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INTRODUCTION  

 

1. Integrated Optics for Telecommunications  

Optical technologies have become more and more important in the present information 

era as they provide adequate answers to the ever increasing demand for high speed 

internet access and broadband communication services, necessary for both long distance 

communications and Metropolitan or Local Area Networks (MAN and LAN, 

respectively). In chronologic order, three were the key steps that contributed to the 

realization and development of optical communication systems [1] (see Fig. I): (i) the 

discovery of the laser, at the beginning of the 60s, as coherent source of optical signal; 

(ii) the fabrication, between the end of the 70s and beginning of 80s, of highly 

transparent single mode silica fibers with attenuation of 0.2÷0.3 dB/km in a wide range 

of wavelengths between 1450 nm and 1650 nm (≈ 25 THz); (iii) the possibility to have, 

from the middle of the 80s, all-optical signal amplification, in order to regenerate light 

signals without any double opto-electronic conversion. This latter result was obtained 

doping silica fibers with erbium, a particular element of Rare-Earth (RE) group, having 

its optical emission wavelength accordable between the 1530 nm and 1570 nm, just 

inside the low-loss window of silica fiber (Erbium Doped Fiber Amplifier, EDFA) [2-

3]. The idea which generated this innovative device was in effect not truly new as the 

possibility of using RE doped glass materials to produce laser emission was studied 

many years before (1961) by Snitzer [4]. 

        

      Fig. I: Scheme of an Optical Communication System [5].  

 

These breakthroughs have generated and continue to push intensive research for new, 

more compact and reliable optical components and devices, able to respond both at the 

continuous demand of larger bandwidth and at the higher complexity of the net. This is 
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particularly true in the domain conventionally known as “Integrated Optics” (IO), which 

aims to integrate several functions in a single optical chip through guiding structures 

based on channel waveguides, with high performance and reduced costs. Typical 

examples of IO devices are passive devices, such as splitters and couplers, able to route 

the optical signal and guarantee a higher number of access points to the optical network, 

but also active ones, such as waveguide amplifiers (Erbium Doped Waveguide 

Amplifiers, EDWAs) for all-optic regeneration of signal in DWDM (Dense Wavelength 

Division Multiplexing) applications. The wish to reduce costs guaranteeing high 

performances and mass production has in fact made glass an interesting host material to 

fabricate RE doped IO devices [4, 6-7]. 

 

2. RE-doped materials and sources for integrated and micro optics  

As mentioned before glasses have been known since long time as a convenient host for 

RE ions to be used for the fabrication of solid-state lasers, especially of those based on 

Er
3+

 ion doping [8,9]. We also pointed out that guided wave planar format adds several 

advantages, such as compact size, possibility of working with higher pump density and 

lower lasing threshold, and a larger flexibility in design and fabrication. However, the 

choice of the active glass matrix appears a crucial step for the performance of integrated 

optical amplifiers and lasers, because the short length of these devices generally 

imposes higher RE concentrations than in fiber amplifiers. This fact gives rise to 

deleterious non-radiative processes which worsen the device performances. Co-doping 

with Yb
3+

 (ytterbium) ions is generally used to improve the pump absorption but also to 

partially reduce these parasitic effects [9,10]. In any case, an optimization of the dopant-

matrix system is necessary. Silicate glasses remain very attractive materials for the 

development of IO devices, due to their chemical durability and adaptability to different 

waveguide fabrication processes. Nevertheless, the fabrication of optical amplifiers and 

lasers in these glasses may be limited by the reduced solubility of rare-earth ions and the 

relative narrower fluorescence bandwidth as compared to other oxide-glass hosts largely 

used as active materials, like phosphate glasses [10,11]. The ability to fabricate channel 

waveguide with low insertion losses is a fundamental requisite to the final performance 

of the device. In this sense, the choice of silicate glasses appears quite good because the 

refractive index is close to that of telecommunication silica fiber. Various technologies 
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have been proposed to fabricate active glass IO components. They include ion-exchange 

[12,13], sol-gel [14-15], sputtering [16,17], UV writing or photo-imprinting [18,P.II], 

femtosecond laser writing [19,20], ion-implantation [20,21]. The choice of the best 

method is still not obvious and depends also on the application one has in mind. So, the 

first part of this thesis work will concern the investigation of new glass materials able to 

hosts high RE concentrations, with particular attention to their spectroscopic 

characterization, and the development of the most convenient fabrication process for the 

integration of channel waveguides in these glasses. 

Then, more recently, micro-optical devices microcavities or resonators able to confine 

light in small volumes have gained growing interest not only as a basic research topic 

but also in view of new interesting applications in sensing and photonics [23]. In 

particular, in dielectric microspheres light can be guided through whispering-gallery-

modes (WGMs) with a strong temporal and spatial confinement [24]. These features 

allow the implementation of very low threshold, small size, high performance 

narrowband laser microsources in active glasses, without any structure (mirrors or 

gratings) to feedback the amplified signal [25]. This suggested to extend the 

investigation on Er
3+

 doped glass to include also the study of possible developments of 

these new devices with particular reference to the implementation of the fiber-resonator 

coupling system and the development of microlaser sources based on Er
3+

 doped glass 

microspheres.  

 

3. Outline of the Thesis  

This thesis is organized as follows. 

 

In Chapter 1 the basic formalism to describe laser behavior will be recalled. 

 

In Chapter 2 Rare-Earths doped glasses as active materials for laser devices will be 

described. The fundamentals of Rare-Earths theory in amorphous materials will be 

presented with particular attention to the Er
3+

 ion for its interesting applications in 

optical communication. The pump mechanism in a Er
3+

 system and the effect of a Yb
3+

 

co-doping on the pump efficiency will also be presented. Spectroscopic characterization 
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of different experimental silicate and commercial phosphate glasses [P.II-VIII], used in 

our experiments to fabricate laser devices, will close this chapter. 

 

In Chapter 3, after a brief overview on modeling of electromagnetic propagation in 

planar guiding structures, preliminary results on the development of new channel 

waveguide laser will be presented. These waveguides are fabricated using: i) ion-

exchange process in experimental Er
3+

/Yb
3+

 silicate glasses [P.IV-V,P.VII,P.IX]; ii) UV 

photo-imprinting technique in SiO2-GeO2 binary system activated by Er
3+

/Yb
3+

 ions 

[P.II-III]; iii) ion beam irradiation in Er
3+

-doped tungsten-tellurite glasses [P.I]. 

 

In Chapter 4 we will present an analytical model for electromagnetic propagation in 

dielectric spherical resonators (DSRs), based on the resolution of Maxwell equations by 

means of vector and Debye’s scalar potentials. Numerical simulations, developed in 

MATLAB code, will be also performed. Fabrication and characterization of 

microsphere lasers in different modified silica glasses and phosphate glasses will be 

discussed and results on lasing action and resonances will be reported and discussed as 

well [P.VI, P.VIII].  

 

The experimental work presented in this thesis was mainly done at the Institute of 

Applied Physics “Nello Carrara” I.F.A.C.-C.N.R., Sesto Fiorentino (Florence, Italy), 

also in the framework of the FIRB project “Sistemi Miniaturizzati per Elettronica e 

Fotonica”. 
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CHAPTER 1 The Laser: Principles and Typologies 

 

1.1 Introduction 

 

The word LASER is the acronym of “Light Amplification by Stimulated Emission of 

Radiation”. A laser is an optical device able to produce an high-intensity and directional 

beam that typically has a well-defined wavelength. In 1960 T. H. Maiman demonstrated 

the first realization of a solid state laser (ruby laser) [26] extending, to the optical 

frequencies, the principle of MASER (Microwave Amplification by Stimulated Emission 

of Radiation) obtained six years before by C. H. Townes [27] and, independently, by N. 

G. Bosov and A. M. Prokhorov [28]. However, seminal ideas on lasers were proposed 

in 1915 when Albert Einstein, in his work on emission and absorption of light by atoms 

and molecules [29], introduced for the first time the concept of stimulated emission that 

has a fundamental importance for laser working After showing that the state of 

thermodynamic equilibrium between radiation and matter could be explained in terms 

of three basic processes: spontaneous and stimulated emissions and absorption.  

A detailed description on the laser working principles, structure and materials can be 

found in many textbooks [30-34] and is beyond the scope of this thesis. In this chapter 

the basic principles of laser theory will then be reminded simply to introduce the 

formalism and the symbols used in the next chapters. As attention will be focused on 

lasers realized using Rare Earths doped glasses, only the so called three level systems 

will be illustrated.  
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1.2 The three level laser equations  

 

A schematic of  the so called three level laser system [35] is shown in Fig. 1.1.  

 

 

                 Fig. 1.1: Three-level Laser scheme 

 

Electrons at the lower energy level E0 may absorb, with some probability, the so called 

pump energy (carried, for the lasers we are considering, by another photon) and are 

excited to an upper energy level, E2. This level is unstable and then the electron rapidly 

decays (decay time in the order of 1 ms in silicate glasses), emitting the corresponding 

radiation in mechanical form (phonon, or mechanical vibration), to another energy level, 

E1, which is said metastable as its decay time is not so short (decay time in the order of 

around 10 ms in silicate glasses).  

If the upper pump level is empty, the rate at which the upper laser level 2 becomes 

populated by pumping is given by  
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where Ni (i = 0,2) is the number of atoms (per unit of volume) at energy level Ei and Wp 

is a coefficient called pump rate [30]. Wp is basically the pump absorption probability 

and can then be expressed as: 

 

02, EEwith
I

FW p

p

p

pppp −=== ν
ν

σσ h
h

                                        (1.2)

                          

where 
ppIF νh=  is the photon flux of the optical pump, with light intensity Ip, and 

pσ  is the pump absorption cross section. Dimensionally it is an area and depends only 

on the characteristics of the considered transition.  

When a further photon arrives, with energy  

 

01 EE −=νh                                               (1.3)

  

 

( [ ]sJ ⋅⋅= − 341063.6h  is the Plank’s constant), it may stimulate the decay of the electron 

from the excited level E1 to the ground level E0. Such a decay occurs with a finite 

probability and corresponds to the emission of another photon with the same ν of the 

incident one. The generated secondary photon has not only the same energy but is also 

in phase with the principal one: a coherent emission is then obtained. The radiation 

process can be described by an equation similar to (1.1) [30,36]: 

 

stst
td

Nd
NW

td

Nd 0
110

1 −=−=                                                          (1.4) 

    

where 10W  is called stimulated emission probability. It depends not only on the 

particular transition but also on the intensity of the incident electromagnetic wave. As in 

eq.(1.2), also for the stimulated emission probability we can write: 
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ν
σσ

h

s

e

I
FW == 1010                                              (1.5)

  

 

where F is the photon flux of the incident wave (the signal) and eσσ =10  is a quantity 

having the dimension of area (called stimulated emission cross section) depending only 

on the characteristics of the considered transition.  

Note that the decay can may also occur in a non-radiative way. In this case the energy 

difference E1 – E0 is released to the material in the form of thermal energy through a 

multiphonon deactivation (see Chapter 2).  

Together with the phenomena mentioned above, another physical process can occur. 

It is the spontaneous emission in which an electron, in the metastable level E1, 

spontaneously falls down to the ground level E0 and emits a photon with a frequency 

given by eq. (1.3). The probability of spontaneous emission can be so expressed 

[30,36]: 

 

spsp
td

Nd
NA

td

Nd 0

1
1 −=−=               (1.6)

          

where A is spontaneous emission probability or Einstein A coefficient.  

This term contributes to the noise in a optical amplifying or lasing system. 

Consequently, in order to make the stimulated emission process efficient, the so called 

population inversion condition should be satisfied: 

 

001 >− NN               (1.7)

        

In a three level system, the pump mechanism illustrated above guarantees this condition. 

The foregoing equations allow to determine a fundamental parameter of any laser, its so 

called optical gain G. This parameter depends on the material, the pump mode and 

varies also on the operating wavelength and the device geometrical features. To obtain 

its expression one must consider first the gain per pass in the active material, defined as 
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the ratio between the output and the input photon flux F of the signal to be amplyfied, 

which can be obtained solving the following differential equation [30]: 

 

( ) zdNNFFd 01 −= σ                       (1.8)

  

where σ  is the emission cross section introduced in (1.3), and N1 and N0 are the two 

populations of to the upper and the lower laser levels. Solving eq. (1.8) one gets the 

explicit expression of the gain of the active medium: 

 

( ) ( )[ ] ( )LgLNNG expexp 01 =−= νσ                                 (1.9)

  

 

where L is the length of the active material and g is the gain coefficient. 

 

To obtain a laser, a feedback is needed [30,36]. To do so a resonant cavity can be 

created putting the active material between two highly reflecting mirrors (plane-parallel 

mirror surfaces, for the so called Fabry Perot lasers, or Bragg gratings, for DFB and 

DBR lasers, as sketched in Fig. 1.2). Lasing can occur if the so called threshold 

condition is fulfilled [37]. This means that the optical gain G of the active material must 

at least compensate the absorption and transmission losses in the system. 

 

 

                           

                                    

   Fig. 1.2: Generic scheme of a Laser 
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 In the reference frame shown in Fig. 1.2, such a condition can be written as:  

 

( ) ( )[ ] ( ) ( )
→→

=−−− 021int010 4exp2exp2exp ELnjRRLLNNE λπανσ    (1.10)  

 

where 

 

• 
→

0E is the electric field valued in z = 0
+
;  

• ( ) ( )[ ]LNN νσ01exp −  is the amplification factor through the active medium  

given by eq.(1.20);  

• exp(- αint L) is the attenuation factor due to the absorption of the material, where  

αint is the internal absorption coefficient per unit length;  

• R1 and R2 are the mirrors reflectivity coefficients for z = 0 and z = L,  

respectively; 

• exp(- j 4πnL / λ) is the difference in phase, for the electric field 
→

0E , after the  

second reflection on the first mirror. 

 

Considering the amplitude contribution of the equation reported above, we can write the 

condition [30]: 

 

( ) 















+=−

21

int01

1
ln

1

2

1

RRL
NN

c
α

σ
 .                            (1.11)

                

 

This relationship shows that the threshold corresponds to a particular value of the 

population inversion: ( )
c

NN 01 − . Once this critical inversion is achieved, the photons 

that are spontaneously emitted along the cavity start the amplification process and, 

consequently, the oscillation occurs. This is the basis of a laser oscillator. To get a 

threshold condition, the pump rate defined in eq. (1.2) must reach a critical value Wcp. 

Finally, remembering that ( )LgG exp= , eq. (1.10) can be rewritten as: 
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( ) ( ) ( ) ( ) ( )
→→

=−−− 0int2int10 4expexpexpexpexp ELnjLLgRLLgRE λπαα .              (1.12)      

 

Considering once again the amplitude and phase contributions of this equation, we 

finally get [36]: 

 









+=

21

int

1
ln

2

1

RRL
g α                                                      (1.13)

                  

Eq. (1.13) shows that the gain coefficient g, at the threshold condition, must be equal to 

the sum of internal (i.e., absorption of material) and external (i.e., transmission of 

cavity) losses.  

 

The presence of a resonant cavity introduces a new concept, the so called Free Spectral 

Range (FSR), defined as [1]: 

 

c
nL

m
c

nL

m
FSR

mm

mm
22

1

1

1 −
+

=−==∆
+

+ ννν                             (1.14)

   

where m is an arbitrary integer and nm is the effective refractive index of the m-th 

frequency resonating in the active medium. Only frequencies associated to cavity gains 

exceeding the losses at the same frequency will be present in the radiation spectrum of 

the laser. This allows to introduce also the Quality Factor Q of the cavity defined, 

generally, as 

 

( )
τω

ν

νπ
===

dcyclelossEnergy

StoredEnergy
Q

2
                             (1.15) 

 

where τ  is the photon lifetime in the cavity.  
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1.3 Studied Laser structures  

 

In the following, attention will be focused on two types of optical resonators realized in 

such substrated: Fabry-Perot waveguides (Chapter 3) and microspherical cavities 

(Chapter 4) .  

In the case of a Fabry-Perot resonator, the feedback is guaranteed by two high reflecting 

mirrors (or gratings) as sketched in Fig.1.2. 

For the spherical resonators, the feedback at selected wavelengths is obtained taking 

advantage of the particular geometry of the structure that acts as a ring and confines the 

light in proximity of the spherical surface. This is the case of morphology-dependent 

resonances (also called Whispering Gallery Modes, WGMs), shown in Fig.1.3:  

 

 

               

 

 

Fig. 1.3: Schematic of WGM field components in a microsphere 

resonator. Light trapped in the WGM propagates around the sphere 

equator in a narrow and thin band, constantly reflecting off the sphere 

surface. 
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CHAPTER 2 Materials: Rare-Earth-doped glasses for 

microlasers  

 

In this chapter we discuss about the two elements constituting a laser device: the active 

medium and the pump mechanism. As mentioned above, in Integrated Optics different 

materials can be used as active medium for laser devices (i.e. semiconductor or 

dielectric materials). In optical amplification and laser operation, glasses activated by 

Rare-Earth ions are one of the most convenient choice in virtue of their high 

performances and low costs. In particular, among all the Rare-Earth elements, erbium 

(alone or together with ytterbium) has a relevant importance in telecommunication 

systems because its emission peak at 1.5 µm falls just inside the low-loss third window 

(also called C-band) of silica optical fiber as shown in Fig. 2.1. 

       

                                             

   (a)               (b) 

Fig. 2.1: (a) The photoluminescence spectrum of the 
4
I13/2 → 

4
I15/2 Er

3+
 

transition in silica host  (around 1.5 µm) falls inside the low-loss 

window of silica optical fibre near IR (InfraRed) region (b) [1].  

 

Among the key parameters acting on the efficiency of lasers and amplifiers, the host 

glass composition plays a crucial role [2,11]. Even if phosphate glasses are recognized 

as an excellent host for erbium ions thanks to their possibility to guarantee higher 

dopant concentrations and weaker interactions among the same ions [38], silicate 

glasses still remain one of the more suitable host because of its chemical resistance and 
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compatibility with optical fiber. In addition to their high transparency around 1.5 µm, 

the long lifetime of the Er
3+

  
4
I13/2 metastable level permits to reach the high-population 

inversion needed to obtain a quite high gain [39]. In this chapter, we will examine 

optical and spectroscopic properties of six glass formulations: two classes of 

experimental soda-lime silicate glasses for the fabrication of waveguide lasers and 

amplifiers through ion-exchange process [P.IV-V,P.VII]; a SiO2-GeO2 thin glass film 

deposited by sputtering technique for the fabrication of waveguide lasers by UV photo-

imprinting [P.II-III]; and a modified silicate Baccarat, commercial IOG10 Schott silicate 

glass and IOG2 Schott phosphate glass- used to obtain lasing action in optical 

microsphere [P.VI, P.VIII]. All these oxide-glasses are doped with different percentages 

of Er
3+

 and/or co-doped with Yb
3+

.  

The chapter is structured in two parts, A and B. 

The first one is a theoretical part in which we report the fundamentals of Rare-Earth 

spectroscopy in vitreous materials and define the parameters useful for the 

spectroscopic characterization we performed. In Section 2.A.1 the electronic and optical 

properties of Rare Earth ions will be presented. In Section 2.A.2 we report on the effect 

of the glass matrix on the Rare-Earth ion properties while the Rate Equations model for 

a three-levels system concludes this theoretical part (Section 2.A.3).  

In the second part, we will report on the spectroscopic characterization of active silicate 

and phosphate glasses used in this work. Their composition and fabrication process are 

described in Section 2.B.1. Absorption (Section 2.B.2), fluorescence (Section 2.B.3) and 

lifetime (Section 2.B.4) measurement set-ups and results are reported in the following 

sections. Finally, in Section 2.B.5, we will present preliminary results on the effect that 

the microspheres fabrication process has on the spectroscopic characteristics of the 

doped microcavity [P.VI].  
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2A   Spectroscopic Properties of Rare-Earth elements: Fundamentals 

 

2A.1 Electronic configuration and optical properties for a Free-Rare-Earth ion  

 

The Rare-Earth (RE) ions, also called lanthanides, are a set of 15 elements that, 

occupying the sixth row of the periodic table, range from lanthanum (La), with an 

atomic number of 57, to lutetium (Lu), with an atomic number of 71. All the RE atoms 

are characterized by the same outer-shell electronic structure of 5s
2
 5p

6
 6s

2
 . Table 2.1 

lists the RE elements with their atomic numbers and electronic configurations in which 

[Xe] designates the configuration of Xenon [35,40]. 

 

    

         Table 2.1 : RE elements with their atomic numbers and electronic    

         configurations. [Xe] stands for the electronic configuration of Xenon. 

 

The most stable ionization state for a rare-earth element is the trivalent one (i.e. Er
3+

, 

Yb
3+

, etc.). In this configuration, two of the 6s electrons and one of the 4f electrons are 

removed, but the outer 5s and 5p electrons remain untouched, shielding the other 4f 

electrons from the effect of external fields, such as those generated by the surrounding 

environment. The number of electrons occupying the inner 4f shell confers the 

spectroscopic properties to each element while optical absorption and emission 
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processes cause transitions within this level. In the choice of which RE element is better 

to use for amplification and laser applications, the strength and energy of 

emission/absorption processes play an important role. In particular the knowledge of 

absorption spectrum gives a important information on the pump wavelength necessary 

to excite the ions to higher energy levels. From these high levels, electrons relax to the 

ground level through different steps in which light radiation may or may not occur, with 

the modalities illustrated in Chapter 1. The energy levels of 4f electrons can be 

expressed starting from the Hamiltonian for a N-electron ion, written in the absence of 

external fields [41]:  

 

( ) OSelOi

N

i

ii

N

ji ji

N

i i

i

N

i

IonFree HHHslr
r

e

r

eZ

m
H −

=<==
− ++=⋅++−∇−= ∑∑∑∑

1

2

1

2
2

1

2

2
ξ

h
            (2.1) 

 

In eq. (2.1) the first two terms represent the kinetic and potential energy of the N-

electrons in the field of the nucleus, respectively. Z is the effective charge, m is the mass 

of the electron and ri is the distance of i-th electron from nucleus. The third term, 

labelled Hel, takes in account the Coulomb interaction among 4f electrons pairs at a 

distance rij. The last term, HS-O, is the spin-orbit interaction, where the constant ( )irξ  

represents the spin-orbit coupling coefficient, and si and li are the angular and the orbital 

momentum of the i-th electron, respectively. If Hel >> HS-O, the energy level of each ion 

can be labelled using the Russell-Sounders notation 
2S+1

LJ, where S is the total spin 

quantum number, L is the orbital angular momentum quantum number, that can assume 

the values L= 0, 1, 2, 3, 4, 5, 6….corresponding to the letters S, P, D, F, G,  H, I….., J is 

the total angular momentum quantum number, with J = L + S and, finally, 2J+1 is the 

degeneration of the level. The energy level diagrams for the Er
3+

 ion is shown in Fig. 

2.2 . 
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Fig. 2.2: Energy levels of Er
3+

 labelled with the dominant Russel-

Saunders 
S
LJ. For each state the ground state absorption transition 

GSA is also reported [2]. 

 

 

2A.2  Glass as host for RE ions: Judd-Ofelt theory and main spectroscopic 

parameters. 

 

Glass is an amorphous material formed by different elements such as oxides and/or 

anhydrides, which, with their covalent bonds, form a disorder matrix during the cooling 

phase of the fabrication process [42]. The principle characteristics of an optical glass 

are: 

• excellent transparency in visible and infrared spectral regions; 

• very good homogeneity and isotropy; 

• high threshold to optical damage; 

• relative low costs. 

When RE elements are incorporated in a glass matrix, they modify the network of the 

host material occupying interstitial positions inside it. Contemporary, a RE ion incurs in 
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different kinds of interaction that influence its energy levels distribution. Hence, the 

Hamiltonian function of eq. (2.1) becomes: 

 

IondPerturbateIonFreeTOT HHH −− +=                          (2.2) 

 

where  

 

IonIonPhotonIonMatrixIonIondPerturbate VVVH −−−− ++=                (2.3) 

 

In the next paragraph we focus our attention on each term of eq. (2.3). 

 

2A.2.a Effects of glass matrix on the RE ions: the VIon-Matrix contribution 

 

The VIon-Matrix contribution expresses the effects of the glass matrix on the energy levels 

of RE ions with both static and dynamic interactions taking place. The former type is 

related to electric fields, known as crystal field contribution, due to the surrounding 

atoms that interact with the lanthanide ion in the host lattice. This interaction splits each 

energy level in Stark sublevels. For instance, as shown in Fig. 2.3, the ground state 
4
I15/2 

of an Er
3+ 

ion in glass is a manifold of eight sublevels of energy E0j and the 
4
I13/2 excite 

state is a manifold of seven sublevels of energy E1j. In general assuming for level 0 a g0-

fold degeneration and for the level 1 a g1 degeneration, in case of thermal equilibrium 

we can write the following equation: 

 

010101 σσ gg =                    (2.4) 

 

. 

Let N0 be the total population of the degenerate ground level 
4
I15/2 and N1 that of the 

excited state 
4
I13/2. Applying eq. (2.4) to eq. (1.21) we obtain a new expression for the 

gain coefficient g: 









−=−=

0

1
0110010101

g

g
NNNNg σσσ                  (2.5) 



19 

that shows how the degeneration of the energy levels influences the optical gain of the 

material [30].  

Generally, the gap between two Stark sublevels depends on the intensity of the electric 

field generated by the atoms of the surrounding medium. Nevertheless this separation 

(the maximum energy gap ∆E is around 200 cm
-1

) is much lower than that existing 

between two neighbouring J levels of a free RE ion as shown in Fig. 2.3. The reason of 

this behaviour is the shielding action of 5s and 5p electrons on those of the 4f shell, as 

mentioned above. 

 

                                   

     Fig. 2.3: The effect of the crystal field (right) with the splitting  

     of the energy levels of the free Er
3+

 ion (left) [21]. 

 

A dynamic interaction with the lattice is instead associated with non-radiative decays i.e 

when in the transition of a RE ion from an higher energy level to a lower one, there is 

no photon emission, and the energy is released to the host lattice through multiphonon 

relaxation. The probability that an ion at the higher energy level relaxes non-radiatively 

to the lower one is given by the following relation [43]: 

 

( )[ ] Ep

nr eTnCW
∆−+= α1                       (2.6) 

 

where ( )
( ) 1exp

1

−
=

Tk
Tn

Bωh
 is the occupation number of a phonon level according 

to Bose-Einstein statistic. C and α are positive constants characteristic of the host, ω is 
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the phonon angular frequency, p is the number of phonon necessary to cover the energy 

gap ∆E. Thus, in a multi-phonon interactions, the transition probability quickly 

decreases with decreasing phonon energy. The large variation in vibrational spectra 

among different hosts make the non radiative relaxation rate strongly dependent on the 

glass matrix type.  

 

2A.2.b  Radiative Transitions and Judd-Ofelt method: the VIon-Photon contribution and 

main spectroscopic parameters 

 

This contribution refers to the electromagnetic interactions between a RE ion and a 

photon. A general approach in determining the transition probabilities between 4f states 

and radiative lifetime is based on the so-called Judd-Ofelt theory [44,45]. 

Refering to Fig. 2.4, 

                             

Fig. 2.4: Fundamental mechanism: absorption (W01), spontaneous 

emission (A10) and stimulated emission (W10) occurring between two 

general state ψ  and ψ′
 .  

 

let us assume with Ψ  and Ψ ′
 the initial and the final states of a transition, respectively. 

Under the approximation that the population of each energy level is uniformly 

distributed on its constituting Stark, it is possible to derive the theoretical strength 

associated to each absorption or emission transition of electric dipole fed between the 

two states Ψ  and Ψ ′ 
as: 
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( ) 2

'
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where λ is the mean wavelength of the transition, n is the refractive index, m is the mass 

of the electron and J is the total angular momentum of the initial state [46]. The terms 

'ΨΨ kU  are typical elements of each Rare-Earth, proportional to the reduced matrix 

elements kU  tabulated in the literature by Morrison [47], while the intensity 

parameters 
kΩ  (k = 2, 4, 6) take in account the interactions between vitreous matrix and 

RE ion.  

The electric dipole strength is also directly linked to the absorption spectrum through 

the relationship: 

 

( ) ννα
π ν

d
Ne

cm
f ed ∫=

2
                            (2.8) 

 

where ( )να  is the absorption coefficient at the  frequency ν and N is the number of RE 

ions per volume unit. Then, from a direct measurement of ( )να  and using eq. (2.8) and 

(2.7) the values of the phenomenological parameters kΩ  can be calculated. The 

knowledge of these parameters is important because it allows the calculation of the 

transitions probabilities related to absorption or emission phenomena. The electric-

dipole contribution is computed as follows [46]: 
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In the same way, the magnetic-dipole contribution depends on the magnetic-dipole 

operator and is given by: 

 

( )
( )

( )∑
=
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              (2.10) 

 

where ( )SL 2+  are the magnetic dipole matrix elements also tabulated by Morrison 

in the intermediate-coupled wave functions set. 
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Eq. (2.9) and (2.10) express the Einstein’s coefficient A.  

The radiative lifetime ( )'ψτ rad  of a RE ion in an excited state 'ψ is then given by: 

 

( )
( )∑ →

=

i

i

rad
A ψψ

ψτ
'

' 1
                    (2.11) 

 

where the sum is on all the states iψ  below the excited state 'ψ  and 

( ) ( ) ( )ψψψψψψ →+→=→ '''

mded AAA . The overall probability of relaxation from 

an excited state 'ψ is: 

 

( ) ( ) ( )irn

i

iT WAW ψψψψψ →+→=∑ '''                  (2.12) 

 

where ( )irnW ψψ →'  is the non-radiative decay probability defined in eq. (2.6). 

Then, defined the non-radiative lifetime rnτ  as: 

 

( )∑ →
=

i

rn

rn
W ψψ

τ
'

1
                    (2.13) 

 

the measurable lifetime parameter τ meas can be expressed by: 

 

( )
measrnrad

TW
ττττ

ψ
1111' =+==                    (2.14) 

 

From equations (2.14) and (2.11) we define the quantum efficiency η  as the ratio 

between the measured and the radiative lifetimes: 

 

rad

meas

τ

τ
η =                       (2.15) 
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Other important spectroscopic parameters are the absorption and emission cross 

sections. The former can be obtained directly from the measurement of absorption 

coefficient ( )λα , as reported in the following relation [46]:  

 

( ) ( )
N

a

λα
λσ =                                 (2.16)

   

where N is the number of RE ions per volume unit. The latter, knowing the radiative 

lifetime radτ and the fluorescence spectrum ( )λeI , can be expressed as follows: 
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where λp is the emission peak wavelength and effλ∆  is the effective bandwidth defined 

as 
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==∆
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λ                    (2.18) 

 

with ( )
pee II λ=max, .  

Alternatively, for transitions like the Er
3+

 215

4 I  ↔ 213

4 I  one, using the McCumber 

theory [48], it is possible to express the emission cross section as a function f the 

absorption cross section: 

 

( ) ( ) 






 −
=

TkB

ae

νε
νσνσ

h
exp                                (2.19) 

 

where ν  is the frequency of the photon of energy νh involved in the process, and ε  is 

the temperature-dependent excitation energy. The physical interpretation of ε  is the net 

free energy required to excite one Er
3+

 ion from the ground state at temperature T. An 
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example of absorption and emission cross-sections of Er
3+

 ions at 1.5 µm, obtained 

using McCumber theory, is reported in Fig. 2.5 for a tellurite glasses [49]. 

                          

Fig. 2.5: Absorption and emission cross-section of Er3+ ion at 1.5 µm 

in a tellurite glass of molar composition 60 TeO2 : 25 WO3 : 15 NaO2 : 

0.5 Er2O3  

 

From Fig. 2.5 it is easy to see that, at high frequencies (low wavelengths), the 

absorption cross-section is larger than the emission one, while, at low frequencies (high 

wavelengths), the contrary case occurs. Generally, the parameter λ∆ , eσ  and aσ  

strongly depend on the glass composition, which play a crucial role on the whole 

spectroscopic properties through the modification of the local environment of rare-earth 

ions. 

The linewidths of the transition showed in fig. 2.5 appears quite broad and this is in part 

due to the stark splitting of the two multiplets. When the transitions between the 

different Stark levels are close in energy, the transition lines overlap and appear to form 

a single large transition. 

In general the linewidth of a transition between two given energy levels contains both a 

homogeneous and inhomogeneous contribution [30]. The former is the natural, 

temperature dependent, broadening mainly due to nonradiative decay processes. The 

faster the lifetime, the broader the line. The latter is a measure of the various different 

sites in which RE ions can be situated within the glass host. In this case, the 

perturbation changes from one RE ion to another and, for this reason, it is called 

inhomogeneous broadening. 
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2.A.2.c Effects of RE ion-ion interaction in glass and pumping processes  

 

The VIon-Ion term of eq. 2.3 is related to the interaction between two RE ions and 

strongly depends on their concentration in the host material. This term plays a 

fundamental role on absorption and re-emission dynamics of light radiation. At low 

concentration of RE ions the signal amplification is limited by the availability of ions. It 

could seem, therefore, that simply increasing the doping level we can keep improving 

the optical gain of the active medium. Nevertheless at high RE concentrations some 

parasitic effects occur, such as up-conversion phenomena, which induce concentration 

quenching [2,11]. The result is a reduction in the amplification efficiency of the 

luminescent material. Let us consider the case of Er
3+

 ions. When the erbium 

concentration increases, the average distance between neighbouring Er
3+

 ions decreases 

and simultaneously the electric dipole-dipole interactions become more significant. In 

this case a non-radiative energy transfer can occur between two ions as shown in Fig. 

2.6: 

                     
 

 

Fig. 2.6 Upconversion effect: energy transfer between two 

neighbouring Er
3+ 

 ions originally at the same excited energy level 

4
I13/2.  

 

An Er
3+

 ion (donor) in the excited state 
4
I13/2 transfers its energy, with a non-radiative 

process, to another neighbouring Er
3+

 ion (acceptor) at the same energy level. Because 

in erbium the energy gap between the 
4
I13/2 and 

4
I9/2 levels is close to that between the 

4
I13/2 and 

4
I15/2, as result the donor ion falls down to the ground level 

4
I15/2 without any 

photon emission (dot arrow), while the acceptor ion jumps to the higher energy level 

4
I15/2 

4I13/2 

Er3+ donor 

⇒ 

4I15/2 

4
I13/2 

Er3+ acceptor 

   4
I9/2 
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4
I9/2. From there, the acceptor ion can relax thought successive non-radiative transitions 

until it reaches again the 
4
I13/2 level. This is the so-called upconversion effect [2,11].  

 

Other parasitic phenomena can involve the pumping mechanism necessary to guarantee 

the population inversion of Er
3+

 ions in the metastable level 
4
I13/2. The most important is 

the Excited State Absorption, better known with the acronym of E.S.A. This process is 

due to absorption of a pump photon from an Er
3+ 

 ion in the excited state and its 

working principle is illustrated if Fig. 2.7. 

             
 

Fig. 2.7  The absorption of a pump photon at 980 nm (G.S.A.) from an 

excited Er
3+

 ion generates the E.S.A. process (red arrow) with the 

possibility of Green Up-Conversion (green arrows) or Blue Up-

Conversion (blue arrow).   

 

With the absorption of a pump photon at the wavelength of 980 nm, an Er
3+

 ion can be 

promoted to the excited level 
4
I11/2. This is the Ground State Absorption (G.S.A.) from 

the fundamental level 
4
I15/2. Usually, from this excited state, the Er

3+
 ion decades non-

radiatively until it reaches the metastable level 
4
I13/2. But, before this happens, another 

pump photon at 980 nm can be absorbed by the excited Er
3+

 ion and the transition 
4
I11/2 

→ 
4
F7/2 can occur. This is the case of Excited State Absorption (E.S.A.) shown in 

Fig.2.7 with a red arrow. From this excited state the ion rapidly decays to the 
2
H11/2 and 

4
S3/2 levels (the dot arrows in Fig.2.7). Finally the Er

3+
 ion can relax to the ground level 

with emission of a photon at the wavelengths of 520 nm or 550 nm (the green arrows in 

Fig.2.7). In this case we speak of Green Up-Conversion process. With less probability, a 

 4
I15/2 

 4
I11/2 

 2
H11/2 

 4
S3/2 

G.S.A. 

 E.S.A. 

 980 nm 

 980 nm 

  G.U.C 

 550 nm 

  G.U.C 

 520 nm 

  B.U.C 

 490 nm 

  4F7/2 
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photon emission at 490 nm, in the blue region, can also occur due to the 
4
F7/2 → 

4
I15/2 

transition. This latter is the Blue Up-Conversion (blue arrow in Fig.2.7). It is clear that, 

for optical amplification, Excited State Absorption can be a strong loss mechanism for 

pumping: two pump photons are absorbed with only one reemitted but in the visible 

wavelength region. The E.S.A. phenomena strongly depend upon glass composition and 

wavelength used for the pump mechanism [2,11].  

The energy transfer mechanism between neighbouring ions can be also applied, with 

some advantage, in case of glasses doped with more than one type of RE ion. A 

constructive application of such an effect is made co-doping the Er
3+

 doped material 

with Yb
3+

 ions. In fact, this ion has an energy level structure with two levels, the 
2
F7/2 

(fundamental) and the 
2
F5/2 (first excited level), respectively, with a broad absorption 

bandwidth from 800 nm to 1100 nm (related to Stark sublevel transitions) . In particular, 

at the wavelength of 980 nm the absorption cross-section aσ  of Yb
3+

 ion is around six 

times higher than that of Er
3+

. Hence, using a pump radiation at 980 nm, it is possible to 

excite more efficiently the Yb
3+

 ions which, for cross-relaxation, transfer their energy to 

neighbouring Er
3+

 ions. This pump mechanism is shown in Fig.2.8. 

 

                              

Fig. 2.8 Erbium-Ytterbium energy level diagram illustrating the 

980nm pumping scheme[40].  

 

The co-doping with Yb
3+

 ions of an Er
3+

 activated material not only increases the pump 

efficiency but also increases the distance among erbium ions reducing, contemporary, 

the quenching processes. 
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2.A.3 Rate Equations for a three-level system: the case of Er
3+

 /Yb
3+

 doped glass.  

 

A simplified model for a three-levels system in Er
3+

/Yb
3+

 doped glass, with 980 nm 

pumping, is shown in Fig. 2.9. 

 

              

     Fig. 2.9 Simplified model of Erbium-Ytterbium system.  

     The main transitions and energy levels convolved are shown.  

 

According to the nomenclature reported in Fig.2.9, the main processes involved in this 

modelling are the following [10]: 

(a,b) absorption and emission of pump photons from levels 
2
F7/2 and 

2
F5/2, respectively; 

(c) spontaneous decay of Yb
3+

 from level 
2
F5/2; (d) resonant energy transfer process 

Yb(
2
F5/2)+Er(

4
I15/2) → Yb(

2
F7/2)+Er(

4
I11/2) which acts as indirect pumping of Er

3+
 ions; 

(e,f) stimulated emission and absorption between the 
4
I13/2 excited level and the 

4
I15/2 

fundamental level of Er
3+

 ions; (g) spontaneous decay from the 
4
I13/2 level of Er

3+
 ions; 

(h) up-conversion between two neighbours Er
3+

 ions to higher levels; (i) spontaneous 

decay of Er
3+

 ions from the 
4
I11/2 level to the 

4
I13/2  metastable level. 

Introducing the following hypothesises, (1) the 
4
I11/2 and  

4
I9/2 levels are practically 

depopulated owing to the rapid non radiative decays related to them and hence the total 

population of Er
3+

 ions, NEr, can be thought as the sum of N0Er (the ground level 

population) with N1Er (the higher lasing level population); (2) the main pumping process 

is represented by a resonant transfer of energy from Yb
3+

 ions to Er
3+

 ions, considering 

Yb3+ Er3+ 

2
F7/2 

2F5/2 

  (a)  (b) 

 (c)  (d)   (e)    (f) 

    (g) 
  (h) 

  (d) 

4I15/2 

4I13/2 

4I11/2 

4I9/2 

    (d) 

 (h)     (h) 

   (i) 
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negligible the direct absorption of pump photons from Er
3+

 ions; then we can write the 

Rate Equations for a three-level system: 

 

( )
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      (2.20) 

 

where YbN0 , YbN1  are the populations of  
2
F7/2 and 

2
F5/2 levels of Yb

3+
 ions and ErN0 , 

ErN1  those of  
4
I15/2 and 

4
I13/2 levels of Er

3+
 ions; 

Yba ,
σ , 

Ybe ,
σ , 

Era ,
σ , 

Ere,
σ  are the 

absorption and emission cross sections of Yb
3+

 and Er
3+

 ions, respectively; Ybτ  and Erτ  

the lifetimes of 
2
F7/2 and 

4
I13/2  levels for Yb

3+
 and Er

3+
 ions, respectively; LF  and PF  the 

photon fluxes for laser and pumping radiation; K  and C  the energy transfer and up-

conversion coefficients.  

 

 

2B Spectroscopic Characterization of Er
3+

/Yb
3+

 -doped glasses:  

Experimental 

 

2.B.1 Glass composition and fabrication 

 

We have tested different formulations of oxide glasses doped with Er
3+

 and/or Yb
3+

 ions 

for integrated optical amplifiers and lasers. Principally our choice has fallen on silicate 

glasses rather than phosphates for their superior chemical resistance and greater 

adaptability to different fabrication processes. However phosphate glasses, due to the 

high solubility of rare-earth ions, remain among the better hosts for laser and amplifier 

devices. For this reason in this work we also considered a commercial phosphate glass. 

The compositions of the glasses used in our experiments are reported in Table 2.2. 
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Oxide 
MY2 

[mol%] 
SLASY1 
[mol%] 

SiO2-GeO2 
[mol%] 

B05 
[mol%] 

IOG2 
[wt%] 

IOG10 
[wt%] 

SiO2 
73 62 75 77.29 - - 

Al2O3 1 17 - - - - 

P2O5 0.4 0.3 - - - - 

Na2O 14 12 - - 4.56 - 

K2O 0.6 0.5 - 11.86 - - 

CaO 11 9 - - - - 

GeO2 - - 25 - - - 

PbO - - - 10.37 - - 

Sb2O3 - - - 0.48 - - 

Er2O3 0.32 0.4 0.1 0.5 2 1 

Yb2O3 0.63 0.4 0.1 - 3 8 

  

          Table 2.2 Compositions of oxide glasses used for our experiments. 

 

Soda-Lime Silicate (MY2) and alumino-silicate (SLASY) glasses 

These two glasses were both fabricated at the Stazione Sperimentale del Vetro di 

Murano (Venice) by a conventional melt-quenching technique [P.IV]. The glasses were 

doped with erbium and co-doped with ytterbium. Their high sodium oxide concentration 

makes these materials suitable for fabrication of integrated optical amplifiers and lasers 

by the ion-exchange process. Moreover, the high content of aluminium oxide present in 

SLASY glass has the effect of increasing its emission bandwidth (around 1.55 µm) and 

making it qualified for WDM (Wavelength Division Multiplexing) applications.  

 

Silicate B05 glass 

The B05 sample is an innovative erbium doped modified silicate glass, produced in the 

Baccarat Cristallerie, and is a valuable candidate for further applications in optical 

technologies as, for instance, microsphere lasers. Standard melt-quenching process was 

used in the fabrication of B05 too.  
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Commercial Silicate (IOG10) and phosphate (IOG2) Schott glasses 

These oxide glasses are both produced by Schott Company, a leader in optical glass 

manufacturing. Being commercial glasses, their compositions are not exactly known 

with the exception of the Er
3+

 and Yb
3+

 concentrations. IOG10 is a phosphorous-free, 

mixed alkali, zinc-silicate glass suitable for laser applications. On the other hand, IOG2 

is a potassium-barium-alumino phosphate glass. Although it is not chemically durable 

as silicate glasses, IOG2 seems to be an excellent candidate for active photonic devices 

that require high gain. Waveguide lasers have already been fabricated on both glasses. 

We decided to use them for the realization of optical microsphere lasers. 

 

SiO2-GeO2 thin film  

This binary system thin glass layers were fabricated at the Institute of Photonics and 

Nanotechnologies (Trento Section), depositing the two oxides on silica substrates by a 

RF (radio frequency) magnetron sputtering technique. The composition is reported in 

Table 2.2, with that of the Er
3+

/Yb
3+

 doping. Thanks to their photorefractive properties, 

SiO2-GeO2 thin films doped with rare-earth ions may represent an effective route to the 

simple fabrication of integrated optical amplifiers and lasers through direct UV laser 

writing or imprinting.  

 

2.B.2 Absorption Measurements: set-up and results 

 

Set-up 

Optical absorption measurements were performed at room temperature with a Perkin 

Elmer λ19 Spectrophotometer, which measures the transmittance of a sample in a wide 

range of wavelengths between ultraviolet and infrared regions. The instrument is almost 

completely automatic and guarantees a resolution of 1 nm. Both facets of the glass 

sample need to be polished first.  The spectrophotometer measures the decrease of the 

optical intensity of the beam travelling through the sample as a function of wavelength 

λ. Labelling with I0 the intensity incident on the sample and with IT the transmitted one, 

the transmittance is defined as: 
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( )
( )
( )λ

λ
λ

0I

I
T T=                                  (2.20) 

 

The transmitted intensity radiation is related to the incident one through the Lambert-

Beers law: 

 

( ) ( ) ( )[ ]LIIT λαλλ −= exp0                                (2.21) 

 

where ( )λα  is the absorption coefficient and L is the thickness of the sample. 

Combining the equations (2.20) and (2.21) we obtain: 

 

( ) ( )( )LT λαλ −= exp                     (2.22) 

 

from which, knowing the thickness of the sample and measuring ( )λT , it is possible to 

obtain the absorption coefficient. Hence, applying the eq. (2.16), it is easy to calculate 

the value of the absorption cross section ( )λσ a .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

Results 

 

Soda-Lime silicate (MY2) and alumino silicate (SLASY1) glasses 

The UV-Vis-NIR absorption spectrum obtained for the SLASY1 glass [P.IV] is plotted 

in Fig. 2.10. 
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Fig. 2.10: Room temperature absorption spectrum in the UV-Vis-NIR 

spectral region for SLASY1 sample. The Er
3+

 and Yb
3+

 transitions, 

around 1530 nm and 980 nm, respectively, are  highlighted. 

 

The spectrum is characteristic of Er
3+

/Yb
3+

 silicate oxide glasses [39]. The absorption 

bands of our interest are identified with the transitions 
4
I15/2 → 

4
I13/2 of Er

3+
 ions around 

1530 nm and 
2
F7/2 → 

2
F5/2 of Yb

+
 ions around 980 nm. In fact also Er

3+
 ions present, at 

980 nm, the 
4
I15/2 → 

4
I11/2 transition, which overlaps with that of Yb

3+
 mentioned above 

We assume that the total absorption coefficient at wavelength λ  is equal to the sum of 

the Er
3+

 and Yb
3+

 absorption coefficients according to the following relationship: 

 

( ) ( ) ( ) ( ) ( )λσλσλα Yb

a

Er

aTOT YbNErN ⋅+⋅= ++ 33                  (2.23) 

 

 Yb3+ 

    
2
F7/2 → 

2
F5/2 

Er3+ 

 4
I15/2   →

      4
I13/2 



34 

with N the nominal concentrations of Er
3+

 or Yb
3+

 ions. Knowing the absorption cross 

section of Yb
3+

 ions alone, then, from eq. (2.23) it is possible to calculate the absorption 

cross section of Er
3+

 ions at λ  wavelength. In the case of SLASY1 sample, the resulting 

value of Er
3+

 absorption cross section around 980 nm was (0.25 ± 0.01) × 10
-20

 cm
2
, as 

reported in our work [P.IV]. This value is almost seven times smaller than the 

corresponding Yb
3+

 absorption cross-section (around 1.80 × 10
-20

 cm
2
). This result 

confirms that co-doping with Ytterbium ions can drastically improve the pump 

efficiency of a glass activated with Er
3+

 ions for laser and amplifier applications.  

In Table 2.3 we report the total absorption coefficients measured around 0.98 and 1.53 

µm together with the cross sections σa of Er
3+

 ions at the same wavelengths for 

SLASY1 and MY2 samples, respectively. The rare-earths concentration is also reported. 

 

 

 

Table 2.3 Erbium and itterbium concentrations, absorption 

coefficients and erbium absorption cross-sections for MY2 and 

SLASY1 glasses. 

 

 

The absorption FWHM (Full Width at Half Maximum) and effective bandwidth for the 

4
I15/2 → 

4
I13/2 transition of Er

3+
 ions are 16 nm (± 1 nm) and 32 nm (± 1 nm) for MY2 

glass and 22 nm (± 1 nm) and 53 nm (± 1 nm) for SLASY1 sample [P.IV], respectively. 

The effect of an increase of alumina content on the shape of the absorption spectrum of 

Yb
3+

 ions around 980 nm is shown in Fig. 2.11. 

Glass 
Concentration 

(ion/cm
3
) ×××× 10

20 

 

980 nm  

 

1530 nm 

 
Er

3+ 
Yb

3+ 
α (cm

-1
) 

σa (cm2) 

× 10 -20 
α (cm

-1
) 

σa (cm2) 

× 10 -20 

MY2 1.55 3.10 4.10 0.11 0.43 0.28 

SLASY1 1.80 1.80 3.69 0.25 1.08 0.60 
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     Fig.2.11: Comparison of Yb
3+

 absorption spectra around 980 nm    

     for MY2 and SLASY1 glasses [P.IV].   

 

We can observe a red shift for the Yb
3+

 absorption peak λpeak from 973 nm (in the case 

of MY2 glass) to 975 nm (in the case of SLASY1). Moreover, in the region between 

900 nm and 970 nm, the profile of the absorption curve appears to be much flatter for 

the SLASY1 than for the MY2 glass. We believe that this effect is related to the high 

aluminium oxide concentration in the new SLASY1 glass formulation.  

In reference [P.VII] we have studied the influence of increasing alumina content on the 

absorption properties of Er
3+

 ions around 1.55 µm, for another set of soda-lime alumino 

silicate glasses (AL glasses). In particular, as indicated in the Fig. 2.12, the basic 

composition of AL01 sample is similar to that of MY2 and the same applies for the pair 

of samples AL20 and SLASY1. As shown in the same figure we successfully 

demonstrated an increase up to 60% (from 32 nm to 50 nm) for the effective absorption 

bandwidth 
abs

effλ∆  of Er
3+

 ions when varying alumina content, inside the glass matrix, 

from 1 to 20, mol%.  
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Fig.2.12: Dependence of absorption effective bandwidths on the 

increase of  Al2O3 oxide concentration in an  alumino-silicate glass 

matrix [P.VII]. The composition of soda-lime silicate glass MY2 is 

similar to that of AL01 while the composition of  SLASY1 sample is 

closed to that of AL20.  

 

 

 

The reason of this change for the effective absorption bandwidth is related to the 

different effect that aluminium oxide has on the silica network, acting as glass modifier 

for lower concentration and as glass former for higher ones  [P.VII].  

 

Modified Silicate B05 (Baccarat) glass 

Fig.2.13 shows the absorption cross section for the 
4
I15/2 → 

4
I13/2 transition of Er

3+ 
ions 

in the B05 silicate glass.  
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            Fig.2.13: Absortption cross section around 1530 nm for B05 glass 

 

At the peak absorption wavelength of 1536 nm, the measured cross section σa is 4.33 × 

10
-21

 cm
2
. Being 2.2 × 10

20
 cm

-3
 the concentration of the Er

3+
 ions in the B05 glass, the 

absorption coefficient can be calculated from eq. (2.16) obtaining a value for α of 0.953 

(cm
-1

). As for absorption FWHM and effective bandwidths we got results typical of 

silicate glasses: 19 nm (± 1 nm) and 32 nm (± 1 nm), respectively.  

 

Commercial Silicate (IOG10) and phosphate (IOG2) Schott glasses 

In Fig. 2.14 is reported, in solid line, the absorption cross-section spectrum of IOG2 

glass. A high peak value of 7.6 × 10
-21

 cm
2
 is observed for the 

4
I15/2 → 

4
I13/2 transition of 

Er
3+

. In the same figure, in dotted line, we show the emission cross-section spectra 

obtained using the reciprocity relation of McCumber’s theory expressed in eq. (2.19). 

The calculated peak value is 8.0 × 10
-21

 cm
2
 at 1533 nm.  
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          Fig.2.14: Er
3+

/Yb
3+

 IOG2 phosphate glass: absorption (solid line)   

          and emission (dot line) spectra. 

  

Typically absorption and emission cross section are larger in phosphate glasses (like 

IOG2) than in silicate glasses (like Baccarat B05).  Similarly absorption and emission 

effective bandwidths effλ∆  are wider (∼50 nm) in a phosphate glass than in a silicate 

glass (only ∼30 nm) [2,11]. These characteristics make phosphate glasses a suitable 

candidate for amplifiers in WDM as well as for laser sources able to exploit the broad 

erbium gain bandwidth.  

As for IOG10 commercial silicate glass we obtained the results synthesized in Table 

2.4, for the total absorption coefficients measured around 0.98 and 1.53 µm. Absorption 

cross sections σa of Er
3+

 ions at the same wavelengths are also reported. The effective 

absorption bandwidth related to the 
4
I15/2 → 

4
I13/2 transition is 32 nm (± 1 nm), while the 

corresponding value of the FWHM is 15 nm (± 1 nm).  

 

 

Table 2.4: Absorption cross-sections of Er
3+

 ions and total absorption 

coefficients at 980 nm and 1530 nm for IOG10 Schott silicate glass.  

 

Glass 
Concentration 

(ion/cm
3
) ×××× 10

20 

 

980 nm  

 

1530 nm 

 
Er3+ Yb3+ α (cm

-1
) 

σa (cm2) 

× 10 
-20

 
α (cm

-1
) 

σa (cm2) 

× 10 
-20

 

IOG10 0.88 6.83 8.3 0.10 0.50 0.57 
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2.B.3 Fluorescence Measurements: set-up and results 

 

Set-up 

The fluorescence band of our interest corresponds to the 
4
I13/2 → 

4
I15/2 transition of 

erbium ions centred around 1530 nm. The excitation mechanism used in our 

experiments is shown in Fig.2.15 

 

                                                      
  

            

  Fig.2.15: Pumping scheme of  Er3+ used for the fluorescence    

  measurements around 1530 nm 

 

The experimental set-up is sketched in Fig. 2.16. 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

Fig.2.16: Experimental set-up for fluorescence measurement. 
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As excitation source we used a 976 nm laser diode, wavelength stabilized by a fibre 

Bragg grating. The laser beam was collimated through a fiber pigtailed GRIN lens and 

sent to the edge of the sample. The fluorescence signal emitted from the sample was 

focused on the input opening of a SPEX 270M spectrometer, by means of a two lenses 

system. Inside the spectrometer, after a first reflection on a collimating mirror, the 

signal is directed to a rotating grating. The part of fluorescence signal reflected by the 

grating undergoes another reflection through a second mirror that focalizes the radiation 

on a InGaAs photodiode, which is at the output opening of the spectrometer. A lock-in 

technique was used to improve the signal-noise ratio. The amplified signal was acquired 

from an A/D converter and hence sent to a computer for data elaboration and 

visualization in real time. The pump power adopted in our experiments was around 30 

mW, which was enough to acquire the fluorescence spectra with an acceptable noise 

level. The width of the input and output slits were set at 0.1 and 0.12 mm, respectively. 

This difference in width, due to the broadening of the beam through the optical system 

inside the spectrometer, guaranteed a spectral resolution of 1 nm. In this way, using an 

integration time of 3 seconds and a scan length of 300 nm (from 1400nm to 1700 nm), 

each measurement took about 9 minutes.   

 

Results 

 

Soda-Lime silicate (MY2) and alumino silicate (SLASY1) glasses 

Fig. 2.17 compares the normalized fluorescence spectra of MY2 and SLASY1 samples. 

As we can see, in the case of SLASY1 glass a much broader fluorescence bandwidth is 

measured. We believe that the explanation for this behaviour, analogous to that 

observed for the absorption spectra, is related to the higher aluminum oxide 

concentration in SLASY1. For further investigation on this subject, we refer to the wide 

literature [2,11,50-51,P.VII].  
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   Fig.2.17: Comparison between the fluorescence spectra of samples      

   MY2 and SLASY1. Their maximum amplitudes were normalized to    

   one  

 

In particular, as summarized in Table 2.5, the soda-lime silicate glass MY2 shows an 

effective emission bandwidth of 32 nm (± 1 nm) with FWHM of 17 nm (± 1 nm) while 

the corresponding values for SLASY1 glass formulation are 52 nm (± 1 nm) and 30 nm 

(± 1 nm), respectively. 

 

 

 

 

 

 

 

Table2.5: Fluorescence FWHM and effective bandwidth for the 
4
I13/2 

→ 
4
I15/2 transition, measured for different experimental silicate 

glasses. The peak emission wavelength is also reported. 

 

 

These results confirm the potentiality of high alumina content silicate glasses for the 

development of high-performance broadband optical amplifiers and lasers.  

 

 

Sample 
∆λ∆λ∆λ∆λFWHM

fl 

(±±±±1 nm) 

∆λ∆λ∆λ∆λeff
fl. 

 (±±±±1 nm) 

λp  

(±±±±1 nm) 

MY2 17 32 
1535 

SLASY1 30 52 1534 

     MY2 

 

      SLASY1 

 

1400 1450 1500 1550 1600 1650 1700

0.0

0.2

0.4

0.6

0.8

1.0

  

  

  
  
N

o
rm

a
liz

e
d
 f

lu
o
re

s
c
e

n
c
e

 
 

Wavelength (nm) 



42 

 

Modified Silicate B05 (Baccarat) glass 

The emission cross section for the 
4
I13/2 → 

4
I15/2 transition of Er

3+ 
ions in the B05 

modified silicate glass is presented in Fig.2.18. 
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Fig..2.18: Emission cross section around 1530 nm for B05 glass 

 

At the emission peak wavelength (1537 nm) the measured cross section σe is 5.21 × 10
-

21
 cm

2
. As for the absorption FWHM and effective bandwidth we got again results 

typical of silicate glasses: 18 nm (± 1 nm) and 32 nm (± 1 nm), respectively.  

 

Commercial Silicate (IOG10) and phosphate (IOG2) Schott glasses 

As shown in Fig.2.13, the peak emission cross section σe for IOG2 phosphate glass is 

8.0 × 10
-21

 cm
2
 at the wavelength of 1533 nm.  

As for IOG10 silicate glass, in Fig.2.19 we report its fluorescence spectrum with a peak 

wavelength of 1536 nm.  
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Fig..2.19: Normalized fluorescence spectrum of IOG10 Schott silicate 

glass.  

 

The emission peak value and other main emission parameters are reported in Table 2.6 

 

 

 

 

 

        

 

Table2.6: Fluorescence FWHM, effective bandwidth, and peak 

emission cross section for the 
4
I13/2 → 

4
I15/2 transition, measured in 

IOG10 Schott silicate glass.  

 

The high concentration of Yb
3+

 ions makes this glass suitable for lasing devices.  

 

 

 

 

 

 

 

Sample 
∆λ∆λ∆λ∆λFWHM

fl 

(±±±±1 nm) 

∆λ∆λ∆λ∆λeff
fl. 

 (±±±±1 nm) 

σσσσεεεε  

(±±±±0.01 cm
2
) 

IOG10 18 32 
 

5.8 × 10
-21 
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SiO2-GeO2 thin film  

In Fig. 2.20 we report the fluorescence spectrum of SiO2-GeO2 films doped with 

Er
3+

/Yb
3+

 obtained by exciting the TE0 waveguide mode at 514.5 nm using prism 

coupling technique [17].  

The peak of the emission spectrum is at f 1533 nm while the measured FWHM around 

that wavelength is about 40 nm, much larger than in most erbium-doped multi-

component silicate glasses [2,39,52]. The presence, in the same spectrum, of the typical 

Yb
3+

 emission profile around 980 nm indicates the presence of back energy transfer 

process from Er
3+

 to Yb
3+

 ions [53]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.20: Waveguide room temperature fluorescence spectrum in the 

region of the 
4
I13/2 → 

4
I15/2 transition of Er

3+
 ions and in the region of 

the 2F5/2 → 2F7/2 transition of Yb3+ ions. The excitation wavelength is 

514 nm. 

 

However, the luminescence excitation spectrum detected at 1533 nm and reported in 

Fig.2.21 shows that the energy transfer from Yb
3+

 to Er
3+

 ions is quite effective. In fact 

the spectral shape of the excitation spectrum corresponds to the typical ytterbium 

absorption [39,P.IV]. 
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Fig.2.21: Photoluminescence excitation spectrum of the SiO2–GeO2: 

Er3+/ Yb3+-codoped waveguide. The detection wavelength was set to 

1533 nm. 

 

 2.B.4 Lifetime Measurements: set-up and results 

 

Set-up 

The lifetime measurement for the 
4
I13/2 → 

4
I15/2 transition is very important for the 

characterization of our materials. As mentioned above, quenching effects may be 

assessed comparing the measured lifetime of the 
4
I13/2 metastable level with the 

radiative one, obtained applying the Judd-Ofelt method [44,45]. The experimental set-

up used for these measurements is reported in Fig.2.22 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

Fig.2.22: Experimental set-up for lifetime measurement 
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In comparison with set-up shown in Fig.2.16 two new pieces of equipment appear: a 

pulse generator and an oscilloscope. The former is connected with a pump laser and 

modulates the excitation radiation with a suitable square wave. The latter shows the 

result of time resolved fluorescence measurement according to the exponential decay 

law: 

 

τt
eII

−= 0                        (2.24) 

 

where τ is the lifetime.  

 

Results 

Soda-Lime silicate (MY2) and alumino silicate (SLASY1) glasses 

We studied the effect of an increase of alumina content on the measured lifetimes on 

AL glass formulations [P.V,P.VII] and the main results are reported in Fig. 2.23.  
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         Fig.2.23:  Measured lifetimes as a function of alumina  

                          concentration in the glass. 

 

A possible explanation of the different set of values obtained is again related to the 

different role that the aluminum oxide has on the silica network, as glass modifier and 

as a glass former, respectively. In particular, in the network modifier case (alumina < 

10% mol.), the aluminum ions contribute to disrupt the silica structure and produce non-

   AL20 

(SLASY1)  

   AL01 

  (MY2)  
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bridging Al-O groups, which can then coordinate the Er
3+ 

ions, thus reducing the Er
3+

 - 

Er
3+

 interaction and increasing the lifetime [50]. On the other hand, a further increase of 

aluminum oxide in the glass matrix reduces the non-bridging oxygen ions and allows 

the creation of Al−O−Si bridging oxygen (alumina as glass former), thus reducing the 

measured lifetimes. In Table 2.7 we summarize the main results in terms of Judd-Ofelt 

intensity parameters Ωi, measured and calculated lifetime τ and quantum efficiency for 

MY2 and SLASY1 glasses. 

 

  

Samples 

ΩΩΩΩ2 

(10
-20

cm
2
) 

ΩΩΩΩ4 

(10 
-20

cm
2
) 

ΩΩΩΩ6 

(10
-20

cm
2
) 

ττττmeas 

(±±±± 0.2 ms) 

ττττcalc. 

(±±±± 0.2 ms) 
ηηηη    

 

SLASY1 

8.19 

(± 0.58) 

1.70  

(± 0.83) 

1.00  

(± 0.29) 

4.1 8.71 0.47 

MY2 

4.90 

 (± 0.06) 

0.84 

 (± 0.06) 

0.52 

(± 0.02) 

7.5 12.0 0.62 

 

Table2.7: Judd-Ofelt intensity parameters, measured and calculated 

lifetime τ and quantum efficiency for MY2 and SLASY1 samples.  

 

The decrease of radiative and measured lifetimes from MY2 to SLASY1 glasses can be 

related to an increase in both the magnetic and the electric dipole contributions with the 

Judd-Ofelt intensity parameters, in particular Ω4 and Ω6, that affect the electric dipole 

contribution. Comparing the results presented in Fig. 2.23 with those reported in 

Table.2.7, we discover a significant difference between the measured lifetime of 

SLASY1 sample (4.1 ms), and that of the AL20 sample (same alumina content but 

without Yb
3+

 ions) equal to 6.2 ms.. This gives a 50% lower quantum efficiency. So far 

we do not have a specific explanation for this behavior (even if the possible presence of 

Fe impurities related to the introduction of Yb
3+

 could be considered). 
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Modified Silicate B05 glass, IOG10 Silicate and IOG2 Phosphate Schott glasses, SiO2-

GeO2 thin film. 

 

Finally, in Table 2.8, we report the values of measured lifetimes for the other glass 

formulations considered in our work.  

 

glass 

ττττmeas 

( ±±±± 0.2 

ms) 

ττττcalc 

 
ηηηη 

B05 11.5 18.4 0.62 

  IOG10 10.2 17.8 0.57 

IOG2 6.8 - - 

SiO2-

GeO2 
8.7 - - 

 

      Table2.8: Measured, calculated lifetime τ and quantum efficiency  

    for B05, IOG10, IOG2 and SiO2-GeO2 samples. 

 

The high lifetime values measured in B05 and IOG10 samples and their rather good 

quantum efficiency confirm that the erbium ions are homogeneously distributed in the 

glass matrix and their interactions are practically negligible.   

 

         

2.B.5 Effect of  glass fusion process on the spectroscopic properties Er
3+

 - doped 

oxide glasses: the case of fused microsphere.  

 

In literature there are very few papers on the effects that the glass fusion process may 

have on the spectroscopic properties of the material. We considered the case of Er
3+

 

doped microspheres obtained by fusion of glass precursor through a plasma torch.  

Figure 2.24 shows the photoluminescence spectra of the 
4
I13/2 → 

4
I15/2 transition of Er

3+
 

ions for the bulk sample and the respective microsphere in B05 glass.  
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                                        Fig.2.24: Room temperature photoluminescence spectra of  the   

                                        
4
I13/2 → 

4
I15/2 transition of Er

3+
 ions for the bulk sample (black)  

                                        and the respective microspheres (red) in B05 modified silica  

                                        glass.  

 

A broadening of the luminescence spectrum can be clearly observed from the B05 bulk 

sample to the B05 microsphere. Correspondingly a shortening of the lifetime was also 

measured in the microsphere as compared to the corresponding bulk glass as shown in 

Figure 2.25. 

 

 

 

 

 

 

 

 

 

 

 

 

    Fig. 2.25: Luminescence decay curves of  
4
I13/2 → 

4
I15/2 transition of    

   Er
3+

 ions for the bulk sample (black) and the respective microsphere  

   (red) in B05 modified silicate glass. 
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On the contrary, using IOG2 phosphate glass, we did not observe a significant 

broadening of the bandwidth and we observed a smaller reduction in the lifetime values, 

as shown in Fig. 2.26   

Fig. 2.26  : Luminescence decay curves of  4I13/2 → 4I15/2 transition of 

Er
3+

 ions for the bulk sample (squares) and the respective microsphere 

(triangles) in IOG2 phosphate glass. 

 

A possible explanation for these quite interesting results, that we reported in our works 

[P.VI,P.VIII], is related to site to site inhomogeneities and changes in the local 

environment of Er
3+

 ion induced by the fabrication process. This effect has to be 

especially considered if we want to use microspherical laser performances as a ‘test 

bed’ for the active glass itself. 
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CHAPTER 3 Devices: Development of a waveguide laser.  

 

Channel waveguides, for their capacity to confine light both laterally and in depth, are 

the basic blocks of many passive and active integrated optical devices such as switches, 

splitters, amplifiers and lasers [6]. If compared with semiconductor, glass waveguide 

lasers activated with Er
3+

/Yb
3+

 show some important advantages: i) their high lifetimes 

(of the order of millisecond versus nanoseconds offered by semiconductor laser) allow 

to obtain a more efficient population inversion with better signal-to-noise-ratio (SNR); 

ii) their lower noise reduces the possibility of fluctuations in intensity, phase and 

frequency guaranteeing, at the same time, a narrower linewidth. On the contrary, their 

major drawback is that they require optical pumping in comparison with semiconductor 

lasers that can be pump electrically. Moreover, compared with fiber lasers, waveguide 

lasers exhibit a higher integration factor, having the possibility to be interfaced with 

other components realized on the same optical chip.  

Fabrication processes strongly depend on the choice of the materials. The main 

technological strain consists in a reduction of fabrication costs, simplifying the 

processes without losing in terms of performances. 

In this sense glass materials, for their higher adaptability to different fabrication 

processes and their undoubtedly low costs, fully respond to this aim.  

Among the main manufacturing routes for the development of integrated optical 

amplifiers and lasers in Er
3+

/Yb
3+

 doped glasses, we can list ion-exchange [39,54-56]; 

the deposition of thin film by RF magnetron sputtering, chemical vapour deposition 

(CVD), or sol-gel processes [P.II,59-63] and ion implantation with proton or heavy ions 

[64-66]. Moreover, in the last years, advances have being made in laser-based 

fabrication and patterning processes of glass structures, which include UV-laser and 

femtosecond-laser writing of channel waveguides in bulk glasses or in glassy thin-film 

[18-20,67-68].  

In this chapter the results we obtained in the development of waveguide lasers will be 

presented. For this purpose different fabrication processes and materials have been 

selected: i) silver-sodium field assisted ion exchange in soda-lime silicate and alumino-

silicate glasses (MY2 and SLASY1) [P.IV,V,VII,IX]; ii) a method, based on UV photo-

imprinting technique, able to realize both guiding (waveguides) and periodic (gratings) 
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structures in active SiO2-GeO2 thin film [P.II,III]; iii) ion bean irradiation on tungsten-

tellurite glasses doped with Er
3+ 

ions [P.I].  

In Section 3.A we will recall the fundamentals of electromagnetic propagation in optical 

waveguides. In Section 3.B we will describe the three technologies used: ion-exchange, 

UV photo-imprinting and ion beam irradiation. In Sections 3.C and 3.D, respectively, 

measurements set-up and preliminary results on devices characterization will be 

presented and discussed.  
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3.A   Electromagnetic Theory of optical waveguide 

 

Generally, for optical waveguide we consider a structure able to confine the light inside 

it thank to a local variation of refractive index in comparison with that of the 

surrounding media. The simplest dielectric guide is the planar slab (1D) waveguide 

schematically illustrated in Fig. 3.1 

 

 

 

 

 

   

   

         

 

 

Fig. 3.1: Sketch of an “asymmetric” slab waveguide and the choice of 

the coordinate system. Note that the z-plane lies in the film-substrate 

interface.                                     

 

Here, the guiding structure of thickness h has a refractive index nf and it is sandwiched 

between a substrate of uniform index ns and a cover of uniform index nc. The light is 

trapped inside the waveguide if and only if nf > ns, nc. If Ray Optics [69,70] represents a 

simple and intuitive model to describe the electromagnetic propagation in these kind of 

structures, a rigorous treatment is given by Wave Optics [70]. For more details on this 

well known subject, we refer to the wide literature [1,6,69]. Here we just remind that 

under the hypothesis of linear, homogeneous, isotropic and dielectric medium without 

losses, the Maxwell’s equations written for the complex vector of electric and magnetic 

fields are, respectively: 
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where ε  is the dielectric constant,  µ the scalar magnetic permeability, E  and H  the 

electric and magnetic field having the following expression: 
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This kind of solution represents a plane wave, called mode of the waveguide, where β is 

the propagation constant along the propagation direction z [1,69]. Because the structure 

in Fig. 3.1 is invariant along y then 0=∂∂ y  and hence, for a TE mode ( Hy = Ez = Ex 

=0) the following equations system is verified [69]: 
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with the Ey component obeying the Helmholtz’s equation   
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where n is the refractive index of the waveguide and 00 µεωω == ck  is the 

propagation constant in free space. The boundary conditions demand that Ey and 

xE y ∂∂ are continuous across the waveguide boundaries at x = 0 and x = h. 
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For guided modes (for the others solutions we refer to [1,69]) we have 
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where γi is defined as the transverse decay related to propagation constant κi by the 

relations 
22222

iii kn γβκ −=−=  (with i = s,c in the case of substrate and cover, 

respectively), 
2222 βκ −= kn ff  (in the waveguide) with θβ sinfnk=  is the z-

component of the wave vector k nf  as shown in Fig. 3.2 [69]. 

 

 

                                          

       Fig. 3.2: Relation among the components of the propagation  

        constant in a XZ plane. 

 

 Application of the boundary conditions yields the formulas for the phase shifts: 
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and the dispersion relation: 
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πφφκ mh csf =−−                       (3.7) 

 

with m an integer defining the mode label.  

Recalling the expressions of  kf  and β, this last equation can be written as: 

 

πφφθ mhn csf =−−cos                     (3.8) 

 

that yields to express the propagation constant β of each mode as a function of 

frequency ν and waveguide thickness h (dispersion curves [1,69]). 

For a channel waveguide, able to confine the radiation in 2D dimension, there are no TE 

and TM modes as solutions of Maxwell’s equation, but only hybrid modes. 

In this case, the Marcatili’s method gives an approximate solution of the problem [6]. 

 

3.B   Fabrication processes:  Ion-exchange, UV photo-imprinting  and 

ion beam irradiation techniques. 

 

3.B.1  Ion-Exchange 

 

3.B.1a  Ion-Exchange technique: principle and advantages 

 

For its simplicity, flexibility and low cost, ion-exchange is one of the most important 

technique used in the fabrication of  integrated optical devices [12]. 

It consists in a replacement of some alkali ions originally contained in the glass matrix 

(usually Na
+
 ions) with other ions having the same valence of the former and present in 

a molten salt solution where the glass is immersed. Because of the high temperature 

(tipically 300-400°C) at which the process occurs and concentration gradient 

established in proximity of the interface between glass and molten salt, Na
+
 ions migrate 

in the solution and are replaced by cations originally contained in the salt melt, as 

shown in Fig.3.3. 
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          Fig. 3.3: Scheme of ion-exchange process 

 

Due to the different size and polarizability of the ions participating in the process,  the 

glass modifies its network locally in the exchanged regions. Generally, in ion-exchange 

these changes correspond to an increase of refractive index, giving rise to the formation 

of optical waveguides [13]. In particular, different cations (i.e. K
+
, Ag

+
, Tl

+
, Cs

+
, 

Rb
+
,…) induce different refractive index change in the bulk glass [71]. This technique 

indeed presents several variations: field-assisted ion-exchange [72], field-assisted dry 

ion-exchange [73], inverse ion exchange [74], double ion-exchange [75], two-step ion 

exchange [76]. In any case the many benefits of this technology include: i) low 

production and materials costs; ii) low birefringence and propagation losses; iii) high 

compatibility with single-mode fiber [77]. Moreover, in order to increase the symmetry 

of the index profile (thereby improving fiber-waveguide coupling) and reduce the 

scattering losses, caused by the interaction between surface irregularities and 

propagating field in waveguide region, a burying of the guiding structure can be 

performed through field assisted or two-step ion-exchange processes [78].  

 

3.B.1b  Ion-Exchange technique: model. 

 

Because of the diffusive nature of ion-exchange, the graded refractive index, induced by 

this process in optical devices, depends on the concentration C of  incoming ions inside 

the glass matrix. Thereby the knowledge of this distribution gives many information on 
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the kind of ion-exchange occurred and on the optical properties (in term of refractive 

index) of the device.  

Without going into details of the theory (for a more accurate description we refer to 

[13,79-80]), we say that, starting from the Fick’s first law and expanding the continuity 

equation (or Fick’s second law) for ionic flux, the time evolution of incoming ion 

concentration  is derived as:  
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where c is the concentration of incoming ions (i.e. Ag
+
 ions) normalized with respect to 

the saturated concentration; DA and DB are the self-diffusion coefficients of these ions 

and of sodium ions, respectively; M−= 1α  where BA DDM =  is the ratio between 

these two diffusion coefficients; Eext is the applied electric field; T, k, q and f are the 

absolute temperature, the Boltzmann’s constant (1.38⋅10
-23

 [J/K]), the electron charge 

and the correlation factor (included in order to take into account the different nature of 

ionic mobility in diffusion and ion migration due to the electric field). 

Considering the boundary conditions: 

 

C(x, 0)  =  0 

                                                                                                                (3.10) 

C(x, t)  =  CA  =  costant 

 

in case of pure thermal ion-exchange for a slab waveguide, with α  = 0, the eq. (3.9) has 

the following analytical solution: 
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with tDd A2=  the diffusion depth. Due to the proportionality between concentration 

distribution and refractive index [13], we can conclude that: 

 

n(x) = nsub + ( nsup − nsub ) erfc 







d

x
                   (3.12) 

 

where nsub  is the refractive index of the bulk and nsup is the surface refractive index of 

the planar waveguide region. When 0≠α , the (3.9) has not an analytic solution but 

only a numerical one [13]. Generally the refractive index profile is reconstructed from 

the knowledge of mode-index data, measured by accurate systems having a typical 

resolution of 2 × 10
-4

 and based on prism-coupling technique [6,17], applying recursive 

inverse Wentzel-Kramers-Brillouin (IWKB) algorithm [69,81-82]. One of the limits of 

this method is related to the fact that, using Gaussian or Erfc functions (the most 

commonly used functions to fit the effective indices measured), the IWKB fit procedure 

generally leads to reconstructed index profiles that do not correctly reproduce the 

number of modes observed experimentally. In one of our works [P.IX] we improved the 

accuracy of the IWKB method introducing a new expression, linear combination of two 

analytical functions, which is able to provide a better approximation of the solution of 

(3.9) for binary planar (1D) thermal ion-exchange process.  

Considering the standard deviation between the exact theoretical effective indices, 

obtained using the Transfer-Matrix-Method (TMM) [83], and the measured ones we 

obtained the following results summarized in Table 3.1: 

 

 SL1 M3
 

IOG10 PER2 PSM1 

Erfc 1.7·10
-3

 1.5·10
-3

 1.5·10
-3

 2.2·10
-4

 2.6·10
-4 

Gauss. 3.5·10
-4

 8.1·10
-4

 8.6·10
-4 

5.5·10
-4

 3.1·10
-4

 

CAn Fun.  1.4·10
-4

 1.9·10
-4 

1.7·10
-4 

7.4·10
-5 

8.7·10
-5 

 

 

Table 3.1: Standard deviation σ between experimental and theoretical  

effective index for different functions used in the reconstruction of the  

profiles.  
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As can be noted from the same table, for different silicate (SL1, M3, IOG10) and 

phosphate (PER2, PSM1) glasses, standard deviation (σ ) values achieved using our 

function (CAn Fun) were always smaller then those obtained using Gaussian or ERFC 

and always comparable with the experimental error of the measured effective index 

values (∼2 × 10
-4

). These results were confirmed by other ones obtained with different 

ion-exchange conditions in different substrates [P.IX].    

 

 

 

 

 

 

 

 

 

 

 

3.B.1c  Ion-Exchange technique: Fabrication of channel waveguide in the case of  

MY2 and SLASY1 silicate glasses. 

 

The high content of sodium oxide in the composition of MY2 and SLASY1 silicate 

glasses (see Chapter 2) makes them suitable for the fabrication of  channel waveguides 

by ion-exchange.  

 In order to obtain a better confinement of the light inside the guiding structure, we 

selected silver-sodium ion-exchange that, among all typologies of ion-exchange, offers 

the highest refractive index change ( ∆n ∼ 0.05÷ 0.1). Different openings (from 4µm to 

10µm) in an oxidized mask, obtained following a standard photolithographic process, 

were used to define the exchange region.  

Fig. 3.4 represents the fabrication steps. 
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   Figure 3. 4 : Schematic of the channel waveguides fabrication   

    process in MY2 and SLASY1 glasses. From top to bottom: 

                            (a) Ti mask deposition; (b) Photoresist deposition;  

               (c)  Photoresist UV exposure; (d) Photoresist removal 

               (e) Ti etching and channel opening; (f) ion-exchange; 

                  (g) mask removal. 

 

 

The mask is obtained deposing 200 nm of titanium by RF sputtering [17]. In order to 

fabricate single mode channel waveguides at 1.55 µm we used a silver-sodium thermal 

ion-exchange. The composition of the adopted solution was 0.5 mol.% of silver nitrate 

(AgNO3) in 99.5 mol.% of sodium nitrate (NaNO3). 

Before ion-exchange, in order to reduce the formation of silver clusters on glass surface, 

we decided to oxidize the mask in a pure sodium nitrate solution at 380 °C for 1 hour 

[84]. After that, we performed thermal ion-exchange at 325° C  with duration of 7 min. 

(DAg = 5.8⋅10
-3

 µm
2
/s) and 12 min.(DAg = 4.2⋅10

-3
 µm

2
/s), respectively for MY2 and 

SLASY1 glass. At the end we removed completely the Ti mask with a second etching 

procedure.  

        (a)          (b) 

         (c)         (d) 

      (e)  (f) 

            (g) 
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Moreover, in the case of MY2 glass we operated a second step consisting in a field-

assisted burial process in order to reduce the propagation losses, as indicated in Fig.3.5.        

                                           

                                                                             

 

                 Fig.3.5 : Set-up for field-assisted burial ion-exchange  

 

A voltage V = 300 volt was applied across the MY2 substrate of thickness 2 mm. The 

two electrodes were formed, respectively, by an eutectic solution of 55mol.% of NaNO3 

with 45mol% of KNO3 and an aluminium oxide film obtained by thermal deposition. 

The thickness of the film was around 500 nm, the process temperature 285°C and the 

duration 30 minutes. Applying the voltage, the Ag
+
 ions inside the glass go deeper and, 

contemporary, they are replaced by Na
+
 ions near the surface with a consequent burying 

of the waveguide structure. Finally, to reduce the coupling losses between the fiber and 

the waveguide, a thermal annealing post-process can be request [85]. 

Proceedings in this way, for a 4µm wide channel waveguide in MY2 sample, after the 

burying step mentioned above, we performed a thermal annealing process with a 

duration of 25 minutes at the same ion-exchange temperature. 

 

3.B.2   UV-photoimprinting technique 

 

A local change at the refractive index of properly designed glasses or amorphous thin 

films can be performed using an UV radiation exposure. This technique may represent 

an attractive option in the fabrication of integrated optical components if compared with 

other conventional methods. In fact, it may reduce fabrication time and contemporary 

remove all those expensive fabrication steps such as optical photolithography patterning 

and chemical or physical etching.  

   NaNO3 + 

     KNO3 

Glass           V 

    Al thin film   
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This technology is based on a property that some materials have to undergo a permanent 

change in their refractive index by exposure to light radiation. This phenomenon is 

commonly known as photosensitivity. The inclusion of rare-earth elements in these 

materials allows to combine photorefractive and active properties and provide an 

effective route to the simple fabrication of integrated optical amplifiers and lasers. 

 

3.B.2a   Ge-doped glass Photosensitivity: two possible models 

 

In 1978 photosensitivity was first observed by Hill and coworkers in a Ge-doped silica 

fiber that was exposed to an Ar-laser light at 488 nm launched into its core [86]. Ten 

years later, a transverse writing method was used by Meltz and his coworkers to photo-

imprint Bragg gratings using wavelength in the range 240÷250 nm [87].  

Nowadays, the most commonly used technique to write high efficiency Bragg gratings 

with UV radiation is the phase mask method [88].  

Initially, photosensitivity was thought to be a phenomenon associated only with optical 

fibers having a large concentration of germanium in the core and photo-excited with 

240÷250 nm ultraviolet (UV) light. Actually photosensitivity has been observed in a 

wide variety of crystalline and glassy materials, such as phosphate and fluoride glasses  

without germanium doping [89-90]. Nevertheless, for their material compatibility with 

optical fiber, silicate glasses or silica-germania thin films remain among the most 

important materials for fabrication of integrated optical devices utilizing 

photosensitivity. It is not yet clear the mechanism that induces an index change in these 

materials after an exposure to UV radiation. However, two are the most known models: 

the color center model and the densification model. The first one refers to the formation 

of Germanium-Oxygen Deficient Center (GODC) during the fabrication process of the 

material. In this case, because of the high-temperature reached in the fusion process of 

oxides, GeO2 dissociates into the GeO molecule (in other words the Ge
2+

 center) which 

has higher stability at elevated temperature. Once the glass matrix is formed, this 

molecule breaks the tetrahedral structure of SiO4 and contributes to form Ge-Ge or Ge-

Si wrong bonds characterized by the presence of a oxygen vacancy. This kind of 

defects, labelled GODC, has an absorption band centered around 242 nm and are 

reported, schematically, in Fig. 3.6.  
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Fig.3.6: (a) mechanism of GeE’ center formation; (b) defects 

on silica network induced by a germanium doping.  

 

Instead of bonding to other Ge or Si atoms through a bridging oxygen, the Ge atom is 

bonded to Ge/Si atoms through an electron. When the material is exposed to UV 

radiation, the incoming photon breaks this bond and contributes to the creation of GeE’ 

color center, releasing one electron in the glass matrix [91-92]. The mechanism of color 

centers formation has been demonstrated to be the first responsible of an increase on the 

refractive index of  some amorphous materials [93]. On the other hand, another model 

links the breaking of Ge−e
-−Ge/Si wrong bond to a reconfiguration of molecular 

structure with a possible densification (or expansion). This is the densification model 

[94]. In this model the UV radiation induces a volume change locally in the irradiated 

region. This last one can be associated to a density change and, hence, to a refractive 

index variation according to the Lorentz-Lorenz formula [22]: 
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where ∆V is the change in volume, ∆α  is the bond polarizability. Generally, in case of  

silica or silicate glasses doped with germanium, the volume compaction (∆V < 0) is the 

dominant effect, with a consequent increase of physical density and hence of refractive 

index change [95]. 

 

 

  a) 
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3.B.2b   Fabrication of Bragg grating in photosensitive thin film: the Phase Mask  

 technique 

 

A fiber Bragg grating is a periodic perturbation of the refractive index in the core of a 

single mode fiber [96].  When the radiation generated by a wide band source interacts 

with grating, only that belonging to a narrow band (∼ 0.3 nm) is reflected back without 

any perturbation on the rest of wavelengths as illustrated in Fig. 3.7. 

 

 

            

Fig.3.7: Working principle of a Bragg grating. It reflects the input radiation  

     in a narrow band while it is completely transparent at the other wavelengths.   

 

 

If Λ is the period of the grating, the resonance condition is expressed by the well known 

Bragg condition: 

 

Λ= effBragg n2λ                      (3.14) 

 

where λBragg is commonly called Bragg wavelength and neff is the effective refractive 

index of the fiber. For this property, Bragg gratings have gained attention not only for 
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fiber applications but also in integrated optics. For instance the possibility to write 

Bragg gratings with high reflectivity on both sides of an active channel waveguide, may 

represent a key step in the development of integrated laser sources. In fact they are an 

attractive alternative to mirrors in order to realise a resonant cavity.  

Among all techniques actually adopted to fabricate Bragg gratings, that of phase mask is 

simple and efficient.    

It uses a diffractive optics element, the phase mask, to spatially modulate the UV laser 

beam [97]. In Figure 3.8 is reported a schematic cross section of an ideal phase mask. 

 

                  

                            

 Fig. 3.8: Laser beam diffraction by a phase mask 

 

The mask, constituted by a substrate of silica glass with an etched surface-relief grating 

(period ΛM and thickness h) on one side the other side, is placed in close proximity to 

the surface of the photorefractive layer. As diffraction grating the mask splits the 

incident beam in multiple diffracted waves of m order according to the equation [96-97] 

 

UVmM m λϕ =Λ sin                                 (3.15) 

 

ΛΛΛΛM 

ϕϕϕϕ 

h 

              

Phase Mask 

              

UV beam 

                diffracted  

                 order -1 
            diffracted  

              order +1 
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where λUV is the wavelength of the UV beam. The angles ϕm  are measured with respect 

to the incident light. Considering only the orders ±1, as shown in Fig. 3.8, these two 

beams overlap to each other and form an interference figure having a period Λ given by: 

 

1sin2 ±

=Λ
ϕ

λUV                  (3.16) 

 

From (3.15) and (3.16), we can conclude that the periodicity Λ of the interference 

pattern do not depend on the wavelength of the writing radiation but only from that of 

the mask, as reported below: 

 

2

MΛ
=Λ                       (3.17) 

 

At last, from the Bragg condition, it is possible to know the Bragg wavelength as a 

function of ΛM value: 

 

MeffBragg n Λ=λ                      (3.18) 

 

Another advantage offered by this technique is the possibility to use laser sources with 

low spatial and temporal coherence. On the contrary, the main drawback in the phase 

mask use is related to the fact that the period of the grating is univocally determined by 

that of the mask (see eq. (3.17)) and hence, in order to change the Bragg wavelength 

(see eq. (3.18)), we need to change the mask. 

 

3.B.2c Imprinting of the Bragg gratings and channel waveguides on  SiO2-GeO2 thin 

film 

 

Thin film with 75SiO2-25GeO2 (molar %) composition, doped with 0.27 mol% each of 

Er2O3 and Yb2O3, were deposited onto vitreous silica substrates by RFMS (Radio 

Frequency Magnetron Sputtering) technique [59]. In order to improve the adhesion of 

the active films, the substrates were cleaned inside the RF sputtering deposition 
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chamber by removing some atomic layers just before starting the deposition procedure. 

We used a sputtering process that does not require a target sintered on purpose, as we 

simply placed pieces of GeO2, metallic ytterbium and metallic erbium onto a 4" silica 

target. The residual pressure, before deposition, was about 2x10
-5

 Pa. During the 

deposition process the substrates were not heated. The sputtering was carried out with 

Ar gas at a pressure of 0.7 Pa and an applied RF power of 150 W, with a reflected 

power of 18 W. The deposition time was 4 h 15 min, producing a film with a thickness 

of about 3.35 µm. In order to reduce the losses of the sputtered film, we employed an 

annealing process in air at the temperature of 600°C for 6 hours.  

 

    

In our experiments, in order to obtain a highly-efficient waveguide Bragg grating on the 

SiO2-GeO2 thin film we adopted a phase mask with central period ΛM = 1070 nm and a 

KrF (Krypton-Fluore) excimer laser (Lambda Physics Compex 110) operating at 248 

nm as UV light source  

   

To fabricate 2D guiding structure in SiO2-GeO2 thin film we used a direct imprinting 

technique based on a single step replica of an intensity mask. In comparison with direct 

writing methods, which require a relative movement between focused laser beam and 

sample [98], direct imprinting offers the benefit that no movable part is present in the 

exposure system and, hence, the only limitations are related to the amount and the 

stability of the incident light. Since the first demonstrations of UV photo-induced 

channel waveguides [18], germano-silicate glasses have played an important role in this 

field, due to the high time durability for the refractive index changes induced and low 

scattering losses. The possibility to achieve significant positive refractive index change 

in RF sputtered SiO2-GeO2 thin film has been demonstrated [99]. Moreover no 

sensitization procedures are required to improve the photo-refractive properties of the 

material. The amplitude mask used in photo-imprinting technique was produced in our 

laboratories following two steps: a) deposition of Ti film, with thickness of 200 nm, 

through RF sputtering on pure silica substrate; b) patterning of the Ti film by copying 

an e-beam written photolithographic mask containing various sets of straight channels 

with different openings, from 4 to 10 µm. We could have used the original 
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photolithographic mask, but we preferred to make a copy in order to avoid any possible 

damage that excimer laser can produce on it during repeated exposures. The Ti mask 

was placed in contact with the SiO2-GeO2 thin film and then exposed to the KrF 

excimer laser source operating at 248 nm, as shown in Fig.3.9. Pulse fluency was kept 

low (36 mJ/cm
2
) to prevent damage to the mask. Repetition rate was set at 10 Hz while 

cumulative exposure dose was 20 kJ/cm
2
. Examination of the mask after exposure 

revealed that there was not damage and further tests confirmed the repeatability of the 

experiment. The sample was then cut at 15 mm length, and the edges were  optically 

polished.  

   

      Figure 3.9: Schematic representation of the experimental set-up  

      for photo-imprinting of channel waveguides in SiO2-GeO2 thin  

      film. 

 

 

3.B.3  Ion beam irradiation 

 

3.B.3a  Ion beam irradiation: principle and advantages 

 

Ion beam irradiation is a commonly used technique to change the chemical, physical 

and optical properties of a wide range of materials like crystals, glasses and 

semiconductors. When an energetic ion (i.e.: N
+
, Ne

+
, Cu

+
, Er

+
, H

+
) impinges on a 

material it will loose energy due to interaction with target electrons (electronic stopping) 

or by colliding with target nuclei (nuclear stopping) [22]. In particular, in the irradiated 

region, the material changes can induce a corresponding change on the refractive index 

with the possibility to define an optical waveguide. The order and sign of the index 
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change depends strongly on the material used and varies highly with the ion-beam dose 

(number of particles per unit volume). On the other hand, the depth of the waveguide 

under the surface depends on the energy of the bombarding particles and also on the 

material type [22]. The main advantage of this fabrication method is the possibility of 

controlling both the depth and the lateral distribution of the implanted ions. The former 

is done by choosing the appropriate ion energy, the latter by using a suitable mask. With 

this technique it had been demonstrated the possibility to obtain channel waveguides in 

crystal or amorphous materials, like LiF and LiNbO3 [100-101] or silica and phosphate 

glasses [64-66]. 

 

3.B.3b Ion Beam Irradiation: Fabrication of channel waveguide in Er
3+

 -doped  

tellurite glasses. 

 

We decided to use this technique to fabricate channel waveguide in Er
3+

 doped tellurite 

glasses. In fact we had previously studied a set of tungsten-sodium-tellurite glasses 

(WNT) and their spectroscopic properties are reported in [49]. Er
3+

 doped tellurite 

glasses are one of the most attractive materials for the development of C and L band 

amplifiers due to their large stimulated emission cross-sections, broad emission 

bandwidth (up to 60 nm) and low phonon energy.  

If many papers refer on (1D) slab waveguide obtained in this glass formulation 

[49,102], nevertheless the fabrication of 2D guiding structures in Er
3+

-doped tellurite 

glasses appears to be still a challenge. Because of their rather low chemical durability, 

these glasses can be damaged during some steps of typical channel waveguide 

fabrication processes like, for instance, ion-exchange.  

The composition of the glass material used for our experiments is: TeO2 (60 mol.%): 

WO3 (25 mol.%): Na2O (mol.%) doped with Er2O3 (0.5 mol.%). The waveguide 

fabrication procedure was as follows. 

Double side polished silicon slices were glued to each other with a proper spacer to 

ensure a gap of about 25 µm, then polished in cross-section to a thickness of about 75 

µm. The silicon mask was placed in front of the sample in order to define a multimode 



71 

channel waveguide, as illustrated in Fig.3.10(a). The dimensions of the substrate were 

10 mm × 10 mm × 4 mm. The irradiations were carried out with a 1.5 MeV N
+
 

collimated beam from a Van de Graaff accelerator (available at Research Institute for 

Technical Physics and Materials Science –Budapest) with normal incidence on the 

sample. By defocusing the ion beam with a magnetic quadrupole and using the silicon 

mask slices, the waveguide stripes have been realized in the glass with different doses 

corresponding to 0.5, 1.0, 2.0 and 4.0 x 10
16

 ions/cm
2
. The guiding structures so 

obtained are shown in Fig.3.10(b). The image was taken with Nikon Coolpix 4500 

camera connected through a phase contrast microscope. 

 

 

 

                     (a)                                                       (b) 

 

Fig.3.10: (a) Schematic representation of channel waveguide 

fabrication by ion beam bombardment; (b) Channel waveguide top-

viewed  observed at microscope  

. 
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3.C   Measurements  

 

3.C.1 Losses and Near-Field measurements. 

 

The technique used for loss measurement (typically, propagation loss and coupling loss) 

is schematically illustrated in Fig.3.11. It consists of two consecutive measures, 

respectively in configuration (a) and (b). 

 

 

                                                                                                                

 

 

                                                                                

 

 

     Fig. 3.11: Schematic representation of the experimental set-up  

      for losses measurement in channel waveguides. 

 

 

The output power measured by the photodiode according to scheme (a) is   

( ) opcin TPaP αα=                     (3.19) 

while, in configuration (b), we have: 

( ) fcpcin TPbP ααα=                    (3.20) 

where Pin is the power from the input fiber, αc and αp are the fiber-waveguide coupling 

coefficient and propagation loss coefficient, respectively. To and Tf  are the transmission 

coefficient for the objective and the fiber at the output section. Because Pin, To and  Tf  

are known, by solving the system represented by equations (3.19) and (3.20) it is 

possible to knowledge the αc  and αp  coefficients  and, hence, the propagation and the 

     laser 
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    objective photodiode 

(a) 

(b) 
   fiber  



73 

coupling losses for the device. The measurements were performed at 1.3 µm to avoid 

the absorption of Er
3+

 ions around 1.5 µm.  

In the output section of Fig. 3.11(a), using a calibrate Hamamatsu C-1000 Vidicon 

camera instead of  the photodiode, we were able to get the near field image of the 

channel waveguide. 

 

3.C.2 Gain measurement.   

 

For gain measurement, we adopted the following set-up: 

 

 

 

    

                        

 

 

 

 

 

 

            Fig. 3. 12: Set-Up for gain measurement.   

 

 

The source is a laser diode tunable between 1490 and 1600 nm. An isolator avoids the 

problems related to the undesired reflections, while the attenuator reduces the power at 

the input of the waveguide. The pump laser is a laser diode working at 976 nm. An 

input WDM combines the laser signal with that coming from the pump, while an output 

WDM works in dual mode. The amplified signal is directed to a spectrum analyzer 

(OSA) for processing. A matching gel between the fiber and the waveguide is 

introduced to improve and stabilize the couplings.  

We define net optical gain as follows: 
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where PASE is the noise power generated by the amplifier, PIN is the signal input and 

POUT  is the signal output power. 

 

 3.D   Results 

 

3.D.1 MY2 and SLASY1 ion-exchanged channel waveguides 

 

For a 4µm wide channel waveguide in MY2 sample we obtained αp ≤  0.6 dB/cm and αc 

≤ 0.8 dB while, for a 5 µm wide channel waveguide in SLASY1 sample, we measured 

values of αp ≤ 0.4 dB/cm and αc ≤ 0.7. In Fig. 3.13 is shown the effect of the annealing 

process on the vertical and lateral dimensions of the field in the case of MY2 sample. 

 

 

               

 

Fig. 3.13: Near Field intensity for a 4 µm channel waveguide in MY2 

glass: (a) before annealing; (b) after annealing. The colours represent 

the intensity level of the field respect to the max: 0.9 (green line); 0.8 

(blue line); 0.7 (red line); 0.6 (black line); 0.5 (white line); 0.4 (yellow 

line).  

 

An increase of field dimension was obtained, improving the symmetry of the field and 

reducing the mismatch with the fiber. In particular, before the annealing, the near field 

dimensions measured were 4.1 µm × 2.9 µm while, after this step, the dimensions were 

of  7.9 µm × 5.9 µm at wavelength of 1550 nm. The waveguide was single mode in 

depth and multimode in transversal (lateral) direction.  
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For the 5 µm single mode channel waveguide obtained in SLASY1 sample, the 

measured dimensions of near field were 4.8 µm × 3.0 µm.  

For what concern the optical gain, fixing for PIN  a reference value of -31 dBm, in a 4 

µm MY2 channel waveguide we obtained an output power, Po,PUMP OFF, of   -46.08 dBm 

when the pump laser was off. Switching on the pump, we progressively increased its 

power until to reach the maximum value of 170 mW. In this case the corresponding 

value measured for the output power, Po,PUMP ON, was -29.54 dBm as reported in Fig. 

3.14. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.14: Dynamic of output power in two different cases: (a) 

pump off (red line);  (b) pump on (blue line).  

 

 

 

Refering to same figure, the signal enhancement is defined as the ratio of the output 

signal when the pump laser is on to that when it is off. In MY2 glass waveguide we 

obtained a value for the sig. enh. equal to 16.5 dB, while for the net gain we obtained a 

maximum value at 1536 nm of 1.5 dB as in Fig.3.15.  
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            Fig. 3.15: Net gain (dB) as a function of pump power (mW)   

 

The length of waveguide was around 2 cm. From this waveguide, which exhibited a 

positive net gain, by using two properly designed high reflective mirrors or fiber 

gratings, it is potentially possible to obtain a waveguide laser at 1536 nm.  

No net gain was observed in SLASY1 sample, but only a signal enhancement of 2 

dB/cm. The reason of this is, actually, under investigation. Possible explanations can be 

related to the following two phenomena: (a) the shift of the absorption Yb
3+

 peak at 

pump wavelength caused by the high concentration of aluminium oxide that can reduce 

the pump efficiency for this substrate; (b) an high value for co-operative up-conversion 

that may occur in these glass formulations [103].  

 

3.D.2 Photorefractivity, grating and waveguide imprinting in SiO2-GeO2 thin film.  

 

The SiO2-GeO2 thin film, fabricated by RF sputtering, as reported in § 3.B.2c, 

constituted a slab waveguide. The effective refractive indices of the waveguide modes 

of this structure were measured by a semi-automatic instrument based on dark-line 

spectroscopy and prism coupling technique [17], having a precision of 2 × 10
-4

. The 

glass substrate had a refractive index of 1.495 at 633 nm while the waveguide supported 

4 modes supported at this wavelength and only 1 at 1.55 µm. Propagation losses 

measured at 633 nm were 0.8 dB/cm and at 1300 nm less than 0.3 dB/cm, confirming 

the good optical quality of the annealed films. In order to evaluate the effect of UV 

exposure on the refractive index of the film, we irradiated the sample with single pulse 

fluency of 36 mJ/cm
2
 and repetition rate of 10 Hz. After each irradiation the effective 
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index values of the supported modes at 633 nm were measured in TE polarization, and 

much care was taken to repeat the measurement in the same position on the waveguide, 

to avoid errors due to film inhomogeneities. The results obtained are reported in Fig. 

3.16. 

                      

 

 

 

 

 

Significative changes on the effective index values of the four TE modes were detected. 

The effect increases with the irradiated energy and saturates at 22 kJ/cm
2
 of cumulative 

exposure. The refractive index value of the film can be calculated with a fitting 

procedure from the values of the four effective indices. A maximum index change of  

3.8 10
-3

 was obtained. Such a positive value of the index change is high enough to 

achieve a good lateral confinement of the radiation: channel waveguides direct 

imprinting on similar films is therefore possible.  

Moreover, in order to test the contribution of the UV photo-induced volume 

densification to index change, we placed a thin metallic wire on the surface of the 

sample. The wire, with diameter of 150 µm, had a masking function respect to UV 

radiation. After an exposure to excimer laser with irradiated energy of 16.2 kJ/cm
2
, the 

wire was removed and the exposed area around the masked region was scanned with a 

Tencor P-10 profilometer. The result of this measurement is reported in Fig. 3.17. 
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Fig. 3.16 UV light induced changes, with increasing cumulative dose, of the 

effective index values of the four TE modes supported by the waveguide at 

633 nm 
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  Figure 3.17  Profilometer scan of the sample surface after the UV- 

         exposure around the masked region.  

 

 

 

 

 

The step profile shown in Fig. 3.17 corresponds to the not-irradiated region of the SiO2-

GeO2 thin film covered by the wire, while the surrounding regions are irradiated. A 

decrease of 16 ± 2 nm of the thickness of the film was measured, confirming that a 

densification of the material occurred as a result of UV irradiation [95]. The 

contribution of volume densification on refractive index change of the film calculated 

by Lorentz-Lorenz formula was in good agreement with that experimentally measured. 

This simple experiment demonstrated the validity of the compaction/densification 

model for UV exposed SiO2-GeO2 thin film.  
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The photo in Fig. 3.18 shows the operation of a highly-efficient waveguide Bragg 

grating, that was photo-induced by using the phase mask method. We used 36 mJ/cm
2
 

pulse fluency with a 10 Hz pulse repetition rate and the total irradiated energy density 

was 2.5 kJ/cm
2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to make evident the effect of the grating we prism-coupled a He-Ne laser beam 

(λ = 633 nm) into the a guided mode.  

When the angle θ between the direction of the coupled light z and the grating vector k 

(see inset in the Fig. 3.18) satisfies the Bragg condition cos (θ)=λ/ne Λ, where ne is the 

modal effective index, the guided light is deflected symmetrically from the fringe 

planes. Spatial displacement, with a near 100% efficiency is achieved in a small 

distance (≈ 1 mm) along the propagation direction. 

Hence, the possibility to fabricate high efficiency Bragg grating applications has been 

demonstrated in a SiO2-GeO2 thin film. 

 

 

Figure 3.18 Deflection of a prism coupled He-Ne guided 

beam produced by a highly efficient photo-induced Bragg 
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After a cumulative exposure of 20 kJ/cm
2
 for waveguide imprinting,  examining the 

sample with a phase contrast microscope, the series of channels waveguides appear to 

be well defined and of good quality. In order to check surface quality and possible 

densification effects due to the UV exposure, a profilometer scan of the surface was 

performed in direction transversal to the light-induced channel. In Fig.3.19 a 

densification effect of 16 ± 2 nm in correspondence of a 7 µm mask openings is shown.  

The inset shows a 3D scan of a portion of the film including three optical channels. The 

compaction of the film produced by the exposure can be clearly seen.  

 

                                

Figure 3.19 Profilometer scan of the film surface in direction 

transversal to a channel waveguide obtained by UV imprinting 

through a 7 µm wide opening of an intensity mask  

 

We then measured the near-field of these channel waveguide at 1550 nm focusing the 

channel output onto the Vidicon camera, using a 0.8 NA (Numerical Aperture) 

microscope objective.  For a 7 µm wide channel, the intensity distribution is shown in 

Fig. 3.20 

  

              

Figure 3.20 Measured near field distribution at 1550 nm of a channel 

waveguide obtained by UV imprinting through a 7 µm wide opening.  
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All the imprinted channel waveguides were single mode at 1550 nm. The field is 

strongly asymmetric because the difference between the substrate and the film refractive 

indices (in the vertical direction) is about one order of magnitude higher than that 

induced by the UV exposure (in the transversal direction). 

Propagation and fiber-to-waveguide coupling losses were both directly measured at 

1300 nm, in order to avoid the absorption band of the 
4
I13/2 → 

4
I15/2 transition of the 

erbium ions. Propagation losses were less than 0.3 dB/cm, namely equal to those 

previously measured in unexposed planar waveguide. This means that the exposure 

process did not affect the intrinsically low scattering losses of the material. Coupling 

losses from a standard communication fiber into a 7 µm waveguide were 3.1 ± 0.2 dB, 

but this rather large value could be expected due to the waveguide asymmetry.  

Hence, the fabrication of low loss channel waveguides in SiO2-GeO2 thin film was 

demonstrated.  

The final target of this research activity on photorefractive and active thin films will be 

the implementation of an “all photo-written” laser device where both the waveguide and 

the Bragg gratings are obtained through UV photo-imprinting (see Fig.3.21).  

 

 

 

Fig. 3.21 The design of an integrated all photo-induced 

waveguide laser in SiO2-GeO2 thin film activated with Er
3+

/Yb
3+

.  
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3.D.3   Characterization of ion beam irradiated channel waveguide in tellurite glass 

 

In order to test the effect of the nitrogen implantation on the refractive index of Er
3+

 -

doped tungsten tellurite glass, a 633 nm laser beam was coupled into the waveguide 

with a multimode optical fiber MM 50/125. The output signal was focused onto a 

Vidicon camera with a 20× microscope objective (NA = 0.4). The result is shown in 

Fig. 3.22. 

 

 

                                    

 

Figure 3.22 Measured near field distribution at 633 nm of a 

channel waveguide obtained by ion beam irradiation through 

a 25 µm wide opening.  

 

The light is indeed confined both in vertical and in lateral direction around the 

implanted region. This fact implies that, due to the N
+
 irradiation [22], there was an 

increase of the refractive index (∆n > 0) of the Er
3+

 -doped glass. The best guiding 

channels in terms of 2D light confinement were obtained with a dose of 1.0 x 10
16

 

ions/cm
2
. The length of the waveguides was 7mm with a depth around 10 µm. A 2D 

guiding effect was also confirmed observing the well confined green up-conversion 

emission obtained pumping the Er
3+ 

ions at 980 nm along the waveguide, as shown in 

Fig. 3.23.  
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Fig. 3.23: Confined green up-conversion of Er
3+

 ions along the waveguide 

after 980 nm pumping.The end-fire coupled input fiber is visible on the 

right side. 

 

Some generic considerations can be reported on ion beam irradiation induced refractive 

index change ∆n. The relationship between ∆n and the defects-dependent parameters is 

described by Lorentz-Lorenz equation reported in (3.13). Generally the dominant 

factors of ion implantation on refractive index is usually due to the nuclear damage 

process. For many materials this corresponds to a volume expansion (∆V > 0) with a 

consequence decrease of physical density and hence to a reduced refractive index. In 

such cases the ion-implanted region acts as an optical “barrier” with a negative 

refractive index change [22,66]. In our case, instead, the measured near field profile (see 

Fig.3.22 and Fig. 3.23) is similar to that of a “conventional” waveguide. This suggests 

that, due to the ionization processes induced by the implanted nitrogen ions (i.e. 

rearrangements of substrate bonds and chemical interactions with the substrate), a 

positive refractive index change occurs. Collating these considerations to equation 

(3.13), it means that the contributions coming from bond polarizability ∆α have a 

greater effect on the refractive index change than that of ∆V, counteracting and 

overcoming possible volume expansions [22]. Further works are in progress to get a 

better understanding of the waveguide formation mechanism in these glasses.  

We believe that the possibility to fabricate channel waveguides in Er
3+

 activated tellurite 

glasses open the door to the development of a new class of waveguide lasers and 

amplifiers working in L-band.  

           2 mm 
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CHAPTER 4  Structures: Microsphere Lasers  

 

During the past decade applied research has targered on a reduction in size of 

optoelectronics devices making use of structures with a strong light confinement for 

both classical and non-linear optical applications. Optical microcavities fully respond to 

these requisites and found many applications in telecommunications and sensing [23]. 

In particular high quality factor microcavities can be obtained with microspheres 

fabricated in silicate and phosphate glasses. In dielectric microspheres light can be 

trapped in whispering gallery modes (WGMs) [104] and guided in a thin ring, close to 

the equator, due to successive total internal reflections.  

Historically, WDMs were first observed in the gallery of the cupola of St Paul’s 

Cathedral in London: a whisper spoken close to the wall can be heard all the way along 

the gallery, some 42 m to the other side. Lord Rayleigh was the first to identify the 

refocusing effect of the curved surface as the sound travels along the gallery; he also 

suggested that such modes of the electromagnetic field could find some applications due 

to the extreme confinement of the field [105].  

Due to the properties mentioned above, dielectric glass microspheres doped with Rare-

Earths (Er
3+

 and Yb
3+

, principally) are ideal candidate for the realization of  microlasers 

where very low threshold, high pump efficiency and very narrow emission linewidth are 

expected [24-25,106]. In this chapter we will demonstrate the realization of 

microspherical lasers based on Er
3+

or Er
3+

/Yb
3+

 doped silicate (B05, IOG10) and 

phosphate (IOG2) glasses, optically pumped at 1480 nm, with emission around 1550 

nm. The chapter is organized as follows. In Section A two theoretical models are 

presented in order to describe the electromagnetic propagation in microspherical 

resonator. While the former concerns the geometric optics approximation, the latter is 

based on wave optics and Maxwell’s equations (in the formulation of vector and scalar 

Debye’s potentials [107-111]). Section B introduces numerical simulations, developed 

in MATLAB code, in order to have a better comprehension of the WGMs and field 

distributions. Section C takes into account the problem of light coupling into a 

microsphere [112-113] and finally Section D focuses on the experimental set-up 

developed for the laser measurements and results. Three Appendices on the theoretical 

part conclude this chapter. 
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4.A  Electromagnetic Theory of Microspherical Resonators  

 

The microresonators discussed in this chapter are dielectric spherical resonators (DSRs). 

A first approximate, but more intuitive, approach to study the light propagation in this 

kind of structure is given by use of the geometrical optics. Then, a rigorous 

electromagnetic field analysis is represented by solving the Maxwell’s equations in 

spherical coordinates. An analogous procedure can be adopted to describe the electric 

and magnetic field components for others types of microresonators such as microdisks 

or microrings. The only difference is that, in this last case, a cylindrical coordinates 

system must be considered [1]  

 

 

4.A.1 Qualitative Description of WGMs: the Geometrical Optics Approach 

 

Considering a dielectric microsphere of radius a with refractive index N, the WGMs can 

be viewed as light rays that propagate by total internal reflections if  
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arcsinθθ                                                                                                  (4.1)   

 

where θi is the incidence angle of the light ray makes with respect to the normal to the 

spherical surface and θc is the critical angle corresponding to total internal  reflection. In 

this way, for large microspheres (a >> λ), the propagation of the light radiation can be 

considered confined in the region between the sphere surface  and an internal spherical 

surface (signed in dots) whose tangents correspond to the critical angle, as illustrated in 

Fig.4.1. 
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Fig.4.1: Total internal reflection for the light rays in 

correspondence of the surface of the microsphere. If the optical 

path equals the integer number of wavelengths, a resonance 

occurs. 

 

 

In one round trip, for a high number of reflections, the distance that the WGM traverses 

is approximately 2π a. If this distance is exactly equal to an integer number of 

wavelengths, a standing wave may occur. This is the resonance condition that can be 

expressed as  

 

N
la 02

λ
π ≈                                       (4.2)   

 

where l is an integer number, λ0 is the wavelength in the vacuum and λ0/N is the 

wavelength in the medium. Letting x be a dimensionless size parameter defined as 

below  
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the resonance condition becomes 

 

 

 lxN ≈                                        (4.4) 

 

The integer l, introduced as the number of wavelengths in the circumference, can be 

also related to the angular momentum of a circulating photon. In fact, if the momentum 

of the single photon is expressed by 
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then the angular momentum of the photon can be written as  
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where 
→

r  is the radial vector. Thus, the integer number l can be related to the angular 

momentum of the radiation.  

We adopt a spherical coordinate system as shown in Fig.4.2 (r for radial direction, φ for 

the azimuthal direction and θ for the polar direction):  

 

               

   

Fig. 4.2  Spherical coordinate system for Whispering-Gallery  Modes  

and modes propagation along the surface of the sphere 

 

 

Following the ray optics model, the modes can be thought to propagate along a ziz-zag 

paths around the equator (see Fig.4.2). With mode number l, two other integer numbers, 

n and m, characterize a WGM mode in microspherical resonators. The radial mode 
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number n is equal to the number of field maxima in the direction along the radius of the 

sphere, while m is the azimuthal mode number. For any fixed value of l, lm ≤ . The 

value l – m +1 equals the number of field maxima in the polar direction. Different 

values of m imply that the modes travel in zig-zag paths with different inclinations with 

respect to the equatorial plane. When m = l, (the “fundamental mode”), the inclination 

is the smallest while, for m = 0 the inclination is 90° with respect to the equatorial 

plane. All modes with the same l and n have the same resonant wavelength regardless of 

the value of m. The wave number βl, in the direction of the zig-zag path, is defined as 

 

( )
a

ll
l

1+
=β                                                         (4.7)  

 

where a is the ray of the sphere (see Appendix A and [112]).  

The projection of  βl onto the equator is commonly referred to as the “propagation 

constant” of the mode:  

 

a

m
m =β                          (4.8) 

 

4.A.2 Analytic model for a dielectric spherical resonators: solution of the Maxwell 

equations   

 

It is well known that, for an isotropic linear and homogeneous dielectric medium, 

without any electromagnetic sources inside it, the expressions of electric
→

E  and  

magnetic
→

H  fields can be expressed by the following equations  
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where
→

A and
→

F are called, respectively, magnetic vector potential and electric vector 

potential [70].  

These two vector potentials satisfy the system equations [109]: 
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with φ 
m
 and φ 

e
 two scalar functions and k the propagation constant.  

In a spherical coordinates system, the electromagnetic field can be expressed as a 

superposition of TE and TM modes, making a suitable choice for the magnetic 
→

A  and 

electric 
→

F  vector potentials:   

 

^

^

rFF

rAA

r

r

=

=
→

→

                                                                                                                     (4.11) 

    

 

in which the scalar components Ar and Fr do not satisfy the Helmholtz’s scalar equation, 

because generally: 

 

r

r AA 







∇≠∇

→
22

           
 

Knowing these scalar components it is possible to obtain the vector expressions for the 

electromagnetic field, using eq. [4.9]. In fact one can demonstrate that, starting from the 

knowledge of its radial components, the electromagnetic field is univocally defined (see 

Appendix B) [110,114]. 

Then, to determinate the field solutions of this problem, we will follow the next logic 

steps: 

• Determination of Ar and Fr expressions; 

• Determination of the general field components from the knowledge of  Ar and Fr; 

• Determination of TE and TM components; 

• Characteristic equations for TE and TM modes. 
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1
st
 STEP: Determination of Ar and Fr expressions  

 

To determinate the expressions of  Ar and Fr components, one proceeds from the general 

equations of vector potentials [4.9].  

For instance, in the case of the magnetic vector potential, developing the first of 

equations [4.10], we get: 

 

m
jAkAA φεµω ∇−=−∇−⋅∇∇

→→→
22                              (4.12) 

 

that, projected along the tern (
^

r , 
^

θ , 
^

ϕ ), gives an equations system along the polar and 

azimuthal components, respectively [109]: 
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j
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2
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                    (4.13) 

 

From these ones it follows immediately the solution: 

 

r

A

j

rm

∂

∂
−=

εµω
φ

1
                                (4.14) 

 

Then, substituting the eq. (4.14) in the radial components of eq. (4.12), we obtain [109] 
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2

2
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∂

∂
r
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A
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A
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A

ϕθθ
θ

θθ
                            (4.15) 

 

that, it is easy to verify, can assume the synthetic form: 

 

 ( ) 022 =+∇
r

A
k r                      (4.16) 
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This is the scalar Helmholtz’s equation having rAr  as solution. The same procedure 

can be applied to electric vector potential 
→

F . Hence, one infers that the electromagnetic 

fields can be expressed starting from the following choice for  vector potentials: 

 

^^

^^

rrrFF

rrrAA

e

r

m

r

ψ

ψ

==

==
→

→

                                                      (4.17) 

 

where me ,ψ  are, respectively, electric and magnetic scalar potentials (also called Debye 

potentials) [107,111] which satisfy the homogeneous scalar Helmholtz’s equation 

( ) 022 =+∇ ψk , with  me ,ψψ = . 

In a spherical coordinates system, the solutions of this equation (for all mathematical 

steps we refer to Appendix A) are expressed by eq. (A.19) and then radial components 

of vector potentials, Ar e Fr, can be written as: 

 

( ) ( ) ( ) ( ) r

m

llr FmPrkjrrrA === ϕθψφθψ coscos,, 1                            (4.18)   

 

valid for  r < a, where a is the ray of the sphere, l and m are angular and azimuthal mode 

numbers previously introduced, jl (kr) corresponds to the first order spherical Bessel 

function and Pl 
m
(cosθ) are Legendre functions (see Appendix C) [115]. Hence, for 

instance, the magnetic vector potential 
→

A  assumes the form: 

 

( ) ( ) ( ) ( )
^

1

^

coscos,, rmPrkjrrrrA
m

ll ϕθψφθψ ==
→

                (4.19) 

 

where 

                                                        

                                                                                                   (4.20) 

 

In case of  r > a, the first order spherical Bessel functions jl (kr) must be substituted by 

the second order spherical Hankel functions  hl
(2)

 (k0 r), which represent the evanescent 





≤=

>=

arnkk

arkk

s ,

,

0

0
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tail of the field immediately outside the spherical microresonator. This discontinuity can 

be resolved as reported at the end of Appendix A. In this way, knowing the Ar and Fr 

components, we are able to express the general field components.  

 

2
nd

 STEP: Determination of general field components from the knowledge of Ar and Fr; 

 

Considering the first equation of system (4.9), it can be written as below: 

 

→
→→

→
→

→

×∇−
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×∇×∇
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                                               (4.21) 

 

In a spherical coordinates system, remembering the expressions (4.17) for vector 

potential 
→

A , the first term at the second member of  eq. (4.21) can be developed as 

follows: 
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                    (4.22) 

 

On the other hand, from the curl of electric vector potential 
→

F  we have: 
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So writing, the electric field as: 

 

^^^

ϕθ ϕθ EErEE r ++=
→

                    (4.24) 

 

and substituting the equations (4.22) and (4.23) in (4.21), we obtain:  
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                  (4.25) 

 

that are the general expressions for electric field components, in a spherical coordinates 

system, as a function of vector potential radial components Ar e Fr . In the same way, it 

is possible to evaluate the magnetic field components that are reported below: 
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                  (4.26) 

 

The equations shown in these two last systems are, formally, the same reported 

in [109]. 
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3
rd

 STEP: Determination of TE and TM components; 

 

The case of TE modes 

When considering TE modes, the radial component of magnetic vector potential 
→

A  is 

zero, Ar = 0. Thus, for a TE mode the systems [4.25] and [4.26] become  
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                   (4.27) 

 

The system [4.27] shows how the polar and azimuthal components of electric field are 

related to the radial component of electric vector potential 
→

F . 

Inside the microsphere (medium 1), this radial component can be written as 

 

( ) ( ) ( ) ( )ϕθϕθ mPrkjArrFrF
m

ll

m

lr coscos,, 11 ==                                                    (4.28) 

 

while, outside the microsphere (medium 2), the expression (4.28) becomes 

 

( ) ( ) ( ) ( )ϕθϕθ mPrkhArrFrF
m

ll

m

lr coscos,, 0

)2(

22 ==                                             (4.29)    

 

where A1 and A2 are constant amplitude (crest) factors and jl (kr) and hl
 (2)

(k0 r) are the 

first order spherical Bessel and Hankel functions, respectively. By substituting these 

two last expressions in the system (4.27), it is possible to calculate all the components 

of the electric and magnetic field for a TE mode. In fact, remembering the expression of 
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the first order derivate for jl  function defined in eq. (C2) [see Appendix C], one can 

write that : 
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Adopting the (C3) expression written for the l+1 order spherical Bessel function 

( )rkjl 1+ , we get   
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Substituting  the eq. (C2) and (4.32) in (4.31), we obtain 
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So, for a TE mode, the radial component of the magnetic field inside the microsphere 

can be expressed as 
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On the other hand, the polar and azimuthal components of the magnetic field in the case 

of a TE polarized WGM are given, respectively, by 
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Finally, recalling the equation (C3), we can write the field components of a TE mode, 

inside the spherical microresonator, in the form:  
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where )(cos
'

θ
m

lP  is the first order derivate of Legendre function made in respect of its 

argument cosθ. To obtain the same field components in the surrounding medium (r > a), 

it is enough to substitute the spherical Bessel function jl (kr) with second order spherical 

Hankel function hl
(2)

 (k0 r). 
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The case of TM mode 

 

For the TM modes, the radial component of electric vector potential 
→

F  is zero, Fr = 0. 

Thus, for a TM mode the systems (4.25) and (4.26) assume the form 
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                                         (4.35) 

 

Proceeding similarly to the case of Te mode, inside the microsphere, the field 

components of a TM mode can be written as below 
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It is worth noticing that the systems (4.34) and (4.36) correspond to those reported in 

[116] without constant factors. 

 

4
th

 STEP: Characteristic equations for TE and TM modes ; 

 

Resonance frequencies are determined by imposing the continuity conditions of the 

tangential components of the electric and magnetic fields at the surface of the 

microsphere: 
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where
→

1E ,
→

2E and 
→

1H ,
→

2H are internal and external electric and magnetic fields, labelled 

with 1 and 2, respectively.  

Hence, for what concern the characteristic (or the eigenvalue) equations, the boundary 

conditions (4.37) must be employed.  

Inside the microsphere, the tangential component of the electric field is 
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where E1θ and E1ϕ are expressed by the second and the third equations of system (4.34) 

In the same way, outside the sphere we can write: 
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where, for the polar and azimuthal components of the electric field outside the sphere, 

the following expressions subsist: 
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Comparing the equations (4.38) and (4.39) and using eq. (4.34) and eq. (4.40), we get: 
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and eliminating the common terms, it is possible to write the continuity condition for 

tangential components of the electric field in the case of a TE mode: 
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In order to obtain the characteristic equation for the TE modes in a DSR, it remains to 

express the continuity condition for the magnetic field at the spherical surface. As we 

have just done for the components of the electric field, from the second equation of 

system (4.37) we get, respectively: 
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Equalizing these two expressions and eliminating the common terms, we obtain the 

continuity condition for the magnetic components of a TE mode 
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Combining the equations (4.41) and (4.42), we have 
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Finally, from equation (4.43), it is possible to write the characteristic equation for a TE 

mode in a DSR: 
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obtained imposing r = a at the surface of the sphere. This equation gives the positions of 

the resonances. In the microsphere k = ns k0 = ns 2π /λ while, outside the microsphere, k 

= k0  because we suppose that the surrounding medium is air. More generally, if the 

refractive index of the surrounding medium is nsm ≠ 1 the equation [4.44] modifies its 

expression as reported in [117].  
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that is the case of major interest for sensing.  

For what concern the characteristic equation of TM-modes, we remind that the 

components of the TM modes are expressed in system (4.36). In this case, applying the  
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continuity conditions for the magnetic field and proceeding in the same way as for 

electric field, we end up writing:  
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That is the characteristic equation of TM modes, obtained imposing r = a [113].  

 

 

 

 

 

 

 

 

 

 

 

 

4.B  Numerical calculations  

 
In this chapter we want to clarify, with some examples, the meaning of the mode 

quantum numbers l, n, m and their relation with the field distribution in a microspherical 

structure. Contemporary, we want to verify the exactness of our model. For this purpose 

we choose the data reported in [118] and compared the relative results. We first report 

here the parameters of the problem: R0 =16 µm, λ = 1.48 µm, ns = 1.985. The starting-

point were the characteristic equations and their solutions in order to find the azimuthal 

quantum number l. For simplicity we only considered the TE polarization mode as done 

in [118]. All programs were developed in MATLAB.  

Fig. 4.3 shows the real part of  the characteristic equation for TE modes. The narrow 

line in the figure represent the discrete l values for WGMs.  
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         Fig. 4.3  Discrete set of  l values that satisfies the   

                  characteristic equation for TE modes.  

 

 

 

 

 

 

 

The discrete values of  quantum number l are 125, 118, 113, 107, 103, 99, 95, 91, 87, 

83, 80, 77, 74, 70, 67 and they are closed to those reported in [118]  

Once obtained these l values in corresponding to the resonance conditions, it is possible 

to calculate the radial eigenfunction of the field expressed by eq.(A.23), achieving some 

important information about the behaviour of the resonant modes (WGMs) in this 

direction.   

 

                                                         

  

set of values 

for  l number 
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                         Fig. 4.4: (a) Field distribution in radial direction for: (a) l = 125 (n = 1);  

                                        l = 107 (n = 4); l = 91 (n = 8); l = 77 (n = 12).      

 

As previously stated, n equals the number of maxima in the radial direction. In 

particular, as shown in Fig.4.5(a)-(d), with a decrease of quantum number l an increase 

of quantum number n occurs. This means that while the peak of a WGM is very close to 

the surface of the microsphere for a high value of l (see Fig. 4.4(a)), in correspondence 

of a smaller one,  the mode peak position changes in the radial direction going deeper 

inside the sphere (see Fig.4.4(b)-(d)). As a consequence a WGM characterized by a high 

value of the n number presents higher radiation losses with a reduction of  the total 

quality factor Q of the spherical microresonator (see § 4C) [113]. The most interesting 

case is represented by a WGM well confined in proximity of the spherical surface, 

corresponding to n = 1 as reported in Fig. 4.4(a). Refering to Fig. 4.4(a)-(d) we observe 

the following correspondences between the couples of l and n quantum numbers: l = 

125, n = 1 (Fig.4.4(a)),  l = 107, n = 4 (Fig.4.4(b)), l = 91, n = 8 (Fig.4.4(c)); l = 77, n = 

12 (Fig.4.4(d)). An analogous trend is reported in [118] and it confirms the validity of 

our approach. According to the model, for the radial components of the field the 

solutions are represented by a spherical Bessel function (blue line in Figures 4.4) inside 

the microsphere (r < a) while, outside the sphere, the radial electromagnetic field has an 

exponential decay related to a second order spherical Hankel function (green line in 

Figures 4.4).  
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Finally, because the quantum number m ranges from –l to +l values, the choice of  l 

value fixes univocally those of m and, consequently, the number of maxima l-m+1 in 

polar direction is determined, as shown in Fig. 4.5(a)-(f) and Fig.4.6(a)-(b). 

 

 

 

         

 

  

     Fig. 4.5: Polar field intensity distribution for different WGM: (a) fundamental  

     WGM for l-m=0; (b) WGM with 2 maxima (l-m=1); (c) WGM with 3 max.  

     (l-m=2); (d) WGM with 4 max. (l-m=3); (e) WGM with 5 max. (l-m=4); WGM   

     with 6 max. (l-m=5) 

 

 

 

(a)  (b) 

(c)  (d) 

 (e)   (f) 
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               (a)          (b) 

   

Fig. 4.6: (a) Normalized distribution of a set of spherical armonic functions characterized  by the  

quantum number l = 10 and m = 10, 7, 4. An increase of quantum number m   corresponds to a 

decrease of  number of the max. in polar direction. (b) The projections equatorial plane show the 

presence of m max. corresponding to the spherical armonic described by quantum number l and m.   
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4.C Excitation of resonance modes: the tapered fiber coupling technique 

and some important parameters of spherical microresonators. 

 

4.C.1 Cavity quality factor Q 

 

The losses in DSR devices are described by one important parameter: the quality factor 

Q. A general expression for this parameter involves energy storage and power loss, as 

reported below: 

 

( )
W

V

cycleperlossenergy

energystored
QTOT

02 ωπ
==                                          (4.47)  

 

where ω0 is the cavity resonant frequency, V is  the energy stored in the mode and W  is 

the energy loss rate of the mode. In particular, the quality factor Q is given by different 

contributions, each one related to a particular kind of  loss: 

 

indTOT QQQ

111

int

+=                      (4.48) 

 

in which Qint accounts for intrinsic losses while Qind describes the coupling loss 

(external loss) due to the coupler. The intrinsic losses are given by [113]: 

 

contradscatmat QQQQQ

11111

int

+++=                                 (4.49) 

 

where Qmat is related to the materials absorption losses, Qscat describes the loss caused 

by residual irregularities on the surface of microresonators, Qrad represents the 

tunnelling losses due to the curvature of the microsphere in the propagation path of the 

mode and Qcont  is caused by surface contaminations.  

 

 

. 
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Material Loss 

 

The quality factor due to the material absorption can be expressed by [113] 

 

( )
αααλ

π 12 +
≅≅=

lllaN
Qmat                     (4.50) 

 

where λ is the wavelength, N is the refractive index of the material, a is the radius of the 

microsphere, l is the angular quantum number and α is the absorption coefficients of the 

material. Generally, for silica microsphere (N = 1.45) α  = 0.2 dB/Km at λ = 1.55 µm, 

and then Qmat > 10
11

. 

 

Scattering Loss 

 

The contribution related to the surface scattering  Qscat is given by the following 

expression [113] 
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where ε = N
 2

 is the dielectric constant and Bσ (nm
2
) is a term that measures the 

correlation length of surface irregularities distribution. For vitreous materials, 

experimental values for σ and B are, respectively, 0.3 nm and 3 nm. Hence, for instance, 

in the case of  λ > 1µm e d > 50 µm (microsphere diameter), we get Qscat > 10
10

. 

 

Radiation Loss 

 

For what concern the quality factor associated to radiation loss we can say that,  

increasing the radial dimension of the microsphere, this kind of loss presents an abrupt 

decrease. For example, in case of  pure fused silica microsphere having a high enough 
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radial dimension (i.e.: a ≥ 20 µm),  Qrad > 10
21

 and then the effects of these losses can 

be, generally, neglected. The Qrad term can be expressed by [113] 
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with x the size parameter defined in (4.3) giving the resonance positions. 

The (4.52) and (4.53) equations are valid for high values of l parameter (l > 18). 

                       

 

Fig. 4.8  Radiative Quality factor Qrad as a function of quantum number l and n. 

 

A graph on the behaviour of Qrad as a function of quantum number l and n is shown in 

Fig. 4.3. When l assumes a value approximately around 100 with  n = 1 (red line in the 
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diagram), the WGM is strongly confined in a thin superficial layer. For this reason the 

effect of the spherical bounding is not so strong on the propagation of this mode and the 

Qrad term can assume a high value (Qrad > 10
11

). 

On the other hand, maintaining fixed the value of l and increasing n, we can observe a 

decrease of radiative quality factor Qrad. This is due to the fact that, for higher value of 

quantum number n, the radial part of the field presents an increase of maxima in this 

direction: the mode extends towards deeper regions in the microsphere and the 

curvature effect is more stronger on it. In this case the quality factor Q defined in (4.49) 

is called intrinsic quality factor, Qintr, because the constituting terms are related to the 

properties of dielectric microresonator.  

 

4.C.2 Excitation of resonance modes in a microsphere cavity 

 

To excite a WGM in a spherical microcavity we need to transfer the light inside the 

microsphere. Different strategies can be used for this purpose such as prism coupling, 

polished half block fiber coupling or fiber taper coupling tecnique [112]. In all of these 

methods the evanescent tail of the electromagnetic field in the coupling device is put in 

close proximity with the microsphere till it overlaps with the evanescent tail of a WGM. 

In any case, depending on the intensity of the coupling, the price to pay for this 

interaction is a reduction of the overall quality factor Q as expressed in eq. (4.48). In 

fact, considering the case of a fiber taper coupler as reported in Fig. 4.9,   

 

 

                                          

 
      Fig. 4.9  Scheme of the coupling between fiber taper and cavity  
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we call with Ei and Eo the amplitude of the electric field before and after the interaction 

with the spherical microcavity, respectively.  

Let t and t
′
 be the  transmission coefficients of fiber and microsphere, r and r

′
 the 

corrispective reflection coefficients, for the symmetry and energy conservation we have  

t = t
′
, r = r

’
 and r

2
 – t

2
 = 1. The behaviour of microsphere is similar to a Fabry-Perot 

microcavity, with unequal mirrors (one is reflecting 100% of the light). Considering the 

phase and amplitude contributions for each round trip (for a detailed treatment of Fabry-

Perot resonator model we refer to [1]), we can write the ratio between the light intensity 

coupled inside the microsphere Is and that at the input of the coupling section Ii  
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where  Tmax is expressed by: 
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and  F is the Finesse of the spherical microcavity, defined as: 
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2                      (4.56) 

 

In all these equations, α represents the absorption coefficient of the material (0.2 dB/km 

in the case of microsphere composed by pure fused silica at 1.55µm wavelength),  L ≅ 2 

π a is the optic path and β the propagation constant of the light in the spherical 

microresonator given by (4.7). From eq.(4.54) we can say that, respect to the incident 

light spectrum in the fiber, the microsphere is a resonant cavity because it “absorbs” the 

radiation only in correspondence of  some particular frequencies. Hence, the transmitted 

spectrum in the fiber will present minimum values (spectral holes) in correspondence of 

the absorption frequencies of the microsphere.  
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The eq.(4.54) represents the transfer function, in the frequencies domain, which 

describes the optical power transmitted in the cavity. According to (4.55), the amplitude 

of this transfer function assumes a maximum value (Tmax = 1) when Ler α−= . This 

condition is also called critical coupling. The finesse F accounts for the frequency 

selectivity of the device and depends on the values assumed by the reflection coefficient 

r as reported in (4.56). In particular, for a spherical microcavity the Free Spectral Range 

FSR, which represents the frequency distance between two maxima is given by:  
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2
1 ≅=−=∆ +                               (4.57) 

 

where  
Na

lc

NL

lc
l

π
ν

2
≅= , with c the velocity of light in the vacuum.  

 

4.C.3 Phase matching between the microcavities and the fiber-taper coupler 

 

The coupling efficiency is maximized when the propagation constant of a suitable mode 

in the fiber fiberβ  equals the propagation constant, sphereβ , of a WGM of the 

microresonator. This is the so called phase matching condition between the microcavity 

and fiber-taper coupler.  

The propagation constant of the fundamental mode of a tapered fiber with radius r (the 

tapered has a diameter of a few microns) in air is given by [119]: 

 

2

22 405.2




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


−=

r
Nkfiberβ                                (4.58) 

 

where k is the propagation constant in free space. On the other hand, the propagation 

constant sphereβ  of a WGM is equal to lβ  expressed by (4.7) and depends on the 

quantum number l and  the radius of microsphere. Then, from these two last 

expressions, it is easy to conclude that the phase matching condition spherefiber ββ =  can 

be reached by a suitable choice for radial dimensions of tapered fiber and microsphere.   
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For instance, for IOG10 silicate glass microsphere the phase matching condition can be 

obtained from the following graph where we report the propagation constant β  (m
-1

) at 

the wavelength of 1480 nm and 1545 nm, as a function of fiber radius (µm).  

 

 

 

 

 

 

 

 

      

 

 

 

Fig. 4.10 Propagation constant as a function of fiber radius at pump 

wavelength (1480 nm) and laser wavelength (1545 nm). The numbers 

reported in the graph are the radius (µm) of the microspheres having the 

corresponding propagation constant at 1480 nm (empty square) and 1550 

nm (square) for the fundamental mode.  

 

 

 

As it is easy to see, only a limited set of value for fiber and microsphere radii satisfies 

the phase condition for both wavelengths. In particular, for mrm fiber µµ 5.25.1 <<  and 

mrm sphere µµ 2515 <<  we have spherefiber ββ ≅  at both wavelengths. 
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4.D  Measurements on laser action in active glass microspheres: 

Experimental and Results 

 

4.D.1 Fabrication of optical microspheres 

 

Microspheres were produced from different kind of oxide glasses: an experimental 

modified-silica glass, doped with 0.5 mol.% of Er
3+

 (Baccarat Glass, B05), and 

commercial Er
3+

/Yb
3+

 co-doped silicate (IOG10) and phosphate glass (Schott IOG2). 

Each bulk glass sample was ground first and then microspheres were produced by 

fusion of these glass powders through a microwave plasma torch as shown, in Fig. 4.7.  

 

 

                                

 

Fig. 4.11 A scheme of the plasma torch system used to fabricate  

glass   microspheres 

 

 

This system is adopted at the Laboratoire d’Optronique at the ENSSAT in Lannion 

(France), where the microsphere were fabricated. The plasma is generated using a 

microwave supply with a nominal oscillator frequency of 2.4 GHz and a maximum 

power of 2KW. Argon is used as plasma gas and oxygen or nitrogen as sheath gas. The 

glass powders were axially injected and melt when passing trough the flame while the 

surface tension forces give them their spherical shape. Free spheres with diameters in 
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the range 10 to 200 µm were collected a few centimetres below. The diameter of the 

spheres depends on the powder size. After their realization, the microspheres were 

selected and then glued to the tip of an optical fibre, in order to make easier to 

manipulate them (see Fig. 4.12). 

The fiber was then mounted on a translation stage with piezoelectric actuators and a 

positioning resolution of 40 nm.                      

 

 

                         

 

Fig. 4.12 Two images of microspheres glued to a fiber tip for handling. On the 

background it is possible to see the tapered fiber for coupling.  

 

 

 

4.D.2 Fabrication of tapered fiber 

 

We used a tapered or half-tapered fiber to couple the pump light in the microsphere and, 

contemporary, to draw the fluorescence or laser signal out of it, following the scheme 

shown in Fig. 4.9. The tapered fiber was fabricated by heating and the same time slowly 

stretching a section of standard telecommunication fiber to form a narrow waist. As 

indicated in Fig. 4.13 the stripped fiber was placed inside a short alumina cylinder, 

which was then heated by an oxygen-butane flame up to a temperature close to a 

melting point of silica (about 2100 °C).  
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Fig. 4.13 Fabrication process of a tapered fiber coupler. As shown in a 

microscope image below, it is possible to obtain dimensions about 1 µm 

for the diameter of  the taper. 

 

  

The taper waist can be as little as a micrometer in diameter while the typical total length of 

the adiabatic tapered section is about 2 cm. The half taper fiber coupler was obtained 

instead by heating and stretching a fiber until breaking, using a fusion splicer. The 

tapered end is about 1.5 µm in diameter. 

 

 

 

4.D.3 Set-up for laser action measurements and results 

 

The experimental setup for laser characterization of Er
3+

-doped microspheres is 

represented in Fig. 4.14 and it was realized with standard fiber-optic components 

spliced or connected with APC connectors.  
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Fig. 4.14 Fluorescence and Laser measurements Set-Up for optical microsphere 

      

It consists of a fiber pigtailed pump laser diode operating at 1.48 µm with a maximum 

power of 300 mW, an isolator that prevent feedback into the laser diode, and a WDM 

that demultiplexes light at 1.48 and at 1.55 µm. This latter device allows us to simply 

use an half taper as the coupling device: in fact the counter propagating fluorescence or 

laser signal from the sphere can be collected by the same input fiber and directed to an 

Optical Spectrum Analyzer (OSA) through the 1.55 µm port of the WDM. Two camera 

systems permit the operator to monitor the relative position of  tapered fiber and 

microsphere. This last one can be positioned through a piezoelectric actuators system. 

We chose a pump laser diode operating at 1.48 µm, instead of 980 nm, because with this 

choice the matching condition can be better fulfilled at both the pumping and lasing 

wavelength. In Fig. 4.15 and 4.16 we report the emission spectra of a B05 glass 

microsphere with a diameter of 85 µm and a IOG2 microsphere with a diameter of 70 

µm, respectively. Below lasing threshold more modes are excited, which qualitatively 

justifies the large number of lines on the fluorescence spectrum. These series of peaks 
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can be assigned to several families of modes each of them having the same radial order 

n, but different polarizations and angular moment l.    

 

 

 

 

 

           

 

  

 

 

                        

Fig. 4.15 WGMs fluorescence spectrum around 1.55 µm of a 85 µm 

diameter microsphere fabricated in Er
3+

 doped B05 silicate glass 

microsphere fluorescence  

 

 

 

.  

 

 

 

 

 

 

 

      

 

 

 

Fig. 4.16 WGMs fluorescence spectrum around 1.55 µm of a 70 µm 

diameter microsphere fabricated in Er
3+

/Yb
3+

 doped IOG2 phosphate 

glass microsphere. The distance between two consecutive TE modes is 

on the order of few nm.   
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When increasing the pump intensity above a minimum threshold of 2.5 mW we 

obtained laser oscillation as shown in Fig.4.17 for B05 Baccarat microsphere and in 

Fig.4.18 for IOG2 phosphate Schott glass microsphere. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.17 Laser spectra corresponding to the maximum (red line) and 

to the minimum (blue line) wavelength peak values obtained in B05 

glass microsphere with diameter of 85 µm.   

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.18 Laser spectra corresponding to the maximum (red line) and to 

the minimum (blue line) wavelength peak values obtained in IOG2 glass 

microsphere with diameter of 70 µm.   

 

In both cases, adjusting the pumping power and varying the relative contact position 

between the fiber taper and the sphere, the emission domain can be selected. For a large 
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value of this distance and low pumping power we obtained a maximum for the laser 

emission around 1569.3 nm for B05 microsphere (red peak in Fig.4.17). On the 

contrary, for a lower gap value associated to higher pumping we obtained multimode 

laser effects at lower wavelengths, around 1541.2 nm (blue peaks in Fig.4.17). The 

covered range is about 30 nm broad. A similar set of results we observed in the 

microsphere made from IOG2 phosphate glass, as reported in Fig.4.18. Fluorescence 

spectrum looks broader as compared to that of B05 glass microsphere and 

correspondingly the difference between the lowest (blue line at 1561.0 nm) and the 

highest (red line at 1601.8 nm) peak lasing wavelengths expands to 40 nm. Moreover a 

blue shift for these lasing peaks with an increase of pump power was experimentally 

obtained also in IOG2 microsphere. This effect can be qualitatively explained with a 

similar shift that occur in the net cross section of the  Er
3+

 -doped phosphate glass, as 

reported in Fig.4.19. At very low pumping power (corresponding to an inversion rate p 

< 0.3) the net cross section is negative in the whole communication window, and no 

lasing mode can be excited. With an increase of pump power the inversion rate 

increases (p = 0.3÷0.4) as well: the net cross section becomes positive in the longer-

wavelength region and, consequently, a lasing mode in that region can be excited first 

with a lower threshold. Further increasing the pumping power, the gain at shorter 

wavelengths becomes positive (the inversion rate p ranges from 0.5 to 0.8) with a shift 

in that region of the spectrum and laser action.  

 

                    

 

 

 

 

  

 

 

 

 

 
 

Fig. 4.19 Net gain spectra G(λ,p) for Er
3+

/Yb
3+

 IOG2 co-doped phosphate 

glass in term of pumping level.                       
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Therefore, simply adjusting the pump power it is possible to tune the wavelength of the 

lasing mode and this is an important benefit that the microsphere lasers offer in 

comparison with the waveguide lasers where the lasing wavelength is fixed. A 

drawback is related to the fact that the shift of the lasing wavelength is not continuous 

but discrete.   

Lasing in a 50 µm diameter IOG10 silicate glass microsphere was also successfully 

demonstrated as shown in Fig.4.20.  

                                 

         Fig. 4.20 Lasing emission for IOG10 silicate glass  

         microsphere with a diameter of 50 µm.  

 

A 1480 nm pump laser was used . The radius of the fiber taper was 2.5 µm.  

A maximum lasing power of 240 nW was obtained at 1543.9 nm with a pump threshold 

around  400 µW. 

                       

     

      Fig. 4.21Green Up-Conversion in IOG10 silicate glass  

      microsphere laser with a diameter of 50 µm.  
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CONCLUSIONS 

 

This thesis is focused on the fabrication and characterization of optical waveguides and 

microspherical cavities in RE doped glasses for lasers and amplifiers. A number of 

different Er
3+

 or Er
3+

/Yb
3+

 doped glasses were tested and used during this work 

including four silicate glasses (two experimental ones, one from Baccarat, and one from 

Schott), a commercial Schott phosphate glass, an experimental tellurite glass, and a 

silica-germania glass layer. Spectroscopic characterizations were performed in all these 

glasses while different fabrication processes (i.e. ion-exchange, RF-sputtering, UV 

imprinting, and ion beam irradiation or glass melting) were implemented depending on 

the glass formulation and on the device type (waveguide or microsphere). The main 

results have been the development of innovative photoimprinting techniques, based on 

UV exposure or ion beam irradiation, to fabricate channel waveguides in novel active 

glasses and the demonstration of tunable laser action in different types of glass 

microspherical cavities. 

 

The two classes of experimental silicate glasses doped with Er
3+

 and Yb
3+

, a soda-lime 

(MY2) and a soda-lime-alumino (SLASY1) silicate, were fabricated with a 

conventional melt-quenching technique. MY2 presented high values for both lifetime 

(7.5 ms) and quantum efficiency (62%) but exhibited a rather narrow effective 

bandwidth around 1.55 µm (only 31 nm). In order to improve this latter value, which is 

critical for WDM applications, we increased the aluminium oxide content of the glass 

([P.IV], [P.V], [P.VII]). In fact in SLASY1 glass (17% of alumina) a 60% increase of 

the effective emission bandwidth (up to 50 nm) was observed compared to MY2 glass 

(1% of alumina). On the other hand in SLASY1 glass the measured lifetime was shorter 

(<5 ms) and the quantum efficiency smaller (47%) in comparison with MY2. We 

ascribed these results to the different role that the alumina has in the silica network 

depending on its concentration: it acts as a glass modifier for lower concentrations 

(MY1 glass) and as a glass former for higher ones (SLASY1 glass). 

As both MY2 and SLASY1 contain high percentage of sodium oxide, these glasses 

were selected for the fabrication of channel waveguide by the ion-exchange process 

([P.IV], [P.VII], [P.IX]). The best performances, as amplifiers, were obtained in MY2 
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waveguides. In particular, using a three steps fabrication process (first thermal ion-

exchange and then burial by field-assisted ion exchange, followed by an annealing 

treatment) for a 4 µm wide channel waveguide we measured propagation losses ≤ 0.6 

dB/cm, fiber-waveguide coupling losses ≤ 0.8 dB and, more important, a net gain of 0.8 

dB/cm with a pump power of 170 mW at 976 nm. This gain could be enough to obtain a 

laser action in this glass. 

 

Er
3+

/Yb
3+

 activated SiO2-GeO2 thin films were fabricated in order to obtain a 

multifunctional material having both active and photo-refractive properties. The films 

were deposited by a RF-magnetron sputtering system. Instead of using a sintered multi-

component target, pieces of GeO2, metallic erbium and metallic ytterbium were simply 

placed on a silica target.  

A photoluminescence bandwidth over 40 nm and a lifetime of 8.7 ms were measured in 

the slab waveguide. 

Using UV excimer laser irradiation (KrF, 248 nm), because of the photorefractive 

properties of germanium, it is possible to modify the physical properties of the film (i.e.: 

the density) and thus the refractive index. In particular a maximum positive refractive 

index change of 3.8 x 10
-3

 was obtained with 22 kJ/cm
2
 of cumulative exposure. This 

value is high enough not only to fabricate gratings but also a channel waveguides in 

such material. The former were obtained using the phase mask technique, the latter with 

an amplitude mask and a photo-imprinting process ([P.II], [P.III]). The resulting Bragg 

gratings had efficiency near 100%. The channel waveguides had propagation losses ≤ 

0.3 dB/cm at 1300 nm, the same as the slab waveguide. This method to fabricate 

waveguides by a single step replica of an intensity mask has the very important benefit 

to reduce the fabrication steps and related costs in comparison with other standard 

techniques (ion exchange, film deposition followed by etching, …). Moreover, for 

integrated laser applications, both guiding structure and reflective Bragg gratings can be 

fabricated with the same UV imprinting technique. 

 

Remarkably, we have recently demonstrated [P.I], for the first time, the possibility of 

fabricating active channel waveguides in tellurite glasses [49] using nitrogen ion beam 

irradiation. A region of positive refractive index change (∆n > 0) was formed in the ion-
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implanted channel, permitting 2D light confinement. From the result we obtained, it 

seems that the ionization processes induced by the implanted nitrogen ions (i.e.: 

rearrangements of the substrate bonds and chemical interactions with the substrate) are 

the major contributing factors to the refractive index increase. We believe that channel 

waveguides in tellurite glasses, for the unique spectroscopic properties of these 

materials (particularly the broad band), may have great potential for the development of 

integrated active devices. 

 

As for microspherical cavities we presented an analytical model for the electromagnetic 

propagation in dielectric spherical resonators based on the solution of Maxwell’s 

equations by means of vector and Debye’s scalar potential. Numerical simulations, 

developed in MATLAB code, were also performed in order to demonstrate the validity 

of the method adopted and to calculate the WGMs field distribution inside these 

microspherical structures.  

 

Microspheres were produced from three different oxide glasses: a modified-silica glass, 

doped with 0.5 mol.% of Er
3+

 (Baccarat Glass B05), and commercial Er
3+

/Yb
3+

 doped 

silicate (IOG10) and phosphate (IOG2) glasses, both developed by Schott for laser 

applications. Each bulk glass sample was ground first and then microspheres (with 

diameters below 100 µm) were produced by fusion of the glass powders through a 

microwave plasma torch.  

The effect of the glass fusion process on the spectroscopic properties of the active 

microspheres was investigated. The spectroscopy of these microcavities has revealed a 

broadening of the luminescence spectrum and a shortening of the lifetime compared to 

those of the corresponding bulk glasses. We believe that both effects are related to 

inhomogeneous changes in the local environment of Er
3+

 ions induced by the 

microsphere fabrication process [P.VI]. 

The problem of coupling light in these microcavities has also been addressed and 

properly designed fiber tapers have been fabricated and used for this purpose.  

From all type of microspheres we obtained laser action, with low threshold (few 

hundreds of µW or a few mW at maximum), narrow band and few hundreds of nW as 

output power. Moreover, the fact that different laser wavelengths could be excited 
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within a broad range, depending on pump coupling conditions, demonstrated that 

tunability is another important characteristic of these optical microsources [P.VI, 

P.VIII]. 
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APPENDIX A  

 

Helmholtz’s equation in spherical coordinates and its solution. 
 

In this appendix we will obtain the expression of  magnetic and electric vector potentials 

→

A and 
→

F . For instance, we consider the case of magnetic vector potential 
→

A . From the 

divergence equation of magnetic field 
→

H :  

 

0=⋅∇
→

H                        (A1) 

 

it is possible to write that  

 
→→

×∇= AH
µ

1
                                                        (A2) 

as it is always true that 
→

×∇⋅∇ V  = 0, being 
→

V  any vector. Moreover, the vector 

potential 
→

A can be expressed through a Debye potential ψ, as shown in eq. (4.17). This 

scalar potential satisfies the Helmholtz’s equation 

 

0
22 =+∇ ψψ k                                                        (A3) 

 

where 2
k  is a separation constant. In a spherical coordinate system the eq.(A3) becomes 
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To solve the equation (A4), we use the standard approach of separating the variables: 

 

( ) ( ) ( ) ( )ϕθφθ ΦΘ= rRrA ,,                        (A5) 

 

Substituting (A5) in the equation (A4) and multiplying for ΦΘRr /2 , we obtain 
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where the first term only depends on r, the second is a function of θ and the third 

depends on ϕ . 

 

Azimuthal Dependence 

 

The last term of the (A6), multiplied by sin
2θ , involves only ϕ variable. It must be then 

a constant which we call – m
2
   

 

2

2

2
1

m
d

d
−=

Φ

Φ ϕ
                                                                              (A7) 

 

Solutions of eq. (A7) are of the form 
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where m is an integer (in order that the solution is the same for ϕ  and ϕ + 2π). 

Thus, the eq. (A6) is reduced to the following form: 
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The third and fourth terms in eq. (A9) are only a function of θ  (whereas the first two 

only depend on r). 

 

 

Polar Dependence 

 
As we have just obtained for azimuthal dependence, also for polar dependence we can 

write 

 

( )1
sin

sin
sin

1
2

2

+−=−






 Θ

Θ
ll

m

d

d

d

d

θθ
θ

θθ                   (A10) 

 

where l(l+1) is a constant. Developing the first term and rearrangingin, the previous 

equation becomes 
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that is the Associated Legendre equation.  

So, the solution to the angular equation for Θ, reported in (A11), is 

 

( ) ( )θθ cos
m

lP=Θ                       (A12) 

 

where the ( )θcos
m

lP  are Associated Legendre functions and l = 0, 1, 2, 3,…while m 

runs over integer values from – l to l, because the Legendre function is void for lm > . 

Then for each l values there are 2l+1 functions with m = -l, -l+1, -l+2,…, l-2, l-1, l 

[112,118]. When m = 0 the Associated Legendre functions coincide with the Associated 

Legendre polynomials. Here we can understand why the mode number l must be an 

integer. In fact, if l is not an integer, the solution of eq. (A11) diverges for θ = 0 or  θ = 

π . Generally we require the solution to be finite in these limits, and this is the reason 

why we write the separation constant in eq.(A10) as l(l+1), with l an integer. 

 

 

Radial Dependence 

 

 

Finally, from the equations (A9) and (A10) it is possible to obtain the radial dependence 

as  
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or equivalently 

 

( )[ ] 012
22

2

2
2 =+−++ Rllrk

rd

Rd
r

rd

Rd
r                    (A14) 

 

It turns out to be useful to define a new function X(r) defined as  

 

( ) ( ) ( )
ρ

ρX

rk

rX
rR == ,   where rk=ρ                                                      (A15) 

 

Substituting this into eq.(A14) we find that X function satisfies  
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which is Bessel’s equation of order
2

1+l .  The solution in X(r) is represented by 

ordinary Bessel and Hankel functions, ( )rkJ
l

2
1+

 and ( )rkH
l

2
1+

, which, together with 

the factor ( ) 2
1−

rk  in the eq. (A15) , means that the solution for ( )rR  are the spherical 

Bessel and Hankel functions, ( )rkjl  and ( )rkhl .  

In fact, the spherical Bessel functions are in close connection with ordinary Bessel 

function by the relationship reported below: 
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The eq. (A17) is also valid, with due differences, for ( ) ( )rkH l
2

1
2

+ but, since this 

function has infinite value at r = 0, the only acceptable solution to eq. (A16) is 

 

( ) ( )rkJrX
l

2
1+

=                                                       (A18) 

 

that, substituted in ( )rR  expression and remembering the eq. (A17), gives 

 

( ) ( )rkjArR l1= , with A1 = constant. 

 

Hence, the general solution of Helmholtz’s equation is 

 

( ) ( ) ( ) ( )ϕθφθ mPrkjArA
m

ll coscos,, 1=                    (A19) 

 

In particular, because usually the scalar potentials ψ  are multiplied for r, as shown in 

eq. (4.17), it is convenient introduce a new kind of spherical Bessel function defined as 

it follows [109,111]: 
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Now, we are able to write the radial solution of scalar Helmholtz equation as: 
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where ( ) ( )rkH l 02
1

2
+ is the ordinary Hankel function of second kind (see Appendix C). 

This function describes the exponential decay of field outside the sphere in the radial 

direction (leaky wave). The coefficients A and B can be determined imposing the 

continuity conditions for f function and its derivate in case of r = a. Developing 

calculations, we get: 
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These last ones, substituted in (A21), allow to write the expression of radial  

function  f as: 
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Hence, once a value for the angular quantum number l is fixed, it is possible to select 

the number of maxima along the radial component or, in other words,  determine the 

quantum number n. 

In conclusion of this Appendix, we obtain the expression of the propagation constant βl 

reported in eq. (4.7).  In fact, the eq. (A14) can be written in the form: 
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The field behaviour very near to the surface can be examined by transforming to a local 

coordinate x, whose origin lies at the surface. The coordinate transformation is  
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Substituting the (A25) in (A24), we obtain the Airy equation: 
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Further, if ax << 1, the Airy equation itself reduces to 
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This describes the bounded portion of the field. It is the transverse dependence of a local 

plane wave with propagation constant ( ) alll 1+=β . 
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APPENDIX B 

Field determination from their radial components  
 

Let us consider an electromagnetic field 






→→

trE ,  and 






→→

trH ,  in a space region 

comprised between two concentric spheres with rays a and b, respectively.  

 

 

 

 

 

 

 

 

 

 

 
 

    

 
Fig.ApB.1: Planar representation of the problem.  

 

 

It is possible to demonstrate that the fields present in this region are completely defined 

from the knowledge of their radial components. In fact a theorem exists [114] stating 

that if 0=⋅=⋅
→→→→

rHrE  in this region then 0==
→→

HE . To understand this result, we 

consider fields 
→

E  and 
→

H  having no radial components and we take in account a 

spherical surface S (dot line in Fig. ApB.1) of radius r included between a and b, a < r < 

b. Because in the region R between the two spheres there are no sources, 

0=⋅∇=⋅∇
→→

HE . Thus the fields 
→

E  and 
→

H  have flow lines which form closed loops on 

S. Applying the Stokes’ theorem, we can write: 

 

SdnHjSdnEdlE
SS

^^

⋅−=⋅×∇=⋅ ∫∫∫
→→→

µω                     (B1) 

 

where we have used the Maxwell equation (3.1). In (B1) 
^^

rn =  is the versor normal to 

the infinitesimal element of surface dS belonging to the surface S that has the closed 

a 

 b 
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line l as boundary. Because the vector 
→

H  has no radial components, then 0=⋅
→

dSH . 

The right-hand side of (B1) vanishes, while the left-hand side is not zero, since the 
→

E  

loops are closed. We therefore have a contradiction unless 0=
→

E . Similarly we can 

procede for the magnetic field 
→

H .  

As a consequence we can conclude that it is enough to know the radial component of a 

field to determine, univocally, the same field. The other field components can be 

obtained from the Maxwell’s equation.  

 

 

APPENDIX C  

Ordinary and spherical Bessel (Hankel) functions, Legendre functions 

and their related expressions 

 

In this appendix we recall the definitions of the spherical Bessel (Hankel) and Legendre 

functions with their related expressions (for more details we refer to [115]): 
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where j(x), y(x) and h
(2)

 (x) denote the spherical Bessel, Neumann and Hankel function, 

respectively, and J the ordinary Bessel function.  

The Associated Legendre functions are related with Legendre polynomials by the 

relationship reported below 
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where Pl (x) are the Legendre polynomials defined, for different l values, as 
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……………. 

Recurrence relations for some Legendre polynomials are expressed by 
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