
1 
 

AAllmmaa  MMaatteerr  SSttuuddiioorruumm  ––  UUnniivveerrssiittàà  ddii  BBoollooggnnaa  

 

DOTTORATO DI RICERCA IN 

Colture arboree ed agrosistemi forestali, ornamentali e 

paesaggistici  

_______________________ 

Ciclo XXII 

Settore scientifico-disciplinare di afferenza: AGR/05 

 

TITOLO TESI 

 

NOVEL TECHNIQUES FOR THE REMOTE SENSING OF 

 

PHOTOSYNTHETIC PROCESSES 

 

 

Presentata da: Ammar Dayyoub 

 

Coordinatore Dottorato    Relatore 

 

Prof. Luca Corelli Grappadelli  Prof. Federico Magnani 

   

 

Esame finale anno 2011 

 



2 
 

Table of Contents 
Acknowledgements .......................................................................................................................... 5 

Abstract ............................................................................................................................................ 6 

General introduction ........................................................................................................................ 8 

1.1. Remote Sensing: definition, components and possible applications ................................ 8 

1.2. Physical and biophysical background of Remote Sensing ............................................... 9 

1.3. Leaf and vegetation reflectance ..................................................................................... 11 

1.4. The carbon balance of vegetation .................................................................................. 12 

1.5. Estimation of fAPAR by remote sensing techniques ...................................................... 14 

1.6. The functional basis of LUE estimation by remote sensing techniques ......................... 15 

1.7. Remote detection of xanthophyll de-epoxidation state and LUE ................................... 18 

1.8. Remote sensing of solar-induced fluorescence Fs ......................................................... 19 

1.9. Conclusions .................................................................................................................... 22 

The functional relationship between photosynthesis and ambient chlorophyll fluorescence ..... 28 

2.1 Abstract ................................................................................................................................ 28 

2.2. Introduction......................................................................................................................... 29 

2.3. Material and methods ......................................................................................................... 33 

2.3.1. Plant material............................................................................................................... 33 

2.3.2. Experimental setup and measurements ...................................................................... 35 

2.4. Results and discussion ........................................................................................................ 37 

2.5. Conclusions ......................................................................................................................... 44 

Modelling the response of steady-state chlorophyll fluorescence to environmental factors: 

model validation in two contrasting species ................................................................................. 49 

3.1 Introduction.......................................................................................................................... 49 

3.2 Modelling ambient fluorescence from photosystem II ................................................. 50 

3.2.1 Model assumptions ................................................................................................... 50 

3.2.2 Processes ................................................................................................................... 51 

3.2.3 Dynamic equations .................................................................................................... 52 

3.2.4 Modelling chlorophyll fluorescence ......................................................................... 54 

3.2.5 Derivation of rate constants and model parameterisation .................................. 57 

3.2.6 Comparison with modulated fluorescence data .................................................... 59 

3.2.7 Correction for PSI contributions .............................................................................. 60 

3.3 Material and methods ...................................................................................................... 62 

3.3.1 Plant material ............................................................................................................. 62 



3 
 

3.3.2 Experimental procedures .......................................................................................... 62 

3.3.3 Model validation ......................................................................................................... 63 

3.4 Results and discussion .................................................................................................... 65 

3.5 Conclusions ........................................................................................................................ 69 

Response of photochemical processes to N fertilisation in Populus, assessed through 

fluorescence and leaf spectroscopy techniques ............................................................................ 78 

4.1. Abstract ............................................................................................................................... 78 

4.2. Introduction ......................................................................................................................... 79 

4.3. Material and methods .......................................................................................................... 79 

4.3.1. Plant material ............................................................................................................... 79 

4.3.2. Selection of leaves of variable biochemical content ..................................................... 80 

4.3.3. Experimental setup and measurements ....................................................................... 81 

4.3.4. Estimation of photochemical and fluorescence yield ................................................... 83 

4.3.5. Measurement of leaf absorbance................................................................................. 85 

4.4. Results and discussion ......................................................................................................... 86 

4.5. Conclusions ......................................................................................................................... 92 

Reflectance indices for the assessment of photosynthetic pigments content and nutritional 

status of poplar trees ..................................................................................................................... 96 

5.1. Abstract ............................................................................................................................... 96 

5.2. Introduction ......................................................................................................................... 97 

5.3. Material and methods ........................................................................................................ 102 

5.3.1. Plant material ............................................................................................................. 102 

5.3.2. SPAD-502 readings ..................................................................................................... 103 

5.3.3. LI-COR Li-1800 Spectroradiometer measurements .................................................... 103 

5.3.4. Chlorophyll and carotenoids content measurements ................................................. 104 

5.3.5. Nitrogen content assessment ..................................................................................... 105 

5.4. Results and discussion ....................................................................................................... 105 

5.4.1. Effects of fertilization on plant growth and characteristics ....................................... 105 

5.4.2. Effects on absorbance ................................................................................................ 106 

5.4.3. Chlorophyll and reflectance at different wavelengths ............................................... 107 

5.4.4. Non-destructive estimation of leaf chlorophyll content ............................................. 109 

5.4.5. Estimation of leaf absorbance .................................................................................... 111 

5.4.6. Chlorophyll and carotenoids ....................................................................................... 112 

5.4.7. Reflectance indices ..................................................................................................... 113 



4 
 

5.4.8. Estimation of leaf nitrogen (N) (concentration and content): ................................... 115 

5.4.9. Assessing the generality of observed relationships ................................................... 116 

5.5. Conclusion ................................................................................................................... 118 

6.1. General discussion ................................................................................................................ 126 

6.2. Conclusions ....................................................................................................................... 128 

 

   



5 
 

Acknowledgements 

 

I want to express my appreciation and sincere gratitude to my advisor Professor Fderico 

Magnani (Professor in the faculty of agriculture-University of Bologna-ITAY), for 

guidance, supervision, encouragement and his great help in reviewing the manuscript. 

 

My deep appreciation is expressed also to Professor Luca Corelli Grappadelli, the PhD 

coordinator in the department of Colture Arboree. 

 

I am also grateful to the staff of the department of Colture Arboree, with special 

mention to the director Professor Guglielmo Costa, for giving me the possibility to 

complete this study. 

 

Sincere thanks are extended to all those who helped me and contributed to complete this 

work, especially Dr. Lucia Cantoni, Dr. Enrico Muzzi, Dr. Maurizio Ventura for their 

cooperation, help and courtesy. 

 

I thank also the Erasmus Mundos External Cooperation for the financial support of my 

PhD period. 

 

Finally sincere thanks to my wife, family, friends and colleagues 
for their continuous encouragements. 

 

 

 

Ammar Khaled DAYYOUB 

 

March 2011 



6 
 

NOVEL TECHNIQUES FOR THE REMOTE SENSING OF 

PHOTOSYNTHETIC PROCESSES 

 

Abstract 

 

Remote sensing (RS) techniques have evolved into an important instrument to 

investigate forest function. New methods based on the remote detection of leaf 

biochemistry and photosynthesis are being developed and applied in pilot studies 

from airborne and satellite platforms (PRI, solar-induced fluorescence; N and 

chlorophyll content), but much remains to be done for the functional interpretation 

of the resulting information.. 

Non-destructive monitoring methods, a direct application of RS studies, are also 

proving increasingly attractive for the determination of stress conditions or 

nutrient deficiencies not only in research but also in agronomy, horticulture and 

urban forestry (proximal remote sensing). 

In this work I will focus on some novel techniques recently developed for the 

estimation of photochemistry and photosynthetic rates (and gross primary 

productivity at canopy scale), based (i) on the proximal measurement of steady-

state chlorophyll fluorescence yield (as a preliminary step for the remote 

detection of fluorescence radiance) or (ii) the remote sensing of changes in 

hyperspectral leaf reflectance, associated to xanthophyll de-epoxydation and 

energy partitioning, which is closely coupled to leaf photochemistry and 

photosynthesis. I will also present and describe the thorough test of a 

mathematical model of leaf steady-state fluorescence and photosynthesis 

recently developed in our group. Two different species were used in the 

experiments:  Arbutus unedo, a schlerophyllous Mediterranean species, and 

Populus euroamericana, a broad leaf deciduous tree widely used in plantation 

forestry throughout Europe.  
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Results show that ambient fluorescence could provide a useful tool for testing 

photosynthetic processes from a distance. These results confirm also the 

photosynthetic reflectance index (PRI) as an efficient remote sensing reflectance 

index estimating short-term changes in photochemical efficiency as well as long-

term changes in leaf biochemistry. 

The study also demonstrated that remote sensing techniques, whilst conveniently 

calibrated, could provide a fast and reliable method to estimate photosynthetic 

pigment content and total nitrogen, beside assessing the state of photochemical 

process in our plants‟ leaves in the field. This could have important practical 

applications for the management of plant cultivation systems, for the estimation of 

the nutrient requirements of our plants for optimal growth. 
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Chapter 1 

 

General introduction 

 

1.1. Remote Sensing: definition, components and possible applications 

Remote sensing (RS) can be defined as the detection of the quantitative 

properties of a distant object, without any direct contact with it. It is generally 

based on the analysis of the reflection (or emission) by the object itself of an 

electromagnetic radiation, either natural (passive remote sensing) or artificially 

shed on the object for this particular purpose (active remote sensing). 

Remote sensing is comprised of two distinct activities: on the one hand, the term 

refers to the activity of collecting data by sensors designed to detect 

electromagnetic energy from positions on ground-based, aerial, and satellite 

platforms; on the other hand, it also identifies the methods of interpreting those 

data.  

Starting around 1960 by remote sensing reference is generally made to the 

numerical analysis of images, in contrast with photogrammetry, which is imagery 

(or visually)-based. 

The first known forestry remote sensing application was recorded in the Berliner 

Tageblatt of September 10, 1887 (Spurr, 1960). The notice concerned the 

experiments of an unnamed German forester who constructed a forest map from 

photos acquired from a hot-air balloon. Nowadays the remote sensing of forests, 

vegetation and other natural resources is attracting increasing attention, in what 

is generally referred to as Earth Observation (EO). 

Possible EO applications include (Wynne and Carter 1997): forest cover / type 

characterization, determination of forest stand conditions and forest health, 

species identification, site characterization, fire monitoring, detection of 

deforestation, estimation of biomass and productivity, biodiversity monitoring. 
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Other possible uses include the collection of data on dangerous or inaccessible 

areas, natural resources management, agricultural applications such as land 

usage and conservation and precision farming, national security and overhead, 

ground-based and stand-off collection on border areas, military collection of data 

about dangerous border areas, and medical imaging. 

Any system for the acquisition of RS data includes the following components (see 

Fig. 1 below): 

A. A source of light illuminates the object of study.  

B. The incident radiation (and the reflected one) interacts with the 

atmosphere.  

C. The incident radiation interact (is reflected) with the object, as a 

function of its characteristics (structural and biochemical) 

D. The radiation reflected from the object is detected by a sensor on a 

satellite (or airplane) 

E. The signal is transmitted to a ground station and registered. 

F. The signal is corrected, interpreted and analyzed 

G. Final practical application of the sensed data. 

                                     

Fig. 1 Main steps of the remote sensing approach. See text for details. 

 

1.2. Physical and biophysical background of Remote Sensing 

The electromagnetic radiation (from ultraviolet to infrared) can be described 

alternatively as a flux of photons (a unity of energy) or as an electromagnetic 
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wave of frequency . The electromagnetic wave can also be described in terms of 

its wavelength , since it holds: 

C =  (transposable to  = C/ ) 

where C is the speed of light.  

The electromagnetic radiation extends beyond the interval of the visible light 

(VIS, 380-750 nm) perceived by the human eye. At lower wavelengths we 

distinguish the ultraviolet radiation (UV) and then X rays and Gamma rays. At 

longer wavelengths we have the near infrared radiation (NIR), short-wave 

infrared (SWIR, 750-3000 nm), medium- and far infrared (3-20 µm).  At even 

longer wavelengths we have the microwaves (MW) and the radiowaves. 

According to Planck‟s Law, the energy of the photon is proportional to its 

frequency (E = h), so that ultraviolet and blue photons will be more energetic 

than red or infrared ones. 

The radiation interacts with bodies (solid, liquid and gas) by different 

mechanisms: 

 transmission () some of the light that is incident on the surface of the 

object passes through    the object. 

 refraction, by which the photon is deflected in the passage through bodies 

of different density; 

 reflection (). The reflection of the light in the visible determines what we 

generally define   as “color” (although the color perceived by the eye is 

also a function of the wavelength spectrum of incoming radiation);  

 scattering, it is the case of the reflection by small particles (typically in the 

atmosphere); 

 absorption () by molecules in the body (e.g. pigments in the leaf, water);  

 emission in the thermal infra-red, function of the temperature of the body; 

 fluorescence (f) is a (small) re-emission at longer wavelengths (lower 

energy) by excited molecules (e.g. chlorophyll; see below). 
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1.3. Leaf and vegetation reflectance 

The reflectance of leaf tissues presents typically two main characteristics 

(Woolley 1971): a relatively high reflectance in the green spectral region, and a 

sharp increase of leaf reflectance between the region of the red and the near-

infrared (red-edge; Horler et al 1983). Although reflectance in the near-infrared is 

typically much higher than in the green region, this is not perceived by the human 

eye as it occurs at wavelengths beyond its range of sensitivity. The reflectance of 

the leaf in the region of visible light is linked to the absorption by photosynthetic 

pigments (mainly chlorophyll a and b and carotenoids) of red and blue light (Taiz 

& Zeiger 1998), but not of green light which is therefore largely reflected or 

transmitted.  

 

Fig. 2 Typical reflectance spectra in the VIS-NIR region for leaves of Mediterranean 

species acquired with a portable Ocean Optics USB-2000 spectrometer under 

controlled light conditions; note the marked difference between green and 

senescing leaves. 

 

As a result, the changes in leaf chlorophyll content during the autumn involve an 

increase in leaf reflectance in the red and the orange, determining the brown 

color of the senescent leaf. In other cases the autumn coloring is linked also to 

the existence and to the increase of other compounds (oxidized phenols, 

anthocyanin, hydroxykynurenic acid…). In general, the reflectance of the leaf in 
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the visible (the “color” of the leaf) is a precise indicator of the biochemical content 

of the leaf.  

The high reflectance observed in the near-infrared region, on the contrary, is 

generally assumed to be the result of light reflection at the liquid-gas interface in 

leaf parenchyma (Lacaze and Joffre 1994), although recent studies suggest a 

direct or indirect effect of leaf nitrogen content (Ollinger et al. 2008). Whatever 

the reason, near-infrared reflectance is known to be higher in broadleaf than in 

coniferous species. 

 

1.4. The carbon balance of vegetation 

Vegetation gross primary productivity (GPP) can be defined as the sum of 

photosynthesis over all the leaves in the canopy. It is the primary determinant of 

plant growth and C sequestration by vegetation, although it is just the first step 

towards the quantification of the carbon cycle. The overall flux of C at the 

ecosystem scale (NEP, net ecosystem production) is also a function of the 

respiration by autotrophic green plants (Ra) and by heterotrophs (Rh): 

NEP = GPP – Ra – Rh 

Gross primary production is primarily a function of the total amount of radiation 

absorbed by the canopy (APAR, absorbed photosynthetically active radiation), 

which will depend upon PAR (photosynthetically active radiation) and the fraction 

that is absorbed by the canopy (fAPAR, itself a function of canopy closure and 

leaf area index, LAI): 

GPP =   APAR =   PAR  fAPAR 

In contrast with the curvilinear photosynthetic response to light at the leaf level, a 

linear relationship is generally observed at the canopy level, as a result of internal 

leaf shading and optimal biochemical acclimation (Dewar 1996). The conversion 

factor known as radiation-use efficiency (RUE, or ) provides a means to estimate 

the rate of photosynthesis (or biomass accumulation) per land area (Monteith 

1972). Both  and fAPAR can be estimated by remote sensing techniques, as 
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discussed below; although remote sensing has traditionally focused on the 

estimation of fAPAR and light interception, photosynthetic light-use efficiency 

cannot be assumed to be constant in space and time, but changes with species, 

site fertility and environmental conditions. Recent advances in remote sensing 

have therefore addressed its estimation from satellite images.  

At larger spatial and temporal scales (10-several 106 km2 and decades or 

centuries), net biome productivity (NBP) is a more appropriate variable, which 

also includes the disturbance flux (D) which relates to the rate of change in 

disturbance and land-use change and can be estimated from broad band remote 

sensing.  

NBP = NEP – D 

 

 

Fig. 3 A schematic diagram of the C balance of vegetation, in terms of energy capture 

and transformation. 
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1.5. Estimation of fAPAR by remote sensing techniques 

The fraction of light absorbed by a canopy can be estimated from space through 

the Normalized Difference Vegetation Index (NDVI), based on canopy reflectance 

at two wavelengths in the red (Rred ) and near infra-red (Rnir ) parts of the solar 

spectrum:  

 

 

 

This index is essentially a measure of 'greenness': it has been used to estimate 

the leaf area per unit of land area (LAI) but it bears a near-linear relationship with 

the fraction of absorbed photosynthetically active radiation (fAPAR) (Myneni and 

Williams 1994; Gamon et al. 1995). 

                            

Fig. 4 Relationship NDVI vs. fAPAR (A) and NDVI vs. fAPARgreen (B) for irrigated and 

rainfed maize and soybean. Dottet line in (Fig. 4B) is the first derivative of the 

best fit polynomial function of NDVI vs. fAPARGreen with respect to fAPARgreen 

(Vina and Gitelson 2005). 

rednir

rednir

RR

RR
NDVI


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1.6. The functional basis of LUE estimation by remote sensing techniques 

A photon intercepted by a chlorophyll molecule in the leaf chloroplast can 

undergo several distinct fates (see Fig. 5), as the excited singlet chlorophyll 

molecule can dissipate its energy by four different mechanisms: an electron can 

be stripped from a donor molecule, initiating electron transport and 

photochemistry, the primary step of photosynthesis; alternatively, energy can be 

dissipated as heat, a process up-regulated by any limitations of photosynthetic 

dark reactions; finally, a small fraction of absorbed energy is re-emitted by 

chlorophyll at longer wavelengths, a process known as chlorophyll fluorescence 

(Demmig-Adams and Adams 2000). The formation of chlorophyll triplets, leading 

to the formation of singlet oxygen and photo-oxidative damage, is a rarer event 

under normal conditions. 

 

      

 

Fig. 5 Possible fates of intercepted photons. Chl chlorophyll, 1Chl* excited singlet 

chlorophyll, 3Chl* excited triplet chlorophyll, P photochemistry (green), D safe 

dissipation of excess excitation energy as heat, F fluorescence, 3T triplet 

pathway, leading to the formation of singlet oxygen (1O2*) and photo-oxidative 

damage (Demmig-Adams and Adams 2000). 

 

Being the main processes involved, photochemistry and thermal energy 

dissipation are inversely related, and can be (in first principle) estimated the one 

from the other. 



16 
 

The dissipation of excess energy as heat is known to be the result of the 

interactions between chlorophyll and leaf xanthophylls in photosystem II (PSII). 

Under high light conditions, electron transport results in a proton build-up in the 

thylakoid lumen and lumen acidification. Apart from driving ATP synthesis, low 

lumen pH results in the protonation of the carboxyl residues on the minor LHCII 

(light-harvesting complexes) and in the parallel de-epoxidation of the xanthophyll 

pigment violaxanthin to zeaxanthin. Zeaxanthin can then bind to the protonated 

carboxyl residues on LHCII, resulting in a conformational change (increased 

proximity of either Chls or xanthophyll and Chl) and eventually in an increase in 

energy dissipation as heat (so-called non-photochemical quenching), which is 

associated with a change in organization of LHCII (Horton et al. 1994).  

    

                                       

 

Fig. 6 Changes in PSII LHC associated with energy dissipation as heat change from low 

light (top) to high light (bottom) results in increased proton concentration (red 

arrows) in the thylakoid lumen (lumen acidification). Protonation of the carboxyl 

residues on the minor LHCII (light-harvesting complexes; blue/green) and de-

epoxidation of the xanthophyll violaxanthin (yellow) to zeaxanthin (red) results. 

From (Horton et al. 1994). 

 

Xanthophylls are auxiliary pigments, which can be found in three easily inter-

convertible forms (zeaxanthin, violaxanthin and the intermediate form 

antheraxanthin); the de-epoxidation of violaxanthin to zeaxanthin (via 
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antheraxanthin) is a reversible process driven by changes in lumen pH. This 

typically reflects in diurnal cycles of zeaxanthin content, in response to changes 

in light and lumen pH, which result in a corresponding pattern in energy 

dissipation as heat (non-photochemical quenching). 

  

Fig. 7 Molecular structure of xanthophylls and schematic representation of xanthophylls 

epoxidation. From Taiz & Zeiger (1998). 

 

 

Fig. 8 Changes in the apparent reflectance spectrum of a sunflower (Helianthus annuus 

L.) dark-acclimated leaf in response to a transition to full light. The two evident 

features can be attributed to xanthophylls de-epoxidation and conformational 

changes (at 531 nm) and to chlorophyll fluorescence (at 680-740 nm). From 

(Gamon and Surfus 1999). 
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1.7. Remote detection of xanthophyll de-epoxidation state and LUE 

Violaxanthin and zeaxanthin differ slightly in their reflectance at 531 nm, and their 

inter-conversion (e.g. under dark-light transition) can be seen as a slight change 

in leaf reflectance. As a result, dynamic changes in energy dissipation and the 

xanthophyll cycle are accompanied by a reflectance change in a narrow region of 

the visible spectrum centered at 531 nm (Gamon et al. 1992); (Stylinski et al. 

2002; Stylinski et al. 2000). An appropriate reflectance index to detect these 

changes in reflectance requires two narrow wavebands: one centered on 531 nm 

(R531), which is affected by the de-epoxidation of the xanthophyll pigments, and a 

reference waveband centered at 570 nm (R570), which remains unaffected by the 

de-epoxidation reaction (Gamon et al. 1992).  

This led to the development of the Photochemical Reflectance Index (PRI), 

defined as (Penuelas et al. 1995):  

 

PRI has been found to be strongly correlated with LUE at the leaf scale, small 

canopy scale and recently at the ecosystem scale (Nichol et al. 2000; Nichol et 

al. 2002; Rahman et al. 2004). 

                    

 

Fig. 9 Changes in photochemical reflectance index (PRI) of leaves of four tropical trees 

during drying. Leaf reflectance was measured after excising the leaves and 

allowing evaporation for 20 min, 1.5, 4, and 6 h. The species were Pterocarpus 

indicus, Ceiba pentandra, Pachira aquatica and Inga cf. sapindoides. From 

(Rascher et al. 2007). 

570531
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1.8. Remote sensing of solar-induced fluorescence Fs 

Upon absorbing a photon, a chlorophyll molecule jumps to a higher energy state 

(vibrational level); whatever the energy of the photon absorbed, part of the 

energy is then dissipated internally, through the decay to the lowest energy level 

compatible with the vibrational level (corresponding to the energy of a red 

photon). If the excited chlorophyll molecule then returns to its base state through 

the emission of a photon (chlorophyll fluorescence), this will have a lower energy 

(longer wavelength) than the one originally absorbed. Fluorescence is aptly 

defined as the re-emission of light energy by a pigment molecule at a longer 

wavelength than the excitation energy. 

The emission spectrum of chlorophyll fluorescence is therefore shifted to longer 

wavelengths than the absorption spectrum of the pigment, within the waveband 

650–800 nm with peaks at 690 and 740 nm (Papageorgiou and Govindjee 2004) 

.  

Since the process competes with photochemistry and heat dissipation, its 

measurement by RS techniques can be used to gain information about the other 

two processes. 

              

Fig. 10 Characteristic chlorophyll fluorescence emission spectrum (green line) with 

double-peaks at 685 nm and 740 nm. Superimposed is a characteristic leaf 

reflectance spectrum (blue line). Fluorescence emission occurs at a longer 

wavelength than absorption by chlorophyll (Zarco-Tejada et al. 2006). 
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Photons exiting the leaf because of chlorophyll fluorescence cannot be easily 

distinguished from those reflected by the leaf. A technique has been developed 

for their discrimination, the so-called Fraunhofer line in-filling method (Plascyk 

1975). The definition is somehow incorrect, as Fraunhofer lines are regions of the 

solar emission spectrum that are severely depleted as a result of its chemical 

composition. 

The method relies, on the contrary, on specific regions of the spectrum where the 

light reaching the Earth is strongly depleted because of absorption by oxygen and 

hydrogen in the atmosphere. The strongest absorption occurs at 760 nm (O2 -A 

band), which corresponds to a peak in leaf fluorescence. 

                         

              

Fig. 11 Location of Fraunhofer lines and absorption bands in the VIS-NIR region, for a 

typical top-of-atmosphere vegetation radiance spectrum (top panel) and 

magnified detail of the oxygen absorption bands used for the remote passive 

detection of chlorophyll fluorescence (bottom panel). 

 

Canopy radiance is also low in these regions, but it is slightly enriched because 

of the contribution of chlorophyll fluorescence. If we compute leaf reflectance (as 
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Iout / Iin ), the contribution of fluorescence will show as an apparent peak at 760 

nm. 

This provides the basis for the remote, passive detection of the chlorophyll 

fluorescence signal by the “Fraunhofer line in-filling technique”. Canopy radiance 

outside (c) and inside (d) the Fraunhofer band will be a function of incoming 

radiation (a and b, respectively) and reflectance (R) but also of the contribution 

from fluorescence (f).  

c = R   a + f 

d = R   b + f 

True reflectance and fluorescence can be therefore estimated as:  

R = (c – d) / (a – b) 

f = (a   d - c  ) / (a – b) 

The fluorescence yield estimated by the “Fraunhofer line in-filling technique” 

using the O2 -A (at 760 nm) or O2 -B band (at 680 nm) has been found to be 

strongly correlated with photosystem II (PSII) light-use efficiency, as estimated by 

other means on the same leaf (Moya et al. 2004; Perez-Priego et al. 2005) 

 

Fig. 12 Rationale of the Fraunhofer line in-filling principle for the remote, passive 

detection of chlorophyll fluorescence and its discrimination from superimposed 

leaf reflectance. See text for details. 
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1.9. Conclusions 

Out of the previous review we can draw some general conclusions about the 

application of remote sensing techniques to ecological research in forestry. 

Despite the uncertainty connected to remote sensing, this technique has started 

to be a useful instrument to investigate forest function. Some of the proposed 

approaches rest on a strong physical and physiological background. The 

traditional approach, based on broad-band sensors and the simple estimation of 

LAI from NDVI, although very useful in global studies is not suitable for analyses 

at local or short-term scale. New methods based on the sensing of the leaf 

biochemistry and photosynthesis are being developed and applied in pilot studies 

(PRI, solar-induced fluorescence; N and chlorophyll content) , but still they cannot 

be applied at global scale for reasons of costs (sensors onboard of airplanes, a 

new generation of satellites is in developing phase) 

Non-destructive monitoring methods, a direct application of RS studies, are 

increasingly attractive for the determination of stress conditions or nutrient 

deficiencies not only in research but also in agronomy, horticulture and urban 

forestry (proximal remote sensing). 

In this work we will focus on some novel techniques used for the estimation of 

photosynthetic rates or gross primary productivity from remotely sensed 

absorbed radiation based on the hyperspectral remote sensing of the changes in 

the energy partitioning, which is closely coupled to photosynthesis. One of the 

hyperspectral approaches proposed relies on the remote detection of 

fluorescence, which is directly related to the efficiency of photosynthesis.  

The proximal detection of chlorophyll fluorescence has long been used in 

ecophysiological studies for the assessment of leaf photochemistry and as an 

index of photosynthetic processes (Rabinowich and Govindjee 1969; Maxwell 

and Johnson 2000). Chlorophyll fluorescence measurements generally rely on 

the application of pulses of saturating light for the estimation of PSII 

photochemical yield and electron transport rates (Genty et al. 1989). The use of 

fluorescence measurements under ambient light, however, would be desirable in 

order to extend the applicability of the technique to passive remote sensing 

applications. Therefore, we studied in the second chapter of this work the 

interactions between PSII fluorescence under ambient light conditions and 
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photochemistry and the resulting link with photosynthetic rates, which could be 

extended to passive remote sensing applications. 

We estimated the fluorescence yield (Φf) and the PSII photochemical yield (ΦPSII) 

under controlled conditions (variable CO2 and light conditions) using a gas-

exchange analyzer (LiCor Li-6400) for measurements of photosynthetic rates, 

and modulated fluorometer (PAM-2000) for measurements of chlorophyll 

fluorescence parameters of individual fully expanded mature leaves of two 

different species:  Arbutus unedo, a schlerophyllous Mediterranean species, and 

Populus euroamericana, a broad leaf deciduous tree.  

In chapter three we present and describe the thorough test of the mathematical 

model of leaf steady-state fluorescence and photosynthesis developed by 

Professor Federico Magnani, and referred to as Magnani model (Magnani et al. 

2009). It will be discussed first in this chapter the correspondence of modulated 

and solar-induced fluorescence measurements. A qualitative test of the Magnani 

model will be presented, based on literature data. And finally, the model will be 

quantitatively tested against leaf-level data collected with this specific purpose 

under controlled environmental conditions.                                     

The effects of nitrogen fertilization on fluorescence and heat dissipation and 

changes in photosynthetic potentials were studied in chapter four, as a suitable 

test of the predictions of Magnani model. Fluorescence yield (Φf) and PSII 

photochemical yield (ΦPSII) were estimated under controlled conditions (variable 

CO2 and light conditions) measuring photosynthetic rates using gas-exchange 

analyzer (LiCor Li-6400), and chlorophyll fluorescence parameters using 

modulated fluorometer (PAM-2000) against leaf-level of individual fully expanded 

mature leaves of Populus euroamericana which is a species of interest in 

forestry.  Leaves used for measurements were chosen from those of the 

maximum or minimum chlorophyll content using the chlorophyll meter (SPAD-

502) which is a portable diagnostic tool that measures the greenness or the 

relative chlorophyll content of leaves. Simultaneous measurements of leaf 

reflectance were performed using Ocean Optics USB-2000 fibre Optic 

Spectrometer, and the relationship between the Photochemical Reflectance 

Index (PRI) and the photochemical yield was tested.  
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Finally, the fifth chapter focuses on the estimation of the effects of fertilization and 

nutrient availability on growth, and on the assessment of different RS methods for 

the determination of leaf nutritional status and biochemical content. These remote 

sensing techniques could provide useful tools for the assessment of the need for 

fertilization in plantation forestry, and the analysis of health conditions in natural 

vegetation. LiCor Li-1800 Spectroradiometer was also used in the analysis, for 

the measurement of the reflectance and transmittance of the leaves, to be used 

for the estimation of the photosynthetic pigments content. Several spectral 

reflectance indices proposed in the literature were tested in order to determine 

the best one for detecting the changes in leaf photosynthetic pigments content. 

Two different methods were tested, in particular, for the assessment of leaf 

chlorophyll, carotenoid and nitrogen content: one is based on the SPAD; a 

commercial two band spectrometer widely used in field studies, the other is 

based on the red-edge index position (REIP), a destructive feature of leaf 

reflectance that is known to be related to leaf chlorophyll content. The study 

compared these methods with more traditional wet-chemistry techniques (leaf 

extraction in N,N-dimethylformamide, DMF) for the determination of total nitrogen 

content, chlorophyll a, chlorophyll b, total chlorophyll, carotenoids and the 

carotenoids/chlorophyll ratio.  

The results of the study could prove useful for both basic and applied research, 

as remote sensing techniques could provide a fast and reliable method to 

estimate these parameters in the field, for estimating the nutrient requirements of 

our plants for optimal growth and therefore for the management of cultivation 

system. 
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Chapter 2 

 

The functional relationship between 

photosynthesis and ambient chlorophyll 

fluorescence 

 

2.1 Abstract 

The estimation of photosynthetic rates and gross primary productivity from 

remotely sensed data depends, nowadays, on monitoring variations in absorbed 

solar radiation and environmental stress conditions. However, more exact 

methods are now required. One of the most recent hyperspectral approaches 

proposed relies on the remote detection of ambient chlorophyll fluorescence, 

which is directly related to the efficiency of photosynthesis.  

The prospect of measuring photosynthesis from space is an exciting one. We 

would be able to track the responses of photosynthesis to climatological variables 

at several scales as climatic warming and CO2 fertilization gather pace. Global 

vegetation models (Cramer et al. 2001) have attempted to capture this response, 

but unless these models are to be informed by measurements of photosynthesis 

they remain hypothetical. Now it may be technically possible to achieve these 

measurements from sensors on board satellites and ground-based flux 

measurements. 

Chlorophyll fluorescence measurements generally rely on the application of 

pulses of saturating light for the estimation of PSII photochemical yield and 

electron transport rates. The use of fluorescence measurements under ambient 

light, however, would be desirable in order to extend the applicability of the 

technique to passive remote sensing applications. 

Although recent advances in quantitative remote sensing have made it possible 

to measure ambient fluorescence from aerial platforms, background information 

on the functional significance of ambient fluorescence from leaf-level, detailed 
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measurements under controlled conditions is still missing. Here we study the 

interactions between PSII fluorescence and photochemistry and of the resulting 

link with photosynthetic rates using measurements obtained from gas-exchange 

analyzer (LiCor Li-6400) and modulated fluorometer (PAM-2000). 

Results of the relationship between fluorescence yield and PSII photochemical 

yield show a segmented pattern, with a positive association under CO2-limited 

conditions and a negative linear relationship under light-limited conditions. This 

observation, which is largely consistent with recent models of ambient 

fluorescence, could help explain the contrasting reports available in the literature, 

from studies under contrasting conditions. 

Measurements were performed under controlled conditions (variable [CO2] and 

light conditions) against leaf-level of individual leaves of Arbutus unedo, a 

schlerophyllous Mediterranean species, and Populus euroamericana, a broad 

leaf deciduous tree. The results show a rather similar response and general 

pattern in the two different species. 

 

2.2. Introduction 

 

When one photon is intercepted by a chlorophyll molecule in the leaf chloroplast, 

it can undergo several distinct fates, as the excited singlet chlorophyll molecule 

can dissipate its energy by four different mechanisms: an electron can be 

stripped from a donor molecule, initiating electron transport and photochemistry, 

the primary step of photosynthesis, resulting eventually in ecosystem gross 

primary production (GPP) and C sequestration. Alternatively, energy can be 

dissipated as heat, a process up-regulated by any limitations of photosynthetic 

dark reactions; finally, a small fraction of absorbed energy is re-emitted by 

chlorophyll at longer wavelengths, a process known as chlorophyll fluorescence 

(Demmig-Adams and Adams 2000). The formation of chlorophyll triplets, leading 

to the formation of singlet oxygen and photo-oxidative damage and ultimately cell 

death, is a rarer event under normal conditions.  
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Since the three components are intimately related, chlorophyll fluorescence 

represents a real signature of photosynthesis and could provide useful 

information for ecological models of the C cycle of terrestrial ecosystems. 

Being the main processes involved, photochemistry and thermal energy 

dissipation are inversely related, and can be (in first principle) estimated the one 

from the other. 

The dissipation of excess energy as heat is known to be the result of the 

interactions between chlorophyll and leaf xanthophylls in photosystem II (PSII) 

(Horton et al. 1994).                                   

Xanthophylls are auxiliary pigments, which can be found in three easily inter-

convertible forms (zeaxanthin, violaxanthin and the intermediate form 

antheraxanthin); the de-epoxidation of violaxanthin to zeaxanthin (via 

antheraxanthin) is a reversible process driven by changes in lumen pH. This 

typically reflects in diurnal cycles of zeaxanthin content, in response to changes 

in light and lumen pH, which result in a corresponding pattern in energy 

dissipation as heat (non-photochemical quenching; Taiz and Zeiger, 1998).  

Upon absorbing a photon, a chlorophyll molecule jumps to a higher energy state 

(vibrational level); enabling it to donate an electron and initiate the transfer of 

chemical energy needed for photosynthesis. Whatever the energy of the photon 

absorbed, part of the energy is then dissipated internally, through the decay to 

the lowest energy level compatible with the vibrational level (corresponding to the 

energy of a red photon). If the excited chlorophyll molecule then returns to its 

base state through the emission of a photon (chlorophyll fluorescence), this will 

have a lower energy (longer wavelength) than the one originally absorbed (Zarco-

Tejada et al. 2006). So, because of intervening losses (vibrational relaxation), the 

photon is re-emitted at a longer wavelength than the one originally absorbed, with 

two distinct peaks in the R-FR region and that was aptly defined as fluorescence. 

The emission spectrum of chlorophyll fluorescence is therefore shifted to longer 

wavelengths than the absorption spectrum of the pigment, within the waveband 

650–800 nm with peaks at 690 and 740 nm (Papageorgiou and Govindjee 2004).  
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Since the process competes with photochemistry and heat dissipation, its 

measurement by RS techniques can be used to gain information about the other 

two processes (Papageorgiou and Govindjee 2004). 

Chlorophyll fluorescence has been the subject of a wide body of studies over the 

last decades to probe the functioning of chemical processes. These studies, 

however, provide little information of direct use for the analysis of solar-induced 

fluorescence and its link with photosynthesis. Most studies have applied the so-

called pulse-saturated technique, which combines records under ambient 

conditions (Ft) with the measurement of fluorescence in response to a short (1s) 

flash of saturating light (Fm
o, Fm‟). This makes it possible to eliminate one of the 

three terms of the energy balance, estimating the remaining two from each other 

and deduce the electron transport rate and the photochemical quantum yield of 

PSII (ΦPSII), i.e. the fraction of PSII absorbed light used for photochemistry and 

electron transport. The latter can be easily estimated from such active 

measurements as (Genty et al. 1989): 

 

Photosystem II fluorescence yield (fraction of PSII absorbed light dissipated as 

fluorescence) can also be estimated from the same set of measurements. In the 

widely applied modulated fluorometer, fluorescence under ambient conditions (as 

well as under saturating conditions) is determined from the periodic changes in 

reflected near-infrared light induced by a dim modulated (0.6 kHz) light, the so-

called measurement light.  

Since the measurement light is of constant intensity and so weak as not to 

interfere with PSII status, the fluorescence signal is proportional to fluorescence 

yield under background light conditions (Ft  Φf). It is therefore possible to obtain 

concurrent measurements of fluorescence yield (Φf), that is proportional to Ft 

signal, and PSII photochemical yield (ΦPSII), as assessed through ∆F/ Fm‟ using 

the saturating pulse technique, and evaluating their mutual relationship. 

Despite its sound theoretical basis, the measurement of apparent quantum yield 

by the pulse-saturated technique does not lend itself to remote sensing 
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applications, out of practical and safety considerations, and the use of Ft alone 

would be highly desirable. 

Although robust interpretative models have long been available for the 

interpretation of pulse-saturation measurements (Genty et al. 1989; Hendrickson 

et al. 2004), however, they do not apply to the measurement of ambient 

fluorescence (i.e. Ft alone) 

Several studies prove, however, that ambient fluorescence does contain a signal 

that could be used as a signature of photosynthesis. 

Flexas et al. (2002) for example found that measurements of steady-state 

chlorophyll fluorescence Ft (named Fs in the original study) normalized to dark-

adapted F0  was proportional to net CO2 assimilation (A) and electron transport 

rate (ETR), and it was inversely proportional to non-photochemical quenching 

(NPQ), a widely applied index of heat energy dissipation. For this, they suggest 

that if it is known just Ft it could be possible to estimate ETR, which could be very 

useful under a practical perspective. They found also that Ft/F0 was well 

correlated with stomatal conductance (gs); the measurement of chlorophyll 

fluorescence under ambient light could therefore be a good indicator for the 

detection of water stress because of the correlation between water stress and 

stomatal conductance. These findings can be useful for long term monitoring of 

water stress and other stress conditions by directly monitoring of Ft by passive 

remote sensing techniques, without the imposition of saturating flashes of light 

(Flexas et al. 2000; Ounis et al. 2001; Moya et al. 2003).  

The temporal variability of the ambient fluorescence signal has also been 

demonstrated in a recent study on Pinus sylvistris by the new MoniPAM 

modulated fluorometer (Porcar-Castell et al. 2008). Together with changes in the 

potential (dark-acclimated) and actual PSII apparent quantum yield, substantial 

fluctuations in the Ft signal were also observed over the course of the day and 

over the season, although the relationship with photochemical yield was not 

straightforward.   

Other studies have also monitored the time course of fluorescence radiance (as 

opposed fluorescence yield) under laboratory and field conditions by the 
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Fraunhofer line in-filling technique (Schmuck et al. 1992; Cerovic et al. 1996; 

Flexas et al. 1998, 1999), which despite the need for more complex computations 

could prove more suitable for airborn and satellite remote sensing (Malenovsky et 

al. 2009) 

  
A number of process-based models have been proposed over the last few years 

to try and explain the observed variability in solar-induced fluorescence (Rosema 

et al. 1998; van der Tol et al. 2008), but have not been thoroughly tested. A 

proper analysis of the response of fluorescence radiance or fluorescence yield to 

environmental parameters under controlled conditions, and of their relationship 

with photochemical quantum yield and electron transport is missing so far. 

The objective of the present work was therefore to study under controlled 

conditions (variable CO2 and irradiance) the relationship between PSII 

fluorescence and photochemistry, and the resulting link with photosynthetic rates, 

on individual fully expanded mature leaves of two contrasting species (Arbutus 

unedo and Populus euroamericana) so as to provide a sounder basis for future 

passive remote sensing applications.  

 

2.3. Material and methods 

 

2.3.1. Plant material 

Five plants of strawberry trees (Arbutus unedo L.) and poplar (Populus 

euroamericana), were grown in pots of 11.3 l capacity containing a mixture of 

sand and peat (1:1, by volume). The pots were maintained during the experiment 

period in an open area at the Faculty of Agriculture of the University of Bologna 

with adequate watering conditions. 

Arbutus unedo is an evergreen sclerophyllous tree native to the Mediterranean 

regions; the species is insect pollinated and can not reach large dimensions. It is 

drought tolerant and exhibits several mechanisms of drought stress resistance. 

The effects of drought and excessive radiation on photochemical efficiency, 

photosynthesis, and carotenoid composition of strawberry trees have been 
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previously reported (Demmig-Adams et al. 1989; Werner et al. 1999). An 

increase of zeaxanthin and ascorbate contents and a decrease of chlorophyll, 

lutein, and β-carotene contents in strawberry tree plants exposed to a 

combination of severe water deficit, high irradiance, and high temperature has 

been reported (Munne-Bosch and Penuelas 2004). The response of 

photosynthetic processes to stress conditions in A. unedo seedlings has also 

been analyzed by Baraldi et al. (2008), who demonstrated a high potential of 

photoprotection and light dissipation as heat, as a result of the acclimation and 

overnight retention of zeaxanthin. Also (Levizou et al. 2004) reported a predawn 

retention of the deepoxidized zeaxanthin as the effect of other micro-

environmental conditions (such as high CO2 concentration) within strawberry tree 

twigs.  

 

Populus euroamericana is a widely planted hybrid of P. nigra and P. deltoids, two 

species of poplar in the cottonwood (Aegiros) section of the genus Populus. The 

two species are widely distributed in the northern hemisphere. It is a medium-

sized to large deciduous tree, reaching 20-30 m (rarely 40 m) tall, with a trunk up 

to 1.5 m diameter (Rushforth 1999). The species is dioecious (male and female 

flowers on different plants), with flowers in catkins and pollination by wind. The 

response of PSII photochemistry to environmental stress in P. euroamericana 

has also been widely studied (Ridolfi and Dreyer 1997; Guo and Trotter 2004). 

                     

Fig. 1 Potted plants of Arbutus unedo (to the left) and Populus euroamericana (to the 

right). 
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2.3.2. Experimental setup and measurements 

The experiment was conducted in the laboratory of ecophysiology of the DCA in 

the Faculty of Agriculture-University of Bologna (Italy). Before each set of 

measurements, the plant was exposed to high light conditions for one hour in 

order to acclimate the leaves and activate the photosynthesis process.  

Measurements were curried out under controlled conditions on fully expanded 

mature leaves. The leaf was enclosed inside the broadleaf cuvette of a LiCor Li-

6400 gas-exchange analyzer (LI-Cor Inc., Lincoln, NE, USA), which also provided 

gas exchange measurements, and exposed them to the light of a dichroic 

halogen lamp. The lamp was connected to an energy stabilizer in order to provide 

the light intensity needed. Simultaneously chlorophyll fluorescence parameters 

were measured by pointing the fiberoptics probe of a PAM-2000 modulated 

fluorometer (Heinz Walz Gmbh, Effeltrich, Germany) at the surface of the leaf 

through a sealed opening in the leaf cuvette. The setup of the experiment is 

illustrated in Fig. 2 and 3 .              

            

Fig. 2 Scheme of the set-up of the experiment shows leaf of Arbutus unedo inside the 

cuvette of the Li-Cor 6400 (bottom left) exposed to light of halogen lamp 

connected to an energy stabilizer (top right), and the fiberoptics probe of a PAM-

2000 modulated fluorometer (left in the middle) is pointing at the surface of the 

leaf through a sealed opening in the leaf cuvette. 
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Fig. 3 The set-up of the experiment: leaf of poplar inside the cuvette of the Li-Cor 6400 

(at the bottom) exposed to the light of a halogen lamp connected to an energy 

stabilizer (to the left), and the fiberoptics probe of a PAM-2000 modulated 

fluorometer (to the right) is pointing at the surface of the leaf through a sealed 

opening in the leaf cuvette 

 

Environmental conditions applied on leaves in the LiCor cuvette were varied one 

at a time, following two different protocols. 

In the first protocol, light intensity were changed in steps (1000, 800, 600, 400, 

200, 100, 20 μmol m-2 s-1) from high to low level, whilst keeping ambient CO2 

inside the cuvette constant (350 ppm). The same steps were then repeated at 

high (800 ppm) and low (100 ppm) air CO2 concentration inside the cuvette.  

In the second protocol, the air CO2 concentration inside the LiCor Li-6400 cuvette 

were changed in steps (350, 200, 50, 350, 550, 800, 1200, 1500 ppm), under 

moderately low (400 μmol m-2 s-1) and high (1000 μmol m-2 s-1) light conditions. 

 The leaf was kept for at least 15 minutes at each level in order to ensure full 

acclimation. At the end of each step, three successive measurements were made 

by the LiCor Li-6400 at 2-m intervals, simultaneously with fluorescence 

measurements by the PAM 2000. Temperature inside the cuvette of the LiCor Li-

6400 was maintained at 25 ± 1°C during all the experiment period.  

Measurements were repeated with the same experimental setup on seven leaves 

from separate plants for each species and each protocol. 
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2.4. Results and discussion 

In response to increasing irradiance (PAR, photosynthetically active radiation) at 

constant air CO2 concentration there was an increase in the CO2 assimilation 

rates of Arbutus unedo leaves (Fig. 4A) inside the cuvette of the Li-Cor 6400 until 

a saturation point where they remained constant. We saw the same pattern with 

high level of CO2 concentration giving higher values of photosynthetic rates, and 

also with low level of CO2 concentration giving lower values of photosynthetic 

rates. The same results were seen in the leaves of Populus euroamericana (Fig. 

4B), where however the relationship between CO2 assimilation rates and light 

intensity did not show a clear saturation level under high CO2 concentrations (350 

and 800 ppm). 

 

Fig. 4 Response of CO2 assimilation rate (A) to variation in light intensity (PAR, 

photosynthetically active radiation) under three different constant levels of CO2 

concentration (800, 350 and 100 ppm) in Arbutus unedo (A) and Populus 

euroamericana (B) leaves. Mean ± SE (n=7). NB: change figures, lables under 

the x-axis. 

 

A slight decline in net photosynthesis was observed at high light and low CO2 

concentration, presumably as a result of the slight heating of the leaf and an 

increase in leaf respiration. 

A negative association was found in the relationship between PSII photochemical 

yield (ΦPSII) and light intensity (PAR) in both A. unedo (Fig. 5A) and P. 



38 
 

euroamericana leaves (Fig. 5B) at all three CO2 concentrations.this is the result 

of increasing PSII centre closure and NPQ buildup, and is in line with what 

commonly observed (Hendrickson et al. 2005). As a result of increasing 

saturation of dark reactions, values of photochemical yield at 350 ppm and 800 

ppm levels of CO2 concentration were very close to each other and higher than 

values at the lowest level of CO2 (100 ppm).  

  

Fig. 5 Response of PSII photochemical yield (F/Fm') to changes in photosynthetically 

active radiation (PAR) under three different constant levels of CO2 concentration 

(800, 350 and 100 ppm) in Arbutus unedo (A) and Populus euroamericana (B) 

leaves. Mean ± SE (n=7). 

 

The response of the Ft signal (and therefore of fluorescence yield, Φf) to changes 

in light intensity was different (Fig.6) showing a non-monotonic pattern at all three 

different levels of CO2. Fluorescence yield increased with light intensity until a 

certain level (100 mol m-2 s-1  for 100 ppm CO2 concentration; 200 mol m-2 s-1  

for 350 and 800 ppm CO2 concentrations), then it decreased to levels similar or 

even lower than observed under dim light. At the highest levels of irradiance, 

however, fluorescence yields appeared to stabilize or even slightly increase.  

Highest fluorescence yields were observed under 800 ppm CO2 concentration, 

and the lowest ones under 100 ppm CO2 concentration, although the difference 

was only apparent under high light conditions. Similar relationships were 

observed in A. unedo (Fig. 6A) and in P. euroamericana leaves (Fig. 6B), but with 

lower values of fluorescence yield under the different CO2 concentrations in the 
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latter species. Such a curvilinear response of fluorescence yield to increasing 

irradiance had already been observed by Rosema et al. (1998) using a laser-

induced fluorometer. Likewise, a similar pattern of Ft (normalized by dark-

acclimated Fo in order to remove any effects of leaf absorption or pre-existing 

stress) in response to increasing irradiance had already been reported by Flexas 

(2002), who also noted a substantial decline in Ft at constant light as a result of 

stomatal closure. The effects of stomatal limitations of photosynthesis, mediated 

by a decline in CO2 concentration at carboxylation sites, should be similar to 

those of a reduction in air CO2 concentration, as applied in the present study. 

 

Fig. 6 Response of fluorescence yield (Φf) to changes in irradiance (PAR, 

photosynthetically active radiation) (µmol m-2 s-1) under three different constant 

levels of CO2 concentration (800, 350 and 100 ppm) in Arbutus unedo (A) and 

Populus euroamericana (B) leaves. Mean ± SE (n=7). 

 

When considering the relationship between PSII fluorescence yield (Φf  Ft) and 

photochemical yield (ΦPSII  F/Fm') in response to changes in irradiance under 

three constant CO2 concentrations (Fig. 7), a non-monotonic relationship is 

clearly apparent. That when photochemical yield (electron transport yield) 

increases, fluorescence yield under the three different concentrations of CO2 

increase in parallel until a saturation point, then they collapse to a single point. 

So, we have a combined variation with a negative association between the two 

yields under light-limited conditions (in the morning and late afternoon and in 
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cloudy days for example), and a positive association on the contrary under 

conditions limited by stomatal closure and CO2 availability (in the middle of the 

day and in stress conditions for example). The variable slope of the positive 

correlation (CO2 limited conditions) is presumably related to different 

temperatures. It was interesting the very close resemblance in this relationship 

between the two species Arbutus unedo (Fig. 7A) and Populus euroamericana 

(Fig. 7B) with difference in values of fluorescence yield, which was higher for 

Arbutus unedo than the ones of Populus euroamericana. 

 

Fig. 7 Relationship between fluorescence yield (Φf  Ft) and PSII photochemical yield 

(ΦPSII  F/Fm') in response to changes in irradiance (PAR) under three constant 

CO2 concentrations in Arbutus unedo (A) and Populus euroamericana (B) leaves. 

Mean ± SE (n=7).  

 

The bi-phasic relationship of Ft with irradiance and apparent quantum yield could 

help explain the contrasting results reported in the literature. Liu et al. 2005), for 

example, observed a negative association between fluorescence yield and 

F/Fm' when the latter ranged between 0.83 and 0.77 (light-limited conditions). A 

negative relationship between quantum yield and fluorescence yield had also 

been observed by Rosema et al. (1998) early in the morning, at low light, but a 

strong hysteresis was apparent in noon data under high radiation loads.  

A bi-phasic response of fluorescence yield to light intensity has also been 

proposed by van der Tol et al. (2008), based on a semi-empirical model of energy 
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partitioning in PSII. In the model, the response pattern was explained by the 

different impact of light and dark reactions on fluorescence yield: under light-

limiting conditions (low light), NPQ and energy dissipation as heat are supposed 

not to be entrained, so that fluorescence would only compete with photochemistry 

and a negative association should be expected between f and PSII. Under high-

light conditions, on the contrary, electron transport would be back-regulated by 

CO2 availability and carboxylation rates through the build-up of thylakoid lumen 

pH and the development of NPQ, which would increase in parallel with excess 

light; under such conditions, energy dissipation as heat would predominate as a 

quencher, reducing photochemistry and fluorescence to the same rate. 

Fluorescence yield should therefore decline with increasing irradiance, and a 

positive association should be expected between f and PSII. The slope of the 

relationship at high irradiance observed in the current study, however, appears to 

be much steeper than predicted by the van der Tol et al. (2008) model, casting 

some doubts on its assumptions.

 

Fig. 8 Response of CO2 assimilation rate to variation in air CO2 concentration (Ca) under 

two different light intensities (PAR) in Arbutus unedo (A) and Populus 

euroamericana (B) leaves. Mean ± SE (n=7). NB: change figures, labels under 

the x-axis 

 

An additional test of our understanding of the relationship between fluorescence 

and photochemical yields comes from measurements under variable CO2.  
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The response of CO2 assimilation rate to variation in CO2 concentration under 

two different light intensities (400 and 1000 µmol m-2 s-1) is presented in Fig. 8. 

Photosynthetic rates increased with CO2 concentration in A. unedo (Fig. 8A) until 

a saturation point (Ca ≈ 800 ppm in). At low CO2 concentration, photosynthetic 

rates were limited by electron transport rates alone and were therefore almost 

identical under different light intensities. An identical pattern was observed in P. 

euroamericana (Fig. 8B), where saturation was reached at a slightly higher CO2 

concentration. 

In contrast with net photosynthesis, PSII photochemical yield (ΦPSII) increased 

only slightly with CO2 concentration under the two different light intensities in both 

species (Fig. 9), as photorespiration increasingly complemented carboxylation as 

an electron sink under  low CO2. Values of PSII photochemical yield under 400 

µmol m-2 s-1 light intensity were higher than those at 1000 µmol m-2 s-1, and they 

rised in parallel with increasing CO2.  

 

Fig. 9 Response of PSII photochemical yield (ΦPSII  F/Fm') to changes in CO2 

concentration (Ca) under two different light intensities in Arbutus unedo (A) and 

Populus euroamericana (B) leaves. Mean ± SE (n=7). 

 

At low CO2 concentration we noticed that values of fluorescence yield (Φf) under 

the two light intensities were almost equal in both species (Fig. 10A and B). With 

increasing CO2 concentrations, fluorescence yield raised under both light 

intensities until reaching a saturation point, before declining slightly at higher CO2 
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concentrations (apart from P. euroamericana at 1000 mol m-2 s-1). Fluorescence 

yield values under a light intensity of 400 µmol m-2 s-1 were higher than those at 

1000 µmol m-2 s-1. 

 

Fig. 10 Response of fluorescence yield (Φf  Ft) to changes in CO2 concentration (Ca) 

under two different light intensities in Arbutus unedo (A) and Populus 

euroamericana (B) leaves. Mean ± SE (n=7). 

 

 

Fig. 11 Relationship between fluorescence yield (Φf  Ft) and PSII photochemical yield 

(ΦPSII  ∆F/Fm') in response to changes in CO2 concentration under two different 

light intensities (PAR) in Arbutus unedo (A) and Populus euroamericana (B) 

leaves. Mean ± SE (n=7). 
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In contrast with what observed in response to variable light, a non-monotonic 

relationship was observed in the relationship between fluorescence yield (Φf) and 

PSII photochemical yield (ΦPSII) in response to changes in CO2 concentrations 

under two different light intensities (Fig. 11). In both species the initial value of the 

fluorescence yield was not affected by light levels, but the final values were much 

higher under 400 PAR µmol m-2 s-1 than that under 1000 µmol m-2 s-1 PAR. 

Although not specifically focused on the effects of air CO2 concentrations, 

consideration of some other studies can help put our results in a broader 

perspective. Two of them will be discussed, in particular, which have considered 

the effects of water availability. In first approximation, the reduction in stomatal 

conductance and CO2 concentration at carboxylation sites brought about by 

drought can be assimilated in their effects to the decrease in air CO2 applied in 

the present study. In good agreement with our results, a positive relationship was 

observed in Olea europea by Perez-Priego et al. (2005) between PSII quantum 

yield and Ft in response to increasing levels of water stress under high light 

conditions. A similar decline in Ft at midday under drought conditions was 

observed in Vitis vinifera plants by Flexas et al. (1999); this resulted in a positive 

linear association between Ft and electron transport rates under saturating light 

(Flexas et al. 2002), implying a parallel positive relationship with PSII quantum 

yield similar to what reported here. A positive linear correlation between PSII and 

f in response to variable CO2 concentrations is also consistent with the model 

recently presented by van der Tol et al. 2008), which also predicts, for any given 

value of PSII quantum yield, a higher fluorescence yield under conditions of 

strong irradiance, as observed in the current study.  

 

2.5. Conclusions 

The study represents the first analysis under controlled conditions of the 

response to individual environmental factors (PAR, CO2) of PSII fluorescence 

yield, and of its relationship with photochemical yield. The response observed in 

two different species, a broadleaf sclerophyllous tree from the Mediterranean (A. 

unedo), and a broadleaf deciduous tree (P. euroamericana), is qualitatively 

consistent, despite clear differences in photosynthetic rates. There are some 
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differences between the two species, but the general pattern is the same in 

response to both variable PAR and variable CO2. 

Based on the results presented, it would appear that ambient fluorescence could 

provide a useful tool for testing photosynthetic processes from a distance.  

The new understanding of ambient fluorescence opens novel perspectives for the 

airborne and satellite remote sensing of photosynthetic processes.Problems 

remain however in its interpretation, despite new models being proposed. 

The experimental test demonstrates a consistent pattern of co-variation between 

fluorescence and photochemical yield. However, the relationship differs 

depending on whether photosynthesis is limited by light (negative association) or 

CO2 (positive association). This would appear to explain the contrasting patterns 

presented in past studies, with both positive and negative associations being 

reported. Recent models seem to capture some of the key features of the 

observed pattern, but other important characteristics are clearly not fully 

explained. Additional modelling efforts are required if the full potential of the 

ambient fluorescence signal is to be brought to fruition. 

 

 

 

 

 

 

 

 

 

 

 



46 
 

Reference list 

 
 
Baraldi, R., Canaccini, F., Cortes, S., Magnani, F., Rapparini, F., Zamboni, A., & Raddi, S. (2008). 
Role of xanthophyll cycle-mediated photoprotection in Arbutus unedo plants exposed to water 
stress during the Mediterranean summer. Photosynthetica, 46, 378-386 
 
Cerovic, Z.G., Goulas, Y., Gorbunov, M., Briantais, J.M., Camenen, L., & Moya, I. (1996). 
Fluorosensing of water stress in plants: Diurnal changes of the mean lifetime and yield of 
chlorophyll fluorescence, measured simultaneously and at distance with a tau-LIDAR and a 
modified PAM-fluorimeter, in maize, sugar beet, and Kalanchoe. Remote Sensing of 
Environment, 58, 311-321 
 
Cramer, W., Bondeau, A., Woodward, F.I., Prentice, I.C., Betts, R.A., Brovkin, V., Cox, P.M., Fisher, 
V., Foley, J.A., Friend, A.D., Kucharik, C., Lomas, M.R., Ramankutty, N., Sitch, S., Smith, B., White, 
A., & Young-Molling, C. (2001). Global response of terrestrial ecosystem structure and function 
to CO2 and climate change: results from six dynamic global vegetation models. Global Change 
Biology, 7, 357-373 
 
Demmig-Adams, B., & Adams, W.W. (2000). Photosynthesis - Harvesting sunlight safely. Nature, 
403, 371-+ 
 
Demmigadams, B., Adams, W.W., Winter, K., Meyer, A., Schreiber, U., Pereira, J.S., Kruger, A., 
Czygan, F.C., & Lange, O.L. (1989). Photochemical efficiency of photosystem-ii, photon yield of o-
2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression 
of net co2 uptake in arbutus-unedo growing in portugal. Planta, 177, 377-387 
 
Flexas, J., Escalona, J.M., & Medrano, H. (1999). Water stress induces different levels of 
photosynthesis and electron transport rate regulation in grapevines. Plant Cell and Environment, 
22, 39-48 
 
Flexas, J., Briantais, J.M., Cerovic, Z., Medrano, H., & Moya, I. (2000). Steady-state and maximum 
chlorophyll fluorescence responses to water stress in grapevine leaves: A new remote sensing 
system. Remote Sensing of Environment, 73, 283-297 
 
Flexas, J., Escalona, J.M., Evain, S., Gulias, J., Moya, I., Osmond, C.B., & Medrano, H. (2002). 
Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net 
CO2 assimilation and stomatal conductance during water-stress in C-3 plants. Physiologia 
Plantarum, 114, 231-240 
 
Genty, B., Briantais, J.M., & Baker, N.R. (1989). The relationship between quantum yield of 
photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et 
Biophysica Acta, 990, 87-92 
 
Guo, J.M., & Trotter, C.M. (2004). Estimating photosynthetic light-use efficiency using the 
photochemical reflectance index: variations among species. Functional Plant Biology, 31, 255-
265 
 



47 
 

Hendrickson, L., Furbank, R.T., & Chow, W.S. (2004). A simple alternative approach to assessing 
the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research, 82, 
73-81 
 
Hendrickson, L., Forster, B., Pogson, B.J., & Chow, W.S. (2005). A simple chlorophyll fluorescence 
parameter that correlates with the rate coefficient of photoinactivation of Photosystem II. 
Photosynthesis Research, 84, 43-49 
 
Horton, P., Ruban, A.V., & Walters, R.G. (1994). Regulation of light-harvesting in green plants - 
indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiology, 106, 
415-420 
 
Levizou, E., Petropoulou, Y., & Manetas, Y. (2004). Carotenoid composition of peridermal twigs 
does not fully conform to a shade acclimation hypothesis. Photosynthetica, 42, 591-596 
 
Liu, L.Y., Zhang, Y.J., Wang, J.H., & Zhao, C.J. (2005). Detecting solar-induced chlorophyll 
fluorescence from field radiance spectra based on the Fraunhofer line principle. IEEE 
Transactions in Geoscience and Remote Sensing, 43, 827-832 
 
Malenovsky, Z., Mishra, K.B., Zemek, F., Rascher, U., & Nedbal, L. (2009). Scientific and technical 
challenges in remote sensing of plant canopy reflectance and fluorescence. Journal of 
Experimental Botany, 60, 2987-3004 
 
Moya, I., Cartelat, A., Cerovic, Z.G., Ducruet, J.M., Evain, S., Flexas, J., Goulas, Y., Louis, J., Meyer, 
S., Moise, N., & Ounis, A. (2003). Possible approaches to remote sensing of photosynthetic 
activity. IEEE Transactions in Geoscience and Remote Sensing, 588 -590 

 
Munne-Bosch, S., & Penuelas, J. (2004). Drought-induced oxidative stress in strawberry tree 
(Arbutus unedo L.) growing in Mediterranean field conditions. Plant Science, 166, 1105-1110 
 
Ounis, A., Evain, S., Flexas, J., Tosti, S., & Moya, I. (2001). Adaptation of a PAM-fluorometer for 
remote sensing of chlorophyll fluorescence. Photosynthesis Research, 68, 113-120 
 
Papageorgiou and Govindjee (2004). Chlorophyll a Fluorescence. A Signature of Photosynthesis. 
Dordrecht: Springer 
 
Perez-Priego, O., Zarco-Tejada, P.J., Miller, J.R., Sepulcre-Canto, G., & Fereres, E. (2005). 
Detection of water stress in orchard trees with a high-resolution spectrometer through 
chlorophyll fluorescence in-filling of the O-2-A band. IEEE Transactions in Geoscience and 
Remote Sensing, 43, 2860-2869 
 
Porcar-Castell, A., Pfundel, E., Korhonen, J.F.J., & Juurola, E. (2008). A new monitoring PAM 
fluorometer (MONI-PAM) to study the short- and long-term acclimation of photosystem II in 
field conditions. Photosynthesis Research, 96, 173-179 
 
Ridolfi, M., & Dreyer, E. (1997). Responses to water stress in an ABA-unresponsive hybrid poplar 
(Populus koreana x trichocarpa cv Peace) .3. Consequences for photosynthetic carbon 
assimilation. New Phytologist, 135, 31-40 
 



48 
 

Rosema, A., Snel, J.F.H., Zahn, H., Buurmeijer, W.F., & Van Hove, L.W.A. (1998). The relation 
between laser-induced chlorophyll fluorescence and photosynthesis. Remote Sensing of 
Environment, 65, 143-154 
 
Rushforth, K., (1999). Trees of Britain and Europe. Harper Collins, New York  
 
Schmuck, G., Moya, I., Pedrini, A., Vanderlinde, D., Lichtenthaler, H.K., Stober, F., Schindler, C., & 
Goulas, Y. (1992). Chlorophyll fluorescence lifetime determination of water-stressed c3-plant 
and c4-plant. Radiation and Environmental Biophysics, 31, 141-151 
 
Taiz, L., & Zeiger, E. (1998). Plant Physiology. 4th EditionSinauer Associates, Sunderland. 
 
van der Tol, C., Verhoef, W., & Rosema, A. (2008). A model for chlorophyll fluorescence and 
photosynthesis at leaf scale. Agricultural and Forest Meteorology, 149, 96-105 

Werner, C., Correia, O., & Beyschlag, W. (1999). Two different strategies of Mediterranean 
macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer 
drought. Acta Oecologica-International Journal of Ecology, 20, 15-23 
 
Zarco-Tejada, P.J., Miller, J.R., Pedros, R., Verhoef, W., & Berger, M. (2006). FluorMODgui V3.0: A 
graphic user interface for the spectral simulation of leaf and canopy chlorophyll fluorescence. 
Computers & Geosciences, 32, 577-591 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

Chapter 3 

 

Modelling the response of steady-state 

chlorophyll fluorescence to environmental 

factors: model validation in two 

contrasting species 

 

3.1 Introduction 

 

Upon absorbing a photon, a chlorophyll molecule jumps to a higher energy state; 

whatever the energy of the photon absorbed, part of the energy is then dissipated 

internally, through the decay to the lowest energy level available in the excited 

vibrational state (corresponding to the energy of a red photon). If the excited 

chlorophyll molecule then returns to its base state through the emission of a 

photon, this will have a lower energy (longer wavelength) than the one originally 

absorbed. The process, known as fluorescence, is aptly defined as the re-

emission of light energy by a pigment molecule at a longer wavelength than the 

excitation energy (Baker 2008). Since the process competes with photochemistry 

and heat dissipation its measurement can be used to gain information about the 

other two processes. 

The measurement of chlorophyll fluorescence from a distance has been 

proposed over the last few years as a useful tool to investigate vegetation 

function and productivity from airborne and satellite platforms (Moya et al. 2003; 

Grace et al. 2007). Although the technical feasibility of such measurements has 

been demonstrated (Guanter et al. 2007; Joiner et al. 2011), the interpretation of 

the resulting data is not straightforward. Chlorophyll fluorescence measurements 

have long been used in ecophysiological studies for the assessment of leaf 

photochemistry and as an index of photosynthetic processes (Rabinowich and 

Govindjee 1969; Maxwell and Johnson 2000). Chlorophyll fluorescence 
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measurements, however, generally rely on the application of pulses of saturating 

light for the estimation of PSII photochemical yield and electron transport rates; 

although several sound models have been developed over the years for the 

interpretation of the signal obtained with such a manipulative approach (Genty et 

al. 1989; Kramer et al. 2004), however, they cannot be used for the analysis of 

the steady-state fluorescence signal under ambient light conditions. The use of 

fluorescence measurements under ambient light, however, would be desirable in 

order to extend the applicability of the technique to passive remote sensing 

applications, making the development of novel suitable models a priority in 

research. A few models have indeed been proposed over the last few years for 

the interpretation of ambient fluorescence, but they are admittedly only applicable 

to low-light, unstressed conditions (Rosema et al. 1998) or rely on empirical and 

not fully warranted assumptions about co-limitation of fluorescence and 

photochemical processes, that are not consistent with current knowledge of 

energy partitioning (van der Tol et al. 2008). 

A novel model has been recently developed in our research group (Magnani, 

unpublished), which tries to overcome these limitations. In the present chapter, 

the model will be briefly presented and tested against detailed measurements of 

photochemical processes and fluorescence in two contrasting species under 

controlled environmental conditions.                                     

 

3.2 Modelling ambient fluorescence from photosystem II 

 

3.2.1 Model assumptions 

We consider a population of NPSII photosystem II (PSII) units, where each PSII 

has a given amount of chlorophyll a and b molecules (Chla and Chlb, 

respectively, with units of mol mol-1), as well as associated quinone and 

plastoquinone pools (Q, mol mol-1). Since we are interested only in short-term 

changes in leaf function, apart from xanthophyll de-epoxidation state all other 

stoichiometries are assumed constant for a given leaf, but potentially different 

among leaves. The quinone and plastoquinone pools are treated together, since 

the analysis of the redox state of the different quinone pools falls outside the 
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scope of the present study. Consequently, we represent the different forms as a 

single pool of quinone-equivalent molecules, capable of accepting one electron 

each.  

The formation of chlorophyll triplet states is considered part of the constitutive 

heat dissipation component. Moreover, photoinhibitory NPQ is not yet included in 

the model. Finally, the state-transition form of NPQ, which is much smaller than 

the pH-dependent form (Krause et al. 1991), is not considered here for simplicity 

reasons.  

Finally, the system of NPSII units is assumed to follow a lake-type organisation 

model (Kitajima et al. 1975; Dau 1994; Bernhardt et al. 1999), whereby excitons 

can move freely between PSII units. The probability of being in an excited state is 

therefore the same for all chlorophyll a molecules in the PSII (including the 

reaction centre). Although PSII units are known to be only partly interconnected 

in higher plants (Lazar 1999), the lake model has been demonstrated to yield 

almost indistinguishable results (Kramer et al. 2004). 

 

3.2.2 Processes 

In the proposed model, pigment molecules and quinone-equivalents shift from a 

base (OFF) to an excited (ON) state after accepting a photon, an exciton or an 

electron, returning to the OFF state after losing it. Excitation transfer between Chl 

b and Chl a is known to be unidirectional and to occur in the order of picoseconds 

(Dau 1994; Amerongen et al. 2003). As a result, at the time scale considered, 

chlorophyll b molecules are assumed to operate only in light absorption and 

excitons are assumed to be always located on Chla (i.e. ChlbOFF = Chlb) 

(Whitmarsh et al. 2002). 

From excited chlorophyll a molecules, excitons can follow different paths (Fig. 1): 

they can be re-emitted as fluorescence, lost as constitutive heat, dissipated by 

pH-dependent heat dissipation processes (non-photochemical quenching) or 

captured by an oxidized quinone-equivalent (Kitajima et al. 1975). Finally, the 

reduced quinone-equivalents can be re-oxidized by the downstream electron 

transport, returning to the OFF state. 
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Fig. 1 Scheme of light energy capture and dissipation in photosystem II. Rectangular 

boxes represent density of a substance in an energy state, circles represent 

processes. The flow of energy is represented by thick lines, state transitions by 

continuous thin lines; dashed lines represent an influence. ChlaON and ChlaOFF 

represent the density of chlorophyll a molecules carrying an exciton or in the 

ground state, respectively. QON and QOFF are the density of quinone-equivalents 

in a reduced and oxidized state, respectively. E is the fraction of core antenna 

complexes in a quenched state.  f, d, n, p and Je- are the rate of fluorescence, 

constitutive heat dissipation, pH-dependent non-photochemical heat dissipation, 

reduction of the quinone-equivalent pool (photochemistry) and electron transport, 

respectively. From Porcar-Castell et al. (2006, modified). 

 

3.2.3 Dynamic equations 

Under steady-state conditions, the rate of light capture (c) must equal the 

combined rate of energy dissipation by photochemistry (p), fluorescence (f) and 

heat, either constitutive (d) or energy-regulated (n): 

 

pnfdc           (1) 

 

All rates are expressed in units of mol m-2 s-1.  
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The rate of constitutive heat dissipation (d) and fluorescence (f) are linearly 

proportional to the number of excitons per unit area: 

 

ON

PSIId ChlaNkd          (2) 

ON

PSIIf ChlaNkf           (3) 

 

where ChlaON (mol mol-1) is the number of excited chlorophyll a molecules per 

reaction centre and kd (s
-1) and kf  (s

-1) are the rate constants for constitutive heat 

dissipation and fluorescence, respectively. The rate of energy-dependent heat 

dissipation (n) has been proposed to be a function of lumen pH and xanthophyll 

de-epoxidation (Gilmore et al. 1998). Its detailed representation, however, is 

beyond the purposes of the present model. 

Photochemistry is only initiated when an exciton resides in the reaction centre 

P680; according to the shallow lake model and the assumption of equal exciton 

distribution among all Chl a molecules (van Grondelle 1985), this will occur with a 

probability ChlaChlaChla ONON

RC   (Lavergne et al. 1995; Zhu et al. 2005).   

The efficiency of photochemistry also varies according to the redox state of the 

quinone-equivalent pool: when the pool is totally reduced, the rate of 

photochemistry is zero, whilst it is at its maximum when the plastoquinone pool is 

totally oxidized. Using a Stern-Volmer type approach, the rate of photochemistry 

(p) will be proportional to the oxidized fraction of the quinone-equivalent pool (

QQOFF ), analogous to the commonly referred to fraction of open reaction 

centres, qL (as defined by Kramer et al. 2004): 

 

PSII

ONOFF

pPSII

ON

RC

OFF

p N
Chla

Chla

Q

Q
kNChla

Q

Q
kp      (4) 
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where kp (s
-1) is the rate constant associated with photochemical processes. The 

dependence of p upon Chla has been confirmed by measurements of the net 

rates of charge separation for PSII of different antenna size: the higher the 

number of chlorophyll a molecules associated with a PSII reaction centre, the 

lower rate of primary charge separation (Holzwarth et al. 1985; Schatz et al. 

1987). 

The rate of electron transport to PSI (Je- ; mol m-2 s-1) determines the rate at 

which the quinone-equivalent pool is re-oxidized, and will be proportional to the 

number of quinone equivalents in a reduced state per PSII (QON; mol mol-1). 

Under steady-state conditions, this must be equal to the rate of photochemistry 

(p), which determines the rate of reduction of the quinone-equivalent pool: 

 

pNQJ PSII

ON

e           (5) 

 

where γ (s-1) is the rate constant for the re-oxidation of the quinone-equivalent 

pool.  

 

3.2.4 Modelling chlorophyll fluorescence 

Under steady-state conditions, the rate of exciton transfer to PSII (a function of 

chlorophyll excitation and quinone reduction state) must be balanced by charge 

separation and electron transport initiation (itself a function of quinone reduction 

state). By combining Eq. 4 and 5, electron transport rate can be expressed as a 

function of the number of excited chlorophyll a molecules per PSII (ChlaON) as 

(see Appendix 1 for a detailed description of all the steps involved in the following 

equations): 
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
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


       (6) 

 

Alternatively, the number of excited chlorophyll a molecules per PSII can be 

expressed as a function of electron transport rates: 

 










ePSII

e

p

ON

JQN

JQ

k

Chla
Chla





       (7) 

 

By combining Eq. 10 above with Eq. 3, which represents the dependence of 

fluorescence rates upon ChlaON, fluorescence f can be finally expressed as a 

function of electron transport rates: 

 










ePSII

ePSII

p

f

JQN

JQN
Chla

k

k
f




       (8) 

 

where QNPSII   is the electron transport rate that could be expected if all the 

quinone-equivalent pool were in a reduced state (i.e. if all reaction centres were 

closed). 

Fluorescence is known to be strongly affected by leaf chlorophyll content. This is 

particularly true for the fluorescence peak at 760 nm, where the fluorescence 

signal is not affected by re-absorption by leaf chlorophyll itself. As a result, solar-

induced fluorescence and the ratio of fluorescence at 730 vs 680 nm have been 

proposed as an index of leaf chlorophyll content (Gitelson et al. 1999; 

Buschmann 2007). Equation 8 above provides a functional explanation for such 

an effect, which is not the result of leaf absorbance alone, but also of the dilution 

of excitation among a greater number of chlorophyll molecules with increasing 
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antenna size, resulting in a lower photochemical quenching and in higher 

fluorescence rates. 

Although both PSII closure and quenching of core antenna complexes are known 

to have an effect on chlorophyll fluorescence, they are not explicitely included in 

Eq. 8 above. This is because of the concurrent effects they also have on Je-, 

making it possible to enucleate the functional link between fluorescence and PSII 

electron transport (and therefore photosynthetic rates). 

The practical application of the preceding equation, however, is hindered by the 

number of parameters involved. In particular, PSII density is known to change 

widely over the season and in response to environmental conditions (Laisk et al. 

2002; Eichelmann et al. 2005). However this will also reflect in changes in 

photosynthetic potential (Eichelmann et al. 2004), leading to a more useful form 

of the preceding equation. 

Under saturating light conditions (i.e. for I ), all chlorophyll molecules will be in 

an excited state (i.e. ChlaON = Chla), so that maximum electron transport rate 

under saturating light conditions ( max

eJ ) can be computed from Eq. 6 as: 
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By substituting this expression into Eq. 8, fluorescence rates can be expressed 

as a function of instantaneous and potential electron transport rates as:  
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3.2.5 Derivation of rate constants and model parameterisation 

The numerical value of the rate constants (kp, kf) presented in the model can be 

derived from the literature or from simple relationships. 

In a dark-acclimated leaf, xanthophyll de-epoxidation can be assumed to be fully 

dissipated. The quinone-equivalent pool will also be fully oxidized (QOFF / Q = 1; 

all reaction centres are open), so that the fluorescence yield (ΦFo) of such a dark-

adapted leaf (as typically measured by a modulated fluorometer under a dim 

measuring light) will be (Krause et al. 1991; Lavergne et al. 1995): 
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where kd (s
-1) is the rate constant of constitutive heat dissipation.  

After exposing the leaf to a brief pulse of saturating light, the quinone-equivalent 

pool can be assumed to be fully reduced (QOFF / Q = 0; all reaction centres are 

closed), and the maximum dark-acclimated fluorescence yield (ΦFm) can be 

expressed as (Krause et al. 1991): 
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Since the maximum fluorescence yield for molecules associated with 

photosystem II in vivo is typically 10% (Barber et al. 1989), and the rate constant 

for fluorescence is 6.7 × 107 s-1 (Rabinowich et al.  1969), the rate constant for 

constitutive heat dissipation (kd) can be estimated from Eq. 12. Finally, the yield 
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of photochemistry of a dark-acclimated leaf (ΦPSII) can be expressed as (Krause 

et al. 1991): 
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In healthy leaves, ΦPSII and Chl have typical values of 0.88 (Pfundel 1998) and 

148 (Amerongen et al. 2003), respectively, the value of the intrinsic rate constant 

for photochemistry (kp) can be estimated from Eq. 13. A value of 22 has been 

suggested for Q, the number of quinone-equivalents per PSII (Porcar-Castell et 

al. 2006). The rate constant for the re-oxidation of the quinone-equivalent pool 

can be attributed a value of 175 s-1, equivalent to the slowest step in the quinone 

redox cycle (Zhu et al. 2005). Values for all rate constants are presented in Table 

1. 

Using these numerical values, it can be seen that Qkp  , so that Eqn. 10 can 

be safely approximated as: 
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Finally, it can be seen from Eq. 11 and 13 above that it holds: 
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so demonstrating the rationale for normalizing fluorescence measurements 

(Flexas et al. 2002; Evain et al. 2004). 

 

3.2.6 Comparison with modulated fluorescence data 

Chlorophyll fluorescence and photochemical quantum yields are routinely 

measured under field and laboratory conditions by the so-called pulse-saturated 

technique, which combines records under ambient conditions (Ft) with the 

measurement of fluorescence in response to a short (1s) flash of saturating light 

(Fm'). This makes it possible to eliminate one of the three terms of the energy 

balance, estimating the remaining two from each other and deduce the electron 

transport rate and the photochemical quantum yield as (Genty et al. 1989): 
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Photosynthetic electron transport rates (Je-) can then be estimated from 

fluorescence measurements as: 
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where PAR  is photochemically active radiation at the leaf surface, α is leaf 

absorbance (assumed not to change over the course of the experiment) and the 

factor 0.5 accounts for light partitioning between photosystems. 

Photosystem II fluorescence yield (ΦF, the fraction of PSII absorbed light 

dissipated as fluorescence) can also be estimated from the same set of 

measurements. In the widely applied modulated fluorometer, fluorescence under 

ambient conditions (as well as under saturating conditions) is determined from 
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the periodic changes in re-emitted near-infrared light induced by a dim modulated 

(0.6 kHz) light, the so-called measurement light (Imeas). 

Since the measurement light is of constant intensity and so weak as not to 

interfere with PSII status, the fluorescence signal is proportional to fluorescence 

yield under background light conditions: 
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and fluorescence radiance (f) therefore estimated as: 
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It is therefore possible to obtain concurrent estimates of fluorescence radiance (f) 

and electron transport rates (Je-), as assessed by the saturating pulse technique, 

and evaluate their mutual relationship. 

 

3.2.7 Correction for PSI contributions 

It is important to remember, however, that measurements from commercial 

modulated fluorometers also include a substantial contribution from photosystem 

I (PSI; Pfundel 1998; Franck et al. 2002), which should be subtracted in order to 

obtain results fully comparable with model predictions of PSII yields. In contrast 

with PSII, the contribution from PSI (FI) appears to be independent from the state 

of its reaction centre and non-photochemical quenching (Butler 1978). The 
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modulated fluorescence signal from a dark-acclimated leaf before (Fo) and after 

(Fm) a flash of saturating light can be therefore expressed as: 
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where Fo
II and Fm

II are the contributions from PSII alone. Variable fluorescence 

from such a dark-acclimated leaf (Fv) can be therefore expressed as: 
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Maximum quantum yield is commonly estimated as (Genty et al. 1989): 
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and is commonly found to have a value of 0.84 (Schreiber et al. 1987). Because 

of the contribution from PSI, this is lower than the 0.88 value estimated for the 

maximum photochemical yield of PSII alone (Pfundel 1998): 
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From the two preceding equations, PSI fluorescence can be estimated from 

measurements on a dark-acclimated leaf as: 
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and used to correct the estimates of PSII fluorescence radiance and electron 

transport rates derived from modulated fluorescence measurements. 

 

3.3 Material and methods 

 

3.3.1 Plant material 

Five strawberry tree (Arbutus unedo L.) and five hybrid poplar (Populus x 

euroamericana) plants were grown in pots of 11.3 l capacity containing a mixture 

of sand and peat (1:1, by volume). The pots were maintained during the 

experiment period in an open area at the Faculty of Agriculture of the University 

of Bologna with adequate watering supply. 

 

3.3.2 Experimental procedures 

The experiment was conducted in the laboratory of ecophysiology of the DCA in 

the Faculty of Agriculture, University of Bologna (Italy). Before each set of 

measurements, the plant was exposed to high light conditions for one hour in 

order to acclimate the leaves and activate the photosynthesis process.  

Measurements under controlled conditions were repeated with the same 

experimental setup on seven fully expanded mature leaves from separate plants 

for each species and protocol. 

The leaf was enclosed in the broadleaf cuvette of a LiCor Li-6400 gas-exchange 

analyzer (LI-Cor Inc., Lincoln, NE, USA), which also provided gas exchange 

measurements, and exposed to the light of a dichroic halogen lamp. The lamp 

was connected to an energy stabilizer in order to provide the light intensity 

needed. Simultaneously chlorophyll fluorescence parameters were measured by 

pointing the fiberoptics probe of a PAM-2000 modulated fluorometer (Heinz Walz 
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Gmbh, Effeltrich, Germany) at the surface of the leaf through a sealed opening in 

the leaf cuvette. 

Environmental conditions applied on leaves in the LiCor cuvette were varied one 

at a time, following two different protocols. In the first protocol, light intensity were 

changed in steps (1000, 800, 600, 400, 200, 100, 20 μmol m-2 s-1) from high to 

low level, whilst keeping ambient CO2 inside the cuvette constant (350 ppm). The 

same steps were then repeated at high (800 ppm) and low (100 ppm) air CO2 

concentration inside the cuvette. In the second protocol, the air CO2 

concentration inside the LiCor Li-6400 cuvette were changed in steps (350, 200, 

50, 350, 550, 800, 1200, 1500 ppm), under moderately low (400 μmol m-2 s-1) 

and  high (1000 μmol m-2 s-1) light conditions.The leaf was kept for at least 15 

minutes at each level in order to ensure full acclimation. At the end of each step, 

three successive measurements were made by the LiCor Li-6400 at 2-m 

intervals, simultaneously with fluorescence measurements by the PAM 2000. 

Temperature inside the cuvette of the LiCor Li-6400 was maintained at 25 ± 1°C 

throughout the experiment. A more detailed description of experimental setup can 

be found in Chapter 2. 

 

3.3.3 Model validation 

In order to test its predictive power, the model described above has been fitted on 

fluorescence measurements by the SAS statistical package (SAS 9.0, SAS 

Institute Inc., Cary, NC, USA), using a non-linear regression procedure (PROC 

NLIN) and a derivative-free algorithm (Ralston et al. 1978). Values for most 

parameters were derived from the literature (see Table 1). Modulated 

fluorescence from the dark-acclimated leaf, required for the correction of the 

fluorescence contribution from PSI, was directly measured. A single parameter (

max

eJ )

 

was estimated for each species; additionally, a single value of the Imeas 

parameter (fluorometer modulated measurement light) was fitted on the entire 

dataset. 
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Table 1. Values of the rate constants of fluorescence (kf), constitutive heat dissipation 

(kd), pH-dependent non-photochemical heat dissipation (kn), photochemistry 

(kp), plastoquinone pool re-oxidation (), of the average number of Chl a 

molecules per PSII reaction centre (Chla), of leaf absorbance (α) and of the 

fraction of photons partitioned to PSII (). Additional parameters were needed 

in the correction for the contribution from photosystem I: the maximum 

apparent quantum yield with (ΦPSII) or without (Fv/Fm) correction for PSI 

contribution to fluorescence, and steady-state fluorescence from a dark-

acclimated leaf (Fo). 

 

Rate constant or 

parameter 

Value Source 

kf (s
-1)  6.7 × 107 Rabinowich and Govindjee ( 1969) 

kd (s
-1) 6.03 × 108 Eq. 12 

kp (s
-1) 7.3 × 1011 Eq. 13 

 (s-1) 175 Zhu et al. (2005) 

Chla (-) 148 Amerongen et al. (2003) 

Q (-) 22 Porcar-Castell et al. (2006) 

α (-) 0.9 Raddi et al., unpublished 

 (-) 0.5 Farquhar et al. (1980) 

ΦPSII 0.88 Pfundel (1998) 

Fv/Fm 0.84 Schreiber et al. (1987) 

Fo  measured 
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3.4 Results and discussion 

 

Experimental results from the two species, in terms of photochemical and 

fluorescence yields and their response to the environment, have been presented 

in Chapter 2. 

Estimated PSII fluorescence radiance and electron transport rates varied widely 

in response to variable PAR and air CO2 in both species (Figs. 2 and 3). 

Maximum electron transport rates under saturating light conditions were about 

195 μmol m-2 s-1 in A. unedo (Fig. 2B); in P. x euroamericana, electron transport 

-2 s-1 were as high as 247 μmol m-2 s-1, with no 

clear sign of saturation under conditions of high air CO2 (Fig. 3B). 

Estimated fluorescence radiance responded almost linearly to irradiance in both 

-2 s-1; the response 

to air CO2 was weaker in strawberry tree (Fig. 2A) than in poplar (Fig. 3A). As air 

CO2 declined to values close to the compensation point for photosynthesis, both 

electron transport rates and PSII fluorescence radiances did not approach zero in 

these C3 species, as a result of the sustained demand for ATP by oxygenation 

processes in photorespiration (Farquhar et al. 1980). As a result, the observed 

variability in both f and Je- was much more strongly controlled by absorbed light 

than by net photosynthesis per se; changes in air CO2 (which could mimic the 

functional effects of stomatal closure under stress conditions) were the key driver 

of both fluxes only under high light conditions. Although this should be kept in 

mind in the analysis of leaf-level data, it should not create a problem in a remote 

sensing perspective, since satellite acquisitions are commonly made at around 

midday and under clear conditions (Joiner et al. 2011), when radiation levels are 

high during summer months when stress conditions are commonly observed. 

 



66 
 

 

Fig. 2 Response of estimated (A) fluorescence radiance (f) and (B) photosynthetic 

electron transport rate (Je-) to incoming irradiance (PAR) in A. unedo leaves 

submitted to the first (variable PAR at three levels of CO2; black dots) and to the 

second protocol (variable CO2 at two levels of PAR; white circles) 

 

 

Fig. 3 Response of estimated (A) fluorescence radiance (f) and (B) photosynthetic 

electron transport rate (Je-) to incoming irradiance (PAR) in P. x euroamericana 

leaves submitted to the first (variable PAR at three levels of CO2; black dots) and 

to the second protocol (variable CO2 at two levels of PAR; white circles) 

 

Considering the mutual relationship between fluorescence radiance and electron 

transport rate, a curvilinear relationship is observed both in Arbutus (Fig. 4A) and 

in Populus (Fig. 5A). For each species, a unique relationship is observed 

between the two variables, irrespective of whether the variation in electron 

transport rates is induced by changes in either incoming irradiance (black dots) or 

in atmospheric CO2 concentrations (white circles). The uniqueness of the 

relationship, predicted by the fluorescence model, is most pronounced in 

strawberry tree leaves, whilst some differences between results from the two 
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protocols are apparent in poplar. Despite this partial discrepancy, the model 

appears to explain well the overall relationship between the two variables (Figs 

4B and 5B), opening the way to the prediction of photosynthetic electron 

transport from measurements of steady-state fluorescence alone. In both 

species, the model explains 97% of the overall variability in fluorescence 

radiance; model predictions are on average 13% higher than direct estimates in 

the case of poplar, but 6% lower in strawberry trees. This contrasts with the 

rather poor performance of the steady-state fluorescence model presented by 

van der Tol et al. (2008), when tested against the laser-induced fluorescence 

measurements of Rosema et al. (1998) on P. nigra leaves subjected to diurnal 

changes of irradiance and to increasing water stress conditions: the van der Tol 

model only explained 84% of the overall variability in fluorescence radiance. Even 

poorer results were obtained by the original model of Rosema et al. (1998), which 

contained several elements of empiricism and was not fully consistent with our 

general understanding of the relationship between fluorescence and 

photochemistry (Genty et al. 1989; Kramer et al. 2004). 

A comparison of results and model predictions from the two species is also rather 

informative (Fig. 6): there appears to be a general consistence between the two 

species in the relationship, but not such that it can be used as an empirical tool 

for the prediction of photochemical rates. This is explained by the model in terms 

of a single parameter (
max

eJ ), which according to Eq. 9 should be related to the 

number of PSII units per unit leaf area (NPSII), as well as to a number of other 

parameters (kp, Q, ) which have been assumed as constant in the current 

analysis, but which could vary between species and in response to stress 

conditions. It is worth noting that a higher value of the parameter has been 

estimated by the model in the case of poplar, a species typically characterized by 

high leaf N contents, photosynthetic potentials and (presumably) a high density of 

PSII units. 
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Fig. 4 Analysis of fluorescence model goodness-of-fit in A. unedo leaves. (A) Predicted 

(continuous line) and estimated (protocol 1, black dots; protocol 2, white circles) 

relationship between fluorescence radiance (f) and photosynthetic electron 

transport rate (Je-). (B) Comparison between modelled and estimated values of 

fluorescence radiance (f); linear regression (dotted line) and 1:1 line (continuous 

line) are also presented. 

 

 

Fig. 5 Analysis of fluorescence model goodness-of-fit in P. x euroamericana leaves. (A) 

Predicted (continuous line) and estimated (protocol 1, black dots; protocol 2, 

white circles) relationship between fluorescence radiance (f) and photosynthetic 

electron transport rate (Je-). (B) Comparison between modelled and estimated 

values of fluorescence radiance (f); linear regression (dotted line) and 1:1 line 

(continuous line) are also presented.  
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Fig. 6 Inter-specific comparison of the relationship between fluorescence radiance (f) 

and photosynthetic electron transport rate (Je-). Modelled (continuous line, A. 

unedo; dotted line, P. x euroamericana) and estimated values (triangles, A. 

unedo; circles, P. x euroamericana) are presented for protocol 1 (black) and 

protocol 2 (white). 

 

 

3.5 Conclusions 

 

The measurement of ambient fluorescence has been proposed as a suitable tool 

for the remote sensing of vegetation primary production from airborne and 

satellite platforms. 

The assessment of ambient fluorescence from space is generally based on the 

retrieval of solar-induced fluorescence radiance through the in-filling of the so-

called Fraunhofer lines (in reality, the O2-A and O2-B atmospheric absorption 

lines). Two different methods have been proposed for this purpose in the 

literature (Alonso et al. 2008; Frankenberg et al. 2011). 

At the leaf level, solar-induced fluorescence radiance can also be measured and 

discriminated from near-infrared reflectance through special experimental set-

ups, by screening all wavelengths above 680 nm from incoming radiation, so as 

to measure by a spectro-radiometer only outgoing fluorescence in this spectral 

region (Meroni et al. 2009). 
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An alternative, simple approach has been presented here, based on a widely 

available modulated fluorometer and on the interpretation of the Ft signal in terms 

of fluorescence yield. Although the method does not provide a direct 

measurement of fluorescence radiance, which has to be estimated taking 

radiation absorption into account, it has several advantages over other 

techniques, by (i) making it possible to concurrently estimate electron transport 

rates from the same portion of the leaf and (ii) making it easy to expose the leaf 

to controlled conditions using commercial instrumentation. This opens the way for 

a thorough, one-at-a-time test of process based models of leaf energy dissipation 

and fluorescence, such as the one presented in this chapter. For the first time, 

and in contrast with previous studies (Rosema et al. 1998; van der Tol et al. 

2008), a quantitative test of the model has been made possible by the proposed 

experimental setup. 

The proposed model differs substantially from previous approaches. In contrast 

with most models of chlorophyll fluorescence and leaf photochemistry (Genty et 

al. 1989; Hendrickson et al. 2004; Kramer et al. 2004), the model relies for the 

prediction of electron transport rates only on knowledge of ambient fluorescence, 

making it suitable for the interpretation of solar-induced fluorescence from space. 

In comparison with previous attempts to explain the Ft signal (Rosema et al. 

1998; van der Tol et al. 2008), the new model does not rely on empirical un-

warranted assumptions, such as the parallel limitation of fluorescence and 

photochemistry by non-radiative energy dissipation, but is based on purely 

biophysical principles. 

 The test has highlighted the general validity of the model, which appears to 

conveniently represent the relationship between fluorescence radiance and 

electron transport rates, when the latter is varied in response to either light or 

atmospheric CO2. This paves the way for the retrieval of electron transport rates 

from remotely-sensed information. A precise knowledge of Je- is the starting point 

for an assessment of photosynthetic rates at leaf and canopy level (despite all the 

caveats highlighted in the present study, centered on the effects of 

photorespiration). As a result, the model represents an important step forward for 

the estimation of global vegetation productivity from remote sensing 

measurements of solar-induced fluorescence.   



71 
 

Appendix 1. Developing an expression for chlorophyll fluorescence 

 

Recalling Eq. 4 and 5, the rates of PSII excitation and de-excitation can be 

expressed alternatively as: 
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From Eq. 5, the number of reduced quinone-equivalent molecules per PSII can 

be expressed as a function of electron transport rate Je-:  
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By combining the preceding equation with Eq. 4, electron transport rate can be 

expressed as a function of the number of excited chlorophyll a molecules per 

PSII: 
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Alternatively, the number of excited chlorophyll a molecules per PSII can be 

expressed as a function of electron transport rate: 
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By combining the preceding equation with Eq. 3, which represents the 

dependence of fluorescence rates upon the number of excited chlorophyll a 

molecules, fluorescence f can be also expressed as a function of electron 

transport rates: 
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As already noted, however, the practical application of the preceding equation is 

hindered by the number of parameters involved. In particular, PSII density is 

known to change widely over the season (Laisk et al. 2002; Eichelmann et al. 

2005). This will also reflect in changes in photosynthetic potential, however, 

leading to a more useful form of the preceding equation. 

Under saturating light conditions, all chlorophyll molecules will be in an excited 

state (ChlaON = Chla), so that maximum electron transport rate under saturating 

light conditions can be computed from Eq. A1.2 as: 
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Alternatively, the electron transport rate with all reaction centres closed 

 QNPSII    can be estimated as: 
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By substituting this expression into Eq. A1.4, fluorescence rates can be 

expressed as a function of instantaneous and potential electron transport rate as: 
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Chapter 4 

 

Response of photochemical processes to N 

fertilisation in Populus, assessed through 

fluorescence and leaf spectroscopy 

techniques 

 

 

4.1. Abstract 

 
Leaf biochemical contents are known to have a substantial effect on 

photosynthetic rates, largely explaining the response of plants to fertilization. 

Both the chlorophyll and the nitrogen content of the leaf are known to be affected 

by nutrient, and in particular by nitrogen supply. In order to complement the 

analysis of ambient fluorescence as a predictive tool for the remote assessment 

of photochemical rates and photosynthesis, I therefore explored in my last 

experiment the effects of N fertilization on the relationship between 

photochemical and fluorescence yields, already described before. 

The suitability of the Photochemical Reflectance Index (PRI) for the prediction of 

leaf photochemistry was also assessed in the same experiment. Solar-induced 

fluorescence and PRI (Photochemical Reflectance Index) are considered the two 

most promising tools for the remote assessment of photosynthetic rates and an 

objective comparison of their potential and limitations could greatly enhance our 

ability to apply these novel techniques to the analysis of vegetation.  

The analysis demonstrated a consistent relationship between fluorescence and 

photochemical yields, once data are corrected for the effects of leaf absorbance. 

The relationship with the PRI signal, on the contrary, was found t be strongly 

affected by leaf biochemical contents, presumably because of variable 

xanthophylls contents, and not to be suitable for the remote assessment of leaf 

photochemistry over longer periods. 
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4.2. Introduction 

 
Leaf biochemical contents are known to have a substantial effect on 

photosynthetic rates, largely explaining the response of plants to fertilization. 

Both the chlorophyll and the nitrogen content of the leaf are known to be affected 

by nutrient, and in particular by nitrogen supply. In order to complement the 

analysis of ambient fluorescence as a predictive tool for the remote assessment 

of photochemical rates and photosynthesis, I therefore explored in my last 

experiment the effects of N fertilization on the relationship between 

photochemical and fluorescence yields, already described before. 

The suitability of the Photochemical Reflectance Index (PRI; (Gamon et al. 1997) 

for the prediction of leaf photochemistry was also assessed in the same 

experiment. Solar-induced fluorescence and PRI (Photochemical Reflectance 

Index) are considered the two most promising tools for the remote assessment of 

photosynthetic rates (Grace et al. 2007); (Malenovsky et al. 2009), and an 

objective comparison of their potential and limitations could greatly enhance our 

ability to apply these novel techniques to the analysis of vegetation. Ambient 

fluorescence and PRI have already been compared under both laboratory (Moya 

et al. 2004); (Evain et al. 2004)and field conditions (Louis et al. 2005), no analysis 

under carefully controlled conditions has been proposed so far. 

 

 

4.3. Material and methods 

 

4.3.1. Plant material 

Twenty cuttings of poplar (Populus euramericana) clone AF2 were planted on 

March 19, 2010 in pots of 11.3 L capacity containing a mixture of sand and peat 

(1:1, by vol.). The pots were maintained in Cadriano (The experimental field of 

the faculty of agriculture/ university of Bologna) with adequate watering supply. 

Ten pots were fertilized with 100 kg/ha of an agricultural inorganic NPK fertilizer 

(containing 21% NO3-N, 7% P2O5-P, and 14% K2O-K), whilst the remaining 

were not fertilized and acted as a control. 
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When the plants were five months old, the height, stem base diameter, number of 

leaves, dimensions of twenty leaves per plant were measured on each plant. An 

allometric relationship between leaf dimensions and leaf area (Barigah et al, 

1994) was applied to calculate the area of individual leaves for the twenty leaves 

chosen, from which the total leaf area per plant was calculated by multiplying the 

mean leaf area by the number of leaves. Based on a relation developed in a 

parallel study on one year plants of the same clone, plant biomass was 

calculated (E. Muzzi, pers. comm.)   

 

4.3.2. Selection of leaves of variable biochemical content 

In order to select for physiological measurements leaves spanning the widest 

possible range of nutrition, leaf chlorophyll and N contents were measured on a 

large sample (n=96) of leaves on plants from both treatments (see Chapter 5 for 

further details). The portable chlorophyll meter (SPAD Minolta 502, Minolta LTD., 

Osaka, Japan) was used to non-destructively measure the chlorophyll (Chl) and 

N content of the leaves. SPAD has a 0.06-cm2 measurement area, and calculate 

an index in „SPAD units‟ based on absorbance at 650 and 940 nm. The accuracy 

of the SPAD is claimed to be 1.0 SPAD units. Five readings and the mean of 

them were obtained for 50 healthy mature leaves in 8 different plants of each 

treatment in order to determine the ones with the maximum and the minimum 

chlorophyll content. Seven leaves of the maximum SPAD readings and seven 

leaves of the minimum SPAD readings were chosen to be used for further 

measurements in the experiment. During measurements with SPAD 502, the 

sensor head was shaded to avoid direct sunlight from reaching the instrument. 

                                        

                                        

Fig. 1 chlorophyll meter (SPAD-502) 
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4.3.3. Experimental setup and measurements 

The experiment was conducted in the laboratory of Ecophysiology of the DCA in 

the Faculty of Agriculture-University of Bologna (Italy). Measurements were done 

under controlled conditions on fully expanded mature leaves. The plants were 

exposed to high light conditions for one hour before the experiment in order to 

acclimate leaves and activate the photosynthetic process.  

Photosynthetic rates were measured by placing individual leaves inside the 

broadleaf cuvette of a LiCor Li-6400 infrared gas-exchange analyzer (LI-Cor Inc., 

Lincoln, NE, USA) and exposing them to the light of a dichroic halogen lamp 

overhead. The lamp was connected to an energy stabilizer in order to provide the 

light intensity needed. Simultaneously chlorophyll fluorescence parameters were 

measured by pointing the fiberoptics probe of a PAM-2000 modulated 

fluorometer (Heinz Walz Gmbh, Effeltrich, Germany) at the surface of the leaf 

through a sealed opening in the leaf cuvette. The fiberoptics probe of an Ocean 

Optics USB-2000 spectrometer (Ocean Optics, Dunedin, FL, USA) connected to 

a controlled light source was also pointing at the same area of the leaf in order to 

measure leaf reflectance. The USB-2000 spectrometer had samling frequency of 

0.4 nm (about 1 nm FWHM resolution) over the range 400-1000 nm, making it 

suitable for the determination of hyperspectral indices after application of a 

suitable Savitzky-Golay smoothing filter. In particular, the Photochemical 

Reflectance Index (PRI; (Gamon et al. 1997) was computed from leaf reflectance 

at 531 (R531) and 570 nm (R570) as: 

 

    
         
         

 

 

The setup of the experiment is illustrated in Fig. 2 and 3. 
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 Fig. 2 Set-up scheme of the experiment shows leaf inside the cuvette of the Li-Cor 6400 

exposed to the light of a halogen lamp connected to an energy stabilizer; the 

fiberoptics probe of a PAM-2000 modulated fluorometer is pointing at the surface 

of the leaf through a sealed opening in the leaf cuvette, and the fiberoptics probe 

of Ocean Optics USB-2000 spectrometer with a controlled light source is also 

pointing on the same area of the leaf through the cuvette window. 

       

Fig. 3 The set-up of the experiment: leaf of poplar inside the cuvette (right panel) of the 

Li-Cor 6400 (left panel, at the bottom) exposed to the light of a halogen lamp 

connected to an energy stabilizer (left panel, to the left), and the fiberoptics probe 

of a PAM-2000 modulated fluorometer (left panel, to the right) is pointing at the 

surface of the leaf through a sealed opening in the leaf cuvette, and the 

fiberoptics probe of an Ocean Optics USB-2000 spectrometer with a controlled 

light source is also pointing on the same area of the leaf. 
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Environmental conditions applied on leaves were varied , changing light levels in 

-2 s-1, whilst keeping air CO2 concentration constant 

at 350 ppm (Fig. 4). The same steps were repeated for a moderately high (800 

ppm) and moderately low (100 ppm) concentration of air CO2 in the cuvette. The 

leaf was kept for at least 15 minutes at each step in order to ensure full 

acclimation. Fifteen successive measurements were taken at every step by the 

LiCor Li-6400 at 1-m intervals. The last three measurements were done 

simultaneously with the PAM 2000 pulse-saturated fluorescence measurements 

at 2-m intervals. Immediately after the last measurement of fluorescence, the light 

was turned off and three measurements of leaf reflectance by the Ocean Optics 

spectrometer were taken at 3-sec intervals. Temperature inside the cuvett of the 

LiCor Li-6400 was controlled at 25 ± 1°C during all the experiment period.  

For each treatment, measurements were repeated with the same experimental 

setup on seven leaves from separate plants. 

                         

Fig. 4 Schematic representation of the measurement protocol applied on Populus 

euroamericana leaves under controlled conditions: incoming irradiance from a 

dichroic halogen lamp was modulated through a stabilized power source between 

1000 and 20 µmol m-2 s-1, whilst maintaining the leaf under three constant CO2 

concentrations (350, 800, 100 ppm) inside the LiCor Li-6400 cuvette.  

 

4.3.4. Estimation of photochemical and fluorescence yield 

Chlorophyll fluorescence was measured by the PAM-2000 fluorometer by the so-

called pulse-saturated technique, which combines records under ambient 
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conditions (Ft) with the measurement of fluorescence in response to a short (1s) 

flash of saturating light (Fm'). This makes it possible to eliminate one of the three 

terms of the energy balance, estimating the remaining two from each other and 

deduce the electron transport rate and the photochemical quantum yield as 

(Genty et al. 1989): 

'

'

' m

tm

m F

FF

F

F 



       

Photosystem II fluorescence yield (ΦF, the fraction of PSII absorbed light 

dissipated as fluorescence) can also be estimated from the same set of 

measurements. In modulated fluorometers, fluorescence is determined from the 

periodic changes in re-emitted near-infrared light induced by a dim modulated 

(0.6 kHz) light, the so-called measurement light (Imeas). 

Since the measurement light is of constant intensity and so weak as not to 

interfere with PSII status, the fluorescence signal is proportional to fluorescence 

yield under background light conditions: 
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where α is leaf absorbance of photosynthetically active radiation and the factor 

0.5 accounts for light partitioning between photosystems.

 

It is important to remember, however, that measurements from commercial 

modulated fluorometers also include a substantial contribution from photosystem 

I (PSI; (Pfundel 1998); Franck (Franck et al. 2002), which should be subtracted in 

order to obtain unbiased estimates of photochemical and fluorescence yields. As 

already discussed (Chapter 3), the contribution to Ft coming from PSI (FI) can be 

estimated as: 
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where Fo is the fluorescence signal from a dark-acclimated leaf, Fv/Fm is the 

apparent photochemical quantum yield, typically found to have a value of 0.84 
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(Schreiber et al. 1987) and ΦPSII is the maximum photochemical yield of PSII 

alone, with a value of 0.88 (Pfundel 1998). 

 

4.3.5. Measurement of leaf absorbance 

Leaf absorbance α was measured on a parallel sample of leaves together with 

directional leaf reflectance by the Ocean Optics spectrometer, so as to be able to 

estimate it for the leaves measured in the experiment, and correct estimates of 

fluorescence yield for differences in absorbance (Eq. 2). For this purpose the 

LICOR LI-1800 (LI-COR, inc., Lincoln, Nebraska, USA) fitted with an 1800-12 

external Integrating Sphere (Fig. 5) was used. The instrument measures the 

reflectance and the transmittance of leaves in a wavelength range between 400 

and 1100 nm, and on a spot of diameter 1.14 cm, avoiding the major veins. Leaf 

PAR absorbance was estimated as the mean of absorbance values in the 400-

700 nm region. After the measurement, the leaf was inserted in the cuvette of the 

Li-6400 gas analyzer, and directional leaf reflectance measured by an Ocean-

Optics spectrometer as described above. 

Measurements were carried on at the laboratory of ecophysiology in the Faculty 

of Agriculture of the University of Bologna.  

 

 

Fig. 5 LICOR LI-1800 provided with 1800-12 external Integrating Sphere 
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4.4. Results and discussion 

The difference between SPAD readings between fertilized and unfertilized 

populations was rather clear (Fig. 6). 

              

Fig. 6 SPAD readings of leaves of fertilized (upper values) and unfertilized (bottom 

values) saplings of Populus euoroamericana. Leaves used for measurements of 

fluorescence and reflectance are highlighted: fertilized (●), unfertilized (■) 

 

We found two distinguished populations: fertilized plants were of relatively high 

values of SPAD readings with an average of about 43, whereas the average was 

about 29 for unfertilized ones. From each population, a sample of leaves with 

maximum and minimum biochemical contents was selected (black symbols in 

Fig. 6). 

As a result of the large difference in chlorophyll and carotenoid content captured 

by the divergent SPAD readings (see Chapter 5), fertilized and unfertilized plants 

also had widely different light absorbances in the visible range (Fig. 7). Average 

absorbance of photosynthetically active radiation was 85.8 and 80.7% in selected 

leaves from fertilized and unfertilized treatments, respectively.  
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Fig. 7 Leaf absorbance of fertilized (upper curve) and unfertilized (bottom curve) 

saplings of P. euroamericana. Vertical bar shows the wavelength (650 nm) used 

by SPAD for making instantaneous readings of leaf greenness or relative 

chlorophyll content.  

 

The relationship between the fluorescence Ft signal and estimated 

photochemical yield (∆v/Fm') shows a clear non-monotonic pattern (Fig. 8).  As 

already observed in previous experiments (see Chapter 2), a negative 

association between Ft and photochemical yield is observed under light-limited 

conditions, and a positive association on the contrary under conditions limited by 

stomatal closure and CO2 availability. The transition point, as well as the slope of 

the relationship under CO2-limited conditions, clearly depend upon air CO2 

concentrations, and can be therefore expected to vary in response to drought and 

stomatal closure (Flexas et al. 2002). Raw data obtained from the PAM-2000 

fluorometer show a clear difference in the relationship between fertilized and un-

fertilized leaves (Fig. 8). The difference, however, is largely the effect of 

differences in leaf absorbance, and is not apparent anymore when comparing 

fluorescence and photochemical yields, computed as described above (Fig. 9); at 

all three CO2 levels, the segmented relationship between yields is maintained, 

but results from the two fertilization treatments are undistinguishable from each 

other. 
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Fig. 8 Relationship between fluorescence yield (Φf) and PSII photochemical yield (ΦPSII) 

(raw data) in response to changes in irradiance (PAR) under three constant CO2 

concentrations in leaves of fertilized (●) and unfertilized (■) plants of Populus 

euroamericana. 

No such effects of leaf aborbance can be invoked to explain the large effect of 

fertilization on leaf PRI (Fig. 10). There is indeed, as expected (Gamon and 

Surfus 1999); (Garbulsky et al. 2011), a relationship at the different levels of CO2 

and the different levels of fertilization between photochemical yield and PRI; at a 

CO2 of 800 and 350 ppm, the relationship was almost linear, but it appeared to 

level off under low CO2 conditions under high light (low values of photochemical 

yield). Lower PRI values were also observed at a CO2 of 100 ppm for a given 

level of photochemical yield (Fig. 11).  

The relationship between PRI and photochemical yields, however, differed 

markedly as a result of differences in leaf biochemical contents (Fig. 10), with 

much lower PRI values in the control than in the fertilized treatment. As a result, 
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PRI cannot be used as a predictor of photochemical yield over long periods, as 

already reported in the literature (Garbulsky et al. 2011).  

                                             

Fig. 9 Relationship between fluorescence yield (Φf) and PSII photochemical yield (ΦPSII) 

(after correction for absorbance) in response to changes in irradiance (PAR) 

under three constant CO2 concentrations in leaves of fertilized (●) and unfertilized 

(■) plants of Populus euroamericana.                  

 

Over the course of one day, the biochemical content of the leaf will remain 

constant, and therefore a good relationship can be observed between PRI and 

photochemical yield (Gamon et al. 1997). Over the long term, however, we will 

have changes in nitrogen or chlorophyll concentration or other photosynthetic 
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pigments, and this will have an effect on PRI independent of the effect on 

photochemical yield. Since it is not possible at present to discriminate between 

the two components, this appears to limit the applicability of PRI in proximal and 

remote sensing studies.  

                                                                                                                                                                                       

                        

Fig. 10 Relationship between photochemical reflectance index (PRI) and PSII 

photochemical yield (ΦPSII) in response to changes in irradiance (PAR) under 

three constant CO2 concentrations in leaves of fertilized (●) and unfertilized (■) 

plants of Populus euroamericana. 
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Fig. 11 Relationship between photochemical reflectance index (PRI) and PSII 

photochemical yield (ΦPSII) in response to changes in irradiance (PAR) under 

three constant CO2 concentrations in leaves of fertilized (a) and unfertilized (b) 

plants of Populus euroamericana. 

 

The effect of leaf biochemical status on PRI had already been noted before 

(Garbulsky et al. 2011), commonly attributed to changes in chlorophyll content 

(Wu et al. 2010) or in carotenoid-to-chlorophyll ratios (Filella et al. 2009); (Garrity 

et al. 2011). This was indeed the case in the present study: the minimum PRI for 

each leaf is strongly related to REIP (Fig. 12;R2= 0.85). REIP values change with 

changes in leaf chlorophyll concentration (Boochs et al. 1990); Horler et al., 1980; 

(Lamb et al. 2002), but also in the carotenoid/chlorophyll ratio (see Chapter 5) 

and as leaf nitrogen status is often related to chlorophyll content, the REIP has 

been used also as an indicator to estimate foliar nitrogen content indirectly  (Cho 

and Skidmore 2006). Leaf xanthophyll content has been found to change 

substantially as a result of fertilization and in response to changes in leaf N 

content and photosynthetic potentials (Stylinski et al. 2000); (Cheng 2003), 
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similar changes in PRI are not surprising, as the index is related to the leaf 

content of zeaxanthin (Gamon and Surfus 1999). 

So, we can say that PRI can also be a good indicator of the nutritional status of 

plants, and whether they need fertilization or not, as well as a short-term indicator 

to estimate leaf photosynthetic light use efficiency (Penuelas et al. 1995); 

(Gamon et al. 1997). 

                              

Fig. 12 Relationship between minimum values of photochemical reflectance index (PRI) 

and red edge index position (REIP) in leaves of fertilized (upper dots) and 

unfertilized (bottom dots) plants of Populus euroamericana. 

 

4.5. Conclusions 

The experimental test demonstrates a consistent pattern of co-variation between 

fluorescence and photochemical yield, whereas the Photochemical Reflectance 

Index (PRI) did not show a consistent relationship among treatments, being 

strongly affected by leaf nutritional status. As already suggested (Stylinski et al. 

2000); (Filella et al. 2009); (Garrity et al. 2011), dark-acclimated PRI seems to be 

associated with leaf chlorophyll content (and hence REIP), or the ratio of 

carotenoids/ chlorophyll. 

Ambient fluorescence could provide a useful tool for testing photosynthetic 

processes from a distance. However, there are still problems in its interpretation 

despite new models being proposed. This new understanding of ambient 

fluorescence opens novel perspectives for the airborne and satellite remote 

sensing of photosynthetic processes. That is because fluorescence showed to be 



93 
 

a reliable predictor of photosynthetic potentials of leaves once the effect of 

absorbance has been corrected for. This relationship is not a simple one, 

however, because it depends on whether photosynthesis is limited by light 

conditions (negative association) or CO2 conditions (positive association). 
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Chapter 5 

 
 

Reflectance indices for the assessment of 

photosynthetic pigments content and 

nutritional status of poplar trees 

 

 

5.1. Abstract  

 
Plant nutritional status and its effects on plant growth is commonly monitored 

through destructive sampling followed by chemical analysis in the laboratory, 

which is expensive and time consuming. Instead, there are other methods to 

measure the nutrient status of plants indirectly. These methods, based on the 

proximal remote-sensing of leaf reflectance using new spectroscopic techniques, 

are less expensive, are time saving and easy to use than traditional wet-

chemistry analyses. Among the most widely applied techniques, we tested the 

SPAD-502 chlorophyll meter and a number of spectral indexes derived from leaf 

reflectance, as measured by the LICOR Li-1800 Spectroradiometer. The SPAD is 

a simple, portable diagnostic tool that measures the greenness or the relative 

chlorophyll content of leaves.  The LICOR Li-1800 measures the reflectance and 

transmittance of the leaf within the 400-1100 nm range, from which a number of 

reflectance indices such as REIP, PRI, SIPI and PSRI can be then estimated for 

the estimation of leaf biochemistry. These indices use particular wavelengths of 

the reflectance spectra which contain information about the photosynthetic 

pigments content of leaves. The objective of this study was to estimate the 

effects of fertilization and nutrient availability on growth of Populus x 

euroamericana saplings and to develop new methods to assess the need for 

fertilization, based on the remote sensing of vegetation pigments.  Five months-

old saplings of poplar (Populus euramericana) clone AF2, which is a species of 

interest in forestry, were used for the measurements of SPAD and LICOR Li-

1800. Some spectral reflectance indices proposed in the literature were tested in 
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order to determine the best one for the detection of changes in leaf 

photosynthetic pigment content. These novel techniques are of high relevance for 

applied research, as they could provide a fast and reliable method to estimate 

these biochemical parameters in the field, and to estimate the nutrient 

requirements of our plants for optimal growth.  

 

5.2. Introduction 

 
Fertilization and nutrient availability have a large effect on the growth and 

development of plants, largely as a result of changes in chlorophyll and nitrogen 

(N) content, which together determine the photosynthetic capacity of leaves. So, 

it is very important to manage the nutritional processes in crop cultivation, 

supplying adequate quantities of N to crops in order to optimize crop yield. While 

a lack of nutrients can reduce the profitability of cultivation, however, excessive N 

application can contaminate water resources by leaching and run-off of the 

excess of N from soil (Jaynes et al. 2001). Therefore it is important to optimize N 

fertilization through the efficient monitoring of plant N status and an appropriate 

management of N fertilizer which will minimize the perturbations of the 

environment (Jaynes et al. 2001).  

An indirect measure of nutrient status can be achieved by quantifying leaf 

chlorophyll content (Filella et al. 1995; Moran et al. 2000; Richardson et al. 2002), 

making the precise measurement of leaf pigmentation important to both land 

managers and ecophysiologists.. A close correlation often exists between leaf 

chlorophyll and nitrogen concentrations (Boochs et al. 1990; Everitt et al. 1985; 

Yoder and Pettigrewcrosby 1995), as N is part of the chemical structure of 

chlorophyll molecule and a key component of proteins associated to chlorophyll 

in light-harvesting complexes. Moreover, the foliar concentration of 

photosynthetic pigments is a parameter of interest in itself, because of its strong 

effect on the amount of solar radiation absorbed by a leaf. The resulting 

excitation will be channeled to pigments‟ reaction centers leading to electron 

release and begin the photochemical process. The most important of these 

pigments are chlorophylls, which are essential for the oxygenic conversion of light 

energy to the stored chemical energy (Richardson et al. 2002). Therefore, low 
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chlorophyll concentrations will reflect in reduced light absorption and 

photosynthesis, reflecting in lower primary production at canopy scale (Curran et 

al. 1990; Filella et al. 1995). As a result, changes in the levels of chlorophylls and 

carotenoids and in the ratio of chlorophyll a to chlorophyll b in foliage have been 

used to evaluate photosynthetic activity, have been often used as an indicator of 

leaf function and abiotic stress in plants. 

The assessment of leaf chlorophyll and nitrogen contents is generally based on 

destructive wet chemistry techniques, through the extraction of photosynthetic 

pigments from excised plant materials using organic solvents, followed by an 

HPLC or spectrophotometric assessment of pigment content on leaf extracts. 

Beside sample destruction, these methods may lead to a high variability in the 

results, because of pigment losses during the extraction and dilution processes. 

In addition, they are expensive and time consuming, making the assessment of 

vegetation health and nutrient requirements impractical at ecosystem or 

landscape level. 

Other methods have been proposed, however, for the estimation of 

photosynthetic pigments, based on dedicated chlorophyll meters (such as the 

Minolta SPAD-502), or on the measurement of leaf spectral reflectance and the 

assessment of indices such as the red-edge index position (REIP; Horler et al. 

1983). These methods are nondestructive, fast and reliable, can be used to 

estimate plant nutritional status directly in the field, resulting in an immediate 

assessment of whether or not any fertilization is neededfor the management of 

crop cultivation systemsSome of these techniques could even be applied across 

spatial scales through the application of airborne or satellite platforms (Gamon 

and Qiu 1999). 

 

As an example, the chlorophyll meter (SPAD-502; Minolta Camera Co. Ltd.) is a 

simple, portable diagnostic tool that measures the greenness or the relative 

chlorophyll concentration of leaves (Inada 1985). The device was developed to 

make fast (2s) and non-destructive readings on a leaf based on the measurement 

of leaf transmittance in the red spectral region at about 650 nm, where the light 

emitted by a diode is strongly absorbed bychlorophylls. A second wavelength at 

about 940 nm, in the infrared region, where no light absorption occurs, is used as 

a reference and to compensate for leaf thickness. Based on the alternative 
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transmittance at these wavelengths, an arbitrary index is calculated, which can 

be translated into quantitative measurements of leaf chlorophyll content through a 

careful calibration against wet chemistry measurements (Netto et al. 2005). 

Several studies have established the relationship between SPAD-502 readings 

and total chlorophyll concentration for several plant species (Marquard and 

Tipton 1987; Schaper and Chacko 1991) reporting simple linear mathematical 

model fitted in these studies. Some other studies correlate SPAD-502 readings 

with nitrogen content in several plant species (Smeal and Zhang 1994; Peng et 

al. 1995) as this element is part of the chemical structure of the chlorophyll 

molecule, and that makes it a promising tool for improving N management.  

It is a practical device as it saves time, space and resources compared with the 

traditional destructive methods (Netto et al. 2005). Thus, the portable chlorophyll 

meter (SPAD-502) can help in the advanced interpretations of photochemical 

process in plants (Netto et al. 2005). The instrument has been applied for the 

assessment of leaf biochemical contents and fertility in a range of tree species 

(see review below). However no information is available on the use of this meter 

for poplar hybrids commonly used throughout Europe, which are of particular 

interest in plantation and short-rotation forestry. 

 

Spectral reflectance measurements of fresh leaves in the visible and red-edge 

wavelengths (400–700 nm) have also been used to determine foliar chlorophyll 

and nitrogen concentration (Bausch and Duke 1996; Sullivan et al. 2004). 

Variations in leaf chlorophyll content have been detected through changes in 

spectral reflectance and related to leaf development and senescence (Carter and 

Knapp 2001; Gamon and Surfus 1999; Gitelson and Merzlyak 1994a, b) and soil 

fertility (Carter and Knapp 2001; Chappelle et al. 1992; Mariotti et al. 1996; 

McMurtrey et al. 1994; Yoder and Pettigrewcrosby 1995). 

Fresh leaf lignin and nitrogen concentrations, on the contrary, are commonly 

found to be best predicted from  near- and short-wave infrared reflectance 

features (Peterson et al. 1988), although with a predictive power lower than with 

dried, ground material. Any correlation with visible reflectance features are likely 

to be the result of the close association between nitrogen and chlorophyll 

pigments (Haboudane et al. 2004; Hansen and Schjoerring 2003; Yoder and 

Pettigrewcrosby 1995) because pigments (chlorophyll, carotenoids and 
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xanthophylls) predominantly determine most spectral features between 400 and 

700 nm (Blackburn 1998; Carter and Knapp 2001; Woolley 1971; Yoder and 

Pettigrewcrosby 1995). Because of this association, the reflectance assessment 

of chlorophyll content can be used to characterize the nitrogen status of 

vegetation and crops (Filella and Penuelas 1994), and several studies have 

observed a decrease in leaf absorbance and a corresponding increase in 

reflectance and transmittance in the visible wavelengths in response to nutritional 

deficiencies (Chappelle et al. 1992; McMurtrey et al. 1994). 

 

In particular, the red-edge index position (REIP) has been proposed as an 

optimal tool for evaluating the changes in spectral properties, as the region of the 

red-near infrared (NIR) transition has been shown to have the highest information 

content for vegetation spectra (Collins, 1978; Horler et al., 1983). The red-edge 

represents the region of abrupt change in leaf reflectance spectra between 680 

and 780 nm caused by the combined effects of strong chlorophyll absorption in 

the red wavelengths and high reflectance in the NIR wavelengths due to leaf 

internal scattering (Horler et al., 1983). When the amount of chlorophyll 

increases, a broadening of the major chlorophyll absorption feature centered 

around 680 nm is observed (Buschmann and Nagel 1993; Dawson and Curran 

1998), causing a shift in the red edge slope and wavelength of maximum slope 

(or inflection point, corresponding to REIP) towards longer wavelengths (Boochs 

et al. 1990; Clevers et al. 2002; Horler et al. 1980, 1983).  

Horler et al. (1983) first examined the feasibility of using the REIP of leaf 

reflectance spectra as an indication of plant chlorophyll status; a high positive 

correlation was found in all species examined between REIP and leaf chlorophyll 

content, although there were some differences in the quantitative nature of the 

relationship for plants of different types.  

Several other experimental studies have since demonstrated that low leaf 

chlorophyll concentrations are associated with REIP values near 700 nm, while 

high chlorophyll concentrations in combination with a high leaf internal scattering 

induce REIP values of up to 725 nm (Boochs et al. 1990; Horler et al. 1980; 

Lamb et al. 2002). (Sims and Gamon 2002) also found that an index based on 

the first derivative of reflectance in the red edge region was insensitive to leaf 

structural variation. In addition, the presence of other pigments did not 
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significantly affect estimation of chlorophyll from spectral reflectance. As a result, 

REIP has been used as a reliable indicator of chlorophyll content at the leaf level 

(Horler et al., 1983; (Curran et al. 1991; Curran et al. 1995; Filella and Penuelas 

1994; Clevers et al. 2002; Lamb et al. 2002; Smith et al. 2004), and also (albeit 

more controversially) at canopy level (Filella and Penuelas 1994). Since a 

sizeable fraction of leaf nitrogen is associated with chlorophyll  molecules and 

with associated proteins in light-harvesting complexes, the REIP has been used 

as a means to estimate foliar nitrogen content indirectly (Cho and Skidmore 

2006; Lamb et al. 2002). 

Carotenoids are very important pigments, involved in protecting the 

photosynthetic apparatus against photodamage (Demmigadams 1990). When the 

energy of the incident light exceeds what is needed for photosynthesis, leaf 

carotenoids (and in particular leaf xanthophylls) dissipate excess harmful energy 

avoiding damage to the photosynthetic system (Demmigadams and Adams 1996; 

Ort 2001).  

 

The higher concentration of chlorophyll than carotenoids in most leaves, and the 

overlap between chlorophyll and carotenoids absorption peaks, make it much 

more difficult the estimation of leaf carotenoids content from reflectance than the 

estimation of chlorophyll. Consequently, the carotenoids-to-chlorophyll ratio was 

estimated more successfully through reflectance indices than absolute 

carotenoids contents (Merzlyak et al. 1999; Penuelas et al. 1995). The ratio 

between chlorophyll and carotenoids may be a good indicator for distinguishing 

the natural autumn senescence from senescence due to natural stress such as 

desiccation in mosses (Buckland et al. 1991), and drought in flowering plants 

(Seel et al. 1992). Carotenoids/chlorophyll ratio increases in stress conditions or 

during leaf senescence because chlorophyll decreases more rapidly than 

carotenoids (Gitelson and Merzlyak 1994b; Penuelas et al. 1995). So, variation in 

this ratio can be a good marker of stress in plants. 

Most of the reflectance indices proposed for the estimation of the carotenoid-to-

chlorophyll ratio are based on the comparison of reflectance in wavelengths of 

the carotenoids absorption peak (400-500 nm) with reflectance in the red region, 

which is influenced only by chlorophyll. The “structure-insensitive pigment index” 
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(SIPI) was developed by (Penuelas et al. 1995),while the “plant senescence 

reflectance index” (PSRI) was originally developed by (Merzlyak et al. 1999). The 

“photochemical reflectance index” (PRI), originally proposed to estimate rapid 

changes in the relative levels of pigments of the xanthophylls cycle and in non-

photochemical energy dissipation (Gamon et al. 1992), has also been found to be 

correlated in a general relationship with the carotenoids/chlorophyll ratio (Sims 

and Gamon 2002).  

 

The objective of this study is to estimate the effects of fertilization and nutrient 

availability on plant growth and leaf biochemistry in young poplar (Populus x 

euroamericana) trees, and to evaluate the use of remote sensing techniques for 

the assessment of leaf pigments and fertilization requirementsRemote sensing 

techniques have been used to estimate different parameters of leaf biochemistry 

(nitrogen, chlorophyll, carotenoids), as well as leaf absorbance and reflectance. 

They could provide a fast and reliable method to estimate these parameters in 

the field, and therefore to evaluate the nutrient requirements of our plants for 

optimal growth. The study has therefore important practical applications for the 

management of poplar cultivation systems. 

 

5.3. Material and methods 

5.3.1. Plant material 

Twenty hardwood cuttings of poplar (Populus euramericana) clone AF2 were 

planted on March 19, 2010 in pots of 11.3 L capacity containing a mixture of sand 

and peat (1:1, by vol.). The pots were maintained in “Cadriano”, the experimental 

field of the faculty of agriculture/ university of Bologna with adequate watering 

supply. Ten pots were fertilized with 100 kg/ha of an agricultural inorganic NPK 

fertilizer (containing 21% NO3-N, 7% P2O5-P, and 14% K2O-K). 

Ten other plots did not receive any fertilizer and were used as a control. 

At the end of the experiment, when plants were five months old, detailed 

measurements of height, stem base diameter, number of leaves, and the 

dimensions of twenty leaves per plant were done. An allometric relationship 

between leaf dimensions and leaf area (Barigah et al. 1994) was applied to 
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calculate the area of individual leaves for the twenty leaves chosen, and then the 

total leaf area per plant was calculated multiplying the mean leaf area by the 

number of leaves. Based on a relation developed in a parallel study on 1-year-old 

plants of the same clone, plant biomass was calculated (E. Muzzi, pers. comm.)   

    

5.3.2. SPAD-502 readings  

The portable chlorophyll meter (SPAD Minolta 502, Minolta LTD., Osaka, Japan) 

was used to non-destructively measure leaf chlorophyll (Chl a+b) content. SPAD 

has a 0.06-cm2 measurement area, and calculates an index in „SPAD units‟ 

based on absorbance at 650 and 940 nm. The accuracy of the SPAD is claimed 

to be 1.0 SPAD units. The mean of five readings was obtained for each of 60 

healthy fully expanded mature leaves in 8 different plants in order to explore a 

range from the minimum chlorophyll content readings to the maximum. Thirty of 

these leave were chosen in a gradation of SPAD readings from 23 to 49. During 

measurements with SPAD 502, the sensor head was shaded to avoid direct 

sunlight from reaching the instrument. 

 

 5.3.3. LI-COR Li-1800 Spectroradiometer measurements  

The LICOR LI-1800 (LI-COR, inc., Lincoln, Nebraska, USA) hyperspectral 

spectroradiometer provided with the 1800-12 external integrating sphere was 

used to measure the reflectance and the transmittance of the 30 leaves in a 

wavelength range between 400 and 1100 nm, and on a spot of diameter 1.14 cm, 

avoiding the major veins. The instrument has a sampling frequency of about 2 

nm, and a FWHM spectral resolution of about 3 nm, making it suitable for the 

assessment of REIP and of selected spectral indices. The data obtained were 

being used to calculate the absorbance of these leaves. 

Measurements were carried out at the laboratory of ecophysiology in the Faculty 

of Agriculture of the University of Bologna.  

Use of the integrating sphere made it possible to evaluate total leaf absorbance 

and hemispherical spectral reflectance, from which several indexes could be 

evaluated. After applying a Savitzky-Golay smoothing filter, red-edge index 



104 
 

position (REIP) was computed as the wavelength corresponding to the highest 

first difference in reflectance Horler et al. (1983).   

The “structure-insensitive pigment index” (SIPI; (Penuelas et al. 1995), the “plant 

senescence reflectance index” (PSRI; (Merzlyak et al. 1999) and the 

“photochemical reflectance index” (PRI; (Gamon et al. 1992) were computed as: 

SIPI = (R800 – R445) / (R800 – R680) 

PSRI = (R680 – R500) / R750  

PRI = (R531 – R570) / (R531 + R570) 

where Ri is leaf hemispherical reflectance at wavelength i.  

Total leaf absorbance in the visible range (400-700 nm) was also estimated from 

spectroradiometric measurements, as the raw average of absorbance at 

individual wavelengths within this interval.  

 

5.3.4. Chlorophyll and carotenoids content measurements 

The extraction of the photosynthetic pigments chlorophyll a (Chl a), chlorophyll b 

(Chl b), carotenoid (Car) were carried out as described by (Minocha et al. 2009). 

In short, two disks of 2 cm diameter each were taken from each leaf immediately 

after the measurements carried on with the spectroradiometer and from the same 

place which had been exposed to measurements. One of them was dried at 65 

°C for 48 h to be used for the N content assessment, whilst the other was placed 

in a 2 mL microfuge tubes (Eppendorf Safe Lock, Eppendorf North America, 

Westbury, New York) and stored at –20 °C until analysis. At the time of extraction 

6 mL of the solvent N,N-dimethylformamide (DMF) were added to 60 mg of the 

plant tissue in glass tubes with Teflon cap,  and incubated in the dark at room 

temperature (25 °C) for 24 h. A UV-Visible Spectrophotometer CARY 1E (Varian-

Agilent Technologies, Santa Clara, CA, USA) was used to record absorbances in 

the range of 450 to 700 nm using 0.7 mL aliquots in quartz microcuvettes (Quartz 

Suprasil, Hellma Cells Inc., Plainview, New York). 

Total chlorophyll, chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids 

(Car) were calculated according to the equation proposed by Lichtenthaler and 

Wellburn (1983) for 1-4 nm spectrophotometer resolution range. 
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5.3.5. Nitrogen content assessment 

After drying as described above, samples were put in microfuge tubes and milled 

using the mixer mill Retsch MM 300 (Retsch GmbH and Co. KG, Haan, 

Germany). About 1.5 mg from each milled sample was used for the analysis of 

nitrogen content and concentration using an HCL elemental analyzer HCL (EA 

1110, Carlo Erba instruments, Milan, Italy). 

 

 

5.4. Results and discussion  

 

5.4.1. Effects of fertilization on plant growth and characteristics  

Fertilization and nutrient availability had a large effect on the growth of poplar 

cuttings, largely as a result of the changes in chlorophyll and nitrogen content. 

Data of average growth and biometry, as well as foliar biochemical contents, for 

the two treatments are presented in Table 1. 

 

From Table 1 we can see that there is a significant difference between the 

fertilized and unfertilized plants in plant height. Fertilized plants also had much 

longer and wider leaves (and therefore a bigger area of individual leaves). 

Fertilized plants also have a much greater leaf area per plant. Diameter at the 

base of the stem on the contrary was not so much different between treatments. 

We could also estimate plant biomass as a function of diameter at the base and 

plant height, and a significance difference was observed as a result of 

fertilization. As expected, leaf chlorophyll content in fertilized plants was also 

significantly higher than in the unfertilized ones; the same can be said for 

carotenoid content and leaf N concentration. As a result of the difference in leaf 

pigments, total PAR absorbance in the 450-700 nm range was also higher in the 

fertilized treatment.  
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Table 1 Effects of fertilization on biometric and biochemical characteristics of 6 months 

old cuttings of P. euroamericana. The table presents average values ± SE. 

  Fertilized Unfertilized 

Height (cm) 149.325 ± 4.96 131.1 ± 2.63 

Diameter (cm) 0.9 ± 0.00 0.8 ± 0.05 

N° of Leaves 41.5 ± 1.73 40 ± 1.05 

Leaf length (cm) 11.35 ± 0.18 9.47 ± 0.12 

Leaf width (cm) 10.62 ± 0.11 8.72 ± 0.11 

Leaf area (cm2) 81.49 ± 1.94 55.79 ± 1.36 

Total leaf area (cm2/plant) 3382.9245 ± 161.39 2237.03 ± 179.59 

Biomass (g DM/plant) 13.40 ± 0.00 9.69 ± 1.66 

Chl(a+b) (mg/cm2) 0.0344 ± 0.0018 0.0182 ± 0.0008 

PAR absorbance (%) 84.39 ± 0.5286 77.24 ± 0.6182 

SPAD reading (a.u.) 40.41 ± 1.12 27.27 ± 0.807 

REIP (nm) 710.12 ± 1.16 701.28 ± 0.4547 

Carotenoids (mg m-2) 61.63 ± 2.06 41.42 ± 1.19 

N content  (g N/m2)  1.23 ± 0.06  0.85 ± 0.03 

N concentration (g N/g DM)  0.00039 ± 0.00002  0.00027 ± 0.000009 

 
 
So, we can stress that fertilization had a significant effect on growth, so 

demonstrating why it is so important to be able to estimate the effects of 

fertilization on leaf biochemistry, and the nutrient requirements of poplar trees. 

These results are of considerable importance for the practical management of 

poplar cultivation, in order not to waste fertilizer if not needed, and not to risk a 

loss of productivity on the contrary if there was a need for fertilization. 

 

5.4.2. Effects on absorbance 

The reflectance and absorbance between 400 and 1100 nm of a typical fertilized 

and an un-fertilized plant, as estimated by the LiCor-1800 provided with the 

integrating sphere, are presented in Fig. 1. We see in the graph to what extent 

the spectra differ as a result of differences in chlorophyll (and carotenoid) 

contents induced by fertilization. Also highlighted in the graph are the two 

wavelengths used in the SPAD instrument for the assessment of leaf chlorophyll 

content. And as the SPAD reading is based on absorbance measurement at two 

different wavelengths, so we can understand the difference in SPAD readings.   
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Fig. 1 The reflectance (bottom curves) and the transmittance (upper curves) of two P. 

euroamericana leaves with the highest (leaf #1; continuous line), and the lowest 

chlorophyll content (leaf #30; dotted line). Vertical bars show the two 

wavelengths (650 and 940 nm) used by SPAD for making instantaneous and 

non-destructive readings of leaf greenness or relative chlorophyll content.  

 

 

5.4.3. Chlorophyll and reflectance at different wavelengths 

In order to better understand changes in REIP readings and reflectance indices, it 

is instructive to look at changes in reflectance at the different wavelengths as a 

function of total chlorophyll (Chl a+b) content (Fig. 2). In the blue (444 nm) and 

the red domain (680 nm), where chlorophyll absorbs very strongly, absorbance 

and reflectance are already saturated at rather low values of chlorophyll content 

(150 mg m-2), so that the signal at these wavelengths is not correlated with 

variable chlorophyll content (Fig. 2A and D). We see the same weak correlation 

with the reflectance in the near-infrared (940 nm: a wavelength used as a 

reference by the SPAD) where reflectance is a function of leaf structure, rather 

than chlorophyll, and therefore doesn‟t change (or changes very little) with leaf 

biochemical content (Fig. 2F). 
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Fig. 2 Reflectance at different wavelengths as a function of total chlorophyll (Chl a+b) 

content for P. euroamericana leaves. Results for fertilized (●) and unfertilized (○) 

plants are presented. 

 

On the contrary we see some changes in the reflectance at 650 nm (the true 

signal wavelength used by the SPAD instrument), which explains the observed 

changes in the SPAD readings with leaves of different chlorophyll content (Fig. 

2C). As expected, chlorophyll content was best correlated with the reflectance at 

550 nm (in the green; Fig. 2B), and at 704 nm (close to the red-edge position; 

(Fig. 2E).  
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5.4.4. Non-destructive estimation of leaf chlorophyll content 

Leaf chlorophyll content was estimated by two non-destructive methods, using 

the SPAD instrument and from leaf reflectance through the computation of the 

red-edge index position (REIP). 

 

                                

Fig. 3 Relationship between total chlorophyll (Chl a + b) content and the red-edge index 

position (REIP) (A) or the SPAD readings (B) in P. euroamericana leaves. 

Results for fertilized (●) and unfertilized (○) plants are presented. 

 

The correlation between the red-edge position - the wavelength of the maximum 

slope in the increase of the reflectance from red to near infrared - estimated by 

the Licor-1800 spectroradiometer and total leaf chlorophyll content was very good 

as expected (R2=0.95; Fig.3A). An even stronger linear relationship was 

observed between SPAD readings and the total chlorophyll content (Fig. 3B), 

with an R²=0.96. In both cases, however, the relationship cannot be safely 

extrapolated from fertilized treatments to unfertilized ones or vice versa, as the 

associated error would be rather substantial. In the case of REIP, the regression 

line for the entire population is y = 0.055x + 690.9 with an R² = 0.95, while it is y = 
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0.06x + 689.23 (R² = 0.92) for fertilized plants, and y = 0.040x + 693.9 with an R² 

= 0.52 for unfertilized ones. We can say the same about the relationship between 

SPAD readings and total chlorophyll content: the regression line for the entire 

population is y = 0.074x + 14.20 with an R² = 0.96, while it is y = 0.06x + 20.13 

with an R² = 0.93 for fertilized plants, and y= 0.091x + 10.66 with an R² = 0.85 for 

unfertilized ones. The need for a detailed calibration of both methods over as 

wide an interval as possible is clearly apparent.  

 

5.4.2. SPAD as a predictor of chlorophyll a,b and carotenoids 

                                                                                          

                                             
 
Fig. 4 Relationships between the SPAD-502 readings and chlorophyll a (Chl a) (A), 

chlorophyll b (Chl b) (B) and chlorophyll a/b (Chl a/b) (C) in P. euroamericana 

leaves. Results for fertilized (●) and unfertilized (○) plants are presented. 
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A strong relationship was also observed between SPAD readings and both 

chlorophyll a (Fig. 4A) and chlorophyll b contents (Fig. 4B), but there was no 

significant relationship with the ratio between them (chlorophyll a/b) (Fig. 4C). We 

found also a strong relationship between SPAD readings and total carotenoid 

content (y = 1.548x - 0.877; R² = 0.94). So, we can say that SPAD readings are a 

good predictor of chlorophyll a, chlorophyll b and carotenoids. The same is true 

for REIP, for which the regression line   was y = 0.723x + 681.1, with an R² = 0.93 

(data not shown).   

 

5.4.5. Estimation of leaf absorbance  

Photosynthetic pigments (mainly chlorophylls and carotenoids) absorb in the 

visible spectrum (400 – 700 nm), so that leaf reflectance is typically low in this 

domain (Penuelas and Filella 1998), and declines with increasing pigment 

content; leaf absorbance will of course increase in a specular way.   

 

                      
                                     
Fig. 5 Relationship between the PAR absorbance (%) and the red-edge index position 

(REIP) (A) or SPAD readings (B) in P. euroamericana leaves. Results for 

fertilized (●) and unfertilized (○) plants are presented. 
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As expected, the red-edge position was found to be a good predictor of leaf 

absorbance in the visible range (Fig. 5A). The relationship between PAR 

absorbance and the red-edge index position (REIP) is consistently curvilinear 

(second order polynomial; R2=0.97). The relationship between SPAD readings 

and leaf absorbance, on the contrary, was linear (Fig. 5B) with an R2 = 0.97. But 

as we saw before, it is not possible to extrapolate these relationships from 

fertilized to unfertilized treatments or vice versa. That is because in the case of 

the relationship between REIP and PAR absorbance, the best-fit regression line 

for the entire population is y = 0.102 x2 - 15.23 x + 1267 (R² = 0.97), while it is y = 

2.132 x + 530.1 (R² = 0.94) for fertilized plants, and y = 0.698 x + 647.3 (R² = 

0.90) for unfertilized ones, with an obvious difference between the two curves. 

The same can be said about the relationship between SPAD readings and PAR 

absorbance: the regression line for the entire population was y = 1.801 x - 111.7 

(R² = 0.97), while it is y = 2.054 x - 132.9 (R² = 0.94) for fertilized plants and y = 

1.210 x - 66.21 (R² = 0.86) for unfertilized ones.  

 

5.4.6. Chlorophyll and carotenoids 

As apparent from Fig. 6, there is a very tight relationship between carotenoids 

and chlorophyll in sampled poplar leaves. So it is not surprising that any index 

able to predict chlorophyll, will be able to predict carotenoids as well. As we could 

estimate the chlorophyll using both the SPAD and the reflectance with the 

method of the red-edge position, we could also estimate the carotenoids using 

the same methods. A stronger relationship was observed between SPAD 

readings and carotenoids content (y = 1.548 x - 0.877; R² = 0.94), than between 

REIP and carotenoids content (y = 2.018 x – 1372; R² = 0.90).  

Because of the photoprotective role of carotenoids, however, a more interesting 

question is whether any of these indices is able to predict the ratio between 

carotenoids and chlorophyll.  
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Fig. 6 Relationships between total chlorophyll (Chl a+b) and carotenoids (Car), in P. 

euroamericana leaves. Results for fertilized (●) and unfertilized (○) plants are 

presented. 

 

 

5.4.7. Reflectance indices 

In 2002 Sims and Gamon reviewed several indices to estimate pigment content 

based on leaf reflectance at particular wavelengths, such as the “structure-

insensetive pigment index” (SIPI), which was developed by (Penuelas et al. 

1995), the “plant senescence reflectance index” (PSRI) which was developed by 

(Merzlyak et al. 1999), and the “photochemical reflectance index” (PRI) which 

was originally developed by (Gamon et al. 1992) to estimate rapid changes in the 

relative levels of pigments of the xanthophylls cycle. They found that PRI was 

best performing with a significant correlation with the carotenoid/chlorophyll ratio 

(R² = 0.39), but neither SIPI nor PSRI were significantly correlated with the 

pigment ratio. In our study of poplar response to fertilization, the relationship 

between PRI and the carotenoids/chlorophyll ratio was even better (Fig. 7B) with 

an R² = 0.73. The SIPI was also found to perform reasonably well (Fig. 7A) with 

an R² = 0.5, whereas PRSI was poorly correlated with the pigment ratio (Fig. 7C).  

The relationship between PRI and pigment ratios confirms previous reports 

(Filella et al. 2009; Garrity et al. 2011) and is of particular interest. The 

Photochemical Reflectance Index was originally proposed for the estimation of 

xanthophylls interconversion and photosynthetic light use efficiency, and such a 

relationship has been confirmed at the leaf (Gamon et al. 1997; Penuelas et al. 

1995; Penuelas et al. 1997), canopy (Filella et al. 1996; Gamon et al. 1992; 
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Trotter et al. 2002), and ecosystem scale (Nichol et al. 2000; Penuelas and Inoue 

2000). As a result, PRI has been found to track both daily (Gamon et al. 1992; 

Penuelas et al. 1994) and seasonal (Filella et al. 2009; Garbulsky et al. 2008; 

Stylinski et al. 2002) variation in photosynthetic activity. A re-analysis of the 

literature (Garbulsky et al. 2011), however, suggests that whilst over the short 

term the variation of PRI will primarily be a function of changes in xanthophylls 

de-epoxydation state and light-use efficiency,  variation of PRI over weeks or 

months may be affected mainly by changes in the total pools of xanthophylls, 

carotenoids and chlorophylls (Gamon et al. 2001).  

 

 

 
Fig. 7 The SIPI (Penũelas et al., 1995) (A), PRI (Gamon et al., 1992) (B), PSRI 

(Merzlyak at al., 1999) (C), and the SPAD (D) as functions of leaf carotenoids to 

total chlorophyll ratio (Car/Chl a+b) for thirty leaves of P. euroamericana of 

gradient SPAD readings. Results for fertilized (●) and unfertilized (○) plants are 

presented. 

 

It should be mentioned, however, that even better results were obtained with 

another index proposed by (Sims and Gamon 2002), the mND705, which showed 

a tight inverse relationship with carotenoid/chlorophyll ratios (y = -4.102 x + 

1.330; R² = 0.89). As for the SPAD, it was also found to be a very good tool to 

estimate the pigment ratio with a significant inversely correlation (Fig. 7D) with an 
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R² = 0.91. This is of particular practical relevance, for the simplicity of the 

technique, which does not require a spectrometer. The REIP was also found to 

correlate significantly with the carotenoids/chlorophyll ratio (y = -179.6 x + 742.6;  

R² = 0.85). 

 

5.4.8. Estimation of leaf nitrogen (N) (concentration and content): 

 

Fig. 8 Relationship between N concentration or N content and the red-edge index 

position (REIP) (A, B) or the SPAD readings (C, D) in P. euroamericana leaves. 

Results for fertilized (●) and unfertilized (○) plants are presented. 

 

The potential of spectroscopic techniques for the assessment of leaf N status 

was also tested. It would be expected that nitrogen content behave better than N 

concentration, as leaf reflectance should be related to the amount of pigments 

per unit leaf area; moreover, N content would be of greater practical interest, 

because it is more directly related to photosynthetic rates. Fig. 8 shows a 

significantly positive correlation between the REIP and both nitrogen 

concentration and content with only a slight difference in the fraction of variance 
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explained (R2= 0.90 and 0.88, respectively). We see the same strong relationship 

in the case of SPAD readings. In both cases, the observed correlation seems to 

be the result of the strong association between chlorophyll and nitrogen contents. 

So, we could say also that the reflectance indices that can predict well the 

chlorophyll content could also predict well the nitrogen content, although this 

relationship could be species- as well as site-specific. 

 

5.4.9. Assessing the generality of observed relationships 

In order to assess the generality of some of the observed relationships, a 

thorough literature search was carried out using one of the bibliographic search 

engines available at the University of Bologna (ISI Web of Knowledge by 

Thomson Reuters). Published references on the application of the SPAD 

instrument or the REIP spectroscopic technique for the assessment of leaf 

chlorophyll content or N concentration were screened and selected if referring to 

forest or otherwise tree species, and if containing quantitative information in 

tabular or graphic form. 

The results are presented in Fig. 9 for chlorophyll contents and in Fig. 10 for N 

concentrations. 

A rather consistent relationship between SPAD and leaf chlorophyll content can 

be derived from the literature (Fig. 9A), which is broadly consistent with what 

observed in the present study on poplar trees. The relationship was often found 

to be slightly curvilinear, although it was commonly approximated by a linear 

regression; the fraction of overall variability explained varied quite widely between 

species. Despite the general consistency, the difference even between species 

from the same genus is apparent. The application of a standard mean 

relationship would often lead to very substantial errors, suggesting the need for 

species- (and perhaps site-) specific calibrations, as already suggested by 

(Pinkard et al. 2006). This has been suggested to be partly related to the 

confounding effects of leaf thickness and water content, as the reference signal 

of the SPAD meter, at 960 nm, is located close to a region of water absorption. 

However, it should be noted that the species-specific nature of the relationship 
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appears to apply also in the case of the REIP index (Fig. 9B), which should not 

be affected by leaf water content, although the limited number of studies on tree 

species should be noted. 

Also for the assessment of leaf N concentration, results from the SPAD 

instruments are generally consistent, but with a rather large variability between 

species (Fig. 10), suggesting the need for a careful calibration of the relationship 

for the conditions of interest. 

 

Fig. 9 Estimation of leaf chlorophyll content from A SPAD readings or B the red-edge 

index position (REIP) derived from spectroscopic measurements. Results for P. 

euroamericana (black dots) are compared with literature data for P. deltoidex x 

nigra and P. nigra x maximowiczii (grey and green; (Lombard et al. 2010), Betula 

spp. (dark green; McNamara and Pellett 2001), B. papyrifera (pale green; 

(Richardson et al. 2002), B. pendula (black; (Schaper and Chacko 1991), 

Eucalyptus nitens and E. globulus (dark blue and red; (Pinkard et al. 2006), 

Malus domestica (pale blue; (Campbell et al. 1990), Mangifera indica (black; 

(Schaper and Chacko 1991), Coffea arabica (yellow; (Netto et al. 2010), Acer 

saccharum (purple; (Vogelmann et al. 1993), Liquidambar styraciflua (brown; 

(Sims and Gamon 2002) 

. 
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Fig. 10 Estimation of leaf N concentration from SPAD readings. Results for P. 

euroamericana (black dots) are compared with literature data for Salix (orange; 

(Weih and Ronnberg-Wastljung 2007), Populus deltoides (blue; (Loh et al. 

2002), P. tremuloides (red; (Bonneville and Fyles 2006)and P. heterophylla 

(green), Fraxinus pennsylvanica (purple), Platanus occidentalis (black) and 

Liquidambar styraciflua (pale blue) from (Chang and Robison 2003). 

 

 

5.5. Conclusion 

 

The chlorophyll meter (SPAD-502) and the LICOR Li-1800 Spectroradiometer 

showed to be practical and convenient tools for monitoring plant growth 

development, and assess its nutritional status indirectly based on the reflectance 

properties of plant leaves. 

We found that SPAD readings and the red-edge index position are good 

predictors of total chlorophyll content and carotenoids, proposing both as suitable 

instruments for the prediction of the nutritional status of vegetation. On the other 

hand, it was found not to be possible to extrapolate the relationship from fertilized 

treatments to unfertilized ones or vice versa. Together with the results from a re-

analysis of published values for a number of tree species, this highlights the need 

for a careful on-site calibration of each relationship over the widest possible 

range of leaf nutrients.  
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The strong relationship found between PRI and the carotenoids/chlorophyll ratio 

in response to fertilization reinforce what has been found before about PRI as an 

efficient remote sensing reflectance index estimating not only short-term changes 

in photochemical efficiency of plants, but also long-term changes in the 

biochemistry of the photosynthetic apparatus (Garbulsky et al. 2011). 

These results are of considerable importance to the practice of management of 

poplar plantations, in order not to waste fertilizer, if not needed, and not to risk a 

loss of productivity on the contrary if there was a need for fertilization. 
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Chapter 6 

 

6.1. General discussion 

 

More attention is being given to non-invasive remote sensing techniques for 

monitoring plant photosynthetic and stress status. These techniques depend on 

the detection of the energy partitioning in leaves and the reflectance properties 

related.  

Some of these missions are accomplished by the remotely sensing of chlorophyll 

fluorescence influenced by changes in reflectance in the red-edge spectral 

region, affected by energy dissipation as a result of excess light (Horton et al. 

1994). As chlorophyll fluorescence is emitted primarily from chlorophyll-a of the 

antenna system of PSII, so any physiological process that influences the function 

of PSII will have an effect of chlorophyll fluorescence (Horton et al. 1994). Our 

results confirm these studies when we found a strong and consistent correlation 

between PSII electron transport and fluorescence radiance, besides that 

fluorescence yield (Φf) was changing with changes of photochemical yield (ΦPSII), 

and following variations of environmental conditions (irradiance intensity or CO2 

concentrations). These findings are consistent with previous studies that correlate 

Ft with diurnal variation in stomatal conductance (g) and CO2 assimilation (A) as 

a result of variation in irradiance and water stress conditions (Flexas et al. 2000; 

Flexas et al. 2002; Flexas et al. 1999). But we should take in consideration that 

leaves absorbance (α) is not constant, because of the variation in chlorophyll and 

nitrogen content, and because just chlorophyll-a is the responsible for the 

dominant fluorescence emission, so we have to correct the fluorescence data to 

absorbance. These results were found similarly in two contrasting species 

(Arbutus unedo, a schlerophyllous Mediterranean species, and Populus 

euroamericana, a broad leaf deciduous tree).  

So, we can say that ambient fluorescence could provide a useful tool for testing 

photosynthetic processes from a distance, even if fluorescence signal needs 
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moor efforts for accurate interpretation. That will open the way for long-term 

monitoring of plant stress conditions using passive remote sensing strategies. 

Other methods used for the remote sensing of the photosynthetic processes 

depend on the detection of changes in photosynthetic pigments. Several studies 

in the remote sensing have developed a strong link between spectral reflectance 

measurements and plant photosynthetic pigments concentrations (Sims and 

Gamon 2002). Many vegetation reflectance indices was created to assess 

potential levels of plants‟ photosynthesis and net primary productivity (Gamon et 

al 1995) by monitoring changes in plant photosynthetic status brought on by 

environmental conditions. One of these indices is the photochemical reflectance 

index (PRI). It remotely detects the variation in xanthophylls cycle (Gamon et al. 

1990; Gamon et al. 1995; Gamon et al. 1992; Gamon et al. 1997). This index 

estimates variations of xanthophylls cycle pigments as a result of changes in 

photosynthetic light use efficiency (Gamon et al. 1992; Gamon et al. 1997; 

Penuelas et al. 1995b; Penuelas et al. 1997). It uses spectral bands located in 

the absorption region of both chlorophyll and carotenoid pigments. Consequently, 

it has been shown to be sensitive to carotenoid/chlorophyll ratio across a number 

of species (Sims and Gamon 2002). Our results come to add a new evidence for 

these findings as we found a strong relationship between PRI and the 

carotinoids/chlorophyll ratio, which is even better than what was found in the 

literature with an r² = 0.73. However, PRI can not be used as a predictor of 

photochemical yield over long period. Over the course of one day, the chlorophyll 

content, or the nitrogen content or the ratio between carotenoides and chlorophyll 

will remain constant, and therefore we will have a good relationship between PRI 

and photochemical yield. But over the long term, we will have changes in nitrogen 

or chlorophyll concentration or other photosynthetic pigments, and this will have 

an effect on PRI independent of the effect on photochemical yield. And it is not 

possible to discriminate between the two components.  

These new techniques used for remote sensing of photosynthetic processes 

have been shown great efficiency detecting plant growth development and 

nutritional status. Different methods are being used in this domain, among them 

the estimation of chlorophyll content using SPAD-502, and the reflectance with 

the method of the red-edge index position (REIP). As expected, we found a 
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strong correlation between the red-edge index position and the total chlorophyll 

content. The same linear relationship was found also between SPAD readings 

and the total chlorophyll content. And as measurements of nitrogen content can 

be achieved indirectly by quantifying chlorophyll content (Filella et al. 1995; 

Moran et al. 2000; Richardson et al. 2002) because of the close correlation 

between leaf chlorophyll concentration and nitrogen availability (Boochs et al. 

1990; Everitt et al. 1985; Yoder and Pettigrewcrosby 1995), we can say that 

these methods can predict well the nutritional status of our plants. That was 

confirmed by the significantly positive correlation between the REIP and both of 

the nitrogen concentration and content we found, and the same strong 

relationship in the case of SPAD readings. So, these techniques can be used for 

reliable estimation of photosynthetic pigment content and total nitrogen. They can 

also assess the developments of photochemical process in our plants‟ leaves in 

the field, and that will help in the management of tree cultivation systems; and 

therefore estimating the nutrient requirements of our plants for optimal growth. 

 

6.2. Conclusions 

 

From the functional relationship between photosynthesis and ambient chlorophyll 

fluorescence measured under controlled conditions (variable CO2, PAR) we can 

say that ambient fluorescence could provide a useful tool for testing 

photosynthetic processes from a distance. Problems remain however in its 

interpretation, despite new models being proposed. The experimental test 

demonstrates a consistent pattern of co-variation between fluorescence and 

photochemical yield. However, the relationship differs depending on whether 

photosynthesis is limited by light (negative association) or CO2 (positive 

association). It is rather similar the response in two different species: one is a 

broad leaf sclerofillous tree from the Mediterranean (Arbutus unedo), and the 

other is broad leaf deciduous tree (Populus euroamericana). There are some 

differences between the two species, but the general pattern is the same with 

variable PAR and variable CO2. 

The new understanding of ambient fluorescence opens novel perspectives for the 

airborne and satellite remote sensing of photosynthetic processes 
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Non-destructive monitoring methods, a direct application of RS studies, are 

increasingly attractive for the determination of stress conditions or nutrient 

deficiencies not only in research but also in agronomy, horticulture and urban 

forestry (proximal remote sensing). 

Remote sensing techniques showed to be practical and convenient tools for 

monitoring plant growth development, and assess its nutritional status indirectly 

depending on the reflectance properties of plant leaves. So, they are of 

considerable importance to the practice of plants cultivation management and 

optimize fertilization for optimal growth. So, it is a much applied research.  
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