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1

Introduction

In recent years, considerable progress has been made in the field of miniaturization.

It is now effectively possible to miniaturize a great variety of different systems reaching

from mechanical, fluidic, electromechanical and thermal devices down to nanometer-

sized machines where crucial processes need to be controlled on sub-micrometer length

scales. Many of these systems employ fluidic flows operating under extreme conditions

difficult to explore by experimental as well as theoretical methods. The importance of

the subject naturally led to the creation of a new discipline — microfluidics[1]. Mi-

crofluidics can be defined[2] as the study of flows that are simple or complex, mono- or

multiphasic in nature but certainly involved in the mechanics of artificial microsystems.

The latter usually refers to novel fabrication techniques[3].

The present PhD thesis summarizes two examples of research in microfluidics. Both

times water was the subject of interest, once in the liquid state (droplets adsorbed on

chemically functionalized surfaces), the other time in the solid state (ice snowflakes and

their fractal behaviour).

The first problem deals with a slipping nano-droplet of water adsorbed on a surface

with photo-switchable wettability characteristics. Main focus was on identifying the

underlying driving forces and mechanical principles at the molecular level of detail.

Molecular Dynamics (MD) simulation was employed as investigative tool owing to its

record of successfully describing the microscopic behaviour of liquids at interfaces (see

for example ref. [4] and references therein).
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1. INTRODUCTION

To reproduce the specialized surface on which a water droplet can effectively “walk”,

a new implicit surface potential was developed. Applying this new method the experi-

mentally observed droplet slippage could be reproduced successfully.

Next the movement of the droplet was analyzed at various conditions emphasizing

on the behaviour of the water molecules in contact with the surface. The main objec-

tive was to identify driving forces and molecular mechanisms underlying the slippage

process.

The second part of this thesis is concerned with theoretical studies of snowflake

melting.

The mechanism of snow-crystal growth leading to the many different forms of

snowflakes as well as the corresponding melting dynamics are both phenomena not

entirely understood by today’s models. The subject is interesting not only from a basic

scientific point of view but has a practical component too, for example in related areas

such as hydrology or climate research. Illustrative topics were for example avalanche

prediction[5, 6] or dry snow scattering to mention just a few. Both of the examples

seem to be connected to surface roughness, hence the study subject of this thesis.

In the present work snowflakes are represented by filled von Koch-like fractals[7] of

mesoscopic beads.

A new algorithm has been developed from scratch to simulate the thermal collapse of

fractal structures based on Monte Carlo and Random Walk Simulations (MCRWS).

The developed method was applied and compared to Molecular Dynamics simulations

regarding the melting of ice snowflake crystals and new parameters were derived from

this comparison.

Bigger snow-fractals were then studied looking at the time evolution at different

temperatures again making use of the developed MCRWS method. This was accom-

panied by an in-depth analysis of fractal properties (border length and gyration radius)

in order to shed light on the dynamics of the melting process.
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2

Droplet slippage on special

surfaces

2.1 Experimental background

Specialized surfaces coated with stimuli-responsive rotaxanes have been suggested

by P. Rudolf et al. (2005)[8] as molecular switches to trigger the slippage of a liquid

drop. Such rotaxanes capable of working as a wettability switch are stimuli-responsive

molecular shuttles in which the mobile element — the macrocycle — is translocated

from one position (“station”) of the thread (the static element) to the other position

of the thread (at the opposite end) via biased Brownian motion.

This movement is in response to an external signal (for example, light, electrons, tem-

perature, pH, nature of the environment, reversible covalent bond formation, and so

on)[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

These systems are viewed as potential elements for molecular machinery and the

change in position of the subunits has been used as a nanoscale mechanical switch to

vary physical properties such as conductivity[13], induced circular dichroism[14] and

fluorescence[15, 16, 17, 18].

In applying a system of the type shown in figure 2.1 Rudolf et al. speculated

on a stimuli-induced co-conformational change: the photoisomerization[19] of the fu-

maramide station (which has a high binding affinity for the ring) to maleamide (which

has a low binding affinity for the ring) induce the macrocycle to conceal a short fluo-

roalkane segment (the tetrafluorosuccinamide station).

3



2. DROPLET SLIPPAGE ON SPECIAL SURFACES

Figure 2.1: Photo–responsive rotaxane.

Contact angles[20] of liquid droplets are commonly used to describe the tendency

of a liquid to “wet” a solid surface [21].

Since contact angles of both polar as well as apolar liquids show considerable depen-

dence on even small amounts of fluoroalkane[22], they appear to provide a convenient

means to characterize the photo-switchable wettability system of Rudolf et al. So, the

shuttling effect described before was used to produce a rotaxane-terminated surface

with photo-switchable wettability characteristics[23] (see figure 2.2).

Indeed, small (0.5–5 µl) droplets of several low-volatility liquids (for example, water,

formamide (H2NCHO), ethylene glycol and diiodomethane (CH2I2)) was deposited on

rotaxane-terminated surfaces; each of them showed significantly (8–22◦) lower contact

angles after irradiation for 5 min with ultraviolet light[24, 25, 26, 27, 28, 29].

A 1.25 µl drop of diiodomethane, the liquid that showing greatest discrimination

between the pristine and irradiated surfaces, was deposited on functionalized glass and

irradiated with a perpendicular beam of 240–400 nm light focused on one side of the

drop and the adjacent area in order to produce a gradient in the surface free energy

across the length of the drop (figure 2.3a).

4
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2.1 Experimental background

Figure 2.2: Photo-switchable Self–Assembled Monolayer.

The irradiation caused the reduction of the front of the drop contact angle and its start

of advance in direction of the polarophylic side (figure 2.3b). The advancing contact

angle remained lower than the receding contact angle during this initial extension pe-

riod, the inequality of contact angles illustrating the difference in surface properties

caused by the irradiation.

This initial period was followed by a subsequent phase of steady transport during which

the entire droplet moved at a mean speed of ∼ 1µm/s and contact angles on the illu-

minated and non-illuminated side remained essentially equivalent (figure 2.3c).

The drop eventually stops after having traversed a distance of ∼ 1 mm (figure 2.3d).

Mica provides a flatter and more regular surface than glass and consequently self-

assembled monolayers (SAM) are generally more ordered using Au(111) deposited on

mica. Although the contact angles were the same for the SAMs on the different sub-

strates the transport of CH2I2 was significantly more efficient using mica. Indeed, the

rear end of the droplet could be transported more than 1.5 mm on such a different type

of photo-responsive surface (figure 2.4).

A final experiment was concerned with the potential of photo-responsive molecular

switches to do macroscopic work against gravity. Here the goal was to make use of

5

2/figures/fig_petra2.eps


2. DROPLET SLIPPAGE ON SPECIAL SURFACES

Figure 2.3: Light-driven transport of drop slippage on functionalized glass.

the aforementioned principle and enforce an “uphill movement” of a small droplet. In

fact, the authors could show that at the same experimental conditions described in the

previous scenario, a small droplet could be driven up a 12◦ incline using functionalized

mica (figure 2.5)[30].

6
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2.1 Experimental background

Figure 2.4: Light-driven transport of drop slippage on functionalized mica.

Figure 2.5: Light-driven transport of drop on functionalized mica 12◦ incline.

7
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2. DROPLET SLIPPAGE ON SPECIAL SURFACES

2.2 Computational methods

In this section the theoretical and computational basis of the methods used in this

PdD project. The fundamental theory that is behind Molecular Mechanics and Molec-

ular Dynamics is reported together with the most important mathematical algorithm

methods used. A brief excursus on the main theoretical models developed to describe

liquid water is presented.

2.2.1 Computer simulations of liquids

Molecular Dynamics (MD) simulations permit the study of complex systems, i.e.

the systems containing a lot of interacting particles.

Liquids represent the state of matter most frequently studied by MD methods. This

is due to historical reasons, since both solids and gases have well-developed theoretical

foundations, but there is no general theory of liquids. For solids, theory begins by

assuming that the atomic constituents undergo small oscillations about fixed lattice

positions; for gases, independent atoms are assumed and interactions are introduced as

weak perturbations. In the case of liquids, however, the interactions are as important

as in the solid state, but there is no underlying ordered structure to begin with. It

is now over 35 years since the first computer simulation of a liquid was carried out at

the Los Alamos National Laboratories in the United States on a super-computer called

MANIAC. Rapid development of computer technology makes now possible to perform

long simulation with many particles. After an initial groundwork on atomic systems,

computer simulation developed rapidly[31].

Due to its ubiquity in our environment, water still remains one of the most inter-

esting liquid to study and so far a lot of theoretical models were developed in order to

describe the experimental properties of this liquid.

2.2.2 Molecular Mechanics and Force Fields

The microscopic state of a molecular system can be described by defining the

position (qi) and momentum (pi) of each particle of the system at every time.

Considering the Born-Oppenheimer approximation, the Hamiltonian of a system can

be expressed as a function of the nuclear variables, the rapid motion of the electrons

having been averaged out. This classical approach requires the use of Force Field (from

8



2.2 Computational methods

now on, FF ) methods, known as Molecular Mechanics (MM), which consider the total

potential energy of a chemical structure as a fun[21]ction of the only nuclear atomic

positions. Making the additional approximation that a classical description is adequate,

we may write the Hamiltonian H of a system containing N particles as a sum of kinetic

and potential energy:

H(qN , pN ) = K(pN ) + V (qN ) (2.1)

Usually the kinetic energy K takes the form

K =
N
∑

i=0

∑

α

p2iα
2mi

(2.2)

where mi is the molecular mass and the index runs over the different (x, y, z) com-

ponents of the momentum of the molecule i.

The potential energy V may be divided into terms depending on the coordinates

of individual atoms for the given conformation, such as the stretching of bonds, the

opening and closing of angles, the rotation about single bonds and the long range

interactions. It can be expressed as follows:

V (qN ) =
∑

bonds

ki
2
(li − li,0)

2 +
∑

angles

ki
2
(θi − θi,0)

2 +

∑

torsions

VN

2
[1 + cos(nω − γ)] +

N
∑

i=1

N
∑

j>1

{

4εij

[

(
σij
rij

)12 − (
σij
rij

)6
]

+
QiQj

4πε0rij

}

(2.3)

Equation 2.3 represents the simplest MM Force Field.

As it is shown in Figure 2.6, the mechanical molecular model considers atoms as

spheres and bonds as springs.

The mathematics of spring deformation can be used to describe the ability of bonds

to stretch, bend, and twist. In fact, the first term of the potential energy function in

equation 2.3 is similar to the Hookes law for a spring deformation. It represents the

9



2. DROPLET SLIPPAGE ON SPECIAL SURFACES

Figure 2.6: Schematic of a molecular force field. The mechanical molecular model

considers atoms as spheres and bonds as springs. The mathematics of spring deformation

can be used to describe the ability of bonds to stretch (a), bend (b), and twist (c). Non-

bonded atoms (greater than two bonds apart) interact through van der Waals attraction,

steric repulsion, and electrostatic attraction/repulsion. These properties are easiest to

describe mathematically when atoms are considered as spheres of characteristic radii (d,e).

bond stretching and describes the interaction between pairs of bonded atoms by a har-

monic potential, increasing in energy as the bond length li deviates from its reference

value li,0. The second term is the angle of bending θi of the molecule, again modelled

using a harmonic potential. In both terms, ki represents the forces constant. The third

term is a torsional potential that shows how the energy changes as a bond rotates: the

Vn parameter controls the amplitude of the curve, the n parameter controls its period-

icity and reflects the type symmetry in the dihedral angle, and γ shifts the entire curve

along the rotation angle axis ω.

Non-bonded atoms (greater than two bonds apart) interact through van der Waals at-

traction, steric repulsion, and electrostatic attraction/repulsion. These properties are

easiest to describe mathematically when atoms are considered as spheres of characteris-

tic radii. Therefore the fourth contribution is the non-bonded term, calculated between

all pairs of atoms belonging to different molecules or to the same molecule but sepa-

rated by at least three bonds. In a simple FF , the non-bonded term is usually modelled

using a Coulomb potential term for electrostatic interactions, where Q are the charges

and rij the distances, and a Lennard-Jones or Buckingham potential for Van der Waals

10
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2.2 Computational methods

interactions, where εij and σij control the depth and position (interatomic distance) of

the potential energy well for a given pair of non-bonded interacting atoms. The FF ,

thus, enables the potential energy of a molecule (or of a system of molecules) to be

calculated rapidly and pretty accurately. It also allows describing the energy changes

of the molecule caused by internal system changes, like rotations around a bond, as well

as the interactions between non-bonded parts of the system. More sophisticated FF

may have additional terms, but they contain the same four fundamental components.

Few important features characterize a Molecular Mechanics Force Field:

• The parameter set implemented in the functional form. Parameters quantitatively

define the single energy contributions for each group of interacting atoms and, as

a consequence, they govern the computation of the whole energy function.

• Transferability of parameters. The same set of parameters can be used to model

a series of related molecules, not explicitly included during the parameter optimi-

sation, rather than having to define a new set of parameters for each individual

molecule. Transferability has some limitations: the larger the number of param-

eters that are extrapolated, the lower the accuracy of the force field.

• The empirical form. There is not an “a priori” form for a FF. The functions of a

FF very often are meant to offer a compromise between accuracy and computa-

tional efficiency: the most accurate functional form may often be unsatisfactory

for efficient computation.

• The Atom Type concept. It is more that the simple atomic number. It contains

information about the hybridization state (i.e. an implicit description of the

motion of its electrons) and, sometimes, about the local environment of an atom.

When preparing an input for MM it is necessary to assign an atom type for each

atom in the system.

The parameterization of the FF represents the most difficult and time-consuming

step in a MM calculation. Once the right functional form for describing the system

has been chosen, one has to decide which set of parameters to introduce. Derived

parameters are expected to be transferable to other classes of molecules. Transferability

is one of the most important properties of a force field.

11



2. DROPLET SLIPPAGE ON SPECIAL SURFACES

2.2.3 Energy minimization methods

The most popular application of the empirical potential energy function is to find

the geometry of a molecule (or an assemblage of molecules) which corresponds to a

minimum of the potential energy function. In MM, the energy of a molecule in its

ground electronic state is a function of only the coordinates of its atoms. If nuclei

move, the energy changes. Such changes in energy can be considered as displacements

on a multidimensional surface, called the Potential Energy Surface (PES).

The minimization of the potential energy function (i.e., geometry optimization)

involves a search for the minimum of a function and usually requires calculations of

derivatives of the potential energy function versus independent variables (in our case,

coordinates). Most programs use cartesian coordinates as independent variables, how-

ever, in some cases, internal coordinates may be used. The derivatives of potential

energy are denoted as:

gi =
∂V

∂xi
; Hij =

∂2V

∂xi∂xj
(2.4)

where gi is the gradient (i.e., first derivative) of the potential energy V with respect to a

cartesian coordinate xi of an atom; ij , called Hessian matrix, is the second derivative of

the energy with respect to the cartesian coordinates. In most modern programs these

derivatives are calculated analytically, i.e., the appropriate mathematical formulae for

corresponding terms are incorporated into the program. Some older codes compute

derivatives numerically by approximating the slope of an energy function (or its gradi-

ent in the case of second derivatives) from finite differences. The derivatives are used

not only in function minimization but also yield forces acting on atoms (from energy

gradients) and normal modes of vibration (from the Hessian matrix).

There are three major approaches to find a minimum of a function of many variables:

• Search Methods: utilize only values of the function itself. They are usually

slow and inefficient, but are very simple to program, since deriving cumbersome

formulas for derivatives is not necessary. In spite of their inefficiency, the search

algorithms are infallible and always find a minimum. For this reason, they are

often used as an initial step, when the starting point in optimization is far from

the minimum. Another disadvantage of search techniques is that they are very
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inefficient for a large number of optimized variables and converge very slowly

when the number of variables is more then 10.

• Gradient Methods: utilize values of a function and its gradients. These are

currently the most popular methods in molecular mechanics. They offer a much

better convergence rate than search methods and do not require a lot of computer

memory (only 3N first derivatives are needed). However, in some situations they

fail to converge to a minimum. The conjugated gradient algorithm is considered

the most robust in this class.

• Newton Methods: are the most rapidly converging algorithms which require

values of function, and its first and second derivatives. The memory required

for storing the Hessian matrix is proportional to N2 (i.e., prohibitive for large

macromolecules). The BFGS algorithm is considered the most refined one.

In general, the minimization methods are iterative. They require on input some initial

estimate for the position of the minimum, and provide a better estimate for the mini-

mum as a result. This corrected estimate is used as an input into the next cycle (i.e.

iteration) and the process is continued until there is no significant improvement in the

position of the minimum.

Most search methods and minimization methods using derivatives are the descent

series methods, i.e., each iteration results in a solution which corresponds to a lower

(or equal) value for the energy function:

V (x(start)) ≥ V (x(1)) ≥ V (x(1))... ≥ V (x(min)) (2.5)

As a consequence, these methods can only find the minimum closest to the starting

estimate and will never cross to a minimum (however deep) if it is separated from the

starting estimate by a maximum (however small). There is no general way of finding

a global minimum (i.e., the minimum corresponding to the lowest possible value of the

function). A different initial geometry will usually lead to a different final minimum.

Only on very simple molecules will the single geometry optimization yield the global

minimum on the first trial. To find a global minimum one has to perform many mini-

mizations and use different initial coordinates for each run[32].
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2.2.4 Molecular Dynamics methods

Computer simulation methods allow the analysis of complex systems, by produc-

ing replications of the macroscopic system with a handy and manageable number of

particles. A computer simulation generates a representative ensemble of possible con-

figurations of these small replications: in this way accurate calculations of structural

and thermodynamic properties can be performed, by analysing the mechanical prop-

erties of molecules. Therefore the behaviour of the system in time can be studied and

properties such as internal energy, entropy, pressure, temperature and so on, can be

determined.

Among all the different kinds of computer simulation methods available, Molecular

Dynamics (MD) simulations were performed during my PhD project to study the

dynamical evolution of collapsing bubble.

MD simulations address numerical solutions of Newtons equations of motion on an

atomistic or similar model of a molecular system. In fact, all of the information needed

to calculate the dynamics of a system can be found from the potential energy function

V of the system.

The force F on atom i in the system can then be determined from the equation:

Fi = −∇iV (2.6)

Using the Newton classical approximation, MD simulates the motion of particles in

a system they react to forces caused by interactions with other particles. Forces so

evaluated are used to determine accelerations. Particle velocities are initially deter-

mined by a random distribution, but then they are updated according to the calculated

accelerations.

For the continuous nature of the potential functions describing interactions between

atoms or molecules, it is necessary to integrate the equations of motion by dividing the

calculation into a series of short time steps, which should be at least one order of

magnitude shorter than the shortest motion simulated. An important assumption to

be made is to consider forces acting on the atoms constant over the time-interval: at

each step forces are recomputed and a new set of accelerations, velocities and positions
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are obtained. Following this technique, MD simulations generate a trajectory of the

system describing its evolution over time.

The general property A of the system is calculated as an average upon all the M

visited states:

〈A〉 = 1

M

M
∑

i=1

Ai(q
N , pN ) (2.7)

where q refers to the coordinates and p to the linear momenta of the N particles

constituting the system.

MD simulations can thus be considered as a deterministic method: they provide

information about the “real” evolution of the system over time, and they allow to

go back over past states of the system as well as to predict future arrangement of

its particles. This dynamical view of molecular systems thus provides a useful and

important tool for studying time-dependent processes.

2.2.5 Steps in a MD Simulation

The first thing before starting with a MD simulation is to decide which FF to use

to model the interactions between atoms or molecules in the system.

A simulation can then be described according to four principal points:

• Choice of the initial configuration. This is a crucial moment of the entire

simulation. Its very important to set up starting configuration of the system as

much as possible similar to the real conformation; in fact, wrong starting coor-

dinates may compromise the whole simulation process. Generally, homogeneous

liquids (i.e., composed by molecules of the same type) are described by a standard

lattice structure (for example, a face-centred cubic lattice) as starting configura-

tion. The dimensions of the lattice are chosen in such a way to respect as much

as possible the real density of the simulated systems. Usually, before proceed-

ing with the simulation, a first minimization of the system energy is required in

order to eliminate any term of high energy, which may cause instability in the

simulation.

15



2. DROPLET SLIPPAGE ON SPECIAL SURFACES

• Equilibration phase. The system is allowed to evolve from the initial config-

uration until certain stability in the simulation is reached. At this stage, ther-

modynamic and structural properties, such as energy, temperature, pressure, are

monitored: once their values have become stable, equilibration is reached. Or-

der parameters can be also used to check when an equilibration phase can be

considered completed.

• Production phase. This is the real simulation stage. The system is set free to

evolve and it is possible to calculate reliable properties.

• Analysis. Properties not calculated during the simulation from the molecular

mechanics program are evaluated and the configurations produced (and stored)

are examined. This phase is important not only to know how the system changes,

but also to check if any problems occurred during the simulation after the equi-

libration step.

When starting an MD simulation, the initial velocities of all the molecules must be

specified: this usually is done by randomly selecting a set of velocities from the Maxwell-

Boltzmanns distribution at the temperature of the simulation.

p(vix =

(

mi

2πkBT

)1/2

exp

(

−1
2miv

2
ix

kBT

)

(2.8)

The Gaussian distribution of Equation 2.8 gives the probability p(vix) that an atom i

of mass mi, has a velocity vix in the x direction at the temperature T . Initial velocities

are usually adjusted to give a zero total linear momentum:

P =

N
∑

i=1

mivi = 0 (2.9)

The normal process of equilibration will then redistribute the energy amongst the dif-

ferent degrees of freedom. Precise adjustments to the kinetic temperature are made by

scaling velocities during equilibration.

Careful monitoring of the behaviour of properties during the simulation can help

to check if problems occur, and in this unfortunately case, the simulation has to be

restarted from scratch after removing the cause of the problem.
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2.2.6 Finite difference methods in MD simulations

Finite difference methods are the numerical recipes used in MD simulations to

integrate equations of motion and to generate trajectories, under the assumption that

the energy potential terms are pair wise additive. If we consider a system of atoms,

with Cartesian coordinates ri and the usual definition of K (Eq. 2.2) and V (Eq. 2.3)

then the equation of motion becomes:

mir̈i = Fi (2.10)

where mi is the mass of atom i and Fi is defined by Equation 2.6.

For a given FF characterizing the physical system, the integration method is re-

sponsible for the accuracy of the simulation results. If the integration method works

correctly, the simulation will provide exact results, within the errors due to the com-

puter finite number representation. However, any finite difference method is naturally

an approximation for a system evolving continuously in time. An integration algorithm

or integrator is required to have some well defined features such as:

• Accuracy. It has to approximate the true trajectory.

• Stability. It has to avoid small perturbations generating numerical instabilities.

• Robustness. It should allow integrations for relatively long time steps.

A standard method for solution of ordinary differential equations is the finite differ-

ence approach. Given the molecular positions, velocities, and other dynamic informa-

tion at time t, we attempt to obtain the positions, velocities etc. at a later time t+ δt.

The equations are solved on a step-by-step basis; the choice of the time interval δt will

depend somewhat on the method of solution, but δt will be significantly smaller than

the typical time taken for a molecule to travel its own length.

The simplest and most straightforward way to construct an integrator is by ex-

panding positions and velocities in Taylor series. Dividing the simulation in fixed time

intervals, δt, the expansion reads:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 +

1

6
b(t)δt3 + . . . (2.11)

v(t+ δt) = v(t) + a(t)δt+
1

2
b(t)δt2 + . . . (2.12)
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a(t+ δt) = a(t) + b(t)δt (2.13)

where v is the velocity, a the acceleration, and b the third derivate, and so on.

The Verlet algorithm[33] is probably the most used method for integrating the equa-

tions of motion in MD simulation. This method uses the positions and the accelerations

at the time t, and the positions from the previous step, r(t− δt), to calculate the new

positions at t+ δt. The Verlet algorithm equations are written in the following way:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 + . . . (2.14)

r(t− δt) = r(t)− v(t)δt+
1

2
a(t)δt2 + . . . (2.15)

By adding the two last equations one obtains:

r(t+ δt) = 2r(t)− r(t− δt) = r(t)a(t)δt2 (2.16)

In the Verlet integration algorithm velocities do not appear explicitly, but they can

be calculated in several ways. One of these is the following:

v(t) = [r(t+ δt)− r(t− δt)] /2δt (2.17)

Implementation of the Verlet algorithm is straightforward and the storage requirements

are modest and include two sets of positions (r(t) and r(t− δt)) and the accelerations,

a(t). One of its drawbacks is that positions r(t + δt) are obtained by adding a small

term, a(t)δt2, to the difference of two much larger terms (see Eq. 2.16). This may cause

a loss of precision. The Verlet algorithm shows other problems, like the difficulty to

calculate the velocities, which are not available until the positions have been computed

at the next step. In addition, it is not self-starting: the new positions are obtained

from the current positions r(t) and the positions from the previous step, r(t− δt). At t

= 0, there is only one set of coordinates and it is necessary to employ some other ways

to obtain positions at time, tδt.

A large number of variations of the Verlet algorithm have been developed:
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• The velocity Verlet method[34] evaluates positions, velocities and accelerations at

the same time and this does not affect negatively the precision of the calculation:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 (2.18)

v(t+ δt) = v(t)− 1

2
[a(t) + a(t+ δt)] δt (2.19)

The velocity Verlet algorithm is actually implemented as a three-stage procedure,

the new velocities requiring accelerations at the times t and t+ δt. Thus, as first

step, positions at the time t+ δt are calculated, using velocities and accelerations

at time t, and then, velocities at time t+ 1
2δt are determined, using the equation:

v(t+
1

2
δt) = v(t)− 1

2
a(t)δt (2.20)

The new forces are then computed from the current positions, thus giving a(t+δt).

In the final step, the velocities at time t + δt are calculated using the following

relation:

v(t+ δt) = v

(

t+
1

2
δt

)

+
1

2
a(t+ δt)δt (2.21)

• The Beemans algorithm[35] uses a more accurate expression for the velocities,

and, as a consequence, gives a better energy conservation and the kinetic energy

can be calculated directly from the velocities:

r(t+ δt) = r(t) + v(t)δt+
2

3
a(t)δt2 − 1

6
a(t− δt)δt2 (2.22)

v(t+ δt) = v(t) +
1

3
a(t)δt+

5

6
a(t)δt− 1

6
a(t− δt)δt2 (2.23)

All these methods have similar accuracies and are expected to produce identical

trajectories in coordinate space.

2.2.7 MD simulations at constant Temperature and Pressure

Molecular dynamics simulations can be performed sampling the phase space of

the system considered in ensembles: the most frequently used are the NV E or micro-

canonical ensemble, the NV T or canonical ensemble, the NPT or isothermal-isobaric

ensemble, and the VT or grand canonical ensemble[31].
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The need to maintain the temperature constant during a simulation arises from

different reasons. For example, one may wish to know how a system behaves under

certain temperature conditions, such as for the unfolding of protein, or in a phase tran-

sition or, also, if an annealing process has to be simulated. Moreover, it is worthwhile

remembering that the temperature can be considered as an external stimulus affecting

the macroscopic behaviour of a given system.

Being the temperature of the system closely related to the time average of the kinetic

energy, it can be left unchanged by scaling the velocities[36] of the particles, with a

multiplying factor λ, or by coupling the simulated system to an external bath[37] with

a constant temperature. In the first case, the relative temperature change is given by

the following equations:

∆T =
1

2

N
∑

i=1

2

3

mi(λvi)
2

Nkb
− 1

2

N
∑

i=1

2

3

miv
2
i

Nkb
(2.24)

∆T = (λ2 − 1)T (t) (2.25)

λ =
√

Tnew/T (t) (2.26)

In the second treatment, the bath acts as a source of thermal energy, adding or re-

moving heat from the system introducing the possibility to change atomic velocities

at each step. The rate of change of temperature is proportional to the difference in

temperature between the bath and the system:

d(T )

dt
=

1

τ
(Tbath − T (t)) (2.27)

The scaling factor for the velocities reads:

λ2 = 1 +
δt

τ

(

Tbath

T (t)
− 1

)

(2.28)

If τ is large, then the coupling is weak. If τ is small, the coupling is strong. When

the coupling parameter equals the time step, the algorithm becomes equivalent to the

simple velocity scaling method.

In the same way, one may wish to keep the pressure constant during a simulation:

this enables the study of certain phenomena such as the onset of pressure induced
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phase transitions. Many methods used for pressure control are similar to those used

for temperature: the pressure is maintained constant by simply scaling the volume, or

by coupling the system to an external pressure bath. The rate of the pressure change

is given by:
d(P )

dt
=

1

τP
(Pbath − P (t)) (2.29)

τP is the coupling constant, Pbath is the pressure of the bath, and P (t) is the ac-

tual pressure at time t. Introducing the system compressibility, k, the volume of the

simulation box is scaled by a factor λ, equivalent to scaling the positions by λ1/3. Thus:

λ = 1− k
δt

τP
(P − Pbath) (2.30)

r′i = λ1/3ri (2.31)

2.2.8 Force Fields for Liquid Water

In comparison with all inorganic substances having similar molecular sizes, water

exhibits a remarkable set of “anomalous” physical properties that have played a pri-

mary role in the formation of a natural environment suitable for the development and

maintenance of life.

Many FF for molecular simulations of liquid water have been developed over the past

years in order to describe the structure of water, on the basis that if the (known) model

can successfully predict the physical properties of liquid water then the (unknown)

structure of liquid water is determined[38, 39].

The most popular potential models of intermolecular interactions keep the geometry

of water monomer fixed with the charge distribution represented by three or four point

charges equal to fractions of an electron charge. They also involve orienting electrostatic

effects as Lennard-Jones sites that may or may not coincide with one or more of the

charged sites (see figure 2.7). The Lennard-Jones interaction accounts for the size of

the molecules. It is repulsive at short distances, ensuring that the structure does not

completely collapse due to the electrostatic interactions. At intermediate distances it is

significantly attractive but non-directional and competes with the directional attractive

electrostatic interactions. This competition ensures a tension between an expanded
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Figure 2.7: Water models. Models type a, b and c are all planar whereas type d is

almost tetrahedral.

tetrahedral network and a collapsed non directional one (e.g. similar to that found in

liquid noble gases)[40].

Generally each model is developed to fit well with one particular physical struc-

ture or parameter (e.g. the density, radial distribution function). Also, there is still

disagreement over which value of some physical parameters to use, e.g. for the dipole

moment. Whether model results agree with other physical properties of water then acts

as proof (or otherwise) of their utility. The more fitting parameters that are required

by the model (and some require over 50), the better the fit. Some models show a lack

of robustness due to their sensitivity to the precise model parameters, the system size

or the calculation method.

A recent review listed 46 distinct models[41], so indirectly indicating their lack of

success in quantitatively reproducing the properties of real water. They may, however,

offer useful insight into water’s behaviour. Although such simple models are of great

utility, no universally applicable model can be identified at this time. It should also be

noted that many simulations are performed with just a few hundred water molecules

within rectangular periodic boxes no more than 2.5 nm along each edge for times
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equivalent to a few picoseconds; conditions that reduce discovery of long-range effects

and introduce artefacts. Use of cut-off lengths (even long ones) in the intermolecular

interactions may also introduce artefacts. It should be noted that there is a strong

correlation between the length scale of any water structuring and the time scale which

is required to see it.

Note, however that water is not a spherically symmetrical molecule as judged by

the variation in the van der Waals radii. Also, in these models the Lennard-Jones

interaction exerts a repulsive effect on hydrogen bonding whereas some report it is

attractive even at this close contact. The Lennard-Jones potential is made up of a

twelfth power repulsive term and a sixth power attractive term:

V LJ
r = 4ǫ

[

(

σ

rij

)1

2−
(

σ

rij

)6
]

(2.32)

Shown below in Figure 2.8 is the Lennard-Jones potential for the SPC/E model

(solid red line). The σ parameter gives the molecular separation for zero interaction

energy. The minimum energy (−ǫ) lies 12% further at σ × 21/6 Å. Also shown (dotted

blue line) is an equivalent Buckingham potential (σ = 3.55 Å, ǫ = 0.65 kJ mol−1,

γ = 12.75); the σ parameter in the Buckingham potential gives the σ × 21/6 position

in the Lennard-Jones potential.

V Buckingham
r =

ǫ

1− 6/γ

(

6

γ
exp

[

γ
(

1− rij
σ

)]

−
(

σ

rij

)6
)

(2.33)

Models may be checked for agreement with gas phase clusters (e.g. water dimers)

before use in liquid water simulations. Such compliance, however, should not be a

necessary prerequisite for accurate liquid water predictions.

2.2.9 The SPC water model

In this project, the SPC (Simple Point Charge) model[42, 43] for water was cho-

sen, because despite its simplicity, it is reasonably successful to perform liquid water

simulations.
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Figure 2.8: Lennard-Jones potential for the SPC/E model (solid red line) and

an equivalent Buckingham potential.

The SPC model consists of a tetrahedral water molecule (figure 2.9) with an O–

H distance of 0.1 nm, with three centres of concentrated charge: a predominance of

positive charge on the H atoms (qH = +0.41 e) and excess negative charge on the O

atom (qO = −0.82 e), and a Lennard-Jones interaction on the oxygen position, given

by

VLJ(r) =

(

A

r

)12

−
(

B

r

)6

(2.34)

where A = 0.3428 (kJ/mol)1/12nm and B = 0.37122 (kJ/mol)1/6nm.

The assumption that there are point charges is an approximation that leads to an

incorrect value for the permanent dipole moment of the water. To correct this, the H–

O–H bond angle is changed to 109.47◦ in the model (compared with the experimentally

found H–O–H bond angle of 104.5◦).The results of the charge concentration and the

widened V-shape bond angle is that the permanent dipole moment of the SPC model

water molecule has a value close to that measured in experiment. It has also an effect

on the mobility of the molecule. The molecule is able to move faster than it would in

“real” water due to the missing two lone electron pairs in the SPC model. This effect

however decreases when the temperature is increased.

The dipole moment of the SPC model is 2.27 D, compared to 1.85 D for the isolated

molecule. The diffusion coefficient of the model is 3.6×10−5 cm2s−1 at 300 K, compared

to the experimental value of 2.4× 10−5.
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Figure 2.9: The SPC water molecule.

2.2.10 NAMD: Scalable Molecular Dynamics

In order to conduct MD simulations, various computer programs have been devel-

oped, originally developed for serial machines. Simulation of large molecular systems,

however, require enormous computing power. One way to achieve such simulations is

to utilize parallel computers. In recent years, distributed memory parallel computers

have been offering cost-effective computational power. NAMD[44] was designed to run

efficiently on such parallel machines for simulating large molecules.

NAMD has several important features:

• Force Field Compatibility. The force field used by NAMD is the same as that

used by the programs CHARMM[45] and X-PLOR[46]. This force field includes

local interaction terms consisting of bonded interactions between 2, 3, and 4

atoms and pairwise interactions including electrostatic and van der Waals forces.

This commonality allows simulations to migrate between these three programs.

• Multiple Time Stepping. The velocity Verlet integration method[31] is used

to advance the positions and velocities of the atoms in time. To further reduce

the cost of the evaluation of long-range electrostatic forces, a multiple time step
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scheme is employed. The local interactions (bonded, van der Waals and electro-

static interactions within a specified distance) are calculated at each time step.

The longer range interactions (electrostatic interactions beyond the specified dis-

tance) are only computed less often. This amortizes the cost of computing the

electrostatic forces over several timesteps. A smooth splitting function is used

to separate a quickly varying short-range portion of the electrostatic interaction

from a more slowly varying long-range component. It is also possible to employ

an intermediate timestep for the short-range non-bonded interactions, performing

only bonded interactions every timestep.

• Input and Output Compatibility. The input and output file formats used by

NAMD are identical to those used by CHARMM and X-PLOR. Input formats

include coordinate files in PDB format[47], structure files in X-PLOR PSF format,

and energy parameter files in either CHARMM or X-PLOR formats. Output

formats include PDB coordinate files and binary DCD trajectory files. These

similarities assure that the molecular dynamics trajectories from NAMD can be

read by CHARMM or X-PLOR and that the user can exploit the many analysis

algorithms of the latter packages.

• Dynamics Simulation Options. MD simulations may be carried out using

several options, including

- Constant energy dynamics,

- Constant temperature dynamics via

* Velocity rescaling,

* Velocity reassignment,

* Langevin dynamics,

- Periodic boundary conditions,

- Constant pressure dynamics via

* Berendsen pressure coupling,

* Nos-Hoover Langevin piston,

- Energy minimization,

- Fixed atoms,

- Rigid waters,

- Rigid bonds to hydrogen,

- Harmonic restraints,
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- Spherical or cylindrical boundary restraints.

• Easy to Modify and Extend. Another primary design objective for NAMD

is extensibility and maintainability. In order to achieve this, it is designed in an

object-oriented style with C++. Since molecular dynamics is a new field, new

algorithms and techniques are continually being developed. NAMD’s modular

design allows one to integrate and test new algorithms easily. If you are contem-

plating a particular modification to NAMD you are encouraged to contact the

developers at namd@ks.uiuc.edu for guidance.

• Interactive MD simulations. A system undergoing simulation in NAMD may

be viewed and altered with VMD[48]; for instance, forces can be applied to a set

of atoms to alter or rearrange part of the molecular structure.

• Load Balancing. An important factor in parallel applications is the equal dis-

tribution of computational load among the processors. In parallel molecular sim-

ulation, a spatial decomposition that evenly distributes the computational load

causes the region of space mapped to each processor to become very irregular,

hard to compute and difficult to generalize to the evaluation of many different

types of forces. NAMD addresses this problem by using a simple uniform spatial

decomposition where the entire model is split into uniform cubes of space called

patches. An initial load balancer assigns patches and the calculation of interac-

tions among the atoms within them to processors such that the computational

load is balanced as much as possible. During the simulation, an incremental load

balancer monitors the load and performs necessary adjustments.
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2.3 Simulations

2.3.1 Study systems: The drop / The surface / The drop adsorbed

on the surface

2.3.1.1 The drop

At first a droplet of liquid had to be constructed at molecular dimensions. Water

was chosen for convenience because i) it had already been subject to theoretical stud-

ies of physico-chemical properties of all various kinds, hence the level of acquainted

knowledge on water must be considered high ii) it is well defined by several model

descriptions, i.e. force fields, which is a crucial requirement for the intended type of

study (molecular dynamics simulation). In addition, fluid phase behaviour had been

shown to be well reproducible by the type of studies anticipated here[49].

A VMD[48] plug-in was used to construct a cubic box filled with water molecules.

Subsequently a spherical volume was cut out from the water box using radii of different

length. The two drops that had been taken into account in this study were of dimensions

corresponding to 3,186 and 1,624 molecules respectively (figure 2.10).

Figure 2.10: The two spherical cutted drops.

Short equilibration runs comprising 1.5 ps of Molecular Dynamics simulation (see

section 2.2.2) at 300 K are sufficient to maintain the spherical shape of the droplets.

28

2/figures/drop1.eps


2.3 Simulations

This is assumed to result from the reproduction of surface tension effects (figure 2.11).

MD simulation conditions were:

• force field: SPC/E

• time step: 1.5 fs

• thermostat: Langevin coupling at 300 K

• cutoff: 11.0 Å

• environment: vacuum

Figure 2.11: Drops after 1.5 ps of MD equilibration.

2.3.1.2 The surface

Next a reasonable method had to be developed to represent the molecular surface.

At molecular-scale dimensions gravitation does not play a role. Liquid molecules are

thus not deposited but rather simply adsorbed on the surface. The adsorption is fa-

cilitated by inter-molecular forces (of the non-bonded type, i.e. mediated by charges

or van der Waals interactions). Such a situation can be realized either by explicit

or implicit descriptions. In the simulations described here an implicit method had

been preferred because of the associated gain in computational efficiency. The implicit

surface is defined by a non-bonded potential similar to the Lennard-Jones potential,
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V (r) =
A

r12
− B

r6
(2.35)

where A, B are coefficients of repulsive and attractive van der Waals terms and r

denotes the center-center distance of a pair of atoms.

When a surface interacts simultaneously with many water molecules, all the cou-

plings need to be considered by the implicit surface potential all at once. Hence instead

of the usual decomposition into pairwise atom-atom interactions, with implicit surfaces

there are one-to-many interactions to be taken into account. Theoretically, such a

convolution of one-to-many interactions can be facilitated by a modification of the

exponents in the distance terms of the Lennard Jones potential[1], thus the actually

employed potential was of the type,

V (r) =
A

r9
− B

r3
(2.36)

In figure 2.12 these difference between the two types of Lennard Jones potential are

graphically represented.
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Figure 2.12: Lennard-Jones and modified for surface potentials.
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2.3.1.3 The drop adsorbed on the surface - different wettability

The coefficient, B, of the attractive term can be derived from the Hamaker constant

of water on silicon dioxide, 1.1 × 10−19 J, which leads us to a coefficient of 22.6 kcal

Å3 mol−1. The repulsive term may then be adjusted to reproduce the experimental

contact angle of water droplets deposited on surfaces of identical composition[50].

In order to do so, A-values in between 400 and 2,000 kcal Å9 mol−1 were examined

including the implicit surface potential as a function of the z-coordinate:

V (z) =
A

z9
− 22.6

z3
(2.37)

Initially droplets were positioned very close to the top layer of the surface, i.e. the

z-coordinate of the lowest molecule was set to 2.0 Å. Then a 450 ps of MD equilibration

was carried out to simulate the adsorption on the surface. Resulting contact angles are

summarized in figure 2.13.

Figure 2.13: Equilibration result for different repulsive terms. A in kcal Å9

mol−1.

MD simulation conditions:

• force field: SPC/E

• time step: 1.5 fs

• thermostat: Langevin coupling at 300 K

• cut-off: 11.0 Å

• water molecules are rigid: no bond stretching and bending are considered

• the surface potential has a cut-off for distances z ≥ 25.0 Å
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2.3.2 Slippage simulations

2.3.2.1 Surface with a gradient - step-like potentials

A theoretical model to reproduce the photo-induced surface gradient involves the

following simple approximations:

• center the adsorbed droplet symmerically to y = 0 by shifting molecules about a

constant translation vector

• impose the following case distinction:

V (z) = A
z9

− 22.6
z3

where A = 1000 ∀ y ≤ 0.0 Å
A = 400 ∀ y > 0.0 Å

(2.38)

In practice the above conditions will split droplet molecules into two groups where

particles with y > 0 will be subject to an increased surface attraction (A = 400) as

opposed to those having y-coordinates smaller than 0 (A = 1000). Indeed the drop

appears to exhibit a lower contact angle on the right side (y > 0) when compared to

the left side (y < 0).

Such an imbalance in surface attraction should result in a slippage in direction of

the more attractive part of the surface (representation in figure 2.14).

A 3 ns MD simulation was carried out to test the slippage hypothesis. The following

conditions were applied:

• force field: SPC/E

• time step: 1.5 fs

• thermostat: Langevin coupling at 300 K

• cut-off: 11.0 Å

• water molecules are rigid: no bond stretching and bending are considered

• the surface potential is defined by Eq.2.38 up to a cut-off distance at z ≥ 25.0 Å

Evidently, as graphically represented in figure 2.15, the drop did not move under

such type of conditions.
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Figure 2.14: Step-like potential representation.

2.3.2.2 Surface with a gradient - slide-like potentials

Due to the unsuccessful results obtained in the previous attempt regarding the rep-

resentation of the photo-induced surface gradient, an improved definition of the surface

potential was required.

One way to improve relationships was to introduce a smoother change of the po-

tential around the y = 0 coordinate. For this purpose, the Error Function[51] was

introduced, hence a continuous change of the repulsive term along the y-coordinate

was implemented.

erf(x) =

√

1− exp(−x2
4
π + ax2

1 + ax2
) with a =

8

3π

π − 3

4− π
(2.39)

The Error Function is used to define an S(y) function that varies in the range −1.0 <

S(y) < 1.0:

S(y) =
1

2
erf(

y − µ

σ −
√
2
) +

1

2
(2.40)

where µ is the central value with S(y) = 1/2 and σ is the range of actual application
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Figure 2.15: Simulation snapshots of a surface adsorbed droplet under the

influence of a step-like potential surface. y = 0 and z = 0 are shown.

of the Error Function.

Introduction of S(y) mainly affects the value of the repulsive term in the vicinity

of y = 0, so the potential is now dependent on the y coordinate in the following way,

V (y, z) = [1− S(y)]
A1

z9
+ S(y)

A2

z9
− 22.6

z3
(2.41)

Figure 2.16 shows the change of the repulsive term along the y-axis when using

erf-related potentials.

A 3 ns molecular dynamic simulation was carried out using the new slide-like po-

tential. Conditions:

• force field: SPC/E

• time step: 1.5 fs

• Langevin thermal bath at 300 K

• cut-off: 11.0 Å

• water molecules are rigid: no bond stretching and bending are considered

• the surface potential is defined by Eq.2.41 and has a cut-off at z ≥ 25.0 Å
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Figure 2.16: Slide-like potential representation.

• µ = 0; σ = 2.0 Å; A1 = 1, 000 and A2 = 400 kcal Å9 mol−1

As shown in figure 2.17, using the new slide-like potential, the drop moves on until it is

entirely on the more attractive side of the surface. During the slippage the advancing

side contact angle is less than the one of the other side.

Also the smaller drop of 1,624 molecules of water on the same surface potential and

in same condition slip on the surface, as shown in the figure 2.18.
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Figure 2.17: 3 ns Simulation snapshots on step-like potential surface. y = 0 and

z = 0 are shown.
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Figure 2.18: 1.5 ns Simulation snapshots on step-like potential surface of the

smaller drop. y = 0 and z = 0 are shown.
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2.4 Analysis

2.4.1 Slippage velocity

In the following a summary shall be given listing the set of properties studied by

means of MD simulation of the type discussed in the previous section 2.3.2.

The first observable taken into account was the center of mass (COM) movement

of the droplet. Several parameters were changed to study the influence of individual

components potentially affecting COM-movement.

The following parameters were examined:

• mass: simulation of different size droplets (1,624 or 3,186 molecules);

• A1 −A2: gap in the repulsive coefficients on either site of the surface potential;

• σ: variation of the application range of function S(y);

2.4.1.1 Different mass

The two droplet sizes taken into account gave rise to overall weights of 9.51×10−20

mg and 4.85× 10−20 mg respectively.

MD simulations were carried out using the parameters and setup described in section

2.3.2.2. Figure 2.19 summarizes COM-movement with particular emphasis on the y-

coordinate, i.e. the axis parallel to the surface on which droplet movement occurs.

Since the driving force of droplet slippage is expected to be constant in the two systems

studied, it is reasonable to observe the smaller droplet moving faster than the larger

one. Approximative COM velocities were ∼ 36 Å/ns and ∼ 26 Å/ns respectively.

The same type of analysis was carried out, again comparing the two droplet sizes,

but now increasing the gap in repulsive parameters to values of A1 = 2, 000 and A2 =

400 kcal Å9 mol−1; Results are plotted in figure 2.20 which confirm the previous finding

that smaller drops translocate faster: derived velocities were on the order of ∼ 60 Å/ns

and ∼ 34 Å/ns.
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Figure 2.19: y-coordinate of the center of mass of differently sized droplets and

evolution over MD simulation time. A1 = 1000; A2 = 400; σ = 2.0.
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Figure 2.20: y-coordinate of the center of mass of differently sized droplets at

increased A1/2 gap and evolution over MD simulation time. A1 = 2000; A2 = 400;

σ = 2.0
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2.4.1.2 Gap in repulsive coefficients A1/2

The center of mass movement was re-analysed for a series of increasing gaps in

repulsive coefficients A1/2 providing the driving force of slippage. A2 was kept constant

while A1 was steadily increased. Results are summarized in figure 2.21 where an ex-

ample of the step-like potential is also included for comparison.

From figure 2.21 it becomes clear that COM velocity is a function of the gap in re-
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Figure 2.21: y-coordinate of COMs of large droplets comprising 3,186 water

molecules for a series of increasing A1/2 gaps and evolution over MD simulation

time. A2 = 400 kcal Å9 mol−1; σ = 2.0 Å.

pulsive coefficients A1/2 and increasing the latter will accelerate the process of droplet

translocation. A detailed listing of determined translocation velocities is given in table

2.1.
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A1 A2 v

(kcal Å9 mol−1 ) (Å/ns)

2000 400 ∼ 34

1000 400 ∼ 26

800 400 ∼ 20

600 400 ∼ 15

Table 2.1: Velocities determined for various gaps in repulsive coefficients A1/2.

2.4.1.3 Slide width σ

It is interesting to investigate the influence of parameter σ (see eq. 2.39) for cases

where slipping occurs, i.e. at moderate gap sizes regarding repulsive coefficients A1/2.

A corresponding analysis is presented in figures 2.22 and 2.23 which appear to point to

a somewhat optimal setting at σ = 2.0 Å.
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Figure 2.22: y coordinate of COM of a large droplet comprising 3,186 water

molecules at varying slide width σ. A1 = 600; A2 = 400 kcal Å9 mol−1
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Figure 2.23: y coordinate of COM of a large droplet comprising 3,186 water

molecules at varying slide width σ. A1 = 800; A2 = 400 kcal Å9 mol−1
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2.4.2 Efforts to identify elements constituting the driving force of

droplet slippage

As mentioned previously the droplet experiences different slippage tendencies when

applying a step-like or a slide-like potential. Only in the latter case the droplet can

actually be set into motion. In an effort to get a somewhat better understanding of

what molecular factors do provide the driving force to the translocation process, several

additional studies have been carried out thereby carefully looking into the domain of

potential change (i.e. around y = 0).

A set of different properties was computed in local subcompartments (see the xyz-

boxes indicated in black in figure 2.24) and compared to each other. Such a spatial

Figure 2.24: Graphical representation of local boxes (black squares) to which

property calculation is restricted.

comparison could under ideal circumstances reveal important insights into molecular

mechanisms affecting droplet movement. Here a comparison of properties derived under

application of a step-like potential (unable to induce slippage) with properties deter-

mined under application of the slide-like potential (capable of slippage induction) could

help to identify that set of molecular properties that is responsible for the overall pro-

cess. Apparently this would be a property that turns out to be very different in the

case of a step-like potential when compared to a situation where a slide-like potential

is applied. The following list of properties was taken into account:

• Local density: determined via the average number of molecules found inside small

local boxes,
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• Residence time: i.e. the average time that water molecules remain inside small

local boxes,

• H-bonds: average number of hydrogen bonds formed inside small local boxes,

• Water dipoles: dipole orientation and dipole-dipole interactions always taking

into account only that subset of water molecules confined to a particular local

box,

• Diffusion coefficients: how fast water molecules diffuse inside small local subcom-

partments,

2.4.2.1 Density

The droplet domain on the surface was decomposed into small boxes of dimensions

10×3×4 Å for x, y, z dimensions, respectively. Main emphasis was on the area around

the y = 0 and z = 0. Individual densities were computed and averaged over consecutive

windows always sampling 150 ps of MD simulation. This way different phases of the

slippage process may be distinguished, for example an initial starting interval (15–

150 ps), an intermediary movement phase (300–450 ps) and a final deceleration phase

(600–750 ps).

For comparison — and potential identification of significant differences — an iden-

tical calculation was also carried out under application of a step-like potential.

Results are depicted in figures 2.25, 2.26, 2.27 but no obvious difference can be

identified between individual runs (compare solid to dashed curves in figures). Partial

densities accumulate gradually around y = 0 because of the more attractive potential

starting to be “felt” about that location. Lack of density for the y < 0 domain in

figure 2.27 is due to the late stage of droplet translocation where most of the droplet

is already adsorbed on the more attractive side of the surface.
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Figure 2.25: Partial density analysis along the y-axis - 15–150 ps. initial phase;

the drop is accelerating
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Figure 2.26: Partial density analysis along the y-axis - 300–450 ps. intermediary

phase; the drop is “slipping” in direction y > 0
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Figure 2.27: Partial density analysis along the y-axis - 600–750 ps. final phase;

the drop is almost entirely on the side of the more attractive potential
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2.4.2.2 Residence time

Differences between a step-like and a slide-like potential were tried to be identified

via residence time analysis. Focus was again on the region adjacent to the potential

gap. The method used to analyze residence times was similar to the one reported in

the literature[52, 53].

Results are shown in figure 2.28 always sampling time windows of 50 ps in a local box

defined by −2.0 < y < 2.0 and z < 5.0. Horizontal lines indicate reference behaviour

on hydrophobic surface (A = 2000, dashed line) and hydrophilic surface (A = 400, solid

line) of the surface.
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Figure 2.28: Residence times. Calculated in a selected local box close to the switching

point of severe potential change showing averages over 50 ps windows always

Residence times (Rt) were then computed in different zones of the droplet for dif-

ferent instances in the MD simulation. Some indicative results are summarized in table

2.2: despite the significant degree of scatter, several important observations could be

made:

• Rt on the “hydrophilic” side (3 < y < 5) is smaller than the reference (compare to

value for A = 400) while for the “hydrophobic” side (−5 < y < −3) Rt is rather

similar to the reference (compare to value for A = 2000). These data suggest

that the spread of molecules is faster on the hydrophilic side irrespective of the

type of potential applied.
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• When the drop starts moving (15–150 ps) molecules are slower on the “slide”-like

descent than they are on a “step”-like descent. Later on Rts become very similar

to each other.

15–150 ps 300-450 ps 600–750 ps

z < 3 erf-ON erf-OFF erf-ON erf-OFF erf-ON erf-OFF

−1 < y < 1 4.48 3.15 4.00 4.03 3.35 3.72

−5 < y < −3 3.92 3.92 3.80 3.84 2.40 3.81

3 < y < 5 3.33 3.84 4.11 3.84 3.96 4.24

A = 2000 3.87

A = 400 4.61

Table 2.2: Residence times in several zones at different instances of MD simulation (ps)

Referring to the drop-on-a-surface simulation without changes in the surface po-

tential (i.e. neither step- nor slide-like types), there is a notable difference in local

residence times for simulations with applied surface potentials of changing character

regardless of the actual outcome of the simulation. In other words, even for a step-like

potential, already found to be incapable of triggering actual droplet translocation, as

far as residence times are concerned there is a difference noticeable when comparing

to the static case of a droplet adsorbed on a surface (verified by the application of a

homogeneous potential). However, no significant differences in residence times were

detected between slide-like and step-like potentials.

2.4.2.3 Hydrogen bonds

The average number of hydrogen bonds (NH) was computed in small boxes dis-

tributed throughout the droplet domain. Standard H-bond assignment was employed

following previous reports[54, 55]. In particular, the oxygen-oxygen distance was re-

quired to be less than 3.5 Å and the O–H · · · O angle to be less than 30◦ for a H-bond

to be assigned.

Table 2.3 summarizes a subset of the results obtained:

48



2.4 Analysis

• The number of established H-bonds is reduced on the “slide”-like potential when

compared to the “step”-like potential (or also the case of increased potential gap).

This suggests that on the “slide”-like potential water molecules face considerable

difficulties in maintaining H-bonds, which also implies that molecular motions

there seem to occur in largely increased disorder.

• A smaller number of H-bonds is formed on the “hydrophilic” side of the surface.

15–150 ps 300-450 ps 600–750 ps

z < 3 erf-ON erf-OFF erf-ON erf-OFF erf-ON erf-OFF

−1 < y < 1 5.30 5.41 6.19 7.45 3.65 8.27

−5 < y < −3 4.46 4.65 4.25 5.33 0.34 6.13

3 < y < 5 3.33 3.84 4.11 3.84 3.96 4.24

A = 2000 12.85

A = 400 5.38

Table 2.3: Average numbers of hydrogen-bonds formed in different zones at different

instances of MD simulation.

Analogous to the effect observed for residence times, inclusion of any type of surface

potentials of varying character will lead to a change in hydrogen-bond formation when

compared to the static case of a homogeneous surface. Contrary to residence times

for H-bonds, however, slight differences are revealed between “slide”- and “step”-like

potentials.

2.4.2.4 Diffusion coefficient

The next property to study on a local level was diffusion. Coefficients were com-

puted according to the Einstein-Smoluchowski relation[56, 57, 58, 59, 60] applying the

squared-path < r2 > variant.

On the “slide”-like descent molecules show increased diffusion coefficients when com-

pared to the “step”-like descent. Consequently, molecules appear to become accelerated

in the domain where the repulsive parameter A changes abruptly, which may ease the

movement over to the “hydrophilic” part of the surface.
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z < 3 erf-ON erf-OFF

−1 < y < 1 5.05 2.85

−5 < y < −3 4.14 3.33

3 < y < 5 4.65 3.15

A = 2000 2.44

A = 400 3.44

Table 2.4: Mean diffusion coefficients averaged over 150 ps (×10−9 m2/s)

2.4.2.5 Dipole orientation and dipole-dipole interaction energies

A final property investigated was the distribution of dipoles and the related dipole-

mediated phenomena. At first the average dipole orientation along the slippage direc-

tion (y-axis) was taken into account. This was motivated by the intention to detect

potential changes occurring during the slippage phase. The following protocol was

applied:

• for all dipoles falling into a small box element compute the y-component of the

dipole; this is done from a simple cosine relation regarding the angle between the

dipole axis and the y-axis, hence symmetry is established with respect to an angle

of 90◦;

• form the average over all individual y-components;

• form one more average over all snapshots falling into a particular time window of

MD simulation;

Resulting average y-components of dipoles are shown in table 2.5. Here dor = 0

means all dipoles are perpendicular to the y-axis whereas dor = 1 would imply all the

dipoles are parallel to the y-axis. From table 2.5 we get the impression that until 150 ps

dipoles are marginally more parallel to the surface on the “slide”-like descent than they

are on the “step”-like descent. For later stages (300-450 ps, 600-750 ps) the opposite

may be said, i.e. dipoles are a little more perpendicular to the surface when using the

“slide”-like potential as compared to the “step”-like potential.

Next dipole-dipole interaction energies were computed and results are summarized

in table 2.6.
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15–150 ps 300-450 ps 600–750 ps

z < 3 erf-ON erf-OFF erf-ON erf-OFF erf-ON erf-OFF

−1 < y < 1 0.559 0.537 0.547 0.558 0.512 0.551

−5 < y < −3 0.577 0.542 0.545 0.576 0.347 0.572

3 < y < 5 0.546 0.561 0.533 0.561 0.533 0.549

A = 2000 0.569

A = 400 0.543

Table 2.5: Mean water dipole orientations in selected zones at different stages of droplet

translocation

On the “step”-like descent dipole-dipole interaction energies turned out to be stronger

than on the “slide”-like descent, thus water molecules seem to be stabilized on the

“step”-like making it “harder” for them to move over to the hydrophilic side. How-

ever, making it over to the hydrophilic side somehow results in deepening of interaction

strength (dipole-dipole potential energies become deeper, i.e. more stable).

15–150 ps 300-450 ps 600–750 ps

z < 3 erf-ON erf-OFF erf-ON erf-OFF erf-ON erf-OFF

−1 < y < 1 -0.253 -0.289 -0.255 -0.285 -0.226 -0.263

−5 < y < −3 -0.196 -0.230 -0.206 -0.201 -0.262 -0.209

3 < y < 5 -0.386 -0.354 -0.363 -0.386 -0.374 -0.351

A = 2000 -0.203

A = 400 -0.379

Table 2.6: Average dipole-dipole interaction energies in selected zones at different stages

of droplet slippage (kcal mol−1 molecule−1)
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2.5 Final considerations about droplet slippage investiga-

tion

Summarizing this first part concerned with a slipping drop on a functionalized

surface, it is remarkable to observe that on the “slide”-like potential switch water

molecules appear to be moving much faster than on the “step”-like one.

Dipole cross-correlation with respect to the direction of droplet translocation ap-

pears markedly increased (parallel as well as anti-parallel orientations) especially for

the initial period when the droplet starts to move.

In addition, the strength of dipole-dipole interaction is decreased in the vicinity of

the “slide” profile as opposed to the “step” one also pointing to an increased number

of dipole pairs in parallel orientation.

A likely scenario for the microscopic mode of action of droplet slippage was that

the “slide”-like surface potential causes an increase in the less energetic parallel align-

ment of dipoles directed towards the “hydrophilic” part of the surface, thus pushing

the suboptimally aligned dipoles forward to “liberate” them. The dipoles seek new

conformations in the more stable anti-parallel alignments thereby pushing forward the

core of the drop and eventually the entire drop.
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3

Mesoscopic study of snowflake

fractals melting

3.1 von Koch fractal

Since its formalization fractals represent a fundamental tool to solve theoretical and

applied problems which in nature cannot be identified by analytical curves. The self

similarity property, i.e. the fact that the figure looks always the same independently

of the magnitude order, allowed to apply this concept in problems where scaling comes

out.

Helge von Koch introduced the so called von Koch island at the beginnings of the

twentieth century[7].

The Koch curve can be constructed by starting with an equilateral triangle, then re-

cursively altering each line segment as follows:

• divide the line segment into three segments of equal length.

• draw an equilateral triangle that has the middle segment from step 1 as its base

and points outward.

• remove the line segment that is the base of the triangle from step 2.

After one iteration of this process, the result is a shape similar to the Star of David.

The Koch curve is the limit approached as the above steps are followed over and over

again.

The Koch curve has an infinite length because each time the steps above are per-

formed on each line segment of the figure there are four times as many line segments,
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Figure 3.1: von Koch curve construction step.

the length of each being one-third the length of the segments in the previous stage.

Hence the total length increases by one third and thus the length at step n will be
4

3
n

of the original triangle perimeter: the fractal dimension[61] is
log 4

log 3
≈ 1.262, greater

than the euclidean dimension of a line (1) but less than the plane one (2).

Besides its beauty, the von Koch curve is often used to test fractal algorithms

because its fractal dimension is known, and it found applications in different fields of

science[62]. Moreover because of its hexagonal symmetry, a filled von Koch island is a

good candidate (see figure 3.2) to represent a snowflake[63].

3.2 Development of a new simulation algorithm

The fundamental computational methods, on which the developed new algorithm

is based, are kinetic Monte Carlo[64] and Random Walk[65].

The kinetic Monte Carlo is a Monte Carlo method computer simulation intended

to simulate the time evolution of some processes occurring in nature. Typically these

are processes that occur with a given known rate.

It works generating random new configurations at each time step. Following suitable

specific criteria the new configurations can be accepted or not.

Random Walk is a random process consisting of a sequence of discrete steps of fixed

length. The random thermal perturbations in a liquid are responsible for random walk

phenomenons like the Brownian motion. The collisions of molecules in the gas phase

54

3/figures/vKoch_gen.eps


3.2 Development of a new simulation algorithm

Figure 3.2: Snowflake photo and von Koch fractal representation.

are random walks that yield to specific diffusion[58, 59].

The study of random walks on lattices along the last decades had a huge development

aimed by their many potential applications. While the basic works started from simple

lattices with integer Euclidean dimension[66, 67, 68], in recent years the attention has

focused on more and more complex underlying geometries.

3.2.1 Snow-fractal building

The snow crystal was built by means of a coarse grain approximation, which con-

sists of a bi-dimensional set of beads, spread in hexagonal fashion according to the

symmetries of the von Koch fractal. The procedure to construct a filled von Koch-like

aggregate, displayed in figure 3.3, is resumed in two stages. First the position of the

peripheral beads is determined and then all beads which correspond to the lattice nodes

inside the fractal are added:

• the construction starts assigning to one single beads the coordinates (1, 0); the

following four maps are applied to this point:
{

xn+1 =
yn+1 =

1
3xn
1
3yn

, (3.1)

{

xn+1 =
yn+1 =

1
3 cos (

π
3 )xn − 1

3 sin (
π
3 )yn + 1

3
1
3 sin (

π
3 )xn + 1

3 cos (
π
3 )yn

, (3.2)
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Figure 3.3: Builded filled 4th generation von Koch snow crystal.

{

xn+1 =
yn+1 =

1
3 cos (

2π
3 )xn − 1

3 sin (
2π
3 )yn + 1

2
1
3 sin (

2π
3 )xn + 1

3 cos (
2π
3 )yn +

√
3
2

and (3.3)

{

xn+1 =
yn+1 =

1
3xn + 2

3
1
3yn

. (3.4)

In this way four new beads are obtained to which the same four maps will applied

again.

• This procedure is repeated g times, with g the required fractal generation. At

this stage just one third of the perimeter, consisting of 4g points, is built.

• To complete the perimeter, to every point of the set we apply:

1) symmetry with respect to the axis y = 0 and clockwise rotation of 60o

around the point (0,0).

2) symmetry with respect to the axis y = 0 and counter clockwise rotation

of 60o around the point (1,0).

Thus the peripheral beads of the structure are determined with the above procedure.

The minimal distance between the beads results in ǫg = 1/3g.

The region inside the perimeter line has to be completely filled by nodes which

have a minimal distance equal to ǫg in hexagonal fashion. A specific algorithm was
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developed which works as an involving spiral covering all the inside space until ending

in the central node of the snow crystal.

The peripheral walkers are Np = 3 · 4g−1 and the total number of walkers is given by

N = 1 + 3
∑g

j=1 4
g−j+δjg

∑3j−1

m=1m.

The amount of the peripheral (solid line) and of all beads (dashed line) is compared

in figure 3.4; they are plotted versus the reciprocal of the minimal distance between

the nodes of the lattice in double logarithmic scale to basis 10.

Figure 3.4: Peripheral and total amount of beads. Number of beads versus the re-

ciprocal of the minimal distance between them in double logarithmic scale to basis 10. The

dashed line represents the total amount of beads, while the solid line only the peripheral

ones.

The solid line shows a straight line with slope m = df as it should be. The dashed

line corresponding to the total number of walkers, shows a non linear behavior. Indeed

for low values on x-axis, i.e. at low generations, the peripheral walkers are predominant

and they tend to reduce the slope. For big values of g the peripheral nodes become a

negligible portion and the structure can be approximated to a two dimensional struc-

ture; thus asymptotically m → 2, corresponding to the euclidean dimension of a plain.
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3.2.2 Lattice definition

In order to produce Random Walk of the previous defined beads, it is necessary

to define a bi-dimensional lattice of positions where the “walkers” could move. The

symmetry of the filled von Koch fractal is hexagonal. Therefore the lattice is composed

of points which are defined by the vertex of packed hexagons (i.e. like a honey comb)

including their centers (figure 3.5). So all the bead positions can lay on the lattice.

The symmetry of such a lattice is triangular.

Figure 3.5: Lattice representation. hexagons in dark, them centers in bright.

The minimal internodal distance is set equal to the crystal’s interbead distance in

such a way that every vertex of the fractal matches with a node of the lattice. The

lattice size is defined as big as the boundary conditions substantially do not influence

the crystal dynamics.

Then the central bead of the built snow-fractal is associated with the central node of

this lattice (figure 3.6). In this way the whole structure lays on the lattice and one can

get rid of the Cartesian coordinates by using the labels assigned to the lattice’s nodes.

This trick gives the possibility to study very big structures because of dealing with N

(number of beads) integer labels instead of 2N double precision coordinates.
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Figure 3.6: Lattice representation. beads in black, lattice points in gray.

3.2.3 Simulation algorithm - MCRWS

As described before, the simulation is based on random walks of the beads on an

equilateral triangular lattice. The set conditions are:

• the nodes of the snowflake are the initial position of the walkers

• the walkers motion is random

• every walker can move from its site to a free nearest neighbor (walkers overlapping

is not allowed)

In order to consider the interaction between two beads, a short range attractive

potential parameter (U) was defined. Via this parameter the probability that a walker

can move is calculated according to the equation:

P (n, i, U, T ) =
i exp (−iU/kBT )

n− i+ i exp (−iU/kBT )
(3.5)

where n is the number of the nearest lattice sites, which equals 6 for the internal nodes
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and assumes value 3 or 5 on the boundaries. The variable i indicates the number

of occupied nearest sites (i = 1, . . . , 6), so that the probability to move decreases

significantly if the walker is in contact with other walkers. T is the temperature in

Kelvin and kB the Boltzmann constant.

The developed algorithm to simulate the time evolution of the system is based on

the following steps:

• at each time step a bead is randomly chosen; the bead has to be free to move,

i.e. have free lattice nodes around

• its probability to move is calculated and evaluated as condition to accept a new

configuration (as done in Monte Carlo methods).

• the beads moves to one of the free “neighbor” node with the probability [1 −
P (n, i, U, T )]/(n− i)

• these steps are repeated cyclically for every time step

Further conditions are:

• once a bead is detached from the snow-fractal core the initially taken direction is

maintained as preferential until it “encounter” another bead. A slight probability

to deviate if perturbation occurs is considered. This condition is fully justified by

the fact that the walker conserves its momentum, being a simulation at mesoscopic

scale.

• once a bead reaches a lattice boundary its motion stops definitely because it is

considered far enough from the core.

In figure 3.7 some snapshots are reported for the time evolution simulation of a 5th

generation von Koch-like fractal.
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3.2 Development of a new simulation algorithm

Figure 3.7: Simulation snapshots of a von Koch crystal of generation 3rd.

The defined attractive potential between the beads maintain the fractal core during

simulation. The tips on the border are the first beads that leave the core, in accordance

with their lower number of attraction interactions with other beads.
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3.3 Ice parameter derivation

In order to validate the new simulation method and to parameterize the U value

that reproduce snowflakes ice crystal water interactions, MCRWS was compared with

Molecular Dynamics simulations (MDS). An ice crystal constituted by 9 layers was

cut to get a 3rd generation filled von Koch-like structure (in figure 3.8).

Figure 3.8: Ice crystal generated for Molecular Dynamics simulation.

The initial structure was built by placing a cell unit of the ice structure of 2 × 9

water molecules in coordinates that corresponds to the 3rd generation walkers positions.

This is reasonable for the hexagonal structure of the ice. A perfect ice crystal structure

was reproduced replicating the cell in the six directions with a distance of 4.514 Å.

The MDS were carried out with the AMBER [69] suite of programs.

Water molecules were described by TIP4P/Ice [70], a specifically developed water model

for liquid/solid equilibria close to the freezing point of water.

In the TIP4P water model, water molecule is represented by 4 sites: oxygen, two

hydrogens and a dummy atom placed near the oxygen along the bisector of the HOH

angle (see figure 3.9).
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3.3 Ice parameter derivation

If the molecules are considered rigid, the potential is defined just by the intermolecular

forces.

Figure 3.9: TIP4P/Ice water model sites.

The electrostatic interaction is modeled using Coulomb’s law: the positive charges

are placed on the hydogens and the negative charge on the dummy atom instead on

the oxygen. This improves the electrostatic distribution around the water molecule

compared to other 3 sites water models.

The dispersion and repulsion forces are defined by the Lennard-Jones potential between

the oxygen atoms. Thus the potential is represented by the equation

Eab =
∑

i

∑

j

kcqiqj
rij

+
A

r12OO

− B

r6OO

. (3.6)

An equilibration protocol[71] consisting of 4 individual steps was applied to heat the

structure from 0K to the desired temperature. This results in an unconstrained well

tempered isothermal-isovolume NVT ensemble:

• 50 ps of heating to 165 K using restraints on water molecules (force constant: 1

kcalmol−1 Å−2) with a temperature coupling according to Berendsen[72]

• 50 ps of equilibration MDS at 165 K to temperature coupling according to

Andersen[73] including restraints on the molecules.
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• 50 ps of equilibration MDS at 165 K to release all restraints using Andersen

thermostat

• 50 ps of further heating from 165 K to desired temperature without restraints

(Andersen thermostat)

After this procedure a 1 ns equilibration MDS step at constant temperature was

carried out to simulate the melting of the ice crystal structure.

As shown in figure 3.10, MDS and MCRWS produce similar shape during sim-

ulations: the figure 3.10(a) shows the fourth generation fractal in MCRWS with

U/kBT = 4.5 after 109 steps simulation and the figure 3.10(b) the ice crystal dur-

ing MDS after 620 ps at 270 K. At first a net loss of roughness is notable in both

cases.

Figure 3.10: Evolution of filled von Koch-like structures. (A)Sample of fourth

generation during MCRWS after 109 simulation steps with U/kBT = 4.5. (B) Ice crystal

during MDS after 620 ps at 270 K.

The attention was focused on the observable Λ(t), the border length. At time t = 0

the perimeter is given by Λ(0) = 3(4g)l. Λ(t) is connected to the fractal dimension and

depends basically on the size of the structure and the roughness of the border. In figure

3.11 the exponential fitting of the border length evolution at two different temperatures

for MDS and MCRWS are plotted.

It is remarkable that the decrease of both is very similar. Hence the new model is

feasible to reproduce the melting behavior.

The found results for parameterization are:
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Figure 3.11: Fit of border length of 3rd generation von Koch fractal versus time

in seconds. Comparison between MCRWS and MDS at temperature T = 270K (lines

below) and temperature T = 250K (lines above).

• 1 ps in MDS corresponds to ≈ 16000 MCRWS steps

• 250K and 270K inMDS correspond to U/kBT equal to 4.60 and 4.51 inMCRWS,

respectively.

• the value of the parameter U found is ≈ 1.6 × 10−20J . Notice that in the range

1◦C–15◦C the activation free energy for self-diffusion is 4.7kcalmol−1[74] which

implies a value of U/kBT equal to ≈ 8.

Afterwards the MCRWS method was employed to simulate higher generations of

snowflake fractals, until the 7th, and analyze carefully the melting process.
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3.4 Simulations

As the new MCRWS method has much less parameters, variables and equations

to compute during the simulation, it is extremely faster than methods with explicit

molecules and forces.

The MCRWS can be considered a mesoscopic scale simulation, where the beads rep-

resent molecules aggregates of unspecified dimensions.

The algorithm can simulate any shape that lay on a bi-dimensional triangular lattice

at this moment. More kinds of lattices can be defined in future.

In figure 3.12 simulation snapshots of collapsing of a 5th generation snow-fractal

are illustrated. During the melting the loss and re-aggregation of bead clearly generate

figures of sequentially lower generations shape, i.e. the tips that characterize the 4th

(figure 3.12d), and later on the 3rd (figure 3.12d), generation are visible in the simulated

shapes.

3.4.1 Border length

MCRWS was employed to analyze the border length during melting of snowflake

fractals of generations 4th to 7th.

Figure 3.13 shows the computed results of the normalized perimeter Λ(t)/Λ(0) of the

flakes during the simulations where the ratio U/kBT = 4.2. The higher the generation,

the more regular the decrease. This can be ascribed to some crossover effects that cover

the expected fractal features [75, 76].

These curves perform a decrease in the analyzed range given by a double exponential

fit:
Λ(t)

Λ(0)
= pg exp (−kgt) + prest exp (−krestt). (3.7)

To find an explanation the the weights of the two exponentials (pg and prest) were

observed. The weight pg is, in good approximation, the number of the beads that

characterize the last fractal generation over the initial (i.e. perfect fractal) perimeter

pg = 3 × 4g−1/Λ(0) = 0.25. This “walkers” ensemble has a life time which depends

on the factor U/kBT and on the structure size. It is orders of magnitude larger than

that of the rest of the structure krest. That means the two scaling regions can be used

to distinguish between two distinct thermal evolution stages. In the first a transition
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Figure 3.12: MCRWS simulation snapshot of 5th generation snow-fractal. Num-

ber of simulation steps: (a) 0; (b) 0.125× 109; (c) 0.625× 109; (d) 2.50× 109

from (g) to (g − 1) happens and in the second the collapse of the remaining structure

is described. In the table 3.1 the coefficients that fits MCRWS data in figure 3.13 are

reported:

3.4.2 Radius of gyration

Another important observable which was monitored is the radius of gyration of the

crystal.

The radius of gyration Rg is defined in polymer physics [77] to be proportional to the

root mean square distance, namely

Rg =

√

√

√

√

1

2N2

N
∑

i,j

(ri − rj)2 (3.8)
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Figure 3.13: Normalized snowflake border length. Λ(t)/Λ(0) from the fourth to

seventh initial generation versus time in simulation steps ×106.

Generation pg prest kg krest

4 0.257 0.698 0.338 1.13× 10−3

5 0.256 0.730 0.107 3.28× 10−4

6 0.242 0.725 0.0115 3.95× 10−5

7 0.231 0.728 0.00555 2.12× 10−5

Table 3.1: Weights and exponential coefficients of Eq.(3.7) referred to Fig.3.13.

where N is the number of jointed beads at time t and (ri − rj) represents the distance,

i.e., the minimal path which connects bead i to bead j. In order to calculate Rg, the

formula derived by Rathbeger et al. in [78] was used. The connectivity matrix concept

is needed to perform such a calculation[79, 80, 81].

The connectivity matrix A = Aij is a real symmetric matrix. The diagonal elements

aij are equal to −1 if the “walkers” i and j are neighbors and otherwise zero. The

diagonal elements are

Aii = −
∑

j

Aij (3.9)
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This matrix is being the discrete version of the Laplacian operator and used for many

applications; in this case it turns useful in order to get the interbead distances. Fol-

lowing Eq.(14) in [78] it results in:

(ri − rj)
2 = l2

N
∑

α=2

(Qiα −Qjα)
2λ−1

α , (3.10)

where l2 is the square of the unity lattice length, Qiα are the elements of the eigenvector

corresponding to the eigenvalue λα of A. The sum over α starts from 2 because it was

assumed that λ1 is the vanishing eigenvalue. By inserting Eq. (3.10) into Eq. (3.8) one

obtains

R2
g(t) =

1

2N2

N
∑

i,j

N
∑

α=2

(Qiα −Qjα)
2λ−1

α . (3.11)

In figure 3.14 the comparison between the normalized border length Λ(t)/Λ(0) with the

normalized radius of gyration R2
g(t)/R

2
g(0) versus time for an initial structure of 4th

generation is shown, i.e. the maximal generation for which a numerical diagonalization

of A could be afford.

Similar to the discussion of figure 3.13, also for R2
g(t)/R

2
g(0) a double exponential

function (see the right hand side of Eq. 3.7) fits the data. However, the weights are

now given by the number of beads which characterize the last fractal generation over

the initial surface area (total number of beads N) pg = 3×4g−1/N and its complement

to one. The best double exponential fit is obtained for the following values: pg = 0.04,

prest = 0.956, kg = 0.222, and krest = 1.34× 10−4.

Remarkably the exponential coefficients result of the same order of magnitude for

both quantities, see the first line of Table 3.1.
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Figure 3.14: Normalized border length and normalized gyration radius, versus

time in arbitrary units. The effective output of the simulation and its best double

exponential fit are plotted.
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4

Conclusions

In the present PhD thesis two topics of research in microfluidics were discussed: “Droplet

slippage on special surfaces” and “Mesoscopic snowflake melting in terms of fractals”.

In the first topic the slippage of a nano-droplet of water adsorbed on a surface

with photo-switchable wettability characteristics was studied. A new implicit surface

potential was developed to better account for the wettability switch affecting one half of

the surface. Application of this new potential within a Molecular Dynamics framework

led to successful reproduction of the droplet slippage in direction of the more hydrophilic

side of the surface.

Based on this initial results, more detailed analysis was carried out especially with

respect to the behaviour of water molecules in direct contact with the surface. Droplet

translocation rate was studied under various conditions and conclusions drawn with

respect to efficiency. A special role was identified for dipole interactions as well as

diffusion taking place in the immediate vicinty of the potential switch.

An interpretation of the microscopic driving force that induces the slippage of the

entire drop was proposed. The potential switch could trigger an accumulation of less en-

ergetic parallel alignments of dipoles directed towards the “hydrophilic” part of the sur-

face. Such “misaligned” dipoles would then be prone to continued forward-movement

to release the “dipole strain” resulting in a re-arrangement of dipoles in the more stable

anti-parallell configuration thereby pushing forward the entire core of the drop.

In the second part of this thesis a mesoscopic study was carried out regarding the

melting of a snowflake in fractal description.
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4. CONCLUSIONS

A filled von Koch-like fractal structure of mesoscopic beads was chosen to represent

the snowflake. A new algorithm based on Monte Carlo and Random Walk Simulations

(MCRWS) was developed from scratch to simulate the thermal collapse of fractal

structures.

In order to validate the developed method, it was compared with Molecular Dy-

namics simulations regarding the melting of a snowflake at atomic level of detail. Good

agreement could be reached between the two methods and new ice parameters for

MCRWS were derived.

The MCRWS method permitted bigger snow-fractals melting studies looking at

the time evolution at different temperatures. An in-depth analysis of observables such

as border length and gyration radius was performed in order to better describe the

melting process.

Both observables showed a decrease during MCRWS simulation which followed

the same mathematical law, i.e. a sum of two terms each describing an exponential

decay. The two processes were mutually dependent with the initial term decisive for the

early drop and the second term dominant in the later stabilization stage of observable

trends. Corresponding coefficients and exponentials were determined from the fit to

the simulation data.
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