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Abstract 

 

 

 

The aim of this study was to develop a model capable to capture the different contributions 

which characterize the nonlinear behaviour of reinforced concrete structures. In particular, 

especially for non slender structures, the contribution to the nonlinear deformation due to 

bending may be not sufficient to determine the structural response. Two different models 

characterized by a fibre beam-column element are here proposed. These models can 

reproduce the flexure-shear interaction in the nonlinear range, with the purpose to improve 

the analysis in shear-critical structures. The first element discussed is based on flexibility 

formulation which is associated with the Modified Compression Field Theory as material 

constitutive law. The other model described in this thesis is based on a three-field 

variational formulation which is associated with a 3D generalized plastic-damage model as 

constitutive relationship.  

The first model proposed in this thesis was developed trying to combine a fibre beam-

column element based on the flexibility formulation with the MCFT theory as constitutive 

relationship. The flexibility formulation, in fact, seems to be particularly effective for 

analysis in the nonlinear field. Just the coupling between the fibre element to model the 

structure and the shear panel to model the individual fibres allows to describe the nonlinear 

response associated to flexure and shear, and especially their interaction in the nonlinear 

field. The model was implemented in an original matlab® computer code, for describing 

the response of generic structures. The simulations carried out allowed to verify the field of 

working of the model. Comparisons with available experimental results related to 

reinforced concrete shears wall were performed in order to validate the model. These 

results are characterized by the peculiarity of distinguishing the different contributions due 

to flexure and shear separately. The presented simulations were carried out, in particular, 

for monotonic loading. The model was tested also through numerical comparisons with 
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other computer programs. Finally it was applied for performing a numerical study on the 

influence of the nonlinear shear response for non slender reinforced concrete (RC) 

members.  

Another approach to the problem has been studied during a period of research at the 

University of California Berkeley. The beam formulation follows the assumptions of the 

Timoshenko shear beam theory for the displacement field, and uses a three-field 

variational formulation in the derivation of the element response. A generalized plasticity 

model is implemented for structural steel and a 3D plastic-damage model is used for the 

simulation of concrete. The transverse normal stress is used to satisfy the transverse 

equilibrium equations of at each control section, this criterion is also used for the 

condensation of degrees of freedom from the 3D constitutive material to a beam element. 

In this thesis is presented the beam formulation and the constitutive relationships, different 

analysis and comparisons are still carrying out between the two model presented.   
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 CHAPTER 1  

 Introduction 

1.1 Sommario 

In questo capitolo introduttivo verranno trattati i criteri di modellazione della risposta 

sismica non lineare di strutture in c.a. Si riporta sia una classificazione delle diverse 

tipologie di modelli, sia una descrizione degli aspetti che sono stati sviluppati e 

perfezionati nel corso degli ultimi decenni. Vengono poi richiamati alcuni modelli e, senza 

entrare nel dettaglio, se non evidenziando le caratteristiche salienti. In questo modo è 

possibile inquadrare meglio le proprietà e le assunzioni su cui si basano i modelli proposti.  

1.2 Different approaches to nonlinear analysis of reinforced concrete 

structures 

The study of reinforced concrete structures under strong seismic actions requires the 

formulation of analytical models capable of describing the behaviour of structural elements 

subject to cyclic loading in the non-linear fields, taking into account the typical phenomena 

of progressive deterioration of stiffness and strength. the following approaches can be 

distinguished in relation to the complexity and the model scale.   

1.2.1 Macroscopic approach 

Structural modeling of the is made trying to achieve a correspondence between the 

structural members and the elements of the analytical model. To this end, the one-

dimensional elements are used to simulate the response of a beam, columns, or a wall 

portion  between two floors. Following a macroscopic approach the effects of geometry 

details can be lost, such as the exact form of longitudinal and transverse reinforcement, but 

the main aspects of structural behavior can be reproduced quickly and the spread inelastic 

deformations along the element can be considered. 

A typical example of the macroscopic approach are the global models. The constitutive 

laws for this kind of modes, are introduced in terms of section forces-section deformation 

such as moment-curvature relations. These approximation are sufficiently accurate to 

describe the aspects that characterize the cyclic loading response, defined through 
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hysteretic model. The reduced computational time and accurate simulation of the global 

hysteretic behavior, makes these models the most efficient method for the analysis of 

complex structures, consisting in a large number of elements. 

The class of fiber models can be set in a macroscopic approach, indeed each structural 

element can be described by a single finite element, and the equilibrium and compatibility 

conditions are expressed in global terms. The sections behavior is studied through a 

discretization into finite areas, or, for planar elements, in strips. The constitutive 

relationships are locally defined, in terms of stress-strain relation for each fiber. Therefore, 

the fiber models are considered as intermediate between local and global formulation. At  

one side fiber model are based on simplified kinematic assumptions that allow to reduce 

the number of equations, to the other hand the global behaviour is derived from the 

materials constitutive laws. However fiber models requires remarkable computational 

effort, especially in complex structures analysis. 

1.2.2 Microscopic approach 

The structure is discretized with a large number of two or three-dimensional finite 

elements, using different elements for concrete, reinforcement and the bonds between the 

two materials. It’s much more accurate in describing the local behavior, but requires an 

excessive computational time. The use of microscopic models allows, at the most, to run 

analysis of individual elements or portions of structures, such as walls, beam-column or 

nodes.  
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1.2.3 Global models 

The modeling of seismic behavior of reinforced concrete structures in the last forty years' 

was the focus of many researchers and led to the development of multiple types of global 

models. Since the late 60s were proposed simple models, which over the years have been 

improved and expanded. 

This introduction it is focused on the elements for non linear analysis of structures, in 

which the shear strength is enough to ensure the development of inelastic deformation. In 

this context, global models can be classified in relation to the inelastic deformation 

distribution, with this criteria may have lumped plasticity elements and distributed 

plasticity elements. 

The nonlinear behavior of frame structures of  usually concentrated in critical areas 

corresponding to the beams-columns ends. So one of the first approaches to modeling this 

behavior has been carried out assuming a zero-length plastic hinges as a rotational springs 

located at the ends of the beam-column elements, and connected in series or in parallel, 

depending on the type of connection may have series or parallel models as shown in fig. 

1.2-2 

fig. 1.2-1
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 The first component model was introduced in parallel by Clough et al. (1965), and is 

shown in fig. 1.2-3. The model consists of two elements in parallel, one elastic-perfectly 

plastic, to represent the yield strength, and the other elastic with a reduced stiffness to 

reproduce the hardening. The element stiffness matrix is the sum of those of the two 

parallel elements. The advantage of these models, also called "two component model", lies 

in the independence of the formulation from the moments diagram, while the problem arise 

from the fact that this kind of elements allow to use only a bilinear moment-curvature 

relation, so it is incapable of represent the typical degradation of reinforced concrete 

elements. These models, overestimate the energy dissipation capacity of reinforced 

concrete structural elements. 

 

fig. 1.2-2

                  Clough et al. (1965)                                      Giberson (1967). 

fig. 1.2-3
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Series models were introduced to overcoming the limitations inherent in the parallel 

models. They were formally introduced by Giberson (1967), the model (fig. 1.2-3) consists 

of two non-linear rotational springs and end of an elastic beam. For each spring is 

introduced a moment-rotation relationship assuming an antisymmetric linear distribution of 

moments along the element. In series models the flexibility matrix of each spring is 

summed with the flexibility matrix of the linear elastic beam. This type of models are 

much more versatile than the parallels, with series models is possible to describe a more 

complex hysteretic behavior, selecting an appropriate moment-rotation relationship for 

springs, but they are limited by the assumption of a constant moments distribution along 

the element. Suko and Adams (1971), proposed to take the contraflexure point from the 

initial elastic analysis instead of the center of the beam. Otani (1974), proposed a more 

sophisticated model, shown in fig. 1.2-4. The Otani’s model consists of two deformable 

parallel elements, one linear elastic and the other non-linear, two rotational springs and two 

rigid connection at the ends to take into account the finite size of the beam-column node. 

The rotational springs are used to consider the effects of the reinforcement slip at the 

nodes. The construction of the flexibility matrix is based on the calculation of the 

contraflexure point step by step. The element is treated as two cantiliver beams, with a free 

end at the contraflexure point. With this assumption the element is equivalent to two 

inelastic rotational springs at the ends, whose properties are related to the current position 

of the contraflexure point. The Otani’s model, however, is not capable to evaluate the 

actual spread inelasticity along the element, depending not only on the current state of the 

element, but also on the load history. 
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Concentrated plasticity models have been formulated neglecting the phenomena of axial 

force-moment interaction. The moment-rotation relationship are defined referring to a 

constant value of axial force, usually the gravity loads. Actually, the normal stress in the 

columns due to seismic action can vary significantly, affecting both the resistance and the 

stiffness properties of structural elements. Considerable efforts have been made to include 

the effects induced by the variations of normal stress in simplified models, but this kind of 

models are not applied extensively. Saatcioglu et al. (1983) introduced a concentrated 

plasticity model, in which the moment-rotation relationship of the springs is characterized 

by a family of curves, each corresponding to a different value of normal stress. 

An important step in the modeling of axial force-bending moment interaction, was made 

with the introduction of multispring  models, which are classified between as concentrated 

plasticity, but actually these differ considerably from those described above, and in 

somehow are similar to simplified fibers models. The first multispring model was proposed 

by Lai et al. (1984), it was constituted by a central elastic element, and a series of axial 

springs at the end zones to simulate the inelastic response (fig. 1.2-5). The non-linear 

deformations are concentrated in the end zone, although their behavior is not defined by 

fig. 1.2-4
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the moment-rotation relation, but through a discretization of such zones in areas that 

represent  the springs. 

 In the Lai’s model each inelastic element consists of five spring for concrete, four for 

corners and a central one, and four for steel. The force-displacement relationship for the 

steel springs follows an hysteretic model with degradation similar to that assumed on the 

moment-rotation relationship viewed for others concentrated plasticity models. The 

elongation of each spring is correlated with the average axial displacement and the section 

rotation, through the assumption of plane sections remain plain. 

 
 

 

Saiid et al. (1989), proposed a multispring model with five springs based on Lai et al. 

(1984). One spring is central to simulate concrete core, while four springs are placed at 

sides to simulate the behavior of a reinforced concrete element subjected to axial 

elongation, corresponding to the area represented by each spring. With this model the 

authors overcame some inherent inconsistencies in the Lai’s model, and have performed 

good comparison with experimental tests. 

The best feature of multispring models is the ability to simulate with good accuracy the 

nonlinear behavior of spatial columns, requiring much lower computational effort than 

fiber models. 

fig. 1.2-5
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The concentrated plasticity models, as seen above, are not able to take into account the 

gradual spread of inelastic deformation within the elements. A more accurate description 

of the nonlinear behavior of reinforced concrete elements is possible by using distributed 

plasticity models. These kind of models assumes that the inelastic deformation may occur 

in any section, the element response is derived through an integration of sections response 

along the element. 

Schnobrich and Takayanagi (1979), have proposed to divide the element into a finite 

number of segments (fig. 1.2-6), each with constant properties dependent on the bending 

moment at the midpoint. Each segment is studied through a moment-curvature relation 

including the effects of degradation due to cyclic loading. Also in this model a proposal to 

take account the axial-bending interaction is made. The section stiffness is defined, 

including axial effects, as resulting from predefined interaction diagrams. 

Analyze the sections response along the element leads to various difficulties, for the 

greatest calculation time and for the numerical problems related to the arise of unbalanced 

moments within the element. Equilibrate these moments requires the introduction of 

complex procedures not necessary when are studied only the end sections. Therefore, 

several authors have developed concentrated plasticity models able to take into account the 

gradual spread inelasticity. These models, also called distributed inelasticity have been 

widely used, and many computer codes have been based on them. 

In fig. 1.2-6 is shown the Meyer’s model, Meyer et al. (1983) and the later one improved 

by Roufaiel and Meyer (1987). The element is divided into three zones, one central elastic 

and two inelastic ends, varying in length depending on the load history. 
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This formulation is independent from the position of contraflexure point, and take into 

account the coupling of the inelastic deformation in the two non linear segments. The 

properties of these segment are derived by simplified assumptions on the end sections, 

carried out through hysteretic moment-curvature models 

Schnobrich and Keshavarzian (1985), have adopted the same element, but taking into 

account axial-flexure interaction. To consider these effects they followed a similar 

approach to that proposed by Takayanagi and Schnobrich (1979). 

The criteria used by Meyer et al. (1983) is part of the formulation of Filippou and Issa 

(1988), and Mulas and Filippou (1990), which added to the element, two rotational springs 

at the extremities, for take into account the fixed end rotation at the beam-column joint, 

due to bar pull-out.effects. These authors have attempted to define more accurately the 

moment-rotation relationship of the springs, which was independent from the assumed 

moment-curvature relationship at the end sections. Filippou Ambrisi (1997) have included 

more non-linear springs to account for translational non-linear deformations due to shear. 

This model is made up of several sub-elements connected in series to distinguish the 

various aspects that affect the nonlinear behavior of the structural element.  

A further evolution was carried out by Aredia and Pinto (1998) dividing the element into 

three zones. They have developed a method to identify, in the elastic part of the element, 

cracked and uncracked zones. Their model is based on the assumption that the elastic limit 

Schnobrich and Takayanagi (1979)                              Roufaiel e Meyer (1987). 

fig. 1.2-6
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may be exceeded only in the end zone, and that the cracked areas can be developed at both 

of them, both from the central section of the element, where it is possible to apply a 

concentrated load. Both areas, cracked and plasticized have variable length depending on 

the loading history, determined by taking a linear progression of bending moment from 

each end to the center of the beam. 

A common plasticity model that differs from those just described was carried out by 

Kunnath et al. (1990), this model can perform local and global damage evaluation as well 

as non-linear seismic analysis of reinforced concrete structures. Kunnath et al. (1990) did 

not directly assess the length of the plasticized hinges. The element characteristics will be 

deducted from the sections by integration, assuming a flexibility distribution piecewise 

linear (fig. 1.2-7) . 

This distribution is identified by the beam ends flexibility, that come from the moment-

curvature relationship, and from the flexibility of the contraflexure point, which is assumed 

to be equal to the elastic value. 

 

 

1.2.4 Fibre Models 

In Fibres  models is carried out a double discretization, in the longitudinal direction 

difining a predetermined number of sections and  in the transverse direction, discretizing in 

small finite areas the element cross sections. In case of simple planar bending model is 

sufficient to subdivide the sections into strips perpendicular to the axis of flexion, in the 

more general spatial cases a double subdivision into small rectangular areas is required 

fig. 1.2-7
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(fig. 1.2-8). Each fiber, represent a corresponding portion of elementary concrete or 

reinforcement area , by integration over the cross section is possible to obtain moment-

curvature relationship, and thus determines the overall response of the whole element. By 

the hypothesis of plane sections remain plane, axial deformation of each fiber ( , )x yε  can 

be obtained, once knowing curvature xχ , yχ  and axial deformation 0ε  referred in section 

centroid. 

 0( , ) z xx y y zε ε χ χ= + ⋅ − ⋅  (1.3.1) 

The characteristics described above are common to all models, so that not changes in 

different element formulations. What really change in different fibre models is essentially 

the state determination procedures that depend on different formulation. In fact fiber 

models, as distributed plasticity models, has the problem, highlighted in previous 

paragraph, about the arise of unbalanced section forces within the element. After a load 

step application, nodal displacement are calculated and from these the section forces can be 

evaluated, but  because of the materials nonlinear behavior in all control sections, resisting 

forces doesn’t match section forces. 

 

 
fig. 1.2-8
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In global models, especially those with concentrated plasticity this problem is not treated 

because only the end sections are taken into account. Fibre models differ  therefore in the 

process used to determine the section resisting forces. Different procedure has been 

proposed  depending on the element formulation, in particular can be found procedure for 

stiffness based, flexibility based or mixed elements. 

The early models have been developed on a stiffness based approach, using classical shape 

functions. A model that use this approach is due to Aktan et al. (1974), in which nodal 

resisting forces are obtained directly from section resisting forces  by applying the virtual 

work principle. The formulation is compatible, however, it is shown that is inadequate in 

nonlinear cases because it involves a linear curvature distribution over the length. This 

assumption is unrealistic for reinforced concrete elements in nonlinear field.  

The latter models become increasingly  based on a flexibility approach, this class of 

models uses forces interpolation functions, thus a balanced element is achieved while  in 

stiffness models the compatibility was the basic assumption. One of the first balanced 

element is proposed by Kaba and Mahin (1984), based on Aktan (1974), this model 

introduce the displacements interpolation functions updated for each load increment 

through the flexibility matrix. In this model, however, the numerical problems discussed 

above have not been solved because the theoretical formulation is not totally consistent 

with the flexibility approach. 

Essentially the flexibility approach is more realistic than the stiffness based one, but 

involves significant problems in determining the nodal resisting forces. Many studies, 

therefore, have attempted over the years to overcome these problems. Zeris and Mahin 

(1988, 1991), developed a complex iterative procedure to investigate the cross section 

deformation associated with internal balanced forces, with a shape  coincident with forces 

interpolation functions. Taucer et al. (1991) have proposed a model that is part of a more 

general mixed approach. The nodal resisting forces are calculated for each element through  

an iterative procedure. At each iteration, are calculated the residual nodal displacements 

associated with the unbalance section forces along the element. The main characteristic of 

this model is that, at each iteration, compatibility and equilibrium are satisfied within the 

element. Taucer et al. (1991) show that the proposed algorithm is effective even if the 

structural response is characterized by "softening" as in concrete structures. 
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Finally some recent developments in fiber models are oriented in the attempts to develop 

extensions in classical elements including other sources of nonlinear deformation, such as 

those related to shear stress. In this class of models, widely described in chapter two, the 

section state deformation is characterized not only by the axial deformation and the 

curvature in the centroid, but also by the shear deformation evaluated in nonlinear field. 

Besides the hypothesis of plane sections remain plane, a given distribution of shear 

deformation is assigned in order to detect the state of deformation of each fiber. Generally 

a biaxial stress-strain relationships is associated to these elements. This model is very close 

to a microscopic approach, but compared to the that has the same degrees of freedom of 

beam element  type. 

In conclusion, fibre models requires a large number of operations to evaluate the element 

stiffness matrix, the stress and strain state in each section. In other words fibre models are 

really time consuming in state determination procedures. Although sometimes it incurs in 

numerical stability problems, many advantages can be identified using these models as: 

 Catch the actual evolution of plasticization along the element 

 Are able to reproduce realistically pinching phenomena  

 Describe in detail geometry and position of transverse reinforcement 

 Can reproduce the interaction between axial forces and bending moments 

 Can be easily implemented spatial elements. 

Also the constitutive relationship are more easy to implement because the singles materials 

are considered instead of moment-curvature relationship. 

In this thesis a fibre model able to take into account the coupling between moment, axial 

forces, and shear in non-linear field is presented. It is based on the flexibility approach to 

take advantage of the benefits attributed to this class of fiber model, in particular between 

all fibre modes has been chosen Taucher et all. (1991) because it seemed to respond better 

to requests features. 

1.3 Aim and objectives of the thesis 

The main purpose of the thesis is to propose a finite element able to model structures, 

where the shear deformation appears predominant. The category of models chosen to attain 

this goal are the fiber models, treated in the previous chapter. As highlighted in the 
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overview in this introduction, the shear deformation and in particular the shear-flexure 

coupling in nonlinear field is still an open research topic, in particular, in global models as 

beam-column elements. 

This aim will be achieved through  the following enabling objective: 

 To gather information on existing knowledge about flexure- shear interaction in 

fibres models, through a comprehensive literature review. 

 To develop and implement an efficient fibre model, capable of predicting the 

behaviour of concrete squat structures, which include a bidimensional theory for 

concrete (Modified Compression Field Theory) as constitutive relationship.  

 To validate the model by comparing the predicted behaviour with the behaviour 

observed in experimental results, in particular the model must reproduce the global 

response of the structure with reasonable agreement with experimental evidence.  

 To validate the model by comparing the results with another code with different 

approach and carrying out a parametric analysis with the aim of study  the influence 

of flexure-shear interaction by varying the slenderness.  

 To illustrate a different model proposed, based on a different formulation and a 

different constitutive relationship , with the aim of proposing an alternative model 

with which, will carry out future comparison and mutual improvement.  

1.4 Outline of the thesis 

The contents of the thesis will be divided into different chapters as follows: 

 The first chapter is introductory, recalls some basic concepts of nonlinear analysis and 

models categories. In this chapter can be found descriptions of concentrated plasticity 

elements (one component and two components model) , distributed plasticity elements 

and fibres models, focusing on the stiffness and flexibility formulations highlighting 

the benefits and the deficiency of each approach. 

 The second chapter is entirely dedicated to the state of the art of fibres beam-column 

element, in which some author tried to introduce shear deformation. In this chapter will 

be discussed in detail each of these models, from the strut and ties, to Microplane and 

smeared crack to finish with damage models. 
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 In the third chapter will be treated the finite element formulation, will be described in 

detail the derivation of the flexibility based element, starting from the two-fields mixed 

method. This chapter describes how numerical procedures for structural and element 

determination have been carried out. 

 The fourth chapter is entirely dedicated to section state determination, through the 

description of  MCFT (modified compression field theory) and DSFM (distrurbed 

stress field model) that are the basis of the constitutive law implemented in the model. 

For each theory will be analyzed compatibility, equilibrium and constitutive 

relationships for the average quantities between the material cracks, will be explained 

the equilibrium problem on cracks location and shear slip over the cracks. 

 In the fifth chapter will be explained the implementation of the model, this chapter will 

show the vectors and matrices involved in the program and the flow charts of the code. 

Furthermore will be explained in detail how the theories on which the model have been 

based are unified in a single computer code. 

 The sixth chapter will report all tests and comparisons performed with the computer 

code. First of all will be presented the reproduction of the experimental test conducted 

by Osterele et al. (1979). Then will be shown the numerical comparison between the 

computer program Vector2, developed at University of Toronto, and the code proposed 

in this thesis. Finally, two parametric analysis conducted on a bridge pier and on a 

shear wall, show how the nonlinear flexure-shear interaction actually affect the 

response in squat structure. Different analysis are carried out with the aim of evaluate 

this influence varying the structural slenderness.  

 The seventh chapter  describe the formulation the constitutive relation and the 

implementation of the model studied at University of California Berkeley. This model 

represent an alternative solution to the presented problem, some comparison between 

the two models are in progress. For the element formulation  has been used a three-

field variational formulation while for constitutive relationship a three-dimensional 

material model. For concrete has been implemented a damage model with two 

parameters, one for tension and one for compression Lee and Fenves (1998), while for 

steel structures has been implemented a classical plasticity model.  

 



 

CHAPTER 2 

 Fibre beam-column element with flexure-shear interaction: 

state of the art 

2.1 Sommario 

Tra i vari approcci adottati per eseguire delle analisi non lineari di strutture in c.a. gli 

elementi a fibre hanno mostrato una grande capacità di riprodurre l’interazione tra sforzo 

assiale e momento flettente, mentre l’accoppiamento di sforzi normali, flessionali e 

taglianti è un fenomeno ancora poco chiaro. 

La soluzione al problema della modellazione taglio-flessione è stata affrontata in molti 

studi con approcci diversi. Un aspetto che caratterizza molti dei modelli proposti è il 

disaccoppiamento di flessione e taglio. Ad esempio, nei modelli “strut and tie” il classico 

elemento trave è associato ad un traliccio che simula il meccanismo resistente a taglio. In 

alcuni casi i modelli “strut and tie” sono stati combinati con elementi a fibre, come nei 

modelli proposti dalla Guedes e Pinto (1997), Martinelli (2002) e da Ranzo e Petrangeli 

(1998). Un altro metodo seguito per predire la risposta taglio-flessione si basa sulla teoria 

Microplane studiato da Bazant e Oh (1998), Bazant e Prat (1998) e da Bazant e Ozbolt 

(1990). L'approccio Microplane permette la descrizione della risposta multiassiale 

attraverso la combinazione di relazioni costitutive monoassiali. Petrangeli et al. (1999) 

usarono la teoria Microplane all'interno di un elemento a fibre. 

Un altro approccio si basa sui modelli a fessurazione diffusa Vecchio e Collins (1988). In 

questo approccio, il calcestruzzo fessurato è modellato come un materiale ortotropo, in cui 

equilibrio e di compatibilità sono formulati in termini medi di tensione e deformazione.. 

Remino (2004) ha sviluppato un elemento a fibre con un legame costitutivo basato su Rose 

(2001). Ceresa et al. (2008) hanno realizzato un modello a fibre basato su una 

formulazione in rigidezze considerando la modified compression field theory (Vecchio e 

Collins (1996)) come legame costitutivo. Una particolare tipologia di modelli, come quella 

presentata da Mazars et al. (2006), implementano anche la teoria del danno. 

In questo capitolo saranno illustrati nel dettaglio questi modelli sottolineandone le 

caratteristiche ed i punti deboli. 
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2.2  Fibre Beam-Column Element Using Strut-and-Tie Models 

This approach considers a Timoshenko fibre beam-column element, which is coupled with 

a truss structure. All the shear action is carried by the truss members. There are several 

models that adopt this technique, these models are presented below. 

2.2.1 Guedes’s Model 

Guedes et. al. (1994-1997) proposed a two-node 3D beam-column element based on a 

displacement formulation, with linear shape functions for axial displacement and rotation. 

The degrees of freedom per node are six, three displacements and three rotations:: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )x y zx u x v x w x x x xθ θ θ⎡ ⎤= ⎣ ⎦u  (2.2.1) 

On section, the axial components are obtained through a classical fibre model, while the 

shear components are obtained independently by a truss model  (fig. 2.2-1). 

 

 
fig. 2.2-1 

The truss consists in two concrete struts whose slope represents the direction of principal 

stresses and strains, and longitudinal and transverse steel beam. The equilibrium and 

compatibility are shown in fig. 2.2-2 
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fig. 2.2-2 

Referring to fig. 2.2-1 and fig. 2.2-2, the equilibrium between internal and external forces 

must be satisfied according to the equations: 

 1 2( ) sin 0wy c cF F F θ+ + ⋅ =  (2.2.2) 

 1 2( ) sin 0c cV F F θ+ − ⋅ =  (2.2.3) 

The iterative procedure begins by estimating the value of wyε , the principal strains are 

calculated using the following: 

 ( ) ( ) ( )2 2 2
0

tancos sin sin(2 ) 2,1
/ cos 2

i
i e wy i

l
γε ε φ ε φ φ

θ
Δ

= = ⋅ + ⋅ ± ⋅ =  (2.2.4) 

Where 0 0 /e el lε =  e γ  are the kinematic parameters derived from Timoshenko beam 

theory and /wy wy hε = Δ  is the deformation in the stirrups calculated iteratively by the 

equilibrium in the cross section. The forces in the principal direction can be calculated as 

follow: 

 ( ) ( ) ( )( ) ( ) 1 1, 2cosci c i strut c i i wF f A D b h iε σ ε φ= ⋅ = ⋅ − ⋅ ⋅ =⋅  (2.2.5) 

Where iD  is a damage parameter, wb h⋅  is . Knowing 1 2c cF F e φ  the force wyF  can be 

calculated from (2.2.2) and used to find wyε  from the following equation: 

 
( ) ( )( ) 2

tanwy sw wy sw
hF f A

s
ε

φ
= ⋅ ⋅ ⋅

⋅
 (2.2.6) 
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If the two subsequent values of wyε  match with a predetermined tolerance, the solution is 

found, otherwise the iterative procedure continue. At the end of each iteration shear 

resisting forces V  are estimated for each cross section. 

The stiffness matrix, which the authors suggest to use, is derived from classic Timoshenko 

beam element keeping uncoupled flexure and shear.  the following consideration can be 

made: 

• The nonlinear behavior is derived from the use of the uniaxial constitutive 

relationship σ ε− , the tangent modulus is obtained step-by-step. The costitutive 

relationship used by the author is shown in fig. 2.2-3 

• A simple liner elastic relationship can be used to represent the relation between the 

shear forces V and the shear deformation γ  in the truss model.  

 
fig. 2.2-3 

This was one of the first attempts to model the shear behavior in a fiber element. 

The model presented is a 3D beam-column element, but the shear is modeled with a 2D 

mechanism. Furthermore, the truss model is not able to take into account other shear 

resistance mechanisms such as dowel action, arch action, aggregate interlock, compressive 

concrete that contribute to increase the beam-column shear capacity. 

Questo fu uno dei primi tentativi nel quale si cercò di modellare il comportamento a taglio 

in un elemento a fibre. 

Another limitation is represented by the inclination of the cracks that is fixed, equal to 30 ° 

or 45 °, further the truss model is not able to catch the coupling between axial flexure and 
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shear, in other words, the shear force has no effect on flexural response. The numerical 

verification highlight that the model did not represent the crack-closing phenomenon, so 

the pinching effect is amplified.  

2.2.2 Martinelli’s Model 

Martinelli (1998-2002) developed a model fibre beam-column element with the aim of 

evaluating the cyclic response of squat bridge piers. The author proposed a finite element 

superimposing a classical fibre model for the flexural deformations to a truss for shear 

deformations. The model is a classic 3D fibre element, based on a Timoshenko beam 

theory, formulated using a displacement-based approach. The element is a three-node 

beam with the intermediate node with only two degrees of freedom, rotations and axial 

displacement. The shear-locking phenomenon is avoided by keeping a mean constant shear 

deformation along the element and a linear curvature variation Crisfield (1986). 

The displacement  vector ( )xu is represented as follow (fig. 2.2-4). 

 ( ) ( ) ( ) ( ) ( ) ( )
T

y zx u x v x w x x xθ θ⎡ ⎤= ⎣ ⎦u  (2.2.7) 

 

 
fig. 2.2-4 

The shear resultant over the cross-section is the results of many different resisting 

mechanisms as the arch action, the truss mechanism, the compression concrete above the 

neutral axis, and the aggregate interlock, each of which considered independently. 

The arc mechanism is shown in fig. 2.2-5 (a) where it’s observed that an inclined strut 

transfers a shear force proportional to the axial force tan( )pV N α= ⋅ .  
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fig. 2.2-5 

The fibres are aligned with the strut, the inclination α, is calculated from the nodal 

moments ( ), , ,zi yi zf yfM M M M , and the centre of compressive stresses. Known α  e xxε , 

assuming 0yyε = , the principal direction 2ε  and the shear deformation 
2
γ  can be calculated 

by the Mohr circle fig. 2.2-5 (b). An uniaxial constitutive relationship is used to deduce 2σ  

from 2ε  (with the assumption of zero tensile principal stress 1 0σ = ). Known 2σ  and γ  

xxσ  and xyτ  are derived from Mohr's circles. The tensions thus obtained are integrated on 

the cross section to get the resisting forces. 

 

cc

xx y xx z xx
A A A

pxy xx pxy xz
A A

N dA M z dA M y dA

V dA V dA

σ σ σ

τ τ

= = ⋅ = ⋅

= =

∫ ∫ ∫

∫ ∫
 (2.2.8) 

An Iterative procedure is required to calculate α . the authors suggest to take α  as the 

value at the end of the previous step in a step-by-step dynamic analysis. 

The truss mechanism is based on a 2D structure composed by the transverse reinforcement 

and the concrete diagonals in tension and compression as shown in fig. 2.2-5 (c). The 

diagonals are inclined by an angle φ  assumed equal to the cracks inclination. The 

deformation of the truss is obtained from the kinematic parameters of the Timoshenko 
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beam xxε  and xyγ  where yyε it is assumed equal to the strain in the stirrups and is calculated 

by imposing the equilibrium of the truss along y 0yyσ = . 

Using the Mohr circles of the principal directions are simply calculated, and xyτ  can be 

deduced by knowing the principal stresses. The shear transferred by the truss is calculated 

by integrating the shear stress over the tensioned concrete in the cross section t xy tV Aτ= ⋅ .  

concrete tangent modulus 1E  and 2E  in principal direction and steel tangent modulus 

sE can be also evaluated. By the tangent modulus is possible to calculate the stiffness 

matrix shearK  associated with the contribution of the truss. 

The interlocking mechanism,  is taken into account assuming a set of diagonal cracks with 

constant spacing s (s a model parameter), inclined by an angle φ  kept constant, respect to 

the beam axis. The shear component xyINτ  on the cross section are derived from the stresses 

arising at crack faces, due to the relative displacement. These stresses are calculated from 

the strains xxε , xyγ  e yy sε ε=  derived from the truss mechanism. The shear force 

associated to the interlocking mechanism is derived from the integration of the shear 

stresses xyINτ  over the tensioned concrete area: IN xyIN tV Aτ= ⋅  

The shear resistance force is given by the sum of the contribution of pV , tV  e INV  and the 

stiffness matrix of the section is the following: 

 

2

2

0 0

0 0

0 0

0 0 0 0
0 0 0 0

A A A

A A A

s

A A A

shear

shear

EdA y EdA z EdA

y EdA y EdA y z EdA

z EdA y z EdA z EdA

⎡ ⎤− ⋅ ⋅
⎢ ⎥
⎢ ⎥
− ⋅ ⋅ − ⋅ ⋅⎢ ⎥
⎢ ⎥

= ⎢ ⎥⋅ − ⋅ ⋅ − ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫
K

K
K

 (2.2.9) 

where E is the elastic tangent modulus and shearK  is obtained by the truss mechanism. 

A positive characteristic of this model is that it takes into account different shear resisting 

mechanisms. In particular, the arch effect and the flexural behavior are formulated in 3D, 

while other mechanisms are studied separately in planes xy and xz. 
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This means that the actual spatial behavior of the model is sometimes lost. It is also noted 

that in the arch effect the contribution of the shear depends on α  and xxε , that are flexure-

dependent parameter, so flexure and shear in the truss mechanism are actually coupled. 

In the truss mechanism the inclination of the cracks and the crack spacing are assumed 

constant, thus the effect of the longitudinal reinforcement is no taken into acount. 

The deformation involved are xyγ  and yyε (neglected in the arch mechanism) are calculated 

iteratively until the equilibrium in y direction is reached.  

The solution of the aggregate interlock is derived from the truss mechanism, in terms of 

strains, thus the aggregate interlock is not able to influence the other mechanisms, in 

particular, is not able to affect the principal stresses directions. 

In the sectional stiffness matrix the shear contribution is given only by the truss mechanism 

and it is uncoupled from the flexural term. It could imply low convergence rate. 

The comparisons with experimental results highlight some lacks of the model: first of all 

the capability to capture some specimen collapse, furthermore it tends to exaggerate 

strength degradation in cycles. 

The model proposed by Martinelli [1998, 2002] is able to take into account different shear 

resistance mechanisms studied independently. While failing to capture a full coupling 

between axial, flexure and shear forces, it still can capture the behaviour of reinforced 

concrete with shear-influenced response with a very reasonable accuracy. 

2.2.3 Ranzo and Petrangeli’s model 

Ranzo and Petrangeli (1998) proposed a 2D fibre beam column element based on 

flexibility approach, in which the bending-axial behaviour is modelled by a classical fibre 

discretisation whilst the shear response is represented by a nonlinear truss model in which 

is applied an hysteretic stress-strain relationship. The two different behaviours are coupled 

by a damage criterion at section level and then integrated along the element. 

Stress shape functions are introduced for the 2-node element (fig. 2.2-6), so that the 

moment, axial and shear forces can be given by the following equations: 

 ( ) , ( ) 1 , ( ) i j
i j

M Mx xN x N M x M M V x
l l l

+⎛ ⎞ ⎛ ⎞= = − − ⋅ + ⋅ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.2.10) 
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fig. 2.2-6 

Three are the degrees of freedom, two rotation ,i jθ θ  and an axial elongation ,δ  the 

displacements vector is: 

 [ ]( ) ( ) ( )zx u x xθ=u  (2.2.11) 

In terms of compatibility, curvature χ , axial deformation ε  and shear strain γ  of the 

section are defined. Axial force and moment are functions of ( ),ε χ , while the shear force 

depends on axial and shear strains ( ),ε γ . 

The resulting section stiffness matrix is  the following:  

 

[ ]

1 1

2

1 1

max

0

0

( , )
0 0

nfib nfib

i i i i i
i i

nfib nfib

i i i i i i
i i

E A E y A

E y A E y A

v γ ε
γ

= =

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥∂
⎢ ⎥

∂⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑sk  (2.2.12) 

the stiffness matrix highlights the lack of coupling between shear and bending at the 

section level. 
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fig. 2.2-7 

In fig. 2.2-7 can be observed the schematization of the model,  concrete is represented as a 

single truss element whose area is a percentage of the total section. This percentage depend 

on the neutral axis at the flexure cracking point. The shear reinforcement, is equivalent to a 

chord whose area is equal to the sum of shear reinforcement plus a percentage of the 

longitudinal bars. Solving the strut-and-tie model, the V γ− curve is found, having 

assumed a constant value for the inclination of the cracks φ. V γ−  curve  is defined as a 

function of the applied load N, shear reinforcement and diagonal concrete struts. This 

curve is obtained by applying small increments ( )iVΔ  until the failure is reached,  with the 

distortion 
( )

u u
z v z

γ ∂ ∂
= ≅

+ ∂
. To obtain a continue curve, an analytical function is used to 

interpolate these points. This procedure leads to the determination of the cracking, yielding 

and ultimate shear force and distortion.  

To relate the shear strength to the ductility, there are many branches of the hysteretic 

relationship V γ−  incorporates a degradation criterion, the primary curve is function of the 

axial strain, chosen as damage indicator 

(
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fig. 2.2-8).  

Like other models based on a truss mechanism, the shear strength is the resultant of 

different mechanisms (ductility-dependent concrete contribution and truss mechanism 

formed by the transverse reinforcement). 
 

fig. 2.2-8 

In this model flexural and shear behaviour works in series without any specific coupling 

between axial, flexure and shear components, this characteristic is underlined in the 

stiffness matrix components.  

Some of the assumptions are based on empirical considerations that are not necessarily 

theoretically-based nor experimentally-validated. First of all the location of the equivalent 

struts is given by the assumption that the axial force N is parallel to the transversal steel, in 

this way the proposed system configuration is able to reproduce the correct damage  
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sequence. Further, the cracking angle φ is assumed constant, with an average value (30° or 

45°), whilst the contribution of the longitudinal bars in the truss mechanism is simply 

estimated by the author. 

The primary V γ−  skeleton curve of the hysteretic shear relationship has been calibrated 

using a nonlinear truss model, whilst a simplified damage criterion has been used to take 

into account the degradation of the curve due to flexure-shear interaction]. A calibration 

procedure is required for each analysis and for each structural element to be studied. This 

mean that this model is very limited  in general applications. 

2.3  Fibre Beam-Column Element Using Microplane Model 

The Microplane model family Bazant and Oh (1985), Bazant and Prat (1988)  Bazant and 

Ozbolt (1990), Ozbolt and Bazant (1992) is based on a kinematic constraint that links the 

external deformation with slected internal planes, and the simple monitoring of the stress - 

strain relations on these planes. The state of each Microplane is characterized by axial and 

shear strains which makes it possible to match any Poisson ratio value. 

This approach allows to describe a multi-axis response through a combination of uniaxial 

constitutive laws. 

2.3.1 Petrangeli’s Model 

Petrangeli et al. (1996.1999) developed a fiber element based on flexibility approach to 

model the shear behavior and its interaction with the bending moment and axial force in 

reinforced concrete columns. The element is a 2D beam with two nodes  and three degrees 

of freedom per node: 

 [ ]( ) ( ) ( ) ( )zx u x v x xθ=u   (2.3.1) 

Tension and deformation vectors are the following: 

 ( ) [ ] ( ) [ ]0 , , ,N M Vξ ε χ γ ξ= =q p  (2.3.2) 

Where ξ  is the normalized abscissa, the beam forces p  are related to the nodal 

forces , ,j j iN M M , and plane sections remain plane in order to determine the longitudinal 

strain xxε . To evaluate the transverse strains are assumed several shape functions Vecchio 

Collins (1988). In addition to the classical assumption derived by the Timoshenko beam 

theory, that keep the shear strain constant along the depth of the section, the authors have 
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also introduced a parabolic distribution obtaining equally acceptable results in both cases. 

To determine the deformations in the transverse direction yyε , the equilibrium in y 

direction between concrete and steel is imposed in this way an itterative procedure begin in 

order to determine a complete deformation vector xx yy xyε ε ε⎡ ⎤⎣ ⎦ associated with each 

layer. Once known the deformation vector a biaxial constitutive law is applied in order to 

determine the tension vector. For each fibre an incremental constitutive relationship is 

derived from the static condensation of the degrees of freedom in y direction. 

 
i ii i
xx xxa as
i ii i
xy xysa s

d dK K
d dK K
σ ε
σ ε

⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
 (2.3.3) 

The stiffness coefficient are calculated as follow: 

 
( ) ( )
( ) ( )

11 21 12 33 23 32

13 23 12 31 32 21

,

,

i i i i i i i i i i
a s

i i i i i i i i i i
as sa

K D D D K D D D

K D D D K D D D

α α

α α

= − ⋅ ⋅ = − ⋅ ⋅

= − ⋅ ⋅ = − ⋅ ⋅
 (2.3.4) 

iα is a percentage of the transverse reinforcement and i
mnD  are the coefficient of the 

material  matrix in the i-th fibre .  

As constitutive relationship for concrete, the authors chose a modified microplane model " 

which links together and an equivalent uniaxial rotating model. In particular, in the 

modified model, only microplane normal components are monitored. Strains are 

subdivided into “weak” and “strong” components along the principal strain directions, 

therefore, tensions are found for the two directions w (weak) s (strong) 

 ( );w w s s w
k k k k ks s e s C e= = ⋅  (2.3.5) 

For each k-th micoplane. Regardind weak microplane, the costitutive model is based on 

Mander et. al (1988), while for the stroger one, a linear elastic relationship is used. Stresses 

and strains are calculated as follow: 

 ;w s w s
k k k k k ke e s sε σ= + = +  (2.3.6) 

Tension vector xx yy xyσ σ τ⎡ ⎤= ⎣ ⎦σ  is derived by the virtual work principle, while the 

material matrix D  can be obtained using an incremental form of constitutive relationship. 

Both σ  and D  are numerically evaluated, by monitoring a suitable number of microplanes. 

(generally eight). 

Stress-strain relationship for steel is described by Menegotto and Pinto (1977). 
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The originality of this model compared to the strut and tie is the introduction of a biaxial 

constitutive law based on a "Microplane. The biaxial approach of this formulation lead 

toward an advanced model, able to describe in a more accurate manner the behaviour of 

reinforced concrete structure without superimposition of different models.  

On the other hand is difficult to get the influence of the different contributions to the shear 

resistance. Indeed, the author reports deficiencies in the introduction of the dowel effects 

as well as the relative displacement of the concrete surfaces across large cracks. 

Further this model tend to underestimate the shear resistance in some areas of the beam  

where the shear resistant mechanism is well represented with a strut and tie, since the local 

effects caused by support and loading details cannot be predicted with the proposed 

formulation, according to the author. The computational complexity of the model is similar 

to the others analyzed so far while no deterrent effect are taken into account in this 

element. Particularly considering that the macro stress tensor σ  and the concrete fibre 

constitutive matrix D  must be numerically evaluated for each fibre and for each load step.  

2.4  Fibre Beam-Column Element Using Smeared Crack Models 

In this approach, the cracked concrete is modeled as an orthotropic material, continuous, in 

which compatibility, equilibrium and constitutive relationship are formulated in terms of 

average stresses and strains. This approach is particularly suitable for the analysis of a 

single section under combined loads as shown in the following paragraph. 

2.4.1 Vecchio and Collins’s model 

Vecchio e Collins (1988) introduced the "dual-section analysis" to predict the response of a 

reinforced concrete beam subject to shear, the authors developed a sectional model only, 

without introducing it within a finite element. 

The beam is a 2D plane and the section is discretized by layers as shown in fig. 2.4-1, the 

only compatibility relationship required is the plane section remain plane after 

deformation, The shear stresses calculation is carried out by finite differences between 

normal stresses evaluated at each end of the fibre. 
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fig. 2.4-1 

 2 1( ) ( )1( ) ( )
( )

b

y
xx xx xx xx

xy
y

x xx b y dy dove
b y x x S

σ σ σ στ
−

∂ ∂ −
= − ⋅ ⋅ ≈

∂ ∂∫  (2.4.1) 

by is the coordinate of the last fibre, 2 1( ) ( )xx xxx e xσ σ are the normal tension in  

 fibres evaluated in two section separated by a distance S (this distance is assumed  d/6 

with  d = beam depth). 

The iterative procedure for the analysis of the section is represented in the follow flow 

chart fig. 2.4-2.  
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fig. 2.4-2 

The analysis starts with the estimation of shear and axial strains. The equilibrium for each 

one of the two sections at distance S is satisfied by an inner loop. Outer loop checks if the 

shear stress calculated are equal (within an acceptable tolerance) to the initially assumed 

one. Vecchio and Collins (1988) proposed two alternative and approximate solutions based 

on a constant or a parabolic shear strain with the aim of simplifying the procedure. This 

improvement eliminate the iterations on shear strains estimates (indicated with an asterisk 

in the flowchart of fig. 2.4-2.). Generally the approximate procedures is close to more 

accurate full dual-section analysis approach  in terms of global behaviour.  

The constitutive relationship adopted was the modified compression field theory (MCFT), 

which in its first formulation (Vecchio Collins (1986)) was able to reproduce only 

monotonic loadings. In twenty years, some improvement of the theory where carried out in 

order to pass these limitation.  
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According to MCFT theory, the cracked concrete is considered as an orthotropic material 

along the two principal stress and strain direction as shown in fig. 2.4-3. 

 
fig. 2.4-3 

Vecchio and Collins’s sectional model use an iterative procedure in order to calculate the 

shear distribution over the section. This approach give accurate results for beam subjected 

to monotonic loading while the procedure is really time-consuming if implemented  in a 

finite element program. The dual-section analysis features also inherent difficulties in 

accurately evaluating the shear stress profile on the two sections in a numerical stable 

manner Benz (2000). 

Indeed, the two sections must be evaluated to the same value of shear and axial load, in 

order to avoid numerical instabilities. Even a small difference in axial force between the 

two sections implies inaccuracy in shear stress profile. Discontinuities in shear stress 

profile could be predicted for different depths of cracking subjected to different moments. 

This  problem, was overcame by Vecchio and Collins [1988] using a kinematics constraint, 

or rather the introduction of a shear strain or shear stress distribution, in the definition of the 

shear profile. This makes the procedure more stable and simple, and even if in this way the 

shear stress cannot satisfy section equilibrium (because of open shear stress profile), the 

approximation is considered by the author consistent with the approximation of the model. 

The model can predict shear strength very well compared with  the experimental results, an  

exception are those beams lightly shear reinforced. This limitation (reduced accuracy in 

shear-critical beams containing very little or no transverse reinforcement), Vecchio (2000) 

introduced a new conceptual model for describing the behaviour of cracked reinforced 

concrete − the Disturbed Stress Field Model DSFM. 
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Finally, since the analytical procedure is a sectional model based on the assumption that 

plane sections remain plane, it is not capable of predicting the local effects present in the 

loading and support zones. 

2.4.2 Bentz’s Model 

To overcome the limitations of the dual section analysis, Benz (2000) proposed an 

approach called Longitudinal sectional stiffness method. This approach was formulated for 

predicting the load-deformation response of RC sections subjected to bending moments, 

axial loads and shear forces. The assumption of this procedure are plane sections remain 

plane and the distribution of shear stresses across the section is defined by the rate of 

change of flexural stresses. An initial shear strain profile is required as function of the 

mean sectional shear deformation γ  (for the first load step, the elastic Jourawski solution 

is assumed): 

 ( )
( )xy

A Q y Vcon
I b y A

γ γ γ⋅
= ⋅ =

⋅
 (2.4.2) 

Once calculated the axial deformation of the beam with the classic Eulero Bernoulli theory 

and shear deformation with (2.4.2), the relationship between the section’s elongation, 

curvature and mean shear strain and the fibre strains can be derived : 

 ˆ( ) sx = ⋅ε B ε  (2.4.3) 

Where ˆ( ) xx xyx ε γ⎡ ⎤= ⎣ ⎦ε  e [ ]0s ε χ γ=ε . 

At each fibre, the differential increment of stress along the beam axis can be computed as 

follows 

 ntd dε= ⋅σ D  (2.4.4) 

In which ntD  is the nodal tangent stiffness matrix, xx yy xyε ε γ⎡ ⎤= ⎣ ⎦ε  and 

xx yy xyσ σ τ⎡ ⎤= ⎣ ⎦σ . 

For the equilibrium in the transverse direction, the component 0yyσ =  at each fibre. 

Fron this equilibrium equation a static condensation of the DOF in the y-direction is 

obtained, and an incremental constitutive relation is derived: 

 ˆ ˆˆ ˆxx xx
nt nt

xy xy

d d
d d

d d
σ ε
τ γ

⎡ ⎤ ⎡ ⎤
= = ⋅ = ⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

σ D D ε  (2.4.5) 
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In which  ˆ
ntD  is the condensed nodal stiffness matrix, this include spread reinforcement. 

Both the tangent stiffness matrices  ˆ
ntD e ntD  are non symmetric.  These matrices are 

integrated along the section in order to generate the section stiffness matrix sK , for each 

layer tree point of integration are considered z1 z2 e z3a at different depth( fig. 2.4-4). At 

each depth z1, z2, and z3, a width b1, b2, and b3 of the section is associated as well as 

three local nodal stiffness matrices ˆ
ntD with coefficients:  

 1, 2,3
p

j k
con p

m n
⎡ ⎤

=⎢ ⎥
⎣ ⎦

 (2.4.6) 

 

 
fig. 2.4-4 

This mean that for each point of integration p, the equations (2.4.5) became: 

 xx xx

xy xy

d dj k
d dm n
σ ε
τ γ

⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.4.7) 

By integrating this differential system, stiffness matrix _s layerK  for each layer  is obtained, 

while stiffness matrix sK for the whole section is calculated by the simple sum of  each 

layer.   

Once known sK ,  the following relationship can be wrote as follow: 

 
0

s

dN d
dM d
dV d

ε
χ
γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

K  (2.4.8) 
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Sinche the deformation incrementi s given by the following equation: 

 1

0

0

s
s

dN
dx

d dM v
dx dx

dV
dx

−

⎡ ⎤=⎢ ⎥
⎢ ⎥
⎢ ⎥= ⋅ =⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥⎣ ⎦

ε K  (2.4.9) 

Using the (2.4.5),  (2.4.3) and the (2.4.9)  and changing the variable the following 

relationship can be reached: 

 1

0
ˆ ˆ ˆ ˆ

ˆ
0

s s
nt s

s

d dd d V
dx d d dx

−

⎡ ⎤
⎢ ⎥= = ⋅ ⋅ ⋅ ⎢ ⎥
⎢ ⎥⎣ ⎦

σ εσ ε D B K
ε ε

 (2.4.10) 

In the end, the xyτ  diagram can be calculated by introducing xxd
dx
σ  evaluated by (2.4.10) in 

(2.4.1) equation. 

The constitutive relationship used by Benz is MCFT, this formulation can satisfy the 

equilibrium between the fibre and is able to calculate the resistance and the deformation in 

a section subjected by M, N, and T. The Hypothesis of plane section remain plane and  

0yyσ =  limit the range of validity of the analysis away from the restrained areas and 

concentrated loads, the response of elements without shear reinforcement tends to be 

inaccurate because of the limitations inherent in MCFT. The cyclical behavior of the 

material has not been implemented, the model also has not been tested in a finite element 

program which could assemble complex structures. 

2.4.3 Remino’ Model. 

Remino (2004) formulated a fibre Timoshenko force-based beam-column element. The 

force-based formulation is based on the solution strategy proposed by Spacone et al. 

(1996). The element (shown in fig. 2.4-5 with without rigid body movements) has two 

nodes and two degrees of freedom per node: 

 [ ]( ) ( ) ( )zx u x xθ=u  (2.4.11) 

From the nodal forces Q , the section force vector ( )xD  is computed as follows: 

 ( ) ( )stx x= ⋅D N Q  (2.4.12) 
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In which 

1 0 0

( ) , ( ) 0 1 ,

10

j
st

i

j

N N
x xx M x M
l l

V Mx
l l

⎡ ⎤
⎢ ⎥

⎡ ⎤⎡ ⎤ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= = − = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥
⎣ ⎦

D N Q . 

The stiffness matrix is numerically evacuated, using finite difference formula. The m-th-n-

the element of the section stiffness matrix is calculated using the following expression: 

 ( )m n m
mn

n

D d Dk
d

δ
δ

⋅ + − ⋅
=

d d  (2.4.13) 

In which mD  is the m-th element of the section forces vector, d  è section deformation 

vector , ndδ  is a null vector except for the n-th term equal to: 

 ,( )n n previous tolleranced sign dδ ε= Δ ⋅  (2.4.14) 

In which ,n previousdΔ , is the variation of the n-th section deformation with respect to the last 

converged step of the analysis: tolleranceε  is the program’s numerical tolerance.  

 
fig. 2.4-5 

The costitutive relationship is derived by Rose-Shing (2001) is similar to MCFT but with 

some difference in terms of constitutive relation aggregate-interlock law, and crack 

kinematics. This model is found to be particularly suitable for shear analysis of RC 

structures, it requires the input quantities illustrated in fig. 2.4-6. 
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fig. 2.4-6 

The main characteristic of this model is the implementation of a "smeared crack" in a 

program fem for the analysis of complete structures. A direct interaction between the 

section forces is considered. Unfortunately, numerical difficulties were found in analyzing 

the cyclical behavior of the fibers, the numerical results compared with the experimental 

data are not always accurate. 

2.4.4 Bairan’s Model 

Bairan (2005) developed a 3D model for the analysis of reinforced concrete sections 

subject to bending moment, shear, axial force and torque. The author designed a model that 

considers the section  distortion due to shear and torque through a generalized state of 

stress strain of the section. This approach allows consider the equilibrium of the section 

separated from the equilibrium of whole beam, allowing the introduction of models 

developed separately for sections, in any type of beam formulation. 

Given a  section, the whole 3D state is obtained through the distorting effects 
wu superimposed to the traditional ones due to the conservation of plane sections psu , the 

physical meaning of this decomposition is schematically shown in fig. 2.4-7. 
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fig. 2.4-7 

While the structural equilibrium is insured by the resisting forces derived from psu , the 

sectional equilibrium is given by the internal forces resulting from wu . Since the 

displacement field is decomposed as follows: 

 ps w= +u u u  (2.4.15) 

The same decomposition can be applied in stress and strain field as follow: 

 ps w ps we= + = +ε ε ε σ σ σ  (2.4.16) 

Rewriting in the weak form the 3D differential equilibrium equations of an elementary 

volume using as weighting function the displacement field u, the following residual 

equations of a beam differential element are obtained: 

 
( ) ( ) ( )
( ) ( ) ( )

( ) ' 0

( ) ' 0

ps ps ps ps ps w

w w w ps w w

x

x

⎧ = − − =⎪
⎨

= − − =⎪⎩

R G σ F σ F σ

R G σ F σ F σ
 (2.4.17) 

In which ( )ps xR  is the residual in the space of the plane-section displacement field, and 

( )w xR  is the residual in the space of the distortion displacement field. This approach 

consists in founding an appropriate expression of wσ  to satisfy the equation ( ) 0w x =R , 

which represents the cross-section constitutive relation, and then in solving the beam 

equilibrium equation ( ) 0ps x =R . So the procedure aims to solve a 3D problem through 

two decoupled components: a 1D beam problem, using standard frame elements to 
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discretise the plane section field and a 2D sectional problem, using bi-dimensional 

elements, locally at the beam’s integration points, to discretise the distortion field 

(equations (2.4.17)). In particular, in the case of RC beams, the sections are subdivided in 

2D elements simulating the concrete matrix, 1D elements simulating the transversal 

reinforcements, and point elements simulating the longitudinal reinforcements. Indicated 

with wd  the vector of nodal values of these elements, the distortion field results: 

 w w w= ⋅u N d  (2.4.18) 

with wN  interpolation matrix that contain shape functions. Imposing that the nodal 

distorsion satisfy the equilibrium over the control sections: 

 * *w = ⋅d A ξ  (2.4.19) 

In which * * *' ' ' ' '
0 0s s x y z x y zε χ χ χ ε χ χ χ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ξ e e  is the generalized 

deformation vector of the section and its derivative, the matrix *A  is derived by the 

material stiffness matrix D , the shape functions wN  are the derivate of wB and *psB which 

are the fuctions that interpolate the deformations *
se . Referring to (2.4.16) the strains can 

be expressed as:  

 * *ps ps w w w w
s e= ⋅ = ⋅ = ⋅ ⋅ε B e ε B d B A ξ  (2.4.20) 

where  0s xy xz x y zε χ χ χ χ χ⎡ ⎤= ⎣ ⎦e is the vector of generalised section strains, and 

the matrix psB  is the strain interpolation matrix for se . 

From (2.4.20), it can be noticed that the distortion field is a linear function of the eight 

components of the vector ξ* , in which two components are not independent from the 

others. Hence, a reduction of the required degrees of freedom (from 8 to 6) is obtained by 

means of the matrix Ξ  which condensates the derivatives of axial elongation and torsion 

curvature taking into account the actual distributed axial load and torsion moment.  

 * = Ξ ⋅ξ ξ  (2.4.21) 

A crucial step of the model is expressing the ξ vector as a function of the generalized 

section strains. To reach this goal, the author introduces the generalized shear deformation 

through the virtual work principle, reaching the following relationship: 

 s= ⋅ξ Ω e  (2.4.22) 

noting that such matrix Ω  has not been explicitly defined for the case of a generic RC 
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section. Substituting the (2.4.22) and (2.4.21) in (2.4.19) the distortion nodal values 

result: 

 *w
s= ⋅ ⋅d A Ω e  (2.4.23) 

implying that the non-local contribution due to the distortion-warping field can be 

computed as a function of local variables alone, in particular the generalised section 

strains. A new definition of wε  is obtained by substituting the (2.4.23) in  (2.4.20) , whilst 

the stresses of Eq. (2.4.16)  can be derived from the following equations: 

 ps ps w we= ⋅ = ⋅σ D ε σ D ε  (2.4.24) 

In which D  is the material matrix, which can be of any type, in general anisotropic. 

Finally, through the virtual work principle, the generalized stresses ss  are derived and 

hence the section stiffness matrix is obtained: 

 

*

*

* * *

psT T T T psT
s

A A

psT ps psT w
s

A A

T T T wT w T T T wT w

A A

dA dA

dA dA

dA dA

= +

= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ +

+ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

∫ ∫

∫ ∫

∫ ∫

s B σ Ω Ξ A B σ

K B D B B D B A Ω Ξ

Ω Ξ A B D B Ω Ξ A B D B A Ω Ξ

 (2.4.25) 

For the constitutive model was implemented a rotating smeared crack, in which the 

material behavior is described along the principle directions. For concrete in compression 

is considered Vecchio Selby (1991) relationship able to model the cyclic loading. For the 

concrete in tension is considered a linear elastic behavior until the cracking and a 

descending curve after cracking described by Cervenka (1985), unloading and reloading 

are assumed linear. For steel has taken a classic elastic-plastic model. 

The author used a triaxial stress state to calculate the resistance in the principle directions 

of breaking through a domain consists of a three-dimensional surface. The stiffness matrix 

of the material is calculated along the principal directions, then rotated in the x-y direction 

through an appropriate transformation matrix. Before transformation the matrix result 

diagonal, whose elements are the secant modulus of the principal directions. The shear 

modulus is given by 

 
( )
( )

1
2

i j
ij

i j

G
σ σ

ε ε

−
=

−
 (2.4.26) 
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To summarize: the model proposed by Bairan is able to simulate the complete interaction 

between the six components of internal action and deformation of a general cross section 

with an arbitrary arrangement of longitudinal reinforcement. This element is certainly an 

advanced model for reinforced concrete elements, obtained developing a sectional model 

in which the non-local effects due to section’s warping-distortion induced by shear/torsion 

are derived from local quantities such as the generalized section strains. Hence, 

equilibrium and compatibility at the sectional level (inter-fibre equilibrium) are satisfied 

because no a priori hypotheses on the shear flow or strain distribution are needed.  

On the other hand the development of the model also requires some approximations with 

regard to the distortion field and its the discretization, the variation of distortion along the 

beam, the behaviour of the material and the discretization of the section. It’s not clear how 

these might affect the quality of approximations, the numerical stability and the field of 

applicability of the method. Future developments include the implementation of the 

sectional model proposed in a finite element program for analysis of frames subject to 

static and dynamic loads. Through this route is expected to give an answer to previous 

questions. 

2.5 Fibre Beam-Column Element Using Damage Models. 

The damage models require some concepts of fracture mechanics to simulate the 

propagation of cracks. These include parameters such as fracture energy, which represents 

the energy required to create a new rupture of the material expressed unit per length. This 

parameter is an intrinsic characteristic of the material for concrete and its value is about 

0,3f
kNmG

m
= . 

2.5.1 Modello di Mazars 

Mazars et al. (2006) developed a 3D element with stiffness approach based on  

Timoshenko beam theory. The interpolation functions depends on the material properties 

(Young's modulus and shear modulus for each fiber) only in the first step of loading, while 

in the following functions are assumed constant. The finite element with two nodes and six 

degrees of freedom per node, is shown in fig. 2.5-1 while the displacement vector is the 

following: 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )x y zx u x v x w x x x xθ θ θ⎡ ⎤= ⎣ ⎦u  (2.4.27) 

The section stiffness matrix Ks, relating the vectors of the generalized 

stresses x y x y zN V V M M M⎡ ⎤⎣ ⎦ and strains (with rigid body movements eliminate) 

is the calculate as follow: 

( )2 2

2

2

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

A A A

y y
A A

z
A A

s

z z y
A

A A

A

E dA E z dA E y dA

k G dA k G z dA

G dA k G y dA

k G k y k z dA

E z dA E y z dA

E y dA

⎡ ⎤⋅ − ⋅
⎢ ⎥
⎢ ⎥

⋅ − ⋅ ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ ⋅⎢ ⎥
⎢ ⎥=
⎢ ⎥⋅ ⋅ ⋅ + ⋅
⎢ ⎥
⎢ ⎥

⋅ − ⋅ ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⋅⎢ ⎥
⎣ ⎦

∫ ∫ ∫

∫ ∫

∫ ∫

∫

∫ ∫

∫

K
 (2.4.28) 

Where A is the section area, E is the young modulus and G is the shear modulus, of each 

fibre, y zk e k  are correction factors due to shear, depending on the geometry of the section 

and the material. 

 

 
fig. 2.5-1 

For steel a classical plasticity  model is adopted while for concrete are introduce two 

different damage models: Mazars (fig. 2.5-2(a)) characterized by a variable damage scale, 

used for monotonic loadings and La Bordiere (fig. 2.5-2 (b)) which, having two variable 

scales of damage and including the closing of cracks and permanent effects was adopted to 

model cyclic loading. In any case, the damage model affects only the normal stresses. 
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The model is affected by two main limitations, the effect of distortion and damage model 

of isotropic type are not included. The latter in particular implies that the element is unable 

to reproduce the typical response of anisotropic sections in reinforced concrete when the 

cracks are caused by the shear. This means that the model can be used in studying the 

global behavior of slender elements as shown by the numerical results for general purpose 

more accurate and robust relationship are required. The use of constitutive relations with 

local "strain softening"(as this case) mean that the results are mesh-dependent, thus 

increasing the complexity of the model. 

 
fig. 2.5-2 
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  Fibre beam-column beam formulation 

3.1 Sommario 

In questa tesi ci si propone di riuscire a modellare il comportamento di elementi strutturali in 

cemento armato cercando di cogliere l’interazione che nasce tra sforzo normale, momento flettente 

e taglio in campo non lineare. Per fare ciò è stato ideato un elemento finito nuovo sulla linea dei 

modelli “smeared” visti nel capitolo 2. L’elemento finito in questione è un modello a fibre basato 

sulla flessibilità Spacone Taucer Filippou (1996) sul quale è implementato un legame di tipo 

biassiale con fessurazione diffusa, per cogliere l’accoppiamento tra le sollecitazioni e descrivere in 

maniera unitaria e coerente il comportamento strutturale. In questo capitolo è descritta la 

formulazione analitica dell’elemento finito a fibre, non si fa cenno al legame biassiale che sarà 

trattato ampiamente nel capitolo successivo e all’implementazione completa descritta in modo 

dettagliato nel capitolo 5. Verranno comunque accennati alcuni passi dell’algoritmo di Element 

State Determination in quanto  risulta essere una procedura fondamentale per la formulazione 

completa dell’elemento. 

Lo sviluppo analitico sarà svolto nella forma più generale del “mixed method” (metodo misto) visto 

che questo approccio chiarisce meglio il processo di “state determination” utilizzato nell’algoritmo 

di analisi non lineare. 

Le ipotesi fatte alla base del sono: 

• Piccole deformazioni 

• Conservazione delle sezioni piane 

Le sollecitazioni all’interno dell’elemento sono rappresentate attraverso una funzione 

d’interpolazione che le lega alle forze nodali dell’elemento stesso, le azioni interne così ottenute 

sono tali da soddisfare l’equilibrio entro l’intero elemento. Il soddisfacimento dell’equilibrio è 

proprio la condizione che sta alla base del metodo. 

La formulazione proposta presenta notevoli vantaggi, equilibrio e compatibilità sono ovunque 

soddisfatti lungo l’elemento, l’equilibro è rispettato con la scelta delle funzioni di interpolazione, la 

compatibilità è soddisfatta integrando le deformazioni delle sezioni per avere le deformazioni 

dell’elemento e gli spostamenti di estremità mentre per soddisfare il legame è stata implementata 

una procedura iterativa. 
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3.2  Definition of the vectors involved 

The finite element is schematically represented in fig. 3.2-1, in which x y are the local coordinates 

while X Y represents the global reference system: in this description the following notation is 

adopted: forces are represented by uppercase and displacements and deformations from the 

corresponding lower case letters in bold are represented vectors and matrices. 

 
fig. 3.2-1 

 
1

2

3

Element nodal forces
Q
Q
Q

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

Q  (3.2.1) 

 

 
1

2

3

element nodal displacement
q
q
q

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

q  (3.2.2) 

 ( )
( )
( ) section forces
( )

M x
x T x

N x

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

D  (3.2.3) 

 
( )

( ) ( ) section deformation
( )

x
x x

x

χ
γ
ε

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

d  (3.2.4) 
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in order to finalize the study to the shear deformation, the extension to the spatial case was not 

implemented. This extension can be obtained by adding  shear and moment in  and orthogonal 

direction and torque. More sophisticated shape function for the section must be introduced for this 

extension. 

3.3 Formulation of the element starting from mixed method 

In general analytical formulation of the element is not considered any constitutive relationship. In 

agreement with those reported by Spacone et all.(1996) the finite element formulation is based on 

the mixed method, and it is shown that the particular choice of shape functions dependent on the 

flexibility, lead to a substantial simplification of the final equation. It is shown that with this 

particular choice, the mixed method can be reduced to the flexibility method. However the 

formalism of the mixed method is very useful for understanding the procedure of element 

determination here described. 

In the two fields mixed method Zienkiewicz e Taylor (1989), independent shape functions are used 

to interpolate the of forces and displacements fields along the element. Called Δ  the incrementi of 

the corresponding quantities, the two fields can be written as follows: 

 ( ) ( )i ix xΔ = ⋅Δd a q  (3.3.1) 

  

 ( ) ( )         e           ( ) ( )i i i ix x x xΔ = ⋅Δ = ⋅D b Q D b Q  (3.3.2) 

Where ( )xa  e ( )xb  are respectively the interpolation matrices of deformation and forces, the 

superscript i indicates the i-th iteration. Following the principle of virtual forces we can write the 

following equation; 

 1

0

( ) ( ) ( ) ( ) 0
L

T i i ix x x x dxδ δ −⎡ ⎤⋅ − ⋅Δ =⎣ ⎦∫ D d f D  (3.3.3) 

1( )i x−f  is the flexibility matrix calculated at previous step. 

Substituting (3.3.1) and (3.3.2) in (3.3.3) the following equation can be written: 

 1

0

( ) ( ) ( ) ( )  0
L

T T i i ix x x x dxδ −⎡ ⎤⋅ ⋅ ⋅Δ − ⋅ ⋅Δ =⎣ ⎦∫Q b a q f b Q  (3.3.4) 

Since equation (3.3.4) must hold for any TδQ , it follows that: 

 1

0 0

( ) ( ) ( ) ( ) ( ) 0
L L

T i T i ix x dx x x x dx−⎡ ⎤ ⎡ ⎤
⋅ ⋅Δ − ⋅ ⋅ ⋅Δ =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫ ∫b a q b f b Q  (3.3.5) 

The expression in square brackets represent the following matrices: 
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 1 1

0

( ) ( ) ( )
L

i T ix x x dx− −= ⋅ ⋅∫F b f b  (3.3.6) 

 
0

( ) ( )
L

T x x dx= ⋅∫T b a  (3.3.7) 

Where 1i−F  is the flexibility matrix of the element andT  is a matrix that only depend on the 

interpolation function matrices. Thus using (3.3.6) and the (3.3.7), the equation(3.3.5) can be 

written as follow: 

 1 0i i i−⋅Δ − ⋅Δ =T q F Q  (3.3.8) 

In mixed method the integral form of equilibrium is derived from the virtual displacement principle:  

 1

0

( ) ( ) ( )
L

T i i T ix x x dxδ δ−⎡ ⎤⋅ + Δ = ⋅⎣ ⎦∫ d D D q P  (3.3.9) 

where P is the vector of applied loads, in equilibrium with the internal forces; substituting the 

(3.3.1) and the (3.3.2) in the (3.3.9) following equation is obtained: 

 1 1

0

. ( ) ( ) ( )
L

T i i T ix x x dxδ δ− −⎡ ⎤⋅ ⋅ + ⋅Δ = ⋅⎣ ⎦∫q a b Q b Q q P  (3.3.10) 

Since equation (3.3.10) must hold for anyδq , it follows that: 

 1 1

0 0

( ) ( ) ( ) ( )
L L

T i T i ix x dx x x dx− −⎡ ⎤ ⎡ ⎤
⋅ ⋅ + ⋅ ⋅Δ =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫ ∫a b Q a b Q P  (3.3.11) 

Written in matrix form: 

 1 1T i T i i− −⋅ + ⋅Δ =T Q T Q P  (3.3.12) 

Combining the equations (3.3.8) and (3.3.12) in one system of equations: 

 
1

1

i i

i T iT i

−

−

⎡ ⎤ ⎧ ⎫− Δ ⎧ ⎫
⋅ =⎨ ⎬ ⎨ ⎬⎢ ⎥ − ⋅Δ ⎩ ⎭⎣ ⎦ ⎩ ⎭

0F T Q
P T QT 0 q

 (3.3.13) 

The firs equation can be solved for iΔQ and the results substituted in the second equation. In this 

way the following equation is reached: 

 1 1T i T i i T i− −⎡ ⎤⋅ ⋅ ⋅Δ = − ⋅⎣ ⎦T F T q P T Q  (3.3.14) 

The function ( ) and  ( )x xa b  are completely independent in the general formulation, but can be 

observed in the equation (3.3.7) how with a particular choice of the shape function ( )xa , a 
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remarkable simplification, in particular a function  ( )xa  depending on the flexibility can be chosen as 

follow: 

 
11 1( ) ( )i ix f x
−− −⎡ ⎤= ⋅ ⋅ ⎣ ⎦a b F  (3.3.15) 

An interpolation function thus assigned relates the section deformation with the corresponding 

element deformation, from (3.3.1) this equation can be written: 

 
11 1( ) ( )i i i ix f x
−− −⎡ ⎤Δ = ⋅ ⋅ ⋅Δ⎣ ⎦d b F q  (3.3.16) 

This particular choice of  ( )xa  imply that T  i san Identity matrix I, recalling the  (3.3.7): 

 
11 1

0

( ) ( )
L

T i ix x dx
−− −⎡ ⎤

⎡ ⎤= ⋅ ⋅ ⋅ =⎢ ⎥ ⎣ ⎦
⎣ ⎦
∫T b f b F I  (3.3.17) 

With this choice of ( )xa  the equation (3.3.14) is reduced to: 

 1 1i i i i− −⎡ ⎤ ⋅Δ = −⎣ ⎦F q P Q  (3.3.18) 

This choice of ( )xa  reduce the mixed method to the flexibility method. The equation (3.3.18) is the 

linearized realtion between applied loads 1i i−−P Q  and the corrisponding deformation 

increments iΔq . 

Although the classical flexibility method provide the same system of equations (3.3.18), the 

derivation described above has the following advantages: 

• The mixed method provide directly an expression, flexiblility dependent for the deformation 

shape functions ( )xa  

• It show the consistent implementation of the state determination process.  

• Is more general because it allow the choice of different shape functions ( )xa . 

Since ( )xa and ( )xb  are independent and not change during the iterative process, the proposed 

method coincides with the classical flexibility method, the procedure also reduces to the stiffness 

method if the constitutive relationship is linear elastic. In other words, the independence between 

the two fields is not inherent in the definition of shape the functions, but comes from the material 

nonlinearity. 

3.4 Element state determination 

The flexibility method was chosen in this work, because is shown in several studies that leads to 

significant advantages in nonlinear analysis of structures. The main problem of this method is the 

determination of the resisting forces starting from the deformations of the element. This problem 
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arises when the finite element formulation is based on the virtual forces principle. The procedure 

used in the solution of this problem is called element state determination. The problem has been 

faced and solved through a procedure presented by Spacone et all. (1996). 

Although the element is based on flexibility, it is implemented in a program that uses the direct 

stiffness method, so every step that yield all the general displacement of the structural degrees of 

freedom. Since the element is based on flexibility there aren’t shape functions that correlate 

deformation strain field along the element with the nodal displacements. The process of finding the 

resisting forces that correspond to the given element deformation is known as state determination. 

3.4.1 Description of the procedure 

The state determination process consist of three different phases: 

• Section state determination: Starting from section deformation, this procedure determine the 

section forces. While in general, this phase is simple and direct, in this work is represented 

by a complex procedure described in next chapter. 

• Element state determination: Starting from the nodal displacement, in this phase the nodal 

resisting forces are calculated. Element state determination has section state determination 

inside.  

• Structure state determination: In this phase the forces of each element are assembled, giving 

the structure resisting forces. This forces must be compared with the applied loads, this 

comparison give the unbalanced forces that must be applied to the structure in an iterative 

procedure until convergence is reached. 

In the algorithm described below three levels of iteration are introduced, two outermost processes 

denoted by k and i indices that involve structural degrees of freedom and an innermost process 

denoted by index  j that corresponds to the element state determination. 

The section state determination is not reported in this chapeter. 

In fig. 3.4-1 is represented the structure and element evolution during a load step k
EΔP . 
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fig. 3.4-1 

3.4.2 Element state determination algorithm. 

In the following pages the subsequent steps of the procedure will be described in detail, not 

considering for the type of element and the section state determination in order to focus the 

attention on the element state determination. 

• k = denote the applied load step 

• i = is the index for the Newton-Raphson iteration scheme at structural level 

• j = is the index for the element state determination process. 

(1)  First of all the global system of equation is solved and the displacement of the structure are 

updated. 

 1i i i
s E
− ⋅Δ = ΔK p P  (3.4.1) 

 1i i i−= + Δp p p  (3.4.2) 

(2) Deformation increment for the elements are calculated starting from nodal displacement of 

the structure, subsequently the element deformation are updated. 

 i i
eleΔ = ⋅Δq L p  (3.4.3) 

 1i i i−= + Δq q q  (3.4.4) 

The matrix eleL  include two transformation, tin the first the element displacement in global 

reference system are transformed to the displacement in local reference system. In the second 
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transformation the element displacement are transformed to the element deformation by a static 

condensation that consist into an elimination of the rigid body movments.  

(3) Start element state determination procedure, some iteration are carried out for each element 

f the structure. 

The procedure start by the calculation of the nodal forces increment in the element 

 1j j j−Δ = ⋅ΔQ k q  (3.4.5) 

When  j=1 1 0j− =k k , 1 0j− =Q Q  e 1j i−Δ = Δq q  where i-1 correspond to the state of the element 

calculated at the last Newton-Raphson iteration. 

Nodal forces are updated: 

 1j j j−= + ΔQ Q Q  (3.4.6) 

(4) Determine the section forces increment for all control section. 

In order to calculate the section forces the equation (3.3.2) is used; this equation relate section and 

nodal forces, in the following chapters this matrix will be better explained. 

 ( ) ( )j jx xΔ = ⋅ΔD b Q  (3.4.7) 

 1( ) ( ) ( )j j jx x x−= + ΔD D D  (3.4.8) 

(5) Determine section deformation increment for each control section: 

Residual deformation 1( )j x−r  must be added to the previous iteration. For j=1, 0 ( ) 0x =r  

 1 1( ) ( ) ( ) ( )j j j jx x x x− −Δ = +⋅Δd f D r  (3.4.9) 

 1( ) ( ) ( )j j jx x x−= + Δd d d  (3.4.10) 

(6) Flexibility and stiffness tangent matrix of the section 
1

( ) ( )j jx x
−

⎡ ⎤= ⎣ ⎦f k  and the resisting 

forces ( )j
R xD  has been subsequently calculated starting from the deformation ( )j xd . 

(7) Once known the resisting forces, unbalanced section forces ( )j
U xD  can be calculated by the 

following difference:  

 ( ) ( ) ( )j j j
U Rx x x= −D D D  (3.4.11) 

(8) Using the new flexibility matrix and the unbalanced forces, residual deformation can be 

calculated as follow: 

 ( ) ( ) ( )j j j
Ux x x= ⋅r f D  (3.4.12) 

(9) A new flexibility and stiffness matrix for the element can be calculated by integration: 
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0

( ) ( ) ( )
L

j T jx x x dx= ⋅ ⋅∫F b f b  (3.4.13) 

 
1j j −

⎡ ⎤= ⎣ ⎦K F  (3.4.14) 

(10) Check for the elemet convergence 

If the unbalanced forces for each section are smaller than a fixed tollarence , the element have 

converged and after setting i j=Q Q e i j=K K , the procedure continue. If some section have not 

converged the residual element deformation sj are calculated by integration of the residual section 

deformation rj(x). 

 
0

( ) ( )
L

j T jx x dx= ⋅∫s b r  (3.4.15) 

J is incremented as j=j+1 and the algorithm return to the step (3) with 1j j+Δ = −q s  until convergence 

is reached.  

(11) Determine resisting forces and new stiffness matrix of the structure. 

When all element have converged the i-th Newton-Raphson step is complete and the element force 

vectors are assembled . 

 
1

( )
n

i T i
R ele ele

ele=
= ⋅∑P L Q  (3.4.16) 

 

A new structure tangent stiffness matrix is than assembled as follow: 

 
1

( )
n

i T i
s ele ele ele

ele=
= ⋅ ⋅∑K L K L  (3.4.17) 

Where n is the number of elements of the whole structure. 

The resisting forces are than compared with the applied loads and if the difference between these 

forces ( i
uΔP ) is greater than a fixed tolerance, the unbalanced forces imposed to the structure, the 

index i is incremented in i=i+1 and the next Newton–Raphson iteration begin with 1i i
u E

+Δ = ΔP P . 

In this chapter there aren’t any reference to the fibers model just to focus on the formulation of the 

element, in particular the flexibility method deduced from the mixed method to the description of 

the element state determination. In following chapters is described the procedure applied to a fiber 

element that include flexure and shear component, is also explained a section state determination 

that allow the coupling of flexure and shear in nonlinear field. 

 

 



  

CHAPTER 4 

  Constitutive Relationship: Section state determination 

4.1 Sommario 

In questo capitolo ci si propone di illustrare la teoria che sta alla base del legame 

costitutivo per l’elemento finito descritto nel capitolo precedente. Come già accennato il 

legame utilizzato è di tipo biassiale, le relazioni sono tratte dalla MCFT (modified 

compression field theory) Vecchio Collins (1986) e sui successivi sviluppi quali la DSFM 

(disturbed stress field model) Vecchio (2000). Le teorie citate sono state sviluppate per 

modellare lo stato tensionale e deformativo di elementi in c.a. soggetti a stati piani di 

tensione. Nel modello il c.l.s. fessurato è considerato come un materiale ortotropo in cui 

equilibrio compatibilità e legame sono formulati in termini di tensioni e deformazioni 

medie; a parte sono poi introdotte considerazioni sullo stato locale della fessura nella quale 

sono poste delle limitazioni per quel che riguarda il livello tensionale. Tutte le relazioni per 

il calcestruzzo fessurato derivano prove sperimentali su 30 provini sollecitati a diverse 

sollecitazioni (dal puro taglio al puro sforzo di membrana) svolte presso la Toronto 

University. 

In sostanza il modello presentato in questo capitolo rientra nella categoria di quelli a 

fessurazione diffusa (smeared) con angolo di fessura variabile.  

Nell’originaria MCFT per quanto fosse previsto un controllo sulla fessura, la relazione tra 

il calcestruzzo teso e le tensioni locali non erano dirette. Tuttavia lo scorrimento dovuto 

alle tensioni tangenziali sulla frattura (shear slip) era trascurato e quindi non messo in 

conto nella deformazione complessiva dell’elemento. 

Proprio in questa direzione viene in aiuto la DSFM che, basata sulla MCFT, tenta di 

fornire una migliore rappresentazione del comportamento del calcestruzzo valutando 

esplicitamente lo scorrimento sulle fessure. 

Nei paragrafi che seguiranno saranno illustrate le due teorie evidenziandone le differenze e 

le analogie. 
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4.2 Modified compression field theory 

4.2.1 Introduction 

The membrane element shown in fig. 4.2-1 represent a portion of reinforced concrete 

structure with uniform thickness and uniform reinforcement in two direction x and y. 

Loads acting on the element edge and they consist in uniform axial stresses xf , yf  and 

shear stresses xyν . The deformed shape is defined by to normal strains x yε ε and xyγ , the 

deformation keep parallel the edges. The problem consist in finding the relationship 

between tension and deformation according to the following hypothesis: 

• For each strain state there exists only one corresponding stress state; situations in 

which the influence of loading history is significant will not be treated (cyclic 

loading). 

• Stresses and strains can be considered in terms of average values when taken over 

areas or distances large enough to include several cracks. 

• Perfect bond between concrete and reinforcements  

• Uniform distribution of longitudinal and transverse reinforcing bars 

Tensile stresses and tensile strains will be treated as positive quantities while compressive 

stresses and strains will be taken as negative. 

 
fig. 4.2-1 

4.2.2 Compatibility condition 

From the third hypothesis deformation in concrete must be equal for steel (no prestrains are 

considered), thus this equation can be written: 



                              Constitutive relationship: section state determination 

 

 

 57

 sx cx xε ε ε= =  (4.2.1) 

 sy cy yε ε ε= =  (4.2.2) 

Knowing the deformation components in x and y direction x yε ε and xyγ , the deformation 

component in every direction can be calculated usin the Mohr circles (fig. 4.2-2) using 

these equations: 

 ( )22
tan

x
xy

ε ε
γ

θ
⋅ −

=  (4.2.3) 

 1 2x yε ε ε ε+ = +  (4.2.4) 

and 

 1 12 2 2

2 1 2 1

tan y yx x

y x y x

ε ε ε εε ε ε εθ
ε ε ε ε ε ε ε ε

− −− −
= = = =

− − − −
 (4.2.5) 

 
fig. 4.2-2 

where 1 2eε ε  are the principal deformation. 

4.2.3 Equilibrium Condition 

The forces applied to the element must be balanced by internal forces due to concrete and 

steel bars. This condition is written for not restrained body and is represented by fig. 4.2-3.  
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fig. 4.2-3 

Analytically, this condition can be written for x direction with this equilibrium equation: 

 x cx c sx s
A Ac As

f dA f dA f dA= +∫ ∫ ∫  (4.2.6) 

Neglecting the concrete area reduction due to the presence of steel bars, the equation 

(4.2.6) can be written as follow: 

 x cx sx sxf f fρ= + ⋅  (4.2.7) 

Similarly in y direction: 

 y cy sy syf f fρ= + ⋅  (4.2.8) 

 xy cx sx sx xy cy sy syeν ν ρ ν ν ν ρ ν= + ⋅ = + ⋅  (4.2.9) 

assuming: 

 cxy cx syν ν ν= =  (4.2.10) 

The tension field in concrete is completely defined by cxf , cyf  e cxyν . 

The Mohr circle (fig. 4.2-4) for concrete give the following equations: 

 1 tan
cxy

cx c
c

f f
ν
θ

= −  (4.2.11) 

 1 tancy c cxy cf f ν θ= − ⋅  (4.2.12) 

and 
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 2 1
1tan

tanc c cxy c
c

f f ν θ
θ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (4.2.13) 

 

 
fig. 4.2-4 

4.2.4 Constitutive relationship 

Constitutive relationship for concrete and steel are introduced to link average stresses to 

the average strains. These average stress-strain relations may differ significantly from the 

usual local stress-strain relations determined from standard material tests. Furthermore, the 

average stress-strain relationships for the reinforcement and for the concrete will not be 

completely independent of each other, although this will be assumed to maintain the 

simplicity of the model. For steel a simple elastic perfectly plastic model is assumed 

without taking into account the average shear stresses in the steel bars. With these 

assumption the constitutive relationship for steel is the following: 

 sx s sx yxf E fε= ⋅ ≤  (4.2.14) 

 sy s sy yyf E fε= ⋅ ≤  (4.2.15) 

 0sx syν ν= =  (4.2.16) 

For the concrete, the main assumption is that principal directions of stresses and strains 

coincide cθ θ= . The principal compressive stress in the concrete 2cf  was found to be a 
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function not only of the principal compressive strain 2cε  but also of the co-existing 

principal tensile strain 1cε . The relationship deduced from standard tests carried out in 

Toronto University is the following:  

 
2

2 2
2 max ' '2c c

c c

f f ε ε
ε ε

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= ⋅ ⋅ −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.2.17) 

In which: 

 2max
'

1
'

1 1.0
0.8 0.34

c

c

c

f
f ε

ε

= ≤
− ⋅

 (4.2.18) 

It’s important to observe that '
cε  is a negative quantities (normally -0.002), than increasing 

1ε  , 2max
'

c

c

f
f

 is reduced. 

Regarding 1cf  is assumed that the stress-strain relation is linear elastic, prior cracking: 

 1 1c cf E ε= ⋅  (4.2.19) 

The concrete modulus can assume this value
'

'2 c
c

c

fE
ε

= ⋅  

In post cracking phase, MCFT suggest the following equation: 

 1
11 200

cr
c

ff
ε

=
+ ⋅

 (4.2.20) 

4.2.5 Transmitting loads across the cracks 

The formulation described above doesn’t give information about the local variation of 

stresses over the cracks, because is written in average terms. 

At a crack, the tensile stresses in the reinforcement will be higher than average, while 

between cracks they will be lower than average. On the other the concrete tensile stresses, 

hand, will be zero at a crack and higher than average midway between cracks. These local 

variations are important because the ultimate capacity of the element may be governed by 

the reinforcement's ability to transmit tension across the cracks. 
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To make this evaluation the element in fig. 4.2-5 must be considered; on the plane 1, the 

average value describes the element behaviour, while in the plane 2, crack values must be 

considered.  

 
fig. 4.2-5 

The crack is inclined orthogonally to the compression principal direction; while along the 

direction 1 the average shear stresses are 0 (as a principal direction) , a local shear stress over the 

crack (plane 2) can be found, These shear stresses ciν , may be accompanied by small local 

compressive stresses cif  across the crack.. The applied external stresses xf , yf , xyν  are fixed, 

so the two sets of stresses shown in fig. 4.2-6 must be statically equivalent. Assuming a 

unit area for both plane 1 and plane 2, the requirement that the two sets of stresses produce 

the same force in the x-direction is represented by (4.2.21), while the same condition in y 

direction is given by (4.2.22). 

 1
1( )

tan
c

sx sxcr sx c ci
vf f f fρ
θ

⋅ − = + +  (4.2.21) 

 1
1( )

tan
c

sy sycr sy c ci
vf f f fρ
θ

⋅ − = + +  (4.2.22) 
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fig. 4.2-6 

The equilibrium equations (4.2.21) e (4.2.22) can be satisfied without compressive cif and 

shear stresses ciν  increasing the steel stresses with this relation: 

 ( ) ( )sy sycr sy sx sxcr sxf f f fρ ρ⋅ − = ⋅ −  (4.2.23) 

However, the tension in reinforcement on the crack can’t exceed the yielding point, so if 

averages reinforcements tensions are high it may be impossible to satisfy the (4.2.23). In 

this case, the equilibrium requires the shear stress on the fracture that must necessarily 

arise. It's important to analyze the physical nature of these shear stresses: generally in 

concrete, cracking will occur along the interface between the cement paste and the 

aggregate particles. The resulting rough cracks can transfer shear by aggregate interlock. 

The relationship between shear over the crack surfaces ciν , the crack width w and 

compression stresses over the fracture cif  have been studied by Walraven (1981) who 

deduced the following experimental relationship: 

 
2

max
max

0.18 1.64 0.82 ci
ci ci ci

ci

ffν ν
ν

= ⋅ + ⋅ − ⋅  (4.2.24) 

In which: 

 

( )

'

max

0.31 24
16

c
ci

f
w

a

ν
−

=
+ ⋅

+

 (4.2.25) 

where a is the aggregate dimension measured in mm, tension are expressed in Mpa. 
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The crack width can be found by the principal strain and the crack spacing with this 

relation: 

 1cw sθε= ⋅  (4.2.26) 

Where the crack spacing is: 

 1
sin cos

mx my

s

s s

θ θ θ=
+

 (4.2.27) 

In which mx mys e s are the indicators of the crack control characteristics of the x and y 

reinforcement. 

In this way a combination of ci cied fν  that satisfy the equilibrium equations (4.2.21) and 

(4.2.22) by the (4.2.25) can be founded. If the solution can’t be found because of the 

yielding steel in the crack, the principle tensile stress 1cf  must be reduced until an 

equilibrate configuration is reached. 

4.3 Disturbed stress field model. 

In order to overcome some problem present in MCFT, a new theory was formulated on the 

same theoretical basis. The improvements made in DSFM formulation are substantially a 

new approach for the orientation of stress and strain fields in concrete, removing the 

hypothesis of the coincidence of the two fields and the inclusion of shear slip in the global 

deformation of the element. Shear slip is the deformation  due to the shear tension on the 

fracture. The new theory can also consider prestrains and can model with more accuracy 

problems in which MCFT revealed some deficiencies as: 

• Panels containing heavy amounts of reinforcement in both directions, panels 

subjected to high biaxial compressions in addition to shear, or in panels where the 

reinforcement and loading conditions are such that there is no rotation of the 

principal stress or strain conditions, MCFT underestimate the shear strength. 

•  Shear strength and stiffness are generally overestimated for uniaxially reinforced 

panels or for panels containing very light reinforcement in the transverse direction. 

• Reduced accuracy also has been observed in shear-critical beams containing very 

little or no transverse reinforcement 
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Consider the principal directions of stress and strain coincident leads to errors, because 

while in pre-cracking state both fields are inclined by 45 ° in relation to the horizontal 

direction, after the opening of the first cracks, the deformation field increase its inclination 

more than the stress field does. Then both directions grow with a regular interval. After 

yielding of the transverse reinforcement, the reorientation of the stress field accelerated in 

accordance with the pattern of the change in the principal strain direction. 

4.3.1 General overview 

Consider the shear wall shown in fig. 4.3-1, will be used for illustrative purposes. load is 

carried through the structure by internal stress fields in the concrete and by strut or tie 

forces in the reinforcement.  

 
fig. 4.3-1 

Narrowing the focus to a smaller region of the wall, consider an area spanning several 

cracks but one where the sectional forces can be considered relatively constant, taking a 

section 1-1 with Points A and B located at cracks. (Note that the orientation of the section 

line is taken normal to the crack direction.) The tension profiles along the section 1-1 are 

drown in  fig. 4.3-2. In Particular the principal tensile tension in concrete 1cf  will approach 

zero at the crack locations but will be greater than zero between the cracks due to tension 

stiffening and other mechanism. Compensating this reduction at crack location the 

compression stress 2cf  in concrete and the tensile stresses in reinforcement sf  increase 

their value. The average shear stresses ciν  are zero, while at the crack location these are 

necessary for the equilibrium. 
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fig. 4.3-2 

This therory attempt to model the average and local behavior (over the crack), combined 

together by the development of equilibrium, compatibility, and constitutive relations. 

4.3.2 Equilibrium equation 

Consider the element shown in fig. 4.3-3 subjected to the uniform tension 

x y xyσ σ τ⎡ ⎤= ⎣ ⎦σ , the element is reinforced along two direction, generally oriented  

referring to the references axes. Reinforcement are considered smeared. Equilibrium will 

be analyzed in average terms over the area and locally in crack location. 

 
fig. 4.3-3 
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Concrete is treated as an orthotropic material with rotating cracks, the principal tensions 

1 2c cf e f  are parallel and perpendicular to the crack direction θ (shown in  fig. 4.3-4) 

respectively. 

 
fig. 4.3-4 

The equilibrium equation is the following: 

 [ ] [ ]
1

n

c c s si i
i=

= ⋅ + ⋅∑σ D ε D ε  (4.3.1) 

In which cD  e sD  are the material matrices, whose elements are a function of the principal 

directions in the concrete and inclination of the reinforcement, the index i is for the i-th 

reinforcement. In case of the reinforcement are parallel to the edges the following 

equations can be written: 

 
x cx x sx

y cy y sy

xy cxy

f f
f f

σ ρ
σ ρ

τ ν

= + ⋅
= + ⋅

=

 (4.3.2) 

cxf , cyf  e cxyν  can simply be determined through the use of Mohr circles (fig. 4.3-3 (b)). 

On crack location, the following equilibrium equation must be satisfied: 

 ( ) 2

1
cos

n

i scri si ni ci
i

f f fρ θ
=

⋅ − ⋅ =∑  (4.3.3) 

In which iρ  is the percentage of reinforcement over the area, sif  is the average tension in 

steel  and scrif  is the local tension in steel corresponding to the strain scriε . The angle niθ  is 

defined  as this difference niθ θ α= − . 
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The increase of tension in the reinforcement at the crack, leads to the development of shear 

stress along the surface of the fracture, these stresses can be estimated as: 

 ( )
1

cos sin
n

ci i scri si ni ni
i

f fν ρ θ θ
=

= ⋅ − ⋅ ⋅∑  (4.3.4) 

4.3.3 Compatibility relations 

Consider the compatibility conditions in a reinforced concrete element that is experiencing 

deformations composed of both continuum straining and discontinuous slip along crack 

surfaces. Such an element is depicted in fig. 4.3-5. The continuum straining is the result of 

mechanical compliance to stress and to the smearing of crack widths over a finite area. The 

slip component is the result of rigid body movement along a crack interface. The total 

strain will be written with the vector x y xyε ε γ⎡ ⎤= ⎣ ⎦ε , the inclination of principal 

direction of the apparent deformation (total strain) εθ  can be found by: 

 11 tan
2

xy

x y
ε

γ
θ

ε ε
−
⎡ ⎤

= ⋅ ⎢ ⎥
−⎢ ⎥⎣ ⎦

 (4.3.5) 

Decoupling the two effects, calling c cx cy cxyε ε γ⎡ ⎤= ⎣ ⎦ε  the continuum strain of the whole 

concrete element and sε  the component of shear slip over the crack, the principal strains 

for cε are:  

 ( )2 2
1 2

( ) 1,
2 2 cxy

cx cy
cx cyc c

ε ε
ε ε ε ε γ

+
= ± ⋅ − +  (4.3.6) 

These strains are represented in fig. 4.3-5 (a), and their inclination is: 

 1
arctan

2
cxy

cx cy
σθ

γ
ε ε

= ⋅
⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠

 (4.3.7) 
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fig. 4.3-5 

Consider the slip over the crack sδ  depicted in fig. 4.3-5 (b), an average slip can be 

defined as: 

 s
s s

δγ =  (4.3.8) 

sγ  is function of  the crack opening w and the reinforcement spacing s. 

Using Mohr’s circle, the slip can be espressed, by the decomposition in the following 

component: s s s s
x y xyε ε γ⎡ ⎤= ⎣ ⎦ε in which: 

 

( )

( )

( )

sin 2
2

sin 2
2

cos 2

s s
x

s s
y

s
x s

γε θ

γε θ

ε γ θ

= − ⋅

= ⋅

= ⋅

 (4.3.9) 

In addition to these analyzed effects, the element may also be subject to: 

• Thermal and mechanical expansion collected in the elastic strain offset o
cε  

• Plastic offsets due to cyclic loading conditions p
cε  

Thus the full strain vector is represented as follow: 

 s o p
c c c= + + +ε ε ε ε ε  (4.3.10) 
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The ‘‘lag’’ in the rotation of the principal stresses in the continuum, relative to the rotation 

of the apparent principal strains, will be defined as: 

 ε σθ θ θΔ = −  (4.3.11) 

To correlate the apparent (or total) deformation with the actual orientation of the stress and 

strain field in the continuum part, the following equation is used: 

 ( ) ( ) ( )cos 2 sin 2s xy y xσ σγ γ θ ε ε θ= ⋅ + − ⋅  (4.3.12) 

Since the bars are considered perfectly bonded with concrete the average tension in the 

steel are calculated from total strain: 

 ( ) ( )cos 2 sin 2
2 2 2

x y x y xy
si i i

ε ε ε ε γ
ε α α

+ −
= + ⋅ + ⋅  (4.3.13) 

iα  is the inclination angle of the reinforcement, the local stresses and strains on the crack 

in reinforcement must be increased to compensate the stress reduction in concrete. It is 

assumed 1crεΔ  the local strain increased in the principal stress direction such as to satisfy 

the equilibrium condition represented by (4.3.3). The local strain in the reinforcement will 

be: 

 2
1 cosscri si cr niε ε ε θ= + Δ ⋅  (4.3.14) 

4.3.4 Constitutive Relations 

The compressive behavior in concrete is influenced by an high softening due to cracking in 

the transverse direction. The principal stress in compression is therefore influenced by both 

the principal compression and tension strains, and this influence is captured by the 

reduction factor dβ :  

 
0.8

1

2

1
1

0.35 0.28

0.55

d
s d

c
d

c

s

C C

C

C

β

ε
ε

=
+ ⋅

⎛ ⎞
= ⋅ − −⎜ ⎟

⎝ ⎠
=

 (4.3.15) 

Cd and Cs are taken from experimental evidence, dβ factor is used to define the stress 

value in the pick of the curve, as follow: 
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'

0

p d c

p d

f fβ

ε ε ε

= − ⋅

= − ⋅
 (4.3.16) 

A proper response curve in compression is: 

 ( )

2

2

2

2 2

1

0.80 ; 1 0 ; 0.67
17 62

c

p
c p n k

c

p

p p
p c c p

n
f f

n

f f
n k se k se

ε
ε

ε
ε

ε ε ε ε

⋅

⎛ ⎞⋅⎜ ⎟
⎝ ⎠= ⋅
⎛ ⎞− + ⎜ ⎟
⎝ ⎠

⎛ ⎞
= − = < < = − <⎜ ⎟

⎝ ⎠

 (4.3.17) 

While, regarding tensile behaviour in concrete, before cracking a linear elastic relation can 

be used: 

 1 1 10c c c c crf E conε ε ε= ⋅ < <  (4.3.18) 

Where Ec is the elastic tangent modulus for concrete and crε  is the cracking strain. 

In post cracking field, the tension stress in concrete can be estimante by two mechanism, 

one associated with tension softening 1
a

cf  is calculated by the following equations: 

 ( )
( )

1'
1 1 c cra

c t
ts cr

f f
ε ε
ε ε

⎡ ⎤−
= −⎢ ⎥−⎣ ⎦

 (4.3.19) 

Where: '2 f
ts

t r

G
f L

ε = ⋅
⋅

 e 7.5 /fG N m= , r L 750mm= , ( )0.33' '0.65t cf f= ⋅ . 

As  in the MCFT, the concrete tension stiffening stresses are calculated as follows: 

 
'

1
11

b t
c

t c

ff
c ε

=
+ ⋅

 (4.3.20) 

In which the terms have the following value: ( )
1

412.2   ed   cos
n

i
t ni

i bi

c m
m d

ρ θ
=

⋅
= ⋅ = ⋅∑ , 

bid is the rebar diameter. So the tension in cracked concrete will be given by: 

 { }1 1 1max ;a b
c c cf f f=  (4.3.21) 

Regarding to the steel classical trilinear diagram described by the following equations is 

used: 
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( )

0 ;

;

;

0 ;

s s s s y

s y y s sh

s y sh s sh sh s u

s s u

f E

f f

f f E

f

ε ε ε

ε ε ε

ε ε ε ε ε

ε ε

= ⋅ < <

= < <

= + ⋅ − < <

= >

 (4.3.22) 

The constitutive relations described above are depicted in fig. 4.3-6. 

 

 

 
fig. 4.3-6 

4.3.5 Shear slip  model 

Several studies are carried out in order to quantify sδ  along the crack surface as a function 

of shear stress ciν . These formulations are generally influenced by the cracks opening w, 

the aggregates size a, and  the cylindrical '
cf  and cubic ccf compressive stresses. The 

relation adopted is given by Walraven (1981): 

 
( )0.8 0.7071.8 0.234 0.20

a ci
s

ccw w f
νδ

− −
=

⋅ + ⋅ − ⋅
 (4.3.23) 

This approach is not always effective, in particular, does not model well the case where 

there are no shear reinforcement, in particular in this case the equilibrium equations give a 

zero shear stresses on the crack surface. 



CHAPTER 4 

 

 

 
72

An additional approach is related to the change in direction between the principal stress 

and strain. The rotation of the stress field remains delayed of a certain range compared to 

strain field. This range is stable after the first crack and remains constant, until the 

longitudinal reinforcement starts yielding. Experimental evidence shows that this initial 

interval is around 5 °-10 ° in function of the reinforcement. Regarding to the initial 

direction of crack icθ  the rotation of the principal apparent deformation εθΔ  can be 

calculate as follow: 

 icε εθ θ θΔ = −  (4.3.24) 

Knowing lθ  (around 5°-10°) e εθΔ the variation in direction of the stress field can be 

calculate: 

 
l

l

l

σ ε

σ ε

θ θ θ θ θ

θ θ θ θ

Δ = Δ − Δ >

Δ = Δ Δ ≤
 (4.3.25) 

 

In which lθ  is 5° for biaxial reinforced elements, 7.5°, for uniaxial reinforced element, 10° 

for elements reinforced in other way. The inclination of the stress field is calculated as 

follow: 

 icσ σθ θ θ= + Δ  (4.3.26) 

Thus, using equation (4.3.12) b
sγ can be calculated. Combining the two approach in a 

hybrid formulation, the lacks of each mechanism can be eliminated. The deformation 

sγ due to the shear slip can be determinate as: 

 { }max ;a b
s s sγ γ γ=  (4.3.27) 

In the early stages of loading or in case of no shear reinforced elements, the problem is 

governed by  the second criterion, while in more advanced step of loading is the Walraven 

formulation to be predominant. 

In conclusion, DSFM is an extension of MCFT,  by which the following restrictions can be 

overcome: 

• The inclinations of the principal stresses and principal strains are no longer 

necessarily equal. 
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• Behavior and failure conditions influenced by crack shear slip are better 

represented. 

• The check on the crack shear stress is no longer necessary. 

• The softening of the compression response is reduced, this behavior is more 

consistent with that reported by others. 



CHAPTER 5 

 Implementation of the model 

5.1 Sommario 

 L’oggetto di questa tesi è lo studio del comportamento non lineare di strutture tozze,  

l’approccio a questa problematica è stato affrontato in via del tutto generale sviluppando 

un elemento finito a fibre, seguendo l’approccio “member by member” visto nel primo 

capitolo. La scelta dell’elemento a fibre è nata proprio dalla volontà di affrontare 

l’argomento in modo generale; sono infatti note le potenzialità di questo genere di 

modellazione ed i possibili sviluppi ed ampliamenti che vi si possono operare. Gli 

svantaggi sono pur tuttavia presenti, uno tra tutti è l’appesantimento computazionale che 

un elemento di questo tipo apporta in un programma ad elementi finiti.  

Per lo scopo si è realizzato interamente un codice di calcolo originale agli elementi finiti in 

grado di modellare qualsiasi struttura con membrature monodimensionali, dai generici telai 

alle semplici travi.  

La base teorica per la formulazione dell’elemento è spiegata nel capitolo 3 mentre il 

legame costituivo del cemento armato consiste nella teoria DSFM illustrata nel capitolo 4, 

di seguito verranno esplicitati tutti i vettori le matrici ed i passi dell’algoritmo 

implementati nel programma compilato in linguaggio Matlab©. La descrizione è 

organizzata suddividendo le diverse state determination dal livello di struttura a quello di 

elemento fino a quello di sezione. Sono infine riportati i diagrammi di flusso del codice per 

i tre livelli. 
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5.2  Definition input vectors and matrices  

In this chapter we will analyze only the core of the program, ignoring the initial data entry 

and output results.  The input quantities required by the algorithm are as follows: 

• Node coordinates (vnodi): 

Matrix that collects the nodal coordinates of the elements: 

 
1 .. ..

n .. ..

x y
node

node

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

vnodi  (5.2.1) 

• Connection matrix (LCO): 

Number of rows in this matrix coincide with the number of beams, row 1 indicates the 

beam 1, row n indicates the beam n. The elements of the matrix are the numbers of beam 

ends nodes. 

 

i j
1 .. ..

n .. ..

node node
beam

beam

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

LCO  (5.2.2)  

• Boundary matrix  (BL): 

 Matrix that collect node and direction restrained (direction are indicate as x=1 y=2 φ=3) 

 

node direction
.. ..

.. ..

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

BL  (5.2.3) 

 

• Applied load vector P:  
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node 1
x

y

P
P
M

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎨ ⎢ ⎥
⎪ ⎢ ⎥⎩= ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

P  (5.2.4) 

• Section compatibility matrix (l): 

Is a matrix that relate the section deformation 
χ
ε
γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 with the fibres deformation fib

fib

ε
γ
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

Is a tridimensional matrix, its dimension is [2 number of fibres  x  3 x  number of beams]  

 

1 0 1
0 1 0

0 1
0 1 0
ifib

y

y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

l  (5.2.5) 

• Fibre area matrix (A):  

Are diagonal matrix, whose dimension is [2 number of fibres  x  2 number of fibres  x  

number of beams], on the diagonal are given respectively to the index i and i +1 the area of 

the i-th fiber. 

 

1

1

0 0 0
0 0 0
0 0 0
0 0 0

A
A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  (5.2.6) 

• Reinforcement matrix (ro): 

This matrix collect all the reinforcement characteristics for each fibre, its dimension is  

[number of beams x 8]  

 x x y yAs n ferri x n ferri y sx syρ ρ φ° °⎡ ⎤
= ⎢ ⎥
⎣ ⎦

ro  (5.2.7) 
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 Where  sx e sy are the reinforcement spacing, x yeρ ρ  are the percentage of steel in x and 

y direction. 

• Matrix that collect the characteristics of materials (carmat):  

 0

y c

t ct

u c

s cu

s c

f f
f f

E
ε ε

ε
ν ν

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

carmat  (5.2.8) 

Input require also the number of nodes, the number of beams, the number of directions 

restrained and the number of fibers. There are other matrix that will be explained below. 

 

5.3 Algorithm steps: 

(1) Creation of initial modulus matrix: 

Two matrices whose size is equal to the areas marix A, are built by collecting the modulus 

of elasticity. A matrix for a steel Es and one for concrete Ec., these matrx are the following: 

 

1 1

1 1

1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

s c

s c

s c

E E
G G

e
χ χ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

E E  (5.3.1) 

(2) Creation of the initial stiffness matrix 

First of all the section stiffness matrix can be calculate as follow: 

 ( )T
s x cρ= ⋅ ⋅ + ⋅ ⋅k l E A E A l  (5.3.2) 

Knowing the section stiffness matrix , by inversion, section flexibility matrix can be 

calculate: 1−=f k . By integration the flexibility matrix of the element F can be calculate as 

follow: 

 
0

( ) ( ) ( )
L

T x x x dx= ⋅ ⋅∫F b f b  (5.3.3) 
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( )xb , is the forces interpolation matrix, this matrix  interpolate the nodal forces, giving the 

section forces in control sections. 

 

1 0

1 1( ) 0

0 0 1

x x
l l

x
l l

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

b  (5.3.4) 

The relation between nodal forces and section forces is written below, the nodal forces are 

represented in fig. 5.3-2 (a). 

 
1

2

3

1 0
( )

1 1( ) 0
( ) 0 0 1

x x
l lM x Q

T x Q
l l

N x Q

⎡ ⎤−⎢ ⎥
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.3.5) 

Then, two operators are defined, one is the rotation matrix : 

 

 

cos sin 0 0 0 0
sin cos 0 0 0 0
0 0 1 0 0 0
0 0 0 cos sin 0
0 0 0 sin cos 0
0 0 0 0 0 1

θ θ
θ θ

θ θ
θ θ

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

Ta  (5.3.6) 

 

Where θ  is the angle of the beam in global reference system fig. 5.3-1 
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θ  

 
fig. 5.3-1 

The other operator is a condensation matrix: 

 

1 10 1 0 0

1 10 0 0 1

1 0 0 1 0 0

a a

a a

l l

l l

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

R  (5.3.7) 

This matrix is used to relate the system in fig. 5.3-2 a to the system in fig. 5.3-2 b:  

 

1

1
1

1
2

2
3

2

2

0 0 1
1 1 0

1 0 0
0 0 1
1 1 0

0 1 0

a a

a a

N
l lT

Q
M

Q
N

Q
T

l lM

−⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎣ ⎦

 (5.3.8) 
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fig. 5.3-2 

Once Known all the quantities defined above, is possible to calculate the element stiffness 

matrix: 

 1T T −= ⋅ ⋅ ⋅ ⋅ak Ta R F R Ta  (5.3.9) 

In the element formulation (Taucer et all.1996) presented in the third chapter, this 

transformation matrix is indicated with the letter eleL . 

The procedure is carried out for each beam, at the end, the stiffness matrix in GRS (global 

reference system) is known for every element, than the structure stiffness matrix is 

assembled by the connection matrix LCO .  

The algorithm is organized on three levels, Structure state determination, element state 

determination and section state determination. These levels are each within the other, in 

particular structure state determination contain element state determination that contain 

section state determination. 

5.3.1 Structure state determination 
Each loading step is characterized by Newton-Raphson iterations indicated with 

superscript i. At each iteration the global system of equation is solved, and the structural 

displacements p are updated: 

  1i i i
str E
− ⋅Δ = ΔK p P  (5.3.10) 

 1i i i−= +Δp p p  (5.3.11) 

where Kstr is the structure stiffness matrix and PE are the external loads. Using matrix Lele, 

the element deformation increments are derived from the structural displacement 

increments and then the element deformations are updated:   

 i i
eleΔ = ⋅Δq L p  (5.3.12) 
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 1i i i−= +Δq q q  (5.3.13) 

At this point an element state determination is activated for each element with the purpose 

to determine the element resisting forces Qi and the element stiffness matrix Ki associated 

to the element deformations qi. When the element state determination is concluded, the 

resisting nodal forces of the single elements are expressed in the global reference system 

through the matrix Lele. The structural resisting forces are then obtained by summation of 

the resisting forces of all elements: 

 ( )
1

nele
i T i
R ele eleele=
= ⋅∑P L Q  (5.3.14) 

By assembling the current element stiffness matrices it is formed the new structure 

stiffness matrix:  

 ( )
1

nele
i T i
str ele eleeleele=
= ⋅ ⋅∑K L K L  (5.3.15) 

The unbalanced nodal forces correspond to the difference between the applied and resisting 

forces: 

 i i i
u E RΔ =Δ −P P P  (5.3.16) 

If these unbalanced forces are not below a certain tolerance, the index i is incremented to 

i+1 and a new Newton-Raphson iteration is started by applying the unbalanced forces to 

the structure; otherwise the subsequent load increment is applied and the analysis is 

continued. 

5.3.2 Element state determination  
The element state determination, based on the one proposed by Taucer et al. (1996), is 

characterized by an iterative procedure where each iteration is identified by the index j. 

The first step is the determination of the increments of the element nodal forces from those 

of the element deformations and the updating of the element nodal forces: 

 1j j j−Δ = ⋅ΔQ K q  (5.3.17) 

 1j j j−= +ΔQ Q Q  (5.3.18) 

When j=1, K0 = Ki-1, Δq1 = Δqi and Q0 = Qi-1, where the quantities denoted by the index i-1 

are evaluated considering the state of the element at the last Newton-Raphson iteration. 
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The section forces are then updated considering the section force increments obtained from 

the element deformation increments: 

 ( ) ( )j jx xΔ = ⋅ΔD b Q  (5.3.19) 

 1( ) ( ) ( )j j jx x x−= +ΔD D D  (5.3.20) 

Using the section flexibility matrix it is possible to determine the section deformation 

increments from the section force increments and to update the section deformations: 

 1 1( ) ( ) ( ) ( )j j j jx x x x− −Δ = +⋅Δd f D r  (5.3.21) 

 1( ) ( ) ( )j j jx x x−= +Δd d d  (5.3.22) 

where rj-1(x) are the residual section deformations due to the section unbalanced forces for 

the previous iterations. When j=1, r0=0. At this point a section state determination is 

activated for each control section with the purpose to determine the section resisting forces 

Dj
R(x) and the section flexibility matrix fj(x) associated to the section deformations dj(x). 

By calculating the difference between the applied and the resisting forces it is possible to 

derive the section unbalanced forces for the current iteration:  

 ( ) ( ) ( )j j j
u Rx x x= −D D D  (5.3.23) 

The new element flexibility matrix is obtained by integration of the section flexibility 

matrices:   

 
0

( ) ( ) ( )
L

j jT x x x dx= ⋅ ⋅∫F b f b  (5.3.24) 

This matrix is then inverted to obtain the element stiffness matrix Kj. The residual section 

deformations for the current iteration are calculated from the section unbalanced forces: 

 ( ) ( ) ( )j j j
ux x x= ⋅r f D  (5.3.25) 

The residual nodal displacement are determined by integration of the residual section 

deformations:  

 
0

( ) ( )
L

j jT x x dx= ⋅∫s b r  (5.3.26) 

As usual for the distributed plasticity models, the integrals of the Eqs.(5.3.24) and (5.3.26) 

are solved numerically by monitoring the response in given sections along the element, 

called control sections. The element convergence is reached when the unbalanced forces at 

all the control sections are sufficiently small. This check may be performed through energy 
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criteria (Taucer et al. 1996). If the element reaches the convergence it is assumed Qi = Qj 

and Ki = Kj  and the procedure continues with the element state determination of another 

element. After completing the element state determination of all elements the procedure 

continues with the research of the overall equilibrium of the structure with the Newton-

Raphson iterations. If the element does not converge another iteration is performed by 

considering the following element deformation increments:  

 1j j+Δ = −q s  (5.3.27) 

5.3.3 Section state determination  
The section state determination is aimed to calculate, for each control section, the resisting 

forces DR(x) and the flexibility matrix f(x) corresponding to the deformations d(x). From 

the section deformation vector it is possible to obtain the condensed deformation vector 

( , )x yε  = {εx γxy}T of the fibre at a distance y from the axis z: 

 ( , ) ( ) ( )x y y x= ⋅ε l d  (5.3.28) 

The matrix l is defined on the basis of the assumptions that plane sections remain plane and 

shear strain is constant along the height of the section: 

 
0 1

( )
0 1 0
y

y
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

l  (5.3.29) 

The determination of the strains in concrete is performed through an iterative procedure, 

which is activated at the fibre level. The strains in concrete, in fact, depend on the strains 

associated to shear slip. Moreover, also the value of the transversal strain yε  cannot be 

derived directly. Initially tentative values are assumed for the strains in concrete and the 

total transversal strains. The strains in steel are then defined as follows: 

 ysy

sx x

ε ε
ε ε

=
=

 (5.3.30) 

Once the strains in concrete and steel are known, the corresponding stresses are calculated 

according to the material constitutive relationships. These stresses represent the average 

stresses calculated between cracks. For concrete the principal strain direction are 

calculated:  
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( )2 2

1 2
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2

( ) 1,
2 2 cxy
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cx cy

xy

x y

cx cy
cx cyc c σ

ε

θ
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γ
ε ε

γ
ε ε

ε ε
ε ε ε ε γ = ⋅

= ⋅

⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠
⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠

+
= ± ⋅ − +

 (5.3.31) 

The response of the cracked concrete is characterized by a significant softening that comes 

from the cracking, the principal compressive stress is a function not only of both  principal 

compressive and tensile strain. 

This influence is caught by dβ  factor 
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ε
ε

=
+ ⋅

⎛ ⎞
= ⋅ − −⎜ ⎟

⎝ ⎠
=

 (5.3.32) 

 

dβ  is used to find peak stress 

 
'

0

p d c

p d

f fβ

ε ε ε

= − ⋅

= − ⋅
 (5.3.33) 

Calculation of principal compressive stress in concrete 2cf : 

 ( )

2
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2 2
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 (5.3.34)  

Calculation of principal tensile stress in concrete 1cf : 

 
( )

'

1
11

dove  2.2   ed   cos cos
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x x y y

ff
c

c m m
n nσ σ

ε
φφ πθ θ

ρ ρ

=
+ ⋅

⎛ ⎞= ⋅ = ⋅ + ⋅ −⎜ ⎟⋅ ⋅ ⋅ ⋅ ⎝ ⎠

 (5.3.35) 

Calculation of average stresses in steel 
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( )

0 ;

;

;

0 ;

s s s s y

s y y s sh

s y sh s sh sh s u

s s u

f E

f f

f f E

f

ε ε ε

ε ε ε

ε ε ε ε ε

ε ε

= ⋅ < <

= < <

= + ⋅ − < <

= >

 (5.3.36) 

An important check is performed with regard to the transmission of the stresses across the 

cracks. Local increases of stresses and strains are required in the reinforcement to transfer 

average concrete tensile stresses across a crack. These increases allow to compensate for 

the local reduction in the concrete average tensile stresses. The local strains in 

reinforcements are calculated as follows: 

 2
1 cos 2sycr sy cr σ

πε ε ε θ⎛ ⎞
⎜ ⎟
⎝ ⎠

= +Δ ⋅ −  (5.3.37) 

 ( )2
1 cossxcr sx cr σε ε ε θ= +Δ ⋅

 (5.3.38) 

The local incremental strain Δε1cr in the principal stress direction is calculated in order to 

satisfy the equilibrium condition expressed by: 

 ( ) 2
1

1
cos

n

i scri si ni c
i

f f fρ θ
=

⋅ − ⋅ =∑  (5.3.39) 

 which is here adapted to the case of reinforcements parallel to x and y axes: 

 ( ) ( ) ( )2 2
1cos cos 2x sxcr sx y sycr sy cf f f f fσ σ

πρ θ ρ θ⎛ ⎞
⎜ ⎟
⎝ ⎠

⋅ − ⋅ + ⋅ − ⋅ − =  (5.3.40) 

where fsxcr and fsycr are derived from the constitutive relationships as functions of εsxcr e 

εsycr. The solution of Eq. (5.3.40) is obtained numerically by considering increasing values 

of Δε1cr from an initial value equal to zero. Once the equilibrium equation is satisfied, the 

shear stress in the concrete fracture is calculated according to: 

 ( )
1

cos sin
n

ci i scri si ni ni
i

f fν ρ θ θ
=

= ⋅ − ⋅ ⋅∑  (5.3.41) 

rearranged in the following form: 

 ( ) ( ) ( ) ( )cos sin cos sin2 2x sxcr sx y sycr syci f f f fσ σ σ σ
π πν ρ θ θ ρ θ θ⎛ ⎞ ⎛ ⎞

+ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ⋅ − ⋅ ⋅ ⋅ − ⋅ − ⋅ −  (5.3.42) 

From the shear stress ciν  it is possible to derive the shear slip γs along the crack surface the 

slip δs is determined according to two approaches (vecchio2000). In the first approach it is 
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calculated as a function of shear stress νci, crack width w and cubic compressive strength 

fcc:   

 
( )0.8 0.7071.8 0.234 0.20

a ci
s

ccw w f
νδ

− −
=

⋅ + ⋅ − ⋅
 (5.3.43) 

where w is a function of the crack spacing s. The crack width is calculated as follows: 

 1cw sε= ⋅  (5.3.44) 

 1
sin cos

x y

s

s s
σ σθ θ=
+

 (5.3.45) 

A further approach is related to the difference which arises between the rotation of the 

principal stresses and the apparent strains. This difference stabilize after the first crack and 

remains constant, until the reinforcement starts yielding. Experimental evidence (Vecchio 

2000) shows that this initial difference θl is around 5°-10° depending on the type of 

reinforcement. By denoting with θic the inclination of principal stresses in concrete at first 

cracking, it is possible to derive the angle Δθε between the apparent principal strains at the 

current load stage and the principal stresses at first cracking: 

 icε εθ θ θΔ = −  (5.3.46) 

The variation of the principal stress directions can be calculated as follow: 

 
l

lσ ε εθ θ θ θ θΔ = Δ − Δ >
 (5.3.47) 

 lσ ε εθ θ θ θΔ = Δ Δ ≤
 (5.3.48) 

where θl = 5° for elements with biaxial reinforcement, θl = 7.5° for elements with uniaxial 

reinforcement and θl = 10° for elements with other types of reinforcement. The inclination 

of the principal stresses in concrete is: 

 icσ σθ θ θ= +Δ  (5.3.49) 
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The shear strain due to shear slip can then be calculated as follows: 

 ( ) ( ) ( )cos 2 sin 2b
s xy y xσ σγ γ θ ε ε θ= ⋅ ⋅ + − ⋅ ⋅  (5.3.50) 

Combining the two approaches in a hybrid formulation, the shear strain due to shear slip 

along the crack surface can be evaluated as the maximum of the two corresponding values: 

 max ;
a

a bs
s s ss

δγ γ γ
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

= =  (5.3.51) 

where s is the crack spacing. 

The deformation components associated to shear slip are calculated as follows: 

 

( )

( )
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2

sin 2
2
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s s
x

s s
y

s
xy s

γε θ

γε θ

γ γ θ

= − ⋅

= ⋅

= ⋅

 (5.3.52) 

where γs is the shear strain due to slip along the crack surface. 

New values of strains in concrete are then calculated: 

 ( ) 'c
s= −ε ε ε  (5.3.53) 

where εc is the vector of the strains in concrete and εs is the vector of the strains due to slip. 

With the new values of concrete strains a new iteration is performed. At this stage it is 

performed also the correction of the value of the total transversal strain yε in order to 

satisfy the transversal equilibrium condition: 

 y cy y syf fσ ρ= + ⋅  (5.3.54) 

 with σy =0.  

While the original MCFT is formulated on the basis of the secant stiffness matrix, the 

model presented here, according to the one proposed by Taucer et al. 1996, is based on the 

tangent stiffness matrix. The tangent modules relative to the two principal directions are 

calculated from the material constitutive laws as functions of the principal strains. The 
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tangent modules are collected in material stiffness matrices related to the principal 

directions: 

 
1

2

0 0
* 0 0

0 0

c

c c

c

E
E

G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=E  (5.3.55) 

 
0 0

* 0 0 0
0 0 0

sx

x sxEρ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=E  (5.3.56) 

For the reinforcement steel parallel to the y direction it is adopted a matrix Esy* which can 

be obtained by replacing in Eq. (5.3.56) ρxEsx with ρyEsy. These matrices are then 

transformed to the x and y directions: 

 *T
c c= ⋅ ⋅E T E T  (5.3.57) 

 *T
sx sx= ⋅ ⋅E T E T  (5.3.58) 

This transformation is applied also to matrix Esy*. The transformation matrix is given by: 

 

( )

2 2

2 2

2 2

cos sin cos sin
sin cos cos sin

2cos sin 2cos sin cos sin

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= −
− −

T  (5.3.59)  

where ψ =θσ  for the concrete, ψ =0 for the reinforcements in x direction and ψ = 90 ° for 

the reinforcements in y direction. The total material stiffness E is evaluated by summation: 

 c sx sy+ +=E E E E  (5.3.60) 

Finally the matrix E is condensed in order to obtain the matrix E , referred to the two 

deformation components εx and γxy.  

The stresses in concrete relative to the two principal directions are calculated from the 

material constitutive laws as functions of the principal strains. The values of the stresses in 

concrete relative to x and y axes are derived through these transformations: 
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 (5.3.61) 
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By knowing also the stresses in the reinforcements parallel to the x and y directions it is 

possible to determine the total stresses with the equilibrium conditions: 

 
x cx x sx

y cy y sy

xy cxy

f f
f f

σ ρ
σ ρ

τ ν

= + ⋅
= + ⋅

=

 (5.3.62) 

The stresses σx and τxy, used to derive the section resisting forces, are then collected in the 

condensed stress vector σ .  

The matrix E and the vector σ  are relative to a single fibre, so they are functions of the 

position of the fibre and of the control section, and can be written as ( , )x yE and ( , )x yσ . 

The section stiffness matrix and the resisting forces of the control section can be calculated 

by integration: 

 T( ) ( ) ( , ) ( )
A

x y x y y dA= ⋅ ⋅∫k l E l  (5.3.63) 

 ( ) ( ) , )R A
x y x y dA= ⋅ (∫ TD l σ  (5.3.64) 

As usual for the fibre models, these integrals are solved numerically by subdividing the 

control sections into a number of fibres. The modules and the stresses are computed at the 

midpoint of each fibre. Due to the formulation of the constitutive model of the fibres, the 

steel areas are considered smeared over the concrete fibres and each fibre may contains 

both concrete and steel at the same location. 

5.4 Solution strategies  

Regarding the solution strategies adopted in the program, it must be noted first that the 

code works in forces control. This characteristic substantially prevents to catch a softening 

behavior and has convergence problems in case where the stiffness matrix tends to zero. to 

overcome this last problem a variable loading step technique has been adopted. 

• Variable loading step 

This technique consists in changing λ  (load multiplier), in function of the Newton-

Raphson’s iterations convergence. If the convergence is not reached after a certain number 

of iteration, the algorithm automatically set 
2
λλ =  and repeat the calculation from the 
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previous load step. Has been given a limitation of 
16
λ  beyond which the non-convergence 

is accepted and the calculation proceeds with a warning alert. Similarly, if the convergence 

is reached with a tolerance greater than 1e-10 the algorithm set 2λ λ=   with the aim to 

optimize the computational time.  

• Convergence criteria 

The convergence criterion adopted, in terms of structural level is based on an energy 

criteria. In particular, as shown in Taucer et al. 1996 it was assumed that the general 

convergence of Newton Raphson iteration is achieved when the ratio between the current 

work increment and the initial work increment is less than a certain tolerance. 

 
( ) ( )

( ) ( )

( ) ( )

( ) ( )1 1 1 1
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P p P p

P p P p
 (5.4.1) 

Even with regard to the element state determination convergence, an energy criterion was 

chosen. the increase of energy at the current iteration j  is calculated and compared to the 

energy associated with the element iteration j = 1. This criteria is described by the 

following equation: 
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 (5.4.2) 

where the numerator carries the quantities calculated in step j and the denominator the 

initial quantities. 

The default tolerance for both are set  to the same value 610Stol Etol −= = . This criteria 

has the great advantage of controlling the unbalancing forces and residual deformations 

simultaneously. 
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5.5 Flow Chart 

5.5.1 Structure state determination 
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5.5.2 Element state determination 
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5.5.3 Section state determination 
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By summation the material 

matrix can be calculated 
c sx sy+ +=E E E E

Stresses are then calculated and 

collected in stress vector
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Vector stresses σ and material matrix  E are then condensed 

by the transverse  equilibrium of the section in σ ed E that 

do not contain the degree of freedom in y direction 



CHAPTER 6 
 

 Numerical analysis and validation 

6.1 Sommario 

Diverse analisi sono state svolte al fine di validare l’elemento finito proposto e di studiare 

l’effettiva influenza che l’interazione taglio flessione ha sul comportamento globale della 

strutture caratterizzate da una geometria prevalentemente tozza.  

Per la validazione del modello con risultati sperimentali si è fatto riferimento all’ampia 

campagna di prove sperimentali condotte dalla Portland Cement Association (Oesterele et 

al. 1976). Le prove sono state condotte su diverse tipologie di pareti, da semplicemente 

rettangolari, con pilastrini e flangiate con diverse dimensioni ed armature. Nel report a cui 

si è fatto riferimento sono evidenziati per ogni prova sperimentale i contributi che taglio e 

flessione portano allo spostamento finale della  parete. Questa tipologia di dati ha dato 

un’ulteriore stimolo al tentativo di modellare i vari contributi. Le pareti testate 

rappresentano dei modelli in scala di pareti reali, dove il fattore di scala è pari a 1/3. La 

parete esaminata col codice di calcolo è indicata nel report come specimen B4. 

E’ stato inoltre svolto un confronto di tipo numerico, in termini di comportamento globale, 

tra il modello proposto nella tesi ed il codice di calcolo Vector II sviluppato presso 

l’Università di Toronto. Il codice in questione è un programma ad elementi finiti 

bidimensionali il quale utilizza la stessa teoria del modello oggetto della tesi come legame 

costituivo. 

 Sono state inoltre svolte numerose analisi parametriche su due tipologie di strutture tozze 

ricorrenti, una pila da ponte ed una parte di taglio. Lo scopo delle analisi parametriche è 

quello di mostrare come l’interazione taglio-flessione influenzi il comportamento di 

strutture sostanzialmente tozze e di capire, secondo il modello oggetto di studio, qual è la 

snellezza limite oltre la quale l’effetto delle non linearità taglianti risulti di secondaria 

importanza.  
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6.2 Comparisons between numerical and experimental results 

The model was validated by performing comparisons with available experimental results. 

The comparisons presented in this paper regard some experiments conducted by the 

Portland Cement Association. These tests were conducted on different types of RC shear 

walls characterized by different shapes of the cross-section: rectangular, barbell and 

flanged represented in fig. 6.2-1. For each section different dimensions and reinforcements 

were considered in the tests. The wall examined in this study is indicated in the cited report 

Oesterele et al. (1976) as Specimen B4. For this specimen the different contributions due to 

shear and bending to the lateral displacement of the wall were available from experimental 

results. This distinction in the displacement data gave the opportunity to find out if the 

model can catch the different components of displacement. The tested walls are scale 

models of real walls, where the scale factor is 1/3. 

 

6.2.1 Geometry of specimen B4 and modelling criteria 
The cross-section has the dimensions shown in fig. 6.2-2, the specimen was designed with 

all lengths expressed in inches but here are reported in millimetre.  Along his height, the 

Rectangular                    Barbell                                                Flanged 

fig. 6.2-1
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specimen was monitored at each floor as described in fig. 6.2-3. The vertical reinforcement 

ratio of this specimen was set equal to 1.11% in each column. The mechanical properties 

of materials are shown in Tables 1 and 2.  

 
The wall was modelled with seven finite elements, in which the control sections were 

taken at the ends. Each section monitored in the experimental tests was associated to a 

control section of the model. The modelling of the wall with finite elements is shown in 

fig. 6.2-4a while the cross-section discretization with fibres is shown in fig. 6.2-4b.  

 

 
 

The steel was considered spread in each concrete fibre according with the model 

assumption. All the analyses were carried out considering a normal stress proportional to 

the self weight of the wall. 

 

  
mm  mm  mm

mmmm  mm 

mm

fig. 6.2-2

  

fig. 6.2-3
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Table 1. Mechanical properties of steel of tested specimen.  

 fy fu Es εu 

Steel 
73.20 (Ksi) 98.80 (Ksi) 32900 (Ksi) 

12.6% 
511 (MPa) 690 (MPa) 229807 (MPa) 

 

Table 2.  Mechanical properties of concrete of tested specimen. 

 

fig. 6.2-4

a) b) 
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 Day 'cf  Ec 

Concrete 68 
6.53 (Ksi) 4100 (Ksi) 

46 (MPa) 28639 (MPa) 

6.2.2 Results of the comparison 
The diagrams obtained with the model, characterized by thicker lines, were superimposed 

to the diagrams related to the experimental results, characterized by thinner lines. 

 
The first comparison was performed with reference to the pushover curve in fig. 6.2-5. 

This comparison shows that the graph obtained from the analysis matches well the 

experimental results. 

It was not possible to represent the softening branch since this analysis was performed 

under load control. Another comparison was carried out in terms of moment-rotation 

diagrams at different levels. In particular, the diagrams were obtained at the following 

locations: at the base and at distances equal to 3ft (915 mm) and 6ft (1830 mm) from the 

base. The rotation at the base was measured at the first monitored section, located 250 mm 
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from the base. Even for the moment-rotation diagrams, the curves obtained numerically 

can approximate the experimental response as shown in fig. 6.2-6. Similarly, in fig. 6.2-7,  

the shear-distortion diagrams derived from the analyses are compared with those presented 

in the report. It is possible to notice also in this case that the numerical results approximate 

well the experimental response.  

The diagrams in fig. 6.2-8 show the different contributions due to flexure and shear to the 

deflected shape in the nonlinear range.  

To distinguish these contributions, the analysis was performed first with the model that 

takes into account the flexure-shear interaction. Then the analysis was repeated by 

neglecting, in the model, the shear deformation. This analysis provided the contribution of 

flexure while the shear deflection was derived as difference between the results of the two 

analysis. 

As it is possible to notice in fig. 6.2-8, the total horizontal displacements along the height 

obtained numerically are close to those from experimental tests. For each type of 

contribution, flexure or shear, different diagrams, associated to different loading steps, are 

illustrated. The results relative to the last loading step are not shown since they are relative 

to the softening branch in the force-displacement diagram. From fig. 6.2-8 it is evident that 

the model was able to simulate accurately the different contributions due to flexure and 

shear in the nonlinear response of the wall. Moreover, the model was able to capture also 

the interaction between flexure and shear. The nonlinear response, in fact, is variable along 

the height while the shear is constant. This result may be interpreted as the effect of the 

variation of the bending moment on the shear response, and it is examined also in the next 

paragraph. 
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6.3 Numerical comparison with VecTor2 

The proposed model was tested also through various comparisons with other models, 

implemented in available computer programs. This paragraph illustrates an example of a 

comparison with the computer code VecTor2, based on bi-dimensional finite elements and 

on MCFT constitutive law. The example regards a squat RC wall whose geometric 

characteristics are shown in fig. 6.3-1. The adopted material properties are: concrete 

cylinder compressive strength equal to 25 MPa and steel yielding stress equal to 450 MPa. 

  
Web reinforcements are bars with a diameter equal to 8 mm at a spacing equal to 20 cm, 

pillars reinforcement are 4 bars with a diameter equal to 16 mm. The proposed model was 

applied considering for this structure 7 finite elements with 2 control sections per element 

and 23 fibres per section fig. 6.3-2 
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As it can be observed from fig. 6.3-3, the two computer programs provided similar results 

in terms of base shear-top displacement curve. The two models, while using the same 

constitutive relationship, are based on completely different nonlinear finite elements, so it 

is interesting to highlight a similarity in the results. 

 

6.4 Investigation on the influence of flexure-shear interaction 

The proposed model was then applied for investigating the nonlinear flexure-shear 

coupling. The investigation regarded two classical example of squat structure, a bridge pier 

with circular cross-section loaded by a force at its free end and a shear wall.  

6.4.1 Parametric analysis on bridge pier 
The analyses were repeated changing the height of the pier L and maintaining the same 

section diameter, in order to keep the ratio L/D as the control parameter of the analysis. 

Description of examined piers and modelling assumptions are shown in fig. 6.4-1 and 

Table 3. 
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Table 3. Geometrical dimensions and modelling assumptions of RC piers under study 

Diameter (m) 2 2 2 2 2 2 2 2 2 2 

Height (m) 2 4 6 8 10 12 14 16 18 20 

L/D 1 2 3 4 5 6 7 8 9 10 

Number of 

elements 
2 4 5 6 7 8 8 9 10 11 

Element length 

(m) 
1.00 1.00 1.20 1.33 1.42 1.50 1.75 1.77 1.80 1.81 

 

With regard to mechanical properties of materials, a concrete with cylinder compressive 

strength equal to 45 MPa and a steel with yielding stress equal to 430 MPa were 

considered. For each L/D ratio, two types of analysis were made: one considering 

nonlinear flexural behaviour and linear shear response, uncoupled by the flexural one; the 

other considering coupled nonlinear flexural and shear behaviour.  

By calling with dMV the top displacement associated to the base shear at yielding and 

calculated considering nonlinear flexure-shear interaction, and with dM the same type of 

displacement obtained by keeping linear the shear behaviour, the results of the parametric 

analysis are illustrated in fig. 6.4-2. In the Figure the ratio dMV/dM is plotted as a function of 

the ratio L/D. This graph shows that nonlinear flexure-shear interaction affected the 

response in a significant way for values of L/D lower than 4.  
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In fig. 6.4-3 VM is the value of base shear calculated considering linear shear behaviour 

while VMV is the value of base shear obtained considering nonlinear shear behaviour. 

Figure 19 illustrates the ratio VM/VMV calculated at fixed values of top displacement in the 

non-linear range and plotted as a function of the ratio L/D. This diagram shows again the 

importance of nonlinear shear response. The inclusion of shear deformation, in fact, 

increases the flexibility of the structure with the consequence that for obtaining given 

displacement values, lower values of lateral load are required. In the range of L/D between 

2 and 4 the obtained values of the ratio VM/VMV are around 1.15. 
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fig. 6.4-4 illustrates the diagrams of base shear versus shear deformation evaluated at 

different locations along the height of the pier. This graph shows that the shear response 

changes along the height when nonlinear flexure-shear interaction is included in the 

analysis. On the other hand the diagram of base shear versus shear deformation remains 

linear and constant along the height when linear shear response is considered. Since shear 

forces are constant along the height while diagrams of shear versus shear deformation does 

change, it is clear also in these investigations, as noticed in the experimental results, that 

the variation of bending moment along the height affects the shear deformations. This 

result highlights the influence of flexure-shear interaction in the nonlinear response. 
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6.4.2 Parametric analysis on a shear wall 
This analysis was carried out, similar to the previous on a shear wall. Numerical results are 

obtained keeping the section (reported in fig. 6.4-5) and varying the height. The main 

analysis and results are reported below: 

 

6.4.3 Analysis with the ratio L = 10
d

 (slender shear wall). 

The wall was schematized with 20 elements (21 nodes). The geometrical discretization  

and mechanical characteristics of the wall are reported in  of the analysis are shown in  
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From the analysis the following diagrams are obtained. In red curve is represented the 

flexural model keeping shear in linear elastic range, in blu curve a full copling between 

flexure and shear is considered. The results are reported in terms of pushover curve, 

moment curvature and shear-shear distortion. 
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Also in this example we can observe the capacity of the model to catch the flexure-shear  

interaction, in particular is observed how the bending moment affects the T γ−  diagram. 

In fact the diagram shear-shear distortion varies along the height of the beam, even though 

the shear is obviously constant on the wall. 
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6.4.4 Analysis with the ratio L = 2
d

. 

In this second example, the wall was schematized with 4 nodes and 5 elements. 

Geometrical and mechanical characteristics of the analysis are shown in 6.4-11 

 
The results are presented in terms of pushover curve, moment curvature, shear-shear 

distortion in the following figures 6.4-12; 6.4-13; 6.4-14: 
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6.4.5 Analysis with the ratio L = 1
d

. 

In this example the wall was schematized with 3 node and 2 elements. Mechanical and 

geometrical parameters are represented below in fig 6.4-15: 

Errore. L'origine riferimento non è stata trovata. 
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It may be observed that in a squat wall much as it analyzed in latter example, the non-

linear flexure-shear interaction will be decisive in determining the general behavior of the 

structure. It may also notice that before cracking the two models return identical results. 

This suggests that the model developed  with flexure-shear interaction in non-linear field is 

an extension of the simplest flexure element.  

 



CHAPTER 7 
 

 Alternative formulation for the shear critical beam-column 

element (developed in University of California Berkeley) 

7.1 Sommario 

Una formulazione alternativa a quella proposta fino ad ora è stata studiata presso 

l'Università della California di Berkeley (UCB) sotto la supervisione del professor Filip. C 

Filippou. L'elemento è stato sviluppato e implementato nella piattaforma informatica 

FedeasLab (Saritas, Filippou (2006)). Per quanto riguarda il campo di spostamento, l’ 

elemento segue l'ipotesi della teoria della trave deformabile per taglio di Timoshenko, 

mentre per la derivazione della risposta elemento è stato utilizzato una formulazione 

variazionale a tre campi basata sul funzionale di Hu-Washizu. Il problema dei grandi 

spostamenti è considerato attraverso l'uso della formulazione corotazionale.  

Invece di un legame costitutivo bidimensionale per ogni fibra, è stato direttamente 

utilizzato un modello tridimensionale del materiale in cui è stata successivamente applicata 

una condensazione delle variabili attraverso l'equilibrio trasversale della sezione. Questo 

garantisce l'accoppiamento delle tensioni in ogni sezione di controllo. Per lo stesso 

elemento finito sono state introdotti due diversi legami costitutivi tridimensionali, uno per 

le strutture in l'acciaio ed un altro per l'analisi di strutture in cemento armato. 

Per il calcestruzzo è stato implementato un modello di danno con due parametri, uno per 

controllare i danni in compressione e un altro parametro per il danno in trazione. Il modello 

di danno tridimensionale utilizzato è stato formulato da Lee e Fenves (1998). Le pagine 

seguenti descrivono in dettaglio la formulazione dell’ elemento finito e le relazioni 

costitutive per il calcestruzzo e l'acciaio. 

Validazioni ed analisi con il modello presentato nel seguente capitolo, sono tutt’ora in 

corso,  in particolare si tanno svolgendo confronti tra i due modelli presentati nella tesi. 
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7.2 Finite element formulation 

The finite element model under study is a two-dimensional beam formulated with the 

assumption of small displacements, but large displacements and therefore non-linear 

geometry can be considered and took into account in the transformation of the element 

response from  the local to the global reference system, through the corotational 

formulation, as shown by Souza (2000) and Filippou and Fenves (2004). 

7.2.1 Kinematic assumptions 

The simplest beam theory including shear deformations in the structural response is the 

Timoshenko beam theory based on the following displacement field: 

 
( , ) ( ) -  ( )
( , ) ( )

x

y

u x y u x y x
u x y w x

θ= ⋅
=

 (7.2.1) 

Where θ (x) is the rotation of the normal to the undeformed x-axis, the normal to the 

section does not coincide with the axis of the deformed beam. 

In a single field variational formulation, the nodal displacements are generally assumed as 

primary variables, and the interpolation functions of displacements are used to derive the 

overall response of the element. If instead, a functional approach based on a two or three 

fields is considered, in addition to the interpolation functions for displacements, are 

required interpolation functions for tension (2 fields) or tension and the deformations (3 

fields). These elements are generally more accurate and numerically stable in the non-

linear fields. The element presented is based on the latter approach, the element was 

derived from the three functional fields, also known as Hu-Washizu functional, in which 

was then introduced the kinematic assumption (7.2.1) 

7.2.2 Hu-Washizu Functional 

The mathematical formulation of the elastic element is based on the three fields, tension σ, 

strain ε and displacement u, and is represented by the following equation:  

 
( , , ) ( T U

HW extW d d
Ω Ω

⎡ ⎤Π = ) Ω+ − Ω+Π⎣ ⎦∫ ∫σ ε u ε σ ε ε
 (7.2.2) 

W(ε) is the strain energy function from which stresses are derived by 
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 ( )Wσ ∂
( ) =

∂
εε
ε

 (7.2.3) 

ε U is the strain vector that is compatible with the displacements u according to this 

equation: 

 s= ∇ε u  (7.2.4) 

Under small strains it is equal to the symmetric part of the displacement gradient s∇ . extΠ  

is the energy associated with external forces, is expressed by the equation: 

 
* *

t u

T T T
ext d d d

Ω Γ Γ
⎡ ⎤Π = − Ω− Γ − − Γ⎣ ⎦∫ ∫ ∫u b u t t u u

 (7.2.5) 

Where t = σ ∙ n and n is the normal to the boundary, * superscript denotes the imposed 

values of variables. It is assumed that the external loading is conservative so that the work 

depends only on the final displacement values u. Ω is the domain of the free body which 

are associated volume forces, while Γt Γu are the loaded and bounded surfaces respectively 

to which are associated surface forces or imposed displacements.  

The formulation of the beam obtained using a three-field functional, allows for the 

independent specification of the strains ε from the displacements u. This allow the 

selection of section kinematic independent from beam kinematics. Introducing the beam 

kinematic described in equation (7.2.1) in equation (7.2.4) the following equation can be 

written: 

 

( , ) '( ) '( )

( , )( , ) ) '( )

u x
xx

yu x
xy

du x y u x y x
dx

du x ydu x y x w x
dy dx

ε θ

γ θ

= = − ⋅

= + = − ( +
 (7.2.6) 

The section strain field is taken in accordance with the following relation. 

 
( ) )

, ) ( )
xx a

xy

x y x
y z x

ε ε κ
γ φ γ

− (⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬(⎩ ⎭⎩ ⎭

ε  (7.2.7) 

Where ( )a xε  is the axial deformation along the x-axis, )xκ( is the curvature and ( )xγ is the 

section shear strain. In this model can be introduced a non uniform shear strain of the 

section through the function , )y zφ( . In this function was introduced a simplification, 

considering it a function of y only, instead y and z  , ) )y z yφ φ( ≡ ( . 

Writing the functional (7.2.2) for the beam, the following can be written: 
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 ˆ T u T u
HW extd d dδ δ δ δ δ δ

Ω Ω Ω
⎡ ⎤ ⎡ ⎤Π = ( ) Ω+ − Ω+ − Ω+ Π⎣ ⎦ ⎣ ⎦∫ ∫ ∫σ ε ε σ ε ε σ ε ε  (7.2.8) 

substituting (7.2.6) and (7.2.7) in (7.2.8) results: 

 

 

( ) ( ){ }
( ) ( ){ }
[ ]{ }
( ) ( ){ }
[ ]{ }
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δ σ δε δκ σ φ δγ

δσ ε θ κ

δσ θ φ γ

σ δ δε δθ δκ
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Ω
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Ω
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− ( − ( Ω+

− ( − ( − Ω+⎡ ⎤⎣ ⎦

− ( − ( Ω + Π

∫
∫
∫
∫
∫

 (7.2.9) 

Section forces are defined as follow: 

 
)

xx xx xyA A A

xyA

N dA M y dA V dA

and V y dA

σ σ σ

φ σ

= = − =

= (

∫ ∫ ∫
∫

 (7.2.10) 

Where N is the axial force, M is the bending moment, V is the shear force and V* that is 

work conjugate with the shear strain field , ) ( )y z xφ γ(  of the equation (7.2.7). From 

equations (7.2.10), the equation (7.2.9) become: 
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∫
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 (7.2.11) 

Where 

 
ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ)

xx xx xyA A A

xyA

N dA M y dA V dA

and V y dA

σ σ σ

φ σ

= = − =

= (
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∫

 (7.2.12) 

The potential energy of the external loads can be written as follow:  

 { }
0

( ) ( ) ( ) ( ) )
l

ext n x u x q x w x m x x dxδ δ δ δθΠ = − + ( ) + (∫  (7.2.13) 

Whose quantity are represented in the following figure fig.7.2-1: 
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The integration by parts of all terms with derivatives in the displacement fields in yields : 

{ } { }

( ){ }
0

0

'( ) '( ) ( ) ( ) ( ) ( )
0

' ( ) ( ) ( )

l
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Nu x u x N u x n x dx Nu x u x N

N u x u x N n x dx

δ δ δ δ δ
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∫

∫
 (7.2.14) 
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∫

∫
 (7.2.16) 

Considerate valide le seguenti equazioni di equilibrio: 

 

 ' ( ) 0 ' 0 ' ( ) 0
' 0 ' 0 ' 0

N n x M V V q x
N V Vδ δ δ δ
+ = + = + =
= Μ + = =

 (7.2.17) 

 

the integral terms on the right hand side of Equations (7.2.14), (7.2.15), (7.2.16) are zero, 

overcoming the need for displacement approximations u, w and θ along the beam. 

Consequently only the nodal displacement are necessary in the formulation. 

 

Node i Node j 

fig.7.2-1
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7.2.3 Force interpolation matrix 

Assuming  ( ) , ( )x yn x w q x w= =  constant along the beam lenght, from the simple 

supported beam scheme represented in figure fig. 7.2-2: 

 
The following equation can be written: 

 p(x) = (x)  + (x)s b q s  (7.2.18) 

Where: 

 
1

2

3

( )
(x) ( ) ,

( )

N x q
M x q
V x q

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

s q  (7.2.19) 

While b(x) is the force interpolation function and  sp  represents the section stress resultants 

under the element loading w. 
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0 1/ 1/

x x L x L
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⎡ ⎤
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b  (7.2.20) 
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⎢ ⎥ ⎛ ⎞⎢ ⎥= − ⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥
⎢ ⎥−
⎣ ⎦

s  (7.2.21) 

The variation of the equation (7.2.18) is: 

 (x) = (x)δ δs b q  (7.2.22) 

7.2.4 Descripion of the shear forces 

At this point it is necessary to introduce a relation between the shear forces V that satisfy 

the equilibrium equations (7.2.17) and the shear forces V* described previously. 

fig. 7.2-2
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To find a relationship between V and V*, it is assumed the hypothesis of linear elastic 

material, for which the following equation can be written: 

 
* 2

)( ( ))

) ) ( ( ))

xy
A A

xy
A A

V dA y G x dA

V y dA y G x dA

σ φ γ

φ σ φ γ

= = (

= ( = (

∫ ∫

∫ ∫
 (7.2.23) 

Therefore, this relationship can be expressed as follows: 
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∫

∫
 (7.2.24) 

Substituting (7.2.24) in the functional, combining the parameter β  with the deformation 

( )xγ , modified deformation can be founded as follow: 

 ( ) ( )x xγ β γ= ⋅  (7.2.25) 

In the functional the this equation can be written: 

 *ˆ ˆ) )x V x Vδγ δγ( = (  (7.2.26) 

therefore: 

 ( )ˆ ) in cui )xy
A

yV y dA y φψ σ ψ
β

= ( ( =∫  (7.2.27) 

7.2.5 Section deformation and stiffness matrix 

The kinematics of the section is described by the following equation: 
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a e  (7.2.28) 

The section forces can be expressed by the following equations: 
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The derivative of section forces, with respect to the section deformations defined in results 

in the section tangent stiffness matrix 

 
ˆ ˆ ( )T T

s s s m
A A

dA dAδ δ ε
δ δ

= = =∫ ∫
s σk a a k a
e e

 (7.2.30) 

Where mk  is the tangent modulus, defined as 
ˆ ( )

m
δ ε
δ

=
σk
ε

 

Considering a fibre discretization of the section, the section stiffness matrix can be 

obtained by the following summation. 
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∑k  (7.2.31) 

where n is the number of fibre of the section. 

Once known the section stiffness matrix, the element stiffness matrix is obtained by 

integration, than the structural stiffness matrix is assembled by classical method. 

7.3 Constitutive relationships. 

The finite element described in the formulation can be used to simulate concrete and steel 

structures. To catch the flexure-shear coupling, a multi axial bond must be used, at least a 

bidimensional relationship. For steel structures has been implemented a classical plasticity 

model, while for concrete a three-dimensional approach based on the damage model, 

proposed by Lee and Fenves (1998), is used. To adjust a three-dimensional model in a 

beam element has been introduced a static condensation. This procedure is carried out  

considering the stirrups as a translational constraint, or introducing the hypothesis of a 

plane stress state if stirrups are not present.  

7.3.1 Steel material model 

To model steel structures, was used a general J2 plasticity model as a constitutive 

relationship , presented by Lubliner et al. (1993) improved by Auricchio and Taylor 

(1995). This model, compared to the classical Prandtl-Reuss J2,  has the advantage of 

considering the material hardening through the expansion of the yield surface. 

In this plasticity model are defined two type of function, one limit function F and one 

yield function F, the latter is the same function as that used in classical plasticity theory.  
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The function F  distinguishes between admissible and inadmissible states, and provides a 

smooth transition between elastic and inelastic states. This behaviour is much more 

realistic for metallic materials. Graphically, this kind of model can be represented by the 

following figure in case of uniaxial material. 

The function F is classically defined as:  

 2F J k= −  (7.2.32) 

Where  J2 is defined as the second invariant of the deviatoric stress tensor while F is 

defined as follow: 

 ( ) :FF h F δ λ
δ

⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

σ
σ

 (7.2.33) 

where  λ is called consistency parameter and must satisfies the following 

loading/unloading conditions:  

 , 0 0F e Fλ λ≥ 0 ≤ =  (7.2.34) 

( )h F  is defined as follow:  

 ( ) ( )
; i k

Fh F H H H
F Hδ ϕ ϕ

= = +
− +

 (7.2.35) 

 

where φ is the distance between the current and the asymptotic radius of the yield  function 

and δ is the rate of approaching the asymptote. Booth are the constants that define the 

connection between the curves.  

Hi is the isotropic hardening modulus and Hk is the kinematics hardening modulus. 

fig. 7.3-1
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For further information about this plasticity model of can be found in Lubliner et al. (1993) 

Auricchio and Taylor (1995). 

7.3.2 Concrete material model 

Concrete has shown the stress-strain behavior of a plastic material as well as that of a 

material with damage. For this reason several models proposed to combine the two 

theories. Lubliner et al. (1989) developed a plastic-damage model that is easier to calibrate 

with experimental data. However, Lee and Fenves (1994) show that the relation between 

the degradation variables and the plastic strain lead to a complex and unstable algorithm. 

Lee and Fenves (1998) developed a plastic-damage model with two damage variables, one 

for a tensile and one for a compressive damage state, and modified the yield function of the 

Barcelona model to include the two damage variables. Lee and Fenves (1998) plastic-

damage model is the basis on which the concrete constitutive relationship is developed. 

This choice arises from the fact that the concrete has the behavior of a plastic material 

although it is certainly subjected to cyclic damage. Compared to the model presented in 

Lee and Fenves’s articles, the derivation of the tangent modulus of the material has been 

changed. In the following will be briefly explained the damage model used. 

According to the plasticity theory, the strain tensor can be divided into two parts, one 

elastic and one plastic, as follow: 

 ( )0
p= −σ C ε ε  (7.2.36) 

0C is the initial elastic stiffness. The plastic strain rate is determined with a flow rule in 

connection with a plastic potential function Ф according to this relation: 

 )p δλ
δ
Φ(

=
σε
σ

 (7.2.37) 

In the original Lee and Fenves (1998) model a single internal damage variable κ is 

introduced, which is assumed to satisfy the following damage evolution rule 

 ( , )λ=κ H σ κ  (7.2.38) 

Lubliner et al. (1989) use a single damage variable, this variable is a combination of tensile 

and compressive damage variables. This assumption is accurate only for monotonic 
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loading. Lee and Fenves introduce two damage variables, one for compression and the 

other for tensile state. This hypothesis makes the behavior more realistic in the case of 

cyclic loading. The damage variables are taken as follow: 

 t

c

κ
κ
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

κ  (7.2.39) 

Tensile and compression strength are functions of the damage parameters: 

 ( ) ( ),t t t c c cf f f fκ κ= =  (7.2.40) 

According to the classical damage mechanics this relation can be written: 

 
1 D

=
−
σσ  (7.2.41) 

Where σ  represent the effective stress and D is a positive scalar parameter, that can 

assume values between 0 (undamaged material) ad 1 (broken material). From the definition 

the following equation can be deduced: 

 ( ) ( ) ( ) ( )1 , 1t t t t t c c c c cf D f f D fκ κ κ κ= − = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (7.2.42) 

where ( ) ( )0 1, 0 1t t c cD Dκ κ≤ ≤ ≤ ≤ . A single damage parameter can be derived by the 

two parameters above: 

 ( ) ( )( )1 1 1t cD D D Dκ= = − − −  (7.2.43) 

The limit surfaces proposed initially by Lubliner and subsequently modified by Lee and 

Fenves is effective for every type of loading, as shown in numerous analysis, except for an 

hydrostatic loading, for which the problem of never reach the crisis.  

The limit surface concerned is represented by the following equation: 

 ( ) ( )1 2 max
1 ˆ3

1 cF I J cα β σ
α

= + + −
−

σ  (7.2.44) 

Where maxσ̂  is the algebraically largest principal stress, I1 is the first invariant of the 

hydrostatic  stress tensor and J2 is the second invariant of the deviatoric stress tensor, α is a 

dimensionless parameter, expressed in terms of the initial uniaxial compressive yield stress 

fc0 and the initial biaxial compressive yield stress fb0,  according to: 

 0 0

0 02
b c

b c

f f
f f

α −
=

−
 (7.2.45) 
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β is the Barcellona constant, which is found in the homonymous model (Lubliner (1989)).  

Lee and Fenves have changed the parameter β as follows: 

 ( ) ( )
( ) ( )( )1 1c

t

C
C

β β α α= = − +
κ

κ
κ

 (7.2.46) 

Where ( ) ( ),c c c t t tC f C f= − =κ κ  are cohesion values in tension and compression, 

respectively. 

An important aspect to consider is the static condensation of the stiffness matrix , obtained 

for a three-dimensional material, on a beam column element. To this end, the constraints 

have been imposed considering the effect of shear reinforcement (stirrups), according to 

the following equilibrium equation: 
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σ ρ
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R  (7.2.47) 

Where , without shear reinforcement 0y zρ ρ= =  the equation (7.2.47) returns the case of 

plane stress state condition. Linearizing (7.2.47) with respect to an initial strain 0ε  in the y 

direction gives: 
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 (7.2.48) 

In z direction similarly: 
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 (7.2.49) 

In writing the linearized equations, it was considered that for a planar beam, the shear 

deformations are zero 0, 0yz xzγ γ= =  as well as their increments 0, 0yz xzγ γΔ = Δ = . 

The equations (7.2.48) and (7.2.49) can be written in matrix form as follow: 

 ,0

,0

xx
yyyy y y yyzz yyxx yyxy yyxzyyy

xy
zzyy zzzz z z zzxx zzxy zzxzzzz
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C E C C C CR
C C E C C CR
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 (7.2.50) 
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The incremental stress-strain relation, can be written  separating the normal strains in the 
transverse direction: 

 
xx xxxx xxxy xxxz xx xxyy xxzz

yy
xy xyxx xyxy xyxz xy xyyy xyzz
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 (7.2.51) 

substituting the (7.2.51) in (7.2.50) for the converged state R=0 (transverse equilibrium), 

the condensed material stiffness matrix can be obtained 

1xxxx xxxy xxxz xxyy xxzz
yyyy y y yyzz yyxx yyxy yyxz

m xyxx xyxy xyxz xyyy xyzz
zzyy zzzz z z zzxx zzxy zzxz

xzxx xzxy xzxz xzyy xzzz

C C C C C
C E C C C C

C C C C C
C C E C C C

C C C C C

ρ
ρ

−⎡ ⎤ ⎡ ⎤
⎛ ⎞+⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= − ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎜ ⎟+⎣ ⎦ ⎣ ⎦⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

k  (7.2.52) 

The same procedure can be used considering only two stress components xxσ e xyσ . 

  

 



 

CONCLUSION 

 

 

This thesis illustrates the attempt to introduce a model that can accurately reproduce the 

nonlinear behavior of structures where shear deformation is critical for the overall 

behaviour. In a fibre beam-column element based on flexibility formulation a constitutive 

relationship that allows to reproduce the nonlinear flexure-shear interaction was introduced 

for the purpose. Indeed in this category of elements there aren’t still models, of proven 

accuracy, able to reproduce the squat structures behaviour. The main characteristics of the 

beam-column element are substantially two: 

• The flexibility formulation, based on the two-fields mixed method  

• The constitutive relationship based on the MCFT, in which a rotating smeared-

crack bidemensional model is assumed for the concrete. 

While the fibre model considered is based on the incremental load approach and tangent 

stiffness matrix, the modified compression field theory on which the constitutive relation is 

based, considers a total load approach  and secant stiffness matrix for the iterations. 

In particular was chosen to adapt the original MCFT to an algorithm based on the 

incremental load approach and the tangent stiffness matrix to take advantage of the more 

fast convergence resulting from this approach. The algorithm includes an element state 

determination, well established for flexibility based elements, and a new section state 

determination, with iterations at the fibre level for the determination of the stress and 

strains in concrete and steel according to the constitutive model.  

The proposed model was implemented in an original computer code and then calibrated 

and validated through comparisons with available experimental results.  

The verification regarded in particular some tests conducted by Osterele et al(1979) on RC 

walls for which the different contributions to the deflected shape due to flexure and shear 

were available. The results shown that The model was able to simulate accurately these 

contributions at different levels of excursion in the inelastic range. The results were carried 

out in terms of Pushover curve, moment-rotation, shear- shear deformation  and deformed 

shape.  

A further test was carried out through numerical comparisons with the computer program 

VecTor2, based on bi-dimensional finite elements and on MCFT constitutive law. The 

analysis was carried out on a shear wall fixed at the base and loaded by a force on top. 
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Although the two codes are based on two different types of finite elements, the results 

obtained in global terms, that is in terms of pushover curve are comparable. Even 

numerical comparisons have shown that the proposed model can be effectively used, in the 

monotonic loading, for the analysis of squat structures.  

Various numerical analyses were then performed in order to study the influence of flexure-

shear interaction. First of all a bridge pier with circular cross section was analyzed to 

investigate this kind of influence, the analyses were repeated changing the height of the 

pier and maintaining the same section diameter, in order to keep the slenderness as the 

control parameter of the analysis. Than an similar analysis was carried out un a shear wall 

in which the slenderness range was between one and ten. From these analyses it is evident 

the influence of the nonlinear shear deformation, especially for the elements characterized 

by a ratio of length to section dimension lower than 4. The observed variation along the 

element of the shear response, associated to the variation of bending moment, highlights 

the influence of flexure-shear interaction in the inelastic range and the capability of the 

model in reproducing this effect. 

The implementation of the MCFT constitutive relationship in a fibre beam-column model 

seemed to be a proper solution for the simulation of shear dominated elements in the 

nonlinear range. The inclusion of shear response however involved a significant increase 

of the complexity of the algorithm of the fibre model. The presented applications of the 

model regard analyses in presence of monotonic loading. More research work is required at 

the date to extend the applications for cyclic loading. 

As regards to the model studied in the University of California Berkeley has been reported 

the finite element formulation based on a three fields functional and the constitutive laws 

for concrete and steel structures. Between the two models presented are still in progress 

studies and comparisons, which will be reported in future papers. 

With regard to the first model presented in this thesis, the following future developments 

can be highlighted: 

• Implementation of a cyclic analysis, changing from a load control to a displacement 

control. This allows to capture effects such as softening, fundamental in nonlinear 

analysis of reinforced concrete structures 
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• Simplification of the constitutive relationship, with the aim of reducing the levels of 

iteration and therefore the computational time. 

• The future extension of the model should account for a more accurate distribution 

of shear strains over the section,  until now assumed constant. 

• Finally The beam finite element model can be extended to include the interaction of 

axial force, biaxial bending moment, biaxial shear and torsion through the 3d 

coupling of normal and shear stresses. A warping function for torsion must be 

added to the kinematic assumptions. 

As regard to the second model studied at University of California Berkeley, the following 

developments are underway: 

• Numerical validation and comparisons between the two models, first in monotonic 

than in cyclic loading  

• Implementation of Biaxial constitutive relationship as Modified Compression Field 

theory, in the Timoshenko beam element formulated on three-field Hu-Washizu 

variational. 
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