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Abstract

An extensive sample (2%) of private vehicles in Italy are equipped with a GPS

device that periodically measures their position and dynamical state for insurance

purposes. Having access to this type of data allows to develop theoretical and

practical applications of great interest: the real-time reconstruction of traffic state in

a certain region, the development of accurate models of vehicle dynamics, the study

of the cognitive dynamics of drivers. In order for these applications to be possible,

we first need to develop the ability to reconstruct the paths taken by vehicles on the

road network from the raw GPS data. In fact, these data are affected by positioning

errors and they are often very distanced from each other (∼ 2 Km). For these

reasons, the task of path identification is not straightforward.

This thesis describes the approach we followed to reliably identify vehicle paths from

this kind of low-sampling data. The problem of matching data with roads is solved

with a bayesian approach of maximum likelihood. While the identification of the

path taken between two consecutive GPS measures is performed with a specifically

developed optimal routing algorithm, based on A* algorithm. The procedure was

applied on an off-line urban data sample and proved to be robust and accurate.

Future developments will extend the procedure to real-time execution and nation-

wide coverage.





Sommario

Un ampio campione (2%) di veicoli italiani dispone di un dispositivo GPS che ne

misura periodicamente la posizione e lo stato dinamico per fini assicurativi. L’accesso

a questo tipo di dati permette lo sviluppo di applicazioni di grande interesse sia

teorico che pratico: la ricostruzione in tempo reale dello stato del traffico in una de-

terminata area, il supporto allo sviluppo di modelli accurati di dinamica veicolare,

lo studio della dinamica cognitiva degli automobilisti. Propedeutico a tutte queste

ricerche é peró la ricostruzione dei tragitti percorsi dai veicoli sulla rete stradale a

partire dai dati GPS. Questi dati sono affetti da errori di posizionamento e sono

spesso molto spaziati tra di loro (circa 2km), caratteristiche che rendono non ovvia

la ricostruzione dell’effettivo percorso sulla rete.

Questa tesi descrive l’approccio seguito per ricostruire in maniera affidabile i per-

corsi su rete a partire da queste condizioni di bassa campionatura. Il problema del

posizionamento dei dati sulle strade viene affrontato secondo un approccio bayesiano

di massima verosimiglianza. Mentre per la determinazione del percorso seguito tra

dati successivi é stato sviluppato uno specifico algoritmo di optimal routing basato

sull’algoritmo A*. La procedura é stata applicata ad un campione storico di dati su

scala urbana e si é dimostrata robusta ed accurata. Gli sviluppi futuri prevedono

l’applicazione in tempo reale su scala nazionale.
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Introduction

Motivation of the Research

In recent years the use of positioning devices has become ever more common

in everyday life. The case of GPS (Global Positioning System) instruments is

exemplar in this respect. GPS devices started out as highly professional tools,

used only in specific application fields (surveying, topography, military) and

ended up as everyday gadgets, present in many of the current multi-functional

mobile phones that we all use.

Looking specifically at the automotive market, GPS positioning devices

are now very common features on board of vehicles. The most common ap-

plications range from showing the current vehicle position on a street map to

planning the best route to a given destination and guiding the driver towards

it.

But the applications of on-board GPS positioning are not limited to this.

Even if less known, many vehicles actually mount GPS receivers on board also

for insurance-related applications. For example, an insurance company can be

interested in keeping a record of the vehicle speed and movements, so that, in

case of an accident, its dynamics can be reconstructed more accurately, respon-

sibilities ascertained and claims settled with less risks of fraud. Another useful

insurance-related application of an on-board GPS device is the localization of

the current position of a stolen vehicle.

Applications also exist in the field of traffic monitoring and management.

In many cities around the world the position of public transportation vehicles

is monitored by a central authority and this information is used to improve
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the quality of the service to the public. For example, users waiting at the

bus stop are updated on the expected time of arrival of the next buses. In a

similar way, allowing traffic authorities to monitor positions and movements

of private vehicles can simplify the management of toll-road payment as well

as the monitoring of traffic in and out of limited-access areas of cities. A

very interesting application of vehicle positioning is also real-time monitoring

of global traffic conditions and the short term prediction of its evolution, the

so-called traffic now-casting.

Recently, the Physics of the City Laboratory of the University of Bologna

has been given access to a huge database of vehicle GPS data by Octo Telemat-

ics SpA, an Italian company specializing in the provision of telematics services

and systems for the insurance and automotive market. Octo Telematics SpA

handles the data collected by GPS devices mounted on board of private vehi-

cles in Italy, mainly for insurance-related applications. All the data collected

by these GPS devices are periodically sent back to the storing facility of the

company and put into the database in order to be elaborated as required. As

for January 2011, the number of vehicles equipped with such a device amounts

to about 1.2 millions, which represents roughly 2% of the total private vehicles

registered in Italy [1].

The amount of empirical data available (see Fig. 1) is incomparably more

extensive in size and more homogeneous in distribution than what could be

collected in years of specific field measures or by conventional interviews to

drivers. Obviously, the data available to us do not contain any personal infor-

mation about the identity of the drivers, so to guarantee the respect of their

privacy rights.

From a scientific standpoint, this database represents a unique opportunity

to study the properties of vehicular traffic as a complex dynamical system,

from the microscopic to the macroscopic scale. In fact, the data can be used

to study the global statistical properties of the system, as well as to study the

impact of the human cognitive component on traffic [2], [3].

Moreover, the availability of such a wealth of vehicle data is also inter-
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Figure 1: GPS data plot in the metropolitan area of Turin, Italy, September

2007. Approximately 7 million data points are plotted in this image with a

color code describing speed.

esting from the perspective of application development. The extent and the

distributed nature of the data make them exploitable as probe-data to deter-

mine the traffic conditions on a given area of the road network. Further, if

this knowledge of traffic conditions is integrated with a short-term predictive

model for vehicle dynamics, then a real-time traffic now-casting infrastructure

could be put in place. This is undoubtedly not a simple application to develop

but by no means is the only one possible. For example, accurate models for

microscopic traffic dynamics could be developed thanks to a continuous testing

against real-word data. Also, an update service for road network maps could

be put in place using vehicle data to identify newly built roads.

In order to actually move forward with many of the research projects that

were just described, it is first of all necessary to develop the ability to recon-

struct the path followed by each vehicle on the road network from the raw

GPS data that we have access to. Due to GPS positioning errors and low

spatial sampling of data, this task is not straightforward at all. These GPS

measurements are in fact affected by errors and this uncertainty often prevents

an unambiguous direct matching to the underlying road network map. More-
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over, due to the need of containing the costs for data delivery and storage, the

majority of these GPS measurements are saved to memory with a low spatial

sampling of roughly 2 km, which means that we do not have any direct infor-

mation on most part of the vehicle path. Thus, it is necessary to develop a

procedure to reconstruct vehicle paths that properly takes into account both

those sources of uncertainty. This situation falls into the broader category of

problems commonly referred to as map-matching.

This thesis describes the details of this specific map-matching problem and

presents the procedure that was developed to solve it, along with validation

results and examples of applications to the study of traffic as a dynamical

system.

Outline of this Thesis

The rest of this thesis is organized in five chapters and a conclusion.

Chapter 1 defines the terms of the low-sampling map-matching problem,

sets it in the context of the current variety of approaches and presents the

approach to the solution.

Chapter 2 describes the details of the input data.

Chapter 3, 4 and 5 describe the three main phases of the map-matching

algorithm. Chapter 3 presents the trajectory aggregation phase, necessary to

organize and aggregate the data for an efficient elaboration during the follow-

ing steps. Chapter 4 describes how GPS data are matched to road segments.

Chapter 5 discusses the details of the path finding algorithm used to recon-

struct the vehicle paths on map. Each chapter ends with a section dedicated

to validation results and applications.

The conclusion presents a summary of the results and describes the plans

for future developments.
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Chapter 1

The Map-Matching Problem

1.1 Map-Matching Problem Statement

Before giving a proper statement of the map-matching problem discussed in

this thesis, it is necessary to give some preliminary definitions:

GPS Datum: A GPS datum is the ensemble of all direct and indirect mea-

surements on the state of a vehicle taken by the on-board GPS device at a

certain instant in time and saved into memory. A detailed description of the

components of a GPS datum is given in Tab. 2.1.

GPS Trajectory: A GPS trajectory is an ordered sequence of GPS data

belonging to the same vehicle. Each GPS trajectory comprises all and only

the GPS data available for a single vehicle journey (from engine start to engine

stop).

Road Network: A road network is a directed graph representing the shape

and properties of the road system of a certain geographical area. The vertexes

describe road intersections and dead ends, while the edges describe road shapes

and attributes.

Road Element: A road element is a directed edge of a road network graph.

A detailed description of the components of a road element is given in Tab.

2.2.
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Road Transit: A road transit is a quantity that describes the transit of a

vehicle on a road element or a portion of it. A detailed description of the

components of a road transit is provided in Tab. 1.1.

Vehicle ID Vehicle identification number

Road ID Road identification number

Transit Duration Duration of the transit (total or partial)

Timestamp Time at the end of the transit (total or partial)

Average Speed Average speed of the vehicle during the transit

(total or partial)

Table 1.1: The components of a Road Transit

Reconstructed Path: A reconstructed path is an ordered sequence of road

transits along connected road elements.

The map-matching problem can now be defined as follows: Given a GPS tra-

jectory T and a road network N, find the path P that matches T with its most

realistic reconstruction on N.

Specifically, the problem we confront in this thesis is a low-sampling map-

matching problem as the GPS data available to us are mostly sampled at a

low-frequency rate of one measure every 2 Km. Fig. 1.1 shows a typical GPS

trajectory from our dataset, along with its reconstructed path. It is apparent

how the low spacial sampling of the GPS data increases the difficulty of the

map-matching problem.

The procedure developed in this work to solve the map-matching problem

has been designed as an off-line application and has therefore been tested on

datasets bounded to a given geographical area and a given interval of time. The

test dataset chosen here to present the results of our map-matching approach

covers the city Florence during the month of March 2008.
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Figure 1.1: A typical map-matching case. The red triangles identify single

GPS data records. The blue line, connecting the GPS data into a sequence,

represents a GPS trajectory. The yellow line describes a possible reconstruction

of the path followed by the vehicle.

1.2 Review of Map-Matching Approaches

Generally speaking, a map-matching algorithm is an automatized procedure

that combines measures from one or more positioning devices with data from

a road network map to provide an enhanced positioning output. This task

is usually not straightforward because of the combined effect of measurement

errors in positioning data and accuracy errors in road network data. The pre-

dominant positioning technology employed for map-matching applications is

by far GPS, because of its global coverage and the relatively low cost of the

measuring devices. However, map-matching solutions designed for the auto-

motive market may rely also on Deduced Reckoning (DR) sensors as secondary

sources of positioning data to bridge any possible gap in GPS coverage [4]. A

typical DR sensor consist of an odometer and a gyroscope that keep track of

vehicle speed and steering.

The first research works on map-matching date back to the late eighties

of the last century, but the attention to this problem really begun to rise in

the nineties, in parallel with the diffusion of Personal Navigation Assistants
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(PNAs). In fact, PNAs were soon equipped with GPS sensors and applications

were developed to show to the user his current position on a map and to guide

him or her to the chosen destination. Obviously, in order for this kind of

application to work, reliable map-matching algorithms needed to be developed

[5].

Up to the present day, the majority of works related to map-matching

is still focused on solving, with ever more accuracy and reliability, the same

problem of keeping track in real-time of the correct position of the user on

a map. Thus, the positioning data used for this kind of task has usually a

high sampling frequency (∼ 1 sample per second) and great attention is put

in the trade-off between accuracy and computational cost. Many different

techniques have been developed to solve this kind of map-matching problem,

ranging from simple geometrical considerations to more advanced inference

methods, but they are commonly categorized for simplicity into four groups:

geometric, topological, probabilistic and advanced [6].

Geometric map-matching techniques match position data to road segments

relying on simple geometrical constraints, for example minimizing the distance

between vehicle and road and the difference between vehicle heading and road

direction [5]. Topological map-matching techniques not only rely on geomet-

rical constraints to find the best matches, but they also take into account

the topological constraints set by the road network structure on the match-

ing path, for example by making sure that consecutive data are associated

to adjacent road segments [7], [8], [9]. Probabilistic map-matching techniques

take into account the errors associated with positioning measures and road

network data to get a more accurate determination of the suitable road seg-

ment candidates for matching [10], [11]. Advanced map-matching techniques

are a collection of very different approaches that rely on advanced inference

techniques, such as Bayesian inference [13], [14], Kalman filters [4], Fuzzy logic

[15], Dempster-Shafer’s belief theory [16].

More recently, the attempts to develop efficient means for intelligent traffic

management have brought forward a new set of problems and solutions related

to map-matching. Among them, the problem of traffic monitoring via Floating

Car Data (FCD) is one of the most studied [19]. The idea behind FCD is that
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it is not necessary to equip every single vehicle on the road with sensors for

position and speed in order to be informed on real-time traffic conditions.

Realizing the latter would require a huge investment in sensors and a huge

cost for communications between every vehicle and the central monitoring unit.

Instead, within the FCD framework, traffic conditions can be determined by

a small, distributed sub-sample of the vehicles moving on the road network.

Those probe-vehicles are constrained to flow according to the overall traffic

fluxes they are part of and are thus representative of them.

For this kind of application, data requirements and elaboration techniques

are in many respect different from the scenario of real-time user positioning on

map. The precise positioning of each datum along the matched road segment

is no longer very relevant, but the correct identification of the path followed

by the vehicle along the road network is now much more important. Moreover,

applications do not necessarily need real-time data elaboration. However, it is

relevant to note that the data collected by the probe vehicles, due to the need of

containing the costs for data delivery and storage, have usually a low sampling

frequency (∼ 1 sample every 2 minutes or more), bringing forth uncertainties

in path reconstruction and traffic conditions update [17].

It is then apparent that great attention has to be put in the routing task,

which is the problem of identifying the correct path taken by the vehicle on

the road network between two consecutive positioning measurements. The

most common approach is obviously to look for the shortest path [17]. More

elaborated approaches look for the path which is closer in length to the distance

between the two positioning measurements [19] or for the path that has the

average travel time which is closer to the actual time elapsed between the two

measurements [18].

The field of traffic study and monitoring is where the contribution of this

thesis falls. As mentioned above, we have access to a very rich database of

GPS tracking data for vehicles distributed throughout Italy and these data

are mostly sampled at a low-frequency rate of one measure every 2 Km. In

order to reconstruct the path taken by vehicles on the road network from such

positioning data, we developed a procedure for low-sampling map-matching.
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1.3 Overview of the Procedure

The aim of a map-matching algorithm is to reconstruct from a GPS trajectory

the path driven by a vehicle on the road network. The main difficulties in this

task derive from the errors of GPS positioning measurements and from the

uncertainty introduced by the sampling of the data [12].

The map-matching procedure developed in this thesis handles the position-

ing uncertainties adopting a bayesian approach of maximum likelihood. The

data are projected on the road segments that have the higher probabilities of

having generated them.

The identification of the possible paths taken by vehicles is performed by

a modified version of the A* algorithm for optimal routing [20]. The routing

algorithm matches the vehicle path to the one requiring the shortest travel-

time, while taking into account the constraints determined by space and time

intervals between measures.

The overall procedure can be divided in different phases. Before the actual

map-matching of GPS trajectories takes place, some initialization operation are

performed to speed up the following elaborations: road network data for the

study area are loaded in memory and a road proximity map is created. This

proximity map allows for a fast identification of the road arcs that are close to

every given spacial position inside the study area.

Once the initialization step is completed, the map-matching can start.

First of all, the data from each vehicle goes through a trajectory aggrega-

tion stage, that serves the purpose of removing useless data and aggregating

useful GPS data into trajectories. Then, GPS trajectories are processed in

sequence through the two last steps of the procedure: the projection of GPS

data onto the surrounding road elements and the identification of the optimal

path between projected data.

The chapters that follow will describe in details the three phases of trajec-

tory aggregation, data matching and global path matching. The results of the

application of each of these processing steps to the Florence test dataset will

also be discussed.
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Chapter 2

Input Data Specifications

2.1 Vehicle GPS data

The data on vehicle mobility that we use in this work derive from measurements

taken by GPS devices installed on a sample of roughly 2% of the private vehi-

cles registered in Italy. The data gathered by these devices, installed mainly

for insurance-related applications, are collected via GSM/GPRS network by

Octo Telematics SpA [1], who granted us access to part of its database for

research purposes.

The GPS device identifies the location of the vehicle on the Earth sur-

face and associates to this position reading an accurate measurement of time.

From these fundamental measurements of position and time, the device can

derive estimates about vehicle speed, heading and distance from the previous

measurement.

During each reading, the device records a few other quantities, such as the

state of the engine and the quality of the signal received from GPS satellites.

From the GPS signal quality depends the accuracy of the measurements of

position, time and all the other derived quantities. Tab. 2.1 describes the

specific format of a GPS datum.

While the vehicle is moving, the GPS device takes its measures with a

typical frequency of about one measure per second. However, only a subset

11



Vehicle ID id Vehicle identification number

Date date Date of the measurement (dd/mm/yy)

Time time Time of the measurement (hh:mm:ss)

Latitude lat Vehicle latitude in WGS84 reference system

(10e-6 arc degrees)

Longitude lon Vehicle longitude in WGS84 reference system

(10e-6 arc degrees)

Speed vel Vehicle speed (Km/h)

Heading ang Direction of movement

(degrees, clockwise with respect to North)

GPS signal quality gps q 1 = no signal, 2 = poor signal, 3 = good

signal

Engine state eng s 0 = engine on, 1 = cruise, 2 = engine off

Distance from

previous datum

ds Distance traveled

from the last saved GPS datum (meters)

Table 2.1: The components of a GPS Datum
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of these readings are stored in the built-in memory. When a predefined quota

of memory is filled, the device proceeds to send the saved data to a central

storing facility of Octo Telematics via the GSM/GPRS network.

Different settings for data memorization are possible for the GPS devices.

The two most common settings are:

Standard Mode: The device memorizes a new datum as soon as the distance

traveled by the vehicle from the last saved datum reaches 2 Km and the GPS

signal quality is good. In this mode, the device sends the data every time 50

records are present in memory.

Traffic-Info Mode: The device memorizes a new datum every 30 seconds

and sends the data as soon as 24 records are present in memory. This mode

is typically activated when the vehicle travels on a highway and is thus less

commonly used than the Standard Mode.

Irrespective of the current memorization mode, the device always takes a

reading when the vehicle’s engine is started and saves it to memory. Similarly,

a reading is always taken and saved to memory when the engine is turned off.

The uncertainty on the measured quantities is strictly related to the quality

of GPS signal reception during the measurements. The error on the measure

of time due to GPS signal quality is of the order of 1 second and it is thus

almost irrelevant for our map-matching purposes. Instead, the error on the

positioning measurement is much more sensitive to the quality of the GPS

signal. When signal reception is good, the typical positioning uncertainty is

usually of the order of 10 meters, but in adverse circumstances the errors can

increase up to 30 meters or more. Moreover, if we refer for positioning to

a digital road network map, as in our case, then also digitization errors and

centerline inaccuracies in the map have an impact on the overall positioning

error [6]. Fig. 2.1 is a GPS data plot in the area of a busy highway with access

ramps. The highway segment clearly shows how distributed the GPS data can

be across the road they presumably belong to, while, looking at the ramps, it is

also apparent how systematic discrepancies in positioning might occur between

data and digitized roads. Obviously, the uncertainties on the readings for

speed, heading and distance from the previous measurement depend directly

from the uncertainties on the measurements of position and time from which

13



Figure 2.1: A close up view of a GPS data plot in the area of a busy highway

with access ramps. GPS data are represented by rectangles with a color code

describing speed: red has vel ≤ 30 km/h, yellow has 30 km/h < vel ≤ 50

km/h, green has 50 km/h < vel ≤ 90 km/h and blue has 90 km/h < vel.
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they derive. It is relevant to note here that speed and heading are rounded up

to the closest even integer value.

Measurement uncertainty due to poor or bad GPS signal quality is a major

cause of difficulties when attempting to reconstruct vehicle movements on the

road network from a low-sampled sequence of positioning data. In particular,

a case where this problem is very often present is the starting of the vehicle.

In fact, even if the GPS device attempts to remain in contact with the satellite

constellation even when the vehicle is not in use, the reading taken when

the engine is started is very often taken in the condition of no signal lock.

However, in these cases it is often possible to recover a reliable positioning just

by referring to the previous saved datum, taken when the engine was turned

off.

To estimate the nature of positioning uncertainties in our data we isolated

a sub-sample of roughly 1.7 million records, chosen among those taken under

good signal conditions (gps q = 3) and unambiguously matchable to long

straight road segments. The distribution in Fig. 2.2 describes the minimum

distance between datum and road segment and has a standard deviation of

about 8.5 meters. The distribution in Fig. 2.3, restricting only to data records

with vel > 10km/h, describes the difference between vehicle heading (ang)

and segment direction and has a standard deviation of about 1.2 degrees.

The two distributions have a similar shape, even if the latter is visibly more

noisy. This noise is mainly due to the round-off on ang, but other factors

may impact, such as the derived nature of the reading for vehicle heading,

the dependence of heading accuracy on vehicle speed, the greater sensibility of

angles to inaccurate road digitization.

2.2 Road network data

For this work we used a commercial off-the-shelf road network database. Road

information is stored in the database in Esri Shapefile format, one of the most

common standards for this type of geo-referenced vector data. In this format,

road shape is described by a piecewise linear curve, called a polyline, that

represents the road-centerline. Moreover, to each road is associated a list of
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Figure 2.2: Error distribution for distance, σ ≃ 8.5 meters. The distribution

has been computed on a limited sample of data unambiguously matchable to

long straight road segments.

Figure 2.3: Error distribution for direction, σ ≃ 1.2 degrees. The distribution

has been computed on a limited sample of data unambiguously matchable to

long straight road segments, with vel > 10km/h.
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attributes that further describe it, such as road name, road type, speed limit,

one-way status, etc.

Figure 2.4: Portion of road network data from the city of Florence, Italy. Each

road element is colored according to the speed limit reported in its attributes.

The white square dots represent road nodes and the yellow square dots repre-

sent shape points.

However, before using the road data for our map-matching task, the orig-

inal database format is reorganized so to be more efficient for our purposes.

Firstly, we reconstruct the topological structure of the road network and save

all the relevant data on a specific file. This information is vital for the map-

matching process but it is not explicitly available in the original shapefile

format. Then, polyline shape data is checked for vertex spatial sampling ir-

regularities and then saved into a second file. Finally, road attributes relevant

to the map-matching process are filtered from the original attribute list and

saved into a third file. Obviously, the format rearrangement that we apply is

fully reversible, so that it is possible to export our results on the road network

back into Shapefile format for an easier data sharing. Tab. 2.2 describes the

final format for a road element and Fig. 2.4 shows a graphic representation of
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road network data.

Road ID Road identification number.

Road Shape Road shape is described by polylines. The position of

each polyline is defined by an ordered list of vertexes,

whose geographical coordinates are given in latitude and

longitude in the WGS84 geodetic reference system. The

segments that make up the polyline are referred to as

arcs, the first and the last vertexes of the polyline are

referred to as nodes, while the other vertexes are called

shape points.

Road Access Describes if the road is two-way accessible (value = 0),

one-way accessible from the front node (value = 1), one-

way accessible from the back node (value = 2) or two-

way restricted (value = 3). Two-ways restricted road are

usually located in the central historical areas of cities,

where access is limited to residents and public vehicles.

Road Type Describes the level of importance of the road, as for

nominal capacity and intersection type. It ranges from

0 to 5, where 0 is associated to highways and other long-

distance roads and 5 represents neighborhood roads.

Road Length Describes the length of the polyline and is expressed in

meters.

Speed Limit Describes the nominal driving speed for the road under

optimal traffic conditions and is expressed in Km/h.

Table 2.2: The components of a Road Element

2.3 Florence test dataset

The test dataset chosen to present the results of our map-matching procedure

covers a rectangular area centered on the province of Florence and refers to
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the whole month of March 2008. The spacial region of the dataset (Fig. 2.5) is

bounded by the following coordinates in the WGS84 geodetic reference system,

South-West corner (lat, lon): 43.450, 10.710 (arc degrees)

North-East corner (lat, lon): 44.240, 11.755 (arc degrees)

and has an approximate size of 84 Km in width and 88 Km in height.

The raw dataset is made by 17.3 million GPS data records, belonging to

35’273 different vehicles. It is important to note that this dataset collects the

data from all the vehicles equipped with a GPS device from Octo Telematics

that drove inside the defined area during the month of March 2008. This means

that it refers not only to the movements of the vehicles owned by residents in

the area, but also to the vehicles coming from outside or in transit through

the region.

Not all the data in the dataset will actually be used in the map-matching.

The algorithm will be used to reconstruct only the vehicle paths lying inside

the metropolitan area of the city of Florence. More precisely, as shown in Fig.

2.5, this is a circular area with a radius of 10 Km centered on the city land-

mark of the Fortezza da Basso (WGS84 coordinates: 43.779497, 11.248106).

Restricting the use of data to a subset of the whole dataset is important in

order to identify correctly the extent and the nature of GPS trajectories, dis-

tinguishing between trajectories representing a transit trough the study area,

an inward/outward trip or an internal journey. More details on this regard

will be given in Chapter 3.
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Figure 2.5: Spacial extension of the raw test dataset. The area covers the

whole province of Florence, Italy, and part of the territories of the surrounding

provinces. The yellow circle defines the area of the city of Florence where

vehicle paths are reconstructed. (c)2011 Google, map data (c)2011 Tele Atlas.
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Chapter 3

Trajectory Aggregation

The aim of the trajectory aggregation phase is to process the raw ensemble of

GPS data into an ordered sequence of well defined GPS trajectories, ready to

be map-matched. Raw data is grouped according to vehicle ID and then every

group of data corresponding to a vehicle is elaborated separately. Trajectory

aggregation consists in a sequence of four difference steps, each resulting in

possible data modification or removal.

The first step reconstructs the temporal order of the vehicle dataset and

consolidates the continuity of engine state information. All data records bear-

ing no useful information are immediately removed, such as multiple copies of

the same record or records storing measures taken during the vehicle cruise

in conditions of no GPS signal lock. Then, the vehicle dataset is rearranged

with respect to the temporal order and to the proper engine state sequence of

cruise → engine stop → engine start → cruise.

The second step removes known anomalies in the consistency of the data

sequence. This means, for example, that vehicle stops that are too short

to be relevant or data records that are spatially much closer than expected

are removed. Specific attention is also put on data records corresponding to

engine-on events. This kind of data stores the measurements taken exactly

when the vehicle - and the GPS device with it - is turned on and is thus very

often taken in conditions of no GPS lock, resulting in inaccurate readings.

The third step defines the spatio-temporal interval of interest within the
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dataset. All data records falling outside the chosen interval are removed and

the information on entering into and exiting from the interval is integrated into

the data via a new ad-hoc parameter (see section 3.1.1 below for more details).

This is a necessary step for an off-line map-matching application based on a

localized raw dataset because it allows for a reliable identification of all spatial

interruptions along the sequence of GPS data.

The fourth step identifies the intervals of reliability and relevancy of GPS

data sequences and performs a final consistency check. For example, if two

subsequent data records belonging to the same GPS trajectory are found to

be too much distant in space or time then what expected in a regular sampling

under good GPS signal conditions, then the trajectory is split in two parts and

the information on the probable signal loss in-between is integrated into the

relevant data records via a new ad-hoc parameter (see section 3.1.1 below for

more details).

At the end of the whole process, the aggregated sequence of GPS data is

checked to verify its overall compliance to a set of consistency properties (see

section 3.1.6).

3.1 Trajectory Aggregation Procedure

The sequence of trajectory aggregation steps that were previously delineated

will be here described in details. References to the single elements of a GPS

datum will be done according to the definitions provided in Tab. 2.1. The

procedures described below assume that the data has already been grouped

by vehicle ID and that each vehicle dataset is processed separately.

3.1.1 Parameters and definitions

In the process of trajectory aggregation, several parameters are needed to

define how to reorganize, modify or remove data. Tab. 3.1 reports those

parameters, along with their default value and a short description of their

purpose.
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MAX CRUISE SPEED 250 Km/h max allowed speed for a cruise record.

MAX DELAY TIME 90 sec max allowed distance in time between

an engine-off record and the one pre-

ceding it to upgrade gps q for the for-

mer.

MAX STOP SPACE 100 m max allowed distance in space between

engine-off and engine-on records to up-

grade gps q for the latter.

TINY STOP TIME 5 sec min allowed duration for a vehicle stop

(temporary)

SMALL STOP TIME 30 sec min allowed duration for a vehicle stop

TINY STEP SPACE 30 m min allowed distance in space between

subsequent records in a trajectory

HUGE STEP TIME 3’600 sec max allowed distance in time between

subsequent records in a trajectory

HUGE STEP SPACE 3’000 m max allowed distance in space between

subsequent records in a trajectory

MIN TRAJ TIME 20 sec min duration for a valid trajectory

MIN CAR RECORDS 5 records min number of data records necessary

for a valid vehicle dataset

Table 3.1: Definition of the parameters used during trajectory aggregation
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During trajectory aggregation, data records are arranged in trajectories.

A regular trajectory begins with an engine-on record and ends with an engine-

off record, but the trajectories are not all regular. A trajectory is irregular

if one or both its ends are interrupted, whether because the vehicle crossed

the spatio-temporal boundaries of the dataset or because the on-board device

lost the GPS signal (or failed for whatever reason) in the middle of the trip.

A new parameter, called trajectory state (trj s), is defined to organize the

sequence of data into trajectories and to describe the different types of tra-

jectory interruptions. The value of trj s is initialized to equal eng s for each

data record and is changed, when appropriate, during the different steps of

trajectory aggregation. In the following sections, the context of definition of

each of the new values will be described in details. The list of valid values for

trj s is described by Tab. 3.2 below.

Value of trj s Corresponding meaning

0, 1, 2 engine on, cruise, engine off

3, 4 entering into/exiting from dataset temporal bounds

5, 6 entering into/exiting from dataset spatial bounds

7, 8 GPS signal recovered, GPS signal lost

Table 3.2: Acceptable values for the trajectory state

Whenever it is simply required to know if a data record is at the begin-

ning, in the middle or at the end of a trajectory, we will refer to a simplified

description of the trajectory state. Labeling this quantity ts, its relation with

trj s is defined as follows:

ts = 0 for trj s = 0, 3, 5, 7, referring to the beginning of a traj.

ts = 1 for trj s = 1, referring to data internal to the traj.

ts = 2 for trj s = 2, 4, 6, 8, referring to the end of a traj.

3.1.2 Reordering of engine state information

First of all, the raw vehicle dataset is reorganized in increasing temporal order.

If two records have the same timestamp but different values for eng s, the one
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with the smaller eng s is put before the other.

Then, data records that carry no useful information on vehicle movements

are removed:

• Multiple copies of the same record are all removed but one.

• Multiple copies of the same record that differ only in ds are all removed but

one, which is assigned the sum of all ds values.

• Records with eng s = 1 and gps q = 1 are removed.

• Records with eng s = 1 and ds < TINY SPACE are removed.

Finally, the sequence of eng s values is considered. To evaluate its consis-

tency, for each couple of subsequent records we check the quantity

seq = 10 · eng s1 + eng s2:

Consistent values are: 02, 01, 11, 12, 20.

Inconsistent values are: 00, 10, 21, 22.

When inconsistent records are found, the following actions are taken:

seq = 00 the first record is removed

seq = 10 trj s1 is set to 8

This signals that we lack information on some of the

vehicle’s movements before the second record.

seq = 21 trj s2 is set to 7

This signals that we lack information on some of the

vehicle’s movements after the first record.

seq = 22 the second record is removed

3.1.3 Removal of known data consistency anomalies

Engine-on data (eng s = 0) often has inaccurate readings, because very rarely

the GPS device locks to the signal as soon as the vehicle is turned on. In order

to regularize them, the following actions are taken on each engine-on record:

• The values of vel, ang and ds are all forcibly initialized to zero.

• If the previous record is an engine-off (eng s = 2) record and its euclidean

distance to the current record is less thenMAX STOP SPACE, than gps q
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of the engine-on record is upgraded to the value of the engine-off record.

Then, for each couple of subsequent records of the same trajectory, the

euclidean distance (dse) is computed and compared to the value of ds stored

in the second record of each couple. Whenever ds < dse, then ds is reset to

equal dse.

At this point, the duration of all the proper vehicle stops (an engine-off

record followed by an engine-on one) are evaluated. If the stop duration is

shorter than TINY STOP TIME than the stop is removed from the sequence

of data:

• Both engine-off and engine-on records are removed.

• The ds of the record following the engine-on datum is incremented with the

ds of the engine-off datum.

Then, the value of ds is checked for all data records that are internal or at

the end of a trajectory (ts = 1 and ts = 2 respectively, see 3.1.1). If it is found

that ds < TINY STEP SPACE, then different actions are taken depending

on the trajectory state of the current record (ts2) and the one preceding it

(ts1). Defining seq = 10 · ts1 + ts2, the following table presents the different

cases:

seq previous record current record following record

01, 11 removed ds++

02 removed removed

12 removed ds++, gps q++

Where the following symbols have been used:

• ds++ means that ds is incremented with ds of the preceding record.

• gps q++ means that gps q is upgraded to the value of the preceding record if

the distance in time between the two records is less thanMAX DELAY TIME.

At the end of this check, the duration of all the proper vehicle stops is

checked again, this time against a tighter threshold. If the stop duration

is shorter than SMALL STOP TIME than the stop is removed from the

sequence of data, following the same scheme described above.
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Finally, vel is checked for every record.

Whenever vel > MAX CRUISE SPEED Km/h, then vel is reset to equal

the limit.

3.1.4 Definition of the spatio-temporal boundaries

First of all, we identify the trajectory interruptions due to the crossing of the

temporal boundaries of the dataset:

• If the first record of the vehicle dataset has eng s = 1, then its trj s is set

to 3.

• If the last record of the vehicle dataset has eng s = 1, then its trj s is set

to 4.

Then, we identify the trajectory interruptions due to the crossing of the

spatial boundaries of the dataset.

• Each record is checked to identify if it falls inside or outside of the area of

interest.

• All records falling outside of the chosen area are removed.

• Records falling inside the chosen area are treated according to the following

table.

previous and following records

are inside the area

record is kept

previous and following records

are outside the area

record is removed

previous record is inside,

following record is outside

if ts = 2, record is kept

if ts = 0, record is removed

if ts = 1, trj s is set to 6

previous record is outside,

following record is inside

if ts = 2, record is removed

if ts = 0, record is kept

if ts = 1, trj s is set to 5
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3.1.5 Identification of data reliability intervals

In case of GPS signal loss or degradation during the vehicle’s movement,

the on-board GPS device delays the storage of data until the signal is re-

covered. We treat this kind of situation as a trajectory interruption. For each

couple of subsequent records in a trajectory we check the distance in time

(dt) and the distance in space (ds of the second record). If it is found that

ds > HUGE STEP SPACE or dt > HUGE STEP TIME, then differ-

ent actions are taken depending on the trajectory state of the two records.

Defining seq = 10 · ts1 + ts2, the following table presents the different cases:

seq first record second record

01 record is removed trj s is set to 7

02 record is removed record is removed

11 trj s is set to 8 trj s is set to 7

12 trj s is set to 8 record is removed

Then, we check the overall travel time of each trajectory (dT ).

If dT < MIN TRAJ TIME, the trajectory is too short to be relevant and is

thus removed from the dataset.

Finally, we count the number of valid records in the vehicle dataset (N).

If N < MIN CAR RECORDS, then the whole dataset of the vehicle is

discarded.

3.1.6 Consistency specifications of the aggregated data

As a consequence of the procedures described in the previous sections, vehicle

datasets are now self-consistent and provided with a common set of properties.

The sequence of values of trj s describes, in a continuous and coherent

manner, the evolution in time of four important quantities:

• The vehicle’s driving state (trj s = 0, 1, 2). Identifies when the vehicle is

traveling and when is parked.

• The vehicle’s presence during the time interval of interest (trj s = 3, 4).

• The vehicle’s presence inside the area of interest (trj s = 5, 6). Identifies

the spatial type of a trajectory: internal, inbound, outbound or in transit.
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• The availability of reliable data for the vehicle (trj s = 7, 8). Identifies the

intervals of availability and unavailability of information on vehicle state and

position.

Moreover, the following properties hold:

• All vehicle datasets are composed by at least 5 records.

• All trajectories are composed by at least two data records and their overall

duration is longer than 20 seconds.

• The duration of vehicle stops is no shorter than 30 seconds.

• The distance in time between subsequent data records in a trajectory is no

longer than 1 hour.

• The distance in space between subsequent data records in a trajectory is

comprised between 30 m and 3 Km.

• All records have a speed no greater than 250 Km/h.

• There exist no cruise records (eng s = 1) taken in conditions of no GPS lock

(gps q = 0).

• All engine-on records (eng s = 1) have vel = 0, ang = 0, ds = 0 and the

value of gps q now appropriately describes the uncertainty on lat and lon.

• With respect to the raw original dataset, records have been removed or

modified, but no extra record has been added.

• The sequence of trajectory aggregation steps is self-consistent in the sense

that if it is applied to a dataset that has already been aggregated it does not

produce any change in it.

3.2 Results and Applications

3.2.1 Trajectory aggregation for Florence dataset

In this section we present the results of the trajectory aggregation procedure

on the Florence test dataset. First we report the statistics on data removal,

trajectory type and quality, then we show some examples of trajectory aggre-

gation.
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The table below reports the number of data records removed and modified

during the four steps of the procedure:

removed modified

Reordering of engine state information 364’639 6’740

Removal of known data consistency anomalies 911’068 2’859’610

Definition of the spatio-temporal boundaries 11’959’899 291’753

Identification of data reliability intervals 17’443 19’801

TOTAL 13’253’049 3’177’904

The overall impact of the trajectory aggregation procedure on the number

of records is thus:

Records in the raw dataset 17’295’057

Records removed during aggregation 13’253’049

Records in the final dataset 4’042’008

We note that, from the initial sample of 17.3 million records:

• The majority of removed records is due to the definition of the spatio-

temporal boundaries and do not represent errors (90% of total removed

records).

• The number of records removed because of errors and anomalies is much

smaller in comparison (10% of total removed records).

• The number of modified records amounts to 3.2 million records, 18% of the

original dataset.

• The records in the final dataset are 4.0 millions, 76% of the raw data already

within the specified spatio-temporal boundaries.

We observe that the number of drivers in the dataset has decreased from

35’273 drivers present in the raw dataset to 25’048 drivers present in the ag-

gregated one.

For what concerns trajectory definition, we find that, from a total of

640’797 trajectories:

• 66% are regular (initial eng s = 0 and final eng s = 2).

• 31% are interrupted by the spatio-temporal boundaries (initial eng s = 3, 5

or final eng s = 4, 6).
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• 3% are interrupted because of signal loss or device failure (initial eng s = 7

or final eng s = 8).

Examining the quality of regular trajectories, we have that for 57% of them

both the first and the last record have a very accurate positioning information

(gps q = 3).

Comparing Fig. 3.1 and 3.2, it is possible to verify qualitatively the impact

of this phase on the quality of data. For each couple of subsequent records in

a trajectory we read the distance in time (dt) and the distance in space (ds of

the second record). Then we check the value of seq = 10 · ts1 + ts2, that can

have only four legal values: 01, 02, 11, 12.

For each of the possible values of seq, we compute the distribution of

ds values, weighting each count with dt. In this way we obtain an integrated

measure of the distribution of the spatial and temporal intervals between data.

Fig. 3.1 shows the distributions for the four seq values before trajectory

aggregation, while Fig. 3.2 shows the same distributions after the procedures

described in this chapter have been applied to the data. We remark that for

Fig. 3.1 we used only the raw data lying inside the same spatial boundaries as

the aggregated data.

We observe that Fig. 3.2 is smoother and cleaner than Fig. 3.1 as a

consequence of trajectory aggregation. In particular, it is apparent that after

this procedure all subsequent data of a trajectory are separated by no more

than 3 Km. Moreover, we observe that, after aggregation, the distributions

for seq = 02 and seq = 12 show an increase of signal around the 2 Km mark.

This is due to the step described in section 3.1.3. If the last two data records

of a trajectory are spatially too close to each other, than the first is erased. As

a consequence, the last record will then have a much longer spatial separation

from the record preceding it, typically of the order of 2 Km.

Some interesting information on vehicle movements can be derived from the

elaborated data just as a consequence of trajectory aggregation. For example,

Fig. 3.3 traces the movements of a certain vehicle during a week. The figure

shows how straightforward it is to identify how far and for how long does the

vehicle drive, as well as when it exits from or enters back into the test area.
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Figure 3.1: Integrated interval distribution before trajectory aggregation.

Figure 3.2: Integrated interval distribution after trajectory aggregation.
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Briefly, the vehicle drives for 20 Km, stops for nearly 6 hours and then restarts

and leaves the test area. The vehicle comes back almost a day and a half later,

entering the boundary from roughly 15 Km afar from where it exited, and

finally stops after a final 20 Km drive. Then, a similar behavior follows.

Fig. 3.4, instead, describes in more details the different layers of informa-

tion carried by the sequence of trj s values. The figure shows the evolution

during a week of two quantities: the driving state and the presence inside the

test area. It is clear from the image that the vehicle follows a very regular pat-

tern during workdays: it leaves home between 6.00am and 7.00am, performs

some occasional trips in the middle of the morning and comes back home at

around 8.00pm and earlier on Friday. On Saturday, instead, it makes a small

trip in the morning and later leaves the test area, only to come back the day

after, on Sunday.

3.2.2 Statistical laws in urban mobility

The trajectory aggregation procedure groups vehicle data into trajectories.

Having access to big samples of data it is thus possible to study the statis-

tical properties of vehicle’s trips and stops as described by the sequence of

trajectories.

The study of these properties may help to identify global laws in the dy-

namic system of vehicular traffic, and also to shed some light on the cognitive

processes behind drivers’ decisions. What follows is part of a detailed analysis

and modeling undertaken by the Physics of the City Laboratory on the aggre-

gated data from the Florence test dataset [2], [3]. The sample is restricted to

resident vehicles having a continuous sequence of regular trajectories.

Fig. 3.5 shows the distribution of the total daily trip length (L) for the

vehicles in the set. We observe that the distribution follows an exponential

law

P (L) ∝ e−L/L0 ,

where L0 represents a length of 24.9 Km.

The fact that this distribution follows an exponential profile can be in-

terpreted by the principle of maximum entropy, assuming the independent
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Figure 3.3: Trajectory sequence plot. The sequence of vehicle movements

starts from the origin and is represented by a green line, + represents engine-on

data, × represents engine-off data and 2 represents spatial boundary crossing.

The sequence extends for a week, vertical lines divide the timespan in separate

days.
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Figure 3.4: Trajectory state evolution. The blue line describes vehicle presence

inside the test area: high means present, low means absent. The green line

describes the driving state: high means driving, low means parked.

35



Figure 3.5: Mobility energy distribution, from [2].

behavior of each vehicle and the existence of an average daily trip length for

drivers. Following this interpretation, the length L can be described as a mo-

bility energy available on average each day to be spent driving. This mobility

energy can be thought as the maximum effort the driver is willing to undertake

daily. This interpretation is coherent with findings from other studies on the

subject [24].

Fig. 3.6, instead, shows the distribution of vehicle downtimes, that is the

duration of vehicle stops. Obviously, vehicle downtimes correspond to the time

spent by the driver in activities other than driving. The distribution has a base

trend that follows a power law

P (T ) ∝ T−0.95,

where the fit has been computed on the more relevant part of the curve, com-

prising 65% of total counts.

The power-law fit can be interpreted with a simple model based on the

observation that the total time allotted daily to our activities is limited by our
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Figure 3.6: Vehicle downtime distribution, from [2].

circadian rhythm. If we assume to have 24 hours at disposal and sequentially

we decide, with uniform probability, how much time to spend on each new

activity basing just on the time that remains, it can be shown that we obtain

a downtime distribution ∝ T−1, coherently with what we observe [2].

We observe that the constraint that we assume to explain the downtime

distribution is much stronger than the constraint we assume to explain the

total trip length distribution. While for downtime we assume a fixed total

daily time, for the total trip length we assume a constraint on maximum length

that has to be respected only on average.

However, both models suggest that on a macroscopic level what we observe

is mainly a statistical behavior, with very few traces of deterministic human

processes. For example, downtime distribution does show several peaks super-

imposed to this trend, and these peaks seem characteristic of human activities

with a defined duration.
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Chapter 4

Data Matching by Affinity

The aim of this phase is to match data records to the road network. As we

have seen in section 2, this matching is not obvious because of the uncertainties

in positioning measurements and in road digitization.

We chose a bayesian approach to the problem. Following the rule of con-

ditional probability,

P (R|D) ∝ P (D|R) · P (R), (4.1)

we compute the likelihood P (R|D) that each datum D belongs to its surround-

ing roads R from assumptions on the prior probability P (R) for a vehicle to

be driving on road R and assumptions on the positioning probability P (D|R)

to measure datum D while driving on road R.

The prior probability P (R) is simply a quantity proportional to the av-

erage road flux and its importance is crucial for the correct determination of

likelihoods. The positioning probability P (D|R) takes into account both un-

certainties in vehicle position (lat, lon) and vehicle heading (ang) that are

modeled with simple assumptions and calibrated according to data. In the

following sections these quantities will be described in more details.

Thus, the likelihood P (R|D) allows to identify the most reasonable candi-

dates for matching in a meaningful quantitative way. For this reason we call

this quantity affinity between road R and datum D. To each data record we

associate all the matches with high affinity and not just the single most affine
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one. This is important for the last phase of map-matching, the global path

reconstruction of GPS trajectories.

4.1 Data Matching Procedure

4.1.1 Categories of data accuracy

When determining the affinity between road and datum, vehicle speed (vel)

and signal quality (gps q) are very important variables. In fact, the measure

on vehicle heading (ang) is derived from two subsequent GPS readings on

position, so that its accuracy is obviously dependent on speed and signal qual-

ity. Moreover, for engine-on and engine-off data, that correspond to parked

vehicles, there is not a strict correlation between vehicle heading and road di-

rection. Indeed, vehicles are not necessarily parked along a road and parallel

to it, they could be parked at a different angle or they could be in a garage or

in a parking lot, far from any road at all.

We take these considerations into account by defining three simple speed

categories:

Parked: all records with eng s = 0 or eng s = 2.

Low-speed: all records with gps q < 3 or vel < 5 Km/h that are not parked.

High-speed: all remaining records.

For parked data records we define a second characterization. When two

regular trajectories (see section 3.1.1) follow each other, we check how close

the engine-off record of the first is to the engine-on record of the second. If

their euclidean distance is less then MAX STOP SPACE (see Tab. 3.1), we

call the parked records joint. For all the other engine-on and engine-off data

that do not meet these conditions we apply the term disjoint.

As we will see in the following sections, data from each category will be

processed differently according to its characteristics.
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4.1.2 Definition of positioning probability

In order to define P (D|R), the positioning probability for road R, we first need

to define P (D|A), the positioning probability for road arc A. In this definition

we want to take into account the relative distance (d) between datum and arc,

the length of the arc (L) and the difference (θ) between vehicle heading and

arc direction, as shown in Fig. 4.1.

Figure 4.1: Schematic configuration of road arc A and datum D for the defi-

nition of positioning probability.

We begin by modeling the probability P (r) of positioning the vehicle at a

distance r from its actual location:

P (r) ∝
1

1 + ( r
σr
)2
,

where σr is a parameter that represents the scale of error dispersion. According

to the estimate on distance error distribution (Fig. 2.2), we assigned σr = 9

meters.

Regarding the shape of this error distribution, other authors make different

choices and typically chose a Gaussian profile to model this error [11], [14].

However, our choice to model this probability with a Cauchy distribution is

motivated by the observation of the error distribution (Fig. 2.2) estimated in

section 2, that shows a decay in the tails that is much slower than that of a
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Gaussian. Clearly, using a Cauchy profile we are just approximating the real

distribution, in particular close to the peak, but we are also allowing for an

high sensibility on tails, that represent the data that are the less obvious to

match.

We can then define the probability PD(x) of measuring datum D when the

vehicle is located at position x along the arc:

PD(x) =
C

σr
2 + d2 + (x− xD)2

,

where C is a normalization factor, d is the distance between datum D and the

line that extends arc A and xD is the projection of datum D on A (see Fig.

4.1).

So, the integrated probability PD([0, L]) of measuring datum D when the

vehicle is driving somewhere along the arc A is:

PD([0, L]) =

∫ L

0

PD(x)dx = C

∫ L

0

dx

σr
2 + d2 + (x− xD)2

=
C

d′

∫

L−xD
d′

−xD
d′

dt

1 + t2

=
C

d′

[

arctan

(

L− xD

d′

)

+ arctan
(xD

d′

)

]

, (4.2)

where d′2 = σr
2 + d2.

Having defined PD(x) and PD([0, L]), we can now compute the weighted

projection 〈x〉A of datum D over arc A:

〈x〉A =

∫ L

0
x · PD(x)dx

PD([0, L])
= xD +

d′

2
·
ln

[

1 +
(

L−xD

d′

)2
]

− ln
[

1 +
(

xD

d′

)2
]

[

arctan
(

L−xD

d′

)

+ arctan
(

xD

d′

)] .

The computation 〈x〉A can be time consuming. So, in cases when saving com-

putation time is crucial, 〈x〉A can be approximated by xclosest, the closest point

of the arc A to datum D. Obviously, xclosest = xD if 0 ≥ xD ≥ L, while other-

wise xclosest coincides with the closest extreme of arc A. Both 〈x〉A and xclosest

obviously fall by definition inside arc A, but using xclosest introduces a bias by

giving extra weight to the extremes of arc A.
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We then consider the angle θ between vehicle heading and arc direction

and model the probability PD(θ) of such a deviation with:

PD(θ) =
1

1 + ( θ
σθ
)2
, (4.3)

where σθ is a parameter that represents the scale of error dispersion. The error

distribution for direction (Fig. 2.3) estimated in section 2 was determined

restricting to long straight road segments and fast vehicles and thus fixes just

a lower limit for σθ. In order to take into account shorter segments, road

bending and lower velocities we over-estimate it to σθ = 5 degrees. Again,

we modeled this distribution with a Cauchy profile to insure that the overall

positioning probability has an high sensibility on tails where it is most needed

to distinguish between difficult matches.

Given the unreliability of vehicle heading information for low-speed and

parked data (see section 4.1.1) PD(θ) is computed as stated only for high-

speed data. For low-speed and parked data a value of PD(θ) = 0.5 is used,

that corresponds to assuming and average value of θ = σθ.

From equations 4.2 and 4.3 we can now define P (D|A) the positioning

probability for arc A:

P (D|A) = PD([0, L]) · PD(θ) (4.4)

=
σr

π · d′

[

1

1 + ( θ
σθ
)2

]

[

arctan

(

L− xD

d′

)

+ arctan
(xD

d′

)

]

,

where C has been explicitly set to C = σr/π.

Finally, the definition of P (D|R), the positioning probability on road R,

is straightforward:

P (D|R) =
∑

Ai∈R

P (D|Ai). (4.5)

The weighted projection 〈x〉D of datum D over road R is:

〈x〉D =
∑

Ai∈R

(〈x〉Ai
+ Li) · P (D|Ai)

P (D|R)
,

where Li =
∑

j<i LAj
and L0 = 0.
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4.1.3 Definition of prior road probability

The prior road probability P (R) estimates the probability that a vehicle is

driving on road R, independently from the outcome of any positioning mea-

surement. It is, in other words, a measure of the average flux of road R.

In the context of a real-time application of this map-matching procedure,

the average road flux is exactly the quantity that will be used for P (R). How-

ever, for the current off-line application, we need to estimate it in a different

way. A rough but fast estimate could be derived from the road type informa-

tion (Tab. 2.2). P (R) could be set to 6 scaling values according to the road

type of R. However, the pre-determined value of road type could be often far

from representing the real intensity of use of a road, and setting the scaling

appropriately is not obvious at all.

Instead, we decided to determine P (R) directly from our data, making

again use of the Bayes equation 4.1. We want to estimate the amount NR of

data records that can be associated to each road R, and then define:

P (R) = NR/LR, (4.6)

where LR is the length of road R. This way of estimating P (R) is reasonable

as long as we can assume that there are no sharp spatial discontinuities in the

density of data along roads. Our datasets meet these conditions in all but a

very few known cases.

The value of NR for each road is determined recursively by using equation

4.1 on the whole subset of high-speed data. P (R) is initially set to a uniform

positive value for all roads. For one-way roads, P (R) is forcibly set to zero for

the no-way direction. At every iteration, for each high-speed record, affinity

P (R|D) is evaluated and used to increment NR for all roads R with non-zero

affinity with D:

NR+ = P (R|D),

where the sum of P (R|D) over all the relevant roads is normalized to 1. Obvi-

ously, this means that the count for each record is divided on all affine roads

in a way that is proportional to the affinity itself. Before the next iteration

starts, the P (R) is updated to the new estimate by 4.6.

44



The recursive process is run for 20 iterations and the final estimate for P (R)

is kept as the best estimate. The convergence of this procedure is evaluated by

the evolution of ∆Ni, the normalized sum of residuals for the i− th iteration

with respect to the previous iteration:

∆N =
1

N

∑

R

|NR,i −NR,i−1|,

where N is the total number of data records used, NR,i is the value of NR after

the i− th iteration and i > 1. Fig. 4.2 presents a plot of ∆Ni (N = 2.7 million

high-speed data, Florence test dataset), showing a power-law trend ∝ i−2.4.

Figure 4.2: Convergence of the i− th normalized sum of residuals for P (R).

For consistency reasons, for roads with NR,best = 0, far from any high-speed

data, we override 4.6 and set P (R) to the smallest non-null value of NR,best/LR.

This is not true for the no-way direction of one-way roads that remains fixed

at P (R) = 0.

4.1.4 Matching data to roads by affinity

As outlined at the beginning of this chapter, each data record is matched to

the surrounding roads after having evaluated their mutual affinity. A rigorous
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application of this approach would require, for each datum D, to evaluate

the affinity P (R|D) for all the roads in the network. This strict approach

is very computationally intensive and obviously unnecessary. Therefore, the

computation of the affinity is limited to the road arcs closer to the datum.

To speed up the identification of the relevant arcs, a specific proximity-

map is created before this phase of map-matching begins. Every cell of this

proximity-map represents a square portion of the test area with a side size of

60 meters. For each arc of each polyline the minimum set of cells is found

that contains the arc itself and the area surrounding it at a distance d ≤ 60

meters. Each cell of the set will then keep memory of the arc proximity.

So, during map-matching is sufficient to find the cell of the proximity-map

where the datum lies and the list of the arcs that are close to that cell will be

immediately available.

For each of the arcs in the list, P (D|A) and then P (D|R) is computed

according to 4.5, approximating P (D|A) = 0 for all the arcs not appearing in

the list. Finally, with 4.1 we compute the affinity P (R|D) for all the roads

with non-null P (D|R). Obviously, as previously noted, this procedure implies

assuming a null affinity for all the roads that are not in the immediate prox-

imity of datum D, while, in general, those affinities are really non-zero even

if negligible. For consistency reasons, then, the set of non-null affinities is

renormalized to 1.

For parked data records, we do not use P (R) as computed in 4.6 but

we put P (R) = 1 to cancel any dependence from the prior road probability.

This decision derives from the observation that the choice to park along a

certain road is not directly correlated with the average road flux. In fact, for

vehicles parked outside of roads, assuming such a correlation is a downright

error. Moreover, it is also important to stress that, for all data records, P (R)

is always zero for the no-way direction of one-way roads.

The aim of this phase of map-matching is to identify the most probable

road candidates for matching. Having more than just one match increases the

effectiveness of the next phase of map-matching, but having too many candi-

dates adds unnecessary computational costs. So, the benefit of this approach

is that it allows to evaluate quantitatively which are the best match candi-
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dates. Taking advantage of this, for each datum D we keep only the road

match candidates Ri that have:

P (Ri|D)

P (Rbest|D)
≥ 0.2,

where Rbest is the most affine road to datum D. Applying this criterion, the

existence of a strong candidate eliminates the much weaker ones, while, among

candidates of similar strength, no one is eliminated.

For joint parked engine-on records (see section 4.1.1) the list of match

candidates is simply copied from the corresponding engine-off record. This

is necessary to be consistent with the assumption that joint engine-on and

engine-off records represent the same physical position.

Data records that lie in areas with no arcs in the proximity are not matched

to any road and, in the following phase of map-matching, they are simply

ignored. Obviously, different approaches are possible. For example, candidate

arcs for matching could be found by checking the neighboring cells of the

proximity-map. However, we decided to apply this simple approach for two

reasons. The first and foremost reason is the observation that this problem

occurs on a very limited number of cases. Then, we also observed that the

majority of these records are either low-speed data, thus probably just very

inaccurately positioned, or parked data located in parking lots away from any

road. So, even if a road match was found for these data, there would be no

obvious way of assessing its reliability. The results presented in the following

section will give quantitative support to this argument.

4.2 Results and Applications

4.2.1 Data matching for Florence dataset

The data matching procedure described in this chapter has been applied on

the Florence test dataset. Here we present an overview of the results.
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The following table reports how many data records belong to each of the

three categories of data accuracy:

High-speed data 2’725’989

Low-speed data 303’137

Parked data 1’012’882

joint parked data 885’910

disjoint parked data 126’972

TOTAL data 4’042’008

We observe that the majority of data records (67%) are high-speed. Moreover,

for what concerns parked data, it is apparent that joint parked records are the

majority (87% of total parked records).

The matching of a data record is successful when at least a road match

is found. The following table reports the numbers of successes and failures in

matching for the overall dataset of 4.0 million records:

Matched data 4’023’393

Un-matched data 18’615

high-speed 5’514

low-speed 2’784

parked 10’317

TOTAL data 4’042’008

We observe that the procedure succeeds on 99.5% of cases and fails only on

the remaining 0.5%, corresponding to data records lying in areas with no arcs

in the proximity. Considering just matching failures, we observe that 70% of

them is associated with low-speed and parked data.

In section 2 we computed two error distributions for distance (Fig. 2.2)

and direction (Fig. 2.3) under very strict conditions on GPS measure quality

and road geometry. As described in this chapter, we based on the properties of

those distributions to define P (D|R) and, eventually, to compute the affinity.

We have now repeated the computation of such error distributions using all

successfully matched high-speed records, assuming the best match to be the

correct one. Fig. 4.3 and 4.4 show the newly computed error distributions for

distance and direction, respectively.
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Figure 4.3: Error distribution for distance, σ ≃ 9.5 meters. The distribution

has been computed using all successfully matched high-speed records, assuming

the best match to be the correct one.

Figure 4.4: Error distribution for direction (in blue), σ ≃ 2.7 degrees. The dis-

tribution has been computed using all successfully matched high-speed records,

assuming the best match to be the correct one. The error distribution relative

to a partial sample (in red), σ ≃ 1.2 degrees, has been plotted for comparison.

49



The aim of this comparison is just to allow for a qualitative estimate of the

results of the data matching procedure. Bearing this in mind, we can say that

what we observe is an overall consistency among each type of distribution.

In particular, both prior distribution (before data matching) and posterior

distribution (after data matching) display the same slow-decaying tails.

The most apparent difference is clearly the higher error dispersion of pos-

terior distributions. The most affected is the error distribution on direction

(prior distribution has a standard deviation of ∼ 1.2 degrees, while posterior

distribution error has a standard deviation of ∼ 2.7 degrees). In Fig. 4.4 we

plotted also the prior distribution for comparison purposes. The error distribu-

tions on distance have, instead, a similar dispersion measure (prior distribution

has a standard deviation of ∼ 8.5 meters, while posterior distribution has a

standard deviation of ∼ 9.5 meters).

We remark that the higher error dispersion of posterior distributions, es-

pecially for direction, are not unexpected. In fact, prior distributions have

been computed on a limited sample of data unambiguously matchable to long

straight road segments, while posterior distributions have been computed using

all successfully matched high-speed records, taken in a variety of conditions for

measurement quality and road geometry configuration (length, bending, etc).

In particular, we observe that the error distribution for direction depends

on the accuracy of angle measurements which are affected by many sources of

uncertainty. In fact, the value for ang (see Tab. 2.1) is a derived measure that

depends on vehicle speed, moreover ang is rounded off to the nearest even in-

teger when is stored to memory. Further, the direction difference between road

heading and vehicle heading is very sensitive to inaccurate road digitization.

Given all these possible sources of errors, we consider a standard deviation for

direction error of ∼ 2.7 degrees, as we measure, a very reasonable one.

4.2.2 Fundamental diagram of traffic flow

As described in this chapter, the aim of the data matching phase is that of

finding a list of possible road matches for each record. Each road match is

associated with an affinity that measures the correctness probability of the
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match itself. Matching each record with its best match is thus a sensible

approximation.

This is exactly what we did with our data. For many roads in the network

the number of data matched with this criterion is enough to compute a robust

estimate of the daily evolution of vehicle flux (φ), speed (v) and density (ρ).

For each matched data record we have vel, ds and R, the best road match.

For each road R we can then estimate φR(t), vR(t) and ρR(t) as follows:

φR(t) =
1

T
·

N
∑

i

1

(L/dsi)
=

N

T
·
〈ds〉

L
,

vR(t) =
1

N
·

N
∑

i

veli = 〈vel〉,

ρR(t) =
1

L
·

N
∑

i

(L/veli)

T
·

1

(L/dsi)
=

N

L
·
〈ds/vel〉

T
,

where L is the length of road R, T is the time resolution and N is the total

number of records matched to R that were measured between t and t+ T .

We observe that for the definitions of φR(t) and vR(t) only one between

the derived measures of vel and ds are used, while the definition of ρR(t)

requires the use of the ratio ds/vel. Given the measure uncertainties for both

ds and vel, using their ratio decreases the accuracy of the estimate for ρ, in

comparison with the estimates of the other two quantities. For this reason we

also estimated ρ′R(t) = φR(t)/vR(t), deriving it from the other two quantities

so to have an estimate less affected by fluctuations. However, we observed

systematically that the two estimates for density do not manifest substantial

divergences, so we decided to use former, the independent density estimate

ρR(t).

In Fig. 4.5, 4.6 and 4.7 we show the daily profiles of φR(t), vR(t) and

ρR(t) respectively, computed for a road in Rome with high traffic intensity.

In order to have a robust sample, average values have been computed on the

ensemble of all the 21 workdays of the month of May 2010. The road chosen

is a portion of the southern stretch of the Grande Raccordo Anulare, the ring-

shaped highway encircling Rome. The total number of data matches, counted
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Figure 4.5: Daily profile of φR(t). Profile computed from data matches for the

average workday of May 2010.

Figure 4.6: Daily profile of vR(t). Profile computed from data matches for the

average workday of May 2010.
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on the entire period of 21 workdays, is 56’335, but the profiles have been

rescaled on the daily count average. Time resolution T is 15 minutes.

From these profiles it is easy to reconstruct the daily traffic trend that

is characteristic of that road: during the night hours the road is clearly less

populated, so speed is high, flux and density are low; in the morning, around

6am, the road begins to fill up, so density increases, average speed decreases

and flux reaches a regime level; during the central hours of the day, the road is

less populated, so that speed can rise back to optimal values and the regime flux

is maintained; traffic conditions worsen during afternoon rush hour, around

5pm, when the density is at is peak, speed drops to very low values so that

signs of congestion appear on the flux profile too.

Figure 4.7: Daily profile of ρR(t). Profile computed from data matches for the

average workday of May 2010.

By comparing the evolution of these three quantities we get what is called

the fundamental diagram of traffic flow [25]. As an example, Fig. 4.8 shows

φR vs. ρR, where every data-point corresponds to a bin of the average daily

profiles.

This plot is very interesting because it allows to separate two different

flow regimes of the road. The initial part of the diagram represents a free-

flow regime, where an increase in vehicle density linearly corresponds to an

increase in flux. The last part of the diagram, instead, represents flow regime
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affected by different degrees of congestion. When the vehicle density crosses

a certain critic threshold characteristic of the road, vehicles can no longer

proceed at free-flow speed. This causes a decrease in flux that is no longer

linearly dependent on density.

It is apparent, then, that these profiles are very important. Thanks to

them it is possible to characterize the flow properties of each road. For ex-

ample, the effective free flow speed of a road can be computed from its vR(t)

profile. Moreover, from the fundamental diagram it is possible to extrapolate

the regime value for the flow, as well as the critical density value that triggers

congestion.

As already noted, however, the profiles we describe here are averaged on

several days. An accurate service for traffic monitoring and now-casting re-

quires, instead, robust real-time estimates of those quantities. As we will see

in the next chapter, vehicle path reconstruction brings us closer these require-

ments.

Figure 4.8: Fundamental diagram of traffic flow: vR vs. φR. Diagram com-

puted from data matches for the average workday of May 2010.

54



Chapter 5

Global Path Matching

The aim of this phase of map-matching is to match each GPS trajectory to a

path on the road network.

The approach we take is based on two principles: We assume that the

most probable path match is the one requiring the shortest travel-time. We

verify that the length of the chosen path match and its estimated duration are

consistent with the measured values and we otherwise discard the match.

These assumptions are simple and clear-cut and they prove to be very

robust, as we will show in this chapter. Other works in the field of low-

sampling map matching use more elaborated constraints on the length L of

the path match [19], on its estimated duration T [18] or on both [17].

However, we justify our choice on the basis of two observations on length

L and estimated duration T. Given two subsequent data records, located in an

urban context at an average spatial separation (∼ 2Km, in our case), there are

typically many different paths of similar length L that connects the records

along the road network. Given no other constraint, we can hardly evaluate

which is the most appropriate among them. The best we can do, in our opinion,

is then just to chose a reasonable path using a simple criterion. This is what we

do by looking for the path with the shortest travel-time. Moreover, for what

concerns the constraints on the estimated duration T of a path match, we

point out that uncertainties are even greater. In order to compute an accurate

estimate of T, a precise knowledge of traffic conditions along the path would
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be necessary, along with assumptions on the time cost of turns and stops at

intersections, as [19] also points out. For this reason, in our path matching

procedure we do estimate a free-flow duration T for each path match, but we

just use it as a lower bound to check the consistency of the match.

We point out that all the path matches that are found to be not consistent

with measured values are discarded. Obviously, this means also that all the

path matches that are kept, which are the wide majority, are to be considered

very reliable. This map-matching procedure has been developed to study the

global properties of traffic flows. Thus, from this perspective, being able to

count on robust path matches is much more important then matching every

single trajectory regardless of match accuracy or reliability.

The global path match procedure is divided into a sequence of four steps.

First, for each couple of subsequent records in a trajectory we use an optimized

A* path finding algorithm to connect the data matches of the first record to

the data matches of the second record. This step creates different alternatives

for the global path match of the whole trajectory. The second step identifies

the best global path match as the path match that requires the least total

average travel-time. Then, we check the consistency of the different parts of

the best global path match and we discard the inconsistent ones. Finally, we

compute the road transits (see Tab. 1.1) along the whole global path match.

5.1 Path Matching Procedure

5.1.1 A* algorithm for path finding

The A* algorithm is a path finding algorithm that identifies the least-cost path

between any two nodes in a weighted network [20], [21]. In a weighted network,

each link is associated to a value representing its weight (or cost). The least-

cost path between two nodes is the one that connects them with links having

the least cumulative cost. In this context, we refer to the leas-cost path as the

best path.

The principal merit of this algorithm is its efficiency. It reaches its goal by

limiting the search area in a clever way. This behavior is possible because the
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A* algorithm uses an heuristic cost function to establish the order in which

the search visits the nodes in the network. The heuristic cost function K at a

generic node n is a sum of two components:

K(n) = C(n) +H(n),

where C(n) is the cost of the best path connecting the origin node to node n

and H(n) is an heuristic estimate of the cost necessary to reach the destination

node. In order for the algorithm to work efficiently, H(n) must not overesti-

mate the real cost of the best path from node n to the destination node. If

H(n) overestimates the real cost, the path found by this algorithm is not guar-

anteed to be the least-cost one. However, if the overestimation is contained,

the path found is still one among the least-cost ones. For example, if the cost

of a path is given by its length, then a robust heuristic estimate H(n) would

be the euclidean distance between node n and the destination node.

More in details, the algorithm works in the following way:

• The search begins from the origin node no and stops when the destination

node nd is reached. Obviously, at the origin node C(no) = 0 holds.

• Let n be the currently visited node. For all the nodes n’ directly connected

to n we evaluate:

K(n′) = C(n′) +H(n′) = C(n) + Cn,n′ +H(n′),

where Cn,n′ is the cost of the link connecting n to n’.

• Then, nodes n’ and the respective values for K(n′) are memorized in a list,

together with all the other nodes n’ evaluated in the previous iterations but

not yet visited. This list is ordered with respect to K values and the node

n*, corresponding to the smallest total heuristic cost K(n∗) is picked out of

the list and becomes the new visited node.

• Since every node n’ in the list has memory of the node n it was evaluated

from, when the destination node nd is finally visited, the best path can be

reconstructed by simply tracing the best links backwards.

• Obviously, at the destination node H(nd) = 0 holds and the heuristic cost

function K coincides with the cost of the best path: K(nd) = C(nd).

As said previously, the effect of the heuristic estimate is that of aiming

node exploration towards the direction of the destination node right from the
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beginning, instead of wasting time with a uniform radial exploration. In Fig.

5.1 we see an example of this effect. From the perspective of computational

costs, the choice of an heuristic estimate that does not overestimate the real

cost guarantees that the algorithm does not visit the same nodes more than

once. On the other hand, if the underestimation is too strong, then part of the

directional advantage of this algorithm is lost and the total number of visited

nodes increases unnecessarily.

Figure 5.1: Example of path finding with the A* algorithm. Green triangles

represent two data records to be connected by the best path (origin record on

the left, destination record on the right), blue roads are the roads explored

by the algorithm during the best path search, red path is the best path. It

is apparent how the algorithm pushes the exploration of the network in the

direction of the destination record.

5.1.2 Path finding between records

In order to find the possible paths connecting subsequent records in a trajec-

tory, we developed a specific modified version of the A* algorithm. Our goal

is to find the best paths connecting the data matches of the first record (the

origin) to the data matches of the second record (the destination). More pre-

cisely, for each of the data matches of the origin, we want to identify the best
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path among all the possible paths connecting it to all the data matches of the

destination.

Thus, the main differences with respect to the original algorithm are the

following:

• Paths do not begin and end at road nodes. They begin and end at the

location of data projections onto the matched roads (see section 4.1.2).

• So, for each data match, both nodes of the matched road are considered as

origin nodes (for the origin record) or destination nodes (for the destination

record).

• The driving direction of the data match is taken into consideration by in-

creasing the cost of the road node corresponding to a U-turn.

• For each destination data match, all origin data matches are considered

together as possible path origins during a single algorithm run.

Obviously, controls are put in place to ensure that the procedure employs

the computational time efficiently. Given the known time interval between

the two data records, for each path explored during the best path search it is

possible to compute the corresponding average travel speed. If the best path

search is still on-going but the length of the current best path candidate grows

so high that the average travel speed becomes bigger than 200 Km/h, than the

search is aborted. We interpret this fact by supposing that the corresponding

destination data match is a wrong match and we delete it.

As presented in the introduction to this chapter, we assume that the most

probable path match is the one requiring the shortest travel-time. Coher-

ently to that statement, we chose a cost function for best path finding that is

proportional to the free-flow travel-time:

Cn,n′ = α ·
Ln,n′

Vn,n′

,

where Cn,n′ is the cost of the road Rn,n′ joining node n to node n’, Ln,n′ is

the length of the same road, Vn,n′ is its free-flow speed and α = 30 is just

a normalization factor. As we described in section 4.2.2, free-flow speed can

be computed from daily average speed profiles derived from data. For all the

roads where this parameter could not be determined from data, we used the

average speed associated to each polyline specification (Tab. 2.2).
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If Rn,n′ corresponds to the no-way direction of one-way road, Cn,n′ is set to

a very high value, so that the best path is prevented to go through this road.

If Rn,n′ corresponds to a limited-access road (Road Access = 3, see Tab. 2.2),

then the value Cn,n′ is set to depends on the vehicle. If the vehicle has access

to this special category of roads, then Cn,n′ is computed in the default way.

If the opposite holds, Cn,n′ is set to a very high value as in no-way roads. In

order to establish if a vehicle has access to limited-access areas we perform a

very simple check. If more than 1% of the best data matches of the vehicle fall

on limited-access roads then we assume the vehicle has access to them.

Consistently with the cost function, we define the heuristic cost estimate

as:

H(n) = α ·
Leucl
n

Vmax

,

where α = 30 as above, Leucl
n is the euclidean distance between node n and

the destination data match and Vmax needs to be set to an appropriate value.

Choosing a reasonably high value for Vmax (∼ 120 Km/h) we are guaranteed

that H(n) is robust so that the algorithm does not visit the same nodes more

than once. However, this choice of Vmax corresponds to a rescaling of Leucl
n by

a factor of ∼ 0.25, which is on average a very strong underestimation of the

minimum cost to the destination and is therefore not the most efficient choice

at all. Experimentally we determined that with a rescaling factor of ∼ 0.8

the trade-off between node revisitation and total visited nodes is globally the

most efficient. We are aware that with this choice we are on same occasions

overestimating H(n). However, we think that the choice is reasonable because

in these conditions the overestimation is contained and the path finding al-

gorithm still chooses a path among the least-cost ones. The results on path

length consistency presented in section 5.2.1 are in support of this choice.

The outcomes of this procedure are as many path matches as the number

of destination data matches. To each path we associate its length L, free-flow

travel-time T, final cost K and the list Ri of roads that compose it. Length

L is given by the sum of road lengths Li. Symmetrically, free-flow travel-time

T is given by the sum of road free-flow travel-times Ti, given by Ti = Li/Vi,

where Vi is the road free-flow speed described above.

It can happen that the path finding algorithm is aborted for all the des-

60



tination data matches. We interpret this fact by supposing that one of the

two data records has a very high positioning error. It could possibly be an

outlier due to GPS signal reflections on buildings. Another possible cause that

we observed is the absence from the road network database of the road the

vehicle is driving onto. This can happen for newly built roads. In any case,

we consider the original trajectory interrupted at this point and we perform

the global path matching procedure independently on the two parts.

5.1.3 Global best path matching

As declared in the introduction of this chapter, the aim of this phase of map-

matching is to match each GPS trajectory to a path on the road network.

At this point of the map-matching procedure, the sequence of GPS data for

each vehicle is grouped into trajectories and each data record has a list of pos-

sible road matches. For each couple of subsequent data records in a trajectory

we apply the path finding procedure described in section 5.1.2. This proce-

dure finds for every data match of the second record the path with shortest

travel-time connecting it to the data matches of the first record. So, consider-

ing the sequence of records in a trajectory, we now have different alternatives

for the global path match of the whole trajectory (Fig. 5.2). Each alternative

global path is associated with its travel-time cost, which is the sum of the

travel-time costs associated with the parts that compose it. Coherently with

the previous step, we chose as global best path match the global path with

lowest travel-time cost.

As apparent, in the process of choosing the global best path match, no

weight is given to data match affinity. The reason behind this choice is the

decision to give more relevance to the correct positioning of an entire path

and prevent the estimates on positioning uncertainties of just one point (the

data match) to have a radical influence. Thus, we give equal weight to all

matches. Nonetheless, the existence of more than one match per data is im-

portant because it allows for the evaluation of alternatives for the global path

match.

For subsequent regular trajectories (see section 3.1.1) linked by joint parked
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data records (see section 4.1.1), we proceed in a slightly different way. All the

steps described above are applied to the whole group of subsequent regular tra-

jectories. Obviously, for what concerns path finding, subsequent joint engine-

off and engine-on records are considered as just one record with a common set

of road matches. Thus, the global best path match describes the entire joint

sequence of trajectories. This is consistent with the assumption that joint

engine-on and engine-off records represent the same physical position.

Figure 5.2: Alternative global path matches. Figure shows a trajectory with

three records (green triangles): Da, Db, Dc; Each record has several road

matches (green dots), labeled with a progressive number; Each destination

road match j is connected with an origin road match i and each connecting

path (black line) is associated with its travel-time cost Ki,j; Globally, the tra-

jectory has two alternative global path matches (red and blue dotted lines),

each associated with its own global travel-time cost: K1 and K2.

5.1.4 Path consistency check

The next step of this phase is to check the consistency of the global path match.

To perform this check, the different parts of the global best path match are

considered separately. For each couple of subsequent records we know: the

length L of the part of the global path match that connects them, the time
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interval dt between the records and the length ds of the second record that

estimates the length of the real path driven by the vehicle between the two

records.

To begin with, we compute the residual ∆ = |L−ds|/ds between matched

path length and measured path length. If the residual ∆ is greater than 10%,

then the relative part of the global path match is considered inconsistent and

is discarded. We interpret this fact by assuming that the real path taken by

the vehicle is radically different from the shortest travel-time path.

We observe that, if this is the case, it is difficult to define a robust criterion

to isolate which other path the vehicle has taken, in an urban context. If the

vehicle did not follow one of the paths with the shortest travel-time, how can

we reasonably identify which of the many others it did take? We could look for

paths whose lengths are the closest to ds, but these are many in general and

far apart from each other and we do not have any reliable criterion to chose one

among the others. A possible way of making this choice less arbitrarily is to

refer to the past data for the vehicle. In fact, the paths that the vehicle repeats

in time with high frequency can be reasonably considered more probable than

others in general. Thanks to the availability of past vehicle data that we have,

we tested this approach and we obtained promising results. However, for now,

this technique is still under development and has therefore not been employed

in the process described here.

To continue, if the length consistency check is passed we then evaluate

V = L/dt. If this average speed is higher than 200 Km/h, then the relative

part of the global path match is considered inconsistent and is discarded.

We note that such a violation corresponds to a measured travel time dt

that is much smaller than the free-flow travel-time T computed for the matched

path, which we consider a lower bound. We interpret this fact by assuming

that one of the data records delimiting the path are affected by a very high

positioning error. Again, the record could possibly be an outlier due to GPS

signal reflections on buildings.
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The results presented in section 5.2.1 will show that discarded paths from

these filters are comparatively few. This fact indirectly supports the choice

of building the global path match phase on the simple assumption of least

travel-time.

5.1.5 Road transits computation

Finally, it is now possible to compute the road transits (see Tab. 1.1) along

the whole global best path match. Again, the different parts of the global best

path match are considered separately. Obviously, the paths discarded because

of inconsistency are not considered. For each couple of subsequent records we

know: the list of road Ri that compose the path that connects them, the path

length L and the time interval dt between the records.

Road transits are computed according to those quantities and basing on

the assumption that the path is taken driving at constant speed V = L/dt.

So, transit time dti for each road Ri is:

dti =
Li

V
= dt ·

Li

L
,

where Li is the length of road Ri.

We observe that during the step for path consistency check (section 5.1.4)

we did not discard paths whose average travel speed V is very low. In fact,

we interpret paths with consistent length L and small speed V as correct path

matches, driven under congested traffic conditions. Thus, after this interpre-

tation, these paths represent a very important piece of information on traffic

conditions and they are obviously not to be discarded. However, because we

approximate that the path is driven at constant average speed, the effects of

congestion are diluted along the whole path. We think that this consequence

is acceptable because it does consistently approximate the real propagation of

congestion along neighboring roads. However, as we will see in the following

section, occasions of matched paths with very low speed are comparatively not

frequent.
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5.2 Results and Applications

5.2.1 Path matching for Florence dataset

The global path matching procedure described in this chapter has been applied

on the Florence test dataset. Here we present an overview of the results.

As detailed in this chapter, path matching procedure attempts to find

the path on the road network that connects subsequent data records in a

GPS trajectory. Thus, obviously, this procedure is not applied to connect

subsequent data that belong to different trajectories (except the case of joint

parked records, see section 4.1.1). Moreover, for data records where data match

failed, path matching procedure could not be run either.

The following table reports the results for the whole dataset, showing the

number of successful path matches, the number of failures and the number of

cases where this phase could not be applied:

Successful path matches 2’982’391

standard path match 2’543’399

joint parking 438’992

Failed path matches 836’617

inconsistent length 809’327

inconsistent speed 27’290

No attempt: data match error 31’445

no matches for path origin 12’830

no matches for path destination 18’615

No attempt: trajectory interruption 191’555

irregular interruption 144’527

disjoint parking 47’028

TOTAL data 4’042’008

We observe that the path matching procedure was successful for 78% of the

cases where it was applied, while it failed for the remaining 22% of the cases.

As described in section 5.1.4, if the length L of a path match is not con-

sistent within 10% with the measured length ds, the path is discarded. As
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reported in the results table, the number of path matches discarded because

of this length consistency criterion amount to 21% of the cases where the pro-

cedure was applied. The distribution shown in Fig. 5.3 allows to evaluate

qualitatively the number of data records filtered with this criterion. The fig-

ure shows the distribution of the ratio L/ds for all 3.8 million matched paths.

The area delimited by the two vertical lines represents the number of paths

accepted by the length consistency criterion.

Figure 5.3: Distribution of the ratio L/ds used for the path length consistency

criterion. The area between the two vertical dotted lines represents the number

of paths accepted by the criterion.

We report that the percentage of paths showing signs of strong congestion

(average path speed V < 3 Km/h) amounts to 2% of the total successful path

matches (see section 5.1.5 for more details).

Moreover, we report that the percentage of best data matches chosen as

part of global best paths amounts to 80% of the total chosen data matches.

This fact gives indirect support to the overall consistency of our map-matching

approach.
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5.2.2 Towards real-time traffic monitoring

In this chapter we described how road transits are computed. For each couple

of subsequent records in a trajectory we identify the best path that connects

them. This path is composed by a sequence of roads and, for each of these

roads, we compute a road transit. Thus, path matching allows to have a

greater quantity of information on the dynamical state of roads than what can

be achieved by using data matches alone (see section 4.2.2). In particular, for

many roads of the network the number of road transits available is enough to

compute a robust estimate of the daily evolution of vehicle flux (φ), speed (v)

and density (ρ), without averaging on more days.

Foe each road transit we have the transit duration dti and the end time τi

(see Tab. 1.1). For each road R we can then estimate φR(t), vR(t) and ρR(t)

as follows:

φR(t) =
N

T
,

vR(t) =
1

N
·

N
∑

i

L

dti
= L · 〈1/dt〉,

ρR(t) =
1

L
·

N
∑

i

1

(T/dti)
=

N

L
·
〈dt〉

T
,

where L is the length of road R, T is the time resolution and N is the total

number of road transits on road R whose end time τi falls between t and t+T .

In Fig. 5.4, 5.5 and 5.6 we show the daily profiles of φR(t), vR(t) and ρR(t)

respectively, computed in the way described above for the same road in Rome

described in section 4.2.2. In this case, the profiles derive from 2’322 road

transits counted on May 5, 2010. Time resolution T is 15 minutes.

We compare these figures with Fig. 4.5, 4.6 and 4.7 respectively, showed

in section 4.2.2. We observe that the profiles computed in this section are in

agreement with the profiles computed previously, even if the new profiles are

slightly more noisy. This is obviously due to the fact that the profiles from data

matches are averaged over 21 days, while the profiles shown here are computed

with data relative to a single day. However, we can not exclude that part of

the fluctuations in in Fig. 5.4, 5.5 and 5.6 describe real hourly variations of

the computed quantities.
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Figure 5.4: Daily profile of φR(t). Profile computed from road transits for

Wednesday May 5, 2010.

Figure 5.5: Daily profile of vR(t). Profile computed from road transits for

Wednesday May 5, 2010.
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Again, the evaluation of the fundamental diagram yields interesting and

detailed information on traffic dynamics [25]. Fig. 5.7 shows φR vs. ρR for a

different road. Here the phases of congestion formation and dissolution are very

clearly visible. The image shows two curves with a similar trend. Each curve

describes a different rush-hour event for the road. We observe the temporal

evolution of the curves. Before rush-hour begins, the road is in the free-flow

regime. Then, as the vehicle density increases, the road enters the congested

regime, where flux stops increasing linearly with density. When rush-hour is

over, vehicle density decreases and the road dynamical state goes back towards

free-flow conditions following a different path in the fundamental diagram. The

overall evolution forms a closed loop that defines an hysteresis cycle.

Being able to compute φR(t), vR(t) and ρR(t) as they change along the

day is a very important result. From the perspective of the study of the

dynamic system of vehicular traffic, the availability of accurate profiles for

those quantities is very useful to develop, test and compare accurate models

of vehicle dynamics. But this result is also very important in the context of

the development of a real-time traffic monitoring system. For example, as

an immediate application, real-time computation of these quantities allows to

warn in advance when critical conditions are arising. Moreover, the availability

of this detailed information for virtually all the roads in the network, provides

the basis to study how critic traffic conditions propagate along the network.

And acquiring knowledge on this phenomenon is fundamental in order to define

reliable models for traffic now-casting.
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Figure 5.6: Daily profile of ρR(t). Profile computed from road transits for

Wednesday May 5, 2010.

Figure 5.7: Fundamental Diagram showing hysteresis cycles for two rush-hour

events.
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Conclusions

In this thesis we described a novel procedure for the map-matching of low-

sampling GPS data from vehicles. The procedure is based on simple assump-

tions and gives great importance to check the consistency of the results of each

of its phases.

The performance of our approach has been showcased on an extended off-

line path reconstruction task on the metropolitan area of Florence, Italy. For

each phase of the map-matching process we presented a detailed analysis of

the results and discussed validation plots. Globally, the algorithm proved to

be robust and accurate.

In addition to the description of the characteristics and functionalities of

the algorithm, we also showed its relevance as a tool for the study of traffic

dynamics. At the end of the respective chapters, we presented the research

opportunities that each of the three main phases of the map-matching process

made available. In particular, we remark the importance of the result obtained

by computing the daily profiles for road flux, density and average speed for

the whole urban road network of the test area.

Fig. 5.8 shows an example of the amount of information on traffic state

that this result makes available to us. The figure shows the color-coded speed

map for the urban road network of Florence at a certain moment in time.

Speed values are taken from the profiles of this quantity computed for each

road. In an analogous way, we can compute flux maps and density maps for

all the road in the network where we have enough data.

This type of measures, and its richness, will allow for a detailed study of

the properties of traffic flow. Of particular importance will be to study how

71



Figure 5.8: Speed map for the urban road network of Florence, computed for

10.30am onWednesday March 5, 2008. Colors code speed in Km/h: 0 < Red <

10 < Orange < 20 < Y ellow < 30 < Green < 50 < Blue < 80 < Cyan.
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instabilities arise from steady conditions and how they propagate along the

road network.

For what concerns the future developments to the map-matching proce-

dure, the algorithms that compose it are under constant evolution and im-

provement. In particular, we plan to model more accurately the shape of the

error distribution for GPS data positioning. In this way, we expect to improve

the ability of the measure of affinity between data and roads to represent the

quality of a match. Moreover, we are testing different ways of taking into ac-

count past data for the vehicles in the phase of global path finding. In fact, we

expect that the information on travel habits, specific for every vehicle, available

to us from these past data can improve the efficiency of consistent path iden-

tification. Then, we are working on an overall improvement in computation

efficiency and optimization of the various algorithms.

All these improvements are important in the framework of the expected

use of this map-matching procedure in the immediate future. Specifically,

we plan to adapt the procedure to real-time elaboration and to extend the

working area to the entire Italian road network. In fact, the final aim is the

set up of an infrastructure for nation-wide real-time traffic monitoring. The

implementation of this service is part of the contributions of the Physics of the

City Laboratory to the Pegasus project [22] on intelligent traffic management,

financed by the “Industria 2015” action of the Italian Government [23].

The development of such a service will be an interesting result on its own.

However, the plans are to further evolve the monitoring infrastructure into a

traffic now-casting system. This will be possible by integrating the information

of real-time traffic conditions with short-term predictive models for vehicle

dynamics.

In conclusion, as nowadays we are used to weather forecasts and to its

impact on our daily lives, in the near future, we can reasonably expect to be

able to rely also on a similar system for traffic forecast, even if short-term,

with all the improvements to the quality of our lives that this implies.
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