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Abstract 

 

 

ABSTRACT 
 

 In the last years, sustainable horticulture has been increasing; however, to be 

successful this practice needs an efficient soil fertility management to maintain a high 

productivity and fruit quality standards. For this purpose composted organic materials from 

agri-food industry and municipal solid waste has been used as a source to replace chemical 

fertilizers and increase soil organic matter. To better understand the influence of compost 

application on soil fertility and plant growth, we carried out a study comparing organic and 

mineral nitrogen (N) fertilization in micro propagated plants, potted trees and commercial 

peach orchard with these aims: 1. evaluation of tree development, CO2 fixation and carbon 

partition to the different organs of two-years-old potted peach trees. 2. Determination of soil 

N concentration and nitrate-N effect on plant growth and root oxidative stress of micro 

propagated plant after increasing rates of N applications. 3. Assessment of soil chemical and 

biological fertility, tree growth and yield and fruit quality in a commercial orchard. The 

addition of compost at high rate was effective in increasing CO2 fixation, promoting root 

growth, shoot and fruit biomass. Furthermore, organic fertilizers influenced C partitioning, 

favoring C accumulation in roots, wood and fruits. The higher CO2 fixation was the result of a 

larger tree leaf area, rather than an increase in leaf photosynthetic efficiency, showing a 

stimulation of plant growth by application of compost. High concentrations of compost 

increased total soil N concentration, but were not effective in increasing nitrate-N soil 

concentration; in contrast mineral-N applications increased linearly soil nitrate-N, even at the 

lowest rate tested. Soil nitrate-N concentration influenced positively plant growth at low rate 

(60- 80 mg kg
-1

), whereas at high concentrations showed negative effects. In this trial, the 

decrease of root growth, as a response to excessive nitrate-N soil concentration, was not 

anticipated by root oxidative stress. Continuous annual applications of compost for 10 years 

enhanced soil organic matter content and total soil N concentration. Additionally, high rate of 

compost application (10 t ha
-1

 year
-1

) enhanced microbial biomass. On the other hand, 

different fertilizers management did not modify tree yield, but influenced fruit size and 

precocity index. The present data support the idea that organic fertilizers can be used 

successfully as a substitute of mineral fertilizers in fruit tree nutrient management, since they 

promote an increase of soil chemical and biological fertility, prevent excessive nitrate-N soil 

concentration, promote plant growth and potentially C sequestration into the soil. 
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1. INTRODUCTION 
 

World annual fertilizer consumption steadily rose from 30 million t in 1960 to 143 

million t in 1990, arriving up to 170 million in the past few years (Taiz and Zeiger, 2010). 

Global nitrogen (N) fertilizer application rate increased almost twenty fold in the last 50 

years, reaching almost 100 million t per year; though, an important portion of this is lost 

under field conditions (Glass, 2003). In fact, global estimate indicates that nearly 50% of N 

fertilizer applied is removed by crops, 2 to 5% is stored in the soil and the residual 45-48% 

has a negative effect on the environment, by being leached to aquatic systems or emitted into 

the atmosphere (Galloway et al., 2004). The excessive use of mineral fertilizers and the 

development of intensive agricultural practices have contributed to reduce organic matter 

(OM) concentration in most Mediterranean soils, leading to increased risk of erosion and 

fertility losses (Melero et al., 2007). In many Italian soils the OM concentration is lower than 

1.5% (Ungaro et al., 2002). 

Recently, sustainable agriculture is increasing; however, to be successful this practice 

needs the increasing of environment friendless practices implies an efficient soil fertility 

management, because soil quality determines the sustainability and productivity of 

agroecosystems (Prasad and Power, 1997; Melero et al., 2007).  

 

1.1.  Soil Organic Matter 

 Soil OM plays a vital role on the properties of soils and represents the greatest 

terrestrial reservoir in the global carbon (C) cycle. It contains approximately 1500 Gt of 

organic C that is twice the amount present in the atmosphere (Oades, 1995; Amundson, 2001) 

 

1.1.1. Organic Components 

 Soil OM includes a wide variety of microorganisms, animals and plant tissues in 

different stages of decomposition (Dell‟Agnola et al., 1993; Wolf and Snyder, 2003). 

According to the decomposition stages, soil OM can be divided into two groups: the first one, 

called litter, usually lies on soil surface, consists in degraded materials in which the anatomy 

of the plant substance is still visible, and has major effects in soil physics characteristics (e.g. 

affecting soil structure, decreasing bulk density, etc.). The second one, a complex known as 

humus, includes a major portion of soil OM, consists of completely decomposed and 

unrecognizable materials that play major roles in physicochemical properties of soils, like soil 

aggregation, aggregate stability and cation exchange capacity (CEC) (Bot and Benites, 2005; 
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Tan, 2011). Humus is a complex mixture of dark-brown, amorphous and colloidal substances 

modified from the original plant material or synthesized by various soil organisms (Prasad 

and Power, 1997). Although more stable than the organic materials from which it is derived, 

humus is transitory in nature, easily degraded by oxidation and broken down by soil 

microorganisms that use it as food and energy source (Wolf and Snyder, 2003; Tan, 2011). 

Humus has different properties such as complex formation with clay or other silicate surfaces, 

storage and release of soil N, buffer capacity, anion and CEC, adsorption of pesticides and 

other agricultural chemicals (Prasad and Power, 1997). Humus consists of non-humic and 

humic substances, the latter being the major part (table 1.1). The non-humic compounds are 

proteins, amino acids, starch and sugars that are directly released from fresh residues cells; 

usually this portion of humus is strongly influenced by weather conditions, soil moisture, 

growth stage of vegetation and addition of organic residues, thus it is easily decomposed (Bot 

and Benites, 2005).   

 

Table 1.1. Percentage of the different components of humus (Stevenson and Cole, 1999). 

Type of material Usual range (% by weight) 

Non-humic substances  

        Lipids 1 – 6  

        Carbohydrates 5 – 25  

        Proteins/peptides/amino acids 9 – 16  

        Other trace 

Humic substances up to 80  

 

 

On the other hand, humic substance consists of a series of highly acid, yellow to black 

colored polyelectrolytes (Stevenson and Cole, 1999), abundant in carboxyl groups, with weak 

acidic phenolic groups, free-radicals that can fix small molecules by both hydrogen bounding 

and nonpolar interactions (MacCarthy, 2001). Humic substances exhibit hydrophobic and 

hydrophilic characteristics (MacCarthy, 2001) that confers them the ability to form complexes 

with metal ions, oxides, hydroxides, mineral and organic compounds, thereby affecting 

nutrient availability (Bot and Benites, 2005). Based on their solubility, the humic compounds 

are classified into three groups: fulvic acids, humic acids and humin.  

Fulvic acids are soluble in water under all pH conditions; they have the lowest 

molecular weight and a common light yellow to yellow-brown color. They are produced in 

the earlier stages of humus formation, with high oxygen (O2) and low hydrogen (H) and N 
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content, and are easily attacked by microorganisms (Wolf and Snyder, 2003; Bot and Benites, 

2005; Tan, 2011). Humic acids are soluble in water with a pH > 2; they have a medium 

molecular weight and their common color is dark brown to black; they have high C and N 

content and are semi-resistant to microbial action (Bot and Benites, 2005; Tan, 2011). Humin 

is not soluble in water at any pH; is commonly black and has the highest molecular weight. It 

is inert and the most resistant to decomposition (Wolf and Snyder, 2003; Bot and Benites, 

2005).   

 

1.1.2. Factors affecting the organic matter content of soil 

The OM concentration in the soil depends on inputs and mineralization rate. Plants are 

the main source of OM, that is supplied as leaves, other plant residues, and rhizodeposition 

(Dell‟Agnola et al., 1993). Rhizodeposition is considered the largest source of OM because it 

can be physically protected by soil clay matrix and also because it consists mainly of roots 

that have a resistance to mineralization due to the great concentration of lignin and phenolic 

compounds (Oades, 1995; Bolinder et al., 1999; Wolf and Snyder, 2003). The continuing 

addition of plant residues to the soil surface enhances the biological activity of soil and C 

cycling processes in the soil (figure 1.1). 

 The rate of accumulation and mineralization of organic compounds depends on many 

factors, such as climate, parental material, topographic position, biota and human activity 

(Amundson, 2001; Trumbore, 2009). 

 Temperature and precipitation are the most significant factors (Prasad and Power, 

1997) that affect soil OM. Temperature is a key factor controlling the rate of decomposition 

since it affects the activity of soil micro-organisms, that present a Q10 ≥ 2 (Amundson, 2001). 
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Figure 1.1 Soil carbon cycling process (Bot and Benites, 2005). 

 

Soils in cooler climates commonly present a higher concentration of OM (figure 1.2) 

because of the reduced microbial activity for most of the year; in contrast, in tropical climate, 

decomposition occurs rapidly (Wolf and Snyder, 2003; Bot and Benites, 2005). 

Precipitations play an important role in 

soil OM accumulation, which increases 

with mean annual precipitation (figure 

1.2) (Bot and Benites, 2005). Intermediate 

ranges of moisture (close to field capacity) 

stimulate soil OM decomposition; on the 

other hand, water saturation leads to 

anaerobic conditions that increases soil 

OM residence times (Amundson, 2001). 

Topography produces a strong 

effect on the amount of organic matter in 

the soil by modifying the microclimate 

Figure 1.2 Typical trend of organic matter 

accumulation in the A horizons of grassland 

soils as influenced by average precipitation 

and temperature (Troeh and Thompson, 

2005). 
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and vegetation; it also affects water and soil movement (Troeh and Thompson, 2005). 

Organic matter usually accumulates at the bottom of hills, because of the higher moisture 

than in the mid or upper slope positions and also because OM is transported to the lowest 

point through runoff and erosion (Bot and Benites, 2005). 

Parental material influences OM accumulation in soil, mainly by affecting soil texture. 

Sandy soils permit more rapid decomposition than finer-textured soils, because they are 

usually warmer and better aerated. In contrast, soil clay content is positively correlated to the 

organic content (Oades, 1988; Troeh and Thompson, 2005), because the clay fractions 

protect soil OM from microbial action by making aggregates that adsorb OM on their 

surfaces (Wolf and Snyder, 2003; Bot and Benites, 2005).   

 Recent estimate assesses that agricultural practices reduce OM accumulation in soils 

decreasing the original soil C content of about 30% (Amundson, 2001). Tillage, for example, 

disturbs soil aggregates and exposes OM to decomposition; tillage also rises soil temperature 

and consequently microbial activity (Amundson, 2001). On the other hand, the use of 

fertilizer, especially N, and pesticides can increase microorganisms activity and enhances 

decomposition of soil OM (Bot and Benites, 2005). 

 

1.1.3. Effect of OM on soil properties 

 Soil OM influences chemical, physical and biological properties of soils; thereby it is 

imperative to keep it at optimal content in order to have a healthy soil.  

 

1.1.3.1. Physical properties 

Physical properties, especially soil structure, are closely related to the amount and 

quality of soil OM. Soil structure describes the manner in which soil particles are arranged 

into larger units; this property affects soil aeration and water infiltration, thus affecting root 

growth (De Nobili and Maggioni, 1993; Wolf and Snyder, 2003). Soil OM improves soil 

structure and consequently enhances water infiltration and increases air porosity, allowing 

better movement of water and air through the soil. Organic matter also reduces soil bulk 

density, because it is much lighter than a similar volume of other soil components, and it also 

increases aggregate stability that benefits pore space (Wolf and Snyder, 2003).  

Additionally OM can retain a larger amount of water, thus affecting soil temperature; 

in fact, the soil gets warm and cool slower with elevated water content. Soil temperature is 

also affected by soil color, because it affects the solar energy absorption. The dark color of 

OM increases soil temperature (De Nobili and Maggioni, 1993).     
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1.1.3.2. Biological properties 

Soil OM influences the number and kinds of organisms (microfauna and microflora) 

that are present in a soil (Wolf and Snyder, 2003). Organic matter plays a key role in the 

protection of soil enzyme activity, which has an ephemeral existence if they do not find a 

suitable organic substrate (Sequi and Nannipieri, 1989; Pérez-Piqueres et al., 2006; 

Hargreaves et al., 2008). Enzymes such as urease and phosphatase, for example, take 

advantage from the presence of OM and make it possible reactions of hydrolysis even under 

unfavorable conditions for microbial life by preventing the leaching of N and phosphorus (P) 

(Perucci, 1992; Giusquiami et al., 1995). Several authors have observed that after application 

of OM, soil enzyme activity increased, along with microbial activity (García-Gil et al., 2000; 

Lee et al., 2004; Böhme et al., 2005). On the other hand, OM soil applications as compost can 

influence microbial community composition and enhance the competition and/or antagonism 

among microbes, leading to a decrease of plant pathogens (Pérez-Piqueres et al., 2006). 

 

1.1.3.3. Chemical properties 

Soil OM plays an important role in soil pH neutralization especially in sub alkaline 

soils, where OM decomposition produces acid compounds that decrease pH. Moreover, it 

affects plant nutrition directly or indirectly; in the first case OM increases the availability of 

nutrient through mineralization by enhancing microorganisms activity (De Nobili and 

Maggioni, 1993; Bot and Benites, 2005). The indirect effect is related to the production of 

chelates, which are substances that bound several metallic elements, such as iron (Fe), copper 

(Cu) and zinc (Zn), making them available over a wide ranges of pH. Moreover soil OM 

reduces the immobilization of P, aluminium (Al), Fe and manganese (Mg), leaving them 

available for plant uptake (Wolf and Snyder, 2003). 

 On the other hand, OM increases CEC of soil that is the capacity of soils to adsorb and 

exchange cations (Tan, 2011). An elevated CEC in the soil increases the retention capability 

of cations such as ammonium (NH4
+
), potassium (K

+
), calcium (Ca

++
) and magnesium 

(Mg
++

), increasing the mineral reservoir of nutrients available for plant growth (De Nobili and 

Maggioni, 1993; Wolf and Snyder, 2003). 
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1.1.4. Organic fertilization 

 The accumulation of OM in the soil is a slow process, it may take from decades to 

centuries; however, its degradation is very fast, due mainly to human activity. According to 

the European Commission (COM2006/231) “the decrease in organic matter content in soils is 

considered a threat and an element of land degradation”; moreover, the Kyoto protocol 

indicates that soil plays an important role in the storage of C, so that it is necessary to protect 

soil OM and increase its content.  

 In the Mediterranean climate, the high summer temperatures along with the intensive 

cultivation of land are responsible for an elevated consumption of soil OM through a high 

annual mineralization rate (Perucci et al., 1997).  

 Due to continuous decomposition in cultivated soils, it is necessary to restore adequate 

level of OM. A way to supply OM into agricultural systems is the addition of exogenous 

organic material, such as manure, compost and peats, biosolids, etc. 

 The use of fresh, immature organic matter should be used carefully because it 

competes with roots for O2 (Sweeten and Auvermann, 2008), may reduce soil mineral N 

availability due an intense microbial activity (De Nobili, 1999; Micciulla and Benedetti 

1999), and might release compounds toxic for plants such as acetic acid (Sweeten and 

Auvermann, 2008). Thus, organic amendments must be stabilized through a composting 

process before their application. 

 

1.1.4.1. Manure 

Manure is organic matter deriving from animal faeces and urine usually mixed with 

plant material (such as wheat straw), which has been used as bedding for animal. Common 

forms of animal manure include farmyard manure (FYM) or farm slurry (liquid manure). 

Agricultural manure in liquid form, known as slurry, is produced by more intensive livestock 

rearing systems, where concrete or slats are used, instead of straw bedding. Animal wastes 

vary in chemical composition, physical form and quantities produced and the major factors 

affecting this variability are 1) the digestive physiology of animal species; 2) the composition 

and form of the diet; 3) the stage of growth and productivity of the animal; and 4) the 

management system of waste collection and storage (Azevedo and Stout, 1974). The waste 

from different species has different physical characteristics, for example, sheep, equine and 

poultry waste contains less moisture than waste from dairy, beef and swine due to differences 

in the physiological mechanisms for water retention and excretion (table 1.2).  
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Table 1.2. Nitrogen, P, K and Ca composition of different manures (Fontenot et al., 1983). 

Animal 

manure 

Dry matter 

(%) 

N  

(% D.W.) 

P  

(% D.W.) 

K  

(% D.W.) 

Ca  

(% D.W.) 

Poultry 25 4.4 1.7 1.9 1.9 

Swine 9 5.2 1.5 3.2 2.0 

Beef 12 2.0 0.4 1.2 1.1 

Dairy 14 2.5 0.6 2.4 1.5 

Sheep 26 4.4 0.6 3.0 1.7 

 

  

 Particle-size distribution of fresh manure depends on the diet and digestion process of 

the animal. Particle density increases as waste degradation develops during storage and 

increased settling of solids occurs in dilute slurries, particularly with wastes containing high 

ash contents. The relatively higher fibre content in waste from ruminants, higher N content of 

poultry and swine waste, lower P content in waste from ruminants and higher Ca content of 

cage layer waste are common illustrations. Depending upon the duration and method of 

storage, the chemical composition of waste can change considerably during storage. 

Microbial decomposition of the waste occurs with the partial biodegradation of OM and the 

transformation of nutrients into a less complex organic and/or inorganic form. Nutrient losses 

during storage can result from leaching and runoff in open lot systems or from volatilization. 

In general, pH in waste becomes more acidic in anaerobic pits, whereas, the pH of waste 

becomes more alkaline in dilute anaerobic lagoons and aerobic treatment systems (Fontenot et 

al., 1983). 

Normally, 75-90% of major nutrients that are fed to livestock pass directly to the 

animal into the manure. How good these nutrients can be returned to the soil, depends on the 

way the manure is stored and handled. There can be huge loss (24 - 83%) of NH4
+
 as a result 

of drying manure and ammonia (NH3) volatilisation (Fontenot et al., 1983). 

Several authors indicated that manure applications enhanced soil properties such as 

porosity and hydraulic conductivity (Wong et al., 1999), decreased bulk density (Wong et al., 

1999; Celik et al., 2004) and decreased heavy metal bioavailability (Walker et al., 2004). 

They also increased total OM, macro and micro nutrients availability (Wong et al., 1999; 

Celik et al., 2004) and crop dry weight yields (Wong et al., 1999). 
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1.1.4.2. Compost  

Compost is the product of decomposition of organic substance made by bacteria, fungi 

and actinomycetes (Ruol and Santon, 2009), with a final formation of new compounds 

(humo-like and humic substances). The controlled biological decomposition of organic 

material leads to the production of stabilized products that can be used as fertilizer. Compost 

can be obtained from different materials, such as wastes from fruit and vegetable processing, 

winery industry as well as municipal solid waste (MSW), and the wastes from the 

management of park and urban green areas. The chemical composition of compost is related 

to the starting material (table 1.3; Wolf and Snyder, 2003); predominance of vegetal fraction 

leads to a higher C:N ratio compared with a compost obtained mainly from animal manure. 

According to this characteristic it is possible to define the final use of compost. Organic 

materials from agro-industry are, for example, potentially organic fertilizers with slow N 

release rate that allow a complete „nutrient cycling‟: the breakdown of organic substances, the 

release of energy and matter captured by life processes and their use to stimulate the new 

growth.  

 

Table 1.3. Selected chemical characteristics of a compost (Wolf and Snyder, 2003). 

Test Range of analyses 

C:N 6:1 – 20:1 

pH 5 – 8 

Electric Conductivity 0.2 – 2 S/m 

Total N 0.5 – 3 % 

P 0.1 – 2.0 % 

K 0.2 – 1.0 % 

Ca 0.8 – 3.5 % 

Mg 0.3 – 0.6 % 

S 0.1 – 2.0 % 

 

 

Composting is a natural aerobic biological process, during which micro-organisms 

degrade organic compounds drawing energy for their metabolic activities and producing H2O, 

carbon dioxide (CO2), NH3, minerals, OM stabilized rich in humus (Sweeten and Auvermann, 

2008; Sadik et al., 2010) and heat (temperature should be stabilized around 65°C). The 

purpose of the composting process is to obtain a stable material (not phytotoxic) used as 
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agricultural fertilizer. The stabilization process lasts around 90 days and at the end of the 

stabilization process, the initial weight is reduced by more than 50% and O2 consumption and 

release are in equilibrium. Composting process is affected by several factors that alter 

microorganism activity, such as moisture, aeration, temperature, nutrient balance and pH 

(Sweeten and Auvermann, 2008). Moisture is an essential factor for microorganism survival 

and growth because it influences O2 availability; several authors indicate diverse optimal 

ranges that goes from 40 to 70% (Wolf and Snyder, 2003; Sweeten and Auvermann, 2008), 

with low values decomposition rate slows down, whereas with high moisture content, the time 

required for compost to stabilize decrease and eventually anaerobic conditions occur 

(Sweeten and Auvermann, 2008). Thermophilic microorganisms that develop in a range 

between 37 and 70°C predominate in the composting process (Wolf and Snyder, 2003; Sadik 

et al., 2010). Under stable moisture and O2 conditions, microorganism activity rises with 

temperature (Wolf and Snyder, 2003). The C:N ratio affects the biological activity rate; 

values between 20 and 30 are optimal. Higher values decrease the decomposition rate while 

lower levels result in high degradation rates, with NH3 losses to the atmosphere (Sweeten and 

Auvermann, 2008; Sadik et al., 2010). 

Compost is rich in humo-like substances, with nutrients, high physical properties, 

hygienically safe and free of viable weed seeds (Sweeten and Auvermann, 2008). The mature 

compost is dark in color, soft to the touch, with a temperature equal to or slightly greater than 

that of the external environment. It is important to use in field mature compost because poorly 

stabilized ones have problems during storage, marketing and use. In storage, immature 

compost can produce bad odors and develop toxic compounds and it may heat up in pallets 

during shipment. Continued active decomposition in the soil could reduce O2 and availability 

of N in the root zone causing problem to plant growth. Mature compost should have finished 

the process of composting and should show the minimal negative effects on plant growth. As 

maturity can not be defined by a single parameter, there are several characteristics that can be 

taken into consideration for evaluating compost maturity (table 1.4).  After the stabilization 

process, compost can be subjected to refining, crushing, dehydration, etc. in order to make it 

marketable (Cristoforetti, 1997). 
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Table 1.4. Possible system and parameters to classify compost maturity (Brinton, 2000). 

 Very mature Mature Immature 

Characteristics Compost with no 

decomposition 

and no potential 

toxicity 

Compost with little 

odor production, 

limited toxicity and 

minimal impact on 

soil N 

Compost with 

intense odor 

production and high 

toxicity potential 

Method    

O2 uptake (O2 hr
-1

) < 0.5 0.5 – 1.5 > 1.5 

CO2 (C hr
-1

) < 2 2-8 > 8 

NH4/NO3 (N ratio) < 0.5 0.5 – 3 > 3 

Total NH3 (ppm N) < 75 75 - 500 > 500 

Seed germination         

(% of control) 
> 90 80-90 < 80 

  

 

 The technical advisory committee for Italian fertilizers identified three types of 

compost (Zorzi, 1997): 

-  green compost: product obtained through a process of transformation and 

stabilization of waste from maintenance of ornamental plants, crop residues and other 

wastes of plant origin, with the exception of algae and other marine plants; 

- mixed compost: a product obtained through a process of transformation and 

stabilization of the organic fraction of municipal solid waste from waste collection, 

waste from animals including manure, residues of agro-industrial activities, sewage 

and sludge, and by the starting materials required for the green compost; 

- peaty compost: product obtained by mixture of peat (> 30%) with green or mixed 

compost. 

 

 The concern related to compost use in agriculture is the potential increase of soil 

concentration of nitrate-N (NO3
-
-N) and that can be easily leached through the soil profile. In 

addition, heavy metals such as lead (Pb), cadmium (Cd), Cu, Zn, etc., and various persistent 

organic toxins (Giusquiami et al., 1995), can be added to the soil with low quality compost 

application. Heavy metal limits have been defined in order to reduce soil pollution even if 

there are still differences among European countries (table 1.5). 
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Table 1.5 Heavy metal limits (mg kg
-1

 D.W.) for European countries and USA and normal 

concentration ranges for European soils (Brinton, 2000). 

Element Italy Germany France Spain USA 
Normal soil 

concentration 

Cadmium 1.5 1.5 8 40 39 0.3-0.7 

Chromium  100 100 - 750 1200 5-100 

Copper 300 100 - 1750 1500 3-20 

Lead 140 150 800 1200 300 12-100 

Mercury  1.5 1.0 8 25 17 0.05-0.4 

Nickel  50 50 200 400 420 4-50 

Zinc 500 400 - 4000 2800 14-125 

 

 

 Beside heavy metal there are other parameters for compost standards as for example 

the presence of non-organic matter (glass, plastic and metal) and stones (table 1.6). 

 Other important factors that should be taken into consideration in order to obtain a 

high quality product are pesticide, herbicide, weed, and salt content. Moreover, biological 

parameter (table 1.7) has to be carefully controlled to have safe compost. 

 

Table 1.6 Maximum non-organic particles allowed in compost in various national standards 

(Brinton, 2000). 

Country Stone (% D.W.) Non-organic matter (D.W.) 

Australia  < 5% of > 5 mm size < 0.5% of > 2 mm fraction 

France  - 
Max contamination 20%; < 6% of >5 mm 

fraction 

Germany < 5% of > 5 mm size < 0.5% of > 2 mm fraction 

Italy  - < 3% total 

Spain  - Free of contamination 

U.K. < 5% of > 2 mm size < 1% of > 2 mm; < 0.5% if plastic 
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Table 1.7 Biological parameter for a safe compost in Italy. 

BIOLOGICAL PARAMETER 

Salmonella No detect in 25 g 

Total enterobacteriaceae  < 1 x 10
2
 CFU 

Faecal streptococci < 1 x 10
3 
(MPN g

-1
) 

Nematodes absent in 50 g t F.W. 

Cestodes absent in 50 g t F.W. 

 

 

 By incorporating recycled OM into the soil, a sequestration of C, that otherwise would 

follow disposal processes which potentially release CO2 in the atmosphere, occurs. 

 In a 9-years-long trial, yearly application of 5 and 10 t ha
-1

 of compost made of 

municipal solid wastes, mixed with pruning material, from urban ornamental trees and waste 

material from agro-industry processes increased soil OM content (from 1.6 to 4.5%), total N, 

P, K and microbial biomass (Baldi et al., 2010). Similar results were observed by Herencia et 

al. (2007) in a greenhouse experience after 9-years of vegetal compost fertilization. In 

addition, several studies have demonstrated that compost application at high rates improved 

soil physical and chemical properties, such as bulk density, porosity, water holding capacity 

(Evanylo et al., 2008), microbial biomass C and enzymatic activity (Melero et al., 2007). 

 

1.2. Nitrogen 

Nitrogen is considered one of the main factors limiting plant growth. In fact, N is the 

most important element of plant composition after C, H, and O2 (Touraine et al., 2001; 

Boukcim et al., 2006; Lea and Azevedo, 2006). Nitrogen is part of many plant cell 

components, such as amino acids, proteins, nucleic acids, chlorophyll and growth regulators 

(Below, 2002; Taiz and Zeiger, 2010). In the biosphere N is available as elemental di-nitrogen 

(N2) gas, volatile NH3 and N oxides (NOx) in the atmosphere; or as organic (amino acids, 

peptides, etc.) and inorganic N (nitrate and ammonium) in the soil (von Wiren et al., 1997). 

The required plant-N concentration for optimal growth varies between 2 and 5% of the plant 

dry weight (Marschner, 1995).  

A major part of plant N is acquired from the soil, where NO3
-
 and NH4

+
 are the major 

sources; however, available soil-N supplies are often inadequate in agricultural soil (Novoa 

and Loomis, 1981; Marschner, 1995; Tischner, 2000; Follett, 2001), as a result, addition of N 

from chemical fertilizers is usually required to optimize plant growth.  
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1.2.1. Nitrogen cycle 

 Nitrogen is present in vast quantities in the atmosphere as N2 representing 79% of dry 

air; however, N2 does not impact environmental quality and directly available N for plant 

uptake and metabolism (Follett, 2001; Robertson and Vitousek, 2009). Acquisition of N from 

the atmosphere requires the breaking of an exceptionally stable triple covalent bound that can 

be possible through biological nitrogen fixation (BNF) or industrial nitrogen fixation. The 

BNF is catalysed by the metalloenzyme nitrogenase and consist in the reduction of N2 to NH3; 

there are few living microorganisms, symbiotic and non-symbiotic capable of this process, 

with those of the genus Rhizobium spp. that lives in symbiosis with legumes (Schulten and 

Schnitzer, 1998; Follet, 2001; Violante, 2005), the most important for agriculture.  

Industrially, N fixation occurs via the Haber-Bosch process, in which natural gas methane 

(CH4) is burned to produce H, which then reacts with N2 under high temperature and very 

high pressure. The quantity of N2 fixated industrially is three or four times lower than BNF, 

which is about 17.2 x 10
7
 t year

-1
 (Violante, 2005; Robertson and Vitousek, 2009). 

 Nitrogen from microorganism fixation and decomposition of animal and plant residues 

becomes part of soil N (figure 1.3), which represents only a small fraction of total N on Earth. 

More than 90% of total soil N is contained in OM, and can be divided into two groups. The 

first one is composed by small molecules such as amino acids, nucleic acids and amino 

sugars, which are present in soil solution (dissolved organic N) in just a little quantity. The 

second group is relatively stable and not directly available for plants because the N is 

associated to larger, insoluble molecules or complexes. The availability of N from organic 

source depends mainly on the mineralization process, which is defined as the production of 

NH4
+
 from organic N (Follett, 2001; Myrold and Bottomley, 2008). 
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Figure 1.3 Nitrogen cycle in the soil-plant-atmosphere system. (Adapted from Violante, 

2005). 

 

 

 Mineralization is a very slow process, mediated by heterotrophic microorganisms, 

which break down organic monomers and release NH4
+
. This process is affected by soil 

conditions, such as moisture and temperature; and also by C:N ratio (Wolf and Snyder, 2003; 

Agehara and Warncke, 2005; Myrold and Bottomley, 2008). Soil moisture regulates O2 in soil 

and maximizes aerobic microbial activity with 50 to 70% of water holding capacity, therefore 

increasing mineralization rate. Cool soil temperatures inhibit N release from the soil OM 

(Wolf and Snyder, 2003; Agehara and Warncke, 2005). Low C:N substrate ratios (about 25:1) 

enhances NH3 release; in contrast, greater C:N ratios are associated with immobilization of 

NH4
+
, process by which inorganic N is incorporated in organic forms (Sims, 1995; Schulten 

and Schnitzer, 1998; Myrold and Bottomley, 2008). Moreover, plant roots play an indirect 

role in N mineralization process by releasing root exudates which are potential sources of C 

and N of the rhizosphere, and by altering soil structure or water availability (Myrold and 

Bottomley, 2008). 
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 The NH4
+
 released by mineralization process is oxidized to NO3

-
, using nitrite (NO2

-
) 

as an intermediate form, by a process called nitrification (Follet, 2001). This process is 

mediated by Nitrosomonas sp. and Nitrobacter sp. bacteria, the first transforms NH4
+
 to NO2

-
, 

and the second one converts NO2
- 

to NO3
-
 (Postgate, 1998). Several microorganisms uses 

NO3
- 
and NO2

- 
as O2 source, transforming them in either N2, nitrous oxide (N2O), nitric oxide 

(NO) or other gaseous N oxide compounds through the denitrification process (Follet, 2001; 

Violante, 2005; Robertson and Vitousek, 2009).   

 

1.2.2. Plant N nutrition and N accumulation in plants 

 Under agricultural soil conditions, NO3
-
 is more abundant than NH4

+
 which is quickly 

oxidized by nitrifying bacteria; in fact NO3
-
 can reach levels between 0.5 and 10 mM, while 

NH4
+

  concentration is 10 to 1000 times lower (Marschner, 1995; Daniel-Vedele et al., 1998; 

Yamaya and Oaks, 2004). 

 The availability of the different form of N for root uptake influences several plant 

physiological processes including N-assimilation, cation-anion balance, water relations, 

photosynthesis and secondary metabolism (Roosta et al., 2009). Preferential uptake of one or 

other forms depends on the species and environmental conditions (Marschner, 1995). Plants 

adapted to low soil redox potential, acid and wet soils have a preference for NH4
+
 ions, in 

contrast, plant that grows in high pH soils, use NO3
-
 (Marschner, 1995; Bloom et al., 2003; 

Larcher, 2003). Ammonium is assimilated in the root, using C skeletons, thus reducing sugar 

content in roots; in contrast NO3
-
 can be stored in plants without being assimilated in the roots 

(Marschner, 1995). In addition, NH4
+
 assimilation produces a strong rhizosphere acidification 

that retards plant growth by the release of one proton (H
+
) per NH4

+
 taken up; whereas NO3

-
 

induces an increase in pH that might have negative effects on mineral nutrient acquisition and 

also on availability within the plants (Marschner, 1995). 

 In addition, the external concentration of both inorganic N forms influences plant 

growth and root uptake. At low concentrations, small differences between NO3
- 

and NH4
+ 

occur; however, when external concentration rise, NO3
-
 is the most important source as NH4

+
 

detrimentally affects plant growth (Marschner, 1995). It has been demonstrated that the 

contemporary availability of both NO3
-
 and NH4

+
 -N for root uptake increases growth and 

crop productivity, because it is easier for the plant to regulate intracellular pH and also 

absorption and assimilation energy cost are reduced (Marschner, 1995; Below, 2002). 

Furthermore, the two forms of N have different soil mobility (Below, 2002), NH4
+
 is fixed to 

negative charged soil particles becoming relatively immobile; in contrast, soil particles repel 
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NO3
-
 making it particularly mobile, hence it moves about 10 times faster than NH4

+
. Thus, 

high levels of NO3
-
 in soils are unusually maintained, because plant absorption, soil leachings 

and microbial denitrification deplete soil nitrate (Crawford and Glass, 1998; Below, 2002; 

Jackson et al., 2008). 

 

1.2.2.1. Nitrogen uptake 

 Plants acquire N from the soil mainly in the form of NH4
+
 and NO3

-
, but the spatial 

and temporal availability of these ions is highly heterogeneous (Bloom et al., 2003). Nitrogen 

absorption depends on the root system development (soil colonization) and N uptake capacity 

of the root (Bahrman et al., 2005). Uptake of inorganic N involves the movement across the 

plasma membrane, transport or storage within the plant, and finally assimilation into organic 

compounds (Below, 2002).  

 Nitrate
 
uptake is an energy dependent process that consumes 1 to 3 moles of ATP per 

mole of NO3
- 
taken. Its net absorption is the balance between apoplasm to cytoplasm influx 

and efflux in the reverse direction; with the latter being passive and increasing with 

decreasing of external NO3
-
 concentration (Crawford and Glass, 1998; Daniel-Vedele et al., 

1998; Touraine, 2004). Nitrate uptake occurs throughout the root surface, mainly in the sub-

apical region, even though older root zones should contribute with an important part of total 

NO3
- 

acquisition due their large size compared with the actively growing roots (Touraine, 

2004; Baldi et al., 2010). In contrast NH4
+
 uptake does not require metabolic energy (Engels 

and Marschner, 1995; Glass, 2003). 

 Two kinetically distinct types of transport systems that co-exist in the plasma 

membrane of root cells have been identified for NO3
- 
influx. The first one, called low affinity 

transport system (LATS) generally found in older root, is active at high external NO3
- 

concentrations (>0.5 mM) with no saturation up to 50 mM. The second one, located close to 

the root tip, works at low external concentrations (<0.5 mM) and is referred as the high 

affinity transport system (HATS). Two different HATS have been suggested, one constitutive 

(cHATS) and the other one is induced (iHATS) by nitrate and nitrite (Tischner, 2000; 

Touraine et al., 2001; Glass, 2003; Touraine, 2004). High affinity transport system and LATS 

also exist for NH4
+
 (Engels and Marschner, 1995; Glass, 2003). 

 Nitrogen uptake can be influenced by internal factors, such as N and carbohydrate 

concentration, and by external factors, such as NO3
- 

and NH4
+ 

soil concentrations, 

temperature, O2 levels, and rhizosphere pH. Plant species and developmental stage can also 

influence N uptake (Below, 2002). Ammonium uptake does not appear to be influenced by 
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NO3
-
, however NH4

+ 
induces inhibition of NO3

-
 uptake; in fact several studies have 

demonstrated that the presence of NH4
+
 in the growing media reduces NO3

-
 influx into roots 

(Glass, 2003). Carbohydrate in the phloem sap may regulate NO3
-
 uptake as demonstrated by 

a decline in NO3
-
 uptake after blocking phloem translocation through stem girdling (Imsande 

and Touraine, 1994; Touraine et al., 2001). Low temperatures reduce plant demand for N, and 

generally increase availability of NH4
+
, because nitrification process is more sensible to low 

temperatures than ammonification (von Wiren et al., 1997; Glass, 2003). Soil pH plays an 

important role on N uptake with NH4
+
 uptake enhanced by neutral conditions and limited at 

low pH. Uptake of NO3
-
 is faster at pH around 4-5 and is reduced at higher pH (Violante, 

2005). Additionally, it has been suggested that plants absorb NH4
+
 faster than NO3

-
 during 

early vegetative growth, whereas the opposite situation occurs as growth progresses and more 

NO3
- 
is absorbed than

 
NH4

+
, possibly due to the presence of incomplete functional systems for 

NO3
-
 uptake and assimilation in young plants (Below, 2002). 

 

1.2.2.2. Nitrogen assimilation 

 Nitrogen must be assimilated into organic forms to be used by plant. Ammonium ion 

is quickly assimilated in the roots because is toxic to plant tissues at relatively low levels, and 

translocated as organic compounds. In contrast, symplastic NO3
-
 within roots can follow 4 

destinations: 1) reduction to NH4
+
; 2) return efflux across the plasma membrane to the 

apoplasm; 3) storage in the vacuoles of root cells or 4) long distance transport through the 

xylem, to be stored or reduced elsewhere (Crawford and Glass, 1998; Below, 2002). 

 The reduction of NO3
-
 to NH4

+
 can occur either in the root or in the shoot. It consists 

in two steps, the reduction of NO3
-
 to NO2

-
 through the enzyme nitrate reductase (NR) and the 

reduction NO2
-
 in NH4

+
 by the enzyme nitrite reductase (NiR), figure 1.4 (Marschner, 1995). 

Nitrate reductase, considered the rate limiting step in the reaction, is located in the cytosol and 

uses electrons from NADH and/or NADPH to reduce NO3
-
 (Engels and Marschner, 1995; 

Below, 2002; Taiz and Zeiger, 2010). Nitrite reductase, located in leaf chloroplast and root 

proplastid, oxidizes a reduced ferrodoxin (Fd) for the reaction; reduced Fd is derived from the 

photosynthetic electron transport (photosystem I) in leaves, and from NADPH generated by 

the oxidative pentose phosphate pathway in roots (Engels and Marschner, 1995; Taiz and 

Zeiger, 2010).  
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Figure 1.4 Schematic presentation of the pathway of NO3
-
 reduction in root and leaf cells; 

NR = nitrate reductase, NiR = nitrite reductase, OPPP = oxidative pentose phosphate 

pathway, PS I = photosystem I. Adapted from Engels and Marschner, 1995. 

 

 

 The magnitude of NO3
-
 reduction carried out in roots and shoots depends on the level 

of NO3
- 

supply and on plant species. In general, with high external NO3
-
 supply, a large 

quantity of the total N is translocated as NO3
- 
to the leaves; in contrast, when NO3

-
 supply is 

low, the most part of the NO3
-
 is reduced in roots (Marschner, 1995). Herbaceous plants and 

temperate deciduous trees such as peach reduce large proportion of the NO3
-
 in the roots, 

when external concentrations is not much higher than 1 mM (Marschner, 1995). 

 Ammonium is assimilated into essential amino acids by glutamate synthase cycles 

(figure 1.5), which consists in two successive reactions catalyzed by glutamine synthetase 

(GS) and glutamate synthase (GOGAT). In this system, NH4
+
 is transformed into glutamine 

via GS using one ATP and a divalent cation as a cofactor. Glutamine synthetase can be 

located in cytoplasm, root plastids and leaf chloroplasts. In root plastids, GS generates amide 

for local consumption and in leaf GS re-assimilates NH4
+
 produced by photorespiratory 

process (Engels and Marschner, 1995; Taiz and Zeiger, 2010). The amide group from 

glutamine is then transferred to 2-oxoglutarate by GOGAT, and can be located in root plastids 
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and leaf vascular bundles. The root-GOGAT accepts electrons from NADH whereas leaf-

GOGAT accepts electrons from ferredoxin (Below, 2002; Taiz and Zeiger, 2010; Lea and 

Miflin, 2011). Also, NH4
+
 can be assimilated by an alternative and reversible way, which is 

catalyzed by glutamate dehydrogenase (GDH) and combines 2-oxoglutarate with NH4
+
. This 

reaction can be NADH-dependent when occurs in mitochondria or NADPH-dependent if it is 

localized in the chloroplasts of photosynthetic organs (Taiz and Zeiger, 2010).  

 

 
Figure 1.5 Schematic presentation of NH4

+
 assimilation; GS = glutamine synthetase, 

GOGAT = glutamate synthase, TCA = tricarboxylic acid cycle (Engels and Marschner, 

1995; Below, 2002). 

 

 

1.2.3. Nitrogen environmental impact 

 Human activities, fertilizer applications and fossil fuel combustion, have increase two-

fold the amount of N in terrestrial ecosystems since the early 20
th

 century (Hall and Matson, 

1999; Wang et al., 2009). This increase of N input has resulted in substantial N pollution and 

ecological damage (Kramer et al., 2006). In agricultural systems, N fertilizers are the center of 

a sharp conflict between the need of maintain the food supply and the need of protect the 

environment (Sims, 1995). Nowadays, N fertilizer use is higher than 100 million t per year; 

however only 15% to 50% of total N supply is absorbed by fruit trees and extensive crops, 

respectively (Sanchez et al., 1995; Galloway et al., 2004; Robertson and Vitousek, 2009). 

Nitrogen losses from the ecosystems is mainly as inorganic forms through soil leaching, 

denitrification to N2, volatilization NH3 and fluxes of N2O and NOx to the atmosphere 

(Robertson and Vitousek, 2009). 
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1.2.3.1. Leaching N  

 Nitrogen losses by leaching generally are, NO2
-
 and NO3

-
, that is quantitatively the 

most important, because its high solubility and mobility in the soil. In general, leaching of 

NO3
-
 is caused by any descending movement of water through the soil profile and the 

magnitude of the leakage is positively correlated with soil NO3
-
-N concentration and the 

volume of leaching water (Sims, 1995; Kramer et al., 2006). Agriculture systems are 

considered as the most important anthropogenic source of NO3
-
 to aquifers and groundwater 

(Burkart and Stoner, 2001). In fact, it has been observed that agricultural areas often exhibit 

seasonal concentrations greater than 10 mg NO3
-
-N L

-1
, whereas in natural background levels 

commonly NO3
-
-N is less than 2 mg L

-1
 (Keeney and Hatfield, 2001). The high nitrate levels 

in drinking water and food may increase the risk of methaemoglobinaemia, that is particularly 

high for babies (Sims, 1995; Keeney and Hatfield, 2001), and increase the occurrence of 

stomach cancer (Forman et al., 1985; O‟Riordan and Bentham, 1993). On the other hand, 

excess of NO3
-
 can contribute to the eutrophication (excess of nutrients availability) of natural 

water systems, hence, enhances growth of aquatic organism, with an increase of turbidity and 

a reduction of dissolved O2, that affect the metabolism and growth of aerobic species, causing 

a condition referred to as hypoxia (Sims, 1995; Follett, 2001; Keeney and Hatfield, 2001; 

Robertson and Vitousek, 2009).  

1.2.3.2. Ammonia volatilization 

 Ammonia plays a relatively positive role in atmospheric chemistry because it serves to 

neutralize about 30% of the H
+
 ions in the atmosphere, and in general is deposited as NH3

+
, or 

as NH4
+
 in rainwater or aerosols (Robertson and Vitousek, 2009). Among the global NH3

+
 

emissions to the atmosphere, about 65% is emitted from agricultural systems, through 

volatilization process (Mosier, 2001). Ammonia volatilization refers to the loss of NH3
+ 

from 

the soil to the atmosphere, and is considered the second major pathway by which N is lost 

from agriculture system (Sims, 1995; Robertson and Vitousek, 2009). Volatilization is 

influenced by NH4
+
 concentration in soil solution and soil pH; most losses occur when NH4

+
 

is abundant and pH increases (Follett, 2001; Robertson and Vitousek, 2009). In general, NH3
+
 

volatilization increases when: soil CEC is low, soil temperature increase, urea is used as 

fertilizer and high N organic wastes are decomposed on the soil surface. Volatilization 

decreases in the presence of growing plants (Follett, 2001). 
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1.2.3.3. Denitrification 

 Denitrification is the reduction of NO3
- 
to gaseous form of N. The general sequence is 

as follows: 

 

 

 This sequence is catalyzed by chemoautotrophic bacterial, which normally are aerobic, 

but under anaerobic conditions they can use reduced N oxides as electron acceptors in 

alternative to O2 (Peoples et al., 1995; Sims, 1995).  

 Around 0.5% of fertilizer-N applied to agriculture systems is emitted to the atmosphere as 

NO (Mosier, 2001). Nitric oxides (NOx), released mainly as nitric oxide (NO), plays an 

important role in troposphere chemistry; reacts with atmospheric oxidants such as ozone (O3), 

hydroxyl radicals (OH) during oxidation of carbon monoxide (CO), CH4, and non-methane 

hydrocarbons (Hall and Matson, 1999; Mosier, 2001). Elevated NOx concentration lead to the 

production of O3, due to the oxidation of atmospheric hydrocarbons such as CO. In contrast 

when the concentration is low, O3 is destructed reducing the ability of the stratosphere as a 

barrier to ultraviolet radiation (Sims, 1995; Robertson and Vitousek, 2009). Additionally, 

hydroxyl radical in the atmosphere are involved in the removal of greenhouse gases, thereby 

NOx contribute indirectly in atmospheric warming (Peoples et al., 1995). 

 Nitrous oxide (N2O) is a powerful greenhouse gas, 300 times more active than CO2, 

that in the troposphere absorbs thermal radiation and has a long residence time in the 

atmosphere (Kramer et al., 2006; Bronson, 2008; Robertson and Vitousek, 2009). Nitrous 

oxide is not one of the most abundant greenhouse gas, nevertheless, its emission rise with an 

increase of N availability, playing a considerable role in the agricultural contribution to 

climate change (Kramer et al., 2006; Robertson and Vitousek, 2009). In fact, according to the 

Group on Agriculture of the European Climate Change Programme, almost 51% of the total 

N2O emissions come from agricultural activities (Favoino and Hogg, 2007). 

 

1.2.4. Negative effect of N on plant growth 

 Nitrogen availability affects the biomass production and plant productivity (Bloom et 

al., 1993). Increasing of both NO3
-
-N and NH4

+
-N

 
supplies, stimulate roots biomass, and 

increase significantly the branching of axial root and the elongation of lateral roots (Boukcim 

et al., 2006). Baldi et al. (2010) observed a positive correlation between NO3
-
-N concentration 

and the median peach root lifespan. However, many reports indicate a possible negative effect 

of high mineral N soil concentrations on root development. In fact, different studies found 

NO3
-
 NO2

-
 NO N2O N2 
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that high NO3
-
-N concentrations had a strong inhibitory effect on roots elongation of tomatoes 

(Bloom et al., 1993), Arabidopsis (Zhang et al., 1999) and maize (Tian et al., 2008). Scheible 

et al. (1997) observed a negative correlation between high levels of leaf NO3
-
-N and total root 

growth that were associated with inhibition of starch synthesis and turnover in the leaves and 

decreased transport of sucrose to the roots. Also, several authors indicated that high soil 

mineral N concentration might affect negatively root lifespan due to an increase of root 

metabolic activity (Tjoelker et al., 2005; Withington et al., 2006) that could increases 

production of reactive oxygen species (ROS) such as superoxide radicals (O2
-
), singlet oxygen 

(
1
O2), hydrogen peroxide (H2O2) and hydroxyl radical (OH˙), which are capable of 

unrestricted oxidation of various cellular components (Mittler, 2002; Misra and Gupta, 2006; 

Taiz and Zeiger, 2010). 

 

1.3. Aim of the thesis 

 In the last years, composted organic materials from agri-food industry and municipal 

solid waste have been used as a sustainable source to replace chemical fertilizers and increase 

soil OM. Nevertheless, the influence of them on soil fertility and plant growth are poorly 

understood. Continuous application of compost can potentially affect NO3
-
 -N concentration 

and/or induce toxic effect to root. Among the few reports available on the effects of organic 

fertilizer species root growth of woody species, Baldi et al. 2010 observed that the use of 

compost in peach fruit management increases root proliferation and lifespan. This response 

can have negative implication on tree C partitioning; in fact if the higher root growth is 

accompanied by a decrease in above ground C investment, a lower fruit production might be 

expected. 

 The aims of the present study were to evaluate the effects of organic and mineral N 

fertilizer on: 1) CO2 fixation, tree development and C partition to the different organs of 

peach trees; 2) soil N concentration and NO3
-
-N effect on root and shoot growth and root 

oxidative stress; and 3) soil chemical and biological fertility, tree growth and yield and fruit 

quality in a commercial orchard. 

 For this purpose, three trials were conducted: 

- Carbon assimilation and partitioning in potted peach trees; 

- Root oxidative stress, root morphology and growth of micro propagated plant of 

fertilized with increasing rate of soil applied, mineral or organic N; 
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- Assessment of the sustainability of annual compost fertilization as an alternative of 

mineral fertilizer in a commercial orchard. 
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2. EFFECT OF ORGANIC FERTILIZATION ON 

GROWTH AND CARBON PARTITIONING OF PEACH 

TREES. 
 

2.1. Materials and methods 

2.1.1. Plant materials and treatments  

 The experiment was carried out in 2009 at the experimental station of the University 

of Bologna, in Cadriano (44° 35‟ N, 11° 27‟ E) on 28 two-years-old peach trees (Prunus 

persica L. Batsch) cv. „Orion‟, grafted on GF 677 rootstock (Prunus persica x Prunus 

amygdalus). Plants (figure 2.1 A) were potted in May 2008 in 40 liter containers filled with a 

clay loam Bathicalci Eutric Cambisols soil (FAO, 1990) and sand at rate of 3:1; and were 

fertilized as in a complete randomized block design (with seven replicates) as follows: 

 

- mineral, fertilized in April 2009 with mineral 0.357 g of N pot
-1

, 0.238 g of P pot
-1

 and 

0.952 g of K pot
-1

 as granular fertilizer labeled as 15-10-40 (mineral control); 

- cow manure, at a rate of 800 g DW pot
-1 

(cow manure); 

- compost at a rate of  800 g DW pot
-1 

(compost 800); 

- compost at a rate of 2400 g DW pot
-1

 (compost 2400). 

 

 Organic fertilizers were mixed with the soil before potting. Cow manure (table 2.1) 

was cow stable dung and wheat straw bedding, after 3 month stabilization, and provided by a 

local livestock farm. Compost (table 2.2) was obtained from domestic organic wastes (50%) 

mixed with pruning material from urban ornamental trees and garden management (50%) 

after 3 month stabilization. During the experiment trees, were grown outside, under a shelter 

net that reduced photosynthetic active radiation (PAR) by 30%, to protect from hail storm, 

and were watered daily by drip emitters.  
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Table 2.1 Selected chemical characteristics of cow manure used in the experiment. 

Characteristic Value 

Dry matter (%) 28.5 

Total N (%) 2.75 

Total P (%)  1.96 

Total K (%) 2.38 

Total organic C (mg kg
-1

) 37.4 

C.E.C. (meq 100 g
-1

 D.W.) 66.6 

Humic and fulvic acids (%) 11.24 

 

Table 2.2 Selected chemical characteristics of compost used in the experiment. 

Characteristic Unit Value 

pH  8.2 

Conductivity dS/m 1.21 

Humidity % m/m 31.8 

Ashes % D.W. 50.1 

Organic matter % D.W. 49.9 

Total – N % N D.W. 1.75 

Cadmium mg/kg D.W. 0.7 

Chrome VI mg/kg D.W. < 0.50 

Mercury mg/kg D.W. < 1.0 

Nickel mg/kg D.W. 23.5 

Lead mg/kg D.W. 50.4 

Cooper mg/kg D.W. 85.6 

Zinc mg/kg D.W. 177 

Plastic materials < 10 mm % D.W. absent 

Plastic materials > 10 mm % D.W. absent 

Other inert materials <10 mm % D.W. absent 

Other inert materials >10 mm % D.W. absent 

Salmonella MPN/g absent 
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2.1.2. 
13

C plant enrichment and partitioning 

 In May 2009, tree canopies were enclosed in a transparent plastic chamber (figure 2.1 

F) in order to label plants with 
13

C enriched CO2 (
13

CO2). Before the enrichment, each pot was 

enclosed in a plastic bag to avoid soil and roots contamination with 
13

C (figure 2.1.B). 

The plastic chamber, 10 m long, 4 m width and 2 m high was made of a high-density 

polypropylene sheet with a PAR reduction of 10%. Temperature was controlled by placing 

inside the chamber almost 30 kg of ice along with two fans, set at the opposite side of the 

chamber, in order to make air circulation and avoid any temperature gradients. An infrared 

gas analyzer (EGM – 4; PP system, Hitchin, UK) was used to monitor CO2 evolution inside 

the chamber. 

 The 
13

CO2 pulse was carried out inside the chamber by dissolving 20 g of barium 

carbonate (Ba
13

CO3 -99 atom %, Sigma) in 350 ml of 85% lactic acid to produce 101.5 mM of 

13
CO2. The trees remained inside the chamber for about 90‟ until the CO2 concentration was 

constantly < 200 ppm, indicating the absence of leaf net fixation. During the time course of 

the pulse, the temperature ranged between 30 °C and 36 °C.    

 Before 
13

C feeding, 4 plants (one per treatment) were harvested to evaluate natural 
13

C 

abundance of the different organs (leaves, shoots, fruits, wood and roots). Immediately (T0) 

and 7 days (T7) after the 
13

CO2 pulse, six leaves per tree were collected for isotopic ratio 

determination. Nineteen days after the pulse (T19) and at the end of plant growth (T185), 3 

trees per treatment were harvested and separated into different organs. At T19 trees were 

divided in leaves, shoots, shoot apexes (portion with no fully expanded leaves), whole fruits, 

wood and roots. At T185, trees were separated in fallen leaves, twigs (lignified shoot), whole 

fruits (harvested at maturation in august) wood and roots. All plant material was oven-dried at 

60°C for 96 hours, weighed and ground to a fine powder. Carbon concentration and 
13

C
 

enrichment were determined by an elemental analyzer (EA 1110, Carlo Erba, Milan, Italy) 

instrument coupled with a Finningan Delta plus (Bremen, Germany) mass spectrometer. The 

13
C enrichment was calculated according to Wu et al. (2009) as follows: 

 

 


13

C (‰) = [(Rsample / Rstandard) - 1] x 1000              Eq. (1) 

Rsample = 
13

C/
12

C = [(
13

C/1000)+ 1] x Rstandard    Eq. (2) 

F = 
13

C/ (
13

C + 
12

C) = R/ (R+1)      Eq. (3) 

Atom % excess = (Flabeled – Funlabeled) x 100     Eq. (4) 

New 
13

C content = (Atom % excess/ 100) x dry mass x [C]              Eq. (5) 
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Relative Partitioning (%) =    (New 
13

C content in the organ)       x 100 Eq. (6) 

              (New 
13

C in all the sampled organs) 

 

where the 
13

C (‰) value is calculated from the measured C isotope ratios of the sample and 

standard reference material (Eq. 1). The absolute ratio (R) of a sample is determined by Eq. 2, 

where Rstandard (Vienna PeeDee Belemnite (PDB) carbonate) is 0.0112372. Atom % excess is 

an index to determine the enrichment level of a sample (Eq. 3 and 4). The new 
13

C content is 

determined in the different organs according to dry matter and C concentration (Eq. 5). The 

partitioning of new 
13

C in the plants is expressed as a percentage of the 
13

C in the organ 

divided by total 
13

C in the plant (Eq. 6). 

 The amount of C found in the leaves, immediately after 
13

CO2 pulse (T0), was 

considered the only one in the tree (no mobilization to other organs occurred yet). The total 

amount of labeled C fixed by tree with the 
13

CO2 pulse was consequently obtained by 

multiplying the values of the single leaf by the total leaf biomass measured at T19. 

 

2.1.3. Canopy analysis 

 On 27 May and 15 June 2009, CO2 assimilation rate was measured in the morning 

(from 9 to 11 a.m.) on two healthy, fully expanded and well exposed leaves per tree with an 

infrared gas analyzer (ADC- LCA2, Hoddenson, Herts, UK). On the same day, leaf 

chlorophyll was measured by the portable SPAD 502 (Minolta, Co. Ltda, Ramsey, NJ, USA) 

on 25 young, healthy and fully expanded leaves per tree.   

 

2.1.4. Soil analysis 

 At each plant harvest, soil samples were taken to evaluate NO3
- 

-N and ammonium 

NH4
+ 

-N concentration, and microbial biomass C. Nitrate-N and NH4
+
-N were extracted from 

10 g fresh weight (FW) of sieved (2 mm) soil in 100 ml of 2M KCl solution and shaken at 90 

rpm for 1 h. After soil sedimentation, the supernatant was collected and stored at -20°C until 

analysis (Auto Analyzer AA-3, BRAN + LUEBBE, Norderstadt, Germany). Microbial 

biomass C was measured using the substrate induced respiration (SIR) method (Anderson and 

Domsch, 1978). Fifty grams of fresh soil were sieved (diameter of 2 mm), placed in 500 ml 

glass jars and equilibrated at room temperature for at least 24 h. The samples were then mixed 

with 200 mg of glucose and incubated at 22°C for 3 h. CO2 evolution was measured by an 

infrared gas analyzer (EGM-4; PP system; Hitchin, UK); CO2 data were converted into 

microbial C according to Anderson and Domsch (1978). 
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Figure 2.1 a) Peach trees of cv. „Orion‟/GF 677 used in the experiment; b) pots enclosed in 

black plastic bags to avoid direct contamination of roots and soil with 
13

C; c) plant growth 

after (left to right): compost 2400, compost 800 and mineral fertilizer application; d) fan 

positioned inside the plastic chamber; e) ice bags used to avoid excessive increase of 

temperature inside the chamber; f) infrared gas analyzer for monitoring CO2 evolution inside 

the chamber. 

 

 

a b 

c d 

e f 
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2.1.5. Statistical analysis  

 At each sampling time, data were statistically analyzed as in a factorial experimental 

design with 2 factors: soil fertilization (4 levels: mineral control, cow manure, compost 800 

and compost 2400) and tissues (6 or 5 levels according to the sampling time). When analysis 

of variance showed an effect of treatment statistically significant (P≤0.05), means were 

separated by Student Newman-Keuls (SNK) test; when interaction between factors was 

significant, 3 times standard error of means (MSE) was used as the minimum difference 

between two means statistically different for P≤0.05 (Saville and Rowarth, 2008). 

 

2.2. Results 

2.2.1. Biomass production  

 At T19 and T185, compost 2400 treated trees showed the highest plant biomass as 

compared with the other treatments, while cow manure and compost 800 did not affect tree 

growth compared to mineral fertilization (figure 2.2). 

 

Figure 2.2 Effect of fertilization treatment on whole tree weight as measured 19 and 185 days 

after 
13

C pulse. **: effect significant at P≤0.01. 
1
Means followed by the same letter are not 

statistically different (P≤0.05). 

 

 

 In both dates, treatment and plant organ significantly interacted with organ weight. At 

T19, compost 2400 treated plants exhibited a higher leaf, wood and root biomass (table 2.3) 

than the other treatments. Cow manure induced a wood biomass lower than compost 2400, 

similar to compost 800 and higher than mineral control. Root biomass of compost 800 and 
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cow manure treated trees were similar each other and both were higher than mineral control 

plants (table 2.3). At T185, no significant differences between treatments were observed in 

weight of fallen leaves and twigs (table 2.4). Compared to mineral fertilized control, no effect 

of treatment on fruit weight was observed, however fruits from cow manure fertilized trees 

were smaller than those treated with compost 800 and 2400 (table 2.4). Wood biomass was 

increased by organic fertilization as compared with mineral control, while root biomass of 

compost 2400 treated plants was higher compared to the other treatments. Unlike cow 

manure, compost 800 induced a higher root development than mineral control (table 2.4). 

 

Table 2.3 Effect of fertilization treatment and organ sample on organ biomass (g DW) 19 

days after 
13

CO2 pulse. 

Treatment Leaves Shoot apex Shoots Fruits Wood Roots 

Mineral 18.4 3.00 4.11 11.4 43.9 83.6 

Cow manure 31.2 3.25 4.00 9.05 88.8 134 

Compost 800 31.7 3.76 4.13 10.5 72.6 128 

Compost 2400 53.2 3.31 7.62 28.4 118 203 

Interaction *** 
 
(3 SEM = 29) 

*** Interaction between treatment and tissue significant at P≤0.001. Values differing by 3 

standard error of means (SEM) are statistically different.  

 

 

Table 2.4 Effect of fertilization treatment and organ sample on organ biomass (g DW) 185 

days after 
13

CO2 pulse. 

Treatment Fallen leaves Twigs Fruits Wood Roots 

Mineral 16.3 10.3 42.9 74.0 121 

Cow manure 20.4 9.38 17.9 113 153 

Compost 800 25.5 9.00 72.6 121.4 162 

Compost 2400 42.4 23.0 67.1 145 228 

Interaction * (3 SEM = 36) 

* Interaction between treatment and tissue significant at P≤0.05. Values differing by 3 

standard error of means (SEM) are statistically different.  
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2.2.2. Leaf 
13

C partitioning 

 There was no treatment effect on 
13

C content in single leaf immediately after the pulse 

(T0); however, seven days (T7) after the 
13

C enrichment, mineral fertilized plants had a higher 

amount of labeled C per leaf, than organic-fertilized plants (figure 2.3). From T0 to T7 leaf 

13
C decreased in all treatments, in detail in compost 2400 treated trees it decreased of about 

77%, in cow manure of around 75%, in compost 800 of about 74%, and in mineral treated 

plants of about 58% (figure 2.3). 

 

Figure 2.3 Effect of fertilization treatment on 13C content in the single leaf, immediately (1 

hour) and 168 (7 days) hours after 13C pulse. n.s., **: effect not significant or significant at 

P≤0.01, respectively. 1Means followed by the same letter are not statistically different (at 

P≤0.05). 

 

 

2.2.3. Organ C concentrations and 
13

C content 

 Nineteen days after 13C labeling (T19), root C concentration was higher in cow 

manure treated plants, followed by mineral control and compost 800 and 2400 (table 2.5). No 

significant differences were induced by treatments on C concentration of other organs (table 

2.5). At T185, C concentration in fallen leaves was not affected by treatment; the application 

of compost at high rate decreased twigs C concentration, if compared to the other treatments. 

Fruit C was increased by application of compost 800 followed by compost 2400, mineral 
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control and cow manure. Wood and root C concentration was enhanced by application of 

organic fertilizer (table 2.6). 

 

Table 2.5 Effect of fertilization treatment on carbon concentration (%) in different organs of 

peach tree at 19 days after 
13

C pulse. 

* Interaction between treatment and tissue significant at P≤0.05. Values differing by 3 

standard error of means (SEM) are statistically different. 

 

 

Table 2.6 Effect of fertilization treatment on carbon concentration (%) in different organs of 

peach tree in December, 185 days after 
13

C pulse. 

Treatment Fallen leaves Twigs Fruits Wood Roots 

Mineral 43.8 48.2 40.3 46.3 35.8 

Cow manure 43.5 46.8 39.5 49.7 41.3 

Compost 800 43.0 48.2 45.2 49.8 43.6 

Compost 2400 44.5 43.0 42.6 49.9 42.7 

Interaction *** (3 SEM = 3.1) 

*** Interaction between treatment and tissue significant at P≤0.001. Values differing by 3 

standard error of means (SEM) are statistically different. 

 

 The 
13

C enrichment found in the different tree organs decreased with time (table 2.7 

and 2.8). At T19, mineral fertilized plants showed the highest 
13

C enrichment in leaves, 

followed by compost 800 and cow manure treated trees; compost 2400 had the lowest values 

(table 2.7). Cow manure induced a significantly higher 
13

C enrichment in shoot apex than 

mineral and compost 800 plants, but similar to compost 2400 treated plants; no significant 

differences were found for the other tissues (table 2.7).  

 

  

Treatment Leaves Shoot apex Shoots Fruits Wood Roots 

Mineral 45.8 44.0 42.4 40.3 44.0 44.0 

Cow manure 45.3 44.3 41.0 40.3 44.6 46.4 

Compost 800 45.3 42.6 41.3 41.8 43.9 40.8 

Compost 2400 44.2 43.5 41.8 41.8 44.6 41.4 

Interaction * (3 SEM = 2.5) 
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Table 2.7 Effect of fertilization treatment on 
13

C enrichment (‰) in leaves, shoot apex, 

shoots, fruits, wood and roots of peach trees 19 days after 
13

C pulse. 

Treatment Leaves Shoot apex Shoots Fruits Wood Roots 

Mineral 0.378 0.116 0.225 0.120 0.025 0.027 

Cow manure 0.201 0.283 0.143 0.159 0.035 0.043 

Compost 800 0.269 0.177 0.182 0.176 0.043 0.037 

Compost 2400 0.128 0.222 0.148 0.174 0.045 0.044 

Interaction ** (3 SEM = 0.10) 

** Interaction between treatment and tissue significant at P≤0.01. Values differing by 3 

standard error of means (SEM) are statistically different. 

 

 

 At T185, compared with the other treatments, cow manure treated plants exhibited the 

higher 
13

C enrichment in fallen leaves, while the other treatments had similar values. In twigs, 

the highest 
13

C enrichment was found in mineral control and cow manure treated plants, while 

compost 800 and compost 2400 had the lowest content. Fruits of compost treated trees 

presented higher 
13

C enrichment than cow manure and mineral control plants (table 2.8). 

Compost 2400 treated plants had the highest 
13

C enrichment in wood and roots, followed by 

compost 800 and cow manure (that showed similar values) and mineral treated trees that had 

the lowest 
13

C enrichment (table 2.8). 

 

Table 2.8 Effect of fertilization treatment on 
13

C enrichment (‰), 185 days after pulse 

(December) in leaves, twigs, fruits, wood and roots of peach trees. 

*** Interaction between treatment and tissue significant at P≤0.001. Values differing by 3 

standard error of means (SEM) are statistically different. 

 

 

 Immediately after the pulse, total assimilated 
13

C was higher in compost 2400 treated 

trees compared to the other treatments, and then it decreases in all treatment with time (figure 

Treatment Fallen leaves Twigs Fruits Wood Roots 

Mineral 0.112 0.114 0.035 0.019 0.014 

Cow manure 0.132 0.094 0.039 0.030 0.031 

Compost 800 0.118 0.085 0.060 0.025 0.032 

Compost 2400 0.112 0.068 0.064 0.041 0.043 

Interaction *** (3 SEM = 0.02) 
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2.4). At T185, between 26% to 43% of the total assimilated 
13

C was found in the plants, with 

compost 2400 treated plants retaining the most 
13

C, followed by cow manure, compost 800 

and mineral treated plants (figure 2.4). 

 

Figure 2.4 Effect of the fertilization treatment on total 
13

C fixed and found in the plant during 

the time course of the experiment. *, ***: effect significant at P≤0.05 and P≤0.001, 

respectively. 
1
Means followed by the same letter are not statistically different (at P≤0.05). 

 

 

2.2.4. Relative 
13

C partitioning 

 At T19, compost 2400 treated trees partitioned a higher amount of C to fruits as 

compared with the other treatments (figure 2.5). Mineral control plants presented 54% of the 

total fixed 
13

C in the leaves, compost 800 and cow manure treated plant had 40% and 35% 

respectively, and compost 2400 plants showed the lowest percentage (25%). No significant 

differences were observed among treatments on shoot apex and total shoot percentage of 

labeled C partitioning. Cow manure and both compost treatments promoted a higher 

partitioning of C to the wood and roots than mineral fertilized trees (figure 2.5). 
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Figure 2.5 Effect of the fertilization treatment on relative partitioning of fixed 
13

C 19 days 

after 
13

C pulse. Bars indicate ± standard error. *** Interaction between treatment and organ 

significant at P≤0.001. Values differing by 3 standard error of means (SEM) are statistically 

different. 

 

 At the second harvest, compost 800 treated plants showed the highest percentage of 

13
C in fruits, mineral and compost 2400 plants were intermediate, and cow manure had the 

lowest effect (figure 2.6). At T185, application of compost 2400 induced the lowest 

percentage of 
13

C in fallen leaves; in contrast mineral fertilization promoted the highest 

percentage of 
13

C. Mineral treated plants showed a higher 
13

C percentage in lignified shoots 

than organic-fertilized plants. Cow manure, compost 2400 and compost 800 treated trees had 

higher percentage of 
13

C in roots than mineral control. Percentage of 
13

C in wood was higher 

in cow manure than the other treatments (figure 2.6). 
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Figure 2.6 Effect of fertilization treatments on relative partitioning of labeled C to the 

different tree organs, at the end of the season (185 DAP). The fruit were sampled at harvest 

(67 DAP). Bars indicate ±standard error. *** Interaction between treatment and organ 

significant at P≤0.001. Values differing by 3 standard error of means (SEM) are statistically 

different. 

 

 

2.2.5. Leaf chlorophyll and CO2 assimilation rate. 

 The day of the 
13

C pulse (May 2009), compost 2400 treated plants showed SPAD 

values similar to mineral control and higher than compost 800 and cow manure. At T19 (June 

2009), mineral control trees showed the highest SPAD values, followed by compost 2400, 

compost 800 and cow manure (table 2.9). 

 

Table 2.9 Effect of fertilization treatment on leaf chlorophyll (SPAD unit) 

Treatment May-09 Jun-09 

Mineral 35.2a 35.8a 

Cow manure 29.6b 31.5c 

Compost 800 30.7b 31.6c 

Compost 2400 33.6a 34.0b 

Significance *** *** 

***: effect significant at P≤0.001. Values followed by the same letter are not statistically 

different (at P≤0.05). 
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 On May 2009, mineral and compost 800 treated plants showed a higher photosynthetic 

activity than compost 2400, and similar to cow manure treatments (table 2.10). On June 2009, 

no significant differences were found among treatments. 

 

Table 2.10 Effect of fertilization treatment on leaf CO2 assimilation rate (µmol CO2 m
-2 

s
-1

) 

Treatment May-09 Jun-09 

Mineral 6.23a 7.15 

Cow manure 4.85ab 8.32 

Compost 800 5.88a 7.00 

Compost 2400 3.83b 7.30 

Significance * n.s. 

n.s.,*: effect not significant or significant at P≤0.05, respectively. Values followed by the 

same letter are not statistically different (at P≤0.05). 

 

2.2.6. Soil fertility 

 Nineteen days after the 
13

CO2 pulse (T19), NO3
-
-N concentration in soil was not 

affected by treatments; however, NH4
+
-N concentration was higher in compost 2400 as 

compared with other treatments (figure 2.7). 

 Compost 2400 treated plants increased microbial biomass in the soil as compared with 

mineral, cow manure and compost 800 plants (figure 2.8). 

 

Figure 2.7 Effect of fertilization treatment on nitrate-N (NO3
-
-N) and ammonium-N (NH4

+
-

N) soil concentrations. n.s., **: effect not significant or significant at P≤0.01, respectively. 
1
Means followed by the same letter are not statistically different (at P≤0.05). 
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Figure 2.8 Effect of fertilization treatment on soil microbial biomass. ***: effect of treatment 

significant at P≤0.001. 
1
Means followed by the same letter are not statistically different (at 

P≤0.05). 

 

 

2.3. Discussion 

 Our data show that organic fertilizer applied at the highest rate (2400 g pot
-1

) 

enhanced plant growth as compared with mineral fertilization. It is important to stress that this 

effect was observed not only in root, but also in wood, leaves and fruits, indicating a general 

positive effect of compost management on canopy net CO2 fixation. Several authors indicated 

that organic amendment applications improve soil properties, such as: 1) nutrient availability 

(Melero et al., 2007; Baldi et al., 2010), 2) porosity (Aggelides and Londra, 2000; Celik et al., 

2004), 3) microbial biomass and activity (Ferreras et., 2006; García-Gil et al., 2000; Melero et 

al., 2007; Tu et al., 2006); reduce bulk density (Aggelides and Londra, 2000) and penetration 

resistance (Aggelides and Londra, 2000); thus enhancing plant growth. In this study, 

microbial biomass was stimulated by application of compost at the highest rate. Since soil 

microbial activity regulates plant nutrient availability through the solubilisation of soil 

minerals and mineralization of OM (Grayston et al., 1997; García-Gil et al., 2000), therefore 

it is expected a close relationship between microbial biomass and soil fertility. Among 

nutrients, compost application was effective in promoting soil NH4
+
-N concentration, that is 

the form of N that is absorbed and assimilated by root with minimum energy expenses 

(Bloom et al., 1992). Studies on the effect of N ions on plant growth showed a higher 

response when at least part of N was supplied as NH4
+
-N. In tomato root growth the best ratio 

between NO3
-
-N and NH4

+
-N was established as 3 (Bloom et al., 1993), our results show a 
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ratio of 3, and lower than 2 for mineral and compost fertilized soils, respectively. We can 

speculate that each species has an optimum ratio between NO3
-
-N and NH4

+
-N, and that 

compost application could have supplied to peach root the ratio that allowed a better tree 

growth, than mineral fertilized trees. Moreover, it is possible that the addition to the soil of 

organic fertilizer has induced a positive priming effect releasing in the soil higher N quantity. 

Priming effect is defined by Kuzyakov et al. (2000) as “strong short term change in the 

turnover of soil OM caused by comparatively moderate treatments of the soil”, the positive 

priming effect occurs when the added substance causes an acceleration of soil OM 

decomposition with an extra release of CO2, mineral N and other nutrients that all together 

can have contributed to improve tree performances. 

 Leaves through photosynthesis produce large amount of C that is exported to the tree 

sinks (Leonardos and Grodzinski, 2002; Marchi et al., 2005) such as fruits, shoots, roots, 

buds, etc. In this study, leaf
 13

C export was affected by fertilizer, because seven days after 

pulse, organic treated plants presented the lowest content of leaf 
13

C, meaning a faster 

translocation of C to the other tree organs (i. e. shoot apex, root and wood), compared to 

mineral fertilized trees. These data are supported by the values of 
13

C enrichment found in 

leaves 19 days after 
13

C pulse, when mineral control trees showed a higher value, compared to 

organic fertilized plants. Carbon compounds assimilated in the leaves are partitioned to the 

organs according to the tree phenological stage (i.e. the timing of organ initiation and growth) 

(Wardlaw, 1990; Hendrix, 2002), the distance from the leaves (Jordan and Habib, 1996), so 

that sinks closer to the leaves seem to attract more C compounds than those located far away 

from the source (like trunk and roots). Thus storage in roots begins in late summer, when 

shoot and fruits has concluded their growth. However, in this work, C partitioning did not 

always follow these trends. In fact, in June (19 days after 
13

C pulse), mineral fertilized plants 

presented more than half of the total 
13

C of the tree still allocated into the leaves, in contrast, 

organic fertilized trees showed the highest percentage of 
13

C in the permanent organs (roots 

and wood). In December (185 days after 
13

C pulse ), organic fertilized plants showed an 

important percentage of 
13

C in roots, whereas mineral control trees showed higher partitioning 

in fallen leaves and lignified shoots. This response can be explained by the rate of growth of 

the roots that was higher in compost treated trees as compared to mineral fertilized plants, that 

was probably responsible for the higher percentage of labeled C partitioned to the growing 

root. From our results it seem that fertilizer affected tree growth, and growth affected C 

partitioning within tree. 
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 As expected, the amount of 
13

C found within the plant decreased over time, with a loss 

that 185 days after the pulse ranged between 57% (compost 2400) and 74% (mineral) of the 

total 
13

C fixed, with the highest losses of C between May and June. This C was the results of 

tissue respiration as well as root rhizodeposition. Interestingly organic fertilized plants 

presented higher C recovery than mineral control plants, probably because the better soil 

conditions did not promote a high root exudation to improve nutrient uptake. The high loss 

rate found in late spring is probably the result of a high metabolic activity in this time of the 

year with the consequent high respiration rate. 

 Fertilizer source altered the C relative distribution at the end of the season 

(December), when all organic treated plants showed a higher percentage of 
13

C in wood and 

root and lower 
13

C enrichment in leaves and twigs compared to mineral fertilized plants. This 

result can be explained by stronger sink strength of roots in organic treated plants as shown by 

the higher biomass production and C concentration. In fact, mineral fertilized plants recycled 

a lower percentage of C, meaning the presence of weaker sinks.  
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3. RESPONSE OF ROOT GROWTH AND OXIDATIVE 

STRESS TO INCREASING CONCENTRATION OF 

SOIL MINERAL AND ORGANIC NITROGEN 
 

3.1 Materials and methods 

3.1.1. Plant materials and treatments  

 The experiment was carried out on 176 micro propagated rootstocks of GF 677 

hybrids Prunus persica x Prunus amygdalus, between May and September 2009 at the 

Cadriano experimental station (44° 35‟ N, 11° 27‟ E) of the University of Bologna, Italy. 

Plants were potted in May 2009 in 4 liter containers filled with a clay loam Bathicalci Eutric 

Cambisols soil (FAO, 1990) and sand at rate of 2:1 and were fertilized as in a completely 

randomized block design with the following mineral or organic N rates: 

 

- unfertilized control (0 mg of N kg
-1 

of soil); 

- 200 mg kg
-1

 of N;  

- 500 mg kg
-1

 of N; 

- 1000 mg kg
-1

 of N. 

 

 The different rates of soil N were obtained by application of urea (mineral N) at: 2.2 g, 

5.4 g and 10.8 g pot
-1

 for 200, 500 and 1000 mg kg
-1

, respectively. Organic N was applied as 

compost at 76, 190, and 380 g pot
-1

. Compost (table 2.2) was mixed with the soil before 

potting and was the same used in experiment 1. To prevent any risk of N leaching plants were 

protected from the atmospheric precipitations and were manually irrigated. 

 Eight, 37 and 94 days after fertilization (DAF) trees were harvested and separated in 

shoot (leaves + axes) and roots. At each harvest, shoot length was measured, and roots were 

cleaned with distilled water to eliminate the adherent soil, a white root sample was taken for 

enzyme analysis and electrolyte leakage. Shoot and remaining roots were oven-dried at 60˚C 

for 96 hours and weighted. Additionally, at 8 DAF, roots were photographed to measure the 

total root length through the software WinRHIZO Tron MF (Regent Instrument Inc., Quebec, 

Canada). 
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3.1.2. Stress- related analysis 

 To determine the root stress and oxidative damage eventually associated to the level of 

N in the soil, 1500 mg of white roots were sampled. A sub sample of 500 mg was used to 

measure the electrolyte leakage according to Huang et al., 2005. The roots were immersed in 

a beaker with 40 ml of deionized water and electrical conductivity (EC) was measured 

immediately (ECi), after 30 minutes (EC30) and after boiling for 5 minutes (ECf). Membrane 

leakage was estimated as a percent of total electrolytes in the root: 

  

Eletrolyte leakage (%) = 100 x (EC30 – ECi) / (ECf – ECi) 

 

 The rest of white root (1000 mg) were immediately frozen in liquid nitrogen and then 

stored at -80˚C until analysis.  

 Superoxide dismutase (SOD) and catalase (CAT), enzymes associated with reactive 

oxygen and reactive nitrogen species, and total protein were assessed. Enzymes were 

extracted from frozen root samples finely ground in liquid nitrogen using a mortar and pestle 

previously chilled with liquid nitrogen. The frozen root powder was immediately used for the 

enzyme determination. All procedures for enzyme activity and determination were carried out 

at 0 
◦
C in an ice bath unless otherwise stated. The frozen powders were homogenized with 2.5 

ml of the corresponding extraction buffer: for CAT, the roots were suspended in cold 50 mM 

potassium phosphate buffer (pH 7.0) containing 1 mM EDTA and 5% (w/v) 

polyvinylpolypyrrolidone (PVPP). For SOD, the buffer was made of cold 100 mM sodium 

potassium phosphate buffer (pH 7.0) containing 1 mM EDTA and 5% (w/v) PVPP.  The 

slurries were kept for 30 min in an ice bath and then centrifuged at 15.000 rip x g for 30 min 

at 4°C. Aliquots of 1.5 ml from the supernatants of CAT and SOD were desalted in disposable 

NAP
TM

25 columns (Amersham Biosciences AB, Uppsala, Sweden) and a 2.5 ml of eluate was 

recovered from each sample and utilized for enzyme assay and total soluble protein 

determination.   

 Catalase activity was determined at 20°C according to Aebi (1984). The reaction 

medium contained 10 mM H2O2 in 50 mM NaK phosphate buffer, pH 7.0 and 100 µl of 

enzyme eluate in a total volume of 1.2 ml; CAT activity was estimated by the decrease in 

absorbance of H2O2 at 240 nm and was expressed according to Havir and McHale (1987), 

where one unit of CAT activity corresponded to the amount of enzyme that decomposes 1 

µmol of H2O2 per minute. 
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 Total SOD activity was determined according to Madamanchi et al. (1994) modified 

by Masia (1998). For each sample assay, six tubes were set up containing 10, 20, 40, 60, 80 

and 500 µl of the enzyme extract. The reaction medium contained 2 µM riboflavin, 10 µM L-

methionine, 50 µM nitro blue tetrazolium (NBT), 20 M KCN, 6.6 µM Na2EDTA, 10 to 500 

l of the enzyme eluate and 65 µM Na-phosphate buffer, pH 7.8, to give a total volume of 3.0 

ml. SOD activity was assayed by measuring the ability of the enzyme extract to inhibit the 

photochemical reduction of NBT to blue formazan. Tubes were thermostated at 25 °C for 10 

min. in absence of direct light. The reaction was started by exposing the mixture to four white 

fluorescent lamps (Leuci, 15 WTS preheat, daylight 6500 °K) in a box with aluminium-foil-

coated walls. The blue colour developed in the reaction was spectrophotometrically measured 

at 560 nm (A560). One unit of total SOD activity will be defined as the amount of enzyme 

required to produce 50% inhibition of NBT photoreduction. 

 Total protein was determined in an aliquot of eluate resulting from the desalted 

supernatant used from CAT and SOD determinations. The aliquots were added to 2 ml 20% 

thiobarbituric acid (TCA) solution and left overnight at 4°C; the denatured and flocculated 

proteins were suspended then centrifuged at 14.000 x g for 20 min and the supernatant 

discarded. The protein pellet was suspended in 2.0 ml 0.5 M NaOH. After complete solution 

the supernatant was used to determine total soluble proteins with a commercial kit (BCA 

protein assay reagent kit, Pierce, Rockford, IL, USA) according to Smith et al. (1985). Bovine 

serum albumine was used as calibration standard. 

 Starch was determined according to Rasmussen e Henry (1990) on a 0.2 g dry root 

sample weighted accurately (0.2 g) into a culture tube (16 x 100 mm). At each tube 2.5 ml of 

the acetate buffer and 20 µl Termamyl (α-amylase) were added and tubes were incubated in a 

boiling water bath for 30 min; and mixing samples 3 times with a vortex mixer. Tubes were 

then removed, allowed to cool to room temperature and then 10 µl amyloglucosidase were 

added and samples were incubated overnight at 60 °C. The following morning tubes were 

centrifuged at 2500 rpm for 5 min and 0.5 ml of supernate was diluted in 10 ml of distilled 

water. Only 0.2 ml of the diluted supernate was transferred to small tubes (15 x 85 mm); 5 ml 

of glucose oxidase solution were added to tubo and samples were incubated in a water bath 

for 15 min at 40 °C, removed and allowed to stand at room temperature for 60 min. Finally, 

the samples absorbance was read at 505 nm and the absorbance of blank was read against 

distilled water. Starch was calculated using a calibration curve obtained with increasing 

concentration of potato starch treated as samples  
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3.1.3. Organ N concentrations 

 Total N concentrations in leaves and roots were determined by Kjeldahl method 

(Schuman et al., 1973) by mineralizing 0.5 g of ground tissue with 12 ml of a 95:5 (v/v) 

H2SO4:H3PO3 mixture, at 420 °C, for 180 min, distillation with 32% (v/v) NaOH and titration 

with 0.2 M HCl.  

 

3.1.4. Soil analysis 

 At harvest time, soil samples were taken to evaluate NO3
-
-N and NH4

+
-N 

concentration, as previously described (see 2.1.4) and total N. Total N concentrations were 

determined by Kjeldahl method (Schuman et al., 1973) as previously described (see 3.1.3). 

 

3.1.5. Statistical analysis 

 Data were statistically analyzed as in a factorial experimental design with 2 factors: 

source of N (2 levels: mineral and organic) and rate of application (4 levels: 0, 200, 500 and 

1000 ppm). When analysis of variance showed statistical significance (P≤0.05), means were 

separated by Student Newman-Keuls (SNK) test; when interaction between source and rate of 

N was significant, 3 times standard error of means (MSE) was used as the minimum 

difference between two means statistically different at P≤0.05 (Saville and Rowarth, 2008). 

Pearson correlation analysis was performed to evaluate the relation between leaf and root N 

concentration, NO3
-
, NH4

+
 and total N. 

 Polynomial contrast analysis was carried out to evaluate the function that best 

described the response to increasing N application rate of soil nitrate-N, ammonium-N, and 

total N concentrations, shoot and roots biomass production, and leaf N and root N 

concentrations. 

 

3.2. Results 

3.2.1. Soil N concentration  

 At all dates, source and rate of N application significantly interacted with soil NO3
-
-N 

concentration. Mineral fertilizer application rate always increased soil nitrate-N 

concentrations linearly (P≤ 0.001) (figure 3.1). In contrast, no significant differences were 

induced by the rate of organic N (figure 3.1) 

 Rate of application and fertilizer type significantly interacted with soil NH4
+
-N 

concentrations. Eight DAF, compost treated soils did not show any NH4
+
-N

 
increase, while in 
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mineral N fertilized soil the concentration of NH4
+
-N increased linearly with the rate of N 

application (figure 3.2). The same trend was observed at 37 DAF and 94 DAF (P≤ 0.001) 

(figure 3.2). In these harvest dates, the application of organic N promoted a linear increase of 

soil NH4
+
-N concentration, with P≤0.01 and P≤ 0.05 at 37 and 94 DAF, respectively (figure 

3.2). 

 At the first harvest, soil total N concentration was affected by N source and 

application rate, with no interaction between the 2 factors (figure 3.3). Compared with 

mineral treated soils, compost fertilized soil showed, on average, higher values of total N, at 

the same time the rate of 1000 mg kg
-1

 presented the highest N concentration, followed by 

500 mg kg
-1

, control and 200 mg kg
-1

 (figure 3.3 a). At 37 DAF and 94 DAF there was 

positive interaction between N source and fertilization rate; mineral 500 and mineral 1000 

treatments had similar effect, lower than compost 1000 and higher than control and mineral 

200. At the end of the experiment compost 1000 and compost 500 showed higher N 

concentrations than mineral and other compost rates (figure 3.3 c). Organic N application 

rates were always linearly related to soil total N concentration, see figure 3.3 (P≤ 0.001) in all 

harvests; while mineral N treatment showed this relation only at second (P≤ 0.001) and third 

harvest (P≤ 0.05). 
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Figure 3.1 Effect of source and rate of N application on soil nitrate-N (NO3
-
-N) concentration 

at 8 (a), 37 (b) and 94 (c) days after fertilization. *** Interaction between source and rate was 

significant at P≤0.001. Values differing by 3 standard error of means (SEM) are statistically 

different. 
1,2

Mineral and compost trend function, respectively. 
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Figure 3.2 Effect of source and rate of N application on soil ammonium-N (NH4
+
-N) 

concentration at 8 (a), 37 (b) and 94 (c) days after fertilization. **, ***: Interaction between 

source and rate was significant at P≤0.01 and P≤0.001, respectively. Values differing by 3 

standard error of means (SEM) are statistically different. 
1,2

Mineral and compost trend 

function, respectively. 
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Figure 3.3 Effect of source and rate of N application on soil total-N concentration at 8 (a), 37 

(b) and 94 (c) days after fertilization. 8 DAF no statistic interaction between source and rate 

of N application was observed and only application rate was statistically significant at 

P≤0.001. ***: Interaction between source and rate was significant at P≤0.001, 37 and 94 

DAF. Values differing by 3 standard error of means (SEM) are statistically different. 
1,2

Mineral and compost trend function, respectively. 
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3.2.2. Root length and biomass production 

 Source and rate of N significantly interacted with root length at 8 days after 

fertilization (table 3.1). Mineral 200 and 1000 and compost 200 mg N kg
-1

 were similar to 

unfertilized plants; compost 1000 showed the highest root length (table 3.1; and figure 3.4). 

 

Table 3.1 Effect of source and rate of N application on total root length (cm) at 8 days after 

fertilization (DAF).  
  8 DAF 

N Rate (mg kg
-1

)  Mineral Compost 

0 382 

200 509 512 

1000 320 661 

Interaction * (3 SEM)= 187 

* Interaction between source and rate of N application significant at P≤0.05.
 
Values differing 

by 3 standard error of means (SEM) are statistically different. 

 

Figure 3.4 Effect of source and rate of N application on root length at 8 days after 

fertilization. 
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 Source and rate of N significantly interacted with shoot growth at all times of 

harvesting. Eight days after fertilization, N application of mineral 200 and compost 1000 

induced the highest shoot biomass (figure 3.5 a). The application of 200 mg kg
-1

 of mineral N 

induced an increase of shoot biomass compared to the untreated control, higher rate 

negatively affected shoot growth. Only the application of 1000 mg kg
-1 

of organic N brought 

about an increase of biomass compared to the untreated control. At 37 and 94 DAF, N 

application of mineral N at 200 and 500 mg N kg
-1

 showed the highest shoot biomass, with 

mineral 200 being higher at 37 DAF and mineral 500 higher at 94 DAF (figure 3.5). At both 

dates, compost treatments showed the lowest shoot growth, with little or no effect of 

increasing rates. At all harvest times shoots dry weight increased linearly and according to a 

second degree function as a response of organic (P≤ 0.001) and mineral fertilizer (P≤ 0.001) 

application rates, respectively (figure 3.5).  

 In the first and second sampling day, rate and source of N significantly interacted with 

root growth. Eight DAF, no significant differences were induced by compost treatments.  

Among rate of mineral N, the higher root dry weight was found as a response of application 

of 200 mg N kg
-1

 compared to untreated control (figure 3.6 a). In the second harvest, root 

biomass was increased by application of 200 and 500 mg of N kg
-1

 of mineral N, but not of 

organic N (figure 3.6 b). At last sampling no interaction between factors was found; mineral 

N was more effective than organic N in promoting root growth, with organic N application 

rate that showed not effect (figure 3.6 c). Roots biomass production showed a different 

response to increasing rate of N application, according to the source of N. Compost treated 

plants showed a linear and third degree trend at 37 DAF and 94 DAF (both with P≤ 0.001), 

respectively; in contrast, mineral treated plants presented a cubic trend at 8 DAF (P≤ 0.05) 

and second degree trend at 37 DAF (P≤ 0.05) (figure 3.6). 
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Figure 3.5 Effect of source and rate of N application on shoot biomass (g) at 8 (a), 37 (b) and 

94 (c) days after fertilization. **, ***: Interaction between source and rate was significant at 

P≤0.01 and P≤0.001, respectively. Values differing by 3 standard error of means (SEM) are 

statistically different. 
1,2

Mineral and compost trend function, respectively.  
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Figure 3.6 Effect of source and rate of N application on root biomass (g) at 8 (a), 37 (b) and 

94 (c) days after fertilization. 94 DAF no statistic interaction between source and rate was 

observed and only source of N was statistically significant at P≤0.05. ** Interaction between 

source and rate was significant at P≤0.01. Values differing by 3 standard error of means 

(SEM) are statistically different. 
1,2

Mineral and compost trend function, respectively. 
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3.2.3. Leaf and root N concentrations 

 Rate and source of N significantly interacted with leaf N concentration in all sampling 

dates. At 8 DAF all rates of mineral N were effective in increasing leaf N concentration that 

was similar in 200 and 500 mg N kg
-1

 treated plants. At the same time organic N had no 

effect, with the exception of compost 200 that showed the lowest leaf N concentration (table 

3.2). Thirty-seven DAF, compost 200 and 1000 were similar to control plants; all mineral 

treatments increased leaf N concentration that was similar after the application rate of 500 and 

1000 mg N kg
-1

. At 94 DAF all compost treated plants and mineral 200 had similar 

concentration compared to unfertilized control; mineral 1000 showed the highest values 

followed by mineral 500 (table 3.2). 

 Leaf N concentration was linearly related to increasing rate of mineral N application at 

all harvest time (P≤0.001). In contrast, organic fertilized plants presented a cubic trend 

(P≤0.001) at 8 DAF and second degree trend (P≤0.05) at 94 DAF (figure 3.7) 

 

Table 3.2 Effect of source and rate of N application on leaf N concentrations (%) at 8, 37 and 

94 days after fertilization (DAF).  

  8 DAF 37 DAF 94 DAF 

N RATE (mg kg
-1

) Mineral Compost Mineral Compost Mineral Compost 

0  2.30 1.87 2.13 

200  3.08 1.56 2.41 1.82 2.18 2.06 

500  2.97 2.11 2.75 2.20 2.94 2.01 

1000  3.38 2.44 2.79 2.11 3.33 2.25 

Interaction *** 3 SEM= 0.25 ** 3 SEM= 0.26 *** 3 SEM = 0.35 

**, *** Interaction between source and rate of N significant at P≤0.01 and P≤0.001, 

respectively. Values differing by 3 standard error of means (SEM) are statistically different. 
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Figure 3.7 Effect of source and rate of N application on leaf N concentration (%) at 8 (a), 37 

(b) and 94 (c) days after fertilization, according to polynomial analysis. 
1,2

Mineral and 

compost trend function, respectively. 
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 At all dates, source and rate of N application significantly interacted with root N 

concentration (table 3.3). Compost treated plants showed a similar root N concentration to 

unfertilized plants, and lower than mineral fertilized trees at all evaluation times. Eight days 

after fertilization, all mineral treated plants showed similar root N concentration, higher than 

control and all compost treatments (table 3.3). At 37 DAF mineral fertilization induced an 

increase of N concentrations compared to control and compost plants; application of mineral 

N at 200 and 500 mg N kg
-1 

promoted the highest values, followed by mineral 1000. In the 

last harvest, mineral 1000 showed the highest root N concentration, followed by mineral 500 

and 200 that had similar concentrations (table 3.3). 

Root N concentration was related to increasing rate of mineral N application. Eight and 37 

DAF, a second degree equation best described this relation (P≤0.05 and P≤0.001, 

respectively), whereas at 94 DAF a linear trend P≤0.001 was observed (figure 3.8). In 

contrast, organic fertilized plants did not show a clear trend. 

 

Table 3.3 Effect of source and rate of N application on root N concentrations (%) at 8, 37 and 

94 days after fertilization (DAF).  

  8 DAF 37 DAF 94 DAF 

N RATE (mg kg
-1

) Mineral Compost Mineral Compost Mineral Compost 

0  1.26 1.15 0.94 

200  1.87 1.18 1.69 1.11 1.31 1.04 

500  1.74 1.19 1.75 1.17 1.37 1.01 

1000  1.66 1.03 1.52 1.07 1.66 1.08 

Interaction *3 SEM = 0.37 ***3 SEM = 0.16 ** 3 SEM = 0.19 

*, **, *** Interaction between source and rate of N significant at P≤0.05, P≤0.01 and 

P≤0.001, respectively. Values differing by 3 standard error of means (SEM) are statistically 

different. 
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Figure 3.8 Effect of source and rate of N application on root N concentration (%) at 8 (a), 37 

(b) and 94 (c) days after fertilization, according to polynomial analysis. 
1,2

Mineral and 

compost trend function, respectively. 
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 Soil NO3
-
-N and NH4

+
-N concentrations were linearly relate to with leaf N 

concentration (figure 3.9) with a Pearson correlation coefficient higher for NO3
-
-N than NH4

+
-

N (table 3.4), in contrast, root N concentration was correlated only with soil NO3
-
-N. Soil 

total N was not related to organ N concentration, or to NO3
-
-N and NH4

+
-N. Root N 

concentration was related with leaf N concentration with a Pearson coefficient of 0.67 (table 

3.4).  

 

Table 3.4 Correlation coefficient (r) and significance between leaf and root N concentrations, 

nitrate-N, ammonium-N and soil total-N concentrations. 

  Leaf-N Root-N Soil NO3
-
-N Soil NH4

+
-N Soil total-N 

Leaf-N  - 0.67 0.84 0.47 0.02 

  

*** *** *** n.s. 

Root-N 0.67 - 0.68 0.29 -0.31 

 

*** 

 

*** * * 

Soil NO3
-
-N 0.84 0.68 - 0.45 -0.08 

 

*** *** 

 

*** n.s. 

Soil NH4
+
-N 0.47 0.29 0.45 - 0.18 

 

*** * *** 

 

n.s. 

Soil total-N 0.02 -0.31 -0.08 0.18 - 

 

n.s. * n.s. n.s. 

 n.s., *, **: not significant, significant at P≤0.05 or at P≤0.001, respectively.
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Figure 3.9 Correlation between soil NO3
-
-N concentration and leaves N concentration (r: 

Pearson correlation coefficient; ***: linear correlation significant at P≤0.001).  
 

3.2.4. Root stress evaluation 

 Source of N and rate of application did not significantly interact with root CAT 

activity. Eight days after fertilization CAT activity was not affected by source of N and was 

significantly higher in control plants than in fertilized trees (table 3.5). At 37 and 94 DAF no 

significant differences were observed among type of fertilizer and rates of N application. SOD 

activity was not influenced by the source of N at any of the sampling day. If considering the 

different N rate applications, 37 DAF SOD activity was increased by application of 200 mg N 

kg
-1

, no matter the source of N (table 3.6). No significant differences were observed at 8 and 

94 DAF.  
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Table 3.5 Effect of source and rate of N application on root CAT activity (unit mg
-1

 soluble 

proteins) at 8, 37 and 94 days after fertilization (DAF).  

SOURCE OF N 8 DAF 37 DAF 94 DAF 

Mineral 112 169 313 

Compost 103 213 229 

Significance n.s. n.s n.s 

N RATE (mg kg
-1

)       

0  186a
1 

132 169 

200  84.1b 173 222 

500  89.6b 226 311 

1000  61.3b 232 372 

Significance ** n.s n.s 

Interaction n.s. n.s n.s 

n.s., **: effect of treatments not significant or significant at P≤0.01, respectively.
 1

Values 

followed by the same letter are not statistically different (at P≤0.05). 

 

 

Table 3.6 Effect of source and rate of N application on root SOD activity (unit mg
-1

 soluble 

proteins) at 8, 37 and 94 days after fertilization (DAF).  

SOURCE OF N 8 DAF 37 DAF 94 DAF 

Mineral 52.1 108 217 

Compost 50.3 103 304 

Significance n.s n.s. n.s. 

N RATE (mg kg
-1

)       

0  49.2 71.4b
1 

222 

200  41.2 150a 305 

500  67.0 107b 268 

1000  46.5 94.5b 214 

Significance n.s. ** n.s. 

Interaction n.s. n.s n.s 

n.s., **: effect of treatment not significant or significant at P≤0.01, respectively.
1
Values 

followed by the different letter are statistically different (at P≤0.05). 

 

 

 The concentration of starch in roots was not affected by source of N (table 3.7). In the 

first harvest, root starch concentration was higher in control plants, compared to application 
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of 200 and 1000 mg N kg
-1

; 500 mg kg
-1

 had a similar effect (table 3.7). No significant 

differences were found among factors in the other dates. 

 

Table 3.7 Effect of source and rate of N application on root starch concentration (mg g
-1

 

D.W.) at 8, 37 and 94 days after fertilization (DAF).  

SOURCE OF N 8 DAF 37 DAF 94 DAF 

Mineral 53.2 46.7 40.0 

Compost 52.5 44.1 36.7 

Significance n.s n.s n.s 

N RATE (mg kg
-1

)       

0  61.7a
1 

48.3 39.5 

200  46.0b 44.3 39.7 

500  55.1ab 45.4 37.5 

1000  48.6b 43.6 36.6 

Significance * n.s n.s 

Interaction n.s. n.s n.s 

n.s., *: effect not significant or significant at P≤0.05, respectively.
1
Values followed by the 

different letter are statistically different (at P≤0.05). 

 

 

 Thirty-seven DAF, in general the application of mineral N increased electrolyte 

leakage compared to compost application, while no differences were observed 8 DAF (table 

3.8). Considering the rate of application, 8 DAF the application of 200 mg kg
-1 

N increased 

electrolyte leakage compared to 1000 mg kg
-1 

and unfertilized plants, no matter the source of 

N; 500 mg kg
-1 

had intermediate value. At 94 DAF there was a positive interaction between 

source and rate of N application; at this data mineral N at 200 and 500 mg N kg
-1 

showed the 

highest electrolyte leakage 
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Table 3.8 Effect of source and rate of N application on root electrolyte leakage (%) at 8, 37 

and 94 days after fertilization (DAF).  

  8 DAF 37 DAF 94 DAF 

TREATMENT     Mineral Compost 

Mineral 32.2 21.8a - - 

Compost 29.7 16.1b - - 

Significance n.s.
 

* - - 

N RATE (mg kg
-1

)     

0  28.4b
1 

17.7 21.5 

200  36.5a 18.5 28.0 17.9 

500  32.1ab 18.0 31.8 17.9 

1000  26.8b 21.4 23.1 16.1 

Significance * n.s. * 3 SEM = 6.20 

n.s., *: effect not significant or significant at P≤0.05. 
1
Values followed by the same letter are 

statistically different (at P≤0.05). At 94 DAF interaction between source and rate of N 

application a significant at P≤0.05.
 
Values differing by 3 standard error of means (SEM) are 

statistically different. 

 

3.3. Discussion  

 Soil total N concentrations in organically fertilized soils were higher than mineral 

fertilized plots. Other authors observed the same behavior when compared soil amended 

organically with mineral fertilized soils (Burger and Jackson, 2003; Kramer et al., 2006; 

Herencia et al., 2007). Since the rate of N application was the same for mineral and organic N 

source, we conclude that the organic fertilizer reduced the loss of N in the environment 

compared to mineral fertilizations. The N applied through compost is not immediately 

available for plant use and must be mineralized by soil microorganisms, thus resulting in a 

gradual release of inorganic N, which can be used for plants (Burger and Jackson, 2003; 

Herencia et al., 2007). The question is whether or not the mineralization rate can meet tree 

requirement. Soil nitrate-N concentration in compost fertilized tree was always included 

between 2 and 12 mg kg
-1

 that are considered optimal for peach growth (Tagliavini et al., 

1996). Since peach trees seem to remove 10 mg kg
-1

 of N, corresponding to 50 kg N ha
-1

, 

should meets tree requirements in all the phenological stages. Peach tree is considered to 

remove 100-150 kg N ha
-1

 year
-1

 according to tree yield. 

 This means that even high rate of OM application, does not produce a high 

mineralization rate, on the contrary it feeds soil microbial population, which decrease the risk 
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of an excessive production of NO3
-
-N. The soil system reaches equilibrium, so that microbial 

biomass immobilizes the excess of NO3
-
-N in the soil making it available at a low rate. 

Independently of the rate of N application, mineral fertilized soil had higher NO3
-
-N 

concentrations compared with organic fertilization, which resulted in excess of tree demand 

increasing the risk of environment in the time because there is positive correlation between 

nitrate leaching and soil nitrate pools (Kramer et al., 2006). This NO3
-
-N is available for plant 

use, but it can be more easily lost from the root zone because it is not adsorbed by soil 

particles and consequently is susceptible to leaching; for this reason high concentrations of 

inorganic N, can have detrimental environmental impacts (Keeney and Hatfield, 2001; Below, 

2002; Robertson and Vitousek, 2009). 

 Shi and Norton (2000) showed low NH4
+
-N concentrations (< 1 mg kg

-1
) in soil 

amended with compost. Similar results were obtained in this study, where independently of 

the rate of N application, compost treated plots showed very low NH4
+
-N. Compared to 

organically fertilized soil, mineral fertilization increased NH4
+
-N concentrations in the soil. 

This increase was greater in the first harvest, due to the rapid hydrolyzation of urea by free 

and microorganisms-bound urease; in fact, under Mediterranean conditions urea fertilizer can 

be completely hydrolyzed to ammonium within less than 5 days (Engels and Marschner, 

1995). 

 Mineral fertilized plants presented higher leaf and root-N concentrations than compost 

treated plants. Similar results were found in apple leaves (Kramer et al., 2006) and in a crop 

rotation system (Herencia et al., 2007). Previous studies showed that fine root-N 

concentration is positively correlated with soil NO3
-
 availability (Hendricks et al., 2000). 

Similar response was observed in this study, where either leaf and root-N concentrations were 

positively correlated with soil NO3
-
-N concentrations better than with NH4

+
-N. These results 

bring evidence to the fact that soil fertility in term of N in calcareous soils can be increased by 

increasing NO3
-
-N concentration. 

 In general, the response curve of plant growth to nutrient supply has three zones. In 

the first one, defined as deficient range, biomass production increases with increasing nutrient 

supply; in the second region, plant growth reaches a maximum and remains unaffected by 

nutrient amount (adequate range); finally, in the last region, plant biomass falls with 

increasing nutrient supply, indicating toxic range (Marschner, 1995). Shoot and root biomass 

production of mineral fertilized plants showed this trend. In fact at the first harvest, an 

adequate range was found at 200 mg of N kg
-1

 rate of N application, which presented a soil 

NO3
-
-N concentration of 57 mg kg

-1
, in contrast, 500 and 1000 mg of N kg

-1 
rate of N 
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application (with a NO3
-
-N of 95 and 156 mg kg

-
1, respectively) were toxic to plant growth; 

similar trend was observed at the second harvest; however, in the last harvest, the adequate 

range was 500 mg of N kg
-1

, which had a soil NO3
-
-N concentration of 75 mg kg

-1
. In 

contrast, compost fertilized trees showed increases in biomass with increasing rate of N 

application because NO3
-
-N in soil responded not linearly to compost application. These 

results suggest that soil NO3
-
-N concentration higher than 95 ppm induced a toxic effect, in 

fact, there are different studies that showed a negative effect on plant growth at high soil and 

organ NO3
-
-N concentration (Bloom et al., 1993; Scheible et al., 1997; Zhang et al., 1999; 

Linkohr et al., 2002; Wang et al., 2004). Moreover, mineral fertilized plants at rate of 1000 

mg N kg
-1

 showed the lowest total root length with the highest NO3
-
-N soil concentration. 

There are a number of evidences that high soil NO3
-
-N concentration inhibited root growth. In 

Arabidopsis, Zhang et al. (1999) indicated that NO3
-
-N concentration greater than 10 mM had 

a strong inhibitory effect on lateral root production, similar results were reported by Stitt and 

Feil (1999). As a possible explanation it has been postulated that NO3
-
-N altered levels of 

phytohormones, such as cytokinin, auxins and abscisic acids, which were involved in root 

growth (Walch-Liu et al., 2005; Tian et al., 2008).  

 The soil NO3
-
-N concentration that allowed the best growth of plant was higher than 

that discussed in commercial orchard and proposed by Tagliavini et al. (1996) who suggests 

15 mg kg
-1

. The value found in this study is 57, this discrepancy is probably the result of the 

different kind of trees investigated. Adult bearing tree, with a well establishes internal cycle 

of N, probably need less N per year than non-bearing young fast growing trees such those 

used in this experiment. In addition we used as a parameter to evaluate the effect of N soil 

availability the vegetation growth which is not the goal of a commercial orchard. 

 Higher soil N concentration probably negatively affect root life spans by increasing 

metabolic activity (Tjoelker et al., 2005; Withington et al., 2006; Guo et al., 2008). The 

enhancement of metabolism may require the presence of additional defense mechanisms 

against reactive oxygen species (ROS) such as CAT and SOD (Oliveira-Medici et al., 2004). 

In cotton plants, N application significantly increased the root CAT activity, but decreased 

SOD activity (Liu et al., 2008). Misra and Gupta (2006) observed higher SOD activity in 

NO3
-
-fed plants than in NH4

+
 treated plants; and at the same time, higher CAT activity in 

NH4
+
-fed plants compared with NO3

-
 supplied plants. Oliveira-Medici et al. (2004) observed 

in maize the highest CAT activity in roots grown at high N concentrations, whereas in barley, 

CAT activity was high in roots grown at the lowest N concentration. In the present study, only 

at the first harvest a significantly lower CAT activity was found on fertilized plants, with 
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unfertilized plants showing the highest values. Similar trend was observed for SOD activity, 

which only at second harvest presented significant differences, with highest values at 200 mg 

kg
-1

. Catalase and SOD activities showed unclear trends, suggesting that unfertilized plants 

and 200 mg kg
-1

 treated plants would be more stressed than the other plants due to either by 

lack of mineral nutrients for the plant growth (in untreated plants) or by optimal plant growth 

that could lead a high metabolic activity. For this reason CAT and SOD were not a good tool 

for evaluate a possible root oxidative damage. 

 Scheible et al. (1997) found that nitrate accumulation in shoot leads to a strong 

inhibition of starch synthesis and turnover in leaves, decreasing level of sugar in root. In this 

study, at the first harvest, untreated plants showed higher starch content compared with the 

other treatments, indicating that increasing rate of N application might influence negatively 

starch accumulation in roots.   

 Electrolyte leakage can be associated to cell damage, and has been demonstrated that 

it is correlated with antioxidative enzyme synthesis (Mckay and White, 1996; Bajji et al., 

2001). Elevated values indicate a high membrane leakage and so a high stress level. Our 

results are not completely clear, since an increase of electrolyte leakage was observed in 

plants fertilized with mineral N at a rate of 200 and 500 mg N kg
-1

 8 and 94 days after 

fertilization. The magnitude of the response was however low, testifying a relatively mild 

stress. The level of nitrate N was probably low compared to the ability of the roots to adapt or 

this parameter does not indicate the real NO3
-
 -N induced root stress. 
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4. EFFECT OF ORGANIC FERTILIZATION ON SOIL 

FERTILITY, TREE NUTRITIONAL STATUS AND 

PRODUCTIVITY 
 

4.1. Materials and methods 

4.1.1. Plant materials and treatments  

The study was carried out in an experimental farm located in the south-eastern part of 

the Po valley of Italy (44° 27‟ Nord; 12°13‟ Est) on a nectarine (Prunus persica, Batsch var. 

nectarina (Ait) Maxim.) orchard. The trees of the variety Stark RedGold, grafted on hybrid 

GF 677 (Prunus persica x Prunus amygdalus), were trained as in a delayed vasette system 

and planted on January 2001, at a distance of 5 m between the rows and 3.8 m between trees 

along the row. Soil tillage was carried out in a 2 m wide tree row, while the alleys were 

covered with spontaneous grass. From June to September, trees were regularly watered with a 

drip irrigation system to return the weekly evapotranspiration rate, calculated on the basis of 

the data of the class A PAN evaporimeter of the local meteorological station. The key 

characteristics of the Calcaric Cambisol (FAO, 1990) soil of the orchard are summarized in 

table 4.1. The following treatments were compared, since orchard plantation in 2001, as in a 

randomised complete block design with four replicates: 

 

- unfertilized control;  

- mineral fertilization including phosphorus (P at 100 kg ha
–1

) and potassium (K at 

100 kg ha
–1

) applied only at planting and N (70 kg ha
–1

) split in May (60%) and 

September (40%). In 2004, N supply rate was increased to 120 kg ha
-1

, and from 

2006 to 130 kg N ha
-1

;  

- compost at a rate of 5 t D.W. ha
–1 

year 
-1

;  

- compost at a rate of 10 t D.W. ha
–1 

year 
-1

.  

 

 Fertilizer application in treatments 3 and 4 was split, as for mineral N fertilization in 

May (60%) and in September (40%). Compost was tilled into the soil at 25 cm of depth and 

applied only on the 2-m wide tree row, consequently on a hectare surface it was applied to 

4,000 m
2
 out of 10,000 m

2
. Compost was the same used in the previous trials (table 2.2). 
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Table 4.1 Chemical and physical soil characteristics of the soil at the beginning (2001) of 

the trial (average of 4 replicates ± standard deviation). 

Properties   

Sand (%)  6.7 ± 1.5 

Silt (%) 67 ± 1.41 

Clay (%) 26.2 ± 1.71 

pH 7.8 ± 0.05 

Ca carbonate (%) 30.5 ± 1.29 

Active lime (%) 12.5 ± 1.29 

Organic matter (%) 1.63 ± 0.13 

K extractable (mg kg
-1 

D.W.) 182 ± 33.7 

P Olsen (mg kg
-1 

D.W.) 18.5 ± 2.38 

C.E.C.
1
 (meq 100g

-1 
D.W.) 10.1 ± 1.95 

Electrical conductivity (µS cm
-1

) 200 ± 8.2 

1
CEC: cation exchange capacity 

 

4.1.2. Soil analysis 

Soil OM and total N were measured yearly at the end of vegetative season. To assess 

the effect of treatments on soil NO3
-
-N, NH4

+
-N and moisture, soil cores were collected at a 

depth of 0-40 and 40-80 cm four times a year (before spring fertilization, 40 days after spring 

fertilization, in mid-July and 40 days after late summer application). Nitrates and ammonium-

N were extracted as previously described (cap. 2.1.4). Microbial biomass C was measured as 

described in cap. 2.1.4 on soil samples collected in the same dates of nitrate-N determinations 

and at the depth of 4-20 cm.  

4.1.3. Canopy analysis  

 In July a sample of 40 leaves per plot were collected for mineral analysis, rinsed, 

oven-dried, milled and analysed for N, P, K, Ca, Mg, Fe, Mn, Zn and Cu. Total N 

concentrations were determined by Kjeldahl method (paragraph 3.1.3). Metal concentration in 

leaves was determined by atomic absorption spectrophotometry (Varian AA200, Mulgrave, 

Victoria, Australia) on samples previously mineralized by US EPA Method 3052 (Kingston, 

1988) by treating 0.3 g of dry leaves in an Ethos TC microwave lab station (Milestone, 

Bergamo, Italy). Phosphorous concentration was determined according to Saunders and 

Williams, 1955 as follows: 0.5 g (DW) leaf samples were mineralized with 11 mL of 96% 
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(v/v) sulphuric acid and 4 mL of 35% (v/v) hydrogen peroxide, neutralized with 5 M NaOH 

and enriched with 30 mL of a mixture of 0.1 M ascorbic acid, 32 mM ammonium molybdate, 

2.5 M sulphuric acid and 3 µM potassium antimonyl tartrate to develop a phospho-molybdic 

blue colour; P was spectrophotometrically quantified at 700 nm. 

In September 2010 plastic net were positioned around one tree per block, in order to collect 

all abscised leaves; periodically leaves were collected and weighted.  

 

4.1.4. Fruit production 

Yield of the central 4 trees of each plot was recorded at commercial harvest; fruit 

average weight and precocity index were calculated. Precocity index was calculated according 

to the following formula:  

 

P.I. = (dd1*kg1) + (dd2*kg2) + (dd3*kg3)/ kg1 + kg2 + kg3 

 

where: dd = number of days between the day before the first harvest and each of the following 

harvest days (1, 2, and 3); kg = amount of peach harvested at each sampling date. Moreover 

20 additional fruits were used for the determination of skin color, fruit firmness, pH, acidity 

and soluble solid content. Fruit firmness was determined by a pressure tester (Effe.Gi, 

Ravenna, Italy) fitted with an 8-mm-diameter plunger on two side of the fruit previously 

peeled. Two slices from each fruit were cut and homogenized; the juice obtained from each 

sample of 20 fruits was used for the determination of solid soluble concentration (SSC) by a 

digital refractometer (PR-1, Atago Tokio, Japan), acidity and pH by a Compact Tritator I 

(Crison, Barcellona, Spain). Two additional slices were collected, lyophilized, milled and 

used for mineral analysis as described previously. 

4.1.5. Statistical analysis 

Soil NO3
-
-N and NH4

+
-N were analysed as in a factorial design with soil depths and 

treatments as factors. Otherwise data were analysed as in a complete randomised block design 

and when analysis of variance showed a statistical effect of treatments (P0.05), means were 

separated by Student Newman Keuls test.  

 

4.2. Results 

4.2.1. Soil fertility  
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 In 2010, the application of compost at high rate increased soil OM if compared to 

other treatment (table 4.2). After 10 years, the application of 10 t ha
-1

 year
-1

 of compost 

increased  soil OM by 222 %, compost at 5 t ha
-1

 year
-1

 increased OM by 104 if compared to 

the untreated control (table 4.2). Total N concentration was increased by compost application 

at the rate of 10 t ha
-1 

compared to the other treatments that showed similar N concentrations 

(table 4.2). Soil OM and total N were significantly correlated (figure 4.1). Soil pH resulted 

lower in soil treated with compost at both rates only if compared with unfertilized control 

(table 4.2). 

  

Table 4.2 Effect of fertilization treatment on total N and organic matter and pH in the soil at 

the beginning of the trial (2001) and in 2010. 

TREATMENT Total N (‰) Organic matter (%) pH 

 2001 2010 2001 2010 2001 2010 

Control 1.05 1.12 b
1 

1.67 1.93 b 7.8 8.08 a 

Mineral 1.07 1.24 b 1.65 1.98 b 7.8 8.00 ab 

Compost 5 t ha
-1

 1.05 1.87 b 1.62 3.30 b 7.8 7.95 b 

Compost 10 t ha
-1

 1.05 2.83 a 1.63 5.25 a 7.8 7.93 b 

Significance - *** - ** n.s. * 

ns, *, **, ***: effect not significant or significant at P0.05, P0.01, P0.001, respectively. 
1
Means followed by the same letter are not statistically different (P 0.05). 

 

 

Figure 4.1 Correlation between soil organic matter (OM) and total N. (r: correlation 

coefficient: ***: linear correlation significant at P 0.001). 
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 In 2010 no significant interaction between soil depth and fertilization treatment was 

observed for mineral N concentrations. In May the application of mineral fertilizer and 

compost increased, in the soil profile of 0-80 cm, NO3
-
-N concentration. In July, while 

compost application (at both rates) showed intermediate values. The application of compost at 

10 t ha
-1

 increased nitrate-N availability at the end of the season (figure 4.2). 

 

Figure 4.2 Effect of fertilization treatments on NO3
-
-N concentration in soil as observed in 

2010 at 0-80 cm of depth. ns, *, **: effect not significant or significant at P 0.05 and P 

0.01, respectively. 
1
Means followed by the same letter are not statistically different (P 0.05). 

 

 

 Soil ammonium-N concentration was increased by the application of compost at the 

highest rate in April (table 4.3) and May. In July and November, low concentrations (less than 

1 mg kg
-1

 DW) of NH4
+
-N were measured (data not reported). Depth did not influence NH4

+
-

N concentration in soil. 
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Table 4.3 Effect of fertilization treatments on NH4
+
-N concentration in soil as observed in 

2010.  

TREATMENT April May 

Control 4.0 b
1 

5.9 b 

Mineral 7.1 b 5.7 b 

Compost 5 t ha
-1

 6.2 b 7.7 ab 

Compost 10 t ha
-1

 10.5 a 10.3 a 

Significance ** * 

DEPTH (cm)   

0-40 8.5 8.5 

40-80 5.3 6.3 

Significance n.s. n.s. 

ns, *, **,: effect not significant or significant at P 0.05, P 0.01, respectively. 
1
Means 

followed by the same letter are not statistically different (P  0.05). 

 

 

 No significant interaction between treatment and depth was observed for soil moisture 

(table 4.4). The application of compost at high rate increased soil water content in April. In 

May, July and November no significant differences between treatments were observed. In 

April and November soil moisture was higher in the shallower soil layer, while in May and 

July it was higher among 40 and 80 cm of depth (table 4.4). 

 The application of compost at the highest rate increased soil microbial biomass in 

April and May, followed by compost at 5 t ha
-1

 (table 4.5), which promoted a higher 

microbial C, compared to untreated and mineral fertilizer treated soil (table 4.5). No 

significant differences were observed in July and November. 
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Table 4.4 Effect of fertilization treatments on soil moisture (%) as observed in 2010. 

TREATMENT April May July November 

Control 19.4 b
1 

15.5 14.4  17.5 

Mineral 19.8 b 16.9 12.0  16.9 

Compost 5 t ha
-1

 20.1 b 16.4 14.1  17.2 

Compost 10 t ha
-1

 22.2 a 17.7 14.1  17.7 

Significance ** n.s. n.s. n.s. 

DEPTH (cm)     

0-40 21.1 17.3 12.6 19.1 

40-80 19.7 15.9 14.7 15.6 

Significance ** ** ** ** 

ns, *, **: effect not significant or significant at P0.05, P0.01, respectively. 
1
Means followed 

by the same letter are not statistically different (P 0.05). 

 

 

Table 4.5 Effect of fertilization treatment on soil microbial carbon (µg C g
-1

 DW) in 2010. 

TREATMENT April May July   November 

Control 276 d
1 

321 c 299 218 

Mineral 345 c 355 c 342 280 

Compost 5 t ha
-1

 435 b 494 b 528 269 

Compost 10 t ha
-1

 588 a 733 a 548 337 

Significance *** *** n.s. n.s. 

ns, ***: effect not significant or significant at P0.001, respectively. 
1
Means followed by the 

same letter are not statistically different (P 0.05). 

 

4.2.2. Leaf chlorophyll and mineral nutrient concentration 

 In 2010, trees treated with mineral fertilizer showed a higher leaf chlorophyll content 

than compost 5 t ha
-1

 and control; the application of compost at 10 t ha
-1

 showed SPAD values 

not different from mineral and compost 5 t ha
-1

 but higher than control (table 4.6). Leaf area 

of mineral plants was similar to compost (both rate) and higher than untreated control (table 

4.6); specific leaf weight was higher in control plants if compared with compost at high rate 

and mineral fertilized trees (table 4.6). 
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Table 4.6 Effect of fertilization treatment on leaf chlorophyll, leaf area and specific weight.  

TREATMENT 
Leaf chlorophyll 

(SPAD unit) 

Leaf area          

(cm
2
/leaf) 

Specific weight 

(mg/cm
2
) 

Control 38.0 c
1 

43.4 b 7.6a 

Mineral 42.8 a 49.0 a 6.9b 

Compost 5 t ha
-1

 40.3 b 45.8 ab 7.2ab 

Compost 10 t ha
-1

 41.4 ab 47.4 ab 6.9b 

Significance *** * * 

ns, *, ***: effect not significant or significant at P0.05, P0.001, respectively. 
1
Means 

followed by the same letter are not statistically different (P 0.05). 

 

 

 Leaf N concentration of plants treated with compost at both rate was lower than that in 

mineral fertilized trees but higher than control (table 4.7). No significant differences among 

treatments were observed for P, K and Ca; magnesium leaf concentration was higher in 

control plants (table 4.7). 

 

Table 4.7 Effect of fertilization treatment on macronutrient leaf concentration in 2010.  

TREATMENT 
N  

(% D.W.) 

P  

(% D.W.) 

K 

(%D.W.) 

Ca  

(%D.W.) 

Mg  

(%D.W.) 

Control 2.7 c
1 

0.5 1.8 2.4 0.42 a 

Mineral 3.4 a 0.4 1.8 2.3 0.38 b 

Compost 5 t ha
-1

 3.0 b 0.3 1.9 2.2 0.38 b 

Compost 10 t ha
-1

 3.2 b 0.6 2.0 2.2 0.37 b 

Significance *** n.s. n.s. n.s. ** 

ns, **, ***: effect not significant or significant at P0.01, P0.001, respectively. 
1
Means 

followed by the same letter are not statistically different (P 0.05). 

 

 

 No significant differences between treatments were observed in micronutrient leaf 

concentration (table 4.8), with exception of Mn that was higher in mineral treated plants as 

compared with the other treatments. 

 Leaf chlorophyll (SPAD unit values) was correlated to N concentration in leaves 

(figure 4.3). 
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Table 4.8 Effect of fertilization treatment on micronutrient leaf concentration in 2010.  

TREATMENT 
Fe  

(ppm D.W.) 

Mn  

(ppm D.W.) 

Cu  

(ppm D.W.) 

Zn  

(ppm D.W.) 

Control 59.3 27.9 b
1 

6.8 30.5 

Mineral 59.9 35.6 a 8.0 32.5 

Compost 5 t ha
-1

 58.6 29.3 b 7.3 33.1 

Compost 10 t ha
-1

 59.6 31.4 b 7.7 32.8 

Significance n.s. ** n.s. n.s. 

ns, **: effect not significant or significant at P0.01, respectively. 
1
Means followed by the 

same letter are not statistically different (P 0.05). 

 

 

Figure 4.3 Correlation between leaf N concentration and leaf chlorophyll. (r: Pearson 

correlation coefficient: ***: linear correlation significant at P 0.001). 

 

4.2.3. Fruit quality and plant productivity 

 Ten years of different fertilizers management did not modify tree yield, however, in 

2010 the application of compost at high rate and of mineral fertilizer increased fruit size and 

precocity index if compared with untreated control (table 4.9).  

 Acidity was increased by the application of compost at high rate and mineral fertilizer, 

no significant differences were observed for fruit SSC, pH and firmness (table 4.10). 
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Table 4.9. Effect of fertilization treatment on plant yield, fruit weight, precocity index (PI) in 

2010.  

TREATMENT 
Yield   

(kg tree
-1

) 

Fruit weight  

(g) 

PI    

(days) 

Control 44.5 148 b
1 

3.0 c 

Mineral 43.3 170 a 5.2 a 

Compost 5 t ha
-1

 47.7 164 ab 4.2 b 

Compost 10 t ha
-1

 49.2 172 a 4.8 ab 

Significance n.s. ** *** 

ns, **, ***: effect not significant or significant at P0.01, P0.001, respectively. 
1
Means 

followed by the same letter are not statistically different (P 0.05). 

 

 

Table 4.10 Effect of fertilization treatment on acidity, soluble solid content (SSC) and 

firmness of fruit in 2010.  

TREATMENT 
Acidity   

(g L
-1

) 

SSC  

(° brix) 

pH Fruit firmness  

(kg) 

Control 10.0 b
1 

13.0 3.5 2.0 

Mineral 11.3 a 13.0 3.5 2.6 

Compost 5 t ha
-1

 10.9 b 13.1 3.5 2.2 

Compost 10 t ha
-1

 11.3 a 13.2 3.5 3.8 

Significance * n.s. n.s. n.s. 

ns, **: effect not significant or significant at P0.01, respectively. 
1
Means followed by the 

same letter are not statistically different (P 0.05). 

 

 

 Fruit N concentration was increased by the application of mineral fertilizer and 

compost 10 t ha
-1

 year
-1 

(table 4.11). Also fruits from compost 5 t ha
-1

 year
-1 

treated trees 

showed higher N concentration than control fruits, but lower than mineral and high compost. 

No significant differences among treatments were observed for the other macro and 

micronutrient concentrations (table 4.11 and 4.12). 
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Table 4.11 Effect of fertilization treatment on macronutrient fruit concentrations in 2010.  

TREATMENT 
N         

(% D.W.) 

P          

(% D.W.) 

K          

(% D.W.) 

Ca        

(ppm D.W.) 

Mg       

(ppm D.W.) 

Control 0.6 c
1 

0.4 1.2 326.5 544.3 

Mineral 1.0 a 0.2 1.2 242.2 567.5 

Compost 5 t ha
-1

 0.8 b 0.3 1.2 269.2 551.4 

Compost 10 t ha
-1

 0.9 ab 0.3 1.3 232.2 575.6 

Significance ** n.s. n.s. n.s. n.s. 

ns, ***: effect not significant or significant at P0.001, respectively. 
1
Means followed by the 

same letter are not statistically different (P 0.05). 

 

 

Table 4.12. Effect of fertilization treatment on micronutrient leaf concentrations in 2010.  

TREATMENT 
Fe             

(ppm D.W.) 

Mn                      

(ppm D.W.) 

Cu      

(ppm D.W.) 

Zn        

(ppm D.W.) 

Control 17.7 3.2 5.9 10.6 

Mineral 18.6 3.1 6.6 10.9 

Compost 5 t ha
-1

 17.3 2.9 6.3 10.5 

Compost 10 t ha
-1

 17.6 2.8 6.9 9.9 

Significance n.s. n.s. n.s. n.s. 

ns, **: effect not significant or significant at P0.01, respectively. Means followed by the 

same letter are not statistically different (P 0.05). 

 

 

 No significant differences among treatments were observed in the weight of abscised 

leaves (table 4.13). 

 

      Table 4.13 Effect of fertilization treatment on abscised leaves. 

TREATMENT Abscised leaves (kg) 

Control 2.74 

Mineral 4.19 

Compost 5 t ha
-1

 2.92 

Compost 10 t ha
-1

 3.78 

Significance n.s. 

                 ns: effect not significant. 
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4.3. Discussion 

 The most important effect of distribution of compost at a rate of 10 t ha
-1

 year
-1 

for ten 

years in this commercial orchard was the increase of OM that jumped from 1.63 to 5.25%. It 

must be stressed however that this value refers to a volume of soil of 0.25 m depth by an area 

of 2/5 of that occupied by orchard since, OM was incorporate in a 2 m width strip. It is thus 

expected a lower effect in term of the whole volume of soil occupied by an annual crops. 

Related to this increase also a higher total N was observed after application of compost at the 

highest rate (10 t ha
-1

 year
-1

) that allowed restoring soil fertility after 10 years of 

experimentation as also reported by other authors (Sanchez et al., 1989). Despite the 

improvement of soil chemical properties, NO3
-
-N availability remained in the range of 5 to 20 

mg kg
-1

, concentration that is considered optimal for peach nutrition (Tagliavini et al., 1996). 

In general compost application is reported to increase soil pH, due to the mineralization of C, 

which produces OH
-
 ions (Eghball, 2002; García-Gil et al., 2004; Butler and Muir, 2006; 

Melero et al., 2007; Hargreaves et al., 2008). Nevertheless, in this study, both compost 

application rates prevented soil pH to increase. This can be explaine considering the relatively 

high native soil pH and the beneficial effect of soil OM to bring soil pH to neutrality. 

 On the other hand, several authors indicated that application of OM affects soil 

biological properties, for example increasing microbial activity (Leifeld et al., 2002; Pérez-

Piqueres et al., 2006; Chang et al., 2007; Diacono and Montemurro, 2010). In this case, 

compost at high rate increased soil microbial C since the beginning of the experiment (Baldi 

et al., 2010).  

 Kramer et al. (2006) and Herencia et al. (2007) observed that compost-fertilized plants 

presented lower leaf N concentration as compared with mineral supplied plants, similar 

results were observed in this study; in contrast, leaf chlorophyll content was similar between 

mineral and compost-treated plants. Additionally, a positive correlation between SPAD values 

and leaf N concentration were observed, such as previously demonstrated by Tagliavini et al. 

(1996) and Porro et al. (2000). 

 It is known that N fertilization stimulates plant yields by increasing assimilate 

availability (Saenz et al., 1997); however after 10 years of different treatment, tree yield was 

not affected. Fruit N concentration was increased by the application of mineral fertilizer and 

compost, as well as fruit weight, indicating a relation between N application and peach size as 

observed by Rader et al. (1985).   

 Soluble solid concentration usually do not respond to fertilizer application (Stylianidis 

and Syrgiannidis, 1995), rather high application of N can reduce fruit firmness even if, in the 
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present experiment, we did not find this effect on fruit firmness but only a delay of fruit 

ripening, shown by higher acidity and precocity index, after treatment with mineral fertilizer 

and 10 t ha
-1

 year
-1

 of compost. Probably the higher mineral N soil availability delayed fruit 

maturation; in peach this is better determined by considering the precocity index rather than 

fruit firmness, because fruit harvest is managed through several pickings, to remove fruit at 

the most uniform maturity stage. 
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5. CONCLUSIONS 
 

The results reported in these studies show that the addition of compost at high rate (60 g 

kg
-1

) is effective to increase CO2 fixation and to promote not only root growth, but also shoot 

and fruit biomass, indicating that compost application does not subtract C from the fruit to 

promote root growth. Furthermore, organic fertilizer change C partitioning, favoring C 

accumulation not only in roots, but also wood.  

The highest rate of compost application used in the pot trial, corresponds to several 

hundreds of tons per hectare, which is possible to obtain after continuous application through 

all the orchard lifetime. This high concentration of soil OM is rather responsible for 

increasing a number of soil fertility indexes, including microbial biomass. However, this rate 

was not effective to increase nitrate-N soil concentration, indicating the soil capacity to 

maintain low level of mineral N is relevant, even with high level of OM.  

Nitrate-N release was in contrast the most promptly effect of urea-N applications even at 

the lowest (200 mg kg
-1

) rate tested. This fertilization strategy, from one hand is effective to 

remediate N deficiency swiftly, from the other hand has a potential in environment pollution, 

related to nitrate-N leaching with the draining water. 

The data here presented on plant growth confirms previous reports about the best 

nitrate-N soil concentration for peach trees. The highest root and shoot dry weight was found 

at nitrate-N soil concentration of 57 mg kg
-1

. Any increase above this value was ineffective to 

promote growth. In our trial, the decrease of root growth, as a response to excessive nitrate-N 

soil concentration, was not anticipated by root oxidative stress. Probably the stress analyses 

evaluated in our experiment were not the most suitable for the hybrid peach x almond 

rootstock here investigated.  

The quality of compost over the mineral N was observed also in commercial orchard 

conditions. The application of compost at 10 t ha
-1

 year
-1 

under our conditions for 10 years 

allowed to storage in the soil around 2.7 t of C per year. 

 The high C assimilation rate was clearly the results of a larger leaf area, that probably 

was promoted by the better root environment conditions, characterized by a general higher 

fertility. We believe that the possible improved availability of nutrient in the soil alone, can 

not explain the boost of plant biomass production; probably a combination of biochemical 

factors were responsible for the plant response, involving a possible „priming effect‟ of 

organic material added to the soil, along with an increase of the population of the so called 
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plant growth promoting rhizobacteria, that together increased efficiency of root uptake and 

availability of exogenous bioregulators and finally plant growth.
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