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ABSTRACT 
Introduction and aims of the research Nitric oxide (NO) and endocannabinoids 
(eCBs) are major retrograde messengers, involved in synaptic plasticity (long-term 
potentiation, LTP, and long-term depression, LTD) in many brain areas (including 
hippocampus and neocortex), as well as in learning and memory processes. NO is 
synthesized by NO synthase (NOS) in response to increased cytosolic Ca2+ and 
mainly exerts its functions through soluble guanylate cyclase (sGC) and cGMP 
production. The main target of cGMP is the cGMP-dependent protein kinase 
(PKG). Activity-dependent release of eCBs in the CNS leads to the activation of 
the Gαi/o-coupled cannabinoid receptor 1 (CB1) at both glutamatergic and 
inhibitory synapses. The perirhinal cortex (Prh) is a multimodal associative cortex 
of the temporal lobe, critically involved in visual recognition memory. LTD is 
proposed to be the cellular correlate underlying this form of memory. Cholinergic 
neurotransmission has been shown to play a critical role in both visual recognition 
memory and LTD in Prh. Moreover, visual recognition memory is one of the main 
cognitive functions impaired in the early stages of Alzheimer’s disease. The main 
aim of my research was to investigate the role of NO and ECBs in synaptic 
plasticity in rat Prh and in visual recognition memory. Part of this research was 
dedicated to the study of synaptic transmission and plasticity in a murine model 
(Tg2576) of Alzheimer’s disease. 
Methods Field potential recordings. Extracellular field potential recordings were 
carried out in horizontal Prh slices from Sprague-Dawley or Dark Agouti juvenile 
(p21-35) rats. LTD was induced with a single train of 3000 pulses delivered at 5 Hz 
(10 min), or via bath application of carbachol (Cch; 50 µM) for 10 min. LTP was 
induced by theta-burst stimulation (TBS). In addition, input/output curves and 5Hz-
LTD were carried out in Prh slices from 3 month-old Tg2576 mice and littermate 
controls.  
Behavioural experiments. The spontaneous novel object exploration task was 
performed in intra-Prh bilaterally cannulated adult Dark Agouti rats. Drugs or 
vehicle (saline) were directly infused into the Prh 15 min before training to verify 
the role of nNOS and CB1 in visual recognition memory acquisition. Object 
recognition memory was tested at 20 min and 24h after the end of the training 
phase. 
Results Electrophysiological experiments in Prh slices from juvenile rats showed 
that 5Hz-LTD is due to the activation of the NOS/sGC/PKG pathway, whereas 
Cch-LTD relies on NOS/sGC but not PKG activation. By contrast, NO does not 
appear to be involved in LTP in this preparation.  Furthermore, I found that eCBs 
are involved in LTP induction, but not in basal synaptic transmission, 5Hz-LTD and 
Cch-LTD. Behavioural experiments demonstrated that the blockade of nNOS 
impairs rat visual recognition memory tested at 24 hours, but not at 20 min; 
however, the blockade of CB1 did not affect visual recognition memory acquisition 
tested at both time points specified. 
In three month-old Tg2576 mice, deficits in basal synaptic transmission and 5Hz-
LTD were observed compared to littermate controls.  
Conclusions The results obtained in Prh slices from juvenile rats indicate that NO 
and CB1 play a role in the induction of LTD and LTP, respectively. These results 
are confirmed by the observation that nNOS, but not CB1, is involved in visual 
recognition memory acquisition. The preliminary results obtained in the murine 
model of Alzheimer’s disease indicate that deficits in synaptic transmission and 
plasticity occur very early in Prh; further investigations are required to characterize 
the molecular mechanisms underlying these deficits. 
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1. INTRODUCTION 

1.1.  Memory and learning:  classification and short historical review 

Memory and learning have been studied since ancient times, but only in the 

last few decades the cerebral structures involved have been identified and the 

physiological and molecular mechanisms underlying these processes have begun 

to be clarified.  

Memory has been classified as explicit (facts and events) and implicit (e.g. 

classical and operant conditioning and procedural memory; Fig 1.1.). Cerebral 

areas associated with these mnemonic processes are extensively studied by 

psychologists, neurophysiologists and psychiatrists. In a situation of learning, 

many of these brain areas may be working simultaneously, each one processing 

different streams of information about the perceived event (visual, location, sound, 

emotional content, etc.). The associative learning is believed to emerge from the 

coordinated activity of different brain areas. This is how organisms, including 

humans, encode causality in the perceived world.  

Memory can also be classified as short- and long-term. Short-term memory has 

a limited temporal window (minutes) and needs to be continuously renewed to be 

maintained; long-term memory lasts longer (from hours to years). 

Different functions are associated to specific brain regions, and the same 

applies for implicit and explicit memory processes (reviewed by Squire, 2004). In 

the 1940’s, Penfield’s electrophysiological experiments on epileptic patients and 

studies of hippocampal lesions in primates and humans were some of the first 

experimental evidences supporting the idea of structure - function  relations for 

mnemonic processes (reviewed by Feindel, 1982). Before surgical ablation of the 

temporal lobe, Penfield’s patients, who were conscious throughout the procedure 
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(local anaesthesia), were electrically stimulated in different areas of the temporal 

cortex. During the stimulation, Penfield’s patients verbally referred back to past 

experiences. 

Another famous example comes from the case of patient H.M., who suffered 

from an aggressive form of epilepsy. Bilateral partial ablation of the temporal 

lobes, including both hippocampi, was performed as a treatment. After the surgery, 

H.M. suffered from a severe form of anterograde amnesia: he could recollect 

everything that happened until the day of the surgery, but from that moment 

onwards his long-term memory was severely impaired although procedural 

memory processing remained intact. 

In the coming years, lesion studies on primates and rodents demonstrated that 

the hippocampus and associated structures (perirhinal, entorhinal and 

parahippocampal cortices) are selectively involved in acquisition and consolidation 

of declarative but not implicit memory processes (reviewed by Squire, 2004).  

 

 
   

 
   

Fig 1.1. Schematic representation and functional classification of long-term memory and 

associated brain structures (modified from Squire, 2004). 
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1.2. Cellular correlates of learning and memory: synaptic plasticity 

 
What is memory from a physical point of view? In pure physical terms, memory 

is the ability of a system to acquire, store and recollect information. In a biological 

system, a complex phenomenon like memory is characterized by cellular and 

molecular mechanisms that have been the subject of extensive investigation in the 

last 40 years. Considering that most of the stored information is acquired from 

sensorial experience, the brain has to undergo many long-term functional and 

structural modifications corresponding to the mnemonic tracks left by perceived 

experiences. In his Croonian Lecture to the Royal Society in 1894, Ramòn y Cayal 

proposed that memory formation relies on reinforcement of the signalling between 

neurons in the involved areas: 

 […] it can be accepted that the mental exercise brings to a major development 

of the dendritic apparatus and of the axonic collaterals system in the mostly used 

brain areas […].  

In this concept, the notion of synaptic plasticity is already maturing: the ability of 

chemical synapses to increase or decrease the efficiency of transmission between 

neurons according to the frequency of the stimulation and to the previous history. 

 The idea that memory and learning result from the alteration of activity of 

specific synapses was further highlighted by the Canadian psychologist Donald 

Hebb in 1949 in his book titled “Organization of the behaviour”: 

“When an axon of cell A is near enough to excite B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change takes 

place in one or both cells such that A's efficiency, as one of the cells firing B, is 

increased.”  

This Hebbian rule has been formulated on pure theoretical basis, hypothesizing 

that such a mechanism could stabilize specific patterns of neuronal activity: if a 
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neuronal activity pattern corresponds to a specific behaviour, stabilizing that 

pattern means memorizing that behaviour (Hebb, 1949). 

Most part of both excitatory and inhibitory synapses show a rich repertoire of 

plastic modalities that work on time scales comprised between milliseconds and 

weeks (e.g. paired-pulse facilitation, paired-pulse depression, long-term 

potentiation, long term depression, suppression of inhibition etc.). With regards to 

the cellular and molecular basis of memory and learning, long-term potentiation 

(LTP) and long-term depression (LTD) have represented the main experimental 

model in the last 30 years. Both LTP and LTD have been observed in many brain 

structures such as hippocampus, neocortex and subcortical structures. In 1973, 

Bliss and Lømo were the first to observe that high frequency stimulation (HFS) of 

the perforant path (PP) of the hippocampus of anesthetized rabbits in vivo 

determined a significant and prolonged potentiation of synaptic transmission in the 

dentate gyrus and termed this phenomenon LTP. It has been mainly explored in 

hippocampus, but it can also be induced in other brain structures, such as the 

perirhinal cortex (Prh). LTP is characterized by a long-term (more than 3 h) 

increment of synaptic strength following a short period of coordinated neuronal 

activity, such high frequency stimulation of afferent fibres. Even if LTP is 

persistent, it’s not irreversible: the synaptic strength can be returned to basal 

levels through low frequency stimulation (LFS) of the afferent fibres 

(depotentiation, DP; Barrionuevo et al., 1980). In addition, when LFS is applied to 

a non-potentiated pathway it leads to LTD (Bear and Dudek, 1992). LTD can be 

returned to basal levels after HFS through the process termed de-depression. 

Thus, the strength of synaptic transmission can be altered in a bidirectional and 

reversible way: the dynamic storage of large amounts of information at neuronal 

level may be constantly redefined. Furthermore, these forms of Hebbian plasticity 
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act through positive feedback processes, that if left without control measures may 

destabilize the neuronal networks by driving neurons into maximal and/or minimal 

firing frequency averages: by degrading the signals that propagate through the 

network, this ultimately disrupts the ability of the neurons to encode further plastic 

changes. Homeostatic forms of synaptic plasticity should integrate negative 

feedback systems in order to keep the synaptic transmission and plasticity within a 

dynamic functional range, either increasing or decreasing the strength of all the 

synaptic inputs: this can be achieved by either keeping at the same time their 

relative weight (synaptic scaling) or by modifying the ability of the synapses to 

undergo further plastic changes (metaplasticity; reviewed by Pérez-Otaño and 

Ehlers, 2005) 

1.2.1. Long term potentiation (LTP): induction and expression 

mechanisms 

LTP is defined as the long-term increase of synaptic strength subsequent to 

the application of a HFS (usually 100 Hz) on the presynaptic fibres. A lot of what 

we know about LTP arises from experiments conducted at Schaffer Collaterals 

(SC) / CA1 glutamatergic synapses. The induction of LTP at these synapses 

involves the activation of N-methyl-D-aspartate receptors (NMDAR), a class of 

ionotropic receptors for glutamate, permeable to calcium (Ca2+) (reviewed by 

Collingridge and Bliss, 1995). HFS or presynaptic stimulation coupled to post-

synaptic depolarization removes the voltage-dependent block of the NMDAR by 

the displacement of the magnesium (Mg2+) ion placed on the extracellular side of 

the channel pore (Mayer et al., 1984). NMDAR are referred to as coincidence 

detectors, as the contemporary presence of glutamate in the synaptic cleft in 

combination with postsynaptic depolarization, determines the opening of NMDAR 

resulting in the influx of Ca2+. NMDAR are formed by hetero-oligomeric assemblies 



 15

of NR1 subunits with NR2 (A-D) and NR3A (Monyer et al, 1994). According to Liu 

et al., 2004, HFS applied to a glutamatergic pathway activates NR2A subunit 

containing NMDAR leading to the activation of Ca2+/calmodulin dependent Kinase 

II (CaMKII). On the other hand, if in the subunit NMDAR is comprised the NR2B 

subunit, the Ca2+ influx will result in the activation of the Ca2+/calmodulin 

dependent phosphatase calcineurin that is responsible for LTD induction (Mulkey 

et al., 1993, 1994).  

The LTP expression mechanisms are not yet fully understood. The activation of 

CaMKII triggers the insertion of further GluR1 containing α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptor (AMPAR) on postsynaptic dendritic 

processes (Malinow and Malenka, 2002). Recent studies highlighted two other 

main signal transduction pathways responsible for the long-term modifications 

needed for the consolidation of LTP: the cAMP-dependent protein kinase (PKA) 

and the mitogen activated protein kinase (MAPK). Intracellular Ca2+ influx induces 

the activation of adenylate cyclase (AC) leading to the subsequent increase of 

intracellular cAMP which activates PKA. The expression in transgenic mice of the 

inhibitory form of the regulatory subunit of PKA R(AB) does not affect the early 

phase of LTP but disrupts its consolidation. MAPK is also termed extracellular 

signal-related kinase (ERK). In the dentate gyrus, the application of a LTP-

inducing stimulation determined rapid phosphorylation and nuclear translocation of 

MAPK (English and Sweatt, 1996; Davis et al., 2000 a). Both PKA and MAPK can 

phosphorylate and activate the transcription factor cAMP-responsive element 

binding protein (CREB) (Yin and Tully, 1996; Silva et al., 1998). CREB triggers the 

expression of genes responsible for long-term modifications (functional and 

structural) underlying the late phase of LTP. Finally, many lines of evidence have 
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consistently shown that protein synthesis blockade prevents the long-term 

expression of LTP, without affecting induction (reviewed by Blitzer et al., 2005).  

 

Many recent studies have highlighted the key role of brain-derived neurotrophic 

factor (BDNF) in both induction and expression of LTP (Lu and Gottschalk, 2000; 

Aicardi et al., 2004; Santi et al., 2006; Minichiello et al., 2009). In particular, it has 

been suggested that activity-dependent release of BDNF from the presynaptic site 

is necessary for the induction of LTP, while the activity-dependent sustained 

production and secretion from the post-synaptic site is necessary for the 

expression of LTP (Aicardi et al, 2004; Reviewed by Lu et al., 2008). Pro-BDNF is 

cleaved to mature BDNF (mBDNF) via proteolytic cleavage by the tissue 

plasminogen activator (tPA). mBDNF binds the tyrosine-kinase coupled receptor B 

(TrkB) which in turn phosphorylates various substrates, including MAPK/ERK 

resulting in the activation of MAPK/ERK kinase (MEK). TrkB activation also leads 

to phospholipase C (PLC) activation, which in turn activates both PKC and calcium 

calmodulin kinases kinase (CaMKK), subsequently resulting in CaMKIV and CREB 

activation (Reviewed by Minichiello, 2009; Fig 1.3). 

 

Fig 1.2. Schematic representation 
of LTP induction and expression 

mechanisms. The three most 

important downstream signalling 

pathways are CaMKII, MAPK and 

PKA. Ca2+ influx occurs through 
NMDAR and voltage-gated Ca2+ 

channels (VGCC). AC can also be 

activated by stimulation of Gs 

coupled receptors such as β-

adrenergic receptors (modified 

from Blitzer et al., 2005). 
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Fig 1.3. Activation of TrkB triggers three main intracellular signalling pathways. i) 

Ras–MAPK, which promotes neuronal differentiation and growth through 

MAPK/ERK kinase (MEK); ii) phosphatidylinositol 3-kinase (PI3K) cascade, which 
promotes survival and  growth of neurons and other cells through Ras or GRB-

associated binder 1 (GAB1); iii) phospholipase Cγ1, which mediates synaptic plasticity 

through CaMKII and CaMKK/CaMKIV signalling cascade (modified from Minichiello 

et al., 2009). 
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1.2.2. Long term depression (LTD): induction and expression 
mechanisms 

 
The first evidence for LTD came from the observation that LTP inducing 

protocols in hippocampal SC/CA1 synapses generated a reversible depression in 

the non tetanized pathway (Lynch et al., 1977); this phenomenon is called 

heterosynaptic plasticity. Homosynaptic depression was later shown in 

hippocampus: the application of LFS reversed LTP in a pathway previously 

tetanised; this phenomenon is now known as depotentiation (Barrionuevo et al., 

1980). Later, it was demonstrated that LFS can induce LTD in CA1 even without 

previous LTP induction (Dudek and Bear, 1992; Mulkey and Malenka, 1992).  

LTD can be induced in many brain areas other than the hippocampus including 

the visual cortex (Artola et al., 1990), striatum (Calabresi et al., 1994), perirhinal 

cortex (Ziakopoulos et al., 1999; Cho et al., 2000), amygdala (Wang and Gean, 

1999), posterior cingulus (Hedberg and Stanton, 1995) and prefrontal cortex 

(Hirsch and Crepel, 1991).  

The first studies on homosynaptic LTD showed that application of LFS 

consisting of 900 pulses delivered at 1 Hz, induces LTD that relies on the 

activation of NMDAR (Dudek and Bear, 1992; Mulkey and Malenka, 1992). 

NMDAR-dependency of LTD is often age-related (Kemp et al., 2000, Jo et al., 

2006), consistently with the developmental change in subunit composition of 

NMDAR (Monyer et al., 1994).  

It is of interest to note that LTD induction can be mediated by other receptors 

like kainate receptors (KAR), metabotropic glutamate receptors (mGluRs) and type 

I muscarinic acetylcholine receptors (M1) (reviewed by Kemp and Bashir, 2001). 

Group I and II mGluRs are involved in depotentiation in CA1 (Bashir and 

Collingridge, 1994); mGluRs agonists have been shown to induce LTD in CA1 



 19

(Fitzjohn et al., 2001), in the dentate gyrus (O’Mara et al.,1995a; Huang et al., 

1999) and in Prh (McCaffery et al., 1999).  

By far, the majority of AMPAR are impermeable to Ca2+, due to the editing of 

the mRNA of the glutamate receptor subunit 2 (GluR2). However, LTD in CA3 has 

been shown to require co-activation of mGluRs and Ca2+ permeable AMPA 

(Laezza et al., 1999). Increasing evidence suggests the pivotal role of AMPA 

trafficking in LTD. Activity-dependent internalization of AMPA receptors is central 

for recognition memory and LTD induction in Prh (Griffiths et al., 2008). 

KAR involvement in LTD is not yet entirely demonstrated, but it’s suggested by 

the observation that the co-application of the mGluR antagonist MCPG and the 

AMPA/KA receptor antagonist CNQX inhibits LTD induction in the hippocampus 

(reviewed by Kemp and Bashir, 2001). 

The application of LFS consisting of 3000 pulses delivered at a frequency of 5 

Hz in Prh slices of juvenile rats resulted in M1-dependent LTD (Jo et al., 2006); in 

addition, the bath application of the acetylcholine analogue carbachol (Cch) was 

shown to induce chemical M1-dependent LTD in Prh slices of adult rats (Massey 

et al., 2001). 

The central intracellular event for LTD induction is the cytosolic Ca2+ 

concentration increase, as observed for LTP (Lynch et al., 1983; Bliss and 

Collingridge, 1993): LTP-inducing stimuli determine rapid and high increases in 

intracellular Ca2+, while for LTD the increase is low and slow (Lisman, 1989). 

Presynaptic Ca2+ increase is also necessary for LTD induction (Kobayashi et al., 

1996, 1999). The source for the increase of post-synaptic Ca2+ can be both 

extracellular and intracellular. In the first case, it relies on the activation of 

NMDAR, Ca2+ permeable AMPAR or voltage-gated Ca2+ channels (VGCC; 

Cummings et al., 1996; Christie et al., 1997; Wang et al., 1997 a; Norris et al., 
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1998; Otani and Condor, 1998). In the second case, Ca2+ comes from intracellular 

stores as a consequence of the activation of Gq-coupled receptors like group I 

mGluRs or M1.  

The increase in intracellular Ca2+ determines the formation of the 

Ca2+/calmodulin (CaM) complex activating Ca2+/CaM-dependent phosphatase 

calcineurin. This happens if the Ca2+ increase is low and slow. LFS-dependent 

calcineurin activation inactivates inhibitor 1, by dephosphorylation. This results in 

the activation of phosphatase 1 and 2 (PP1/2) which results in LTD via 

dephosphorylation of various targets such as AMPAR and CaMKII (reviewed by 

Kemp and Bashir, 2001; Fig 1.4.).  

 

In the last three decades, LTD expression mechanisms have been deeply 

investigated in various brain regions. It was concluded that different induction 

mechanisms determine different expression mechanisms. Hippocampal NMDAR-

LTD in CA1 relies on the increased internalization of AMPAR via 

Fig 1.4. LTD induction requires increased intracellular calcium concentration from the 

extracellular space via NMDAR or VGCC activation or IP3-mediated opening of 
intracellular stores. The Ca2+-calmodulin complex activates the protein phosphatase 

calcineurin that dephosphorylates the phosphatase inhibitor 1 inactivating it. This 

enables the activation of protein phosphatase 1 (PP1) that dephosphorylates targets 

like CaMKII and AMPA receptors (Modified from Kemp and Bashir, 2001). 
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dephosphorylation of Ser-845 (target of PKA) and Ser-831 (target of CaMKII) of 

the GluR1 subunit, altering the conductance and the probability of opening of 

AMPARs. In addition, LFS determines increased internalization of postsynaptic 

AMPARs through a dynamin-dependent, clathrin-mediated process (Lüscher et al., 

1999; Lüthi et al., 1999; Carroll et al., 1999; Man et al., 2000; Beattie et al., 2000; 

Wang and Linden, 2000; Henley, 2003; Collingridge et al., 2004; Griffiths et al., 

2008). In specific, it has been shown that AP2, a clathrin adaptor protein, is 

important for the internalization of surface AMPARs and for the expression of 

NMDAR-dependent LTD (Lee et al., 2002).  

The last event that temporally characterizes LTD is a change in protein 

synthesis, which is essential for mGluR-dependent LTD in CA1 (Huber et al., 

2000) and for Cch-induced LTD in Prh (Massey et al., 2001): LTD induction has 

been shown to correspond to long-term changes in spine morphology, specifically 

in a reduction in spine density (Halpain et al., 1998). Fig 1.5. illustrates the main 

LTD induction pathways and related post-synaptic changes. 

It is of interest to note that the immature form of BDNF, proBDNF, has been 

demonstrated to be involved in LTD induction via activation of the pan-

neurotrophin receptor 75 (p75NTR) (Woo et al., 2005; Rösch et al., 2005). 

1.2.3. Biological relevance of LTP and LTD 

Many studies showed that both LTP and LTD can be induced in the same 

pathway depending on the frequency of firing of the presynaptic fibres (Bliss and 

Collingridge, 1993; Bear and Malenka, 1994). 

Certain properties of LTP and LTD provide support to the hypothesis that they 

underlie complex mnemonic processes. Firstly, synapses can be independently 

modified: only co-active synapses participate in the plastic change, i.e. stimulation 

does not affect surrounding synapses, thus is input-specific. This evidence 
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suggests that every single synapse can be individually used to store information. 

Since every neuron is surrounded by about 10,000 synapses and brain areas 

involved in learning and memory contain billions of neurons, the mnemonic 

capacity of the brain is extraordinary. Secondly, LTP and LTD are associative 

phenomena: this property allows for small changes in certain synapses in order to 

produce a distributed storage in a complex and organic memory within a neuronal 

network. This implies that LTP and LTD cannot be triggered by the activity of a 

single neuron, but only as a consequence of associate activation of many inputs. 

This functional need comes from the fact that both LTP and LTD induction require 

a sufficient degree of depolarization of the postsynaptic membrane (Bilkey, 1996; 

reviewed by Diamond and Rose, 1994). LTP and LTD have a reciprocal 

connection in the generation of stored memories. LTP is associated with the 

storage of new information, but, since the brain represents a system with limited 

capacity, soon the newly stored information would reach a saturation point, 

destabilizing the system and making the recollection more challenging. LTD has 

the role to improve the signal/noise ratio associated to the acquisition and 

recollection of newly stored information (reviewed by Rosenzweig and Barnes, 

2003; Fig 1.6). 
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Fig 1.6. Schematic representation of an information storage system with limited capacity. 

If we assume that a neural network coincides with a sheet of white paper, we can draw on it 

different shapes, coincident to new encoded patterns of neural activity. If the network 
contains too much information it becomes useless. Acquisition of new shapes/patterns is 

mediated by LTP. If the system keeps accumulating patterns one on another, soon every 

single shape becomes indistinguishable from others: recollection is therefore impossible and 

most of the information will be lost. The role of the LTD is to organize the patterns and select 

the stronger ones to increase memory capacity and recollection (Rosenzweig and Barnes, 

2003). 
 

Fig 1.5. Schematic representation of the main LTD induction pathways. 
Abbreviations: AC, adenylate cyclase; AA, arachidonic acid; CaMKII, 

calcium/calmodulin-dependent kinase II; CREB, cAMP responsive element binding 

protein; IP3, inositol trisphosphate; Ka, kainate receptor; mGluR, metabotropic 

glutamate receptor; MAPK, mitogen activated protein kinase; PI, phosphatidil 

inositol; PLC, phospholipase C; PKA, protein kinase A; PKC, protein kinase C; PP1/2 

A, protein phosphatase 1/2 A; TKR, tyrosine kinase receptor (Modified from Blitzer et 
al., 2004). 
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1.3. Perirhinal cortex (Prh): anatomy and functions 

At the beginning of the 1980’s, the systematic exploration of amnesia in animal 

models lead to the identification of cortical structures involved in declarative 

memory formation; these were primarily located in the medial temporal lobe, 

comprising the hippocampus, dentate gyrus, subiculum, entorhinal cortex (EC), 

parahippocampal cortex (Prp) and Prh (Zola-Morgan et al., 1986; reviewed by 

Squire and Zola-Morgan, 1991). Prh is a periallocortex, located on the ventral 

surface of the temporal lobe. In both primates and rodents, Prh comprises two 

cytoarchitectionally different regions: 35 and 36 Brodman areas (Fig. 1.8.). Area 

35 is thin and agranular (IV layer is missing) and it is located ventrally to the rhinal 

sulcus; area 36 contains a thin IV layer, in which granular cells are mixed with 

pyramidal cells from III and V layer (Burwell, 2001). 

Prh has strong reciprocal connections with the hippocampus and the 

subiculum. These connections are both direct through the lateral perforant path, 

and indirect through EC (Deacon et al., 1983; Burwell et al., 1995; Liu and Bilkey, 

1996; Naber et al., 1999). Furthermore, Prh receives both unimodal inputs from 

associative unimodal cortices (i.e. visual, somatosensory, auditory and olfactive) 

and multimodal inputs from associative multimodal cortices (i.e. medial and ventro-

lateral prefrontal cortex, cingulate anterior area, retrosplenial cortex; Fig 1.7). 

Visual information, transmitted from unimodal associative visual cortex, is then 

transmitted to the Prh (Meunier et al., 1993; Wiig and Bilkey, 1995; Ennaceur and 

Aggleton, 1997). Since a few years ago, Prh was merely considered a structure 

where sensory information was transmitted from sensory related cortices to the 

hippocampal formation, without ascribing any role in memory formation. Since the 

early 1990’s many studies highlighted that Prh interacts, directly or via integration 

with other brain areas, for various mnemonic functions, with a crucial role in visual 
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recognition memory (Buffalo et al., 1998; reviewed by Brown and Aggleton, 2001; 

Massey et al., 2001; Warburton et al., 2003; Massey et al., 2008) and fear 

conditioning (Corodimas and LeDoux, 1995). In the last decade many studies 

clarified the cellular and molecular mechanisms underlying Prh-dependent visual 

recognition memory. 

 

 

Fig 1.7. Location of the Prh in the rat brain and schematic representation of 

connections to and from other brain areas. Rat Prh network is characterized by 3 
main connections. The first one is a strong reciprocal connection with the 

hippocampal formation through lateral EC (Suzuki and Amaral, 1994). The second 

one is characterized by afferent projections from unimodal and multimodal 

associative cortices, including visual, somatosensory, auditory and olfactory 

associative areas, medial and ventro-lateral prefrontal cortex, anterior cingulus and 

retrosplenial and Prp cortices (Burwell et al., 1995). The third one is characterized by 
the reciprocal connection with the amigdaloid complex. The thickness of the arrows 

indicates the connection density (Modified from Brown and Aggleton, 2001). 
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1.3.1.Perirhinal cortex and visual recognition memory 
 
Recognition memory is a primary aspect of our ability to remember. It is based 

on the capability of both identifying and judging the prior occurrence of a visually 

perceived experience (Mandler et al., 1980).  

Recognition memory is a main component of the sort of memory lost in 

anterograde amnesia. However, it has been proposed that within the two main 

components of recognition memory, identification and judgement of prior 

occurence, only the latter is directly compromised in anterograde amnesia 

(Mandler et al., 1980; Jacoby et al., 1981; Gardiner et al., 1990; Aggleton and 

Brown, 1999).  

The visual component of recognition memory corresponds to the sensation of 

familiarity of a visual stimulus without active recollection of the attributes of that 

vision. This discrimination of familiarity is defined as ‘knowing’ (I know I’ve seen 

this thing before) whereas the active recollection of the attributes is defined as 

‘remembering’ (I actively remember the name of the object, what the material is 

made of, where I’ve seen it before etc.). There are two main models describing 

recognition memory. The first model is the single process model. In this model 

‘knowing’ and ‘remembering’ are considered a single process that differ only 

quantitatively: knowing corresponds to a weaker mnemonic trace whereas 

remembering is related to recollection and hence is related to a stronger 

mnemonic pattern. The second model is the dual process model, according to 

which ‘knowing’ and ‘remembering’ are two qualitatively distinct processes 

mediated by two distinct structures. In the dual model the hippocampus is usually 

related to ‘remembering’ because of its structural complexity and the many lines of 

evidence showing its role in recollection; on the other hand Prh has been shown to 
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be selectively involved in recognition memory. So far, the dual model is the most 

accepted (reviewed by Brown and Aggleton, 2001). 

Prh is critically involved in recognition memory as shown by several lesion 

studies in both primates and rodents (Zola-Morgan et al., 1989; Meunier et al., 

1993; Mumby et al., 1994; Meunier et al., 1996; Winters et al., 2004). Other 

evidence highlighting the pivotal role of Prh in visual recognition memory comes 

from electrophysiological recordings from the medial temporal lobe of monkeys 

performing recognition memory tasks (Brown and Wilson, 1987; Fahi et al., 1993; 

Li et al., 1993; Miller et al., 1993; Xiang et al., 1998). These studies consistently 

showed a decrease in neuronal responsiveness subsequent to the presentation of 

a previously encountered visual stimulus (Brown, 1996; Desimone, 1996; 

Eichenbaum et al., 1996; Ringo, 1996; Brown and Xiang, 1998; Suzuki and 

Eichenbaum, 2000; Eichenbaum, 2000). The decrease in the overall neuronal 

responses brings into account information about prior occurrence of a stimulus 

mediating the discrimination between familiarity or recency of that stimulus (Miller 

et al., 1993; Sobotka and Ringo, 1993; Xiang and Brown, 1998). These response 

reductions are observed in Prh (in ~25% of the recorded neurons) and rarely in the 

hippocampus (<~1%) (Brown and Wilson, 1987; Miller et al., 1993; Sobotka and 

Ringo, 1993; Xiang and Brown, 1998). In the last ten years many studies have 

aided in the clarification of the molecular mechanisms underlying the acquisition, 

consolidation and recollection of visual recognition memory. Three main 

approaches have been followed, primarily conducted in rats: 1) behavioural 

measures in animals with bilateral cannula into Prh: the local infusion of drugs or 

transfecting viruses in the Prh and the consequent deficit or enhanced 

performance in an object recognition task has teased about the roles of various 

membrane receptors and associated cellular signalling pathways involved in 
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recognition memory processes. The most applied behavioural protocol used to 

investigate visual recognition memory in rats is the spontaneous novel object 

exploration task, described in section 1.3.1.1;  2) Electrophysiological recordings 

on acute brain slices: the measure of basal synaptic transmission and synaptic 

plasticity in Prh slices has helped to define which are the cellular correlates of 

recognition memory. This in vitro approach can be carried out on: i) naive slices 

treated with various drugs ii) slices from transgenic animals iii) slices from animals 

locally transfected in Prh with viruses inducing a genetical modification, and finally 

iv) slices from animals that underwent the paired-viewing protocol (described in 

Brown and Aggleton 2001). This protocol consists in keeping the animal’s head in 

a window facing a screen showing two different images. The two images are 

projected in a manner as to occupy the monocular visual field of each eye 

independently. Sets of images are then repetitively projected. At the end of a 

period of training, a set of novel images are projected towards only one eye, in 

order to encode novelty in one hemisphere and familiarity in the other. Note that 

the visual information perceived in one eye is processed in the contralateral 

hemisphere of the brain. This treatment results in one of the hemispheres being 

conditioned with ‘familiar’ and the other hemisphere with ‘novel’ images 

respectively (Fig 1.8.). Upon surgical removal of these hemispheres, 

electrophysiological experiments (Warburton et al., 2003; Massey et al., 2008) and 

immunohistochemical studies can be performed in order to evaluate how the 

encoding of familiar or novel information influences neuronal activity. 3) 

Immunohistochemical imaging has been used for the evaluation of molecular 

changes in the Prh of rats that underwent the paired-viewing protocol; it can be 

examined in a quantitative manner by analysing the differential expression of 
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genes, e.g. the immediate early gene (IEG) c-fos levels in the ‘novel’ versus the 

‘familiar’ hemisphere. 

 

 
 

1.3.1.1. Perirhinal cortex and visual recognition memory: behavioural 

studies 

In order to better understand the cellular correlates underlying visual 

recognition memory formation, many studies evaluated the visual recognition 

performance with the spontaneous novel object exploration task on intra-Prh 

cannulated rats. This test consists of a training phase where the animal is placed 

in an arena with two identical objects where it is then left to explore. In a second 

phase of the test, a delay is introduced that varies between minutes to hours (2 

min to 24 h). During the test phase, the animal is placed back into the same arena 

with one familiar and one novel object: if the animal remembers the familiar object, 

it would preferentially explore the novel one due to innate behavioural patterns; if 

not, it would explore the novel and familiar objects equally (Warburton et al., 

Fig 1.8. In the paired-viewing protocol, a rat is exposed to two pictures simultaneously, one 

novel and one familiar. Each figure is projected on a screen in order to occupy the visual field 
of only one eye and it is therefore selectively processed in the contralateral hemisphere 

(Modified from Brown and Aggleton, 2001). 
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2003). The infusion technique can be used to analyse different stages of memory 

formation according to the different stage of the experiment when the drug is 

applied: i) acquisition: if the drug is infused before the training phase ii) 

consolidation: after the training phase iii) retrieval before the test phase (Ennaceur 

and Delacour, 1988; reviewed by Brown et al., 2010; Warburton et al., 2003).  

The reversible inactivation of Prh with the glutamatergic AMPAR antagonist 

CNQX has been shown to impair both acquisition and retrieval of visual 

recognition memory in the spontaneous novel object preference task (Winters and 

Bussey, 2005). In addition, the selective blockade of NMDAR or group I and II 

mGluRs produced an impairment at longer (24 h) but not at shorter (20 min) 

delays (Barker et al., 2006a,b), when the drug is applied before the training phase. 

This treatment however did not affect retrieval. The blockade of glutamatergic KAR 

produced deficits after a 20 min delay but not after 24 hours (Barker et al., 2006b). 

This unusual temporal pattern (amnesia and then remembering) can be perhaps 

explained because some neurons (called ‘familiarity’ or ‘slow change neurons’) in 

the Prh of monkeys responded less strongly if a novel stimulus was repeated after 

a certain amount of times (min to h); if the delay was shorter they kept responding 

strongly (Xiang and Brown, 1998). Other neurons have reduced responses in 

monkey even when stimuli are repeated after very short delays (even <1 s; Miller 

et al., 1993). Thus, two different populations of neurons within Prh provide the 

information of prior occurence of the stimulus at different time delays (20 min and 

24 h). In both cases AMPAR-dependent transmission seems to be essential for 

recognition memory, while NMDAR blockade induces a deficit in acquisition at 

longer delays and KAR at shorter delays.  

A similar pharmacological dissociation was also observed as a consequence of 

the antagonism of muscarinic or nicotinic receptors. The muscarinic antagonist 
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scopolamine was shown to impair visual recognition memory at 20 minutes but not 

at 24 hours; the opposite pattern was observed with the α 7 nicotinic antagonist 

MLA (Tinsley et al., submitted). Therefore, the muscarinic receptor and the KAR 

appear to be involved in a form of acquisition that takes place in the first 20 min, 

without however affecting the performance at longer delays.  

The role of cholinergic transmission in visual recognition has been deeply 

investigated and many studies highlight its pivotal role in this form of memory. It 

has been demonstrated that scopolamine partially impairs object recognition 

memory at 24 hours (Winters and Bussey, 2005). The selective targeting of basal 

forebrain cholinergic fibres with the immunotoxin 192 IgG-saporin caused a 

permanent cholinergic denervation of fibres targeting the Prh, impairing 

spontaneous novel object exploration in rats (Winters and Bussey, 2005). Also, it 

has been shown that scopolamine affects both visual recognition memory and 

synaptic plasticity in Prh: systemic injections or intra-Prh infusions of scopolamine 

before the test phase in the spontaneous object recognition memory task 

significantly impaired object recognition memory at 15-20 min delays, and 

disruptions in the decremental responses to familiar versus novel pictures in Prh 

neurons as measured with Fos expression were observed. Furthermore, bath 

application of scopolamine prevented in vitro LTD but not LTP in Prh slices 

(Warburton et al., 2003; Massey et al., 2001). Another study showed that intra-Prh 

infusion of scopolamine disrupted recognition memory at 24 h whereas infusion 

before the retrieval phase improved the performance, an effect probably due to the 

elimination of interferences coming from cholinergic fibres in the retrieval phase 

(Winters et al., 2006; Winters et al., 2007). To sum up, if AMPARs mediate several 

aspects of acquisition, consolidation and retrieval, NMDARs are considered crucial 

for consolidation and acquisition, whereas muscarinic cholinergic transmission in 
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Prh seems to be selectively involved in acquisiton (reviewed by Winters et al., 

2008).  

Acquisition is also influenced by the intra-Prh infusion of lorazepam (Brown and 

Brown, 1990; Wan et al., 2004) and L-type voltage-dependent calcium channel 

blockers (verapamil, diltiazem, nifedipine; Seoane et al., 2009).  

Interfering with intracellular signalling pathways that play an important role in 

Prh synaptic plasticity produces recognition memory impairments: recognition 

memory is impaired at 24 hours by blocking CaMKII (Tinsley et al., 2009) while 

blocking CaMKK has been shown to impair consolidation (Tinsley et al., 2011). Of 

interest, blocking BDNF expression via intra-Prh infusion of antisense 

oligodeoxynucleotides blocks visual recognition memory acquisition tested at 24 h 

(Seoane et al., 2010). 

Viral transduction of Prh neurons prevented the phosphorylated CREB 

(pCREB)-mediated signalling, which impaired visual recognition at 24 hours but 

not at 20 min (Warburton et al., 2005). Another recent study showed that viral 

transduction of Prh neurons with a lentivirus expressing a peptide considered able 

to block AMPAR internalization, impaired visual recognition at both 24 hours and 5 

min (Griffiths et al., 2008). When the Prh is conditioned by direct infusion of a 

transfecting virus, it is not possible to distinguish if the deficit seen is related to 

impairments in acquisition, consolidation or retrieval, since the transfection is a 

stable modification and requires days after the infusion to be expressed. 

Nonetheless, the advantage of evaluating memory deficits in an animal model 

locally transfected with a virus remains in the ability to evaluate how the 

expression of a gene, or the integrity of a pathway in a specific brain region, 

affects memory in a wild-type animal. The only alternative would consist in a 

transgenic animal model, which carries a mutation affecting every tissue of the 
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organism and therefore all brain areas. The non specificity of the transgene 

expression could possibly affect the experiment in a way not directly related to the 

functions of the brain area under examination. 

1.3.1.2. Perirhinal cortex and visual recognition memory: 

electrophysiological recordings 

As previously described (section 1.2), synaptic plasticity is thought to represent 

the cellular correlate of memory and learning. In order to better clarify the cellular 

and molecular mechanisms underlying visual recognition memory, in vitro 

electrophysiological recordings on Prh acute slices were carried out by several 

research groups, providing a collection of data complementing and enriching 

behavioural observations already described in section 1.3.1.1.  

Both LTD and LTP can be observed in Prh after the application of the 

appropriate stimulation protocol (Bilkey, 1996; Ziakopoulos et al., 1999; Cho et al., 

2000; Massey et al., 2001, 2004; Aicardi et al., 2004). Input specific LTP in Prh is 

NMDAR dependent (Bilkey, 1996). Also, LTP induction is strictly layer dependent: 

HFS (100 Hz) of the superficial layer does not cause LTP induction, whereas 

stimulation of layer II/III induces a robust LTP in the Prh and is strictly NMDAR-

dependent (Ziakopoulos et al., 1999). Further studies have shown that the NR2A 

subunit containing NMDAR is necessary for LTP induction in Prh, whilst NR2B is 

deemed necessary in LTD induction alone (Massey et al., 2004).  In addition, LTP 

induction in Prh requires BDNF-mediated activation of TrkB and the application of 

HFS (100 Hz) determines an activity-dependent increase of the basal secretion of 

BDNF in horizontal Prh slices (Aicardi et al., 2004). Finally, inhibition of pCREB-

mediated signalling blocks LTP induction in Prh (Warburton et al., 2005). 

LTP may be involved in refining stabilized patterns in Prh network: such 

synaptic changes may be necessary for long-term maintenance of visual 
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information, essential for familiarity discrimination processing: note that NMDAR 

activity (Barker et al., 2006a) and pCREB signalling (Warburton et al., 2005) are 

necessary for acquisition of visual recognition memory with a delay of 24 hours but 

not of 20 min, suggesting that LTP may indeed have a role as the cellular correlate 

of this acquisition process. Assuming that LTP plays a role in visual recognition 

memory, we have to consider that electrophysiological recordings in the Prh of 

animals performing visual recognition tasks showed a decrease in the neuronal 

responsiveness (Brown and Wilson, 1987; Fahi et al., 1993; Li et al., 1993; Miller 

et al., 1993; Xiang et al., 1998). Thus, LTD may well overrule the importance of 

LTP as cellular correlate of visual recognition memory. Some elegant 

computational studies show how LTD could represent, in an in vitro model, the 

decreased long-term neuronal responsiveness necessary to encode the 

information concerning familiarity (Brown and Bashir, 2002). Supporting this 

hypothesis, a recent study showed that both LTD and depotentiation are 

prevented in Prh slices obtained from the ‘familiar’ brain hemisphere of an animal 

that underwent the paired-viewing protocol. Interestingly, the possibility to induce 

both LTD and depotentiation was restored in this hemisphere by bath application 

of the muscarinic antagonist scopolamine, indicating a pivotal role for cholinergic 

neurotransmission in both visual recognition memory and synaptic plasticity in Prh 

(Massey et al., 2008). Several other studies have focused on the cellular 

mechanisms involved in LTD induction and expression in the Prh, leading to 

interesting results. LTD in Prh can be induced with both pharmacological (Massey 

et al., 2001) and electrical stimulation (Cho et al., 2000; Ziakopoulos et al., 2000); 

its induction relies on the activation of NMDAR, mGluRs, KAR, muscarinic 

receptor 1 (M1), depending on age, excitation level of the network and stimulation 

protocol. As observed for LTP, one form of LTD requires glutamate receptors: at 
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variance with other brain areas, LTD in Prh requires both mGluRs and NMDAR 

activation (Cho and Bashir, 2002; Cho et al., 2000; McCaffery et al., 1999). An 

elegant study by Cho et al. (2000) showed that the activation of both group I and II 

mGluRs in combination with the co-activaction of NMDAR may be necessary for 

LTD induction in Prh slices. This mechanism is voltage dependent: in resting 

conditions (-70 mV), the application of LFS (1 Hz) induced LTD relying on the co-

activation of group I and II mGluRs and NMDAR, whereas depolarization of the 

postsynaptic membrane (-40 mV) generated the condition where LTD induction 

required only group I mGluRs and NMDAR co-activation. From these results, it 

was suggested that in resting conditions the Ca2+ influx via NMDAR activation and 

intracellular Ca2+ mobilization after group I mGluR activation is insufficient for LTD 

induction, requiring the contemporary activation of group II mGluRs. In depolarized 

conditions, NMDAR are sufficiently activated in order to allow through enough Ca2+ 

influx to trigger the molecular machinery necessary for LTD induction (Cho et al., 

2000). It has also been shown that LTD of KAR-dependent synaptic transmission 

(that is different from AMPAR-dependent synaptic transmission) requires mGluR5 

activation, increased intracellular Ca2+ from internal stores, PKC activation, protein 

interacting with kinase C 1 (PICK1) and PDZ domain interactions (Park et al., 

2006). Another study showed that application of LFS consisting of 3000 pulses 

delivered at 5 Hz induces a robust LTD in Prh relying on the activation of mGluR5 

in neonatal rats (p7-12). This induction mechanism undergoes a developmental 

switch in juvenile rats (p28-35) where the same stimulation protocol induces LTD 

relying on the activation of M1. This molecular switch is mediated by sensory 

information resulting from the opening of the eyes and relies on the subsequent 

increase in M1 expression; in fact, M1 is poorly expressed in neonatal rats Prh. 

Both M1 expression in Prh and the switch from mGluR5 to M1 dependency of the 
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LFS 5Hz-induced LTD are blocked if neonatal rats are kept in the dark during 

development (Jo et al., 2006). This introduces another important factor for the 

induction of LTD: the cholinergic pathway. As previously discussed, cholinergic 

neurotransmission appears to play a pivotal role in visual recognition memory (see 

section 1.3.1.1). It has been shown that bath application of the cholinergic agonist 

charbachol (Cch) at 50 µM for 10 minutes in Prh slices induces robust LTD relying 

on M1 activation, Ca2+ release from intracellular stores and protein synthesis, and 

is independent from PKC and protein phosphatase activation (Massey et al., 

2001). Cholinergic and glutamatergic dependent synaptic plasticity within Prh are 

probably both synergistic and independent in influencing different facets of object 

recognition memory processes (Massey et al., 2008). Furthermore, it has been 

shown that L-type VGCC are involved in both LTD and depotentiation but not in 

LTP (Seoane et al., 2009). 

Recent studies tried to clarify the cellular processes involved in LTD induction 

downstream to the activation of different receptors. It was found that LTD in 

neonatal rats (p7-13) can rely on the activation of NMDAR or mGluR5 depending 

on the stimulation protocol applied. NMDAR-LTD is induced by application of LFS 

(1 Hz) in depolarized neurons (-40 mV) in Prh slices, while mGlu-LTD is induced 

by 5Hz-LFS. In both cases an increase in cytosolic Ca2+ concentration is required: 

Ca2+ acts as a second messenger, activating different Ca2+ sensors: NMDAR-LTD 

requires calmodulin, mGluR-LTD requires neuronal cell sensor protein 1 (NCS-1) 

that binds to PICK-1 through its bar domain. NCS-1/PICK-1 and PKC activation 

has been shown to be strictly involved in mGluR LTD (Jo et al., 2008). 

Furthermore, it has been demonstrated that the internalization of AMPARs is 

necessary for 5Hz LTD induction in Prh of adult animals (7-12 weeks). In this 

study adult rats were intra-Prh transfected with a recombinant lentivirus expressing 



 37

a peptide which blocks the interaction between the AMPAR subunit GluR2 and the 

clathrin adaptor protein 2 (AP2), necessary for endocytosis. These animals were 

both impaired in visual recognition memory and in LTD induction, but LTP 

induction was normal (Griffiths et al., 2008). Notice that in these animals 5Hz LTD 

was NMDAR dependent and not M1 dependent as observed in juvenile (p28-35) 

rats by Jo et al. (2006), suggesting a further developmental switch between 

adolescence and adulthood. Finally, it has been shown that both 1 Hz LFS and 5 

Hz LFS determine an activity-dependent decrease in the basal secretion of BDNF 

in juvenile rat Prh slices (Aicardi et al., 2004). 

These evidences strongly confirm the role of LTD as a plausible in vitro model 

for visual recognition memory acquisition, although LTP may play a role as well, 

possibly in encoding long-term modifications necessary for familiarity 

discrimination. 

1.3.1.3. Perirhinal cortex and visual recognition memory: 

immunohistochemical studies 

The study of visual recognition memory and its proposed cellular correlate, 

LTD in Prh, has been extended to the investigation of the molecular mechanisms 

underlying these processes. The basic question was: which changes in gene 

expression are induced by acquisition and consolidation of a visual recognition 

memory or by protocols inducing synaptic plasticity? The expression of C-fos, an 

IEG mainly expressed in activated neurons, was used as an indicator of neuronal 

activity (Dragunow et al., 1996; Herdegen et al., 1998): interestingly, neurons were 

found to be activated in the Prh by the novel rather than by the familiar stimulus 

(reviewed by Brown and Aggleton, 2001), and intra-Prh infusion of scopolamine 

blocked the decrease in c-fos expression observed in the ‘familiar’ hemisphere 

(Warburton et al., 2003); a similar effect was observed with the L-type VGCC 
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antagonist verapamil (Seoane et al., 2009), or by blocking the pCREB signalling 

pathway (Warburton et al., 2005). 

The results coming from this technique, together with behavioural measures 

and electrophysiological recordings, have so far confirmed the association 

between visual recognition memory and neuronal activity in the Prh, expressed as 

a decrease in neuronal responsiveness in the Prh network. LTD, the best in vitro 

model underlying this cognitive function, is induced by the activation of different 

neurotransmitter receptors depending on the state of excitation of the network, the 

developmental stage and the induction protocol. These phenomena also involve 

changes in IEG expression; in particular, visual familiarity is encoded by the 

decreased levels of c-fos expression within Prh neurons.  

1.4. Nitric oxide (NO) 

NO is a ubiquitous amphiphilic highly diffusible molecule, synthesized 

intracellularly. It is a free radical, and because of its instability and ability to freely 

diffuse through the plasma membrane it mainly acts as a paracrine modulator. NO 

is involved in many physiological and pathological processes. It emerged as a 

neuronal messenger about 20 years ago, when searches focused on endogenous 

modulators showed that NMDAR activation caused increases in cGMP 

concentration in surrounding neurons (reviewed by Garthwaite, 2008).  NO is 

involved in the regulation of peripheral organs (digestive, urogenital, respiratory) 

through nitrergic nerves, and acts as a modulator mediating relaxation of smooth 

muscle tissue (reviewed by Rand and Li, 1995; Toda and Okamura, 2003; Toda 

and Herman, 2005). It plays a major role in the regulation of blood flow: it is 

produced from endocytes and it primarily acts within smooth muscle tissue of 

blood vessels as a vasodilator. In addition, it is produced by many blood cells 

involved in immunity such as neutrophiles, macrophages and circulating 
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monocytes, eosinophiles and even platelets: it is involved in both the physiological 

regulation of the metabolism of these cells and as an inflammatory mediator. In the 

vertebrate CNS, NO-dependent transmission is involved in several neuronal 

functions and complex behaviours such as learning and memory formation, 

sensory and motor function, sleeping, feeding, and reproductive behaviours. 

Indeed, NO-dependent transmission is highly conserved in evolution as a 

modulator of behaviour. For instance, NO synthesis in the jellyfish induces cGMP 

production via activation of a receptor very similar to the mammalian soluble 

guanilate cyclase (sGC), and cGMP plays a role in swimming patterns associated 

with feeding (Moroz et al., 2004). In molluscs and insects, NO mediates olfactive, 

feeding and learning related behaviours (reviewed by Davies, 2000).  In the last 

few years many studies clarified the role of NO in vertebrate CNS functions like 

neurogenesis, neural development and differentiation (Mize and Lo, 2000; 

Contestabile and Ciani, 2004; Estrada and Murillo-Carretero, 2005), memory and 

learning (Susswein et al., 2004), and neuropathology (Contestabile et al, 2003). In 

the sections to come, I have reviewed NO-dependent transmission and its 

importance in memory and learning. 

1.4.1. Nitric oxide synthesis, receptors and downstream signalling 
 
NO is intracellularly synthesized by a group of enzymes known as NO-

synthases (NOS). NOS are complex enzymes expressed in 3 different isoforms: 

endothelial (eNOS), neuronal (nNOS) and inducible (iNOS). The first two isoforms 

(nNOS and eNOS) are constutively expressed in the CNS and they are mainly 

involved in physiological processes, whilst the third one (iNOS) is prototypically 

expressed in macrophages and glia in the CNS as a consequence of 

immunological activation. All three isoforms synthesise NO and L-citrulline from L-
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arginine, but they have different structural and functional features (reviewed by 

Alderton et al., 2001; Stuehr et al., 2004).  

nNOS was the first isoform to be cloned and purified (Bredt and Snyder, 1990; 

Bredt et al., 1991) and was first identified in the CNS, but it is widely expressed 

also in the peripheral nervous system and in skeletal muscles. nNOS is expressed 

in four splicing variants (α, β, γ and µ; see Fig 1.9.). The splice variant nNOSα is 

the most abundant in CNS, and is activated by Ca2+ associated to calmodulin. It is 

mainly localized at postsynaptic densities, where it binds the postsynaptic density 

protein 95 (PSD-95) through a PDZ domain located at the amino-terminal such as 

observed for the NMDAR subunit NR2B (Brenman et al., 1996). The physical 

association of nNOSα with NMDAR explains the preferential functional association 

between NMDAR activation and NO production (Garthwaite et al., 1988). nNOSβ 

does not have a PDZ domain so it shows less functional association with NMDAR 

activation (Gyurko et al., 2002). nNOSγ shows little or no enzymatic activity, while 

nNOSµ is similar to nNOSα with an insert around the calmodulin binding motif and 

is mainly expressed in skeletal muscles but also in the CNS where it represents 

10% of total nNOS. nNOS has allosteric modulation sites other than 

Ca2+/calmodulin binding sites. For instance, nNOS shows different putative 

phosphorylation sites for PKC, PKA, PKG and CaMKII, but they are characterized 

by mild effects on functionality (Nakane et al., 1991; Bredt et al., 1992; Dinerman 

et al., 1994). CaMKII is usually co-resident with NMDAR and nNOS at 

postsynaptic densities (Kennedy et al., 2000); it inhibits NO production by about 

50%,  via phosphorylation of nNOS at Ser-847, which most likely affects the 

binding with Ca2+/calmodulin (Komeima et al., 2000). The phosphorylation process 

on Ser-847 takes about 15 min in cultured hippocampal neurons, suggesting that 

this system is a form of long-term control. NO increases the degree of nNOS 
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phosphorylation at low concentrations (5 µM) and decreases it at higher 

concentrations (100 µM; Rameau et al., 2004). 

 

Protein kinase Akt was found to phosphorylate nNOS on Ser-1412 in cultured 

hippocampal neurones (Rameau et al., 2007); this phosphorylation is NMDAR-

dependent and it leads to an increase in nNOS activity. The dephosphorylation is 

subsequent to AMPAR and L-type VGCC activation. Phosphorylation at both Ser-

847 and Ser-1412 also occur in vivo (Hayashi et al., 1999; Rameau et al., 2007). 

Other phoshorylation sites are summarised in Table 1. nNOS has also been 

shown to interact with other proteins that may influence its activity, such as the 

intra-membrane serotonin transporter, suggesting a possible coupling between 

serotonin uptake and NO production. Also, the inhibitory protein CAPON competes 

Fig 1.9. A. Schematic representation of the genes encoding for the three isoforms of the 

NOS. Note that only nNOS has the PDZ domain for interaction with PSD-95, responsible 

for the co-localization of the enzyme with the NMDAR. B. Schematic representation of the 

sequence differences between the three isoforms (Modified from Steinert et al., 2010). 
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with PSD-95 for the binding to the PDZ-domain, without directly affecting nNOS 

catalytic activity, but interfering with coupling of NMDAR activity with nNOS 

activation and its intracellular localization (Jaffrey et al., 2002). Some studies 

highlighted that nNOS activation can also be mediated by Gq-coupled receptors 

like group I mGluRs in the striatum (Calabresi et al., 1999) or M3/M1 in the rat 

retina (Borda et al., 2005). 

eNOS is expressed in endocytes both peripherally and in the CNS (Seidal et 

al., 1997; Blackshaw et al., 2003), but many studies suggested that it is also 

expressed in astrocytes (Reviewed by Lin et al., 2007).  As nNOS, eNOS is 

Ca2+/calmodulin dependent. Notwithstanding the well known role of eNOS in blood 

flow regulation (reviewed by Toda and Okamura, 2003; Ortiz and Garvin, 2003), 

emerging evidence suggests that eNOS is also involved in vasculo-neuronal 

communication, exerting a key role in neuronal excitability as observed in the optic 

nerve (Garthwaite et al., 2006), neurogenesis (Chen et al., 2005) and synaptic 

plasticity (Bon and Garthwaite, 2003; Hopper and Gathwaite, 2006; Sergeeva et 

al., 2007). Control of eNOS is multifactorial (reviewed by Cirino et al., 2003): in 

endocytes eNOS is bound to plasma membrane through palmitoylation and it is 

localized in specialized invaginations called caveoli by interacting with caveolin-1 

and the heat-shock protein 90 (hsp-90). Ca2+/calmodulin association to eNOS 

determines dissociation from caveolin-1, which is necessary for eNOS activation. 

Hence, eNOS is usally tonically active in endocytes for the regulation of the 

smooth muscle tone of arterioles, both peripherally and in the CNS. The tonic 

activation of eNOS is due to the phosphorylation of Ser-1179 by the protein kinase 

Akt (a modification that is structurally and functionally comparable to the 

phosphorylation of Ser-1412 in nNOS) enabling eNOS activation at resting 

intracellular Ca2+ concentrations (reviewed by Garthwaite, 2008). In addition, 
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eNOS is regulated by NO itself, which inhibits its activity in resting endothelial cells 

via S-nitrosylation at Cys-94 and Cys-99 of the zinc tetrathiolate cluster, blocking 

eNOS dimerization (Erwin et al., 2005). 

iNOS expression relies on inflammatory and disease conditions; expression is 

low in physiological conditions and it has little role in maintaining vascular tone 

(Ortiz and Garvin, 2003). iNOS activation determines NO production at micromolar 

levels (whereas eNOS and nNOS produce NO at nanomolar levels); it’s a Ca2+ 

independent process involved in many pathological processes, comprising 

neurodegeneration (reviewed by Garthwaite, 2008).  

The activation of the soluble guanylate cyclase (sGC) has been recognized as 

the main transduction pathway through which NO physiologically exerts its 

functions, even before the discovery that the so called “endothelial-derived 

relaxing factor” corresponds to NO (Arnold et al., 1977; Miki et al., 1977). Latter 

studies on NO showed the preminence of this mechanism in nitrergic transmission 

(Krumenacker et al., 2004). Even if sGC is the most commonly used name for this 

receptor, it does not have much meaning in a cellular context (Chrisman et al., 

1975). It is more correct to define NO-receptors as enzyme-linked proteins, 

sometimes indirectly associated with membranes. As other receptors, NO-

receptors have a ligand-binding domain and a transduction domain. The ligand-

binding domain consists in a heme group similar to the one inserted in 

haemoglobin for molecular oxygen (O2) binding; once incorporated in the NO-

receptor protein, it shows a stunning preference for NO, notwithstanding the 

chemical similarity between the two ligands. The heme prosthetic group inserted in 

the protein component of NO-receptors allows cellular NO-dependent transmission 

in the presence of 100,000-fold higher O2 concentration (Martin et al., 2006). The 

protein component of the NO-receptor is a αβ heterodimer expressed in two 
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isoforms: α1β1 and α2β1. Both are comprised of a heme-binding domain, a 

dimerization domain and a catalytic domain where the guanosine triphosphate 

(GTP) is converted into cyclic guanosine monophosphate (cGMP). In the ligand 

binding domain, the heme group is coordinated to the protein by a histidine bond 

(Zhao et al., 1998), whilst in the inactive state the catalytic domain (that is very 

similar to the catalytic site of adenyl-cyclase) is in an open state (Dessauer et al., 

1999). 

 

The binding of NO to the heme group determines a pivot of the haem, ensuing 

dislocation of the histidine to which it is coordinated, inducing a conformational 

change that ultimately results in the closing of the catalytic domain and in the 

conversion of GTP into cGMP (Roy and Garthwaite, 2006). The two isoforms of 

Fig 1.10. Different phosphorylation sites on the three isoforms of NOS, effects of the 

phosphorylation, kinases involved and cells in which the observations were made (Modified 

from Steinert et al., 2010). 
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NO-receptors are both widely expressed in the CNS within different cell-types 

(Friebe and Koesling 2009) and subcellular localizations (Budworth et al., 1999; 

Szabadits et al., 2007). α2β1 is mainly localized at synapses, thanks to its 

association to PSD-95 through its PDZ domain (Russwurm et al., 2001) whereas 

α1β1 is mainly cytosolic but it can be transported near to the plasma membrane as 

a consequence of increased intracellular Ca2+. Immunocytochemistry of NO-

receptors (Ding et al., 2004) and of cGMP after neurons exposure to NO (deVente 

et al., 1998) underlies different levels of expression of this enzyme throughout the 

different areas of the CNS, that are complementary to nNOS expression. Different 

sites on NO-receptors have been identified as possible allosteric targets for the 

modulation of NO-cGMP signalling. In addition, many phosphorylation sites have 

also been identified on the NO-receptors, but the physiological role for such 

modifications has still to be clarified (reviewed by Pyriochou and Papapetropoulos, 

2005). It is of particular interest a recent study that shows that activation of M2 

receptors for acetylcholine on intestinal smooth muscle cells decreases cGMP 

production through Src kinase-dependent Tyr phosphorylation of the NO-receptor 

(Murthy, 2008). 

cGMP actions are exerted by direct binding on the agonist or regulatory sites of 

cyclic nucleotide gated ion channels (CNG) (reviewed by Kaupp and Seifert, 2002) 

or hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels 

(reviewed by Craven & Zagotta, 2006). Another action of cGMP is mediated by its 

binding to phosphodiesterases (PDE), a family of 11 enzymes responsible for the 

hydrolysis of cyclic nucleotides: most of them can bind and hydrolyse cGMP, in 

particular PDE 1, 2, 3, 5, 6, 9, 10 and 11 (reviewed by Bender and Beavo, 2006). 

PDE 2 and 5 once bound by cGMP have higher activity states with increased 

cGMP breakdown. The binding of cGMP to PDE3 (since this protein does not 
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hydrolyse it) results in decreased cAMP clearout and, in turn, potential increases 

in cAMP levels (reviewed by Bender and Beavo, 2006). PDE5 is mainly involved in 

hydrolysis of cGMP in cerebellum (Shimizu-Albergine et al., 2003) while PDE2 is 

mostly involved in cGMP hydrolysis in the hippocampus (van Staveren et al., 

2001; Wykes et al., 2002; Boess et al., 2004). There is an availability of selective 

inhibitors for different isoforms of PDEs that are precious tools for investigating the 

functional meaning of nitrergic transmission in different systems, comprised 

learning and memory (reviewed by Blokland et al., 2006).  

Activation of cGMP-dependent protein kinase (PKG) is the signalling system 

activated by cGMP mostly responsible for the NO-dependent cellular downstream 

signalling. There are three isoforms of PKG: PKG1a and PKG1b (splice variants) 

are derived from the expression of a gene located on human chromosome n° 10 

and finally PKGII, whose gene is located on human chromosome n° 4. While 

PKG1a and PKG1b are principally expressed in the hippocampus, dorsal root 

ganglia, cerebellum and the olfactory bulb, PKGII (which is anchored to the 

plasma membrane through myristoilation) is expressed throughout the entire CNS 

(reviewed by Feil et al., 2005; Vaandrager et al., 2005; Hofmann et al., 2006). 

PKGI is a homodimer of 76 kDa and PKGII is an homodimer of 86 kDa. All the 

PKGs contain an amino-terminal domain with 5 regulatory sites: 1) a dimerization 

site 2) self-inhibition sites, involved in the inhibition of the catalytic domain in 

absence of cGMP 3) self-phosphorylation sites that in presence of cGMP increase 

the basal catalytic activity and the affinity of the PKG for cAMP 4) a site that 

regulates the affinity and cooperativity between the cGMP binding sites 5) an 

intracellular localization site. The regulatory domain of PKG contains two binding 

sites for cyclic nucleotides that mediate the full activation of the enzyme just after 

their full occupation by two cGMP molecules. The catalytic site at the carboxi-
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terminal contains binding sites for Mg2+, ATP and the target protein (reviewed by 

Domek-Lopacinska and Strosznajder, 2005). The main target substrates for PKG 

are phosphatases, leading to the variation of phosphorylation levels of effector 

proteins (reviewed by Schlossmann and Hofmann, 2005). cGMP was also found 

extracellularly in the brain with concentration levels changing according to NO 

production (reviewed by Vincent et al., 1998; Pepicelli et al., 2004). After 

intracellular synthesis, cGMP can be transported extracellularly via multidrug 

resistance proteins (reviewed by Sager, 2004) where it can possibly act as an 

intercellular messenger (Touyz et al., 1997; Poulopoulou & Nowak, 1998; Montoliu 

et al., 1999). 

There is some evidence of cGMP independent NO-dependent transmission 

(Jacoby et al., 2001; Lev-Ram et al., 2002) suggesting other downstream 

signalling pathways triggered by NO. For example, it has been suggested that S-

nitrosation (or nitrosylation) of thiol groups on cysteine residues can be an 

alternative signal transduction system. S-nitrosation is induced by exposing 

proteins to exogenous concentrations of NO (in the order of magnitude of µM) or 

nitrosating compounds of oxygen (as N2O3) or high concentrations of Ca2+ 

(reviewed by Hogg, 2002) but to date, there is no evidence of a physiological role 

for S-nitrosation dependent transmission. In vivo, S-nitrosation has been shown to 

be involved in pathological states (Zhang and Hogg, 2005). High concentrations of 

NO (in the order of magnitude of µM), deriving from iNOS expression and 

activation, can lead to the binding of NO to the ferrous haem on the cytochrome 

oxidase in mithocondria, causing the blockade of cellular respiration and exerting 

cytotoxic effects. This phenomenon is important in chronic neurodegenerative 

diseases such as Alzheimer’s disease (AD) Parkinson’s disease (PD), multiple 
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sclerosis and other amyloid disease (reviewed by Smith and Lassmann, 2002), as 

described below (section 1.4.5.). 

Considering its reactivity, NO is usually regarded as a messenger that does not 

need a specific scavenging mechanism. At physiological concentrations (in the 

order of magnitude of nM) NO is poorly reactive (Ford et al., 1993), but it rapidly 

reacts with lipid peroxyl radicals, underlying its role in protecting the organism from 

lipid peroxidation subsequent to oxidative stress (Keynes et al., 2005). 

Remarkably, in the brain there is a mechanism for NO scavenging more efficient 

than in the rest of the organism, as evidenced by the measure of the rate of 

consumption of NO in cerebellar slices, that is significantly higher than that 

observed in dispersed cells (Hall and Garthwaite, 2006).  

Because of its amphiphillic nature and dimensions, NO freely diffuses through 

membranes, accessing any cell compartment and hence acting both as an intra- 

and inter-cellular messenger. NO acts on target neurons as a result of volume 

transmission (Steinert et al., 2008), integrating neuronal activity over a volume 

limited by diffusion, coordinating synaptic transmission and plasticity of the 

neurons comprised in that volume (Gally  and  others 1990).  A single source that 

emits NO for 10-20 seconds generates a diameter of influence of about 200 µM 

that corresponds to ~2 x 106 synapses. For multiple sources of NO, its 

concentration linearly increases with time affecting a population of active and 

inactive cells (Jacoby et al., 2001; Steinert et al., 2008). 

1.4.2. targets of NO signalling 
 
Not much is known about targets mediating NO/cGMP/PKG signalling. In fact, 

modulation of synaptic transmission, LTP and LTD do not represent ‘targets’, but 

rather integrated functions influenced by various alterations of structure/function of 

intracellular or membrane proteins, such as ion channels at both pre- and post-
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synaptic levels (reviewed by Steinert et al., 2010). Increasing evidence points to 

the fact that synaptic plasticity can also be achieved by changes in the function of 

voltage-gated ion channels, influencing neuronal excitability and, in turn, the 

efficacy of information transfer, without directly affecting synaptic strength. 

Phosphorylation or S-nitrosation of VGNC, VGCC, Ca2+ activated and ATP-

sensitive potassium (K+) channels have been proposed as possible targets 

(reviewed  by Biel  et al., 1998; Ahern et al., 2002; Sanders and Kho 2006; 

Kawano et al., 2009). The targeting of K+ channels to change neuronal excitability 

has been observed in the auditory brainstem (Steinert et al., 2008) with 

suppression of Kv3 channels and consequent increases in the neuronal excitability 

and duration of the action potentials. This action is triggered by NO-evoked 

increases in cGMP that activate PKG which in turn leads to the downstream 

dephosphorylation of the Kv3 channel expressed in CHO (Moreno et al., 2001); it 

has to be established if the same mechanism is also observable in a native 

preparation. It is worth noting that AMPAR, VGNC and NMDAR are influenced by 

NO. NO transmission has also been shown to inhibit Kv4 channels in human atrial 

and mouse ventricular myocites (Gomez et al., 2008). Kv1 activity is also inhibited 

by NO via cGMP and S-nitrosylation mediated mechanisms (Nunez et al., 2006). 

Furthermore, NO is known to interfere with AMPAR trafficking, a crucial process in 

LTP and LTD expression mechanisms, characterized by the insertion or 

internalization of AMPAR into or from the plasma membrane, respectively 

(Malinow and Malenka 2002; Song and Huganir 2002). GluR1 subunit 

phosphorylation on Ser-845 by PKGII leads to increased insertion of AMPARs at 

the cell surface (Serulle et al., 2008) as does direct nitrosylation of GluR1 and 

GluR2 (Huang et al., 2005; Selvakumar et al., 2009). On the other hand, cGMP 
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has been demonstrated to induce phosphorylation-independent inhibition of the 

AMPAR (Lei and others 2000). 

Later findings in the peripheral nervous system and at the junction between 

nitrergic nerves and the effector organs suggest new possible targets for 

NO/cGMP signalling (reviewed by Toda and Okamura, 2003; Toda & Herman, 

2005). Also, sampling of extracellular fluids suggests interactions with other 

transmission systems (reviewed by Prast by Philippu, 2001). Serotoninergic 

transmission is heavily influenced by NO/cGMP/PKG in the pond snail, Lymnaea 

stagnalis (Straub et al., 2007). It is of remarkable interest the interaction between 

NO/cGMP/PKG pathway and cholinergic neurotransmission in the brain (reviewed 

by de Vente, 2004) and in particular the role of NOS/sGC/PKG in the M1-

dependent LTD in rat prefrontal cortex slices (Huang et al., 2009). Recent studies 

highlighted the role of another important component in this machinery, the 

endocannabinoids (eCBs): in the vertebrate (lizard) neuromuscular junction, 

activation of muscarinic (M3) and consequent transient decrease in acetylcholine 

relies on eCB secretion activating the NO/cGMP/PKG pathway (Newman et al., 

2007). This mechanism is presumably presynaptic, since CB1 receptors are 

located presynaptically. In addition, depolarization-induced suppression of 

inhibition in the hippocampus in the presence of a cholinergic agonist relies on 

both NO/cGMP and eCBs (Makara et al., 2007). Furthermore, a close interplay 

between eCBs and NO in long-term plasticity at the corticostriatal excitatory 

synapses (Sergeeva et al., 2007) and spinal locomotor circuitry (Kyriakatos and El 

Manira, 2007) has been previously demonstrated. These latter evidences 

represented a key feature in the development of this project. 

The activation of the NOS/sGC/PKG pathway can also result in the 

modification of gene expression: for instance, pavlovian fear conditioning in rats 
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relies on the activation of the nNOS/sGC/PKG pathway in the lateral amygdala, 

where it activates ERK/MAP kinase (Ota et al., 2008). Furthermore, 

NOS/sGC/PKG activation mediates the late phase of LTP and induces 

phosphorylation of CREB in the hippocampus (Lu et al., 1999), while YC-1, a 

potent sGC agonist, induces the enhancement of LTP at SC-CA1 synapses and 

the phosphorylation of CREB and ERK (Chien et al., 2003). 

Even if most of the studies are focused on the action of NO on neurons, glia 

can also play an important role in NO/cGMP dependent transmission. For 

example, in the cerebellum astrocytes have the highest concentration of cGMP (de 

Vente et al., 1990; Southam et al., 1992; Southam & Garthwaite, 1993). The 

synapses are frequently interconnected with astrocyte processes, so the NO 

produced at a neuronal level may affect astrocyte metabolism. Forebrain cultures 

briefly (100 ms) exposed to NO are characterized by increased Ca2+ 

concentrations in glia (Willmott et al., 2000). Furthermore, NO/cGMP in astrocytes 

has been shown to regulate the expression of glial fibrillary acidic protein (GFAP) 

(Brahmachari et al., 2006). Fig 1.11. summarizes the main pathways of synthesis 

and signal transdution of NO. 
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Fig 1.11. Schematic representation of NO production and downstream signalling at a  

glutamatergic synapse. The main pharmacological tools used to study NO-dependent 

transmission consist in antagonism of the nNOS such as L-NMMA, 7-NI or L-NAME 

(not shown). Similarly, sGC represents a main target antagonized by molecules such as 

ODQ or NS2028 (not shown). sGC can be also be activated by the application of NO 

donors as DEA/NO or SNP. nNOS is activated by the Ca2+/calmodulin complex as a 
consequence of the NMDAR or gq-coupled receptor activation (not represented). NO 

can act both post- and presynaptically, affecting neuronal function via S-nitrosylation 

or via the NO-receptor sGC. S-GC synthesizes the second messenger cGMP that can 

directly act on CNG or Kv1 channels or indirectly by activating PKG. cGMP activity is 

negatively regulated by PDEs. Abbreviations: AP = action potential; Cav = voltage-
gated calcium channel; CNG = cyclic nucleotide-gated ion channels; DEA/NO = 

diethylamine nonoate; IKATP/h = ATP-sensitive potassium channel/hyperpolarizing 

potassium channel; Kv3.1 = voltage-gated potassium channel; L-NAME = L-ω-nitro-

arginyl-methylesther; L-NMMA = NG-methyl-L-arginine; LTD = long-term 

depression; LTP = long-term potentiation; Nav = sodium channel; NS2028 =  4H-8-

Bromo-1,2,4-oxadiazolo[3,4-d]benz[b][1,4]oxazin-1-one ODQ = 1H-
[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one; ONOO– = peroxynitrite; PDE = 

phosphodiesterase; SNP = sodium nitroprusside; 7-NI = 7-nitroindazole. (Modified 

from Steinert et al., 2010). 
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1.4.3. NO and synaptic plasticity 
 
Since synaptic plasticity is described as a variation in synaptic strength 

following a specific pattern of activity of the neural network, this concept implies 

the existence of a messenger coordinating pre- and post-synaptic changes. 

Because of its diffusibility, NO was considered a good candidate for such a 

function since the beginning; after several years of studies generating 

contradictory evidences, it is now well accepted that NO plays a key role as a 

retrograde messenger mediating both LTP and LTD induction in different brain 

areas (Garthwaite & Boulton, 1995; Holscher, 1997; Calabresi et al., 1999; Prast & 

Philippu, 2001; Susswein et al., 2004; Garthwaite et al., 2008; Steinert et al., 

2010).  

The role of NO in LTD in the cerebellum at excitatory synapses from parallel 

fibres to Purkinje cells (PC) is well established. In brief, NO is produced in parallel 

fibres or in interneurons after activation of NMDAR by parallel fibres activation 

(Shibuki and Kimura, 1997; Shin and Linden, 2005). Purkinje cells have been 

shown to express high levels of the so called PKG substrate that once 

phosphorylated works as a phosphatase inhibitor (Endo et al., 2009). This, with 

PKC activation, leads to persistent AMPAR phosphorylation, resulting in AMPAR 

internalization (Launey et al., 2004; Steinberg et al., 2006). As mentioned before, 

cerebellar LTD also relies on eCBs release that, in turn, induce NO production 

(Safo and Regehr, 2005). Carbachol (Cch)-induced LTD in rat prefrontal cortex 

relies on the activation of NO/cGMP/PKG causing a presynaptic decrease release 

of neurotransmitter (Huang et al., 2009). Hippocampal LTD at SC-CA1 synapses 

requires NO/cGMP/PKG and release of Ca2+ from ryanodine sensitive intracellular 

stores, possibly mediated by cyclic ADP-ribose (Reyes-Harde et al., 1999). In 

addition, hippocampal NMDAR-dependent, but not mGluR1-dependent LTD, relies 
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on reduction of glutamate release mediated by NOS activity (Zhang et al., 2006). 

In the hippocampus, LTP is shown to involve AMPAR insertion in the postsynaptic 

membrane (reviewed by Collingridge et al., 2004) and the NO/cGMP/PKG 

pathway is known to play a pivotal role in the insertion of AMPAR on the 

postsynaptic membrane, via the phosphorylation of Ser-845 on the AMPAR 

subunit GluR1 (Antonova et al., 2001; Wang et al., 2005; reviewed by Garthwaite 

et al., 2008). NO acts as a retrograde messenger in synaptic plasticity in 

hippocampal LTP acting via cGMP/PKG (Arancio et al., 1995; 2001), coordinating 

the increase in both post-synaptic AMPAR insertion and presynaptic 

neurotransmitter release (Wang et al., 2005). LTP induction in rat visual cortex 

requires NOS activation and cGMP production (Haghikia et al., 2007). Bath 

application of the NO donor DEA/NO (300 µM) on acute hippocampal slices has 

been demonstrated to mediate a transient depression (presumably due to the 

cytotoxic effects of the exogenous NO on the mythocondrial oxidative 

phosphorylation) followed by a stable potentiation dependent on cGMP production 

(Bon and Garthwaite, 2001). In addition, it has been previously shown that a weak 

tetanic stimulation consisting of 5 pulses delivered at 50 Hz does not induce 

plasticity, although, if coupled to the bath application of DEA/NO (3 µM; at this 

concentration it does not affect basal synaptic transmission) it induced a robust 

LTP in hippocampal SC/CA1 synapses (Bon and Garthwaite, 2003). 

NO/cGMP/PKG activation was found to potentiate glutamate release in rostral 

ventral medulla neurons acting on N-type VGCC (Huang et al., 2003). In the 

cerebellum, parallel fibres-PC synapses undergo a form of presynaptic LTP 

requiring NO and cAMP but not cGMP production (Jacoby et al., 2001). Also, in 

the cerebellum, mossy fibre–granule cell synapse LTP, relies on NO/cGMP 

production for increased presynaptic excitability (Maffei et al., 2003). In the 
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hypothalamus, NO-cGMP pathway activation leads to the reduction of extracellular 

serotonin (Kaehler et al., 1999) presumably due to the phosphorylation of a 

threonine residue located on the serotonin transporter, followed by the subsequent 

increase in serotonin uptake (Ramamoorthy et al., 2007). Furthermore, alterations 

of intrinsic neuronal excitability mediated by NO/cGMP can be responsible for 

synaptic plasticity (Smith & Otis, 2003).  

1.4.4. NO signalling in memory and learning 
 
Blocking the NO production impairs the habituation of the proboscis extension 

reflex in the honeybee (Müller and Hildebrandt 2002). In mammals, it affects 

spatial learning which is under the control of the hippocampus (Böhme et al., 

1993; Mogensen et al., 1995), and motor learning which is processed in the 

cerebellum (Allen and Steinmetz 1996; Nagao et al., 1997). The effects of NO 

blockade on hippocampal- and cerebellar-dependent learning behaviour underlie 

the role of NO in LTP and LTD in these brain areas. In other forms of learning, 

even if subsequent memory formation can be affected, blocking NO production 

does not affect the associated behaviour. For instance, NO is not involved in 

classical conditioning in the proboscis extension reflex of the honeybee (Müller et 

al., 1996) and in various learning feeding paradigms in Aplysia (Katzoff et al., 

2002) and Helyx (Teyke; 1996). NO is also involved in many forms of short-term 

memory. Short-term memory lasts not more than ten minutes following the 

learning phase, and relies on structural and functional changes of already 

synthesized proteins (phosphorylation, S-nitrosylation etc.; Kandell, 2001). These 

modifications are triggered by the production of second messenger systems, and 

when associative learning paradigms are applied, two or more second messenger 

systems are activated influencing the target neurons (Byrne 1987). The possible 

role of NO/cGMP in short-term memory was first explored and confirmed in the 
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Aplysia feeding behaviour and in the passive avoidance task in the chick (Rickard 

et al., 1998; Katzoff et al., 2002).  

Long-term memory lasts from hours to the entire lifespan of the organism and it 

is derived from the consolidation of short-term memory. It relies on the production 

of newly synthesized proteins induced by the activation of transcription factors, 

stably changing the metabolism and the structure of neurons. NO has been shown 

to affect long-term memory. In mice, blockade of NO production after training 

inhibits the consolidation of associative spatial memory tested with an inhibitory 

avoidance task (Baratti and Kopf, 1996). In Aplysia and Helyx, learning paradigms 

affecting feeding behaviour show that blockade of NO during training, but not after 

it, inhibits long-term memory formation (Katzoff et al., 2002; Teyke 1996). NO is 

also associated with the consolidation of olfactive memories: in fact, the olfactory 

bulb is particularly rich in NOS.  In rat pups, the association of an odour to a tactile 

stimulus results in the situation by which their mother’s handling generates a 

preference for the associated odour versus other odours. This kind of learning is 

blocked by blocking the NOS before, but not after the application of the paired 

stimulus (Samama and Boehm 1999). NO has also been shown to be involved in 

the Bruce effect in rat, whereby the pregnancy of the female rat caused by the 

mating with a novel male mate is blocked and the subsequent allowance of the 

pregnancy with a familiar male that impregnated the female before is known as the 

Bruce effect. This mechanism relies on an odour recognition memory: the female 

rat remembers the odour associated to the pheromones of a male that 

impregnated it beforehand. Injection of an NO donor instead of mating and the 

simultaneous exposure to the associated pheromones results in the unblockage of 

the pregnancy meaning that NO acts as a reinforcer of the original pheromone 

(Okere et al., 1996). After olfactory learning, it is possible to observe an increase 
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in the nNOS mRNA (Okere and Kaba 2000). It has been shown that 

intracerebroventricular administration of the sGC agonist YC1 into rats performing 

in the Morris water maze, a well known test of spatial learning, resulted in 

decreased escape latencies, whereas in avoidance tasks it resulted in increased 

latencies in the passive variant and decreased latencies in the active variant; 

furthermore, all these effects were reversed by the NOS antagonist L-NAME and 

the PKG antagonist KT5823, exemplifying the role of the whole NO/cGMP/PKG 

pathway in spatial memory and learning (Chien et al., 2005). The NOS inhibitor 

NO-Arg was shown to impair the retention for a single-trial step-down inhibitory 

avoidance task in rats (Bernabeu et al., 1995, 1996, 1997). A limitation to the 

interpretation of these studies is that all these effects may be non-specific to the 

learning, i.e. they are mediated by the effect of NO on cerebral blood flow.  

NOS inhibition blocks long-term memory just within a very narrow time window 

around the initial training (Müller 1996, 2000). The late phase of LTP in 

hippocampal SC-CA1 is blocked by inhibitors of gene transcription or protein 

translation (Frey et al., 1988). The late phase of LTP relies on the activation of 

inducible transcription factors via phosphorylation by kinases such as PKA (Abel et 

al., 1997) or PKG. In fact these kinases can phosphorylate CREB to pCREB 

directly (Lu et al., 1999) or via ERK (Chien et al., 2003). In particular, blocking NO 

blocks the late phase of hippocampal LTP only if the inducing protocol consists in 

three spaced pulses but it is minimally affected if there are four pulses (Lu et al., 

1999). Knock-out mice for an isoform of PKG display a reduced late phase of LTP, 

but hippocampal dependent memory and learning functions are intact (Kleppisch 

et al., 2003). Thus, it is possible that the late phase of LTP relying on the 

NO/cGMP/PKG pathway underlies only a subset of learning and memory tasks 

depending on hippocampal activity. Furthermore, studies on day-old chicks, using 
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a weaker variant of the passive inhibitory avoidance task that does not allow 

memory consolidation, showed that the co-application of the PDE5 inhibitor 

Zaprinast allowed memory consolidation (Campbell and Edwards, 2006). This 

result is consistent with the evidence, on the same model, that administration of L-

NAME at 40 minutes post training in a single trial passive inhibitory avoidance task 

blocked memory retention (Rickard et al., 1998). In addition, also cerebellar LTD is 

characterized by a protein synthesis–dependent late phase, thus also 

NO/cGMP/PKG might be involved in motor memory consolidation (Linden 1996). 

Furthermore, many lines of evidence highlighted a possible role for NO/cGMP in 

object recognition memory, which is shown to rely on activity of the Prh rather than 

the hippocampus (reviewed by Brown and Aggleton, 2001). Systemic 

administration of the PDE5 inhibitor sildenafil prior or during the training phase 

increased the retention of recognition memory in rats (Prickaerts et al., 2002, 

2005) and in mice (Rutten et al., 2005). Rats which were intraperitoneally injected 

with the unspecific NOS inhibitor L-NAME before or after the training phase 

demonstrated impaired recognition memory when tested at 24 h but not at 1 h in a 

spontaneous novel object exploration task. L-NAME administered just before the 

test phase in rats tested at 24 h rescued the delay-dependent impairment in object 

recognition memory (Boultadakis et al., 2010a). Another study showed that the 

systemic administration of a NO donor (NCX2057) antagonized the deficit in visual 

recognition memory induced by previous systemic administration of the muscarinic 

antagonist scopolamine (Boultadakis et al., 2010b). Finally, L-NAME was shown to 

antagonize the object recognition deficit induced by the NMDAR antagonist MK-

801 and ketamine (Boultadakis and Pitsikas, 2010). Intra-hippocampal blockade of 

the NO/cGMP/PKG pathway induced deficits in visual recognition memory 

suggesting a key role for this pathway in the consolidation of this memory, and 
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also showing that the NO/cGMP/PKG downstream signalling system caused the 

activation of β–adrenergic receptors that in turn induced an increase in BDNF 

expression in the hippocampus (Furini et al., 2009).  

1.4.5. Role of NO in neuropathology 
 
NO is a free radical and it can react with many molecules; therefore it is 

involved in many pathological processes. In particular, the term nitrosative stress 

is related to the ability of NO and reactive nitrogen species (RNS) to damage 

proteins, nucleic acids and lipids. NO can react with the superoxide anion O2
- to 

form peroxynitrite ONOO- that also decreases NO bioavailability (Beckman and 

Koppenol 1996). NOS directly contributes to O2
- production in cells deficient in the 

NOS co-factor tetrahydrobiopterin (BH4) or the substrate L-arginine because they 

inefficiently catalyse the five electron reduction of L-Arg to citrulline with the 

conversion of O2 to O2
- (Xia et al., 1996). BH4 deficiency is associated to both 

Alzheimer’s (AD) and Parkinson’s disease (PD) (Kuiper et al., 1994; Foxton et al., 

2007).   

Eukaryotic cells undergo the production of reactive oxygen species (ROS) 

because of the electron leakage from the mitochondrial electron transfer chain that 

reacts with oxygen to produce O2
-. This is normally metabolised by superoxide 

dismutase (SOD) to H2O2 that is further transformed by antioxidant enzymes. Both 

NO and ONOO- inhibit respiratory chain metabolism, resulting in a decreased 

production of ATP (Heales et al., 1999; Erusalimsky and Moncada 2007). Thus, 

neurodegeneration shows a complex dependency by oxidative and nitroxidative 

stress factors such as oxygen availability, antioxidant enzyme production and local 

metabolic rates (Sims et al., 2004). NO/ONOO- production determines increased 

Zn2+ from internal stores with the formation of S-nitrosothiols and neurotoxicity 

(Kroncke et al., 1994; Knoch et al., 2008). A rise in free Zn2+ leads to apoptotic 
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death via p38 MAP kinase activation and caspase-independent K+ efflux 

(Bossy-Wetzel et al., 2004). NMDAR over-activation and NO exposure can 

determine mitochondrial fragmentation and cell death (Yuan and others 2007). 

This phenomenon in response to NO was reported in Alzheimer’s disease (AD),  

amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD; Bossy-Wetzel 

et al.,2008; Knott and Bossy-Wetzel 2008, 2009; Knott et al., 2008). Also, 

fragmentation of Golgi after NMDAR activation precedes neuronal death 

(Nakagomi et al., 2008). nNOS activation is highly coupled to NMDAR activation, 

so excitotoxicity can be related to nitrergic signalling.  

iNOS expression in glia is triggered by the exposure to insult-related stimuli 

such as pathogens, ischemia, hypoxia, neurotoxic substances (comprised 

extracellular β-amyloid deposits). Oxidative and nitrosative stress are key factors 

in neurodegenerative diseases such as AD, PD, ALS, multiple sclerosis (MS), HD, 

and in brain damage coming from ischemic-reperfusion events (Bennett et al., 

2009). Enhanced nitrotyrosine immuno-reactivity and oxidative protein damage are 

evident in brains from AD  patients  (Sultana et al., 2006; Danielson and Andersen 

2008; Sultana et al., 2009); on the other hand, in β-amyloid (Aβ) mutant mice 

observations of increased H2O2 production and decreased cytocrome c oxidase 

expression were demonstrated (Manczak et al., 2006). AD patients show high 

levels of S-nitrosylated proteins in the cerebral cortex (Hensley et al., 1998) 

associated with Aβ deposition (Sultana et al., 2006) along with nitrotyrosilation of 

Tau protein (Reynolds et al., 2005) and synaptophysin in AD. Dysfunctions in the 

cholinergic transmission are also observed in AD (Tran et al., 2003). In PD 

patients and in experimental models of PD, increased expression of iNOS was 

reported (Gatto et al., 2000; Barthwal et al., 2001; Singh et al., 2005). In the 

human CNS, iNOS is mainly expressed in astrocytes rather than microglia. 
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Reports of increased iNOS astroglia immunoreactivity in post-mortem brain 

samples from patients affected by MS (Bo et al., 1994), AD (Wallace et al., 1997), 

and PD were demonstrated (Hunot et al., 1996). 

Since NO is also involved in many physiological functions, it has to be clarified 

what the determinant factor is that decides its respective role in either pathological 

or physiological functions. Other than factors such as malfunctioning in NO 

generation or compensatory cellular responses, vascular dysfunction is an 

important condition that importantly contributes to the pathogenesis of many 

diseases. The involvement of nitrergic signalling in neurodegenerative diseases 

relies then on the generation of RNS, immune signalling, spill-over from 

endothelium and its involvement in oxidative stress. Chronic cerebral 

hypoperfusion and microvascular abnormalities can contribute to AD (Marlatt et 

al., 2008; Aliev et al., 2009; de la Torre 2009). Hypoperfusion and enhanced ROS 

generation in AD (Sultana et al., 2009; 2010) can be both responsible for 

increased iNOS expression as a consequence of a subclinical increase in 

inflammatory tone. In fact Aβ causes vasoconstriction of human cerebral arteries, 

with inflammation as a direct consequence, including the synthesis of other 

vasoconstrictors such as PGE2 and PGF2a (Townsend et al., 2002). In late-onset 

AD it is possible to observe increased plasma concentrations of the vascular cell 

adhesion molecule–1 (VCAM-1), related to endothelial activation (Zuliani et al., 

2008). Furthermore, in the cerebrospinal fluid of AD patients it is possible to 

observe increased concentration of vascular-endothelial growth factor (VEGF; 

Tarkowski et al., 2002; Yang et al., 2004) that is pro-inflammatory (Ryu et al., 

2009)  and is involved in β-amyloidogenesis (Burger et al., 2009). VEGF activates 

microglial cells increasing NO production to micromolar levels by increasing iNOS 

expression (Moncada and Bolanos 2006; Kurauchi et al., 2009).  Analogue 
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inflammatory pathways contribute to the neurodegeneration of nigro-striatal 

dopaminergic fibres in PD (Miller et al., 2009; Nanhoe-Mahabier et al., 2009).  

1.5. Endocannabinoids (eCBs) 

 
eCBs or endogenous cannabinoids (eCBs) take their name from the major 

psychoactive compound present in marijuana, ∆9- tetrahydrocannabinol (THC; 

Gaoni et al., 1964). The effect of THC is due to its action on the CB1 and CB2 

receptors: while CB2 are mostly expressed in the peripheral nervous system, CB1 

is the most expressed G-coupled receptor (GPCR) in the CNS, in structures such 

as the hippocampus, Prh, postrhinal and temporal cortices (Liu et al., 2003c).  CB1 

was first isolated, cloned and characterized as a GPCR associated to αi/o (Devane 

et al., 1988; Matsuda et al., 1990). A few years later, the eCBs anandamide (AEA) 

and 2-arachydonyl glycerol (2-AG) were isolated and characterized (Devane et al., 

1992; Stella et al., 1997). The role of eCBs in brain function soon emerged, with 

central roles in the modulation of synaptic transmission and plasticity, mainly 

acting as retrograde messengers at CB1 (reviewed by Freund et al., 2003). In the 

last 10 years the role of eCBs in short- and long-term depression has been well 

characterized, consistent with their involvement in the modulation of many 

cognitive functions and behaviours, comprised memory and learning (Reviewed by 

Heyfetts and Castillo, 2009). The actions of eCBs are usually associated to LTD 

mechanisms, but recent evidence has demonstrated a possible role of eCBs also 

in LTP (see below section 1.5.1.). Furthermore, certain studies have shown that 

many neuropathologies such as PD and AD are correlated to alterations in eCB-

dependent neurotransmission: therefore eCB receptors now represent a new 

pharmacological target for the treatment of these diseases (reviewed by Micale et 

al., 2007). 
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1.5.1. Endocannabinoid-mediated long term depression (eCB-LTD) 

The first evidence of eCB-mediated LTD (eCB-LTD) emerged in excitatory 

synapses in the dorsal striatum (Gerdeman et al., 2002). eCB-LTD is also present 

in the amygdala (Marsicano et al., 2002), nucleus accumbens (Robbe et al., 

2002), hippocampal CA1 at both inhibitory (Chevaleyre and Castillo, 2003) and 

excitatory inputs (Yasuda et al., 2008) and in many other areas as summarized in 

Fig 1.12.   

1.5.2. Induction of eCB-LTD 

eCB-LTD is usually triggered by the increase in glutamate release from afferent 

fibres and the consequent release of eCBs from the target neuron (postsynaptic). 

The released eCBs work in a retrograde manner, acting at presynaptic CB1 

(homosynaptic eCB-LTD) and on CB1 located on nearby afferents (heterosynaptic 

eCB-LTD). The induction protocols of eCB-LTD vary between different brain 

areas, with frequencies of stimulation comprised between 1 and 100 Hz, including 

theta burst stimulation (TBS) as shown in Fig 1.12. Moreover, alternating induction 

of action potentials at both post- and presynaptic neurons with variable time 

intervals in between can induce the so called spike timing-dependent plasticity 

(STDP). STDP can consist of both potentiation and depression paradigms (t-LTP 

and t-LTD), depending on the time intervals and brain areas under consideration 

(reviewed by Caporale and Dan, 2008). In the case of CB1 dependent STDP, only 

t-LTD is observed (eCB-t-LTD). This form of eCB-LTD is not distinguishable by the 

one purely induced by afferent stimulation (Chevaleyre et al., 2007). 
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eCBs release is mediated by two distinct processes: postsynaptic neuron 

depolarization and neurotransmitter release. For example, glutamate release from 

the presynaptic site can trigger eCB release from the postsynaptic neuron by 

stimulating group I mGluRs, that are Gαq/11 coupled receptors (Varma et al., 2001; 

Jung et al., 2005). On the other hand, postsynaptic neuron depolarization has 

shown to generate increases in intracellular Ca2+ concentration  via VGCC and 

NMDAR activation that, in turn, stimulates eCBs synthesis and release in the 

intersynaptic cleft through a mechanism that is not yet well understood (reviewed 

by Piomelli, 2003). Many evidences underlie that eCB release does not strictly 

depend on the activation of a particular metabotropic receptor or on a specific 

source of Ca2+; other than group I mGluRs, metabotropic dopamine 2 (D2), 

muscarinic acetylcholine 1/3 (M1/3), metabotropic serotonin 2 (5HT2), orexin and 

cholecistochinin receptor activation are all effective stimuli for eCBs production. 

Fig 1.12. eCB-LTD: brain structures, synapses and stimulation protocols (modified 

from Heifetts and Castillo, 2009). 
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Most of these receptors are coupled to αq/11, engaging phospholipase C (PLC) that 

generates the substrate for diacylglycerol lipase (DGL) which results in the 

production of 2-AG. Moreover, other mechanisms have been proposed; in the 

amygdala, AEA is synthesized after mGluR1-dependent adenylate cyclase (AC) 

activation which generates increases in cAMP production and PKA activation 

(Azad et al., 2004). In cortico-striatal synapses, induction of eCB-LTD relies on D2 

activation, that is associated to αi/o and selectively induces AEA synthesis through 

a mechanism not yet understood (Giuffrida et al., 1999; reviewed by Piomelli, 

2003). Ca2+-dependent eCB release is not always required, but it still covers a 

pivotal role in eCB-LTD (Gerdeman et al., 2002). Ca2+ influx from NMDAR, L-type 

and T-type VGCC and from internal stores was reported to drive to eCB release 

(Nevian and Sackman, 2006; Bender et al., 2006; Isokawa and Alger 2006; 

Beierlein and Regehr, 2006; Adermark and Lovinger, 2007; Ohno-Shosaku et al., 

2007). The two mechanisms can both operate independently and synergistically 

(Ohno-Shosaku et al., 2002; Kreitzer and Malenka, 2005; Brenowitz and Regehr, 

2005; Hashimotodani et al., 2005).  

The degradation of eCBs is mediated by enzymes that may represent a good 

target for the modulation of eCB-LTD; these include monoacylglycerol lipase 

(MGL) and fatty acid amide hydrolase (FAAH) (reviewed by Piomelli, 2003). MGL 

is highly expressed in the presynaptic neuron near the CB1, supporting the view 

that this enzyme plays an important role in eCB-LTD. In fact, the inhibition of MGL 

leads to the induction of eCB-LTD after sub-threshold stimulation in the prefrontal 

cortex (Lafourcade et al., 2007). Recently, the topic of a putative postsynaptic 

membrane eCB transporter (EMT) responsible of eCBs efflux (an important step in 

eCBs mediated plasticity) has been raised. In the dorsal striatum, after the loading 

of the postsynaptic medium spiny neurons (MSN) with eCBs, the application of 
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paired stimuli (0.1 Hz) was shown to induce eCB-LTD not dependent on group I 

mGluR mediated postsynaptic Ca2+ increases or postsynaptic membrane 

depolarization (Ronesi et al., 2004; Ademark and Lovinger, 2007). This 

phenomenon was also observed in the somatosensory cortex (Bender et al., 

2006).  

Presynaptic activity is an important regulating factor for eCB activity.  For 

example, eCB-t-LTD induced in L5 pyramidal neurons in prefrontal cortex requires 

presynaptic NMDAR activation: application of exogenous eCBs induces LTD only 

if the presynaptic neuron is activated at a relatively high frequency; this form of 

depression is blocked by the NMDAR antagonist D-APV (Sjöstrom et al., 2003). It 

is still to be clarified how presynaptic NMDAR and CB1 co-operate in the induction 

of eCB-LTD. Furthermore, many lines of evidence underlie that direct stimulation 

of CB1 alone is not enough to induce eCB-LTD; it requires simultaneous 

presynaptic activity (Sjöstrom et al., 2003; Bender et al., 2006). This data suggests 

the need of some sort of signal integration on the presynaptic terminal for eCB-

LTD induction, probably in order to provide a control system under eCB spill-over 

conditions (Singla et al., 2007). The depolarization-driven stimulation of the 

afferent fibres could be necessary for eCB-LTD induction at the test synapse as 

supplementary activity or to release a co-factor. In the hippocampus, maximal eCB 

release is not enough to allow eCB-LTD induction, unless CB1 stimulation is 

paired to the activation of interneurons connected to the homologous synapse 

(Heyfets et al., 2008). The presynaptic activation, coming from both afferent firing 

and interneuron activation, is then necessary for eCB-LTD induction presumably 

because it mediates increases in presynaptic Ca2+ concentration, via presynaptic 

NMDAR and VGCC. It is still to be clarified how this Ca2+ increase mediates 

decreases in neurotransmitter release. It was hypothesised that presynaptic Ca2+ 
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increases integrates the CB1 signalling by activating the phosphatase calcineurin 

(reviewed by Heyfets and Castillo, 2009).  

To sum up: 1) eCB induction relies on the synthesis and secretion of eCBs 

from the postsynaptic neuron as a consequence of a postsynaptic metabotropic 

receptor activation (usually a Gαq/11 coupled receptor) and after activity-dependent 

Ca2+ increases at the same site 2) the eCBs spreading within the synaptic cleft 

bind CB1, causing decreased cAMP levels at the presynaptic terminal 3) in order 

to be effective, CB1 activation must be coupled to presynaptic activation, meaning 

presynaptic NMDAR or VGCC activation with consequent presynaptic increases in 

Ca2+ concentration 4) the combined activation of CB1 and a target of Ca2+ in the 

presynaptic site (presumably calcineurin) leads to long-term suppression of 

neurotransmitter release (summarised in Fig 13.). 

1.5.3. Expression of eCB-LTD 
 
Expression mechanisms of eCB-LTD have just begun to be explored. It has 

been shown that CB1 activation is not necessary for eCB-LTD long-term 

consolidation (Chevaleyre and Castillo, 2003; Sjöstrom et al., 2003; Ronesi et al., 

2004). Long-term modifications determining decreased neurotransmitter release 

probably consist in the modified excitability of the afferent fibre, resulting in 

decreased Ca2+ inlet during action potential firing or changes in the downstream 

release machinery. In eCB-LTD, CB1 activity lasts several minutes (Chevaleyre et 

al., 2006) unlike what happens in short-term eCB mediated plasticity, such as 

depolarization dependent suppression of inhibition/excitation (DSI/DSE). In fact, 

CB1 dependent DSI in the hippocampus relies on decreased activity of VGCC, 

likely mediated by Gβγ subunits (Wilson et al., 2001; Varma et al., 2002). For eCB-

LTD of inhibitory synapses (I-LTD), the activation of Gαi/o is necessary and may 

reflect the need of prolonged activation of the receptor and subsequent inhibition 
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of the cAMP/PKA pathway (Howlett et al., 1986; Childers and Deadwyler, 1996). 

Continuous activation of AC has been shown to inhibit I-LTD but not eCB-

dependent DSI (Chevaleyre et al., 2007). In addition, the postsynaptic inhibition of 

PKA and calcineurin do not affect both I-LTD and DSI, thus these modifications on 

the balance between phosphatases/kinases occur only presynaptically in eCB-

dependent plasticity. The dependency of eCB-LTD expression on the cAMP/PKA 

pathway involvement was observed in many brain areas like the striatum 

(Calabresi et al., 1994), hippocampus, amygdala (Azad et al., 2004) and the 

nucleus accumbens (Mato et al., 2008).   

As in many other forms of synaptic plasticity, the modulation of the cAMP/PKA 

pathway influences the downstream release machinery. For example, the active 

zone protein RIM1α is a target for PKA. Its phosphorylation is involved in many 

forms of synaptic plasticity such as LTP at mossy fibres/CA3 (Castillo et al., 2002) 

and at the SC/CA1 (Huang et al., 2005) synapses in hippocampus or parallel 

fibres/PC synapses in the cerebellum (Castillo et al., 2002). RIM1α is necessary 

for eCB-LTD in the hippocampus and the amygdala as shown by experiments on 

RIM1α knock-out mice (Azad et al., 2004). According to the PKA/RIM1α model, 

prolonged CB1 activation would lead to the dephosphorylation of RIM1α and the 

consequent decrease in neurotransmitter release. However, a recent study 

showed that in transgenic mice in which RIM1α was mutated (Ser413Ala) 

rendering RIM1α insensitive to PKA-dependent phosphorylation, eCB-LTD was 

still present in the hippocampus. Therefore, PKA regulation of neurotransmitter 

release in eCB-LTD relies on PKA activity on other proteins besides RIM1α. In the 

nucleus accumbens, it has been shown that blockade of P/Q-type, but not L- or N-

type VGCC occluded eCB-LTD (Mato et al., 2008), whereas in the amygdala the 
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amphetamine-induced eCB-LTD was coupled to the suppression of P/Q-type 

VGCC (Huang et al., 2003).  

A third mechanism that can underlie the expression of eCB-LTD is the 

reduction of presynaptic excitability. Heterosynaptic eCB-LTD in CA1 hippocampal 

synapses of the developing rat is associated with a decreased amplitude of fibre 

volleys; this phenomenon is blocked by K+ channels antagonists (Yasuda et al., 

2008). 
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Fig 1.13. a) Calcium influx into the postsynaptic cell through VDCC as a consequence of 

depolarization triggers ECB release b) presynaptic firing and simultaneous activation of 
CB1 determines ECB-dependent decrease in neurotransmitter release; c) schematic 

representation of the cellular mechanism mediating eCB-LTD: the activation of a gq- 

coupled receptor determines activation of DGL with production of ECBs and subsequent 

release in the inter-synaptic cleft through the putative EMT. The activation of presynaptic 

CB1 determines a decrease in PKA activity resulting in turn to decreased neurotransmitter 

release (modified from Heyfetts and Castillo, 2009) 

c 
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1.5.4. eCBs in memory and learning 
 
 The ubiquitous expression of CB1 in the CNS indicates that exogenous 

ligands of this receptor may interact with many brain functions, ranging from 

homeostatic regulation of feeding to associative memory (Herkenham et al., 1990; 

Tsou et al., 1998). The role of CB1 modulation in neuropsychiatric disorders and 

neurodegenerative diseases has also been investigated (see below section 

1.5.5.). 

LTD is the main model to explain the loss of connectivity after sensorial 

deprivation in the related brain area (Glazewski and Fox, 1996; Rittenhouse et al., 

1999; Allen et al., 2003; reviewed by Chklovski et al., 2004; reviewed by Hensch 

2005). The LTD-like phenomena observed in denervated somatosensory and 

visual cortex resembles the induction and expression mechanisms observed in 

eCB-LTD. Whisker removal in the rat determines weakening of L4 and L2/3 

synapses in barrel cortex by the decrease in presynaptic activity as a result of 

sensory information deprivation (Bender et al., 2006). Furthermore, monocular 

deprivation (MD) is known to depress visually evoked responses in the visual 

cortex (Trachtenberg et al., 2000); this phenomenon is probably related to the LTD 

induced at L4/L2-3 synapses in visual cortex that relies on CB1 activation (Crozier 

et al., 2007). In addition, short-term CB1 driven depression (DSI/DSE) could 

underlie these forms of cortical plasticity (Fortin et al., 2004; Bodor et al., 2005).  

Many lines of evidence underlie the role of eCBs and eCB-LTD in hippocampal 

and amygdale-dependent associative memory. The first studies employed the 

Morris water maze and cued fear conditioning on CB1 -/- transgenic animals or 

wild-type animals treated with CB1 agonists/antagonists (Marsicano et al., 2002; 

Varvel and Lichtman, 2002). These studies demonstrated that CB1 activation is 

necessary for the extinction of these memories but not for their acquisition. Also, 
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FAAH inhibitors were found to improve extinction of a cued-shock association and 

of the memory of the position of a hidden platform in Morris water maze (Chhatval 

et al., 2005; Varvel et al., 2007). However, eCBs modulate the excitability and the 

induction of LTP in the amygdala and the hippocampus, a phenomenon mostly 

related to memory acquisition rather than extinction (Chevaleyre and Castillo, 

2003; Azad et al., 2004; Chevaleyre and Castillo, 2004). 

eCBs are usually involved in LTD-like phenomena, but recent studies have 

shown that this is probably a narrow vision. Intraperitoneal administration of the 

CB1 antagonist AM251, the CB1/2 unselective agonist WIN55,212-2, or the 

inhibitor of eCBs reuptake and breakdown AM404, result in impairment of LTP 

induction at SC/CA1 synapses. Furthermore, AM404 was shown to significantly 

enhance LTD, while AM251 and WIN did not affect it. Finally, intra-hippocampal 

infusion of AM251 was demonstrated to block extinction in an inhibitory avoidance 

conditioning and extinction task, while AM404 and WIN55,212-2 facilitated the 

extinction. It is worth noting that none of these compounds affect the acquisition of 

this conditioning. Considering the functional antagonism of these compounds, it 

appears that eCB modulation of synaptic plasticity and of memory and learning is 

a complex phenomenon which is not limited to a specific inhibitory activity (Abush 

and Akirav, 2009). A recent study further underlined the multiple roles of eCBs in 

modulating synaptic plasticity: eCBs definitely induce eCB-LTD by acting on 

presynaptic CB1, but they can also be responsible for potentiation if they act on 

astrocytic CB1, the latter of which determines increases in the intra-astrocytic Ca2+ 

concentration which in turn increases the release of glutamate from the astrocyte 

itself. Astrocyte released glutamate acts on presynaptic mGluR1s determining an 

increased release of neurotransmitter and subsequent potentiation of synaptic 

transmission (Navarrete and Araque, 2010). These two latter studies underlie the 
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complexity of the eCBs modulation of synaptic activity, revealing new directions in 

the study of the activity of these endogenous molecules. 

1.5.5. eCBs in neuropathology 
 
eCB signalling is involved in many neuropathological states, from mood 

disorders to neurodegenerative diseases (reviewed by Micale et al., 2007). Recent 

data show the role of eCB dysfunctions in the pathogenesis of neurodegenerative 

diseases such as PD, AD and HD.  

The pathogenesis of PD arises from the neurodegeneration of nigrostriatal 

dopaminergic neurons. In the striatum, MSNs express D2 but not D1 receptors for 

dopamine. The dominant therapeutic strategy of PD relates to the compensation of 

the lack of dopamine (i.e. L-DOPA). Considering that corticostriatal eCB-LTD 

relies on D2-dependent decrease of neurotransmitter release, this form of synaptic 

plasticity could represent a major target in PD therapy. The FAAH inhibitor 

URB597 administered together with a D2 agonist reduced the motor deficit 

observed in PD in an animal model of the disease (Giuffrida et al., 1999; Kreitzer 

and Malenka, 2007).  

The eCB system plays a double role in the pathophysiology of AD: it inhibits 

Ach release (cholinergic loss is one of the main characteristics of AD) whilst 

having anti-inflammatory properties. Many studies have discussed the possible 

role of the eCB system in AD because of their role in the modulation of 

inflammation. CB1 expression in glia is regulated by the exposure to inflammatory 

stimuli: in particular eCBs exert neuroprotective effects by limiting microglia 

activation during inflammation (Iravani et al., 2002; Jantzen et al., 2002; Xie et al., 

2002; Benito et al., 2003; Ramirez et al., 2005). CB1 are less expressed in the 

frontal cortex of AD patients (Ramirez et al., 2005) while in the hippocampus 

increased DGLα activity was seen, resulting in the compensatory up-regulation of 
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2-AG synthesis in these patients (Farooqui et al., 1988). Considering that CB1 

activation increases Erk activity and BDNF expression (Marsicano et al., 2003), 

eCBs probably exert neuroprotective activity through CB1 activation. The 

neuroprotective effect of CB1 activation is supported by AEA-dependent inhibition 

of Aβ42 mediated toxicity in an AD in vitro model (Milton, 2002). On the other 

hand, activation of CB1 in the hippocampus decreases Ach release generating 

cognitive deficits: the CB1 antagonist rimobanant decreased the cognitive deficit 

induced in rodents treated with soluble β-amyloid peptide oligomers. This animal 

model is characterized by progressive Aβ-plaques deposition, extensive 

hippocampal damage and decreased retention of newly acquired memories 

(Mazzola et al., 2003; van der Stelt et al., 2006). Interestingly, CB2 that in 

physiological conditions are mostly expressed in the peripheral nervous system, 

are overexpressed in the CNS of AD patients and Aβ-42 treated rats (Benito et al., 

2003; Ramirez et al., 2005; van der Stelt et al., 2006), especially in microglia 

where they may exert a compensatory anti-inflammatory activity. A recent study 

further highlighted the neuroprotective role of eCBs: repeated administration (12 

days) of the eCB reuptake antagonist VDM-11 reversed hippocampal damage and 

loss of memory retention tested in passive inhibitory avoidance task in rats 

previously administered with Aβ42 fragments.  By contrast, if the administration of 

VDM-11 is limited to 5 days, starting 7 days after exposition to Aβ42, no 

neuroprotective effect is observed, once again highlighting the importance of the 

intervention in the early stages of AD (van der Stelt et al., 2006).  
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1.6. Alzheimer’s Disease (AD): epidemiology, clinical features, 

pathogenesis, and molecular profile 

Alzheimer’s disease (AD) is the most common form of dementia in the elderly, 

accounting for 50-60% of all cases. AD affects less than 1% of individuals aged 

between 60-64 years, but cases increase exponentially with age: and at 85 years 

of age, the prevalence is comprised between 24% and 33% in Western countries 

(Ferri et al., 2005). Thus, AD is becoming more common, representing a major 

public health concern and a relevant social cost. In 2001, more than 24 million 

people were diagnosed with dementia and as a direct consequence of the 

increased life expectancy, it is expected to double every 20 years (Ferri et al., 

2005). Other than ageing, epidemiological studies have suggested other not-

genetically related risk factors such as low educational and occupational status, 

low mental ability in early life, reduced mental and physical activity during later life 

(Mayeux, 2003; Mortimer et al., 2003). Other risk factors are related to vascular 

diseases, including hypercholesterolaemia, hypertension, atherosclerosis, 

smoking, obesity and diabetes (Mayeux, 2003).  

AD is a multifactorial disorder and thus environmental factors might increase 

the risk of its sporadic form; although this disease also has a strong genetic 

background. A large population-based study showed that the extent of heritability 

for the sporadic disease is almost 80% (Gatz et al., 2007). 

First of all, it has to be stated that even if AD is a multifactorial disease, a 

familial form with a prevalence of less than 0.1% does exist (Harvey et al., 2003). 

Familial AD is an autosomal dominant disorder with onset typically before 65 years 

of age. There are several mutations on the amyloid precursor protein (APP) gene 

on chromosome 21 that explain only a few cases of familial AD. Although, 

mutations on the genes for presenilin 1 (PS1) and presenilin 2 (PS2) account for 
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most cases of the familial disease (Sherrington et al., 1995; Levy-Lahad et al., 

1995). The sporadic form of AD is the most diffuse one, and it still maintains a 

strong genetic background. Apolipoprotein E (ApoE) ε4 allele is associated with 

AD pathogenesis: it increases the risk 3 times in heterozygotes and 15 times in 

homozygotes (Cordier et al., 1993; Porrier et al., 1993; Farrer et al., 1997). ApoE 

acts as a cholesterol transporter in the brain and ApoE4 is less efficient in lipid 

transport and neuronal repair (Poirier, 1994). ApoE is essential for amyloid β (Aβ) 

deposition, promoting Aβ fibrilisation and plaque formation (Holtzman et al., 2000), 

possibly acting as a pathological chaperone. The ApoE ε4 allele has been 

calculated to account for most of the genetic risk in sporadic AD (Raber et al., 

2004). Other genetic factors can be mentioned but their involvement is difficult to 

assess, because this form of the disease is complex and probably several 

susceptibility genes act in concert, each conferring a minor increase in risk in an 

integrated interaction with environment factors. 

AD is a progressive neurodegenerative disorder, with an ambiguous onset 

whereby impairments in episodic memory, aphasia, apraxia and agnosia are 

observed with generalised issues in cognition such as impaired judgement, 

decision-making and orientation. Based on histopathological observations that 

plaques and tangles are present in the brains of AD patients and in those with 

senile dementia, these mutifactorial disorders have been considered one 

homogeneous disease, in the later phases. The cardinal signs including plaque 

formation, tangle load and cholinergic deficits in combination with the cognitive 

impairments described above are more severe in early-onset rather than in late-

onset AD (Roth, 1986; Blennow et al., 1991). In younger patients with AD there is 

a strong correlation between the severity of dementia and plaque and tangle 

accumulation, which is not found in elderly patients with the disease (Prohovnik et 
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al., 2006). These early clinical signs highlight the difference between AD and 

senile dementia. It is still uncertain if these diseases are separate, one, or a 

continuous intensification of the ageing process (Mann et al., 1984; Brayne et al., 

1988).  

Neurodegeneration in AD is estimated to start 20-30 years before clinical onset 

(Davies et al., 1988). During this preclinical phase, the plaque and tangle load 

increase to a threshold level until the appearance of the first symptoms. The early 

clinical phase is termed as mild cognitive impairment (MCI; Petersen, 2004), 

delineated on the basis of subjective reports of memory loss that are verified by 

close personal informants and by objective measures adjusted for age and 

education (Petersen, 2004). MCI does not prefigure onset of AD in all patients, but 

all patients with AD had MCI, highlighting that MCI can also underlie other 

etiological origins like normal ageing or cerebrovascular disorders (Gauthier et al., 

2006). In MCI, the conversion rate to AD is 10-15% per year (Petersen, 2004; 

Visser et al., 2005).  

The pathogenesis of AD is characterized at the microscopic level by hallmark 

lesions: amyloid plaques and neurofibrillary tangle accumulation (Fig 1.13.) in the 

medial temporal lobe and prefrontal cortex, with degeneration of neurons and 

synapses which have particular relevance for cholinergic neurotransmission. 

These changes are the result of different pathogenetic mechanisms, including Aβ 

aggregation and deposition with the development of plaques, tau 

hyperphosphorylation with tangle formation, neurovascular dysfunction and other 

mechanisms like cell-cycle abnormalities, inflammation, oxidative stress and 

mitochondrial dysfunction. Plaque deposition is highly related to the severity of the 

disease (Blessed et al., 1998). β-amyloid is constitutively produced by neurons in 

physiological conditions (Haass et al., 1992). Aβ is the result of the cleveage of the 
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amyloid precursor protein (APP) that is processed by two enzymes, β-secretase 

and γ-secretase (Fig 1.14.). 

 

γ-secretase is an intramembranous protease complex, composed of four 

components. β-secretase activity is triggered by an integral membrane aspartyl 

protease called β-site APP-cleaving enzyme 1 (BACE1) (Vassar et al., 1999). 

Another APP cleavage pathway is non-amyloidogenic and it’s characterized by 

two proteases with α-secretase activity belonging to the ADAM family of disintegrin 

and metalloproteinases (Buxbaum et al., 1998; Lammich et al., 1999). In 

Fig 1.13. Plaques and tangles in the cerebral cortex in AD. Plaques are extracellular 

deposits of Aβ surrounded by dystrophic neurites, reactive astrocytes, and microglia, 

whereas tangles are intracellular aggregates composed of a hyperphosphorylated form of 

the protein tau (modified from Blennow et al., 2006). 
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physiological conditions Aβ is degraded by the following peptidases: insulin-

degrading enzyme, neprilysin, and endothelin-converting enzyme (Carson et al., 

2002). The clearance of Aβ is mediated by the alteration in the balance between 

efflux (via low-density lipoprotein receptor-related protein) and the influx (via the 

receptor for advanced glycation end products) across the blood–brain barrier 

(Tanzi et al., 2004). The etiopathology of AD is mainly centred on the amyloid 

cascade hypothesis (Fig 1.14.) stating that an imbalance between Aβ production 

and clearance exists. This pathogenetic pattern triggers a cascade in which Aβ 

production is enhanced and keeps accumulating, forming soluble oligomers. Aβ 

soluble oligomers affect synaptic function (transmission and plasticity) and are 

therefore probably related to the mild cognitive impairment observed in the early 

stages of AD (Walsh and Selkoe, 2004; Puzzo et al., 2005; Jacobsen et al., 2006). 

Aβ oligomers composed of 12 Aβ peptides are related to memory loss in AD 

transgenic mice models (Lesne et al., 2006). The mutations responsible for the 

familal form of AD on the APP, PS1 and PS2 genes, have a pivotal role in Aβ 

generation: this evidence support the amyloidogenic hypothesis of the AD 

pathogenesis. Mutations on these genes determine increase in Aβ42 (the 

fibrillogenic isoform of Aβ) production. Duplication of the APP locus in families with 

familial AD lends support to the notion that life-long APP over-expression results in 

Aβ deposition. In time, soluble Aβ oligomers keep accumulating, undergoing a 

conformational change to high β-sheet containing oligomers that are insoluble.  

Insoluble Aβ oligomers start to aggregate first in fibrils and then in extracellular 

plaques (Fig 1.15.). 
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Fig 1.14. APP is a transmembrane protein. The Aβ domain is partly embedded in the 

plasma membrane and includes the 28 residues just outside the membrane and the first 

12–14 residues in the transmembrane domain. APP can be processed along: 1) the α-

secretase pathway that precludes Aβ aggregation since the cleveage domain is within the 

Aβ segment; 2) the β-secretase pathway releasing the β containing APP (βsAPP); γ-
secretase cleaves the remaining C-term releasing the free 40 or 42 aminoacid containing 

Aβ peptide, the amyloidogenic form of amyloid protein (modified from Blennow et al., 

2006). 
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As observed in other amyloidogenic neuropathologies, fibrillogenic Aβ42 isoform 

transmits the misfolding to other soluble Aβ peptides, accelerating the plaque 

formation and deposition (Jarret et al., 1993). In parallel with the accumulation of 

Aβ plaques, the pathogenesis of AD is characterized by intracellular tangles 

composed of hyperphosphorylated tau protein (Grundke-Iqbal et al., 1986; Nukina 

and Ihara, 1986). Physiologically tau is an axonal microtubule binding protein, thus 

promoting microtubule assembly and stability. Tau phosphorylation is mediated by 

the balance between multiple kinases (eg, GSK-3β and CDK5) and phosphates 

(eg, PP-1 and PP-2A; Iqbal et al., 2005). In AD, tau hyperphosphorylation is 

intracellularly triggered causing microtubule disassembly and in turn compromising 

Fig 1.15. Shematic representation of the pathogenetic stages of AD. The central event is the 

clearance imbalance of Aβ: increased production for the familial and decreased clearance 

for the sporadic form. Aβ oligomers affect synaptic plasticity: in the later stages, 

inflammation, oxidative stress and mitochondrial dysfunction participate in the 

progression of the neuronal damage. In parallel, altered kinase/phosphatase regulation 

leads to the accumulation of hyperphosphorylated tau tangles. 



 82

axonal transport, impairing neuronal and synaptic function (Fig 1.16.). The 

hyperphosphorylation of tau determines its aggregation into insoluble fibrils and 

then tangles. Tau hyperphosphorylation is an early event in the pathogenesis of 

AD in the transentorhinal region, spreading to the hippocampus, amygdala and 

later to neocortical association areas (Braak et al., 1999). It has still to be clarified 

if tangle formation is a consequence or a cause of AD. Furthermore, many lines of 

evidence suggest that the Aβ plaque formation cooperates with cerebrovascular 

alterations in the pathogenesis of AD (Farkas and Luiten, 2001; Mayeux, 2003). 

The neurovascular hypothesis states that the dysfunction of blood vessels in the 

CNS can contribute to cognitive dysfunction via impairment of delivery of nutrients 

to neurons and via the reduction of Aβ clearance (Iadecola, 2004). 

Cerebrovascular pathology and ischaemia result in the up-regulation of APP 

expression followed by Aβ deposition (Jendroska et al., 1995; Sadowsky et al., 

2004). Other hypotheses on the pathogenesis of AD suggest abnormalities in 

proteins regulating the cell cycle, inflammatory mechanisms, oxidative stress and 

mithocodrial dysfunction, especially in the progression of the disease and in the 

spread of the neuronal degeneration and dysfunction (Aisen, 2001; Webber at al., 

2005; Gibson and Huang, 2005; Reddy and Beal, 2005). 
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1.6.1. Alzheimer’s Disease: animal models 

One of the most important experimental approaches for the study of AD is the 

development of animal models resembling genetic, histological and clinical 

features of the disease. The multifactoriality of AD represents a major problem for 

the liability of each model. For this reason, many experimental approaches were 

used to generate different animals showing different characteristics of the disease 

in order to get as much information as possible on this pathology. Nowadays there 

are two main approaches for the development of AD animal models: the 

generation of transgenic mice expressing human genes correlated to the familial 

form of AD (La Ferla and Oddo, 2005; Jacobsen et al., 2006; reviewed by Epis et 

al., 2010) or the induction of neurodegeneration of the cholinergic fibres projecting 

Fig 1.16. A: Schematic representation of tau protein bound to a microtubule through 

microtubule-binding domains. B: Flow-chart of tau hyperphosphorylation and tangle 

formation causing disassembly of microtubules and disturbed axonal transport, 
aggregation into insoluble fibrils (paired helical filaments; PHF) and larger aggregates in 

tangles (modified from Blennow et al., 2006).  
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from Basal Forebrain Nuclei in wild type rats through intracerebroventricular 

infusion of the neurotoxin 192 IgG saporin (Aztiria et al., 2007). This latter 

approach is higly unspecific because the neurodegeneration of cholinergic fibres is 

a common characteristic of many neurodegenerative disorders, including 

Parkinson’s disease (Liselijn et al., 2008).  

The generation of transgenic animal models starts from the evidence of a 

strong genetic component in AD, both familial and sporadic. The familial form is 

extremely rare (less than 0.1% prevalence); it is an autosomal dominant disorder, 

strongly based on mutations of the genes encoding APP, PS1 and PS2. The 

sporadic form is multifactorial, and its main genetic component is represented by 

mutations on the APOE protein encoding gene. Given these premises, various 

trangenic murine models for the study of the disease were developed in order to 

carry single or multiple human alleles for these genes with single or multiple 

mutations consistent with the genotype observed in the familial form of the 

disease. APP, PS1 and PS2 are involved in both the pathological and 

physiological metabolism of the amyloid protein. Hence, AD transgenic murine 

models are characterized by the altered proteolysis of the APP. This results in the 

accumulation of soluble intracellular β-amyloid oligomers (which cause early 

impairment of synaptic and cognitive functions), leadind to progressive 

accumulation of extracellular β-amyloid plaques and neurodegeneration. The first 

transgenic AD mice were developed thanks to the designed constructs of cDNA-

based or yeast artificial chromosome, in order to induce expression of the entire 

human APP in the mouse brain (Buxbaum et al., 1993; Lamb et al., 1993). Other 

mutant alleles are: human APP751 (Moran et al., 1995; Quon et al., 1991), human 

APP695 (Yamaguchi et al., 1991), Aβ (Wirak et al., 1991) and/or the C-terminal 

fragments of APP (Sandhu et al., 1991). The APP transgene was successfully 
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expressed in the brain, but these mice did not show important neurological 

changes, with only few β-amyloid deposits. The lack of plaques observed in these 

models was generally attributed to the low expression level of the transgene. The 

following experimental approach was a mouse overexpressing mutant alleles of 

the human APP transgene: it showed an age-dependent AD-like pathology, with 

amyloid deposits in the brain parenchyma (Hsiao et al., 1996; Moechars et al., 

1999). The most known mutations include the V717I “London” mutation (Goate et 

al., 1991), V717F “Indiana” mutation (Murrell et al., 1991), K670D/M671L 

“Swedish” mutation (Mullan et al., 1992) andE693G “Arctic” mutation (Nilsberth et 

al., 2001). 

Presenilin knockout mice develop a fast and evident neurodegeneration in the 

cerebral cortex, memory impairment, and decreased synaptic function (Saura et 

al., 2004). In order to determine the role of presenilin-1 on APP cleavage, mice 

models carrying both the wild-type and mutant PS-1 encoding genes were 

developed (Duff et al., 1996). Both wild-type and mutant alleles carrying mice do 

not show significant signs of the disease, even if they show high levels of β-

amyloid (Borchelt et al., 1996; Duff et al., 1996; Citron et al., 1997; Chui et al., 

1999). The double PS1/2 mutant shows both cognitive loss and 

neurodegeneration (Saura et al., 2004). Crossing PS-1 mutant mice with APP 

mutant mice generates greatly accelerated β-amyloid aggregation into plaques 

(Holcomb et al., 1998), indicating that these genes interact synergistically. 

Because of the high production of β-amyloid plaques and the genetic similarity 

with the familial form of the disease in humans, the double PS-1/APP transgenic 

mice are the most used ones for the study of the pathogenesis of the disease 

(reviewed by Epis et al., 2010). However, these double mutant models do not 

show neurofibrillary tangles. Another generation of transgenic murine models for 



 86

the study of AD is represented by transgenic mice expressing the mutated form of 

the human gene encoding for tau (MAPT). These mice develop neurophibrillay 

tangles and show cognitive deficits and neurodeneration (Ramsden et al., 2005), 

but do not show amyloid plaques. It is important to underlie that so far no 

mutations have been identified on MAPT in the familial form of the disease: the 

mutated MAPT allele used in these mice was found in frontotemporal dementia 

(Ballatore et al., 2007). These studies were then extended by generating a triple 

transgenic murine model (3xTg-AD), bearing the following mutations: presenilin-

1M146V, APPSwe and MAPT (P301L) (Oddo et al., 2003b). This most recent and 

integrated model presents itself with both extracellular β-amyloid plaque 

accumulation and intracellular hyperphosphorylated tau tangles which are the 

main histopathological features of the disease. These lesions are correlated to 

age-dependent synaptic dysfunctions, including LTP and memory deficits (Oddo et 

al., 2003a; Billings et al., 2005). 

One of the most studied models is the Tg2576 mouse, characterized by the 

human allele of APP bearing the Swedish mutation (Lys -670-Asn; Met-671-Leu). 

Six month old Tg2576 mice are characterized by a deficit in spatial memory, a 

form of declarative memory known to be hippocampal dependent. The cognitive 

deficit is associated with impairment in synaptic transmission and LTP induction at 

Schaffer collaterals-CA1 synapses; at this age, this model also shows 

immunopositivity to intracellular soluble β-amyloid oligomers (Jacobsen et al., 

2006). These features correspond to the pathological conditions of early-onset AD 

patients affected by MCI. Later in life, these animals present increased cytosolic 

concentration of soluble β-amyloid oligomers; extracellular β-amyloid plaques and 

neurodegeneration can be observed at around 18 months of age. This model has 

been widely used to clarify the pathogenetic mechanims of the disease (Dong et 



 87

al., 2005; Dong et al., 2008; Sanchez-Ramos et al., 2009; Dong et al., 2009; 

Tampellini et al., 2010). 

1.7. Aims of the research 

The main aim of the present study was to identify a potential retrograde 

messenger involved in synaptic plasticity in the Prh of the rat. NO and eCBs have 

been extensively studied as modulators involved in synaptic plasticity, memory 

and learning and their role as retrograde messengers have been demonstrated in 

various brain structures. Therefore, in the present study I evaluated their role in 

both LTP and LTD induced in acute perirhinal slices using field potential 

recordings.  

Since Prh plays a major role in visual recognition memory, in the second part of 

the research I also evaluated the role of NO and eCBs in the acquisition of this 

form of declarative memory in vivo. The performance of adult rats was examined 

using the spontaneous novel object exploration task after intra-Prh infusions of 

vehicle or antagonists of nNOS and CB1 (NPA and AM251, respectively).  

Finally, since one of the major goals in AD research is to characterize the early 

stages of the disease in order to improve diagnostic and therapeutic tools, I 

performed field potential recordings in Prh slices from Tg2576 mice  (a model of 

AD) and from littermate controls at 3 month of age, in order to investigate possible 

very early in changes Prh synaptic transmission and plasticity.  
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2. MATERIALS AND METHODS 

2.1. Laboratories 

This project has been carried out in two different laboratories. It started at 

University of Bologna, department of Human and General Physiology, with the 

supervision of Professor Giorgio Aicardi, and it continued at University of Bristol, 

MRC centre for synaptic plasticity, Department of Physiology and Pharmacology, 

with the supervision of Professor Zafar Bashir. In both laboratories, field potential 

recordings were performed, while behavioural experiments were exclusively 

performed in Bristol. The following section will describe any experimental 

difference between the two laboratories by indicating in brackets the location 

(Bologna; Bristol). 

2.2. Electrophysiology 

Tissue preparation. Experiments were performed on horizontal brain slices 

including Prh, lateral entorhinal cortex (LEnt) and hippocampus. Slices were 

obtained from p21-35 male albino rats (Sprague Dawley strain; Charles River 

Laboratories, Milano, Italy) (Bologna) and from p28-35 male pigmented rats (Dark 

Agouti strain; Bantin and Kingman, Hull, UK) (Bristol). All efforts were made to 

reduce the number of animals used. Animals were treated according to approved 

European Union guidelines. Animals were anaesthetized with halothane (Bologna) 

or isoflurane (Bristol) and killed for decapitation. The head was placed in ice cold 

(2-4°C) cryoprotective artificial cerebrospinal fluid (aCSF) pH=7,4 containing (in 

mM): 250 glycerol, 2.5 KCl, 1.2 NaH2PO4, 1.2MgCl2, 2.4 CaCl2, 26 NaHCO3 and 

11 glucose (Bologna) or aCSF (same composition but with NaCl 125 mM instead 

of glycerol 250 mM; Bristol) and continuously bubbled with biological gas mixture 

(95% O2-5% CO2). The brain was rapidly removed and the frontal lobes and dorsal 
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part were resected with two single scalpel cuts. The sample was then glued on the 

dorsal side (ventral side up) with superglue Loctite on a stainless steel cutting 

stage. The stage was transferred into the cutting chamber of a motorized 

vibratome (WPI Europe, Berlin, DE) filled with ice cold, oxygenated, cryoprotective 

aCSF (Bologna) or aCSF (Bristol). The tissue was then sliced (400µM) at the 

maximum blade vibration speed and the minimal advance speed. Each slice was 

immediately transferred for 60-90 min into a recovery chamber filled with aCSF at 

room temperature (25°C) and gassed with biological mixture.  

Field potential recordings. After recovery, a single slice was placed into a 

recording chamber, continuously perfused with oxygenated aCSF (flow rate of 2/3 

ml/min) and maintained at T = 32-34°C. After an acclimatizing period of at least 20 

min, extracellular field excitatory post-synaptic potentials (fEPSP) were evoked by 

application of constant square current pulses (0,2 ms, 20-300 µA, 0,033Hz) on 

afferent fibers in layer II/III of Prh with a concentric bipolar stainless steel 

stimulation electrode (40-80 KΩ) connected to a stimulus generator (Master8; 

AMPI, Israel) through a stimulus isolation unit. Evoked extracellular fEPSP were 

recorded with a glass micropipette pulled at a horizontal micropipette puller (Sutter 

Instruments; Novato, USA) with a resistance of 3-5MΩ, filled with 2 M NaCl 

solution, inserted into the slice in layer II/III, ≈ 500µm distant from the stimulation 

electrode in caudal direction and connected to a DC amplifier by an Ag/AgCl 

electrode (Bologna: EPC-7; HEKA, Germany; Bristol: Axopatch 200, Axon 

Instruments, Foster City, CA). Stimulus intensity was adjusted to induce ≈60-70% 

of the maximal synaptic response. After at least 30 min of stable baseline 

recording, long-term depression (LTD) was induced by low frequency stimulation 

consisting in a single train of 3000 pulses delivered at 5Hz (5Hz-LFS) (Aicardi et 
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al., 2004). A weak LFS (5Hz-LFS 1350p) was also used, consisting in a single 

train of 1350 pulses delivered at 5Hz. Chemical LTD was induced via bath 

application of carbachol (Cch) (50 µM) for 10 min. LTP was induced by theta burst 

stimulation consisting of four trains delivered every 15 seconds, every train 

composed by 10 bursts delivered every 150 ms, every burst composed by 5 

pulses delivered every 10 ms (100 Hz) (Aicardi et al., 2004). 

 

a) 

 b)  

Data acquisition and analysis. The analogical signal was digitised with an 

analogical/digital board and transferred to a PC. During experiments, sweeps of 

1000 ms comprising artefact, presynaptic afferent volleys and fEPSP were digitally 

Fig 2.1. a) Schematic representation of 

the experimental setup. b) Schematic 

representarion of a rat brain horizontal 

slice containing Prh, lateral entorhinal 

cortex (LEnt), dentate gyrus (DG) and 

area CA1-3 of the hippocampus. As 
indicated, the stimulation (Stim) and the 

recording electrodes (Rec) were placed 

in layer II/III of Prh. 
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acquired with the software Axoscope 9.0 (Axon instruments; PA, USA) (Bologna) 

or WinLTP (University of Bristol, Bristol, UK) each time the stimulus generator 

delivered a current pulse. 
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Fig 2.2. a) Example of an extracellular fEPSP recorded sweep. The artifact reflects the square 
current pulse applied to evoke the fEPSP. The ”non synaptic peak” is due to the action 

potentials directly evoked by the current pulse in presynaptic fibres and/or in postsynaptic 

neurites.   The fEPSP amplitude (blue line) is measured between the baseline (red line) and 

the minimum value. b) Example of a typical LTP recording plot. After 30 min of a stable 

baseline, the TBS stimulation protocol was applied and the fEPSP were recorded for more 

than  60 min. 
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The fEPSP amplitude is considered the value, in mV, comprised between the 

average value of the signal recorded 10 ms before the artefact and the minimal 

value of the fEPSP peak (see Fig 2.2.A). Each sweep was offline analysed with 

Clampfit (Bologna) or directly on-line analyzed with WinLTP (Bristol); the fEPSP 

peak amplitude values (mV) were exported in an Excel file. Each amplitude value 

(mV) was normalized for the baseline value, calculated as the mean of the fEPSP 

amplitudes recorded in the last 10-30 min of baseline. All the experimental groups 

were plotted as mean values ± S.E.M. The effects of conditioning stimulation were 

measured 50-60 min after LTP or LTD induction: any variation of the normalised 

fEPSP bigger than 10% and significantly different from the baseline was regarded 

as synaptic plasticity. Significance from baseline was evaluated using paired or 

unpaired t-test, as appropriate. Comparisons between groups used one way 

ANOVA where necessary, to examine the effect of treatment with LTD- or LTP- 

inducing stimuli upon responses. 

2.3. Electrophysiological recordings on transgenic Tg2576 mice 

Subjects. Heterozygous male Tg2576 mice under the control of the prion 

promoter and WT littermates were used (Hsiao et al., 1996). Tg2576 mice express 

a mutated form of the human gene for amyloid precursor protein (APP) bearing the 

Swedish mutation (Lys-670-Asn; Met-671-Leu). The gene encodes a double 

amino acid substitution and is associated with a heritable susceptibility to 

Alzheimer’s disease (AD). Resulting phenotypic manifestations in Tg2576 include 

progressive accumulation of beta amyloid (Aβ) in the brain, analogous to classic 

“senile plaques” of human AD, and correlated synaptic and cognitive deficits.  

Tg2576 mice were kindly supplied by Italian National Centre on Aging (I.N.R.C.A.; 

Ancona, Italy). The original strain of Tg2576, model 001349, obtained on a mixed 

B6/SJL genetic background, was purchased from Taconic (Hudson, NY). 



 93

Subsequently a colony was raised by mating a transgenic male with a non 

transgenic female with a C57BL/6 genetic background. Three month old 

heterozigous males and littermate controls were used for the experiments. The 

transgenic offspring was selected with a genotyping procedure.  

Electrophysiological recordings. Field potential recordings were performed in 

Bologna as described above (section 2.2.) with the following particularities: 

1) semi-coronal slices were cut with a 45° angle to the dorsal axis as described 

elsewhere (Griffiths et al., 2008); 2) the composition of the crioprotective aCSF 

used during dissection was (in mM): NaCl 124, 3 KCl, 1.25 NaH2PO4, 10 MgSO4 

7H2O, 0 CaCl2, 26 NaHCO3 and 10 glucose; the aCSF used for recovery and 

recording had the same composition except: 1 MgSO4, 2 CaCl2; 3) input/output 

curves (I/O) were run recording 2 sweeps at each current intensity within 0 and 

200 µA with the following steps: 0, 20, 30, 40, 50, 100, 150, 200 µA; 4) LTD was 

induced after a 20 min stable baseline by application of 5 Hz-LFS; 5) the 

experimenter was blind as to the genetic condition of the animal. 

2.4. Behavioural experiments 

All the behavioural experiments were carried out by Dr. Gareth Barker under 

the supervision of Dr. Clea Warburton; I would like to thank both of them. 

Subjects. Male pigmented rats were used (Dark Agouti strain; Bantin and 

Kingman, Hull, UK), weighing 150–200 g at the beginning of the experiment. The 

animals were housed under a 12 h light/dark cycle. Behavioural training and 

testing were performed during the dark phase of the cycle (6:00 A.M. to 6:00 

P.M.). All efforts were made to reduce the number of animal used. Animals were 

treated according to approved guidelines.  

Cannulation surgery.  After being anhesthetized with isoflurane, the rats were 

secured in a stereotaxic frame with the incisor bar set at 3.3 mm below the 
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interaural line. Two stainless steel guide cannulas (26 gauge; Plastics One, 

Semat, UK) were implanted through burr holes in the skull at an angle of 20° to the 

vertical, using the following coordinates: antero- posterior, -5.6mm from bregma; 

lateral, ± 4.47mm; vertical, - 6.7mm from skull surface (Fig 2.3.). Two stainless 

steel screws and dental cement kept the cannulas anchored to the skull. Between 

infusions, the cannulas were closed by dummy inserts. After surgery, the rats were 

allowed for rcovery > 14 days. 

Apparatus. Exploration occurred in an open-topped arena (90 X 100 cm) with 

50 cm wood walls and a scaffold covered with black cloth to a height of 150 cm: in 

this way the animals were isolated from exteranl visual stimuli during the 

experiment. Sawdust covered the floor of the arena. The animal’s behaviour was 

monitored and recorded via an overhead camera and video recorder, for 

subsequent analysis. The stimuli were triplicate copies of objects made of plastic 

that varied in shape, color, and size (10 X 10 X 5cm to 25 X 10 X 5 cm) and were 

too heavy for the animal to displace.  

Training. After handling (1 week), each rat was habituated to the arena without 

stimuli for 10 min daily for 4 days before the beginning of the spontaneous novel 

object exploration protocol. This protocol comprised an acquisition phase (training) 

separated by a delay from a recognition test. In the training phase, duplicate 

copies of an object (e.g., A1 and A2) were placed near the two corners at either 

end of one side of the arena (10 cm from each adjacent wall). The animal was 

placed into the arena facing the centre of the opposite wall and allowed a total of 

either 40 s of exploration of A1 and A2 or 4 min in the arena. Exploratory 

behaviour was defined as the animal was directing its nose toward the object at a 

distance of < 2 cm. Other behaviours (i.e. looking around while sitting on or resting 

against the object) were not considered as exploration. The delay between the 
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phases was 20 min or 24 h. At test phase (3 min duration), the animal was placed 

again in the arena with two objects positioned at the same positions as at training: 

one object (A3) was the third copy of the object used in the sample phase, and the 

other was a novel object (B3). The positions of the objects in the test and the 

objects used as novel or familiar were counterbalanced between the animals in a 

group and between the control and drug-treated groups (Fig 2.4.). 

Drug delivery. General procedures have been already described elsewhere 

(Warburton et al., 2003). Infusions were made into the Prh through a 33 gauge 

cannula (Plastics One) inserted into the implanted cannula and attached to a 5 µl 

Hamilton syringe via polyethylene tubing. A volume of 1.0 µl was injected into each 

hemisphere over a 2 min period by infusion pump (Harvard Bioscience, Holliston, 

MA). The infusion cannula remained in place for an additional 5 min (Fig 2.3.).  

Design. The animals were tested after a 20 min or 24 h delay. Three different 

groups of rats was used to test the effects of drugs: one for NPA at 24 hours and 

another one for NPA and AM251 at 20 min and a third one to test AM251 at 24 

hours. To examine whether CB1 or nNOS were involved in the acquisition stage of 

memory, the appropriate antagonist (AM251 and NPA, respectively) or vehicle 

was infused starting 15 min before the commencement of the acquisition phase. 

After at least 7 d, the other substance (vehicle or antagonist in a crossover design) 

was infused, and the animal was tested again. The group sizes (n) were as 

follows: NPA experiments (24 h delay), n=12; NPA experiments (20 min delay), 

n=10; AM251 experiments (24 hours and 20 min delay), n=10. Data were 

analyzed only from animals that completed all phases of an experiment with 

patent, correctly placed cannulas. 
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a 

b 

  

Statistical analysis. The experimenter was blind to the treatment during all 

measures of exploration. The discrimination ratio (DR) was calculated as the 

difference in time spent by each animal exploring the novel compared with the 

familiar object, divided by the total time spent exploring both objects. Comparisons 

Fig 2.4. Schematic representation of an object recognition memory test. Fifteen min after 

infusion, the animal was placed in an arena with two identical objects. After a certain 
delay (20 min or 24h) the animal was placed in the same arena with the familiar and a 

novel object. If the subject remembers the familiar object, it will preferentially explore 

the novel one. 

Fig 2.3. a) Photomicrograph of a coronal brain 
section showing the track (indicated by arrow) left 

by a perirhinal cannula. Scale bar, 1 mm. 

(Modified from Warburton et al., 2003) b) 

Infusion sites. The sites within the perirhinal 

cortex at which drugs were infused are shown in 

the expanded boxes from a schematic brain 
section. The dots within the expanded boxes are 

just exemplificative and not necessarily 

representative of the real distribution of the drug. 

Hpc, Hippocampus; RS, rhinal sulcus; Th, 

thalamus (Modified from Barker et al., 2006). 
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for the vehicle- and drug- treated groups used an ANOVA with repeated measures 

with treatment (drug or vehicle) as a within- subjects factor and time as a between-

subjects factor. One-sample t tests were used to determine the significance of the 

DR (compared with zero discrimination) for each group. All tests used a 

significance level of p = 0.05 and were two-tailed.  

2.4.Drugs 

Electrophysiological recordings. The unselective NO synthetase (NOS) 

antagonist Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) was 

purchased from Sigma-Aldrich S.r.L., Italy; it was maintained at -20°C. 2 mM, 200 

µM and 50 µM L-NAME aCSF solutions were daily prepared and the slice was 

perfused with it at least 40 min before the application of the induction protocol. The 

nNOS selective antagonist NPA was purchased from Tocris (Cookson, Ellisville, 

MO), dissolved in 0.9% saline solution at a stock concentration of 20 mM and kept 

refrigerated at -20°C. Fresh solutions of NPA 20 µM containing aCSF were daily 

prepared by 1:1000 dilution of stock solution in aCSF. Slices were perfused with 

NPA 20 µM 40 min before the application of the induction protocol. 

The soluble guanilate cyclase (sGC) antagonist 4H-8-Bromo-1,2,4-

oxadiazolo[3,4-d]benz[b][1,4]oxazin-1-one (NS2028) was purchased from Sigma-

Aldrich S.r.L., Italy, dissolved in DMSO in a 20 mM stock solution and maintained 

at –20°C. Fresh solutions of NS2028 0.5 µM containing aCSF were daily prepared 

by 1:400000 dilution of stock solution in ACSF. Slices were perfused with NS2028 

0,5 µM 30 min before the application of the induction protocol as reported (Monfort 

et al., 2002).  

The cGMP-dependent protein kinase (PKG) antagonist (9S,10R,12R)-

2,3,9,10,11,12-Hexahydro-10-methoxy-2,9-dimethyl - 1 - oxo - 9, 12 - epoxy - 1 H - 

diindolo [ 1, 2, 3- fg: 3', 2', 1' -  kl]pyrrolo  [3,4i] [1,6] benzodiazocine-10-carboxylic 
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acid, methyl ester (KT5823) was purchased from Tocris (Cookson, Ellisville, MO) 

and dissolved in DMSO in a 2 mM stock solution. Fresh solutions of KT5823 2 µM 

containing aCSF were prepared daily by 1:1000 dilution of stock solution in ACSF. 

Slices were perfused with KT5823 2 µM 10-30 min before the application of the 

induction protocol. 

The NO donor 2-(N,N-Diethylamino)-diazenolate 2-oxide sodium salt hydrate 

(DEA/NO) was purchased from Sigma-Aldrich S.r.L., Italy, and it was maintained 

at –20°C. Because of the pH and temperature dependent stability of the 

compound, stock solutions 3 mM were daily prepared by dissolving DEA/NO in 

NaOH 10 mM. DEA/NO 3 µM containing aCSF was prepared immediately before 

the perfusion by 1:1000 dilution of stock solution in aCSF (t1/2 DEA/NO= 16 min 

pH=7.4 T=21°C; =2 min pH7.4 T=32°C); the slice was perfused 5 min before until 

the end of the 5Hz-LFS 1350p.  

The acetylcholinesterase (AchE) resistant cholinergic agonist 2-Hydroxyethyl 

trimethylammonium chloride carbamate (carbachol) was purchased from Sigma-

Aldrich S.r.L., Italy, and it was maintained at room temperature. 50 mM stock 

solutions were prepared by dissolving carbachol in bidistilled H2O and conserved 

up to 1 week at –20°C. 50 µM Cch containing aCSF was daily prepared by 1:1000 

dilution of stock solution in aCSF. 

The CB1 receptor selective antagonist N-(Piperidin-1-yl)-5-(4-iodophenyl) - 1 - 

(2, 4 - dichlorophenyl) - 4 - methyl - 1 H - pyrazole - 3 - carboxamide (AM251) was 

purchased from Tocris (Cookson, Ellisville, MO), dissolved in pure ethanol  in a 2 

mM stock solution and maintained at -20°C. Fresh 1 µM AM251 solutions were 

daily prepared by 1:2000 dilution of stock solution in aCSF. The slice was perfused 

with AM251 since 20 min before the application of the induction protocol.  
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The CB1 receptor selective agonist N-(2-Chloroethyl)-5Z,8Z,11Z,14Z-

eicosatetraenamide (ACEA) was purchased from Tocris (Cookson, Ellisville, MO), 

and supplied in a 5 mg/ml stock solution pre-dissolved in pure ethanol. Fresh 1 µM 

ACEA solutions were daily prepared by dissolving the stock in aCSF. The slice 

was perfused with ACEA since 20 min before the application of the induction 

protocol in synaptic plasticity experiments and for 20 and 60 min in basal synaptic 

transmission experiments.  

The CB1/2 non-selective agonist (R)-(+)-[2,3-Dihydro-5-methyl-3-(4-  

morpholinylmethyl) pyrrolo [1,2,3-de] - 1,4 - benzoxazin -6- yl-1-

naphthalenylmethanone mesylate (WIN55,212-2) was purchased from Tocris 

(Cookson, Ellisville, MO), dissolved in pure ethanol in a 2 mM stock solution and 

maintained at -20°C. Fresh 2 µM WIN55,212-2 solutions were daily prepared by 

1:1000 dilution of stock solution in aCSF. The drug was applied for 20 min and 

then washed out. 

Behavioural experiments. The drugs used were AM251 and NPA (see above 

for details). Control infusions for NPA experiments consisted of 0,9% saline while 

for AM251 consisted of 0,1% EtOH containing 0,9% saline. NPA was infused at a 

concentration of 2 µM/side and AM251 was infused at a concentration of 10 

µM/side. For both drugs, saline controls and 0.1% EtOH sham controls the volume 

infused was 1 µL. 
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3. RESULTS 

3.1. Role of the NO and eCBs in the synaptic plasticity in Prh cortex 

In this section are reported the results of electrophysiological recordings 

performed to clarify the role of NO and eCBs in LTP and muscarinic dependent 

LTD. Since it was not observed any difference between different kind of controls 

(external, interleaved, Sham EtOH 0.1%, Sham DMSO 0.1%) in each laboratory, 

Bologna and Bristol,  all the controls are merged together. 

3.1.1. Role of the NOS/sGC/PKG pathway in the 5 Hz-induced LTD 

(Bologna) 

The first subset of experiments showed that the application of a 5 Hz LFS 

induced LTD in the Prh of male juvenile Sprague-Dawley rats in control conditions 

(Fig 3.1. A, n=11, baseline: 94.5% ± 2.5%; 60 min follow-up: 76.9% ± 6.1%; p < 

0,01) but LTD was blocked in presence of the NOS antagonist L-NAME (2 mM) 

(Fig 3.1. B, n=6, baseline: 100.6% ± 1.2%; 60 min follow-up: 94.3% ± 4.6%; p > 

0.05), of the sGC antagonist NS2028 (0.5 µM) (Fig 3.1. C, n=7, baseline: 97.4% ± 

1.7%; 60 min follow-up: 97.9% ± 3.5%; p > 0.05), and of the PKG antagonist 

KT5823 (2 µM) (Fig 3.1. D, n=4, baseline: 99.5% ± 3.7%; 60 min follow-up: 93.6% 

± 2.1%; p > 0.05). There was a significant difference between the magnitude of the 

LTD between controls and each of the other group (p < 0.01). 

In a second subset of experiments it has been shown that the application of a 

sub-threshold weak 5 Hz LFS, consisting in 1350 instead of 3000 pulses, failed in 

inducing LTD (Fig 3.2. A, n=9, baseline: 98.0% ± 1.7%; 60 min follow-up: 93.2% ± 

4.2%; p > 0.05) and the bath application of the NO donor DEA/NONOate 

(DEA/NO, 3 µM) did not affect basal synaptic transmission (Fig 3.2. B, n=4; p > 

0.05) but the co-application of the two protocols determined induction of a robust 
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LTD (Fig 3.2. C, n=9, baseline: 97.5% ± 2.5%; 60 min follow-up: 78.6% ± 5.1%; p 

< 0.01). There was a significant difference between the magnitude of the LTD 

induced with the weak 5 Hz LFS and with the co-application of that stimulation with 

DEANONOate 3 µM (p < 0.01). These results indicate a pivotal role for the 

NOS/sGC/PKG pathway in the induction of 5 Hz LTD (see section 4. for 

discussion). 

3.1.2. Role of the NOS/sGC/PKG pathway in the Cch-induced LTD 

(Bologna) 

The bath application of Cch (50 µM) for 10 min (Cch-LTD) in the Prh of male 

juvenile Sprague-Dawley rats determined the induction of a robust LTD (Fig 3.3. A, 

n = 21, baseline: 98.8% ± 1.1%; 60 min follow-up: 76.4% ± 4.2%, p<0.01). The 

NOS antagonist L-NAME (2 mM) or the sGC antagonist NS2028 (0.5 µM) co-

applied to Cch blocked Cch-LTD induction (Respectively: for L-NAME, Fig 3.3. B, 

n=8, baseline: 100.4% ± 1.0%; 60 min follow-up: 101.8% ± 4.6%, p>0.05; for 

NS2028, Fig 3.3. C, n=8, baseline: 98.4% ± 1.3%; 60 min follow-up: 94.5% ± 

5.1%, p>0.05). There was a significant difference in the magnitude of the LTD 

induced in control conditions and in presence of L-NAME or NS2028 (p < 0.05). 

These results indicate a role for NOS/sGC pathway in the induction of CCh-

LTD (see section 4. for discussion). 

The PKG antagonist KT5823 was used in another set of experiments carried 

out between Bologna and Bristol and that is going to be described in the next 

section. 
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3.1.3. Role of the NOS/sGC/PKG pathway in the Cch-induced LTD (Bristol) 

In order to confirm the data collected in Bologna, in Bristol I performed field 

potential electrophysiological recordings to verify the role of NOS and PKG in the 

Cch-LTD in the Prh of male juvenile Dark Agouti rats (see section 2.2. for 

methodological details).  

The first subset of experiments showed that 10 min Cch (50 µM) bath 

application determined LTD induction (Fig 3.4. A, n = 21, baseline: 98.8% ± 1.1%; 

60 min follow-up: 76.4% ± 4.2%, p<0.01) and that the NOS antagonist L-NAME 

successfully blocked Cch-LTD if applied at 200 µM (Fig 3.4. C, n = 9, baseline: 

104.0% ± 2.5%; 60 min follow-up: 101.7% ± 3.3%, p>0.05) and 2 mM (Fig 3.4. D, 

n = 5, baseline: 101.3% ± 2.3%; 60 min follow-up: 101.9% ± 3.8%, p>0.05) but not 

at 50 µM (Fig 3.4. B, n = 7, baseline: 98.6% ± 2.6%; 60 min follow-up: 84.0% ± 

5.3%, p<0.01). There was a significant difference in the magnitude of LTD induced 

in control conditions and in presence of L-NAME 200 µM and 2 mM (p < 0.01) but 

not 50 µM (p > 0.05). Also, I showed that the selective antagonist of the neuronal 

isoform of the NOS (nNOS) NPA (20 µM) blocked the induction of Cch-LTD (Fig 

3.4. D, n = 5, baseline: 102.8% ± 1.4%; 60 min follow-up: 94.5% ± 5.4%, p<0.01). 

There was a significant difference in the LTD induced in control conditions and in 

presence of NPA 20 µM (p < 0.05). 

The second subset of experiments showed that the PKG antagonist KT5823 (2 

µM) did not affect Cch-LTD induction (Fig 3.4. E, n = 7, baseline: 101.8% ± 1.2%; 

60 min follow-up: 84.6% ± 2.4%, p<0.01). There was not any significant difference 

in the magnitude of LTD induced in control conditions and in presence of KT5823 

(2 µM) (p > 0.05). 

These results confirm the role of NO in the induction of muscarinic dependent 

LTD, as previously verified in the first part of this study carried out in Bologna. 
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Also, Cch-LTD does not rely on the PKG activation, unlikely to what observed for 5 

Hz LTD, that’s still M1 dependent but induced with electrical instead of chemical 

stimulation (Jo et al., 2006). The possible reasons for this discrepancy are 

discussed in section 4. 

3.1.4. Role of the NOS in the TBS-induced LTP (Bristol) 

The bath application of L-NAME at both 200 µM (Fig 3.6. B, n = 3, baseline: 

102.1% ± 1.9%; 60 min follow-up: 131.6% ± 5.6%, p<0.01) and 2 mM (Fig 3.6. C, 

n = 6, baseline: 101.4% ± 1.7%; 60 min follow-up: 120.0% ± 5.3%, p<0.01) did not 

affect LTP induction compared to controls (Fig 3.6. A, n = 26, baseline: 101.4% ± 

1.7%; 60 min follow-up: 114.8% ± 2.8%, p<0,01). There was not any significant 

difference in the magnitude of the LTP induced in the three different conditions. (p 

> 0.05). These data show that NOS is not involved in the induction of LTP. For this 

reason I did not further verify the role of sGC and PKG in TBS-induced LTP since 

these two enzymes are sequentially activated after NO production. 

3.1.5. Effect of the cannabinoid receptors  CB1 and CB2 activation on the 

basal synaptic transmission (Bristol) 

The selective CB1 agonist ACEA (1 µM) did not affect basal synaptic 

transmission in the Prh of male juvenile Dark Agouti rats when bath applied for 

either 20 min (Fig 3.7. A, n = 6, p > 0.05) or 60 min (Fig 3.7. B, n = 6, p>0.05). The 

same lack of effect has been observed after the bath application of the CB1/CB2 

not selective agonist WIN55,212-2 (2 µM) for 20 min (Fig 3.7. C, n = 4, p > 0.05). 

3.1.6. Role of the CB1 activation in 5 Hz-induced LTD (Bristol) 

Both ACEA (1 µM) (Fig 3.8. B, n = 7, baseline: 98,5% ± 3.1%; 60 min follow-

up: 79.7% ± 2.5%, p<0.01) and AM251 (1 µM) (Fig 3.8. C, n = 5, baseline: 93.3% 

± 1.3%; 60 min follow-up: 76.6% ± 7.2%, p<0.01) did not affect the induction of  5 

Hz LTD compared to controls run in presence of EtOH 0,1% (Fig 3.8. A, n = 5, 
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baseline: 92.6% ± 4.9%; 60 min follow-up: 83.9% ± 1.2%, p<0.01). There was no 

significant difference in the magnitude of LTD induced in presence of EtOH 0.1%, 

ACEA (1 µM) and AM251 (1 µM) (p > 0.05). 

 3.1.7. Role of the CB1 activation in Cch-induced LTD (Bristol) 

Both ACEA (1 µM) (Fig 3.9. B, n = 6, baseline: 96.5% ± 1.4%; 60 min follow-

up: 87.6% ± 3.4%, p < 0.01) and AM251 (1 µM) (Fig 3.9. C, n = 6, baseline: 95.3% 

± 4.9%; 60 min follow-up: 81.8% ± 5.5%, p < 0.01) did not affect the induction of 

Cch-LTD compared to controls (Fig 3.9. A, n = 21, baseline: 98.8% ± 1.1%; 60 min 

follow-up: 76.4% ± 4.2%, p < 0.01). There was no significant difference in the 

magnitude of LTD induced in control conditions and in presence of ACEA (1 µM) 

and AM251 (1 µM) (p > 0.05). The results illustrated in this and the previous 

section, indicate that EC-dependent transmission is not involved in the induction of 

muscarinic dependent LTD in the Prh cortex of the rat, induced with both electrical 

and chemical stimulation (see section 4. for discussion). 

3.1.8. Role of the CB1 activation in TBS-induced LTP (Bristol) 

Application of TBS determined the induction of a robust LTP (Fig 3.10. A, n = 

26, baseline: 99.3% ± 0.7%; 60 min follow-up: 114.8% ± 2.8%, p < 0.01) in the Prh 

of juvenile male Dark Agouti rats. In order to assess the role of the EC 

transmission in the induction of TBS-LTP, the CB1 agonist ACEA (1 µM) and 

antagonist AM251 (1 µM) were bath applied. As shown in Fig 3.10., both ACEA (1 

µM) (Fig 3.10. B, n = 12, baseline: 98.9% ± 1.3%; 60 min follow-up: 103.2% ± 

4.0%, p > 0.05) and AM251 (1 µM) (Fig 3.10. C, n = 8, baseline: 96.5% ± 0.6%; 60 

min follow-up: 97.1% ± 2.8%, p > 0.05) both blocked the induction of  TBS-LTP. 

There was no significative difference in the LTP magnitude between controls and 

in presence of ACEA (1 µM) (p > 0.05) and between controls and AM251 (1 µM) (p 

> 0.05) but there was a significant difference between controls and AM251 (1 µM) 
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. These results indicate a role for EC-dependent transmission in the LTP induction 

in the Prh cortex of the rat (see section 4. for discussion). 

3.1.9. Role of the astrocytes in the TBS-induced LTP (Bristol) 

Even if eCBs are usually associated to the depression of synaptic transmission 

(see section 1.4. for details), recent studies showed that probably this is a narrow 

vision of the phenomenon, suggesting a double functional role for eCBs in both 

potentiation and depression of synaptic transmission (Abush and Akirav, 2009; 

Navarrete and Araque, 2010). Expecially, Navarrete and Araque showed in the 

CA1 of hippocampal slices that eCBs, that are activity dependently released by 

neurons, induce depression when they bind the CB1 on the presynaptic terminal, 

and potentiation when they bind the CB1 on the proximal astrocytes via increase 

in the astrocyte intracellular Ca2+ and, in turn, glutamate release and binding to the 

presynaptic mGluR1. Since in this study I observed a role for eCBs in the LTP 

induction in the Prh of juvenile male Dark Agouti rats, in this section I evaluated 

the role of astrocytes i LTP induction by applying TBS on slices pre-incubated for 

at least 50 min in aCSF added with the glial toxin fluoracetate 5 mM (FAC) 

(Henneberger et al., 2010). 

Application of TBS determined the induction of a robust LTP (A, n = 26, 

baseline: 99.3% ± 0.7%; 60 min follow-up: 114.8% ± 2.8%, p<0.01) in the Prh of 

juvenile male Dark Agouti rats. The pre-incubation of the slice in aCSF containing 

FAC (5 mM; at least 50 min) does not affect the magnitude of LTP (B, n = 6, 

baseline: 100.1% ± 1.8%; 60 min follow-up: 127.2% ± 10.9%, p<0.01). These 

results indicate that astrocytes are not involved in the induction of LTP (see 

section 4. for discussion). 
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3.2. Role of the NO and eCBs in visual recognition memory acquisition 

The behavioural experiments were kindly performed by dr Gareth Barker under 

the supervision of dr Clea Warburton. The drugs were locally infused into the Prh 

of a rat via bilaterally implanted cannulas (see section 2.4. for methodological 

details). The recognition memory was quantitatively evaluated via the spontaneous 

preferential exploration of a novel versus a familiar object (Ennaceur and 

Delacour, 1988) using delays of 20 min and 24 hours. 

 
3.2.1. Effect of the neuronal NOS (nNOS) in the acquisition of visual 

recognition memory (Bristol) 

The selective antagonist for the neuronal isoform of NOS (nNOS) N-ω- propyl 

L arginine (NPA, 2 µM) was locally infused into a rat’s Prh via bilaterally implanted 

cannulas (Warburton et al., 2003) (Fig. 2.3.). Recognition memory was assessed 

with spontaneous novel object exploration task (Ennaceur and Delacour, 1988), 

using delays of 20 min and 24 h. For each delay, NPA or vehicle was infused 

15min before the initial familiarization phase in order to test the effect of blocking 

nNOS during acquisition. Analysis of the discrimination at test revealed a 

significant drug by delay interaction [F(1,20)=12.99, p<0.01] and a significant 

effect of drug F[1,20)= 18.18, p<0.001] but no significant effect of delay [F1,20)= 

4.09, p>0.05]. Analysis of the significant main effects revealed that the NPA 

infused animals were significantly impaired compared to the vehicle infused 

animals at the 24h (p<0.001) but not the 20 min delay (p>0.1). Additional analysis 

confirmed that the vehicle infused animals discriminated between the novel and 

familiar objects at both delays tested [20min t(9)= 4.50, p<0.001; 24h t(11)= 7.07, 

p<0.001]; in contrast the NPA infused animals only showed discrimination between 

the novel and familiar object at the 20min delay [t(9)= 2.76, p<0.05] but not at the 
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24h delay [t(11)= -1.13, p>0.1]. Analysis of the time taken to complete the sample 

phase and the amount of exploration completed in the sample and test phases 

revealed no significant interaction between treatment and delay [for all F<1.0, 

p>0.1] and no significant effect of drug [time to complete sample phase F(1,20)= 

2.78, p>0.1; exploration in sample phase F<1.0, p>0.1; exploration in test phase 

F<1.0, p>0.1]. However there was a significant effect of delay on the amount of 

exploration completed in the test phase [F(1,20)= 4.88, p<0.05] which reflected the 

fact that both vehicle and NPA infused animals spent significantly more time 

exploring the objects at the 20min delay than the 24h delay; there was no 

significant effect of delay on the amount of time taken to complete the sample 

phase [F<1.0, p>0.1] and the amount of exploration completed in the sample 

phase [F(1,20)=2.36, p>0.1] (See table  3.1. for means). 

3.2.2. Effect of the cannabinoid receptor 1 (CB1) in the acquisition of 

visual recognition memory (Bristol) 

AM251 (2 µM) or vehicle was infused 15 min before the training phase, in order 

to investigate the role of CB1 in the acquisition of new visual recognition memory. 

Analysis of the discrimination at test revealed a non significant drug by delay 

interaction [F(1,18)<1.0, p>0.1] a non significant effect of drug [F(1,18)<1.0, p>0.1] 

and no significant effect of delay [F(1,18)<1.0, p>0.1]. Analysis of the significant 

main effects revealed that the AM251 infused animals were not significantly 

impaired compared to the vehicle infused animals at the 24h (p>0.01) and the 20 

min (p>0.01). Additional analysis confirmed that the vehicle infused animals 

discriminated between the novel and familiar objects at both delays tested [20min 

t(9)= 5.19, p<0.001; 24h t(9)= 8.28, p<0.001], just as the AM251 infused animals 

[20min t(9)= 2.93, p<0.05; 24h t(9)= 7.66, p<0.001]. Analysis of the time taken to 

complete the sample phase and the amount of exploration completed in the 
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sample and test phases revealed no significant interaction between treatment and 

delay [time to complete sample phase F(1,18)<1.0, p>0.1; exploration in sample 

phase F(1,18)=4.36, p>0.05; exploration in test phase F(1,18)<1.0, p>0.1] and no 

significant effect of drug [for all F(1,18)<1.0, p>0.1]. Also there was not a 

significant effect of delay on the time taken to complete the sample phase and the 

amount of exploration completed in the sample [time to complete sample phase 

F(1,18)= 2.16, p>0.1; exploration in sample phase F(1,18)<1.0, p>0.1]; however 

there was a significant effect of delay on the amount of exploration completed in 

the test phase [F(1,18)= 7.42, p<0.05] which reflected the fact that both vehicle 

and AM251 infused animals spent significantly more time exploring the objects at 

the 20min delay than the 24h (See table  3.1. for means). 

3.3. Early impairment in basal synaptic transmission and LTD in the 

perirhinal cortex of Tg2576 mice 

These results show an early impairment in the basal synaptic transmission and 

LTD induction in Prh of 3 month old transgenic mice carrying the Swedish 

mutation on the gene for the APP (Tg2576), an animal model widely used for the 

systematic investigation of  AD (see section 2.3. for methodological details). Field 

potential recordings were performed on Prh containing brain slices (see section 

2.3. for methodological details). I observed a significant impairment in the 

input/output (I/O) curve at 200 mV of stimulation but not at lower voltages (Fig 

3.12. A, at 200 mV, littermate controls, n=7: 1.53 mV ± 0.09 mV; Tg2576, n=8: 

1.09 mV ± 0.10 mV, p < 0.01). The application of 5 Hz LFS determines the 

induction of a robust LTD in the Prh from littermate controls (Fig 3.12. B, n = 5, 

baseline: 96.2% ± 1.2%; 60 min follow-up: 81.9% ± 4.0%, p < 0.01); the same 

stimulation protocol does not induce LTD in the Prh from Tg2576 (Fig 3.12. C, n = 

8, baseline: 104.6% ± 2.6%; 60 min follow-up: 97.9% ± 3.4%, p > 0.05). The 
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magnitude of LTD between littermate controls and Tg2576 is significantly different 

(p < 0.01). 
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Fig 3.1.   Role of NO in 5 Hz-induced LTD in Prh in brain slices from juvenile Sprague-Dawley rats.  5 Hz-induced LTD (A, n=11, p<0.01) is blocked by 

antagonists of the NOS (L-NAME; 2 mM) (B, n=6, p>0.05), sGC (NS2028; 0.5 µM) (C, n=7, p>0.05) and PKG (KT5823; 2 µM) (D, n=4, p>0.05). Black 

bar: 5Hz-LFS. In this and in the following figures data are shown as mean values ± S.E.M. Scale bar: 20 ms, 1 mV (in this and following figures) 
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 Fig 3.2. Role of NO in 5 Hz-induced LTD in Prh in brain slices from juvenile Sprague-Dawley rats.  Neither a weak 5 Hz LFS consisting in 1350 pulses (A, 

n=9, p>0.05) nor bath application of the NO donor DEA/NONOate (3 µM) (B, n=4, p>0,05) induce LTD, but the co-application of the two protocols induce 

a robust and persistent LTD (C, n=9, p<0,01).   
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 Fig 3.3. Role of the NO/sGC pathway in CCh-induced LTD in Prh in brain slices from juvenile Sprague-Dawley rats.  Bath application of Cch 50 µM for 10 

min induces LTD (A, n=21, p<0.01) in control slices, but not in slices pre-treated with the NOS antagonist L-NAME (2 mM) (B, n=8, p>0.05) or the sGC 

antagonist NS2028 (0.5 µM) (C, n=9, p>0,05).  Black bar: Cch 50 µM 
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Fig 3.4. Role of NO in CCh-induced LTD in Prh in brain slices from juvenile Dark Agouti rats.  
Bath application of Cch 50 µM for 10 min induces LTD in control slices (A, n=21, p<0.01) and in 

slices pre-treated with the NOS antagonist L-NAME 50 µM (B, n=7, p<0.01) but not in those pre-

treated with L-NAME 200 µM (C, n=9, p>0.05) or 2 mM (D, n=5, p>0.05) or with the nNOS 

selective antagonist NPA (E, n=5, p<0.01).  Black bar: Cch 50 µM 
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Fig 3.5. Role of  PKG in CCh-induced LTD in Prh in brain slices from juvenile Dark Agouti rats.  Bath application of Cch 50 µM for 10 min induces LTD in 

control slices (A, n=21, p<0.01). The PKG antagonist KT5823 (2 µM) does not affect Cch-LTD induction (B, n=7, p<0,01).  Black bar: Cch 50 µM 
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Fig 3.6. Role of NO in TBS-induced LTP in Prh in brain slices from juvenile Dark Agouti rats. TBS induces a robust LTP (A, n=26, p<0,01) in control 

slices. LTP induction is not affected by the NOS antagonist L-NAME 200 µM (B, n=4, p<0,01) or 2 mM (C, n=6, p<0,01).  Black arrow: TBS 
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Fig 3.7. Role of CB1 in basal synaptic transmission in Prh in brain slices from juvenile Dark Agouti rats. Basal synaptic transmission is not affected by 

bath application of the CB1 selective agonist ACEA (1 µM) for 20 min (A, n=6, p>0.05) or 60 min (B, n=6, p>0.05), or the CB1/CB2 agonist WIN55,212-2 

(2 µM) for 20 min (C, n=4, p>0.05).  
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 Fig 3.8. Role of CB1 in 5Hz-induced LTD in Prh in brain slices from juvenile Dark Agouti rats. 5Hz-induced LTD (A, n=11, p<0.01) is not affected by 

bath application of the CB1 selective agonist ACEA (1 µM) (B, n=7, p<0.01) or the CB1 selective antagonist AM251 (1 µM) (C, n=5, p<0.01). Black bar: 

5Hz-LFS 

 

C 

A B 



 118

 

0%

20%

40%

60%

80%

100%

120%

140%

0 10 20 30 40 50 60 70 80 90 100
Time (min)

N
o
rm

a
lis

e
d
 f

E
P
S
P
 A

m
p
lit

u
d
e
 (

%
)

CONTROL

1

2

3

0

1

01020

321

-1.5

-1.3

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 10 20 30 40 50 60 70 80 90 100

-1,5

-1,3

-1,1

-0,9

-0,7

-0,5

-0,3

-0,1

0,1

0,3

0,5

0 10 20 30 40 50 60 70 80 90 100

-1,5

-1,3

-1,1

-0,9

-0,7

-0,5

-0,3

-0,1

0,1

0,3

0,5

0 10 20 30 40 50 60 70 80 90 100

 

0%

20%

40%

60%

80%

100%

120%

140%

0 10 20 30 40 50 60 70 80 90 100
Time (min)

N
o
rm

a
lis

e
d
 f

E
P
S
P
 A

m
p
lit

u
d
e
 (

%
)

1

2

3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 10 20 30 40 50 60 70 80 90 100

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 10 20 30 40 50 60 70 80 90 100

1 2 3

0

1

01020

ACEA 1 μM

 

0%

20%

40%

60%

80%

100%

120%

140%

0 10 20 30 40 50 60 70 80 90 100
Time (min)

N
o
rm

a
lis

e
d
 f

E
P
S
P
 A

m
p
lit

u
d
e
 (

%
)

AM251 1 μM
1

2

3

0

1

01020

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 10 20 30 40 50 60 70 80 90 100

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 10 20 30 40 50 60 70 80 90 100

1 32

 

C 

A B 

Fig 3.9. Role of CB1 in Cch-induced LTD in Prh in brain slices from juvenile Dark Agouti rats. Cch- LTD (A, n=21, p<0.01) is not affected by bath 

application of the CB1 selective agonist ACEA (1 µM) (B, n=7, p<0.01) or the CB1 selective antagonist AM251 (1 µM) . (C, n=5, p<0.01). Black bar: 

Cch 50 µM 
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Fig 3.10. Role of CB1 in TBS-induced LTP in Prh in brain slices from juvenile Dark Agouti rats. TBS-induced LTP (A, n=26, p<0.01) is blocked by bath 

application of the CB1 selective agonist ACEA (1 µM) (B, n=13, p>0.05) or the CB1 selective antagonist AM251 (1 µM) (C, n=8, p>0.05). Black arrow: 

TBS 
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Fig 3.11. Role of astrocytes in TBS-induced LTP in Prh in brain slices from juvenile Dark Agouti rats. TBS application induces a robust LTP (A, n=26, p<0.01); 50 

min pre-incubation of the slices in aCSF containing the glial toxin FAC (5 mM) does not affect LTP induction (B, n=6, p<0.01). Black arrow: TBS 
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Fig 3.12. Role of NO and endocannabinoids in visual recognition memory acquisition in juvenile Dark Agouti rats. A. Infusion of the nNOS selective antagonist 

NPA (2 µM) in the Prh impairs longer-term (24 h) but not shorter-term (20 min) recognition memory. Data are presented, for each group, as mean (±SEM) DR 

(proportion of additional time spent exploring a novel rather than a familiar object). For control animals,  DR was significantly different from zero (i.e. they 

discriminate between novel and familiar) at both delays, whereas for NPA (2 µM) treated animals DR was significantly different from zero at 20 min but not at 

24 h. *p < 0.01 difference between the 20 min and 24 h delay within NPA-treated animals; ***p < 0.001, difference between vehicle- and NPA-treated animals at 
the 24 h delay. B. Infusion of the CB1 selective antagonist AM251 (10 µM) in the Prh does not affect recognition memory at both delays.  
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Infusion Delay Time to complete acquisition phase (s) Total exploration in 

acquisition phase (s) 

Total exploration in test 

phase 

Vehicle 20 min (n=10/group) 190 ± 14 34 ± 3 33 ± 3 

NPA 210 ± 13 34 ± 2 31 ± 2 

  F(1,20) < 1.0; NS F(1,20) < 1.0; NS F(1,20) < 1.0; NS 

Vehicle 24 hours (n=12/group) 214 ± 11 36 ± 1 26 ± 1 

NPA 227 ± 6 35 ± 1 27 ± 2 

  F(1,20) < 1.0; NS F(1,20) < 1.0; NS F(1,20) < 1.0; NS 

Vehicle 20 min (n=10/group) 174 ± 15 40 ± 0.1 30 ± 3 

AM251 191 ± 17 38 ± 1 34 ± 3 

  F(1,18) < 1.0; NS F(1,18) < 1.0; NS F(1,18) < 1.0; NS 

Vehicle 24 hours (n=10/group) 169 ± 20 36 ± 2 25 ± 3 

AM251  154 ± 18 39 ± 0.7 25 ± 2 

  F(1,18) < 1.0; NS F(1,20) < 1.0; NS F(1,18) < 1.0; NS 

 
 

Tab 3.1. Role of NO and endocannabinoids in visual recognition memory acquisition in juvenile Dark Agouti rats: effect of the nNOS selective antagonist NPA 

and CB1 selective antagonist AM251 on general exploration behaviour. No significant (NS) differences in total exploration times were observed between control 

and treated animals; hence, the drugs had no significant effect on general exploration behaviour.  
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Fig 3.13. Early impairment in basal synaptic transmission and LTD in the perirhinal cortex of Tg2576 mice. Input/output relationship revealing significant 

differences in basal synaptic transmission at 200 µA but not at lower stimulation intensities (A,   littermate controls, n=7,   Tg2576, n=8). 5 Hz LFS 
induces a robust LTD in Prh in brain slices from littermate controls (B, n=5, p<0.01) but not in those from Tg2576 mice (C, n=8, p>0.05). Black bar: 5Hz-LFS 
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4. DISCUSSION 

4.1.  Role of NOS/sGC/PKG and CB1 in rat perirhinal cortex LTD and LTP 

induction 

In the last decade many studies tried to clarify the cellular correlates underlying 

synaptic plasticity in Prh (Bilkey, 1996; Ziakopoulos et al., 1999; Cho et al., 2000; 

Massey et al., 2001, 2004; Aicardi et al., 2004; Jo et al., 2006; Jo et al., 2008; 

Griffiths et al., 2008; Seoane et al., 2009). The induction of LTD in the rat Prh has 

been shown to depend on the activation of different receptors, including glutamate 

ionotropic receptors (NMDAR; KR) (Cho et al., 2000; Park et al., 2006), 

metabotropic glutamate receptors (mGluRs) (Cho et al., 2000; reviewed by Cho 

and Bashir, 2002; reviewed by Bashir, 2002; Jo et al., 2006; Jo et al., 2008), and 

metabotropic acetylcholine (Ach) receptor (muscarinic 1; M1) (Massey et al., 2001; 

reviewed by Bashir, 2002). Several studies have highlighted that LTD may be the 

main cellular correlate of visual recognition memory. In vivo studies showed that 

the neuronal activity is reduced in the Prh of an animal performing a visual 

recognition task (Brown and Wilson, 1987; Fahi et al., 1993; Li et al., 1993; Miller 

et al., 1993; Xiang et al., 1998). This view has been confirmed by 

immunohistochemical observations: the expression of the immediate early gene c-

fos is reduced in the ‘familiar’ hemisphere of the Prh of rats that received the 

paired-viewing protocol (Zhu et al., 1996; Warburton et al., 2003; Massey et al., 

2008). Further in vitro electrophysiological studies confirmed that LTD in acute Prh 

slices represents the the neuronal event related to familiarity acquisition 

(Warburton et al., 2003; Massey et al., 2008, Griffiths et al., 2008).  

LTP induction relies on NMDAR activation (Bilkey, 1996) and requires TrkB 

activation by BDNF (Aicardi et al., 2004), even if the role of this form of synaptic 

plasticity in visual recognition memory is still not clear. 
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Cholinergic neurotransmission has been shown to have a pivotal role in visual 

recognition memory acquisition and LTD induction in the rat Prh (Massey et al., 

2001; Warburton et al., 2003; Winters and Prickaerts 2005; Winters et al., 

2006a,b; Winters et al., 2007). 

There is still lacking evidence of a retrograde messenger able to coordinate 

pre- and post-synaptic changes occurring in Prh for the induction and 

consolidation of synaptic plasticity. Here, I investigated the role of NO (and the 

associated downstream pathway, that is: sGC and PKG) and the cannabinoid 

receptor 1 (CB1) in both LTD and LTP in the Prh of juvenile rats.  

4.1.1.  Role of NOS/sGC/PKG  in LTD and LTP induction in the rat 

perirhinal cortex 

The first part of this study is focused on the role of NOS/sGC/PKG pathway in 

LTD induction in the rat Prh.  NO is a small amphiphillic molecule physiologically 

produced by the enzyme NO synthase (NOS) in response to increased 

intracellular Ca2+. NOS is expressed in three different isoforms: neuronal and 

endothelial (nNOS and eNOS, respectively), that are constitutively expressed and 

are activated by the Ca2+/calmodulin complex, and the inducible isoform (iNOS), 

which is  Ca2+ -independent and it is physiologically expressed at very low levels in 

macrophages and glia. Its expression is induced by an inflammatory insult. NO is 

widely produced throughout the body, and it mainly acts as a relaxant of the 

smooth muscles and therefore represents a major component in the regulation of 

the blood flow (reviewed by Toda and Okamura, 2003). In the vertebrate CNS, NO 

is involved in many functions: i) neuronal proliferation and development (Mize and 

Lo, 2000; Contestabile and Ciani, 2004; Estrada and Murillo-Carretero, 2005), ii) 

synaptic plasticity, memory and learning (Susswein et al., 2004; Garthwaite et al., 

2008; Steinert et al., 2010) iii) neurodegeneration (Contestabile et al, 2003). NO 
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mainly acts through the activation of the downstream enzyme soluble guanylate 

cyclase (sGC), that converts GTP in the second messenger cGMP; cGMP in turn 

activates many targets, including PKG. cGMP is hydrolised to GMP by 11 different 

isoforms of phosphodiesterases (PDEs), that therefore act as negative control 

system on the NO-dependent transmission. For a more extensive overview on NO 

see section 1.3 and subsections.  

NO is involved in the induction of both LTP and LTD in many brain areas 

including hippocampus, cerebellum and prefrontal cortex (Garthwaite & Boulton, 

1995; Holscher, 1997; Prast & Philippu, 2001; Susswein et al., 2004; Garthwaite et 

al., 2008; Steinert et al., 2010). Hippocampal LTP at SC/CA1 excitatory synapses 

requires NOS/sGC/PKG activation: here NO acts as a retrograde messenger 

(Arancio et al., 1996, 2001, Bon and Garthwaite, 2003). Similarly, NO mediates 

hippocampal LTD via Ca2+ release from cyclic ADP-ribose sensitive stores (Reyes-

Harde et al., 1999). The activation of the NOS/sGC/PKG pathawy has been 

demonstrated to be involved in cerebellar heterosynaptic LTD (Shibuki and 

Kimura, 1997; Shin and Linden, 2005) and homosynaptic LTP (Jacoby et al., 

2001).  

Cholinergic neurotransmission has been shown to play a central role in the 

acquisition of visual recognition memory (Massey et al., 2001; Warburton et al., 

2003; Winters et al., 2005, 2006, 2007). Recent studies showed the association 

between M1-dependent LTD and the activation of the NOS/sGC/PKG pathway in 

the prefrontal cortex (Huang et al., 2009), corticostriatal synapses (Centonze et al., 

2003) and lizard neuromuscular junction (Graves et al., 2004). A recent study has 

shown that NO and eCBs signalling cascades interact in the induction of the 

corticostriatal group I mGluR-dependent DHPG-LTD (Sergeeva et al., 2007). M1 is 

a gq-coupled receptor and hence its activation results in PLC activation that 
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converts the phosphatidil inositol bisphosphate (PIP2) in diacylglycerol (DAG) and 

inositol trisphosphate (IP3). DAG is usually associated with protein kinase C (PKC) 

activation while IP3 is responsible for Ca2+ release from intracellular stores. It has 

been recently shown that M1/M3 activation brings to NO production in the rat 

retina (Borda et al., 2005).  

NO synthase is highly expressed in the rat Prh (Liu et al., 2003a,b). 

Furthermore, the induction of 5Hz-LTD in the Prh of juvenile (p28-35) rats is M1- 

dependent (Jo et al., 2006). In addition, bath application of the cholinergic agonist 

carbachol (Cch, 50 µM) for 10 min results in M1-dependent LTD in rat Prh: this 

form of Cch-induced LTD (Cch-LTD) requires intracellular Ca2+ release and protein 

synthesis but does not require PKC and protein phosphatases activation (Massey 

et al., 2001). These observations suggest that M1-dependent LTD and NMDAR-

dependent LTP in Prh may rely on the activation of the NOS/sGC/PKG pathway.  

In the present work, evoked extracellular field potentials were recorded on II/III 

layer of horizontal Prh slices from juvenile (p21-35) rats. Fig 3.1 shows that the 

LTD induced by the application of a low frequency stimulation consisting in 3000 

pulses delivered at 5 Hz (5Hz-LTD) in juvenile (p21-35) Sprague-Dawley rats (A) 

is blocked by bath application of: the NOS antagonist L-NAME (2 mM) (B), the 

sGC antagonist NS2028 (0,5 µM) (C) and the PKG antagonist KT5823 (2 µM) (D). 

These data confirmed that the NOS/sGC/PKG pathway is necessary for the 

induction of 5Hz-LTD, suggesting that NO can be the retrograde messenger 

involved in this form of synaptic plasticity in the Prh of juvenile rats.  

To confirm this result, a second subset of experiments was carried out with an 

opposite approach: instead of blocking NO production, a NO donor, diethylamine 

NONOate (DEA/NO 3 µM), was bath applied. DEA/NO releases NO in a pH- and 

temperature-dependent fashion: at a pH=7.4 and T=32°C, the half-life of DEA/NO 
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is ~ 6 min (Bon and Garthwaite, 2001). Previous studies showed that DEA/NO at 3 

µM does not affect basal synaptic transmission at hippocampal SC/CA1 synapses 

(Bon and Garthwaite, 2003), but it induces a transient depression and subsequent 

potentiation at 300 µM (Bon and Garthwaite, 2001). DEA/NO (300 µM)-dependent 

transient depression does not rely on the activation of sGC; probably it is a 

consequence of the neurotoxic effect of the exogenous NO that, at those 

concentrations, can interfere with the cell oxydative phosphorylation. However,  

the subsequent potentiation has been demonstrated to require sGC activity (Bon 

and Garthwaite, 2001). DEA/NO at 3 µM does not affect basal synaptic 

transmission but causes an increase in intracellular cGMP levels. DEA/NO co-

application with a weak tetanus, unable to induce synaptic plasticity, results in the 

induction of a robust and prolonged LTP (Bon and Garthwaite, 2003). 

Consistently, DEA/NO (3 µM) does not affect basal synaptic transmission in rat 

Prh, as shown in Fig 3.2 B. Fig 3.2 A shows that the application of a weak 5Hz-

LFS consisting of 1350 instead of 3000 pulses is not strong enough to result in 

LTD induction. As shown in Fig 3.2. C, the co-application of the two protocols 

(DEA/NO 3 µM and weak 5Hz-LFS) results in the induction of a robust and 

prolonged LTD. These results suggest that low concentrations of NO are 

necessary but not sufficient for LTD induction, raising the possibility that LFS 

activates other cellular mechanisms involved in LTD, complementing the 

depressing activity of NO.  

Consistently with the work of Massey et al. (2001), I observed that bath 

application of the cholinergic agonist carbachol (Cch, 50 µM) for 10 min induced a 

robust LTD in the Prh cortex of juvenile (p21-35) Sprague-Dawley rats (Fig 3.3. A; 

3.4. A). As shown in Fig 3.3. B, the blockade of NOS by the non selective NOS 

antagonist L-NAME (2 mM) resulted in the inhibition of Cch-LTD induction. 



 129

Consistently with the trend observed in the 5Hz-LTD experiments, the bath 

application of the sGC antagonist NS2028 (0.5 µM) resulted in the blockade of 

Cch-LTD induction.  

As explained in section 2.1, this project has been carried out in two different 

laboratories in slightly different conditions: in Bristol the experiments were 

performed on p28-35 Dark Agouti (DA) rats instead of the p21-35 Sprague-Dawley 

rats used in Bologna (for more details on experimental differences between the 

two laboratories see section 2.1). Therefore, the first series of experiments carried 

out in Bristol was performed in order to confirm the role of NOS in Cch-LTD. As 

shown in Fig 3.4, L-NAME blocked Cch-LTD induction at 200 µM (C) and 2 mM 

(D) but not at 50 µM (B). Finally, since in physiological conditions both eNOS and 

nNOS are constitutively active, and since L-NAME is a non selective antagonist of 

both these constitutive isoforms of NOS, I verified the role of the nNOS in Cch-

LTD. Bath application of the nNOS selective antagonist NPA (20 µM) effectively 

blocked Cch-LTD compared to controls (Fig 3.4. E). This result does not exclude a 

role for eNOS in Cch-LTD, but it confirms the role of the nNOS, providing an 

interesting cellular correlate of the behavioural data discussed below (see section 

3.2 and 4.2). In order to better define the respective potential role for nNOS and 

eNOS in Cch-LTD, a good experimental strategy could be to perform experiments 

on single nNOS, eNOS or double eNOS/nNOS KO mice (Son et al., 1996; 

reviewed by Steinert et al. (2010). Finally, Fig 3.5 shows that PKG is not involved 

in Cch-LTD induction, since bath application of KT5823 did not block Cch-LTD 

induction compared to controls. This is at variance with the results obtained with 

5Hz-LFS application, that showed the involvement of the entire NOS/sGC/PKG 

pathway in LTD induction. It is plausible to assume that Cch-LTD relies on the 

activity of the second messenger cGMP on different effectors from PKG: for 
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instance, it could directly act on cyclic-nucleotide dependent channels (CNC) or on 

voltage gated potassium channels 1(Kv1). Another possible explanation is that the 

chemical protocol is much stronger than the electrical one, i.e. activates multiple 

intracellular pathways: thus, even if PKG was activated by the application of both 

induction protocols, KT5823 did not block Cch-LTD because the activation of other 

downstream Ca2+-dependent mechanisms compensated the PKG blockade. 

Further investigation is needed to explain this discrepancy.  

NO has been very well characterized  as a retrograde messenger in 

hippocampal NMDAR-dependent LTP induction (Arancio et al., 1996; 2001; Puzzo 

et al., 2005; Wang et al., 2005). Therefore, I also verified the possible role of NO in 

Prh LTP. LTP in Prh is NMDAR-dependent (Bilkey, 1996). The NMDAR activation 

is usually strongly associated with NO production. Indeed, nNOS is intracellularly 

co-localized at the postsynaptic density with NMDAR (see section 1.4.1. for 

details). Nonetheless, Fig 3.6 shows that NO is not involved in LTP in Prh, since L-

NAME (200 µM or 2 mM) does not block its induction. 

4.1.2.  Role of CB1 LTD and LTP induction in the rat perirhinal cortex 

The next step in this study was to evaluate the role of eCBs in synaptic 

plasticity in the rat Prh. As described in section 1.5, eCBs are lipidic messengers 

involved in memory, learning and synaptic plasticity, expecially LTD. Their 

production is triggered by the activation of several Gq-coupled receptors, 

includiong group I mGluRs and M1. Gq-coupled receptor activation results in PLC 

activation as a consequence of Ca2+ release from the intracellular stores mediated 

by IP3. PLC is also activated by other several sources of intracellular Ca2+ increase 

(i.e. NMDAR and/or VGCC activation). PLC activation results in the production of 

DAG that is the substrate for diacylglicerol lipase (DGL) that converts DAG in 2 

arachidonyl glicerol (2-AG). 2-AG and anandamide (whose synthetic pathway is 
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still to be clarified) represent the two known eCBs. The eCBs membrane 

transporter (EMT) mediates the eCBs release in the synaptic cleft. Here they act 

presynaptically by binding the CB1, mainly expressed in the CNS, or the CB2, 

mainly expressed in the peripheral nervous system. CB1 is a Gi/o-coupled receptor 

that mediates the decreased activation of adenylate cyclase (AC) and, in turn, 

decreased PKA activity. This should result in decreased glutamate secretion from 

the presynaptic terminals. This phenomenon is regarded as eCB-mediated LTD 

(eCB-LTD), described in many brain areas such as striatum, prefrontal cortex and 

hippocampus (see section 1.5.; reviewed by Heyfetts and Castillo, 2009).  

Since it has been observed high expression of CB1 in Prh (Tsou et al., 1998; 

Liu et al., 2003c), and since M1 is a Gq-coupled receptor, I investigated the 

possible role of eCBs in M1-dependent LTD (both electrically and chemically 

induced) in Prh. Although NO is critically involved in this form of LTD in Prh (as 

discussed in section 4.1.1.), a role of eCBs can not be excluded, since group I 

mGluR-dependent LTD in corticostriatal glutamatergic synapses relies on the 

sequential activation of CB1 and NOS (Sergeeva et al., 2007). Fig 3.7 shows that 

the selective agonist ACEA (1 µM) did not affect basal synaptic transmission in rat 

Prh slices; the same trend was observed with the CB1/2 non selective agonist 

WIN55,212-2 (2 µM). Furthermore, Fig 3.8 and 3.9 show that ACEA (1 µM) or the 

CB1 antagonist AM251 (1 µM) did not affect the induction of both 5Hz-LTD and 

Cch-LTD, compared to control. These result suggests that eCBs are not involved 

in Prh LTD in our experimental conditions. Recent studies have shown that CB1 

activation may play a role in potentiation of synaptic responses in rat hippocampus 

(Abush and Akirav, 2009; Navarrete and Arraque, 2010). It has been shown that 

intraperitoneal injection of AM251 impaired LTP induction at the SC/CA1 

synapses, while the inhibitor of the reuptake and breakdown of the eCBs AM404 
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facilitated it (Abush and Akirav, 2009). Furthermore, a recent elegant study 

showed that eCBs can both induce potentiation and depression in the SC/CA1 

synapses, depending on the cell type on which they act. More precisely, a 

neuronal depolarization results in activity-dependent release of eCBs, which bind 

the presynaptic CB1 and induce depression. But if the eCBs bind the CB1 

expressed on the astrocytes proximal to the site of neuronal depolarization, this 

results in increased Ca2+ concentration in the astrocytic cytosol, causing release of 

glutamate on the presynaptic neuron, which in turn increases glutamate release 

via activation of the presynaptic group I mGluRs (Navarrete and Araque, 2010).  

In order to investigate if a similar involvement of CB1 activation in potentiation 

also occurs in Prh, I carried out LTP experiments in presence of ACEA or AM251. 

As shown in Fig 3.10,C, AM251 (1 µM) blocked LTP, suggesting that CB1 

activation is necessary for LTP induction. On the other hand, Fig 3.10B shows that 

also the agonist ACEA (1 µM) blocks LTP.. Thus, CB1 activation appears 

necessary for LTP induction, because LTP induction is compromised when it is 

blocked. But when CB1 is continuously activated by an agonist (ACEA) LTP is 

inhibited, possibly due to a form of desensitization. This hypothesis needs to be 

verified by further experiments.  

According to the study cited above on the role of astrocytic CB1 in 

hippocampal LTP (Navarrete and Araque, 2010), in order to investigate the role of 

astrocytes in this novel form of CB1-dependent LTP in the Prh cortex of juvenile 

rats, I carried out a series of experiments on Prh slices preincubated with the 

astrocytic toxin fluoracetate (FAC, 5 mM) for at least 50 min (as described by 

Henneberger et al., 2010). As shown in Fig 3.11., the selective astrocytic 

degeneration did not affect LTP induction in the rat Prh. Hence, it remains to be 
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clarified the cellular machinery responsible for this new atypical form of synaptic 

plasticity. 

4.2. Role of nitric oxide and endocannabinoids in the acquisition of visual 

recognition memory 

As described in section 1.4.4 and 1.5.4, several behavioural studies on animal 

models confirmed the role of both NO and eCBs (and the relative signalling 

cascade) in many forms of memory and learning, consistently with the evidence of 

their involvement in synaptic plasticity. 

The cellular correlate of visual recognition memory has been extensively 

explored in the last years. The main approach consisted in the direct infusion of 

drugs into the Prh of bilaterally cannulated rats (reviewed by Brown et al., 2010). 

These drugs mainly consist in agonists or antagonists of membrane receptors. 

The visual recognition memory abilities of the animals were then assessed with 

the spontaneous novel object exploration task. In the training phase of this test, 

the animal familiarizes with two identical objects in an arena in which the animal 

should acquire visual memory. After a certain delay (20 min or 24 h), the animal is 

placed back in the arena where one of the familiar objects is replaced with a novel 

object: if it has memorized the previous objects, it tends to spend more time 

exploring the novel object rather than the familiar one. Hence, if visual recognition 

memory is intact, the ratio of the exploration time between the novel and the 

familial object is high; when visual recognition memory is compromised, the animal 

equally explore both the novel and the familiar object, and the exploration ratio will 

result low. The animals infused with a specific drug are compared with control 

animals receiving saline: the infusion of the drug at different stages of the 

experiment (before or after the training phase, or before the test phase) gives 

information about the stage of visual recognition memory (acquisition, 
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consolidation, retrieval) affected by the drug. So far it has been observed that the 

the AMPA antagonist CNQX impairs both acquisition and retrieval (Winters and 

Bussey, 2005). Futhermore, blockade of NMDAR and group I and II mGluRs 

results in the impairment of visual recognition memory acquisition when tested at 

24 h but not at 20 min (Barker et al., 2006a,b). Blockade of the kainate receptor 

(KR) impairs visual recognition memory acquisition at 20 min but not at 24 h 

(Barker et al., 2006b), just as recently observed when M1 is blocked by 

scopolamine (Tinsley et al., in submission). Also, many lines of evidence underlie 

the pivotal role of cholinergic transmission in visual recognition memory acquisition 

(Warburton et al., 2003; Winters and Prickaerts, 2005; Winters et al., 2006a,b; 

Winters et al., 2007; Massey et al., 2008).  

Recent studies showed the involvement of NO in visual recognition memory: 

the intraperitoneal injection of the non-specific NOS antagonist L-NAME, before 

and immediately after the training phase, successfully blocked visual recognition 

memory acquisition in a spontaneous novel object exploration task at 24 hours but 

not at 1 hour. Furthermore, L-NAME administered before the test phase at 24 

hours rescued the delay-dependent deficit in visual recognition memory 

(Boultadakis et al., 2010a). Another study showed that the systemic administration 

of a NO donor (NCX2057) rescues the visual recognition memory deficit caused 

by the previous systemic administration of the muscarinic antagonist scopolamine 

(Boultadakis et al., 2010b). Moreover, L-NAME systemic administration can rescue 

the visual recognition memory acquisition deficit induced by the NMDAR 

antagonist MK-801 and ketamine (Boultadakis and Pitsikas, 2010). All these 

studies have two major limits: first, L-NAME is a non selective antagonist of NOS, 

therefore it may affect a broad range of physiological functions, including blood 

flow (see section 1.4.); second, the administration was systemic and therefore the 
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drug did not selectively act on Prh. Another recent study showed that 

intrahippocampal infusion of the antagonists of the NOS/sGC/PKG pathway 

results in the impairment of the acquisition and the consolidation of visual 

recognition memory, suggesting that this pathway can exert a critical role in this 

form of memory. Interestingly, it has been shown that NOS/sGC/PKG activation 

leads to the activation of β-adrenergic receptors and, in turn, increases BDNF 

synthesis (Furini et al., 2009). This study has two main limits: the first one is that 

they used Wistar rats, which are characterized by low visual acuity; second, they 

worked on hippocampus, that is not specifically involved in visual recognition 

memory (reviewed by Brown et al., 2001; Brown et al., 2010). 

In order to overwhelm these limits, in the present study I included some 

behavioural results obtained in collaboration with Dr. Clea Warburton. The 

experiments were kindly performed by Dr. Gareth Barker. These experiments 

evaluated the role of NO in visual recognition memory. A selective antagonist for 

the nNOS, N-ω-propyl L arginine (NPA, 2 µM), was bilaterally infused into the Prh 

of Dark-Agouti adult rats. Since nNOS is selectively expressed in neurons and 

does not have a role in the blood flow regulation, we used of a specific antagonist 

for nNOS to avoid possible artifacts due to reduced blood flow in the infused area. 

Furthermore, we used Dark-Agouti rats which are characterized by a relatively 

high visual acuity, compared to other strains. Finally, the intra-Prh injections 

allowed us to evaluate the behavioural effects of the drug selectively acting on the 

brain area of interest. The dose of 2 µM in 1 µL was chosen in order to selectively 

act on the nNOS, since at higher concentrations NPA can lose specificity (supplier 

data, Tocris). As shown in Fig 3.12A, bilateral intra-Prh infusion of NPA (2 µM) 15 

min before the training phase successfully blocked visual recognition memory 

when tested at a delay of 24 hours but not at 20 min. This behavioural evidence is 
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consistent with present electrophysiological data (nNOS is necessary for Cch-LTD, 

see Fig 3.4 E) and with previous studies showing that cholinergic 

neurotransmission in Prh is necessary for visual recognition memory acquistion 

(Warburton et al., 2003; Winters and Bussey, 2005; Winters et al., 2006a,b; 

Winters et al., 2007; Massey et al., 2008).  

A recent study has shown that intra-Prh infusion of scopolamine generates a 

deficit in visual recognition memory acquisition when tested at 20 min but not at 24 

h; the opposite temporal pattern (deficit at 24 h but not at 20 min) was observed 

for the α7 nicotinc antagonist MLA (Tinsley et al., in preparation). The reciprocal 

involvement of muscarinic and nicotinic receptors in visual recognition memory 

acquisition tested at short and long term, is similar to what observed for glutamate 

metabotropic receptors (Barker et al., 2006a,b). Assuming that nNOS is activated 

by M1 activation, my observation that NPA blocks acquisition of visual recognition 

memory when tested at 24 h but not at 20 min appears in temporal contrast with 

data obtained with scopolamine. 

In a second subset of behavioural experiments it has been evaluated the role 

of the CB1 receptor in acquisition of visual recognition memory tested at 20 min 

and 24 h. As shown in Fig. 3.12. B, the CB1 antagonist AM251 (10 µM) did not 

affect visual recognition memory acquisition tested at both time points. This result 

is consistent with the electrophysiological evidence that CB1 is not involved in LTD 

induction. On the other hand, the functional relevance of the observed CB1 

involvement in LTP induction remains to be elucidated, because the relationship 

between LTP in Prh and visual recognition memory is still not defined. 

Interestingly, Abush and Akirav (2009) observed that intra-hippocampal infusion of 

the CB1 antagonist AM251 and the CB1/2 agonist WIN55,212-2 does not affect 

the performance in an inhibitory avoidance test, while the endocannabinoid 
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reuptake and breakdown antagonist AM404 enhances it. Furthermore, in Morris 

water maze test, animals treated both intra-hippocampally and systemically with 

WIN55,212-2, AM251 or AM404, are all impaired in spatial memory compared to 

controls. Also, many studies investigating the role of eCBs in memory and learning 

suggest that CB1 is mainly involved in memory extinction phenomena (Chhatval et 

al., 2005; Varvel et al., 2007). Therefore, the finding that CB1s is not involved in 

visual recognition memory acquisition it’s not surprising. Further investigations are 

required to evaluate the possible role of eCBs in consolidation, retrieval and delay-

dependent impairment of visual recognition memory. Finding an active role for 

CB1 in visual recognition memory might, in turn, help to understand the 

physiological role of LTP in this brain region. 

4.3. Early deficit in the synaptic transmission and plasticity in the 

perirhinal cortex of an Alzheimer’s disease murine model 

Most of the studies on AD carried out on transgenic murine models, including 

the Tg2576 model, have been focused on testing hippocampal functions with 

behavioural experiments on spatial memory, in vitro electrophysiological 

recordings and molecular biology studies (immunohistochemistry, western blots, 

RT-PCR). However, hippocampus is not the only area of the temporal lobe 

affected by the cholinergic loss and by the accumulation of soluble β-amyloid 

oligomers. Therefore, hippocampus-related memory is not the only impaired 

cognitive function in AD patients. In particular, visual recognition memory is highly 

impaired in the very first stages of the disease in humans affected by MCI (Didic et 

al., 2010; Viggiano et al., 2008). Prh is highly innervated by cholinergic fibres 

coming from the forebrain basal nuclei, which exert a pivotal role in Prh activity 

and visual recognition memory (reviewed by Winters et al., 2008; reviewed by 

Brown et al., 2010).  
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For these reasons, in the present study I have investigated synaptic functions 

(transmission and plasticity) in Prh slices from 3 month old Tg2576 mice and from 

littermate controls. The input/output curve presented in Fig 3.13A shows a 

significant deficit in basal synaptic transmission at high intensity of stimulation. 

Furthermore, Fig 3.13B shows that 5Hz-LFS application results in the induction of 

a robust LTD in littermate control but not in Tg2576 mice Prh slices. Considering 

the relationship between LTD in Prh and visual recognition memory, one may 

suppose that the very early deficit in Prh synaptic plasticity might underlie a deficit 

in visual recognition memory. A recent study demonstrated that 5 month old 

Tg2576 mice show a deficit in visual recognition memory when tested in a 

spontaneous novel object exploration task at 4 and 24 hours, but not at 2 min after 

the training phase, compared to littermate controls. The deficit observed was 

successfully reversed by the systemic administration of the calmodulin antagonist 

MK506 (Taglialatela et al., 2008). Interestingly, these results are in contrast with 

another study that showed that 14 month old Tg2576 mice did not show any visual 

recognition memory deficit when tested with the same behavioural protocol at 24 

hours (Hale and Good, 2005). This discrepancy was interpreted by Taglialatela et 

al. as a consequence of the different genetic background of the murine strains 

used to obtain the mutants. It would be worthwhile to perform the same 

experiment at 3 months of age, and to try to evaluate molecular differences 

between Tg2576 and the littermate controls.  These preliminary results suggest 

that the study of Prh alterations in AD can provide a novel experimental platform to 

better understand the etiopathology of the disease, which may lead to new 

therapeutic strategies. 

 



 139

CONCLUSIONS 

The pivotal role of Prh in visual recognition memory is well established, and in the 

last 15 years many behavioural, electrophysiological and molecular studies have 

investigated the cellular and molecular mechanisms underlying this cognitive 

function. In particular, it has been shown that LTD-like rather than LTP-like 

phenomena underlie visual recognition memory formation, and that cholinergic 

neurotransmission is a crucial component.  Although many facets of the synaptic 

functions in Prh have been clarified, there is still lacking evidence of a retrograde 

messenger coordinating pre- and post-synaptic changes in long-term potentiation 

(LTP) and long-term depression (LTD). NO and eCBs have been extensively 

investigated as retrograde messengers in synaptic plasticity in other brain areas, 

and their role in memory and learning is well estabilished.  

In the present study, an integrated behavioural-electrophysiological approach 

was used to evaluate the role of NO and eCBs in synaptic plasticity in the Prh and 

in visual recognition memory. The results obtained indicate that NO is selectively 

involved in LTD induction (both chemically and electrically induced), but not in LTP 

induction. Conversely, the eCB receptor CB1 is selectively involved in LTP, but not 

in LTD.  The latter was an upredicted result, since previous studies in other brain 

regions have shown a selective involvement of this receptor in LTD induction. The 

electrophysiological data were confirmed in behavioural experiments, which 

demonstrate that nNOS plays an important role in the acquisition of visual 

recognition memory, whereas CB1 appears not involved in this process. The role 

of this receptor in LTP induction suggests its possible involvement in other aspects 

of visual recognition memory, which need further investigation.  
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Finally, preliminary data from a transgenic murine model of AD (Tg2576) 

showed a very early impairment (3 months of age) in Prh synaptic transmission 

and plasticity. This is an interesting result, since one of the major goals in AD 

research is to characterize the early stages of the disease in order to improve 

diagnostic and therapeutic tools. Prh may provide a good experimental platform for 

the investigation of the pathogenesis of this debilitating disorder. 
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