of a variable number of processor cores (ARM7 sim-

ulation models will be deployed for our analysis framework) and of a shared

memory device to which the shared addressing space is mapped.

As an extension, each processor also has a private memory connected to the
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Figure 5.1: Shared memory architecture.

SnoopDeviceInvalidate(addr_in,src,opcode,req)
{
if ((req==1) &&      /* a request */ 

(opc[3:0]==2) && /* a write */ 
(src != 0) &&  /* by another core */ 
((address>=LOW) && (address<HIGH))) {

invalidate = 1; 
addr_out = addr_in; 

} else {
invalidate = 0; 
address_out = 0; 

} 
}

«¬­­®̄¬°±²³́±µ¶·¶°³̧¶¹º»¼½½¾¿ÀÁ¾ÂÃÄÅ¹Ä½ÂÆ¾¹ÇÈÉÉ¼½½¾¿ÄÊËÇÈÀÁÌ¼ºÀ½¼ËÂ
SnoopDeviceUpdate(addr_in,data_in,src,opcode,req)
{
if ((req==1) &&      /* a request */ 

(opc[3:0]==2) && /* a write */ 
(src != 0) &&    /* by another core */ 
((address>=LOW) && (address<HIGH))) {

update = 1; 
addr_out = addr_in; 
data_out = data_in;

} else {

update = 0;
address_out = 0; 
data_out = 0; 

} 
}

«¬­­®Í®́±µ¶·¶°³̧¶¹º»¼½½¾¿ÀÁ¾ÂÃÄÅ¹Ä½ÂÆ¾¹ÇÈÉÉ¼½½¾¿ÄÊËÇÈÊÅ½¼ËÂ
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Figure 5.2: Interface and Operations of the Snoop Device for the Invalidate (a) and Up-
date (b) Policies.

bus where it can store its own local variables and data structures (see Fig. 5.1).

In order to guarantee data coherence from concurrent multiprocessor accesses,

shared memory can be configured to be non-cacheable, but in this case it can
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only be inefficiently accessed by means of single bus transfers.

This inefficiency might be overcome by creating copies of shared memory

locations in private memory (i.e., using shared memory only as a communica-

tion channel). Data would then become cacheable and could be accessed via

burst transfers at the cost of moving a larger volume of data through the bus.

Alternatively, the shared memory can be declared cacheable, but in this case

cache coherence has to be ensured. We have enhanced the platform by adding a

hardware coherence support based on a write-through policy, which can be con-

figured either as Write-Through Invalidate, WTI or Write-Through Update, WTU.

The hardware snoop devices, for both invalidate and update case, are de-

picted in Figure 5.2. The snoop devices sample the bus signals to detect the

transaction which is being performed on the bus, the involved data and the

originating core. The input pinout of the snoop device depends of course

on the particular bus implemented in the system, and Figure 5.2 reports the

specific example of the interface with the STBus interconnect from STMicro-

electronics, although signal lines with identical content can be found in most

communication architecture specifications.

When a write operation is flagged, the corresponding action is performed,

i.e., invalidation for the WTI policy, rewriting of the data for the WTU one.

Write operations are performed in two steps. The first one is performed by the

core, which drives the proper signals on the bus, while the second one is per-

formed by the target memory, which sends its acknowledge back to the master

core to notify operation completion (there can be an explicit and independent

response phase in the communication protocol or a ready signal assertion in a

unified bus communication phase). The write ends only when the second step

is completed and when the snoop device is allowed to consistently interact

with the local cache. Of course, the snoop device must ignore write operations

performed by its associated processor core. In our simulation model, synchro-

nization between the core and the snoop device in a computation tile is handled

by means of a local hardware semaphore for mutually exclusive access to the

cache memory.

Hardware semaphores and slaves for interrupt generation are also con-

nected to the bus (Fig. 5.1). The interrupt device allows processors to send

interrupt signals to each other. This hardware primitive is needed for inter-

processor communication and is mapped in the global adressing space. For an

interrupt to be generated, a write should be issued to a proper address of the

device. The semaphore device is also needed for the synchronization among

the processors; it implements test-and-set operations, the basic requirement to

have semaphores.

Further details of the shared memory architecture can be found in table 5.1.
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processor ARM7 200Mhz 5 pipeline stage
data cache up to 4KByte 4 way set associative latency 1 cycle

instruction cache 4KByte direct mapped latency 1 cycle
scratchpad up to 8KByte 200Mhz latency 1 cycle

private memory 128KByte 200Mhz latency 2 cycle
shared memory 256KByte 200Mhz latency 2 cycle

STBUS 32 bit 200Mhz split bus

Table 5.1: Technical details of the architectural components
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Figure 5.3: Message-oriented distributed memory architecture.

The template followed by this shared memory architecture reflects the de-

sign approach of many semiconductor companies to the implementation of

shared memory multi-processor architectures. As an example, the MPCore

processor implements the ARM11 micro-architecture and can be configured to

contain between 1 to 4 processor cores, while supporting fully coherent data

caches[75].

5.4.2 Message-oriented distributed memory architecture

Message passing helps mastering the design complexity of highly parallel sys-

tems provided the transfer cost on the underlying architecture can be limited.

We therefore consider a distributed memory architecture with light-weight

hardware extensions for message passing, as depicted in Fig. 5.3.

In the proposed architecture, a scratchpad memory, a semaphore and DMA

unit are attached to each processor core. The different processor tiles are con-
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nected using the shared bus (STBus). In order to send a message, a producer

writes in the message queue stored in its local scratch-pad memory, without

generating any traffic on the interconnect. Once the data is in the message

queue, the corresponding consumer (running on another processor) can fetch

the message to its own scratch-pad, directly or via a DMA controller. For this

purpose, the scratchpad memories are connected as slaves to the communica-

tion fabrics and their space is made visible to any other processor on the plat-

form. The DMA engine attached to each core enables efficient data transfers

between scratch-pad and non-local memories (cfr. [100]): it supports multiple

outstanding data channels and has a dedicated connection for fast access to the

local scratch pad memory.

As far as synchronization is concerned, when a producer intends to gener-

ate a message, it locally checks an integer semaphore which contains the num-

ber of free messages in the queue. If enough space is available, it decrements

the semaphore and stores the message in its scratch-pad. Completion of the

write transaction and availability of the message is signaled to the consumer

by incrementing a semaphore located in its scratch-pad memory. This single

write operation goes through the bus. Semaphores are therefore distributed

among the processing elements, resulting in two advantages: the read/write

traffic to the semaphores is distributed and the producer (consumer) can locally

poll whether space (a message) is available, thereby reducing bus traffic.

The details of the message passing architecture can be found in table5.1.

The architecture of the recently announced Cell Processor[74] developed

by Sony, IBM and Toshiba shares many similarities with the template we are

considering in this paper. The Cell processor exhibits eight vector computers

equipped with local storage and connected through a data-ring based system

interconnect. The individual processing elements can use this bus to commu-

nicate with each other, and this includes the transfer of data in between the

units acting as peers of the network.

5.5 Software support

A software library is an essential part of any today’s multi-processor system. In

order to support software developers in programming the two optimized hard-

ware platforms, we have implemented two architecture-specific communica-

tion and synchronization libraries exposing high level APIs. The ultimate ob-

jective is to abstract low level architectural details to the programmers, such as

memory maps, management of hardware semaphores and intermediate data

transfers, while keeping the overhead introduced by the programming library

as low as possible, from a performance and power viewpoint.
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Concerning the shared memory architecture, we opted for porting a stan-

dard communication library onto the MPSoC platform: it is the SystemV IPC

Library, which is the native communication library for heavy-weight processes

under the Unix operating system. This allows software designers to develop

their applications on host PCs and to easily port their code onto the MPSoC

virtual platform for validation and fine-grained software tuning on the target

architecture.

As regards the message-oriented architecture, it is rather tuned for MPSoC

implementations, and its effectiveness was proved in [101] As a consequence,

we needed a communication library able to fully exploit the features of this

architecture. Moreover, we expect that the porting of standard message pass-

ing libraries traditionally used in the parallel computing domain might cause

an overly significant overhead in resource-constrained MPSoCs. For this rea-

son, we had to develop our own optimized message passing library, custom-

tailored for the scratch-pad-based distributed memory architecture we are con-

sidering.

5.5.1 A light-weight porting of System V IPC library for

shared memory programming

Brief introduction to IPC standard

System V IPC is a communication library for heavy-weight processes based on

permanent kernel resident objects. Each object is identified by a unique kernel

ID. These objects can be created, accessed and manipulated only by the ker-

nel itself, granting mutual exclusion between processes. Three different types

of objects, named facilities, are defined: messages queues, semaphores and

shared memory. Processes can communicate through System V IPC objects

using ad-hoc defined APIs, that are specific for each facility.

Message Queues are objects similar to pipes and FIFOs. A message queue

allows different processes to exchange data with each other in the form of mes-

sages in compliance with the FIFO semantic. Messages can have different sizes

and different priorities. The send API (msgsnd) puts a message in the queue,

suspending the calling process if there is no enough free space. On the other

hand, the receive API (msgrcv) extracts from the queue the first message that

satisfies the calling process requests in terms of size and priority. If there is

not a valid message or if there are no messages at all the calling process is sus-

pended until a valid message is written to the queue. A special control API

(msgctl) allows processes to manage and delete the queue object.

Semaphore objects consist of a set of classic Dijkstra’s semaphores. A pro-

cess calling the ”operation” API (semop) can wait and signal on any semaphore
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of the set. Moreover, System V IPC allows processes to request more than one

operation on the semaphore set at the same time. That API ensures that the

operations will be executed atomically. A special control API (semctl) allows to

initialize and delete the semaphore object.

Shared memory objects are buffers of memory which a process can link to

its own memory space through the attach API (shmat). All processes which

have attached a shared memory buffer see the same buffer and can share data

directly reading and writing on it. As the memory spaces of the processes

are different, the shared buffer could be attached by the attach API at differ-

ent addresses for each process. Therefore, processes are not allowed to ex-

change pointers which refer to the shared buffer. In order to successfully share

a pointer, its absolute address must be changed into an offset relative to the

starting location of the shared buffer. A special control API (shmctl) allows

processes to mark a buffer for destruction. A buffer marked for destruction is

removed from the kernel when there are no more processes that are linked to it.

A process can unlink a shared buffer from its memory space using the detach

API (shmdt).

Implementation and Optimizations

Some implementation details concerning the MPSoC communication library

compliant with the System V IPC standard follow. All the objects, which re-

quire to be accessed in a mutually exclusive way, are stored in the shared mem-

ory. Therefore, a dynamic allocator was introduced in order to efficiently im-

plement data allocation in shared memory. All original IPC kernel structures

were optimized by removing many process/permission related information,

in order to reduce shared memory occupancy and therefore API overhead. In

our library implementation targeting MPSoCs, mutual exclusion on the critical

sections of an object was ensured by means of hardware mutexes that are acces-

sible on the shared memory space. Each IPC object is protected by a different

hardware mutex, allowing parallel execution on different objects.

MPSoC platforms are typically resource-constrained. Therefore, we de-

cided not to implement some of the features of System V IPC. At the moment,

the priority in the message queues facility and the atomic multi-operations on

the semaphore sets have not been implemented. These features are not critical

in System V IPC, so that their lack will only marginally affect code portability.

MPSoC IPC library was tested and optimized to improve performance of

APIs. The length of the critical sections was reduced as much as possible in

order to optimize code efficiency. Similarly, the number of shared memory

accesses was significantly reduced. Moreover, in case of repeated read accesses

to the same memory location, we hold the read value. Write operations were
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optimized avoiding to perform useless write accesses to shared memory (e.g.,

writing the same value).

Since the benchmarks we will use in the experimental results make exten-

sive use of the semaphore facility, we assessed the cost inucurred by our library

in managing this facility. We created an ad-hoc benchmark where two tasks are

running onto two different processors: the first one periodically releases a cer-

tain semaphore, while the second one is waiting on that semaphore. We mea-

sured the time to perform signal and wait over 40 iterations. It turned out that

the overhead for using System V IPC with respect to the manual management

of the hardware semaphores is negligible (only 2%).

Dynamic memory allocation will never be exploited by our benchmarks

since they allocate shared memory during initialization and free it before ex-

iting, therefore we excluded those two phases from system performance mea-

surements. Moreover, we do not use message queues, which involve mapping

a message passing paradigm on top of shared memory, i.e. on top of an ar-

chitecture which is not optimized for messaging, and this goes in the opposite

direction with respect to our initial assumptions.

5.5.2 Message Passing library

We also built a set of high-level APIs to support a message passing program-

ming style on the message-oriented distributed memory architecture described

above. Our library simplifies the programming stage and is flexible enough to

explore the design space. The most important functions are listed in Table 5.2.

Return Type Function Arguments

SQ PRODUCER* sq init producer int consumer id
int message size
int total messages
bool use suspension

SQ CONSUMER* sq init consumer int consumer id
bool buffer space location
bool use suspension

void sq write( dma) SQ PRODUCER *queue p
char *source

char* sq getToken write SQ PRODUCER *queue p
void sq putToken write SQ PRODUCER *queue p

char* sq read( dma) SQ CONSUMER *queue c

Table 5.2: APIs of our message passing library

To instantiate a queue, both the producer and consumer must run an initial-

ization routine. To initialize the producer side, the corresponding task must call

sq init producer. It takes as arguments the identifier of the consumer, the mes-

sage size, the number of messages in the queue and a binary value. The last ar-

gument specifies whether the producer should poll the producer’s semaphore



5.5 Software support 63

or suspend itself until an interrupt is generated by the semaphore. The con-

sumer is initialized with sq init consumer. It requires the identifier of the con-

sumer itself, the location of the read buffer and the poll/suspend flag. In detail,

the second parameter indicates the address where the function sq read will

store the message transferred from the producer’s message queue. This ad-

dress can be mapped either to the private memory or to the local scratch-pad

memory.

The producer sends a message with the sq write( dma) function. This func-

tion copies the data from *source to a free message block inside the queue buffer.

This transfer can either be carried out by the core or via a DMA transfer (x dma).

Instead of copying the data from *source into a message block, the producer can

decide to directly generate data in a free message block. The sq getToken write

returns a free block in the queue’s buffer on which the producer can operate.

When data is ready, the producer should notify its availability to the consumer

with sq putToken write. The consumer transfers a message from the producer’s

queue to a private message buffer with void sq read( dma). Again, the transfer

can be performed either by a local DMA or by the core itself.

Our approach thus supports: (1) either processor or DMA-initiated data

transfers to remote memories, (2) either polling-based or interrupt-based syn-

chronization, and (3) flexible allocation of the consumer’s message buffer, i.e.

on scratch-pad or on a private memory at a higher level of the hierarchy.

Low overhead implementation and tuneability

The library implementation is very light-weight, since it is based on C macros

that do not introduce significant overhead with respect to the manual man-

agement of hardware resources. A producer-consumer exchange of data pro-

grammed via the library showed just a 1% overhead with respect to a manual

control of the transfer by the programmer without high level abstractions.

More interestingly, the library flexibility can be used for fine tuning the

porting of an application on the target architecture. In fact, the library can

exploit several features of the underlying hardware such as processor- versus

DMA-driven data transfers or interrupt versus active polling. A simple case

study shows the potential benefits of this approach. Let us consider a func-

tional pipeline of eight matrix multiplication tasks. Each stage of this pipeline

takes a matrix as input, multiplies it with a local matrix and passes the result

to the next stage. We iterate the pipeline twenty times. We run the benchmark

respectively on an architecture with eight and four processors. In the first case,

only one task is executed on each processor, while in the second we added con-

currency by mapping two tasks to each core. First, we compare three different

configurations of the message-oriented architecture (Table 5.3). We execute the
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Figure 5.4: Comparison of message passing implementations in a pipelined benchmark
with 8 cores from Tab. 5.3

pipeline for two matrix sizes: 8x8 and 32x32 elements. In the latter case, longer

messages are transmitted.

Solution Queue Position Transfer Mode Arrival Notification

(1) scratch-queue processor polling
(2) scratch-queue processor interrupt
(3) scratch-queue DMA polling

Table 5.3: Different message passing implementations

Analyzing the results in Figure 5.4, referred to the case where one task runs

on each processor, we can observe that a DMA is not always beneficial in terms

of throughput. For small messages, the overhead for setting up the DMA trans-

fer is not justified. In case of larger messages, the DMA-based solution outper-

forms processor-driven transfers. Conversely, employing a DMA always leads

to an energy reduction, even if the duration of the benchmark is longer, due

to a more power-efficient data transfer. Note that energy of all system compo-

nents (DMA included) is accounted for in the energy plot. Results have been

derived through functional simulation and technology homogeneous power

models (0.13um technology).

Furthermore, the way a consumer is notified of the arrival of a message

plays an important role, performance- and energy-wise. The consumer has to

wait until the producer releases the consumer’s local semaphore. With a single

task per processor (Figure 5.4), the overhead related to the interrupt routine

can slow down the system, depending on the communication vs computation

ratio and polling is, in general, more efficient. On the contrary, with two tasks
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Figure 5.5: Task scheduling impact on synchronization in a pipelined benchmark with
4 cores from Tab. 5.3

per processor (Figure 5.5, referred to matrices of 8x8 elements) the interrupt-

based approach performs better. In this case, it is more convenient to suspend

the task because the concurrent task scheduled on the same processor is in

”ready” state. Instead, with active polling, the processor is stalled and the

other task cannot be scheduled.

From this example, we thus conclude that in order to optimize the en-

ergy and the throughput, the implementation of message passing should be

matched with application’s workload characteristics. This is only feasible by

deploying a flexible message passing library.

5.6 First level classifications in the software do-

manin

Given the two complete and optimized hardware-software architectures for the

shared memory and the message passing platforms, we now put them at work

and try to capture which application characteristics and mapping decisions

determine their relative performance and energy dissipation. The ultimate ob-

jective is to identify design guidelines.

Our next step in this direction is to provide a first-level classification in the

software domain. We try to capture some relevant application features that can

make the difference in discriminating between programming paradigms. We

recall that we are targeting parallel applications, and in particular the multime-

dia and signal processing application domain. Relevant application features
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are as follows:

• Workload allocation policy. It determines the way a parallel workload

is assigned to the parallel computation units for the processing stage. For

the class of applications we are targeting, there are two main policies:

1. Master-Slave paradigm. The volume of data processed by each

computation resource is reduced by splitting it among multiple

slave tasks operating in a coordinated fashion. A master task is

usually in charge of pre-processing data, activating slave operation

and of synchronizing the whole system. Workload splitting can be

irregular or regular [90]. Horizontal, vertical and cross-slicing are

well-known examples of regular data partitioning, for use in video

decoding. From an energy viewpoint, the benefits from shortening

execution time might be counterbalanced by the higher number of

operating processors, thus giving rise to a non-trivial trade-off be-

tween application speed-up and overall energy dissipation [93].

2. Pipelining. Pipelining is a traditional solution for throughput con-

strained systems [91]. Each pipelined application consists of a se-

quence of computation stages, wherein a number of identical tasks

are performed, executing on disjoint sets of input data. Compu-

tation at each stage may be performed by specialized application-

specific components or by homogeneous cores. Many embed-

ded signal processing applications follow this parallelization pat-

tern [92].

• The degree of data sharing among concurrent tasks. Slave tasks may

have to process data sets that are common to other concurrent tasks, as

is the case of the reference frame for motion compensation in parallel

video decoding. To the limit, all processing data could be needed by all

slaves. In this case, a shared memory programming paradigm relies on

the availability of shared processing data in shared memory at the cost

of increased memory contention. On the contrary, employing message

passing on a distributed architecture for this case would give rise to a

multicast communication pattern having the master processor as source

of processing data and the slave processors as the receivers. Finding

the most efficient solution from a performance and energy viewpoint is

again a non-trivial issue. Cache coherence support is also critical. For in-

stance, our shared memory architecture can largely reduce the overhead

for keeping shared data coherent. If a task changes shared data, it has to

update/notify all other tasks with whom it shares the data. On a shared

memory architecture, slaves can snoop the useful updates directly from
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the shared bus, thus avoiding the transmission of updates to all tasks,

which would congest the network and slow down program execution.

• The Granularity of processing data. Signal processing pipelines might

operate on data units as small as single pixels (e.g., pixel-level video

graphics pipelines) and as large as entire frames. An increased data gran-

ularity has a different impact on the volumes of traffic to be moved across

the bus based on the chosen application coding style. A somewhat higher

communication cost should be traded-off with the advantages given by

other architectural mechanisms (e.g., data cacheability). Our exploration

framework aims at spanning this trade-off and at identifying the low-

level effects that come into play to determine it.

• Data Locality. Optimizing for data locality has been the main focus of

many studies in the last three decades or so [71]. While locality optimiza-

tion efforts span a very large spectrum, ranging from cache locality to

memory locality to communication locality, one can identify a common

goal behind them: maximizing the reuse of data in nearby locations, i.e.,

minimizing the number of accesses to data in far locations. There have

been numerous abstractions and paradigms developed in the past to cap-

ture the data reuse information and exploit it for enhancing data locality.

In this work, we refer to data locality when a piece of data is still in a

cache upon reuse. Many embedded image and video processing appli-

cations operate on large multi-dimensional arrays of signals using multi-

level nested loops. An important feature of these codes is the regularity

in data accesses, which can be exploited using an optimizing compiler to

improve cache memory performance[69]. In contrast, many scientific ap-

plications require sparse data structures and demonstrate irregular data

access patterns, thus resulting in poor data locality[70].

• Computation-to-communication ratio. This ratio provides an indication

about the communication overhead with respect to the overall computa-

tion time. In general, when this ratio is such to be haevier on the com-

munication side, than bandwidth issues become critical to determine sys-

tem performance. A good computation-to-communication ratio, together

with the minimization of load imbalance, is the requirement of scalable

parallel algorithms in the parallel computing domain. Hiding commu-

nication during computation is the most straighforward way to reduce

the weight of communication, but other techniques can be used such as

message compression or smart mapping strategies.

We now experimentally examine how the above application features influ-

ence the choice between message passing and shared memory coding styles.
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Our approach is to make highly accurate comparisons of a few representa-

tive design points in the software domain, rather than making abstract com-

parisons covering a wide space at the cost of limited accuracy. Accuracy of

our analysis will be ensured by our timing-accurate modelling and simulation

environment. Varying hardware and software parameters in the considered

design points will allow us to take stable conclusions and to point out power-

performance trade-offs.

Our exploration space is depicted in Fig. 5.6. We split the software space

based on the workload allocation policy and the degree of sharing of pro-

cessing data. We aim at performing an accurate comparison of programming

paradigms within the identified space partitions. Our investigations within

each sub-space will take into account other application parameters such as data

granularity, computation/communication ratio and data locality. To analyze

each software sub-space, we have designed a set of representative and param-

eterizable parallel benchmarks. These latter consist of several kernels which

can be typically found inside embedded system applications: matrix manip-

ulations (such as addition and multiplication), encryption engines and signal

processing pipelines. Handling parameterizable application kernels instead

of entire applications provides us with the flexibility to vary computation as

well as communication parameters of the parallel software, thus extending the

scope of our analysis and making our conclusions more stable. Such flexibility

for space exploration is frequently not allowed by complete real-life applica-

tions. Each kernel has been mapped using both the shared memory and the

message passing coding style. Interestingly, the code has been deeply opti-

mized for each programming paradigm, for a fair and realistic comparison.

• Benchmark I- Parallel Matrix Multiplication. A matrix multiplication

algorithm was partitioned sticking to the master-slave paradigm. It was

chosen to allow the analysis of applications wherein processing data is

shared among the slave processors. In fact, each slave processor uses half

entire source matrices and produces a slice of the result matrix (Fig. 5.7).

All slices are composed together by the master processor, which is then in

charge of reactivating the slave processors for a new iteration. This pro-

gram is developed so as to maximize the sharing of the read-only vari-

ables (the source matrices) and to minimize the sharing of the variables

that need to be updated. The size of the matrices can be arbitrarily set.

A master-driven barrier synchronization mechanism is required to allow

a new parallel computation to start only once the previous one (i.e., pro-

cessing at all the slave processors) has completed. Overall, we simulated

5 processors: one producer and 4 slaves.
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BENCHMARK III

Workload
allocation policy

Application
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SHARED PROCESSING DATA NON−SHARED PROCESSING DATA

MASTER−SLAVE

PIPELINING

Parallel Matrix Multiplication DES encryption

Signal Processing Pipeline

BENCHMARK I BENCHMARK II

Figure 5.6: Exploration Space. Within each space partition, other software parameters
have been explored such as data locality, computation/communication ratio
and data granularity.
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Figure 5.7: Workload allocation policies for parallel matrix multiplication.

• Benchmark II - DES encryption. DES (Data Encryption Standard) al-

gorithm was chosen as an example of application that easily matches the

master-slave workload allocation policy. DES encrypts and decrypts data

using a 64-bit key. It splits input data into 64-bit chunks and outputs a
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Figure 5.8: Workload allocation policy for DES encryption algorithm (up) and
signal processing pipeline (bottom).

stream of 64-bit ciphered blocks. Since each input element is independently

encrypted from all others, the algorithm can be easily parallelized. An ini-

tiator task dispatches 64-bit blocks together with a 64-bit key to n calcula-

tor tasks for encryption (Fig. 5.8-up). A collector tasks does exist, which

rebuilds an output stream by concatenating the ciphered blocks of text

from the calculator tasks. Please note that computation at each slave task

is completely independent, since the sets of input data are completely

disjoint. We modified the benchmark so to increase the size of exchange

data units to multiples of 64 bits, thus exploring different data granular-

ities. Here slave tasks just need to be independently synchronized with

the producer, which alternatively provides input data to all of the slaves,

and with the collector task. In this benchmark, no shared data exists.

Overall, we simulated 6 processors: the producer, the consumer and 4

slaves.

• Benchmark III - Signal Processing Pipeline. This application consists

of several signal processing tasks executing in a pipelined fashion. Each

processor computes a two dimensional filtering task (which in practice

reduces to matrix multiplications) and feeds its output to the next pro-

cessor in the pipeline. All pipeline stages perform computations on dis-

joint sets of input data, as depicted in Fig. 5.8-bottom. Synchronization

mechanisms (interrupts and/or semaphores) were used for correct data

propagation across the pipeline stages. We simulated an 8-stages signal

processing chain. For the pipeline-based workload allocation policy, we

did not explore the case of processing data shared among the pipeline

stages, because we consider it to be of minor interest for the multimedia
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domain.

We have optimized the code of these benchmarks for both the shared mem-

ory and the message passing paradigm, as hereafter described. When using

the message passing library, we always selected the active polling configura-

tion, since we always run single tasks per processor. In this context, interrupts

do not result in a better resource utilization, but only in scheduling overhead.

Moreover, in our comparison with shared memory, we used the best message

passing performance result, which was given sometimes by using DMA and

some other times by using processor-driven transfers.

Moreover, since the system interconnect is a shared bus, we expect the

update-based cache coherence protocol to have an advantage over invalidate-

based one. In fact, when the producer writes data to shared memory, and those

data are in the caches of other cores, this data is directly updated without fur-

ther bus transactions. This inherent broadcasting mechanism brings even more

advantages when many data blocks are shared among slave processors. For

these reasons, we use the update protocol, in contrast to many previous papers

targeting parallel computers [99].

Finally, in order to eliminate the impact of I/O from benchmark execution

(this aspect is outside the scope of our analysis), we assume that input data is

stored on an on-chip memory, from where it is moved or accessed according to

the programming style.

5.7 Experimental results

In this section, we examine how the application characteristics and mapping

decisions influence the performance and energy ratio between shared memory

and message passing. First, we explain the simulation framework in which

these experiments are conducted.

5.7.1 Simulation framework

Our experimental framework was based on the MPARM simulation environ-

ment [96], which performs functional, cycle-true simulation of ARM-based

multi-processor systems. This level of accuracy is particularly important for

MPSoC platforms, where small architectural features might determine macro-

scopic performance differences. Of course, simulation accuracy has to be

traded off with simulation performance (up to 200000 cycles/sec with the

MPARM platform). MPARM makes available a complete analysis toolkit al-

lowing to monitor performance and energy dissipation (based on industry-

provided power models) of platform components for the execution of software
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Figure 5.9: Execution time ratio. D-cache size is a parameter. (a) MM benchmark. (b)
synth-MM benchmark.

routines as well as of an entire benchmark. Simulation is cycle accurate and

bus-signal accurate. Our virtual platform leverages technology-homogeneous

(0.13 um) power models of all system components (processor cores, system in-

terconnect, memory devices) provided by STMicroelectronics [97, 98]. Proces-

sor core models take into account the cache power dissipation, which accounts

for a large fraction of overall power.

5.7.2 Master–Slave, Shared Data

We ran the parallel matrix multiply (MM ) benchmark with varying matrix size

and D-cache size and for the two different hardware-software architectures.

We measured the execution time for processing 20 matrices. Then, we mod-

ified the benchmark so to perform sum of matrices instead of multiplications

(synthetic benchmark, synth − MM ), thus exploring the computation versus

communication ratio.

Results are reported in Figure 5.9; the y-axis represents the ratio between

the execution times of the benchmark in the message passing (MP) and in the

shared memory (SHM) version. Plot (a) refers to the MM benchmark, while

Plot (b) to synth-MM. In the diagrams, values greater than 1 denote thus a

better performance (shorter execution time) of shared memory over message
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Component Energy % over the total system energy
Core 36%
Instruction cache 60%
Data cache 4%

Table 5.4: Energy breakdown for the shared memory platform with Matrix size 32, Data
Cache size 4KB (4-way set associative), Instruction Cache size 4KB (Direct
Mapped).

passing. The scratchpad was sized big enough to contain the largest processing

data, since this involved realistic cuts (8kB) while playing only a marginal role

in energy dissipation. The benchmark has a good data locality, therefore we

expect shared memory to be effective in this case. Furthermore, with message

passing, shared data blocks have to be sent to the slave processors as explicitly

replicated messages, thus originating a communication overhead. Our simu-

lation runs confirm these intuitions only partially, as depicted in Figure 5.9-

(a). We observe that as we increase data size, a corresponding increase in data

cache misses affects shared memory performance, thus making message pass-

ing competitive. This loss of performance can be restored by increasing the

cache size. In the plot we show that the performance ratio goes back above

1 with cache sizes of 4kB. The same ratio can be actually obtained with 8kB

caches, even if a fully associative cache is instantiated. This saturation point is

clearly related to the matrix size.

However, with large matrices, the advantage of shared memory over mes-

sage passing decreases with respect to smaller matrices: since the compu-

tational load of the MM benchmark increases more than its communication

load (the computation has O(N3) complexity while the communication load

is only O(N2), where N indicates the matrix size), message passing leverages

its advantage of performing the computation on a more efficient memory (the

scratch-pad), thus making up for the communication overhead. In general,

with larger matrices the performance of message passing and shared memory

tend to converge, provided the cache and the scratchpad sizes can be arbitrarily

increased to deal with larger data sets.

In the rightmost point of Figure 5.9-(a), the designer has to decide whether

it is more convenient to increase the cache size and to have shared memory out-

performing message passing or to adopt the message passing paradigm. Since

the energy plots for the two programming paradigms exhibit the same trend

of Fig. 5.9 (and therefore we have not reported them), we can take two conclu-

sions. First, increasing the cache size to 4kB with matrix size 32 makes shared

memory not only more performance-efficient, but also more energy-efficient.

The reason can be deduced from Table5.4: in this case, the data cache energy is

almost negligible with respect to instruction cache and processor contributions.
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Therefore, a larger data cache reduces cache misses and hence application exe-

cution times in this context.

With the synth-MM benchmark (Figure 5.9-(b)), the ratio between the com-

putational load and the communication one does not vary with the size of the

data; therefore, the communication overhead of the message passing solution

increases with respect to the shared memory version, where there is no need to

move data. The same trend is followed by the energy curves, and is therefore

not reported for lack of space.

For the shared memory version of the MM and synth-MM we reported only

results of the cache-coherent platform, due to the poor performance showed by

the non-coherent platform.

5.7.3 Master–Slave, Non-Shared Data

In this experiment, we ran the DES benchmark in the message passing and

shared memory versions, for varying granularity of processing data. In this

case, computation complexity is similar to synth-MM benchmarks, and this

might lead to the conclusion that shared memory is the right choice here. How-

ever, this benchmark emphasizes also other features that put previous conclu-

sions in discussion.

First, this is a synchronization-intensive benchmark, and previous work in

the parallel computing domain agrees on the fact that performing synchroniza-

tion by means of shared memory variables is inherently inefficient[85]. How-

ever, this disadvantage of shared memory over message passing (which can

exploit the synchronization implicit in the arrival of a message) can be coun-

terbalanced by using interrupt-based synchronization. The issue is to find out

whether, in an MPSoC domain, using interrupts in a shared memory system

is more costly than the mechanism used to wait for messages in a message

passing implementation.

Second, a static profiling of the DES benchmark points out poor data lo-

cality. Similarly, many scientific applications do not exhibit much temporal

locality, as all or most of the application data set is rewritten on each iteration

of the algorithm. Finally, DES input data sets for each processor are disjoint,

thus minimizing the advantage of using update-based cache coherence pro-

tocols. It is difficult to predict how the above features combine to determine

final performance and energy metrics in the MPSoC domain, thus motivating

our simulation-based analysis. Results for the DES benchmark are reported in

Fig. 5.10.

At first, let us observe the relevant impact of synchronization on perfor-

mance. On one hand, it causes throughput to increase as the size of exchanged



5.7 Experimental results 75

Figure 5.10: Throughput for the DES benchmark as a function of data granularity.

Figure 5.11: Energy for the DES benchmark as a function of data granularity.

data units increases. In fact, processors still elaborate the same overall amount

of data, but they exchange data units with larger granularity, thus incurring

fewer synchronization events. Please note that the increase in communication

translates into a linear increase of computation, thus resulting in the linear in-

crease of throughput.

On the other hand, for small data units, shared memory scales worse than

message passing due to the high overhead associated with interrupt handling.

In fact, the idle task is scheduled to avoid polling remote semaphores, and

the DES task is re-scheduled when an interrupt is received. On the contrary,

message pasing can poll a distributed local semaphore without accessing the

bus. This inefficiency incurred by shared memory significantly impacts its per-

formance with respect to that of message passing, which is clearly the best

solution for small data units.
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In addition, Fig. 5.10 also shows that the message passing approach clearly

outperforms shared memory over all the range of explored data granularity.

Unlike the synth-MM benchmarks, where a larger data size results in an in-

creasing efficiency of shared memory over message passing, here the advan-

tage of message passing over shared memory does not reduce but stays con-

stant over the range of explored data unit size.

In fact, as data footprint increases, the lower synchronization overhead of

shared memory is progressively counterbalanced by the increasing cache miss

ratio of the consumer processor, and the two low level effects compensate each

other, as showed by the parallel curves in Fig. 5.10.

In this case, the degrading data cache performance is not related to cache

conflicts, but rather to the limited cache size. In fact, as Fig. 5.10 indicates, a

fully associative cache provides negligigle performance benefits. On the con-

trary, shared memory performance can be significantly improved by increas-

ing the data cache size from (default) 4kB to 8kB. The underlying reason is that

while the cache miss ratio of all slave processors stays constant as data size

increases, this does not hold for the consumer. This latter reads slave output

data from shared memory. While for small data units the corresponding mem-

ory locations can be contained in the consumer cache without conflicts, a larger

data footprint causes an increasing number of conflicts in the 4kB data cache

(from 4 to 11%), that penalizes shared memory.

Interestingly, further increasing the data cache size from 8kB to 16kB leads

to a performance saturation effect, which indicates that in this scenario a mes-

sage passing solution is inherently more effective. Moreover, reverting to such

large caches starts impacting also system energy, as illustrated in Fig. 5.11. The

trend of energy curves is strongly correlated to the performance plot, in that

a higher throughput determines a shorter execution time to process the same

amount of data.

5.7.4 Pipelining

We finally ran the pipelined matrix processing benchmarks (multiplication and

addition), and reported simulation results in Fig. 5.12.

Consider case (a), i.e. matrix multiply. This benchmark has features com-

mon to both MM and DES benchmarks. Like MM, here we have high data

locality and high computation complexity. Like DES, we have a high impact of

synchronization mechanisms. Results show that for small matrices, the more

efficient synchronization carried out by message passing is compensated by

the higher time spent for inter-processor communication: with shared mem-

ory, cache updates occur in parallel with task execution, while with message
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Figure 5.12: Throughput for pipelined matrix processing. (a) Matrix multiplication. (b)
Matrix addition.

passing the small data size is not in favor of using a DMA due to the program-

ming overhead. Pros and cons of each paradigm compensate each other and

we do not observe any performance difference.

Although counterintuitive, if matrices become large, the higher computa-

tion efficiency of message passing (shared memory incurs a significant cache

miss ratio) does not determine an overall better performance of message pass-

ing. In fact, since the pipeline stages are almost perfectly balanced, all data

transfers between pairs of communicating processors occur in parallel at the

same time, thus creating localized peaks of bus congestion that increase trans-

fer times. This explains the similar performance of message passing and shared

memory also for large data.

In (b), the shared memory solution outperforms the message passing one

as matrix size increases, reflecting what we have already seen in the synth-MM

benchmark. However, if matrices are small, the high synchronization efficiency

of message passing generates performance benefits, as seen for DES. Moreover,

in the rightmost part of the plot we can see that cache-coherent shared memory

and non cache-coherent shared memory tend to have the same performance.

In fact, cache-coherent shared memory suffers from a high percentage of cache
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Figure 5.13: Energy for pipelined matrix processing. (a) Matrix multiplication. (b) Ma-
trix addition.

Task 1 2 3 4 5 6 7 8
Cycles 19497 56109 53497 112095 28281 46848 18973 19432

Table 5.5: The computation cost of each task of the pipeline

Processor 1 2 3 4
Task Mapping 1 6,7 4,5 3 0,1,2
Task Mapping 2 2,3 6,7 4,5 0,1

Table 5.6: Mapping of tasks on the processors

misses, and this counterbalances the more efficient accesses to shared memory.

In Fig. 5.13 (a) we see that the shared memory variant consumes more en-

ergy, since we have an increase of data cache misses. On the contrary, in (b)

communication plays a more significant role, therefore message passing pro-

gressively becomes less energy-efficient.

Impact of mapping decisions

For balanced pipelines, message passing suffers from the high peak bandwidth

utilization problem that limits its performance. Let us now show that this lim-
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Figure 5.14: Bit rate achieved with the different mappings.

itation can be relieved by taking the proper course of actions, and that the per-

formance that can be achieved in this way cannot be achieved by shared mem-

ory by varying cache settings. We consider a pipeline of matrix multiplications,

where a different number of operations is performed at each stage, thus mak-

ing the pipeline unbalanced (see Table5.5). The rightmost bars in Fig.5.14 in-

dicate that message passing outperforms shared memory in this context, even

though the difference is not significant. However, if a lower throughput is

needed, by rearranging task allocation to processors and allowing more tasks

to run on the same processor, we can get a more noticeable differentiation be-

tween message passing and shared memory, provided communication is taken

into account in the mapping framework. We focused on a 500 MBit/sec target

throughput, and considered two mappings that meet the performance con-

straint while generating different amounts of bus traffic. The mappings are

reported in Table5.6, and the first one was communication-optimized by us-

ing the framework in[110]. By looking at the results in Fig.5.14, the message

passing implementation of mapping 1 outperforms that of mapping 2. The

performance difference can be explained by the peaks in bandwidth utiliza-

tion, which increase the time spent in transferring data. Finally, the plot shows

that shared memory performance is always lower than that of message pass-

ing, whatever the cache configuration (size and associativity), thus proving a

higher efficiency of message passing for this context.
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5.8 Contrasting programming paradigms for MP-

SoCs and parallel computers

Our exploration has pointed out some main differences between programming

paradigms for MPSoCs with respect to those for the parallel computing do-

main. We summarize them as follows:

• In shared memory platforms, the use of shared buses makes update-

based cache coherence protocols effective for producer-consumer com-

munication, without generating traffic overhead as is the case for many

network-centric parallel computer architectures. Furthermore, caches

tend to smooth the distribution of data traffic, hence reducing the proba-

bility of traffic peaks on the interconnect.

• MPSoCs have access to a fast communication architecture integrated on

the die together with the processors. As a result, memory can be accessed

faster and thus the cache-lines can be refilled more easily than on a tradi-

tional multiprocessor architecture. In practice, this also means that on an

MPSoC the same performance can be obtained with a smaller cache, even

if this causes cache misses to increase. The latter insight is often used by

designers to reduce chip area and thus manufacturing cost. However,

if the bandwidth of the communication architecture becomes congested,

the communication delay increases again and the extra cache-misses then

result in a high performance loss and in a system energy overhead asso-

ciated with longer execution times. Hence, even though with a smaller

cache we can obtain the same performance, the smaller cache makes the

performance more sensitive to bus congestion, potentially limiting the

efficiency of shared memory.

• In the MPSoC context, the software infrastructure is far more lightweight

than in traditional parallel systems. Therefore, many performance

overhead sources that have been traditionally considered negligible or

marginal, now come into play and in some cases might make the differ-

ence. Two relevant examples that have emerged throughout this work are

the overhead for DMA programming (which must be compared with the

size of data to move) and for interrupt handling (to be compared with the

bus congestion induced by semaphore polling). Surprisingly, solutions

that are apparently inefficient might turn out to provide the best perfor-

mance, such as processor-driven data transfers and polling-based syn-

chronization. A similar issue concerns porting of standard messaging li-

braries on MPSoC platforms. The porting process of these libraries (such
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as the SystemV IPC library considered in this work or the MPI primi-

tives) has to be combined with an optimization and customization effort

to the platform instance in order to reduce its performance overhead. As

an example, the several thousands cycles latency incurred by MPI primi-

tives [102] in traditional parallel systems would seriously impair MPSoC

performance. This further stresses the importance of hardware exten-

sions for the different programming paradigms, as we have done in this

work.

• In message passing architectures, local memories in processor nodes can-

not be as large as in traditional distributed memory multiprocessor sys-

tems. On the other hand, software-controlled scratch-pad memories ex-

hibit a negligible access cost, performance- and energy-wise. We think

that this feature, combined with technology constraints in memory fabri-

cations, will further differentiate MPSoC platforms from distributed par-

allel computers. We expect this to impact the architecture of the memory

hierarchy, which will have to store large data sets off-chip while at the

same time avoiding the bottleneck of centralized off-chip memory con-

trollers. Considering these issues is outside the scope of this work, which

has therefore assumed that processing data can be entirely contained in

scratchpad memories, while keeping reasonable memory sizes.

5.9 Design guidelines

A designer can choose the architectural template and the programming

paradigm that best suits its needs based on a few relevant features of the par-

allel application under development. Our analysis has showed the importance

of workload allocation policy, computation/communication ratio, degree of sharing of

input data among working processors and data locality in differentiating between

the performance and energy of the message passing versus the shared memory

programming paradigm. Since our approach is centered around the accuracy

of the exploration framework, we restricted our analysis to three relevant sce-

narios for future MPSoC platforms, which were extensively and accurately in-

vestigated by means of synthetic and parameterizable benchmarks. This leads

us to the following guidelines for system designers:

• For the case where many working processors share the same input

processing data, shared memory typically outperforms message pass-

ing. Shared memory leverages the implicit broadcasting support of-

fered by the write-through update cache coherence protocol. In con-

trast, message passing suffers from the overhead for explicitely repli-
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cated input messages and for post-processing updates of shared data

stored in local memories. Obviously, an application with low compu-

tation/communication ratio emphasizes shared memory efficiency. The

only, non-trivial case where message passing turns out to be competitive

is that of computation-intensive applications with large data sets. In fact,

message passing takes profit by a more efficient computation in scratch-

pad memory, while the shared memory implementation starts suffering

from cache misses. We have showed that shared memory performance

can be restored by means of proper data cache sizing, since this has only

a marginal impact on system energy. However, performance of both pro-

gramming paradigms tends to converge in these operating conditions.

• For synchronization-intensive applications, message passing provides

potentials for the implementation of more efficient synchronization

mechanisms and hence for shorter application execution times. In par-

ticular, this point makes the difference in presence of processing data

with small footprint. Synchronization events can be very costly for MP-

SoC systems, in terms of bus congestion for remote semaphore polling

or performance overhead for interrupt handling and task switching. The

frequency and duration of these events, and hence their impact on appli-

cation execution metrics, depends on the amount of computation per-

formed on each input data, on input data granularity and on relative

waiting times between synchronized tasks. We have observed that this

issue certainly determines better system performance and energy of mes-

sage passing when small input data is to be processed in synchronization-

intensive applications.

• Many applications (e.g., scientific computation, criptography) make use

of iterative algorithms showing poor temporal locality, where all or most

sets of input data are rewritten at each iteration of the algorithm. In this

scenario, message passing turns out to be a more effective solution than

shared memory, even though different cache settings might reduce the

gap. The message passing solution is also the most energy-efficient.

• As regards signal processing pipelines, what really makes the dif-

ference between the two programming paradigms is the computa-

tion/communication ratio and data granularity. For small data sets,

message passing again takes profit by the most efficient synchronization

mechanism, which is key for pipeline implementations. On the other

hand, as the data footprint increases, message passing proves slightly

more effective only for computation-intensive pipeline stages. However,

in this regime message passing performance is extremely sensitive to
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peak bus bandwidth utilization, and for balanced pipelines or signifi-

cant peak bandwidth requirements (associated with input data reading

or output data generation) shared memory becomes competitive. In-

stead, shared memory noticeably outperforms message passing with a

low computation/communication ratio and large data sets, since the

communication overhead of message passing cannot be amortized by

enough computation in scratchpad memory.





Chapter 6

Hardware/Software

Architecture for Real-Time

ECG Monitoring

6.1 Abstract

The interest in high performance chip architectures for biomedical applications

is gaining a lot of research and market interest. Heart diseases remain by far

the main cause of death and a challenging problem for biomedical engineers

to monitor and analyze. Electrocardiography (ECG) is an essential practice in

heart medicine. However, ECG analysis still faces computational challenges,

especially when 12 lead signals are to be analyzed in parallel, in real time,

and under increasing sampling frequencies. Another challenge is the anal-

ysis of huge amounts of data that may grow to days of recordings. Nowa-

days, doctors use eyeball monitoring of the 12-lead ECG paper readout, which

may seriously impair analysis accuracy. Our solution leverages the advance in

multi-processor system-on-chip architectures, and it is centered on the paral-

lelization of the ECG computation kernel. Our Hardware-Software (HW/SW)

Multi-Processor System-on-Chip (MPSoC) design improves upon state-of-the-

art mostly for its capability to perform real-time analysis of input data, leverag-

ing the computation horsepower provided by many concurrent DSPs, more ac-

curate diagnosis of cardiac diseases, and prompter reaction to abnormal heart

alterations. The design methodology to go from the 12-lead ECG application

specification to the final HW/SW architecture is the focus of this paper. We

explore the design space by considering a number of hardware and software

architectural variants, and deploy industrial components to build up the sys-
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tem.

6.2 Introduction

Despite the ongoing advances in heart treatment, in the United States [113]

and Canada [114] as well as in many other countries, the various forms of car-

diovascular disease (CVD) and stroke remain by far the number one cause of

death for both men and women regardless of ethnic backgrounds. Accord-

ing to the World Health Organization (WHO) Report in 2003, 29.2% of total

global deaths are due to CVD, many of which are preventable by action on

the major primary risk factors and with proper monitoring [113]. It is esti-

mated that by 2010, CVD will be the leading cause of death in developing

countries. Since the rate of hospitalization increases with age for all cardiac

diseases [115], a periodic cardiac examination is recommended. Hence, more

efficient methods of cardiac diagnosis are desired to meet the great demand

on heart examinations. However, state-of-the-art biomedical equipment for

heartbeat sensing and monitoring lacks the ability of providing large-scale

analysis and remote, real-time computation at the patient’s location (point of

need). The intention of this work is to use MPSoC microelectronic technol-

ogy to meet the growing demand for telemedicine services, especially in the

mobile environment. The project attempts to address the existing problem of

reducing the costs for hospitals/medical-centers through using MPSoC-based

designs that may replace biomedical machines and have higher quality, re-

duce the nurse’s and doctor’s work-load, and improve the quality of healthcare

for patients suffering from heart diseases by exploring one potential solution.

From the hospital side, deploying this solution will further reduce the costs

of rehabilitating and following up on patients ”primary care” since it allows

better home-care. Home-care ensures continuity of care, reduces hospitaliza-

tion costs, and enables patients to have a quicker return to their normal life

styles. From a technical viewpoint, real-time processing of ECG data would

allow a finer-granularity analysis with respect to the traditional eyeball moni-

toring of the paper ECG readout. Eventually, warning or alarm signals could

be generated by the monitoring device and transmitted to the healthcare cen-

ter via telemedicine links, thus allowing for a prompter reaction of the medical

staff. In contrast, heartbeat monitoring and data processing are traditionally

performed at the hospital, and for long monitoring periods a huge amount

of collected data must be processed offline by networks of parallel comput-

ers. New models of healthcare delivery [114] are therefore required, improving

productivity and access to care, controlling costs, and improving clinical out-

comes. This poses new technical challenges to the design of biomedical ECG
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equipment, calling for the development of new integrated circuits featuring

increased energy efficiency while providing higher computation capabilities.

The fast evolution of biomedical sensors and the trend in embedded comput-

ing are progressively making this new scenario technically feasible. Sensors

today exhibit smaller size, increased energy efficiency and therefore prolonged

lifetimes (up to 24 hours) [116], higher sampling frequencies (up to 10 kHz

for ECG) and often provide for wireless connectivity. Unfortunately, a mis-

match exists between advances in sensor technology and the capabilities of

state-of-the-art heart analyzers [117], [118], [119]. They cannot usually keep

up with the data acquisition rate, and are usually wall-plugged, thus prevent-

ing for mobile monitoring. On the contrary, the deployment of wearable de-

vices such as SoC devices has to cope with the tight power budgets of such

devices, potentially cutting down on the maximum achievable monitoring pe-

riod. In this paper we propose a wearable multi-processor biomedical-chip

for electrocardiogram (MPSoC ECG biochip) paving the way for portable real-

time electrocardiography applications targeting heart disorders. The biochip

leverages the computation horsepower provided by many (up to twelve) con-

current DSPs and is able to operate in real-time while performing the finest

granularity analysis as specified by the ECG application. Moreover, in case

of heart failure emergency aid should arrive in a period of few minutes from

the time when the heart failed, otherwise brain damage may occur. Hence,

real time analysis must be done in few seconds to allow the alarm signal to

reach the emergency aid team, which should act immediately. The biochip

system builds upon some of the most advanced industrial components for MP-

SoC design (multi-issue VLIW DSPs, high-throughput system interconnect and

commercial off-the-shelf biomedical sensors), which have been composed in a

scalable and flexible platform. Therefore, we have ensured its reusability for

future generations of ECG analysis algorithms and its suitability for porting

of other biomedical applications, in particular those collecting input data from

wired/wireless sensor networks [120]. The paper goes through all the steps

of the design process, from application functional specification to hardware

modeling and optimization. System performance has been validated through

functional, timing accurate simulation on a virtual platform. We point out the

need for simulation abstractions matching the application domain. A 0.13µm

technology-homogeneous power estimation framework leveraging industrial

power models is used for power management considerations [97], [98]. The pa-

per presents the process of software functional specification, optimization and

parallelization, as well as the results of the hardware design space exploration,

which leads to the final performance- and energy-optimized solution.
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Figure 6.1: 12-lead ECG: RA, LA, LL, & RL are the right arm, left arm, left leg, and right
leg sensors. RL is grounded (G).

6.3 Biomedical Background

The electrocardiogram (ECG) is an electrical recording of the heart activity that

is used as a diagnosis tool by physicians and doctors to check the status of the

heart. The most commonly used way to detect the heart status is the 12-lead

ECG technique. This technique uses nine sensors on the patient’s body 6.1.

The three main sensors are distributed by: placing one sensor on the left arm

(LA), a second sensor on the right arm (RA), and a third sensor on the left leg

(LL). The right leg (RL) is connected by only a wire to be used as ground for

the interconnected sensors. By only having these three sensors physicians can

use a method known as the 3-lead ECG, which suffers from the lack of infor-

mation about some parts of the heart but is useful for some emergency cases to

have quick analysis. In this respect, medical doctors require more sensors (i.e.,

more leads). Hence, six more sensors (V1-V6) are added on the chest (Fig. 1).

The voltages V1-V6 are measured with respect to Ground (G) on the right leg

(RL). In some cases, physicians use these six chest-placed sensors to analyze

the heart. Using all the nine sensors and interconnecting them for the 12-lead

ECG gives twelve signals known in biomedical terms as: Lead I, Lead II, Lead

III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6 (6.1). The 12-lead ECG produces

huge amounts of data especially when used for a long number of hours. Physi-

cians use the 12-lead ECG method, because it allows them to view the heart in

its three dimensional form; thus, enabling detection of any abnormality that
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Figure 6.2: Ideal ECG Signal for lead I. Figure 6.3: Complete paper readout, which is
not accurate to see peaks nor easy
to read for long recordings.

may not be apparent in the 3-lead or 6-lead ECG technique. 6.2 shows an ex-

planatory example of a typical ECG signal. The most important points on the

ECG signal are the peaks: P, Q, R, S, T, and U. Each of these peaks is related

to a heart action that is of importance to the medical analysis. Figure 3 shows

real recorded signals from 12-leads, which are printed on the eyeballing paper.

This paper printout is the classical medical technique used for looking at ECG

signals, and it is still used.

However, the eyeballing paper print makes the check of the different heart

peaks and rhythms difficult and inaccurate due to its dependence on the physi-

cian’s eyes. On the other hand, when using digital recording and filtering we

can determine the peaks more accurately. Consequently, we can use digital

computing to process the sensed data and analyze the heart beat. In addition,

there are normal medical ranges for the inter-peak time intervals, and every

combination of different inter-peak intervals proves a type of heart illness. The

most important of the peaks is the R peak, which refers to the largest heart

blood pump.

6.4 Previous Work

Electrocardiogram methods for heart analyses have been one of the most im-

portant medical practices, hence, the monitoring and analyses of ECG signals

have not only gone through a lot of research work, but also many companies

have investigated and worked on commercial solutions. However, we are not

aware of any solution in the research or the commercial markets that is com-

posed of a single-chip real-time analysis solution for full 12-lead ECG, and that

is able to estimate the heart period independent of the peak signals and, at
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the same time diagnose all the peaks: P, Q, R, S, T and U and their inter-peak

intervals to result in disease diagnosis. Most of the work done involves only

recording huge amounts of data in large storage media and then analyzing the

stored data, but not allowing the ease of patient mobility. Most of the time,

the patient has to be confined to a bed for a number of hours (could be for

a whole day). Some commercial solutions are only capable of concluding if

the heart beat is normal or abnormal but can not specify the period nor could

they diagnose the disease. Other real time solutions available in the market, in

healthcare institutes, and in research organizations, are only capable of sensing

and transmitting ECG data [121] to: either a local machine [122] or to a distant

healthcare center [123]. In both cases, the work that is executed involves check-

ing if the heart beat is healthy or unhealthy without analyzing the disease and

not in real-time. Moreover, the commercial solutions under study [124] do not

look into the parallelization of the ECG analysis into multiple cores, so to speed

up processing.

6.5 Sensing and Filtering Stage

ECG analysis requires three main phases: (i) acquiring the signals from the

leads, (ii) filtering the lead-signals (each alone), and (iii) analysis 6.4. Firstly,

the sensing phase requires an A/D converter in order to be able to have digital

data for our digital filter. We use 16 bit A/D converters, because our analysis

algorithm and ECG biochip are designed based on having 16-bit filtered data

as input. We briefly discuss the filtering method we use as an essential part of

our proposed solution, and then we discuss the biochip design that depends

on this filtering step. The high investment in sensor technology and biomed-

ical research in general gave the birth to biomedical sensors that have more

advanced features than the commercial available ones just a few years ago.

For instance, the nowadays sensors are characterized by prolonged lifetimes

(up to 24 hours), and higher sampling frequencies (up to 10 kHz for ECG).

Some sensor companies have produced wireless biomedical sensors in order

to aid patient mobility [116]. This advance in biomedical sensors faces a mis-

match with biomedical heartbeat analyzers that still lack behind to cope with

the huge amounts of data, the high rates, and the wireless features that modern

sensors can provide [118]. In our work, many sensors may be chosen, and for

the moment we choose the sensors that can serve our real-time aim and that

have reasonable prices for the market success of the solution, hence we choose

the state of the art commercial sensor from Ambu Inc. silver/silver chloride

B̈lue Sensor R¨ [116] shown in 6.4. It is characterized by: 24 hour lifetime, su-

perior adhesion, optimal signal measuring during stress tests. It is small to
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carry (57mm x 48mm), and it is easily wearable. On the other hand, even the

state of the art sensors suffer from the usual problems that most biomedical

sensors suffer from. For instance, data provided by biomedical sensors suffers

from several types of noise: physiological variability of QRS complexes (The

QRS Complex is shown in 6.2, baseline wander, muscle noise, artifacts due to

electrode motion, power-line interference [125]. The presence of several noise

sources might impair ECG analysis accuracy, as showed in the R-Peak detec-

tion marked by circled areas in 6.5. Two peaks may be detected where there

should be only one. In order to deal with noisy input signals, we designed an

IIR filter with order 3 that outputs its results in 16-bit binary format 6.4. How-

ever, we need to be aware of the fact that we want to look in our solution at

high sampling frequencies (250Hz, 1000Hz and above), because we want to: (a)

make use of the available accuracy of the state of the art sensors, (b) have finer

granularity of data, and (c) get more accurate analysis since in some cases more

data samples are needed to discover a disease; like, for instance, the medical

case known as the R on T phenomena [126], where the R and the T peaks are

very near in time so we need a very high number of samples and an intelligent

algorithm to discover them. Moreover, it is extremely important to choose a

sampling frequency that minimizes the risk of aliasing. The highest frequency

needed for the ECG signal is 90Hz (due to the medical frequencies of the heart),

which implies that the lowest sampling frequency that can be used is equal to

the Nyquist rate (180Hz). However, in order to sample at such a frequency,

the analogue signal has to be band limited to 90Hz, which can be achieved by

the use of a complex analogue bandpass filter with a very sharp frequency re-

sponse. This solution, although advantageous on limiting the amount of data

to be stored, has a disadvantage on the analogue side, since the bandpass filter,

being complex in order to meet the sharpness requirement, will probably have

a considerable power consumption. An alternative solution would be to sam-

ple at a frequency much higher than the Nyquist rate, such that the analogue

bandpass filter can have a relaxed frequency response, while still effectively

filtering out the frequencies that would cause aliasing during sampling. For

instance, by choosing a sampling frequency of 5kHz, all frequencies beyond

2.5kHz would have to be filtered out before sampling, but that task is simpler

than before, since all frequencies between 90Hz and 2.5kHz can be attenuated

without affecting the data needed for analysis. After sampling, band limita-

tion to 90Hz can be implemented using a digital filter. This approach has the

advantage of using a lower-complexity bandpass filter, and reducing consid-

erably the risk of aliasing and folding. Moreover, increasing the number of

samples increases the accuracy of the sample, and makes the overall filtered

signal smoother when used for analysis. Our IIR filter is built to deal with
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Figure 6.4: The System for sensing and filtering of ECG lead signals before sending data
to the ECG Biochip for analysis. Blue Sensor R is from Ambu Inc. [116].

these problems. Another main advantage of using the IIR filter is to eliminate

the noise that is directly proportional to the DC offset of the sensed ECG [125],

which is around 0.1mv. The two plots in 6.5 clearly show how the filtering algo-

rithm remedies this problem. In our implementation, the filter is implemented

in hardware on a dedicated chip feeding the external SDRAM memory of our

biochip. Our filter is the convolution of the noisy signal with the filter impulse

response given in (1):

y[n] =
∑

k=1→∞

h[k] ∗ x[n − k] [1]

where, x[n] is the noisy signal, h[n] is the filter impulse response, and n

is the sample index. This filter in (1) is also an infinite impulse response (IIR,

Chebyschev filter), so it can be written as (2):

y[n] =
∑

l=0

x[n − l] ∗ b[l] −
∑

m=1

x[n − m] ∗ a[m] [2]

where, y is the output of the filter and x is the input, b is the vector that

contains the filter coefficients for signal x, and a is the vector that contains the

filter coefficients for output y.

The upper limits of the coefficients are dependent on the order of the filter

being used. Our IIR filter is of order 3, because our ECG data does not require

higher orders. We can improve our filter (when needed) by simply knowing
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Figure 6.5: ECG raw and filtered data (lead I).

the needed values of the coefficients in vectors a[.] and b[.].

6.6 ECG Algorithm

Most ECG systems make use of the Pan-Tompkins analysis algorithm [127],

which targets QRS complexes ( 6.2) detection and consists of the cascade of

four filters: (i) band pass, (ii) differentiator, (iii) squaring operation, and (iv) a

moving window integrator. In principle, traditional ECG analysis starts from

a reference point in the heart cycle (the R-peak is commonly used as the ref-

erence point). As a consequence, accurate detection of the R-peak of the QRS

complex is a prerequisite for the reliable functionality of ECG analyzers [127].

However, as an effect of ECG signal high variability, R-peak detection might be

inaccurate. For instance, in the R on T phenomena, a T peak may be wrongly

taken for an R peak, and then the R-T interval will be considered as an R-R

interval, and the period will be wrong. Hence, other QRS parameters will be

consequently inaccurate. As a result, traditional techniques may fail in detect-

ing some serious heart disorders such as the R-on-T phenomenon (associated

with premature ventricular complexes) [126]. Our approach takes a different

perspective: instead of looking for the R-peaks and then detecting the period,

we detect the period first (via autocorrelation) and then look for the peaks. We

use an autocorrelation function (ACF) to calculate the heartbeat period without

looking for peaks. Then, we can restrict our analysis to a time window equal
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to the period and detect all peaks. Although potentially more accurate, our al-

gorithm incurs a higher computational complexity: 3.5 million multiplications,

which have been reduced to 1.75 million through a number of code (SW) opti-

mizations. The single-chip multiprocessor architecture that will be selected for

the practical implementation of the algorithm will provide the scalable com-

putation horsepower needed for the highly accurate ECG analysis that we are

targeting. The autocorrelation we use, as shown in (3), has a certain number of

Lags (L) to minimize the computation for our specific application as discussed

below. We validated our algorithm over several medical traces [128], [129].

Ry[k] =
∑

n=∞→−∞

y[n] ∗ y[n − k] [3]

where Ry is the autocorrelation function, y is the filtered signal under study,

n is the index of the signal y, and k is the number of lags of the autocorrelation

(L has an effect on the performance due to the high number of multiplications).

We run the experiments for n = 1250, 5000 and 50,000 relative to the sampling

frequencies of 250, 1000, and 10,000Hz, respectively. In order to minimize er-

rors and execution time we use the derivative of the ECG filtered signal since

if a function is periodic then its derivative is periodic. Hence the autocorrela-

tion function of the derivative can give the period as shown in 6.6. In order

to be able to analyze ECG data in real-time and to be reactive in transmitting

alarm signals to healthcare centers (in less than 1 minute), a minimum amount

of acquired data has to be processed at a time without losing the validity of

the results. For the heart beat period, we need at least 4 seconds of ECG data

in order for the ACF to give correct results. The autocorrelation function is

deployed within the algorithm shown in 6.7, which computes the required

medical parameters: heart period, peaks P, Q, R, S, T, and U, and inter-peak

time spans. Peak heights and inter-peak time ranging outside normal values,

which indicates different kinds of diseases, are detected with our algorithm.

From a functional viewpoint, the algorithm consists of two separate execution

flows: one that finds the period using the autocorrelation function (process 1

in 6.7), and another one that finds the number, amplitude and time interval of

the peaks in the given 4-second ECG data (process 2 in 6.7). In process 1, we

firstly find the discrete derivative of the ECG signal. This will not affect the

analysis since the derivative of a periodic signal is periodic with the same pe-

riod. The advantage of taking the derivative, and thus adding some overhead

to the code, is that the fluctuations taking place in the signal and especially

those around the peaks would be reduced to a near-zero-value. Moreover, per-

formance overhead associated with derivative calculation of the ECG signal is

negligible compared to the rest of the algorithm, especially the autocorrelation
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part. Finally, if the original signal is periodic, then the autocorrelation of the

derivative of the signal is periodic by definition, with the same period as that

of the original signal under test. In process 2, a threshold is used to find the

peaks. This threshold was experimentally set to 60% of the highest peak in the

given search interval.

Figure 6.6: Heart period analysis: (a) ECG signal peaks P, Q, R, S, T, and U; (b) deriva-
tive amplifying R peaks; (c) autocorrelation of the derivative characterized
by significant periodic peaks having the same value as the period of the ECG
signal in (b) and thus (a).

Our proposed ECG-analysis algorithm was conceived to be parallel and

hence scalable from the ground up. Since each lead senses and analyzes data

independently, each lead can then be assigned to a different processor. So, to

extend ECG analysis to 15-lead ECG or more, then what is required is to change
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Figure 6.7: The Autocorrelation function-based methodology for ECG analysis.

the number of processing elements in the system. Alternatively, more leads can

be processed by the same processor core provided the real-time requirements

are achieved.

6.7 MPSoC Architecture

In order to process filtered ECG data in real-time, we chose to deploy a parallel

Multi-Processor System-on-Chip architecture. The key point of these systems

is to break up functions into parallel operations, thus speeding up execution

and allowing individual cores to run at a lower frequency with respect to tra-

ditional monolithic processor cores. Technology today allows the integration

of tens of cores onto the same silicon die, and we therefore designed a parallel

system with up to 13 masters and 16 slaves ( 6.8). Since we are targeting a plat-

form of practical interest, we chose advanced industrial components [96]. The

processing elements are multi-issue VLIW DSP cores from STMicroelectron-

ics, featuring 32KB instruction and data caches. Processor speed can achieve

400 MHz, although 200 MHz can be preferred in more power-aware solutions.

These cores leverage the flexibility of programmable cores and the computa-

tion efficiency of DSP cores. Each processor core has its own private memory

(512KB each), which is accessible through the bus, and can access an on-chip

shared memory (8KB are enough for this application) for storing computation

results. Other relevant slave components are a semaphore slave, implement-
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ing the test-and-set operation in hardware and used for synchronization pur-

poses by the processors or for accessing critical sections, and an interrupt slave,

which distributes interrupt signals to the processors. Interrupts to a certain

processor are generated by writing to a specific location mapped to this slave

core. The STBus interconnect from STMicroelectronics was instantiated as the

system communication backbone. STBus can be instantiated both: as a shared

bus or as a partial or full crossbar, thus allowing efficient interconnect design

and providing flexible support for design space exploration. Bus frequency is

200 MHz. In our first implementation, we target a shared bus to reduce sys-

tem complexity ( 6.8) and assess whether application requirements can already

be met or not with this configuration. We then explore also a crossbar-based

system, which is sketched in 6.9. The inherent increased parallelism exposed

by a crossbar topology allows decreasing the contention on shared communi-

cation resources, thus reducing overall execution time. In our implementation,

only the instantiation of a 3x6 crossbar was interesting for the experiments. We

put a private memory on each branch of the crossbar, which can be accessed

by the associated processor core or by a DMA engine for off-chip to on-chip

data transfers. Finally, we have a critical component for system performance

which is the memory controller. It allows efficient access to the external 64MB

SDRAM off-chip memory. A DMA engine is embedded in the memory con-

troller tile, featuring multiple programming channels. The controller tile has

two ports on the system interconnect: one slave port for control and one mas-

ter port for data transfers. The overall controller is optimized to perform long

DMA-driven data transfers. Embedding the DMA engine in the controller has

the additional benefit of minimizing overall bus traffic with respect to tradi-

tional standalone solutions. Our implementation is particularly suitable for

I/O intensive applications such as the one we are targeting in this work. In

the above description, we have reported the worst case system configurations.

In fact, fewer cores can be easily instantiated if needed. In contrast, this ar-

chitectural template is very scalable and allows for further future increase in

the number of processors. This will allow to run in real time even more ac-

curate ECG analyses for the highest sampling frequency available in sensors

(10,000Hz, and 15 leads, for instance), since this platform is able to provide

scalable computational power. The entire system has been simulated by means

of the MPSIM simulation environment [96], which provides for cycle-accurate

functional simulation of complete MPSoCs at a maximum simulation speed

of about 200Kcycles/second (running on a P4 at 3.5GHz). The simulator pro-

vides also a power characterization framework leveraging 0.13µm technology-

homogeneous industrial power models from STMicroelectronics [97], [98]. We

believe that for life-critical applications such as ECG real-time analysis, it is
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Figure 6.8: Single bus architecture with STBus interconnect.

important to conduct low-level accurate simulations in order to perfectly un-

derstand system level behaviour and have a predictable system with minimum

degrees of uncertainty.

Each processor core programs the DMA engine to periodically transfer in-

put data chunks onto their private on-chip memories. Moved data typically

corresponds to 4 seconds of data acquisition at the sensors: 10KB at 1000Hz

sampling frequency, transferred on average in 319279 clock cycles (DMA pro-

gramming plus actual data transfer) on a shared bus with 12 processors. The

consumed bus bandwidth is about 6MBytes/sec, which is negligible for an

STBus interconnect, whose maximum theoretical bandwidth with 1 wait state

memories exceeds 400Mbyte/sec. Then each processor performs computation

independently, and accesses its own private memory for cache line refills.

Different solutions can be explored, such as processing more leads onto the

same processor, thus impacting the final execution time. Output data, amount-

ing to 64 bytes, are written to the on-chip shared memory, but their contri-

bution to the consumed bus bandwidth is negligible. In principle, when the

shared memory is filled beyond a certain level, its content can be swapped

by the DMA engine to the off-chip SDRAM, where the history of 8 hours

of computation can be stored. Data can also be remotely transmitted via a

telemedicine link.
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Figure 6.9: Crossbar architecture with STBus interconnect. Low-bandwidth slaves have
been grouped to the same crossbar branch (partial crossbar concept).

6.8 Experimental Results

The first analysis was done to profile the execution of the code and to determine

the best coding solution in terms of energy, execution time, and precision. Fur-

thermore, we have explored the design space searching for the best platform

configuration for the 12-lead ECG data analysis. Alternative system configura-

tions have been devised for different levels of residual battery lifetime, trading

off power with accuracy.

6.8.1 Floating Point vs Fixed Point Code

We ran two different code implementations: (a) one using floating point vari-

ables and (b) one using fixed point integers [130] with an exponent of 22. 6.10

shows the results for the two different code implementations from time (execu-

tion time) and energy (relative) points of view. The ST220 processor core runs

at 200MHz. We have performed the analysis for 3, 6 and 12 leads; furthermore

we process each lead on a separate core.

We found that the precision of the results obtained with fixed point code,

by using 64 bit integer data types representation, almost matches the results

obtained with floating point code for a large number of input data traces. On

the contrary, the time needed to process data, and also the energy required,

decreases up to 5 times. This is mainly due to the fact that, like many com-

mercial DSPs, our processor cores do not have a dedicated floating point unit.
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Figure 6.10: Comparison between different code implementations for the analysis of the
3-lead, 6-lead and 12-lead ECG. Data analysis for each lead is computed on
a separate processor core. Sampling frequency of input data was 250Hz.
System operating frequency was 200 MHz.

Therefore, floating point computations are emulated by means of a C software

library linked at compile time. 6.10 also shows that even with 12 concurrent

processors, the bus is not saturated, since we observe negligible effects on the

stretching of task execution times. In contrast, adding more processors deter-

mines a linear increase in energy dissipation.

6.8.2 Comparison between Processor Cores

We then compared the performance of an ARM7TDMI with the ST220 DSP

core, in order to assess the relative performance of the chosen VLIW DSP core

with respect to a reference and popular architecture for general purpose com-

puting, when put at work to process the computation kernel of our specific ap-

plication. In order to have a safe comparison, we set similar dimensions of the

cache memory (32KB) for the two solutions, and we run two simulations for the

processing of one ECG-Lead at 250Hz sampling frequency. We count execution

cycles to make up for the different clock frequencies. We adopt this single-core

solution, since our first aim is to investigate the computation efficiency of the

two cores for our specific biomedical application, and de-emphasize system

level interaction effects such as synchronization mismatches or contention la-

tency for bus access. In 6.11, we can observe that the ST220 DSP proves more

effective both in execution time and energy consumption, as expected. In de-
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Figure 6.11: Comparing ARM7TDMI with ST200 DSP performances, when processing
1 Lead at 250Hz sampling frequency.

tail, the ARM core is 9 times slower than the ST220 in terms of execution time,

and it consumes more than twice the energy incurred by the DSP. These results

can be explained based on three considerations:

• The ST220 has better software development tools, which result in a

smaller executable code. The size of the executable code for the ARM

is 1.7 times larger than that of the ST220.

• The ST220 is a VLIW DSP core, therefore it is able to theoretically achieve

the maximum performance of 4 instructions per cycle (i.e., 1 bundle).

• A metric which is related to both previous considerations is the static

instructions per-cycle, which depends on the compiler efficiency and on

the multi-pipeline execution path of the ST220. For our application, this

metric turns out to be 2.9 instructions-per-bundle for ST220.

6.8.3 Allocation of Computation Resources

Based on previous findings (Sections 7.1 and 7.2), we will adopt a HW/SW

architecture consisting of the ST220 DSP core and a fixed point coding imple-

mentation of the algorithm for the experiments that follow. The ST220 will

be operated at its typical frequency of 400MHz, while the rest of the system

will run at 200 MHz. We now want to optimally configure the system to sat-

isfy the application requirements at the minimum hardware cost. We there-
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Figure 6.12: Execution Time and relative energy of the system with an increasing num-
ber of DSPs and input data sampled at 250Hz sampling frequency. System
interconnect is a shared bus.

fore measure the execution time and the energy dissipation for an increasing

number of DSP cores in order to find the optimal configuration of the system.

Since commercially available ECG solutions target sampling frequencies rang-

ing from 250 to 1000Hz, we performed the exploration for these two extreme

cases for the 12-lead ECG signal. We analyze a chunk of 4secs of input data,

which provides a reasonable margin for safe detection of heartbeat disorders.

Figure 12 shows that if we increase the number of processors, the execution

time scales almost linearly, at least up to 6 processors. After that, we observe

diminishing returns in increasing system parallelism. Since the real-time re-

quirement of 4 seconds for the overall computation is largely met, we conclude

that in the range of interest (up to 6 processors) second order effects typical of

multi-processor systems (e.g., bus contention reducing the offered bandwidth

to the processor cores with respect to the requested one) are negligible. A sin-

gle shared bus and even a single processor core are well suited for this case.

However, this does not mean that the amount of data moved across the bus

is negligible. This data is, however, read by the processor cores throughout

the entire execution time, thus absorbing only a small portion of the bus band-

width. In this regime, bus performance is still additive, i.e. the bus delivers a

bandwidth which equals the sum of the bandwidth requirements of the pro-

cessor cores.

Moreover, the good scalability of the application is also due to memory

controller performance. In fact, at the beginning of the computation each pro-

cessor loads processing data from the off-chip to the on-chip memory, hence,
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Figure 6.13: Execution Time and relative energy of the system with an increasing num-
ber of DSPs and input data sampled at 1000Hz sampling frequency. System
interconnect is a shared bus.

requiring peak memory controller bandwidth. The architecture of the memory

controller proves capable of providing the required bandwidth in an additive

fashion. By looking at the 1000Hz plot ( 6.13), we observe that for the single

processor case, the time it takes for a DSP to process 12 leads increases by more

than 15 times with respect to the 250Hz case. Energy has increased as well

by 90%. We still have about 1 second margin before the deadline (4 seconds),

which is enough to perform additional analysis of the results of the individual

lead-computations and converge to a diagnosis based on computed heartbeat

parameters. In case a larger margin is needed, the increased workload can be

effectively tackled by activating a larger number of processor cores. This comes

at smoother energy degradation than the 250 Hz case, as showed in 6.13 (for

the 1KHz sampling frequency). The larger number of energy consuming cores

is better amortized by the savings on application execution. Although even for

the 1KHz case, 1 DSP already meets the real-time requirements, the inherent

parallelism of our architecture is useful in many senses. Firstly, when the mar-

gin to the deadline is too tight to run a complex diagnosis algorithm, the exe-

cution time can be reduced by using more processors. Secondly, working with

a large number of processors allows sustaining higher sampling frequencies

than 1KHz and more complex algorithms for high accuracy analysis. Thirdly,

more processors can help save power, since instead of running one processor at

full-speed, we may want to run more processors at reduced speeds thus cutting

down on overall system energy.

An overview of the performance and energy overhead that is incurred
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Figure 6.14: Relative Execution Time and Energy Ratios between the 1000Hz and the
250Hz sampling frequency experiments.

when moving from 250Hz to 1000KHz sampling frequencies of input data is

reported in 6.14. Interestingly, the performance plot shows a constant 15x in-

crease in computation time up to 4 processors. In the 6 processor case, the

larger amount of data which needs to be transferred on the bus by each pro-

cessor (due to data over-sampling) determines an increase of bus access times

and therefore a longer execution time. As we push system parallelism to the

limit, we observe (see the 12 DSPs case) that the computation workload is fully

parallelized, and a huge but unique peak bandwidth is requested to the bus.

Moving from 1 DSP to 12 DSPs, we move from 12 null contention bandwidth

peaks to a single, heavy contention peak. This traffic profile shapes the ex-

ecution time ratio curve as showed in 6.14. The energy-ratios plot confirms

that the overhead for introducing more processors is worth in the 1000Hz case,

while is not fully justified for the 250Hz case due to the different computation

complexities to be tackled.

6.8.4 HW/SW Optimization for Aggressive Scalability

We are interested in assessing the achievable upper bound in system perfor-

mance. This paves the way for further improvements of the biomedical algo-

rithm, and it supports the use of the high data acquisition capabilities of the

state-of-the-art biomedical sensors (i.e. higher sampling frequencies). In order

to push our HW/SW design to suit more accurate analysis while respecting the

real-time constraint, we look at how we can push both: the specific-application

algorithm (SW) and the HW architecture while considering the high medical
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demands of correctness and accuracy of results at the service level (medical

service). To have higher accuracy and be able to diagnose arrhythmias like the

R-on-T phenomena [126] and other medical cases, we found that the biomed-

ical analyses necessitate higher sampling frequencies as input. The need for

analysis at higher frequencies delivers the reality that: not only do we need to

look at HW issues, but we also have to look at the algorithm parameters. In

previous experiments, we used a 4-second input chunk to leave a safety margin

for the input signals, and we used the number of Lags (L) variable to compen-

sate for the data chunk size. We found that in the case of higher frequencies

we can change some parameters so that the input data chunk can be optimized

while still keeping good service (medical) level results. The solution is that

we restrict the analysis chunk-size of our biomedical algorithm to 3.5 seconds

(instead of 4 seconds), which also effects the number of multiplications that

are needed. From the HW viewpoint, we simulated a 12 processor system

performing the 12-lead ECG analysis with increasing sampling frequencies to

determine the threshold value beyond which the system does not converge to a

solution in real-time. We found that the limit for the input sampling frequency

to be 2200Hz (maximum). We verified that in this operating condition, system

performance is communication-limited, i.e. the shared bus architecture is not

able to keep up with the increase in communication bandwidth requirements

any more. Therefore, we face the need to push the hardware as the algorithm

was pushed to the maximum. By further performing hardware optimization,

we were able to replace the shared bus with a full crossbar, and observed that

12 leads could be processed then in slightly more than 1 second, i.e. well below

the 3.5 seconds deadline. Such an optimized HW/SW architecture was proved

to work in real-time up to a sampling frequency of 4000Hz (Fig. 6.15).

In this condition, the system turns out to be computation-dominated, hence

the communication architecture is not the bottleneck. The flexibility of our sys-

tem interconnect allows to achieve the same performance with less hardware

resources. In fact, a partial crossbar design was experimented, consisting of

grouping low bandwidth cores on the same crossbar branch. We observed that

performance with the partial crossbar closely matches that of a full-crossbar

(less than 2% average difference) but with almost 3 times less hardware re-

sources. We found the optimal crossbar configuration (5x5 instead of 13x13)

by accurate characterization of shared bus performance. On a shared bus, we

increased the number of processors and observed when the execution time

started deviating as an effect of bus contention. With up to 4 cores connected to

the same communication resource, this latter is still able to work in an additive

regime. Hence, it is not necessary to use full crossbars, but partial crossbars

can be equally effective with less hardware resources.
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Figure 6.15: Critical sampling Frequencies for 3 architectures: (1) shared bus, (2) full
crossbar, and (3) partial crossbar.

6.8.5 Conclusion and Future Work

We present an application-specific MPSoC architecture for real-time ECG anal-

ysis, which paves the way for novel healthcare delivery scenarios (e.g., mobil-

ity) and for accurate diagnosis of heart-related diseases in real-time. Although

a single DSP architecture proves capable of meeting the real-time require-

ments of our biomedical applications for lower than the maximum (10KHz)

that state-of-the-art biomedical-sensors can deliver, the inherent parallelism

we provide prevents the architecture from being the bottleneck for further

advances in the field of ECG analysis. Our biochip solution can support the

increasing sampling frequencies of biomedical sensors and the increased com-

putation efficiency of analysis algorithms optimized for accuracy. We propose

a case of such algorithms, leveraging auto-correlation function as a better per-

forming alternative to the traditional and commonly-used Pan-Tompkins al-

gorithm. An in-depth comparison of these algorithms goes beyond the scope

of this paper, and is left for future work. The hardware architecture was

built based on industrial components, and its performance upper bounds were

clearly identified. The optimized HW/SW platform proves capable of dealing

with up to 4000Hz sampling frequencies, when system performance becomes

computation-limited.
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Conclusions

One of the most important problems for design space exploration of state-of-

the-art SoCs is the availability of a flexible and accurate simulation platform. To

this purpose, the development of MP-ARM, a multi-processor SoC simulation

tool, has been extensively discussed throughout this work. It is able to simu-

late a scalable number of ARM or STLX cores interconnected to each other by

means of an AMBA-compliant or STBus communication architecture. A par-

allel RTOS has been ported onto the platform, providing the system software

support to run highly parallel applications.

This platform offers large potentials for research purposes. As an example,

the performance of arbitration algorithms for AMBA buses has been investi-

gated. We show that they perform differently under different communication

patterns. In particular, slot reservation outperforms other schemes in presence

of tasks characterized by different workloads and that have to synchronize to

each other during execution. On the contrary, round robin exhibits very good

performance both for the case of independent tasks and of pipelined tasks.

We point out the inability of TDMA to efficiently accommodate interactive

inter-node handshakes and the need for a matching between hardware and

software to maximize system performance.

We have then explored programming paradigms for parallel multimedia

applications on MPSoCs. Our analysis points out that the trade-offs spanned

by MPSoC platforms can be very different from those of traditional parallel

systems, and provide some design guidelines to discriminate between message

passing and shared memory programming paradigms in relevant subspaces

of the software space. We show that message passing is not only a forward-

looking solution for highly integrated network-on-chip based MPSoCs, but

can be applied also to small scale on-chip multiprocessors depending on
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application characteristics and on the availability of hardware extensions

to efficiently support messaging. Looking forward to scalability issues and

system optimization, we envision a hybrid approach to MPSoC development,

where systems are composed of several clusters of shared memory nodes

which communicate among them in a message passing-like fashion. Such a

design paradigm would possibly exploit the advantages of both architectural

templates, resulting in a power- and performance-optimized system. The task

of splitting the computational workload among the clusters becomes a key

issue for the programmer, and it is an open and interesting research area.

Finally we present an application-specific MPSoC architecture for real-time

ECG analysis, which paves the way for novel healthcare delivery scenarios

(e.g., mobility) and for accurate diagnosis of heart-related diseases in real-

time. Although a single DSP architecture proves capable of meeting the real-

time requirements of our biomedical applications for lower than the maximum

(10KHz) that state-of-the-art biomedical-sensors can deliver, the inherent par-

allelism we provide prevents the architecture from being the bottleneck for fur-

ther advances in the field of ECG analysis. Our biochip solution can support

the increasing sampling frequencies of biomedical sensors and the increased

computation efficiency of analysis algorithms optimized for accuracy. We pro-

pose a case of such algorithms, leveraging auto-correlation function as a better

performing alternative to the traditional and commonly-used Pan-Tompkins

algorithm. An in-depth comparison of these algorithms goes beyond the scope

of this paper, and is left for future work. The hardware architecture was

built based on industrial components, and its performance upper bounds were

clearly identified. The optimized HW/SW platform proves capable of dealing

with up to 4000Hz sampling frequencies, when system performance becomes

computation-limited.
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