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Abstract

Interaction protocols establish how different computational entities can interact with

each other. The interaction can be finalized to the exchange of data, as in communi-

cation protocols, or can be oriented to achieve some result, as in application protocols.

Moreover, with the increasing complexity of modern distributed systems, protocols

are used also to control such a complexity, and to ensure that the system as a whole

evolves with certain features. However, the extensive use of protocols has raised some

issues, from the language for specifying them to the several verification aspects.

Computational Logic provides models, languages and tools that can be effectively

adopted to address such issues: its declarative nature can be exploited for a protocol

specification language, while its operational counterpart can be used to reason upon

such specifications.

In this thesis we propose a proof-theoretic framework, called SCIFF, together

with its extensions. SCIFF is based on Abductive Logic Programming, and pro-

vides a formal specification language with a clear declarative semantics (based on

abduction). The operational counterpart is given by a proof procedure, that allows

to reason upon the specifications and to test the conformance of given interactions

w.r.t. a defined protocol. Moreover, by suitably adapting the SCIFF Framework,

we propose solutions for addressing (1) the protocol properties verification (g-SCIFF

Framework), and (2) the a-priori conformance verification of peers w.r.t. the given

protocol (AlLoWS Framework). We introduce also an agent based architecture, the

SCIFF Agent Platform, where the same protocol specification can be used to program

and to ease the implementation task of the interacting peers.
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Chapter 1

Introduction

A protocol specifies the “rules of encounter” governing a dia-
logue between two or more communicating agents.

Rosenschein and Zlotkin, [126]

Protocols have been used since the beginning of the Computer Science discipline to

rule the way different entities interact with each other. Initially, the most common

type of protocols where the communication protocols : they were strict and manda-

tory rules that defined how the exchange of data should happen between two peers.

The goal of such type of protocols is to allow the exchange of data while guaran-

teeing certain properties related to the exchange process itself (e.g., the detection

of transmission errors, or data losses). The peers involved in the communication

could be homogeneous in software and hardware, as well as heterogeneous systems:

in the latter case, protocols had also the role of solving incompatibilities due to the

heterogeneity.
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More recently, protocols have been used also at a higher abstraction level (w.r.t.

communication protocols), as a way for achieving tasks more complex than the

exchange of data. Application protocols have been widely used in almost every

computer-related sector, as a mean for ruling the interaction between complex peers,

like for example the Post Office Protocol for the email sending/retrieving. Also pro-

tocols of this class are still defined in terms of strict rules that the peers must respect

in order to complete the interaction.

In the Multi Agent System paradigm, protocols have been object of ulterior inter-

est: if the agent paradigm (and the Multi Agent Systems paradigm, MAS) have been

used as good method for modeling systems of increasing complexity, protocols (inter-

action protocols) have been used as a tool for controlling such complexity. Nowadays,

interaction protocols are the most used mechanism (and probably the most “imme-

diate” one) to achieve collaboration between distributed entities, and to ensure that

complex systems does indeed exhibit certain characteristics.

Note that the word entity is no referred only to the concept of agent, but also to a

broader class of software components whose task is to perform or to provide some

functionality. E.g., Service Oriented Architectures (SOA) propose a solution address-

ing the interaction issues, and sketch several different proposals for regimenting the

whole set of interactions, thus defining a protocol (orchestration, choreography ap-

proaches).

Hence, protocols are used to serve many different purposes; to cite some:

1. to give the possibility to the peers of interacting with each other and, by this

way, achieving a certain goal; e.g., the communication protocols used in the

Internet;



3

2. to regulate (in a normative sense) the interactions that can happen between

different peers. E.g., in a typical e-commerce scenario, the agents enjoy some

freedom, in the sense that they can freely choose to perform several different

actions. An agent could decide to agree to a deal or to reject it; however, the

act of performing some actions could limit such a freedom. A protocol could

state that once a deal has been reached between two agents, then they should

fulfill the obligations that are enlisted in the deal;

3. to ensure that all the interactions that are compliant with the protocol, enjoy

some properties (peculiar to the protocol domain itself). E.g., a protocol for

securely exchanging data between two peers aims to guarantee that anyone that

is not the intended recipient cannot access the data. A e-commerce protocol

could aim to guarantee the “good atomicity” property.

When speaking of protocols, two major aspects must be considered:

1. How to specify them?

2. How to verify them?

In the following Sections 1.1 and 1.2 we will try to introduce the reader to the

problem of specifying the protocols, and to the problem of verifying them.

1.1 Specification Issues

The problem of specifying a protocol can be re-formulated as the problem of finding

a language that indeed allows to specify such a protocol. Of course, such a language

should be:
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• expressive enough to “capture” all the protocol peculiarities;

• at the same time, general as much as possible to get reused in several application

domains;

• simple enough to be used by a protocol developer, and to be understood by

other developers;

• not ambiguous ;

• possibly based on a declarative approach, with a clear and formal semantics;

A feature that has been at the center of recently research ativities is the exe-

cutability. Protocol specifications should be machine-understandable and support it

in some degree. With the executability term we mean the possibility of using such a

specification to directly implement one or more peers involved in the protocol. Such

a possibility mainly depends on the used language, and in some part, it also depends

on how the protocol has been defined by the developer. By “directly implement”,

we mean the possibility of using the protocol specification as a base for developing

the peers that uses such a protocol. Of course, implementing such peers would re-

quire some efforts. Intuitively, such effort could be intended as a measure of the

executability of the specification language.

To make clearer such concepts, let us present some examples. The Transfer Con-

trol Protocol (TCP, [124]) specifies the rules that two peers should follow in order to

establish a connection and exchange (transfer) data in a controlled way. The spec-

ification of TCP describes the rules by means of a Finite State Automata, whose

transitions and states are (unfortunately) expressed using natural language. Hence
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the software developer is left alone, to read the specification, to interpret it and to

code the software in the way he consider to be the more appropriate. Such a de-

velopment process is prone to the introduction of several bugs, mainly due to the

interpretation process applied by the developer to the natural language description.

To cite another example, the Business Process Execution Language (BPEL, [20])

is used to specify business process as the set of interactions between one main process

(the orchestrator) and other process (the orchestrated processes). A BPEL specifi-

cation is composed of the Abstract Process specification and the Executable Process

specification. While the Executable Process specification defines how the orchestrator

should treat the data and other low-level details, the Abstract Process specification

enlists all the interactions that should happen, in the specified order, between the

orchestrator and the other peers. The conjunction of both can be provided as a input

to a BPEL engine, that will execute the process as specified. Hence an Abstract Pro-

cess specification can serve both the purposes of being a description of the interaction

rules, and of being (a part of) an executable prototype.

1.2 Verification Issues

Guerin and Pitt [89] distinguish three possible types of verification, depending on the

available information about the protocol players:

Type 1: verify that an agent will always comply. This type of verification can

be performed at design time: given a representation of the agent, by means of some

proof technique (such as model checking [111]) it is possible to prove that the agent

will always exhibit the desired behaviour. Unfortunately, this type of verification

make the assumption that the peer’ internals are accessible.
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Type 2: verify compliance by observation. Its goal is to check that the actual

peer behaviour being observed is compliant to some specification. It does not require

any knowledge about the internals, but only the observability of the peer behaviour.

Since it is based on the observation, this type of verification can be performed at

runtime (or possibly later on some logs).

This type of verification is of the uttermost importance in real systems, where

the heterogeneity and the complexity is such that protocols must allow some freedom

degrees in order to be effective enough in ruling the interactions: too much strict rules

would risk to be useless (see, at this purpose, [44]). In more open scenarios then it

becomes of the utmost importance being able to separate “good” interactions from

the not compliant ones.

Type 3: verify protocol properties. This type of verification instead can be

performed at design time, and aims to prove that some property will hold for all the

interactions that correctly follow the protocol (i.e., they respect the protocol rules).

This type of verification is of a crucial importance: with the rasing complexity of

the protocols, it is harder (if not impossible) to manually verify that a protocol does

indeed guarantee a certain property. Protocol Specification Languages should offer

(or at least support) tools for expressing such properties, as well as for verifying that

such properties are entailed by the protocol. I.e., automatic tools are needed in order

to prove that if an interaction is compliant w.r.t. a protocol specification, then the

property is true for that interaction.
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1.3 Advocating the use of Computational Logic

We consider the interacting peers as autonomous computational entities, autonomous

in the sense that their inner activity is not externally controlled. They have their own

knowledge, capabilities, resources, objectives and rules of behavior. Each peer typi-

cally has only a partial, incomplete and possibly inaccurate view of the environment

and of the other peers, and it might have inadequate resources or capabilities to

achieve its objectives.

In our approach, we believe that the knowledge and technologies acquired so

far in the area of Computational Logic provide a solid ground to build upon. In

particular, at the interaction level, the role of Computational Logic is to provide both

a declarative and an operational semantics to interactions. The advantages of such

an approach are to be found:

(i) in the design and specification of complex systems composed of many heteroge-

nous interacting peers, based on a formalism which is declarative and easily

understandable by the user;

(ii) in the possibility to statically analyze the behavior of the whole system and of

its individuals, based on the properties that such a framework allows to prove;

(iii) in the possibility to detect undesirable behavior, through on the fly control of the

system based on the peers’ observable behavior (communication exchanges) and

to dynamically check the conformance of such behaviour with the constraints

posed by the protocols regulating the overall system;

(iv) in the possibility to understand its own limits and potential, through the study
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of verified properties which will help to define the application domains of our

results.

1.4 Aim of this thesis

This thesis work started within the SOCS project (Societies Of Computees, EU IST-

32530), where a specification language and verification tools were defined for protocols

in the Multi Agent Systems scenario. The aim of this thesis is on one side to contribute

to such language and tools, and on the other to extend the language for addressing

the executability, other verification types, and to extend its application to several

different scenarios.

In particular, within the SOCS project a declarative language has been defined,

with a formal declarative semantics based on Abductive Logic Programming, and

tools for the Type 2 verification

Then, starting from the obtained results, a further research activity has been con-

ducted, in order to address the remaining issues of Type 1 and Type 3 verification, as

well as the executability property of specification given using the language. Moreover,

the proposed approach has been extended to different application domains, in order

to fully understand its advantages and limits.

Summarizing, this thesis demonstrate how a single framework, based on Com-

putational Logic, can be used for specifying interactions protocols, and to perform

several verifications (Type 1, 2 and 3 ) on the specified protocols. Moreover, it shows

also how the protocol specification (given in terms of the framework language) can

be usefully exploited to ease the development process of the interacting peers.
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1.5 How this thesis is organized

This thesis is organized in the following way. Chapter 2 introduces the SCIFF Frame-

work, together with the language for specifying interactions protocols, its declarative

semantics, the proof procedure for reasoning upon the interactions (given a specifica-

tion of the protocol), and with some formal properties.

Chapter 3 shows how we exploit the SCIFF Framework, in order to address the

Type 2 verification on conformance of observed behaviours w.r.t. a given protocol

specification. Some performances consideration are reported, and some examples of

the verification process are documented.

Chapter 4 address the Type 3 verification, by suitably extending the framework

introduce in Chapter 2. The new g-SCIFF Framework is presented, with its specifica-

tion language, its declarative and operational semantics, and some formal properties.

Examples of how the g-SCIFF can be used for verifying protocol properties conclude

the chapter.

Chapter 5 instead address the Type 1 verification, by assuming that the peers

make public a description of their behaviour (such description is often known as the

behavioural interface. The AlLoWS framework, obtained by using both the SCIFF

and the g-SCIFF framework, shows how the a-priori conformance of such peers can

be proved w.r.t. a given protocol specification.

Chapter 6 instead presents an agent platform where, beside using the SCIFF

framework to verify on the fly that agents behave as prescribed, the protocol specifi-

cation can be directly used to develop the interacting peers.

Finally, Chapter 7 summarize the result presented in this thesis, and some con-

siderations about future research directions are given.
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Chapter 2

Specifying Interaction Protocols:
The SCIFF Framework

The Social Constrained IF-and-only-If framework (SCIFF) has been developed in

the context of the SOCS European project (IST-2001-32530, [139]): the focus of that

project was about the definition of computational logic models for agents (Computees)

and Multi-Agent Systems (Societies of Computees).

The SCIFF framework was specifically developed to address the issues related

to agent interactions, i.e. the protocols regulating these interactions. In particular,

the research activity focussed on the issues of specifying such protocols and to verify

agents behaviours against such specifications. The problem of specifying a protocol

has been tackled by means of computational logic, and in particular by exploiting the

Abductive Logic Programming (ALP).

The SCIFF Framework has addressed the Type 2 verification (Section 1.2) for the

MAS settings. However, the framework has been designed to be suitable for more

general application domains, and its use is not restricted to the multi agent systems.

Generally speaking, SCIFF can be used to specify and reason about any interaction

11
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process. E.g., SCIFF has been successfully used to reason about communication pro-

tocols like TCP [124], security communication protocols like the Needham-Schroeder

[9, 114], Web Services interactions within a Choreography Specification [7].

The SCIFF framework is made up of several components:

The SCIFF Specification Language A language for specifying the interaction

protocols, by means of rules that relate events with other events (in the agent

domain, communicative acts with other communicative acts). Moreover, it pro-

vides also the possibility of expressing a knowledge base that can be used when

reasoning about the interactions. The focus of the SCIFF Specification Lan-

guage is on the events: when an event happens, the rules specify if other events

are expected to happen or are expected not to happen (both in the past and in

the future w.r.t. to the happened event).

The SCIFF Declarative Semantics A declarative semantics for the SCIFF Lan-

guage, based on abduction and on Abductive Logic Programs (ALP, [95]).

The SCIFF Proof Procedure An abductive proof procedure, that is used within

the framework for reasoning about the interactions logs, and about their com-

pliance w.r.t. a protocol specification.

Moreover, a fourth component, the SOCS-SI software tool, is part of the SCIFF

Framework: however, this component is presented in Chapter 3, together with some

application examples of the framework applied to the verification issues.

Contributions of the author. The author participated to the SOCS project for

the final two years over three and half years taken by the project. Although the author
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didn’t participate directly to the specification of the computational logic model (done

in the very beginning of the project), he has actively contributed in the definition,

development and implementation of all the parts composing the SCIFF framework.

Chapter organization. This chapter is organized as follows: we begin by intro-

ducing some key concepts about the entities (events and expectations, Section 2.1)

and by clarifying some terms and assumptions we make (Section 2.2).

In Section 2.3 we formally define the SCIFF Language and its parts, while in

Section 2.4 we provide also a declarative semantics.

In Section 2.5 we introduce the SCIFF Proof Procedure and briefly present its

implementation; in Section 2.5 instead we enunciate its formal properties (soundness,

termination and completeness).

The chapter is concluded by a discussion about related works.
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2.1 Events, Happened Events and Expectations

about Events

The definition of Event greatly varies, depending on the application domain. For

example, in the healthcare domain, an event could be the fact that a laboratory has

communicated the results of blood analysis to the patient who requested it; in a

communication protocol like the TCP, an event could be the fact that a peer has sent

a syn message; in the Web Service domain, an event could be the fact that a certain

web service has been invoked. Moreover, within the same application domain there

could be several different notions of events, depending on the assumed perspective,

the granularity, etc.

The SCIFF framework abstracts completely from the problem of deciding “what

is an event”, and rather lets the developers decide which are the important events

for modeling the domain, at the desired level of detail and granularity. Each event

that can be described by a Term, can be used in SCIFF. For example, in a peer-to-

peer communication system, an event could be the fact that someone communicates

something to someone else (i.e., a communicative action has been performed):

tell(alice, bob, msgContent)

Another event could be the fact that a web service has updated some information

stored into an external database, or that a bank clerk, upon the request of a customer,

has provided him/her some money. Of course, in order to perform some reasoning

about such events, accessibility to such information is a mandatory requirement.

In the SCIFF framework, similarly to what has been done in [39], we distinguish
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between the description of the event, and the fact that the event has happened. Typ-

ically, an event happens at a certain time instant; moreover the same event could

happen many times. In our approach the happening of identical events at the same

time instant are considered as if only one event happens; if the same event happens

more than once, but at different time instants, then they are indeed considered as

different happenings. We will always use the term Event as a synonym of its de-

scription, while happened events (i.e. the fact that the event described by Event has

happened) will be represented as atoms

H(Event, T ime)

where Event is a Term, and Time is an integer, representing the discrete time point

in which the event happened.

One innovative contribution of the SCIFF framework is the introduction of ex-

pectations about events. Indeed in the framework, beside the explicit representation

of “what” happened and “when”, it is possible to explicitly represent also “what”

is expected, and “when” it is expected. The notion of expectation plays a key role

when defining global interaction protocols, choreographies, and more in general any

dynamically evolving process: it is quite natural, in fact, to think of such processes

in terms of rules of the form “if A happened, then B should be expected to happen”.

Expectations about events have the form

E(Event, T ime)

where Event and Time can be variables, or they could be grounded to a particular

Term/value. Constraints, like Time > 10, can be specified over the variables: in the

given example, the expectation is about an event (described by Event) to happen at
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a time greater than 10 (hence the event is expected to happen after the time instant

10).

Strictly related to the expectations about the happening of events (positive expec-

tations), there are the expectations about events that should not happen (negative

expectations). The SCIFF framework allows to directly represent such negative ex-

pectations, in the form:

EN(Event, T ime)

where the parameters have the same meaning as for the positive expectations. How-

ever, the variables that possibly appears in the negative expectations are ruled by

different quantification rules w.r.t. the positive expectations. We provide here an

intuition, while the details will be discussed in Section 2.3. Typically, a positive ex-

pectation is about a certain event to happen: e.g., writing E(tell(alice, bob, hello), T1)

in the SCIFF framework means that there is an expectation about the happening of

the event, at a non specified time T1. In this case, T1 is a variable whose quantification

is existential. Differently, writing EN(tell(alice, bob, gossip), T2) means that there is

an expectation that the event will not happen at any time T2. In this case, T2 is

quantified universally.

Given the notions of happened event and of expected/expected not event, two fun-

damental issues arise: first, how it is possible to specify the link between these two

notions. Second, how it is possible to verify if all the expectations have been effec-

tively satisfied. The first issue is fundamental in order to easy the definition of an

interaction protocol, and it will be addressed in the the Section 2.3. The second issue,

instead, is inherently related to the problem of establishing if a software component,
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given its observable external behaviour, does indeed respect a given protocol specifi-

cation: the solution proposed by the SCIFF framework is presented in Sections 2.4

and 2.5.
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2.2 The terms “Open” and “Closed” in the SCIFF

Framework

In the SCIFF framework, the adjectives open and closed are used in several different

contexts, referring sometimes to some different concepts. In order to easy the com-

prehension of the framework, we try here to provide an intuitive (and very informal)

description of the cases where open and close adjectives are used.

2.2.1 Open vs. Closed Histories

We call history a set of happened events, that represents somehow the trace (or

the log) of an interaction instance. The same interaction instance (i.e., the grounded

instance of a generic interaction defined by a protocol) can be considered as a synonym

of the term “history”.

The SCIFF framework has been thought in order to be able to perform reasoning

at run-time, i.e. when the interaction is taking place. At every instant, the SCIFF

Proof Procedure can reason upon the actual history (the log of the events happened

until that precise instant): hence, it can reason upon a partial and incomplete version

of the whole history.

However, one of the key features of the SCIFF Proof Procedure is the ability to

reason also upon dynamically happening events without re-considering the reasoning

on the past events: in this way, each time a new event happens, the reasoning pro-

cess is not performed reconsidering again all the history. Instead, the partial result

obtained from the previous reasoning is used as a starting point in order to perform

further reasoning.

This very powerful mechanism however has a limit: in order to perform some
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types of reasoning, it is necessary to know if more (newer) events can still happen or,

instead, if no more events can happen anymore. E.g., suppose an absolute prohibition

of performing a certain action has been hypothesized:

EN(perform(Perfomer, aCertainAction), T ime)

In order to establish if this prohibition has been respected or not by a certain

history, it is necessary to know if the interaction represented by the history has

terminated (and no more events can happen anymore) or not. If no more events

can happen in a certain interaction instance, we say that the representing history is

closed. Is newer vent can still happen (in the context of the same interaction), we say

that the history is still open.

The distinction between open and closed histories is formalized in Section 2.4.2 (

Definitions 2.4.2 and 2.4.3), and has also some practical consequences on the prop-

erties of the proof procedure, as well as on the proof procedure itself (e.g., a specific

transition called Closure, see Section 2.5.4).

2.2.2 Open vs. Closed Interactions Models

Open and Closed are used also in a different context, with a completely different

meaning, if related to the Interaction Models (often abbreviated to Interactions).

Typical protocols assume a “closed interaction model”: every event that happens

in the interaction must be explicitly allowed by the interaction specification (by the

protocol).

E.g., the TCP protocol [124] defines, for every interaction stage, which are the

messages that can be uttered if the interaction is in that particular stage. All the
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messages not explicitly listed, are implicitly prohibited. If a peer utters a message

not explicitly envisaged by the protocol specification, the interaction is automatically

considered as faulty, and the other peer reset the connection. 1

Another interesting example is provided instead by the recent Business Pro-

cesses/SOA scenario: due to the openness degree of the environment where business

processes are envisaged to be employed (wide local networks/internet, with hardware

and software heterogeneity of the peers), the “reset connection” behaviour might re-

sult in a too strong reaction; moreover, the fault tolerance of the whole system could

result undermined. Although not specified as a principle, the choice of many ser-

vice engine vendors is to discard unwanted messages, and to keep a high flexibility

on the decision of elaborating messages not explicitly envisaged by some choreogra-

phy/orchestration specification.

With the term closed interaction model, we mean an interaction specification (a

protocol specification) where only events explicitly envisaged by the protocol can

happen, and where the happening of any other event is considered as prohibited and

a violation of the protocol itself. With the term open interaction model instead we

mean those protocols that allows for some freedom degrees in the allowed interaction

instances. Peers that perform an action or utter a message not envisaged by the pro-

tocol do not automatically violates the protocol specification, unless that particular

action or message weren’t already explicitly prohibited.

The SCIFF framework, as already stated previously, has been developed to pro-

vide a logic-based formalization for interaction in the MAS scenarios. Multi Agent

1Although the behaviour in case of wrong messages is not clearly specified by the TCP speci-
fication [124], the reset action has been chosen as default behaviour by the majority of the TCP
implementation stacks.
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systems are implicitly heterogeneous both for the hardware as well for the software

aspects. Moreover, as discussed by Singh in [44], close interaction models could not

be expressive enough in order to capture the complexity of interactions in the agent

models.

For these reasons, in the SCIFF Framework it is possible to explicitly specify

which are the expected events, and which are the prohibited ones. Events that are not

expected, nor prohibited, can happen. However, please note that this characteristic

does not guarantee that the happened event will not generate some violation due,

e.g., to some inconsistency with previous happened events.

2.2.3 Open vs. Closed Agent Societies

The agent paradigm has raised several problems: the architecture of the various

agents, the interactions amongst the agents, the social organization, the rules, the

roles of the agents in the society, to cite some. In particular the Multi Agent Sys-

tems paradigm has stressed the society related issues, raising questions about the

“openness” degree that such societies should entail.

According to Davidsson [54], there can be four types of societies:

Closed societies are predefined societies, in which no agent can enter. Only the

designer of the society can create new agents in the society itself.

Semi-closed are societies in which agents cannot enter, but they can nominate or

spawn representatives in the society.

Semi-open are societies in which there exists one agent taking the role of gatekeeper,

which receives the requests for entering the society. A potential member applies
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at the gate, can provide some credentials, and can possibly be admitted in the

society by the gatekeeper.

Open are societies in which any agent can enter without restriction.

The classification by Davidsson is based on rules for entering the society, as this

is the most pressing issue. Leaving the society could be done by considering a leaving

protocol (in semi-open or semi-closed societies), or, in some cases, it can be a way to

punish misbehaving agents: when an agents does not comply to the rules, it is ejected

from the society. In open societies, there are no given protocols to exit: agents may

leave at any time without restriction.

Clearly, open societies are the most flexible, but can also be very unstable. The

set of members is not fixed, nor even computable in general, as new agents may join

anytime, and current members could leave without any notification. Also openness

à la Davidsson implies heterogeneity: any agent may join, so they are not required

to share concepts such as beliefs, intentions, knowledge bases, or architectures. Some

agents may exhibit powerful reasoning capabilities, while others may only be able

to react to stimuli with predefined patterns. Foreign agents can join the society

without restrictions and profit from interacting with the agents in the society. On

the other hand, malicious agents could enter and disrupt the harmonious evolution

of the society, threatening the usability of the whole MAS. Thus, mastering open

societies in order to drive them to a coherent, useful global behaviour is a challenge.
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2.3 The SCIFF language

The language is composed of entities for expressing happened events, expectations

about events, hypotheses, and relationships between happened events and expecta-

tions/hypotheses. The final goal of the SCIFF language is to provide a way for

specifying agent societies.

A Social specification, i.e, a specification of an agent society in the SCIFF frame-

work, is composed of the following elements:

• a knowledge base, often named Social Knowledge Base, (SOKB);

• a set of Integrity Constraints (ICs);

• possibly a society goal, i.e. a result that the whole society, through the interac-

tion of its member, should manage to achieve.

We provide meaning to a social specification by means of Abduction (see Section

2.4): since the SCIFF framework has been designed to be general enough to be use

for generic interaction protocols, we will use the term Abductive Specification for

general cases, and Social Specification to indicate an abductive specification in the

MAS context.

2.3.1 Syntax of Happened Events and Expectations

Hapened events are the abstraction used to represent the actual observations.

Definition 2.3.1 An Happened Event is an atom:

• with predicate symbol H;

• whose first argument is a ground term; and
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• whose second argument is an integer.

Intuitively, the first argument is meant to represent the description of the hap-

pened event, according to application-specific conventions, and the second argument

is meant to represent the time at which the event has happened:

Example 2.3.1

H(tell(alice, bob, query ref(phone number), dialog id), 10) (2.3.1)

could represent the fact that alice asked bob his phone number with a query ref mes-

sage, in the context identified by dialog id, at time 10.

A negated happened event is an event with the unary prefix operator not applied

to it. 2 We will call history a set of happened events, and denote it with the symbol

HAP.

While happened events represent the observed facts, Expectations are the abstrac-

tion we use to represent the desired events. In a MAS setting, they would represent

the ideal behaviour of the system, i.e., the actions that, once performed, would make

the system compliant to its specifications. Our choice of the terminology “expecta-

tion” is intended to stress that observations cannot be enforced, but only expected,

to be as we would like them to be. Expectations are of two types:

• positive: representing some event that is expected to happen;

• negative: representing some event that is expected not to happen.

Definition 2.3.2 A positive expectation is an atom:

2not represents default negation (see declarative semantics of the SCIFF framework, Sect. 2.4).



25

• with predicate symbol E;

• whose first argument is a term; and

• whose second argument is a variable or an integer.

Intuitively, the first argument is meant to represent an event description, and the

second argument is meant to tell for what time the event is expected.

Example 2.3.2 The atom

E(tell(bob, alice, inform(phone number,X), dialog id), Ti) (2.3.2)

could represent that bob is expected to inform alice at some time Ti that the value

for the piece of information identified by phone number is X, in the context identified

by dialog id.

A negated positive expectation is a positive expectation with the explicit negation

operator ¬ applied to it.

As the example shows, expectations can contain variables, as it might be desir-

able to leave the expected behaviour not completely specified. Variables in positive

expectations will be existentially quantified, supporting the intuition, as we have seen

in Ex. 2.3.2.

Definition 2.3.3 A negative expectation is an atom:

• with predicate symbol EN;

• whose first argument is a term; and

• whose second argument is a variable or an integer.



26

Again, the first argument is meant to represent an event description, and the second

argument is meant to tell for what time the event is expected not to happen.

Example 2.3.3 The atom

EN(tell(bob, alice, refuse(phone number), dialog id), Tr) (2.3.3)

could represent that bob is expected not to refuse to alice his phone number, in the

context identified by dialog id, at any time.

A negated negative expectation is a negative expectation with the explicit negation op-

erator ¬ applied to it. Note that ¬E(tell(bob, alice, refuse(phone number), dialog id), Tr)

is different from EN(tell(bob, alice, refuse(phone number), dialog id), Tr). The intu-

itive meaning of the former is: no refuse is expected by Bob (if he does, we simply

did not expect him to), whereas the latter has a different, stronger meaning: it is

expected that Bob does not utter refuse (by doing so, he would frustrate our ex-

pectations). As the example shows, variables in negative expectations are naturally

interpreted as universally quantified (Bob should never refuse). However, the same

variable may occur in two distinct expectations, one of which positive, the other neg-

ative. In that case, the quantification will be existential (i.e., the convention adopted

for positive expectations will prevail). This follows the intuitions, as we can see in

the following example.

Example 2.3.4 It is expected that (at least one) agent A performs task t1, and that

no other agent B interrupts A:

E(perform(A, t1)),EN(interrupt(B, A)).

Variable A is existentially quantified, while B is quantified universally.
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Table 2.3.1 Syntax of events and expectations

EventLiteral ::= [not ]Event
Event ::= H(GroundTerm, Integer)

ExpLiteral ::= PosExpLiteral | NegExpLiteral
PosExpLiteral ::= [¬]PosExp
NegExpLiteral ::= [¬]NegExp

PosExp ::= E(Term,Variable | Integer)
NegExp ::= EN(Term,Variable | Integer)

ExistLiteral ::= PosExpLiteral | AbducibleLiteral | Literal
NbfLiteral ::= not Atom | not AbducibleAtom

Literal ::= [not ]Atom
AbducibleLiteral ::= [not ]AbducibleAtom

The syntax of events and expectations is summarised in Tab. 2.3.1, and it will

be used as such by the subsequent Tab. 2.3.2 and 2.3.3. We also introduce, for ease

of presentation, the syntactic element ExistLiteral, that lists the literals that are

existentially quantified. Again, for simplifying the following presentation, we define

NbfLiteral, that intuitively indicates negative literals with negation by failure. By

AbducibleAtom we mean an atom built on an abducible predicate (i.e., a predicate in

the set Ab; see Sect. 2.4).

2.3.2 Specification of the Social Knowledge Base

The Social Knowledge Base (SOKB) is a set of Clauses in which the body can

contain (besides defined and abducible literals), expectation literals and constraints.

Intuitively, the SOKB is used to express declarative knowledge about the specific

application domain.

The syntax of the Knowledge Base is given in Tab. 2.3.2, and it will be used as
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Table 2.3.2 Syntax of the Knowledge Base

SOKB ::= [Clause]?

Clause ::= Head ← Body
Head ::= Atom
Body ::= ExtLiteral [ ∧ ExtLiteral ]? | true

ExtLiteral ::= Literal | AbducibleLiteral | ExpLiteral | Restriction

such also in Tab. 2.3.3.

Allowedness conditions

The operational semantics (see Section 2.5) will require some syntactic restrictions,

which we will now introduce. In the sequel and throughout this thesis, we will assume

that such restrictions hold in all cases we consider. As usual in Logic Programming,

we need to avoid floundering of variables in negative literals [108]:

Definition 2.3.4 A clause Head ← Body is allowed if and only if every variable that

occurs in a NbfLiteral in Body, also occurs in the Head or in at least one ExistLiteral.

Variable quantification and scope

The quantification and scope of variables is implicit. In each clause, the variables are

quantified as follows:

• universally with scope the Clause if they occur in the Head or in at least one

ExistLiteral;

• otherwise (if they occur only in negative expectations and possibly restrictions)

universally, with scope the Body.
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This means that clauses will be quantified as in most other abductive logic program-

ming languages, and in particular, in the language interpreted by the IFF proof-

procedure, except for negative expectations. Variables that occur only in a negative

expectation will be universally quantified with scope the Body. Let us see an example:

Example 2.3.5 In order to have a task completed, it is expected that an agent

performs it, and no agent is expected to interrupt the agent performing that task.

completed(Task) ← E(perform(A, Task)),EN(interrupt(B, A)).

The quantification of the variables is most intuitive:

(∀Task, ∀A) (
completed(Task) ← E(perform(A, Task)), (∀B) ( EN(interrupt(B, A)) )

).

Definition 2.3.5 A Clause is restriction allowed if the variables that are universally

quantified with scope the body do not occur in quantifier Restrictions, and each variable

that occurs in a restriction also occurs in at least one positive expectation PosExp, or

in AbducibleLiteral in the body. 3

For example, the clause:

p ← EN(X), X < 10

is not restriction allowed, because it contains a variable X that is universally quan-

tified with scope the Body, and that is also in a quantifier restriction. Similarly, the

3Def. 2.3.5 is needed for a correct handling of defined predicates literals in the integrity constraints.
In fact, it turns out that unfolding a clause which is not restriction allowed could generate an integrity
constraint which is not restriction allowed (see Def. 2.3.7). Note that if there is no chance a predicate
will appear in the body of an integrity constraint, then the restriction allowedness condition could be
safely relaxed.
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clause:

p ← a(Y ), Y < 10

is not restriction allowed, because it contains an existentially quantified variable Y ,

with scope the Body, which does not appear in any PosExp literal (E) in the Body.

Goal

Thanks to the abductive interpretation, goal-directed societies are possible in the

SCIFF framework; non-goal directed societies are also supported, by considering

the atom true as goal. The syntax of the goal is the same as the body of a clause

(Tab. 2.3.2). In order to avoid floundering, variables in the goal cannot occur only in

NbfLiteras. The quantification rules are the following:

• All variables that occur in an ExistLiteral are existentially quantified.

• All remaining variables are universally quantified.

Note that these rules are equivalent to those of the variables in the body of a clause

(Sect. 2.3.2), considering that ∀X.(H ← B) is equivalent to H ← (∃X.B) when X

does not occur in H.

2.3.3 Syntax of the Integrity Constraints

Integrity Constraints (also ICs, for short, in the following) are implications that, op-

erationally, are used as forward rules, as will be explained in Sect. 2.5. Declaratively,

they relate the various entities in the SCIFF framework, i.e., expectations, happened

events, abducibles, and constraints/restrictions, together with the predicates in the

knowledge base.
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Table 2.3.3 Syntax of Integrity Constraints (ICs)

ICS ::= [IC]?

IC ::= Body → Head
Body ::= (EventLiteral | ExpLiteral | AbducibleLiteral) [ ∧ BodyLiteral ]?

BodyLiteral ::= EventLiteral | ExtLiteral
Head ::= HeadDisjunct [ ∨ HeadDisjunct ]? | false

HeadDisjunct ::= ExtLiteral [ ∧ ExtLiteral]?

The syntax of ICs is given in Tab. 2.3.3: the Body of ICs can contain conjunctions

of all elements in the language (namely, H, E, and EN literals, definite and abducible

literals and restrictions), and their Head contains a disjunction of conjunctions of all

the literals in the language, except for H literals. Let us now consider an interaction

protocol taken from the MAS literature:

Specification 2.3.1 Integrity Constraints and Knowledge Base for the query ref
specification.

H(tell(A,B, query ref(Info),D),T) ∧
qr deadline(TD)

→ E(tell(B,A, inform(Info,Answer),D),T1) ∧
T1 < T + TD

∨ E(tell(B,A, refuse(Info),D),T1) ∧
T1 < T + TD

H(tell(A,B, inform(Info,Answer),D),Ti)
→ EN(tell(A,B, refuse(Info),D),Tr)

qr deadline(10).

Example 2.3.6 Tab. 2.3.1 shows the ICs for the query ref [76] specification. Intu-

itively, the first IC means that if agent A sends to agent B a query ref message, then
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B is expected to reply with either an inform or a refuse message by TD time units

later, where TD is defined in the Knowledge Base by the qr deadline predicate. The

second IC means that, if an agent A sends an inform message, then it is expected

not to send a refuse message about the same Info, to the same agent B and in the

context of the same interaction D at any time.

Variable quantification and scope

All variables in an integrity constraint should occur in an EventLiteral, ExpLiteral, or

AbducibleAtom. The rules of scope and quantification for the variables in an integrity

constraint Body → Head are as follows:

1. Each variable that occurs both in Body and in Head is quantified universally,

with scope the integrity constraint.

2. Each variable that occurs only in Head cannot occur only in NbfLiterals and

• if it occurs in at least one ExistLiteral is existentially quantified and has

as scope the disjunct where it occurs;

• otherwise it is quantified universally.

3. Each variable that occurs only in Body is quantified with scope Body as follows:

(a) existentially if it occurs in at least one ExistLiteral or Event;

(b) universally, otherwise.

The given quantification rules let the user write integrity constraints without

explicitly stating the quantification of the variables, and typically capture the intuitive

meaning of the rules in protocols. Let us show it with an example.
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Example 2.3.7 Consider the following example:

H(p(X,Y )), not H(q(Z,X)) → E(r(X,K)),EN(f(Y, J))

Variables X and Y occur both in the body and in the head. Coherently with the

literature in abduction, they will be universally quantified with scope the whole IC.

Variables K and J occur only in the Head. The quantification rules for those variables

are the same as for the Goal (see Sect. 2.3.2), i.e., existential for K and universal for

J . Finally, ¬H(q(Z,X)) means that, if no event happens matching q(Z, X), then the

IC’s head should be true. For instance, if the set of happened events is

H(p(2, 1)),H(q(3, 2))

it is quite natural to understand the Body as false (the second event makes not H(q(Z,X))

false). So, the existence of one atom (H(q(3, 2)) in the example) is enough for making

not H(q(Z, X)) false. This means that the IC should be read as “if H(p(X, Y )) and

for all values Z, H(q(Z,X)) is false, the Head must hold”. Variable Z should be

quantified as follows:

[∀Z . . . , not H(q(Z, X))] → . . .

thus, the quantification rules give the quantification

∀X, Y ∃Z,K∀J. H(p(X,Y )), not H(q(Z, X)) → E(r(X,K)),EN(f(Y, J))

Allowedness conditions

As in the case of the Knowledge Base syntax, the following syntactic restrictions are

motivated by the operational semantics, and will be supposed to hold throughout the
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paper. A variable cannot occur in an IC only in NbfLiterals. If it does occur in a

literal with negation by failure, it necessarily has to appear in the same IC also in at

least another literal within predicate symbol H, E, EN, or an abducible atom. Since

variables in positive expectations are existentially quantified, integrity constraints

should not entail universally quantified positive expectations. For example,

not H(p(A)) → E(q(A))

would entail in an empty history that ∀A.E(q(A)). We avoid such situations with the

following allowedness condition.

Definition 2.3.6 An Integrity Constraint Body → Head is quantifier allowed if

• each variable that occurs in an ExistLiteral in Head either does not occur in

Body, or it occurs in the Body in at least one Event or in a PosExpLiteral, or

in an AbducibleAtom;

• each variable that occurs in a NbfLiteral in Body also occurs in at least one

Event or PosExpLiteral or in an AbducibleAtom in Body4.

Definition 2.3.7 An integrity constraint is restriction allowed if

• all the variables that are universally quantified with scope Body do not occur in

Restrictions;

• the other variables (that occur only in Head, or both in Head and in Body) can

occur in Restrictions. Each Restriction occurring in the integrity constraint

should:

4This rule descends from the previous one, considering that not(A), B → C is equivalent to
C → A ∨B.
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– either involve only variables that also occur in PosExpLiterals, Events or

AbducibleAtom (in the same disjunct, or in the body),

– or involve one variable that also occurs in at least one NegExpLiteral, and

possibly other variables which only occur in Events.

Abductive Specification

Given a Knowledge Base SOKB and a set ICS of Integrity Constraints, we can define

an Abductive Specification:

Definition 2.3.8 (Abductive Specification). An Abductive Specification is the

pair:

S = 〈SOKB, ICS〉

and will be indicated with the symbol S.

Definition 2.3.9 An abductive specification S = 〈SOKB, ICS〉 is quantifier allowed

if all the integrity constraints in ICS are quantifier allowed. S is restriction allowed

if all the clauses in SOKB and all the integrity constraints in ICS are restriction

allowed. S is allowed if it is quantifier allowed and restriction allowed, and SOKB

is allowed.

As a recap on allowedness conditions, we have the following table. For all the

three syntactic elements (Clauses, Goal, and ICs), variables cannot occur only in

NbfLiterals. Besides, the following conditions must hold in order for Clauses/ICs to

be restriction-/quantifier-allowed:
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Clause Integrity Constraint

if no QR appears in ∀ vars with

is restriction- if QRs only appear on vars scope Body

allowed in ∃ abducibles and QRs do not involve more

than one ∀ var

if ExistLiterals in Head do not

is quantifier- always contain vars that occur in the

allowed Body only in not H, [¬]EN

and all vars of NbfLiterals in

Body also occur in other H,

[¬]E, or abducibles in Body
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2.4 SCIFF Declarative Semantics

2.4.1 Background

We assume the reader has a basic familiarity with logics and logic programming; a

good introduction is the book by Lloyd [108]. As will be clear soon, the SCIFF

framework is based on Abductive Logic Programming and on Constraint Logic Pro-

gramming; we introduce the two concepts in an intuitive way, and provide pointers

to the formal parts.

Abduction

Abduction is a powerful mechanism for hypothetical reasoning in the presence of in-

complete knowledge, that is handled by labelling some pieces of information as “ab-

ducibles”. Abducibles can be viewed as possible hypotheses which can be assumed,

provided that they are consistent with the current knowledge base. The abduction

process is typically applied when looking for an explanation for some observation.

Starting from some observed facts, possible causes are hypothesised (they are ab-

duced). Then it is possible to confirm the hypotheses by performing some additional

observation: for example, the scientist postulates some theory, and then develops new

experiments to confirm (or disconfirm) such theory. Another common application of

abduction is diagnosis : the physician, by observing the symptoms, formulates some

alternative hypothesis about the disease. The physician tries to find more facts by

prescribing a patient another test, that will possibly support a smaller set of explana-

tions. Some of the previously made hypotheses could be discarded because they are

now incompatible with the new facts, or because some pairs of explanations cannot

be assumed at the same time. Formally, an abductive logic program (ALP) [96] is a
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triple 〈P, Ab, IC〉 where:

• P is a (normal) logic program, i. e., a set of clauses of the form

A0 ← A1, . . . , Am, not Am+1, . . . , not Am+n

where m,n ≥ 0, each Ai (i = 1, . . . , m + n) is an atom, and all variables are

implicitly universally quantified with scope the clause. A0 is called the head

and A1, . . . , Am, not Am+1, . . . , not Am+n is called the body of any such clause;

• Ab is a set of abducible predicates, p, such that p is a predicate in the language

of P which does not occur in the head of any clause of P ;

• IC is a set of integrity constraints, that is, a set of formulae in the language of

P .

Given an abductive logic program 〈P, Ab, IC〉 and a formula G, the goal of abduction

is to find a (possibly minimal) set of ground atoms ∆ (the abductive explanation),

with ∆ ⊆ Ab, and which, together with P , entails G, and satisfies IC:

P ∪∆ |= G (2.4.1)

P ∪∆ |= IC (2.4.2)

The notion of entailment |= depends on the semantics associated with the logic pro-

gram P . Several abductive proof procedures can be found in the literature (like the

Kakas-Mancarella [97], limited to ground literals, SLDNFA [57], that can abduce liter-

als with existentially quantified variables, ACLP [3] and A-system [99], that integrate

constraints, to cite some). The SCIFF proof procedure (Section 2.5) is an extension

of the If-and-only-If (IFF) abuctive proof procedure [82]. The integrity constraints,
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in the IFF proof procedure, are expressed as a set of implications of the form:

B1 ∧ · · · ∧Bn → A1 ∨ · · · ∨ Am

where all variables are universally quantified, Ai and Bi are atoms (can be abducibles

or defined predicates), but they cannot be the negation of an atom.

Constraint Logic Programming

Constraint Logic Programming [91, 92] (CLP) is a class of programming languages

that extend logic programming by giving an interpretation to some of the symbols. In

classical Logic Programming, the symbols are not interpreted, so the term 2+3 does

not mean 5, but simply a structure whose functor is + and whose terms are 2 and 3.

Unification performs a syntactical operation, and does not provide any interpretation,

so the term 5 will not unify with the term 3+2, and the goal 5=3+2 simply fails.

In Constraint Logic Programming, a subset of the terms and atoms are given a

standard interpretation: the symbol 5 stands for the number five and the symbol +

represent the addition operation. Unification is extended, and treated as a constraint.

For example, the goal 5 = A + 3 succeeds in CLP, providing the answer A = 2.

This behaviour is obtained by identifying syntactically the set of interpreted atoms,

called constraints, and inserting them into a constraint store instead of applying

resolution. The constraints in the store are then evaluated by a constraint solver,

that detects possible failures and infers new constraints. Each language of the CLP

class is identified by a domain, representing the set of values that a variable subject

to constraints can assume, the set of constraints, the set of interpreted symbols. For

example, CLP(R) [93] is the instance of CLP that works on the reals; this means

that a variable in CLP(R) can have a real value, and it can be subject to constraints
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on the reals. Current implementations typically employ the simplex algorithm as

constraint solver. CLP(FD) is the specialisation of CLP on the Finite Domains [64].

Variables are initially assigned a domain through the predicate V ariable :: Domain.

For instance X :: [red, green, blue] states that X can take only the values red, green

or blue. On numeric values, CLP(FD) languages typically interpret the symbols <,

≤, =, 6=, etc., plus the usual operations +, −, ∗, /. In CLP(FD), imposing constraints

typically deletes inconsistent values from the domains of the variables; for example, if

A :: [0..10], B :: [1..5], A < B would remove the values that cannot satisfy the imposed

constraint, in this case the values greater than 4 in the domain of A. When a domain

becomes empty, there cannot be an assignment for the corresponding variable, so the

system fails. Various languages and efficient solvers have been developed [64, 137, 4].

Such languages have been successfully used for hard combinatorial problems, such as

scheduling [36], planning [29], bioinformatics [118], and many others. These solvers

typically deal only with problems that contain existentially quantified variables.

2.4.2 ALP Interpretation of a Society Specification

Definition 2.4.1 (Abductive Instance). An instance SHAP of a society/abductive

specification S is represented as an ALP, i.e., a triple 〈P, E , ICS〉 where:

• P is the SOKB together with the history of happened events HAP;

• E is the set of abducible predicates of S;

• ICS are the social integrity constraints of S.

In this way, our social framework (and its dynamic counterpart, as instance of a

society) has been smoothly given an abductive interpretation.
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If the society is goal driven, then there exists a goal G at the society level (which

is simply true if the society is not goal driven).

Definition 2.4.2 Given two instances, SHAP and SHAP′, of a society S, SHAP′ is a

proper extension of SHAP if and only if HAP ⊂ HAP′.

Definition 2.4.3 Given an instance, SHAP, of a specification S, the instance is closed

iff it has no proper extensions. We denote a closed instance as SHAP.

In the following, we indicate a closed history by means of an overline: HAP.

Notice that in a closed instance, we assume that no further event might occur (i.e.,

the instance has no further extensions and the history is closed under CWA).

2.4.3 Declarative Semantics

We describe then the (abductive) declarative semantics of the SCIFF framework,

which is inspired by other abductive frameworks, but introduces the concept of ful-

filment, used to express a correspondence between the expected and the actual ob-

servations. The declarative semantics of an abductive/social specification is given for

each specific history.

In this way, SHAPi , SHAPf will denote different instances of the same abductive

specification S, based on two different histories: HAPi and HAPf . We adopt an

abductive semantics for the society instance. The abductive computation produces a

set ∆ of hypotheses, which is partitioned in a set ∆A of general hypotheses and a set

EXP of expectations. The set of abduced literals should entail the goal and satisfy

the integrity constraints.

Definition 2.4.4 (Abductive Explanation).
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Given an abductive specification S = 〈SOKB, ICS〉, an instance SHAP of S, and a

goal G, ∆ is an abductive explanation of SHAP if:

Comp(SOKB ∪HAP ∪∆) ∪ CET ∪ TX |= ICS (2.4.3)

Comp(SOKB ∪∆) ∪ CET ∪ TX |= G (2.4.4)

where Comp represents the completion of a theory, CET is Clark’s Equational Theory

[48], and TX is the theory of constraints [92].

The symbol |= is interpreted in three valued logics, as it is in the IFF Proof Procedure.

We also require consistency with respect to explicit negation [21] and between positive

and negative expectations.

Definition 2.4.5 A set EXP of expectations is ¬-consistent if and only if for each

(ground) term p:

{E(p),¬E(p)} 6⊆ EXP and {EN(p),¬EN(p)} 6⊆ EXP. (2.4.5)

Definition 2.4.6 A set EXP of expectations is E-consistent if and only if for each

(ground) term p:

{E(p),EN(p)} 6⊆ EXP (2.4.6)

The following definition establishes a link between happened events and expec-

tations, by requiring positive expectations to be matched by events, and negative

expectations not to be matched by events.

Definition 2.4.7 Given a history HAP, a set EXP of expectations is HAP-fulfilled

if and only if

∀E(p) ∈ EXP⇒ H(p) ∈ HAP ∀EN(p) ∈ EXP⇒ H(p) 6∈ HAP (2.4.7)
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Otherwise, EXP is HAP-violated.

When all the given conditions (2.4.3-2.4.7) are met, we say that the goal is achieved

and HAP is compliant to SHAP with respect to G, and we write SHAP |=∆ G. In

the remainder of this thesis, when we simply say that a history HAP is compliant to

an abductive specification S, we will mean that HAP is compliant to S with respect

to the goal true. We will often say that a history HAP violates a specification S to

mean that HAP is not compliant to S. When HAP is apparent from the context,

we will often omit mentioning it.

Example 2.4.1 Consider the query ref abductive specification S = 〈SOKB, ICS〉,
where SOKB and ICS are defined in Tab. 2.3.1. The history

{H(tell(alice, bob, query ref(phone number), dialog id), 10),

H(tell(bob, alice, inform(phone number, 5551234), dialog id), 12)}
(2.4.8)

is compliant to S.
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2.5 The SCIFF Proof Procedure

The operational semantics of SCIFF is given by an abductive proof procedure. Since

the language and declarative semantics of the SCIFF framework are closely related

with the IFF abductive framework [82], the SCIFF proof procedure has also been

inspired by the IFF proof procedure. However, some modifications were necessary.

As a result, SCIFF is a substantial extension of IFF, and the main differences between

the frameworks are, in a nutshell:

• SCIFF supports the dynamical happening of events, i.e., the insertion of new

facts in the knowledge base during the computation;

• SCIFF supports universally quantified variables in abducibles;

• SCIFF supports quantifier restrictions;

• SCIFF supports the concepts of fulfilment and violation (see Def. 2.4.7).

2.5.1 Data Structures

The SCIFF proof procedure is based on a rewriting system transforming one node to

another (or to others). In this way, starting from an initial node, it defines a proof

tree.

A node can be either the special node false, or defined by the following tuple

T ≡ 〈R, CS, PSIC, ∆A, ∆P,HAP, ∆F, ∆V 〉. (2.5.1)

We partition the set of expectations EXP into the confirmed (∆F ), disconfirmed

(∆V ), and pending (∆P ) expectations. The other elements are:
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• R is the resolvent: a conjunction, whose conjuncts can be literals or disjunctions

of conjunctions of literals

• CS is the constraint store: it contains CLP constraints and quantifier restric-

tions

• PSIC is a set of implications, called partially solved integrity constraints

• ∆A is the set of general abduced hypotheses (the set of abduced literals, except

those representing expectations)

• HAP is the history of happened events, represented by a set of events, plus a

open/closed attribute (see transition closure in the following)

If one of the elements of the tuple is false, then the whole tuple is the special node

false, which cannot have successors. In the following, we indicate with ∆ the set

∆A ∪∆P ∪∆F ∪∆V .

2.5.2 Initial Node and Success

A derivation D is a sequence of nodes

T0 → T1 → · · · → Tn−1 → Tn.

Given a goal G, a set of social integrity constraints ICS , and an initial history

HAPi, we build the first node in the following way:

T0 ≡ 〈{G}, ∅, ICS , ∅, ∅,HAPi, ∅, ∅〉

i.e., the resolvent R is initially the query (R0 = {G}) and the set of partially solved

integrity constraints PSIC is the set of integrity constraints (PSIC0 = ICS).
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The other nodes Tj, j > 0, are obtained by applying the transitions that we will

define in the next section, until no further transition can be applied (we call this last

condition quiescence).

Definition 2.5.1 Given an instance SHAPi of an abductive specification S = 〈SOKB, ICS〉
and a set HAPf ⊇ HAPi there exists a successful derivation for a goal G iff the

proof tree with root node 〈{G}, ∅, ICS , ∅, ∅,HAPi, ∅, ∅〉 has at least one leaf node

〈∅, CS, PSIC, ∆A, ∆P ,HAPf , ∆F, ∅〉

where CS is consistent, and ∆P contains only negations of expectations ¬E and

¬EN. In such a case, we write:

SHAPi `HAPf

∆ G.

From a non-failure leaf node N , answers can be extracted in a very similar way to the

IFF proof procedure. Answers of the SCIFF proof procedure are called expectation

answers. To compute an abductive answer, a substitution σ′ is computed such that

• σ′ replaces all variables in N that are not universally quantified by a ground

term

• σ′ satisfies all the constraints in the store CSN .

If the constraint solver is (theory) complete [92] (i.e., for each set of constraints c,

the solver always returns true or false, and never unknown), then there will always

exist a substitution σ′ for each non-failure leaf node N . Otherwise, if the solver is

incomplete, σ′ may not exist. The non-existence of σ′ is discovered during the answer
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extraction phase. In such a case, the node N will be marked as a failure node, and

another success node can be selected (if there is one).

Definition 2.5.2 (Abductive Answer). Let σ = σ′|vars(G) be the restriction of σ′

to the variables occurring in the initial goal G. Let ∆N = (∆FN ∪∆PN ∪∆AN)σ′.

The pair (∆N , σ) is the abductive answer obtained from the node N .

2.5.3 Variables Quantification and Scope

Concerning variable quantification, SCIFF differs from IFF in the following aspects:

• in IFF, all the variables that occur in the resolvent or in abduced literals are

existentially quantified, while the others (that occur only in implications) are

universally quantified; in SCIFF, variables that occur in the resolvent or in

abducibles can be universally quantified (as EN expectations can contain uni-

versally quantified variables);

• in IFF, variables in an implication are existentially quantified if they also occur

in an abducible or in the resolvent, while in SCIFF variables in implications

can be existentially quantified even if they do not occur elsewhere.

For these reasons, in the SCIFF proof procedure the quantification of variables is

explicit.

The scope of the variables differs depending on where they occur:

• if they occur in the resolvent or in abducibles, their scope is the whole tuple

representing the node (see Sect. 2.5.1);

• otherwise they occur in an implication; their scope, in such a case, is the impli-

cation in which they occur.
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In the first case, we say that the variable is flagged. In the following, when we want

to make explicit the fact that a variable X is flagged (when it is not clear from the

context), it will be indicated with X̂, while if we want to highlight that it is not

flagged, it will be indicated with X̌.

Copy of a formula Since the SCIFF syntax allows for abducibles with both ex-

istentially and universally quantified variables, the classical concept of renaming of a

formula should be extended. Intuitively, universally quantified variables are renamed,

in a sense, doubling the original formula, while existentially quantified variables are

not. Let us call this operation copy of the formula.

When making a copy of a formula, we keep into account the scope of the variables

it contains by means of their flagging status, as follows.

Definition 2.5.3 Given a formula F , we call copy of F a formula F ′ where the

universally quantified variables and the non flagged variables are renamed. We write

F ′ = copy(F ).

For example,

∃Ŷ ∀X̂′>50∀Ž′E(p(Ŷ )) ∧ EN(q(X̂ ′, Ŷ )) ∧ [EN(r(Ŷ , Ž ′)) → ∃Ǩ′E(p(Ǩ ′))]

is a copy of the formula:

∃Ŷ ∀X̂>50∀ŽE(p(Ŷ )) ∧ EN(q(X̂, Ŷ )) ∧ [EN(r(Ŷ , Ž)) → ∃ǨE(p(Ǩ))]

Notice that, by Definition 2.5.3, if F contains only flagged existentially quantified

variables, then copy(F ) ≡ F (so, for instance, the selected literal of SLD resolution
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would not be renamed, as in SLD resolution), while a universally quantified formula

would be renamed (for instance, a clause would be renamed, as in SLD resolution).

Intuitively, by copying a formula we obtain a new fresh copy (unrelated to previous

ones) of universally quantified variables and non flagged variables.

2.5.4 Transitions

The transitions are based on those of the IFF proof procedure, enlarged with those

of CLP [91], and with specific transitions accommodating the concepts of fulfilment,

dynamically growing history and consistency of the set of expectations with respect

to the given definitions (Defs. 2.4.5, 2.4.6 and 2.4.4).

Here, for sake of completeness of the presentation of the SCIFF Framework, we

will briefly cite and define the transitions of the Proof Procedure. The interested

reader can refer to [15] for the complete and detailed presentation of the transitions.

IFF-like transitions

The IFF proof-procedure. The IFF is based on rewriting. It starts with a formula

(that replaces the concept of resolvent in logic programming) built as a conjunction

of the initial query and the ICs. Then it repeatedly applies one of its inference rules.

By such rules, each node is always translated into a (disjunction of) conjunctions of

atoms and implications; e.g., it can look like:

(A1 ∧ A2 ∧ [A3 ← B1 ∧B2] ∧ [A4 ← B3 ∧B4])

∨ (Ai ∧ Aj ∧ Ak ∧ [Az ← By] ∧ [false ← B5])

The atoms have a similar meaning to those in the resolvent in LP, while the impli-

cations are (partially solved) integrity constraints. Given a formula, its variables’

quantification is defined by the following rules:
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• if a variable is in the initial query, then it is free;

• else if it occurs in an atom, it is existentially quantified;

• else (it occurs only in implications) it is universally quantified.

A negated atom not A is rewritten as false ← A. Notice that this does not change

the existential quantification of the atom because of the allowedness condition. A

variable can occur in a negated atom only if it also occurs in a positive atom. A

variable is universally quantified only if it occurs only in implications. Thus, if an

implication false ← A was generated by the transformation of a negated atom not A,

the variables in A necessarily occur also in a positive atom, and must be considered

existentially quantified. The inference rules which IFF is based on are: Unfolding,

Propagation, Splitting, Case analysis, Factoring, Rewrite rules for equality, Logical

simplifications. In the following, we will show how these IFF transitions are adapted

for the purposes of SCIFF.

Unfolding. Is adapted from the IFF proof-procedure. Let Li be the selected literal

in the resolvent Rk = L1, . . . , Lr. Suppose that Li is a predicate defined in the SOKB

of the social specification. Unfolding generates a child node for each of the definitions

of Li; in each node, Li is replaced with its definition.

Moreover, as in the IFF proof procedure, unfolding is also applied to a defined

atom in the body of an implication. In this case, only one child node is generated,

which contains a new implication for each definition of the atom.

Abduction. Since the SCIFF proof procedure (differently from the IFF) keeps the

set of abducibles separate from the resolvent, a transition has been introduced for
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abduction which, intuitively, moves an abducible from the resolvent to the set of

abduced atoms (∆A ∪∆P ).

Propagation. Given a partially solved PSIC and a literal A (an happened event

or an abducible) that unifies with a literal Li in the body of the PSIC, a new node

is generated where an equality constraint is imposed between A′ and Li, and a new

PSIC ′ is added (where Li has been removed). A′ is the copy of A, (A′ = copy(A)),

and the equality will be handled by transition Case Analysis.

Splitting. Given a node where the resolvent Rk contains a disjunction, two new

child nodes are generated, each one containing only one of the disjunct atoms of the

parent node.

In the SCIFF proof procedure, disjunctions may appear also in the constraint

store. Depending on the type of underlying Constraint Solver, clever reasoning can be

possible. For instance, when using a CLP(FD) solver, constructive disjunction [148]

or the cardinality operator [147] can be used to handle disjunctions of constraints. If

the adopted constraint solver does not provide such facilities, Splitting can be applied

also to disjunctions in the store.

Case Analysis. Given a node with an implication

PSICk = PSIC ′ ∪ {A = B, L1, . . . , Ln → H1 ∨ · · · ∨Hj}

the node is replaced by two identical nodes, except for the following: in Node 1 we

hypothesize that the equality A = B holds, while in Node 2, we hypothesize the

opposite. Since our proof procedure also needs to deal with constraints in the body,

we also extend case analysis to such situation.
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Factoring. In the IFF proof procedure, transition factoring separates answers in

which abducible atoms are merged from answers in which they are distinct. It is

important for keeping the set of assumptions small (ideally, minimal). It generates

two nodes: in one node two hypotheses unify, in the other one a constraint is imposed

in order to avoid the unification of the hypotheses.

In the SCIFF proof procedure, abducibles can contain universally quantified vari-

ables; it is not reasonable to unify atoms with universally quantified variables, because

we would lose some of the information given by the abduced atoms.

For this reason, we apply factoring only if the two atoms only contain existentially

quantified variables. Notice that this coincides with the factoring transition of the

IFF proof procedure.

Equivalence Rewriting. The equivalence rewriting operations are delegated to

the constraint solver. Note that a constraint solver works on a constraint domain

which has an associated interpretation. In addition, the constraint solver should

handle the constraints among terms derived from unification. Therefore, beside the

specific constraint propagation on the constraint domain, we assume that the con-

straint solver is equipped with further inference rules for coping with unification.

Moreover, we also have to consider that our language is more expressive than that

of the IFF proof-procedure, as we can abduce atoms with universally quantified vari-

ables. For this reason, we introduced flagged variables, and we deal with them in the

theory of unification.

Logical Equivalence. Intuitively, when the body of a PSIC becomes true, then

a new child node is generated, where PSIC is removed and its head is added to the



53

resolvent R. Moreover, also all the logic equivalence rules of the IFF are considered

in this transition.

Dynamically growing history

This set of transitions deals with a dynamically growing history HAP. The transi-

tions are used to reason upon the happening (or non-happening) of events.

Closure. In order to reason about non-happening of events, we adopt Closed World

Assumption (CWA, [123]) on the set of currently happened events. Of course, this

assumption is not acceptable if other events will happen in the future. For this reason,

we non-deterministically assume that no other event will happen, i.e., we generate

two child nodes. In the first we assume that no other events will happen, in the

second that there will be other events. The open/closed attribute of the history (see

Sect. 2.5.1) records if closed world is assumed on the happening of events.

Transition Closure is only applicable when no other transition is applicable. In

other words, it is only applicable at the quiescence of the set of the other transitions.

Happening of Events. The happening of events is handled by a transition Hap-

pening. This transition takes an event H(Event) from an external queue and puts

it in the history HAP; the transition Happening is applicable only if an Event such

that H(Event) 6∈ HAP is in the external queue.

Non-Happening. The Non-Happening transition can be considered an application

of constructive negation. Constructive negation is a powerful inference that is partic-

ularly well suited in CLP [141].
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Rule Non-Happening applies when the history is closed and a literal not H is in

the body of a PSIC. Given a node where:

• PSICk = {not H(E1), L2, . . . , Ln → H1 ∨ · · · ∨Hm} ∪ PSIC ′

• closed(HAPk) = true

Non-Happening produces a new node. Intuitively, we hypothesise that all the events

matching with E1 that are not in the history, do not happen at all. Intuitively, we

hypothesise that every event that would be able to match with E1, and is not in the

current history, will not happen. This can be seen as abducing an atom nonH(E ′
1)

where all the variables are substituted with universally quantified variables. We im-

pose that the hypothesis holds in all cases except those already in the HAPk; we

can state this by means of the quantifier restrictions, i.e., we impose that the hypoth-

esis nonH(E ′
1) does not unify with any of the happened events. This is equivalent

to imposing a conjunction (for all the events in the history that match with E ′
1) of

a disjunction (for all the variables appearing in E ′
1) of non unification restrictions

(written 6=).

Fulfilment and Violation

These transitions nondeterministically try and match expectations with events. In

general, these transitions generate two child nodes: in one we assume that one expec-

tation and one event match, while in the other we assume they will not match.

Violation EN. Given a node N with the following situation:

• ∆P k = ∆P ′ ∪ {EN(E1)}

• HAPk = HAP′ ∪ {H(E2)}
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Violation EN produces two nodes N1 and N2, where N1 is as follows:

• ∆V 1
k+1 = ∆V k ∪ {EN(E1)}

• CS1
k+1 = CSk ∪ {E1 = E2}

and N2 is as follows:

• ∆V 2
k+1 = ∆V k

• CS2
k+1 = CSk ∪ {E1 6= E2}

Fulfilment E. Starting from a node N as follows:

• ∆P k = ∆P ′ ∪ {E(Event1)}

• HAPk = HAP′ ∪ {H(Event2)}

Fulfilment E builds two nodes, N1 and N2, that are identical to their father except

for the following: in node N1 we hypothesise that the expectation and the happened

event unify; in node N2 instead we hypothesise that the two will not unify.

Violation E. Violation of an E expectation can be proven only if there will not

be an event matching the expectation. It is possible when we assume that no other

event will happen; i.e., either when the transition Closure has been applied, or when

a deadline has expired. The E atom that is violated is then added to the ∆V set in

the new child node.

Fulfilment EN. Symmetrically to violation E, we can prove fulfilment of EN ex-

pectations, either when the history HAP is closed, or when a deadline has expired

and the correspondent event didn’t happen at all.
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Consistency

E-Consistency. In order to ensure E-consistency (see Def. 2.4.6) of the set of ex-

pectations, we impose the following integrity constraint:

E(T ) ∧ EN(T ) → false (2.5.2)

¬-Consistency. In order to ensure ¬-consistency (see Def. 2.4.5) of the set of

expectations, we impose the following integrity constraints:

E(T ) ∧ ¬E(T ) → false

EN(T ) ∧ ¬EN(T ) → false
(2.5.3)

CLP

The SCIFF proof-procedure inherits the same transitions of CLP [91]. We suppose

that the symbols = and 6= are in the constraint language and the theory behind them

is, for equality, the same used by the Equivalence Rewriting transition. Concerning

6=, we will again suppose that it is possible to syntactically distinguish the CLP-

interpreted terms and atoms; the solver will perform some inference on the interpreted

terms (typically, depending on the CLP sort, e.g., by deleting inconsistent values from

domains in CLP(FD)), and will moreover contain the rules for uninterpreted terms.

The constraint solver deals also with quantifier restrictions. If a quantifier restric-

tion (due to unification) gets all the variables existentially quantified, then we replace

it with the corresponding constraint.

Constrain. Given a node with

• Rk = L1, . . . , Lr
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and the selected literal, Li is a quantifier restriction, Constrain produces a node with

• Rk+1 = L1, . . . , Li−1, Li+1, . . . , Lr

• CSk+1 = CSk ∪ {Li}

Infer. Given a node, the transition Infer modifies the constraint store by means of

a function infer(CS). This function is typical of the adopted constraint sort. E.g.,

the function infer in a FD (Finite Domain) sort will typically compute (generalised)

arc-consistency.

• CSk+1 = infer(CSk)

Consistent. Given a node, the transition Consistent will check the consistency of

the constraint store (by means of a solver of the domain) and will generate a new

node. The new node can either be a special node fail or a node identical to its father.

Again, this transition is typical of the chosen constraint solver: in CLP(FD), for

example, failures are discovered when a domain is empty.

2.5.5 Implementation of the SCIFF Proof Procedure

As its ancestor, the IFF proof procedure [82], the SCIFF proof-procedure is a transi-

tion system that rewrites logic formulae into equivalent logic formulae. Each formula

is a Node of the proof-procedure, and can be rewritten into one or more nodes, logi-

cally in OR (so building an OR-tree). The SCIFF proof-procedure has more features:

it accepts dynamically incoming events (H), uses a constraint solver, generates ex-

pectations (E, EN). For these reasons, elements in a formula (node) are arranged

in a tuple which is more structured than the node of the IFF, and that carries the
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following information:

T ≡ 〈R, CS, PSIC, ∆P,HAP, ∆F, ∆V 〉 (2.5.4)

where R is the resolvent, CS is the constraint store (as in CLP), PSIC is a set of

implications (initially set as the set of all integrity constraints), HAP is the current

history, ∆P , ∆F , and ∆V are, respectively, the set of pending, fulfilled, and vio-

lated expectations. For the implementation of the SCIFF proof-procedure, SICStus

PROLOG [137] has been chosen.

As the IFF proof-procedure, the SCIFF proof-procedure specifies a mechanism for

building proof trees, leaving the search strategy to be defined at implementation level.

The implementation is based on a depth-first strategy. This choice, enabling us to

tailor the implementation for the built-in computational features of PROLOG, allows

for a simple and efficient implementation of the proof-procedure. Experiments in a

practical application (namely, combinatorial auctions) show that the proof-procedure

is scalable enough to address real-life size situations. The PROLOG-Constraint Han-

dling Rules (CHR, [81]) module implements the transitions of the proof-procedure.

The data structures of the proof-procedure (e.g., PSIC, ∆P ) are implemented as CHR

constraints, so the transitions can be straightforwardly implemented as CHR rules.

For example, each happened event is represented by means of a h/2 CHR constraint,

whose (ground) arguments are the content and the time of the event. An example of

event is:

h(request(seller,buyer,give(10e),1),10am)

Expectations are represented by means of CHR constraints e for E expectations and

en for EN expectations. CHR interfaces easily with other constraint solvers, so we
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can impose constraints on the variables, such as:

e(do(buyer,seller,give(10e),1),T), T<5pm

and this expectation will not match with (and be fulfilled by), for example, a happened

event

h(do(buyer,seller,give(10e),1),8pm).

Given this representation, the SCIFF transitions can be mapped into CHR rules, in a

sense defining a new constraint solver for the resolution of expectations. For example,

we have a transition of E-consistency, that ensures that the final derivation node does

not contain both the expectations of an event to happen and to not happen:

e_consistency @

e(E1,T1), en(E2,T2)

==>

reif_unify((E1,T1),(E2,T2),0).

Such a rule, for each pair (E(E1, T1),EN(E2, T2)), imposes the dis-unification con-

straint (E1, T1) 6= (E2, T2) (reif_unify(T1, T2, B) is a constraint that imposes uni-

fication between two terms T1 and T2 according to a boolean variable B: the logical

reading is (T1 = T2) ⇔ (B = 1)). The fulfillment rule is also rather straightforward:

fulfilment @

h(HEvent,HTime), e(EEvent,ETime)

==>

may_unify(HEvent,EEvent)

|

renaming((EEvent,ETime),(EEvent1,ETime1)),

case_analysis_fulfilment((HEvent,HTime),(EEvent1,ETime1)).

The rule is applied when an event and a pending expectation whose content have the

same functor and arity (checked by the may_unify/2 predicate in the guard of the



60

rule) are in the CHR store. In this case, a renaming is made of the expectation5 and

the case_analysis_fulfillment/2 predicate is called. Two nodes are created by

case_analysis_fulfillment/2:

• a first node where unification is imposed between the expectation and the event,

the e(EEvent,ETime) constraint for the expectation is removed from the con-

straint store and the fulf(e(EEvent,ETime)) CHR constraint is imposed (im-

plementing the fact that the expectation is moved from the set ∆P of pending

expectations to the ∆F one of fulfilled expectations);

• and a second node where dis-unification between the expectation and the event

is imposed.

5This step is necessary because some expectations may contain universally quantified variables.
The issue is discussed in detail in a technical report [14].
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2.6 Properties of the SCIFF proof procedure

2.6.1 Soundness of the SCIFF Proof Procedure

Here we will report only the main results about the soundness of the SCIFF Proof

Procedure. The interested reader can refer to [85] for the complete and detailed proofs

of soundness.

Premises and definitions

First of all, we need to distinguish between closed histories and open histories (see

Def. 2.4.2 and Def. 2.4.3). This distinction reflects upon the concepts of a goal G
achievable or achieved. In particular:

Definition 2.6.1 Goal achievability Given an open instance of an abductive spec-

ification, SHAP, and a ground goal G, we say that G is achievable (and we write

SHAP≈∆G) iff there exists an (open) admissible set of abducibles ∆ (and whose

EXP ⊆ ∆ is also fulfilled) such that:

SOKB ∪HAP ∪∆ ² G (2.6.1)

(which is a shorthand for Comp(SOKB ∪∆) ∪HAP ∪ CET |= G).

Definition 2.6.2 Goal achievement Given a closed instance of an abductive spec-

ification, SHAP, and a ground goal G, we say that G is achieved (and we write

SHAP ²∆ G) iff there exists a (closed) admissible set of abducibles ∆ (and whose

EXP ⊆ ∆ is also fulfilled) such that:

SOKB ∪HAP ∪∆ ² G (2.6.2)
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(i.e., Comp(SOKB ∪HAP ∪∆) ∪ CET |= G).

Recalling the deifinitions of open/closed successfull derivation of the proof, we are

now ready to enunciate the main soundness results.

Soundness Properties of the SCIFF Proof Procedure

The following theorem relates the operational notion of open successful derivation

with the corresponding declarative notion of goal achievability.

Theorem 2.6.1 Open Soundness. Given an open instance SHAPi, if

SHAPi∼HAPf

∆ G

with abductive answer (∆, σ) then

SHAPf≈∆σGσ

The theorem above states that if there exists an open successful derivation for a goal

G starting from an initial history HAPi and leading to the (open) instance SHAPf

with abduced set ∆, and with expectation answer (∆, σ), then Gσ is achievable in

SHAPf (with the abduced set ∆σ).

In the closed case, the soundness property is stated as follows, relating the opera-

tional notion of closed successful derivation with the corresponding declarative notion

of goal achievement.
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Theorem 2.6.2 Closed Soundness. Given a closed instance S
HAPf , if

SHAPi `HAPf

∆ G

with abductive answer (∆, σ) then

S
HAPf |=∆σ Gσ

Soundness in the closed case states that if there exists a closed successful derivation

for a goal G starting from an initial history HAPi and leading to the closed instance

S
HAPf with abduced set ∆, and with abductive answer (∆, σ), then Gσ is achieved

in S
HAPf (with the abductive set ∆σ).

2.6.2 Termination of the SCIFF Proof Procedure

As already states previously, the SCIFF Proof Procedure is an extension of the IFF

Proof Procedure [82]. The termination property for the IFF was proven by Xanthakos

[154], by establishing sufficient conditions on the IFF program for guaranteeing the

termination of the proof procedure. Here we will present a set of restrictions that, if

applied to a SCIFF program, are indeed a sufficient condition for the termination.

Then, we will enunciate the termination property that holds under such restrictions.

The interested reader can refer to [85] for the detailed proof.

New restrictions on the SCIFF Proof Procedure

We give here the equivalent of the restrictions proposed by Xanthakos.

Splitting Citing Xanthakos:
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The first new restriction we enforce is the (exhaustive) application of

splitting on any disjunctions in a node (i.e. whenever possible, split-

ting should be applied after an unfolding, propagation, case analysis,

or previous splitting step). Then, any execution tree is an or-tree

where any node is a conjunction of literals, implications and at most

one disjunction D1∨· · ·∨Dn, where each Di is a conjunction of literals

and implications.

Equality rewriting and logical simplification Citing Xanthakos[154]:

The second restriction that we pose is that we give logical simplifica-

tion and equality rewrite rules the highest priority, i.e. they should

be applied whenever possible.

Equality rewriting is substituted in the SCIFF proof-procedure by more general

transition rules, called Constraint Solving. We impose that Constraint Solving

transitions are applied (together with logical simplification) before the other

transitions (i.e., they have highest priority).

Case Analysis Citing Xanthakos [154]:

Some equalities in the body of implications are not dealt with by

equality rewrite rules, but by case analysis. Our third restriction is

that case analysis is given the highest priority (after equality rewriting

and logical simplification have been performed) when an implication is

selected. Similarly to equality rewriting, we enforce that the left-most

equality is selected first. This restriction simplifies the implications

in a node and may also reduce the computational cost.
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We take the same restriction proposed by Xanthakos. Notice that in the SCIFF

proof-procedure, Case Analysis can also be applied to a constraint in the body

of an implication.

Assumptions on the Constraint Solver

As in Constraint Logic Programming [91], the Constraint Solving is not completely

specified in the SCIFF proof procedure. In order to prove termination, we need to

make some assumption on the Constraint Solver.

Definition 2.6.3 Assumptions on the Constraint Solver

• The constraint solving process always terminates

• The constraint solving process cannot generate an infinite constraint store

• If the constraint solving process generates a disjunction of constraints CS =

(c1 ∨ cj) ∧ CS ′ then splitting can be applied. We require that the alternation of

Constraint Solving and splitting always terminates.

• The constraint solving process will not change the quantification of a variable

(a variable universally quantified will not become quantified existentially and

vice-versa).

• The constraint solving process can change a literal L into L′, but the new version,

L′ must be an instance of the previous version, L.

Thanks to these assumptions, we can now state the following lemma:

Lemma 2.6.1 Constraint Solving steps cannot cause other transitions, except
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• Case Analysis

• failing transitions.

Moreover, an infinite sequence of case analysis and constraint solving steps is impos-

sible.

Acyclicity for SCIFF programs

Definition 2.6.4 Given a SOKB, an atom L depends on a literal M w.r.t. SOKB if

• an instance of a clause in SOKB is Lθ ← K ∧M , or

• an instance of a clause in P is Lθ ← K ∧N and N depends on M

where K is a conjunction of literals, possibly true, and Lθ is an instance of L.

Given a logic program P, an atom L weakly depends on a literal M wrt SOKB if

• L is M , or

• L depends on M wrt SOKB.

Note that, since we interpret a specification S by means of an abductive logic program

(see Sect. 2.4.2, Def. 2.4.1), the logic program P is the union of the SOKB and of

the set HAP of happened events.

We report here some definitions given by Xanthakos, adapted to our terminology.

Definition 2.6.5 Given a SOKB, two literals L, M are related w.r.t. an atom N if

an instance of a clause in P is Nθ ← K,L′,M ′ (where K is a conjunction of literals,

possibly true, and Nθ is an instance of N) and L′ weakly depends on L and M ′ weakly

depends on M .
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Intuitively, two literals are related w.r.t. a goal, if a sequence of unfolding steps for

the goal can lead to the introduction of a node with both literals.

Definition 2.6.6 Given a SOKB, a level mapping || is a function that maps all

ground atoms in BSOKB (where BSOKB is the Herbrand base of the logic program

SOKB) to N \ {0} and false to 0. Also, || is extended to map a ground negative

literal ¬A to |A|, where A ∈ BSOKB.

Given the definitions above, we can introduce the definition of acyclic implication,

properly restated in our terminology:

Definition 2.6.7 (Acyclic implication) Given a society with SOKB acyclic w.r.t. a

level mapping ||, a ground implication, say L1, . . . , Ln → H1 ∨ · · · ∨ Hm, is called

acyclic w.r.t. SOKB and ||, if for every non-constraint atom Li, i = 1, . . . , n, for

every ground atom K which Li weakly depends upon w.r.t. SOKB,

• |K| > |Hr|, r = 1, . . . ,m and

• |K| > |N |, for every non constraint atom N such that some Lj, j = 1, . . . , i−
1, i + 1, . . . , n depends upon the negative literal ¬N and

• |K| > |N |, for every non equality atom N such that K is related to ¬N wrt Li.

An implication is called acyclic w.r.t. SOKB and || if every ground instance of it

is acyclic w.r.t. ||. An implication is called acyclic w.r.t. SOKB if it is acyclic

w.r.t. some level mapping.

The definition of Acyclic Implication considers CLP constraints as an extension

of the concept of unification (as is usual in CLP [91]). In other words, constraints are
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not assigned a level; this is reasonable, because they do not depend upon definitions,

nor upon integrity constraints, but their semantics is defined only by the underlying

constraint theory.

We now extend the notion of acyclicity to the society knowledge (which is the

definition of acyclic ALP [154, Def 4.2.5 pag 65] rewritten in our terminology)

Definition 2.6.8 Acyclic Society Specification

• Given a logic program P that is acyclic w.r.t. a level mapping ||, a negative

defined literal ¬N is called acyclic w.r.t. P and || if the implication N → false

is acyclic w.r.t. P and ||. A negative defined literal is called acyclic w.r.t. P if

it is acyclic w.r.t. some level mapping.

• An Abductive Specification S is acyclic w.r.t. a level mapping || if

1. SOKB is acyclic w.r.t. ||

2. all negative defined literals in SOKB are acyclic w.r.t SOKB and ||

3. every implication in ICS is acyclic wrt SOKB and ||.

S is called acyclic if it is acyclic w.r.t. some level mapping.

• A query G to an abductive specification S where the S is acyclic w.r.t. some

level mapping ||, is called acyclic w.r.t. S and || if every negative defined literal

in G is acyclic w.r.t. SOKB and ||. S and G are then called acyclic w.r.t. ||.
An abductive specification S and a query G are called acyclic if they are acyclic

w.r.t. some level mapping.

Notice that the definition of acyclic negative literal is slightly different from the

IFF, because the SCIFF proof procedure does not rewrite all negative literals ¬N
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to N → false, but only the negative defined literals, while abducibles have explicit

negation [86], and constraints depend on the solver (for example, ¬(A < B) is typi-

cally rewritten as A ≥ B). Thus, literals ¬E, ¬EN and ¬c (where c is a constraint)

are always acyclic.

Termination properties

We state the theorem of termination for a “static version of SCIFF proof-procedure,

i.e., for a version of SCIFF that does not have Happening, non-Happening, and

closure transitions. In other words, we proved termination for a version of SCIFF

provided with a static history.

Theorem 2.6.3 (Termination of static SCIFF).

Let G be a query to a society S, where SOKB, ICS and G are acyclic w.r.t. some

level mapping, and G and all implications in ICS bounded w.r.t. the level-mapping.

Then, every SCIFF derivation for G, where transitions Happening, non-happening,

and closure are not applied, for each instance of S is finite.

The termination for the dynamic case (i.e., where happening events can happen

dynamically at run-time, and hence happening/non-happening transitions can be

applied in any order), we need to assert two further assumptions. The first states

that the new events will arrive only when the SCIFF is in a stable state (i.e., new

events are considered only if no other transition is applicable).

Definition 2.6.9 A SCIFF derivation has a slow happening rate if happening tran-

sitions apply only if no other transition is applicable.
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Non happening transitions are applicable only after closure of the history. We will

assume that after closure of the history, non happening is applied as soon as possible

(this can be seen as a preprocessing):

Definition 2.6.10 A SCIFF derivation has non happening high priority if, whenever

non happening is applicable, it is indeed applied.

We can now state our termination theorem for SCIFF:

Theorem 2.6.4 (Termination of SCIFF). Let G be a query to a society S, where

SOKB, ICS and G are acyclic w.r.t. some level mapping, and G and all implications

in ICS bounded w.r.t. the level-mapping.

Then, every SCIFF derivation with high priority for non happening and with slow

happening rate for G, starting from an initial history HAPi ending in a (possibly

closed) finite final history HAPf is finite.

2.6.3 Completeness of the SCIFF Proof Procedure

In the following we state the completeness results that have been achieved, respec-

tively for the open and closed case. We do not present the proofs: the interested

reader can refer to [83].

Theorem 2.6.5 (Open Completeness).

Given an open society instance SHAP, and a (ground) goal G, for any set of ground

abducibles, ∆ = EXP∪∆A, such that SHAP≈∆G then ∃∆′ such that S∅∼HAP
∆′ G with

an expectation answer (∆′, σ) such that ∆′σ ⊆ ∆.
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Completeness in the open case states that if goal G is achievable in an open

society instance under the abducible set ∆, then an open successful derivation can

be obtained for G, possibly computing a set ∆′ of the abducibles whose grounding

(according to the expectation answer) is a subset of ∆.

Theorem 2.6.6 (Closed Completeness).

Given a closed society instance SHAP, a (ground) goal G, for any set of ground

abducibles, ∆ = EXP ∪ ∆A such that SHAP |=∆ G then ∃∆′ such that S∅ `HAP
∆′ G

with an expectation answer (∆′, σ) such that ∆′σ ⊆ ∆.

Completeness in the closed case states that if goal G is achieved in a closed society

instance under the abducible set ∆, then a closed successful derivation can be obtained

for G, possibly computing a set ∆′ of the abducibles whose grounding (according to

the expectation answer) is a subset of ∆.
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2.7 Related Works

In this section we relate the SCIFF framework with other relevant work of literature.

We will focus on other ALP frameworks and on other applications of computational

logic to multi-agent systems. We do not intend to give an exhaustive account of the

work done, but we will only touch the most closely related proposals and focus on

the differences with respect with our own work.

2.7.1 ALP frameworks

By reading Kakas and colleagues’ survey on ALP [96], one will be impressed by the

amount of work done on this topic. We will try to relate our work with some of the

most influential proposal of literature, although we are aware that many others will

have to be left out.

Kakas and Mancarella [97] define a proof procedure (herein and below referred

to as KM ) for ALP, building on previous work by Eshghi and Kowalski [72]. KM

assumes that the integrity constraints are in the form of denials, with at least one

abducible literal in the conditions.6 The semantics given by KM to the integrity

constraints is that at least one of the literals in the integrity constraint must be false

(otherwise, procedurally, false is derived). The procedure starts from a query and a

set of initial assumptions ∆i and results in a set of consistent hypotheses (abduced

literals) ∆o such that ∆o ⊇ ∆i and ∆o together with the program P entails the

query. The proof procedure uses the notion of abductive and consistency derivations.

Intuitively, an abductive derivation is a standard SLD-derivation suitably extended

6The syntax of integrity constraints varies from framework to framework; while some frameworks
require integrity constraints to be denials of literals, this is not true of other frameworks, such as
SCIFF, and IFF, as we will see.
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in order to consider abducibles. As soon as an abducible atom δ is encountered which

does not already occur in the current set of hypotheses, it is added to the current

set of hypotheses, and it must be proved that any integrity constraint such that δ

unifies with an abducible in it is satisfied. For this purpose, a consistency derivation

for δ is started. Since the integrity constraints are denials only (i.e., queries), this

corresponds to proving that every such query fails to hold. Therefore, δ is removed

from all the denials with which it unifies, and it is proved that all the resulting queries

fail. In this consistency derivation, when an abducible is encountered, an abductive

derivation for its complement is started in order to prove the abducible’s failure, so

that the initial integrity constraint is satisfied.

Operationally, in KM abducibles must be ground when they are considered by the

proof, and the procedure flounders if a selected abducible is not ground. Moreover,

it treats constraint predicates, such as <,≤, 6=, . . ., as ordinary predicates, thus being

unable to use specialized constraint solvers for such predicates. Therefore, extensions

to KM have been proposed to cope with such limitations. Notably, ACLP [98] ex-

tends KM to deal with non-ground abduction and with constraints. ACLP programs

can contain constraints on finite domains. ACLP interleaves consistency checking of

abducible assumptions and constraint satisfaction.

Denecker and De Schreye [57, 59] introduce a proof procedure for normal abduc-

tive logic programs by extending SLDNF resolution to the case of abduction. The

procedure is called SLDNFA and it is correct with respect to the completion seman-

tics, and interestingly, it presents a crucial property: the treatment of non-ground

abductive queries. [57] does not consider general integrity constraints, but only con-

straints of the kind a, not a ⇒ false. In later work [58], they propose adding integrity
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constraints by extending the program with rules false ← ¬F , for each integrity con-

straint F ; the literal ¬false is then added as an extra literal to the query. SLDNFA

has been extended towards CLP constraints handling, giving rise to SLDNFA(C)

[149].

The A-System [99] is a merger of ACLP and SLDNFA(C), but it differs from

them by its explicit treatment of non-determinism, which permits to perform heuristic

search with different types of heuristics. Also A-System, like SCIFF, copes with non-

ground abduction.

The Active-KM proof procedure by Terreni et al. [110] integrates in the origi-

nal abductive computational scheme a limited but powerful type of implicative-form

integrity constraints. It supports forward reasoning via integrity constraints (implica-

tions) which fire when their conditions (body) are satisfied. However, this procedure

does not deal with non-ground abducibles.

The KM proof-procedure has been also used and extended in the context of MAS.

In particular, Ciampolini et al.’s ALIAS framework [46] and the LAILA language [47]

define mechanisms for the coordination of agent reasoning based on it.

Surely the most related abductive framework to SCIFF is Fung and Kowalski’s

IFF proof-procedure [82], on which SCIFF is based. The IFF proof procedure uses

backward reasoning with the selective Clark completion [48] of the logic program7

to compute abductive explanations for given queries. Forward reasoning is applied

based on the conjunction of queries plus integrity constraints, which is done at the

beginning of the abductive process. The integrity constraints can be any (closed)

implications. The authors describe IFF as a sort of “hybrid of the proof procedure

7The term “selective” refers to the fact that IFF does completion, but only of non-abducible
predicates.
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of Console et al. [51] and the SLDNFA procedure of Denecker and De Schreye (see

[57]),” mainly due to its use of the Clark completion semantics and because neither

of them requires a safe selection rule for abducibles and negation.

IFF has been used to model the rational part of logic-based agents, since Kowalski

and Sadri’s seminal paper [102], and in further developments and refinements [103,

131, 106]. SCIFF also applies ALP to the context of MAS, but differently from other

work it does it at the social level, its initial purpose being to perform the compliance

check of externally observable agent behaviour.

Recently, IFF has been refined to deal with negation as failure in integrity con-

straints [130], and extended with the definition of frameworks that treat abducibles

and constraints uniformly [105, 69]. This last work also presents an implementation

of IFF (the only one published, to the best of our knowledge), based on a meta-

interpreter. Although these extensions improve IFF in several aspects, none of them

handles universally quantified variables in abducible predicates, and of course do

not deal with expectations. Finally, SCIFF is implemented in CHR with attributed

variables, which is a considerably efficient technology.

Given the CHR-based implementation of SCIFF, we will also mention Abden-

nadher and Christiansen’s work [2], which further developed into the HYPROLOG

system [45]. HYPROLOG is not limited to abduction, but also encloses assump-

tive logic programming features. The abductive part of HYPROLOG, however, is

much more restrictive in scope than SCIFF: it has a limited use of negation, and

integrity constraints cannot involve defined predicates (but only abducibles and built-

ins). Thanks to these simplifications, the necessary machinery is much simpler than

the one used by SCIFF. A subset of the SCIFF language based on ideas similar to
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HYPROLOG has been implemented at the beginning of the SOCS project: this is

documented in [84, 11].

Finally, related to our work on ALP are the abductive query evaluation method

proposed by Satoh and Iwayama [134], and Abdual [16]: a system to perform abduc-

tion from extended logic programs grounded on the well-founded semantics. Abdual,

which relies on tabled evaluation inspired to SLG resolution [43], handles only ground

programs.

A little bit outside of ALP, but related to our work, Sergot [135] proposed a frame-

work, query-the-user, in which some of the predicates are labelled as “askable”; the

truth of askable atoms can be asked to the user. Our E predicates may be under-

stood as information asking, while H atoms may be considered as new information

provided during search. However, differently from Sergot’s query-the-user, SCIFF

is not intended to be used interactively, but rather to provide a means to generate

and to reason upon generated expectations, be them positive or negative. Moreover,

SCIFF presents expectations in the context of an abductive framework (integrating

them with other abducibles). Hypotheses confirmation was studied also by Kakas

and Evans [74], where hypotheses can be corroborated or refuted by matching them

with observable atoms: an explanation fails to be corroborated if some of its logical

consequences are not observed. The authors suggest that their framework could be

extended to take into account dynamic events, possibly, queried to the user: “this

form of reasoning might benefit from the use of a query-the-user facility”. In a sense,

our work can be considered as a merger and extension of these works: it has confir-

mation of hypotheses, as in corroboration, and it provides an operational semantics

for dynamically incoming events, as in query-the-user.
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Also related to reasoning with dynamic incoming events are two additional works,

which we briefly mention before we conclude this roundup. Speculative Computation

[133] is a propositional framework for a multi-agent setting with unreliable commu-

nication. When an agent asks a query, it also abduces a default answer; if the real

answer arrives within a deadline, the hypothesis is (dis-)confirmed; otherwise the com-

putation continues with the default. In our work, expectations can be confirmed by

events, with a wider scope: they are not only questions, and they can have variables,

possibly constrained. The dynamics of incoming events can be seen as an instance

of an Evolving Logic Program [17]. In EvoLP, the knowledge base can change both

because of external events or because of internal results. SCIFF does not generate

new events, but only expectations about external events. Our focus is more on the

expressivity of the expectations than on the evolution of the knowledge base.

2.7.2 Computational Logic and societies of agents

To the best of our knowledge, the SOCS approach to agent societies, upon which

SCIFF found its main motivations, is the first attempt to use ALP to reason about

agent interaction at a social level. Many other logics have been proposed to repre-

sent richer social and institutional entities, such as normative systems and electronic

institutions. Here also the literature is broad, and slightly aside of the focus of this

thesis. However, our work shares some concepts with normative systems, being E

related with the O (obligation) operator of deontic logic [132], and EN with the F
(forbidden) operator.8 We enucleate similarities and differences in [12], and comment

8The reduction of deontic concepts such as obligations and prohibitions has been the subject of
several past works: notably, by [19] (according to which, informally, A is obligatory iff its absence
produces a state of violation) and by [112] (where, informally, an action A is prohibited iff its being
performed produces a state of violation).



78

on the main differences between our approach and others based on social semantics

in a number of published papers [10, 13, 8]. Below we will only give a very synthetic

and by no means exhaustive account of work based on computational logic, applied

to agent interaction and social agent systems in the broader sense.

The social approach to the semantic characterization of agent interaction is adopted

by many researchers to allow for flexible, architecture-independent and verifiable

protocol specification. Prominent schools, including Castelfranchi’s [41], Singh et

al.’s [138, 155], and Colombetti et al.’s [79, 49, 50] indicate commitments as first class

entities in social agents, to represent the state of affairs in the course of social agent

interaction. The resulting framework is more flexible than traditional approaches

to protocol specification, as it does not necessarily define action sequences, nor it

prescribes initial/final states or necessary transitions.

In [155], a variant of the Event Calculus [71] is applied to commitment-based pro-

tocol specification. The semantics of messages (i.e., their effect on commitments) is

described by a set of operations whose semantics, in turn, is described by predicates

on events and fluents ; in addition, commitments can evolve, independently of com-

municative acts, in relation to events and fluents as prescribed by a set of postulates.

Similarly, [79] defines an operational specification of an ACL in an object-oriented

framework by means of the commitment class. A commitment represents an obliga-

tion for its debtor towards its creditor. A commitment is described by a finite state

automaton, whose states (which can take the values of empty, pre-commitment, can-

celed, conditional, active, fulfilled and violated) can change by application of methods

of the commitment class, or of rules triggered by external conditions. The semantics

of communicative acts is specified in terms of methods to be applied to a commitment
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when a communicative act is issued. The use of the SOCS framework for the social

semantic specification of agent interaction protocols has been discussed in [10].

Artikis et al. [24] present a theoretical framework for providing executable specifi-

cations of particular kinds of multi-agent systems, called open computational societies,

and present a formal framework for specifying, animating and ultimately reasoning

about and verifying the properties of systems where the behaviour of the members

and their interactions cannot be predicted in advance. Three key components of

computational systems are specified, namely the social constraints, social roles and

social states. The specifications of these concepts is based on and motivated by the

formal study of legal and social systems (a goal of the ALFEBIITE project), and

therefore operators of Deontic Logic are used for expressing legal social behaviour of

agents [153, 145]. ALFEBIITE has investigated the application of formal models of

norm-governed activity to the definition, management and regulation of interactions

between info-habitants in the information society. Their logical framework comprises

a set of building blocks (including doxastic, deontic and praxeologic notions) as well

as composite notions (including deontic right, power, trust, role and signalling acts).

Differently from [24] (and from other work on normative systems), we do not

explicitly represent concepts such as institutional power of the society members and

validity of action. Instead, permitted are all social events that do not determine

a violation, i.e., all events that are not explicitly forbidden are allowed. Permission

instead, if explicitly needed, is mapped the negation of a negative expectation (¬EN).

[129] provides a first-order framework of deontic reasoning that can model and

compute social regulations and norms, and among the organizational models, [60, 62,

61] exploit deontic logic to specify the society norms and rules. Several papers discuss
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“sub-ideal” situations, i.e., how to manage situations in which some of the norms are

not respected. For instance, [146] show the relation between diagnostic reasoning

and deontic logic, importing the “principle of parsimony” from diagnostic reasoning

into their deontic system, in the form of a requirement to minimize the number

of violations. [121] proposes a solution to the problem and paradoxes stemming

from earlier logical representations of contrary-to-duty obligations, i.e., obligations

that become active when other obligations are violated. The Interactive Maryland

Platform for Agents Collaborating Together (IMPACT) [22, 67] also uses deontic

operators: not to describe social stances, but to program intelligent agents.



Chapter 3

Verifying Compliance by
Observation: the SOCS-SI tool

In this Chapter we present how the components of the SCIFF Framework have been

exploited to practically apply the Type 2 verification (Section 1.2) to Multi Agent

Systems (MAS).

In particular, we present the SOCS-SI software tool (SI stands for Society Infras-

tructure): developed within the SOCS project, it has been extended to cope also with

other scenarios than the initial MAS setting.

The key aspect of Type 2 Verification is that in heterogenous systems (like the

ones we are considering), it is not reasonable to assume that agents/peers internals

are accessible. Therefore any verification process should be made on the observable

behaviour, from an external viewpoint. The SCIFF Proof Procedure (Section 2.5)

already considered this viewpoint by taking in account the dynamic happening of

events. The SOCS-SI tool uses the proof procedure to perform the reasoning (for the

verification purposes), and provide monitoring facilities for accessing the external,

observable behaviour.

81
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Contribution of the author. The author contributed in a substantial way to the

content of this chapter, and in particular to the development of the SOCS-SI tool.

all the performances test on the SCIFF Proof Procedure and on the SOCS-SI have

been done in collaboration with Marco Alberti. Finally, the examples presented at

the end of the chapter are the result of the collaboration with all the research group.

Chapter organization. The chapter is organized as follows. In Section 3.1 we

describe the software SOCS-SI, while in Section 3.2 we discuss some performances

results obtained through experimentation, on the proof procedure alone and in con-

junction with the SOCS-SI tool.

Finally, in Section 3.3 we present few application examples of conformance verifi-

cation on the observable behaviour of peers.
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3.1 The SOCS-SI tool

The implementation of the SOCS-SI tool for compliance verification of agent inter-

action is composed of an implementation of the proof-procedure described in Section

2.5, interfaced to a Graphical User Interface and to a component for the observa-

tion of agent interaction. The SOCS-SI software application is composed of a set of

modules. All the components except the proof-procedure have been implemented in

the JAVA language. The core of SOCS-SI is composed of three main modules (see

Fig. 3.1), namely:

• Event Recorder : fetches events from different sources and stores them inside

the History Manager.

• History Manager : receives events from the Event Recorder and composes them

into an “event history”.

• Social Compliance Verifier : fetches events from the History Manager and passes

them on to the proof-procedure in order to check the compliance of the history

to the specification. It receives the expectations from the proof-procedure and

visualizes them in the GUI.
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In our model, agents communicate by exchanging messages, which are then trans-

lated into H events. The Event Recorder fetches events and records them into the

History Manager, where they become available to the proof-procedure (see Section

2.5). As soon as the proof-procedure is ready to process a new event, it fetches one

from the History Manager. The event is processed and the results of the computa-

tion are returned to the GUI. The proof-procedure then continues its computation

by fetching another event if there is any available, otherwise it suspends, waiting for

new events.

A fourth module, named Init&Control Module provides for initialisation of all

the components in the proper order. It receives as initial input a set of protocols

defined by the user, which will be used by the proof-procedure in order to check the

compliance of agents to the specification.

The JAVA-PROLOG Interface

The main task of the JAVA portion of the Social Compliance Verifier is to interact

with the proof-procedure. The SICStus Runtime libraries are accessed from JAVA

using the Jasper package and native interfaces. All data exchanged between the

JAVA side and the PROLOG program is translated into String objects. In order to

process and filter the String objects, JAVA regular expressions are extensively used.

These expressions are defined in a configuration file, loaded at initialisation time.

Our software application can deal with different proof-procedure implementations

and with different ACL performatives, without any a priori assumption about the

format of the exchanged parameters. It is sufficient to properly re-define the regular

expressions in the config file, and a new proof-procedure can be easily integrated into

the software application.
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The Recorder Interface

The Event Recorder fetches events from the external world using modules, each mod-

ule being specialised for a specific source. We developed modules for interfacing with

various agent platforms, starting with PROSOCS [37]. We are currently experiment-

ing with other platforms: we had some successful experiments with JADE [32] and

TuCSoN [125], and with checking compliance of e-mail messages. For testing and

debugging purposes, we also developed modules to interact with the user prompt,

as well as with the file system; it is possible to add as many specialised modules as

desired, provided that they implement the interface RecorderInterface. In order to

integrate our application with an already existing platform the user should:

1. create a JAVA class that implements the RecorderInterface

2. select it as message source during the application configuration (either through

the configuration GUI, or by modifying the config file).

The RecorderInterface that we propose defines three methods, where the class

SOCSEvent is our internal representation of events:

• public SOCSEvent listen(). Returns an instance of the SOCSEvent class if a

message is available, or it waits (suspends) until a message arrives.

• public long speak(SOCSEvent aMsg). Gives our application the capability

to communicate with agents, by sending a message. It returns the time the

message is sent.

• public long getTime(). Returns the current time. It is used to check tem-

poral deadlines.
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Figure 3.1: A screenshot of the application

The RecorderInterface has originally been defined as a subset of the low level

communication API defined in the PROSOCS platform, which is used to perform

controlled experiments in the context of global computing applications, within the

SOCS project. However, one of the design specifications we strove to obtain was

to have an interface general enough to allow integration with most agents platforms

currently available.

The Graphical User Interface

The Graphical User Interface is implemented by using the Swing graphic library,

and implements the Model-View-Control programming pattern. The main window is

composed of three areas (or sub-windows), and of a button bar containing the con-

trols (Figure 3.1). The bottom area contains the list of all the messages received by

the SOCS-SI: the next message to be processed by the proof-procedure is empha-

sised (in Fig. 3.1 it is the third row, which is darker). The area on the left contains
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the list of agents known by the society, i.e., agents that have performed at least one

communicative action (coherently with the notion of openness by Davidsson [54]).

The larger frame on the right contains the proof state, i.e., the results of the com-

putation, returned by the proof-procedure. These results are expressed in terms of

society expectations about the future behaviour of agents, and also in terms of ful-

filled expectations and violations of social rules. By selecting an agent from the left

pane, it is possible to restrict the information shown on the larger pane to be only

that which is relevant to that particular agent. Among other features, it is possible to

execute the application step-by-step, so that it elaborates one message at a time and

then waits for a user acknowledge (similarly to debugger interfaces). Protocols are

loaded into the tool by means of a button; they are simply provided as text files with

a syntax strictly adherent to the formal one presented earlier. Finally, a tree-view of

the whole computation is provided (Figure 3.2); interestingly, the shown tree bears

both an operational and a logical interpretation. The operational interpretation is

an intuitive graphical form of a log-file, showing the most significant computational

steps, useful for debugging purposes. The logical meaning is an or-tree of the possible

derivations timed by the incoming events. For each incoming event that enriches the

knowledge base, the frontier of the explored proof-tree (which is a logical disjunction,

as in various proof-procedures [82]) is shown. The user can inspect each of the nodes,

and see in the main window the state of the computation, i.e., the tuple given in

Eq. (2.5.4). The tuple is logically a conjunction of logical formulae of the types in

the SCIFF language: abducibles, constraints, literals, implications. Presentation of

the frontier of the derivation tree is important for explanation reasons. Typically,

logic languages can provide two types of answers: a success/failure answer and an
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Figure 3.2: The Logic OR-Tree

explanation answer. In case of success, logic languages explain why: PROLOG re-

turns simply a binding for the variables in the goal, CLP can return also constraints,

and ALP (Abductive Logic Programming) returns a set of abducibles, just to name a

few. But in case of failure, there is typically no explanation. The tree-view provides

information also in case of failure: the set of failing nodes. In each node, the GUI

shows underlined the cause of failure (e.g., a violated expectation or an unsatisfiable

CLP constraint).
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3.2 Performances of SCIFF and SOCS-SI

In this section we present some tests e have conducted, in order to better understand-

ing the computational time required by SCIFF/SOCS-SI to process some simple pro-

tocols and histories.The aim of this group of tests is not to establish absolute values

about performances, but rather to understand how the computation time required

to provide an answer is affected by changes in the length of the history processed

(Section 3.2.1), and by changes in the alternatives dialogues allowed by the protocol

(Section 3.2.2). The last experiment in particular roughly corresponds to increasing

the breadth of the search tree explored by SCIFF, whether the former corresponds

to increasing the depth of the tree.

The output considered is only the computational time required to elaborate an

answer. For test instances of certain dimension (see Tables 3.1 and 3.2), it was not

possible to achieve the completion of the test, mainly for limitations of the hardware.

This condition is expressed by placing a question mark in the results tables, instead

of a value.

Qualitatively, the computational complexity of SCIFF can be evaluated as follows.

Each SCIFF computation produces a search tree whose depth and breadth determine

the total number of nodes, and thus the time needed to explore the (whole) tree. As

the proof tree is explored by SCIFF in a depth-first fashion, the depth of the tree,

together with the size of a single node, also impacts on space requirements. For both

time and space, the worst case is when each branch leads to failure, because in this

case the whole tree is explored in search of a success node.

Intuitively, the depth of the search tree depends on the total number of events

(the facts added dynamically to the knowledge base).
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The breadth of the search tree, instead, is influenced by both the number of dis-

juncts in the head of the SCIFF integrity constraints, and the alternative branches

arising in several of the SCIFF transitions. For example, one of the branches gen-

erated by the transition Fulfillment can be safely pruned, provided that the set ICS
respects some syntactic conditions, whose discussion is beyond the scope of this pa-

per. In such cases, it is possible to optimize the performance of SCIFF by reducing

the number of generated branches. In this paper, we call this optimized SCIFF be-

haviour f-deterministic, as opposed to the f-non-deterministic, which does not perform

the pruning.

In the following, we present three tests: the first and the second test (Sections

3.2.1 and 3.2.2) uses meaningless protocols specification, with the only purposes of

understanding how the depth and the breadth of the search tree affect the required

computational time. In Section 3.2.3 instead a third test is presented, where a mean-

ingful protocol specification (a combinatorial auction) is taken as the playground for

stressing the SCIFF Proof Procedure. All the tests were designed to provide a posi-

tive answer by the SCIFFProof Procedure, and were executed on a PC with a 2 GHz

Pentium IV CPU, 512 MB of RAM, Windows XP Professional Edition and SICStus

Prolog 3.10.1.

3.2.1 Increasing the depth of the explored derivation tree

In order to evaluate the impact of histories of various length on the SCIFF Proof

Procedure and on SOCS-SI, we have considered a very simple protocol, presented in

the Specification 3.2.1, along with the history used to test it. The considered results,

presented in Table 3.1, are the time required to the proof procedure and to SOCS-SI

respectively to elaborate the histories of various length, and to provide the expected
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positive answer. The used protocol does not contain any alternative (disjunction) in

the head of the rule: each time an appropriate event is processed, a new expectation is

generated and, if possible, fulfilled. The parameter varied was the number of messages

(events) composing each history, and results are shown in Table 3.1.

Specification 3.2.1 The protocol and the histories used for testing when increasing
the depth of the search tree.

IC1 :
H(tell(A,B, aQuestion(aParameter),D),T)

→ E(tell(B,A, anAnswer(aParameter),D), T1) ∧
T1 ≥ T

HAP :
tell(a, b, aQuestion(aParameter), d1, 1)
tell(b, a, anAnswer(aParameter), d1, 1)
tell(a, b, aQuestion(aParameter), d2, 2)
tell(b, a, anAnswer(aParameter), d2, 2)
. . .

tell(a, b, aQuestion(aParameter), dx, x)
tell(b, a, anAnswer(aParameter), dx, x)

Due to the simplicity of the protocol used it is not correct to assume the results as

meaningful in their absolute values. However, the test shows two significant aspects

about the behavior of the proof and of SOCS-SI. First of all, the time required to

elaborate longer histories increases in an almost quadratic way, as it is possible to

observe in Figure 3.3. Secondly, the SOCS-SI has a big impact on performances,

with respect to SCIFF running without a GUI. Not only does SOCS-SI lower the

maximum number of processable events before an “Out–of–Memory” error, but also

the performances are worsened, with a factor that is not constant, but that tends to

increase.
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Table 3.1: Testing performances of SCIFF Proof Procedure and SOCS-SI while in-
creasing the depth of the search tree.

No. of Messages SOCS-SI Time(sec.) SCIFF Proof Time(sec.)
2 0,13 0,42
4 0,18 0,43
20 0,68 0,51
30 0,98 0,51
50 1,82 0,57
100 6,13 0,76
150 13,13 0,97
200 21,68 1,35
250 33 1,62
300 47,05 1,99
400 82,47 3,00
1000 ? 12,16
2000 ? 41,21
3000 ? 92,56
4000 ? 165,89
5000 ? 259,02

Figure 3.3: Performances with histories of increasing length.

3.2.2 Increasing the breadth of the exploration tree

The purpose of this test is to understand how the performance of the SCIFF Proof

and SOCS-SI changes if the breadth of the search tree increases. Here we vary the
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Specification 3.2.2 The protocol and the history used for testing when increasing
the breadth of the derivation tree.

IC1 :
H(tell(A,B, aQuestion(aParameter),D),T)

→ E(tell(B,A, answer1(aParameter),D), T1) ∧
T1 ≥ T

∨ E(tell(B,A, answer2(aParameter),D), T2) ∧
T2 ≥ T

∨ . . .

∨ E(tell(B,A, end(aParameter),D), Tx) ∧
Tx ≥ T

HAP :
tell(a, b, aQuestion(aParameter), d1, 1)
tell(b, a, end(aParameter), d1, 2)
close history.

protocol definition by increasing the number of disjuncts in the head of an Integrity

Constraint; the history used, instead, is of a fixed length. The protocol, presented in

Specification 3.2.2, is again a simple one: a subscript x indicates the total number of

disjuncts. The history has been thought in order to fulfill the protocol only w.r.t. the

expectation presented in the last disjunction. Since the SCIFF Proof explores the

search tree by expanding the possible branches following the order of occurrence of the

disjuncts in the integrity constraint, this history forces the SCIFF Proof Procedure

to explore all the tree. The results obtained are presented in the Table 3.2.

Again, the absolute values are not really meaningful, due to the to simplicity of

the protocol used. However, the results show that the time requirements increase with

a almost quadratic coefficient w.r.t. the increasing of the disjunctions in the protocol.

In Figure 3.4 it is possible to appreciate the overhead introduced by the SOCS-SI,
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suggesting how much the GUI impacts on the overall performances.

Table 3.2: Testing performances of the SCIFF Proof Procedure and SOCS-SI while
increasing the depth of the derivation tree.

No. of Messages SOCS-SI Time(sec.) SCIFF Proof Time(sec.)
2 0,032 0,015
5 0,047 0,016
10 0,093 0,031
20 0,219 0,063
30 0,375 0,109
40 0,578 0,188
50 0,859 0,282
100 2,813 0,921
200 10,968 3,360
300 25,423 7,516
400 46,390 12,937
500 71,496 19,875
1000 ? 111,750

Figure 3.4: Performances with protocols with increasing number of alternatives.

We did not test how performances could have changed using the f-deterministic

version of SCIFF. In fact, in this dummy scenario, it has no sense to introduce
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knowledge about the domain, and thus it is not possible to take advantage of the

f-deterministic SCIFF.

3.2.3 Tests in a real scenario

In this section, we show some experimental results obtained applying the SCIFF Proof

Procedure to the verification of compliance to the combinatorial auction protocols

(described in [6]).

There exist different kinds of auctions. For this test, we consider single unit

reverse auctions. In a single unit auction, the auctioneer wants to sell a set M of

goods/tasks maximizing the profit. Goods are distinguishable. Each bidder j posts

a bid Bj where a set Sj of goods/tasks S ⊆ M is proposed to be bought at the price

pj, i.e., Bj = (Sj, pj). The single unit reverse auction is a single unit auction where

the auctioneer wants to buy and bidders are suppliers. The protocol definition for

the auction is given in Specification 3.2.3.

While not being an exhaustive experimentation, the results show the effect on the

time costs of SCIFF of the breadth and depth of the search tree. The tests have been

performed varying the following parameters:

1. SCIFF version (f-non-deterministic vs. f-deterministic);

2. the abductive program used. Specification 3.2.3 shows two versions of the IC

4, which are semantically equivalent (i.e., an agent behaviour that respects

one will respect the other, and vice-versa), but are verified by SCIFF in a

computationally different way. IC4b expresses with a disjunction in the head

that the auctioneer can either declare a bid winning (first disjunct) or declare

it losing (second disjunct). Instead in IC4a this alternative is expressed by
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Specification 3.2.3 Combinatorial Auction

IC1 :

H(tell(B, A, bid(ItemList, P ), D), Tbid)

→E(tell(A, B, openauction(Items, Tend, Tdeadline), D), Topen)

∧ Topen < Tbid ∧ Tbid ≤ Tend.

IC2 :

H(tell(A, B, openauction(Items, Tend, Tdeadline), D), T1)

∧ H(tell(B, A, bid(ItemBids, P ), D), )

∧ not included(ItemBid, Items)

→E(tell(A, B, answer(lose, B, ItemBids, P ), D), ).

IC3 :

H(tell(A, B, openauction(Items, Tend, Tdeadline), D), Topen)

→E(tell(A, B, closeauction, D), Tend).

IC4a :

H(tell(B, A, bid(ItemList, P ), D), Tbid)

∧ H(tell(A, B, openauction(Items, Tend, Tdeadline), D), Topen)

→E(tell(A, B, answer(X, S, ItemList, P ), D), Tanswer)

∧ Tanswer > Tend ∧ Tanswer < Tdeadline ∧ X :: [win, lose].

IC4b :

H(tell(B, A, bid(ItemList, P ), D), Tbid)

∧ H(tell(A, B, openauction(Items, Tend, Tdeadline), D), Topen)

→E(tell(A, B, answer(win, S, ItemList, P ), D), Tanswer)

∧ Tanswer > Tend ∧ Tanswer < Tdeadline

∨E(tell(A, B, answer(lose, S, ItemList, P ), D), Tanswer)

∧ Tanswer > Tend ∧ Tanswer < Tdeadline.

IC5 :

H(tell(A, B, answer(lose, S, ItemList, P ), D), )

→EN(tell(A, B, answer(win, S, ItemList, P ), D), ).

IC6 :

H(tell(A, B1, answer(win, B1, ItemList, P ), D), )

∧ H(tell(B2, A, bid(ItemList′, P ), D), Tbid)

∧ B1 6= B2 ∧ intersect(ItemList, ItemList′)

→EN(tell(A, B2, answer(win, B2, ItemList′, P ′), D), ).

SOKB :

included([], ).

included([H|T ], L) : −member(H, L), included(T, L).

intersect([X| ], L) : −member(X, L).

intersect([ |Tx], L) : −intersect(Tx, L).

means of a domain variable: intuitively, the auctioneer must declare each bid

Answer, where Answer can be either win or lose. Operationally, in the first case,
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two branches are generated by SCIFF; in the second case, only one branch is

generated and the binding of the domain variable is delayed.

In particular, we measure the computation time for sequences of auctions with dif-

ferent numbers of bidders in the two following implementations of the protocol:

1. f-non-deterministic SCIFF, protocol with disjunction (which we call the first

setup of SCIFF and protocol);

2. f-deterministic SCIFF, protocol with no disjunction (which we call the second

setup of SCIFF and protocol).

The protocols have been run by varying the number N of bidders, in two different

cases.

• In each run of the first case:

1. the auctioneer sends an openauction message to each of the N bidders;

2. each of the N bidders places a bid;

3. the auctioneer issues a closeauction message to each of the N bidders;

4. the auctioneer notifies each of the N bidders with either a win or a lose

message,

thus resulting in 4N total messages exchanged.

• In each run of the second case, the last notification to one of the bidders is

missing, thus resulting in a violation of the protocol and 4N −1 total messages.
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Table 3.3: Combinatorial Auction case 1: Fulfillment
f-non-deterministic,disjunction f-deterministic,domain
Bidders Time(sec.) Bidders Time(sec.)

5 1 5 1
10 1 10 1
15 2 15 2
20 3 20 6
25 4 25 8
30 6 30 10
35 9 35 15
40 10 40 18
45 12 45 23
50 21 50 30

Figure 3.5: Proof performance on a basic auction (compliant)

In case of fulfillment (see Table 3.3), the first setup of SCIFF and protocol seems

to scale well with the number of bidders and, in fact, it achieves better execution

timing than the second (also shown in Fig. 3.5).

This is basically due to the fact that the chosen setup of interactions directly leads

to a successful SCIFF derivation, and only one branch of the tree is explored.
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Table 3.4: Combinatorial Auction case 2: Violation
f-non-deterministic,disjunction f-deterministic,domain
Bidders Time(sec.) Bidders Time(sec.)

3 7 3 0
4 55 4 0
5 ? 5 0
10 ? 10 1
15 ? 15 3
20 ? 20 4
25 ? 25 7
30 ? 30 10
35 ? 35 14
40 ? 40 17
45 ? 45 22
50 ? 50 26

In the case of violation (see Table 3.4), however, the first setup of SCIFF and

protocol explodes for a very small number of bidders. The experiment with 5 bidders

was suspended since this did not reach the answer of violation after several minutes

of computing time; no experiments were performed with a higher number of bidders,

which would have made things even worse. The second setup (also shown in Fig.

3.6), instead, scales very well also in case of violation. In this case, a CLP(FD) solver,

written in CHR, directly manages the two alternative values for variable Answer.

The difference between the two setups of SCIFF and protocol becomes apparent

in the worst case (i.e., the case of violation) when the whole tree is explored. With

the first setup, the choice points left open in case of fulfillment and the disjunctions

in the head of the integrity constraint make the number of nodes in the proof tree

explode even for small number of bidders. With the second setup, instead, the tree

has only one branch, and is thus explored in a reasonable time when the number of

bidders increases.



100

Figure 3.6: Proof performance on a basic auction (non compliant)

3.3 Applications of the Run-time Conformance Ver-

ification

In the following we present some real cases where we have successfully applied the

SCIFF Framework, and in particular the SOCS-SI tool. Several other scenarios

have been studied and correspondent protocols have been specified using our formal-

ism. The interested reader can refer to http://wikiai.deis.unibo.it/index.php?

title=SOCS_Protocol_Repository for an online protocol repository.

3.3.1 The Opening phase of the Transmission Control Pro-
tocol

The Transmission Control Protocol [124] is one of the most known and used protocols

for the transmission of data over an Internet Connection (over the IP protocol). It
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has been published in the 1981, and since then several different implementations of

the protocol stack have been proposed, developed and deeply tested.

Recently, with the advent of the “third generation” of mobile phones, the use of

the TCP protocol has been adopted for supporting application protocols over radio

connections, from the core network of the telecommunication providers to the user

terminals. Each phone maker has equipped its products with its own TCP imple-

mentation.

Since some details of the TCP protocol have not been completely specified, it can

happen that different phones exhibit slightly different behaviours when connecting

to the core networks of telecommunications providers. In collaboration with one

provider, we have formalized the opening phase of the TCP protocol, and we have

studied the logs of the connections with SOCS-SI. Main objective of the analysis was

to (possibly) identify non-compliances between the behaviour of the peers (traced in

the form of event logs) and the formalization (based on SCIFF) of the protocol.

We present here the ICs regarding the “three-way handshaking” open modality,

that can be summarized as follows:

1. a peer A sends to another peer B a syn segment;

2. B replies by acknowledging (with a ack segment) A’s syn segment, and by

sending a syn segment;

3. A acknowledges B’s syn segment with a ack segment, and starts sending data.

Specification 3.3.1 shows how the opening phase has been represented by means

of the SCIFF Language. In particular, IC1 says that if A sends to B a syn segment,

whose sequence number is NSynA, then B is expected to send to A an ack segment,
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Specification 3.3.1 The Three-way Handshake opening phase of the TCP Protocol

IC1 :
H(tell(A,B, tcp(syn,null, NSynA, AckNumber), D), T1)

→E(tell(B, A, tcp(syn, ack, NSynB, NSynAAck), D), T2)
∧ NSynAAck = NSynA + 1 ∧ T2 > T1.

IC2 :
H(tell(A,B, tcp(syn,null, NSynA, AckNumber), D), T1)
∧ H(tell(B, A, tcp(syn, ack, NSynB,NSynAAck), D), T2)
∧ T2 > T1 ∧ NSynAAck = NSynA + 1

→E(tell(A,B, tcp(null, ack, NSynAAck, NSynBAck), D), T3)
∧ T3 > T2 ∧ NSynBAck = NSynB + 1.

IC3 :
H(tell(A,B, tcp(syn,null, NSynA, ANY ), D), T1)
∧ ta(TA)

→EN(tell(A,B, tcp(syn,null, NSynA, ANY ), D), T2)
∧ T2 < T1 ∧ T2 > T1− TA.

SOKB :
ta(1000msec).

whose acknowledgment number is NSynA + 1, at a later time. Moreover (three way

handshake), B is expected to send (within the same message) a syn with another

sequence number NSynB.

IC2 says that, if the previous two messages have been exchanged, then A is expected

to send to B an ack segment acknowledging B’s syn segment, and with acknowledge-

ment number is NSynB + 1, where NSynB is the sequence number of B’s syn.

The opening phase (restricted to the three way handshake) would be completely

specified by the integrity constraints IC1 and IC2. However, within the collabora-

tion with a telecom provider, some domain experts explicitly required to focus our

attention on a problem they had previously spotted. The TCP protocol definition

[124] explicitly states that if a first syn message has been sent and no ackmessage
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has been received, it is allowed to repeat the initial syn message. Unfortunately, the

specification does not specify the minimum time interval between each transmission

of a syn message.

As a consequence, the follow situation can happen: a fast peer A send a syn

message to a slower peer B. B’s answer is delayed because its computational load

is very high. As a consequence, A starts to re-transmit the syn message, causing

problems to B (typically, a denial of service). In order to verify this hypothesis, the

integrity constraint IC3 has been added.

Specification 3.3.1 has been used to check the correctness of the interaction be-

tween mobile phones and a central server, taking the history from a log file. Evidence

has been found that, after an initial syn message and no ack received, different mobile

phones retransmit a syn with different timings (depending on different implementa-

tions). If the server does not answer rapidly enough, certain mobile phones repeats

the syn message causing a denial of service on the server side. The use of the SCIFF

tools to this scenario has provided two results:

1. it was proved on the logs that a behaviour of certain mobile phones was respon-

sible for the server problems (indeed human experts had already hypothesized

the problem, but a punctual proof was appreciated);

2. it allowed to identify which phones exhibited that particular behaviour, paving

the way for elaborating different solutions;

3. it allowed to establish a minimum time interval between each syn transmission;

then this minimum time interval was used to define the Quality of Service (QoS)

for the core network.
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3.3.2 Run-Time Verification of Web Services Choreographies

Service Oriented Architectures (SOA) have recently emerged as a new paradigm for

structuring inter-/intra- business information processes. While SOA is indeed a set of

principles, methodologies and architectural patterns, a more practical instance of SOA

can be identified in the Web Services technology, where the business functionalities

are encapsulated in software components, and can be invoked through a stack of

Internet Standards.

The standardization process of the Web Service technology is at a good matura-

tion point: in particular, the W3C Consortium has proposed standards for developing

basic services and for interconnecting them on a point-to-point basis. These standards

have been widely accepted; vendors like Microsoft and IBM are supporting the tech-

nology within their development tools; private firms are already developing solutions

for their business customer, based on the web services paradigm. However, the needs

for more sophisticated standards for service composition have not yet fully satisfied.

Several attempts have been made (WSFL, XLang, BPML, WSCL, WSCI), leading

to two dominant initiatives: BPEL [20] and WS-CDL [151].

Both these initiatives however have missed to tackle some important issues. We

agree with the view [28, 144] that both BPEL and WS-CDL languages lack of declar-

ativeness, and more dangerous, they both lack an underlying formal model and se-

mantics. Hence, issues like run-time conformance testing, composition verification,

verification of properties are not fully addressed by the current proposals. Also se-

mantics issues, needed in order to verify more complex properties (besides properties

like livelock, deadlock, leak freedom, etc.), have been left behind.

Some of these issues have been already subject of research: generally, a mapping
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between choreographed/orchestrated models to specific formalisms is proposed, and

then single issues are solved in the transformed model. E.g., the composition verifi-

cation is addressed in [27, 100]; process mining and a-posteriori conformance testing

are addressed in [143]; livelock, deadlock, etc. properties are tackled in [116, 127].

Taking inspiration by the many analogies between the Web Services research field

and the Multi Agent System (MAS) field [27], we have used the SCIFF Framework

for verifying at run-time (or a-posteriori using an event log) if the peers behave

in a conformant manner w.r.t. a given choreography. Global choreographies have

been defined by means of abductive specifications, and the conformance verification

(also called run-time behaviour conformance in [28]) of the interactions have been

performed by means of SOCS-SI.

To our purposes, let us consider a revised version of the choreography proposed in

[28]. The choreography (shown in Figure 3.7) models a 3-party interaction, in which

a supplier coordinates with its warehouse in order to sell and ship electronic devices.

Due to some laws, the supplier should trade only with customers who do not belong

to a publicly known list of banned countries.

The choreography starts when a Customer communicates a purchase order to the

Supplier. Supplier reacts to this request asking the Warehouse about the availabil-

ity of the ordered item. Once Supplier has received the response, it decides to cancel

or confirm the order, basing this choice upon Item’s availability and Customer’s

country. In the former case, the choreography terminates, whereas in the latter one a

concurrent phase is performed: Customer sends an order payment, while Warehouse

handles the item’s shipment. When both the payment and the shipment confirmation
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Customer Supplier

Order Item
send PO to Supplier

Confirm Order
send PO acceptance 

to Customer

Warehouse

Check Stock
send ordered item to Warehouse

receive availability from Warehouse

OK not(OK)

Cancel Order
send PO rejection 

to Customer

Order Shipment
send shipment order to Warehouse

Make Payment
send payment info to Supplier

Get Shipment Details
send request to Customer

receive details from Customer

Confirm Shipment
send shipment confirmation to 

Supplier

Receipt Delivery
send receipt to Customer

Figure 3.7: A Choreography example taken from [28]

are received by Supplier, it delivers a final receipt to the Customer. The specifica-

tion of this choreography is given in Specification 3.3.2. The events are represented

in the form msgType(sender, receiver, content1, . . . , contentn), where the msgType,

sender, receiver and contenti retain their intuitive meaning.

(IC1) specifies that, when Customer sends to Supplier the purchase order, includ-

ing the requested Item and his/her Country, Supplier should request Item’s avail-

ability to Warehouse. Warehouse should respond within 10 minutes to Supplier’s

request giving the corresponding quantity Qty (IC2). The deadline is imposed as a

CLP constraint over the variable Tqty, that represents the time in which the response

is sent.

After having received the requested quantity, Supplier decides whether to accept

or reject Customer’s order (IC3). As we have pointed out, the decision depends
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Specification 3.3.2 Definition of the choreography shown in figure 3.7

H(purchase order(Customer, Supplier, Item, Country), Tpo)
→E(check availability(Supplier,Warehouse, Item), Tca) ∧ Tca > Tpo

(IC1)

H(check availability(Supplier,Warehouse, Item), Tca)
→E(inform(Warehouse, Supplier, Item, Qty), Tqty)
∧ Tqty > Tca ∧ Tqty < Tca + 10

(IC2)

H(purchase order(Customer, Supplier, Item, Country), Tpo)
∧H(inform(Warehouse, Supplier, Item, Qty), Tqty)

→E(accept order(Supplier, Customer, Item), Tao)
∧ ok(Qty,Country) ∧ Tao > Tpo ∧ Tao > Tqty

∨E(reject order(Supplier, Customer, Item), Tro)
∧ ¬ok(Qty,Country) ∧ Tro > Tpo ∧ Tro > Tqty

(IC3)

H(accept order(Supplier, Customer, Item), Tao)
→E(shipment order(Supplier,Warehouse, Item,Customer), Tso)
∧E(payment(Customer, Supplier, Item), Tp) ∧ Tso > Tao ∧ Tp > Tao

(IC4)

H(shipment order(Supplier,Warehouse, Item, Customer), Tso)
→E(request details(Warehouse, Customer), Trd) ∧ Trd > Tso

(IC5)

H(request details(Warehouse, Customer), Trd)
→E(inform(Customer,Warehouse,Details), Tdet) ∧ Tdet > Trd

(IC6)

H(shipment order(Supplier,Warehouse, Item, Customer), Tso)
∧H(inform(Customer,Warehouse, Details), Tdet)

→E(confirm shipment(Warehouse, Supplier, Item), Tcs) ∧ Tcs > Tso ∧ Tcs > Tdet

(IC7)

H(payment(Customer, Supplier, Item), Tp)
∧H(confirm shipment(Warehouse, Supplier, Item), Tcs)

→E(delivery(Supplier, Customer, Item, Receipt), Tdel) ∧ Tdel > Tcs ∧ Tdel > Tp

(IC8)

SOKB :

ok( Qty, Country):-
Qty>0,
not banned_country( Country).

banned_country( shackLand).
banned_country( badLand).
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upon the quantity and the Country the Customer belongs to; Supplier may accept

the order only when Qty is positive and customer’s Country is not in the list of

banned countries. This last condition has been expressed using a predicate defined

in the KBchor, shown in Specification 3.3.2. If Supplier has accepted the purchase

order, then Customer is expected to pay for the requested Item and, at the same

time, Supplier will send a shipment order to Warehouse, communicating the involved

Item and Customer’s identity (IC4). Warehouse will use Customer’s identity in

order to communicate with him/her and asking for shipment details (IC5).

When Customer receives the request for details, then he/she is expected to re-

spond giving his/her own Details (IC6). After having received them, Warehouse

should sends to Supplier a shipment confirmation (IC7). Finally, (IC8) states that

when both the payment and the shipment confirmation actually happen Supplier is

expected to deliver a Receipt to Customer.

Example of Run-Time Conformance Verification

In our scenario, the criminal bankJob beagle wants to buy a device from the on-

line shop devOnline, whose warehouse is devWare. devOnline is quite greedy, and

therefore trades with everyone, without checking if the customer comes from one of

the banned countries. As a consequence, even if bankJob comes from shackLand,

one of the banned countries, devOnline sells him the requested device, thus violating

the choreography. Table 3.5 contains the log of the scenario from the viewpoint of

devOnline; note that messages are expressed in high level way, abstracting from the

SOAP exchange format.

When the first event (labeled m1 in Table 3.5) happens, (IC1) is triggered, and
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Table 3.5: Log of messages exchanged by devOnline in our scenario
Id message sender receiver content time

m1 purchase order bankJob devOnline [device,shackLand] 2
m2 check availability devOnline devWare [device] 3
m3 inform devWare devOnline [device,3] 10
m4 accept order devOnline bankJob [device] 12
m5 shipment order devOnline devWare [device,bankJob] 13
m6 confirm shipment devWare devOnline [device] 16
m7 payment bankJob devOnline [device] 19
m8 delivery devOnline bankJob [device,receipt] 21

an expectation about devOnline’s behaviour is consequently generated:

∆P = { E(check availability(devOnline,Warehouse, device), Tca) ∧ Tca > 2}

The happening of m2 fullfills the pending expectation and matches with the body of

(IC2), generating a new one:

∆F = { E(check availability(devOnline, devWare, device), 3)}

∆P = { E(inform(devWare, devOnline, device,Qty), TQty)

∧Tqty > 3 ∧ Tqty < 13}

The happening of m3 fulfills the current pending expectation respecting the deadline.

Moreover, it triggers (IC3), and two different hypotheses are considered (acceptance

and rejection of the order). However, since the predicate ok(3,shackLand) is evalu-

ated by SCIFF to false, only the expectation about the order rejection is considered:

∆F = { E(check availability(devOnline, devWare, device), 3),

E(inform(devWare, devOnline, device, 3), 10)}

∆P = { E(reject order(devOnline, bankJob, device), Tro)

∧Tro > 3 ∧ Tro > 10}
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As a consequence, when devOnline accepts the purchase order of bankJob sending the

message m4, the SCIFF proof procedure detects a violation, since m4 is not explicitly

expected.

3.3.3 Medical guidelines

Medical guidelines [88] are clinical behaviour’s recommendations that are used to

support physicians in the definition of the most appropriate diagnosis and/or therapy

within determinate clinical circumstances.

Unfortunately, guidelines are today described by using several formats, such as

flow charts and tables, so that physicians are not properly supported in the detection

of possible errors and incompleteness: it is difficult to evaluate who made an error

within the protocol’s flow and when. As a consequence, guideline’s application often

loses its benefits.

In the following we show that the logic-based formalism provided by the SCIFF

framework is general enough to allow us to formally describe medical protocols. The

main advantage of using ICs in the context of medical guidelines is the capability to

discover some forms of inconsistency and to perform an on-the-fly verification of the

protocol’s application on a specific patient.

In order to effectively test the potentialities of this approach, we formalized a mi-

crobiological guideline [38] which describes how to manage an infectious patient from

his arrival at a hospital’s emergency room to his recovery and tested this guideline

on a set of clinical trials.

The guideline may be structured in seven phases: patient’s arrival at the hospital’s

emergency room; patient examination at the emergency room; possible admission in a



111

specific hospital ward and first therapy prescription made by the ward physician; re-

quest of a microbiological test (consisting of many sub-phases, involving both human

and artificial actors); return of the microbiological test report to the ward physician,

who must decide the definitive therapy; management of drugs by nurses; evaluation

of patient’s health and, in case of symptoms persistence, new prescription of micro-

biological test. In order to formalize the guideline described before, we detected, first

of all, all the actors involved (e.g. the patient, wards physicians, the microbiological

laboratory, etc.) and secondly pointed out all the actions which should be executed

(or not, i.e. expected or not expected) for an appropriate patient’s disease treatment.

Each actor has been then mapped into an agent with a specific role, and actors actions

(e.g, examinations, analysis, etc) has been modeled as SOCS events. For example,

the following IC:

H (enter (Patient, emergency ward) , Tent)

→ E (examinate (Physician, Patient) , Texam)

∧Texam < Tent + 6 ∗ 60

(3.3.1)

expresses that when a patient arrives at the emergency room (at time Tent), we expect

that at least one physician would visit him (at time Texam) within the deadline of 6

hours. This deadline is expressed as a CLP constraint, which says that Texam should

be lower than Tent plus 6 hours. The complete specification of this protocol consists

of about 20 social ICs. It has been tested via the SOCS-SI software, using different

set of events, compliant and not. For instance, a non compliant set is the following:

a patient (patientA) arrives at the hospital’s emergency room at time 10, but no

physician visits him within 6 hours. The event

enter (patientA, emergency ward) , 10
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matches with the antecedent of (1), generating the expectation in the consequent

that a physician should visit patientA at time Texam, such that Texam < 10+6*60. No

event is afterward registered until this deadline, therefore a violation is raised by the

proof procedure.

In this way a simple medical guideline may be mapped into a set of integrity

constraints in the context of SCIFF infrastructure, thus enabling an on-the-fly veri-

fication about the compliance of the hospital staff to it. We have successfully tested

this specification using the SOCS-SI tool with some set of events, compliant and not.

In literature, several formalisms have been proposed for representing medical pro-

tocols, like for example GLARE [142] and PROforma [80]. These are complete tool

capable to manage both guidelines acquisition and execution, but, to the best of our

knowledge, their are not able to verify compliance of actions and interactions of the

kind here presented.

3.3.4 E-learning by doing

E-learning is a new paradigm for the learning process, based on the growing availabil-

ity of technology resources such as personal computers and the Internet. The main

idea of e-learning consist of distributing the knowledge onto new media support like

cd, dvd, or directly through the internet. Around this idea a set of support technolo-

gies have been developed, such as content management systems and applications for

real-time streaming and interactions. Many advantages are offered by this paradigm:

just to mention the more evident, teacher and student are not constrained anymore

to be in the same place. Moreover, teacher and student can be decoupled also in the

time dimension: it is no longer needed that teacher and student attend the lesson at

the same time instant. The learning process can be adapted to each student’s needs,
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taking into account previous knowledge, time availability, and learning capabilities of

the student himself.

Several e-learning paradigms have been developed, and amongst them, e-learning

“by doing” is one of the most promising in terms of the learning quality. The “by

doing” paradigm consists of teaching a topic by letting the student directly practice

the argument onto a real system, or a model that simulates the real system. This

approach can be applied also to the e-learning processes, and in particular to software

applications learning. Of course, the degree of interaction between the student and the

teacher, and the possibility to receive help when needed, are of the utmost importance

in such process. The student in fact must not be left alone during the learning process,

but rather he should be followed interactively, and he should receive help, hints and

feedback whenever it is opportune.

To support the e-learning by doing process, it is necessary to tackle several issues:

firstly, a mechanism for evaluating the acquired skills is needed, in order to be able

to proceed to advanced topics. The evaluation mechanism must provide support for

a-posteriori evaluation, as well as run-time evaluation to hint the student. Secondly,

it is quite common that the same learning goal can be achieved in more than one

way: the tutoring system must be able to evaluate all the options, and should adapt

in response to the student choices.

The SCIFF framework, and in particular the SOCS-SI application, are general

enough to be used also in the context of e-learning by doing. We have successfully

used our protocol definition language for representing the action expected by the user

of a e-learning by doing system (a sort of a protocol where only one peer participate).

We have focussed our experiments on the learning process of a writing application
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within the offices program suites. We developed our prototype on two applications,

the MS Word program (part of the Microsoft Office Suite), and the Writer application

of the OpenOffice suite. For both applications, a specific filter has been developed,

with the purpose of capturing the actions performed by the student. Those actions,

after a transformation process, are communicated to the SOCS-SI application, that

provide to check the conformance to a special protocol definition. Such definition can

be seen in the Specification 3.3.3, where it is defined how the student can achieve the

goal of closing the application after printing a file.

Specification 3.3.3 An e-learning goal represented through the SCIFF Language.

H(tell(U, S, keyboard event(print), DialogId), TPrint)
→ E(tell(U, S,mouse event(menu File Close), DialogId), TClose)

∧ TClose > TPrint

∨ E(tell(U, S,mouse event(menu File Exit), DialogId), TExit)
∧ TExit > TPrint

∨ E(tell(U, S, keyboard event(quit), DialogId), TExit)
∧ TExit > TPrint

∨ E(tell(U, S, keyboard event(alt + f), DialogId), TFile)
∧E(tell(U, S, mouse event(menu File Close), DialogId), TClose)
∧ TPrint < TFile ∧ TFile < TClose

∨ E(tell(U, S, keyboard event(alt + f), DialogId), TFile)
∧E(tell(U, S, mouse event(menu File Exit), DialogId), TExit)
∧ TPrint < TFile ∧ TFile < TExit

∨ E(tell(U, S, close document,DialogId), TClose)
∧ TClose > TPrint

∨ E(tell(U, S, close office, DialogId), TClose)
∧ TClose > TPrint

(3.3.2)

The IC 3.3.2 shows how it is possible to represent multiple solutions for solving

the learning goal. Seven different alternatives are considered, from using the “File”

menu and the corresponding voice, to closing directly all the application.
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Once the learning goal has been defined through IC, the SOCS-SI application can

use it in three different ways:

1. the tool can be used as evaluator of the actions of the student: if at the end

of the practicing session, at least one expectation is not satisfied, then the goal

has not been achieved;

2. SOCS-SI can be used also as an on-the-fly checker: if the student perform an

action that will block him for reaching the goal, then it is possible to advice

him immediately, rather than waiting for the end of the exercise;

3. the tool can be finally used as a suggesting system: if the student does not

know how to achieve the goal, it is possible to hint him the next action by

communicating the expectations about his future behavior.

Of course it is up to the teacher (or the e-learning content manager) to decide which

modality is more opportune.
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3.4 Related Works

The social approach to the definition of interaction protocols has been documented

in several noteworthy contributions of the past years. Among them, Artikis et al. [24]

present a formal framework for specifying systems where the behaviour of the mem-

bers and their interactions cannot be predicted in advance, and for reasoning about

and verifying the properties of such systems. The framework relies upon a deontic

logic formalism, and on the concepts of permission, prohibition, and empowerment.

The paper also describes a Society Visualiser to demonstrate animations of protocol

runs in such systems. A noteworthy difference with [24] is that we do not explicitly

represent the institutional power of the members and the concept of valid action.

“Permitted” are all the events that do not determine a violation, i.e., all events that

are not explicitly “forbidden” are “allowed”. Being detached from any deontic infras-

tructure, our framework can be used for a broader spectrum of application domains,

from intelligent agents to reactive systems.

Caire et al. [40] propose an agent-oriented CASE tool for implementing and testing

Multi-Agent Systems. The testing framework is divided into two steps: the agent test

and the society test. The agent test verifies the behaviour of the agent with regard to

the system requirements under the responsibility of that agent; the agents are checked

both in their black-box behaviour, and in a white-box checking of the behaviour of

their internal modules. The “agent society testing is a kind of integration testing”:

the successful integration of the different agents is verified. The testing is performed

automatically, without the need for intervention of the user.

Our work is devoted to testing on-the-fly the compliance of peers to protocol

rules, without having any knowledge on the internals of the entities. We provided a
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language, based on logics, to define the interaction protocols, and a proof-procedure,

based on abduction, to check the compliance. Our SOCS-SI tool can be used to

check the behaviour of Multi-Agent Systems that are open: members of the society

are not only the ones defined by the MAS designer, but new agents, possibly malicious,

may unpredictably join the society, and interact with the other agents. As far as their

behaviour follows the society’s prescriptions, such interactions may enrich the society,

but they must be checked for conformance in order to avoid abuses.

Yolum and Singh [155] apply a variant of the Event Calculus [104] to commitment-

based protocol specification. The semantics of messages (i.e., their effect on commit-

ments) is described by a set of operations whose semantics, in turn, is described

by predicates on events and fluents ; in addition, commitments can evolve, indepen-

dently of communicative acts, in relation to events and fluents as prescribed by a

set of postulates. Such a way of specifying protocols is more flexible than traditional

approaches based on action sequences in that it prescribes no initial and final states

or transitions explicitly. It only restricts the agent interaction in that, at the end of

a protocol run, no commitment must be pending; agents with reasoning capabilities

can themselves plan an execution path suitable for their purposes, by means of an

Abductive Event Calculus planner. Our notion of expectation is more general than

that of commitment adopted by Yolum and Singh [155] or by other work, such as [79]:

it represents the expectation about a (past or future) event, without any reference to

specific roles of agents (such as a commitment’s debtor and creditor), and it does not

necessarily need to be brought about by a specific agent.

Several other frameworks in the literature aim at verifying properties about the

behaviour of social agents at design time. Often, such frameworks define structured
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hierarchies, roles, and deontic concepts such as norms and obligations as first class

entities. Notably, ISLANDER [73] is a tool for the specification and verification

of interaction in complex social infrastructures, such as electronic institutions. IS-

LANDER allows for the analysis of situations, called scenes, and visualise liveness or

safety properties in some specific settings. The kind of verification involved is static

and is used to help designing institutions.



Chapter 4

Proving Protocol-specific
Properties: the g-SCIFF
Framework

The recent and fast growth of network infrastructures, such as the Internet, is allowing

for a new range of scenarios and styles of business-making, secure data communica-

tion, and in general of interactions between different peers. Protocols have become

one of the key design point through which such interactions can be somehow man-

aged. Protocols are used as a mean for assuring that the overall system exhibits the

desired behaviour.

Important key aspects of this behaviour are called properties, that are guaranteed

by the protocol. For example, a property of a protocol for a typical english auction

is that the winner is the bidder with the highest bid, provided that he submitted its

bid within a certain deadline (from the previous submitted bid).

Another example can be taken from the security protocol field: the use of such

protocols has become common practice in a community of users who often operate

in the hope (and sometimes in the trust) that they can rely on a technology which

119
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protects their private information and makes their communications secure and reli-

able. Such hypothesis of security and privacy are properties of the used protocol: a

large number of tools and formal methods has been developed in the research litera-

ture to explicitly address the security issues. To cite some, the model checking based

techniques [94] and the state of the art On-the-Fly Model Checker (OFMC, [30]).

In this chapter we focus on proving protocol properties, without restricting to any

specific application domain. We propose the g-SCIFF Framework (where g stands

for generative), an extension of the SCIFF Framework presented in Chapter 2. Our

aim is to adopt a unified approach to both verification types 2 and 3 (as defined in

Section 1.2).

The g-SCIFF Framework has been built as an extension of the SCIFF Framework,

and like the latter one, the former framework offers several components: a specifi-

cation language, a declarative semantics, a proof procedure. All the components

have been defined as extensions/modifications of the respective original components,

pursuing (as much as possible) a unified approach for both the frameworks.

Contributions of the author. The author contributed in a substantial way to the

results presented in this chapter. The “proving properties” topic has been partially

addressed in the Ph.D. thesis of Marco Alberti. However, here it is possible to find a

more complete and comprehensive presentation of the topic and the results achieved.

Moreover, the results previously presented have been properly extended and reviewed,

and formal properties have been demonstrated.

Chapter organization. The chapter is organized as follow. In Section 4.1 we

introduce and formalize the concepts of property, and of proving them.
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In Section 4.2 and 4.3 we define the language used in the g-SCIFF Framework,

and its declarative semantics. Then we provide the definition of the g-SCIFF Proof

Procedure, and compare it with the SCIFF one in Section 4.4.

Section 4.5 to the formal proof of the properties, while some example applications

are discussed in Section 4.6. The chapter is concluded with some remarks on related

works, in Section 4.7.
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4.1 Proving Properties

We first define what is a property in the g-SCIFF Framework:

Definition 4.1.1 (Protocol Property). A Protocol Property P in the g-SCIFF

Framework is a formula, expressed as a goal (in logic programming), with the same

syntactics restrictions and allowedness rules as for the Goal G as stated in Sect. 2.3.2.

For sake of completeness and to ease the comprehension:

• the syntax of P is the same as the body of a clause (Tab. 2.3.2);

• variables in P cannot occur only in NbfLiteras;

• All variables that occur in an ExistLiteral are existentially quantified.

• All remaining variables are universally quantified.

Example 4.1.1 Let be S = 〈∅, {IC1, IC2}〉 an abductive specification as defined

below:

[IC1] H(event1, T1)
→ E(event2, T2) ∧ E(eventx, Tx)
∨ E(event3, T3) ∧ E(eventx, Tx).

[IC2] H(eventx, Tx)
→ E(event4, T4).

G = { E(Event1, T1) }
P1 =E(event4, T4)
P2 =E(event3, T3)
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the histories compliant with the protocol (w.r.t. G) are:

HAP1 = { H(event1, T1),
H(event2, T2),
H(eventx, Tx),
H(event4, T4)}

HAP2 = { H(event1, T1),
H(event3, T3),
H(eventx, Tx),
H(event4, T4)}

P1 holds in both the histories, while P2 holds only for history HAP2.

We then provide a definition that a protocol specification (an abductive specifi-

cation, as defined in 2.3.8) S does indeed enjoy (or guarantee) a property P . In the

g-SCIFF framework, this is stated as follows:

Definition 4.1.2 (P holds for S w.r.t. G) Given an abductive specification S =

〈SOKB, ICs〉, and a goal G, a property P holds for S if and only if:

∀HAP ∀∆ :






SOKB ∪HAP ∪∆ |= ICS
SOKB ∪HAP ∪∆ |= G
EXP is fulfilled, ¬, E-consistent


 ⇒ [

SOKB ∪HAP ∪∆ |= P ]



(4.1.1)

The definition simply states that a property P holds for a protocol if for each

history HAP that is compliant with the protocol, then such history (together with

every abductive explanation ∆i for the specification S, see 2.4.4) does indeed entail

the property P . Note that Equation 4.1.1 states that P must hold for every ab-

ductive explanation ∆i. In fact, a history HAP might be compliant to a protocol
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specification, w.r.t. to only some abductive answers

Moreover, a property P is always said to hold for a specification w.r.t. a specific

goal. In fact, a property could hold for all the histories compliant with the protocol

specification, but different goals could prevent this (see Example 4.1.2).

Example 4.1.2 Let be S = 〈∅, IC1〉 an abductive specification as defined below,

where p is an abducible predicate:

[IC1] H(Event1, T1)
→ E(Event2, T2) ∧ p

∨ E(Event2, T2) ∧ ¬p.

G = { E(Event1, T1) }
∆1 = { H(Event1, T1), H(Event2, T2), p }
∆2 = { H(Event1, T1), H(Event2, T2), ¬p }
P = { p }

∆1 and ∆2 are two abductive explanation for S w.r.t. goal G. The property P holds

if we consider ∆1, but does not hold for ∆2.

Properties as in Definition 4.1.2 are always referred as safety properties. Safety

properties state that something bad will not happen. Of course, peers are also free

to behave badly in an open environment, so trying to prove that violations will not

happen is indeed unrealistic. As stated earlier, however, there is a reaction to bad

behaviour of this type: the detection of violation. In our setting, we want to answer

formally to an even more subtle question: is there some undesirable property that

could happen even if there is no violation detected? In order to rely on a system, we

want, in all possible histories, either to find a violation (i.e., something bad happens,

but we can detect it on-line), or the system to be safe. Stated otherwise, in all

histories compliant to the protocol, the desired property must hold. Safety properties

are often stated with an empty initial history (HAPi = ∅).
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Disproving that a property P holds for a protocol amounts to disprove Eq. 4.1.1.

This can be done by looking for a set HAP of events such that an abductive answer

∆ exists and ¬P is entailed:

∃HAP ∃∆ :





SOKB ∪HAP ∪∆ |= ICS
SOKB ∪HAP ∪∆ |= (G ∧ ¬P)

EXP is fulfilled, ¬, E-consistent

(4.1.2)

A different class of properties is that of liveness properties. Liveness means that

something good will happen, eventually in the future; it could also mean that given

an unpleasant situation, there is an escape: given an initial history (usually, not

very promising), there exists, nevertheless, an extension to such a history that entails

the desired property. Proving a liveness property P amounts to prove that, given

an initial history HAPi, there exist a history HAPf (HAPi ⊆ HAPf ) and an

abductive answer ∆i s.t. P holds. Such condition is the one expressed in Eq. 4.1.2.

Proving safety and liveness properties can be done by means of Equation 4.1.2:

this leads to the idea of proving automatically both types of properties in a uniform

way, with same proof methods and same language for formally defining the requested

properties.
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4.2 The g-SCIFF Language

The language used in the g-SCIFF Framework is a subset of the language defined in

the SCIFF Framework (see Section 2.3): here we will point out only the differences

and briefly recall the common parts.

Entities of the language. As in the SCIFF Language (Sections 2.1 and 2.3.1, the

main entities of the language are:

• atoms representing the concept of Happened Events (by means of the functor

H);

• atoms representing Positive and Negative Expectations (functors E and EN).

However, we restrict the language in the following way: in the g-SCIFF Language it

is not possible to use the negation ¬ in conjunction with an happened event H. This

restriction is motivated by the fact that, as it will be clearer later in Section 4.3, we

are going to abduce H atoms. As a consequence, the constructive negation applied

to H atoms is meaningless.

As a consequence, the syntax of events and expectations in the g-SCIFF Frame-

work is the same presented in Table 2.3.1, with the exceptions that the non- terminal

symbol EventLiteral is not allowed.

The Social Knowledge Base. The SOKB is defined by the grammar shown in

Table 2.3.2 (same syntax as in the SCIFF Framework).

Integrity Constraints. The syntax of the Integrity Constraints in the g-SCIFF

Framework is pretty much the same of the one shown in Table 2.3.3. However, due to



127

the restriction on ¬H atoms, the Body of an IC can not contain such negated atoms.

Hence, the re-writing rule of the non-terminal symbol Body of the grammar shown in

Table 2.3.3 is slightly different. We report in Table 4.2.1 the modified syntax of the

Integrity Constraints in the g-SCIFF Framework.

Table 4.2.1 Integrity Constraints (ICs) in the g-SCIFF

ICS ::= [IC]?

IC ::= Body → Head
Body ::= (Event | ExpLiteral | AbducibleLiteral) [ ∧ BodyLiteral ]?

BodyLiteral ::= Event | ExtLiteral
Head ::= HeadDisjunct [ ∨ HeadDisjunct ]? | false

HeadDisjunct ::= ExtLiteral [ ∧ ExtLiteral]?
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4.3 Declarative Semantics of g-SCIFF

In order to be able to hypothesize new happened events, in the g-SCIFF framework

H atoms are not considered anymore as facts (and then being part of the program P

in the abductive interpretation given in Section 2.4.2), but rather as abducibles (and

then belonging to the set E of predicates that can be abduced).

Although considering H atoms as abducibles is indeed an important extension

w.r.t. to the SCIFF framework, from a formal viewpoint the declarative semantics is

the same. Formally, the only difference is that H atoms now belongs to the abducibles

set, and that the abductive explanation ∆ (Definition 2.4.4) is defined as:

∆ ≡ 〈EXP, ∆A,HAP〉

where the set EXP is the set of all the expectations (positive and negative) that

have been hypothesized; ∆A is the set of abducibles predicates that have been hy-

pothesized; and HAP is the set of happened events that has been hypothesized for

disproving the property P (as explained in Section 4.1).

Note that, as it is in the SCIFF framework, also here SOKB, HAP, ∆A and

EXP are subject to the completion of the program (compare Equations 2.4.3 and

2.4.4, referred to SCIFF, with Equations 4.3.1 and 4.3.2, referred instead to g-SCIFF).

For the sake of comprehension, we report here the most important definitions for

the declarative semantics of the g-SCIFF Framework.

Definition 4.3.1 Given an abductive specification S = 〈SOKB, ICS〉 and a history

HAP, SHAP represents the pair 〈S,HAP〉, called the HAP-instance of S (or simply

an instance of S).
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Definition 4.3.2 An abductive specification S is represented as an ALP, i.e., a triple

〈P, E , ICS〉 where:

• P is the SOKB;

• E is the set of abducible predicates of S (E, EN, H predicates and normal

abducibles predicates);

• ICS are the social integrity constraints of S.

Given the definition of an abductive specification in the g-SCIFF framework, we

are now able to re-define the abductive explanation for the g-SCIFF:

Definition 4.3.3 Given an abductive specification S = 〈SOKB, ICS〉, and a goal G,

∆ ≡ 〈EXP, ∆A,HAP〉 is an abductive explanation of S if:

Comp(SOKB ∪∆) ∪ CET ∪ TX |= ICS (4.3.1)

Comp(SOKB ∪∆) ∪ CET ∪ TX |= G (4.3.2)

where Comp represents the completion of a theory, CET is Clark’s Equational Theory

[48], and TX is the theory of constraints [92].

The symbol |= is interpreted in three valued logics, as it is in the IFF Proof Procedure.

As for the SCIFF framework, we require consistency with respect to explicit

negation [21] and between positive and negative expectations.

Definition 4.3.4 A set ∆ of abducibles is ¬-consistent if and only if for each (ground)
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term p and for each abducible predicate q:

{E(p),¬E(p)} 6⊆ EXP

{EN(p),¬EN(p)} 6⊆ EXP

{q,¬q} 6⊆ ∆A

(4.3.3)

Definition 4.3.5 A set EXP of expectations is E-consistent if and only if for each

(ground) term p:

{E(p),EN(p)} 6⊆ EXP (4.3.4)

Moreover, we require also that the specification S is fulfilled (as for SCIFF in Def.

2.4.7), i.e.:

Definition 4.3.6 Given an abductive explanation ∆ (∆ = 〈∆A,EXP,HAP〉), S is

fulfilled if and only if

∀E(p) ∈ EXP⇒ H(p) ∈ HAP

∀EN(p) ∈ EXP⇒ H(p) 6∈ HAP
(4.3.5)

When all the given conditions (4.3.1-4.3.5) are met, we say that the goal is

achieved, and we write

S |=∆A,EXP,HAP G

.
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4.4 g-SCIFF Proof Procedure

The g-SCIFF Proof Procedure is obtained by modifying the SCIFF one: in particular,

the modifications affect mainly the set of transitions. Some transitions have been

removed, as a consequence of the syntactic restriction introduced in Section 4.2, while

a new transition has been added, in order to be able to generate new hypotheses about

happened events.

4.4.1 Data Structures

As in the SCIFF Proof Procedure, a node can be either the special node false, or

defined by the following tuple

T ≡ 〈R, CS, PSIC, ∆A, ∆P,HAP, ∆F, ∆V 〉. (4.4.1)

We partition the set of expectations EXP into the confirmed (∆F ), disconfirmed

(∆V ), and pending (∆P ) expectations. The other elements are:

• R is the resolvent: a conjunction, whose conjuncts can be literals or disjunctions

of conjunctions of literals

• CS is the constraint store: it contains CLP constraints and quantifier restric-

tions

• PSIC is a set of implications, called partially solved integrity constraints

• ∆A is the set of general abduced hypotheses (the set of abduced literals, except

those representing expectations)

• HAP is the history of hypothesized happened events, represented by a set of

abducted atoms with functor H.
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If one of the elements of the tuple is false, then the whole tuple is the special node

false, which cannot have successors. In the following, we indicate with ∆ the set

∆A ∪∆P ∪∆F ∪∆V ∪HAP.

4.4.2 Initial Node and Success

The definitions of initial node, derivation and success/failure of such derivation are

exactly the same as shown in Section 2.5.2. Here we will briefly recall that:

• let SHAPi be an abductive specification as in Definition 2.3.8, where the set of

abduced happened events is HAPi (possibly the empty set);

• a derivation D is a sequence of nodes

T0 → T1 → · · · → Tn−1 → Tn.

• the first node of a derivation is defined as

T0 ≡ 〈{G}, ∅, ICS , ∅, ∅,HAPi, ∅, ∅〉

where the inital set of hypothesized happened events is HAPi;

• the other nodes Tj, j > 0, are obtained by applying the transitions;

• if a successful derivation exists and a success node is reached (see Definition

2.5.1), s.t. SHAPf is a proper extension of SHAPi (Definition 2.4.2), then we

write:

SHAPi

g

`
EXP,∆A,HAPf G

• abductive answers can be extracted as for SCIFF from an abductive explana-

tion, by means of a substitution σ s.t. each existentially quantified variable of

any term in ∆σ is ground (see 2.5.2).
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4.4.3 Removed Transitions

In Section 4.2 we have introduced some syntactic restriction (about ¬H literals).

Moreover, in Section 4.3 we have defined the H atoms as abducible predicates. As a

consequence, some transitions defined in the SCIFF Proof Procedure are not needed

anymore, hence simplifying the g-SCIFF Proof Procedure. In particular:

• Happening : since the happened events now are hypothesized and represented

by means of abducibles, transition Happenining is not needed anymore;

• Non-Happening : since the ¬H literals are not allowed anymore in the syntax,

the transition non-Happening can be safely removed;

It is worth to notice that the removed transitions were part of the transition group

introduced for coping with dynamically happening events. This is quite reasonable,

since in the g-SCIFF Framework happened events are only hypotheses made in order

to prove/disprove some property P .

4.4.4 Added Transition

In order to be able to produce new hypotheses, we have decided to define the H

atoms as abducibles. However, it is necessary to “guide” the process of generating

new hypotheses about the happened events, in order to fulfill all the positive/negative

expectations (possibly generated by the process of abducing happened events), as

given by Definition 4.3.6. For this reason, we have introduced in the g-SCIFF Proof

Procedure the following transition:

Definition 4.4.1 (Fulfiller Transition). The g-SCIFF Proof Procedure extends the

SCIFF Proof Procedure by adding the following transition:
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Fulfiller. Given a node Nk in which

• ∆P k = ∆P ′ ∪ {E(E, T )}

• closed(HAPk)= false

and Fulfillment E transition is not applicable, transition Fulfiller is applicable and

generates a node Nk+1 identical to Nk except:

• ∆P k+1 = ∆P ′

• ∆F k+1 = ∆F k ∪ {E(E, T )}

• HAPk+1 = HAPk ∪ {H(E, T )}

i.e., a new happened event is inserted in the history, fulfilling the expectation.

Otherwise, given a state where

• closed(HAPk)= true

the transition Fulfiller produces a single successor

false.

Note that the Fulfiller transition must be applied only when Fulfillment transition

is not applicable. This condition is not mandatory: we have introduce it in order to

preserve the minimality of the abductive explanation.

Example 4.4.1 Let a node Nk of a g-SCIFF derivation be as follow (see Definition

4.4.1):

• ∆P = E(p(X), T )
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• HAP = H(p(1), 3)

• all the other sets empty.

If the transition Fulfiller is applied firstly, the following derivation is computed:

〈∆P k = {E(p(X), T )} HAPk = {H(p(1), 3)}〉

∆P k+1 = ∅
∆F k+1 = {E(p(X), T )}

HAPk+1 = {H(p(1), 3),H(p(X), T )}

Although in HAPk there is an happened event that can fulfill the pending expec-

tation, the transition Fulfiller generate (hypothesize) a new happened event. HAPk+1

is not minimal.
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4.5 g-SCIFF properties

4.5.1 Soundness

We prove the soundness property of the g-SCIFF Proof Procedure in a similar way

as it was proved for the SCIFF Proof Procedure [85]. As SCIFF was proved sound

relying on the soundness result of IFF, we prove soundness of g-SCIFF relying on

soundness result of SCIFF. Intuitively, we proceed in the following way: we first

show in Lemma 4.5.1 that an abductive answer ∆g extracted by a successful g-SCIFF

derivation is also a computed answer for a SCIFF program; then, based on this lemma,

we prove the soundness result.

Lemma 4.5.1 Let:

• SHAPi be 〈S,HAPi〉 an abductive instance, where S = 〈SOKB, ICS〉;

• (∆g, σ) be the abductive answer extracted from a successful derivation

(SHAPi

g

`
EXP,∆A,HAPf G) for an initial goal G and an initial abductive instance

SHAPi evolving to a proper extension S
HAPf , such that

– ∆g = 〈EXP, ∆A,HAPf〉 ;

– ∆SCIFF = 〈EXP, ∆A〉

Then

(∆SCIFF , σ) is a SCIFF computed answer for G for the program

〈SOKB ∪HAPfδ, E , ICS〉.

Proof. We construct a successful closed SCIFF derivation from the given successful

g-SCIFF derivation, by mapping every step except Fulfiller onto itself.
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Let us consider then the new transition Fulfiller. As described in Definition 4.4.1,

given a node ∆P k = ∆P ′ ∪ {E(E, T )}, it performs the following actions:

(i) ∆P k+1 = ∆P ′

(ii) ∆F k+1 = ∆F k ∪ {E(E, T )}

(iii) HAPk+1 = HAPk ∪ {H(E, T )}

The action (iii) constructs the HAPf set of happened events that is provided

as definition of the SCIFF equivalent program. It is directly mapped on the SCIFF

transition Happening.

Actions (i) and (ii) are almost equivalent to the Fulfillment E transition (see

Section 2.5.4). In this particular case the selected happened event for fulfillment has

exactly the same variables of the matching expectation. The only difference is about

the fact that Fulfillment E generates two children nodes from the parent:

• in the first node N1
k+1 the actions (i) and (ii) are performed as in g-SCIFF.

Moreover, an equality constraint is added to CS1
k+1 between the variables of

the happened event and the variables of the expected event; in the Fulfiller

transition this can be safely avoided since the variables are exactly the same

(and then the equality constraint is entailed).

• in the second node N2
k+1 the parent node is copied identically, and an inequality

constraint between the variables of the happened event and the variables of the

expected event is added to CS2
k+1. This second node is not generated in the

g-SCIFF proof.
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Since g-SCIFF generates only the first node, we can draw the conclusion that the

derivation tree of the g-SCIFF is a subset of the derivation tree of SCIFF. Note that

the choice of not generating the second node N2
k+1 in g-SCIFF has been made for

performances issues: in fact such a node would lead immediately to a failure, due

to the fact that the inequality constraint can not be satisfied (the variables of the

expected event and of the happened event are exactly the same by construction).

Note that any success node in the g-SCIFF derivation has a correspondent success

node in the SCIFF derivation, and that no other SCIFF transition can be applied

anymore to that success node. If a SCIFF transition (except Non-Happening and

Happening) could be applied to the success node, the correspondent g-SCIFF tran-

sition would be applicable to the success node too, and that node could not be a

success node (contradicting the initial hypothesis). Non-Happening transition could

not be applied because of the syntax limitations introduced in Section 4.2, while Hap-

pening transition would not applicable because we are considering a close derivation

for SCIFF.

Summarizing, since the derivation tree of g-SCIFF proof procedure is a subset of

the derivation tree of SCIFF proof procedure for the specified program, the answer

∆SCIFF σ computed by g-SCIFF is an abductive answer for SCIFF.

We are now ready to state the soundness result for the case without universally

quantified variables:

Theorem 4.5.1 (Soundness). Given an instance SHAPi (i.e., the set of happened

events is set initially to HAPi),if

SHAPi

g

`
EXP,∆A,HAPf G
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with abductive answer (∆, σ) (∆ = 〈EXP, ∆A,HAPf〉),
then

S |=∆σ Gσ

Proof. As already done in the proofs for the SCIFF framework [85], we rely upon the

3-value completion [107] of SOKB and ∆. Let us consider the proof for an atomic

goal (the extension to other structures of the formula G is trivial).

Proving the latter condition stated in the theorem corresponds to prove the fol-

lowing ones, separately, w.r.t. the extensions introduced in Sect. 4.4:

(i) SOKB ∪ [HAPf ∪∆F ∪∆P ∪∆A]σ |= Gσ;

(ii) SOKB ∪ [HAPf ∪∆F ∪∆P ∪∆A]σ |= ICS ;

(iii) {E(p),¬E(p)} 6⊆ [∆F ∪∆P ]σ (¬-consistency for E atoms);

(iv) {EN(p),¬EN(p)} 6⊆ [∆F ∪∆P ]σ (¬-consistency for EN atoms);

(v) {q,¬q} 6⊆ (∆A)σ (¬-consistency for generic abducible atoms);

(vi) {E(p),EN(p)} 6⊆ [∆F ∪∆P ]σ (E-consistency);

(vii) HAPf ∪ [∆F ∪∆P ]σ∪{E(p) → H(p)}∪{EN(p) → ¬H(p)} 6² ⊥ (fulfillment).

Conditions (i)−(vi) are guaranteed by Lemma 4.5.1. In particular these conditions

are exactly the same that are stated in the soundness of the SCIFF proof procedure

(Proposition 6.2, [85]). This is a consequence of the fact that the g-SCIFF and SCIFF

share the same declarative semantics. From Lemma 4.5.1, we have that a computed

answer for a g-SCIFF derivation is also a computed answer for SCIFF derivation,

and as a consequence of the soundness result of the SCIFF, conditions (i)−(vi) hold.
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Condition (vii) holds because: (1) the fulfillment of the negative expectations (EN

atoms) is still guaranteed by the Fulfillment EN transition; and (2) the fulfillment of

the positive expectations instead is enforced by the Fulfiller transition itself, that is

applied whenever a positive expectation (E atoms) is pending and still not fulfilled

(i.e., it still belongs to the set ∆P ).
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4.6 Application Examples

4.6.1 Needham-Schroeder Public Key Security Protocol

The Needham-Schroeder Public Key Security Protocol (NSPK,[114]) aims to allow

two peers, A and B, to exchange two secret numbers (nonces), while mutually au-

thenticating each other. The protocol consists of seven steps, but – as other authors

have previously done – we focus on a simplified version consisting of only three steps,

which are the kernel of the protocol. In support of the authentication procedure,

peers rely on the well-known public key encryption technology. The three messages

of the protocol that we consider in this example are those listed in Figure 4.1. Ba-

sically, with the simplified version, we assume that all the agents know the public

key of the other agents, and that no previous stages for discovering the public keys

is needed. Thanks to the public/private key technology, a peer is able to generate

(1) A → B : {NA, A}pub key(B)

(2) B → A : {NA, NB}pub key(A)

(3) A → B : {NB}pub key(B)

Figure 4.1: The Needham-Schroeder protocol (simplified version)

two keys, a public key which is made available to the others, and a private key which

must remain undisclosed. A sequence of bytes encrypted using the public key can be

decrypted only by using the corresponding private key. The idea of the protocol is

to challenge the fellow peer in a communication session (conversation), to make sure

that he is actually the holder of the private key associated with his public key.

During the authentication phase, peers can generate some special items of data
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called nonces. Therefore, during the conversation, if peer A sends a nonce NA gener-

ated by himself to B, and if A sends NA encrypted with the public key of B, only B

will be able to decrypt NA and send it back to A. A will then know that the peer to

whom he sent NA is actually the holder of B’s private key.

As shown in Fig. 4.1, by message (1) A challenges B to decrypt his nonce NA

encrypted using B’s public key. By message (2) B responds to A’s challenge, by

attaching to NA a new nonce NB, which he generated himself, and encrypting the

whole set of two nonces using A’s public key, thus challenging A to decrypt NB and

prove to be the holder of A’s private key. By message (3) A responds to B’s challenge.

The security property of the NSPK protocol has been stated under the assump-

tions of perfect cryptography, insecure communication channels and the intruder I

able to intercept/generate messages. Practically, we assume that:

1. when a peer sends a message to another peer, the sender has no way to know if

the message has been received or not;

2. when a peer receives a message, there is no way to be sure about the sender,

unless this information is somehow coded into the payload;

3. the content of a message could be compromised someway;

4. there is no way a peer can guess the content of a message encrypted with the

public key of another agent;

5. there is no way a peer can guess the nonce that another agent has generated

(unless it was explicitly communicated).
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Lowe’s attack on the protocol

It turns out that (at least) one situation may occur in which B trusts that he is

proving his own identity to another agent A, by following this protocol, but in fact

a third agent I (standing for intruder) manages to successfully pretend that he is A

and authenticate himself as A with B. This attack was suggested by Lowe [109], and

it consists of the messages listed in Figure 4.2.

(1) A → I : {NA, A}pub key(I)

(2) I(A) → B : {NA, A}pub key(B)

(3) B → I(A) : {NA, NB}pub key(A)

(4) I → A : {NA, NB}pub key(A)

(5) A → I : {NB}pub key(I)

(6) I(A) → B : {NB}pub key(B)

Figure 4.2: Lowe’s attack on the Needham-Schroeder protocol

It is a nesting of the Needham-Schroeder protocol, in which A happens to start a

conversation with I, thus transmitting him his nonce NA. Instead of answering to the

challenge with a new nonce NI , I exploits the information contained in A’s request

for authentication (namely, its nonce) to handcraft a message to send to B. Such a

message (2) will be encrypted using B’s public key, and will contain A’s name along

with A’s nonce NA. I therefore sends this message pretending that he is A (we use the

notation I(A) for this purpose). B will reply to the challenge contained in message

(2) by generating a nonce NB and encrypting NA and NB together using A’s public

key. Since I is unable to decrypt a message encrypt with another agent’s public key,

I simply forwards B’s message to A. This is understood by A as the continuation of
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the protocol initiated with message (1). In this way, I manages to receive back from

A the nonce NB encrypted using his own public key (message 5), and to respond to

B with message (6).

Messages (1), (4) and (5) represent a conversation between A and I, while (2), (3),

and (6) represent a conversation between I(A) and B; both conversations happen to

be compliant to the protocol. But, as we have seen, a combination of two compliant

conversations generates a situation in which an agent (I) authenticates himself with

an identity (I(A)) which is not his own.

It is important to stress that in the attack proposed by Lowe it is never the case

that an intruder manages to guess a nonce or a private key. In particular, initially

only agent A knows the content of its own nonce NA and only B knows the content

of its own nonce NB, and an agent knows the content of a nonce if either he initially

knows it or if it is sent to him encrypted in his own public key.

Formalizing peers’s authentication

In the idea of the NSPK protocol, an agent trusts the identity of the agent with whom

he is communicating by associating his name with his public key and receiving back

a nonce that he forged, encrypted in his own public key. If we had to define the idea

of an agent B ‘trusting’ that he is communicating with A, we could do it by using a

combination of messages in which an agents responds to a challenge posed by another

agent and successfully decrypts a nonce.

Definition 4.6.1 B trusts that agent X, he is communicating with, is indeed A,1 and

we write trustB(X, A) once two messages have been exchanged at times T1 and T2,

1We restrict ourselves to only one communication session, all the definitions will therefore have
as a scope the session.
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T1 < T2, having the following sender, recipient, and content:

(T1) B → X : {NB, . . . }pub key(A)

(T2) X → B : {NB, . . . }pub key(B)

where NB is a nonce generated by B.

Note that B is unable to judge whether NA is a nonce actually generated by X

or not, therefore no condition is posed on the origin of such nonce.

Symmetrically, we can consider, from A’s viewpoint, messages (1) and (2) as those

that prove the identity of B. We therefore implement Def. 4.6.1 in Def. 4.6.2, where

messages are expressed using the notation of the SCIFF language, namely as events

which are part of some “history” HAP. The content of messages will be composed

of three parts, the first showing the public key used to encrypt it, the second and

third containing agent names or nonces or nothing (in particular, the last part may

be empty).

Definition 4.6.2 Let A, B and X be agents, KA and KB respectively A’s and B’s

public key, NB a nonce produced by B, and let HAP1 and HAP2 be two sets of

events each composed of two elements, namely:

HAP1 = {
H(send(B, X, content(key(KA), agent(B), nonce(NB))), T1),

H(send(X,B, content(key(KB), nonce(NB), nonce(...))), T2)

}, and

HAP2 = {
H(send(B, X, content(key(KA), nonce(...), nonce(NB))), T1),
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H(send(X,B, content(key(KB), nonce(NB), empty(0))), T2)

}. Then, trustB(X, A) holds if and only if HAP1 ⊆ HAP or HAP2 ⊆ HAP.

Specification by means of ICs of the scenario assumptions

The assumptions about perfect cryptography , etc. stated previously, can be stated

as ICs that rules which messages can/can not be sent between peers. Taking this

perspective, we can sat for example that an agent X can send to another agent Y a

message containing a nonce NX which he does not initially know only if one of the

following two cases hold: either (i) X received NX from another agent, encrypted in

X’s own public key, or (ii) X received a message containing NX and encrypted with

a public key KY , in which case X can forward exactly the same message, without

operating any modification on it.

Such integrity constraints about the impossibility to guess a nonce are shown

in Spec. 4.6.1. In order to maintain relevant information about the ownership of

public keys and nonces, we define a number of predicates in the Social Organization

Knowledge Base, ash shown in Spec. 4.6.1.

Needham-Schroeder protocol specification

The relevant ICs are shown in Spec. 4.6.2. The IC1 of Spec. 4.6.2 expresses that if a

message is sent from X to B, containing the name of some agent A and some nonce

NA, encrypted together with some public key KB:

H(send(X, B, content(key(KB), agent(A), nonce(NA))), T1) ∈ HAP,

then a message is expected to be sent at a later time (and by some deadline TMax)

from B to X , containing the original nonce NA and a new nonce NB, encrypted with
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Specification 4.6.1 ICs and SOKB expressing that an agent cannot guess the content
of a nonce

ICs:

[ICA1] H(send(X, Y, content(key(KY ), agent(W ), nonce(NX))), T1) ∧
X ! = Y ∧ notIsNonce(X, NX)

→ E(send(V, X, content(key(KX), agent(V ), nonce(NX))), T0) ∧
isAgent(V ) ∧ X ! = V ∧ isPublicKey(X, KX) ∧ isNonce(V,NX) ∧
T0 < T1 ∧ T0 > 0

∨
. . .

[ICA2] H(send(X, Y, content(key(KY ), nonce(NX), nonce(NY ))), T1) ∧
X ! = Y ∧ notIsNonce(X, NX)

→ E(send(Z, X, content(key(KX), agent(V ), nonce(NX))), T0) ∧
isAgent(V ) ∧ isAgent(Z) ∧ X ! = V ∧ Z ! = X ∧ isPublicKey(X,KX) ∧
T0 < T1 ∧ T0 > 0

∨
. . .

[ICA3] H(send(X, Y, content(key(KY ), nonce(NX), empty(0))), T1) ∧
X ! = Y ∧ notIsNonce(X, NX)

→ E(send(Y, X, content(key(KX), nonce(NW ), nonce(NX))), T0) ∧
isPublicKey(X, KX) ∧ isNonce(NW ) ∧ NW ! = NX ∧
T0 < T1 ∧ T0 > 0

∨
E(send(Z, X, content(key(KX), nonce(NX), empty(0))), T0) ∧
isPublicKey(X, KX) ∧ isAgent(Z) ∧ X ! = Z ∧ Y ! = Z ∧
T0 < T1 ∧ T0 > 0

∨
. . .

SOKB:
isPublicKey( PK) :-

isPublicKey( _, PK).
isPublicKey( i, ki).
isPublicKey( b, kb).
isPublicKey( a, ka).

isMaxTime( 7).

isAgent( i).
isAgent( a).
isAgent( b).

isNonce( N) :-
isNonce( _, N).

isNonce( A, N) :-
checkIfNonce( A, N).

notIsNonce( A, NB) :-
\+( checkIfNonce( A, NB)).

checkIfNonce( b, nb).
checkIfNonce( a, na).
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the public key of A:

E(send(B, X, content(key(KA), nonce(NA), nonce(NB))), T2)

is therefore generated and put into ∆P .

The IC2 of Fig. 4.6.2 expresses that if a message of the protocol is sent from X

to B, containing the name of some agent A and some nonce NA, encrypted together

with some public key KB:

H(send(X, B, content(key(KB), agent(A), nonce(NA))), T1) ∈ HAP,

and a message is sent at a later time from B to X, containing the original nonce NA

and a new nonce NB, encrypted with the public key of A:

H(send(B, X, content(key(KA), nonce(NA), nonce(NB))), T2) ∈ HAP,

then a third message is expected to be sent from X to B, containing NB, and en-

crypted with the public key of B:

E(send(X, B, content(key(KB), nonce(NB), empty(0))), T3)

is therefore generated and put into ∆P .

Generation of compliant histories

A first result that we obtain by running the g-SCIFF is that, given as a social goal the

expectation about some event, the proof-procedure is able to generate a compliant

(and complete) history which includes such event. For instance, given the goal g1

representing the start of a protocol run between a and i:

g1 ← E(send(a, i, content(key(ki), agent(a), nonce(na))), 1),
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Specification 4.6.2 Social Integrity Constraints defining the Needham-Schroeder
protocol

[IC1] H(send(X, B, content(key(KB), agent(A), nonce(NA))), T1) ∧
→ E(send(B,X, content(key(KA), nonce(NA), nonce(NB))), T2) ∧

isPublicKey(A,KA) ∧ isNonce(NB) ∧ NA ! = NB ∧
isMaxTime(TMax) ∧ T2 > T1 ∧ T2 < TMax.

[IC2] H(send(X, B, content(key(KB), agent(A), nonce(NA))), T1) ∧
H(send(B,X, content(key(KA), nonce(NA), nonce(NB))), T2) ∧
T2 > T1

→ E(send(X,B, content(key(KB), nonce(NB), empty(0))), T3) ∧
isMaxTime(TMax) ∧ T3 > T2 ∧ T3 < TMax.

and given a deadline of 6 “time units” to the completion of the protocol, the execution

of the proof returns the following compliant history:

HAPg1 = {
H(send(a, i, content(key(ki), agent(a), nonce(na))), 1),

H(send(i, a, content(key(ka), nonce(na), nonce(nb))), TA), TA ∈ [2..5],

H(send(a, i, content(key(ki), nonce(nb), empty(0))), TB), TB ∈ [3..6], TB > TA

},
while given the goal g2, representing the last step of a protocol run between i and b:

g2 ← E(send(i, b, content(key(kb), nonce(nb), empty(0))), 6),

and again a range of 6 “time units” to the completion of the protocol (from time 1

to time 6), it is possible to obtain a compliant history such as the following:

HAPg2 = {
H(send(a, i, content(key(ki), agent(a), nonce(na))), TC), TC ∈ [1..3],

H(send(i, a, content(key(ka), nonce(na), nonce(nb))), TD), TD ∈ [2..5], TD > TC

H(send(a, i, content(key(ki), nonce(nb), empty(0))), TE), TE ∈ [3..6], TE > TD
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H(send(i, b, content(key(kb), agent(i), nonce(na))), TB), TB ∈ [2..4], TB > TC

H(send(b, i, content(key(ki), nonce(na), nonce(nb))), TA), TA ∈ [3..5], TA > TB

H(send(i, b, content(key(kb), nonce(nb), empty(0))), 6)

}.
It is worthwhile noticing that HAPg2 contains two possibly interleaved communi-

cation sessions (one between a and i and another between i and a) which do not

represent an attack to the protocol. In fact, it is not the case that trustX(Y, W ) and

¬trustW (Y, X), for all X, Y and W . What happens is, i uses to communicate with

b the content of the nonce na obtained from a (but does not pretend to be himself

a). This is in fact perfectly allowed by the protocol and does not contradict the

assumptions on the generation of nonces specified by the constraints of Spec. 4.6.1.

Generation of Lowe’s attack

A second important result, which shows how the g-SCIFF can effectively be used

for protocol verification, is the generation of Lowe’s attack. The property that we

want to disprove is Ptrust defined as trustB(X,A) → X = A, i.e., if B trusts that

he is communicating with A, then he is indeed communicating with A. We obtain a

problem which is symmetric in the variables A, B, and X. In order to check if we

have a solution we can ground Ptrust and define its negation ¬Ptrust as a goal, g3,

where we choose to assign to A, B, and X the values a, b and i:

g3 ← isNonce(NA), NA 6= nb,

E(send(b, i, content(key(ka), nonce(NA), nonce(nb))), 3),

E(send(i, b, content(key(kb), nonce(nb), empty(0))), 6).

Besides defining g3 for three specific agents, we also assign definite time points (3

and 6) in order to improve the efficiency of the proof.
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Running the g-SCIFF on g3 results in a compliant history:

HAPg3 = {
h(send(a, i, content(key(ki), agent(a), nonce(na))), 1),

h(send(i, b, content(key(kb), agent(a), nonce(na))), 2),

h(send(b, i, content(key(ka), nonce(na), nonce(nb))), 3),

h(send(i, a, content(key(ka), nonce(na), nonce(nb))), 4),

h(send(a, i, content(key(ki), nonce(nb), empty(0))), 5),

h(send(i, b, content(key(kb), nonce(nb), empty(0))), 6)

},
which is indeed Lowe’s attack on the protocol. HAPgL represents a counterexample

of the property Ptrust.
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4.6.2 NetBill Transaction Protocol

NetBill [53] is a security and transaction protocol optimized for the selling and delivery

of low-priced information goods, like software, journal articles or songs/videos. The

protocol rules transactions between two peers: the seller of the good, namely the

Merchant, and the client, namely the Customer.

A NetBill server is used to deal with financial issues such as those related to credit

card accounts of customer and merchant. In this example, we focus on the NetBill

protocol version designed for non zero-priced goods, and do not consider the variants

that deal with zero-priced goods. A typical protocol run is composed of three phases:

1. Price Negotiation. The customer requests a quote for a good identified by

Product Id (PrId) priceRequest(PrId) and the merchant replies with the re-

quested price priceQuote(PrId,Quote)

2. Good Delivery. The customer requests the good goodRequest(PrId, Quote)

and the merchant delivers it in an encrypted format

deliver(crypt(PrId,Key), Quote)

3. Payment. The customer issues an Electronic Payment Order

(EPO) to the merchant, for the amount agreed for the good

payment(epo(C, crypt(PrId, K), Quote))); the merchant appends the de-

cryption key for the good to the EPO, signs the pair and forwards it to the

NetBill server endorsedEPO(epo(C, crypt(PrId, K), Quote),M); the NetBill

server deals with the actual money transfer and returns the result to the mer-

chant signedResult(C,PrID, Price, K), who will, in her turn, send a receipt

for the good and the decryption key to the customer receipt(PrId, Price, K).
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The Customer can withdraw from the transaction until she has issued the EPO

message; the Merchant can withdraw from the transaction until she has issued the

endorsedEPO message.

NetBill protocol specification based on IC.

In Table 4.6.1 the specification of the Netbill protocol is presented: ICs [1 − 6] are

backward ICs (i.e.,integrity constraints that state that if some set of event happens,

then some other set of event is expected to have happened before), while ICs [7− 8]

are forward ICs.

IC1, for example, imposes that if M has sent a priceQuote message to C, stating

that M ’s quote for the good identified byPrId is Quote, in the interaction identified by

Id, then C is expected to have sent to M a priceRequest message for the same good, in

the same interaction, at an earlier time; IC7 instead, imposes that an endorsedEPO

message from M to the netbill server be followed by a signedResult message, with

the corresponding parameters.

Note that we only impose forward constraints from the endorsedEPO message

onwards, because both parties (merchant and customer) can withdraw from the trans-

action at the previous steps: hence the uttering of messages in the first part of the

protocol does not lead to any expectation to utter further messages.

Verification of a NetBill property

In this example, we show the verification of the following property:
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Table 4.6.1 NetBill protocol specification

[IC1] H(tell(M,C, priceQuote(PrId,Quote), Id),T)
→ E(tell(C,M, priceRequest(PrId), Id), T2) ∧

T2 < T.

[IC2] H(tell(C,M, goodRequest(PrId,Quote), Id), T )
→ E(tell(M, C, priceQuote(PrId, Quote), Id), Tpri) ∧

Tpri < T.

[IC3] H(tell(M, C, goodDelivery(crypt(PrId, K), Quote), Id), T )
→ E(tell(C,M, goodRequest(PrId,Quote), Id), T req) ∧

Treq < T.

[IC4] H(tell(C,M, payment(C, crypt(PrId, K), Quote), Id), T )
→ E(tell(M, C, goodDelivery(crypt(PrId, K), Quote), Id), Tdel) ∧

Tdel < T.

[IC5] H(tell(netbill, M, signedResult(C, PrId, Quote, K), Id), T sign) ∧
M ! = netbill

→ E(tell(M, netbill, endorsedEPO(epo(C, PrId, Quote),K, M), Id), T ) ∧
T < Tsign.

[IC6] H(tell(M, C, receipt(PrId, Quote,K), Id), T s)
→ E(tell(netbill, M, signedResult(C, PrId, Quote, K), Id), T sign) ∧

Tsign < Ts.

[IC7] H(tell(M, netbill, endorsedEPO(epo(C, PrId, Quote),K, M), Id), T )
→ E(tell(netbill, M, signedResult(C, PrId, Quote, K), Id), T sign) ∧

T < Tsign.

[IC8] H(tell(netbill, M, signedResult(C, PrId, Quote, K), Id), T sign)
→ E(tell(M, C, receipt(PrId, Quote,K), Id), T s) ∧

Tsign < Ts.
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“As long as the protocol is respected, the merchant receives the payment

for a good G if and only if the customer receives the good G.”

(Good Atomicity Property)

Since the SCIFF deals with (communicative) events and not with the states of the

peers, we need to express the properties in terms of happened events. To this purpose,

we can assume that merchant has received the payment once the NetBill server has

issued the signedResult message, and that the the customer has received the good if

she has received the encrypted good (with a deliver message) and the encryption key

(with a receipt message).

Thus, the property we want to verify can be expressed as

H(tell(netbill,M, signedResult(C,PrId, Quote,K), Id), T sign)

⇐⇒ H(tell(M,C, goodDelivery(crypt(PrId, K), Quote), Id), T )

∧H(tell(M,C, receipt(PrId, Quote,K), Id), T s)

(4.6.1)

whose negation is

(¬H(tell(netbill, M, signedResult(C, PrId, Quote, K), Id), T sign)

∧H(tell(M,C, goodDelivery(crypt(PrId,K), Quote), Id), T )

∧H(tell(M,C, receipt(PrId, Quote, K), Id), T s))

∨

(H(tell(netbill, M, signedResult(C, PrId,Quote, K), Id), T sign)

∧¬H(tell(M, C, goodDelivery(crypt(PrId, K), Quote), Id), T )

∨

(H(tell(netbill, M, signedResult(C, PrId,Quote, K), Id), T sign)

∧¬H(tell(M, C, goodDelivery(crypt(PrId, K), Quote), Id), T ))

(4.6.2)
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In other words, an history that entails Eq. (4.6.2) is a counterexample of the property

that we want to prove. In order to search for such a history, we define the SCIFF

goal as follows:

g ←EN(tell(netbill, M, signedResult(C, PrId, Quote, K), Id), T sign),

E(tell(M, C, goodDelivery(crypt(PrId, K), Quote), Id), T ),

E(tell(M, C, receipt(PrId, Quote, K), Id), T s)).

g ←E(tell(netbill, M, signedResult(C, PrId, Quote, K), Id), T sign),

EN(tell(M, C, goodDelivery(crypt(PrId, K), Quote), Id), T ).

g ←E(tell(netbill, M, signedResult(C, PrId, Quote, K), Id), T sign),

EN(tell(M, C, goodDelivery(crypt(PrId, K), Quote), Id), T ))

(4.6.3)

and run g-SCIFFwith the integrity constraints showed in Spec. 4.6.1.

The result of the call is a failure. This suggests that there is no history that entails

the negation of the property while respecting the protocol, i.e., the property is likely

to hold if the protocol is respected.
If we remove IC8 (which imposes that a signedResult message be followed by a

receipt message), then the following history is generated:

h(tell(_E,_F,priceRequest(_D),_C),_M),
h(tell(_F,_E,priceQuote(_D,_B),_C),_L),
h(tell(_E,_F,goodRequest(_D,_B),_C),_K),
h(tell(_F,_E,goodDelivery(crypt(_D,_A),_B),_C),_J),
h(tell(_E,_F,payment(_E,crypt(_D,_A),_B),_C),_I),
h(tell(_F,netbill,endorsedEPO(epo(_E,_D,_B),_A,_F),_C),_H),
h(tell(netbill,_F,signedResult(_E,_D,_B,_A),_C),_G),
_I<_H, _H<_G,
_L>_M, _K>_L, _I>_J, _J>_K,

The receipt event is missing, hence proving (by means of the counter-example gen-

erated) that the protocol step envisaged by IC8 was necessary in order to guarantee

the good atomicity property.
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4.7 Related Works

To the best of our knowledge, this is the first comprehensive and fully operational

approach addressing both types of verification (property verification, presented in

this chapter, and compliance verification, Section 3.1), and using the same protocol

definition language in both cases.

Although the property verification is about properties of any kind, in security

research field this issues has acquired an enormous importance, and a huge literature

is available on the topic. In the following, we discuss some related logic-based ap-

proaches to automatic verification of security properties. Note however that security

protocols and their proof of flawedness are, in g-SCIFF viewpoint, instances of the

general concepts of interaction protocols and their properties.

Russo et al. [128] discuss the application of abductive reasoning for analyzing

safety properties of declarative specifications expressed in the Event Calculus. In

their abductive approach, the problem of proving that, for some invariant I, a domain

description D entails I (D |= I), is translated into an equivalent problem of showing

that it is not possible to consistently extend D with assertions that particular events

have actually occurred (i.e., with a set of abductive hypotheses ∆), in such a way that

the extended description entails ¬I. In other words, there is no set ∆ such that D ∪
∆ |= ¬I. They solve this latter problem by a complete abductive decision procedure,

thus exploiting abduction in a refutation mode. Whenever the procedure finds such

a set ∆, the assertions in ∆ act as a counterexample for the invariant. Our work

is closely related: in fact, in both cases, goals represent negation of properties, and

the proof-procedure attempts to generate counterexamples by means of abduction.

However, we rely on a different language (in particular, ours can also be used for
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checking compliance on the fly without changing the specification of the protocol,

which is a demanding task) and we deal with time by means of CLP constraints,

whereas Russo et al. employ a temporal formalism based on Event Calculus.

In [30] the authors present a new approach, On-the-Fly Model Checker, to model

check security protocols, using two concepts quite related to our approach: the con-

cept of lazy data types for representing a (possibly) infinite transition system, and

the use of variables in the messages that an intruder can generate. In particular, the

use of unbound variables reduces the state space generated by every possible mes-

sage that an intruder can utter. Protocols are represented in the form of transition

rules, triggered by the arrival of a message: proving properties consists of exploring

the tree generated by the transition rules, and verifying that the property holds for

each reachable state. They prove results of soundness and completeness, provided

that the number of messages is bounded. Our approach is very similar, from the

operational viewpoint. The main difference is that the purpose of our language is

not limited to the analysis of security protocols: their approach instead is deeply

focused on the security issues (e.g., the presence of an intruder is mandatory for

each protocol specification, and it is not possible to avoid it). Moreover, we have

introduced variables in all the messages, and not only in the messages uttered by the

intruder; we can pose CLP constraints on these variables, whereas OFMC can only

generate equality/inequality constraints. On the downside, OFMC provides state-of-

the-art performance for security protocol analysis; our approach instead suffers for

its generality, and its performance is definitely worse than the OFMC.

A relevant work in computer science on verification of security protocols was done
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by Abadi and Blanchet [35, 1]. They adopt a verification technique based on logic pro-

gramming in order to verify security properties of protocols, such as secrecy and au-

thenticity in a fully automatic way, without bounding the number of sessions. In their

approach, a protocol is represented in extensions of pi calculus with cryptographic

primitives. The protocol represented in this extended calculus is then automatically

translated into a set of Horn clauses [1]. To prove secrecy, in [35, 1] attacks are mod-

eled by relations and secrecy can be inferred by non-derivability: if attacker(M) is

not derivable, then secrecy of M is guaranteed. More importantly, the derivability of

attacker(M) can be used, instead, to reconstruct an attack. This approach was later

extended in [34] in order to prove authenticity. By first order logic, having variables

in the representation, they overcome the limitation of bounding the number of ses-

sions. We achieve the same generality of [35, 1], since in their approach Horn clause

verification technique is not specific to any formalism for representing the protocol,

but a proper translator from the protocol language to Horn clause has to be defined.

In our approach, we preferred to directly define a rewriting proof-procedure (SCIFF)

for the protocol representation language. Furthermore, by exploiting abduction and

CLP constraints, also in the implementation of g-SCIFF transitions themselves, in

our approach we are able to generate proper traces where terms are constrained when

needed along the derivation avoiding to impose further parameters to names as done

in [1]. CLP constraints can do this more easily.

Armando et al. [23] compile a security program into a logic program with choice

lp-rules with answer set semantics. They search for attacks of length k, for increasing

values of k, and they are able to derive the flaws of various flawed security protocols.

They model explicitly the capabilities of the intruder, while we take the opposite
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viewpoint: we explicitly state what the intruder cannot do (like decrypting a message

without having the key, or guessing the key or the nonces of an agent), without

implicitly limiting the abilities of the intruder.

Our protocol specifications can be seen as intensional formulations of the possible

(i.e., compliant) traces of communication interactions. In this respect, our way of

modeling protocols is very similar to the one of Paulson’s inductive approach [120].

In particular, our representation of the events is almost the same, but we explicitly

mention time in order to express temporal constraints. In the inductive approach,

the protocol steps are modeled as possible extensions of a trace with new events and

represented by (forward) rules, similar to our ICs. However, in our system we have

expectations, which allow us to cope with both compliance on the fly and verification

of properties without changing the protocol specification. Moreover, ICs can be con-

sidered more expressive than inductive rules, since they deal with constraints (and

constraint satisfaction in the proof), and disjunctions in the head. As far as verifica-

tion, the inductive approach requires more human interaction and expertise, since it

exploits a general purpose theorem prover, and has the disadvantage that it cannot

generate counterexamples directly (as most theorem prover-based approaches). In-

stead, we use a specialized proof-procedure based on abduction that can perform the

proof without any human intervention, and can generate counterexamples.

Millen and Shmatikov [113] define a sound and complete proof-procedure, later

improved by Corin and Etalle [52], based on constraint solving for cryptographic

protocol analysis. g-SCIFF is based on constraint solving as well, but with a different

flavour of constraint: while the approaches by Millen and Shmatikov and by Corin

and Etalle are based on abstract algebra, our constraint solver comprises a CLP(FD)
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solver, and embeds constraint propagation techniques to speed-up the solving process.

In [140], Song presents Athena, an approach to automatic security protocol anal-

ysis. Athena is a very efficient technique for proving protocol properties: unlike other

techniques, Athena copes well with state space explosion and is applicable with an

unbounded number of peers participating in a protocol, thanks to the use of theorem

proving and to a compact way to represent states. Athena is correct and complete

(but termination is not guaranteed). Like Athena, the representation of states and

protocols in g-SCIFF is non ground, and therefore general and compact. Unlike

Athena’s, the g-SCIFF’s implementation is not optimized, and suffers from the pres-

ence of symmetrical states. On the other hand, a clear advantage of our approach is

that protocols are written and analyzed in a formalism which is the same used for

run-time verification of compliance.

Özkohen and Yolum [117] propose an approach for the prediction of exceptions in

supply chains which builds upon the well-known commitment-based approach for pro-

tocol specification (see, for instance, Yolum and Singh [155]); their approach is related

in many aspects to our on-the-fly verification. They represent the expected agent be-

haviour by means of commitments between agents; commitments have timeouts, i.e.,

they must be fulfilled by a deadline, and can be composed by means of conjunction

and disjunction. In this perspective, commitments are similar to our expectations,

which can have deadlines represented by CLP constraints, and which are composed in

disjunctions of conjunctions in the head of the social integrity constraints. However,

our expectations can regard any kind of events expected to happen, not only those

that can be represented as a commitment of a debtor towards a creditor; and we

can also represent negative expectations. Operationally, in [117] the reasoning about
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commitments is centralized in a monitoring agents; in our framework, a similar task

in performed by the social infrastructure.

One way to prove/disprove the security of the protocols is the cryptographic ap-

proach, whose security definitions are based on complexity theory. Such an approach

have been used for proofs by hand [87] or, more recently, automatically [25]. Theo-

rem provers, such as Isabelle/HOL [115] have also been applied to such a task, also

together with tools for graphically representing and defining the protocols [150]. An-

other viewpoint is to embody a possible intruder and plan for an attack [5]: if a

planner succeeds in developing such a plan, then the protocol is, clearly, flawed.

Dixon et al. [65], specify security protocols in KL(n), a language for representing

the Temporal Logic of Knowledge. KL(n) contains both a linear-time temporal logic

and a modal connective for representing what the various agents know. They use

clausal resolution to automatically prove properties of security protocols. As an

example, they give the specifications of the Needham-Schroeder protocol in KL(n),

then they show how to apply clausal resolution for proving formal properties. In

a technical report [66], they define a proof system based on resolution rules in a

sequent style notation, and a temporal resolution algorithm, then applied to the

mentioned protocol. They then show the derivation of some properties of the protocol,

for example, that an intruder does not know the sensitive information exchanged

by other agents following the protocol. Finally, they show Lowe’s attack on the

protocol, and state that, if they do not assume that an agent A can send a message

to an agent B only encrypted with B’s public key, the previous properties (on the

intruder’s ignorance) cannot be proven. [122] also use a temporal logic enriched with

epistemic connectives for representing the agents’ knowledge, but exploit efficient data
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structures (namely, Ordered Binary Decision Diagrams) to improve the efficiency.

[90] propose a framework for the synthesis of security protocols. Their framework

employs SVO logic to express the initial conditions od a protocol run, the goals that

the protocol is wanted to achieve and the effect of message exchanges (in terms of

the principals’ knowledge and beliefs). An efficient (according to a fitness function)

protocol is synthesized by simulated annealing in the space of the protocols that

achieve the goal starting from the initial conditions. By using g-SCIFF, we can

synthesize a history that satisfies a given goal; if we view the synthesized history as a

protocol run, the result of a computation can be seen as a synthesized protocol that

achieves a given goal. However, we do not use a logic for expressing secrecy and trust

properties in terms of exchanged messages; and we have not yet researched efficient

search strategies for generating one of the possible histories.

Among other approaches to security protocols verification we cite those devel-

oped using hereditary Harrop formulas [55], process-algebraic languages [119], model-

checking with pre-configuration [101], proof-theory [56].

We terminate the discussion on related works by citing [136], where Shanahan also

introduces a concept of expectation: a robot moves in an office, and has expectations

about where it is standing, based on the values obtained by sensors. Both this work

and ours share the idea of abducing expectations. The difference is that Shanahan

uses the expectations to elaborate plans for the future moves of the robot, while we

use them to elaborate all the possible histories and prove properties.
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Chapter 5

A-priori Conformance: the
ALLOWS Framework

The AlLoWS (Abductive Logic Web-service Specification) Framework aims to verify

the a-priori compliance conformance of peers w.r.t. global protocols, i.e. the Type 1

verification presented in Section 1.2. This verification type is of the utmost impor-

tance in modern systems.

The a-priori conformance is a required step to achieve the “off-the-shelf compo-

nents” business model. Although heterogeneities between different hardware/software

components has been solved by introducing standards (like, to cite one, the Web Ser-

vice approach), at the application level a solution is still missing. The desired goal is

to take off-the-shelf components, test a-priori their compliance with existing systems,

and in case of positive answer safely introduce the new entities in the old system

(hence substituting an older component or extending the system).

The approach we propose here is to assume that each component is described by

its behavioural interface: in particular, we propose to describe both the component

external behaviour and the global protocol using the same formalism, based on the

SCIFF Language discussed in Section 2.3.

165
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Then we provide definitions of conformance (feeble and strong), and discuss how

it is possible to exploit the SCIFF and the g-SCIFF proof procedure to verify the

conformance. Hence, using the single framework SCIFF and its extension g-SCIFF,

our solution addresses the a-priori conformance issue within a unified SCIFF based

framework.

Note that the framework name derives from the fact that we have applied it for

the first time to the Web Services/Choreography scenario, where the interoperability

issues is heavily studied. However, our approach can be seamlessly used in other

application scenarios.

Contribution of the Author. The author contributed in a substantial way to the

presented results. In particular, the first architecture was proposed by the author,

together with its colleague; Marco Gavanelli spotted some limits of that solution

and proposed an extended version. The actual framework is the result of a further

extensions applied by the author (of course by following the supervisor hints).

Chapter Organization. The chapter is organized as follow: in Section 5.1 we

introduce the language for specifying both the behavioural interface and the global

protocol (actually, a subset of the SCIFF language).

In Section 5.2 we provide e declarative semantics to the AlLoWS language, to-

gether with definitions of Feeble Conformance and Strong Conformance. In Section

5.3 then we define the operational semantics of AlLoWS.

In Sections 5.4 and 5.5 we present some simple examples, and then a more complex

(and real) example of how our approach can be used, and what are the outcomes.

Finally, in Section 5.6 we discuss some related issues.
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5.1 The ALLOWS Specification Language

The specification language used in the AlLoWS framework is a subset of the SCIFF

language presented in Section 2.3. In particular, negative expectations and explicit

negation have been removed from the entities of the language. This simplification

has been possible because, as many other do in the literature, we assume a closed

model interaction, as discussed in Section 2.2.2. As consequence, EN atoms are not

necessary.

In the AlLoWS Framework the same notation used in [27] is adopted: a message

is described by the term mx(Sender,Receiver, Content), where mx is the type of

message, and the arguments retain their intuitive meaning. We sometimes simplify

the notation, and omit some of the parameters when the meaning is clear from the

context. Note that this notation is equivalent to the one adopted in the SCIFF

Framework (Section 2.1).

As in SCIFF, happened events are represented as H(Message, T ime), where

Message has the syntax previously defined, and Time is an integer, representing

the time point in which the event happened. As we will see in the following, the

H predicate can be abduced, when making hypotheses on the possible interactions

(as we do in Chapter 4. In other phases, they are considered as given a priori, thus

considered as a defined predicate (as in Chapter 2.

We represent expectations with the predicate

EX(Message, T ime)

expressing the fact that the corresponding event is expected to happen, in order to

fulfil the coherent evolution, from the viewpoint of X (where X might be either the
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global protocol or a peer public policy).

Note that, w.r.t. the SCIFF, here we explicitly state the expectation viewpoint:

in fact, since we are using the same language for defining both the global protocol

and the peer policy, we need to distinguish between protocol expectations Eprot and

the peer expectations Epeer.

5.1.1 Specification of a Protocol

A protocol describes, from a global viewpoint, what are the patterns of communica-

tion, or interactions, allowed in a system that adopts such protocol [28]. The protocol

specification defines the messages that are allowed: it is not possible to exchange other

messages except the ones explicitly specified. The protocol usually also enlists the

participants, the roles the participants can play, and other knowledge about the peer

interaction. Note that we are adopting a closed interaction model, as described in

Section 2.2.2.

As in SCIFF, we specify a protocol by means of an abductive logic program [95].

A protocol specification Pchor is defined by the triple:

Pprot ≡ 〈KBprot, Eprot, ICprot〉

where:

• KBprot is the Knowledge Base,

• Eprot is the set of E atoms and abducible predicates, and

• ICprot is the set of Integrity Constraints.

The syntax of the SOKB is reported in Equation (5.1.1).
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SOKB ::= [Clause]?

Clause ::= Atom ← Cond

Cond ::= ExtLiteral [ ∧ ExtLiteral ]?

ExtLiteral ::= Literal|Expectation|Abducible|Constraint

Expectation ::= Eprot(Term [, T ])

Abducible ::= AtomLiteral ::= Atom | ¬Atom | true

(5.1.1)

The abducible predicates are those that can be hypothesized (abduced) in our

framework, namely happened events (denoted by the functor H), expectations (de-

noted by the functor Eprot), and generic abducibles predicates.

Integrity Constraints ICprot are the usual forward rules, of the form Body → Head,

whose Body can contain literals and (happened and expected) events, and whose Head

can contain (disjunctions of) conjunctions of expectations. In Eq. (5.1.2) we report

the formal definition of the grammar.

ICprot ::= [IC]?

IC ::= Body → Head

Body ::= (Event|Expect) [∧BodyLit]?

BodyLit ::= Event|Expect|Literal|Constraint

Head ::= Disjunct [ ∨Disjunct ]?|false
Disjunct ::= Expect|Abducible [ ∧ (Expect|Abducible|Constraint)]?

Expect ::= Eprot(Term [, T ])

Event ::= H(Term [, T ])

Literal ::= Atom | ¬Atom

(5.1.2)

The syntax of ICprot is a simplified version of the introduced in Section 2.3. In

particular in AlLoWS we do not need negative expectations and explicit negation.
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Figure 5.1: Graphical representation of a simple protocol

In Fig. 5.1 a multi-party interaction is shown, expressed by the set of Integrity Con-

straints in Specification 5.1.1: the depicted scenario is about a User that wants to

buy a flight ticket from a Flight Service, and pay by sending a payment order to a

Bank.
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Specification 5.1.1 The specification of the protocol shown in Fig. 5.1.

H(request(User, FS, F light), Tr)
→Eprot(offer(FS, User, F light, Price), To)
∨Eprot(notAvailable(FS,User, F light), Tna)

(5.1.3)

H(offer(FS, User, F light, Price), To)
→Eprot(ackOffer(User, FS, F light, Price), Ta)
∨Eprot(nAckOffer(User, FS, F light, Price), Ta)

(5.1.4)

H(ackOffer(User, FS, F light, Price), Ta)
→Eprot(payment(User,Bank, Price, FS), Tf )
∨Eprot(cancel(User, FS, F light), Tf )

(5.1.5)

H(ackOffer(User, FS, F light, Price), Ta)
∧H(notifyPayment(Bank, FS, Price), Tp)

→Eprot(flightTicket(FS,User, F light), Tf )
∨Eprot(flightCancelled(FS, User, F light), Tf )

(5.1.6)

H(cancel(User, FS, F light), Ta)
→Eprot(flightCancelled(FS, User, F light), Tf )

(5.1.7)

H(payment(User,Bank, Price, Creditor), Tp)
→Eprot(notifyPayment(Bank, Creditor, Price), Tn)

(5.1.8)
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5.1.2 Representing the peers

In an analogous way as we define the specification of a peers, we describe the interface

behaviour of a peer by means of an Abductive Logic Program. In particular, we

restrict our analysis to the communicative aspects of the interface behaviour. A Web

Service Interface Behaviour Specification Pws is an Abductive Logic Program [95],

represented with the triple

Ppeer ≡ 〈KBpeer, Epeer, ICpeer〉

where:

• KBws is the Knowledge Base of the peer,

• Ews is the set of abducible predicates, and

• ICws is the set of Integrity Constraints.

The Knowledge Base (KBper) specifies the knowledge of a peer. In KBpeer, clauses

may contain in their body literals defined in KBpeer, expectations about the behaviour

of the web service peer, or messages that peer expects to receive from other partic-

ipants. It has the same syntax as the protocol’s knowledge base, except for the

expectations, that are indicated with the functor Epeer instead of Eprot.

Epeer is the set of abducible predicates. Similarly to the choreography specifica-

tion, this set consists of both expectations (denoted by Epeer), happened events (H),

and normal abducibles. In the protocol specification the expectations are used for

representing the global viewpoint of how things should go, hence all the expectations

have the same meaning. In the peer specification instead we are expressing how it
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“perceives” the interaction: the viewpoint is local, and the expectations assume a

slightly different meaning depending on who is expected to do what. More in detail:

• Expectations about messages where peer is the sender are intended as the pos-

sible messages that peer can indeed utter. Intuitively, expectations of the form

Epeer(mx(ws,Any, Content)) represent the “active” behaviour of peer, i.e. the

actions that it could perform. Hence they represent the “outgoing” communica-

tive behaviour of peer. The conformance test should ensure that every possible

message that peer could utter, is indeed envisaged by the protocol.

• Expectations about messages where other participants are the senders and peer

is the receiver, can be intended instead as the messages that peer is able to

understand. They are of the form Epeer(mx(Any,ws, Content)), with Any 6=
peer.

• Abducibles predicates, that represents extra hypotheses about the interaction

(see, for example, Section 5.4.5).

Integrity Constraints ICpeer are forward rules, and they are identical to the ICprot

(except for the fact that expectations are from the peer’s viewpoint: Epeer instead

of Eprot). While in the protocol specification we use them to specify the desired

behaviour of the participants, ICpeer are used instead to describe the communication

aspects of the interface behaviour of a peer.

In Fig. 5.2(b) the communicative part of the interface behaviour of a peer is

represented. The corresponding translation in terms of ICws is given in Specification

5.1.2.
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Figure 5.2: Example of behavioural interfaces
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Specification 5.1.2 The interface behaviour specification of the web service shown
in Fig. 5.2.

H(request(User, fs, F light), Tr)
→Efs(offer(fs, User, F light, Price), To)
∨Efs(notAvailable(fs, User, F light), Tna)

(5.1.9)

H(offer(fs, User, F light, Price), To)
→Efs(User, fs, ackOffer(User, fs, F light, Price), Ta)
∨Efs(User, fs, nAckOffer(User, fs, F light, Price), Ta)

(5.1.10)

H(notifyPayment(Bank, fs, Price), Tp)
→Efs(flightCancelled(fs, User, F light), Tc)
∧ Tp > Ta + δ ∧ Tc > Tp

∨Efs(flightTicket(fs, User, F light), Tt)
∧ Tt > Tp

(5.1.11)

H(ackOffer(User, fs, F light, Price), Ta)
→Efs(notifyPayment(Bank, fs, Price), Tp)
∨Efs(User, fs, cancel(User, fs, F light), Tc)

(5.1.12)

H(cancel(User, fs, F light), Ta)
→Efs(flightCancelled(fs, User, F light), Tf )

(5.1.13)
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As for the choreographies, also peer specifications can be goal directed, by specify-

ing a goal Gpeer, with the same syntax (Cond in Eq. 5.1.1), in which the expectations

are Epeer instead of Eprot.
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5.2 Declarative semantics

Intuitively, conformance is the characteristics of a peer to comply to a protocol, pro-

vided that the other peers will behave according to the protocol. From the declarative

semantics viewpoint, the test of conformance requires to assume further hypotheses

about events peer expects to utter, and events that the protocol specification expects

other peers to utter. Both can be mapped into constraints, provided that we consider

the predicate H as abducible. We use the peer’s interface behaviour Ppeer to foresee

the messages the peer will send in every possible situation, provided that the other

peers behave as specified by the protocol. Formally, all the messages the peer expects

to send will be executed, i.e.:

Epeer(mx(peer,R,C), T ) → H(mx(peer,R, C), T ) (5.2.1)

Symmetrically for the messages exchanged by other peers as prescribed by the

protocol specification Pprot:

Eprot(mx(S, R, C), T ), S 6= peer → H(mx(S, R, C), T ) (5.2.2)

The possible interactions amongst the peer and the other peers will be the sets

HAP∗ satisfying equations 5.2.1 and 5.2.2. Note also that some extra hypotheses

could be made by the peer or by the choreography specification: such hypothesis set

(∆A) must be consistent.

Definition 5.2.1 Given the abductive program 〈KBU , EU , ICU〉, where:

• KBU , KBprot ∪ KBpeer
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• EU , Eprot ∪ Epeer

• ICU , ICprot ∪ ICpeer

a possible interaction amongst a peer in a protocol prot is a triple (HAP∗,EXP∗,∆A)

such that:

KBU ∪HAP∗ ∪EXP∗ ∪∆A |= GU (5.2.3)

KBU ∪HAP∗ ∪EXP∗ ∪∆A |= ICU (5.2.4)

KBU ∪HAP∗ ∪EXP∗ |= (5.2.1) ∪ (5.2.2) (5.2.5)

(where by Eq. 5.2.5 we mean that equations 5.2.1 and 5.2.2 must hold). The set

HAP∗ is also called possible history.

When the goal GU is true, the empty set is typically one of the possible histories.

The empty history is often of little (or no) interest for proving conformance. When

the interesting histories are only those containing at least one event, the expectation

of such event can be inserted as the goal GU . Typically, we use as goal the expectation

(both from the peer’s viewpoint, Epeer and from the protocol’s viewpoint, Eprot) of

the first event of an interaction. This poses no serious restriction on the types of

protocols that can be tested, as if there is not a unique starting event, a dummy

event can be inserted as initiation of the protocol.

Example 5.2.1 Suppose a choreography prescribes the following protocol:

H(ask(peer,R,X)) → Eprot(answer(R, peer,X)) (5.2.6)

H(answer(R, peer,X)) → Eprot(ack(peer,R, X))



179

while the peer’s integrity constraints contain only the first rule

H(ask(peer,R, X)) → Epeer(answer(R, peer,X)).

Let GU = Epeer(ask(peer, other,X)), Eprot(ask(peer, other,X)). Given the goal GU ,

the peer has the intention to send an ask message to the other, so all the possible

histories for GU will contain the event H(ask(peer, other,X)). The other’s behaviour

is simulated through the rules in the protocol specification. Since the protocol has an

expectation (generated by rule 5.2.6) Eprot(answer(other, peer,X)), this will become

a happened event in all the possible histories: H(answer(other, peer,X)). Now, the

second rule provides a protocol’s expectation about the third message: the peer is

supposed to send an ack message. But, as we can see from the peer’s specification,

ws does not have an expectation to send such message, so the simulation will not

suppose it will comply to the protocol’s expectation. So, the (only) possible history

for the goal GU is

HAP∗ = {H(ask(peer, other,X)),H(answer(other, peer,X))}. (5.2.7)

In a possible history, the messages uttered by the peers comply by definition to

the protocol. However, the messages uttered by the peer under test might be non

conformant. The peer is conformant if all the possible histories (together with the

hypotheses made) are conformant. Also, peer should be able to understand all the

messages in a possible history, otherwise there might be requests of other peers in the

given choreography which peer is unable to serve. We require that all the possible

histories satisfy both the protocol and the peer expectations.
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Definition 5.2.2 (Feeble Conformance). A possible history HAP∗ is Feeble Con-

formant if there exists a pair (EXP, ∆A) such that1

KBU ∪HAP∗ ∪EXP ∪∆A |= G (5.2.8)

KBU ∪HAP∗ ∪EXP ∪∆A |= ICU (5.2.9)

HAP∗ ∪EXP |= Epeer(X) → H(X) (5.2.10)

HAP∗ ∪EXP |= Eprot(X) → H(X) (5.2.11)

A peer is feeble conformant if all the possible histories are feeble conformant. A

triple (HAP∗,EXP, ∆A) is a Feeble Conformant Interaction if HAP∗ is a feeble

conformant history, and EXP and ∆A satisfy equations (5.2.8-5.2.11) (and EXP is

minimal with respect to set inclusion).

Example 5.2.2 Consider again the situation in Example 5.2.1. Given the possible

history of Equation 5.2.7, the expectation of the protocol for the third message (ask)

remains not fulfilled, so the peer peer is clearly non conformant.

Feeble conformance ensures that the peer peer will utter all the messages requested

by the protocol, but it still does not require peer to avoid the messages forbidden by

the protocol. We extend feeble conformance to a stronger version in the following.

A possible history is strong conformant if (it is feeble conformant and) all the

happened events were expected both by the protocol and the interacting peer, and the

hypothesis set ∆A is consistent. We include in this concept only the communications

that involve the peer under observation (the other events, e.g., messages exchanged

1Note the difference between Equations (5.2.10-5.2.11) and Equations (5.2.1-5.2.2): Equa-
tion (5.2.10) is used as a test, and requires all the expectations of the peer to be fulfilled, while
Equation (5.2.1) is used to generate the behaviour of the peer and imposes only the fulfilment of the
expectations the peer has about itself. Analogously for Equations (5.2.11) and (5.2.2).
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by other peers in a multi-party interaction, are always considered conformant). Also,

by definition the messages sent by the peer comply to its own specifications, and

symmetrically the messages sent by the other peers comply to the protocol.

Definition 5.2.3 (Strong Conformance). A feeble conformant interaction

(HAP∗, EXP, ∆A) is also a Strong Conformant Interaction if the following con-

ditions hold:

H(mx(peer,R, C)) ↔ Eprot(mx(peer,R,C)) (5.2.12)

H(mx(S, peer, C)) ↔ Epeer(mx(S, peer, C)). (5.2.13)

A Strongly Conformant History is a history for which there exists a strongly con-

formant interaction. A peer is Strongly Conformant if all the possible histories are

strongly conformant.

Example 5.2.3 Let us change in the previous example the specifications of the pro-

tocol and of the peer, i.e., the peer specification is

H(ask(peer,R, X)) → Epeer(answer(R, peer,X))
H(answer(R, peer,X)) → Epeer(ack(peer,R, X))

and the protocol is

H(ask(peer,R, X)) → Eprot(answer(R, peer,X)).

In this case, the peer has the intention to send the ack, so it will indeed send it in

all the possible histories. The protocol does not prescribe this third message. The

possible history becomes

HAP∗
2 = {H(ask(peer, other,X)),

H(answer(other, peer,X)),
H(ack(peer, other,X))}.
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All the expectations of the protocol are fulfilled by one message of peer, so it is feeble

conformant. However, peer will also send an unrequested message ack, that might

confound other, undermining the interoperability. There exists no expectation from

the protocol for the ack message, therefore peer is non strong conformant.
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5.3 Operational semantics

The operational semantics is based on the SCIFF proof procedure, presented in Sec-

tion 2.5, and on the g-SCIFFproof procedure, discussed in 4.4.

In order to prove conformance, we apply the two proof procedures to the two

phases implicitly defined in the previous section. We decompose the proof of feeble

conformance into a generative phase and a test phase. In the generative phase, we

generate, by means of g-SCIFF, all the possible histories. Of course, those histories

need not be generated as ground histories (the set of ground histories can be infinite),

but intensionally: the H events can contain variables, possibly with constraints à la

Constraint Logic Programming [91].

In the test phase, we check with SCIFF the compliance of the generated histories

both with respect to the peer and the protocol specifications. If all the histories are

conformant, the peer is feeble conformant to the protocol. Otherwise, if there exists

at least one history that is not conformant, the peer is not (feeble) conformant.

Finally, we can prove strong conformance by checking that all the happened events

were indeed expected both by the protocol and by the peer. This can in principle be

done by using a version of SCIFF that does not have abducibles, but it can also be

performed during the second phase (SCIFF) by adopting the same technique used

in the fulfilment transition: if a H event matches both with an Epeer and a Eprot

expectation, it is labelled expected; after the application of the closure transition, all

events that were not expected are considered unexpected, showing that the peer was

not strongly conformant.
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Figure 5.3: AlLoWS architecture

5.4 Examples

Baldoni et al. [27, 26] show various examples of conformance and non-conformance

of a web service to a choreography, and propose a framework based on Finite State

Automata, to prove conformance. We show how their examples are addressed in

AlLoWS, based on Computational Logics. In particular, we will consider a chore-

ography specification as a global protocol, and as interacting peers we will consider

different Web Services.

5.4.1 Web service with more capabilities

The first example taken by [27] is the following. The choreography specification

defines only one allowed interaction: ws sends a message m1 and the other peer will

reply with m2:

H(m1(ws,X)) → Echor(m2(X, ws))

The web service specification is wider: after the first message the web service

accepts as reply either m2 or m3:

H(m1(ws,X)) → Ews(m2(X,ws)) ∨ Ews(m3(X, ws))
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Ews/chor(m1(ws,X))

H(m1(ws,X))

Echor(m2(X,ws))

H(m2(X,ws))

©©©©©©©
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Ews(m2(X,ws))

Success: H(m1),H(m2)

Ews(m3(X, ws))

Success: H(m1),H(m2)

Figure 5.4: g-SCIFF derivation for Example 5.4.1

In this case, Baldoni et al. state that the web service is conformant. In fact, in a

legal conversation the message m3 will never be received by ws, so the interoperability

is ensured.

The g-SCIFF proof procedure is started with the goal containing the expectation,

both from the web service’s and from the choreography’s viewpoint, of the first event:

GU = Ews(m1(ws,X)) ∧ Echor(m1(ws,X)). g-SCIFF in this case derives that there

exists one possible history: {m1,m2}. A simplified representation of the derivation2

is reported in Fig. 5.4. There are two alternative sets of expectations from the web

service viewpoint, {Ews(m1), Ews(m2)} and {Ews(m1), Ews(m3)}, but in the first

phase the correspondence between expectations and happened events is not required

(open derivation). In the second phase, the (only) generated history is checked; since

there exists one set of expectations that is fulfilled by the generated history, the web

service is considered feeble conformant. Since in the generated history there are no

unexpected events, the web service is also strong conformant.

2The derivation does not report all the events and expectations, but for each node it gives
only those that are added. We use Ews/chor to indicate that the event is expected both by the
choreography and by the web service.
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Ews/chor(m1(ws,X))

H(m1(ws,X))

Ews(m2(X, ws))
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HHHHHHH

Echor(m2(X, ws))

H(m2(X, ws))

Success: H(m1),H(m2)

Echor(m4(X, ws))

H(m4(X, ws))

Success: H(m1),H(m4)

Figure 5.5: g-SCIFF derivation for Example 5.4.2

5.4.2 Missing capability

The second example by Baldoni et al. is dual to the first: the web service accepts as

reply only m2

H(m1(ws, X)) → Ews(m2(X,ws))

while the choreography defines as valid two interactions

H(m1(ws, X)) → Echor(m2(X,ws)) ∨ Echor(m4(X, ws))

In this case, g-SCIFF provides two possible histories: {H(m1), H(m2)} and

{H(m1),H(m4)}. In the second phase, SCIFF detects non conformance of the history

{H(m1),H(m4)}, because the web service’s expectation Ews(m2(S, ws, C)) remains

unfulfilled in all possible derivation paths. This means that the web service is blocked

waiting for message m2, and will not process other messages, so it is non (feeble) con-

formant.
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Ews/chor(m1(X,ws))

H(m1(X, ws)
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Ews(m2(ws,X))

Hws(m2(ws, X))

Success: {H(m1),H(m2)}

Ews(m3(ws,X))

Hws(m3(ws, X))

Success: {H(m1),H(m3)}
Figure 5.6: g-SCIFF derivation for Example 5.4.3

5.4.3 Wrong reply

In the third example the web service assumes to have the freedom to reply either m2

or m3 to a question m1

H(m1(X,ws)) → Ews(m2(ws,X)) ∨ Ews(m3(ws, X))

while the choreography does not grant such a freedom: only m2 is legal

H(m1(X,ws)) → Echor(m2(ws, X))

This case is judged non conformant by Baldoni et al, as there might be paths in which

the web service utters the forbidden message m3. g-SCIFF computes two possible

histories ({H(m1),H(m2)} and {H(m1),H(m3)}). The first is compliant, according

to SCIFF, while in the second the choreography’s expectation Echor(m2) remains

pendent.

5.4.4 Predefined answer

The dual of example 5.4.3 is when the choreography lets the web service choose to

reply m2 or m3 to a question m1,
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Ews/chor(m1(X,ws))

H(m1(X,ws))

Ews(m2(ws,X))

H(m2(ws,X))
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Echor(m2(ws, X))

Success: H(m1),H(m2)

Echor(m3(ws, X))

Success: H(m1),H(m2)

Figure 5.7: g-SCIFF derivation for Example 5.4.4

H(m1(X,ws)) → Echor(m2(ws,X)) ∨ Echor(m3(ws, X))

while the web service sticks to the reply m2

H(m1(X,ws)) → Ews(m2(ws, X)).

Again, AlLoWS provides a correct proof: g-SCIFF gives one possible history,

which is reported (feeble and strong) conformant by SCIFF in the second phase.

Thus, in all the examples by Baldoni et al., AlLoWS provides the same answer

proposed in [27].

5.4.5 Web services taking early decisions

In [26] Baldoni et al. have identified also conformance issues due to particular branc-

nhing structures in the protocol/behavioural definitions.

In Figure 5.8 it is shown one of the possible situations. The Web Service be-

havioural interface states that, as soon as the message m0 is sent out, the ws will

decide to choose between the two different paths m1,m2 and m1,m3. This choice is
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Figure 5.8: Message branching in the Web Service Specification

made (presumably) on the basis on some internal, private policy that ws does not

make public. The choreography instead specify that, from the global viewpoint, the

decision between m2 and m3 is taken after m1. This situation is considered by the

Baldoni et al. as a conformant one.

The issue not clearly stated in [26] is that the behavioural interface of ws intro-

duces two different paths, and the choice between them is made upon some internal

policy. We map this situation by introducing, in the ws specification, a further ab-

ducible, whose meaning is to map this internal choice made at a early stage (in this

case the predicate p):

H(m0(ws,X)) → EWS(m1(ws,X)) ∧ p

∨ EWS(m1(ws,X)) ∧ not p

H(m1(ws, X)) ∧ p → EWS(m2(ws,X))

H(m1(ws, X)) ∧ not p → EWS(m3(ws,X))

In the choreography specification instead, it is not needed to introduce a further

predicate, since the paths can be all distinguished from each other in any moment.

Hence the choreography specification will be like:

H(m0(ws, X)) → Echor(m1(ws, X))

H(m1(ws, X)) → Echor(m2(ws, X))

∨ Echor(m3(ws, X))
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Figure 5.9: Message branching in the Choreography Specification

The g-SCIFF generates only two histories:

HAP1 = {H(m0),H(m1), p,H(m2)}
HAP2 = {H(m0),H(m1),¬p,H(m3)}

The SCIFF recognize both the histories, hence the web service is considered as

being strong conformant.

5.4.6 A choreography that takes an early decision

The dual case of the situation presented in Section 5.4.5 is when the choreography

specification provides two different paths (possibly distinguished from each other only

later), while the web services choose a different path only later. Such situation is

graphically represented in Figure 5.9.

This case is not considered as conformant, since ws could choose to utter message

m3 at a later moment, while the choreography expects ws to send, for example, m2.

As we did before, we use an abducible predicate to distinguish the different paths

chosen (this time at the choreography level). ws can be specified as:

H(m0(ws,X)) → EWS(m1(ws,X))

H(m1(ws,X)) → EWS(m2(ws,X))

∨ EWS(m3(ws,X))

The choreography instead is specified as:
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H(m0(ws, X)) → Echor(m1(ws, X)) ∧ p

∨ Echor(m1(ws, X)) ∧ not p

H(m1(ws,X)) ∧ p → Echor(m2(ws, X))

H(m1(ws,X)) ∧ not p → Echor(m3(ws, X))

This time the g-SCIFF generates four different histories:

HAP1 = {H(m0),H(m1),H(m2), p}
HAP2 = {H(m0),H(m1),H(m2),¬p}
HAP3 = {H(m0),H(m1),H(m3), p}
HAP4 = {H(m0),H(m1),H(m3),¬p}

However, ws results to be not feeble conformant: taking, for example, the history

HAP2, it is possible to see that (since p has been abduced), the choreography has

an expectation about a message m3 that will not fulfilled by ws.

We would like to note, however, that this situation appears quite strange and in

contrast with the same meaning of choreography. In fact, the specification states that

a choice is taken, without any criteria, and without any possibility of understanding

(until is too late) which path is desired at a global level. In our opinion, this contradict

the goal for which choreographies were introduced: i.e., to ease and properly rule the

interaction between different peers.

5.4.7 Web service that decides too early to wait for a message

A similar situation to the one discussed in Section 5.4.5 is the one depicted in Figure

5.10. In this situation however, ws decides to wait for a message m2 or m3 when

before sending the message m1 (at a previous interaction step). Note that the only

difference w.r.t. the situation presented in Section 5.4.5 is that ws waits (instead of

sending) a message.
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Figure 5.10: Message branching in the Web Service Specification - waiting case

Again, we use an abducible predicate to represent such situation. Hence, ws is

specified as follow:

H(m0(ws,X)) → EWS(m1(ws,X)) ∧ p

∨ EWS(m1(ws,X)) ∧ not p

H(m1(ws, X)) ∧ p → EWS(m2(X, ws))

H(m1(ws, X)) ∧ not p → EWS(m3(X, ws))

The choreography specification instead is not different form the previous one:

H(m0(ws, X)) → Echor(m1(ws,X))

H(m1(ws, X)) → Echor(m2(X, ws))

∨ Echor(m3, (X, ws))

Although the situation is very similar to the one discussed in Section 5.4.5, in this

case Baldoni et al. state that the ws is not conformant to the choreography. In fact,

it might happen that the ws, following some internal policy, choose at a certain point

to wait for a message m2, while the choreography still leave this choice open. Later,

the peer X is still free to send m3 rather than m2: if this is the choice, ws will wait

for a message that no one will ever utter.
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This time the g-SCIFF generates four different histories:

HAP1 = {H(m0), p,H(m1),H(m2)}
HAP2 = {H(m0),¬p,H(m1),H(m2)}
HAP3 = {H(m0), p,H(m1),H(m3)}
HAP4 = {H(m0),¬p,H(m1),H(m3)}

If we consider the history HAP2, we can note that ¬p has been abduced. This

means that ws will wait for message m3. Unfortunately, this message will never be

uttered. ws is not (feeble) conformant w.r.t. the choreography specification.

5.4.8 Choreography that decides early to wait for a message
to be received by ws

The dual case of the situation discussed in Section 5.4.6 is shown in Figure 5.11. In

this case, however, the choreography states that the path is chosen before ws sends

out m1. Note that this time m2 and m3 are expected to be received by ws, and note

sent as in Section 5.4.6

Figure 5.11: Message branching in the Choreography Specification - waiting case

The ws can be specified as:

H(m0(ws,X)) → EWS(m1(ws,X))

H(m1(ws,X)) → EWS(m2(X, ws))

∨ EWS(m3(X, ws))
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The choreography instead is specified by introducing also an abducible predicate

p, used to discriminate the different path chosen in the interaction:

H(m0(ws, X)) → Echor(m1(ws, X)) ∧ p

∨ Echor(m1(ws, X)) ∧ not p

H(m1(ws,X)) ∧ p → Echor(m2(X,ws))

H(m1(ws,X)) ∧ not p → Echor(m3(X,ws))

This time the early choice taken in the choreography specification does not un-

dermine the conformance: in fact ws is still capable to process both the message m2

and m3.

The g-SCIFF generates two different histories:

HAP1 = {H(m0),H(m1),H(m2), p}
HAP2 = {H(m0),H(m1),H(m3),¬p}

Both HAP1 and HAP2 are compliant (by SCIFF), hence ws is strong conformant

w.r.t. the choreography specification.

5.4.9 Forbidden message

In all the previous cases, feeble and strong conformance coincide. However, there

might be instances in which the choreography assumes that the interaction has fin-

ished, while the web service continues sending messages. For example, the choreog-

raphy expects only one message:

Gchor = Echor(m1(X, ws))

while ws will send back a message m2:

H(m1(X,ws)) → Ews(m2(ws, X)).
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In this case, the only possible history is HAP∗ = {H(m1), H(m2)}. This history

does not leave any pending expectations, both from the choreography and from the

web service’s viewpoints, so ws is judged feeble conformant. However, the message

m2 was not expected by the choreography, and ws is not strong conformant.

5.4.10 Mutual exclusion

Many protocols include mutual exclusion between choices: for instance a choreog-

raphy might prescribe that if a given condition on a message m1 holds, a message

m2 should be exchanged, otherwise another message m3 should be sent. In AlLoWS,

conditions can be expressed by means of constraints (either the ones predefined in the

underlying solver, i.e., CLP(FD), or user-defined) or by means of defined predicates.

As a simple example, consider the following: the choreography prescribes to reply

either m2 or m3, depending on the content of the previous message m1:

H(m1(X, ws, C)) → Echor(m2(ws,X,C2)), C > 0

∨ Echor(m3(ws,X,C3)), C ≤ 0

while the web service always replies m2:

H(m1(X,ws, C)) → Ews(m2(ws, X, C2))

g-SCIFF generates two possible histories, with variables and constraints upon the

variables (Fig 5.12). In both the messages m1 and m2 are generated, but while in the

first the proof procedure assumes that C takes a value greater than 0, in the second C

is non positive. In the second phase, SCIFF takes as input both the happened events

and the constraint store, and accepts as conformant the first history, while discarding

as non-conformant the second.

Notice that constraints scope is not restricted only to variables in the content,

but might involve all the variables in the message, including time. The choreography
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Ews/chor(m1(X,ws, C))

H(m1(X,ws, C))

Ews(m2(ws, X, C2))

H(m2(ws,X, C2))
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Echor(m2(ws,X,C2))

Success: H(m1(X,ws, C)),
C > 0

H(m2(ws,X,C2))

Echor(m3(ws, X, C3))

Success: H(m1(X, ws, C)),
C ≤ 0

H(m2(ws, X, C2))

Figure 5.12: g-SCIFF derivation for Example 5.4.10

might contain conditions on deadlines (if you receive a message within 5 minutes

answer ok, otherwise reply too late)), or on participants (if the sender is authorized,

etc.).

5.4.11 Deadlines

Suppose that the choreography specifies a deadline for the receipt of a given message

m2:

H(m1(X, ws, C1), T1) → Echor(m2(ws, X, C2), T2)

∧ T2 < T1 + δchor

The web service ws, however, replies within a deadline that might be different:

H(m1(X,ws, C1), T1) → Ews(m2(ws, X, C2), T2)

∧ T2 < T1 + δws.

In this case, the only possible history is

HAP∗ = { H(m1(X,ws, C1), T1),

H(m2(ws, X, C2), T2), T2 < T1 + δws }
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Applying SCIFF to the generated history, we get the expectation

Echor(m2(ws, X, C2), T2) ∧ T2 < T1 + δchor

; this expectation matches with the second item of the HAP∗ history if a further

condition holds: T2 < T1 + δchor. Coherently with the philosophy of Constraint Logic

Programming, SCIFF provides this constraint in output, as a conditional answer:

the web service is conformant provided that the answer arrives before the deadline

in the choreography specification. Depending on the propagation performed by the

adopted constraint solver, the information provided could be even more significant.

For example, if the two values δws and δchor are ground, a CLP(FD) solver would

provide the conditional answer only if necessary, i.e., if δchor < δws, (the deadline

imposed by the choreography is more tight than the one the web service will meet).
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5.5 A test conformance example

In this section we exemplify the proposed approach by using a very simple choreogra-

phy specification, shown in Fig. 5.1. The interaction is initiated by a User that asks

the Flight Service FS to book a flight. If there are seats available on the plane, the

FS will reply with flightOffer , specifying the Price of booking the seat. Otherwise,

the FS replies with notAvailable.

The offer can be accepted (with ackOffer) or refused (with nAckOffer) by the

User. If the offer is accepted, the flight company will book the seat. The User, after

booking, has still the freedom to Cancel the booking. Otherwise, it will issue a pay-

ment oder (payment) to the Bank, that will send the notification (notifyPayment)

to the creditor, the FS.

When the FS has received both the booking order (ackOffer) and the payment

(notifyPayment), it will normally issue the flightT icket to the User; however, the

FS retains the right to refuse the ticket and send a flightCancelled message in case

of problems (e.g., overbooking or other error conditions).

Fig. 5.2 shows the behavioural interface of a Flight Server web service; the specifi-

cation in terms of ICs is in Spec. 5.1.2. The FS establishes that the late payment is

an error condition, and will cancel the booking if the payment notification does not

arrive within δ time units after the booking.

In next section, we show how the conformance of fs is proven in AlLoWS.

5.5.1 Conformance of the Flight Service

The test of conformance of the Flight Service fs is performed by generating, through

g-SCIFF, the set of the possible histories. The g-SCIFF derivation provides five
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possible histories:

HAP∗
1 = {H(request(U, fs, F ), Tr),

H(offer(fs, C, F, P ), To),

H(ackOffer(C, fs, F, P ), Ta),

H(payment(C, B, P, fs), Tp),

H(notifyPayment(B, fs, P )), Tn) ∧ Tn > Ta + δ

H(flightCancelled(fs, C, F ), Tc)},

HAP∗
2 = {H(request(U, fs, F ), Tr),

H(offer(fs, C, F, P ), To),

H(ackOffer(C, fs, F, P ), Ta),

H(payment(C, B, P, fs), Tp),

H(notifyPayment(B, fs, P )), Tn) ∧ Tn ≤ Ta + δ

H(flightTicket(fs, C, F ), Tt)},

HAP∗
3 = {H(request(U, fs, F ), Tr),

H(offer(fs, C, F, P ), To),

H(ackOffer(C, fs, F, P ), Ta),

H(cancel(C, fs, F ), Tc),

H(flightCancelled(fs, C, F ))},
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HAP∗
4 = {H(request(U, fs, F ), Tr),

H(offer(fs, C, F, P ), To),

H(nAckOffer(C, fs, F, P ), Ta)},

HAP∗
5 = {H(request(U, fs, F ), Tr),

H(notAvailable(fs, C, F, P ), Tn)}.

Two of the histories include time constraints. All the possible histories are trivially

conformant: they satisfy both the expectations of the choreography, and those of the

web service fs. Thus, fs is feeble conformant. Moreover, all the generated events

are expected, and this shows that fs is also strong conformant.

5.5.2 Conformance of the User web service

Suppose now that the user web service has the behavioural interface in Spec. 5.5.1.

Note that the User implements a policy for deciding whether to accept (ackOffer)

or refuse (nAckOffer) the offer of the FS: if the Price is less than a max quota,

then the offer is accepted (and declined otherwise). Also, this User web service does

not have expectations on the Bank’s reply: in fact, in this choreography, the Bank

does not need to notify the User about the payment. Finally, User always expects

to receive a ticket after paying.

Invoked with the goal Echor(request) ∧ Euser(request), g-SCIFF generates the
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Specification 5.5.1 The behavioural interface of a web service that is not conformant
for the role of User

H(request(user, FS, F light), Tr)
→Euser(offer(FS, user, F light, Price), To)
∨Euser(notAvailable(FS, user, F light), Tna)

(5.5.1)

H(offer(FS, user, F light, Price), To)
→Euser(ackOffer(user, FS, F light, Price), Ta) ∧ Price ≤ max

∨Euser(nAckOffer(user, FS, F light, Price), Ta) ∧ Price > max

(5.5.2)

H(ackOffer(user, FS, F light, Price), Ta)
→Euser(payment(user,Bank, Price, FS), Tf )
∨Euser(cancel(user, FS, F light), Tf )

(5.5.3)

H(ackOffer(user, FS, F light, Price), Ta)
∧H(payment(user,Bank, Price, FS), Tp)

→Euser(flightTicket(FS, user, F light), Tf )
(5.5.4)

H(cancel(user, FS, F light), Ta)
→Euser(flightCancelled(FS, user, F light), Tf )

(5.5.5)

H(payment(User,Bank, Price, Creditor), Tp)
→Echor(notifyPayment(Bank, Creditor, Price), Tn)

(5.5.6)

possible histories, that in this case are:

HAP∗
1 = {H(request(U, fs, F ), Tr),

H(offer(fs, C, F, P ), To),

H(ackOffer(C, fs, F, P ), Ta) ∧ P ≤ max,

H(payment(C, B, P, fs), Tp),

H(notifyPayment(B, fs, P )), Tn),

H(flightCancelled(fs, C, F ), Tc)},
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HAP∗
2 = {H(request(U, fs, F ), Tr),

H(offer(fs, C, F, P ), To),

H(ackOffer(C, fs, F, P ), Ta) ∧ P ≤ max,

H(payment(C, B, P, fs), Tp),

H(notifyPayment(B, fs, P )), Tn),

H(flightTicket(fs, C, F ), Tt)},

HAP∗
3 = {H(request(U, fs, F ), Tr),

H(offer(fs, C, F, P ), To),

H(ackOffer(C, fs, F, P ), Ta) ∧ P ≤ max,

H(cancel(C, fs, F ), Tc),

H(flightCancelled(fs, C, F ), Tfc)},

HAP∗
4 = {H(request(U, fs, F ), Tr),

H(offer(fs, C, F, P ), To) ∧ P ≤ max,

H(nAckOffer(C, fs, F, P ), Ta)},

HAP∗
5 = {H(request(U, fs, F ), Tr),

H(notAvailable(fs, C, F, P ), Tn)}.
However, in the second phase, SCIFF applied to the history HAP∗

1 signals that

the user’s expectation Euser(flightTicket(FS, user, F light), Tt) remains unfulfilled,

proving that user is not (feeble) conformant. In fact, this user web service under-

mines the interoperability with other web services conformant with the same chore-

ography. As an example, we can easily see that in case the Bank does not provide the

notifyPayment within the deadline imposed by fs (Spec. 5.1.2), the two web services

are unable to complete the choreography.
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5.6 Related Works

A number of languages for specifying service choreographies and testing “a priori”

and/or “run-time” conformance have been proposed in the literature. Two examples

of these languages are represented by state machines [33] and Petri nets [63].

Our work is highly inspired by Baldoni et al. [27]. We adopt, like them, a Multi-

agent Systems point of view, in defining a priori conformance in order to guarantee

interoperability. As in [27], we give an interpretation of the a-priori conformance

as a property that relates two formal specifications: the global one determining the

conversations allowed by the protocol and the local one related to the single peer. But,

while in [27] a global interaction protocol is represented as a finite state automation,

we adopt the formalisms and technologies developed in SCIFF and g-SCIFF. For

example, a difference between our work and [27] can be found in the number of parties

as they can manage only 2-party protocols while we do not impose any limit. We

also manage concurrency, which they do not consider at the moment.

Another similar work is described in [33]. In this work, authors focus on two-party

choreographies involving each one a requester and a provider (named service conver-

sations) and formulate some requirements for a modelling language suitable for them.

The requirements include genericity, automated support, and relevance. The authors

argue that state machines satisfy these requirements and sketch an architecture of a

service conversation controller capable of monitoring messages exchanged between a

requester and provider in order to determine whether they conform to a conversation.

An example of use of Petri nets for the formalization of choreographies is dis-

cussed in [63]. Four different viewpoints (interface behaviour, provider behaviour,

choreography, and orchestration) and relations between viewpoints are identified and
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formalised. These relations are used to perform (global) consistency checking of multi-

viewpoint service designs thereby providing a formal foundation for incremental and

collaborative approaches to service-oriented design. Our proposal is limited to a deep

analysis of the relation between choreographies and behaviour interfaces but deal with

both “a priori” and “run-time” conformance.

Endriss et al. [68, 70] apply a formalism based on computational logic to the

a-priori conformance in the MAS field. Their formalism is similar to the one we pro-

pose, but they restrict their analysis to a particular type of protocols (named shallow

protocols). Doing this, they address only 2-party interactions, without the possibility

of expressing conditions over the content of the exchanged messages, and without con-

sidering concurrency. While the two works agree on the notion of strong/exhaustive

conformance, we have dual notions of feeble/weak conformance: in [68, 70] weak

conformant is an agent that does not perform forbidden actions, but we have no

knowledge on its capability to perform requested actions. Dually, in this work, we

call feeble conformant an agent that does execute all the required actions, but there

is no knowledge on its ability to avoid forbidden actions.

The use of abduction for verification was also explored in other work. Note-

worthily, Russo et al. [128] use an abductive proof procedure for analysing event-

based requirements specifications. Their method uses abduction for analysing the

correctness of specifications, while our system is more focussed on the check of com-

pliance/conformance of a set of web services.

In [100], the authors tackle the problem of verifying (general and specific) prop-

erties of a Service obtained from the composition of many web services. Each web
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service specification (written in BPEL4WS) is translated in a labelled state transi-

tion system; then, by applying a composition operator, they get the state transition

system representing the composed service. Finally, model checking techniques are

applied to this latter model, to the end of verifying the properties. Note that, by

appropriately defining and extending the validity of the composed STS, they tackle

different communication models (synchronous, ordered asynchronous and unordered

asynchronous communications) that appear to be quite common in real cases.

Both our work and [100] focus on verifying interoperability, but while we concen-

trate on the interoperability issue of a single peer w.r.t. a global protocol, in [100]

the authors address the interoperability of a group of web services, referring only to

the interface behavior of each web service. However, we share the same intuition

that “the situation where some messages can be emitted without being ever consumed

should not occur in valid composition.”. The authors address also the problem of

proving properties about the possible interactions between a group of inter-operating

web services, by means of model checking techniques. We are discuss our results in

this verification type in Chapter 4.
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Chapter 6

Protocol Executability: the SCIFF
Agent Architecture

As already introduced in Section 1.1, the idea behind the Executability is to re-use

the specification of an interaction protocol, in order to ease the implementation of

the software peers that should interact using such a protocol.

When implementing the peers that use an interaction protocol, several problems

could arises; to cite some:

• the chosen protocol might not be specified enough: e.g., the TCP protocol spec-

ification [124] does not specify a minimum time interval before a syn message

can be retransmitted;

• the specification of the chosen protocol could contain ambiguities (due, for ex-

ample, to the use of natural language);

• the implementation of a peer could contain software bugs;

• if a reference implementation is missing, it would be hard also to run any test

of functionality for the implementation of new peers;

207
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Executability is a property related to both the interaction protocol as well as to

the specification language used to define such a protocol. It is related to the protocol

itself since quite frequently (especially in the MAS scenario) a protocol allows a peer

for several different actions (communicative actions in MAS). These actions, from the

protocol viewpoint, can be preferred non-deterministically by the peer: typically, the

choice of an action is made by the peer on the basis of some (possibly private and

internal) policy.

The executability property is related also to the specification language, that should

be able to support, somehow, the peer developing process. For example, a specifica-

tion given in the natural language would be easier for a human reader, but probably

useless for automatizing the development process of a peer. On the other hand, a

more formal specification of the same protocol would be useful for rapid prototyping

a software peer, but it might result of difficult comprehension for a human software

developer.

In this chapter we present an extension of an existing agent architecture, where

the single agents are programmed by directly using a protocol specification. The

existing agent architecture (JADE, [31]) provides the communication facilities, as

well as an entire agent infrastructure compliant with the FIPA specifications [75].

The “mind” of the agent instead is realized by means of the SCIFF Proof Procedure;

it takes as input the protocol specified in the SCIFF Language, plus some additional

information, and computes an agent behaviour.

Contributions of the author. The author contributed in a substantial way to

the contents presented in this chapter. However the ideas presented and the obtained

results are also consequence of the fruitful discussions with the colleagues and the
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senior researchers.

Chapter organization. This section is organized as follow. In Section 6.1 we pro-

vide an overview of the agent proposed architecture, where beside the SCIFF Agent,

we have introduced the possibility of checking compliance through the SOCS-SI tool.

In Section 6.2 we present the SCIFF Agent and its internal architecture, showing how

a protocol specification can be used as a base for programming the behaviour of a

single agent. In Section 6.3 instead we discuss which syntactic restrictions, if applied

to the protocol definition, can guarantee that the SCIFF Agent enjoy the property

of being conformant (w.r.t. the protocol). Finally, in Section 6.4 we present some

implementation details while in Section 6.5 we discuss the related works.
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6.1 The SCIFF Agent Platform

Figure 6.1: Overview of the SCIFF agent platform architecture.

The SCIFF agent platform, represented in Figure 6.1, has been implemented on

top of the JADE agent platform [31]. All the components have been implemented

as JADE agents, thus exploiting the capabilities of this powerful agent platform.

The single components can be used also separately, and in conjunction with other

JADE-compliant agents.

In Figure 6.1 two different components have been depicted: the SOCS-SI tool (see

Section 3.1), that has been extended to the JADE platform, and the SCIFF Agent:

both components use the SCIFF Proof Procedure as the reasoning engine, but they

perform different tasks. SOCS-SI “captures” at run-time the messages exchanged by

the agents through the communication platform, and verify the conformance of the

dialogues w.r.t. a given protocol specification. The SCIFF Agent instead uses the

SCIFF Proof Procedure to compute, for each step of the interaction, which is its next

action (communicative action, in this case).
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6.2 The SCIFF Agent

The SCIFF agent is a generic agent whose behaviour is determined by its specifi-

cation, provided by means of the SCIFF language, as explained later. The agent

communication language used by the SCIFF agents is based on the ACL used in

JADE (and defined by FIPA [75]). An important difference however is that the

SCIFF agent is not restricted to use the pre-defined set of FIPA message performa-

tives: the agent designer can use any desired performative. If this is the case, the

semantics of such performatives should be always expressed by providing, besides the

agent specification, a proper protocol, thus providing a social semantics, and possibly

by means of the SCIFF language. Of course, careful considerations must be taken

when introducing such new performatives, since inter-operability with other agent

implementations is not guaranteed anymore, unless it is known a-priori that they

support non-FIPA performatives.

6.2.1 Specification of the agent behaviour

The main purpose of the SCIFF Agent is to provide an implementation of a peer

playing a certain role in a given interaction protocol. The idea is to specify the

agent behaviour by means of the same protocol specification (given using the SCIFF

Language).

The protocol specification is used in the following way: given a set of happened

events, it is possible to query the SCIFF Proof Procedure in the open modality (i.e.

considering that new events can still happen). The SCIFF Proof Procedure is used to

compute all the abductive answers ∆i, for which the given history is compliant w.r.t.

the protocol. Each set ∆i represent a possible allowed behaviour of the peers. This
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behaviour is expressed in terms of expectations about the events. In this scenario, all

the events are message exchanges (i.e., we restrict to the communicative acts).

The SCIFF Agent chooses one of the ∆i and try to behave as he is expected to.

Practically, all the expectations about the agent to send a message to another agent

are considered mandatory, and such messages are effectively sent out. Expectations

about other agents to send messages to the SCIFF Agent instead are considered

as expectations about the future: they might be confirmed by the arrival of the

messages, as well as disconfirmed because no message arrives. If the latter is the case,

depending on how the protocol has been defined, the SCIFF Agent could perform

some reasoning in order to recover from such situation.

Formally, an agent specification is defined as follows:

Definition 6.2.1 (Agent specification). An Agent Specification Pag is an Abduc-

tive Logic Program

Pag ≡ 〈KBag, Eag, ICag〉

where:

• KBag is the Knowledge Base of the agent,

• Eag is the set of abducible predicates, and

• ICag is the set of Integrity Constraints of the agent.

KBag and ICag are the protocol specification, given in terms of an abductive

specification S = 〈KBag, ICag〉 (see Section 2.3).

Eag is the set of abducible predicates: it contains both expectations (positive

and negative) and normal abducibles. Positive expectations can be divided into two

significant subsets:
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• expectations about messages where ag is the sender (of the form

E(mx(ag,A, Content))); these expectation are interpreted as actions that agent

ag intends to do;

• expectations about messages uttered by other participants to ag (of the form

ought(mx(A,ws, Content)), with A 6= ag), which can be intended as the mes-

sages that ag is able to understand.

In Specification 6.2.1 it is shown the query-ref protocol [75, 77]. Intuitively, the

first IC means that if agent A sends to agent B a query ref message, then B is expected

to reply with either an inform or a refuse message by TD time units later, where TD

is defined in the Social Knowledge Base by the qt deadline predicate (in the shown

specification the value of TD would be 10). The second IC means that, if an agent

sends an inform message, then it is expected not to send a refuse message at any

time.

Note that the specification is still from the global viewpoint of both the partici-

pants. In order to make it specific for the single agent ag, three steps must be applied

to the generic specification:

• the role(s) that agent ag should play must be clearly specified;

• possibly non-determinisms due to several allowed answers (for a given role)

should be solved;

• possibly non-determinisms due to non-specified content of the answers should

be solved.
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Specification 6.2.1 Specification of the query ref interaction protocol.

ICs :
H(mx(A,B, query ref(Info)),T) ∧
qr deadline(TD)

→ E(mx(B,A, inform(Info,Answer)),T1) ∧
T1 < T + TD

∨ E(mx(B,A, refuse(Info)),T1) ∧
T1 < T + TD

H(mx(A,B, inform(Info,Answer)),Ti)
→ EN(mx(A,B, refuse(Info)),Tr)

SOKB :
qr deadline(10).

6.2.2 Role Specification

Usually, a protocol depicts the interaction rules for several players, each one playing

a role within the protocol. Hence a protocol specification describes the rules for

different roles, from a single and global (social) viewpoint. In order to use such

a protocol specification as the agent specification, it is necessary to specify which

role(s) the agent should play.

Specifying a role within a protocol specification consists, in our view, to specify in

which actions the role is involved, i.e. in which actions the agent (playing that role)

is the sender or the receiver of a communicative act.

Example 6.2.1 In Specification 6.2.2 it is shown how the protocol described in the

Spec. 6.2.1 can conceptually instantiated for a specific role. Whenever the role is

taking part to a certain protocol step (i.e. it appears to be the sender or the receiver
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of a message), the keyword me has been inserted instead of a generic variable. In this

example, the selected role is the one of the agent that provides the information.

Specification 6.2.2 query ref interaction protocol, specified for a particular role.

ICsag :
H(mx(A,me, query ref(Info)),T) ∧
qr deadline(TD)

→ E(mx(me,A, inform(Info,Answer)),T1) ∧
T1 < T + TD

∨ E(mx(me,A, refuse(Info)),T1) ∧
T1 < T + TD

H(mx(me,B, inform(Info,Answer)),Ti)
→ EN(mx(me,B, refuse(Info)),Tr)

SOKBag :
qr deadline(10).

Note that the process of specifying the role for an agent ag by substituting the

variables of sender/receiver with a specific keyword (e.g., in the Specification 6.2.2

has been used the keyword me) is not practical, since it could require a human

supervision.

To provide a simpler method for specifying the role that agent ag should play,

in the SCIFF Agent a predicate my name/1 has been reserved for this purpose. The

idea is to exploit a characteristics of the JADE platform: each agent is given a name

that, at runtime, is unique w.r.t. the currently running platform. Each sent/received

message brings as sender/receiver identifier this unique name. As a consequence, each

happened event has a sender and a receiver specified by ground terms.
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Given the happened events, the SCIFF Proof Procedure elaborates all the possible

abductive explanations (the sets ∆i). In particular, since we are using the protocol

specification, each set will contain the expectations about the behaviour of all the

agents involved in the interactions. The following situations could happen:

1. some expectations are about the agent to send to some other agent a certain

message (i.e., the sender is set to be the agent name, as given by the JADE

platform);

2. some expectations are about the agent to receive a message (i.e., the receiver is

set to be the agent name);

3. some expectations are about other agents, specified by their name, or not spec-

ified at all (i.e., the sender or the receiver are still an unbounded variable).

To understand which are the expectations regarding the role that agent ag should

play, it is sufficient to specify in the SOKBag the agent name ( by means of the

predicate my name/1. In this way it is possible to automatically filter and select all

the expectations about ag sending certain messages.

This very practical solution permits to automatically select all the expectations

regarding ag, but introduces a problem: in case of protocols with many roles, a

malicious agent could involve ag to play a different role. This can be avoided by

explicitly stating (through the definition of the goal in the SOKBag) which are the

negative expectations: in such a way, the SCIFF Proof Procedure will compute, for

ag, only the expectations that ag can effectively fulfill.

Example 6.2.2 In Specification 6.2.3 it is shown how the SOKB should be extended

in order to specify the role that an agent ag should play, in the query ref protocol.
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Specification 6.2.3 query ref interaction protocol, specified for a particular role.

ICsag :
H(mx(A,B, query ref(Info)),T) ∧
qr deadline(TD)

→ E(mx(B,A, inform(Info,Answer)),T1) ∧
T1 < T + TD

∨ E(mx(B,A, refuse(Info)),T1) ∧
T1 < T + TD

H(mx(A,B, inform(Info,Answer)),Ti)
→ EN(mx(A,B, refuse(Info)),Tr)

SOKBag :
society goal:-

EN(mx(A,B, query ref(Info)),T).
qr deadline(10).
my name(me).

Note that the ICshas remained the same w.r.t. the Specification 6.2.1, and only the

SOKB has been extended to specify the role. In particular, it is assumed that the

agent ag will have the name “me”, and that it will not play the role of the enquirer

(ag can never send a query ref message).

6.2.3 Protocol Non-Determinism

Interaction protocols quite often allows for a peer to behave in several different al-

ternative ways: e.g., in the TCP opening phase, the requested peer can answer to an

initial syn message with a syn/ack message or rather with a syn message. Another

simple example is given in the query-ref protocol: the queried agent can answer with

inform or with refuse.
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When SCIFF Proof Procedure is applied to such protocols, it happen that differ-

ent abductive answers ∆i are generated, each one corresponding to the alternatives

enlisted by the protocol. In order to execute the protocol specification, the agent

programmer should provide a way for selecting one amongst the possible behaviours.

Example 6.2.3 (Protocol Non-Determinism). In the Specification 6.2.1, after a

query message is received, an agent can answer with the inform or with the refuse

message. Given the following happened events:

HAP = {H(mx(anAgent,me, query ref(trainTable(tr1234))), 5)}

the abductive explanations computed by the SCIFF Proof Procedure are the follow-

ing:

∆1 = {E(mx(me, anAgent, inform(trainTable(tr1234), 12:25),T1)) ∧ T1 < 15}
∆2 = {E(mx(me, anAgent, refuse(trainTable(tr1234))),T1) ∧ T1 < 15}

In order to decide which answer should be given, a predicate symbol select behaviour/2

has been reserved. This predicate, that must be defined by the agent developer, re-

ceives as first parameter the list of the possible behaviours, and provide as output

(in the second parameter) the selected behaviours (i.e., the list of expectations that

agent will try to fulfill).

6.2.4 Messages non-Determinism

In the majority of the cases, protocols rule the type of the messages that can be

sent by a certain peer, but do not specify other parameters related to the message

itself. E.g., the query-ref protocol shown in Specification 6.2.1 does not rule what

the content of the Info parameter should be.
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In order to successfully execute the protocol specification, the agent developer

should provide (by means of the SOKB) a way for specifying the message content.

This can be done by defining the predicate message grounder/2 that receives as

input the selected expectation containing variables, and provide as output the same

expectation with all the variables substituted by ground terms.
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6.3 Conformance property of the SCIFF Agent

In the research literature it is possible to find several definitions of conformance. Here

we will restrict our considerations to the definitions given by Endriss et al. [68, 70],

and to the definitions we provide in Section 5.2. Both the works use the same term

conformance: however, in [68] the terms are weak, exhaustively and robust confor-

mance, while in our approach (Chapter 5) we define feeble and strong conformance.

The interested reader can refer to Section 5.6 for a comparison between the different

definitions.

Weak, Exhaustively and Robust Conformances

The SCIFF Agent uses the protocol specification for elaborating the allowed (and

expected) messages it should send. Given that an agent is weak conformance to a

protocol P iff it never utters any illegal dialogue move, we can state the following

theorem:

Proposition 6.3.1 (Weak Conformance). A SCIFF Agent is always weak con-

formant.

Proof. The predicates my name, select behaviour and message grounder can select

only messages that are allowed from the protocol specification.

Note that, while in [68] the weak conformance property is restricted to the shallow

protocols 1 class, we do no need to restrict to such set.

1In [68] shallow protocols are defined as protocols that can be translated into if-then rules where
a single happening event is present on the left side of each rule. Shallow protocols corresponds to
deterministic finite automatas where it is possible to determine the next state of the dialogue on the
sole basis of the previous event.
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Unfortunately, there is no guarantee that any allowed answer will be ever ut-

ter. It might be the case that the functions (defined by the developer) for solving

the non-determinism issues, does not select any allowed answer at all. However, if

such hypothesis is assumed, SCIFF Agent also enjoy the Exhaustive Conformance

property.

Proposition 6.3.2 (Exhaustive Conformance). Given a SCIFF Agent, if:

1. for every interaction step the set of possible allowed answers ∆ is not empty,

and

2. for each possible set ∆ of allowed answers, the functions my name,

select behaviour and message grounder always select at least one answer

Then the SCIFF Agent is Exhaustive Conformance.

Proof. Proposition 6.3.1 already states the weakly conformance. Condition 1 and 2

guarantee that at least one allowed answer will be chosen amongst all the possible

answers envisaged by the protocol. Hence the agent will always utter a message.

We end the considerations about the conformance by noting that, for what re-

gards the Robust conformance, the SCIFF Agent can not guarantee that property,

unless it is the protocol specification itself that defines the behaviour of answering a

default message (such as not-understood in response to any received and not allowed

message.

Feeble and Strong Conformances

The conformance as defined in the AlLoWS framework can be simply proved by

applying the framework directly on the SCIFF Agent specification, considering the
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part of the protocol (related to the particular role) as the behavioural interface of the

agent.

However, we would like to notice that this operation is not necessary, since it

means to check a protocol specification against a subset of the specification itself. As

for the previous section, the only problem arises in the selection functions, that do

not guarantee that any message will be ever selected to be sent out.

Proposition 6.3.3 (Strong Conformance). Given a SCIFF Agent, if:

1. for every interaction step the set of possible allowed answers ∆ is not empty,

and

2. for each possible set ∆ of allowed answers, the functions my name,

select behaviour and message grounder always select at least one answer

Then the SCIFF Agent is Strong Conformance.

Proof. Naively, by construction of the SCIFF Agent. In fact every possible answer

that the agent will utter, is generated by a subset of the rules defining the global

protocol, and therefore such messages are always allowed.
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6.4 SCIFF Agent Implementation

The SCIFF agent has been modeled on the basis of the Kowalsky-Sadri cycle for

intelligent agents [102]:

1. Observe

2. Think

3. Act

In particular, the phases of observe and act have been implemented directly in Java,

by extending a JADE agent. The think phase instead has been realized using the

SCIFF proof procedure, that provides instructions on the basis of the happened

events.

A schematic representation of the blocks composing the SCIFF agent is shown in

Figure 6.4.

Figure 6.2: Schematic diagram of the SCIFF Agent
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More in detail, the observation step consists on analyzing all the events that

happened since the observation step of the previous cycle. All the events are registered

in an Event Buffer, a repository that keeps trace of the new events. Three types of

events are considered:

i) Events corresponding to received messages.

ii) Events corresponding to sent messages.

iii) Events corresponding to internal state changes.

The “think” step consists of using the SCIFF proof procedure to elaborate the

happened events, and to generate a set of alternative expected behaviours. By

applying the selection functions defined by the developer (predicates my name/1,

select behaviour/2 and message grounder/2), only one behaviour is selected, and

a grounding of the messages that should be sent is passed on to the execution block.

Finally, the execution step consists on interpreting the expected behaviour gener-

ated by the SCIFF proof procedure. The expectations about the behaviour of other

agents will not be considered (it will be a task of the SCIFF procedure to understand

if such expectations have been satisfied or not, possibly providing further behaviours).

Instead, expectations that regards actions to be done by the agent itself, will be in-

terpreted as orders to be executed. If the expectation, e.g., is about sending a certain

message, then the execution block will send such message. Then, for each action

executed, the execution block generates a corresponding event and updates the buffer

of the happened events: in this way it is possible to use the SCIFF procedure for

reasoning also about the agent’ act, beside the other agent acts.
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6.5 Related Works

The main objective of the SCIFF Agent is not to provide a new agent architecture,

but rather to show how a protocol specification based on logic programming can be

directly used to program the agent behaviour. This would introduce many advantages:

in particular it would simplify the developer job of programming the agents and, as

seen in Section 6.3, for particular protocol classes it would also entail a conformance

property.

The protocol specification however is not enough: as discussed in Section 6.2.1,

some extra information is needed. In the literature, this extra information is often

referred as the private policy of the agent, in contrast to the public policy, ruled by

the protocol.

Many agent frameworks have been proposed in the MAS research field. However,

to the best of our knowledge, only Endriss et al. [68, 70] addressed the issue of

using a protocol specification (given by means of computational logic) to directly

specify the agent behaviour. Our work has been mainly inspired by their works: our

approach and their proposal share many points: e.g., both the approaches define

the protocol by means of forward rules, where the antecedent are given in terms of

happened events, and the consequences in terms of expectations about the behaviours.

However, our formalism is definitely more expressive and powerful, while they restrict

their formalism and focus their analysis to simpler class of shallow protocols : such

class in fact does not allow for interactions between many peers (more than 2) at the

same time and, moreover, it does not allow for concurrent dialogues.
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Chapter 7

Conclusions and Future Works

7.1 Summary

In this thesis we have presented the SCIFF framework and its extensions (the g-SCIFF

the AlLoWS Frameworks and the SCIFF Agent Platform). The SCIFF Framework

allows to specify interaction protocols, by means of a formal language supported by

a clear declarative semantics. Then, through the SCIFF Proof Procedure it is pos-

sible to reason about such specifications: soundness, termination and completeness

properties of this procedure have been demonstrated. The SOCS-SI exploits the

proof procedure to test the compliance verification of peers interactions against the

protocols.

The g-SCIFF Framework extend the SCIFF approach, and allows to statically

prove protocol properties: differently by the many existing approaches, it is not fo-

cussed on a specific application domain, but it rather permits to specify any generic

property. The AlLoWS Framework instead permits to verify a-priori if a component,

whose behaviour is described by a public behavioural interface, is complaint with a

protocol specification. Finally we have discussed the SCIFF Agent Platform, that

ease the task of developing agents by directly using the protocol specification itself
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as a part of the agent.

A very important advantage of our approach is that several different issues (from

specification to verification and execution) are addressed within a single framework:

the immediate advantage is that the same protocol specification can be used to per-

form the various tasks, without the need of translating it in various formalisms. Other

advantages of our approach are given by the declarative flavor of the specification lan-

guage, that makes it suitable to be used by human operators; at the same time, its

rigorous formal semantics makes it suitable also for automated reasoning.

The language has been shown to be highly expressive, thanks also to the possibility

of expressing CLP constraints over the variables; moreover the explicitly treatment of

the time makes the framework suitable to perform also time-related reasoning tasks

(such as deadline verification, for example, or planning). Furthermore, the presence

of positive and negative expectation allows to easy represent open as well as closed

interaction models.

However such expressive power, and the possibility of applying our approach to

almost any application domain, have a price in terms of performances: for example,

the time required to perform the properties verification task is some orders higher

than the time required by any model checking approach. Anyway, it’s our opinion

that this is a reasonable price to be paid for such a powerful framework.

7.2 Future Works

It is our opinion that, starting from the work presented in this thesis, there are many

possible research directions.

For what concern the SCIFF Framework and the other derived frameworks, an
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interesting extension could be to consider the Run-time Responsibility Identification,

and the strictly related Culprit Identification. One actual limit of the framework is

that, although a wrong (w.r.t. a protocol) behaviour can be detected by the presented

tools, it might be difficult to identify which peer has been responsible of the violation.

Another interesting extension could regard the types of violation detected: actu-

ally, if a wrong behaviour is detected, a violation is raised. It could be worthy to

investigate if different types of violation could be defined and detected. For exam-

ple, in certain situation do not performing an expected action could be viewed as

a “lighter” violation, w.r.t. performing a prohibited action. Moreover, it could be

very interesting to allow recovery mechanisms in case of violations. Also, preferences

between different expectations could be desirable.

Then, from the protocol viewpoint, it could be very interesting to investigate

the protocols resulting by the composition of different protocol specifications. The

method for composing such specification is already a research topic that, we believe,

it is worth to be investigated.

Finally, considering the applications domain, we believe that our approach can

be extended in many other application fields. For example, in the specification of

business rules and business process, as well as in the workflow management systems.
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[18] José Júlio Alferes and João Alexandre Leite (eds.), Jelia, Lecture Notes in

Artificial Intelligence, vol. 3229, Springer-Verlag, 2004.

[19] A. Anderson, A reduction of deontic logic to alethic modal logic, Mind 67 (1958),

100–103.



238

[20] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,

D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana, Business

process execution language for web services version 1.1, 2003, Available at

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/.

[21] Krzysztof R. Apt and Roland N. Bol, Logic programming and negation: A

survey, Journal of Logic Programming 19/20 (1994), 9–71.

[22] K. A. Arisha, F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus,

IMPACT: a Platform for Collaborating Agents, IEEE Intelligent Systems 14

(1999), no. 2, 64–72.

[23] Alessandro Armando, Luca Compagna, and Yuliya Lierler, Automatic compila-

tion of protocol insecurity problems into logic programming, in Alferes and Leite

[18], pp. 617–627.

[24] A. Artikis, J. Pitt, and M. Sergot, Animated specifications of computational

societies, in Castelfranchi and Lewis Johnson [42], pp. 1053–1061.

[25] Michael Backes and Birgit Pfitzmann, A cryptographically sound security proof

of the Needham-Schroeder-Lowe public-key protocol, FST TCS 2003: Founda-

tions of Software Technology and Theoretical Computer Science, 23rd Confer-

ence, Mumbai, India, December 15-17, 2003, Proceedings (Paritosh K. Pandya

and Jaikumar Radhakrishnan, eds.), Lecture Notes in Computer Science, vol.

2914, Springer-Verlag, 2003, pp. 1–12.

[26] Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti, A pri-

ori conformance verification for guaranteeing interoperability in open environ-

ments., ICSOC (Asit Dan and Winfried Lamersdorf, eds.), Lecture Notes in

Computer Science, vol. 4294, Springer, 2006, pp. 339–351.

[27] Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti, and Clau-

dio Schifanella, Verifying the conformance of web services to global interaction

protocols: A first step, EPEW/WS-FM (Mario Bravetti, Lëıla Kloul, and Gian-
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