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ABSTRACT 

METAVACCINOLOGY: A NEW VACCINE DISCOVERY TOOL 

 

Emrah Altındiş 

 

 

Dr. Sabrina Liberatori 

Prof. Dr. Vincenzo Scarlato 

March 2011, 162  pages 

 

In the last decade, the reverse vaccinology approach shifted the paradigm of vaccine 

discovery from conventional culture-based methods to high-throughput genome-based 

approaches for the development of recombinant protein-based vaccines against pathogenic 

bacteria.  Besides reaching its main goal of identifying new vaccine candidates, this new 

procedure produced also a huge amount of molecular knowledge related to them. In the 

present work, we explored this knowledge in a species-independent way and we performed a 

systematic in silico molecular analysis of more than 100 protective antigens, looking at their 

sequence similarity, domain composition and protein architecture in order to identify possible 

common molecular features. This meta-analysis revealed that, beside a low sequence 

similarity, most of the known bacterial protective antigens shared structural/functional Pfam 

domains as well as specific protein architectures. Based on this, we formulated the hypothesis 

that the occurrence of these molecular signatures can be predictive of possible protective 

properties of other proteins in different bacterial species. We tested this hypothesis in 

Streptococcus agalactiae and identified four new protective antigens. Moreover, in order to 

provide a second proof of the concept for our approach, we used Staphyloccus aureus as a 
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second pathogen and identified five new protective antigens. This new knowledge-driven 

selection process, named MetaVaccinology, represents the first in silico vaccine discovery 

tool based on conserved and predictive molecular and structural features of bacterial 

protective antigens and not dependent upon the prediction of their sub-cellular localization. 

Key words: MetaVaccinology, Streptoccus agalactiae, Staphylococcus aureus, 

5’nucleotidases, vaccinology, genomics, proteomics 
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1. INTRODUCTION 

1. 1 Brief History of Vaccinology 

In the beliefs of ancient peoples, diseases were inflicted on mankind by intangible and 

capricious deities as punishment for ill-defined transgressions. Fear of destruction by disease 

became an effective tool used by rulers and politicians to instill terrors, which would prove 

useful in controlling human behavior in the long climb from early tribal to “civilized” 

existence.  However, some, who were the forerunner of modern science, did discover 

microbial life forms, the relationships of environment to disease, and the fact that there was 

no second occurrence following certain clinically definable illnesses. Such heretical concepts 

revealed that man himself, rather than devils and demons, were the source of pestilence (1). 

It was common knowledge that survivors of smallpox became immune to the disease. The 

most successful way of combating smallpox before the discovery of vaccination was 

inoculation. The word is derived from the Latin inoculare, meaning “to graft.” Inoculation 

referred to the subcutaneous instillation of smallpox virus into nonimmune individuals.  In 

1670, Circassian traders introduced variolation to the Turkish “Ottoman” Empire. Variolation 

came to Europe at the beginning of the 18th 

century with the arrival of travelers from Istanbul. It was the continued advocacy of the 

English aristocrat Lady Mary Wortley Montague that was responsible for the introduction of 



 

 

2

variolation in England. In 1717, Lady Montague’s husband, Edward Wortley Montague, was 

appointed ambassador to the Sublime Porte. A few weeks after their arrival in Istanbul, Lady 

Montague wrote to her friend about the method of variolation used at the Ottoman court. Lady 

Montague was so determined to prevent the ravages of smallpox that she ordered the embassy 

surgeon, Charles Maitland, to inoculate her 5-year-old son. The inoculation procedure was 

performed in March 1718. Upon their return to London in April 1721, Lady Montague had 

Charles Maitland inoculate her 4-year-old daughter in the presence of physicians of the royal 

court. After these first professional variolation procedures, word of the practice spread to 

several members of the royal family (2).  

 

 

Figure 1: The first smallpox vaccination. Smallpox is stemmed (3). 
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The modern science of vaccinology took off on 14 May 1796 when Edward Jenner inoculated 

James Phipps, with the vaccinia virus obtained from a young woman who had been 

accidentally infected by a cow. Jenner describes this key experiment with the following 

words:  

 “The more accurately to observe the progress of the infection, I selected a healthy boy about 

eight years old for the purpose of inoculation with the cowpox. The matter was taken from the 

suppurated sore on the hand of a dairy Maid who was infected by her master’s Cows, and it 

was inserted on the 14th May 1796 into the arms of the Boy by means of two superficial 

incisions each about three quarters of an inch long. .During the whole of [the ninth day after 

this] he was perceptibly indisposed and had a restless night; but, on the following day he was 

perfectly well. On the 1st of July following this, the Boy was inoculated with Matter 

immediately taken from a smallpox Pustule. Several punctures and slight incisions were made 

in both his arms, and the matter was well rubbed into them, but no disease followed (4). 

The history of modern vaccination as a deliberate endeavor began in the laboratory of Louis 

Pasteur. His aphorism that 'chance favors the prepared mind' was never more aptly 

illustrated than by his own discovery of attenuation. Pasteur was on vacation in the summer of 

1881, and returned in the autumn to studies of chicken cholera, caused by what we call today 

Pasteurella multocida. A culture left on the bench during the summer was inoculated into 

chickens but did not cause disease. Pasteur then made a fresh culture and inoculated the same 

chickens, whether through parsimony or purpose we do not know. In any case, the chickens 

were resistant to the fresh challenge, and Pasteur realized that the aged culture had rendered 

them immune. From these observations Pasteur constructed the hypothesis that pathogens 
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could be attenuated by exposure to environmental insults such as high temperature, oxygen 

and chemicals. His ensuing work on anthrax and rabies confirmed the hypothesis. In the next 

century, Calmette and Guérin used passage in artificial media to attenuate Mycobacterium 

bovis, and Theiler used passage in mice and chick embryos to attenuate yellow fever virus (5). 

 

Figure 2: Two important figures of modern vaccionology: Robert Koch and Louis 

Pasteur. 

 

That was apparent during the first era of modern vaccinology, from the late nineteenth century 

through the 1930s: a long era of grand expectations. From the point of the 1890s, there was 

every reason to believe that a remarkable series of vaccine innovations would follow the 

scientific breakthroughs of Robert Koch, Louis Pasteur, and others. For the first time in 

human history, the sources of disease could be analyzed in a systematic, scientific manner. 

Thanks to Pasteur, society now had a vaccine effective against rabies, and other scientists 

followed with killed-organism vaccines for protection against cholera, typhoid, and plague. 
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Armed with a better understanding of immunology and with a new serum antitoxin that was 

effective against diphtheria, leading scientists and physicians at the turn of the century can be 

excused their sense of vigorous optimism. After all, they were not along in their hubris many 

prominent political leaders, pundits, and tycoons joined them in expressing wild expectations 

about progress in the years ahead.  There were as well experimental vaccines, not all of which 

were effective and safe, against diphtheria, pertussis, tuberculosis (BCG), tetanus, yellow 

fever, and typhus (Rickettsia ) (6). 

After the applications of killed and attenuated vaccines, the vaccine revolution continued to 

progress by the invention of cell culture, recombinant vaccines and polysaccharide 

technology. Today, iimmunization is a proven tool for controlling and even eradicating 

diseases. Table 1 shows the list of the approved vaccines yet. An immunization campaign 

carried out by the World Health Organization (WHO) from 1967 to 1977 eradicated the 

natural occurrence of smallpox. When the programme began, the disease still threatened 60% 

of the world's population and killed every fourth victim. Eradication of poliomyelitis is within 

reach. Since the launch by WHO and its partners of the Global Polio Eradication Initiative in 

1988, infections have fallen by 99%, and some five million people have escaped paralysis. 

Between 1999 and 2003, measles deaths dropped worldwide by almost 40%, and some 

regions have set a target of eliminating the disease. Maternal and neonatal tetanus will soon 

be eliminated in 14 of 57 high-risk countries (7).  In the next chapter, we will go on with the 

influence of genomics revolution to vaccine development. 
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Table 1. Dates of introduction of commonly used vaccines (8) 

 Vaccine Date  Vaccine Date 

1 Smallpox 1796 22 Pneumococcus 1976 

2 Rabies 1885 23 Acellular P (Pa) 1981 

3 Cholera 1896 24 Hepatitis B (HB) 1981 

4 Typhoid 1896 25 Varicella (V) 1984 

5 Plague 1896 26 rDNA HB 1986 

6 Diphtheria (D) 1923 27 H. influenzae b (Hib) 1988 

7 Pertussis (Pw) 1926 28 Hepatitis A (HA) 1991 

8 Tetanus (T) 1927 29 DTPwIPVHib 1993 

9 Tuberculosis (BCG) 1927 30 DTPa 1994 

10 Yellow fever 1935 31 DTPwHB 1996 

11 Influenza 1936 32 HBHA 1996 

12 Polio (IPV) 1955 33 DTPaHib 1997 

13 DTPw 1957 34 DTPaIPVHib 1997 

14 Polio (OPV) 1958 35 Lyme 1998 

15 DTIPV 1961 36 Rotavirus 1998 

16 Measles (M) 1963 37 Dtpa 1999 

17 DTPIPV 1966 38 HATy 1999 

18 Mumps (M) 1967 39 DTPaHBIPV 2000 

19 Rubella (R) 1969 40 DTPaHBIPVHib 2000 

20 MMR 1971 41 
MCCVb  (MenC conjugate 
vaccine) 2000 
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21 Meningococcus 1972 42 PCVa(conjugate vaccine) 2000 

 

1.2 A new generation: Subunit Vaccines 

After attenuated and killed type of vaccines, a new generation introduced as vaccines against 

diphtheria and tetanus in the 1920s is a much more sophisticated product, a purified bacterial 

component. In both these cases, it is a protein toxin previously demonstrated to be an essential 

cause of the disease. For the vaccine, the toxin is chemically modified to yield the non-toxic 

toxoid. Both these vaccines have performed extremely well in terms of both safety and 

efficacy, demonstrating that the theory behind them was correct. Purified single component 

vaccines have many attractions: the immune stimulus is maximally directed to the molecule 

relevant for protection and additional components that could cause adverse reactions or other, 

unwanted but unknown problems are avoided (9).  

This significant knowledge, that a protein and/or a subunit of a pathogen is enough to 

stimulate a specific immune response then used in order to make vaccines against pathogens 

that cannot be grown or can be grown only with difficulty in vitro pose a special problem to 

vaccine development.  Molecular biology and genetic engineering have had a dramatic effect 

on the field of vaccinology, although many of the important advances have not yet made it 

into the market. The first success story in this area was the development of the hepatitis B 

vaccine, which was licensed in 1986. The surface protein of hepatitis B virus is expressed 

from a DNA plasmid in yeast cells, purified and adsorbed on alum for injection (10). 
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As with diphtheria, the new generation of vaccines against pertussis (whooping cough) was 

made from a toxin that had been deactivated with formaldehyde. Rino Rappuoli and his 

colleagues achieved to make this subunit vaccine against Bordetella pertussis, the etiologic 

agent of whooping cough. Dr. Rappuoli describes this process as: “I cloned and sequenced the 

gene for pertussis toxin and did what Pappenheimer had done 15 years before with 

diphtheria” (11). But this time they used site-directed mutagenesis to specifically alter amino 

acids in the active site of the toxin. The result was a nontoxic molecule that made a potent 

vaccine. The pertussis vaccine also established a new generation of so-called acellular 

vaccines, which, unlike older vaccines, did not contain cells or cell fragments (12). 

Both of Hepatitis B and acellular pertussis vaccines are widely used in all over the world.  

Hepatitis B vaccine is 95% effective in preventing HBV infection and its chronic 

consequences, and is the first vaccine against a major human cancer. The vaccine has an 

outstanding record of safety and effectiveness. Over one billion doses of hepatitis B vaccine 

have been used worldwide. In many countries where 8% to 15% of children used to become 

chronically infected with HBV, vaccination has reduced the rate of chronic infection to less 

than 1% among immunized children (13).  
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1.3 Genomics and Vaccinology 

Louis Pasteur, who developed the first vaccine against rabies, established in 1881 the basic 

paradigm for vaccine development, which included the isolation, inactivation and injection of 

the causative microorganism. These basic principles have guided vaccine development during 

the twentieth century. All existing vaccines are based on killed or live-attenuated 

microorganisms or subunits purified from the microorganism such as toxins detoxified by 

chemical treatment, purified antigens or polysaccharide conjugated to proteins (Table 1). 

Vaccines produced following Pasteur’s principles allowed the control and, in some cases, the 

eradication of many important infectious diseases. Despite several successes, the Pasteur’s 

approach to vaccine development took a long time to generate vaccines against those 

pathogens for which the solution was feasible, but failed to produce vaccines for those 

bacteria and parasites that do not have obvious immunodominant protective antigens or for as 

yet uncultivable microorganisms (14). The genome era has completely changed the way to 

design vaccines. The availability of the complete genome of microorganisms combined with a 

novel advanced technology has introduced a new prospective in vaccine research. It is now 

possible to determine the complete genome sequence of a bacterial pathogen in a very few 

months at very low cost. In 1995, The Institute for Genomic Research (TIGR) published the 

first microbial complete genome sequence of Haemophilus influenzae (15). As of December 

2010, 1,283 bacterial genomes are completely sequence and more than 5433 are ongoing 

(http://www.genomesonline.org/cgi-bin/GOLD/bin/gold.cgi). 

http://www.genomesonline.org/cgi-bin/GOLD/bin/gold.cgi
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Figure 3. Schematic overview of conventional vaccinology versus vaccinology in the 

genome era. (A) Most licensed vaccines target pathogens that have low antigenic variability 

and pathogens for which protection depends on antibody-mediated immunity. These vaccines 

have typically been developed using conventional vaccinology. (B) Several pathogens are 

shown for which no vaccine is available, due to either their high antigenic variability and/or 

the need to induce T cell–dependent immunity to elicit protection. New approaches are being 

applied to vaccine development for these pathogens in the genome era. Vaccines/diseases 

shown in the figure are selected examples of each category and are not a complete list (16). 
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The application of genome analysis to vaccine development, a concept termed “reverse 

vaccinology,” initiated a positive feedback loop in terms of the development and application 

of novel approaches to the field of vaccinology. As a result, it is becoming possible to 

systematically examine almost every aspect of a pathogen and its interactions with the host 

immune system in the search for vaccine candidates. Reverse vaccinology applied to the 

genome of a pathogen aims to identify the complete repertoire of antigens that an organism is 

capable of expressing on its surface. Transcriptomics and proteomics enable the investigation 

of the array of antigens actually expressed by a pathogen under specified conditions, by 

examining the mRNA and protein of the organism, respectively. Analysis can also focus on 

the subset of proteins that are surface exposed (surface proteome) or the subset of genes that 

are functionally important for infection (functional genomics). Newer fields of study are 

focused on elucidating the set of antigens that interact with the host immune system and the 

mechanisms involved in these interactions (immunomics), the structural epitopes of 

immunogenic antigens (structural vaccinology), and the way in which individual host immune 

systems respond to a vaccine (vaccinomics) (16). While each of these approaches has 

limitations, they have all emerged as powerful tools in vaccine development.  

The approach referred to as ‘reverse vaccinology’ uses the genome sequences of viral, 

bacterial or parasitic pathogens of interest rather than the cells as starting material for the 

identification of novel antigens, whose activity should be subsequently confirmed by 

experimental biology. In general, the aim is the identification of genes potentially encoding 

pathogenicity factors and secreted or membrane-associated proteins. Specific algorithms 

suitable for the in silico identification of novel surface-exposed and, thus, antibody 
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accessible proteins mediating a protective response are used (17). The first example of a 

successful application of the reverse vaccinology approach was provided by Pizza and 

coworkers in collaboration with The Institute for Genomic Research. 

 

Figure 4: Examples of different post genomics approaches in the development of 

vaccines against some bacterial pathogens, and the status of the corresponding vaccine 

development (18) 
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1.3.1 The first Steps of Reverse Vaccinology 

Neisseria meningitidis is a major cause of meningitis and sepsis in children and young adults. 

While polysaccharidebased vaccines are available for A, C, Y and W135 serogroups, 

conventional vaccinology has failed for serogroup B. Group B meningococcus (MenB) 

represents the first example to which reverse vaccinology has been applied. MenB complete 

genome from strain MC58 was obtained by the random shotgun strategy (19). While the 

sequencing was still in progress, the MenB genome was screened, using several softwares, in 

order to select putative ORF coding for surface-exposed or secreted proteins. Among the 2158 

putative open reading frames (ORFs) annotated, 600 ORFs were selected on the basis of these 

criteria. The selected 600 ORFs were amplified from meningococcus by PCR, and cloned into 

Escherichia coli in order to express each gene as His-tag or GST fusion protein. Out of these 

600 putative ORFs, 350 were successfully expressed, purified and used to immunize mice. 

Screening of immune sera was performed by Western blot on meningococcus total cell lysates 

and outer membrane vesicles to verify whether the protein was really expressed in 

meningococcus and to determine its subcellular localization. The surface-exposure of each 

antigen was then confirmed by fluorensce-activated cell sorter (FACS) analysis and ELISA 

on whole cell bacteria. Finally, sera were tested in bactericidal assay, an assay which is 

known to correlate with the protection in humans. Ninety-one proteins were found to be 

surface-exposed, 29 of them were able to induce bactericidal antibodies (20).  

These 29 antigens selected by reverse vaccinology were prioritized based on their ability to 

induce broad protection. The three top antigens that met the prioritization criteria were 

GNA2132, GNA1870, and NadA. Two additional antigens, GNA1030 and GNA2091, were 



 

 

14

selected because they also induced protective immunity but only in some of the assays. The 

results of the multicomponent vaccine were very promising, the vaccine covers 78% of the 

strains in the basic formulation using aluminum hydroxide as adjuvant, and coverage can be 

increased to 95% of the strains by using other adjuvants. The progress compared with 

vaccines available so far is gigantic; in fact, OMV vaccines, which are the best vaccines 

against MenB developed during the last 30 years, are shown to cover only 20% of the MenB 

strains (21). This work also shows that universal protein-based vaccines can be developed 

against those encapsulated bacteria that are usually targeted by conjugate vaccines.  

 

Figure 5.  Flow chart showing criteria and bioinformatic softwares for the in silico 

genome analysis and selection of putative vaccine candidates (15). 
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1.3.2 Pan-Genome and Reverse Vaccinology  

Tettelin et al. introduced the concept of pan-genome, which was defined as the global gene 

repertoire pertaining to a given species (22). The pan-genome can be defined as the global 

gene repertoire pertaining to a species. In general, it can be divided in three parts: the core-

genome, which includes the set of genes invariably present and conserved in all the isolates; 

the ‘dispensable genome’, comprising genes present in some but not all the strains, and the 

strain-specific genes, which are present only in one single isolate. The analysis performed on 

GBS genomes indicated that the different isolates have an estimated core-genome containing 

1806 genes, whereas each single genome contained between 2000 and 2400 genes. In other 

words, each strain contains a relatively large number of dispensable genes (200–600) that are 

missing in at least one of the other strain genomes. The most interesting finding is that when a 

new genome sequence is added to the pool of the others, an estimated number of 33 new 

strain specific genes, which are exclusively present in that genome, are added. Consequently, 

the pool of genes comprising the coregenome, dispensable genome and all the strain-specific 

genes, globally defined as the pan-genome, represents an open entity (open pan-genome) that 

is continuously increasing in size (24). 
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Figure 6. The pan-genome. The number of specific genes is plotted as a function of the 

number n of strains sequentially added. For GBS (blue line), the extrapolated average number 

of strain-specific genes, 33, is shown as a dashed line. For Bacillus anthracis (red line), the 

curve reaches zero after addition of the fourth genome. No new genes will be discovered after 

this threshold (24). 

Besides the study of the diversity inside a species, one possible application of the pan-genome 

in vaccinology (pan-genomic reverse vaccinology) is the identification of novel vaccine 

candidates and targets for antimicrobials. Maione and colleagues performed the first 

application of the pan-genome to vaccines to design a universal vaccine against GBS (25). By 

computational algorithms 589 surface-associated proteins are predicted, 396 of which were 
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core genes and those remaining were genes absent in at least one strain. Selected potential 

antigens were expressed as recombinant proteins, purified and tested for protection against 

GBS, and four were found to elicit protective immunity in an animal model. Among these 

antigens, only one was part of the core genome; however, it was not able to confer global 

protection, hence the final vaccine formulation should include a combination of the four 

antigens (25). The GBS example has demonstrated that multiple genome sequences of each 

species are important to cover the diversity of many pathogens  

1.3.3 Substractive Reverse Vaccinology for Escherichia coli 

The most recent paper of Reverse Vaccinology is published on extraintestinal pathogenic 

Escherichia coli (ExPEC) which is a common cause of disease in both mammals and birds. 

Moriel et al. have determined the genome sequence of ExPEC IHE3034 (ST95) isolated from 

a case of neonatal meningitis and compared this to available genome sequences of other 

ExPEC strains and a few nonpathogenic E. coli. To identify potential vaccine candidates 

against ExPEC, they applied a “subtractive reverse vaccinology” approach. Briefly, antigens 

predicted to be surface associated or secreted and with no more than three transmembrane 

domains were selected by bioinformatic analysis of the IHE3034, 536, and CFT073 genomes. 

The presence (and the level of similarity) of these antigens in the nonpathogenic strains 

MG1655, DH10B, and W3110 were used as exclusion criteria. By this approach, they were 

able to identify 230 potential antigens, which were then expressed as His-tagged proteins, 

purified and tested for protection in a sepsis mouse model. Of these, 220 were successfully 

purified, 69 as soluble and 151 as insoluble proteins. Nine antigens were protective in a 
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mouse challenge model. Some of them were also present in other pathogenic non-ExPEC 

strains, suggesting that a broadly protective E. coli vaccine may be possible (26). 

1.3.4 ANTIGENome Technology 

In 2000, Etz et al published the first article of  ANTIGENome technology. They developed a 

new procedure to identify commonly recognized antigens, and provide a comprehensive in 

vivo antigenic profile of Staphylococcus aureus. Very briefly, S. aureus peptides were 

displayed on the surface of Escherichia coli via fusion to one of two outer membrane proteins 

(LamB and FhuA) and probed with sera selected for high Ab titer and opsonic activity. A total 

of 60 antigenic proteins were identified, most of which are located or predicted to be located 

on the surface of the bacterium or secreted. The authors claim that the identification of these 

antigens and their reactivity with individual sera from patients and healthy individuals could 

facilitate the selection of promising vaccine candidates for further evaluation.(27). The 

authors argue that the ANTIGENome technology does not directly rely on genome annotation 

and, thus, has the potential to select proteins that are not predicted by ORF-finding algorithms 

(28). 

ANTIGENome approach was secondly applied to Streptococcus pneumoniae by using display 

libraries expressing 15–150 amino acid fragments of the pathogen’s proteome. Serum 

antibodies of exposed, but not infected, individuals and convalescing patients identified the 

ANTIGENome of pneumococcus consisting of 140 antigens, many of them surface exposed. 

Based on several in vitro assays, 18 novel candidates were preselected for animal studies, and 

4 of them showed significant protection against lethal sepsis.. A vaccine containing two of 
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four protective antigens, PcsB and StkP, is planned for the prevention of infections caused by 

all serotypes of pneumococcus in the elderly and in children (29). 

Very recently, the same group published their ANTIGENome approach for Streptococcus 

pyogenes. For immune selection, human serum antibodies obtained from patients who 

recovered from common S. pyogenes infections and healthy, noncolonized parents of small 

children, were used. These studies led to the discovery of eight novel antigens in addition to 

Spy0416/ScpC, all of which are highly conserved among GAS clinical isolates and provide 

significant protection in murine challenge models (30). 

1.4 Proteomics and Vaccinology 

The term proteome, in analogy to the term genome, was coined to describe the complete set of 

proteins that an organism has produced under a defined set of conditions. The genome is static 

since it represents the blueprint for all cellular properties that a cell is able to develop. In 

contrast, the proteome is highly dynamic and much more complex than the genome. It is 

critical for survival that the protein composition of a cell is constantly adjusted to meet the 

challenges of changing environmental conditions (31). Already in 1975, the powerful method 

of two-dimensional-polyacrylamide gel electrophoresis (2D PAGE) was introduced that 

allowed one to separate highly complex cellular protein extracts into individual proteins on a 

single gel based on two properties of the proteins the isoelectric point (pI) and the molecular 

weight (MW) (32). Based on a well-annotated genomic sequence, it became possible to 

introduce large-scale mass spectrometry (MS) techniques to identify virtually every protein 

detected on a 2D gel. The increase in throughput, the partial automation, and the higher 
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reproducibility of 2D-PAGE analysis recently made it a very attractive tool to study cellular 

functions on a molecular level. 

Proteomics approaches to pathogens may have different targets: (i) Characterization of 

submicrobial proteomes (for example, secreted proteins, surface proteins and immunogenic 

proteins), (ii) comparative analysis of different strains and physiological states, (iii) 

identification of proteins related to pathogenicity, (iv) identification of proteins involved in 

host–pathogen interactions and (v) evaluation of mechanisms of action of antimicrobials are 

the most important ones (33). Proteomic approaches to vaccine candidate selection are able to 

go beyond several limitations of bioinformatics tools, which rely on homology searches, in 

predicting whether or not a protein is surface-exposed (34). 

 

Figure 6. The mass-spectrometry/proteomic experiment.  A protein population is prepared 

from a biological source — for example, a cell culture — and the last step in protein 

purification is often SDS–PAGE. The gel lane that is obtained is cut into several slices, which 

are then in-gel digested. The generated peptide mixture is separated on- or off-line using 

single or multiple dimensions of peptide separation. Peptides are then ionized by electrospray 

ionization (depicted) or matrix-assisted laser desorption/ionization (MALDI) and can be 

analysed by various different mass spectrometers. Finally, the peptide-sequencing data that 

are obtained from the mass spectra are searched against protein databases using one of a 
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number of database-searching programmes (2D, two-dimensional; FTICR, Fourier-transform 

ion cyclotron resonance; HPLC, high-performance liquid chromatography) (35). 

1.4.1 Immunoproteomics 

Much of information about immunogenic components of a bacterial pathogen can be derived 

from proteomics coupled to Western blotting, namely immunoproteomics. The aim of the 

immunoproteomics studies is to identify the immunogenic antigens of a pathogen by using 

sera of human or mice.  Immunproteomics has been used to identify novel bacterial vaccine 

candidates against several human pathogens, examples including Helicobacter pylori, 

Staphylococcus aureus, Bacillus anthracis, Shigella flexneri, Francisella tularensis, 

Corynebacterium diphtheriae, Streptococcus pyogenes, Chlamydia pneumoniae, Neisseria 

meningitidis and Bordetella pertussis (36).  

During my master thesis (2004-2007, Middle East Technical University, Ankara), I had used 

immunoproteomics in order to study B. pertussis, the causative agent of highly communicable 

respiratory infection whooping cough (http://etd.lib.metu.edu.tr/upload/12608320/index.pdf ). 

In a few words, the total soluble proteins extracted from two B. pertussis strains, Tohama I 

and the local isolate Saadet, two strains used for vaccine production in Turkey, were separated 

by two-dimensional gel electrophoresis and analyzed by Western blotting for their reactivity 

with the antisera obtained from the mice immunized with inactivated whole cells as well as 

those collected from the mice challenged intraperitoneally with live cells of each strain. Of a 

total of 25 immunogenic proteins identified, in which 21 were shown to be the novel antigens 

for B. pertussis. This was the first immunoproteomics study of the Bordetella and has 

http://etd.lib.metu.edu.tr/upload/12608320/index.pdf
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provided us a deeper idea about the pathogen.  

 

Figure 7: Impact of proteomics on vaccine development (37) 

1.4.2 Surfome Analysis as a Vaccine Discovery Tool 

Bacterial surface proteins are essential compartments of the pathogens. They have 

fundamental roles in interaction with the host and environment hence they are the main 

virulence factors that involve in adhesion and invasion of the host cells. Moreover, because 

surface proteins are likely to interact with the host immune system, they may become 

components of effective vaccines. There are three main methods currently in practice to 

identify surface proteins: (i) prediction by genome analysis using algorithms such as PSORT, 

(ii) separation of membrane and cell wall fractions from the cytoplasmic fraction and then 



 

 

23

identification of proteins by two-dimensional (2D)-electrophoresis or 2D-chromatography 

coupled to mass spectrometry and (iii) definition of membrane proteins by using one of the 

two methods described above and then confirmation of surface localization by producing 

polyclonal antibodies against the recombinant forms of each predicted protein and by 

assaying antibody binding to whole bacterial cells. All these methods are used widely but they 

are all extremely labor intensive and/or not fully reliable and is not quantitative (38).  

 

Figure 8. Structures of surface-exposed and secreted proteins relevant to the 

pathogen–host interface. Represented examples can be specific or common to different 

pathogen classes. The following indicates the antigen's name, pathogen's species and PDB 

codes, respectively, for each structure drawn: (a) OmpF, Escherichia coli, 1gfn; (b) YadA, 

Yersinia pestis, 1p9h; (c) PapG, Escherichia coli, 1j8s; (d) PapE-PapK, Escherichia coli, 

1n12; (e) Psv25, Plasmodium vivax, 1z27; (f) EBA127, Plasmodium falciparum, 1zrl; (g) 
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AMA-1, Plasmodium vivax, 1w8k; (h) BoNT-B, Clostridium botulinum, 1epw; (i) InlA, 

Lysteria monocytogenes, 1O6T; (j) SdrG, Staphylococcus epidermidis, 1r19; (k) SpnHl, 

Streptococcus pneumoniae, 1egu. (39) 

Recently, Rodriguez-Ortega et al. from Novartis Vaccines,  described a new approach that 

allows the rapid and selective identification of bacterial surface-exposed proteins, the pool of 

proteins which are entirely or partially exposed on the outside of bacterial cells. The method 

uses proteolytic enzymes to ‘shave’ the bacterial surface and the peptides generated are 

separated from the whole cells and identified by mass spectrometry. The approach described 

provided the most extensive and detailed map of the surface-exposed antigens of a GAS 

isolate to date. A relevant result of this work was the demonstration that comprehensive 

characterization of surface-exposed proteins can lead to new vaccine candidate discovery. 

Among the 14 identified surface proteins tested, one protein, Spy0416, conferred high 

protection levels. This was a remarkable result, considering the small number of protective 

antigens that have been identified to date (38).  

Secondly, our group used this approach in order to analyze the surfome of Group B 

Streptococcus, COH1 strain and to identify new vaccine candidates.  We confirmed previous 

data showing that whole viable bacterial cell treatment with proteases followed by the 

identification of released peptides by mass spectrometry is the method of choice for the rapid 

and reliable identification of vaccine candidates in Gram-positive bacteria. When applied to 

the Group B Streptococcus COH1 strain, 43 surface-associated proteins were identified, 

including all the protective antigens described in the literature as well as a new protective 
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antigen, the cell wall-anchored protein SAN_1485 belonging to the serine-rich repeat protein 

family (40).  

In the present study, the surface digestion methodology was exploited in order to analyze 

expression of new protective antigens on the surfome of GBS. 

 

Figure 9. Representation of the proteomics strategy used to identify surface-exposed 

proteins (40). 
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1.5 Protein Domains 

Traditionally, scientists use sequence similarity searches to compare a query sequence to 

those of known function, but this method has its limitations and relies on the quality of 

existing data. Alternative methods for protein sequence classification use protein signatures. 

A number of different databases developing protein signatures diagnostic for known protein 

families or domains have arisen (41). 

Protein domains are compact regions of a protein’s structure that often convey some distinct 

function. Domain architecture, or order of domains in a protein, is frequently considered as a 

fundamental level of protein functional complexity. The prevalence of proteins with more 

than two domains and the recurrent appearance of the same domain in non-homologues 

proteins show that functional domains are reused when creating new proteins. Because of this, 

domains have been likened to Lego bricks that can be recombined in various ways to build 

proteins with completely new functions. Hence, one way to study evolution of protein 

function and structure is by looking at the evolution of protein domain composition. The 

average length of a protein domain is approx. 120 amino acids, so changes in domain 

architecture are underlined by large alterations at the gene level (42). Examples of molecular 

mechanisms that can direct these rearrangements are gene fusion and fission, exon shuffling 

through intronic recombination, alternative gene splicing and retropositioning  

Ernest Rutherford, who is known as the father of nuclear physics famously and 

contemptuously said, ‘All science is either physics or stamp collecting’. But ‘stamp 

collecting’ or classification is of central importance in science. The advent of high 
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throughput sequencing and bioinformatics has enabled the classification of the proteins 

through the identification of sequences similarities they contain. These similarities are often 

characteristic of shared protein domains, which can be considered as the common currency of 

protein structure and function (43).  Pfam is a large collection of protein domains and 

families. Its scientific goal is to provide a complete and accurate classification of protein 

families and domains. The Pfam database is accessible via the Web and available in several 

different downloadable formats (http://pfam.sanger.ac.uk ). Currently Pfam matches 72% of 

known protein sequences, but for proteins with known structure Pfam matches 95%, which 

represents the likely upper bound.  

Function prediction is filled with potential pitfalls such as considerable sequence divergence, 

non-equivalent functions of homologues and non-identical multi-domain architectures. 

Detecting non-enzymatic regulatory domains is essential to predict a protein’s cellular role, 

binding partners and subcellular localisation. Such domains are usually divergent in sequence 

and occur in contrasting multi-domain contexts. This leads to difficulties unravelling the 

evolution and function of multi-domain proteins. These problems are addressed by the 

SMART Web tool as a database for signalling domains. SMART (a Simple Modular 

Architecture Research Tool) allows the identification and annotation of genetically mobile 

domains and the analysis of domain architectures (http://SMART.embl-heidelberg.de). More 

than 400 domain families found in signaling, extra-cellular and chromatin-associated proteins 

are detectable. These domains are extensively annotated with respect to phyletic distributions, 

functional class, tertiary structures and functionally important residues (44).  

http://pfam.sanger.ac.uk/
http://smart.embl-heidelberg.de/
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Both of these two bioinformatics tools, SMART and Pfam, are used extensively for the 

present study in order to analyze the protein architecture of known protective antigens. 

1.6. Model Pathogens for the MetaVaccinology Approach 

1.6.1 Streptococcus agalactiae 

Invasive bacterial infections and the ensuing severe inflammatory response remains a 

significant cause of morbidity and mortality in human newborns and adults. Group B 

Streptococci (GBS), or Streptococcus agalactiae, is the most common cause of life-

threatening bacterial infection in human newborns. These bacteria are Gram-positive, β-

hemolytic, chainforming cocci that are normal residents of the vaginal flora in 25% of healthy 

women. Transmission of GBS from colonized mothers to the newborn can occur in utero 

owing to ascending infection or during birth when the neonate aspirates contaminated 

amniotic/vaginal fluids. Affected newborns include preterm, low birth weight and full-term 

infants GBS disease in newborns is classified as early-onset disease (EOD) or late-onset 

disease(LOD), depending on the age of the infant at the time of disease manifestation. 

Maternal colonization is a prerequisite for EOD, and infection presents in infants within a few 

hours to days of life (≤7 days of age). EOD manifests as respiratory failure and pneumonia 

that rapidly progresses into bacteremia and septic shock syndrome. In contrast, LOD is 

characterized by bloodstream infection, with a high risk of progression to meningitis. LOD 

can present in infants up to several months in age (7–90 days) (45). 

Studies demonstrate that pregnant women, who have opsonically active levels of antibodies to 

GBS, are unlikely to deliver babies that suffer from GBS infections. For example, in one 
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study, 88% of babies were protected against GBS Ia if the maternal anti-GBS Ia antibody was 

greater than 5 µg/ml. Unfortunately, the majority of women do not have adequate levels of 

such antibody (66% UK and 88% USA). This knowledge is the basis of the vaccination idea 

(46). Human isolates of GBS express a capsular polysaccharide (CPS), a major virulence 

factor that helps the microorganism evade host defence mechanisms. Isolates of GBS can be 

divided into nine CPS serotypes (Ia Ib, II, III, IV, V, VI, VII and VIII) each antigenically and 

structurally unique. In the 1930s, Rebecca Lancefield established that protection against GBS 

infection in mice could be achieved using CPS-specific polyclonal rabbit serum. CPS-tetanus 

toxoid conjugate vaccines effective against all nine currently identified GBS serotypes have 

been prepared and were shown to induce functionally active CPS-specific IgG. Clinical trials 

of conjugate vaccines prepared with purified CPS types Ia, Ib, II, III and V have demonstrated 

that these preparations are safe and immunogenic. Not unexpectedly, these preparations do 

not offer protection against other GBS serotypes, such as type VIII, prevalent in other regions 

of the world. As an alternative to CPS-based vaccines, a number of groups have explored the 

development of vaccines based on antigenic proteins. So far, however, the protein antigens 

investigated have been restricted to particular serotypes and no complete cross-serotype 

protection has been achieved (47). To address this need, efforts are ongoing to develop a 

universally effective vaccine for GBS disease that exploits the recently acquired genomic 

sequences of GBS strains, and to then use this information to identify new candidate antigens 

of global relevance. As deeply mentioned above, GBS is the one of the first organism that 

Reverse Vaccinology approach is used, by using pan-genome information.  
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Figure 10: Current status of GBS vaccine research and development, CPS, capsular 

polysaccharide; LmbP, laminin binding protein; Sip, surface immunogenic protein 

(47).  
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1.6.2  Staphylococcus aureus 

Staphylococcus aureus is an important gram positive bacterial pathogen that causes skin and 

soft-tissue infections as well as life-threatening bacteraemias with metastatic complications, 

such as pneumonia, endocarditis, septic arthritis and osteomyelitis (48). Methicillin-resistant 

S. aureus (MRSA) isolates are resistant to all available penicillins and other β-lactam 

antimicrobial drugs. They were once confined largely to hospitals, other health care 

environments, and patients frequenting these facilities. Since the mid-1990s, however, there 

has been an explosion in the number of MRSA infections reported for populations lacking risk 

factors for exposure to the health care system. This increase has been associated with the 

recognition of new MRSA strains, often called community-associated MRSA (CA-MRSA) 

strains that have been responsible for a large proportion of the increased disease burden 

observed in the last decade. These CA-MRSA strains appear to have rapidly disseminated 

among the general population in most areas of the United States and affect patients with and 

without exposure to the health care environment (49). 

The pathogenicity of S. aureus is particularly complex, involving numerous bacterial products 

as well as elaborated regulation pathways. S. aureus is able to produce a wide range of toxins 

showing a deleterious effect on cell integrity and functions. Most of these factors (e.g., toxic 

shock syndrome toxin-1, exfoliatin toxins A and B, Panton-Valentine leukocidin, 

enterotoxins, and hemolysins) contribute to the virulence of clinical isolates in the context of 

acute infections (50). In addition to these excreted compounds, S. aureus is able to produce 

several cell wall–associated proteins allowing interactions with host plasma or extracellular 
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proteins, such as fibronectin, fibrinogen, collagen, vitronectin, laminin, and bone sialoprotein.  

No immunological therapy and/or prophylaxis for S. aureus infections is available, but it 

might be possible as (i) previous infective exposure to the pathogen results in subsequent less 

severe infections; (ii) patients with higher anti-staphylococcal antibody levels are less likely 

to contract staphylococcal infections and (iii) a combined killed-whole bacteria plus toxoid 

vaccine showed 50–70% protection against bovine mastitis. Historically, a variety of whole 

bacteria and toxoid anti-staphylococcal preparations were used in clinical and veterinary 

trials, with little benefit and common adverse reactions. An ideal vaccine against S. aureus 

would aim to prevent bacterial adherence, promote phagocytic killing and/or neutralize toxic 

exoproteins, and be optimally directed to one or more well-characterized antigenic targets 

expressed during infection (51). We used S. aureus as a second model organism for 

MetaVaccinology approach in order to identify new vaccine candidate against this life-

threatening pathogen. 
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1.7 Aim of the study 

The Reverse Vaccinology approach, defined at the beginning of this century, opened the way 

to Genomics applied to vaccine research, by shifting the paradigm of vaccine discovery from 

conventional culture-based methods to high-throughput genome-based approaches for the 

development of recombinant protein-based vaccines. These are comprehensive, large-scale 

approaches, where vaccine candidates are selected according to their in silico predicted 

subcellular localization and then screened in relevant animal models. These genome-based 

approaches have been successfully applied to a range of bacteria, including Neisseria 

meningitidis serogroup B (21), Streptococcus agalactiae (25), Chlamydia trachomatis (52), 

Chalmydia pneumoniae (53), Bacillus anthracis (54), Bacillus anthracis  55), Brucella 

melitensis (56) and, very recently to extraintestinal pathogenic Escherichia coli (26) 

addressing challenging human pathogens for which conventional methods failed to identify a 

vaccine.  

Besides reaching their main goal of identifying good vaccine candidates, these efforts 

produced also a huge amount of molecular knowledge related to the basic biology and the 

pathogenesis mechanisms of many bacteria, examples being breakthrough discoveries of pili 

in pathogenic Streptococci (57) and of innate immunity subverting systems in staphylococci 

and meningococci (58). Nevertheless, the question of which are the elemental molecular 

properties that can be used to in silico predict the few bacterial proteins able of eliciting a 

protective immune response, and thus to be used as effective vaccine components, among the 

complete bacterial proteome remains a challenge. Moreover, these approaches still require 

labor intensive activities in the wet lab to find out, among the large number of secreted and 
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surface exposed proteins, those very few which are protective. For these reasons, in silico 

methods for the selection of possible new vaccine candidates are still an attractive topic in 

vaccine discovery processes.  

The aim of the present study is to analyze the structural and molecular properties of these 

known bacterial protective antigens in order to (i) investigate possible common molecular 

features among these bacterial protective antigens and (ii) extract possible predictive rules 

leading to a simplification in the vaccine discovery process based on the in silico prediction of 

possible new protective antigens.  Group B Streptococcus and S. aureus are used as model 

pathogens to develop this new vaccine discovery tool.  
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2. MATERIAL AND METHODS 

2.1 Meta-analysis of bacterial protective antigens  

A comprehensive list of bacterial antigens described as potential vaccine candidates was 

created from literature data and from on line available databases, e.g. the VIOLIN web site 

(http://www.violinet.org , 59). 115 different protective antigens from 23 bacteria, both gram 

negative and gram positive, and the corresponding proteins sequences were considered for 

this process. A systematic analysis is carried out for this dataset using different bioinformatics 

tools, looking for conserved molecular features at the following molecular levels: primary 

sequence (BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins), domain 

occurrence (Pfam, http://pfam.sanger.ac.uk/) protein architecture (SMART, http://smart.embl-

heidelberg.de/smart/set_mode.cgi?GENOMIC=1) and 3D structure (PDB and Pfam Clans). 

The analysis of the alignments within the protective antigens was carried out by using 

ClustalW (http://www.ebi.ac.uk/clustalw/). 

 

2.2 Bacterial Surface Digestion of Streptococcus agalactiae 

8 different Streptococcus agalactiae strains, belonging to the most important disease-causing 

serotypes Ia (515 and A909), Ib (H36B), II (18RS21), III (COH1 and NEM316), and V (2603 

and CJB111) were plated o/n in blood agar  separately (Trypticase™ Soy Agar II with 5% 

sheep blood, Becton Dickinson & Co., Heidelberg, Germany). The bacteria colonies were 

grown at 37°C in 200 ml of Todd-Hewitt broth (THB) in the presence of 5% CO2 until an 

OD600 of 0.3 was reached.  Bacteria were harvested by centrifugation at 3,500 x g for 10 

http://www.violinet.org/
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
http://pfam.sanger.ac.uk/
http://smart.embl-heidelberg.de/smart/set_mode.cgi?GENOMIC=1
http://smart.embl-heidelberg.de/smart/set_mode.cgi?GENOMIC=1
http://www.ebi.ac.uk/clustalw/
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min at 4°C, and washed twice with PBS. Cells were resuspended in 800 µL of PBS containing 

40% sucrose (pH 7.4 for trypsin or papain digestions and pH 6.0 for proteinase K digestion). 

Digestions were carried out with 10 µg trypsin (Promega, Madison, U.S.A) or 5 µg proteinase 

K (Sigma, St. Louis, USA) for 30 min at 37°C..  Bacterial cells were then spun down at 3,500 

x g for 10 min at 4°C and the supernatants were filtered through 0.22 µm pore-size filters 

(Millex, Millipore, Beford, U.S.A). Protease reactions were stopped with formic acid at 0.1% 

final concentration. Before analysis, PBS and sucrose were removed by off-line desalting 

procedure using OASIS cartridges (Waters, Milford, USA) following producer’s protocol. 

Desalted peptides were concentrated with a Centrivap Concentrator (Labconco, Kansas City, 

U.S.A), and kept at -20°C until further analysis. 

2.2. 1 Bacterial Surface Double Digestion 

Streptococcus agalactiae strains were cultured and surface-digested as described above. 

Digestion supernatants were then denatured and reduced with Rapigest® (Waters) and 5 mM 

DTT at 100°C respectively for 10 min and an additional o/n proteolytic step with 2 µg trypsin 

(Promega) at 37°C was performed. The second digestion reaction was stopped with formic 

acid at 0.1% final concentration. The peptide mixtures were then desalted and concentrated as 

described above and stored at -20°C until further analysis.  

2.2.2 Protein Identification By Nano-LC/MS/MS 

Peptides were separated by nano-LC on a NanoAcquity UPLC system (Waters) connected to 

a Q-ToF Premier Electro Spray Ionization (ESI) mass spectrometer equipped with a 

nanospray source (Waters). Samples were loaded onto a NanoAcquity 1.7µm BEH130 C18 
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column (75µm X 25mm, Waters), through a NanoAcquity 5µm Symmetry® C18 trap column 

(180µm X 20mm, Waters). Peptides were eluted with a 120-min gradient of 2–40% of 98% 

acetonitrile, 0.1% formic acid solution at a flow rate of 250 nL/min. The eluted peptides were 

subjected to an automated data-dependent acquisition, using the MassLynx software, version 

4.1 (Waters), where a MS survey scan was used to automatically select multicharged peptides 

over the m/z ratio range of 300–2,000 for further MS/MS fragmentation. Up to eight different 

components were subjected to MS/MS fragmentation at the same time. For all samples, a 

second nano-LC-MS/MS analysis was carried out for the selective fragmentation of mono-

charged peptide species. 

After data acquisition, individual MS/MS spectra were combined, smoothed and centroided 

using ProteinLynx, version 3.5 (Waters) to obtain the peak list file. The Mascot Daemon 

application (Matrixscience Ltd., London, UK) was used for the automatic submission of data 

files to an in-house licensed version of MASCOT, version 2.2.1, running on a local server. 

Protein identification was achieved by searching in a locally created database containing 

protein sequence data derived from the eight completely sequenced GBS strains.The 

MASCOT search parameters were set to (i) 1 as number of allowed missed cleavages (only 

for trypsin digestion), (ii) 0.3Da as peptide tolerance, and (iii) 0.3Da as MS/MS tolerance. 

Only significant hits were considered, as defined by the MASCOT scoring and probability 

system. The score thresholds for acceptance of peptide identification were ≥18 for trypsin 

digestion or ≥36 for proteinase K and papain digestions.  
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2.3 Selection of MetaV candidates 

2.3.1 MetaV Antigens for GBS 

UniProt was used for obtaining the sequence information of the GBS genomes 

(http://www.uniprot.org/ ).  The corresponding protein sequence information from the UniProt 

knowledgebase was scanned for the occurrence of the MetaV molecular features and 

occurance of the multiple internal repeats (60). Prospero was used to scan the GBS genomes 

for ORFs with more than two internal repeats combined to PSORTb to predict their possible 

subcellular localization, and ten multiple internal repeat-containing proteins were added to the 

list. GBS specific ORFs were obtained from the genomic analysis carried out by Tettelin et al. 

(61).  

2.3.2 Selection of MetaV candidate antigens for S. aureus 

The MetaV list for S. aureus is prepared as described above for GBS. Briefly, UniProt was 

used for obtaining the sequence information of the NCTC 8325 strain of Staphylococcus 

aureus (http://www.uniprot.org/).  The corresponding protein sequence information from the 

UniProt knowledgebase was scanned for the occurrence of the MetaV molecular features and 

occurance of the multiple internal repeats. Prospero was used to scan the NCTC 8325  

genome for ORFs with more than two internal repeats combined to PSORTb to predict their 

possible subcellular localization, and ten multiple internal repeat-containing proteins were 

added to the list.  

 

http://www.uniprot.org/
http://www.uniprot.org/
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2.5 Cloning, Expression and Purification of Selected GBS Proteins 

2603 V/R strain was used as source of DNA for amplification of selected MetaVaccinology 

candidates. Genes coding for the protein SAG_0954 was cloned as C-terminal His-tag fusion 

protein and then expressed and purified as already reported (25).  PCR primers were designed 

to amplify gene without predicted signal peptide coding sequences for all proteins. PCR 

fragments were cloned by using the Polymerase Incomplete Primer Extension (PIPE) method, 

developed by GNF (Genomics Institute of the Novartis Research Foundation, San Diego, CA, 

USA). All cloning operations were achieved by transforming HK100 competent cells with 

PCR products (I-PCR) immediately following amplification mixed with the V-PCR of 

SpeedET vector (N-term 6xHis tag) (62) . Protein expression was achieved maintainig the 

cultures at 25°C for 4h after the induction using arabinose 0.2 % final concentration. 

Procedures for protein purification were as described in, briefly cells were harvested by 

centrifugation and lysed in “B-PER buffer” (Pierce) containing lysozyme 1mg\ml, DNAse 0.5 

mg\ml and COMPLETE inhibitors cocktail, (Roche). The cell-lysate was clarified by 

centrifugation and applied onto His-Trap HP column (Armesham Biosciences) pre-

equilibrated in buffer containing 10mM imidazole. Protein elution was performed using an 

imidazole gradient (25). Protein concentration was estimated using BCA assay (Pierce).  

SAG_0954, SAG_0416, SAG_0771 were kindly provided by GBS project of Novartis 

Vaccines.  
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Table 2: PCR primers designed to amplify corresponding gene 

Gene ID    

Sequence of Primers 

SAG_1386 5’-CTGTACTTCCAGGGCTTTATAGTATTTTATACTTCAAATAGA-3’ (forward) 

  5’-AATTAAGTCGCGTTAATTTACAACCACAGGATCGCCTGGATT-3’ (reverse) 

SAG_1333 5’-CTGTACTTCCAGGGCGACCAAGTCGGTGTCCAAGTTATAGG-3’ (forward), 

5’-AATTAAGTCGCGTTAAGTACCAATTTTAGCTTCTGTTACTTG-3’ (reverse). 

SAG_0907 5’-CTGTACTTCCAGGGCCAAGAACACAAAAATTCTCATCATATT-3’ (forward), 

5’-AATTAAGTCGCGTTAATGGTGATGATGACCTACATGTGC-3’ (reverse). 

SAG_2148 5’- CTGTACTTCCAGGGCTTACCACTTTCAGTAAGCGCAGCA-3’ (forward), 

5’- AATTAAGTCGCGTTATTAATACCAGCCGTTACTATTCCAAA-3’ (reverse). 

SAG_1350 5’- CTGTACTTCCAGGGCACAAGTCCTGTTTTTGCGGATC-3’ (forward), 

5’- AATTAAGTCGCGTTATAAACCATTTTCAATAGGTTCTTGAG-3’ (reverse). 

SAG_0017 5’-CTGTACTTCCAGGGCAACGCTGATGACTTTGACTCGAAAATTG-3’(forward), 

5’- AATTAAGTCGCGTTAAGTAGCTGTAGCTGTAGTTGTAGC-3’ (reverse). 

 

2.4 Cloning, Expression and Purification of Selected Staphylococcus aureus Proteins 

NCTC 8325 strain was used as source of DNA for amplification of selected MetaVaccinology 

candidates. All the proteins are cloned, expressed and purified according to procedures 

described above for the GBS proteins. 
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2.5 Active Maternal Immunization for GBS proteins 

A maternal immunization/neonatal pup challenge model of GBS infection was used to verify 

the protective efficacy of the MetaV candidates as previously described in (16). In brief, CD-1 

female mice (6-8 weeks old) were immunized before breeding, on days 1, 21 and 35. The 

mice received either PBS or 20 µg of protein per dose. Mice were bred 2-7 days after the last 

immunization. Within 48 h of birth, pups were injected intraperitoneally with 50 µl of GBS 

COH1 culture corresponding to a LD90. Challenge inocula were prepared starting from frozen 

cultures diluted to the appropriate concentration with THB. Survival of pups was monitored 

for 2 days after challenge. Protection was calculated as (percentage deadControl minus 

percentage deadVaccine) divided by percentage deadControl multiplied by 100. The 515 

(GBS-01) and COH1 (GBS-02) hypervirulent strains were used for challenging the mice. 

2.6 S. aureus Immunization Experiments 

CD-1 female mice (5 week old) were intraperitonally immunized with 20 µg protein+ALUM, 

on days 1 and 14, Then on 24th day, mice are intraperitonally challenged with 100 µl of 

S.aureus Newman culture corresponding to 5x108 CFU/mice.  Survival of mice was 

monitored for fifteen days. SAOUHSC_00427, SAOUHSC_01949, SAOUHSC_02979, 

SAOUHSC_02576 and a protective S. aureus antigen (as a positive control) were used for the 

immunization schema against S. aureus (SA-1).  The same immunization schema was used to 

test proteins SAOUHSC_00356, SAOUHSC_00400, SAOUHSC_00248, SAOUHSC_00256, 

SAOUHSC_00994, SAOUHSC_00392  (SA-2) 
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2.7. Functional Characterization of SAG_1333 

2.7.1 xCELLigence System with carcinomic human alveolar basal epithelial cells (A549)

  

The xCELLigence measurement was performed with the xCELLigence System from Roche 

that monitors cellular events in real time without the incorporation of labels 

(http://www.roche-applied-science.com/sis/xcelligence/ezhome.html). The System measures 

electrical impedance across interdigitated micro-electrodes integrated in the bottom of tissue 

culture E-Plates. The impedance measurement provides quantitative information about the 

biological status of the cells, including cell number, viability, and morphology.  

Prior to seeding the cells in the E-Plates, the concentration of the cell-suspension was 

determined by Invitrogen™ Countess® Automated Cell Counter.  5*104 A549 cells were 

seeded in 14 of 16 wells. The E-Plates were filled with 50µl Medium (Invitrogen™ RPMI 

1640 Medium 1X, liquid, 2 % FBS (Fetal Bovine Serum), 1% Antibiotics) and 50µl cell 

suspension. The E-Plates were incubated at room temperature for 30 min and then at 37°C for 

24h for cells to reach confluence in the wells. After 24h incubation, the supernatant was 

removed in the E-plates and 50µl of the reactant is added. (The level of concentrations is 

listed on Table 3 below). The behavior of the cells was monitored by the xCELLigence 

System for the next 24h at 37°C. 
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Table 3: Concentrations of compounds 50µl of reactants were added when the cells have 

reached confluence. The reactants were diluted in PBS. α :a hemolysin from GAS β: 

137mM NaCl 2.7mM KCl 4.3mM NaHPO4 1.47mM KH2PO4 γ: A non-toxic protein of 

S.aureus as control 

Compounds Concentrations  

Positive 
control 

Pore forming toxin α     
20µl/ml 

   

 

  

Negative 
Control 

PBSβ 1:1000 1:100 1:10     

Negative 
Control 

Non toxic proteinγ 25µl/ml       

 N-term of 
SAG_1333 

25µl/ml 10µl/ml      

 Full length 
SAG_1333 

 
25µl/ml 

 
10µl/ml 

 5 
µl/ml 

    

In the wells with non toxic protein, SAG_1333 and the N-term of SAG_1333, different 
concentrations of AMP were added:  

 AMP 0mM 0.5mM 5mM     
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2.7.2. xCELLigence with mouse leukemic monocyte macrophage cell (Raw cells) 

The same procedure used for A549 cell line was applied to Raw cells. Table 4 shows the 

compounds and concentrations used for the experiments. All experiments were repeated at 

least two times for both cell lines.  

 

Table 4: Concentrations of compounds 50µl of reactants were added when the cells have 

reached confluence. The reactants were diluted in PBS. α: α heamolysin from GAS β: 

137mM NaCl 2.7mM KCl 4.3mM NaHPO4 1.47mM KH2PO4 γ: A non-toxic protein of 

S.aureus as control 

Compounds Concentrations  

Positive 
control 

Pore forming toxin α 20µl/ml    

 

  

Negative 
Control 

PBSβ 1:1000 1:100 1:10     

Negative 
Control 

Non toxic proteinγ 25 µl/ml       
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 N-term of 
SAG_1333 

25µl/ml 10µl/ml      

 Full length 
SAG_1333 

100µl/ml  50µl/ml  25µl/ml  10µl/ml 5 
µl/ml 

  

AMP with different concentrations were added:  

 AMP 0mM 0.1mM 1mM 2.5mM 5mM   
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3. RESULTS AND DISCUSSION 

3.1 Main Question: What makes an antigen protective?  

Today, we have many genomic tools to investigate the microbial world as summarized in the 

introduction. Moreover, all these different instruments open new insights for vaccinology 

science but the main question remains constant: what makes an antigen protective and why? 

Could we select this set of protective antigens by just using in-silico approaches? Reverse 

Vaccinology made a step forward to reply this question and caused a paradigm shift by 

selecting all surface associated and secreted proteins as potential vaccine candidates. But even 

this progressive approach selects hundreds of proteins to be tested in in-vivo models and the 

percentage of protective antigens within all set is very low.  

In the present study, we tried to answer this simple but basic question: are there any 

recurring/common molecular features within all identified protective antigens? If there are, 

could we use these recurring signatures as predictive features to identify new vaccine 

candidates?  According to our knowledge, this is the first time that this question is answered, 

and yes…  
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3.2 Systematic Analysis of Known Protective Antigens 

In order to answer this fundamental question; a comprehensive list of bacterial antigens 

described as potential vaccine candidates, based on in vivo animal models and/or on in vitro 

assays, was created from literature data and from available on line databases, e.g. the VIOLIN 

web site (59).  We were able to collect information from 115 different protective antigens 

from 23 bacterial pathogens, of those 13 are gram negative and 10 are gram positive.  In 

particular, Helicobacter pylori, Escherichia coli, Haemophilus influenzae Neisseria 

meningitidis serogroup B, Pasteurella haemolytica, Pseudomonas aeruginosa , Yersinia 

pestis,  Campylobacter jejuni, Brucella abortus, Brucella burgdorferi, Brucella melitensis, 

Bordetella  pertussis, Pseudomonas aeruginosa, Streptococcus pneumoniae, Streptococcus 

pyogenes, Streptococcus agalactiae, Staphylococcus aureus Mycobacterium tuberculosis, 

Bacillus anthracis, Listeria monocytogenes, Clostridium difficile, Clostridium tetani and 

lastly Clostridium botulinum were used to construct our data set. 

The corresponding proteins sequences of all these 115 different antigens became our total 

protective antigens dataset. We carried out a systematic analysis of this dataset using different 

bioinformatic tools, looking for conserved molecular features at the following molecular 

levels of each protein: primary sequence (BLAST), domain occurrence (PFam), protein 

architecture (SMART) and 3D structure (PDB and Pfam Clans). 

The results of this meta-analysis revealed that protective antigens have recurring functional 

and/or structural units, which were in most cases associated to either specific domain from the 

Pfam databases or to a conserved protein architecture organized in a variable number of 
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multiple internal repeats. The rest of the protective antigens not showing these properties were 

found to be either species-specific or genus-specific ORFs by genomic analysis (Figure 11). 

 

Figure 11: Classification of known bacterial protective antigens. 83 % of the proteins have 

conserved Pfam domains or organized multiple repeats while 13 % are encoded by 

species/genus specific genes with either no domains or species-specific domains. 

 

Then we classified the Pfam domains based on their frequency of occurrence in the dataset of 

bacterial protective antigens and this analysis revealed that 35 Pfam domains are found in 

more than one protective antigen either from the same species or from different species and 

groups (Table 6). 
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Table 6. The recurring Pfam Domains within different protective antigens.  

No Recurring Pfam domains 

Number of 

Species Observed in 

1  PF00691. OmpA.  6 Gram - 

2 PF00082. Peptidase_S8 5 Both Gram - and + 

3 PF01476. LysM.  5 Both Gram - and + 

4 PF05738. Cna_B 4 Gram + 

5 

 PF02872. 5_nucleotid_C.,  

PF00149. Metallophos 3 Both Gram - and + 

6 PF10425. SdrG_C_C 2 Gram + 

7 PF04270. Strep_his_triad   3 Gram + 

8 PF00669, Flagellin_N, PF00670, Flagellin_C  3 Gram + 

9 PF01289, Thiol_cytolysin  3 Gram + 

10 PF03895. YadA. 1 hit.   3 Gram - 

11 PF08428. Rib 2 Gram + 

12 PF05257. CHAP domain 2 Gram + 

13 PF00877. NLPC_P60.   2 Both Gram - and + 
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14 PF02608. Bmp 2 Gram + 

15  PF01547. SBP_bac_1.   2 Both Gram - and + 

16 PF00756. Esterase.  2 Both Gram - and + 

17 PF06013 WXG100  2 Gram + 

18 PF00353. HemolysinCabind. 2 Gram - 

19 PF01742. Peptidase_M27 2 Gram + 

20 PF01473. CW_binding_1.  2 Gram + 

21 PF03212. Pertactin 2 Gram - 

22 PF02395. Peptidase_S6. 2 Gram - 

23 PF04792. LcrV. 1 hit. 2 Gram - 

24  PF01497. Peripla_BP_2. 2 Gram + 

25 PF00593. TonB_dep_Rec.,  PF07715. Plug.   2 Gram - 

26  PF01298. Lipoprotein_5.  2 Gram - 

27 PF02876: Stap_Strp_tox_C 2 Gram + 

28 PF06013: WXG100 2 Gram + 

29 PF00089. Trypsin. 1 hit. 2 Both Gram - and + 

30  PF00118. Cpn60_TCP1. 1 hit.   2 Gram - 

32  PF00497. SBP_bac_3.   1 Gram - 

http://pfam.sanger.ac.uk/family?acc=PF00089
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33 PF11713. Peptidase_C80. 1 Gram + 

34 PF05031. NEAT  1 Gram + 

35 

PF04488. Gly_transf_sug. 1 hit. 

PF11713. Peptidase_C80. 1 hit.  1 Gram + 

 

On the other hand, primary sequence (BLAST) analysis revealed that only in very few cases 

protective antigens from different species show a significant sequence similarity (>50% ID). 

Table 6 reports representative examples of known bacterial protective antigens, their 

functional classification and the associated molecular features identified by the meta-analysis 

carried out in the present study.  
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3.3 The MetaVaccinology approach: a new knowledge-driven predictive discovery tool 

based on conserved molecular features in bacterial protective antigens 

Based on the results described above, we formulated the hypothesis that the occurrence of the 

identified molecular features can be predictive of possible protective properties in other 

proteins from other species of interest. In order to test this hypothesis, predictive rules based 

on the occurrence of (i) selected MetaV Pfam domains, (ii) a protein architecture organized in 

multiple internal repeats and (iii) species- or genus-specificity of the corresponding genes 

were defined, and an in silico workflow for the genome wide selection of possible new 

protective antigens in bacterial genomes arranged as reported in Figure 12. The design of such 

approach is intended as a knowledge-driven predictive tool for the selection of possible new 

vaccine candidates in both gram positive and gram negative bacteria.  

Etymologically, Meta- (from Greek: µετά = "after", "beyond", "with", "adjacent", "self"), is a 

prefix used in English (and other Greek-owing languages) to indicate a concept which is an 

abstraction from another concept, used to complete or add to the latter. We named our 

approach as MetaVaccinology, since the knowledge of the predictive rules were abstracted by 

a species-independent meta-analysis of a comprehensive from dataset of protective antigens 

and applied to predict new antigens.   
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Figure 12: The operative steps of MetaVaccinology  

3.4. MetaVaccinology (MetaV) applied to GBS  

In order to provide an initial proof-of-concept of the MetaV selection approach, we applied 

our strategy to GBS. We used the available GBS complete genome of 2603V/R (serotype V), 

the corresponding protein sequence information from the UniProt knowledgebase was 

scanned for the occurrence of the MetaV molecular features. Occurrence of the all MetaV 

core Pfam domains were scanned, and 14 of those that are present in more than one protective 

antigen were used for selection. As a second step, we used Prospero (see M&M) to scan the 
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GBS genome for ORFs with more than two internal repeats. GBS specific ORFs were 

obtained from the genomic analysis carried out by Tettelin et al. (61). A total of 61 MetaV 

candidates were selected by this way (Table 8). 

The list of sixty one selected proteins is shown. Proteins are grouped according to the core 

domains used to select them. For each protein the following information is reported: NCBI 

gene ID, protein annotation and predicted subcellular localization. 

Table 8. The list of GBS MetaVaccinology candidates   

No CHAP Domain Annotation Localization 

1 SAG1998   hypothetical protein membrane 

2   SAG1762  conserved hypothetical protein outside 

3 SAG1683  immunogenic secreted protein, putative outside 

4 SAG1286   conserved hypothetical protein membrane 

5 SAG0598 N-acetylmuramoyl-L-alanine amidase unknown  
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6 SAG0017  PcsB protein  outside 

  LysM Domain     

7 SAG2148 LysM domain protein outside 

8 SAG1386  conserved hypothetical protein membrane 

9 SAG0032 surface immunogenic protein  outside  

  Cna_B     

10 SAG1408  cell wall surface anchor family protein LPXTG  

11 

  

SAG1407   cell wall surface anchor family protein LPXTG  

12 

  

SAG1404  cell wall surface anchor family protein LPXTG  
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13 SAG0651   hypothetical protein unknown  

14 SAG0649   cell wall surface anchor family protein LPXTG  

15 SAG0646  cell wall surface anchor family protein LPXTG  

16 SAG0645   cell wall surface anchor family protein LPXTG  

  Peptidase_S8     

17 SAG2053 serine protease LPXTG  

18 SAG0676  serine protease, subtilase family LPXTG  

19 SAG0416  Protease LPXTG  

20 SAG1236 C5a peptidase LPXTG  

  5_nucleotid_C     
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21 SAG1333 5'-nucleotidase family protein LPXTG  

22 SAG1941  2`,3`-cyclic-nucleotide 2`-phosphodiesterase LPXTG  

  Internal Repeats     

23 SAG1350  Surface antigen-related protein  Outside 

24 SAG0433   surface protein Rib LPXTG  

25 SAK0517 c protein alpha-antigen precursor  Outside 

26 SAG1283 cell wall surface anchor family protein LPXTG 

27 SAG1996 cell wall anchor protein-related protein LPXTG  

28 SAG0421 conserved hypothetical protein LPXTG  

29 SAK0186 iga fc receptor precursor LPXTG  
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30 SAG2063  pathogenicity protein, putative LPXTG  

31 SAG1331 R5 protein LPXTG  

 Strep_his_triad     

 SAG1233  streptococcal histidine triad family protein  Outside 

32 SAG0907  streptococcal histidine triad family protein Lipoprotein 

  FbpA     

33 SAG1190 adherence and virulence protein A unknown  

 Bmp Domain   

34 SAG0954 lipoprotein Lipoprotein 

35 SAG0405 lipoprotein Lipoprotein 
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  WXG100     

36 SAG1039  conserved hypothetical protein Cytoplasm 

37 SAG0230  conserved hypothetical protein Cytoplasm 

  SdrG_C_C     

38 SAG1462  cell wall surface anchor family protein LPXTG  

  NLPC_P60.       

39 SAG0926 Tn916, NLP/P60 family protein   Outside 

  Band_7     

40 SAG0132 SPFH domain/Band 7 family protein   Outside 

  Lipoprotein_9     
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41 SAG0776 YaeC family protein  Lipoprotein 

42 SAG0971 Putative uncharacterized protein  Lipoprotein 

43 SAG1641 YaeC family protein   Outside 

  Gly_transf_sug     

44 SAG1167 Polysaccharide biosynthesis protein CpsM(V) cytoplasm 

 Streptococci-

specific  

    

45 SAG0265 conserved hypothetical protein outside 

46 SAG0371   hypothetical protein outside 

47 SAG0771  cell wall surface anchor family protein LPXTG 

48 SAG0833   hypothetical protein outside 



 

 

69

49 SAG0973 nisin-resistance protein, putative membrane 

50 SAG1037   hypothetical protein membrane 

51 SAG1127 conserved hypothetical protein outside 

52 

  

SAG1419   hypothetical protein lipoprotein 

53 SAG1491   hypothetical protein outside 

54 SAG1473   hypothetical protein outside 

55 SAG1745   hypothetical protein outside 

56  SAG2056 chromosome assembly-related protein outside 

57  SAG2121   hypothetical protein outside 

58 SAG2021 Surface antigen protein LPXTG 
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59 SAG1197 Hyaluronate lyase  outside 

60 SAG0392 Similar to fibrinogen-binding protein LPXTG 

61 SAG1589 Amino acid permease  membrane 

 

We focused our attention on a representative set of 9 proteins out of 61 MetaV candidates, in 

particular, (i) two extracellular enzymes, i.e. one peptidase S8 and one 5’ nucleotidase, (ii) a 

basic membrane protein, (iii) two proteins with multiple internal repeats, (iv) a histidine triad 

protein, and (v) three proteins with generic cell-wall binding domains, i.e. two LysM and a 

CHAP domain-containing proteins (Table 9).  
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Table 9: The MetaV antigens of GBS selected to be tested in animal model. 

No 2603 V/R Annotation Pfam Domains 

1 SAG_0416 protease, putative  PF00082. Peptidase_S8 

2 SAG_1350 surface antigen-related protein Internal Repeats 

3 SAG_1333 5'-nucleotidase family protein PF02872. 5_nucleotid_C 

4 SAG_0771 cell wall surface anchor family protein Internal Repeats 

5 SAG_0954  Lipoprotein PF02608.Bmp 

6 SAG_0907 streptococcal histidine triad family protein PF04270. Strep_his_triad   

7 SAG_0017 PcsB protein PF05257. CHAP domain 

8 SAG_1386 conserved hypothetical protein PF01476. LysM 

9 SAG_2148 LysM domain protein PF01476. LysM 

 



 

 

72

3.5 New Protective Antigens are identified  by MetaVaccinology against GBS  

The corresponding gene sequences from the 2603V/R strain were cloned in E. coli and nine 

proteins were successfully expressed and purified either as full-length or single domains (see 

Materials and Methods). In order to assess their efficacy in term of elicited protective 

immunity against natural infection, we performed in vivo experiments in a maternal 

immunization/neonatal pup challenge mouse model using GBS COH1 and 515 as challenge 

strains. Female mice received three doses (days 1, 21, 35) of either 20 µg antigen or PBS 

combined with Freund’s adjuvant. Mice were then mated, and the resulting offspring 

challenged with a dose of GBS calculated to kill 80 to 90% of the pups. Survival of pups was 

monitored at day 2 after the challenge and protection values were calculated as [(% dead in 

control – % dead in vaccine)/% dead in control] x 100. Among the nine antigens tested in the 

animal model, four were able to induce a significant level of protection as compared to the 

control group, i.e. the 5’ nucleotidase SAG1333 (67%), the histidine-triad protein SAG0907 

(50%), the Bmp protein SAG0954 (41%) and the LysM domain-containing protein SAG1386 

(33%)  (Table 10).  
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Table 10. Protective activity of the selected GBS proteins compared with PBS as 

negative control. Protection was calculated as [(% deadControl - % deadVaccine) / % 

deadControl ] x100.  

(GBS-01)                               
GBS 515 as challenge strain                     

Survival  Survival % Protective 
Efficacy 

Name of the protein n° animals 

SAG_1333 63 of 89 70 67 

SAG_0907 29 of 66 44 38 

SAG_0954 33 of 50 66 41 

SAG_1386 9  of 20 45 28 

PBS 7 of 77 9 * 
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(GBS-02)                               
GBS COH1 as challenge strain                     

Survival  Survival % Protective 
Efficacy 

Name of the protein n° animals 

SAG_0907 23 of 39 59 50 

SAG_1386 33 of 50 66 41 

PBS 7  of 40 18 * 

 

3.5.1 SAG_1333  

Please look at chapter about functional characterization of SAG_1333  

3.5.2 SAG_0907 

SAG_0907 is a histidine triad motif containing protein like PhtA, PhtB, or PhtD that are 

protective cell surface-exposed pneumococcal proteins (113). Humans produce antibodies to 

Pht proteins upon exposure to pneumococcus, and immunization of mice has provided 

protective immunity against sepsis and pneumonia and reduced nasopharyngeal colonization. 

The function of these proteins is not identified yet but there is an on-going discussion on their 

immune evasion and Factor H binding activity (122, 123). S. pyogenes have 2 different 

virulence factors that contain this motif; HtpA and Spy1361. HtpA-immunized mice 
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survived after challenge with GAS strains (isolated from patients) for significantly longer 

periods than sham-immunized mice and Spy 1361 is recently suggested as a vaccine candidate 

and hypothesized that it might play a role in GAS intracellular invasion (124). All these 

proteins are characterized by having an histidine (HxxHxH) motif that usually occurs multiple 

times.  

3.5.3 SAG_0954 

SAG0954 has a Bmp domain as Bmp proteins of Borrelia burgdorferi. BmpA of B. 

burgdorferi plays a significant role in mammalian infection by the Lyme disease spirochete 

and is an important antigen for the serodiagnosis of human infection. It is reported that 

BmpA-directed antibodies significantly inhibited the adherence of live B. burgdorferi to 

laminin (125) and B. burgdorferi lacking bmpA/B were unable to persist in the joints and 

failed to induce severe arthritis (126). Another Bmp domain containing protein P48 of M. 

agalactiae is described as an invariable, constantly expressed, immunodominant, surface 

lipoprotein. A recent report showed that genetic immunization with the immunodominant 

antigen P48 of M. agalactiae stimulates a mixed adaptive immune response in BALBc mice 

(127,128). 

3.5.4 SAG_1386 

SAG_1386 is a small LysM domain containing protein. Our MetaV results revealed that 

LysM (Lysin Motif) domain is one of the most recurring Pfam domain within the protective 

antigens: P60 from L. monocytogenes, intimin from E. coli , Ebps from S. aureus  etc. 
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Bacteria retain certain proteins at their cell envelopes by attaching them in a non-covalent 

manner to peptidoglycan, using specific protein domains, such as the prominent LysM 

domain. LysM containing proteins are composed of not only truly secreted proteins, but also 

(outer-) membrane proteins, lipoproteins or proteins bound to the cell wall in a (non-)covalent 

manner. The motif typically ranges in length from 44 to 65 amino acid residues and binds to 

various types of peptidoglycan and chitin, most likely recognizing the N-acetylglucosamine 

moiety (129).  

3.6 The MetaV approach is able to catch distantly related protective antigens  

Figure 13 reports the domain organization of the 4 newly identified protective antigens, 

together with the corresponding %ID calculated from the primary sequence alignment to other 

known protective antigens belonging to the same MetaV class derived from other bacterial 

species, as reported in Table 7. This comparison clearly shows that sequence alignment would 

not be enough to catch the relationship between these distantly related proteins that share, on 

the other hand, the same domain composition and, in some cases, also the same domain 

organization at the whole protein architecture level.  In the present study, we show that they 

also shared conserved protective properties in different bacterial species, suggesting that these 

proteins can be involved in basic mechanisms of bacterial pathogenesis common to distant 

human pathogens (look at SAG_1333 functional characterization). 
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                                              (A)                                                               (B) 

 

Figure 13. Schematic  representation of domain architectures of the four new protective 

antigens identified in this study (A) and of other known protective antigens belonging to 

the same MetaV class derived from other bacterial species (B). Locations of domains in 

panels A and B are according to Pfam and SMART databases. Domains are drawn to 

approximate scale. 
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3.7 MetaVaccinology as a Basic Science Tool for GBS 

3.7.1 Expression Analysis of New Protective Antigens on GBS Surfome 

In order to prove expression of these four new protective antigens on the surface compartment 

of GBS, we used the surface digestion method as described previously (38, 40). Surface 

digestion is a new procedure that allows the rapid and selective identification of bacterial 

surface-exposed proteins, the pool of proteins which are entirely or partially exposed on the 

surface of the bacteria. The method uses proteolytic enzymes (trypsin and proteinase K) to 

‘shave’ the bacterial surface and the peptides generated are separated from the whole cells and 

identified by mass spectrometry.   

8 different GBS strains with a complete genome sequence, which represent the most 

important disease-causing serotypes: Ia (515 and A909), Ib (H36B), II (18RS21), III (COH1 

and NEM316), and V (2603 and CJB111) were used for these analyses. Very briefly, the 

exponentially growing live bacterial cells were collected and treated with trypsin and/or PK, 

in order to shave the bacterial surface and generate peptides from protein domains exposed on 

the extracellular space. Peptides released into the supernatant were analyzed by 

nanoLC/MS/MS followed by database search against the whole GBS proteomes.  

The surface proteome of the analyzed GBS strains consisted of 47 proteins, most of them 

(>90%) in silico predicted as extracellular or surface-associated. Table 11 shows the 

identified number of peptides corresponding to the protective antigens. This result indicates 

that SAG_1333, SAG_0954, SAG_0907 and SAG_1386 are expressed on the surface and 



 

 

79

readily accessible to extracellular protease action and thus exposed on S.aureus surface, 

where it is expected to be accessible to circulating antibodies as well. 
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3.7.2 SAG_1333 Functional Characterization: An Immune Evasion Protein? 

The protectivity of 5’nucleotidases were previously shown against H. influenzae and Group A 

Streptococcus. In the case of GBS, the 5'-nucleotidase family protein was identified as an 

immunoreactive extracellular protein (131) and very interestingly, its transcription was 8.1 

fold upregulated in human amniotic fluid (132). This is very significant since the neonatal 

GBS infection can result from fetal aspiration or ingestion of the infected amniotic fluid. Very 

recently, Schneewind et al. (2010) reported that 5’nucleotidase of S. aureus (adsA) is a 

critical virulence factor which the synthesis of adenosine in blood, escape from phagocytic 

clearance, and subsequent formation of organ abscesses are all dependent on. Moreover, the 

AdsA homologue of Bacillus anthracis enabled escape from phagocytic clearance thus they 

suggest the bacterial pathogens may exploit the immunomodulatory characteristic of 

adenosine to escape host immune responses (133). All these 5’nucleotidases from different 

pathogens have the same domain organization but low sequence identity that is very well-

matched with our MetaV hypothesis (Figure 14).  

The functional characterization studies on the secreted ATP utilizing enzymes of Vibrio 

cholerae and Burkholderia cepacia showed that 5’-nucleotidases play an important role in 

allowing pathogens to evade host defence (134, 135) It is also reported that the growth 

medium of V. cholerae fractions, harboring 5’ nucleotidase, Ndk, and presumably other ATP-

utilizing enzymes are causing enhanced macrophage and mast cell death by activating P2Z 

receptors. (134) Additionally, the level of secretion of the 5-nucleotidase B. cepacia was 

reported as lower in the environmental strains than in the clinical strains that show the 



 

 

82

importance of the protein for virulence (135).   

Vasu Punj et. al stated that 5'-nucleotidase of V. cholerae dephosphorylates the 5'-terminal 

phosphates from nucleoside phosphates such as AMP, ADP, or ATP and different ionic forms 

of ATP and adenine nucleotides have differential agonistic activities towards P2Z receptor 

activation of macrophages (136, 137). Secretion of 5'-nucleotidase by V. cholerae VB1 cells 

that can generate adenosine, AMP, and ADP from ATP can modulate macrophage cell death 

through multiple mechanisms. Indeed, it has been reported that a continuous generation of 

adenosine within the human epidermoid carcinoma cells can lead to an intracellular 

nucleotide imbalance with pyrimidine starvation, triggering suicidal processes ending up in 

apoptosis of the cells (138).  In a recent study on T. spiralis larvae, it has shown that 5-

nucleotidase enzyme converts substrate specifically AMP to adenosine. (139) 
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Figure 14. The protein architectures of different 5’ nucleotidase proteins from different 

pathogens.  

 

Adenosine is a purine nucleoside, which is produced also inside the human body under 

metabolic stress like hypoxic conditions, acute or chronic inflammatory tissue insults. The 

synthesis of adenosine involves the catabolism of adenine nucleotides (ATP, ADP and AMP) 

by the action of extracellular ectonucleotidases i.e. CD39 or nucleoside triphosphate 

dephosphorylase (NTPD) and CD73 or 5′-ectonucleotidase.  Once adenosine is released in the 

extracellular environment, it binds to different types of adenosine (i.e. adenosine A1, A2A, 

A2B and A3 receptors) receptors expressed on various innate immune cells [Neutrophils, 

macrophages, mast cells, dendritic cells and natural killer cells]. Thus, depending on the type 

of adenosine receptor to which it binds, adenosine modulates innate immune response 
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during various inflammatory conditions [i.e. chronic (cancer, asthma) as well as acute (sepsis, 

acute lung injury) inflammatory diseases]. Besides expressing various other receptors, 

macrophages also express all the four types of adenosine receptors (i.e. adenosine A1, A2A, 

A2B and A3 receptors) (140). 

Exogenous adenosine prevents differentiation of monocyte into macrophages and blocks 

monocyte development at a stage, which resembles phenotypically to dendritic cells. The 

binding of adenosine to adenosine A1 receptors on monocytes promotes transformation of 

these cells into multinucleated giant cells but binding of adenosine to adenosine A2 receptors 

prevents generation of these giant cells. Besides affecting the maturation of monocytes into 

macrophages, adenosine also suppresses the phagocytic function of macrophages by binding 

to the adenosine A2 receptors expressed on monocytes or macrophages (140). 

In the view of all these knowledge about 5’nucleotidases and adenosine, we constructed a 

hypothesis about the function of SAG_1333 and decided to test it. The hypothesis was 

assuming the transformation of AMP to adenosine by SAG_1333 enzymatic activity and the 

direct or indirect effects of adenosine on macrophages. 

In order to test this, we used xCELLigence System from Roche that monitors cellular events 

in real time without the incorporation. The impedance measurement provides quantitative 

information about the biological status of the cells, including cell number, viability, and 

morphology.  
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The results of our experiments show that SAG_1333 protein or AMP alone has no toxic effect 

on macrophages. On the other hand, in the presence of AMP (5mM), SAG_1333 is toxic for 

macrophages and causing significant cell death (Figure 15). The killing effect of SAG_1333 

is slower than the pore forming toxin (positive control of the experiment); this data is 

overlapping with our data since the effect is driven by a product of an enzymatic reaction. 

Very interestingly, further experiments on epithelial cells showed that AMP+SAG_1333 have 

no toxic effect on these cells. This observation is quite remarkable that the effect could be 

immune cells or macrophages specific.  in addition, the N-terminal of the SAG_1333 

(Metallophos domain) has also no effect on the macrophages either presence or absence of the 

AMP that shows the function of the SAG_1333 is dependent to C terminal (PF02872, 

5_nucleotid_C). The function of 5_nucleotid_C domain is predicted to catalyze the hydrolysis 

of phosphate and this is matching with the hypothesized function of SAG_1333 that is 

converting AMP to adenosine and the phenotype observed for macrophages is a consequence 

of this adenosine production.  

Figure 15I shows the effect of SAG_1333 on raw cells. It is observed that in the 5th hour after 

the addition of SAG_1333+AMP, the number of the macrophages starts to reduce while AMP 

and PBS alone has no effect. Figure 15II shows the results of the experiment based on 

carcinomic human alveolar basal epithelial cells (A549) and no effect observed. In the third 

experiment we used N-terminal of SAG_1333 and we did not observe any toxic effect on raw 

cells (Figure 15III). 
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Figure 15: xCELLigence System is used to monitor the effect of SAG_1333, 

SAG_1333+AMP, AMP alone and the controls on raw cells (I-first,III-third) and epithelial 

cells (II-second). Every color corresponds to a component added to cells and the figures show 

the effect on the cell numbers by time.  The dashed line shows the boundary of the “negative 

controls”.
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3.7.3 Discussion on the SAG_1333 function  

3.7.3.1 Why Adenosine is killing the Macrophages? A speculation: effect of Nitrix oxide? 

The question about the mechanism of adenosine action on macrophages remains unanswered 

but there are some data in the literature that we could speculate on. It is shown that adenosine 

and its receptor agonists enhanced the production of nitric oxide (NO) in lipopolysaccharide 

(LPS)-treated RAW 264.7 cells. The results of this study indicate that the enhancement effects 

of adenosine on NO production in macrophages could be mediated by the extracellular 

adenosine receptors as well as the downstream metabolites of adenosine. The ubiquitous free 

radical, NO plays an important role in many biological processes including the regulation of 

the inflammatory response. High concentrations of either exogenous or endogenous inductible 

nitric oxide synthase (iNOS) derived NO have been shown to induce apoptosis in murine 

macrophage cell lines. However, despite the apparent reduced capacity of human 

macrophages in comparison to murine macrophages, to generate iNOS derived NO, human 

macrophages do undergo apoptosis in response to exogenous NO (141). The causes of 

macrophage apoptosis in response to nitric oxide are known to be DNA damage and 

mitochondrial stress which up-regulate p53, release cytochrome c, and activate caspases 

(142). 

A study confirms the importance of NO for GBS mediated macrophage apoptosis.  GBS 

infection was studied in murine macrophage-like J774A.1 cells and gene expression was 

analyzed before apoptosis. Inhibition of iNOS gene expression by use of N(G)-monomethyl-

L-arginine (NMMA) inhibited apoptosis, whereas inhibition of TNF-alpha and IL-1 

biological activity did not. Macrophages from congenic iNOS-deficient mice were less 



 

 

91

susceptible to apoptosis than were macrophages from C57BL/6 mice. These results show that 

NO is an important mediator of GBS-induced murine macrophage apoptosis but does not 

contribute to antimicrobial activity or cytotoxicity in human monocyte-derived macrophages 

(143). 

Moreover, Marriott HM et al. also reported similar results on pneumococcal-associated 

macrophage apoptosis. They showed that NO-mediated macrophage apoptosis during 

pneumococcal infection involves mitochondrial membrane permeabilization and in the 

presence of inducible nitric oxide synthase (iNOS) inhibition pneumococcal infection results 

in macrophage necrosis. The study provides the evidence of the at lower concentrations, NO 

contributes to pneumococcal killing; at higher concentrations it facilitates MMP 

(mitochondrial membrane permeabilization)-mediated apoptosis (144). These findings 

implicate NO as an important factor in macrophage apoptosis during GBS and pneumococcal 

infection.  

3.7.3.2 GBS and Macrophage Apoptosis 

The ability of pathogens to promote apoptosis may be important for the initiation of infection, 

bacterial survival, and escape from the host immune response. In fact, because apoptosis 

occurs without the release of cellular components, it does not usually lead to inflammation. 

Therefore, apoptosis may be advantageous for the pathogen because it might avoid the 

triggering and recruitment of non specific host defense mechanisms. Furthermore, 

macrophage death could also contribute to delaying or hindering the development of a 
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specific immune response.  

Fettucciari et al. demonstrated that serotype III GBS induces apoptosis in infected 

macrophages. Their investigation showed that down-regulation of β-hemolysin expression, by 

growth of GBS in glucose-supplemented media, inhibited macrophage apoptosis, which 

suggests that the surface-bound β-hemolysin of GBS is the bacterial factor responsible for 

stimulating apoptosis in infected macrophages. However, there has been no direct 

demonstration that GBS β-hemolysin plays a role in apoptosis of macrophages (145) 

In a following study, Ulett et al. investigated the role that β-hemolysin plays in nonopsonic 

phagocytosis, intracellular survival, and apoptosis in infected macrophages. They compared 

the effect of phagocytosis of a β-hemolysin–deficient isogenic mutant of serotype III GBS 

with that of the wild-type β-hemolytic parental strain and the ability of these strains to survive 

in macrophages and induce host-cell apoptosis. Growth conditions in which glucose levels 

were high were used to inhibit β-hemolysin expression in GBS strains, and the effect on the 

induction of macrophage cell death was assessed. The results of this study demonstrated that 

apoptosis in serotype III GBS–infected macrophages does not depend on β-hemolysin per se 

but on a factor coregulated with β-hemolysin by glucose (146). 

 

3.7.3.3 SAG_1333 may be an important factor for GBS mediated macrophage apoptosis 

All these references from literature combined to our experimental data shows that SAG_1333, 

the 5’nucleotidase protein of GBS, may be the unknown factor that is responsible from 
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GBS mediated macrophage apoptosis. One more encouraging data is coming from a recently 

published article that shows the PH regulation of SAG_1333 (147). The inverse ratio between 

PH and glucose is well known; the high glucose corresponds to lower PH in the medium.  

This result indirectly shows that SAG_1333 is regulated by glucose as the factor pointed out 

by Ulett GC et al.  

We need further microscopic experiments in order to understand the effect of the SAG_1333 

on the macrophages. Additional experiments with different cell types could help to show the 

specificity of the effect to macrophages and or immune cells.  

 

 

Figure 16. Immunoblot analysis on cell extracts of GBS grown at pH 7.0 or pH 5.5. 

Bacterial extracts were fractionated by SDS-PAGE, transferred to nitrocellulose, and the blots 

developed with mouse antisera specific for SAG1333 At pH 5.5 a reduction of SAG_1333 

was observed (147) 
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3.8 LysM Domain and Protectivity 

LysM domain is one of the most recurring MetaV domains within protective antigens. Figure 

18 shows the proteins architectures of LysM domain containing protective antigens; intimin 

(eae) from E. coli, surface immunogenic protein from GBS, elastin binding protein from S. 

aureus, P60 from L. monocytogenes and lastly spr0096 from S. pneumoniae. The sequence 

identities within these protective antigens are 3-30 % and it is impossible to detect any 

homology by looking primary sequence. On the other hand, all these protective antigens carry 

a LysM domain. The 2 protective antigens that are identified during present study, SAG_1386 

and SAOUHSC_00427 are also LysM domain containing proteins.  
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Figure 17: Protein architecture of different LysM domain containing protective antigens 

from different bacterial pathogens.  

 

3.9 MetaVaccinology (MetaV) applied to Staphylococcus aureus 

The results reported above for GBS are the first proof of the concept for MetaVaccinology as 

a new in-silico vaccine discovery tool.  In order to show the efficiency of MetaVaccinology as 

a prediction instrument, we decided to repeat the experiments for S. aureus. The available 

complete genome of S. aureus strain NCTC 8325 is used, the corresponding protein sequence 

information from the UniProt knowledgebase was scanned for the occurrence of the MetaV 
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molecular features. PROSPERO were used to detect internal repeat containing proteins. 9 of 

all MetaV candidates are selected to be tested in animal model that are shown below (Table 

12).  

Table 12. The MetaV antigens of S.aureus selected to be tested in animal model.  

No ORF Annotation Pfam Domain  

1 SAOUHSC_00400 conserved hypothetical protein No Pfam domain  

2 SAOUHSC_00256 Putative uncharacterized protein   PF05257. CHAP 

3 SAOUHSC_00994 bifunctional autolysin precursor (Atl) PF01510. Amidase_2   

PF01832. Glucosaminidase 

4 SAOUHSC_00671   Secretory antigen SsaA-like protein  PF05257. CHAP 

PF01476. LysM 

5 SAOUHSC_00427 N-acetylmuramoyl-L-alanine amidase 

sle1 

 PF05257. CHAP 

PF01476. LysM 

6 SAOUHSC_01949 Intracellular serine protease   PF00082. Peptidase_S8 

7 SAOUHSC_00994 Bifunctional autolysin PF01510. Amidase_2.  

PF01832. Glucosaminidase 

8 SAOUHSC_02576 Secretory antigen SsaA PF05257. CHAP 

9 SAOUHSC_02979 Putative uncharacterized protein PF05257. CHAP 

PF01832. Glucosaminidase.  
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3.9.1 Identification of 5 new protective antigens against Staphylococcus aureus 

Among the MetaV candidates, we decided to test 9 of them in animal model. In order to 

assess their efficacy in term of elicited protective immunity against natural infection, we 

performed in vivo experiments in mouse model using Newman as challenge strain. Survival of 

mice were monitored for fifteen days and protection values were calculated as as [(% 

deadControl - % deadVaccine) / % deadControl ] x100. Among the nine antigens tested in the animal 

model, five were able to induce a significant level of protection as compared to the control 

group i.e. putative uncharacterized protein SAOUHSC_00256 (% 57), conserved hypothetical 

protein SAOUHSC_00400 ((% 49) for SA-01 schema and N-acetylmuramoyl-L-alanine 

amidase sle1, SAOUHSC_00427 (% 90), intracellular serine protease SAOUHSC_01949 (% 

60), putative uncharacterized protein SAOUHSC_02979 (% 81) for SA-02 schema (Table 

13). 

3 of 5 newly identified protective antigens; SAOUHSC_00256 and SAOUHSC_02979 are 

carrying a CHAP domain as PcsB from S. pneumoniae while SAOUHSC_00427 is carrying 

both LysM and CHAP domains. SAOUHSC_01949 has Peptidase_S8 domain as C5a 

peptidases from S. agalactiae, Spy0416 from S. pyogenes ,prtA from S. pneumonia  

NMB1969 from N. meningitidis . SAOUHSC_00400 is a S. aureus specific protein that does 

not carry any defined Pfam domains. 

 

http://www.ebi.ac.uk/ena/data/view/AAK19159
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Table 13. Protective activity of the selected S. aureus proteins compared with Alum as 

negative control. Protection values were calculated as as [(% deadControl - % deadVaccine) / 

% deadControl ] x100. 

(SA-01)                      

Name of the protein 

Survival  Survival % Protective 
Efficacy 

n° animals 

SAOUHSC_00256 10 of 16 63 57 

SAOUHSC_00671   1 of 16 6 0 

SAOUHSC_00994  6 of 16 38 29 

SAOUHSC_00400   9 of 16 56 49 

Alum 2 of 16 13 * 

    

 

 

 



 

 

99

(SA-02)                      

Name of the protein 

Survival  Survival % Protective 
Efficacy 

n° animals 

SAOUHSC_00427 15 of 16 94 90 

SAOUHSC_01949 12 of 16 75 60 

SAOUHSC_02979 14 of 16 88 81 

SAOUHSC_02576 9 of 16 56 29 

Alum 6 of 16 38 * 
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Very recently, Holtfreter et. al published a  review of the current knowledge about antibody 

responses against S. aureus which challenges the adaptive immune system with abroad and 

highly variable antigen repertoire (148). They collected all the results of the different 

techniques to map the core and the variable S. aureus immuneproteomes, which aims to 

constitute the knowledge base for the design of effective anti-S.aureus vaccine compositions. 

All vaccination strategies against S. aureus rely on a central feature of adaptive immunity: 

immunological memory. The high susceptibility to S. aureus infection in patients with 

immunoglobulin deficiency and the wealth of escape mechanisms developed by S. aureus that 

allow it to interfere with antibody function are strong arguments in favor of an important role 

for adaptive immunity for this particular pathogen.  

2 of 5 protective antigens that are identified by MetaV approach (i) SAOUHSC_00256 

(staphyloxanthine biosynthesis protein, putative) and (ii) SAOUHSC_02979 (putative 

uncharacterized protein) are reported as immunogenic proteins only against sera collected 

from healthy individuals but not from carriers or patients. Moreover, SAOUHSC_00427 is 

reacted with sera both collected from healthy individuals and the patients. SAOUHSC_00400 

and SAOUHSC_01949 are not identified any of these studies (148) 

This knowledge is particularly interesting for vaccine design if the presence of immune 

response is really specific to healthy individuals. We could speculate that these antibodies are 

so protective that S. aureus can not colonize and/or infect these individuals who have 

antibodies against these antigens. 
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There is a need for functional characterization of the new protective antigens. Remarkably, 3 

protective antigens carry (cysteine, histidine-dependent amidohydrolases/peptidases) a CHAP 

domain that is often found in association with other domains that cleave peptidoglycan. 

Cleavage of peptidoglycan plays an important role in bacterial cell division, cell growth and 

cell lysis. A review on CHAP domains published by Sanger Institute revealed that several 

known peptidoglycan amidases fall into CHAP family which includes two different 

peptidoglycan cleavage activities: L-muramoyl-L-alanine amidase and D-alanyl-glycyl 

endopeptidase activity. The family includes the amidase portion of the bifunctional 

glutathionylspermidine synthase/amidase enzyme from bacteria and pathogenic 

trypanosomes. The large number of multifunctional hydrolases suggests that they might act in 

a cooperative manner to cleave specialized substrates (149). A very recent systematic analysis 

of CHAP domain in 12 S. aureus genomes and 44 staphylococcal phage genomes revealed 

that there are 234 putative CHAP-containing proteins for S. aureus (150). 

SAOUHSC_00427 (N-acetylmuramoyl-L-alanine amidase sle1) is the only functionally 

characterized protein within our new candidates. Kajimura et al. reported that this 

peptidoglycan hydrolase preferentially cleaved N-acetylmuramyl-L-Ala bonds in dimeric 

cross-bridges that interlink the two murein strands in the peptidoglycan. An insertion 

mutation of sle1 impaired cell separation and induced S. aureus to form clusters suggesting 

Sle1 is involved in cell separation of S. aureus. The Sle1 mutant revealed a significant 

decrease in pathogenesis using an acute infection mouse model. Atl (SAOUHSC_00994) is 

the major autolysin of S. aureus, which has been implicated in cell separation of S. aureus. 

Generation of an atl/sle1 double mutant revealed that the mutant cell separation was 
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heavily impaired suggesting that S. aureus uses two peptidoglycan hydrolases, Atl and Sle1, 

for cell separation. Unlike Atl, Sle1 was not directly involved in autolysis of S. Aureus (151). 

On the other hand, our results show that although both of these proteins have a similar and 

essential function for cell seperation, Atl is not a protective antigen against S. aureus (SA-01) 

3.10 Comparison of MetaV with Other Vaccine Discovery Tools 

3.10.1 Reverse Vaccinology and MetaV 

Reverse Vaccinology and other genomics-based vaccine discovery tools commonly rely on 

the prediction of potential cell surface/secreted proteins for the identification of new vaccine 

candidates and predicted subcellular localization is available for almost all the known 

bacterial proteins through dedicated or general databases, e.g. the PSORTdb 

(http://db.psort.org/) and UniProtKB (http://www.uniprot.org/).  Specific algorithms suitable 

for the in silico identification of novel surface-exposed and, thus, antibody accessible proteins 

mediating a protective response are used, mostly the signal peptide.    

In order to understand the efficacy of signal peptide (SP) prediction, we analyzed the 

presence/absence of SP within all protective antigens that are shown in Table 6. A specific SP 

could not be detected for 39 out of 91 protective antigens and moreover final localization of 

23 proteins are predicted as, cytoplasmic membrane for 5, unknown for 16 and periplasmic 

for 2 by PsortB. These 39 antigens without a signal peptide could be classified according to 

their function/structure; the flagellin proteins that are within the best vaccine candidates for 

many pathogens were totally out of the detection. As a second group, the main Clostridium 

toxins; tetanus toxin from C. tetani, botulinum toxin of C. botulinum, toxin A/B from C. 

http://db.psort.org/
http://www.uniprot.org/
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difficile, the pore forming toxins, hemolysin of E.coli, Listeriolysin O of L. monocytogenes  

and Ply of S. pneumoniae do not contain a signal peptide. In addition to those, SdrC, SdrD, 

SdrE proteins of  S. aureus and and LysM domain containing proteins intimin from E. coli, 

Ebps from S. aureus and SAG_1386 from GBS do not have a predictable SP (Table 14) 

This is particularly meaningful, since there is an increasing awareness that secretion pathways 

in bacteria are far more complex than expected, there are seven different secretion systems 

identified in Gram-negative and six others for Gram-positive bacteria, yet. The identification 

of WXG100 domain containing ESAT-6 (esxA) and CFP-10 (esxB) proteins that are the main 

candidates for an effective subunit vaccine against M. tuberculosis caused the recent 

discovery of a new secretory pathway for Gram + bacteria. Both of these proteins lack a 

distinguishable Sec-signal sequence, which suggests the existence of a specialized secretion 

pathway. Several independent studies have demonstrated that the genes that surround the 

ESAT�6- and CFP�10-encoding genes are involved in the production of such a specialized 

secretion system; type VII secretion (152).  

The MetaV approach has the advantage of being independent from the prediction of potential 

cell surface/secreted proteins for the identification of possible new vaccine candidates, 

because it relies on the occurrence of specific molecular features, either functional or 

structural, over the protein whole length, regardless to the presence of a classical signal 

peptide for secretion.  

The Reverse Vaccinology approach successfully applied to GBS. In total, 589 proteins are 

selected as surface exposed proteins and among thoses 312 were expressed as 
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recombinant proteins, purified and tested for protection against GBS. Four proteins were 

found to elicit protective immunity in an animal model. This is a very comprehensive 

screening of the possible candidates but labor intensive and expensive to be performed. On 

the other hand, MetaV, by using the extraction of the knowledge of RV approach, reduces the 

number of proteins to be tested and theoretically enriches the number of protective antigens 

within this list.  
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3.10.2 MetaVaccinology and ANTIGENome technology 

The expression of vaccine candidates during natural infection in humans is compulsory for 

subunit vaccines. In order to assess the capability of MetaVaccinology to predict 

immunogenic proteins that are recognized by human humoral immune system, we used the 

results of recently published article of Meinke et al (2010). Very briefly, ANTIGENome 

technology was used to identify new vaccine candidates by using a broad range of sera and 

cervical secretions obtained from either healthy or GBS colonized women against genomic 

surface display libraries. They identified 35 most frequently selected immunogenic proteins 

within 167 others (153).  

We decided to analyze these 35 most immunogenic proteins; regarding to their coincidence 

with our MetaV selection. The protein architecture of all proteins are analyzed and the results 

show that among all immunogenic proteins; 27 (% 77) are covered by MetaV approach: (i) 9 

proteins carry MetaV Pfam domains and (ii) 18 proteins are Streptococci-specific. The 8 

proteins that are out of MetaV list are mostly cytoplasmic enzymes like ThiI/ Probable tRNA 

sulfurtransferase or NH3-dependent NAD+ synthetase. Table 15 shows the Meta analysis, 

annotation and domain composition of the immunogenic proteins identified by 

ANTIGENome.  Two of four protective antigens that we identified by MetaV approach; 

gbs1403 (SAG_1333) and gbs0918 (SAG_0907) are present in the immunogenic proteins 

described in this paper, on the other hand SAG_1386 and SAG_0954 are not.  

The same group used ANTIGENome technology in order to have a comprehensive in vivo 

antigenic profile of Staphylococcus aureus N315 strain. A total of 23 antigenic proteins 
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were reported as immunogenic proteins frequently identified by bacterial surface display, 

according to their reactivity with individual sera from patients and healthy individual (27). 

Among the nine MetaVaccinology antigens tested in the animal model, five were able to 

induce a significant level of protection as compared to the control group; i.e. 

SAOUHSC_00256 (SA0270), SAOUHSC_00400 (SA0394) SAOUHSC_00427 (SA0423),  

SAOUHSC_01949 (no homolog for S. aureus N315 strain) and SAOUHSC_02979 (SA2437). 

None of these protective antigens are identified by the ANTIGENome technology as 

immunogenic, thus could be never identified as vaccine candidates by this approach. 

As already mentioned before Silva Holtfreter et. al published a  review concerning the current 

knowledge about antibody responses against S. aureus (148). 2 of 5 protective antigens that 

are identified by MetaV approach (i) SAOUHSC_00256 (staphyloxanthine biosynthesis 

protein, putative) and (ii) SAOUHSC_02979 (putative uncharacterized protein) are reported 

as immunogenic proteins only against sera collected from healthy individuals but not from 

carriers or patients. Moreover, SAOUHSC_00427 is reacted with sera both collected from 

healthy individuals and the patients. SAOUHSC_00400 and SAOUHSC_01949 are not 

identified any of these studies.  

All these results prove the fact that MetaV could also predict the in vivo immunogenic 

antigens that give a significant advantage to any vaccine discovery tool. Moreover, the 

protective antigens identified by MetaV can not be identified by ANTIGENome.  
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3.10.3 MetaVaccinology and Surfome analysis  

The first use and description of surfome the analysis as a vaccine discovery tool was by 

Rodriguez-Ortega et al. A relevant result of this work was the demonstration that 

comprehensive characterization of surface-exposed proteins can lead to new vaccine 

candidate discovery. Among the 14 identified surface proteins tested, one protein, Spy0416, 

conferred high protection levels (38). Secondly, this approach was used in order to analyze 

the surfome of Group B Streptococcus, COH1 strain and to identify new vaccine candidates.  

When applied to the Group B Streptococcus COH1 strain, 43 surface-associated proteins were 

identified, including all the protective antigens described in the literature as well as a new 

protective antigen, the cell wall-anchored protein SAN_1485 belonging to the serine-rich 

repeat protein family (40).  

Of those two new protective antigens identified by surface digestion, Spy0416 is composed of 

DUF1034, PA (PF00082), Peptidase_S8 (PF00082) YSIRK_signal (PF04650) domains and 

SAN_1485 is composed of a SdrG_C_C (PF10425) domain.  Peptidase_S8 and SdrG_C_C 

are two MetaV core Pfam domains that are identified in 5 (both Gram -/+) and 2 different 

pathogens respectively (table 6). Both of these proteins are also the potential MetaV 

candidates because of their domain organization. In contrary, the protective antigens 

identified by our study are not the potential surfome analysis candidates.  Surface digestion 

methods uses the obtained peptide numbers as a selection criteria of potential vaccine 

candidates since it is assumed that surface exposition correlates with the number of peptides 

obtained. If we had used this criteria to select our proteins, by using our surfome analysis 

results, SAG_0954 (1 peptide), SAG_0907 (2 peptides) and SAG_1386 (1 peptide) would 
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never been selected (table 16).  Moreover, SAG_1333 (the most protective of four antigens 

against GBS) could not be identified on the surfome of COH1 in our previous study (40); 

although the protein was reported to be highly immunogenic by using human sera that shows 

its in vivo expression (153).  

We could also compare MetaV and surfome analysis for S. aureus. There is a very recently 

published article on S. aureus surfome thatVentura C. L. et al. analyzed the cell surface 

proteome of USA300 strain LAC. A total of 113 identified proteins were associated with the 

surface of USA300 during the late-exponential phase of growth in vitro (154). Even though, 

the work is called surfome analysis, a high percentage of the proteins are cytoplasmic that 

causes question marks about the quality of the surfome analysis.  We compared the protective 

antigens that were identified by using MetaV in order to understand if they were detectable by 

this surfome analysis.  Of those 5 protective antigens only N-acetylmuramoyl-L-alanine 

amidase sle1 SAOUHSC_00427 (SAUSA300_0438) was identified on the surface of 

USA_300 strain while SAOUHSC_00256 (SAUSA300_0651), SAOUHSC_00400 

(SAUSA300_0408) SAOUHSC_00427 (SAUSA300_0438), SAOUHSC_01949 

(SAUSA300_1763), SAOUHSC_02979 (SAUSA300_2579) could not. 

The protective antigens must either well expressed on the surface or secreted ones. So why 

could not we show this well expression by using surfome analysis for our protective antigens? 

This could be due to diversity between in vivo and in vitro conditions that causes a significant 

difference on the expression of the proteins. Unlike the genome, proteome is a dynamic 

composition and the expression profile is directly effected by the external conditions. 
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Likewise, the in vivo proteome of a pathogen is also dynamic that could adapt immediately to 

new external conditions.  

GBS is a major neonatal pathogen that is able to adapt to a variety of host environments, 

including both rectal and vaginal maternal carriage, growth in amniotic fluid and at various 

neonatal body sites. Transcriptomics studies of GBS could let us to explain its ability to adapt 

different environmental conditions. Moreover, these studies could help us to explain and 

understand, why we could not identify all these protective antigens as well exposed proteins 

on the surface of GBS by using in vitro conditions. 

3.10.4 Transcriptomics: Another Genomics Tool to Understand Pathogenicity of GBS 

James Musser and his colleagues published three different articles about the GBS 

transcriptome. In the first study, to enhance understanding of how GBS adapts during 

invasive infection, they performed a whole-genome transcriptome analysis of GBS after 

incubation with whole human blood. Global changes occurred in the GBS transcriptome 

rapidly in response to blood contact following shift from growth in a rich laboratory medium. 

The transcripts of relatively few proven virulence genes were up-regulated during the first 90 

minutes. However, a key discovery was that genes encoding proteins involved in interaction 

with the host coagulation/fibrinolysis system and bacterial-host interactions were rapidly up-

regulated. Extensive transcript changes also occurred for genes involved in carbohydrate 

metabolism, including multi-functional proteins and regulators putatively involved in 

pathogenesis. Additionally, they discovered that an incubation temperature closer to that 

occurring in patients with severe infection and high fever (40 degrees C) induced 
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additional differences in the GBS transcriptome relative to normal body temperature (37 

degrees C) (155). 

In a second study, to understand the response to temperatures encountered in the various 

hosts, they conducted a whole genome transcriptome analysis for organisms grown at 30 

degrees C and 40 degrees C. They identified extensive transcriptome remodeling at various 

stages of growth, especially in the stationary phase (significant transcript changes occurred for 

25% of the genes). A large proportion of genes involved in metabolism were up-regulated at 

30 degrees oC in stationary phase. Conversely, genes up-regulated at 40 degrees oC relative to 

30 degrees C include those encoding virulence factors such as hemolysins and extracellular 

secreted proteins with LPXTG motifs. Over-expression of hemolysins was linked to larger 

zones of hemolysis and enhanced hemolytic activity at 40 degrees oC. A key theme identified 

by this study was that genes involved in purine metabolism and iron acquisition were 

significantly up-regulated at 40 degrees C (156). 

Thirdly, they used amniotic fluid to grow bacteria and characterized the transcriptome of GBS 

grown in human amniotic fluid (AF) comparing it with the transcriptome in rich laboratory 

medium. They discovered that GBS significantly remodels its transcriptome in response to 

exposure to human amniotic fluid. GBS grew rapidly in human AF and did not exhibit a 

global stress response. The majority of changes in GBS transcripts in AF compared to THY 

medium were related to genes mediating metabolism of amino acids, carbohydrates, and 

nucleotides. The majority of the observed changes in transcripts affects genes involved in 

basic bacterial metabolism and is connected to AF composition and nutritional requirements 

of the bacterium. Importantly, the response to growth in human AF included significant 
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changes in transcripts of multiple virulence genes such as adhesins, capsule, and hemolysin 

and IL-8 proteinase what might have consequences for the outcome of host-pathogen 

interactions (157). 

Lastly, Soriani et al. performed a comparative global gene expression analysis of GBS at 

acidic and neutral pHs. They found that the transcription of 317 genes was increased at pH 5.5 

relative to that at pH 7.0, while 61 genes were downregulated. The global response to acid 

stress included the differential expression of genes involved in transport, metabolism, stress 

response, and virulence. Known vaccine candidates, such as BibA and pilus components, 

were also regulated by pH.  These results imply that the translocation of GBS from the acidic 

milieu of the vagina to the neutral pH of the neonatal lung signals the up-regulation of GBS 

virulence factors and conversion from a colonizing to an invasive phenotype (147).  

All these articles show the fascinating ability and harmony of a pathogen to adapt different 

conditions by immediately shifting its expression profile. It is difficult to observe all these 

changes on the surfome by using limited in vitro conditions. Moreover one of the most 

significant outcomes of these studies concerning our results is about the expression of 5’ 

nucleotidase SAG1333 (gbs1403). It was 8.1 times up-regulated in amniotic fluid that shows 

the importance of this antigen in amniotic fluid, just before transfering to lungs of the neonate 

(159). Additionally, at pH 5.5 a significant reduction was observed that could be interpreted 

as the down-regulation of the protein while colonizing on the vagina (137).  
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4. CONCLUSIONS 

A comprehensive list of bacterial antigens described as potential vaccine candidates, based on 

in vivo animal models and/or on in vitro assays, was created from literature data and from on 

line available databases, e.g. the VIOLIN web site. 115 different protective antigens from 23 

bacterial pathogens, 13 gram negative  and 10 are gram positive, were considered for this 

process. 

A systematic analysis of these antigens was carried out at the molecular level, using different 

bioinformatics tools and looking for conserved molecular features. The results of this analysis 

revealed that protective antigens from different species rarely show a conserved protein 

architecture over the whole sequence and a significant sequence similarity (>50% ID).   

On the other hand, the results of this meta-analysis showed that protective antigens have 

recurring functional and/or structural units, which were in most cases associated to either 

specific domain from the Pfam databases or to a conserved protein architecture organized in a 

variable number of multiple internal repeats. The rest of the protective antigens not showing 

these properties were found to be either species-specific or genus-specific ORFs by genomic 

analysis  

We used these features as “vaccine signatures” in a predictive selection process of new 

protective antigens in other species, and in the present study, we show the results obtained 
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from the application to GBS and S. aureus. 

Among the nine antigens tested in the animal model against GBS, four were able to induce a 

significant level of protection as compared to the control group, i.e. the 5’ nucleotidase 

SAG1333, the histidine-triad protein SAG0907, the Bmp protein SAG0954 and the LysM 

domain-containing protein SAG1386.\ 

Among the nine antigens tested in the animal model against S. aureus, five were able to 

induce a significant level of protection as compared to the control group i.e. putative 

uncharacterized protein SAOUHSC_00256, conserved hypothetical protein 

SAOUHSC_00400, N-acetylmuramoyl-L-alanine amidase sle1 SAOUHSC_00427, 

intracellular serine protease SAOUHSC_0194 and putative uncharacterized protein 

SAOUHSC_02979. 

In order to check the expression of the MetaVaccinology identified protective antigens on the 

surface compartment of GBS, we used surfome analysis for 8 different strains of GBS. The 

expression of protective antigens on the surface compartment of GBS was confirmed by this 

way.  

Our results indicate that the MetaVaccinology selection process is a powerful discovery tool 

in vaccine research and we expect this approach can be of particular interest for projects in the 

pre-discovery phase, allowing the fast identification of protective antigens with conserved 

“vaccine signatures”. 
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The new identified proteins share common functional/structural domains with antigens proved 

to be protective and relevant to the pathogenesis of other important pathogens, i.e. 

Haemophilus influenzae, Staphylococcus aureus and Streptococcus pneumoniae. For this 

reason, the MetaVaccinology approach can also be exploited as a basic science tool, as it 

provides insights about possible common mechanisms of pathogenesis in different bacterial 

species. 

Related to this last point, the role of 5’nucleotidase in immune evasion for GBS was 

investigated and our study shows that SAG_1333 has a toxic effect on the macrophages in the 

presence of AMP.  

The identification of common mechanisms of pathogenesis for such a different range of 

pathogens, including Gram positive and Gram negatives, can also open the way to the design 

of new antimicrobials and other therapeutic treatments. 

As a final comment, MetaVaccinology could be exploited to make vaccines against any 

bacterial pathogen, including the most dangerous ones i.e Mycobacterium tuberculosis. On 

the other, we think that MetaV could be also applied for the parasites i.e the Plasmodium 

falciparum which is not a bacteria but a protozoan parasite causing malaria. 
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