
ALMAMATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

DEIS – DIPARTIMENTO DI ELETTRONICA, INFORMATICA E SISTEMISTICA

Dynamic Services in Mobile Ad Hoc Networks

Settore Disciplinare: ING-INF05
Ciclo XIX

Candidate: Advisors:
Eugenio Magistretti Chiar.mo Prof. Ing.Maurelio Boari

Char.mo Prof. Ing. Antonio Corradi

Ph.D. School Chair:
Chiar.mo Prof. Ing. Paolo Bassi

Esame Finale 2007

ii

ALMAMATER STUDIORUM - UNIVERSITÀ DI BOLOGNA
DEIS – DIPARTIMENTO DI ELETTRONICA, INFORMATICA E

SISTEMISTICA

The undersigned hereby certify that they have read and recommend
to the Faculty of Graduate Studies for acceptance a thesis entitled
“Dynamic Services in Mobile Ad Hoc Networks” by Eugenio Magistretti
in partial fulfillment of the requirements for the degree of Dottore di ricerca.

Dated: March 2007

Advisors: Chiar.mo Prof. Ing. Maurelio Boari

Chiar.mo Prof. Ing. Antonio Corradi

Co-advisors: Chiar.mo Prof. Ing. Paolo Bellavista

Chiar.ma Prof. Ing. Rebecca Montanari

Ph.D. School Chair: Chiar.mo Prof. Ing. Paolo Bassi

Examining Committee: Chiar.ma Prof. Ing. Anna Ciampolini

Chiar.ma Prof. Ing. Letizia Leonardi

Chiar.mo Prof. Ing. Cesare Stefanelli

iii

iv

Abstract

The increasing diffusion of wireless-enabled portable devices is pushing toward the de-
sign of novel service scenarios, promoting temporary and opportunistic interactions in
infrastructure-less environments. Mobile Ad Hoc Networks (MANET) are the general
model of these higly dynamic networks that can be specialized, depending on applica-
tion cases, in more specific and refined models such as Vehicular Ad Hoc Networks and
Wireless Sensor Networks. Two interesting deployment cases are of increasing relevance:
resource diffusion among users equipped with portable devices, such as laptops, smart
phones or PDAs in crowded areas (termed dense MANET) and dissemination/indexing of
monitoring information collected in Vehicular Sensor Networks. The extreme dynamicity
of these scenarios calls for novel distributed protocols and services facilitating applica-
tion development. To this aim we have designed middleware solutions supporting these
challenging tasks. REDMAN manages, retrieves, and disseminates replicas of software re-
sources in dense MANET; it implements novel lightweight protocols to maintain a desired
replication degree despite participants mobility, and efficiently perform resource retrieval.
REDMAN exploits the high-density assumption to achieve scalability and limited network
overhead. Sensed data gathering and distributed indexing in Vehicular Networks raise sim-
ilar issues: we propose a specific middleware support, called MobEyes, exploiting node
mobility to opportunistically diffuse data summaries among neighbor vehicles. MobEyes
creates a low-cost opportunistic distributed index to query the distributed storage and to de-
termine the location of needed information. Extensive validation and testing of REDMAN
and MobEyes prove the effectiveness of our original solutions in limiting communication
overhead while maintaining the required accuracy of replication degree and indexing com-
pleteness, and demonstrates the feasibility of the middleware approach.

v

vi

To my parents

Contents

Abstract v

Acknowledgements xi

Introduction 1

1 Background and Related Work 7
1.1 Background Research . 8

1.1.1 Mobile Ad Hoc Networks . 8
1.1.2 Vehicular Ad Hoc Networks . 13
1.1.3 Wireless Sensor Networks . 16

1.2 Related Work . 20
1.2.1 Content Distribution . 20
1.2.2 Resource Retrieval . 22
1.2.3 Vehicular Sensor Networks . 23
1.2.4 Opportunistic Networking . 24

2 The REDMAN middleware for resource replication in dense MANET 29
2.1 Practical case studies . 32

2.1.1 REDMAN at work: game playing at the railway station 34
2.2 The REDMAN middleware . 38
2.3 Dense MANET Configuration in REDMAN 41

2.3.1 Dense MANET Identification . 42
2.3.2 Replica Manager Election . 44

2.4 Replica Distribution (RD) . 53
2.5 Replica Retrieval (RR) . 54

2.5.1 An Overview of Possible RR Strategies 55
2.5.2 k-hop Distance IRP Dissemination 56
2.5.3 REDMAN Replica Retrieval . 58

2.6 Replica Degree Maintenance (RDM) . 60

3 The MobEyes middleware for opportunistic dissemination in Vehicular Sensor
Networks 63
3.1 Practical case studies . 64

vii

viii

3.1.1 MobEyes at work: criminal tracking 66
3.2 MobEyes middleware . 66
3.3 MDHP Protocols . 68

3.3.1 Summary Diffusion . 69
3.3.2 Summary Harvesting . 71

3.4 Analysis of MDHP Protocols . 75
3.4.1 Summary Harvesting Delay . 75
3.4.2 Efficiency of Bloom Filters in Summary Harvesting 80
3.4.3 Scalability . 82

4 REDMAN Validation 85
4.1 Simulation Setup . 86
4.2 Dense MANET Configuration . 87

4.2.1 Manager Election Inaccuracy . 88
4.2.2 Impact of REDMAN Heuristics on Manager Election Accuracy . . 88
4.2.3 DMC Network Overhead . 90
4.2.4 Impact of Node Mobility on the Accuracy of the REDMAN Dense

MANET Identification Protocol 92
4.3 Replica Dissemination and Retrieval . 95

4.3.1 Accuracy . 95
4.3.2 Overhead . 96
4.3.3 Accuracy in Non-Stationary Scenarios with Mobile Nodes 98

4.4 Replica Degree Maintenance . 99
4.4.1 RDM Accuracy . 101
4.4.2 RDM Overhead . 101

5 MobEyes Validation 105
5.1 Simulation Setup . 107
5.2 Analysis Validation . 108
5.3 Effect of k-hop Relay and Multiple Agents 111
5.4 Summary Diffusion Overhead . 112
5.5 Stability Check . 114
5.6 Tracking Application . 116
5.7 Border Effects and Turn Over . 121

6 REDMAN Implementation 125
6.1 Design . 126

6.1.1 DMC . 127
6.1.2 Delegate . 128
6.1.3 Manager . 130

6.2 Implementation . 131
6.2.1 J2ME . 132
6.2.2 Implementation Experience . 133

6.3 Test . 135
6.4 Security . 137

ix

7 MobEyes Implementation 141
7.1 Design and Implementation . 142

7.1.1 MobEyes Sensor Interface . 142
7.1.2 MobEyes Data Harvesting Processor 148

7.2 Test . 150
7.3 Security . 152

7.3.1 PKI Model . 154
7.3.2 Attack Model . 155
7.3.3 Location Tracking Attack . 156
7.3.4 Denial of Service . 157
7.3.5 False Data Injection . 157
7.3.6 Query Confidentiality . 158

Conclusions 161

Bibliography 164

x

Acknowledgements

First and foremost, I would like to thank my advisors, Maurelio Boari and Antonio Corradi,
and my co-advisors Paolo Bellavista and Rebecca Montanari for their precious guide dur-
ing these years. They have followed my work with constant attention, providing me with
continuous encouragement, advice and (both academic and human) support. A grateful
thank is also due to Mario Gerla, who guided me during the research period I spent at the
University of California, Los Angeles.

I would also like to thank many friends and colleagues that I met during these years,
Luca, Federico, Alessio, Dario, Carlo, Alessandra, Alessandro, Daniela, Silvia, Gianluca,
Fabrizio, Michele, MarcoM., Marco G., Luca, Fabio, and Giovanni for always encouraging
me with enthusiasm along the way. Many thanks are also due to all the people of the
Advanced Computer Science Laboratory (LIA) of the University of Bologna, who gave me
support and advises.

Further thanks are due to the other external researchers and academic people I have been
collaborating with during these years, especially all valuable researchers of the Network
Research Laboratory at UCLA. I would like to address many thanks to my dear friends
Uichin, Gustavo, Claudio, Giovanni, Jiejun, and also Daniela, Flavio, Tony, Rosario, Ric-
cardo, Massimiliano, Dzmitry, Paolo, Enzo, Franco, Melike, Eugenio F., Eugenio G.,
Alexandro, Alessandro, Maria.

I would like to express my gratitude to all undergraduate students who have contributed
to the development of the REDMAN and MobEyes middlewares.

Let me additionally thank all people I met at conferences who showed interest for my
projects and gave me helpful suggestions and feedback.

Finally, a loving thank is to all my family (in particular, my dear niece Lucilla) and my
friends, who invaluably supported me during all these years.

xi

Introduction

The recent development of wireless communications gave birth to novel scenarios of ubiq-

uitous and pervasive computing where users enjoy full-fledged services “anytime, any-

where.” Cellular networks allow users to freely move during provisioning of traditional

services, e.g., Internet browsing and media streaming. However, these scenarios call for

the deployment of a base-station infrastructure that, given the short and unpredictable cov-

erage of radio waves in the air medium, should be carefully designed. This represents a

major hindrance and limitation to the development of more dynamic applications, where

users want to discover and possibly share resources, independently on their location. This

calls for real dynamic interactions, characterized by being non-mediate, timely, and tem-

porary: in one word, opportunistic.

Mobile Ad Hoc Networks (MANET) propose a dynamicmodel to support this paradigm:

devices setup temporary connections as they want to communicate, without the the need of

any previously deployed infrastructure. This critical lack calls for cooperative behavior of

all devices to allow communication beyond the wireless coverage of a single node. In fact,

in case the receiver is located outside the radio range of the sender, intermediate relay nodes

are needed to route messages (multi-hop communications). Thus participant devices, even

if with different capabilities and widely heterogeneous as for the set of locally available

resources, are functionally equivalent, i.e., they are required to carry analogous tasks such

1

2

as packet routing. The traditional distinction between routers and end-points faints, since

all nodes undertake both tasks. Finally, in common cases, MANET nodes are carried by

humans or embedded in moving objects, e.g., vehicles. On the one hand, mobility increases

model dynamicity; on the other hand, it aggravates communication issues, since recipient

mobility may complicate message delivery. Generally speaking, due to the symmetry of all

MANET participants with regards to reachability, solutions based on fixed location servers

are not feasible. Hence, novel distributed routing protocols effective in mobile scenarios

have been devised [110]. MANETmodel especially benefits applications where the deploy-

ment of a fixed infrastructure is difficult, e.g., emergency relief in impervious environments

and disaster recovery, or where temporary interactions make it economically unfavorable,

e.g., opportunistic entertainment networking or resource exchange. Finally, MANET are

preferable for applications targeting a wide area of interest, such as urban monitoring, that

would require a massive “ad hoc” deployment of base stations.

Many of these applications benefit from the access to remote resources, i.e., data or

software components carried by other devices. Given reachability issues of MANET nodes,

this task is particularly crucial. First, mobile nodes can leave network area without any

notice, by suddenly disrupting the availability of local resources. Even worst, generally

speaking mobility can lead to potential network partitions, due to the disconnection of

traffic forwarders, where all nodes belonging to one network segment cannot communicate

with nodes in the other. Second, resources need to be discovered and located with as

low communication overhead as possible; in fact, trivial solutions based on network-wide

flooding, either of resource advertisements or of resource requests, do not scale as network

size increases. Node symmetry and mobility arguments prevent once again the usage of

fixed servers and call for highly distributed strategies. Moreover, it is necessary to consider

3

that, if the network is sparse, it is not always possible to find a connected path from a user

to needed remote resources. This definitely rules out flooding-based solutions and calls for

the design of novel opportunistic protocols where nodes interact and exchange data only

with single-hop neighbors. This paradigm enables “delayed” multi-hop interactions, where

information spreads as an epidemy via several single-hop exchanges, as nodes move into

direct transmission ranges. However, these controlled interactions definitely exacerbate

discovery issues, demanding original resource indexing strategies.

This thesis tackles these issues and proposes middleware solutions for resource dissem-

ination and retrieval. First of all, access to remote resources and related issues acknowl-

edgedly affect many applications in MANET and deserve to be jointly faced. Common

middleware supports significantly benefit the implementation of the application logic, by

reducing development complexity and design costs. In addition, proposed middlewares op-

erate at the application level mainly because several dissemination and retrieval decisions

are possible only at this abstraction layer. Thus, application developers only need to set ser-

vice parameters, while the middleware is transparently in charge of the actual operations.

Finally, working at the application level also simplifies portability over heterogeneous com-

munication technologies and routing protocols, by hiding low-layer implementation details

from application developers. This particularly benefits MANET scenarios, where no ac-

knowledged networking standard has been developed.

The primary idea behind our approach is to improve resource access by disseminat-

ing replicas. We claim that replica management is very hard to perform in an effective

and lightweight way over wide-scale environments when dealing with general-purpose

MANET. Therefore, we focus on a specific deployment scenario of increasing relevance

4

for the entertainment service market, called dense MANET. These are limited spatial re-

gions, such as university campuses, airports and shopping malls, where many mobile wire-

less peers autonomously cooperate, and maintain a node density almost invariant dur-

ing long time intervals. The first part of this thesis proposes REDMAN (REplication in

Dense MANet), a middleware solution to manage, retrieve and disseminate replicas of

data/service components among nodes participating in a dense MANET. REDMAN has

the main goal of improving the resource availability, by exploiting lightweight solutions

specifically suitable for the characteristics of dense MANETs. REDMAN aims at maintain-

ing a fixed replication degree for the needed resources, notwithstanding the unpredictable

movements of wireless devices (with hosted resource replicas) inside/outside the dense

area, possible network disconnections, and device power shortage. To suit resource-limited

nodes, REDMAN decides not to guarantee the strict any-time consistency of the replica-

tion degree of shared resources, and employs reactive strategies to counteract the reduction

of replicas. In addition, to reduce the overhead and the complexity of distributed replica

management, REDMAN currently manages the replication of read-only resources. This is

sufficient for guaranteeing the availability of a large class of services of primary interest in

MANETs (e.g., multimedia data sharing or support/application components code distribu-

tion).

In case the network is sparse, i.e., a connected sender-receiver path is not always avail-

able, its size does not allow effective network-wide communications, or nodes are too dy-

namic to effectively maintain network replicas, original diffusion strategies are needed.

Vehicular Ad Hoc Networks (VANET), and more specifically, Vehicular Sensor Networks

(VSN) represent typical cases where these conditions hold. Many car manufacturers are

planning to install wireless connectivity in their vehicles to enable communications, for

5

the purposes of safety, driving assistance, and entertainment. VANET differentiate from

MANET for high node speed (up to 30m/s) and mobility patterns relatively easy to predict,

due to constraints imposed by roads, speed limits, and commuting habits. VSN can be

built on top of VANET by equipping vehicles with onboard sensing devices. Unlike tradi-

tional sensor networks, VSN nodes are not subject to major memory, processing, storage,

and energy limitations. The second part of this work proposes MobEyes, a solution sup-

porting data diffusion and indexing in challenging VSN environments. Since it is usually

unfeasible to directly report the sheer amount of sensed data to a centralized collector, e.g.,

police authority, MobEyes proposes that sensed data stay with mobile nodes. Vehicle-local

processing extracts features of interest, and generates data summaries. Then, MobEyes col-

lectors, move and opportunistically harvest summaries from neighbor vehicles. Collectors

use summaries to identify, and then pump out, only the sensed data of interest from the

carrying vehicles. The original MobEyes protocols for summary diffusion/harvesting take

advantage of vehicle mobility and only exploit single-hop communications.

The dissertation is structured as follows. Chapter 1 provides a wide overview ofMANET

and, in particular, focuses on state-of-the-art research most related to our contribution.

Chapters 2 and 3 introduce design guidelines and protocols of middleware services for re-

source replication (REDMAN) and sensed information diffusion (MobEyes). Chapters 4

and 5 provide simulative evidences of protocol effectiveness and overhead reduction, while

Chapters 6 and 7 describe the design, implementation, and testing of middleware proto-

types. Finally, we conclude the dissertation by summarizing the technical contribution of

this work and by discussing possible future investigations.

6

Chapter 1

Background and Related Work

The increasing diffusion of wireless devices suggests novel service deployment scenarios

where there are no constraints on device mobility and distributed applications are the result

of impromptu collaborations among wireless peers. These scenarios have motivated the

study of MANET dynamic network model. In this distributed model, it is important to en-

able the access to remote resources from distant mobile devices. This raises two important

issues in MANET: how to distribute contents, by maintaining reachability despite possi-

ble node movements and connection disruptions; and how to retrieve remote resources,

given the absence of centralized servers. As anticipated in the Introduction these issues are

exacerbated in large-scale networks, such as Vehicular Ad Hoc Networks (VANET) com-

posed by cars moving on the roads. Due to the extremely wide deployment area, in these

networks it is not always possible to find a connected sender-receiver path with decent

bandwidth. This particularly undermines the feasibility of applications of high importance

based on sensed data exchange, e.g., for urban monitoring. A possible solution to this issue

is trading communication resources for increased delay. Single-hop opportunistic commu-

nications pave the way to leveraging node mobility for effective packet delivery.

Initially, this chapter provides an overview of background research areas, that can be

7

8

identified in the main field of Mobile Ad Hoc Networks, and its subfields of Vehicular Ad

Hoc Networks, and Wireless Sensor Networks. In the following, we organize the state-

of-the-art research most tightly related to our work along four primary perspectives. First,

we focus on i) content distribution, and ii) distributed resource retrieval issues in MANET.

Given that the second part of our work specifically deals with iii) Vehicular Sensor Net-

works, we propose a short review of that field. Finally, we conclude the chapter by pre-

senting the research in iv) opportunistic networking, with a specific focus on sensed data

diffusion, which will be a strong motivating case for our work.

1.1 Background Research

1.1.1 Mobile Ad Hoc Networks

Ubiquitous and pervasive computing envisions timely and temporary communications among

wireless devices in environments without infrastructure support. This calls for a novel

model, extending traditional single-hop cellular wireless networks. In MANET, node com-

munications are not assumed to be mediated by base stations, but they take place on a

peer-to-peer basis. Nodes are allowed to directly exchange messages with all participants

within their radio transmission range (these direct communications are termed single-hop).

However, in many useful cases, nodes are interested in reaching participants beyond their

single-hop capability. To support these interactions, MANET propose multi-hop communi-

cations, where intermediate nodes are in charge of forwarding remote traffic. In traditional

networks, these routing operations are carried by specialized powerful devices; MANET

instead ideally distribute this task to all participants. This consideration can be further

extended to other management functions, e.g., location services, by suggesting equality

principles stating that, under a functional point of view, all nodes are equivalent and that

9

global operation effectiveness is possible only if co-operation takes place.

In most common scenarios, MANET are composed of portable devices, e.g., PDAs or

laptops carried by humans, with limited resources, such as battery, CPU-power or stor-

age. This highly limits their possibility to contribute to network management by, at the

same time, challenging the co-operation principle on which MANET thrive. Energy issues

particularly undermine MANET functionality; thus, a large amount of research addressed

the design of effective trade-offs between device lifetime extension and network opera-

tions volunteering. If excepting specific scenarios, e.g., wireless sensor networks, MANET

nodes are mobile. On the one hand, this increases model dynamicity, on the other hand,

it exacerbates communication issues, raising the problem not only of locating the commu-

nication partner, but also of continuously renewing location information. This challenge,

notably influencing routing operations, has pushed MANET research to devise protocols

based on novel principles to cope with all these issues.

In the following, we shortly survey most important trends in MANET literature. The

main focus of our report will be on routing area, since it has been the most actively re-

searched: this is due both to routing protocol importance in enabling communications, and

their criticality in addressing unprecedented challenges. Then, we review major problems

reducing the effectiveness of transport protocol implementations, and proposed solutions.

We conclude the section by discussing some issues, in particular energy saving, that are not

related to any specific protcol layer, but crosswisely affect MANET design.

Given the absence of specialized router devices, MANET nodes need to establish multi-

hop routing paths before any unicast communication is possible. Paths are composed of a

chain of multiple one-hop links; thus, their availability critically depends on the stability of

any involved link: if one link fails, the whole path is invalidated. Differently from wired

10

networks, link disruptions are common in MANET, mainly due to node mobility; thus,

frequent maintenance operations are required.

Traditionally, MANET routing protocols can be roughly classified as topology-based

(either proactive or reactive) and geographic-based. Topology-based proactive protocols,

e.g., DSDV [103] and OLSR [63], derive from distance-vector and link-state [] employed

on the wired network. These periodically exchange topological information, with the goal

of maintaining a consistent view of the network, in spite of node movements. Distance-

vector solutions, e.g., DSDV, maintain a local routing table including, for each possible

destination, the one-hop neighbor nearest to it. Locally computed tables are periodically

delivered to single-hop neighbors, which update their own tables by considering received

information. Thus, topological changes indirectly spread one hop per step, as reflected on

the newly computed tables. Routing is performed by forwarding packets to the one-hop

neighbor indicated in the table as the nearest to the destination. On the other hand, link-

state protocols, e.g., OLSR, locally maintain a view of the whole network. Topological

changes are propagated with single network-wide packets, allowing all nodes to conse-

quently update local view. Routing is performed by locally computing the shortest path

toward the destination, and sending the packet to the neighbor on the path.

Topology-based reactive protocols, e.g., DSR [71] and AODV [105], have been origi-

nally conceived for MANET. Proactive protocols impose a high communication overhead

due to the continuous table exchange needed to maintain local paths toward any possible

destination. Reactive routing is based on the consideration that nodes do not generally need

to communicate with all other participants, but only with few of them. Thus, they propose

to setup paths only when needed. Since nodes do not have any information about the lo-

cation of the destination, most of these protocols rely on a preventive flooding to discover

11

network paths: this obviously imposes a time delay with respect to proactive solutions.

As soon as a path is setup, communication can take place, until any link breaks. In that

case, path maintenance operations are performed usually based on route error messages

delivered to the source, or on local repairing strategies, transparent to the source.

Previous protocols do not assume nodes are equipped with any positioning devices. In-

stead, geographic-based solutions take advantage of GPS to enroute messages toward the

target location (i.e., of the destination). With respect to topology-based protocols, these

are generally deemed stateless, since nodes do not need to setup paths and maintain rout-

ing tables, but forward packets by considering only local and target positions. Different

forwarding strategies have been proposed based either on the relaying of single or multi-

ple copies of each packet. In single-copy based, packets are generally forwarded toward

the single-hop neighbor minimizing a function depending on target location (e.g., absolute,

or projected distances). In multiple-copy based, delivery ratio probability is increased by

forwarding packets to all single-hop neighbors minimizing (or satisfying) location func-

tions (e.g., the angular distance from an ideal sender-receiver straight line). A drawback of

these approaches is that packet source needs to know the location of the receiver: this is

possible only if a location service is suitably deployed. Let us rapidly mention that these

protocol families do not exahust MANET research. Recent approaches propose hybrid pro-

tocols, by combining on different scales reactive and proactive solutions, or geographic and

topology-based.

Routing protocol design is not the only critical enabler to MANET networking. Exper-

imental results showed that connection-oriented transport protocols, such as TCP, are not

effective in MANET environments. In fact, TCP assumes that packet loss are only due to

12

congestions; as a consequence, it reacts to losses by reducing transmission rates via con-

gestion window adjustments. This assumption is reasonable in wired network; however,

wireless network medium is far less realiable than wired counterpart, and causes severe

packet loss. This is well-known also from cellular wireless networks literature: solutions

have been provided based on a smoother modification of the congestion window.

InMANET however, a number of additional effects further exacerbate this phenomenon

[33]. Route failures, due to node mobility, produces high packet loss and abnormal delays

(while the protocol tries to reconstruct the path). TCP again reacts by enacting conges-

tion control mechanisms. Also the congestion window size is source of inefficiencies.

[47] proves that TCP operates with a window size larger than the one achieving optimal

throughput, increasing low-level contention. Physical and MAC-layer interferences add

other inefficiencies: nodes undergo interferences of nodes within the carrier sense range,

or suffer from well-known hidden and exposed terminal effects [107]. Finally, the inter-

action with MAC-layer protocols can lead to severe unfairness or channel capture by few

flows. Several solutions have been proposed to solve these issues. [26] introduces explicit

signaling from intermediate nodes in case of route failure; similarly, [57] proposes to notify

intermediate link failures to the sender with Explicit Link Failure Notifications. Other ap-

proaches [47] focus on MAC-layer and TCP interactions: they observe that it is possible to

determine a congestion window achieving maximum channel reuse, that is tipically smaller

than the one TCP uses. [47] proposes a solution based on Random Early Detection [126]

and longer backoff intervals.

Some research issues are not peculiar of any layer but should influence the design of

every MANET solution. First and foremost, we recall energy saving: experimental re-

sults prove that communication is the most power-hungry activity, and that sleep mode

13

enabling is the only way to reduce this consumption. Thus, several MAC layer strategies

[29, 136, 117] propose to turn on only the minimum number of nodes needed to keep the

network connected [29, 136]. Topology control solutions [44, 94] address the optimal tun-

ing of nodes transmission ranges, by observing that smaller ranges require more packet

relays, while larger increase energy consumption as well as interference. Finally, power-

aware routing protocols have been designed, enrouting messages either on paths leading

to minimum energy consumption [81], or maximizing network lifetime [28]. Security is

another cross-layer issue: threats span from physical layer (e.g., denial of service via ra-

dio jamming), to data-link (e.g., packet sniffing [90]), to network (e.g., dissemination of

fake information to concentrate paths on a single node), to application (e.g., cooperation

refusal). Specific solutions to most of these threats have been proposed [111, 20, 101].

1.1.2 Vehicular Ad Hoc Networks

The deployment of MANET nodes on vehicles represent a relevant and challenging novel

scenario. Many car manufacturers are planning to install wireless connectivity equipment

in their vehicles to enable opportunistic communications between vehicles. One distinct

feature is that vehicles are highly mobile, with speed up to 30m/s, though their mobility

patterns are more predictable than those of nodes inMANET due to the constraints imposed

by road, speed limits, and commuting habits. Therefore, these networks require specific

solutions and identify a novel research area within the MANET field, i.e., Vehicular Ad-

hoc Networks (VANET).

Recent research is envisioning a large number of applications specifically designed for

VANETs, ranging from (i) safe cooperative driving where emergency information is dif-

fused to close vehicles and real-time response systems automatically manoeuvr to avoid

14

accidents [135]; to (ii) entertainment support, e.g., aiming to enable file sharing [92], diffu-

sion of commercial advertisements [93] and peer-to-peer marketing [78]; to (iii) distributed

data collection, e.g., with the goal of providing drivers with information about available

parking lots [22] or traffic jams en route [121]. So far, most VANET research has ad-

dressed routing issues. Three different and complementary routing strategies have been

proposed and evaluated: unicast [96, 112], broadcast [130, 135, 75], and carry-and-

forward [32, 121, 18, 134, 139]. Unicast strategies are usually applicable only when it

is possible to assume the availability of an uninterrupted path between source and destina-

tion; broadcast solutions enhance message delivery reliability in more general deployment

environments; carry-and-forward permits to have delivery reliability similar to broadcast

with minor overhead in delay-tolerant application scenarios, even with scarce node density.

Due to intrinsic difficulties in deploying large size VANETs, most protocols have been val-

idated and evaluated via simulations, which exploit novel mobility models based on both

real maps and realistic vehicle behaviors in order to accurately match the conditions of

target environments [112, 96]. In particular, research efforts to identify suitable unicast

routing protocols for VANET stem from the adaptation of traditional MANET protocols,

often considering on-demand and geographic-based solutions given the high mobility of

VANET nodes. In [96], authors evaluate AODV [105] and GPSR [73] with accurate traffic

micromobility models: they find that both protocols suffer from poor packet delivery ratios

when applied to VANET. Therefore, they devise improving schemes based on the identi-

fication of best forwarders, i.e., nodes placed neither too far from the sender (leading to a

higher probability of link breakage) nor too close (increasing the number of routing hops).

Several VANET applications, e.g., related to safety or traffic/commercial advertising,

15

call for the delivery of messages to all nodes located close to the sender, with high de-

livery rate, and short delay. [130] evaluates how effective priority-based broadcast solu-

tions, e.g., those included in 802.11e [1] specifications, are in enhancing the probability

of reception of important messages. In high-traffic conditions, even priority is not deci-

sive to guarantee broadcast success, since it is not able to counteract the hidden terminal

problem [48]. Recent resarches addressed this issue by proposing original broadcast strate-

gies. [135] proposes simple original solutions; results identify beneficial elements to de-

sign a reliable broadcast protocol, such as carrier sensing, fixed repetition schemes, i.e.,

where nodes repeat messages for a fixed number of times, and time slotting, with global

clock synchronization. However, single-hop broadcast does not provide a full support to

advertising applications; thus, effective multi-hop dissemination solutions are investigated

in [75]. In addition to common issues affecting single-hop broadcast, multi-hop dissem-

ination also suffers from the broadcast storm issue [98]. [75] proposes Urban Multi-hop

Broadcast (UMB), where the farthest receiver is the only node responsible of acknowledg-

ing and relaying the broadcast message.

Packet delivery issues in areas with sparse vehicles have encouraged several recent re-

search contributions to investigate carry-and-forward strategies. In [32], authors simulate a

straight highway scenario to compare two ideal strategies: pessimistic (i.e., synchronous),

where sources send packets to destinations only as soon as a multi-hop path is available, and

optimistic (i.e., carry-and-forward), where intermediate nodes hold packets until a neigh-

bor closer to the destination is detected. Under the implicit assumptions of i) unbounded

message buffers and bandwidth, and ii) of easily predictable mobility patterns as for vehi-

cles on a highway, the latter has demonstrated to achieve a lower delivery delay. However,

in more realistic situations carry-and-forward protocols need to be carefully deigned and

16

tuned. MaxProp [18], part of the UMass DieselNet project [38], is a ranking strategy to

determine the packet delivery order when occasional node encounters occur, as well as

dropping priorities in the case of full buffers. Precedence is given to packets destined to

the other party, then to routing information, to acknowledgements, to packets with small

hop-counts, and finally to packets with a high probability of being delivered through the

other party. VADD [139] hangs on the consideration that most node encounters will take

place in intersection areas. Since many forwarding options will be typically available at

intersections, effective decision strategies are proposed, highly reducing packet delivery

failures and delay. Distributed data collection applications in VANET call for geographic

dissemination strategies that deliver packets to all nodes belonging to target remote areas,

despite possibly interrupted paths [134, 121]. MDDV [134] exploits geographic forward-

ing to the destination region, favoring paths where vehicle density is higher. In MDDV,

messages are carried by head vehicles, i.e., best positioned toward the destination with re-

spect to their neighbors. Instead, [121] proposes several strategies based on virtual potential

fields generated by propagation functions: any node estimates its position in the field and

retransmits packets until nodes placed in locations with lower potential values are found;

this procedure is repeated until minima target zones are detected.

1.1.3 Wireless Sensor Networks

A completely different MANETmodel with respect to VANET, is represented by stationary

wireless networks set up among small sensing devices. Recent advances in miniaturization

and communication technologies have enabled the creation of Wireless Sensor Networks

(WSN) consisting of a large number of low-cost digital devices, which integrate sensors,

processors, and radios on a single few centimeter-wide board. The WSN primary goal is

to promptly deliver final users with monitoring information of interest about the physical

17

world, by achieving high accuracy while meeting the specific limitations of WSN nodes.

Notably, WSN generally operate in harsh environments preventing the deloyment of any

wireless communication support infrastructure.

To form an adequate and reliable sensing base, WSN generally include a large number

of devices. In fact, theoretical results in the literature prove that the coordinated behavior of

hundreds/thousands of WSN nodes spread near the interesting phenomenon to monitor can

highly improve the sensing accuracy if compared with centralized macro-sensors [106].

However, the exploitation of a large number of devices definitely precludes the possibility

for human operators to manually configure and manage WSN: there is the need for self-

configuration and self-organization solutions (WSN should have the ultimate goal of being

pervasive and disappearing), also capable of adapting the WSN behavior in the case of

variations of the monitored environment and of the monitoring requirements.

Also because of their deployment in remote and hostile terrains, WSN devices are usu-

ally severely limited in their on-board resources. First of all, they are outfitted with batteries

that, once depleted, cannot be easily replaced. Therefore, the reduction of energy consump-

tion is crucial in WSN solutions and applications. As in the MANET case, recent experi-

mental evaluations have shown that, with current technologies, communication is the most

power-consuming task: to extendWSN lifetime, it is necessary to carefully reduce both the

number of transmissions and the amount of transmitted data. To this purpose, lightweight

node coordination is emerging as a crucial issue, e.g., via collaborative in-network pro-

cessing to enable the automated fusion of sensed data and the transmission of only concise

and aggregated monitoring indicators, only when needed depending on the sensing goals.

In addition, energy limitations and reduced sensor size impose further constraints, such as

limited CPU power and memory.

18

WSN solutions can apply to several different application domains. Environmental mon-

itoring offers a rich collection of possible sensing scenarios: well-recognized application

areas include air/water/soil chemical analysis and the support/validation/feedback of the

development of complex ecosystemmodels. The deployment of hidden sensors fits surveil-

lance and military tasks, such as detecting objects overstepping a fixed perimeter or tracking

mobile vehicles. In addition, home automation and smart houses can significantly benefit

from WSN-based control of lighting and heating systems. Moreover, envisioned critical

applications, e.g., patient health monitoring, pose hard concerns about WSN additional

properties, such as reliability and security, thus suggesting further on-going research activ-

ities and investigations.

WSN research has addressed issues at every protocol layer: we rapidly sketch several

interesting results. MAC layer WSN protocols aim at creating link-layer topologies among

nodes in direct visibility and at supporting the access to the communication channel. The

SMACS protocol [120] carries on at the same time link-layer topology discovery and cre-

ation, and channel access organization. It is essentially based on a TDMA algorithm, and

exploits a distributed, local scheme to schedule nodes channel accesses. Topology control

solutions aim at identifying redundant nodes that can be powered off without affecting the

system capability of matching user requirements, e.g., neighbor nodes alternatively sup-

porting the same routing paths [114]. Similarly to the MANET case, the routing layer has

catalyzed most research efforts: the design of dissemination protocols for sensed monitor-

ing information has generated very interesting proposals. Again, we can roughly classify

approaches, with regard to the type of task they support, in proactive, reactive, and hybrid.

Proactive protocols [55, 83] aims at periodically returning sensed attribute values, by keep-

ing platforms off all remaining time to save energy. By properly tuning the report interval

19

rate it is possible to trade between a prompt solution (short report intervals) and a more

conservative one (long report intervals). The former has the advantage of transmitting crit-

ical data with low delays. Unfortunately, it reveals energy-inefficient because it probably

reports also irrelevant data. The latter solution conserves energy but requires large delays in

critical data delivery. Reactive protocols [86] deliver data only if a sensed attribute exceeds

a threshold value specified by the user. On the one hand, this improves delivery latency;

on the other hand, if the threshold is never reached, the user cannot determine neither if

the network is still active nor all nodes have died. Hybrid protocols [87, 62] represent a

more well-balanced approach. In fact, users can thoroughly control networks behavior by

tuning a report interval and a threshold value: the network can emulate a proactive one by

increasing the report rate; by decreasing the same parameter, it can emulate a reactive one.

By employing this solution, heavy traffic burdens, typical of proactive networks with short

report intervals, do not burden the system. At the same time, the network is quick to react

to most important environmental changes because nodes transmit new data whenever an

attribute exceeds its threshold. A hybrid approach deserving to be mentioned is Directed

Diffusion [62], aiming at establishing paths between data sources and sinks by exploit-

ing only localized interactions. In Directed Diffusion, interests (specifying data threshold

values as well as periodic report timelines) diffuse all over the network, establishing back-

path routes on intermediate nodes called gradients. These are exploited to return relevant

data to the interest originator. At the application layer, novel WSN scenarios open brand

new perspectives and technical challenges; the most investigated application areas relate to

environmental monitoring, e.g., ARGO project [3].

20

1.2 Related Work

In the first part of this chapter, we provided a wide overview of the challenging MANET

field, and its VANET and WSN subfields. In the reminder, we will focus our attention on

specific issues tightly related to our contribution, i.e., distribution and retrieval of contents

with regards to the resource replication service for dense MANET, and vehicular sensor

networks and opportunistic networking with regards to the sensed data dissemination in

VANET.

1.2.1 Content Distribution

The continuous growth of Internet traffic has promoted the idea of increasing availability

by replicating service contents depending on popularity [45, 13]. Resource replication is

evenmore crucial inMANETswhere continuous node availability is unfeasible: replication

is essential both to maintain resource availability in the case of MANET partitioning and

to reduce access latency and battery consumption by placing replicas close to requesters.

However, due to the novelty of MANET service provisioning, a very few approaches have

already emerged.

A couple of proposals address latency reduction for resources on the fixed Internet

and accessed by MANET nodes. [113] describes a cooperative strategy for caching Web

contents in wireless localities composed by mobile terminals with also cellular-phone capa-

bilities. A similar goal is addressed in [46], which tends to decrease access latency of Web

Services and to optimize energy consumption at the same time: each participant maintains a

local cache with recently accessed Web Services components; when searched components

are not in cache, the requester first explores the ad hoc network and, as the last chance,

exploits long-range telecom connectivity.

21

In very dynamic MANET environments it is unfeasible to assume that long-range base

stations, e.g., connecting to GPRS/UMTS core networks, are always available. In any case,

multi-hop packet forwarding exacerbates MANET networking issues, especially when ex-

ploited to download multimedia flows and large files [127]. SPAWN proposes a cooperative

strategy for content delivery in Vehicular Ad Hoc Networks (see 1.1.2) where gateways are

only intermittently available [92]. Client nodes start downloading files from gateways in-

stalled on freeway service stations while the client is within the gateway coverage area. If

not yet terminated before losing the gateway connectivity, the download can continue with

a peer-to-peer strategy: SPAWN leverages gossip-based control message exchanges to dis-

cover cars that own missing file chunks; strategies based on chunk rareness and replica

distance are used to select which file pieces to download first.

By considering pure MANETs, Chen et al. propose a well-known solution to coun-

teract network partitioning [7]. They place resource replicas on the basis of node posi-

tions/movements, by assuming that all nodes are GPS-equipped and aware of their physi-

cal positions. To the best of our knowledge, [14], [54], and [24] are the research proposals

more related to our from the point of view of content distribution. [14] enhances data avail-

ability via an adaptive replication protocol suitable only for deployment scenarios with

nodes in direct single-hop visibility. In addition, it assumes that any node knows the posi-

tion of all replicas and the memory/battery/mobility state of all other nodes. [54], instead,

proposes proactive replication depending on resource access frequency; however, its co-

ordination and synchronization solutions do not scale well in wide deployment scenarios.

Finally, Cao et al. propose collaborative caching of nodes along client-to-server paths dur-

ing resource forwarding with the goal of reducing resource access latency [24]. Due to the

number of alternative paths connecting any node pair, the solution is not effective when

22

applied to unstructured, non-hierarchical, and wide-scale MANETs such as dense ones.

1.2.2 Resource Retrieval

Infrastructure-free and completely decentralized MANETs pose innovative challenging is-

sues also for resource retrieval. A very few research activities have investigated MANET-

specific broadcast-based peer-to-peer solutions for resource retrieval, with limited scal-

ability and excessive overhead for resource-constrained clients [56]. Some recent pro-

posals aim at limiting broadcast communications by exploiting quorum-based solutions

[5, 15, 124]: the primary idea is to disseminate resource placement information on a node

subset that can be determined without message flooding.

Some interesting research results on resource retrieval have been achieved in the par-

tially similar deployment scenario of stationary wireless sensor networks. [5] assumes

GPS-equipped nodes to spread advertisement/search packets along orthogonal directions.

On the contrary, [15] considers provisioning environments where geographic routing can-

not apply and proposes the dissemination of placement data along paths with approximately

constant directions, determined by choosing, as the next hop, a node that is not the neighbor

of any node belonging to the already built sub-path.

Some of the above work is suggesting solution guidelines that can also apply toMANET

environments. [128] extends the GPS-based solution in [5] for replication in mobility-

enabled deployment scenarios: each node is asked for storing placement data about its

nearest replica. A different approach is presented in [124]: any resource associates with its

origin place, which is in charge of distributing all replicas to nodes placed at k-hop distance

from it. In that proposal, replica retrieval exploits geographical routing to forward queries

toward the resource origin place.

23

1.2.3 Vehicular Sensor Networks

Vehicular Sensor Networks (VSNs) can be built on top of VANET by equipping vehicles

with onboard sensing devices as shown in Figure 1.1. VSN are emerging as a new net-

work paradigm for effectively monitoring the physical world, especially in urban areas

where a high population of vehicles, working as mobile sensors, is expected to be always

present [76]. Vehicles are typically not affected by strict energy constraints and can be

easily equipped with powerful processing units, wireless transmitters, and sensing devices

even of some complexity, cost, and weight (chemical spill detectors, still/video cameras,

...). Let us note that VSN represent a significantly novel and challenging deployment sce-

nario, relevantly different from more traditional wireless sensor network environments,

thus requiring innovative specific solutions. In fact, differently from wireless sensor nodes,

vehicles usually exhibit constrained mobility patterns due to street layouts, junctions, and

speed limitations. In addition, they usually have no strict limits on processing power and

storage capabilities. Most important, they can host sensors that may generate sheer amounts

of data, such as multimedia streaming recorded by cameras, thus making inapplicable data

reporting solutions already known in the wireless sensor network literature.

The typical scale of a VSN over wide geographic areas (e.g., thousands of nodes), the

volume of generated data (e.g., streaming data), and mobility of vehicles make it infeasible

to adopt traditional sensor network solutions where sensed data tends to be systematically

delivered to sinks using data-centric protocols [62]. To the best of our knowledge, the only

research work dealing with these issues is MIT’s CarTel project [25]. In CarTel [61] users

submit their queries about sensed data on a portal hosted on the wired Internet. Then, an

intermittently connected database (ICEDB) is in charge of installing queries on vehicles

and of receiving replies via opportunistic communications that take place as vehicles move

24

VSN-enabled vehicle

Inter-vehicle
com m unications

V ehicle-to-roadside
com m unications

Roadside base station

Video Chem.

Sensors

Storage

Systems

Proc.

Figure 1.1: Vehicular Sensor Networks

in the proximity of open access points, i.e., Internet-connected wireless gateways with

unrestricted access for passer-by users.

1.2.4 Opportunistic Networking

Opportunistic data dissemination is primarily based on data diffusion via continuous single-

hop broadcast advertisements [74, 133]. As nodes encounter, they mutually exchange

memory contents, thus favoring data spreading over a large portion of network participants.

Node mobility and churn catalyze data diffusion process to as many nodes as possible, with

the final goal of reaching intended destinations; in particular, this enables communications

between disconnected nodes in sparse networks. In Opportunistic Report Dissemination

(ORD) [118], a mobile node spreads reports in its local storage to encountered nodes and

25

obtains new reports in exchange. For each resource type, a node keeps the top-k rele-

vant reports based on an exponential decay relevance function, taking into account report

longevity and generation place. Similarly, in Autonomous Gossiping (AG) [36], a node

can set a profile by choosing resource categories of interest; then, information is selectively

disseminated with profile matching strategies. Unlike previous schemes, MAID [6] and

MPR [91] restrict dissemination such that only the source node can disseminate its data to

local neighbors. This choice leverages the observation that mobility increases throughput,

even if at the price of increased delivery delay [52].

Recent research projects addressed sensed data diffusion by implementing opportunis-

tic networking in the application field of naturalistic environment monitoring, namely Ze-

braNet [72] and SWIM [119]. ZebraNet addresses remote wildlife tracking, e.g., zebras

in Mpala Research Center in Kenia, by equipping animals with collars that embed wire-

less communications devices, GPS, and biometric sensors. As the animals drift within the

park, their collars opportunistically exchange sensed data, with the goal of pumping it to-

ward base stations. ZebraNet proposes two communication protocols: a flooding-based

approach where nodes exchange all the data within their buffers (either locally generated

or received from other animals) with neighbors, and a history-based protocol where data is

uploaded only to nodes with high probability of encountering base stations. Shared Wire-

less Infostation Model (SWIM) [119] addresses sparse mobile sensor networks with fixed

Infostations. Sensed data is epidemically disseminated via 1-hop flooding to encountered

nodes and offloaded when Infostations are in reach.

In the field of urban monitoring, opportunistic networking principles are applied in

Dartmouth’s MetroSense [89, 42]. [42] describes a three-tier architecture for MetroSense:

26

servers in the wired Internet are in charge of storing/processing sensed data; Internet-

connected stationary Sensor Access Points (SAPs) act as gateways between servers and

mobile sensors (MS); MS move in the field opportunistically delegating tasks to each

other, and support gathering by “muling” [115, 82] data to the SAP. We remark that, differ-

ently from previous solutions, MetroSense requires an infrastructure support, consisting of

Internet-connected servers and remotely deployed SAPs.

Let us observe that, broadly speaking, opportunistic networking principles do not re-

strain to single-hop epidemic relay. It is possible to classify as opportunistic also those

approaches that “serendipitously” take advantage of resources as they become available

[109, 39, 19]. These can be classified as opportunistic approaches because of the exploita-

tion of already present sensing devices, such as cameras in mobile phones, symbiotically

attached to mobile entities. Application-level protocols for the resolution of queries about

sensed data have been proposed in [109, 39]. [109] describes three middleware solutions:

Contory abstracts the network as a database, and resolves declarative queries; Spatial Pro-

gramming hides remote resources, such as nodes, under local variables, thus enabling trans-

parent access; finally, Migratory Services are components that react to changing context,

e.g., the target moving out of range, by migrating to other nodes. [39] presents VITP,

a query-response protocol to obtain traffic-related information from remote areas. The

source injects a query in the environment, specifying an area where the query should be

moved for resolution. Nodes belonging to the target area form a sequential Virtual Ad

Hoc Server: they check if they can reply to the query and relay to neighbors. Query rout-

ing is out of the scope of both [109] and [39]. Among recent research projects, let us

also mention Intel IrisNet [51] and Microsoft SenseWeb [95] which, even if partially re-

lated to MobEyes, still address opportunistic sensing issues. Both projects investigate the

27

integration of heterogeneous sensing platforms in the Internet via a common publishing ar-

chitecture. Finally, we point out CENS’ Urban Sensing project [132, 19]: this is a recently

started multi-disciplinary project addressing “participatory” sensing, where applications

receive data from mobile sensors operated by people.

28

Chapter 2

The REDMAN middleware for resource

replication in dense MANET

In MANET scenarios, where users are allowed to freely move, resource availability and

accessibility is hardly challenged. In fact, if users carrying important information and ser-

vices leave the network, their resources become immediately unavailable for all MANET

participants. REDMAN aims at providing the dissemination of resource replicas among

nodes, so that any client could access at least one replica in its vicinity at any moment and

anywhere in the network site. Resource availability should be maintained notwithstanding

unpredictable movements of wireless devices (with hosted resource replicas) inside/outside

the area, possible network disconnections, and device power shortage.

We claim that replica management is very hard to perform in an effective and lightweight

way over wide-scale environments when dealing with general-purpose Mobile Ad hoc

NETworks (MANETs) [33]. Therefore, we focus on a specific deployment scenario of

increasing relevance for the entertainment service market, called dense MANET and de-

fined as a MANET that:

• includes a large number of wireless devices located in a relatively small area at the

same time, e.g., as it will probably happen in the near future in shopping malls,

29

30

airports, and university campuses;

• has a node density, i.e., the average number of wireless nodes at single-hop distance

from any dense MANET participant, almost invariant during long time intervals.

The assumption of relatively high and constant node density (nodes can unpredictablymove

in/out the dense region, even with high frequency, but the number of nodes in the dense

MANET does not relevantly change) permits to exclude network partitioning and subnet-

work merging at provision time. This assumption is not too restrictive: it is valid in most

entertainment service provisioning environments of commercial interest.

In addition, we are interested in disseminating replicas of read-only resources (still/moving

images, audio streams, HTML web pages recently downloaded from the Internet) or, any-

way, with no consistency requirements in the case of replica modification. This kind of

replica dissemination is suitable not only to inject data but also to distribute the code of sup-

port/application components, e.g., driver updates, format-specific players/renderers, and

game clients.

We claim the need for distributed middleware solutions to disseminate resource replicas

among wireless cooperating nodes with no impact on the implementation of the application

logic of dense MANET services. Replica management in dense MANETs would signifi-

cantly increase the complexity and the costs of designing, developing, and deploying appli-

cations that directly deal with replica distribution and maintenance, thus slowing down their

wide-spread usage. Middleware solutions can significantly facilitate the work of entertain-

ment service developers who should only describe the involved resources and inject a single

copy of them, while the middleware is transparently in charge of replica management. In

addition, middlewares should operate at the application level because several replica man-

agement decisions, such as the proper replication degree depending on resource criticality,

31

are typically at this abstraction layer. Working at the application level also simplifies porta-

bility over heterogeneous communication technologies and routing protocols [50].

Novel middlewares for replica management in dense MANETs should primarily answer

three crucial requirements:

• producing a very limited network/computing overhead,

• well scaling in large deployment environments, and

• being accurate enough even if adopting lazy-consistent heuristics.

The addressed deployment scenarios may involve several hundreds of collaborating

wireless nodes. To achieve scalability, it is essential that middlewares adopt novel and

completely decentralized solutions for replica dissemination, maintenance and retrieval,

where participants perform replica management operations as much as possible in an au-

tonomous way. In other words, middleware solutions should act locally whenever possible,

by involving only a limited number of participants in their proximity.

The goals of limited overhead and wide scalability suggest the adoption of heuristic-

based non-optimal solutions for replica placement, retrieval, and degree maintenance in

presence of mobility. However, novel middlewares should be accurate enough to make

all entertainment resources available and efficiently retrievable in terms of both search time

and traffic. A suitable trade-off between accuracy and overhead is crucial in dense MANET

deployment scenarios.

The clients involved in collaborative replica dissemination are usually battery/memory-

constrained devices, which typically cannot host positioning hardware and cannot perma-

nently store all needed data/service components in their local memory. Middleware solu-

tions should be lightweight under several perspectives: they should impose very limited

32

network traffic and local processing, so to preserve network bandwidth and node battery;

in addition, they should be modular to allow the dynamic installation of only the middle-

ware/service components actually required at each node.

2.1 Practical case studies

Let us start by presenting actual deployment scenarios for entertainment services to prac-

tically show the motivations of our proposal. Large sport events, such as Formula One

Grand Prix or Winter Olympic Games, will have several thousands attendees and official

delegates distributed in a limited area, many of them carrying wireless portable devices,

from Wi-Fi personal digital assistants to Bluetooth-enabled phones. The organizers could

be interested in providing that large number of people with entertainment services while

they are waiting or during the event, to enable them to access previous results, pictures, and

short multimedia streams, e.g., about significant episodes just occurred in a remote part of

the circuit or in other Olympic areas. Another interesting scenario is represented by travel-

ers with Personal Digital Assistants (PDAs) who are interested in playing a strategy game

while spending their time in a waiting room of a railway station. Waiting rooms are usually

crowded places, where travelers come and go, and the number of people co-located there

is almost constant notwithstanding continuous arrivals and departures. Several travelers

could be keen on spending their waiting time by playing videogames.

All these scenarios are suitable to represent dense MANETs, while each of them em-

phasizes distinctive issues:

• stadium/stand-like environments, with a huge number of possibly mobile users co-

located in a relatively small area, where it is possible to deploy Wi-Fi/Bluetooth-

enabled Internet access points;

33

• alpine ski run-like environments, where several mobile users are distributed in a quite

large spatial region, typically with no possibility to cover the whole area with wireless

access points;

• station/airport waiting room-like environments, where travelers independently come

and go, interacting within short time frames.

In the first case, entertainment service provisioning represents a technical challenge mainly

because of scalability issues. It is not viable to exploit multimedia streaming/adaptation

servers running in fixed Internet hosts and wireless access points to provide spectators with

Internet connectivity. Only to mention a basic scalability issue, some research activities

have shown that, to achieve usable performance for multimedia distribution, the number

of concurrent clients for a single access point should be largely less than one hundred for

IEEE 802.11b and less than 6 for Bluetooth [21]. In Formula One stands (with tenth thou-

sands seats), this would require installing several hundreds/thousands of Wi-Fi/Bluetooth

access points, no longer useful after the race. In the second case, in addition to scalability

concerns, the large and mountain-type area makes definitely unpractical the installation of

even a few access points, which require power lines and wired Internet connections. The

waiting room case likely reduces scalability constraints but further exacerbates network

dynamicity issues (however affecting also the previous scenarios).

Our proposal is to provide the lightweight REDMAN middleware to support enter-

tainment services in the above challenging environments, with no need of any statically

deployed network infrastructure. In all depicted scenarios, attendees could be interested

in requesting different types of “official” information provided by the organizing commit-

tee (competition results, moving/still images related to preferred athletes, ...) and also in

sharing “unofficial” data or software components directly collected on the field by other

34

onlookers (digital pictures, but also videogame playing sceneries). On the one hand, the

organizers could either distribute devices with REDMAN already installed or upload it on

the portable terminals of attendees who are willing to cooperate in resource sharing dur-

ing the event. Then, they could distribute still/moving images of just-ended events at any

time by injecting one copy and by specifying the desired replication degree; spectators’

devices could efficiently retrieve and access resources among their peers. On the other

hand, travelers PDAs cannot have all the desired game components statically pre-installed,

also because of their usual memory limitations. Nonetheless travelers could be interested in

playing new videogame sceneries dynamically discovered in the community of cooperative

travelers and downloaded to their devices, if allowed; moreover, some videogames have a

distributed implementation and require the continuous availability of one or more servers.

REDMAN can help discovering and obtaining remote components, but also maintaining

needed running servers in the dense MANET, independently of unpredictable movements

of the subset of nodes that host server components.

2.1.1 REDMAN at work: game playing at the railway station

To practically introduce the REDMANmiddleware functions, let us consider travelers with

REDMAN-enabled Personal Digital Assistants (PDAs) interested in playing a strategy

game in a waiting room. In this scenario, REDMAN enables the lightweight and trans-

parent distribution of replicas of game components (with the desired resource-associated

replication degree) to a subset of devices in the waiting room. In addition, REDMAN

supports the dynamic retrieval of needed resources, thus providing travelers with a set of

locally available games that dynamically grows depending on the new resources that vis-

iting travelers bring into the waiting room and decide to share with other dense MANET

35

cooperating nodes. For instance, consider the well-known single-player Civilization strat-

egy game [116] and let us illustrate how REDMAN can distribute replicas of Civilization

game components, to support game availability in the dense MANET with no need of

explicit and static installations, even if mobile nodes continuously enter/exit the waiting

room. Consider the example of deployment scenario depicted in Figure 2.1. Suppose that

a device enters the dense MANET by carrying new game components (the Civilization

server engine, the Civilization lightweight client, and some playing sceneries). If the game

is considered of interest, REDMAN transparently works to guarantee, via replication, the

availability of the different Civilization components in the dense MANET, independently

of the unpredictable mobility of nodes hosting the component replicas.

Before discussing a practical sample situation, let us observe that REDMAN classifies

node responsibilities according to two main roles:

• resource delegates are dense MANET nodes that host resource replicas, reply to

retrieval requests for hosted replicas, and participate in resource dissemination;

• replica managers are dynamically elected dense MANET nodes in charge of deter-

mining and maintaining the proper replication degree for the associated resources.

When the delegate D with the Civilization server engine enters the waiting room, the

REDMAN middleware component running on D’s device sends the descriptions of D’s re-

sources to the REDMAN replica manager M, running in another node of the dense MANET

(message 1). The replica manager is in charge of enforcing the needed replication de-

gree and of maintaining information about shared resources replicated in the dense region

(Shared Resource Table - SRT). For any shared resource, the corresponding SRT entry in-

cludes the associated target replication degree and weakly consistent information about the

nodes where the resource is currently replicated. If M decides that D’s resources should

36

Figure 2.1: REDMAN-based replication of the Civilization server

be replicated, it commands D to start the replication operations (message 2). D reacts by

forwarding a resource replica to a randomly chosen neighbor (message 3 to B), according

to a possible replica distribution protocol detailed in the following 2.4, by including the still

requested number of resource replicas in the message. If the neighbor accepts to locally

store the resource, it makes a local copy and recursively forwards the message, by decreas-

ing the number of replicas yet to be instantiated. Otherwise, it only forwards the message.

In the figure, node F refuses to host a server engine replica, while nodes B, L, and A accept

to cooperate and notify their decisions to M (message 4). Let us rapidly observe that, for

sake of clarity, in this example we have chosen to spare details of the distribution strategy

REDMAN provides2.4.

Beyond resource replication and discovery/retrieval issues, the sketched case study al-

ready points out two additional technical challenges for replication in dense MANETs:

how to dynamically identify the nodes belonging to the dense region, given that the nodes

continuously move, and how to suitably choose the replica manager node, e.g., by taking

37

into account its position in the dense MANET topology. These two issues are at the basis

of all other REDMAN middleware features, which directly relate to the actual distribution

and retrieval of resource replicas. The addressed deployment scenarios require consider-

ing highly decentralized and lightweight solutions for dense MANET configuration and

resource replication, capable of scaling well in execution environments with several hun-

dreds of mobile wireless peers. Therefore, it is necessary to design and implement original

mechanisms specialized for the peculiar characteristics of dense MANETs.

In addition, to maintain the replication degree unchanged after first replica distribution,

the REDMAN replica manager should react to possible exits of Civilization delegates from

the dense MANET: it should be notified of such kind of events, should understand the

replicas of which resources are leaving, should identify other delegates for those leaving

resources still available in the dense region (via the corresponding SRT entries), and should

command new replicas. Note that there is not the need to guarantee that, for any replicated

resource, at any moment, the desired replication degree is exactly enforced; it is sufficient

to try to maintain the replication degree in a lazy consistent way, by avoiding that all the

replicas of a resource leave the dense region before performing a further distribution of

resource copies.

When a new user enters the waiting hall, she can decide to play Civilization even if

she has not yet installed the needed game components on her PDA. REDMAN supports

her distributed discovery to understand which games are currently available in the dense

MANET and which nodes host the desired resource replicas. Then, REDMAN is in charge

of downloading both the Civilization client and the playing scenery to her device. Once

downloaded them locally and once identified via REDMAN a suitable node with a Civi-

lization server engine replica, the client can interact with the remote engine by adopting

38

usual MANET communication protocols, by bypassing the REDMAN middleware inter-

mediation. The assumption of dense MANET guarantees that network partitioning will not

occur during service provisioning. In the case that the used engine delegate leaves the wait-

ing hall, the client can ask the REDMAN middleware for retrieving another engine replica

in the dense MANET; then, the client can restart her gaming session by connecting to the

newly retrieved replica.

Let us remark that the above scenario only represents a possible REDMAN use case.

Any other service where resources to replicate are read-only data (the list of train depar-

tures/arrivals, of movies on in town, of utility phone numbers, and of pictures taken at a

rock concert that fans would like to share with other people among the public) is a simpli-

fication of the sketched case study, with no need of dynamic composition and distributed

coordination of service components.

2.2 The REDMAN middleware

According to the above guidelines, we have designed and implemented the REDMAN

application-level middleware [10, 8]. REDMAN disseminates replicas of common inter-

est resources and maintains their desired replication degree, independently of unexpected

node exits from the dense MANET. More formally, a dense MANET is defined as the set

of MANET nodes DM(n) = {d0, . . . , dN−1}, where i) ∀j ∈ [0, N − 1] dj has at least n

neighbors at single-hop distance, and ii) the spatial node density in the area whereDM(n)

nodes are is almost constant with regards to time. Given a resource with a desired replica-

tion degree k, REDMAN is in charge of instantiating and distributing k replicas of it, and

of maintaining the k replication degree notwithstanding the changes in the composition of

the DM(n) set.

39

In particular, to suit resource-limited nodes, REDMANproposes denseMANET-specific

lightweight protocols that achieve approximated non-optimal solutions, e.g., they do not

guarantee the strict any-time consistency of replication degree. In addition, to reduce the

overhead and the complexity of distributed replica management, REDMAN manages the

replication of read-only resources, thus permitting to exclude heavy and expensive oper-

ations for possible reconciliation of concurrently updated resource replicas. Dealing with

read-only resources is sufficient for guaranteeing the availability of a large class of services

of primary interest in MANETs, as already pointed out in the previous sections. General-

purpose protocols for replica reconciliation in traditional wired systems are not suitable,

even in adapted forms, for dense MANETs, due to their relevant overhead and connectivity

requirements [34].

We claim the suitability of providing REDMAN facilities at the application level to

improve flexibility, configurability, and portability over different MANET communication

solutions, and to hide low-layer implementation details from application developers. En-

tertainment service developers can simply benefit from REDMAN replica management

facilities via very little modifications on their application code: they only need to include

Resource Description Framework-based [37] descriptors for resources to share, to specify

the suggested replication degree, and to invoke methods of the REDMANAPI to command

service-transparent resource replication and retrieval.

Figure 2.2 depicts the REDMAN middleware architecture organized in two layers of

facilities: Dense MANET Configuration (DMC) includes mechanisms for participant iden-

tification and manager election; on top of DMC, REDMAN provides facilities for Replica

Distribution (RD), Replica Retrieval (RR), and Replica Degree Maintenance (RDM).

The DMC facility is in charge of determining the participants of the dense MANET

40

DM(n), i.e., the subset of nodes that have more than n nodes at single-hop distance. In

addition, DMC optimistically identifies when nodes enter/exit the dense MANET and trig-

gers the dynamic election of replica managers by trying to minimize the number of hops

required for their messages to reach any dense MANET participant.

TheRD facility operates to transparently distribute resource replicas in the denseMANET.

When a delegate enters a dense region, it communicates the metadata of its shared resources

to the replica manager, which decides the replication degree to enforce, creates new SRT

entries for newly arrived resources, and commands the delegate to start the replication op-

erations. REDMAN distributes resource replicas to distant nodes located at the endpoints

of straight paths (as described in Section 2.4).

The RR facility has the goal of effectively retrieving resource replicas, by exploiting

lightweight distributed search protocols. RR provides simple retrieval solutions, whose

effectiveness mainly depends on the chosen diffusion strategy. The REDMAN guideline is

to exploit the process of replica distribution itself to disseminate also placement data in a

lightweight way. In the RR phase, when a dense MANET node receives a search message,

it directly replies to the searcher if it owns either a copy of the needed resource, or the

associated placement information. Otherwise, it forwards the request according to the SID

strategy described in Section 2.5.3.

The RDM facility works to maintain unchanged the replication degree enforced for

each shared resource, without strictly guaranteeing consistency: it is possible to have time

intervals when the requested replication degree differs from the actual number of replicas in

the dense MANET. RDMmainly works by reacting to resource delegates leaving the dense

region. To face also delegate abrupt and non-detected failures/exits, at large time intervals

RDM checks the number of available replicas and possibly commands the manager to

41

Figure 2.2: REDMAN modular architecture.

coordinate the distribution of additional copies.

In the following, Sections 2.3, 2.4, 2.5, 2.6 delve into the detailed technical description

of the design and implementation choices followed by REDMAN original solutions for,

respectively, the DMC facility layer and the RD, RR and RDM ones.

2.3 Dense MANET Configuration in REDMAN

The REDMAN low-layer DMC [11, 9] facilities are in charge of determining which nodes

belong to the dense MANET and which ones among them have to play the role of replica

managers. These low-layer mechanisms are crucial for the realization of all other RED-

MAN facilities and require original solutions that fit the specific characteristics of the dense

MANET deployment scenario.

42

2.3.1 Dense MANET Identification

REDMAN proposes an original solution to dynamically determine the nodes that are cur-

rently willing to participate to a dense MANET. The primary idea is not to maintain a

centralized, global, and always up-to-date vision of all the nodes and of their network

topology, but to design a simple, lightweight, and decentralized protocol where any node

autonomously determines whether it belongs to the dense MANET or not. One node is in

the dense MANETDM(n) only if the number of its neighbors, i.e., the nodes at single-hop

distance, is greater than n. Each node autonomously discovers the number of its neighbors

by exploiting simple single-hop broadcast discovery messages.

By delving into finer details, at any time one REDMAN node can start the process of

dense MANET identification/update; in the following, we will call that node the initiator.

The initiator starts the original REDMAN protocol for dense MANET identification by

broadcasting a discovery message that includes the number of neighbors (NoN) required to

belong to the dense region and the identity of the sender. That number can be autonomously

decided depending on the desired degree of connectivity redundancy: typically, a value

between 10 and 20 ensures a sufficiently large set of alternative connectivity links. When

receiving the discovery message, each node willing to participate replies by forwarding the

message to its single-hop neighbors, if it has not already sent that message, and by updating

a local list with IP addresses of detected neighbors. The current DMC implementation

assumes that each participant node adopts a zero configuration solution, such as [104, 97];

guaranteeing IP address uniqueness is out of the scope of our research. After a specified

time interval, any node autonomously checks whether its list contains more than n nodes,

and autonomously decides whether it belongs or not to the dense MANET.

Let us observe that discovery broadcasts could provoke packet collisions; the problem

43

is well-known in the literature and usually identified as the ”broadcast storm” issue [98].

In order to avoid the problem, any REDMAN node defers node broadcasts of a random

and limited time interval. Techniques for collision and overhead reduction such as the ones

presented in [98, 63] do not fit dense MANET identification, since local density evaluation

is based on the assumption that each node receives messages from all its neighbors. The

dense MANET identification protocol has demonstrated to scale well also in large deploy-

ment scenarios, with a completion time linearly dependent on the dense MANET diameter,

i.e., on the maximum hop distance among any couple of nodes belonging to the dense re-

gion, and an overall number of exchanged messages equal to the number of dense MANET

participants, as illustrated in Section 4.

Given that dense MANET nodes can move during and after the identification pro-

cess, the proposed algorithm achieves an approximated solution and requires including a

lightweight lazily-consistent maintenance phase. Nodes periodically exchange Hello pack-

ets with their neighbors; each node receiving a Hello message records its source in a table

entry, with an associated timeout; next Hello packets received from the same source restart

a new timeout. Dense MANET nodes periodically check whether their table entries are still

valid; if an entry has expired, the node removes it from the table, and verifies whether the

condition for dense MANET belonging still holds.

Let us rapidly observe that dense MANETs are virtual and dynamic group organizations

of MANET nodes. Therefore, there is also the possibility to have more than one coexisting

dense MANET, each one with a different NoN, involving the same MANET peers, e.g.,

in the case that several initiators trigger the dense MANET identification process with

different NoN values. However, since the addressed deployment scenarios generally exhibit

high density gradients close to boundaries, several different NoN values usually determine

44

the same DM(NoN) sets. Given the limited applicability and the additional overhead of

maintaining more than one dense MANET over the same set of physical nodes, the current

REDMAN implementation does not support multiple overlapping dense MANETs with

different NoN: the NoN value for a dense area cannot be changed for a long time interval

after the first identification procedure.

2.3.2 Replica Manager Election

REDMAN proposes an original, lightweight, and decentralized protocol to elect the replica

manager. To reduce the communication overhead (both in terms of dissipated energy and

elapsed time) for the manager to get in touch with all dense MANET participants, the

REDMAN middleware works to assign the manager role to a node located in a topologi-

cally central position. More precisely, REDMAN aims at electing one node that minimizes

the number of hops required to reach its farthest nodes belonging to the dense MANET.

The proposed protocol for replica manager election has not the goal of finding the optimal

solution: the idea is to exploit some heuristics to relevantly limit the election overhead

while achieving a good quality manager designation.

The proposed solution explores, as manager candidates, only a subset of nodes in the

dense MANET, called Investigated Nodes (INs). To avoid the overhead of exhaustive

search, REDMAN adopts an exploration strategy that limits the IN number, by only choos-

ing successive INs to get closer to the dense MANET topology center at each exploration

step, thus decreasing the distance of each successive IN from farthest participants. There-

fore, a primary issue is how INs can autonomously determine the direction towards the

dense MANET topology center by exclusively exploiting information about MANET far-

thest nodes. To this purpose, the adopted guideline is to explore the nodes located along

45

the direction that goes from the considered IN to its farthest node. In fact, by moving to-

ward that direction, each protocol step considers an IN that is placed one-hop closer to the

previously identified farthest nodes; therefore, the IN distance from farthest nodes tends to

decrease and to converge close to the best solution.

Figure 2.3 shows a practical example of application of that guideline. The first step

of the protocol considers node I: its farthest node is H, located at 4-hop distance; so, I is

tagged with the value of that distance (I4 in the figure). Then, the REDMAN manager

election protocol considers A because it is the first node along the path from I to H: A’s

farthest node is H, at 3-hop distance (A3). At the next iteration, the protocol explores node

D, which is chosen as replica manager by respecting the termination criteria described in the

following of the section. Node D can reach any other node in the depicted dense MANET

with a maximum path of two hops. Let us observe that REDMAN provides a simple way

to react also to manager exits from the dense MANET. If the manager realizes it is going to

exit, e.g., because its battery power is lower than a specified threshold, it delegates its role

to the first neighbor node found with suitable battery charge and local memory. In the case

the manager abruptly fails, any resource delegate that senses the manager unavailability

can trigger a new election procedure.

After having informally introduced the main guidelines of the protocol, let us now pre-

cisely specify how the manager election works. The protocol considers the initiator as the

first IN. Then, it re-iterates the farthest node determination process (see 2.3.2) to evaluate

other promising nodes until it reaches a solution which is considered satisfying according

to the adopted heuristics. Each IN executes three operations: i) it determines the number

of hops of the shortest paths connecting it to any farthest node in the dense MANET (the

maximum of those hop numbers is called INvalue); ii) it identifies its neighbors located in

46

Figure 2.3: REDMAN exploring the sequence of INs I −→ A −→ D.

the direction of its farthest nodes (forwarding neighbors); and iii) it autonomously chooses

the next IN among all the unexplored forwarding neighbors of already explored INs with

lowest associated values.

To take possible device heterogeneity into account, REDMAN promotes the explo-

ration only of INs suitable to play the role of replica manager once elected. For in-

stance, if a potential IN device has insufficient memory and too low battery life (if com-

pared with configurable REDMAN thresholds), it is excluded from the manager elec-

tion protocol. The protocol ends when either the REDMAN heuristic criterion of Sec-

tion 2.3.2 determines there are no more promising nodes, or the current INvalue =

MinInt((worstexploredINvalue)/2), whereMinInt(x) returns the least integer greater

than x. Since REDMAN considers bi-directional links among MANET nodes, when the

above equation is verified, it is easy to demonstrate that REDMAN has reached the optimal

47

solution for the manager election.

The frequency of node entering/exiting dense regions, as well as their speed, are gener-

ally low in the addressed dense MANET deployment scenarios if compared with the time

interval to complete the election protocol operations. This consideration has led us, at first,

to adopt the simplifying assumption of fixed nodes, by approximating the actual deploy-

ment environment with a stationary ad hoc wireless network. However, also the REDMAN

simple protocol for manager election can tolerate node mobility to some extent. First, let

us observe that the value of each explored IN is determined exclusively by anyone of its

farthest nodes. Thus, within each exploration round, it is necessary that only the current

IN and one of its farthest nodes do not change their distance in the network topology.

Moreover, since our middleware does not assume that participant nodes support MANET-

specific routing protocols to cooperate in REDMAN identification and manager election,

it is necessary that all nodes placed along the path from the current IN to farthest nodes

remain within mutual communication range at least for the duration of a single protocol

round. The number of nodes involved in that condition is very low with regards to the over-

all number of dense MANET participants. All these assumptions are largely acceptable

because, even in very large dense MANET deployment scenarios with several hundreds of

nodes, each round of the election protocol lasts for less than a few seconds.

After the end of the election process, REDMAN works to ensure that node mobility

does not degrade too much the central position of the elected manager. With the goal of

limiting the protocol overhead, REDMAN proposes a lazy strategy that allows short time

intervals when the manager could have slightly moved from the dense MANET topologic

center. In particular, REDMAN combines two different strategies against manager assign-

ment degradation, one proactive and one reactive, which operate, respectively, over large

48

and medium time periods (Tp and Tr with Tp % Tr). The proactive maintenance strat-

egy establishes that the current manager always triggers a new manager election after Tp

seconds. In addition to probabilistically improving the centrality of the manager position,

the periodical re-execution of the election process contributes to distribute the burden of

the role among different nodes, thus avoiding to deplete the energy resources of a single

participant. Moreover, let us rapidly observe that only the nodes located in the proximity

of the dense MANET topology center have high probability to assume the manager role.

Therefore, a target INvalue can be easily determined equal to the INvalue of the cur-

rent manager, thus speeding up manager election and reducing the protocol overhead. In

addition to the above proactive degradation counteraction, REDMAN exploits a reactive

strategy that consists in repeating the farthest node determination at regular Tr periods,

with the goal of understanding the current manager distance from the optimal placement.

If the distance of manager farthest nodes, i.e., its newINvalue, has increased if compared

with the distance estimated at the moment of its election, i.e., its INvalue, REDMAN re-

alizes that the manager has moved from the topologic center in a significant way; in that

case, the manager itself triggers a new election process. The following subsections detail

the adopted heuristics to limit the number of explored INs and the exploited solution to

determine, given a node, its farthest nodes in the dense MANET.

Heuristic-based Overhead Reduction

To reduce the overhead due to a large number of re-iterations of the manager election pro-

tocol, REDMAN exploits a heuristic-based approach that has experimentally demonstrated

to reach high quality solutions, close to the optimal choice of the manager (see Section 4).

To improve the flexibility and adaptability of the REDMAN election strategy to the peculiar

characteristics of the dense MANET where it is deployed, REDMAN provides two tuning

49

parameters that enable dense MANET administrators to trade between the quality of the

manager election protocol and its performance. The first parameter, DesiredAccuracy, per-

mits the initiator to tune the approximation considered acceptable for the election solution

(see Figure 2.4). The second parameter, MaxConsecutiveEqualSolutions, is introduced by

observing that, when the REDMAN election protocol approaches the optimal solution, it

often explores other candidate nodes without improving the current best INvalue. For each

explored solution equal to the current best, REDMAN increases a counter; the counter re-

sets when REDMAN finds a new solution outperforming the old best. The adopted heuristic

stops the iterations when the counter reaches MaxConsecutiveEqualSolutions. Figure 2.4

shows the pseudo-code of the REDMAN election protocol.

Determination of Farthest Nodes

Let us formally define farthest nodes, with respect to a node dk in the dense MANET, the

set FN(dk) = df0, . . . , dfF , where:

• ∀i ∈ [0, F] , dfi ∈ DM(n), and

• ∀dj ∈ DM(n), sp(dk, dfi) ≥ sp(dk, dj)

where sp(dx, dy) is the length of the shortest path that connects the nodes dx and dy. RED-

MAN proposes a simple broadcast-based strategy to detect the length of shortest paths

connecting the current IN to the farthest participants in the dense MANET. The current

IN starts the protocol by broadcasting a farthest node determination message including a

counter initialized to 0. Every node receiving that message and belonging to the dense

MANET increases the counter and forwards the message, without resending an already

sent message, similarly to the case of the dense MANET identification protocol. Figure

2.5 shows the message propagation from node I (the current IN) to all other nodes in the

50

exploredList = 0; forwarderList = 0;

bestNode = 0; bestValue = MAX; worstValue = 0;
unexploredList = Initiator;
while (unexploredList != 0) {

IN = Head(unexploredList);
INValue = DistanceFromFarthest(IN);
exploredList = exploredList U IN;
unexploredList = unexploredList - IN;
forwarderList = GetPromisingNeighbors(IN);
forwarderList = forwarderList - exploredList;
if ((INValue == MinInt(worstValue/2) || (INValue <=

worstValue * desired accuracy)) exit;
if (INValue < bestValue) {
bestNode = IN; bestValue = INValue;
consecutiveEqualSolutions = 0;
unexploredList = forwarderList; }
if (INValue > worstValue) { worstValue = INValue;

if (bestValue == MinInt(worstValue/2) || bestValue
<=worstValue * desired accuracy)) exit; }

if (INValue == bestValue) {
conecutiveEqualSolutions++;
if (consecutiveEqualSolutions == max consecutive

equal solutions) exit;
unexploredList = unexploredList U forwarderList; }
} Print(bestNode)

Figure 2.4: Pseudo-code of the REDMAN manager election protocol

dense MANET. Each node is marked with the value of its counter, i.e., its distance from

I in number of hops. For the sake of simplicity, the figure does not show all broadcast

messages exchanged, but only those from closer nodes to farther ones with regards to I.

Let us observe that the farthest node identification protocol works as if all dense MANET

nodes were fixed during the determination of FN(dk) and, consequently, usually reaches

an approximated non-optimal solution. However, given the limited time interval needed to

complete the FN(dk) set determination, that stationary assumption has demonstrated to be

51

Figure 2.5: The current IN (I) broadcasts exploratory messages for manager election.

acceptable and to permit the set identification with adequate accuracy for the lightweight

and lazily-consistent REDMAN form of replication.

Given that the protocol is flooding-based, it could incur in the broadcast storm issue, as

explained in Section 2.3.1. However, state-of-the-art approaches to avoid broadcast storm,

such as gossip-based strategies, are not applicable to the REDMAN farthest node identifi-

cation protocol because in REDMAN there is the need to determine shortest paths of max-

imum length between investigated farthest nodes and the current IN [98]. Consequently, it

is mandatory to adopt solutions that permit the identification of shortest paths: it is easy to

demonstrate that traditional flooding complies with this property, while gossip-based flood-

ing does not. At the moment, similarly to what described for dense MANET identification,

REDMAN simply adopts a trivial technique based on delaying message broadcasts of a

52

random time interval. We are currently working to experimentally evaluate the effective-

ness of storm-prevention flooding techniques similar to [63] when applied to REDMAN

farthest node identification and to possibly integrate them in the next release of our mid-

dleware prototype.

By delving into finer technical details about the REDMAN protocol solution, to limit

bandwidth consumption, each node replies to the IN by communicating its distance if and

only if it cannot detect any node farther than itself at single-hop distance. In fact, when a

node receives a farthest node determination request, it starts a timeout; at timeout expira-

tion, it replies if it has not received any other broadcast from a node farther than itself (with

a greater counter). Let us rapidly observe that the choice of that timeout is simple because it

represents the time for single-hop neighbors to re-broadcast a message and does not depend

on the number of participants and on the dense MANET diameter [97]. The nodes replying

back to the farthest node determination message include not only the actual farthest nodes

for the current IN, but also other nodes situated at the dense region boundaries. Figure 2.6

shows that not only H (the only farthest node) replies to I, but also E andM, which are at the

boundaries of the dense MANET. All other nodes do not reply because they are prevented

by single-hop neighbors placed at greater distance, e.g., nodes E, F, and D in the case of

farthest node determination for node A. Every time the IN receives a reply, it records the

message source identity, its distance, and the incoming direction, i.e., the neighbor that last

forwarded the message. Finally, the IN determines the identity of the farthest nodes, by ex-

cluding non-farthest ones. The IN assumes the distance of the determined farthest node(s)

as its INvalue.

53

Figure 2.6: Only nodes at dense MANET boundaries (E, F, H) reply to the current IN.

2.4 Replica Distribution (RD)

RD [7] is responsible for the lightweight dissemination of replicas on MANET nodes,

also with the goal to enable the effective lightweight resource retrieval at provision time

(see Section 2.5.3). When a delegate enters the dense MANET, it communicates the RDF

description of its resources to the manager that decides the replication degree (deg) of each

resource on the basis of the provided descriptor and of other external indicators such as the

estimated number of nodes in the dense region. Then, it delegates the resource owner for

the actual implementation of the replica distribution process. The main guideline of the

RD protocol is to disseminate resource replicas on nodes at r-hop distance along a constant

direction. When a delegate has to replicate one of its resources, it sends a replication packet

specifying the number of replicas still required and the desired r-hop distance between

replicas. The replication packet is propagated on nodes placed along an approximately

54

straight line with a fixed direction.

Let us observe that REDMAN does not require dense MANET participants to be GPS-

equipped and exploits lightweight heuristic-based estimations, specific for denseMANETs,

to determine constant directions. Roughly speaking, the solution guideline is that a node

determines its successor by choosing, among its neighbors (the nodes at single-hop dis-

tance from it), the one sharing fewer neighbors with its predecessor. To this purpose, RD

locally broadcasts the neighbor list of its predecessor to all neighbors; only the neighbors

sharing with the predecessor a number of neighbors lower than a threshold reply. This

determines a roughly constant direction if the node density is almost uniform in the dense

MANET. When a replication packet reaches a node at r-hop distance from a replica, that

node becomes a delegate; the new delegate reiterates the process by decreasing the number

of requested replicas.

2.5 Replica Retrieval (RR)

RR [7] aims at enabling clients to effectively find their requested resources at provision time

on the basis of resource RDF descriptions, i.e., to dynamically determine the IP address of

one node hosting a requested matching resource and the unique name of the resource on

that node. Resource retrieval is a hard task in MANETs, where a static infrastructure is

not continuously available, thus preventing the usage of a fixed centralized lookup service

known by all participants [37]. The usage of a single centralized repository with replica

placement information is not viable: i) a large number of requests could overwhelm the

single point of centralization; ii) the repository would represent a single point of failure;

iii) the repository should be updated with strict consistency requirements not to hinder

resource accessibility.

55

In several cases, it makes sense to improve the RR performance by paying the overhead

of disseminating Information about Replica Placement (IRP) to a suitably chosen subset of

nodes belonging to the dense MANET. In the following, the section first analyzes main ad-

vantages and drawbacks of some common retrieval solutions; then, it presents and evaluates

the original REDMAN RR strategy, called SID, designed and implemented to effectively

fit the dual REDMAN replica distribution solution.

2.5.1 An Overview of Possible RR Strategies

We propose to consider three main factors to determine the effectiveness of RR strategies:

• the overhead imposed in terms of both memory required to maintain IRPs and mes-

sages ex-changed to retrieve the requested resources;

• the scalability when applied to large deployment environments;

• the accuracy, i.e., the found/searched resource ratio in the finite time interval spent

for retrieval.

Different RR strategies can decide different trade-offs among these factors. In particular,

the memory and network overhead imposed by IRP dissemination is often traded against

the overhead required at provision time for resource discovery (the growth of IRP diffusion

costs usually corresponds to a decrease of runtime retrieval costs). Therefore, the choice of

the optimal RR strategy depends on the characteristics of supported applications and of de-

ployment scenarios, e.g., on the expected ratio between searches and replica instantiations,

the frequency with which replicas leave/enter the dense MANET, the time requirements for

resource discovery, and the size of retrieval messages and IRPs.

The most intuitive and simple RR strategies are flooding-based. A first possible solu-

tion, which we will call IRP Flooding (IF) in the following, could establish that delegates

56

disseminate IRPs about all their hosted resources to all nodes in the dense MANET (flood-

ing of IRP messages). However, “the cost of making sure that everyone knows about every-

thing is prohibitive” in MANET environments, mainly for scalability reasons [128]. In fact,

to maintain an eager-consistent up-to-date view of IRPs, any delegate with a changing set

of hosted resources should overburden the network with continuous IRP update message

flooding; moreover, also the memory required to locally maintain IRPs of all replicas in the

dense region could be unsustainable. A second possible flooding-based solution (Query

Flooding - QF) could specify that delegates do not have to diffuse any IRP; message flood-

ing is necessary in the search phase where all nodes are exhaustively explored to look for

requested resources (flooding of search messages). QF makes sense only if the number

of RR searches is very limited and it is not worth paying the overhead for diffusing IRPs.

Moreover, if the frequency of node entrances/exits in/out the dense MANET is very high,

IRPs tend to become stale very soon, and the advantages of IF is significantly reduced.

2.5.2 k-hop Distance IRP Dissemination

Our research activity has focused on investigating novel RR strategies to avoid message

flooding during the search phase by distributing IRPs only to a subset of nodes in the dense

MANET. An original solution investigated, called k-hop Distance IRP Dissemination (k-

DID), specifies to place IRPs only on nodes positioned at fixed k-hop distance the ones

from the others. In other words, i) the IRP related to a specified resource should be placed

at exactly k hops from at least another copy of the same IRP; ii) there should not be a path

shorter than k hops between two copies of the same IRP; and iii) IRPs should be distributed

over the whole network so that each node is at most at k hops from the IRP of any replicated

resource. When adopting k-DID, IRP retrieval (and consequently replica discovery) only

requires to explore the nodes situated, on average, at (k/2)-hop distance from the searcher

57

(this value is a rough estimate from simple geometric considerations). Let us observe that

k-DID improves the solution in [124], where placement information similar to REDMAN

IRPs is duplicated on all nodes located at fixed distance from resource-hosting nodes; in

[124] IRP nodes could also be at single-hop distance the one from the other.

We have carefully investigated how k-DID could be effectively implemented in a lightweight

way. Let us preliminary note that an IRP distribution strategy based on a single network

flooding is infeasible, since it cannot determine which nodes at k-hop distance from an

IRP-owning node are also at k-hop distance the one from the other. To practically present

our k-DID implementation, suppose a delegate is willing to diffuse IRPs of its resources at

k-hop distance. k-DID executes the following steps:

1. the delegate prevents its neighbors distant less than k hops to host an IRP copy by

flooding a denial message with TTL = k. Nodes receiving those messages with

TTL > 0 change their state to unavailable to reflect their unavailability for IRP

hosting;

2. the delegate sends an IRP copy and assigns its initial role of IRP distributor to one

of the nodes, identified at step 1, that are placed exactly at k-hop distance and whose

state is free;

3. steps 1 and 2 are reiterated until the IRP distributor cannot identify any free node

at k-hop distance; in that case, a backtracking step is done, returning control to the

previous IRP distributor;

4. if a free potential IRP is found, then IRP goes on from step 1; otherwise, a further

backtracking step (3) is done, until the initial resource delegate is reached, thus end-

ing the protocol.

58

Let us say that N is the number of nodes belonging to the network and F (k) the average

number of nodes belonging to a k-hop-diameter circle included in the dense MANET. k-

DID imposes a relevant overhead in terms of messages sent for distributing IRPs, mainly

depending on N and k. However, the number of nodes with IRPs is low (about one node

every F (k/2) ones) and the search message overhead is very low. In fact, each client

expects to find a replica of the requested resource by querying all nodes within its sur-

rounding k/2 hops. However, k-DID hardly scales in presence of node mobility since it

is difficult to preserve the validity of the three above constraints without imposing heavy

communication-intensive maintenance protocols for IRP distribution.

2.5.3 REDMAN Replica Retrieval

We have deeply investigated the performance of the k-DID RR strategy (see Section 4) and

found it does not well fit the addressed dense MANET deployment scenario, mainly due to

its excessive cost in both IRP diffusion and IRP updates in mobile environments. There-

fore, we have decided to design, thoroughly evaluate, and then integrate in REDMAN an

alternative original RR solution, called Straight IRP Dissemination (SID) and described in

the following. SID exploits an IRP dissemination strategy strictly integrated with the RED-

MAN RD one and has demonstrated to impose lower overhead than the other investigated

RR solutions in most common usage scenarios.

Let us briefly recall that REDMAN RD disseminates replicas on nodes at fixed distance

along an approximately constant direction. The SID IRP diffusion consists in propagating

IRPs, for any replicated resource and at the time of replica distribution, on all nodes lo-

cated along the almost constant direction used during resource replication, that is along

the approximately rectilinear path between disseminated resource replicas. In other words,

differently from k-DID, SID does not aim at spreading IRPs over the whole dense MANET

59

but only along a single direction. In addition, SID respects the first two k-DID constraints

in stationary conditions (non-mobile nodes), but not the third one. Consequently, SID per-

mits both to store IRPs on a limited number of nodes and, at the same time, to limit IRP

message overhead during IRP dissemination and resource retrieval. In fact, a REDMAN

client looking for a resource exploits search messages that also propagate along approxi-

mately constant directions: the probability to rapidly determine an intersection between the

direction of retrieval and that of IRP placement is high for most usual deployment scenar-

ios, thus enabling efficient replica searches [15]. In Figure 2.7, delegate A disseminates a

resource replica to node E; the result of replica distribution is also that B, C, and D store

IRPs with the information of resource availability at nodes A and E. When node G looks for

that resource, the search message propagates until it reaches node D that owns the needed

IRP.

In more details, during replica dissemination all nodes forwarding replication packets

maintain a reference to their sending delegate. During retrieval it is sufficient that searchers

reach one of the nodes along the replica placement line to discover where a delegate is,

with no need to contact the replica manager. Since search messages are locally broadcast

to all neighbors to determine suitable successors, anyone owning the IRP of the searched

resources can notify the client. In the case of search failure after a timeout, REDMAN

clients start exploring a different direction for retrieval exploration.

In many profitable scenarios, devices are carried by users almost fixed during most

time of service delivery, e.g., spectators seated or slowly moving on terraces during a sport

event. However, in general, the movements of REDMAN devices hosting replicas and/or

IRPs could affect resource availability. For this reason, we have extended SID with a

decentralized and completely local maintenance protocol (SID reconstruction) in charge

60

of loosely understanding that some IRP-hosting nodes have moved and of re-distributing

IRPs to suitable neighbors. When a node, notified by the DMC facility, loosely detects the

leaving of its predecessor/successor along the straight replication path, it locally broadcasts

a reconstruction message. All nodes receiving that message from both a predecessor and

a successor are eligible to replace the moved node. These nodes reply to the predecessor,

and it designates one of them. Only in the case the predecessor does not receive any reply

(there is no suitable node or more consecutive successors have simultaneously moved),

after a relatively large time interval, it re-starts a new IRP distribution. Let us point out

that SID reconstruction does not aim at maintaining the strict anytime consistency of IRPs

but only at lazily re-establishing IRP alignment. In addition, the implementation of SID

reconstruction is optimized to enable single-message cumulative adjustments for IRPs of

different resources.

2.6 Replica Degree Maintenance (RDM)

Proactive RDM solutions available in the literature, such as [30], do not fit the provisioning

environments addressed by REDMAN. In fact, proactive RDM approaches usually require

GPS-equipped wireless nodes that continuously monitor their mutual positions to foresee

network exits, thus producing non-negligible network/computing overhead. REDMAN

RDM [8], instead, implements a reactive solution with very low communication overhead

by relaxing the constraint of anytime perfect consistency in the number of available repli-

cas.

61

Figure 2.7: The distribution of replicas/IRPs and RR exploit approximately con-stant di-

rections in REDMAN.

After the initial replica distribution phase, the lightweight RDM facility works to main-

tain unchanged the replication degree decided for each shared resource, without guarantee-

ing strict consistency, i.e., it is possible to have time intervals when the requested replica-

tion degree differs from the actual number of replicas in the dense MANET. RDM aims at

maintaining unchanged the replication degree only by reacting to resource delegate move-

ments/failures.

When a delegate realizes it is going to exit the dense MANET, it autonomously offloads

its shared resources on neighbors that are still within the dense region; in their turn, these

new delegates communicate the occurred change to the replica manager. On the contrary, if

62

a delegate does not succeed in foreseeing its exit from the dense region and realizes to be al-

ready out of it, it tries to notify the replica manager by specifying its hosted resources. Once

the manager receives the notification, it commands other delegates for those resources in

the dense MANET to distribute new replicas. Finally, when a delegate either fails or leaves

the network by abruptly interrupting all its connections, to achieve scalability and to limit

overhead, REDMAN accepts a temporary inconsistency in the replication degree. Only

at large time intervals, delegates are required to confirm their presence to their associated

manager, by sending an updated list of their shared resources. In that way, the manager

can lazily re-establish the replica degree consistency by commanding still alive delegates

to distribute new replicas only when some delegate update messages are missing.

Chapter 3

The MobEyes middleware for

opportunistic dissemination in Vehicular

Sensor Networks

Recent advances in vehicular communications pave the way for novel urban monitoring

applications where vehicles continuously sense events, process data and route messages to-

ward harvesting agents. This challenging environment proposes specific issues: on-board

sensors likely generate sheer amount of data, and vehicles are highly mobile. MobEyes

is an effective middleware solution specifically designed for proactive data dissemination

and harvesting in Vehicular Sensor Networks (VSN). MobEyes exploits mobility to op-

portunistically diffuse sensed data summaries among neighbor vehicles and to create a

low-cost opportunistic index supporting queries on a distributed sensed data storage.

Vehicular sensor networks are emerging as a new network paradigm of primary rele-

vance, especially for proactively gathering monitoring information in urban environments

(proactive urban monitoring). Each vehicle, which typically has no strict constraints on

processing power and storage capabilities, can sense one or more events (e.g., imaging

from streets and detecting toxic chemicals), processing sensed data (e.g., recognizing li-

cense plates), and routing messages to other vehicles (e.g., diffusing relevant notification

63

64

to drivers or police agents). This is a novel and challenging mobile environment: the

communication paradigm differentiates from one-to-one typical of MANET scenarios, and

resembles sensor networks many-to-one (i.e., where many sensors convey gathered infor-

mation toward one sink). Nonetheless, differently from traditional sensor networks, in

Vehicular Sensor Networks nodes are mobile and generate a sheer amount of data. These

characteristics invalidate known data reporting techniques [62].

MobEyes exploits wireless-enabled VSN vehicles equipped with video cameras and a

variety of sensors to perform event sensing, processing/classification of sensed data, and

inter-vehicle ad hoc message routing. Since it is impossible to directly report the sheer

amount of sensed data to the authority, MobEyes keeps the sensed data in the mobile node

storage; on board processing capabilities are used to extract features of interest, e.g., license

plates; mobile nodes periodically generate data summaries with extracted features and con-

text information such as timestamps and positioning coordinates; mobile agents, e.g., police

patrolling cars, move and opportunistically harvest summaries as needed from neighbor ve-

hicles. MobEyes adopts VSN custom designed protocols for summary diffusion/harvesting

that exploit intrinsic vehicle mobility and single-hop inter-vehicle communications. In that

way, MobEyes harvesting agents can create a low-cost opportunistic index to query the

distributed sensed data storage, thus enabling to answer questions such as: which vehicles

were in a given place at a given time?; which route did a certain vehicle take in a given time

interval?, and which vehicle collected and stored the data of interest?

3.1 Practical case studies

An interesting application case for VSN is proactive urban monitoring, which could be

usefully applied to post-facto crime scene investigation. Reflecting on tragedies such as

65

9/11 and London bombing, VSN could have actually helped loss recovery and a posteriori

investigation. In London bombing police agents were able to track some of the suspects

in the subway using closed-circuit TV cameras, but they had a hard time finding helpful

evidence from the double-decker bus; this has motivated the installation of more cameras

in fixed locations along London streets. VSN could be an excellent complement to the

deployment of fixed cameras/sensors. The completely distributed and opportunistic coop-

eration among sensor-equipped vehicles has the additional positive side effect of making it

harder for potential attackers to disable surveillance. Another less sensational but relevant

example is the need to track the movements of a car, used for a bank robbery, in order

to identify thieves, say. It is highly probable that some vehicles have spotted the thieves’

car in the hours before the robbery, but is extremely difficult for the police to extract that

information by identifying and collecting all the related multimedia streams recorded by

fixed cameras.

As shown by the above examples, the reconstruction of a crime and, more generally,

the forensic investigation of an event monitored by VSN require the collection, storage, and

retrieval of massive amounts of sensed data. This is a major departure from conventional

sensor network operations where data is dispatched to “sinks” under predefined conditions

such as alarm thresholds. Obviously, it is impossible to deliver all the streaming data

collected by video sensors to a police authority sink because of sheer volume. Moreover,

input filtering is not possible because a priori nobody knows which data will be of any

use for future investigations. The problem becomes one of searching for sensed data in

a massive, mobile, opportunistically collected, and completely decentralized storage. The

challenge is to find a completely decentralized VSN solution, with low interference to other

services, good scalability (up to thousands of nodes), and tolerance of disruption caused by

66

mobility and attacks.

3.1.1 MobEyes at work: criminal tracking

For the sake of clarity, let us present the MobEyes solution using one of its possible prac-

tical application scenarios: collecting information from MobEyes-enabled vehicles about

criminals that spread poisonous chemicals in a particular section of the city (say, sub-

way station). We suspect the criminals used vehicles for the attack. Thus, MobEyes will

help detect the vehicles and permit tracking and capture. Here, we assume that vehicles

are equipped with cameras and chemical detection sensors. Vehicles continuously gener-

ate a huge amount of sensed data, store it locally, and periodically produce short summary

chunks obtained by processing sensed data, e.g., license plate numbers or aggregated chem-

ical readings. Summary chunks are aggregated in summaries that are opportunistically dis-

seminated to neighbor vehicles, thus enabling metadata harvesting by the police in order

to create a distributed metadata index, useful for forensic purposes such as crime scene

reconstruction and criminal tracking.

3.2 MobEyes middleware

To support all the above tasks, we have developed MobEyes according to the component-

based architecture depicted in Figure 3.1. The key MobEyes component is the MobEyes

Diffusion/Harvesting Processor (MDHP) which will be discussed in detail in the next sec-

tion. MDHP works by opportunistically disseminating/harvesting summaries produced by

the MobEyes Data Processor (MDP), which accesses sensor data via the MobEyes Sensor

Interface (MSI). Since vehicles are not strictly resource-constrained, our MobEyes proto-

type is built on top of the Java Standard Edition (J2SE) virtual machine. MDP is in charge

67

MSI (Sensor Interface)

DSRC Compliant Driver

MDP (Data Processing)

J2SE

JMF API
Java Comm.

API

Java Loc.

API

GPS
Radio Transceiver

Bio/Chem

Sensors

A/V

Sensors

MDHP

(Diffusion/Harvesting)

Summary

Database

Raw Data

Storage

Figure 3.1: MobEyes sensor node architecture.

of reading raw sensed data (via MSI), processing it, and generating chunks. Chunks in-

clude metadata (vehicle position, timestamp, vehicle ID number and possible additional

context such as simultaneous sensor alerts) and features of interest extracted by local fil-

ters (See Figure 3.2). For instance, in our scenario, MDP includes a filter determining

license plate numbers from multimedia flows taken by cameras [40]. Finally, MDP com-

mands the storage of both raw data and chunks in two local databases. MDHP dissem-

inates/harvests summaries by packing a set of chunks into a single packet for the sake

of effectiveness. Therefore, chunk/summary generation rate and chunk/summary size are

relevant to MobEyes performance.

UID
Msg.

Type

HEADER

SEQ # X-loc Y-loc

SUMMARY CHUNK 1

Time

Stamp
X-loc Y-loc Summary Chunk Payload

Time

Stamp
X-loc Y-loc Summary Chunk Payload

Time

Stamp

SUMMARY CHUNK N

Figure 3.2: Packet format: a single summary packet contains multiple summary chunks.

Developers of MobEyes-based applications can specify the desired generation rate as

a function of vehicle speed and expected vehicle density. The chunk size mainly depends

68

on application-specific requirements: in the considered scenario, each recognized license

plate is represented with 6B, sensed data with 10B (e.g., concentrations of potential toxic

agents), timestamp with 2B, and vehicle location with 5B. Then, in our scenario, MDP can

pack 65 chunks in a single 1500B summary, even without exploiting any data aggregation

or encoding technique. In usual deployment environments chunks are generated every [2-

10] seconds and, thus, a single summary can include all the chunks about a [2-10] minute

interval. MSI permits MDHP to access raw sensed data independently of actual sensor im-

plementation, thus simplifying the integration with many different types of sensors. MSI

currently implements methods to access camera streaming outputs, serial port I/O streams,

and GPS information, by only specifying a high-level name for the target sensor. To in-

terface with sensor implementations, MSI exploits well known standard specifications to

achieve high portability and openness: the Java Media Framework (JMF) API, the Sun

Communication API, and the JSR179 Location API.

3.3 MDHP Protocols

The section first details our original summary diffusion protocol where private vehicles

(regular nodes) opportunistically and autonomously spread summaries of sensed data by

exploiting their mobility. Then, it describes our novel summary harvesting protocol used

by police agents (authority nodes) to proactively build a low-cost distributed index of the

mobile storage of sensed data. The main goal of the MDHP process is the creation of

a highly distributed and scalable index that allows police agents to place queries to the

huge urban monitoring database without ever trying to combine this index in a centralized

location.

69

3.3.1 Summary Diffusion

Any regular node periodically advertises a new packet with generated summaries to its cur-

rent neighbors in order to increase the opportunities for agents to harvest summaries.Clearly,

excessive advertising will introduce too much overhead, while no advertising at all will re-

quire considerable more time, as agents will need to contact each individual car to complete

the harvesting process. Thus, MobEyes tries to identify the optimal tradeoff. As depicted in

Figure 3.2, a packet header includes a packet type, generator ID, locally unique sequence

number, packet generation timestamp, and generator’s current position. Each packet is

uniquely identified by the generator ID and its sequence number pair, and contains a set of

summaries locally generated during a fixed time interval.1

Neighbor nodes receiving a packet store it in their local summary databases. Therefore,

depending on the mobility and the encounters of regular nodes, packets are opportunisti-

cally diffused into the network (passive diffusion). MobEyes can be configured to perform

either single-hop passive diffusion (only the source advertises its packet to current single-

hop neighbors) or k-hop passive diffusion (the packet travels up to k-hop as it is forwarded

by j-hop neighbors with j < k). Other diffusion strategies could be easily included in

MobEyes, for instance single-hop active diffusion where any node periodically advertises

all packets (generated and received) in its local summary databases, at the expense of a

greater traffic overhead. As detailed in the experimental evaluation section, in a usual ur-

ban VANET (node mobility restricted by roads), it is sufficient for MobEyes to exploit the

lightweight k-hop passive diffusion strategy with very small k values to achieve the desired

diffusion levels.

1The optimal interval can be determined from the harvesting time distribution with average (µ) and stan-
dard deviation (ρ). Then, Chebyshev inequality, P (|x − µ| ≥ kρ) ≤ 1

k2 allows us to choose k such that we
guarantee harvesting latency and thus we can determine the period as µ + kρ. Readers can find details in
Section 3.4.

70

T

T

T-t6

T-t5

T-t4

T-t3

T-t2

T-t1

Trajectory

C1

C2

Advertise
Advertise

Encounter Point

Time Sum.

0

T-t4

SC1,1
SC2,1

Time Sum.

0

T-t4

SC2,1
SC1,1

Figure 3.3: MobEyes single-hop passive diffusion

Figure 3.3 depicts the case of two sensor nodes, C1 and C2, that encounter with other

sensor nodes while moving (the radio range is represented as a dotted circle). For ease of

explanation, we assume that there is only a single encounter, but in reality any nodes within

dotted circle are considered encounters. In the figure, a black triangle with timestamp rep-

resents an encounter. According to the MobEyes summary diffusion protocol, C1 and C2

periodically advertise a new summary packet SC1,1 and SC2,1 respectively where the sub-

script denotes 〈ID, Seq.#〉. At time T − t4, C2 encounters C1, and thus they exchange

those packets. As a result, C1 carries SC2,1 and C2 carries SC1,1. Summary diffusion is

time and location sensitive (spatial-temporal information diffusion). In fact, regular nodes

keep track of freshness of summary packets by using a sliding window with the maximum

window size of fixed expiration time. In addition, since a single summary packet contains

multiple summary chunks, it is possible to define packet sensing location as the average po-

sition of all summaries in the packet. When a packet expires or the packet originator moves

away more than a threshold distance from packet sensing location, the packet is automat-

ically disposed. The expiration time and the maximum distance are system parameters

that should be configured depending on urban monitoring application requirements. Let

71

P2 P4 P6
P7 P9 P10

C1

C2

C3

C4

(a) Broadcast a harvest

request

C1

C2

C3

C4

P5 P8 P3 P8

P1 P3

P1
P3

P1 P8

(b) C2 first returns miss-

ing packets

C1

C2

C3

C4

ACK: P1 P3

P5 P8 P8

P8

(c) Broadcast ac-

knowledgement

Figure 3.4: MobEyes proactive summary harvesting

us also briefly note that summaries always include, of course, the time and location where

the sample was taken. Upon receiving an advertisement, neighbor nodes keeps the en-

counter information (the advertiser’s current position and current timestamp). This allows

MobEyes nodes to exploit spatial-temporal routing techniques [53] and a geo-reference ser-

vice when accessing actual raw data. That is obtained as a simple byproduct of summary

dissemination, without additional costs.

3.3.2 Summary Harvesting

In parallel with diffusion, MobEyes summary harvesting takes place. There are two possi-

ble modes of harvesting the “diffused” information, namely on demand and proactive. In

the on demand mode, the police agents react to an emergency call, for example, the earlier

mentioned poisonous gas incident. Police agents will converge to the outskirts of the area

(keeping a safe distance of course) and will query vehicles for summaries that correspond

to a given time interval and area (i.e., time-space window). Suppose 1000 such summaries

exist. The police agents as a team will collect as many summaries as they can, up to 1000.

They will collectively examine the summaries and decide to inspect in more detail the video

files collected by 100 vehicles, say. The vehicles can be contacted based on the vehicle ID

number stored in each summary. A message is sent to each vehicle requesting it to upload

the file at the nearest police access point. The request message is generally routed using

72

georouting, either exploiting the Geo Location Service that maps vehicle ID to the cur-

rent vehicle location, or using the “Last Encounter Routing” technique [80, 53]. The latter

technique is particularly convenient here because at the time the summary exchange takes

place, nodes memorize the time and place of the encounter.

Naturally, the on demand harvesting incurs the problem of latency in dispatching the

vehicles to the location and in collecting the summaries. To overcome this latency, we

are proposing also a “proactive” version of the index construction. Namely, in each area

there are agent vehicles that collect all the summaries as a background process and create

a distributed index. In this case, there is no time-space window concern during collection.

The only requirement is to collect all the summaries in a particular area. Now, if the

poisonous gas emergency occurs, the query is directed to the proactively created distributed

index. The time-space window concept is applied to the index to find the vehicles in a

particular place and time and then pursue the hot leads.

It is apparent that the two processes become identical after the desired summaries have

been identified on board of the agent vehicles. The proactive approach is much more pow-

erful in that it can speed up the search considerably. For instance, if the inspection of the

information collected in the crime area indicates a possible escape direction of the terror-

ists, one can immediately search again the proactively created index for a new time-space

window, without having to do another time consuming collection of summaries from ve-

hicles. On the negative side, maintaining that index is costly, as agent resources must be

dedicated to the task.

In the sequel we will assume proactive index construction. Thus, the agents collect all

summaries indiscriminately. There is no loss of generality, however, since the procedure

will also allow on demand index construction for a specific time-space request. In fact, the

73

only difference between the two harvesting schemes is the size of the set being harvested.

In the on demand scheme, the target set is a specific space-time window set. In the proactive

scheme, the target set is the entire geographic area within agent responsibility; there is no

limit on harvesting time, though old records are timed out.

By considering the proactive harvesting model, the MobEyes police agent collects sum-

maries from regular nodes by periodically querying its neighbors. The goal is to collect all

the summaries generated in the specified area. Obviously, a police node is interested in

harvesting only summary packets it has not collected so far: to focus only on missing

packets, a MobEyes authority node compares its list of summary packets with that of each

neighbor (set difference problem), by exploiting a space-efficient data structure for mem-

bership checking, i.e., a Bloom filter. A Bloom filter for representing a set of ω elements,

S = {s1, s2, · · · , sω}, consists ofm bits, which are initially set to 0. The filter uses " inde-

pendent random hash functions h1, · · · , h" withinm bits. By applying these hash functions,

the filter records the presence of each element into the m bits by setting " corresponding

bits; to check the membership of the element x, it is sufficient to verify whether all hi(x)

are set to 1.

AMobEyes police agent uses a Bloom filter to represent its set of already harvested and

still valid summary packets. Since each summary has a unique node ID and sequence num-

ber pair, we use this as input for the hash functions. The MobEyes harvesting procedure

consists of the following steps:

1. The agent broadcasts a “harvest” request message with its Bloom filter.

2. Each neighbor prepares a list of “missing” packets from the received Bloom filter.

3. One of the neighbors returns missing packets to the agent.

74

4. The agent sends back an acknowledgment with a piggybacked list of returned packets

and, upon listening to or overhearing this, neighbors update their lists of missing

packets.

5. Steps 3 and 4 are repeated until there is no remaining packet.

An example of summary harvesting is shown in Figure 3.4. The agent first broadcasts

its Bloom filter related to collected packets so far (P2, P4, P6, P7, P9 and P10) as in Figure

3.4(a). Each neighbor receives the filter and creates a list of missing packets. For example,

C3 has P3 and P8 to return, while C4 has P1 and P8. In Figure 3.4(b), C2 is the first node to

return missing packets (P1, P3) and the agent sends back an acknowledgement piggybacked

with the list of received packets. Neighbor nodes overhear the message and update their

lists: C3 and C4 both remove P1 from their lists, as depicted in Figure 3.4(c). Note that

membership checking in a Bloom filter is probabilistic and false positives are possible. In

Figure 3.4(b), for example, a false positive on P1 makes C2 return only P3. Then, the other

neighbors will attempt to deliver P1. Harvesting fails only if none of the neighbors can

send P1. Even with failure, by repeating the harvesting procedure over a period of time,

the agent can gather missing packets. In the following section, we prove that harvesting

is guaranteed with high probability notwithstanding the possibility of Bloom filter false

positives.

For the sake of simplicity, thus far we assumed that there is a single agent working

to harvest summaries. Actually, MobEyes can handle concurrent harvesting by multiple

agents that can cooperate by exchanging their Bloom filters among multi-hop routing paths;

thus, this creates a distributed and partially replicated index of the sensed data storage. In

particular, whenever an agent harvests a set of j new summary packets, it broadcasts its

Bloom filter to other agents, with the benefits in terms of latency and accuracy shown in

75

the following section. Note that strategically controlling the trajectory of police agents,

properly scheduling Bloom filter updates, and efficiently accessing the partitioned and par-

tially replicated index are part of our future work. In the following section, instead, we

focus on the primary goal of identifying the tradeoffs between dissemination and harvest-

ing in a single geographic area, and the dependence of MobEyes performance on various

parameters. We also analyze the traffic overhead created by diffusion/harvesting and show

that it can scale well to very large node numbers.

3.4 Analysis of MDHP Protocols

To evaluate and validate the effectiveness of the original MobEyes protocols, here we

present an analytic investigation about summary harvesting, efficiency of Bloom filter

adoption, and scalability.

3.4.1 Summary Harvesting Delay

In MobEyes regular nodes receive summaries from their neighbors (passive harvesting)

and these summaries will be harvested by the police agents (active harvesting). Obviously,

the effectiveness of active harvesting depends also on passive harvesting. Therefore, we

model the progress of passive harvesting, from which we formulate the progress of active

harvesting. Finally, we extend the model to analyze k-hop relay scope.

We assume that there are N nodes in the network and each node advertises a single

summary packet (totalN summary packets). We basically assume that nodes are uniformly

distributed within a square area with length L. The node density is given as ρ = N/L2.

When we consider non-uniform node distribution under different mobility models, the

76

node density is simply given as ρ = δN/L2 where δ is the constant compensation fac-

tor for a given mobility model. For ease of analysis, we assume that nodes move towards

random directions (chosen out of [0,2π]) at a speed of v on average (random direction

mobility model). Let v∗ denote the average relative speed of nodes. As shown in [122],

v∗ = v
2π

∫ 2π
0

√
(1 + cos θ)2 + sin2 θdθ = 1.27v. For non-uniform mobility models, we sim-

ply assume that the average relative speed can be represented with constant multiplication

of the average speed: v∗ = cv where c is a constant. Let R denote the communication

range of a node.

By extending [6], we now decided to develop a deterministic, discrete time model. Let

us first reason on how many summaries a node can receive for a given time slot. For ease of

exposition, we assume that all nodes are static except one regular node. This node randomly

moves and collects summaries by passively listening to advertisements from encountered

nodes. In this case, the node (or the passive harvester) behaves just as a data mule in

traditional sensor networks [115]. During the time slot∆t, a regular node travels a distance

r = v∆t and covers an area of v∆t2R. The expected number of encountered nodes in this

area is simply α = ρv∆t2R. Since each of these nodes will advertise its summaries, the

regular node will receive α summaries. The dual scenario is when all nodes are mobile but

the passive harvesting node is static. Without loss of generality, if all nodes are mobile, we

can simply replace the average speed with the average relative speed: thus, α = ρv∗∆t2R

where v∗ is the average relative speed.2

Given α, we can estimate the progress of passive harvesting as follows. Let Et denote

2We can think of this as follows. Let us say that in front of a freeway (where everybody is driving in one

direction at a constant speed v), we count the number of vehicles passing by. During ∆t, it will be ρv∆t.
Now, let us assume that an observer is moving also. If it moves on the same direction, i.e., the relative speed

is 0, it always observes the same vehicles. On the contrary, if it moves on the opposite direction, the relative

speed is 2v and it will see ρ2v∆t vehicles.

77

the number of distinct summaries collected by a regular node by time slot t. As described

above, at time slot t a regular node will receive α summaries. Since the node has Et

summaries, the probability of acquiring a new summary is simply 1 − Et/N . Thus, the

expected number of new summaries out of α is given as α(1 − Et/N). It is obvious that

non-uniformmovement patterns (e.g., two nodes moving together along the same path) will

affect the effective number of neighbors. Since we are interested in the average behavior, we

can model this by simply multiplying α with a constant compensation factor η. Therefore,

we have the following relationship:

Et − Et−1 = αη

(
1 − Et−1

N

)
(3.1)

Equation 3.1 is a standard difference equation with solution:

Et = N − (N − αη)
(
1 − αη

N

)t
(3.2)

Equation 3.2 tells us that the distinct number of collected summaries is exponentially

increasing and thus, as time tends to infinity, Et = N . Let us define a random variable

T to denote the time for a regular node to encounter any random node, thus receiving a

summary from it. The cumulative distribution of random variable T can be derived by

dividing Equation 3.2 by N .

FT (t) = 1 −
(
1 − αη

N

)t+1
(3.3)

From this, we can derive the Probability Mass Function fT (t) as follows

fT (t) =
αη

N

(
1 − αη

N

)t
(3.4)

Equation 3.4 is a modified geometric distribution with success probability p = αη
N . The

average is given as E[T] = 1
p − 1 = N

αη − 1. Since α = ρv∗∆t2R, by replacing ρ = δN/L2

we have α = δN/L2v∗∆t2R. Thus, we have:

78

E[T] =
N

αη
− 1 =

L2

δv∗∆t2Rη
− 1 (3.5)

As shown in Equation 3.5, given a square area of L2, the average time for a regular node to

collect a summary is independent of node density. In fact, it is a function of average relative

speed and communication range. Intuitively, as node density increases (N increases), a

node can collect more summaries during a given time slot, but this also means that it has to

collect a higher number of summaries.

Unlike regular nodes, the agent actively harvests summaries from its neighbors. Since

every node moves randomly and it starts passive harvesting at time 0, it is expected that

every node has the same number of summaries collected by time t (Et). Therefore, the

probability that a neighbor node does not have a random summary is given as 1 − Et
N .

The probability that none of αη neighbors has a summary is simply (1 − Et
N)αη. The

probability that at least one of neighbors has a random summary is 1 − (1 − Et
N)αη . The

expected number of distinct summaries the agent receives from its neighbors at time step t

can be expressed by simply multiplying that probability by N :

N

(
1 −

(
1 − Et−1

N

)αη
)

(3.6)

Let E∗
t denote the expected number of distinct summaries harvested by the agent till

time step t. Since the agent has E∗
t summaries, the probability of acquiring a new summary

is 1 − E∗
t /N . Hence, multiplying this probability by the expected number of summaries

harvested from neighbors (Equation 3.6) gives us the number of new summaries harvested

during time step t as follows:

E∗
t − E∗

t−1 = γN

(
1 −

(
1 − Et−1

N

)αη
)(

1 −
E∗

t−1

N

)
(3.7)

79

where the constant compensation factor γ adjusts the expected number of summaries re-

ceived from neighbors to consider non-uniform mobility. Note that as described before

non-uniform mobility reduces the rate of new encounters (adjusted by η). Such mobility

also exerts baleful influence on the rate of active harvesting since neighbors tend to carry

overlapping summaries (adjusted by γ).

From Equation 3.7, we see that E∗
t grows much faster than Et. During a time slot, the

number of collected summaries in Equation 3.2 is constant (α), whereas in Equation 3.7 it

is a function of time. Moreover, Equation 3.6 is a function of the number of neighbors, i.e.,

related to node density. As N (or node density) increases, we can see that the harvesting

delay also decreases.

The growing rates of Et and E∗
t depend on mobility models. The above equations

are based on the random motion model, but for restricted mobility models such as the

Manhattan model, the rate will be smaller than for the others (as shown in Section 5). In

this case, we use k-hop relay scope where a summary is flooded up to k hops (as long as

connectivity is available). As stated before, we are assuming a rectangular area, ∆t2R.

Increasing k-hop relay scope is the same as multiplying the area by k times. Let E k denote

the number of summaries collected by time slot t with k-hop relay scope. Thus we have:

Ek
t − Ek

t−1 = kαη

(
1 −

Ek
t−1

N

)
(3.8)

This tells us that even though Et grows rather slowly due to the mobility model, by in-

creasing the hop count we can increase the Et rate (from α to k ∗ α). Let Ek∗ denote the

number of summaries harvested by the agent by time step t with k-hop relay scope. Then,

we have:

Ek∗
t − Ek∗

t−1 = γN

(

1 −
(
1 −

Ek
t−1

N

)kαη
)(

1 −
Ek∗

t−1

N

)

(3.9)

80

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000F
r
a
c
t
i
o
n

o
f

h
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

Agent (k=2)
Agent (k=1)

Regular Node (k=2)
Regular Node (k=1)

Figure 3.5: Fraction of harvested summaries with k = 1, 2

For illustration, let us assume that we have total N = 200 nodes within an area of

2400m × 2400m. The transmission range is R = 250m, and node relative speed is 10m/s

on average. For system parameters, we used η = 1, γ = 0.2 and ∆t = 1s. The iterative

solutions of both Et and E∗
t are presented in Figure 3.5. The figure shows that the agent

can harvest summaries much faster than a regular node. The figure also shows that k-hop

relay relevantly decreases the overall delay.

3.4.2 Efficiency of Bloom Filters in Summary Harvesting

Let us assume that a Bloom filter for representing a set of ω elements, i.e., S =

{s1, s2, · · · , sω}, uses m bit table and " hash functions (i.e., h1, · · · , h"), each of which

is uniformly random over the m bits and sets one bit to 1. As stated before, membership

checking in a Bloom filter may result in false positives. But in this section, we analytically

show that the false positives have negligible impacts on the overall harvesting process.

A false positive happens when an element s is not in S, but its bits hi(s) are collectively

marked to 1 by other elements in S. After all ω elements are inserted (by marking the hash

81

table), the probability that a bit is 0 is (1 − 1
m)"ω , e−

!ω
m . To have a false positive, for all

i hi(s) has to be set as 1. There are " hash functions, and thus, the probability of a false

positive is pf = (1 − (1 − 1
m)"ω)" , (1 − e−

!ω
m)"

As previously described, at time step t an agent will meet ηα neighbors on average.

Let us calculate the probability that all ηα neighbors fail to deliver a specific summary.

This happens if all the neighbor nodes with that summary experience false positives. The

probability that a node has a random summary packet at time t is Et
N whereEt is the number

of packets that a node has collected till time t. The probability for a node to successfully

send the packet to the agent is (1−pf)Et
N . Then the probability that the agent fails to receive

the packet from any of ηα neighbors is given as (1−(1−pf)Et
N)ηα. Assuming that each time

step is independent of each other, after repeating β time steps, the agent fails to receive the

packet with probability:

t+β∏

τ=t

(
1 − (1 − pf)

Eτ

N

)ηα

(3.10)

Since the failure probability is monotonically decreasing with exponential rate (Equation

3.10), it converges almost surely to zero. For example, given that we use m/ω bits to

represent ω summaries, the probability of a false positive is roughly 0.15. In fact, given

the ratio m/ω, the optimal number of hash functions " that minimizes the probability of a

false positive is given as -(ln 2)m/ω. (see [43] for details). If m/ω=4, the optimal value

is " = -(ln 2)4. = 3, and the probability of a false positive is roughly pf = 0.15. Let us

assume that the average number of neighbors is given as α = 10 and a node has collected

half of the summaries. Then, the probability that the agent fails to receive a specific packet

from neighbors is (1 − 0.85 × 0.5)10 = 0.004. If we repeat this process for 5 time steps,

the probability that the agent can collect the packet is roughly given as 1 − 0.0045 , 1.

82

From this we conclude that since it is highly probable that other nodes have the packets as

time passes, and the harvesting procedure is repeated as the agent moves, the agent always

obtains missing packets with high probability.

3.4.3 Scalability

The feasibility of MobEyes strictly depends on its scalability over wide VSN, in terms

of both the network traffic due to passive diffusion when the number of regular nodes

grows and to the number of regular nodes that a single harvesting agent can handle with a

reasonable latency.

About passive diffusion network traffic, it is possible to analytically estimate the

MobEyes radio channel utilization. In the diffusion process, nodes periodically advertise

their packets, without any synchronization among them. Therefore, we can model the pro-

cess by considering a packet randomly sent within [iTa, (i+1)Ta) time slot for all i, where

Ta is the advertisement period. So, the number of packets received by a node is bounded by

the number of its neighbors while it is traveling for Ta, thus depending on node density but

not on the overall number of nodes. In contrast, any “flooding”-based diffusion protocol is

not scalable because a node could potentially receive a number of packets proportional to

the network size.

To give a rough idea of the traffic generated by MobEyes diffusion, let us simply use

Ta = 2R/v∗ (the time for a mobile node to traverse the diameter of its coverage area) where

R is the transmission range and v∗ denotes the relative speed of two nodes. In fact, for a

given speed, the Ta interval should be neither too short nor too long compared to the average

connection duration among nodes: if it is too short, then we are unnecessary sending out

more packets to the same set of nodes, thus increasing link bandwidth utilization; on the

contrary, if it is too long, a node misses chances to send packets to encountered nodes,

83

thus slowing down dissemination. In our target deployment environment, v ∗ = 20m/s,

R = 250m, the advertisement period Ta = 12.5s, and the fixed packet size S = 1500B.

Consequently, the transmission time for one packet is about Tx = 1ms. While traveling for

Ta, a regular node will be exposed to advertisements from an area of A = πR2 + 4R2. In

the worst case, all nodes within this area are distinct and potentially send their generated

packets to the considered node (potential senders n = Aρ). Therefore, the worst case link

utilization could be estimated as nTx/Ta where Tx is the transmission time of a packet: for

instance, given a relatively high populated area with N = 2, 000, the number of potential

senders is n , 179, and the MobEyes protocol has a worst case link utilization of 0.014.

Similarly, we can give an approximated idea of the scalability of the harvesting process

via a simple queuingmodel. Consider the usual situation of a police agent that harvests only

fresh summaries, i.e., generated in the last Texp seconds. Let us assume that the summary

arrival rate is Poisson with rate λ = Nλ′ and the harvesting rate is deterministic with rate

µ. Given that the harvesting rate is limited by the channel utilization ϑ, the maximum µ is

simply
ϑTexp

Tx
. As a result, the system can be modeled using an M/D/1 queue. The stability

condition, Nλ′ < ϑTexp

Tx
, gives us the upper bound N < ϑTexp

λ′Tx
. Therefore, it is possible to

conclude that for a given Texp and arrival rate, there exists a limit in the number of regular

nodes that a single harvesting agent can handle. For instance, in the considered scenario

(ϑ = 0.01, λ′ = 2, and Texp = 250s), that number is N < 0.01×250
2×0.001 = 1, 250. As a

consequence, in the case of node numbers equal or not far from 1,250, there is the need

to deploy more than one harvesting agent to maintain the system stable, i.e., to be able to

harvest summaries more rapidly than regular nodes generate them.

84

Chapter 4

REDMAN Validation

To evaluate the effectiveness of our approach, we have extensively simulated the behav-

ior of REDMAN solutions, in the NS2 simulator [99]. Large-scale protocol testing results

infeasible to carry on real prototype networks, given the high number of participants re-

quired. Thus, simulations provide a means to verify the effectiveness of our solutions, at

the same time reliably measuring performance trends. In addition, these artificial environ-

ments allow us to finely control and change the scenario conditions, e.g., node positions,

much more precisely than real-world implementations. Obviously, simulations suffer from

the impossibility to test solutions in a real wireless medium, but model it according to

statistical formulas [107]. As simulative tool, we chose NS2 [99], a well-known network

simulator, particularly used in the MANET community. Differently from commercial al-

ternatives, NS2 development involves a user community, which continuously improves the

product and integrates novel supports.

We simulatedmost interesting protocols presented in chapter 2, to verify their suitability

to be employed in dense MANET scenarios. Generally speaking, these simulations have

three main goals:

• to evaluate the accuracy of REDMAN protocols notwithstanding the heuristic-based

85

86

overhead reduction;

• to determine the network overhead of the proposed protocols in terms of the number

of messages exchanged among MANET nodes;

• to evaluate the robustness of replica retrieval and degree maintenance while increas-

ing node mobility.

In particular, we validated DMC, by verifying the dense MANET identification, and man-

ager election protocols. Then, we evaluated the effectiveness of the SID replica and IRP

dissemination and retrieval solutions, and compared it with the discussed alternatives (see

Section 2.5), namely IRP-flooding, Query-flooding, and k-hop Distance IRP Dissemina-

tion. In both cases, i.e., DMC and RD/RR, simulations were performed in stationary as

well as mobile scenarios (with users abandoning the dense area). Finally, we investigated

RDM accuracy in maintaining the desired replication degree, in different size scenarios.

4.1 Simulation Setup

Our simulation deployment scenario consists of randomly positioned nodes in a square

area. The area is split in two zones, a smaller Internal Square (IS) at the center of the area,

and the remaining area around the IS, called External Square (ES). The sides of IS and

ES are in the range respectively [500m, 1700m], [1000m, 3400m]. Nodes are distributed

so that the dense MANET almost coincides with the IS area. In particular, the IS node

density is relevantly higher than the ES one (generally about 8 times). The number of nodes

spans from 50 to 700, and nodes move according to a random direction mobility model.

Node speed is randomly chosen in the range [1, 5]m/s to represent the typical velocity of

human beings. Furhter details about the mobility models will be included in the respective

87

subsections.

Finally, if not differently specified, we have used default NS2 values for communica-

tions parameters, e.g., bi-directional connectivity, IEEE 802.11 link layer protocol, trans-

mission band 2.4GHz, bandwidth 11Mbps, constant 250m circular transmission ranges,

and Two-ray Ground propagation model [107]. For the sake of simplicity, the reported

results refer to deployment scenarios where all nodes are equal from the point of view of

locally available resources, such as battery power and storage space.

The code of the REDMAN prototype, the full algorithmic description of RED-

MAN protocols, the exhaustive list of all NS2 simulation parameters used, and a

wide set of additional performance figures are available at the REDMAN Web site

http://www.lia.deis.unibo.it/Research/REDMAN/

4.2 Dense MANET Configuration

First, we have carefully evaluated i) the accuracy of DMC manager election protocol, i.e.,

its effectiveness in choosing a manager located close to the center of the topology, ii) the

network overhead, in terms of number of sent messages, of dense MANET identification

and manager election, and iii) the impact of node mobility, to verify that DMC provides

accurate solutions despite limiting the netork overhead. We have tested DMC protocols in

different simulation environments, with a number of nodes ranging from 50 to 550 (increas-

ing of 20 nodes each step). The size of ES/IS areas have been changed with the changing

number of nodes involved, to maintain the same ES/IS node densities in all simulations.

Given that IS node density is 8 times higher than ES density, 72% of the nodes are located

within IS, and the average density is respectively about 30 in IS, and about 4 in ES.

88

REDMAN parameters were set as following: 11 Neighbor Limit (i.e., number of neigh-

bors required to beloging to the dense MANET): this value experimentally proved to make

the dense MANET bounds almost coincide with IS bounds; and 5s Rebroadcast Delay (to

avoid broadcast storm issues [98]).

4.2.1 Manager Election Inaccuracy

To quantitatively assess the effectiveness of the REDMAN election protocol, we have mea-

sured its accuracy in assigning the manager role to a node close to the actual topology center

of the dense MANET. We have run over 200 simulations in the most populated scenario

of 550 nodes and, for any simulation, we have measured the election inaccuracy defined

as the hop distance between the manager chosen by the REDMAN protocol and the actual

optimal solution.

The results in Figure 4.1 are obtained by starting each election from a different initiator

node. In more than 90% of the runs, the REDMAN protocol has identified either optimal

solutions or quasi-optimal solutions at 1-hop distance from the actual optimum. The av-

erage inaccuracy is only 0.385 hops, which represents a largely acceptable value for the

addressed application scenario.

4.2.2 Impact of REDMAN Heuristics on Manager Election Accuracy

A decisive parameter affecting the results achieved by the REDMAN manager election

protocol has demonstrated to beMaxConsecutiveEqualSolutions. Let us recall that this

parameter influences the protocol termination, by permitting to stop the iterations when the

specified number of best solutions has already been explored. However, the INvalue of

the elected IN (electedINvalue) could not be still the optimum achievable in that network

(optimalINvalue).

89

Figure 4.1: Inaccuracy of the REDMAN manager election protocol.

To determine whether the electedINvalue obtained with low values of

MaxConsecutiveEqualSolutions is acceptable, we have run a large set of simu-

lations in the deployment scenarios described above. Figure 4.2 plots the average

electedINvalues obtained over 30 different runs for each scenario, for values of

MaxConsecutiveEqualSolutions ranging from 2 to 4. The results are compared with

two reference traces: the lower represents the optimalINvalue in each scenario; the

higher the optimalINvalue multiplied by 1.25, thus depicting a tolerance strip of 25%

from optimalINvalue.

As expected, the figure shows that the difference between electedINvalues and

optimalINvalues grows asMaxConsecutiveEqualSolutions decreases. However, even

for the lowest tested value (MaxConsecutiveEqualSolutions = 2), most points lie below

the higher reference trace. This means that REDMAN achieves solutions not too far from

the optimalINvalue also for very low values of MaxConsecutiveEqualSolutions. For

that reason, all the other experimental results in the section refer to simulation runs where

90

Figure 4.2: Accuracy of the manager election protocol as a function of MaxConsecutiveE-

qualSolutions.

MaxConsecutiveEqualSolutions has been set to 3.

Let us briefly observe that manager election accuracy is also influenced by

DesiredAccuracy, the other configurable parameter in the REDMAN election heuristic.

For the sake of briefness, we have decided not to report also experimental results inter-

est about DesiredAccuracy, which are of minor interest: simulations have confirmed that

election accuracy linearly depends on that parameter, as intuitively expected. In all experi-

mental results in the section, we have usedDesiredAccuracy = 100%.

4.2.3 DMC Network Overhead

We have carefully evaluated the network overhead of the REDMAN protocols for dense

MANET identification and manager election, to verify that the DMC proposals are

91

lightweight enough for the addressed deployment scenario. For both protocols we have

measured the average number of messages sent by each participant, over a set of more than

1,000 simulations.

The results reported in Figure 4.3 are normalized to the number of nodes actively partic-

ipating in the protocol. The dense MANET identification protocol is designed to determine

participant nodes by requiring only one local broadcast from each node reachable from the

initiator. With regard to the REDMAN solution for manager election, also in this case the

number of sent messages is very limited and grows very slightly with the number of par-

ticipants. In fact, sent messages tend to be proportional not to the total number of nodes,

but to the number of iterations required to identify an acceptable solution. The number of

iterations is roughly proportional to the dense MANET diameter (approximately 3 hops for

the 50-node case and 12 hops for the 550-node case) and grows less than the number of

participants.

Given the dependence of manager election network overhead on the number of iter-

ations, we have carefully investigated the convergence of the REDMAN protocol while

varying the number of dense MANET nodes (see Figure 4.4). The results are average val-

ues on a set of simulations where the role of initiator is assigned to a different node at each

simulation. The experimental results about the number of iterations have demonstrated

the almost linear dependence on dense MANET diameter and have shown to be negligibly

affected by the choice of the initiator node.

In summary, the experimental results about REDMAN DMC overhead demonstrate

the feasibility and the good scalability of the proposed solutions: the network overhead

slowly increases when the number of participants grows. Let us briefly observe that the

non-monotonic growth of the overhead trace in Figure 4.3 is due to different factors. First,

92

the dense MANET diameter only increases in correspondence with some threshold values

of the number of participants, as discussed and experimentally shown in Section 4.2.2, thus

affecting the number of optimal solutions in the network. Moreover, the adopted heuristic

parameters, such asMaxConsecutiveEqualSolutions, influence the number of iterations

of the manager election protocol (see additional performance results and comments at the

REDMANWeb site).

About the latency imposed by the REDMAN manager election protocol, let us briefly

observe that it mainly depends on three factors: obviously, one is the number of dense

MANET participants; the others are two REDMAN configurable timers that establish, re-

spectively, the message delay for preventing broadcast storm in farthest node determination

and the time interval waited by the current IN before delegating its role. All the presented

results have been obtained by setting the former to 2.5s and the latter to 5s per hop of the

diameter. These values guarantee that the current IN passes node exploration responsibil-

ity only after having received most replies from farthest nodes, thus achieving its correct

INvalue.

4.2.4 Impact of Node Mobility on the Accuracy of the REDMAN

Dense MANET Identification Protocol

To test the robustness of REDMAN solutions, we have evaluated the accuracy of the dense

MANET identification protocol by varying the mobility characteristics of network nodes.

Let us rapidly note that the manager election protocol executes for very limited time

periods and re-starts its execution only after a long time interval; to a certain extent, it is

assumable that it operates under static conditions. On the contrary, the dense MANET iden-

tification protocol should continuously work to maintain an almost consistent and updated

view of the dense MANET participants, crucial for the effective working of REDMAN

93

Figure 4.3: Messages sent per node in dense MANET identification and manager election.

solutions. For this reason, the sub-section focuses on the behavior of our dense MANET

identification protocol as a function of node mobility.

We have considered the 110-node scenario described above. For any node (randomly

chosen among the ones close to the IS boundary) that exits the dense region, a new node

enters the IS, to keep unchanged the spatial node density according to the dense MANET

definition. Any pair of random movements of randomly chosen nodes occurs every M

seconds, with M that varies from 10 to 60. Any other node movement not producing ar-

rival/departure in/out the dense MANET does not affect at all the behavior of the REDMAN

identification solution.

Figure 4.5 reports the denseMANET identification inaccuracy, defined as the difference

between the number of dense MANET participants determined by the REDMAN protocol

and its actual value. The inaccuracy is reported as a function of the mobility period M

94

Figure 4.4: Number of iterations needed for the REDMAN manager election protocol.

and for different values of the time period used for Hello packets. Each point in the figure

represents an average value obtained by capturing the state of the network over 30 different

runs. The figure shows that the average inaccuracy is very limited and always within a range

that is definitely acceptable for lazy consistent resource replication in dense MANETs.

As expected, the inaccuracy grows when node mobility grows, for fixed values of the

Hello message period. However, even for relatively high values of the Hello period, the

REDMAN identification inaccuracy is negligible for the addressed application scenario

(on the average, always less than 1.7), for the whole range of node mobility that can be of

interest for dense MANETs. Let us observe that this permits to set relatively high periods

for Hello packets, while obtaining a low inaccuracy for the dense MANET identification,

thus significantly reducing the message exchange overhead.

95

Figure 4.5: Accuracy of the REDMAN dense MANET identification protocol as a function

of node mobility.

4.3 Replica Dissemination and Retrieval

In this set of simulations we test the different Replica Dissemination and Retrieval solutions

presented in Section 2.5 in the most populated scenario, i.e., IS side ! 1.7km with 400

randomly positioned nodes. We do not consider nodes within the ES but outside the IS,

since they do not participate in the protocol. The dense MANET diameter, i.e., the longest

minimum path between two nodes belonging to the dense region, is in most cases equal to

12.

4.3.1 Accuracy

The first performance indicator considered for SID evaluation is accuracy, defined as the

ratio between the number of successful resource searches and the total number of searches

96

in stationary scenarios with fixed nodes. No reiterations of the SID protocol are taken into

account; searches are considered successful only if they find the needed IRPs by exploring

the first retrieval direction. Mainly two tunable parameters have demonstrated to affect the

SID accuracy value in stationary scenarios: the number i of nodes hosting IRPs (that is the

number of nodes along the straight path where replicas are positioned) and the maximum

number s of hops explored in the retrieval phase.

The tuning of i and s permits to trade the SID accuracy against its imposed message

overhead. Figure 4.6 shows the results obtained over more than 1,000 simulations with

i and s independently varying from 2 to 15 hops (in the case distribution/retrieval paths

reach network boundaries before arriving at their maximum number of allowed hops, RED-

MAN automatically makes paths continuing with a new random direction back in the dense

MANET). Each plotted value represents the average of 20 simulations where delegates,

dynamically determined by REDMAN RD, distribute i IRPs, and randomly chosen clients

look for a resource replica by exploiting an s-hop-limited query. The reported results show

that, when i and s are greater than the diameter of the considered dense MANET, the ac-

curacy overcomes 85%. In all simulations done, we have experienced that choosing i and

s values approximately equal to the dense MANET diameter permits to achieve sufficient

accuracy, with limited message overhead in both phases of SID-based IRP dissemination

and RR.

4.3.2 Overhead

To quantitatively compare the SID message overhead with the other presented RR solu-

tions, we have measured the overall number of messages required to distribute and find

replicas in the same challenging simulation scenario of Section 4.3.1. Figure 4.7 reports

97

Figure 4.6: SID accuracy while varying i and s.

the experimental results obtained while increasing the number of searches. Each point rep-

resents the average of 20 simulations. SID parameters i and s are set to 12, according to

what observed in the previous section. k-DID exploits the same number (12) of dissemi-

nated IRPs, so to realize an actual deployment scenario where it makes sense to perform a

comparison between message overheads.

Figure 4.7 shows how QF produces a rapidly growing amount of message exchanges

also for a limited number of searches. As expected, k-DID imposes a high overhead for

IRP placement (about 4 messages per node in the dense MANET), while its search phase

demonstrates to be very effective. SID exhibits linear growth in overall message overhead,

by imposing a lower number of IRP distribution messages than QF and k-DID and only

a slightly greater number of RR messages than k-DID. Both k-DID and SID require low

memory occupation on IRP-hosting nodes, since they diffuse IRPs only on a limited node

subset (see the concise comparison among RR solutions in Table 4.1). IF represents a

98

Figure 4.7: Accuracy of the manager election protocol as a function of MaxConsecutiveE-

qualSolutions.

lower bound for communication overhead, but it is a practically unviable solution because

it requires all nodes in the dense MANET to store IRPs about all replicas of all available

resources.

4.3.3 Accuracy in Non-Stationary Scenarios with Mobile Nodes

To evaluate the dynamic behavior of SID in non-stationary deployment scenarios with mo-

bile MANET nodes, we have adopted a mobility model establishing that, after a randomly

chosen time interval, any node in the dense region starts moving along a rectilinear path,

with randomly chosen speed direction and speed mod-ule randomly chosen in the range

[1, 5]m/s.

Figure 4.8 presents the temporal evolution of SID accuracy by comparing it with a SID

version without the local IRP maintenance reconstruction protocol.

Plotted results are average values over 20 simulated scenarios where only 10% of IRP

99

RR Strategy IF QF k-DID SID

Global IRP memory

occupation
N ∗ size(IRP) size(IRP)

O(N/f(k/2))∗
size(IRP)

O(i) ∗
size(IRP)

Dissemination message

overhead
N 0 O(N)

dependes on i,

density

Retrieval message

overhead
0 N O(F (k/2))

dependes on s,

density

Scalability

Suits

deployment

scenarios with

few searches

Unviable for

large scenarios

Fits stationary

scenarios with

a very high

number of

searches

Fits also

mobile

scenarios with

limited number

of searches

Table 4.1: Concison comparison of IF, QF, k-DID, and SID RR strategies

owners remain fixed. As for the overhead evaluation in Section 4.3.2 , i and s are set to

12. The figure shows that, after a sufficient number of nodes has moved and left the dense

MANET, the reconstruction-enabled SID version out-performs the other. Reconstruction-

enabled SID has demonstrated to maintain good accuracy notwithstanding the challenging

mobility model adopted with limited message overhead.

4.4 Replica Degree Maintenance

In this section, we report average performance figures about the accuracy and overhead

of the crucial RDM facility, which exploits most lower-layer REDMAN mechanisms. To

validate the scalability of the proposed RDM solution, we set up two scenarios in the IS

side ! 1.7km area. In the first, we consider a very high population of about 700 nodes (in

the whole ES area); in the second, a lower but still considerable population of about 400

nodes.

All nodes are potentially mobile: after a randomly chosen time interval (uniformly dis-

tributed in the whole simulation duration = 7200s), they start moving along a rectilinear

100

Figure 4.8: SID accuracy with/without reconstruction in mobile scenarios.

path, with randomly chosen speed direction and fixed speed module, ranging from 1m/s

to 4m/s. REDMAN disseminates 20 resource replicas in the dense MANET (4 different

resources, each one with target replication degree = 5). With the above node mobility

model, there are on average 51 delegate nodes that exit from the dense MANET during one

simulation run (almost all the 20 initial delegates, but also most nodes replacing the ex-

ited delegates, and most nodes replacing the substitutes). These are significant worst-case

scenarios, since they combine the high number of attendees of Grand Prix stands/stadiums

events, with the dynamicity of railway stations/airports waiting rooms. Since in RDM

communications are not always local, we considered the ad-hoc on-demand distance vec-

tor routing [105] for messages between non-neighbors.

101

Figure 4.9: RDM accuracy in the 400 nodes scenario.

4.4.1 RDM Accuracy

Figures 4.9 and 4.10 report RDM accuracy, i.e., the ratio between the number of available

replicas within the dense MANET and the target replication degree, and its evolution over

the simulation time. The different traces refer to the two deployment scenarios and to

different speed modules. Notwithstanding the lazily consistent RDM strategy, REDMAN

maintains a sufficiently high number of replicas in the dense MANET (almost always over

70%), with a distance from the goal replication degree that slightly increases as the node

speed grows.

4.4.2 RDM Overhead

Figure 4.11 provides a quantitative evaluation of the REDMAN network overhead while

main-taining 20 replicas of small-sized snapshots (4 snapshots of 60KB each, with 5 repli-

cas per snapshot). In particular, the figure reports the overall traffic due to REDMAN, i.e.,

102

Figure 4.10: RDM accuracy in the 700 nodes scenario.

the grand total of all bytes exchanged between any couple of dense MANET nodes during

the whole 2-hours simulation. The results do not include the payload of messages with

application-specific content (the snapshot files) exchanged when disseminating new repli-

cas to delegates; only the payload of those messages is excluded, not their headers. This

is motivated by the fact that application payload only depends on resource size and do not

provide any useful information about the REDMAN overhead.

The REDMAN traffic overhead is very limited, on average about 1.02/0.96KB per

node for the 400/700-node scenario during the whole 2-hours interval. In addition, it ex-

hibits a very slight growth while increasing the node speed; most important, it almost lin-

early increases when passing from the 400 node scenario to the 700 one, thus validating

the scalability of our proposal. Moreover, most traffic (from 83% to 89%) is due to DMC

Hello packets that nodes exchange to maintain an updated view of the network topology.

103

Figure 4.11: RDM network traffic during the two-hour simulation.

The Hello period is configur-able depending on the desired REDMAN promptness to de-

tect node exits and to re-establish the desired replication degree: in all simulations, we have

used a 100s Hello period, which has demonstrated to be small enough for the 4m/s worst-

case scenario. With lower node speeds, the Hello period can be increased, thus relevantly

reducing the REDMAN overhead: for in-stance, with node speed = 2m/s, it is sufficient

to have Hello period = 200s, which produces a 44% reduction of the overall REDMAN

traffic in the stadium-like environment.

104

Chapter 5

MobEyes Validation

Similarly to the case of REDMAN protocols, we evaluted the MobEyes solution via ex-

tensive NS2 [99] simulations. In this case, NS2 reveals even more crucial because of the

nature of VSN and MobEyes. First of all, current state-of-the-art research has only recently

focused on VANET testbed setup. Most deployed networks only consider a very limited

number of vehicles [60]. In addition, MobEyes protocol communication redundancy ap-

parently makes our solution more resilient to packet collision, hence reducing the influence

of the medium modeling.

This section shows the most important results, with the goal of investigating MobEyes

performance from the following perspectives:

• Analysis Validation. We simulate MobEyes protocols for summary collection on

regular nodes as well as for agent harvesting and show that they confirm our main

analytic results;

• Effect of k-hop Relay and Multiple Agents. We examine how MobEyes effective-

ness can be increased by leveraging k-hop passive diffusion and the deployment of

multiple agents;

105

106

Figure 5.1: Map of Westwood area in vicinity of UCLA campus

• Summary Diffusion Overhead. We investigate the tradeoff between harvesting delay

and the load imposed on the communication channel;

• Stability Check. We verify that the system is stable, even in the worst case of a single

harvesting agent and of highest summary generation rate reported in Section 3.4;

• Tracking Application. We prove MobEyes effectiveness in supporting a challenging

tracking application, where trajectories of regular nodes are locally reconstructed by

a police agent based on harvested summaries;

• Border Effects and Turn Over. We show that MobEyes performance does not dra-

matically change in case of more dynamic mobility models, where nodes are allowed

to enter/exit from the simulated area.

Additional experimental results are available at http://www.lia.deis.unibo.

it/Research/MobEyes/.

107

5.1 Simulation Setup

We consider vehicles moving in a fixed region of size 2400m × 2400m. The default mo-

bility model is Real-Track (RT), introduced by our colleagues in [140]. RT permits to

model realistic vehicle motion in urban environments. In RT nodes move following virtual

tracks, representing real accessible streets on an arbitrary loaded roadmap. For this set of

experiments, we used a map of the Westwood area in the vicinity of the UCLA campus,

as obtained by the US Census Bureau data for street-level maps [129] (Figure 5.1). At

any intersection, each node randomly selects the next track it will run through; speed is

periodically allowed to change (increase or decrease) of a quantity uniformly distributed in

the interval [0,±∆s]. To evaluate the impact of the mobility model on MobEyes perfor-

mance, we tested two additional well-known models, namely Manhattan (MAN) [6] and

Random WayPoint (RWP) [16]. Similarly to RT, MAN builds node trajectories following

urban roads; however, in MAN roads are deployed according to a regular grid, thus allow-

ing a more uniform node deployment. In our simulation, we adopted a 10 × 10 grid. RWP

instead does not constrain node positions to follow actual road tracks, but moves nodes

toward randomly selected destinations with random speeds. When a node reaches its des-

tination, it remains still for a fixed period (which we set equal to 0 by homogeneity with

the other models), and then selects a new destination. Surprisingly, RWP is considered “a

good approximation for simulating the motion of vehicles on a road” [24], generally pro-

ducing limited distortion on protocol performance. Let us remark that MobEyes agents do

not exploit any special trajectory or controlled mobility pattern, but move conforming with

regular nodes.

Our simulations consider number of nodes N = 100, 200, 300. Vehicles move with

average speed v = 5, 15, 25; to obtain these values, we carefully tuned maximum (vM)

108

and minimum (vm) speeds depending on the mobility model. The summary advertisement

period of regular nodes and the harvesting request period are kept constant and equal to

3s through all the simulations. We note that if the value of this parameter is too large,

MobEyes effectiveness is reduced since it is possible that two nodes do not exchange mes-

sages, even if they occasionally enter in each other transmission range; this effect is mag-

nified, as node speed v increases. The chosen value has been experimentally determined

to balance the effectiveness of our protocol and the message overhead, even in the worst

case, i.e., v = 25. A deeper and more formal investigation of the optimal value of the

advertisement period is object of future work.

Finally, we modeled communications as follows: MAC protocol IEEE 802.11, trans-

mission band 2.4 GHz, bandwidth 11Mbps, nominal radio range equal to 250m, and Two-

ray Ground propagation model [107]. The values of these parameters have been chosen

similar to other work in the field [139] [32]. Where not differently stated, reported results

are average values out of 35 repetitions. Other MobEyes configuration parameters will

be introduced in the following sections, when discussing the related aspects of MobEyes

performance.

5.2 Analysis Validation

Our first goal is to validate the results obtained in Section 3.4. In particular, we investigate

the regular node collection and agent harvesting processes, as described respectively by

Equations 3.2 and 3.7. Without loss of generality (see Section 5.5), let us assume that

new summaries are synchronously generated by all regular nodes. A generation epoch is

the time interval between two successive summary generations. In this set of experiments,

every regular node continuously advertises the single summary it generated in the epoch

109

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

F
r
a
c
.

o
f

p
a
s
s
i
v
e
l
y

h
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

RWP N=300 v=25
RWP N=100 v=25
v=25 Analytic
RWP N=300 v=5
RWP N=100 v=5
v=5 Analytic

(a) RWP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

F
r
a
c
.

o
f

p
a
s
s
i
v
e
l
y

h
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

MAN N=300 v=25
MAN N=100 v=25
v=25 Analytic
MAN N=300 v=5
MAN N=100 v=5
v=5 Analytic

(b) MAN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

F
r
a
c
.

o
f

p
a
s
s
i
v
e
l
y

h
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

RT N=300 v=25
RT N=100 v=25
RT N=300 v=5
RT N=100 v=5

(c) RT

Figure 5.2: Fraction of passively harvested summaries by a regular node

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900

F
r
a
c
.

o
f

a
c
t
i
v
e
l
y

h
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

N=300/v=25 Sim
N=300/v=25 Model

N=100/v=25 Sim
N=100/v=25 Model

N=300/v=5 Sim
N=300/v=5 Model

N=100/v=5 Sim
N=100/v=5 Model

(a) RWP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400

F
r
a
c
.

o
f

a
c
t
i
v
e
l
y

h
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

N=300/v=25 Sim
N=300/v=25 Model

N=100/v=25 Sim
N=100/v=25 Model

N=300/v=5 Sim
N=300/v=5 Model

N=100/v=5 Sim
N=100/v=5 Model

(b) MAN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400

F
r
a
c
.

o
f

a
c
t
i
v
e
l
y

h
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

N=300/v=25 Sim
N=100/v=25 Sim
N=300/v=5 Sim
N=100/v=5 Sim

(c) RT

Figure 5.3: Fraction of actively harvested summaries by an agent

t = 0 for the rest of the simulation run. Since Equations 3.2 and 3.7 characterize the

spreading processes of all summaries generated in the same epoch, it is not necessary that

regular nodes generate additional summaries. We remark that this assumption does not

undermine the relevance of our results because the process is stationary as described in

Section 5.5.

Figures 5.2 and 5.3 show results collected for number of nodes N = 100/300, average

speed v = 5/25, and RWP, MAN, and RT mobility models. In particular, Figure 5.2 plots

the cumulative distribution of summaries collected by regular nodes as a function of time.

The figure shows that the process highly depends on the average node speed; in fact, the

speed determines to a large extent how quickly nodes “infect” other participants with their

own summaries. The results do not depend on node density as we have shown in Equation

110

3.4. Our analytic model (Equation 3.2) accurately fits the simulation results for RWP and

MAN. The curves of RT results exhibit worst fitting since they start deviating from that

of analytical results after certain thresholds. RWP shows slightly better accuracy mainly

due to node unconstrained motion and to their tendency to gather at the center of the field

as time passes [12]. Although both MAN and RT show the restricted mobility patterns,

their node distributions are different: MAN has almost uniform node distribution over the

grids, whereas RT exhibits non-uniform node distribution over the map as shown in [79].

Since our model is based on uniform distribution, the curve fitting works well with MAN.

Experimental results helped us to tune the constant compensation factor η we introduced in

Section 3.4 to take into account the non-uniform movement patterns. In detail, the values

we found are 0.97 and 0.9 respectively for v = 15m/s and v = 25m/s in RWP and 0.40

and 0.36 in MAN. As restrictions on node mobility grow due to the mobility model, the

values of η decreases, thus representing a slower process.

Figure 5.3 plots the cumulative distribution of summaries harvested by a police agent

as a function of time. The figure shows that the results are mainly dependent on the speed.

Unlike passive harvesting, the density plays an important role in active harvesting. In the

analysis section, we show that the higher the density, the faster is the harvesting progress

(Equation 3.7). Intuitively, if there are more neighbors, the agent has a higher chance of

getting a random summary. Our analytic model fits well the simulations, especially when

we have largeN and v. This set of results allowed us to tune the parameter γ accounting for

the effect of overlapping of summaries contributed from regular agents (see Section 3.4).

In detail, the values we found are 0.21 and 0.21 respectively for v = 5m/s and v = 25m/s

in RWP and 0.15 and 0.20 in MAN.

111

5.3 Effect of k-hop Relay and Multiple Agents

The effectiveness of MobEyes harvesting can be measured in terms of the fraction of sum-

maries harvested by the agent(s) in function of time. To enhance the validity of our conclu-

sions, it is important to determine the dependence of the performance indicators on different

mobility models. In [77] we only investigate RT mobility model; here, we extend the re-

sults to RWP and MAN. For every mobility model, we show plots for 1, 3 agents (a#) and

for 1, 3 relay hops (k). The summary harvesting latency is a crucial figure to determine the

feasibility of the MobEyes approach, since it allows us to estimate the fraction of harvested

summaries by the agent within a certain time t. This estimation is useful to decide the

tuning of the parameters (k-hop relay scope and number of agents) to address application

requirements. Figure 5.4 shows how the number of agents, the choice of the number of

relaying hops k, and the average speed v of the nodes influence the process. Figure 5.4

plots the cumulative distribution of the summaries harvested for N = 300, v = 15m/s. In

the case of multiple agents, the harvesting process considers the union of the summary sets

harvested by agents. The figure clearly shows that k-hop relay scope and multiple agents

highly impact harvesting latency.

By carefully inspecting the results in Figure 5.4, it is possible to obtain some guidelines

for the choice of MobEyes parameters. For example, given as a baseline a network with

N = 300 nodes moving with an average speed v = 15m/s, fixed k = 1, a single agent

employs 530s, 236s, and 116s to harvest 95% of the summaries generated respectively in

RT, MAN, and RWP mobility models. By increasing k to 3, times respectively reduce

to 420s, 176s, 86s, showing an improvement of about 20 − 30% in all cases. Instead,

increasing the number of agents to three, times become respectively 280s, 123s, and 68s;

in this case, the improvement is in the 40 − 50% range. Finally, if we set v = 25m/s,

112

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800F
r
a
c
t
i
o
n

o
f

h
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

#a=3/k=3
#a=3/k=1
#a=1/k=3
#a=1/k=1

(a) RWP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800F
r
a
c
t
i
o
n

o
f

h
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

#a=3/k=3
#a=3/k=1
#a=1/k=3
#a=1/k=1

(b) MAN

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800F
r
a
c
t
i
o
n

o
f

h
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

#a=3/k=3
#a=3/k=1
#a=1/k=3
#a=1/k=1

(c) RT

Figure 5.4: Fraction of actively harvested summaries by multiple agents with k-hop relay
(N = 300 and v = 15)

times become 211s, 67s, and 43s; the improvement is around 60 − 70%. Interestingly,

the relative impact of the three parameters (harvesting team size, multihop forwarding, and

speed) shows a limited dependence on the mobility model. This holds also for the results

we collected for different cases (different values of N and v): in particular, speed has a

larger impact than the number of agents, and k is the less decisive factor.

5.4 Summary Diffusion Overhead

The study of the diffusion overhead helps us understand the requirements imposed on the

underlying vehicular communication technology and to determine if MobEyes can coexist

with other applications. For example, the parameter k shows the largest impact on the

performance; the effect due to a small number of agents is negligible, since they are only

responsible for local single-hop traffic. Figure 5.5 shows the average received packets per

node per second, obtained during a simulation time of 1000s. In this set of simulations,

we fixed k = 1, and changed all the other parameters, i.e., mobility model (RWP, MAN,

RT), N (100, 200, 300), and v (5, 15, 25). As expected, the number of received packets

linearly increases as the number of nodes increases. Therefore, for the sake of clarity, the

figure only reports the case with N = 300. In addition, the number of received packets

113

exhibits no dependence on v. In all considered cases, the overhead is limited, on the order

of few (two to five) packets per second, proving the low impact of MobEyes on the available

bandwidth.

The latter result could mislead to conclude that speed increments would not impact the

harvesting latency, since the number of received packets would not change. This apparently

invalidates our previous results (see Figure 5.2) and has the following motivations. For a

fixed advertisement interval, as average speed increases, the probability of useful meetings

(i.e., of receiving a non-redundant summary) increases because there is more mixing among

mobile nodes. For example, given an average speed v, let us assume that the average period

that any two nodes are within their communication ranges simply be 2R/2v. Then with

v set to 5 and 25 m/s, and R = 250m, the periods can be estimated as 50s and 10s

respectively. This implies that the cases of 5m/s has roughly 5 times higher chances of

receiving redundant advertisements than the case of 25m/s. It is interesting to note that,

fixed the average speed, there exists an optimal advertisement period allowing to maximize

non-redundant summary diffusion, while minimizing the overhead. It will be part of our

future work to analytically determine this value.

Figure 5.6 shows the magnifying effect produced by an increase of the parameter k.

k-hop relaying produces an enlargement of the area where summary packets are diffused

intuitively proportional to k2. Consequently, also the number of nodes affected by a single

summary diffusion will be about k2 larger than the single-hop case. Moreover, while in

the single-hop case nodes receive any summary packet only once, with k-hop relaying

any node within k-hops from the originator receives it a number of times proportional to

the number of its neighbors. Thus, the total overhead is expected to increase by a factor

larger than k2 but lower than k2 times the average number of neighbors (please note that

114

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 15 25

R
e
c
e
i
v
e
d

p
a
c
k
e
t
s

p
e
r

s
e
c
o
n
d

Average speed (meters/seconds)

RWP
RT

MAN

Figure 5.5: Total number of received packets (k=1)

k-hop distant nodes do not relay packets, thus reducing the latter factor for k-hop as well

as k − 1-hop distant nodes). The combination of these results with those in Figure 5.4 lead

us to conclude that parameter k permits to decrease harvesting latency (about 20 − 30%

for k = 3) at the price of relevant overhead increase (around 15 − 20 times). The proper

balance of latency/k tradeoff can be only decided depending on specific characteristics and

requirements of the supported urban monitoring application.

5.5 Stability Check

In the following, we investigate the stability of MobEyes, by verifying that continuous sum-

mary injections do not influence its performance to a large extent. In particular, we show

that the ratio of summaries harvested on longer periods remains acceptable and that the

harvesting latency does not grow as time passes. With regard to the results presented so far,

115

 30

 40

 50

 60

 70

 80

 90

 100

 5 15 25

R
e
c
e
i
v
e
d

p
a
c
k
e
t
s

p
e
r

s
e
c
o
n
d

Average speed (meters/seconds)

RWP
RT

MAN

Figure 5.6: Total number of received packets (k=3)

here we remove the assumption about the single summary generation epoch at t = 0. Nodes

generate new summaries with period T = 120s and advertise the last generated summary:

let us observe that according to the discussion presented in Section 3.2 this rate represents

a practical worst case. For the sake of clarity of presented results, we hold the synchronic-

ity assumption: all nodes simultaneously generate new summaries at intervals multiple of

T . We obtained similar performance with differently distributed generation intervals, i.e.,

Poisson with average value T but plots (especially related to results in Figure 5.8) are far

more jumbled. The following results are reported for the case of a single harvesting agent,

k = 1, N = 100, v = 15m/s, and nodes moving according to the RT model. Figure 5.7

plots the cumulative distribution of the number of summaries generated and harvested as a

function of time (we ran simulations for 6000s). The graph shows that the harvesting curve

116

tracks the generation curve with a certain delay, which can be traced to the harvesting la-

tency in Section 5.2. This also motivates the difference of the endpoints of the two plots.

Figure 5.8 provides further evidence of the stability of the system; curves show the harvest-

ing latency for summaries generated during some generation epochs. For the sake of figure

clarity, the graph does not exhaustively represent every generation epoch, but only samples

one generation epoch every T ∗ 7 = 840s till the end of the simulation time. The different

curves show similar trends, without any performance degradation caused by the increase

of the number of summaries in the network. The harvesting related to the last summary

generation epoch is evidently incomplete (25% of the summaries are harvested within the

timeline), since the epoch starts 120s before the end of the simulation. These results prove

that MobEyes achieves completeness in harvesting generated summaries even in practical

worst cases.

We also investigated if higher summary generation rates afflict MobEyes performance.

We shortened T from 120s to 6s (with T = 6s, the chunk generation rate is 100ms). Such a

generation rate is largely greater than the one required for the set of applications addressed

by MobEyes. Simulation results prove that MobEyes performance starts degrading only

when T < 30s. Figure 5.9 shows the harvesting process for two epochs (0s and 2520s)

and compares T = 120s with T = 6s. The second case shows that MobEyes performance

degrades gracefully as the generation epoch shortens, thus demonstrating the high stability

of the system when operating in usual summary rate conditions.

5.6 Tracking Application

In the Section 3.1 we sketched some application cases for MobEyes. For the sake of prov-

ing its effectiveness in supporting urban monitoring, we also simulated a vehicle tracking

117

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1000 2000 3000 4000 5000 6000H
a
r
v
e
s
t
e
d

a
n
d

g
e
n
e
r
a
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

Generated
Harvested

Figure 5.7: Cumulative distribution of generated and harvested summaries over all epochs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000

H
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

Figure 5.8: Cumulative distribution of harvested summaries per epoch

118

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000

H
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

T=120s, t=0s
T=6s,t=0s

T=120s, t=2520s
T=6s, t=2520s

Figure 5.9: Cumulative distribution of harvested summaries per epoch

application where the agent reconstructs node trajectories exploiting the collected sum-

maries. This is a challenging application, since it requires our system (1) to monitor a

large number of targets, i.e., all participant vehicles, (2) to periodically generate fresh in-

formation on these targets, since they are highly mobile, (3) to deliver to the agent a high

share of the generated information. Moreover, since nodes are generally spread all over the

area, this application shows that a single agent can maintain a consistent view of a large

zone of responsibility. More in details, as regular cars move in the field, they generate new

summaries every T = 120s and continuously advertise the last generated summary. Every

summary contains 60 summary chunks, which are created every ChunkPeriod = 2s and

include the license plate and position of the vehicle nearest to the summary sender at the

generating time, tagged with a timestamp. The application exploits the MobEyes diffusion

protocol with k = 1 to spread the summaries and deliver as much information as possible to

119

a single agent scouting the ground. As the agent receives the summaries, it extracts the in-

formation about node plates and positions, and tries to reconstruct node trajectories within

the area. This is possible by aggregating data related to the same license plate, reported

from different summaries.

To determine the effectiveness of MobEyes we decided to evaluate the average uncov-

ered interval and maximum uncovered interval for each node in the field. Given a set of

summary chunks related to the same vehicle and ordered on time basis, these parameters

measure respectively the average period for which the agent does not have any record for

that vehicle and the longest period. The latter typically represents situations in which a

node moves in a zone where vehicle density is low; thus, it cannot be traced by any other

participant. We associated the average and maximum uncovered intervals to each simu-

lated node, and present the results in Figure 5.10 (note the logarithmic scale on the Y-axis).

Every point in the figure represents the value of the parameter for a different node. We

sorted nodes on the X-axis so that they are reported with increasing values of uncovered

interval. Results are collected along a 6000s simulation. The plot shows that in most cases

the average uncovered interval floats between [2.7s−3.5s]; the maximum uncovered inter-

val shows that even in the worst cases the agent has at least one sample every 200s for more

than 90% of the participants. A more immediate visualization of the inaccuracy is given in

Figure 5.11. This figure shows, for the case of a node with a maximum uncovered interval

equal to 200s (i.e., locating this node in the lowest 10th percentile), its real trajectory (the

unbroken line), and the sample points the agent collected.

120

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100M
a
x

a
n
d

A
v
e
r
a
g
e

U
n
c
o
v
e
r
e
d

I
n
t
e
r
v
a
l
s

(
s
)

Node

Maximum
Average

Figure 5.10: Maximum uncovered intervals per node

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

Y
-
c
o
o
r
d

X-coord

Actual path
Sampled points

Figure 5.11: Actual node trajectory vs harvested sampled points

121

5.7 Border Effects and Turn Over

Usual mobility models [23], such as RWP, MAN, and RT, assume that nodes remain within

the simulated area during the whole simulation (in the following, we indicate them as closed

mobility models). Even if this does not necessary hold for MobEyes applications, we ob-

serve that this assumption does not invalidate our findings. First, if we consider a suffi-

ciently large area, on the order of tenths by tenths km2, the amount of time that nodes

continuously reside within the area is likely very long, approximating for most nodes a

closed mobility model. Second, the worst effect of dynamic scenarios takes place when

nodes leave a specific area carrying several summaries (locally generated or collected) not

harvested by the local agent yet. Nonetheless, we remark that carried information does

not vanish as nodes leave, but can be harvested later by remote agents, responsible for the

adjacent area the leaving nodes are moving into.

However, to estimate how node entrances/exits impact presented results, we tested

MobEyes with a novel mobility model, open-RT, which takes these effects into account.

In open-RT nodes follow the same patterns of RT, with one exception: as soon as a node

reaches the endpoint of a track, close to the boundary of the area, it suddenly disappears.

To maintain unchanged the number of nodes within the area, and obtain results comparable

to the ones presented in the previous sections, we assume that the net vehicle flow in/out

the area is null. Thus, any node exiting from the area is immediately replaced with one

node entering; the latter is placed at the endpoint of a random road, close to the boundary

of the area.

This dynamic effect is better evaluated for long simulation periods and periodic sum-

mary generation epochs. Thus, we confirm the settings used in Sections 5.5 and 5.6; in

addition, we consider a single harvesting agent, k = 1, N = 100, v = 15m/s. Nodes

122

generate new summaries synchronously, and only as long as they remain in the area. To

avoid that nodes stay within the area only for very short periods, we introduce a constraint

on their minimum residing time equal to 10% of the whole simulation. Even with this as-

sumption, more than 550 nodes need to take turns on the simulation area, to maintain 100

nodes always present. The agent does not follow open-RT model, but traditional RT, i.e., it

always remains within the area.

Figures 5.12 and 5.13 present results corresponding to those in Sections 5.5 and 5.6, but

obtained with the open-RT model. Significant conclusions can be drawn, especially from

Figure 5.12: also under these unfavorable assumptions, the agent is able to collect more

than 85% of any generated summary, and in most cases it reaches 90%. By inspecting

simulation traces, we could find that missing summaries generally originate by vehicles

leaving the area within a short interval from any epoch. In that case, the last generated

summary is only advertised for that short interval and cannot spread enough to reach the

agent. Let us remark once more that those summaries are not irreparably lost, but will be

probably harvested by agents in charge of the adjacent areas. Figure 5.13 shows average

and maximum uncovered intervals as obtained with the open-RT model. The quality of

the reconstructed trajectories is only slightly degraded, given that the average uncovered

interval is below 4s for more than 75% of the nodes (and below 10s for 90%), and that the

85th percentile of the vehicles can be tracked with a worst-case inaccuracy of 200s.

123

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000F
r
a
c
t
i
o
n

o
f

h
a
r
v
e
s
t
e
d

s
u
m
m
a
r
i
e
s

Time (seconds)

Figure 5.12: Cumulative distribution of harvested summaries per epoch (open-RT)

 1

 10

 100

 1000

 0 100 200 300 400 500M
a
x

a
n
d

A
v
e
r
a
g
e

U
n
c
o
v
e
r
e
d

I
n
t
e
r
v
a
l
s

(
s
)

Node

Maximum
Average

Figure 5.13: Maximum uncovered intervals per node (open-RT)

124

Chapter 6

REDMAN Implementation

To support REDMAN operations we have designed and implemented the architecture de-

scribed in Section 2.2. We briefly recall that it is composed of four main components

respectively in charge of carrying dense MANET configuration (DMC), replica dissemina-

tion (RD), retrieval (RR), and degree maintenance (RDM). These components can be logi-

cally organized into three macro-modules, according to the role of the entity they support.

Delegates perform resource dissemination and retrieval, and are also partly responsible of

degree maintenance; in fact, in case of exit from the dense MANET, they are in charge

of notifying the manager, and getting rid of their shared resources via neighbor uploads.

Managers only perform RDM operations; in particular, they decide resource replication

degree as a new delegate enters the dense MANET, and counteract degree inconsistencies,

by invoking new replications. To this end, they need a Shared Resource Table verifier,

periodically checking actual vs. established degree. Finally, the Dense MANET Configu-

ration module is implemented on all nodes participating in the REDMAN network. DMC

identifies nodes belonging to the dense MANET and chooses suitable managers.

Before analyzing REDMAN design and implementation in more details, we rapidly

identify the key requirements of our work.

125

126

• Flexibility: REDMAN components include distributed protocols to effectively per-

form replica management operations (e.g., dissemination and retrieval). We aim at

designing an architecture that can easily adapt to protocol/strategy changes.

• Portability: addressed scenarios accomodate highly heterogeneous user devices;

thus, to permit the seamless integration of REDMAN on most of them, we devel-

oped our system in Java, allowing the execution on all devices including a virtual

machine implementation.

• Lightweightness: in waiting rooms, but even more in stadium-like scenarios, users

are likely equipped with portable devices, such as PDAs and smart phones. These

are resource limited devices unable to support the full functionality of a Java standard

edition, but in most cases only a reduced version called Java Micro-Edition.

• Energy-awareness: resource limited devices emphasize energy issues. So far, we

have only provided a way for a node to waive manager election if energy is not

enough. However, our current research mostly focuses on global effective strategies,

e.g., to place replicas according to accurate energy evaluations.

• Modularity: memory is likely limited on current portable devices. We address a mod-

ular design to permit to easily exclude the local burden of un-necessary components,

e.g., for replica dissemination and manager coordination.

6.1 Design

This section discusses the logic design of REDMAN middleware. The presented compo-

nents refine the high-level architecture in Figure 2.2, include details of some interfaces, and

clarify system interactions. However, we observe that the described architecture is not yet

127

ready to be implemented: additional details will be specifically included in the next sec-

tion. According to the introduction we separate the subject in three main modules: DMC,

delegate and manager.

6.1.1 DMC

DMC represents the basic module for operating dense MANET, and provides functionality

to access topology information to upper-layer modules. The two main components dis-

cussed in Section 2.2 reflect the design architecture (Figure 6.1); DMC coordinates their op-

erations by hiding details from upper layers. The exposed function setupDenseMANET

transparently performs dense MANET identification and manager election. The Density

Enquiry Mng broadcasts a discovery message; then, when a timer expires, it starts the

Election Manager, which in turn activates the Farthest Node Identification.

As soon as the operations end, the identifier of the currently elected manager is stored,

and the control is returned to the caller. However, the Identification Agent continuously

runs to perform dense MANET and manager role maintenance operations. In particular,

it maitains a Neighbor Table via Hello message exchanges (see Section 2.3.1), which is

specifically needed in RD/RR protocols. Upper layers (e.g., delegate/manager RDM) can

register a “topology” callback (e.g., according to Java listener architecture) to be notified

when the node is exiting the dense MANET (i.e., when the number of neighbors rapidly

decreases or approaches the threshold value n). On the replica manager, this same execu-

tion flow periodically runs the FarthestNodesIdentification component to determine if the

conditions to carry manager role still locally hold.

128

Figure 6.1: The modular architecture of REDMAN DMC

6.1.2 Delegate

The delegate architecture (Figure 6.2) builds upon DMC and is more complex. First, it

includes a ResourceTable containing one entry for each shared resource. The user can

populate this table via the addResource method; every time a new resource is added,

the user should specify its importance level. As soon as a node enters a dense MANET

(let us rapidly observe that the status of the node, whether belonging to the dense MANET

or not, can be accurately monitored via the same topology DMC callback described few

lines above.), the ManagerCoordinator delivers the list of carried resources, with an RDF

descriptor [37], to the network manager to obtain suitable replication degrees.

Then, according to the replication degree, the Replica Propagation Strategy agent per-

forms the distribution. This is provided as an abstract component, since it only represents

an interface implemented by the actual agent (the instantiation takes place through the

Factory pattern [49]). In the current prototype, a SID agent is included, performing the

“straight” line deployment of IRPs (including the RDF description of the resource) and

replicas (see Section 2.5.3); receiving nodes store IRPs in the IRPTable. Obviously, the

129

Replica Propagation Strategy agent needs to move the full resource along the dissemina-

tion path. However, especially for low-end portable devices (e.g., smart phones), access

to local resources is device dependent (more details are in the next section). Thus, with

portability goals in mind, we exploited the Adapter pattern [49] that permits to abstract the

actual access protocol behind generic methods.

The delegate interface exports two replica retrieval methods, i.e., search to find a

node sharing the needed resource, and getResource to effectively command the down-

load. Similarly to replica dissemination, to maintain flexibility and permit to seamlessly

change the strategy, we provide an abstract replica retrieval component, exposing a generic

retrieve method. The prototype implements the SID retrieval agent, receiving a pa-

rameter related to the searched resource (i.e., its RDF description), and returning the

identifier of a node sharing that resource. A Replica Snd/Recv component is responsi-

ble for downloading/uploading the needed replica. Two methods, getResource and

sendResource, respectively implement the operations to download replicas and to up-

load. Both of them deal with the ResourceManagerAdapter to extract and store the re-

source.

If the receiving node decides on its turn to share the downloaded resource,

getResource interfaces with the RD’s ManagerCoordinator via addResource

method (which invokes notifyAddedResource). Let us observe that the Replica

Snd/Recv component is the only REDMAN component supposed to operate upon a routing

protocol for the resource delivery. In fact, resource provider can be several-hop distant

from requester. Our recent work consists in comparing the effectiveness of multi-hop rout-

ing solutions, with alternative path-building strategies using the information carried during

IRP deployments. The latter likely involve a higher overhead due to the non-optimality of

130

the provider-requester paths implicitly found joining straight lines.

Finally, RDMAgent is responsible for performing the client-side RDM protocols. In

particular, three situations in Section 2.6 lead to the following control flow:

• A node can realize it is leaving the dense MANET if either the user invokes the

exitFromDM method or a notification is risen by the DMC. In fact, if the num-

ber of neighbors rapidly decreses, approaching the threshold n, DMC notifies the

StatusListener. In that case, the notifyExitingmethod calls the ReplicaPropa-

gationStrategy to immediately discharge carried resources (if any).

• The StatusListener can also determine whether the node has left the dense MANET,

i.e., if the number of neighbors falls behind the threshold; in that case, it immediately

invokes the notifyExitedmethod.

• The RDM protocol to recover abrupt departures is based on delegate presence confir-

mation: this is accomplished through periodic invocation of the notifyIAmAlive

method.

6.1.3 Manager

Since the manager is only a support role, without any direct interaction with the local

user, it does not export any interface method, and behaves essentially like a daemon. We

rapidly mention that actually a non-functional interaction with the user occurs as an explicit

preventive confirmation, required before its own activation. The core data structure of

the manager is the SharedResourceTable including resource descriptors, target replication

degree and the list of the replica delegates with associated expiration timers. These are

loosely consistent information used to re-establish consistency in case of abrupt delegate

departures.

131

Figure 6.2: The modular architecture of the REDMAN delegate

Two main components accomplish manager functions. RDMEngine determines target

replication degrees and implements communication protocols with delegates. SRTMng

operates on the SharedResourceTable, by updating its content and periodically checking

replication degree consistency. If the actual replication degree of any resource is below the

target degree, then SRTMng invokes the requireReplication on the RDMEngine.

6.2 Implementation

According to the guidelines and key requirements stated in the introduction of this chapter

we implemented REDMAN architecture on J2ME. The goal of this section is not to pro-

vide a mere description of classes and interfaces, but to discuss the main implementation

issues encountered during the development. However, before probing this question it is

helpful to rapidly review J2ME characteristics most relevant to the desciption (i.e., related

to communication and persistent storage).

132

Figure 6.3: The modular architecture of the REDMAN manager

6.2.1 J2ME

To meet the constrained resources of portable devices, Sun started releasing a number of

limited versions of the Java 1.1 platform, each tailoring a different group of devices with

similar characteristics. J2ME was developed as a new architecture to unify these hetero-

geneous products. J2ME modular design permits to combine Configurations and Profiles,

the former essentially defining virtual machines and basic Java classes, the latter extending

Configurations with additional libraries. In this thesis work, we focus on CLDC, i.e., the

Configuration with the lowest hardware/software requirements (it targets devices with as

low as 160KB of non-volatile memory and 32KB of volatile), and MIDP Profile, providing

in particular UDP support, persistent storage access, and a model for the development of

applications (Midlet).

CLDC’s Generic Connection Framework (GCF) jointly supports communication as

well as I/O operations with a common set of abstractions. Essentially, GCF is an API re-

fining a generic Connection into more specific abstractions: DatagramConnection defines

packet I/O; InputConnection, and OutputConnection stream-based I/O, which is further re-

fined in ContentConnection. GCF does not implement any protocol; MIDP extends GCF

133

by implementing TCP and UDP classes. To permit to instantiate new UDPDatagramCon-

nection, users invoke the openmethod of a Connector factory class. This receives a string

argument including used protocol, destination address, and protocol-specific parameters,

and returns the connection object.

GCF abstraction can be seamlessly implemented to provide file support: FileConnec-

tion [69] permits to access files stored on device filesystem as well as removable memory

cards. The operations should be carried exactly as for any other GCF connection. Un-

fortunately, FileConnection is available only for devices running operating systems with

filesystem abstraction. If a device does not provide a filesystem, then it is still possible to

persistently store resources, by exploiting MIDP’s RecordStore. Differently from filesys-

tem, RecordStore is strictly tied to the instantiating application and hardly permits resource

sharing between a well-defined group of applications. RecordStore abstraction is by no

means connected to GCF, but is separately defined [67].

6.2.2 Implementation Experience

This section reports some interesting issues we encountered and solved during REDMAN

implementation. In particular, we focus on four main areas: i) packet processing; ii) com-

munications; iii) resource packetization; iv) routing protocol interactions.

Packet Processing

REDMAN packets contain a common header including a Type field, which can vary over

more than a dozen possibilities, SrcAddress/DestAddress, representing the actual sender

and receiver of the message (let us recall that in multi-hop communications these can differ

from the values in the IP-header), and DatagramId that, combined with the SrcAddress,

provides a unique identifier for the packet. As soon as a packet is received, a common

134

REDMAN Dispatcher is in charge of determining how it should be managed by inspecting

the Type field. Different choices are possible: the Dispatcher could sequentially elaborate

the packet, or it can notify the packet to a single waiting Thread, or it can activate a brand

new Thread for every received packet. Ideally, to maximally parallelize the execution, the

latter solution would be the best; however, constrained devices implicitly limit the maxi-

mum number of active Threads, by degrading performance as more Threads are activated.

Thus, we choose to differentiate packets requiring a complex (and generally blocking) elab-

oration, e.g., those delegating the execution of manager election or resource dissemination

protocols, from those expecting a quick reply, e.g., shared neighbors probe in SID. The Dis-

patcher activates brand new Threads for the former, while it only notifies existing Threads

for the latter, by placing the packet in the respective waiting queue.

Communications

Most packets are delivered with local broadcasts, e.g., hellos, neighbor probes, farthest

node determination relaying. However, we found that limited broadcast (with destination

“255.255.255.255”) is not supported on J2ME. We collected the same experience on a

number of different implementations: PalmOS and WindowsMobile versions of IBMWeb-

sphere, and Sun and IBMWireless Toolkits. In particular, the limited broadcast destination

address is not recognized as a valid argument in the Connector’s openmethod. This prob-

lem could be solved by replacing limited broadcast with direct broadcast (with destination

“X.Y.Z.255”).

Resource Packetization

Resources are locally accessed via FileConnection GCF APIs where a filesystem is sup-

ported, via Record Store elsewhere. During upload/download phases, resources need to be

135

carried in Datagram packets. Unfortunately, they often exceed datagram sizes; thus, they

need to be split into a sequence of packets. REDMAN implements automatic methods to

fragment resources at sender, and recompose at destination. In this case, it is important to

determine the packet size allowing the best performance. We experimentally proved that,

as expected, the biggest packet size supported by the communication device always leads

to best performance (i.e., because this choice minimizes the communication overhead).

Routing Protocol Interactions

Even if we have not implemented any routing protocol yet, we realized that some of the

operations we support would be identically repeated at the network layer. For instance,

many multi-hop routing protocols exchange Hello packets to monitor local connectivity,

and maintain a neighbor table. REDMAN repeats the same operations/data structures at

an upper level. Interestingly, cross-layer design could avoid this unnecessary communica-

tion/memory waste, by allowing REDMAN to directly access network-layer information.

6.3 Test

We tested REDMAN prototype in small PDA and laptop network setups, on top of J2ME

CLDC and MIDP provided by IBM J9 Websphere (for PDAs) and by Sun Wireless Toolkit

(for laptops). We utilized different types of PDAs (Compaq, Palm, HP) with 400MHz

Intel CPU, [64MB-128MB] RAM and PalmOS or Pocket PC operating systems. As for

the laptops, we ran REDMAN on Dell Latitudes D600, equipped with Pentium M 1.4GHz,

512MB RAM and Windows XP operating system.

Due to the limited number of available devices, we only aimed at evaluating the basic

mechanism of REDMAN protocols. In particular, we instantiated a 1 to 2-hop (i.e., 2 to 3-

node) network and evaluated latency during basic DMC operations. Here we present only

136

Network hop diameter 1 hop 2 hops

Farthest Node

Determination [ms]
214.5 238.1

Manager Election [ms] 1156.7 1881

Table 6.1: DMC protocol latency

a subset of the results we obtained (we are still working to extend our evaluation). We mea-

sured DMC farthest node identification latency in 1 and 2-hop networks. This step of the

election algorithm is highly influenced by two timers: one on the flooding forwarder deter-

mining whether the node is the farthest in its direction or not (FarthestReplyT imer), one

on the current initiator to stop the farthest identification process and proclaim its INvalue

(StopFarthT imer). Since we were interested only in the communication latencies, we set

FarthestReplyT imer = 0 to collect replies from all the few nodes, while we did not take

into account StopFarthT imer at all, but we measured only the time needed to obtain all

the replies. The first row of Table 6.1 shows that this value is on the order of few hundred

milliseconds.

Then, we measured the election latency in the same network setup. In this case, the re-

sults are highly influenced by StopFarthT imer, which is set equal to 500ms, and by

MaxConsecutiveEqualSolutions, which is set equal to 2. We observe that the election

latency is lower than a couple of seconds for 1-hop as well as 2-hop networks (second

row of Table 6.1). As expected, the difference for the two cases approximates the value

StopFarthT imer meaning that for the second case one more election iteration is needed.

137

6.4 Security

REDMAN is supposed to operate in open environments and, as any other MANETmiddle-

ware/application, potentially presents several security issues [123, 141, 59]. Even if not the

primary focus of our research, after having demonstrated the feasibility and effectiveness

of the REDMAN approach, we are now analyzing the main security weaknesses affecting

our solution and investigating how to provide lightweight countermeasures against these

issues.

By passing over link-layer security concerns, such as denial of service threats lever-

aging traffic jamming (which frequency hopping or spread spectrum techniques can elim-

inate), we have mainly identified two different protocol layers suffering from potential

security problems. On the one hand, DMC protocols (in particular, manager election) un-

dergo the same security issues of any MANET network-layer solution, such as in the case

of routing. On the other hand, RD/RR strategies are prone to the security concerns typical

of any peer-to-peer system for content distribution. In the following, we rapidly discuss

the main characteristics of primary security concerns specific to dense MANET replication

and identify possible guidelines of solution that are currently under investigation.

About the DMC layer, the main security issue is represented by malicious participants

aiming at either becoming managers or saving their own battery/network resources. For

instance, a malicious node M can force its election as manager by forging replies with a

fake (higher) hop-counter during the REDMAN farthest node identification protocol. In

that case, the current IN is likely to delegate the exploration to its neighbor placed in the

M direction. M can repeat the same procedure until it becomes an IN, and then can falsely

assume the manager role. In the case of non-colluding attackers, misbehavior detection

138

strategies can easily face up with this problem, as deeply investigated within ad-hoc rout-

ing research. Several solutions in the literature are based on passive acknowledgement, i.e.,

on the implicit control by each participant of the behavior of its successor through channel

overhearing [17], even if there are well-known situations where the approach does not work

properly [137]. Once identified a manager election attack, the culprit needs to be penal-

ized to discourage further security attacks. That raises additional trust issues since it can

be difficult to decide whether the accuser or the accused is the actual rogue. To this spe-

cific purpose, many solutions have been proposed [102], also based on reputation methods

[137]. Selfish node behavior represents another potentially security issue for REDMAN

[88]: nodes could aim at saving their battery, by refusing to forward farthest node detection

packets or by forging distant node replies with a fake (lower) hop-counter, thus avoiding

to be chosen as the next explored IN. Let us observe that the high node density of dense

MANETs makes the problem less critical because there is sufficient redundancy in link

connectivity to guarantee a correct protocol behavior anyway, at least when the number of

simultaneous attackers is limited. Moreover, also in this case, overhearing techniques can

help in defending from the attack. An additional approach to overcome selfish behavior is

represented by incentives, sorts of virtual monetary rewards to stimulate and motivate user

cooperation. For instance, intermediate nodes could be refunded for the energy dissipated

in packet forwarding. [20] presents a tamper-resistant device in charge of maintaining a

virtual wallet, by also preventing from selfish money forgeries. An auction-based solution

aiming at establishing how much a node should pay for a MANET service is presented in

[31].

About the security concerns of high-layer REDMAN protocols, RD/RR/RDM solutions

are subject to well-known content distribution and peer-to-peer attacks, widely investigated

139

for traditional wired-network deployment scenarios [2]. With regards to resource distribu-

tion and retrieval, malicious intermediate nodes could exhibit a selfish misbehavior: they

could not forward replica distribution/retrieval packets or could not store replicas when des-

ignated as resource delegates. Security solutions similar to the ones explained above can

deal with the former attack. Again, let us observe that flooding-based REDMAN RR ben-

efits from path redundancy within the dense MANET. The latter problem of “node storing

quotas”, i.e., the selfish behavior consisting in exploiting the storage of other participants

while not lending one’s own, has been addressed in many research works. For instance,

[41] proposes to equip each device with an anti-tampering smartcard.

Additional problems relate to resource access control and authorization [2], by taking

into account also the digital rights that replicated resources could be subject to. While

generally disregarded in traditional peer-to-peer protocols, in wired networks these con-

cerns can be solved by trusting a certification authority (CA) for key distribution [35]. In

infrastructure-less MANETs, where it is unfeasible to assume CA availability, the prob-

lem is harder: recent research is proposing novel and completely decentralized key man-

agement systems for these scenarios [59, 4]. Finally, also Digital Rights Management

(DRM) has undergone deep research in the last years: [84] proposes DRM architectures

for infrastructure-based networks that can be easily adapted to MANET when assuming

the temporary availability of wide-range connections, such as GPRS, to off-line download

licenses directly from clearinghouses.

140

Chapter 7

MobEyes Implementation

In this chapter, we report our experience in developing and deploying a Java-based architec-

ture for MobEyes, reflecting that described in 3.2. We recall that this is composed of three

main components: The two key modules are MSI, which supports a portable and transpar-

ent access to heterogeneous sensing devices, and MDHP, which implements opportunistic

summary diffusion/harvesting protocols. Both these facilities will be extensively described

in the following sections. The third MobEyes component, less specific for the VSN re-

search area, is MDP, which periodically collects sensed data from MSI, and extracts useful

features, such as license plate numbers of cars in sensed video streams, through application

filters. We rapidly observe that signal processing algorithms to support MobEyes target

applications (e.g., accurate license plate recognition) have been recently developed and are

out of the specific scope of this thesis [131, 27]. To create summaries, extracted features

are then combined with relevant data read from other sensors and physically situated with

corresponding timestamp and geographic location. Finally, MDP stores raw sensed data

and summaries in the Raw Data Storage and Summary Database, respectively, via standard

functions for persistency and database management.

Before delving into finer design details, we rapidly observe that the key requirements of

141

142

our work are Portability and Openness. Vehicles accomodate heterogeneous devices; thus,

to permit the seamless integration of MobEyes on most of them, we developed our system

in Java. Moreover, we considered important to interface with the highly heterogeneous

world of sensing devices with standard and state-of-the-art open specifications, such as the

Java Media Framework for cameras, the JSR179 Location API for possibly heterogeneous

positioning systems, and the Java Communications API for interfacing with lower-layer

environmental sensors. We note that with respect to REDMAN, MobEyes application sce-

nario allows to relax some key requirements. First of all, computers installed on vehicles

have likely far lower energy constraint than portable devices. Thus, for MobEyes we could

exploit the full-fledged Java Standard Edition (however, let us rapidly observe that the de-

sign could be easily migrated to more limited platforms). Similar considerations allow to

relax constraints on architecture modularity and energy-awareness, even if these remain

second-order guidelines of our design.

7.1 Design and Implementation

7.1.1 MobEyes Sensor Interface

MSI aims to facilitate the access to possibly heterogeneous sensor devices, by providing a

high-level interface that exposes generic functions. In this way, MobEyes guarantees ac-

cess transparency and high adaptability to changes in the devices (and in their driver imple-

mentations) available in the deployment environment and possibly discovered at runtime.

For instance, if the sequence of operations to access a camera sensor changes, developers

working on top of MobEyes are completely hidden from the modification. Let us rapidly

observe that this dynamicity is obtained by considering only the limited and invariant set

of operations needed to MobEyes. In other words, MSI has been specifically designed

143

for MobEyes and, thus, does not permit general-purpose control operations and parameter

settings on sensor devices.

MSI is built on top of the standard Java Virtual Machine. This choice grants wide

portability to our implementation. At the same time, that design decision has facilitated

our development and deployment work, by allowing us to adopt several standard Java API

that provide useful contributions to supporting sensor communications, control, and man-

agement. Some API, as detailed in the following, are the result of the open Sun standard-

ization process (Java Community Process - JCP), which warrants a widespread support for

heterogeneous platforms by involving all stakeholders, from developers to companies, in

the definition of novel Java specifications and extensions to increase consensus on crucial

design decisions [65].

MobEyes deployment scenarios call for the support of a number of different sensing

devices, depending on the kind of data that police patrol agents are going to retrieve from

regular cars, e.g., audio/video streams or images of the streets, temperature, weather, and

road conditions, all to be tagged with location information. We identified three primary

classes of sensors, corresponding to three different standard Java API. MSI exploits the Java

Media Framework (JMF) API to access the first class of sensed data, which is generated by

multimedia devices such as cameras and microphones. JMF provides a widespread set of

functions to perform acquisition, control, and management operations on multimedia sen-

sors (e.g., to capture images or video streams with digital webcams, or to command/transfer

the recording of audio streams with microphones) [66].

The second class includes all sensors (usually monitoring lower-layer environmental

information if compared with audio/video sensors) that can be connected through an RS-

232 serial interface. RS-232 can either provide access to an embedded board where sensors

144

report analog inputs or directly receive the output signal of a single sensor. In both cases,

the values made available on the serial interface are retrieved by using the Java Communi-

cations API [64]. This standard API permits to operate with serial/parallel communication

ports, by hiding the details of low-level platform-dependent drivers. The Java Commu-

nications API supports both synchronous and asynchronous (event-driven) programming

models. In particular, it is possible to automatically raise/receive notifications every time a

signal overcomes a specified threshold. For any different sensor type (temperature sensors,

carbon-oxide detectors, ...) of interest for MobEyes, MSI currently implements an ad-hoc

module for specialized serial data parsing. We are working on generalizing the parsing

process so to provide a single parser module, possibly instructed by different XML-based

descriptions of the data format provided by specific types of sensors. Mainly due to the

proof-of-concept purpose of our current MobEyes prototype and to the non-negligible cost

of pollution sensors, at the moment MSI includes only two specific parsing modules for

temperature and hygrometer sensors.

Since in MobEyes any monitored data are useful only if tagged with space/time coor-

dinates of the corresponding sensing location, the third crucial class of sensors includes

positioning systems, i.e., “sensors” that can provide localization data. MSI can obtain geo-

graphic location of sensors by querying the positioning system hosted on board of the car.

To interface with heterogeneous positioning solutions (satellite-based, such as GPS, but

also signal-strength based, such as Ekahau [85]) in a standard way, MSI exploits the Java

Location API (JSR 179) [68]. For instance, MSI invokes JSR 179 functions to select the

positioning technique to use, by simply specifying the desired location accuracy and/or re-

sponse time. Other JSR 179 functions are used to get position updates either synchronously

or through an event-driven interface. The latter permits either to specify periodic updating

145

Figure 7.1: The modular architecture of MobEyes MSI

intervals or to be notified when located in proximity of a target. The exploitation of these

standard API allows MSI to be independent of the implementation of the specific localiza-

tion system available in the deployment environment.

In the following, the section specifically focuses on the main design choices behind

our portable MSI realization, structured around the three previously sketched classes of

sensors. Figure 7.1 shows the overall MSI architecture with, from left to right, the three

subsystems supporting the three sensor classes.

Standard Interfacing with Audio/Video Sensors

The leftmost part of Figure 7.1 shows the audio/video sensor interfacing subsystem. This

includes four components supporting access to audio, video, synchronized audio/video, and

image data. A grabber module is responsible of the interaction with JMF functions. The

grabber facilitates design maintenance by decoupling high-level MSI components from ac-

cess procedures, which may be specific of each device. In short, the grabber is in charge of

obtaining a JMF Player/Processor from an abstract input device (Microphone or Camera),

and of connecting its output to a destination file where the sensed data will be stored.

MSI hides the details of actual data access operations, by exposing high-level methods

146

to grab the currently sensed image and to save audio, video, and audio/video streams. For

image grabbing, MSI either returns an Image object or a file of the taken picture. With

regards to data streams, MSI permits to command recording start/stop; the stream is initially

stored in an uncompressed format (RGB video and LINEAR audio) for efficiency reasons

as motivated in the experimental result section, and encoded only offline.

MSI provides two main parameters to simply control sensing processes: format and

quality, which affect occupied memory, processing time, and reproduction accuracy. The

suitable parameter choice depends on application-level requirements. For example, MDP

may require high quality images for post-processing to extract license plate numbers. In the

case of video streams finally watched by human operators, top quality is usually not needed

and it is possible to configure MSI with less resource-consuming format/quality settings.

Through JMF, MSI can support many different formats, including PCM, MPEG Layer

2 and GSM for audio streams, MPEG-1, MJPEG and H.263 for video streams. The choice

of MSI quality value (with a coarse granularity from 1 to 3) directly influences the adopted

encoding parameters (see Section 5).

Standard Interfacing with Temperature Sensors

The rightmost part of Figure 7.1 shows the sensor interfacing subsystem. Its flexible and

modular architecture is based on the Sensor abstraction representing the actual device. Sen-

sors export a generic method, getSensedData(), which returns an object of abstract type

Data. The MSI Dispatcher rules the interaction between upper layers and Sensors. The

MSI Dispatcher API includes the method Data getData(String sType) that, based on the

requested data type, returns a Data object with current reading. In case the sensor does not

properly work, the method raises an exception.

MSI directly builds on the low-level Java Communications API to access and collect

147

sensed data. The Java Communications API permit both to synchronously read data from

Sensors and to register listeners to be invoked every time new data are available on the com-

munication port (serial and parallel ports). Both modes are fully supported and integrated

in MSI.

Since MSI will likely need to support a growing number of sensors, extensibility is

a crucial aspect for its design. To this purpose, the Dispatcher manages only Sensor and

Data interfaces, without the need of any modification if a new sensor type is added. In

that case, developers willing to extend the MSI prototype should only implement the new

device class as a subclass of Sensor. The device-specific Sensor subclass is in charge of

actually reading, parsing, and verifying the raw data present on the serial port.

Standard Interfacing with Positioning Systems

MSI permits to easily include in the set of sensed data also the geographic coordinates of

sensors, in an open and standard way. Our Location module provides a simplified view

of JSR 179 functions to MobEyes developers, by aggregating and composing API of the

standard Java specification. In particular, the Location module can synchronously return

the current ¡latitude, longitude, and (optionally) altitude¿ car coordinates. Similarly to the

generic sensor case, the function either creates an object encapsulating the coordinates or

raises an exception, e.g., in the case GPS is the only available positioning technique and

cannot determine the position because the car is indoor in an underground car park.

To the best of our knowledge, no free implementation of JSR 179 was available for

J2SE at the time of writing. Thus, two different design options were possible: either imple-

menting the JSR 179 specifications, or interfacing the GPS as if it was a common sensing

device, i.e., directly through the Java Communications API. Given the relevance of opening

MSI via the extensive adoption of standard specifications, we decided to develop our partial

148

implementation of JSR 179. Our implementation of LocationProvider interfaces with GPS

equipment via a serial port by exploiting the Java Communications API. Currently, we are

working on a portable extension of our LocationProvider to support also USB-based GPS

devices, by exploiting the Java USB API (JSR 80) [70].

7.1.2 MobEyes Data Harvesting Processor

MDHP manages communications for regular nodes as well as for police agents. It is in

charge of extracting/storing summaries from/to the local database and of implementing

opportunistic protocols for summary diffusion/harvesting. Figure 7.2 represents both reg-

ular node and police agent MDHP components; obviously, only the suitable ones will be

installed on a single vehicle depending on its type. Figure 7.2. MDHP component archi-

tecture

MDHP functions can be split in two different layers. The upper layer (DB Interfac-

ing Layer) interworks with the summary database that maintains summaries either locally

generated or obtained from neighbors and not delivered to an agent yet. The lower one

(Network Management Layer) consists of the components that actually implement com-

munication protocol operations. While the DB Interfacing layer deals with instances of the

Java Summary class, the Network Management layer marshals/unmarshals summaries into

packets. Any summary includes a license plate number (6 bytes), additional sensed data

(10 bytes, currently a 3-byte temperature/hygrometer info and a 7-byte placeholder), times-

tamp (2 bytes), and vehicle location (8 bytes). Thus, each 1500-byte packet can pack up to

58 summaries, without exploiting any additional aggregation or size-optimizing encoding

technique.

149

Figure 7.2: The MDHP modular architecture for regular and agent nodes

Periodically, the DiffusionManager at regular nodes advertises recently generated sum-

maries (one packet with the 58 last summaries provided by the Local Summary DB Inter-

face). In the current MobEyes implementation, the diffusion period is set to 5 seconds and

new summaries are expected to be generated with a maximum rate of 0.4 Hz (so, each sum-

mary is advertised at least 29 times). As future work, we are considering: i) to adapt the

diffusion period to the changing rate of neighbor set (detected by Neighbor Manager); and

ii) to combine summaries generated in different epochs in the same packet. The guideline

is to maximize the usefulness of packets by advertising them to new neighbors expected

not to have already collected the included summaries.

Any time a regular node receives new summaries, the Received Summary Persistence

Manager updates the local database. Summaries are maintained until a police agent query

is received: in that case, the Summary Selector component performs Bloom filter matching

[43], prepares the set of summaries to send to the agent, ordered from the least to the most

recent ones (in fact, due to random node trajectories, oldest summaries are likely to be the

rarest in the neighborhood and consequently the higher priority ones), and then removes

those summaries from the local database.

150

Actual communications between agents and regular cars are carried by the Harvester

and the Agent Interaction Manager. The Harvester coordinates neighbor communications

by exploiting unicast messages for queries. The Agent Interaction Manager, instead, han-

dles summary delivery on regular nodes. In the current prototype, as soon as an agent

encounters other agents (at 1-hop distance), the Multi-Agent Coordinator exchanges the

list of harvested summaries. We are now extending the MobEyes architecture to support

multi-hop inter-agent communications by exploiting IETF reactive routing protocols such

as AODV [110, 105]. About low-layer communication support, we built MDHP on the

standard .net package for sensing nodes equipped with J2SE. Limited nodes with J2MEwill

benefit from a MobEyes prototype version with a different implementation of the Packet

component of the Network Management Layer, based on the standard Connection frame-

work included in the official Sun virtual machine.

7.2 Test

We developed current MSI and MDHP implementations on top of J2SEv1.5. We adopted:

1) the official Sun release of JMF 2.1.1 with Windows Performance Package (including

enhanced audio/video decoders/encoders for Microsoft platforms); 2) our own implemen-

tation of JSR 179; 3) the official Sun release of Java Communications API v2.0.

To verify the feasibility of our approach, we tested MobEyes components in real-world

scenarios. Here we present some selected results, referring to the performance of the MSI

audio/video capture functionality. Tests were performed by capturing streams at a traf-

ficked intersection near the UCLA campus and were run on Dell Latitude D610 laptops,

equipped with PentiumM2GHz, 512MB RAM, and Logitech Quickcam Chats. We aimed

at evaluating three parameters: the size of generated files of sensed data, mainly dependent

151

Rec-Time A/V RGB
A/V MJPG

(Medium)

Audio

LINEAR
Audio GSM

5s 4907 934 439 9

20s 16280 3295 1747 33

60s 46518 8749 5180 95

Table 7.1: Generated file size [KB]

on stream length and encoding type; the overhead time needed to capture the stream, i.e.,

the gross amount of time needed to start media processor and to close processor and output

file; and the conversion time to encode the stream.

Tables 7.1, 7.2, and 7.3 show the results obtained while capturing audio and audio/video

streams, either in raw or encoded formats. For RGB video, the frame rate was set to

4 fps and resolution to 320x240 (we are currently experimenting with higher-resolution

cameras allowing 640x480 image capturing, as suggested in [27]); for LINEAR audio,

sample rate was set to 44100, 16 bits per sample. Table 7.1 shows the average size of the

files generated during our tests, for different recording time lengths. Both compression

methods (audio/video MJPG, and audio GSM) achieve a significant file size reduction.

MJPG permits to tune a “quality” parameter, influencing the conversion time, as well as the

output file size. Table 7.1 shows only the results with a medium quality value: this permits

to reduce the file size of about 5 times with regard to the raw version. Similar results are

obtained in the case of streams including only the video track. Table 7.2 shows the overhead

time needed to start the JMF processor capturing the stream and to terminate it. Results

prove that audio/video capturing overhead is significantly greater than the one for a stream

with only the audio track. Finally, Table 7.3 reports how long it takes to MSI to convert

audio/video streams to the MJPG encoded format, depending on the chosen quality factor.

Lower quality values (MobEyes quality=1, equivalent to MJPG quality=10%) impose a

152

Rec-Time A/V RGB
Audio

LINEAR

5s 4790 306

20s 4493 401

60s 7780 270

Table 7.2: Overhead time [ms]

Rec-Time
A/V MJPG

(Low)

A/V MJPG

(Medium)

A/V MJPG

(High)

5s 802 1432 2099

20s 1901 2198 11354

60s 6726 6523 37429

Table 7.3: Conversion time [ms]

stable conversion time, largely compatible with typical MobEyes application requirements.

7.3 Security

MobEyes nodes continually generate and diffuse summaries containing private informa-

tion, e.g., license plate numbers. Thus, privacy is of critical importance. On the one hand,

non authorized nodes must not be allowed access to private information. On the other

hand, the harvesting process should not reveal the information that is being sought, since

this may tip the attackers or may cause unnecessary panic in the public. In general, we can

summarize the security requirements of MobEyes as follows:

• Authentication. Harvesting agents (authority nodes) must authenticate summary

senders and vice versa.

• Non-repudiation. A summary originator cannot deny the transmission of a summary

(liability issue); in that way, upon request from the agent, the summary sender must

153

submit the full file with related sensed data.

• Privacy. Only legitimate users (authority nodes) can access summaries. Moreover,

summaries must be privately advertised such that the attackers cannot track users.

• Service Availability. MobEyes summary diffusion/harvesting should be protected

from Denial of Service (DoS) attacks.

• Data Integrity. MobEyes should be able to filter out false summary data injected by

attackers.

• Query Confidentiality. In some cases, e.g., bio-attacks and search for crime suspects,

even the nature of the query should not be disclosed, not to create unnecessary panic

in the population or to avoid tipping the criminals.

One important aspect that sets apart MobEyes “forensic sensed data” security from con-

ventional “safe navigation” VANET security is the “real time” and “criticality” of the safe

navigation application. Consider for example a dangerous curve on the road monitored by

an “e-mirror”. If no car is coming, the e-mirror tells the driver to proceed at normal speed,

else, it tells her to slow down. An adversary can “anticipate” the message from the mirror

and tell her that the way is clear, while instead a truck is coming at high speed behind the

curve. In this “safe drive” application, it is mandatory to authenticate alert messages. Thus,

in safe navigation applications, message authentication is far more important than privacy.

For instance, privacy concerns should not prevent a driver from alerting the vehicles behind

her that there is a boulder on the road.

MobEyes has strongly different security requirements. A false report cannot create

much damage since it is not acted upon immediately (for example, a wrong set of license

154

plates at the crime scene). There is plenty of time to detect and if necessary punish the “im-

postors.” On the other hand, drivers that propagate summaries want to be assured that their

privacy will not be violated. This major difference in security concerns leads to MobEyes

security approaches that are quite different (and in fact much simpler and generally more

efficient) than conventional VANET security solutions. Readers can find general security

issues for VANET in [108]. For the sake of brevity, in this section we will simply out-

line several MobEyes security approaches, reserving the detailed, rigorous discussion of

MobEyes security to future publications.

7.3.1 PKI Model

In MobEyes, we assume the existence of Public Key Infrastructure (PKI). Every node has

a private/public key pair, which is issued through the Certificate Authority (CA) such as

the police. Let PKA and SKA denote the node A’s public and secret key pair. Let H(·)

denote a one-way hash function (e.g., SHA-1). For the sake of illustration, we assume that

each node reads license plate numbers of nearby vehicles and prepares a summary which

may contain a set of license plate numbers annotated with time and location. The summary

should be encrypted by using the police public key (PKCa) so no one but the police can

read it. Only the police need to authenticate the signature of the summary generator, while

neighboring vehicles have no such need. Therefore, MobEyes does not need continuous

access to the distributed PKI infrastructure. The digital signature and the certificate of the

originator (CertCx) are also encrypted in the same way. The verifier (i.e., the Police), upon

decryption, uses the certificate CertCx signed by the authority where Cx is the node ID.

Thus, for a given summary SCx generated at time T and position P , node Cx sends the

155

following advertisement to its one hop neighbors (denoted as ∗).

Cx → ∗ : Mx, T, P

whereMx = {SCx , T, P, {H(SCx)}SKCx
, CertCx}PKCa

.

The parameters T = time and P = location, corresponding to summary collection, are in

the clear as they are the indexes to the summary database kept by each private vehicle. They

are necessary to process on demand queries by the police. Every time the originator reissues

the same summary, it introduces “jitter” in T and P (say several seconds and several meters)

so that the police agent can still retrieve the record (as it falls in its space time window of

interest), but the eavesdropper cannot infer the presence of the same user along the path

as detailed in Section 7.3.3. Then, neighbor nodes will store the message in their local

database, indexed by T and P . Through Bloom filter set reconciliation, the agent will

harvest the encrypted summary if it falls within the space-time window of interest. After

decrypting the summary (and eliminating aliases), the agent stores it in its local database.

7.3.2 Attack Model

As just shown, standard PKI mechanisms provide authentication and non-repudiation. In

this section we focus on the rest of the MobEyes requirements, namely privacy, service

availability, and data consistency, by addressing the following MobEyes-specific attack

models:

• Location Tracking. Periodic broadcasting of identical summaries could facilitate at-

tackers in tracking the route of a vehicle.

• Denial of Service (DoS). Attackers could inject a large number of bogus summaries

in order to slow down correct summary harvesting by agents.

156

• False Data Injection. Attackers could inject fabricated summaries in order to mislead

investigations or make the data inconsistent.

• Query Confidentiality. Attackers could infer “important” information from the con-

tent of police queries.

Let us finally note that in MobEyes we can exclude Sybil attacks, where a node illegit-

imately claims multiple identities. In fact, the certification authority issues a public/private

key pair for a given vehicle (unique identifier per node). We will assume that the signa-

ture/certificate cannot be forged.

7.3.3 Location Tracking Attack

Let us consider a typical tracking scenario where the attackers can infiltrate base stations on

the roadsides and listen to all the advertised summaries. In MobEyes, a node periodically

advertises its encrypted summary. If the message remains the same, the attacker can infer

the trajectory of the sender node. We have solved this problem in a very simple way. Each

repeated summary is slightly altered by changing T and P (i.e., it is a slightly modified

clone). Assuming that the traffic was moderately dense when the sample was collected

(say a few cars within a 100m street segment), the attacker cannot recognize the presence

of the same vehicle from the sequence of summaries. The overhead introduced by this

solution is minimal. Since it is less likely that a node meets the same vehicles many times,

a few vehicles will store two or more “clones.” The police agent detects and discards clones

upon collecting and decrypting summary messages.

157

7.3.4 Denial of Service

Apart from channel jamming (which can be easily detected at the physical layer and im-

mediately stopped and punished by authorities), a serious DoS attack to MobEyes may be

caused by the injection of a large number of summaries into the network, e.g., caused by

sensor data interface malfunctioning. If the summaries are playback messages, they are

immediately detected and dropped. If the summaries look like legitimate summaries, the

attack can be handled by using rate limited summary diffusion which shares the same idea

of RREQ rate limit in a secure routing protocol [58]. Each node keeps track of the in-

coming rate of summary for each MAC address. Recall that a node will periodically rotate

its MAC address for privacy. However, the rate monitoring period (say, a few seconds) is

much smaller than the rotation period. If the rate is above a certain threshold, intermediate

nodes simply discard incoming summaries. The rate is a system parameter and is deter-

mined based on the types of sensed data. Suspicious activity is reported to authorities for

further analysis. For instance, the authorities can map pseudorandom MAC addresses to

vehicle numbers, thus requesting the owner to fix the device or (in case of malicious attack)

by revoking key pairs and prosecuting the abuser.

7.3.5 False Data Injection

False data injection is a very serious attack in conventional sensor networks [125, 138, 142].

Fortunately, in a VSN designed for forensic investigation, this type of attack is easy to

detect and neutralize thanks to the observations of other nodes. There are several possible

attacks of this type. First, the attacker could aim to mislead the search for kidnapping

criminals, say, and it reports that it was at the right place/time of crime and saw a set of

“fabricated” license plates. The attacker (or colluding attackers) will be quickly uncovered

158

when the police investigate the phony license plates. A second false report attack is for the

criminal to claim it was at a different place at the time of crime. Video taped records from

crime witnesses will also permit to uncover the false report. A third type of attack could

be the reporting of false sensed values. If the attackers collude, they may indeed create

enough false reports to offset the scale. However, fluctuations in values would prompt the

authorities to investigate, thus leading to the vehicle IDs of the cars injecting false reports,

with their possible prosecution.

7.3.6 Query Confidentiality

Agents must retrieve information confidentially. Specifically, the agent tries to avoid a

situation where criminals may take an evasive action if they realized the police are on their

heels. Another possible concern is the investigation of chemicals that might be connected

to a bio-attack. Since this investigation may be launched after a tip, and in most cases

will turn out to be a false alarm, the public should not be told of the specific target of this

investigation. Otherwise phenomenal traffic congestion may follow, with potentially very

serious damage to vehicles and drivers. This requires a secure query such that the vehicles

cannot tell what the agent is searching for. To this end, MobEyes exploits private keyword

searching, proposed by Ostrovsky et al. [100].

Let us assume that the harvesting agent aims to retrieve images of some target vehicles.

The agent has already harvested the summaries in the suspect area and has determined

which vehicles were in the right place/time and might store the original images/licenses

she is interested in. The agent cannot bluntly ask these vehicles if they have the target data.

Rather, it prepares a dictionary of the license plate numbers in the nearby area (acquired

from the harvested summaries). Each item is tagged E(1) if interested; otherwise E(0).

159

E(x) is a homomorphic public-key encryption function which has two important proper-

ties: i) E(x) is probabilistic, in particular it will encrypt a single bit in many different ways,

such that any instance of E(0) and any instance of E(1) cannot be distinguished; and ii)

E(x) is homomorphic such that E(x) × E(y) = E(x + y).

The agent will broadcast this tagged dictionary as a query in the vicinity of each of

the vehicles that hold the information. After receiving a query, a vehicle start resolving

the query by processing each document in its local storage as follows. For each document

D with license plate number x, compute the encrypted value g (g = E(1) or g = E(0))

and then calculate gD. If the agent is interested in D, gD will result in gD = E(D);

otherwise, gD = E(0). Given output gD, the agent can find D exactly. Each vehicle has

an output buffer initialized with E(0). Hashing is used to find a slot to store the output.

The output will be multiplied with the value in the slot, leading to the result that only

interested documents will be stored in the buffer. The output buffers of all the local vehicles

(neighbors of the vehicles with useful data) are later read by the agent. As a result, the

police agent discovers the vehicles with useful information and instructs them to upload all

of their data for a proper time-space window (not too narrow to raise suspicions, nor too

large to bring in too much junk data) to the next police access point.

160

Conclusions

Pervasive and ubiquitous computing scenarios are calling for dynamic models, describing

timely, temporary, and non-mediate interactions among autonomous nodes. The MANET

paradigm imposes a communication pattern with message exchange in infrastructure-less

environments. To allow remote communications between devices beyond direct radio cov-

erage, MANET establish a co-operation principle, involving intermediate node support, in

terms of message relaying. In most scenarios, MANET devices are both mobile, exacerbat-

ing multi-hop path stability issues, and energy-limited, thus requiring power conservation

strategies. MANETmodel benefits applications in different areas, ranging from emergency

relief in harsh environments, to opportunistic entertainment networking and resource ex-

change, to urban monitoring.

MANET features raise a number of common critical issues undermining the effective-

ness of applications. To this end, it is crucial the design of middleware facilitating appli-

cation development and deployment. In particular, middleware typically increases service

portability over different lower-layer communication protocols. In this thesis work, we

identified two primary challenges hampering effective remote resource access in MANET.

First, mobile nodes can leave network area without any notice, disrupting availability of

common interest resources. Second, lacking centralized server authorities, resources need

to be distributedly discovered and located. This issue is aggravated in wide-scale, sparse

161

162

network, such as VANET.

This thesis work proposes original middleware solutions addressing mentioned prob-

lems. REDMAN provides the dissemination of resource replicas, to improve their avail-

ability. In particular, it proposes effective distributed protocols, to locate close resources

and to maintain established replication degrees in spite of possible node mobility outside

the service area. Simulative results prove that REDMAN approach is feasible and that de-

signed protocols are lightweight, i.e., limit the number of diffused messages, and highly

accurate and effective in addressing discussed goals. MobEyes specifically targets infor-

mation indexing and dissemination for proactive urban monitoring on Vehicular Sensor

Networks. MobEyes exploits mobility to opportunistically diffuse sensed data summaries

among neighbor vehicles and to create a low-cost opportunistic index supporting queries on

distributed sensed data storage. Results obtained simulating wide-scale, highly-dynamic

scenarios show that MobEyes protocols are effective in supporting distributed indexing,

even in case of very high sensed data generation rates.

We remark that this work has been an original investigation of the addressed themes,

paving the way for promising further explorations. The encouraging results obtained via

simulations and prototype experimentations disclose challenging directions for REDMAN

and MobEyes research. First of all, a wider and more extensive deployment of both devel-

oped prototypes in-the-field is important to test and quantify performance. A practical and

stimulating direction is in the development of applications on top of these platforms. Actu-

ally, a MIDlet exchange solution have been prototyped on REDMAN, while a target track-

ing solution have been simulated on MobEyes: more extensive development work is on

the way. Security analyses reported in implementation chapters mainly review envisioned

163

attacks and general-purpose countermeasures. We will address the design of original solu-

tions targeting specific scenarios as future investigations. From a theoretical point of view,

the extension of protocol analysis is a very interesting direction. This allows to increase

our insights of favorable operating conditions, and of applicability limitations of proposed

middleware. Next results will address the evaluation of, e.g., how REDMAN overhead

tradeoffs are affected by system parameters (e.g., dense MANET diameter, number of par-

ticipants, node mobility, resource distributions/requests ratio, average replica size,...), and

how multiple harvesting agents in MobEyes influence the proposed equations, depending

on collaboration strategies. Finally, also replica dissemination/retrieval and information

harvesting protocols will be carefully reviewed to find possible modifications leading to

performance improvements. Further comparisons with feasible alternatives allow to ex-

tend protocol verification and suggest favorable integrations in REDMAN and MobEyes.

164

Bibliography

[1] IEEE 802.11e/D4.4, Draft Supplement to Part 11: Wireless Medium Access Control

(MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC)

Enhancements for Quality of Service (QoS), June 2003.

[2] S. Adroutselli-Theotokis and D. Spinellis. A survey of peer-to-peer content distri-

bution technologies. ACM Computing Surveys, 36(4), Dec. 2004.

[3] ARGO - Global Ocean Sensor Network. www.argo.ucsd.edu.

[4] N. Asokan and P.Ginzboorg. Key agreement in ad hoc networks. ACM Computer

Communication Review, 23(17), Nov. 2000.

[5] I. Aydin and C.-C. Shen. Facilitating match-making service in ad hoc and sensor

networks using pseudo quorum. In IEEE ICCCN, Oct. 2002.

[6] F. Bai and A. Helmy. Impact of Mobility on Mobility-Assisted Information Diffu-

sion (MAID) Protocols. Technical report, USC, July 2005.

[7] P. Bellavista, A. Corradi, and E. Magistretti. Comparing and evaluating lightweight

solutions for replica dissemination and retrieval in dense manets. In IEEE ISCC,

Jun. 2005.

[8] P. Bellavista, A. Corradi, and E. Magistretti. Lightweight autonomic dissemination

of entertainment services in wide-scale wireless environments. IEEE Communica-

tions Magazine, 1(6), June 2005.

[9] P. Bellavista, A. Corradi, and E. Magistretti. Lightweight replication middleware for

data and service components in dense manets. In IEEE WoWMoM, Jun. 2005.

165

166

[10] P. Bellavista, A. Corradi, and E. Magistretti. Redman: a decentralized middleware

solution for cooperative replication in dense manets. In IEEE PerWare Workshop,

Mar. 2005.

[11] P. Bellavista, A. Corradi, and E. Magistretti. Redman: an optimistic replication

middleware for read-only resources in dense manets. Elsevier Journal of Pervasive

and Mobile Computing, 1(3), Aug. 2005.

[12] C. Bettstetter, G. Resta, and P. Santi. The Node Distribution of the Random Way-

point MobilityModel for Wireless Ad Hoc Networks. IEEE Transactions on Mobile

Computing, 2(3), Jul.-Sept. 2003.

[13] BitTorrent. http://bittorrent.com/.

[14] M. Boulkenafed and V. Issarny. A middleware service for mobile ad hoc data shar-

ing, enhancing data availability. In 4th ACM/IFIP/USENIX Middleware, June 2003.

[15] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In ACM

WSNA, Sept. 2002.

[16] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. G. Jetcheva. A Performance

Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols. In ACM

MOBICOM, Oct. 1998.

[17] S. Buchegger, C. Tissieres, and J.-Y. Le-Boudec. A test-bed for misbehavior de-

tection in mobile ad-hoc networks - how much can watchdogs really do? In IEEE

WMCSA, Dec. 2004.

[18] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine. MaxProp: Routing for

Vehicle-Based Disruption-Tolerant Networks. In IEEE INFOCOM, Apr. 2006.

[19] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M. B.

Srivastava. Participatory Sensing. In ACM WSW, Oct.-Nov. 2006.

[20] L. Buttyan and J.-P. Hubaux. Stimulating cooperation in self-organizing mobile ad

hoc networks. ACM/Kluwer Mobile Networks and Applications (MONET), 8(5),

Oct. 2003.

167

[21] F. Cali, M. Conti, and E. Gragori. Ieee 802.11 wireless lan: Capacity analysis and

protocol enhancement. In IEEE INFOCOM, Mar. 1998.

[22] M. Caliskan, D. Graupner, and M. Mauve. Decentralized discovery of free parking

places . In ACM VANET, Sept. 2006.

[23] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc network

research. Wireless Communications and Mobile Computing (WCMC), 2(5), 2002.

[24] G. Cao, L. Yin, and C. Das. Cooperative cache-based data access in ad hoc networks.

IEEE Computer, 37(2), Feb. 2004.

[25] MIT’s CarTel Central. http://cartel.csail.mit.edu/.

[26] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash. A feedback based

scheme for improving tcp performance in ad hoc wireless networks. IEEE Personal

Communications, 8(1), Jan. 2001.

[27] S.-L. Chang, L.-S. Chen, Y.-C. Chung, and S.-W. Chen. Automatic license plate

recognition. IEEE Transactions on Intelligent Transportation Systems, 5(1), Mar.

2004.

[28] J.-H. Change and L. Tassiulas. Energy conserving routing in wireless ad-hoc net-

works. In IEEE INFOCOM, Mar. 2000.

[29] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Data gathering algorithms

in sensor networks using energy metrics. ACM/Kluwer Wireless Networks Journal,

8(5), Sept. 2002.

[30] K. Chen and K. Nahrstedt. An integrated data lookup and replication scheme in

mobile ad hoc networks. In SPIE ITCom, Aug. 2001.

[31] K. Chen and K. Nahrstedt. ipass: an incentive compatible auction scheme to enable

packet forwarding service in manet. In IEEE ICDCS, Mar. 2004.

[32] Z. D. Chen, H. Kung, and D. Vlah. Ad Hoc Relay Wireless Networks over Moving

Vehicles on Highways. In ACM MOBIHOC, Oct. 2001.

168

[33] I. Chlamtac, M. Conti, and J.-N. Liu. Mobile ad hoc networking: Imperatives and

challenges. Elsevier Journal on Ad Hoc Networks, 1(3), Jul. 2003.

[34] L. Cox and B. Noble. Fast reconciliations in fluid replication. In IEEE ICDCS, Apr.

2001.

[35] N. Daswani, H. Garcia-Molina, and B. Yang. Open problems in data-sharing peer-

to-peer systems. In Int. Conf. on Database Theory (ICDT), Jan. 2003.

[36] A. Datta. Autonomous Gossiping: A Self-organizing Epidemic Algorithm for Se-

lective Information Dissemination in Wireless Mobile Ad hoc Networks. In ICDCS

2003 Doctoral Symposium, May 2003.

[37] S. Decker, P. Mitra, and S. Melnik. Framework for the semantic web: an rdf tutorial.

IEEE Internet Computing, 4(6), 2000.

[38] UMass’ DieselNet. http://prisms.cs.umass.edu/dome/.

[39] M. D. Dikaiakos, S. Iqbal, T. Nadeem, and L. Iftode. VITP: an information transfer

protocol for vehicular computing . In ACM VANET, Sept. 2005.

[40] L. Dlagnekov and S. Belongie. Recognizing Cars. Technical Report CS2005-0833,

UCSD CSE, 2005.

[41] P. Druschel and A. Rowstron. Past: A large-scale, persistent peer-to-peer storage

utility. In IEEE HotOS-VIII, May 2001.

[42] S. B. Eisenman, G.-S. Ahn, N. D. Lane, E. Miluzzo, R. A. Peterson, and A. T.

Campbell. MetroSense Project: People-Centric Sensing at Scale. In ACM WSW,

Oct.-Nov. 2006.

[43] L. Fan, P. Cao, and J. Almeida. Summary Cache: A Scalable Wide-Area Web Cache

Sharing Protocol. In ACM SIGCOMM, Aug.-Sept. 1998.

[44] L. Feeney. Energy efficient communication in ad hoc wireless networks. In S.

Basagni, M. Conti, S. Giordano, I. Stojmenovic, Ad Hoc Networking, IEEE Press,

2003.

169

[45] M. Freedman, E. Freudenthal, and D. Mazières. Democratizing content publication

with coral. In USENIX/ACM NSDI, Mar. 2004.

[46] R. Friedman. Caching web services in mobile ad-hoc networks: Opportunities and

challenges. In ACM Workshop on Principles of Mobile Computing, Oct. 2002.

[47] Z. Fu, P. Zerfos, K. Xu, H. Luo, S. Lu, L. Zhang, and M. Gerla. The impact of

multihop wireless channel on tcp throughput and loss. In IEEE INFOCOM, Apr.

2003.

[48] C. Fullmer and J. G.-L. Aceves. Solutions to hidden terminal problems in wireless

networks. In ACM SIGCOMM, Sept. 1997.

[49] E. Gamm, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Publisher, 1994.

[50] S. Garg, Y. Huang, C. Kintala, K. Trivedi, and S. Yajnik. Performance and reliability

evaluation of passive replication schemes in application-level fault tolerance. In

IEEE ISFTC, Jun. 1999.

[51] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet: An Architecture for

a Worldwide Sensor Web. IEEE Pervasive Computing, 2(4), Oct.-Dec. 2003.

[52] M. Grossglauser and D. Tse. Mobility Increases the Capacity of Mobile Ad-hoc

Networks. In IEEE INFOCOM, Apr. 2001.

[53] M. Grossglauser and M. Vetterli. Locating Nodes with EASE: Mobility Diffusion

of Last Encounters in Ad Hoc Networks. In IEEE INFOCOM, Mar.-Apr. 2003.

[54] T. Hara. Effective replica allocation in ad hoc networks for improving data accessi-

bility. In IEEE INFOCOM, Apr. 2001.

[55] W. Heinzelmann, A. Chandrakasan, and H. Balakrishnan. Eergy-efficient commu-

nication protocols for wireless microsensor networks. In IEEE HICSS, Jan. 2000.

[56] A. Helal, N. Desai, V. Verma, and L. Choonhwa. Konark - a service discovery and

delivery protocol for ad-hoc networks. In IEEEWireless Communications Networks,

Mar. 2003.

170

[57] G. Holland and N. Vaidya. Analysis of tcp performance over mobile ad hoc net-

works. In ACM MOBICOM, Aug. 1999.

[58] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: A Secure On-Demand Routing

Protocol for Ad Hoc Networks. In MOBICOM, Sept. 2002.

[59] J.-P. Hubaux, L. Buttyan, and S. Capkun. The quest for security in mobile ad hoc

network. In ACM MOBIHOC, Oct. 2001.

[60] F. Hui and P. Mohapatra. Experimental characterization of multi-hop communica-

tions in vehicular ad hoc networks. In ACM VANET, Oct. 2005.

[61] B. Hull, V. Bychkovsky, K. Chen, M. Goraczko, A. Miu, E. Shih, Y. Zhang, H. Bal-

akrishnan, and S. Madden. CarTel: A DistributedMobile Sensor Computing System.

In ACM SenSys, Oct.-Nov. 2006.

[62] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: a Scalable and

Robust Communication Paradigm for Sensor Networks. In ACM MOBICOM’00,

2000.

[63] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot.

Optimized link state routing protocol. In IEEE INMIC, Dec. 2001.

[64] Java Communication API. http://java.sun.com/products/

javacomm/.

[65] Java Community Process. http://jcp.org.

[66] Java Media Framework. http://java.sun.com/products/

java-media/jmf/.

[67] Java Record Management System. http://developers.sun.com/

techtopics/mobility/midp/articles/databaserms/.

[68] Java Specification Requests 179. http://jcp.org/en/jsr/detail?id=

179.

[69] Java Specification Requests 75. http://jcp.org/en/jsr/detail?id=75.

171

[70] Java Specification Requests 80. http://jcp.org/en/jsr/detail?id=80.

[71] D. B. Johnson and D. A.Maltz. Dynamic source routing in ad hoc wireless networks.

In Mobile Computing Kluwer Academic Publisher. Kluwer Academic Publishers,

1996.

[72] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein. Energy-

Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences

with ZebraNet. In ACM ASPLOS-X, Oct. 2002.

[73] B. Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless

Networks. In ACM MOBICOM’00, Aug. 2000.

[74] R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor

spreading. In IEEE Symposium on Foundations of Computer Science, 2000.

[75] G. Korkmaz, E. Ekici, F. Ozguner, and U. Ozguner. Urban Multi-Hop Broadcast

Protocols for Inter-Vehicle Communication Systems. In ACM VANET, Oct. 2004.

[76] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Corradi. Efficient

Data Harvesting in Mobile Sensor Platforms. In IEEE PerSeNS, Mar. 2006.

[77] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Corradi. MobEyes:

Smart Mobs for Urban Monitoring with Vehicular Sensor Networks. IEEE Wireless

Communications, 13(5), Sept.-Oct. 2006.

[78] U. Lee, J.-S. Park, E. Amir, and M. Gerla. FleaNet: A Virtual Market Place on

Vehicular Networks. In IEEE V2VCOM, Jul. 2006.

[79] U. Lee, J.-S. Park, E. Amir, and M. Gerla. FleaNet: A Virtual Market Place on

Vehicular Networks. In V2VCOM’06, July 2006.

[80] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris. A Scalable Location

Service for Geographic Ad Hoc Routing. In ACM MOBICOM, 2000.

[81] L. Li and J. Halpern. Minimum-energy mobile wireless networks revisited. In IEEE

ICC, Jun. 2001.

172

[82] Q. Li and D. Rus. Sending messages to mobile users in disconnected ad-hoc wireless

networks. In ACM MOBICOM, Aug. 2000.

[83] S. Lindsey, C. Raghavendra, and K. Sivalingam. Data gathering algorithms in sen-

sor networks using energy metrics. IEEE Transactions on Parallel and Distributed

Systems, 13(9), Sept. 2002.

[84] W. Liu, R. Safavi-Naini, and P. Sheppard. Digital rights management for content

distribution. In Australasian Information Security Workshop (AISW), Feb. 2003.

[85] T. Manesis and N. Avouris. Survey of position location techniques in mobile sys-

tems. In ACM MobileHCI, Sept. 2005.

[86] A. Manjeshwar and D. P. Agrawal. Teen: A routing protocol for enhanced efficiency

in wireless sensor networks. In ACM/IEEEWorkshop Parallel and Distributed Com-

puting Issues in Wireless Networks and Mobile Computing, Apr. 2001.

[87] A. Manjeshwar and D. P. Agrawal. An efficient sensor network routing protocol

(apteen) with comprehensive information retrieval. In ACM/IEEE Workshop Paral-

lel and Distributed Computing Issues in Wireless Networks and Mobile Computing,

Apr. 2002.

[88] S. Marti, T. J., G. K., L. M., and Baker. Mitigating routing misbehavior in mobile ad

hoc networks. In ACM MOBICOM, Aug. 2000.

[89] University of Dartmouth MetroSense. http://metrosense.cs.

dartmouth.edu/.

[90] P. Michiardi and R. Molva. Ad hoc networks security. In S. Basagni, M. Conti, S.

Giordano, I. Stojmenovic, Ad Hoc Networking, IEEE Press, 2003.

[91] D. Nain, N. Petigara, and H. Balakrishnan. Integrated Routing and Storage for Mes-

saging Applications in Mobile Ad Hoc Networks. In WiOpt’03, Mar. 2003.

[92] A. Nandan, S. Das, G. Pau, M. Gerla, and M. Y. Sanadidi. Co-operative Download-

ing in Vehicular Ad-Hoc Wireless Networks. In IEEE WONS, Jan. 2005.

173

[93] A. Nandan, S. Tewari, S. Das, G. Pau, M. Gerla, and L. Kleinrock. AdTorrent:

Delivering Location Cognizant Advertisements to Car Networks. In IFIP WONS,

Jan. 2006.

[94] S. Narayanaswamy, V. Kawadia, R. Sreenivas, and P.R.Kumar. Power control in

ad-hoc networks: Theory, architecture, algorithm implementation of the compow

protocol. In European Wireless, Feb. 2002.

[95] S. Nath, J. Liu, and F. Zhao. Challenges in Building a Portal for Sensors World-

Wide. In ACM WSW, Oct.-Nov. 2006.

[96] V. Naumov, R. Baumann, and T. Gross. An Evaluation of Inter-Vehicle Ad Hoc

Networks Based on Realistic Vehicular Traces. In ACM MOBIHOC, May 2006.

[97] S. Nesargi and R. Prakash. Manetconf: Configuration of hosts in a mobile ad hoc

networks. In IEEE INFOCOM, Jun. 2002.

[98] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast storm problem in a

mobile ad hoc network. In ACM MOBICOM, Aug. 1999.

[99] ns-2 (The Network Simulator). http://www.isi.edu/nsnam/ns/.

[100] R. Ostrovsky and W. Skeith. Private Searching on Streaming Data. In CRYPTO,

Aug. 2005.

[101] P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks. InCNDS,

Jan. 2002.

[102] K. Paul and D. Westhoff. Context aware detection of selfish nodes in dsr based

ad-hoc networks. In IEEE GLOBECOM, Nov. 2002.

[103] C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector

routing (DSDV) for mobile computers. In ACM SIGCOMM, 1994.

[104] C. Perkins, J. Malinen, R. Wakikawa, E. Belding-Royer, and Y. Sun. Ip address

autoconfiguration for ad hoc networks. In Internet Engineering Task Force.

[105] C. E. Perkins and E. M. Belding-Royer. Ad-hoc On-Demand Distance Vector Rout-

ing. In ACM WMCSA, Feb. 1999.

174

[106] G. Pottie andW. Kaiser. Wireless integrated networks sensors (wins): Principles and

approach. Communication of the ACM, 43(5), May 2000.

[107] T. Rappaport. Wireless Communications: Principles and Practice. IEEE Press Pis-

cataway, NJ, USA, 1996.

[108] M. Raya and J.-P. Hubaux. The Security of Vehicular Ad Hoc Networks. In SASN,

Nov. 2005.

[109] O. Riva and C. Borcea. The urbanet revolution: Sensor power to the people! IEEE

Pervasive Computing, 6(2), 2007.

[110] E. M. Royer and C.-K. Toh. A review of current routing protocols for ad hoc mobile

wireless networks. IEEE Personal Communications, 6(2), Apr. 1999.

[111] J. L. B. S. Buchegger. The effect of rumor spreading in reputation systems for mobile

ad-hoc networks. In IEEE WiOpt, Mar. 2003.

[112] A. K. Saha and D. B. Johnson. Modeling Mobility for Vehicular Ad Hoc Networks.

In ACM VANET’04, October 2004.

[113] F. Sailhan and V. Issarny. Energy-aware web caching for mobile terminals. In ICDCS

Workshops, July 2002.

[114] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. B. Srivastava. Optimizing sensor

networks in the energy-latency-density design space. IEEE Transactions on Mobile

Computing, 1(1), Jan.-Mar. 2002.

[115] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: Modeling a Three-

tier Architecture for Sparse Sensor Networks. Elsevier Ad Hoc Networks Journal,

1(2-3), Sept. 2003.

[116] Sid Meier’s Civilization. http://www.civ3.com/.

[117] S. Singh, M. Woo, and C. S. Raghavendra. Power-aware routing in mobile ad hoc

networks. In ACM MOBICOM, 1998.

175

[118] A. P. Sistla, O. Wolfson, and B. Xu. Opportunistic Data Dissemination in Mo-

bile Peer-to- Peer Networks. In International Symposium on Spatial and Temporal

Databases, Aug. 2005.

[119] T. Small and Z. J. Haas. The Shared Wireless Infostation Model - A New Ad Hoc

Networking Paradigm (or Where There is a Whale, There is a Way). In ACM MO-

BIHOC, June 2003.

[120] K. Sohrabi, J. Gao, V. Ailawadhi, G. J., and Pottie. Protocols for self-organization

of a wireless sensor network. IEEE Personal Communications, 7(5), Oct. 2000.

[121] D. Sormani, G. Turconi, P. Costa, D. Frey, M. Migliavacca, and L. Mottola. Towards

lightweight information dissemination in inter-vehicular networks . In ACM VANET,

Sept. 2006.

[122] T. Spyropoulos, K. Psounis, and C. Raghavendra. Performance Analysis of

Mobility-Assisted Routing). In ACM MOBIHOC, May 2006.

[123] F. Stajano, R. J., and Anderson. The resurrecting duckling: Security issues for ad-

hoc wireless networks. In Workshop on Security Protocols, Apr. 1999.

[124] M. Tamori, S. Ishihara, T. Watanabe, and T. Mizuno. A replica distribution method

with consideration of the positions of mobile hosts on wireless ad-hoc networks. In

IEEE ICDCS Workshops, July 2002.

[125] S. Tanachaiwiwat and A. Helmy. Correlation Analysis for Alleviating Effects of

Inserted Data in Wireless Sensor Networks. In MobiQuitous, Jul. 2005.

[126] A. Tanenbaum. Computer Networks. Prentice Hall, 2003.

[127] K. Tang, M. Gerla, and R. Bagrodia. Tcp performance in wireless multi-hop net-

works. In IEEE WMCSA, Feb. 1999.

[128] J. Tchakarov and N. Vaidya. Efficient content location in mobile ad hoc networks.

In IEEE MDM, Jan. 2004.

[129] U.S. Census Bureau. TIGER, TIGER/Line and TIGER-Related Products. Available

at. http://www.census.gov/geo/www/tiger/.

176

[130] M. Torrent-Moreno, D. Jiang, and H. Hartenstein. Broadcast reception rates and ef-

fects of priority access in 802.11-based vehicular ad-hoc networks. In ACM VANET,

Oct. 2004.

[131] UNO-2160 in Mobile License Plate Recognition System. http:

//www.advantech.com.tw/ia/newslet-ter/AutomationLink/

January2005/Applica-tion Story UNO-2160.pdf.

[132] CENS’ Urban Sensing. http://research.cens.ucla.edu/projects/

2006/Systems/Urban Sensing/.

[133] A. Vahdat and D. Becker. Epidemic Routing for Partially-Connected Ad Hoc Net-

works. Technical Report CS-200006, Duke University, Apr. 2000.

[134] H. Wu, R. Fujimoto, R. Guensler, and M. Hunter. MDDV: a Mobility-entric Data

Dissemination Algorithm for Vehicular Networks. In ACM VANET, Oct. 2004.

[135] Q. Xu, T. Mak, J. Ko, and R. Sengupta. Vehicle-to-vehicle safety messaging in

DSRC. In ACM VANET, Oct. 2004.

[136] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation for

ad hoc routing. In ACM MOBICOM, Jul. 2001.

[137] P.-W. Yau, C. J., and Mitchell. Reputation methods for routing security for mobile

ad hoc networks. In Joint IST Workshop on Mobile Future and Symp. on Trends in

Communications (SympoTIC), Oct. 2003.

[138] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical En-route Filtering of Injected False

Data in Sensor Networks. In INFOCOM, Mar. 2004.

[139] J. Zhao and G. Cao. VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc

Networks. In IEEE INFOCOM, Apr. 2006.

[140] B. Zhou, K. Xu, and M. Gerla. Group and Swarm Mobility Models for Ad Hoc

Network Scenarios Using Virtual Tracks. In IEEE MILCOM, Oct.-Nov. 2004.

[141] L. Zhou and Z. Haas. Securing ad hoc networks. IEEE Network, 13(6), Nov.-Dec.

1999.

177

[142] S. Zhu, S. Setia, S. Jajodia, and P. Ning. An Interleaved Hop-by-Hop Authentication

Scheme for Filtering False Data Injection in Sensor Networks. In IEEE Symposium

on Security and Privacy, May 2004.

