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Chapter 1 
 

 

 

GENERAL INTRODUCTION ON PHOSPHORUS CHEMISTRY 

 

 

1.1 Organophosphorus Chemistry 

 

Phosphorus can form bonds with many other elements. It can also form bonds with varying number 

of atoms (Coordination Number), which can vary from 1 to 6 and more. Also it can have different 

valencies, either 3 or 5. Also it has empty d-orbitals which readily accept electrons from any good 

donors. 

Organophosphorus compounds are chemical compounds containing carbon-phosphorus bonds. 

Organophosphorus chemistry is the corresponding science exploring the properties and reactivity of 

organophosphorus compounds.1 Common examples of those compound are reported in Figure 1.1. 
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Figure 1.1 Examples of organophosphorus compounds. 
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The thermal stability of the P-C bond is quite high. The heat of dissociation of the 4-coordinated C-P 

bond is generally accepted to be about 65 Kcal/mol, and there is never any difficulty in handling most 

aryl and alkyl phosphorus compounds even at moderate temperatures.2a 

1.1.1 Phosphines 

 

Phosphanes or phosphines have oxidation state −3 and can be primary (RPH2), secondary (R2PH) or 

tertiary (R3P). An often used organic phosphine is triphenylphosphine. Like amines, phosphines have 

a trigonal pyramidal molecular geometry although with larger angles. The C-P-C bond angle is 98.6° 

for trimethylphosphine increasing to 109.7° when the methyl groups are replaced by tert-butyl 

groups. The barrier to inversion is high for a process like inversion to occur and therefore phosphines 

with three different substituents can display optical isomerism.2b  

 

Synthetic procedures for phosphines are:3 

• Nucleophilic displacement of phosphorus halides with organometallic reagents such as 

Grignard reagents.  

• Nucleophilic displacement of metal phosphides, generated by reaction of potassium metal 

with phosphine, as in sodium amide with alkyl halides.  

• Nucleophilic addition of phosphine with alkenes in presence of a strong base (often KOH in 

DMSO), Markovnikov's rules apply. Phosphine can be prepared in situ from red phosphorus 

and potassium hydroxide. Primary (RPH2) and secondary phosphines (R2PH) do not require a 

base with electron-deficient alkenes.  

• Nucleophilic addition of phosphine or phosphines to alkynes in presence of base. Secondary 

phosphines react with electron-deficient alkynes without base.  

• Radical addition of phosphines to alkenes with AIBN or organic peroxides to give anti-

Markovnikov adducts.  

 

Oxidation has been a major obstacle when working with trivalent phosphorus as phosphines. 

Especially alkyl-substituted phosphines oxidize readily in air making elaborating and handling of 

such compounds tedious. For this reason, usually phosphines are oxidized into stable compounds 

after their preparation, obtaining phosphine oxide, sulfide, selenide (less common) or borane 

complexes derivatives.4  

• Phosphine oxides are obtained by simple treatment of free phosphine with an oxidizing agent 

such as H2O2
5, O2,

4b t-BuOOH,6 m-CPBA7 (Reduction by PhSiCl3,
8 HSiCl3

9 with retention of 

configuration or LiAlH4 that causes racemization). 
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• Phosphine sulfides and selenides are obtained from phosphine oxidized by elementar sulfur or 

selenium (Reduction by Si2Cl6 with retention of configuration or LiAlH4 that causes 

racemization). 10 

• Phosphine borane complexes are obtained by mixing phosphines with BH3.THF or BH3.Me2S 

(decomplexation by amines, such as Et2NH or morpholine with retention of configuration).11 

 

The main reaction types of phosphines are: 3 

• as nucleophiles for instance with alkyl halides to phosphonium salts.  

• as reducing agents:  

Phosphines are reducing agents in the Staudinger reduction converting azides to amines and in the 

Mitsunobu reaction converting alcohols into esters. In these processes the phosphine is oxidized to 

phosphine oxide.  

 

1.1.2 Phosphonates 

 

Phosphonates have the general structure R−P(=O)(OR)2. They have many technical applications and 

bisphosphonates are a class of drugs.  

All bisphosphonate drugs share a common P-C-P "backbone": 

C

R1

PP

R2O- O-

O--O

O O

 

Figure 1.2 typical backbones of bisphosphonate drugs 

The two PO3 (phosphate) groups covalently linked to carbon determine both the name 

"bisphosphonate" and the function of the drugs. The long side chain (R2 in the diagram) determines 

the chemical properties, the mode of action and the strength of bisphosphonate drugs. The short side 

chain (R1), often called the 'hook,' mainly influences chemical properties and pharmacokinetics.12 

 

1.1.3 Phosphites and Phosphates  

 

Phosphite esters or phosphites have the general structure P(OR)3 with oxidation state +3. Phosphites 

are employed in the Perkow reaction and the Arbusov reaction. Phosphate esters with the general 

structure P(=O)(OR)3 and oxidation state +5 are of great technological importance as flame retardant 
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agents and plasticizers. Lacking a P−C bond, these compounds are technically not 

organophosphorus compounds.3 

 

1.2 Uses of Organophosphorus Compounds 

 

Organophosphorus compounds, have widespread use throughout the world, mainly in agriculture as 

insecticides, herbicides, and plant growth regulators.13 They have also been used as nerve agents in 

chemical warfare and as therapeutic agents, such as ecothiopate used in the treatment of glaucoma. 14 

In academic research organophosphorus compounds find important application in organic synthesis 

(Wittig, Mitsunobu, Staudinger, organocatalysis etc.).15 The use of organophosphorus compounds as 

achiral or chiral ligands for transition metal-catalyzed transformations is also rapidly growing in both 

laboratory synthesis and industrial production.16 Furthermore, organophosphorus compound, can be 

used as flame retardants for fabrics and plastic plasticising and stabilising agents in the plastics 

industry, selective extractants for metal salts from ores, additives for petroleum products, and 

corrosion inhibitors.  

 

1.2.1 Agricultural Applications  

 

Over the years, many organophosphorus compounds have been made and used in very large 

quantities in agriculture, not only as insecticides but also later as herbicides and in other applications. 

Phosphorus compounds have distinct advantages in the pesticides market; they are relatively easy to 

make, and they biodegrade readily by hydrolysis, so that the problems of residual activity, so serious 

with the chlorinated hydrocarbon pesticides, are avoided. 

The active compounds are normally esters, amides, or thiol derivatives of phosphoric or phosphonic 

acid: 

 

P
R1

R2

O

X

(or S)

X= OR, SR 

 

Figure 1.3 Structure of derivatives of phosphoric or phosphonic acid 
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Where R1
  and R2

  are usually simple alkyl or aryl groups, both of which may be bonded directly to 

phosphorus (in phosphinates), or linked via -O-, or -S- (in phosphates), or R1
  may be bonded  directly 

and R2
 , bonded via one of the above groups (phosphonates).   

Parathion (1) was one of the first commercially produced insecticides; its toxicity (LD50) is 55 

mg/Kg, which is rather low but still requires careful handling and application in the field. It was very 

popular in 1960s, but after this period the interest in Parathion has greatly declined with the 

introduction of safer agents. Definitely, many compounds are now produced that are relatively 

harmless to humans yet with excellent toxicity to insects for example the well-known garden 

insecticide Malathion (2) and Phosmet (3) with  LD50 up 4000 mg/Kg (Figure 1.4). 
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Figure 1.4 Examples of some insecticides and herbicides based on organophosphorus compounds. 

 

On the other hand, the phosphorus compounds were late entries in the fields of organic herbicides, 

and to this date only a few compounds have attained major commercial importance. Glyphosphate (4) 

was the first discovered and is still used (Figure 1.4). Its is known to act by the inhibition of the plant 

enzyme 5-enolpyruvoyl-shikimate-3-phosphate synthetase, which is involved in the biosynthesis of 

aromatic aminoacids and other aromatic compounds in plants. Many other phosphorus compounds 

show herbicidal activity, and much current research effort is going on in this area. In addition to the 

phosphorus-containing amino acid derivatives, other structural types are of interest, such as is seen in 

Betasan (5) (Figure 1.4). 

 

1.2.2 Catalysis 

 

Between various types of enantiomerically pure ligands used for catalytic asymmetric reactions, 

chiral tertiary phosphines have established their position as the most effective ligands for most 

homogeneous transition-metal catalyses.  

Homogeneous asymmetric hydrogenation started with modest results (ee 15%) in 1968 using chiral 

monophosphine 6 (MPPP) (Figure 1.5) as ligand.17 Neomenthyldiphenylphosphine 7 (NMDPP) and 
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menthyldiphenylphosphine 8 (MDPP) were prepared in 1971 by Morrison et al,18 giving up to 61% 

ee in some cases. Knowles et al also published some interesting results in 1972 (ee 90%) with chiral 

phosphines 9 (PAMP) and 10 (CAMP)19 At the same time alkyldimenthylphosphines 11 were used 

by Wilke, Bogdanovic et al. as ligands of nickel complexes in the catalysis of alkene codimerization 

and alkene-1,3-dienes codimerization.20 In 1971-1972 we demonstrated that a chelating chiral C2- 

symmetric diphosphine 12 (DIOP) without asymmetric phosphorus atoms was an excellent 

enantioselective catalyst (ee 88%).21 A multitude of chelating diphosphines are presently known (of 

C1 or C2-symmetry), some of them are patented because of industrial applications.22 One of the most 

effective chiral biphosphine ligands is BINAP 13,23 which has exhibited its high enantioselectivity in 

several asymmetric reactions including rhodium- or ruthenium-catalyzed hydrogenation. Another 

important class of chelating biphosphine ligand is ferrocenylbiphosphines BPPF-X 14,24 which had 

been demonstrated to be effective for palladium-catalyzed allylic substitution reactions, gold- or 

silver-catalyzed aldol reactions, and so on. 
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Figure 1.5 Examples of ligands for homogeneous catalysis. 

1.2.3 Phosphorus in Biological Compounds 

 

Phosphorus is present in plants and animals. There is over 454 grams of phosphorus in the human 

body. It is a component of fundamental living compounds. It is found in complex organic compounds 

in the blood, muscles, and nerves, and in calcium phosphate, the principal material in bones and teeth. 

Phosphorus compounds are essential in the diet. Organic phosphates, ferric phosphate, and tricalcium 
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phosphate are added to foods. Especially, phosphoric acid is essential in many biological derivatives 

such as nucleotides, nucleic acids, phospholipids and sugar phosphates. 

 

Nucleotides are monomers consisting of a phosphate group, a five carbon sugar (either ribose or 

deoxyribose) and a one or two ring nitrogen containing base. 

Nucleotides are the monomers of nucleic acids, with three or more bonding together in order to form 

a nucleic acid. The genetic material (DNA) is a polymer of four different nucleotides. The genetic 

information is coded in the sequence of nucleotides in a DNA molecule. Nucleotides and related 

compounds are also important “energy carrying” compounds. Among the ones commonly 

encountered are ATP (20), and NADH (21) (Figure 1.7).25a 
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Figure 1.7 Structures of ATP and NADH. 

 

Certain phosphoric acid derivatives play a major role in driving some processes by “energy release” 

that accompanies the cleavage of a phosphate group and transfer to a nucleophilic substrate. The best 

known of the “energy-rich” phosphates is adenosine triphosphates ATP (20, Figure 1.7), which can 

transfer the terminal phosphate group to a substrate with the release of significant energy.2c 

Actually the phosphoryl group transfer mechanism, in “energy-rich” phosphate substrates, is 

explained by intervention of pentacoordinated phosphorus in the transition state species. In particular 

the formation of cyclic pentacoordinated phosphorus species on the reactive phosphate group 

facilitate the attainment of the required transition state or intermediate allowing to obtain a fast and 

selective reaction.26 
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A phospholipid molecule consists of a hydrophilic polar head group and a hydrophobic tail (22 

figure 1.8). The polar head group contains one or more phosphate groups. The hydrophobic tail is 

made up of two fatty acyl chains. When many phospholipid molecules are placed in water, their 

hydrophilic heads tend to face water and the hydrophobic tails are forced to stick together, forming a 

bilayer. Phospholipids are a major component of all biological membranes, along with glycolipids 

and cholesterol.26b  

PO O

O-

O

H2C CH2 CH2 N+

CH3

CH3

CH3

CH

CH2

OC

O

OC

O

Choline

Glycerol

Phosphate

Fatty acid

22  
Figure 1.8 Typical structure of phospholipids. 

 

Sugar phosphates are present in the human body as intermediates in the many important processes 

like glucose metabolism. One example is the glucose 6-phosphate 23 (figure 1.9). 

It is glucose sugar phosphorylated on carbon 6. This compound is very common in cells as the vast 

majority of glucose entering a cell will become phosphorylated in this way. Because of its prominent 

position in cellular chemistry, glucose 6-phosphate has many possible fates within the cell. It lies at 

the start of two major metabolic pathways: the Glycolysis and Pentose phosphate pathway  

In addition to these metabolic pathways, glucose 6-phosphate may also be converted to glycogen or 

starch for storage. This storage, in the form of glycogen, is in the liver and muscles for most 

multicellular animals, and in intracellular starch or glycogen granules for most other organisms.26c 
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Figure 1.9 Structure of glucose 6-phosphate. 
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Chapter 2 
 

 

 

THE HYPERCOORDINATE STATES OF PHOSPHORUS 

 

 

One of the special properties of phosphorus that is of importance is its ability to accept more than the 

usual complement of 8 bonding electrons, thus acquiring 5-coordinate character with 10 electrons, or 

6-coordinate with 12 electrons. This property of phosphorus was not firmly established until 1948, 

when the compound Ph5P was synthesized and characterized by Wittig and Rieber.1  Now there are 

many compounds known with this structural feature, which is also known to appear frequently in 

reactions mechanism as a transient intermediate or transition state. 2 

 

 

2.1 The 5-Coordinate State of  Phosphorus 

 

Phosphorus can undergo rapid and reversible changes between a four-coordinate and a five-

coordinate state (Scheme 2.1). The preferred skeletal geometries of this states correspond to the 

tetrahedron and the trigonal bipyramid (TBP), respectively.2 

 

PL
L

L

L

P

L

L

L
L

L
+ L

TBP  

 

Scheme 2.1 conversion between a four-coordinate and a five-coordinate state. 

 

Molecules with five-coordinate phosphorus are essential to life3 and the recognition of the role played 

by the five-coordinate state of the element in biochemistry has spurred interest in this field. On this 

basis, a consistent interpretation has been made of a number of significant problems of biochemistry,4 

for example: the transfer of the terminal phosphoryl group from adenosine triphosphate to 
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nucleophiles under basic conditions; the enzymatic transformation of mevalonic acid into isopentyl 

diphosphate by ATP and metal ions or the role of ATP in the biological reduction of nitrogen to 

ammonia (nitrogen-fixation). 

Pentacoordinated phosphorus compounds are not only present as reaction intermediates in biological 

reactions or chemical reactions as Arbusov, Perkov and Wittig,4b but they can be isolated as stable 

compounds.5 

 

 

2.2 Pentacoordinated structures and their non rigid character 

 

The development of structural principles for pentacoordinated species, was centered on the trigonal 

bipyramid geometry. These principles have been applied with considerable success in the 

construction of reaction intermediates. The systematic application of mechanistic criteria for 

postulating the most likely pentacoordinated intermediates has led to a consistent rationalization of a 

large number of information on phosphorus reactions. Certain principles emerged that govern 

conformational preferences regarding the positioning of ligands in a TBP structure. They are listed as 

follows in order of importance:6 

1. Four- or five-membered cyclic systems preferentially span axial-equatorial positions; 

2. The most electronegative ligands preferentially occupy axial sites; 

3. P-bonding donor ligands, in general, are positioned at equatorial sites. 

4. Steric effects are minimized by locating bulky groups un equatorial position 

 

The stability of phosphoranes (pentavalent phosphorus) is markedly increased by the presence of 

four- and five-membered rings, and to a lesser extent, by six-membered rings, since cyclization 

decreases intramolecular crowding relative to the comparable acyclic situation.7 This assistance from 

intramolecular growing can outweigh any strain resulting from the deformation of bond angles within 

the ring. Nevertheless, ring-strain rather than intramolecular crowding is the main factor in 

determining the stability of tetracoordinate phosphorus. Consequently, a five membered cycle loses in 

stability while the corresponding cyclic phosphorane gains in stability relative to the corresponding 

compounds in which the phosphorus is not incorporated in rings.8 These is thermodynamic and 

kinetic advantage in adding a nucleophile such as alkoxide or water to four-coordinate phosphorus to 

form a phosphorane intermediate when a five-membered ring is present in the phosphate, or when 

such a ring is easily formed during a reaction. This is in accord with Westheimer and co-workers7,9 

found studying the acid hydrolysis of cyclic esters, in fact their experimental results reported that a 
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five-membered cyclic phosphate esters hydrolyze much more rapidly (106-108 times) than their open 

chain analogous in either acid or base. 

 

 

2.3 Permutational isomerization 

 

The permutational isomerization of the phosphoranes can occur by bond deformations (regular 

process) and by bond breaking and recombinations (irregular process). The regular permutational 

isomerizations of acyclic phosphanes can take place by either Berry pseudorotation10,11 (BPR) or 

turnstile rotation10b,11,12 (TR) or by both of these mechanism.  

 

2.3.1 Berry pseudorotation 

 

In 1960, R. S. Berry10 suggested that the position exchange of the fluorine atoms of PF5 occurs by a 

regular bond-deformation mechanism which he called pseudorotation (scheme 2.2). 

 

P
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F* F
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Scheme 2.2 Exchange of the fluorine atoms of PF5, consequence of BPR. 

 

In general, this Berry pseudorotation (BPR) can be described as shown in Scheme 2.3. A pair of 

equatorial ligands, for instance 4 and 5, move in a plane and the two apical ligands move in another 

plane, perpendicular to the first. The fifth ligand, the pivot (3), does not move at all. The synchronous 

expansion of the original 120° diequatorial angle 4-P-5 leads to an angle of 150° in the idealized 

barrier situation; this angle reaches 180° in the new TBP. Similarly, the synchronous contraction of 

the original 180° diapical angle 1-P-2, leads to 150° in the idealized barrier situation and 120° in the 

new TBP. During this bending motions, the bond distances adjust to the new TBP skeletal 

arrangement. After the BPR, the new TBP is oriented as if the entire molecule had rotated by 90° 

about the pivotal bond, even though, in fact, neither a rotation of the whole molecule, and not a 

rotation of a ligand subsisted, for this reason the name rotation.11 

Therefore in other words, the BPR mechanism realizes of two apical and two equatorial ligands, and 

the retention of the equatorial position of the pivot. 
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Scheme 2.3 Berry pseudo rotation with ligand 3 as pivot.11 

 

2.3.2 Turnstile rotation  

 

About 10 years later than the Berry pseudo rotation was formulated, another theory was proposed, the 

turnstile rotation12 (TR). The turnstile rotation consist in a permutation of the ligands among skeletal 

positions of the TBP which, in general takes the form shown in scheme 2.4. 

The first TR process of scheme 2.4 corresponds to the ligand permutation (1 4) (2 3 5), which means 

ligand 1 replaces ligand 4 and ligand 4 replaces ligand 1, while ligand 2 replaces ligand 3, 3 replaces 

5 and 5 replaces 2. The second, third and fourth equivalent TR processes correspond, respectively, to 

the ligand permutations (1 5) (2 3 4), (2 4) (1 3 5), (2 5) (1 3 4). It should be noted that the five 

ligands have been partitioned into a pair, which always contains one apical and one equatorial ligand 

and a trio.11 

Obviously, the TR and the BPR processes correspond to different types of permutations of the ligands 

among the skeletal positions of the TBP, but the same isomerization of it can be achieved by one BPR 

process or by four TR process. 

The differences between the two processes in the case of certain acyclic phosphoranes are not so 

evident, this means that the potential surface for permutational isomerization does not contain high 

barriers between the BPR barrier model and the TR barrier model.10b When two or more ligands 

participate in cyclic structures, the situation changes. In fact, for regular isomerizations of acyclic 

phosphoranes existed two mechanistic possibilities, BRP and TR, but for the case of regular 

isonerizations of cyclic phosphanes the only mechanistic possibility is the TR process, with the four- 

and the five-membered ring always as the pair of the TR pair-trio combination. 
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Scheme 2.4 Four equivalent turnstile processes showing the pairs and trios of ligands which effects the same 

isomerization as Berry pseudorotation with ligand 3 as pivot.11 

 

 

2.4 The 6-Coordinate State of  Phosphorus 

 

The chemistry of hexacoordinated phosphorus compounds has received much less attention than that 

of the pentacoordinated state. In recent years many stable compounds have been made in which 

phosphorus has six attached groups.13,14 In general the octahedral structure, with two apical and four 

equatorial bonds, is adopted. In this coordination state, phosphorus is known in neutral, anionic and 

cationic forms. Many of the known compounds can be considered as Lewis salts obtaining from the 

interaction between a donor group (neutral or ionic) with five-coordinated phosphorus. 

Some of the concepts of the five-coordinate state are useful also in six-coordinate state. As 

Muetterties and Mahler15 showed highly electronegative elements, in particular fluorine, stabilize the 

hexacoordinated state and their prefer the apical position. Fluxional character can be present,16 and 
31P NMR shift are usual found at high field. 

Six-coordinate compounds are receiving attention at present because they are recognised as transient 

intermediates in certain reactions of five-coordinate structures, adding a new dimension to 

considerations of reaction mechanisms. Generally, it is considered that pentacoordination to 
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hexacoordination occurs through a square pyramidal (SP) geometry from a trigonal bipyramidal 

(TBP) geometry. A careful analysis of the equilibrium reported17 in Scheme 2.5 reveals that the 

coordination at these sulfonyl phosphoranes 2 having a square pyramidal distortion on the pathway 

toward an octahedron, it is also accompanied by a change in the ring orientation. When no 

coordination is present, the eight-member ring occupies a diequatorial orientation, as seen in 

phosphorane 1, 2 (Scheme 2.5).18 However, it changes to an axial-equatorial orientation before 

distorting toward the SP geometry.  
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Scheme 2.5 Equilibrium from pentacoordination to hexacoordination.17 

 

Other studies carried out by Ramirez19 and others, suggested that hexacoordinated phosphorus 

compounds are formed during nucleophilic displacement reactions on pentacoordinated phosphorus 

compounds. Most of these studies have centered on oxyphosphoranes. In addition, there are studies of 

reactions of tetracoordinate phosphorus which have been considered to involve hexacoordinate 

states.14,20 For example, nucleophilic catalysis of the phosphorylation of alcohols by the cyclic 

phosphate 3 in the presence of imidazole was proposed by Ramirez et al.20 to proceed with ring 

opening via the hexacoordinate intermediate A to give 4 (Scheme 2.6). The imidazole catalyst acts in 

a nucleophilic assisted attack at phosphorus by the alcohol. Ramirez and co-workers20 infer that 

analogous mechanisms may be important to the behaviour of some enzymes that are involved with 

phosphoryl group transfer whereby amino acid residues enter into the catalytic activity. The 

intervention of both five- and six-coordinate species is suggested.14b,21 
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Scheme 2.6 Nucleophilic catalysis of the phosphorylation of alcohols by the cyclic phosphate 3 in the presence of 

imidazole. 
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Chapter 3 

 

 

 

PHOSPHORUS-31 NMR SPECTROSCOPY 

 

 

The phosphorus atom frequently plays a central role in the chemistry of most compounds in which it 

is incorporated. Without 31P NMR spectroscopy, the task of sorting out  the incredible changes in 

coordination number, and the additional stereochemical changes associated with the three-, four, five- 

and six- coordinate compounds world have been much slower.1,2 

Chemical shifts in the nuclear magnetic resonance of 31P were discovered by Knight.3 Subsequent 

measurements, particularly those by Gutowsky and his co-workers4 indicate that NMR spectroscopy 

can became a valuable tool for chemical studies involving phosphorus compounds. Today this 

technique can also be used to determine the complexity of a reaction mixture or the purity of 

products, because different signals are almost always seen for each phosphorus compound. Many 

other applications of phosphorus NMR have been made, such as performing conformational analysis 

and studying reaction mechanisms by means of signals for intermediates. 

The large use of 31P NMR is due to the presence of only one natural isotope with mass 31, so strong 

signals can be obtained with a small quantity of compound, that render the taking of phosphorus 

NMR spectra easy.2  

 

3.1 Chemical Shifts 

 

Phosphorus-31 chemical shifts have been observed over a range exceeding 1000 ppm. However, 

many classes of phosphorus compounds give signals within quite small parts of this range. The 

relationship between structure and phosphorus chemical shift is often well enough established to 

permit quite detailed structural inferences, even to the extent of identifying the stereochemistry in 

some instances. The presence of a lone pair of electrons on phosphorus tends to widen the chemical 

shift range, and additional information is usually required to obtain structural information. For 

organophosphorus compounds 1H and 13C NMR data can often be linked directly to the 31P 

information. Together they form a very powerful structural tool for the chemist. Phosphorus-31 
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chemical shifts are reported relative to the signal for 85% phosphoric acid.5 The acid is invariably 

used as an external reference due to its reactivity. Care must be taken when collecting data from the 

literature to establish whether the phosphorus isotope signal appears upfield or downfield of the 

standard, 85% phosphoric acid. There was a change in sign convention in the mid-1970s, and now 

positive chemical shifts are downfield of the standard.2a  

Even if the 31P NMR shifts extent in a large range, the vast majority are included in the region of 

about δ -200 to +300 ppm. Each type of functional group ha sits own range of shifts within this 

region. It should be noted that there is overlap of this functional group subregions, and it is not  often 

possible to use only the 31P shift, without other characterization for identify unambiguously a 

compound. Many factors have been considered to be important in effecting the shift for a particular 

structure. A few of this factor are reported to follow:2b,6 

 

• Electron withdrawal by electronegative groups, generally considered to act by contracting the 

p-orbitals at P and causing deshielding. 

• Resonance interactions at phosphorus with unsaturated groups that change electron density on 

phosphorus in either direction causing shielding. 

• Chain lengthening and branching effects, which cause deshielding as the number of β-carbons 

to P increases or shielding as the number of γ-carbons increases. 

• Changes in bond angles at phosphorus, increases in which are said to cause deshielding of 3-

coordinate phosphorus and shielding in phosphates.  

• Steric interaction in acyclic compounds manifested by shielding. 

 

• Five cyclic-member compounds showed to be more deshield than the analogous six cyclic-

member. This phenomena is caused by major overlapping between dπ-pπ orbital in the five 

cyclic-member compounds in which the bong angle is closer to 90°. 

 

 

Besides structural properties can be achieved by analysis of 31P NMR spectra. In fact each P-

coordinations has its range of chemical shift that covered all the ordinary range (Figure 3.1). It could 

be important to note that 6-coordinate compounds are also found outside their usual range; in fact 

they can have a positive chemical shift, as reported in the literature.7 
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Figure 3.1 Chemical shift range for the different P-coordination. 

 

 

3.2 Spin-Spin Coupling Constants 

 

The 31P nucleus coupled with 1H, and both types of spectra show the effect. Couplings constants can 

be as small as a few Hertz or as a many as several hundred Hertz for the direct P-H bond. Because the 

coupling effect is commonly seen on 1H spectra, but usually avoided by decoupling in 31P NMR, 

coupling constants are usually determined from the previous spectra. Therefore couplings to 

neighboring protons are very useful for determining the nature and the number of aliphatic groups 

bound to the phosphorus atom. The protons of aryl groups rarely produce resolvable couplings in the 
31P spectrum.2c  

The lone pair effect is clearly seen in the decrease of the positive 1J(31P,1H) values from PH4
+ (546-

548 Hz) to PH3 (182-195 Hz) to PH2
- (138-140 Hz).8 Although there is a general increase in 

1J(31P,1H) with increasing oxidation states of phosphorus, the ranges for the various oxidation states 

overlap considerably, perhaps owing in large measure to the reduction of s character in the P-H bond 

as the coordination numbers increase. As expected, the loss of a P lone pair upon coordination of a 

phosphine to a boron Lewis acid or a transition metal results in a marked increment in coupling. The 

effect of electronegativity is evident in the rise of 1J(31P,1H) especially when electron electronegative 

halogens are bound to phosphorus.9 

A different situation prevails for the coupling of 31P with 13C where useful couplings to phosphorus 

are manifest in proton decoupled 13C NMR spectra. In this case the effect is seen only on the 13C 
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NMR spectra, because the low natural abundance of 13C (1.1%) in insufficient to lead to an 

observable number of coupled 31P nuclei. Such couplings greatly aid the identification of the carbon 

resonances adjacent to phosphorus as well as providing important stereochemical information in 

many instances.2c  

3.2.1 31P-11B coupling  

 

The one-bond coupling of 31P and 11B has been recorded mainly for tricovalent P ligands bonded to a 

BZ3 moiety for which the range of couplings is 13-174 Hz. Most of these 11B signals appear as a 

quartet due to the 31P-11B coupling. 1N NMR spectra usually display a quartet (1H-11B coupling) 

which is further split into a doublet by 1H-31P coupling.2c,10 

The difference between the chemical shift of the free tricoodinated phosphorus compound and the 

chemical shift of its borane adduct is called the coordination chemical shift (CCS), which varies 

depending on the nature of the groups bonded to phosphorus. Several compounds have been 

compared, and it appear that trialkyl- or triarylphosphines complexation with borane results in a 

rather strong deshielding (CCS = 95 to 133 ppm).11 
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ABIOTIC CHEMISTRY 
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With the term “abiotic chemistry” we mean all reactions of the classical 

chemistry laboratory, in which the reactions are carried out in organic 

solvent, with all kind of molecules, and with conditions often very hard, 

without the intervention of any biomolecules. 
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Chapter 4 
 

 

 

THE PHOSPHORUS DONOR REAGENT 

 

 

4.1 General 

 

During studies on the reactivity and use of PCl3 in organic synthesis, Baccolini and his co-workers 

found1 the surprising result that fused benzo-l,2,3-thiadiphospholes (1) was formed by reaction of p-

methylthioanisole with PCl3 and AlCl3. This synthetic procedure has been improved during recent 

years and now it is possible to obtain compound 1 with good yields (45%), using a one-pot three-step 

procedure.2 The prevalent product isolated from the reaction was the compound cis-1, and only in 

trace the isomeric compound cis-2 (scheme 4.1). No appreciable amount of the corresponding trans 

isomers were observed. 

 

S

PCl3 \ AlCl3

80°C S
P

P

S
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S
P

P
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cis-1 cis-2  
 

Scheme 4.1 Synthesis of compound 1 (containing traces of 2). 

 

The X-ray crystal structure determination of cis-11 and cis-23 compounds showed that both of the 

molecules exhibit a 'butterfly' arrangement with the phosphorus electron lone pairs in an eclipsed 

conformation (Figure 4.1). As this conformation is unusual for a molecule containing a P(III)-P(III) 

single bond, a solid state 31P-NMR study was performed. The changes in 1J(P,P) and δ31P observed 

from solution to solid state indicated that crystal packing effects force of two “wings” of the butterfly 

molecule to open slightly in the solid state.4 
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Figure 4.1  X-ray crystal structure of cis-11, where yellow indicates sulfur atoms and red indicates phosphorus atoms. 

 

This method has also been generalized employing several alkyl aryl sulphides, providing in this way 

the corresponding fused benzo-l,2,3-thiadiphospholes, such as cis-1, but with a decrement of the 

obtained product.5 In particular the tioanisoles (3) and PCl3 and AlCl3 were allowed to reflux in the 

absence of solvent for ca. 2h. and the products were purified by filtration on Florisil column. In the 

scheme 4.2 reports the products (4) are obtained by reaction of different alkyl- substituted tioanisoles 

(3) with PCl3 and AlCl3. The best results were obtained using a ratio (3)- PCl3- AlCl3 of 1:3:0.75. The 

yields of products (3) were also dependent on the starting sulphide. The substrate 3b provided the 

higher yield. Compounds 4 were stable to air and moisture and for this reason easy to purify. The 

reaction appeared to be favoured when the methyl group occupied the para-position, presumably 

reducing the by-products arising from the electrophilic substitution of PCl3 in that position. In 

addition the ortho-substituent does not allow the formation of 4 probably because of the steric 

hindrance of the methyl group.5  
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Scheme 4.2 Generalization of the method. 

 

Exploiting the reactivity of the heterocycle 1 in order to synthesize other phosphorus and sulphur 

heterocycles, different reactions were carried out.6,7 

This new system showed to be highly unstable in the conditions under which phosphines normally 

react, i.e. formation of phosphonium salts with alkyl halides, oxidation with H2O2 reaction with 

diethyl azodicarboxylate (DEAD)8 /catechol or with phenyl azide. In such cases, rather than the 
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corresponding salts, oxides, spiro derivatives or phosphazenes9 of 1, decomposition products were 

obtained, presumably deriving from P-S and P-P bond cleavage.  

Studying this instability of 1, a Friedel-Crafts acylation with acetyl chloride and AlCl3
6 was carried 

out and surprisingly, a highly stereospecific replacement of the phosphorus P2 with the carbonyl 

carbon atom of acetyl chloride was obtained. This phosphorus-carbon exchange occurred under mild 

conditions in a one-pot reaction, and gave the cis-6-R-[1,3]benzothiaphospholo[2,3-b][l 

,3]benzothiaphosphole derivative 5 in very good yields (scheme 4.3). 

 

1) MeCOCl \ AlCl3,
CH2Cl2 5-10°C

S
P2

P1

S

cis-1

2) room temp. 20
min S

C

P

S
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cis-5  
 

Scheme 4.3 Exchange of P2 by the carbonyl carbon atom of acetyl chloride. 

 

A possible generalization of the reaction with other acyl chlorides was tried in order to obtain 

information about the mechanism involved in this phosphorus-carbon exchange.6b In all the reactions 

performed, the corresponding compound 

 5-like were isolated in very good yields. In contrast, when acyl chlorides with R = tBu, Ph, p-ClC6H4, 

CCl3 were used, the starting material 1 disappeared to give formation of unidentified products. Only 

traces of the corresponding fused l,3-benzothiaphospholes were detected by GC-MS analysis. From 

these simple results it was possible to deduce that this exchange reaction was dependent on the steric 

factors associated with the acyl chloride. In fact, with a more forced R group, it was very likely that 

the cleavage of P-S and/or P-P bonds did occur, but the ring closure is disfavoured presumably 

because of steric congestion.  

In scheme 4.4 a mechanism6b for the reactions is illustrated; it is based on the lability of the P-S bond, 

the affinity of the phosphorus for the oxygen atom, and the observed stereospecificity with inversion 

of configuration in the initial reaction. As depicted, it was supposed that initially a concerted breaking 

of the P-S bonds occurs with formation of C-S and P-O bonds; in the final step there is a ring closure, 

which is favoured when the R group is relatively small; this is in accord with the above experimental 

data.  
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Scheme 4.4 Proposed mechanism of the phosphorus-carbon exchange. 

 

With the intention of continuing to explore the peculiar reactivity of compound 1, the reaction with 

conjugated azoalkenes was investigated.7 They are known to react with phosphorus halides10 and 

phosphates,11 but not with trisubstituted phosphines. Unexpectedly, all the isomers of 

phenylazostilbene 6a reacted with 1 to afford the previously unknown diazaphosphole 7a, and this 

procedure represents a new route for obtaining diazaphosphole derivatives (scheme 4.5). 

Unfortunately, all attempts to obtain or to characterize an intermediate adduct were unsuccesful. 

However, it is possible to hypothesise a spirocyclic adduct 8 with pentacoordinate P2 atom, in 

probable equilibrium with different ionic forms. Its decomposition gave 7a-c, presumably by a 

reductive elimination12 mechanism. Unfortunately, it was not possible to identify other by-products in 

order to confirm the above hypothesis. 
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Scheme 4.5 Reaction with conjugated azoalkenes.7 

 

Since the formation of this heterocycle, the fused benzo-l,2,3-thiadiphosphole (1) from the reaction of 

p-methyl tioanisole, PCl3 and AlCl3 resulted unusual, its formation mechanism has been studied.13 

The principal problem was the complexity of the cyclization reaction, but fortunately the separation 

and the characterization of the prevalent product (cis-1) was very easy. 
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The breaking of two S-Me bonds, the formation of two C-P bonds, two P-S bonds, and one P-P bond 

are involved in this cyclization, and several pathways could be hypothesised, but due to a lack of data 

it had not been possible to determine an unequivocal reaction pathway. In order to determine the most 

probable pathway, it was necessary to uncover some information regarding the demethylation 

process, the ortho- and S-phosphorylation, the P-P linkage formation and, if it was possible, to have 

some explanation for the facile regioselective and stereoselective formation of cis-1. 

It is well documented in the literature14 that when a diphenyl sulfide is caused to react with AlCl3, a 

sulfonium salt or complex is formed in a reversible manner, and evidence for methyl phenyl sulfide-

AlCl 3 complex formation has also been reported.15 In addition, when this complex is treated with 

other reagents, a cleavage of the C-S bond occurs presumably via a tetracovalent sulfur compound.14-

16 Furthermore, benzyl phenyl sulfide is known16 to form a complex with AlCl3, which undergoes 

reaction with water to give thiophenol and benzyl chloride. 

In consideration of the above-mentioned observations reported in the literature, a multi-step 

mechanism was proposed as depicted in Scheme 4.6.  

In order to obtain supporting evidence for the above-proposed multistep mechanism, a series of 

reactions using various conditions were conducted (different reagent ratios and various temperatures). 

Aliquots of the reaction mixtures were analyzed by 31P- and 1H-NMR spectroscopy and by GC-MS 

determinations.13 The 31P chemical shifts and P-P and P-H coupling constants found,13 were in good 

agreement with the formulation of intermediates reported in the Scheme 4.6. 
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Scheme 4.6 Proposed mechanism of formation of  fused benzo-l,2,3-thiadiphospholes (cis-1).13 

 

After the mechanism study, an improved synthetic procedure was formulated, and now, as reported 

above, it is possible to obtain the compound cis-1 in moderate yields. 
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The increment in the yield has permitted the development of the studies on the reactivity of this new 

heterocycle. As reported above, in both reactions6,7 carried out on the compound 1, the molecule 

reacted losing a phosphorus atom P2.   

Its reactivity was also studied using Grignard reagents, demonstrating that compound 1 could react 

with those reagents in an unusual manner. In particular the simultaneous addition of an equimolar 

mixture of a bis-Grignard (n = 1, 2) and a mono-Grignard RMgBr to an equimolar amount of 1 at 

room temperature, which gave the cyclic tertiary phosphines 9 as the prevalent product after 

quenching with water.17 
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Scheme 4.7 Reaction between reagent 1 and bis- and mono-Grignard reagents. 

 

These results were explained by the presumed intervention of hypervalent phosphorus intermediates 

penta- and hexacoordinates such as A and B, in which the dibenzo-butterfly moiety of reagent 1 

might favour their formation. This observed favoured cyclization might be in accord with a 

hypervalent intermediate in which the formation of a cyclic form is favoured by a larger factor (105–

108) with respect to an acyclic form (as reported in the Chapter 2). With the aim of obtaining 

information about the stability of the hypothetical intermediate A, the reaction was carried out in a 

three-step procedure between bis-Grignard reagents and 1 monitoring the progress of the reaction by 
31P NMR spectroscopy.18 A few minutes after mixing the reagents the disappearance of the two 

doublets of 1 was noted [ δ = 88.3 (d, P1), 65.4 (dt, P2, 3JPH = 7.8 Hz), 1JPP = 211.5 Hz] and the 

concomitant appearance of two new doublets [ δ = -43.3 (dm, P1, JPP = 188 Hz);   δ = -47.0 (dt, P2 

JPH = 7 Hz), JPP = 188 Hz)], tentatively assigned to the intermediate A (Scheme 4.7). The large P-P 

coupling constant indicates that intermediate A has a P-P bond again; the doublet of triplets observed 

for P2 indicates that this P atom is bonded to two phenyl groups, while the doublet of multiplets 
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suggests that P1 is bonded to alkyl groups. This intermediate A is very stable. Only after the addition 

of a mono-Grignard reagent and quenching with water, the disappearance of these signals and the 

appearance of new signals corresponding to the phosphine 9 were observed.18 After the study on the 

reaction mechanism, the reaction was carried out in a one-pot, two-step procedure, where the addition 

in two steps of equimolar amounts of a bis-Grignard reagent and a mono-Grignard reagent RMgBr to 

one equivalent of 1 at room temperature, gave the cyclic phosphine 9, after quenching with water. In 

this manner the yield was improved, with a better control of the final products (Scheme 4.7).  

With similar methods different classes of tertiary cyclic phosphines were obtained (see Scheme 4.8). 

In order to easily characterize the compounds, the final reaction mixture was treated in situ with 

elementar sulfur to obtain the corresponding cyclic phosphines sulfides 10, 11.17, 18 If the reaction 

mixture is treated with water instead of S8 the corresponding cyclic phosphines 9 are obtained. 

Consequently, it was discovered in the second step that a large variety of Grignard reagents and other 

nucleophilic reagents, such as sodium alcoholate or thiolate and lithium derivatives could be used, 

obtaining various 1-substitued cyclophosphine derivatives 12, 13 and 14 respectively (Scheme 4.8).19 
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Scheme 4.8 Reaction of compound 1 with bis-Grignard reagents and mono-Grignard reagents (containing alkyl, phenyl 

and alkenyl groups), R’ONa, R’SNa and lithium derivatives. 

 

The above reaction was further studied when intermediate A, formed by reaction of 1 with one 

equivalent of bis-Grignard reagent, was treated with water. Unexpectedly, in this case, secondary 
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cyclic phosphanes 1520 were obtained in 70–80% yields (Scheme 4.9).21 Moreover, if the reaction 

mixture was treated with acidic water instead of only water, the new compound 16, which is the end 

product derived from 1, was isolated, in very good yields (before it could only be observed by a GC-

MS in the reaction mixture). These can be easily separated by treating the solution with aqueous basic 

solution; in this way the sodium salt of 16 dissolves in the aqueous soluton, whereas the organic 

phase contains almost pure cyclic secondary phosphines, which can be purified by distillation. 

Compound 16 can be recovered from the basic aqueous layer by acidification and extraction, and 

purified by distillation. Simply treating a dry solution of 16 with an equimolar amount of PCl3 

regenerates 1 in sufficiently pure form that it can be reused without further purification.20 
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Scheme 4.9 Synthesis of secondary and tertiary cyclic phosphines, with recycling of starting reagent 1. 

 

Following on from the results obtained with secondary phosphines 15, the reaction to obtain tertiary 

cyclic phosphines 9 was carried out using the same treatment of the crude reaction mixture used to 

obtain secondary cyclic phosphines, and also in this case the by-product 16 was isolated.  

Due to the simple isolation of 16 and its easy recycling into 1, these syntheses can be considered 

atom-economic. 
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4.2 One pot three-steps procedure for reagent fused benzo-1,2,3-

thiadiphosphole 

 

The reaction was conducted in a 150 mL three-necked flask equipped with a condenser, a dropping 

funnel, and with inlet for dry N2. A mixture of p-methylthioanisole (0.04 mol) and AlCl3 (0.03 mol) 

was stirred under N2 for about 10 minutes (until the AlCl3 was completed soluble) during which the 

colour changed to yellow-pink. Then PCl3 (0.04 mol) was added, and the resulting red-brown solution 

stirred for 10 minutes. After that other PCl3 (0.012 mol) was added, the N2 flow stopped and the 

mixture heated to reflux (90-100°C) for 6-8 hours. 

The reaction was monitored using GC-MS. When the reaction was finished the solution was cooled 

down to 0°C and CH2Cl2 (30 mL) was added. The resulting solution was treated under stirring with 

water. Extraction with CH2Cl2 (30 mL) and subsequent crystallization of the crude product from 

CH2Cl2-Et2O gave pure reagent 1. 

40-60%; White crystals; m.p. = 157-159°C; 1H NMR (300 MHz, CDCl3): 7.41 (d, 2H, JPH = 8.0 Hz), 

7.25 (d, 2H, 1JHH = 7.5 Hz), 6.98 (d, 2H, 1JHH = 7.5 Hz), 2.28 (s, 6H); 13C NMR (300 MHz, CDCl3 

75.46): 141.6, 139.96 (d, JPC = 29.6 Hz), 135.5 (d, JPC = 7.4 Hz), 131.7 (d, JPC = 27.7 Hz), 130.5, 

124.9, 20.8; 31P NMR (121.47 MHz, CDCl3, ext. 85% H3PO4): 65.4 (d, JPP 211.5 Hz ), 88.3 (d, JPP 

211.5 Hz); GC-MS (m/z, %): 243 (M+), 211, 153, 121, 77, 63; HRMS (EI) calcd for C14H12P2S2 : 

305.9855, found: 305.9859.1 

 

2,10-dimethyl[1,2,3]benzothiadiphospholo[2,3-b][1,2,3]benzothiadiphosphole 12-oxide (1’) : 31P 

NMR (161.90 MHz, CDCl3, ext. 85% H3PO4): 20.0 (d, JPP 256.6 Hz ), 100.9 (d, JPP 256.6 Hz). 
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Chapter 5 
 

 

 

ROLE OF THE PHOSPHORUS: 

CATALYTIC TRANSPORT SYSTEM OF ELEMENTS, SYNTHESIS 

OF ARSINE, STIBINE AND BISMUTHINE DERIVATIVES 1 

 

 

5.1  Introduction 

 

The heterocyclic chemistry of arsenic, antimony and bismuth has its roots in medicinal chemistry of 

the early 1900s. With the discovery that an organoarsenic compound provided a cure for syphilis, 

many new arsenic compounds were prepared and tested for their potential medicinal properties. 

Interest in organoantimony compounds arose only after the chemotherapeutical properties of 

organoarsenic were discovered.2  

Organoarsenic and organoantimony have received much less attention than the analogous 

organophosphorus compounds in past years. Only recently these compounds have been revaluated for 

their coordination properties and application as ligands in coordination chemistry.3 Unfortunately the 

number of available syntheses is low and often required multi-step reactions.4  

 

5.2  Results and discussion 

 

In previous studies it was reported5 that the formation of cyclic tertiary phosphines such as 2 is 

achieved in very high yields and in a one-pot reaction by simultaneous addition of a bis-Grignard and 

a mono-Grignard reagent to the reagent 1a (Chapter 4). Treatment of the resulting reaction mixture 

with aqueous acid gave cyclic phosphines 2 and the end product 3, which is the residue of 1a. 

Treatment of 3 with PCl3 quantitatively and immediately regenerates the starting reagent 1a (Scheme 

5.1). 
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Scheme 5.1 Synthesis of  cyclic tertiary phosphines with recycling of reagent 1. 

 

Additional studies on the above reported reaction, showed that this reaction could be considered an 

unusual ‘transport’ system of elements (Scheme 5.2) formed by two molecules. The first is a 

benzothiadiphosphole derivative (1a), the phosphorus donor reagent that can react with different 

Grignard reagents. In the case of the simultaneous addition of an equimolar amount of bis- and a 

mono-Grignard reagent to 1a, cyclic tertiary phosphines (5, 6a) are easily obtained. 

The second is the by-product 4 that is the residue of the reagent 1a obtained after expulsion of the 

phosphorus atom, when tertiary phosphines (5a, 6a) are produced in a 70-80% yield.  
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Scheme 5.2 Catalytic cycle using the catalyst 4. 
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The compound 4 is the magnesium salt of 3, that in previous reactions was recovered as the 

analogous acid derivatives 3 (Scheme 5.3). This compound 4 is easily retransformed into the starting 

reagent 1 by simple addition of PCl3. When the addition of PCl3 is done directly into the reaction 

mixture, after formation of phosphines, the starting reagent 1a is directly regenerated without 

previous separation of the salt 4. In this way the reagent 1a can react again with the bis- and mono-

Grignard reagents producing phosphines 5a, 6a and the by-product 4. Therefore it is possible to 

repeat this transport process of the P atom theoretically an infinite number of times.  

The only limitation to the number of cycles is due to the quantity of starting material. In fact in every 

cycle 90% of initial 1a is obtained, this means that after some cycles the quantity of 1a is low (in 

respect to the other components of reaction mixture) and measuring out the amount of Grignard 

reagents to add is very difficult. 

It is important to note that the molecule 4 is the true carrier of the P element and might be considered 

a “catalyst” both, for its ability to obtain products which are quite difficult to synthesize by other 

methods, and for the fact that it can be completely recovered at the end of the process. 
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Scheme 5.3 Addition of H3O
+ to compound 4 produces 3 

 

These results about phosphorus donation were explained6 by the intervention of a pentacoordinate 

phosphorus intermediates such as A, which was also isolated and characterized by 31P NMR, and a 

hexacoordinate species such as B very instable (Scheme 9.4) in which the folded “dibenzo-butterfly” 

moiety of reagent 1a, greatly favours their formation.7 

In fact, it is reported that in the hypervalent phosphorus species the presence of rings is a factor of 

enormous stability, reducing overcrowding.7 For every cycle in a pentacoordinate species the 

stabilization is improved by a high factor (about 106- 108) in respect to the pentacoordinate species 

without the cycle. If an additional small ring is generated during the reaction, as in the case of bis-

Grignard reagent, a further stabilization of these hypervalent intermediates is achieved. As a 

consequence, the reaction of bis-Grignard reagent that gives a new cycle around the phosphorus atom 

is highly preferred over the reaction of a mono-Grignard reagent in which there is not this cyclization. 

For this reason it is possible to carry out the reaction with the simultaneous addition of both bis- and 
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mono-Grignard reagents always obtaining the same product 5a and 6a in very high yields as occurs 

in the case of the subsequent addition of the two reagents. 
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Scheme 5.4 Mechanism of reaction. 

 

The reaction between benzothiadiphosphole 1, pentamethylenbis-(magnesium bromide) and methylmagnesium bromide 

was carried out in the NMR tube in THF and followed by 31P NMR spectroscopy. After addition of one equivalent of bis-

Grignard reagent respect to 1 only the presence of intermediates A [δ= -43.2 (d, J= 190 Hz), -46.7 (d, J= 190 Hz) ppm] 

was observed. Then after addition of a further equivalent of mono-Grignard reagent, the hexacoordinated intermediate B 

was observed in very low concentration (tentatively assigned [δ= 56.9 (d, J= 216 Hz), -56.8 (d, J= 216 Hz) ppm]). The 

spectrum of the reaction mixture after time showed presence of 6a [δ= -41.7 ppm] and catalyst 4 [δ= -57.7 ppm]. 

 

In addition, this process is highly favoured when organomagnesium derivatives are used, while it is 

highly disfavoured when zinc or lithium derivatives are used. The probable effect of Mg ions can be 

easily explained by imaging that the coordination of the magnesium atom to a sulfur atom would 

activate P1 of intermediate A toward a further nucleophilic attack to give the instable hexacoordinate 

B. A further indication of the importance of the magnesium in this process lies in the fact that when 
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we carried out the reaction between 1a and phenylzinc bromide, any phosphinic product such as 5a, 

6a was recovered and the use of analogous lithium reagent gave only ring opened products of 1a. 

These findings, together with the possibility of easily transforming the residue 4 in the starting 

reagent 1a by the simple addition of PCl3 prompted us to use 4 to obtain similar transport processes 

with other elements in which the formation of hypervalent species is easy as in the case P element. 

These elements are As and Sb which have analogous atom electron configuration. In fact, by simple 

treatment of compound 4 with AsCl3, SbCl3 and BiCl3, the arsenic-heterocycle 1b, the antimonium-

heterocycle 1c and the bismuth-heterocycle 1d were obtained. These heterocyclic compounds 1b-d, 

as reported for 1a, can be used as arsenic, antimonium and bismuth donor reagents for the synthesis 

of tertiary cyclic arsine 5b, 6b in 60-70% yield, tertiary cyclic stibine 5c, 6c in 50-55% yield and 

tertiary cyclic bismuthine 5d, 6d in 25-30% yield (but in this case compound 1d give also a dimmer 

insoluble product that inhibits the reaction)  in a continuous cycle such as that depicted in Scheme 

5.2. The reported mechanism in Scheme 9.4 can also be used to explain reaction in which As, Sb and 

Bi are involved and in general other elements which can have stable hypercoordinated species. 

When the same process was carried out in order to obtain C derivative (treating catalyst 4 with 

CH3CCl3 for C) we obtained the corresponding intermediate 1e (scheme 5.5) but the subsequent 

addition of bis- and mono-Grignard reagents did not generate the corresponding cyclic compounds 5e 

and 6e. This is in accord with the fact that in the case of C the hypervalent species, penta and 

hexacoordinated, are very unstable or impossible. 

As follows the compound 4 can be compared with a catalyst, because it is used to catalyse different 

processes that cannot work without it and it is recovered at the end of the reaction. Instead the 

compounds 1a,b,c could be seen as activated forms of the catalyst 4. 
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Scheme 5.5 Carbon heterocyclic derivatives 1e. 
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5.3  Experimental Section 

 

5.3.1 General 

 

NMR spectra were recorded at 300 (400) and 121.45 (161.9) MHz for 1H and 31P, respectively. 

Chemical shifts are referenced to solvent THF (1H NMR, 1.8 ppm and 13C NMR, 26.7 ppm), and 

external standard 85% H3PO4 (
31P NMR). J values are given in Hz. THF was distilled from sodium 

benzophenone ketyl. All Grignard reagents used, both commercially available and prepared from the 

corresponding alkyl halide and magnesium turnings, were titrated immediately prior to use by 

standard methods.8 Air and moisture sensitive solutions and reagents were performed under dry argon 

atmosphere using standard Schlenk-type techniques. All solvents were purified appropriately before 

use and degassed immediately prior to use. Benzothiadiphosphole 1a was synthesized as decribed 

(Appendix 1).9 From reagent 1a and catalyst 4, compound 5 is obtained easily, as reported in 

Appendix 2.10 

5.3.2 Isolation and characterization of compound 4 

 

After reaction of reagent 1 with bis- and mono- Grignard reagent (see preparation of compounds 5, 

6), and concentration of solution by vacuum pump (1/5 of the starting volume), the resulting 

suspension was filtered carefully under argon atmosphere. The white salt (4) was washed one time 

with 1-2 ml of anhydrous THF (the compound 4 is almost insoluble in THF, but reacts with traces of 

water to produce compound 3). Compound 4 was conserved as suspension in anhydrous THF under 

argon (in this way it can be preserved for 2-3 days). 

White solid; 1H-NMR (400 MHz, THF d8): δ = 7.42 (br s, 1H), 7.28 (br s, 1H), 7.05 (br s, J ∼ 6.6 Hz, 

1 H), 7.00 (br s, J ∼ 6.6 Hz, 1 H), 6.54 (d, J = 6.8 Hz, 1 H), 6.48 (d, J ∼ 6.8 Hz, 1 H), 2.20 (s, 3 H), 

2.11 (s, 3 H); 13C-NMR (100.56 MHz, THF d8): δ = 146.8, 146.1, 143.0 (d, J = 28 Hz,), 141.9 (d, J = 

30 Hz), 135.9 (d, J ∼ 91 Hz,), 134.1 (d, J ∼ 91 Hz,), 135.2, 134.6, 133.4, 129.7, 127.1, 126.0, 22.7, 

22.6; 31P-NMR (161.9 MHz, THF d8) δ = -79.4 (m). 
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5.3.3 Preparation of new heterocycles 1b-1d 

 

To a suspension of compound 4 (0.588g, 1.0 mmol) in THF (10 mL) under argon atmosphere, one 

equivalent of arsenic trichloride (or antimony trichloride or bismuth trichloride or 1,1,1-

trichloroethane), in the case of the formation of compound 1b (or 1c, 1d, 1e respectively), was added 

(particular care must be taken in the manipulation of these reagents because of their toxicity). The 

solution turned immediately pale yellow (or pale green in the case of the formation of compound 1c 

or orange in the case of formation of the compound 1d). After 20 min. the solvent was removed 

giving quantitatively compound 1b (or 1c-e) which were immediately characterized and stored under 

argon atmosphere.  

Compound 1c and 1d has to conserve in diluted solution of THF, because it easily forms a solid 

precipitate that is insoluble. 

In the case of addition of CH3CCl3 to 4, the reaction was very slow and the resulting yield in 1e was 

very poor. As a consequence, the heterocycle 1e was not isolated but only identified in the reaction 

mixture by GC-MS and 31P NMR spectroscopy, with reference to the same compound synthesized via 

the procedure reported in Appendix 3. Also in the reaction with bis- and mono-Grignard reagents, the 

compound 1e was synthesized using the procedure reported in Appendix 3. 

 

2,10-dimethyl[1,3,2]benzothiaphospharsolo[2,3-b][1,3,2] benzothiaphospharsole (1b): 1H NMR 

(400 MHz, THF-d8, 25°C): δ (ppm)= 7.54 (d, J=9.5 Hz, 2H), 7.26 (d, J=8.2 Hz, 2H), 6.96 (d, J=8.10 

Hz, 2H), 2.28 (s, 6H, CH3); 13C NMR (100.56 MHz, THF-d8, 25°C): δ (ppm) = 145.3, 143.8 (d, J=33 

Hz), 137.0 (d, J=9 Hz), 134.8 (d, J=30 Hz), 132.3, 127.6 (d, J=3 Hz), 22.2; 31P NMR (161.9 MHz, 

THF-d8, 25°C, H3PO4 ext. std.): δ (ppm)= 78.6 (br.s., line width ~15Hz); {1H} 31P NMR (161.9 MHz, 

THF-d8, 25°C, H3PO4 ext. std.): δ (ppm)= 78.6 (t, JPH=8.7 Hz); GC–MS: m/z (%): 350 (35) [M]+, 243 

(100), 107 (14); HRMS (m/z): [M] + calcd for C14H12AsPS2, 349.9334; found, 349.9332. 

 

2,10-dimethyl[1,3,2]benzothiaphosphastibolo[2,3- b][1,3,2] benzothiaphosphastibole (1c): 1H 

NMR (400 MHz, THF-d8, 25°C): δ (ppm)= 7.54 (d, J=10.3 Hz, 2H), 7.22 (d, J=8.1 Hz, 2H), 6.84 

(dm, J=8.0 Hz, 2H), 2.26 (s, 6H, CH3); 13C NMR (100.56 MHz, THF-d8, 25°C): δ (ppm)= 147.6, 

137.6 (d, J=31 Hz), 135.5 (d, J=10 Hz), 133.7 (d, J=69 Hz), 131.4, 130.7, 21.9; 31P NMR (161.9 

MHz, THF-d8, 25°C, H3PO4 ext. std.): δ (ppm) =52.7 (br. s., line width ~42 Hz); GC–MS: m/z (%): 

396 (23) [M]+, 243 (100), 153 (6), 121 (12); HRMS (m/z): [M] + calcd for C14H12PS2Sb, 395.9156; 

found, 395.9152. 
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2,10-dimethyl[1,3,2]benzothiaphosphabismolo[2,3-b][1,3,2] benzothiaphosphabismole (1d): 1H 

NMR (400 MHz, THF-d8, 25°C): δ (ppm)= 7.71 (d, J=14.0 Hz, 2H), 7.25–7.08 (m, 4H), 2.29 (s, 6H, 

CH3); 31P NMR (161.9 MHz, THF-d8, 25°C, H3PO4 ext. std.): δ (ppm)=35.0(s, line width ~23 Hz); 

{ 1H} 31P NMR (161.9 MHz, THF-d8, 25°C, H3PO4 ext. std.): δ (ppm)=35.0 (t, JPH=14.0 Hz). MS: m/z 

= 484 [M]+, 275, 243, 211, 153, 121. 

5.3.4 Preparation of compounds 2a–c and 3a–c by rea ction between ECl3 and 

Grignard reagents in the presence of catalyst 5. Ge neral two-steps procedure 

 

ECl3 (2.0 mmol, E=P, As, Sb) was added, under an argon atmosphere and at room temperature, to a 

suspension containing catalyst 5 (2.0 mmol) in THF (20–30 mL). After about 20 min. the reaction 

mixture turned clear (uncoloured when E=P, pale yellow when E=As, pale green when E=Sb, and 

yellow-orange when E=Bi), so indicating that the formation of compound 1a–d occurred, as 

confirmed by 31P NMR spectroscopy of the reaction mixture. To the solution of 1, a solution 

containing BrMg(CH2)nMgBr (n=1 or 2, 2.0 mmol) was added, at room temperature. After about 90 

min. a solution of CH3MgBr (2.0 mmol) in THF was slowly added dropwise. The reaction course was 

monitored by GC–MS and 31P NMR spectroscopy: when the signals of starting reagent 1 disappeared, 

with concomitant appearance of those of 2 (or 3) and of 5, one equivalent amount of ECl3 was added 

to the crude reaction mixture and the concomitant formation of corresponding reagent 1 was detected. 

The yield of this reaction is nearly quantitative, and the cycle can be repeated more times, thus 

allowing to a continuous increase in the yield of cyclic derivative. The only limitation to the number 

of cycles is due to the quantity of starting material. In fact, in every cycle 90% of initial 1 was 

obtained therefore after some cycles the quantity of 1 become low with respect to other components 

of the reaction mixture, and measuring out the amount of Grignard reagents to be added become very 

difficult. At the end of the process compound 5 can be recovered by filtration under argon and cyclic 

compound, present in the filtrate, can be purified, after removal of the reaction solvent, by distillation. 

Otherwise, the isolation of the reaction products can be obtained by partial evaporation of the solvent 

and treatment of the crude reaction mixture with degassed acidic (HCl) aqueous solution. Extraction 

with CH2Cl2 gives a mixture containing compound 2 (or 3) and the residue 4, that can be easily 

separated by treatment of the organic solution with degassed aqueous NaOH followed by extraction 

with CH2Cl2. The cyclic product, present in the organic layer, was immediately purified by removal 

of the solvent and purified by distillation. Compound 4 was recovered (90%) from the basic aqueous 

layer by acidification and extraction with dichloromethane, and purified by bulb-to-bulb distillation 

and stored under argon, as previously reported4. 
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1-methylphospholane (5a): Colourless oil, bp 122–125°C (760 mmHg), Lit.:11 122–124°C (760 

mmHg); 80% yield; 1H NMR (300 MHz, CDCl3): δ (ppm) = 2.20–1.20 (m, 8 H), 1.28 (d, 3 H, J = 2.7 

Hz); 31P NMR (121.45 MHz, CDCl3) δ (ppm) = –38.2 (m); GC-MS (m/z, %): 102 (85) HRMS (m/z): 

[M] + calcd for C5H11P, 102.0598; found, 102.0601; analysis (% calcd, % found for C5H11P): C (58.81, 

58.79), H (10.86, 10.88). 

 

1-methylarsolane (5b): Colourless oil, bp 66-69°C (15–18 mmHg), Lit.:12
 65-66°C (15 mmHg); 70% 

yield; 1H NMR (300 MHz, CDCl3): δ (ppm)= 1.75–1.25 (m, 8 H), 0.83 (s, 3 H); GC–MS (m/z, %): 

146 (M+, 100), 131 (39), 132 (23), 118 85, 103 (57), 90 (18), 55 (31).; HRMS (m/z): [M] + calcd for 

C5H11As, 146.0624; found, 146.0626; analysis (% calcd, % found for C5H11As): C (41.11, 40.94), H 

(7.59, 7.56). 

 

1-methylstibolane (5c): Colourless oil, bp 57-60°C (15–18 mmHg), Lit.:13
 67-68°C (30 mmHg); 

55% yield; 1H NMR (300 MHz, CDCl3): δ (ppm) = 1.80–1.00 (m, 8 H), 0.52 (s, 3 H); GC-MS (m/z, 

%): 192 [194](M+ 75), 177 (44), 149 (58), 136 (100); HRMS (m/z): [M] + calcd for C5H11Sb, 191.9899; 

found, 191.9897; analysis (% calcd, % found for C5H11Sb): C (31.13, 31.24), H (5.75, 5.77). 

 

1-methylbismolane (5d): Colourless oil, bp 120–125°C (15–18 mmHg), Lit.:14
 ~35°C (10-1 mmHg); 

30% yield; 1H NMR (300 MHz, CDCl3): δ (ppm)= 2.60–1.80 (m, 8 H), 0.87 (s, 3 H); GC-MS (m/z, 

%): 280 (M+ 20), 265 (15), 252 (10), 224 (48), 209 (100); analysis (% calcd, % found for C5H11Bi): C 

(21.44, 21.40), H (3.96, 3.91). 

 

 

1-methylphosphinane (6a): Colourless oil, bp 145–147°C (760 mmHg), Lit.:15
 146°C (760 mmHg); 

70% yield; 1H NMR (300 MHz, CDCl3): δ (ppm)= 1.85–1.00 (m, 10 H), 1.32 (d, 3 H, J = 3.0 Hz); 31P 

NMR (121.45 MHz, CDCl3) δ (ppm)= –53.5 ppm; GC–MS (m/z, %): 116 (M+ 100), 101 (45), 73 (50), 

70 (25), 46 (63); HRMS (m/z): [M]+ calcd for C6H13P, 116.0755; found, 116.0752; analysis (% calcd, 

% found for C6H13P): C (62.05, 62.03), H (11.28, 11.31). 

 

1-methylarsinane (6b): Colourless oil, bp 70–75°C (15-18 mmHg), Lit.:16
 153-155°C (760 mmHg); 

60% yield; 1H-NMR (300 MHz, CDCl3): δ (ppm)= 1.75–1.25 (m, 10 H), 0.90 (s, 3 H); GC-MS (m/z, 

%): 160 (M+, 100), 145 (42), 69 (33); HRMS (m/z): [M]+ calcd for C6H13Sb, 160.0233; found, 

160.0230; analysis (% calcd, % found for C6H13Sb): C (45.02, 44.85), H (8.18, 8.15). 
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1-methylstibinane (6c): Colourless oil, bp 74–79°C (15-18 mmHg), Lit.:13
 77–79°C (19 mmHg); 

50% yield; 1H NMR (300 MHz, CDCl3): δ (ppm) = 1.80–1.00 (m, 10 H), 0.66 (s, 3 H); GC–MS (m/z, 

%): 206 [208] (M+ 56), 191 (39), 163 (36), 136 (100), 121 (42), 69 (82); HRMS (m/z): [M]+ calcd for 

C6H13Sb, 206.0055; found, 206.0052; analysis (% calcd, % found for C6H13Sb): C (34.83, 34.95), H 

(6.33, 6.35). 

 

1-methylbismane (6d): Colourless oil, bp 135–145°C (15–18 mmHg), Lit.:14
 ~55°C (10-1 Torr); 25% 

yield; 1H NMR (300 MHz, CDCl3): δ (ppm)= 2.60–1.20 (m, 10 H), 0.89 (s, 3 H); GC-MS (m/z, %): 

294 (M+ 15), 279 (10), 224 (50), 209 (100); analysis (% calcd, % found for C6H13Bi): C (24.50, 

24.44), H (4.45, 4.43). 
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Chapter 6 

 

 
 

ROLE OF RING AROUND THE PHOSPHORUS ATOM: 

SYNTHESIS OF CYCLIC HALOALKYL PHOSPHINE AND THEIR 

APPLICATION 

 
 

6.1 Introduction 

 

The synthesis of cyclic phosphine derivatives is of considerable current interest principally because 

these compounds are the most commonly studied ligands for application in homogeneous catalysis.1 

In fact, the development of bisphosphine and phospho-amino compounds and their application to the 

homogeneous catalysis and coordination chemistry have increased enormously in the past decade.1,2 

Generally, the reported syntheses of 1-substituted cyclic phosphines are related to the interaction of 

several reagents with halophosphines3,4 or with primary and secondary phosphines.4-7 However, we 

have noted that haloalkyl derivatives of tri-coordinate phospholane and phosphinane are still 

unknown. In spite of this, compounds can be used in the synthesis of bidentate ligands. A possible 

reason for their absence in the literature could be that primary or secondary phosphanes (RPH2 or 

R2PH) cannot be used to obtain haloalkyl derivatives of cyclic phosphanes with halogen group 

derivatives because of the possible reactivity of the PH group with the halogen group.8 For this 

reason, it is either very difficult to obtain haloalkyl cyclic phosphine derivatives with current 

procedures. 

 

6.2  Results and discussion  

  

Recently a new synthesis9 of tertiary cyclic phosphines, and their sulfides, was developed using the 

benzothiadiphosphole 1 as a starting reagent. In fact, as reported in Chapter 4, the simultaneous or the 

sequential addition of equimolar amounts of a bis- and a mono-Grignard reagent RMgBr (R = alkyl, 

phenyl, alkenyl) to one equivalent amount of 1 gave tertiary cyclic phosphines and, after the addition 
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of elemental sulfur, their sulfides in good yields at room temperature. In particular a new class of 1-

alkenyl derivatives of cyclic phosphines was obtained that was not possible or very difficult to obtain 

with the known procedures. 

These results encouraged us to develop a synthetic method to obtain haloalkyl phospholanes and 

haloalkyl phosphinanes using our phosphorus-donating reagent 1 by the addition of  bis- and a mono- 

Grignard reagents at room temperature. Consequently, we obtained the haloalkyl cyclophosphane 

derivatives 3 (70-80% yield) by addition to 1, in the first step, of equimolar amounts of a bis-

Grignard reagent 2 (n = 1 or 2), and in the second step, addition of a mono-Grignard reagent RMgBr 

(R = haloalkyl group). this reaction mechanism had already been studied and explained by the 

intervention of hypervalent phosphorus species such as the intermediate A (scheme 6.1). 

In addition we found that the treatment of the resulting reaction mixture with acidic (HCl) water gave 

the cyclic tertiary phosphines 3 and the by-product 4 in 90% yield (Scheme 6.1). These two reaction 

products can be separated easily by treating the organic solution with aqueous NaOH; in this way the 

sodium salt of compound 4 dissolves in the aqueous solution, whereas the organic phase contains 

almost pure phosphine 3. Compound 4 can be recovered, as reported previously,11 from the basic 

aqueous layer by acidification and extraction, and then transformed to 1 for re-use. It should be noted 

that phosphines 3 were analyzed only by GC-MS analysis, and were not isolated. Rather they were 

immediately treated with sulfur to obtain the corresponding sulfides 5 (Scheme 6.1), which are stable 

and thus were separated by column chromatography and fully characterized. 
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Scheme 6.1 Synthesis of haloalkyl cyclophosphane derivatives 3, and their sulfides 5. 

 

As we hypothesized the presence of an halogen group in the moiety permit the use of these haloalkyl 

cyclophosphane derivatives 3 in the synthesis of bidentate ligands. In fact, the high reactivity of the 

chlorine group as a living group easily permits substitution by secondary phosphines and amines. 
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For the synthesis of the bisphosphine 6, the compound 5b was treated with a solution of sodium 

diphenyl phosphine. After treatment of the reaction mixture with elemental sulfur, compound 6 was 

obtained in moderate yields (65%) (scheme 6.2) and purified by column chromatography and fully 

characterized. 

Also phospho-amino compound 7 can be synthesized using 5a which was treated with piperidine in 

toluene at reflux. Compound 7 was obtained in high yield (90%) (scheme 5.2) and purified by column 

chromatography and fully characterized. 

 

P
R S 5

n = 1, 2

n

R = CH2(CH2)2(CH2)nCl

1) NaPPh2
2) S8

P
PPh2S

S

6 (65%)

N
H

P

N

S

7 (90%)

 

 

Scheme 6.2 Synthetic application of haloalkyl cyclophosphines. 

 

Alternatively we optimized a one-pot three-step procedure for the synthesis of a C2-symmetric 

bisphospholane compound. We obtained bisphospholane 8 by addition, in the first step, of two 

equimolar amounts of bis-Grignard reagent 2 to one of reagent 1; in the second step another 

equimolar amount of bis-Grignard reagent 2 was added to the reaction mixture, finally in the third 

step, a dropwise addition of one equimolar amount of 1 was performed (scheme 6.3). After quenching 

the reaction mixture with acidic water we obtained the bisphospholane 8 and the end product 4 (90% 

yield, respect to 1). The two compounds were easily separated as previously described. After 

separation, the bisphospholane 8 was immediately treated with elemental sulfur, giving the sulphide 9 

in moderate yield (45%), which was purified by column chromatography and fully characterized. 
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Scheme 6.3 Synthesis of bisphospholane 8 and sulfide derivative 9. 

 

 

 

6.3  Experimental section 

 

6.3.1 General  

 
1H, 13C, and 31P NMR spectra were recorded at 300 (400), at 76.46 (100.56) and 120.76 (161.89) 

MHz, respectively. Chemical shifts are referenced to internal standard TMS (1H NMR), to solvent 

(77.0 ppm for 13C NMR) and to external standard 85% H3PO4 (
31P NMR). J values are given in Hz. 

MS spectra were recorded at an ionisation voltage of 70 eV. Flash chromatography (FC) was 

performed on silica gel (0.040-0.063 mm). Melting points are uncorrected. THF was distilled from 

sodium benzophenone ketyl and all solvents were purified appropriately before use and degassed 

immediately prior to use. All Grignard reagents used, both commercially available and prepared from 

the corresponding alkyl halide or alkyl dihalide12 and magnesium turnings, were titrated immediately 

prior to use by standard methods.13 Air and moisture sensitive solutions and reagents were handled in 

a dried apparatus under a dry argon atmosphere using standard Schlenk-type techniques.  
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6.3.2 General one-step procedure for the synthesis of cyclic tertiary haloalkyl 

phosphine sulfides 

 

The bis-Grignard reagent (1.1 mmol) was added to a solution of 1 (1 mmol) in THF (10 mL), at room 

temperature. The mixture was stirred for 15 min, then the mono-Grignard reagent (1.1 mmol) was 

added. The reaction mixture was stirred for 1 h after that the solvent was partially evaporated and the 

reaction mixture was treated with aqueous acid solution (HCl). Extraction with CH2Cl2 gave a 

mixture of phosphines and the residue 3. The phosphines were easily separated from 3 by treating the 

organic solution with aqueous NaOH; after this treatment, the sodium salt of 4 was dissolved in the 

aqueous solution, whereas the phosphines were in the organic phase. Treatment of this layer with a 

slight excess of elemental sulfur gave the corresponding sulfides, which were purified by flash 

chromatography (dichloromethane: petroleum ether 3:2) and fully characterized. Compound 410 was 

recovered (90%) from the basic aqueous layer by acidification and extraction with dichloromethane, 

and was then purified by distillation and stored under argon. Simple treatment of a dry solution of 

compound 4 with an equimolar amount of PCl3 led to the regeneration of the starting reagent 1 in 

almost pure form, allowing it to be reused without further purification. 

 

1-(4-chlorobutyl) phospholane sulfide (5a): y = 80%, colourless oil, RF = 0.44 (dichlromethane);  
1H NMR (300 MHz, CDCl3, 25 °C): δ =  3.58 (t, 2 H, J=5.6 Hz, CH2Cl), 2.20-1.74 (m, 14 H, CH2 ) 

ppm; 13C NMR (76.46 MHz, CDCl3, 25 °C): δ = 44.1 (s), 33.2 (d, J=52 Hz), 33.1 (d, J= 15 Hz), 32.8 

(d, J=47 Hz), 26.0 (d, J=6 Hz), 20.5 (d, J=3 Hz ) ppm; 31P NMR (120.76 MHz, CDCl3, 25 °C): δ = 

64.5 (m) ppm; MS (70 eV, EI): m/z : 212 (M+,9), 210 (26), 175 (100), 120 (99); IR: 598 (CCl), 725 

(PS), 1111 (PC) cm-1. 

 

1-(4-chlorobutyl) phosphinane sulfide (5b): y = 82%, grease solid, RF = 0.38 (dichlromethane);  1H 

NMR (300 MHz, CDCl3, 25 °C): δ = 3.58 (t, 2 H, J=6.1 Hz, CH2Cl ), 2.20- 1.50 (m, 16 H, CH2) 

ppm; 13C NMR (76.46 MHz, CDCl3, 25 °C): δ =  44.2 (s), 33.3 (d, J=15 Hz) , 30.9 (d, J=48 Hz), 

30.0 (d, J=50 Hz ), 26.4 (d, J=6Hz), 21.9 (d, J=6 Hz), 19.3 (d, J=3 Hz) ppm; 31P NMR (120.76 

MHz, CDCl3, 25 °C): δ = 37.8 (m) ppm; MS (70 eV, EI): m/z : 226 (M+, 6) 224 (18), 189 (100), 134 

(53); IR: 595 (CCl), 728 (PS), 1110 (PC) cm-1. 

 

1-(5-chloropentanyl) phospholane sulfide (5c): y = 73%, grease solid, RF = 0.43 (dichlromethane);  
1H NMR (300 MHz, CDCl3, 25 °C): δ = 3.56 (t, 2 H, J=6.6 Hz, CH2Cl ), 2.20-1.40 (m, 16 H, CH2 ) 

ppm; 13C NMR (76.46 MHz, CDCl3, 25 °C): δ = 44.7 (s), 33.4 (d, J=47 Hz), 33.2 (d, J=52 Hz) , 32.0 

(d, J=15Hz), 26.0 (d, J=6Hz), 22.4 (d, J=3 Hz) ppm; 31P NMR (120.76 MHz, CDCl3, 25 °C): δ =  
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64.6 (m) ppm; MS (70 eV, EI): m/z : 226 (M+ , 8), 224 (24), 189 (81), 120 (100); IR: 598 (CCl), 724 

(PS), 1109 (PC) cm-1. 

 

1-(5-chloropentanyl) phosphinane sulfide (5d): y = 75%, grease solid, RF = 0.40 (dichlromethane);  
1H NMR (300 MHz, CDCl3, 25 °C): δ = 3.56 (t, 2 H, J=6.4 Hz, CH2Cl), 2.20-1.40 (m, 18 H, CH2) 

ppm; 13C NMR (76.46 MHz, CDCl3, 25 °C): δ =  44.7 (s), 32.1(s), 30.9 (d, J=49 Hz), 30.6 (d, J=51 

Hz), 28.0 (d, J=15 Hz), 26.4 (d, J=6 Hz), 21.9 (d, J=6 Hz), 21.1 (d, J=3 Hz) ppm; 31P NMR (120.76 

MHz, CDCl3, 25 °C): δ = 38.7 (m) ppm; MS (70 eV, EI): m/z : 240 (M+ , 5), 238 (15), 203 (91), 134 

(100).; IR: 595 (CCl), 725 (PS), 1111 (PC) cm-1. 

 

6.3.3 Synthesis of 1-[4-(diphenylphosphorathioyl)bu tyl]-phosphinane 1-sulfide 

(6) 

 

To a solution of diphenyl phosphine (0.689 mmol) in THF (4 ml) was added metallic sodium (0.013 

mol) at 0°C, than the mixture was stirred for 5 h at room temperature. After that the resulting orange-

red solution was dropwise added under argon to a solution of 1-(4-chlorobutyl) phosphinane sulfide 

(5b) (0.53 mmol) in THF (4 ml). The reaction mixture was stirred for 1 h than was treated with a 

slight excess of elemental sulfur to give the corresponding sulfides, which were purified by flash 

chromatography (dichloromethane: petroleum ether 3:2) and fully characterized.  

 

1-[4-(diphenylphosphorathioyl)butyl]-phosphinane 1-sulfide (6): y = 65 %, yellow solid, pf = 

134-136 °C, RF = 0.14 (dichlromethane); 1H NMR (400 MHz, CDCl3, 25 °C):  = 7.86-7.78 (m, 4 

H), 7.54-7.42 (m, 6 H), 2.55-2.44 (m, 2 H), 2.12-1.40 (m, 16 H) ppm; 13C NMR (100.56 MHz, 

CDCl3, 25 °C):  = 21.8 (d, 2JPC=6.48 Hz,), 22.6 (dd, JPC=17.8 Hz, JPP=3.3 Hz), 23.3 (dd, JPC=16.2 

Hz, JPP=2.4 Hz), 26.2 (d, 2JPC= 6.5 Hz), 30.2 (d, 1JPC= 50.2 Hz), 30.8 (d, 1JPC= 48.6 Hz), 32.1 (d, 
1JPC=  57.0 Hz), 128.6 (d, JPC =12.1 Hz), 130.9 (d, JPC = 9.7 Hz), 131.5 (d, JPC =3.2 Hz), 132.5 (d, JPC 

= 80.14 Hz) ppm; 31P NMR (161.89 MHz, CDCl3, 25 °C):  = 38.5, 43.0 ppm; IR: 716 (PS), 1439 

(P-Ph), 2863 (Ph) cm-1. 
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6.3.4 Synthesis of bidentate ligands 

 

A solution of chlorophosphine sulphide (5) (1 mmol) and amine (piperidine, pirrolidine, morpholine) 

(3 mmol) in toluene (10 ml) was refluxed for 20 h. After that the solvent was partially evaporated and 

the reaction mixture was treated with water and extracted with CH2Cl2. The organic layer, containing 

the product, was purified by flash chromatography (dichloromethane) and the product fully 

characterized.  

 

1-[4-(1-sulfidophospholan-1-yl)butyl] piperidine (7): y = 90%, grease solid, RF = 0.0 

(dichlromethane); 1H NMR (300 MHz, CDCl3, 25 °C): δ = 2.50-1.40 (m, 26 H, CH2) ppm; 13C NMR 

(76.46 MHz, CDCl3, 25 °C): δ = 57.9, 54.1, 33.4 (d, J = 52 Hz), 33.1 (d, J = 47 Hz), 29.7, 26.0 (d, J 

=  6 Hz), 24.5, 23.4, 21.0 (d, J = 3 Hz) ppm; 31P NMR (120.76 MHz, CDCl3, 25 °C): δ = 64.7 (m) 

ppm; MS (70 eV, EI): m/z : 259 (M+, 2), 226 (13), 175 (3), 143 (13), 98 (100). 

 

6.3.5 One-step procedure for the synthesis of cycli c tertiary bis-phosphine 

 

A solution of 1 (1 mmol) in THF (10 mL) was added drop wise to a solution of bis-Grignard reagent 

(2 mmol) in THF (5 ml), at room temperature. The mixture was stirred for 2 h, then again the bis-

Grignard reagent (1 mmol) was added to the resulting solution. After that to the reaction mixture was 

added drop wise a solution of 1 (1 mmol) in THF (10 mL), and stirred for 4 h. During the 4 h, the 

reaction was monitored by GC-MS. After that the solvent was partially evaporated and the reaction 

mixture was treated with aqueous acid solution (HCl). Extraction with CH2Cl2 gave a mixture of 

diphosphine and the residue 4. The diphosphine was easily separated from 4 by treating the organic 

solution with aqueous NaOH; after this treatment, the sodium salt of 4 was dissolved in the aqueous 

solution, whereas the diphosphine was in the organic phase. Treatment of this layer with a slight 

excess of elemental sulfur gave the corresponding sulfides (9), which were purified by flash 

chromatography (dichloromethane: petroleum ether 3:2) and fully characterized. Compound 4 was 

recovered (90%) from the basic aqueous layer by acidification and extraction with dichloromethane, 

and was then purified by distillation and stored under argon. Simple treatment of a dry solution of 

compound 4 with an equimolar amount of PCl3 led to the regeneration of the starting reagent 1 in 

almost pure form, allowing it to be reused without further purification.  
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1,1’-butane-1,4-diylbis(phospholane) 1,1’-disulfide (9)14: y = 45%, brown solid, pf = 29°C; p.eb. 

= 115-120°C (0.1 mmHg); 1H NMR (300 MHz, CDCl3, 25 °C): δ = 1.7-2.1 (m, 24 H) ppm ppm; 13C 

NMR (75.46 MHz, CDCl3, 25 °C): δ = 24.0 (2C, dd, 2JPC =  3 Hz, 1JPC = 15 Hz), 26.0 (4C, d, 2JPC = 

6 Hz), 33.2 (2C, d, 1JPC = 45 Hz), 33.5 (4C, d, 1JPC = 52 Hz) ppm; 31P NMR (120.76 MHz, CDCl3, 

25 °C): δ = 63.2 ppm; MS (70 eV, EI): m/z : 294 (M+,14), 175 (66), 119 (58), 85 (27), 63 (100), 55 

(59), 41 (46); IR: 715.78 (PS), 1113 (PC) cm-1. 
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Chapter 7 
 

 

 

ROLE OF THE PENTACOORDINATION OF PHOSPHORUS: 

WITTIG MECCHANISM 

 

 

7.1 Introduction 

 

Since its discovery, about 60 years ago,1 the Wittig reaction plays a central role in organic synthesis, 

for its ability to form a carbon-carbon double bond with high positional selectivity, relatively high 

chemoselectivity, and may be conducted in many cases with reliable and high stereocontrol.2 

Originally, little attention was paid to stereochemistry since several olefins were obtained as E/Z 

mixtures, suggesting that the reaction might not be generally stereoselective. However, it was soon 

discovered that the type of ylide and the reaction conditions could play a key role in determining the 

reaction stereochemistry. For example, non-stabilized phosphorus ylides react with aldehydes to give 

largely Z alkenes, except under special conditions,3 and stabilized ylides give predominantly E 

alkenes, but semi–stabilized ylides generally give a mixture of E/Z alkenes with a relative ratio 

around 50/50. For these reasons the mechanism has been the subject of extensive experimental4 and 

theoretical5a investigations, and has been comprehensively reviewed.4,5b  

These studies have shown that the Wittig reaction is influenced by many factors: type of ylide 

(stabilized, non-stabilized or semi-stabilized), substituents on the phosphorus atom, presence of 

lithium salts, solvent, temperature,2b,2c,6 and concentration.7e Because it is now demonstrated2a,7 

without doubts that 1,2-oxaphosphetanes, cyclic phosphorus pentacoordinated compounds with 

trigonal bipyramidal structure, are central intermediates in the Wittig reaction, for better understand 

the mechanism involved in this reaction it is of fundamental importance to know the chemistry of 

pentacoordinated phosphorus compounds focusing particular attention to all the factors which 

influence the stability and the decomposition of cyclic pentacoordinated phosphorus trigonal 

bipyramidal intermediates. 
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Up to date, an inclusive rule for explain the stereoselectivity in the Wittig reaction is difficult to 

formulate because the large number of data reported in important works2a are often in apparent 

contrast. We think that this is due to the different reaction conditions used and to the fact to have 

studied the Wittig reaction as a simple cycloaddition reaction between the ylide and the carbonyl 

group. Instead, it is of preminent importance to analyze all the factors which determine the stability of 

the four cyclic phosphorane intermediates, the so-called “1,2–oxaphosphetanes” (2,2,2–trisubstituted-

1,2 λ5–oxaphosphetanes) depicted in Scheme 1. Considerable information is now available8 on the 

factors which affect the stability of such trigonal bipyramidal phosphorane derivatives and control the 

process of ligand reorganization within them. Two factors turn out to be important in this connection: 

(a) the preference of electronegative groups for the apical positions and (b) the preference of a small 

membered ring for an apical-equatorial situation. However, the stereochemistry of the reaction is also 

dependent on the steric interactions, as well as on the specific reaction conditions. 

It is about forty years that our group is studying reactions in which cyclic pentacoordinated 

phosphorus compounds are involved as intermediates determining also the different stereochemical 

results. In one case we have demonstrated9a that an highly stereoselective result was due to different 

decomposition rates of two cis/trans cyclic isomeric trigonal bipyramidal phosphorane intermediates, 

which were in equilibrium between them. In another work9b we have observed that cis 

hexacoordinated phosphorane intermediates, being less stable than the trans forms, immediately 

collapse determining a stereoselective result. The high decomposition rate of the cis pentacoordinate 

intermediate, caused by its major overcrowding, permits its highly stereoselective evolution towards 

the final product. In addition, Vedejs et al. observed that cis-isomer of oxaphosphetanes from non-

stabilized ylides decomposed faster than did the trans-isomers.10b,c 

For this reason we started a study on the Wittig reaction using both, triphenylphosphorus non-

stabilized and stabilized ylides with different aldehydes in which only the steric effect might 

influence the different stereochemical results. In other words, we will see if only the steric factor may 

influence and consequently explain the possible high stereoselective formation of alkenes. 

 

7.2 Results and discussion 

 

7.2.1 Case of non-stabilized ylides 

 

The reaction mechanism, qualitatively outlined in Scheme 7.1, we now propose to study is in line 

with several previous important studies.7  
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The first attack is a cycloaddition of the carbonylic group on the ylide to give pentacoordinate 

oxaphosphetane intermediates with trigonal bipyramidal structures. 

It is well known from over 40 years that, when it possible, the formation of a cycle around a 

pentacoordinate phosphorus atom is favoured 106-8 fold with respect to the formation of acyclic 

intermediates.11 Then, the formation of a phosphorus cyclic pentacoordinated intermediate is largely 

favourite with respect to any other type of possible intermediate. In other words, the attack of the 

ylidic carbon on the carbonyl carbon to form cyclic oxaphosphetanes is favoured of a factor 106-8 

over any other nucleophilic attack.11 

The stereochemical outcome of the reaction can be explained by the characteristics that govern 

pentacoordinate forms. The most favourite structure for a pentacoordinate form is the trigonal 

bipyramidal geometry. The relative position of the substituents in pentacoordinate compounds 

respects rules depending from their steric hindrance and apicophilicity.12 
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Scheme 7.1. Mechanistic proposal for non-stabilized ylides. Another set of oxaphosphetane intermediates, isomers of 

structures A and B, is possible. However, as a rule, four-member rings are unable to occupy the diequatorial position of 

trigonal bipyramid and, therefore, only isomers A and B with apical-equatorial rings are considered to participate in this 

mechanism. 
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Keeping in mind these considerations and that the carbonyl compound can attack the ylide in two 

ways (Scheme 7.1, via a or via b), we think that this attack brings at two possible pentacoordinate 

intermediates with trigonal bipyramidal structures, namely A-cis and A-trans, which have the oxygen 

atom in apical position. This idea is derived from the general rule of “apical entry/apical departure” 

for nucleophilic substitution reactions at pentacoordinated phosphorus with trigonal bipyramidal 

structures;8c it is also known that the departure of the apical group occurs firstly. 

In this manner, decomposition of these A isomers should give the starting reagents and the cis-isomer 

of A oxaphosphetanes should decompose faster than the trans-isomer. This enhances the reversibility 

of the step which forms the cis-oxaphosphetane compared to that forming the trans-oxaphosphetane. 

In other words, the retro-Wittig reaction should be favored for the A-cis intermediate with respect to 

the A-trans. 

These inferences suggest that, when intermediates A-cis and A-trans are sufficiently long-lived 

species, they must be in equilibrium with starting materials, by a retro-Wittig reaction, and therefore 

among them.10,3a,7a,7c (For example, Maryanoff et al. report that the intermediates derived from 

hexanal and triphenylphosphonium ylides are formed reversibly10a). In this manner the A-trans is 

favoured by thermodynamic factors. To bring to the final alkenes, the A intermediates must complete 

a pseudorotation8h,12 to give two new pentacoordinate species B-cis and B-trans, with the oxygen 

atom in equatorial position and the P–C bond in apical position. Since the oxygen atom prefers to be 

in apical position, B species are more disfavoured and unstable than A species. In addition, in these B 

species the equatorial oxygen maximizes the back–bonding donation of the oxygen atom thus 

favoring the decomposition to alkene and triphenylphosphine oxide. The driving force of this 

decomposition is given by the propensity of the oxygen atom to form a double bond with the 

phosphorus atom.  

It has to be noted that our mechanism doesn’t foresee formation of betainic intermediates as those 

shown in Figure 7.1 for the reason that these intermediates have been only hypothesized (they have 

only a historical value2a), but never detected in the course of the reaction; a further confirmation and, 

at the same time, an explanation of no formation of such a betainic intermediates is given by the very 

strong affinity of the phosphorus atom with the oxygen atom that makes very unlikely the existence 

of a zwitterionic species that bears these two atoms with opposite charges. 
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Figure 7.1. Betainic form 
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Stereoselection is driven by the irreversible decomposition of the B intermediates, which have a 

different rate of collapse10 due to their different stability. In fact, the B-cis isomer (whose formation, 

as we have previously said, is disfavoured and therefore its quantity should be smaller in comparison 

with the B-trans form) is more unstable because of the greatest steric hindrance and collapses to form 

the Z olefin very quickly with respect to the B-trans pentacoordinate intermediate. This rapid 

decomposition of the B-cis pentacoordinate intermediate brings to increase the quantity of the Z 

olefin, because the other steps of the reaction are in equilibrium and the system has the tendency to 

return to the equilibrium by reversal reaction. 

Then, in order to verify the above mechanism and to better understand the outcome of the Wittig 

reaction we studied the influence of the steric hindrance on the carbonyl compound. In particular, we 

have studied the reaction using the non-stabilized ylide 2 with aldehydes 3 a–h, with different steric 

hindrance (Scheme 7.2). 
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Scheme 7.2. Reaction with non–stabilized ylide 2. 

 

Olefins 4a–h have been obtained in different E/Z ratios by reaction between 

triphenylethylphosphonium bromide 1 and potassium tert-butylate, to obtain 

ethylidene(triphenyl)phosphorane 2, followed by addition of the aldehydes 3a–h, (Scheme 7.2). The 

isomeric ratio was calculated by GC-MS spectroscopy in the reaction mixture without purification. 

The isomeric ratios are reported in Table 7.1. 
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Table 7.1. Reactions of non-stabilized ylide 2 and stabilized ylide 7 with differently hindered aldehydes. 

 

Entry Ylide Aldehyde (R) Products E/Z ratioa 

1 2 3a (phenyl) 4a (E+Z) 18/82 

2 2 3b (o-tolyl) 4b (E+Z) 16/84 

3 2 3c (o-Cl-phenyl) 4c (E+Z) 24/76 

4 2 3d (mesityl) 4d (E+Z) 48/52 

5 2 3e (1-naphthyl) 4e (E+Z) 15/85 

6 2 3f (9-anthracenyl) 4f (E+Z) 49/51 

7 2 3g (benzyl) 4g (E+Z) 10/90 

8 2 3h (pentyl) 4h (E+Z) 13/87 

9b 2 3a 4a (E+Z) 11/89 

10b 2 3d 4d (E+Z) 33/67 

11 7 3a 8a (E+Z) 96/4 

12 7 3b 8b (E+Z) 95/5 

13 7 3c 8c (E+Z) 93/7 

a E/Z ratio calculated by GC-MS spectroscopy. b The reaction is carried out at 0 °C. All the other reactions are carried out 

at room temperature. 

 

As shown in Table 7.1, variation of steric hindrance on the aldehydic compound gives a variation of 

the E/Z ratio in the final products. 

These results could be explained by comparing the structure of the pentacoordinate intermediates, 

such as A and B, formed during the course of the reaction. 

In particular, using benzaldehyde 3a, the corresponding B-cis pentacoordinate intermediate (Scheme 

7.3), is more unstable than the trans one, and then it collapses immediately after its formation 

(k1>>k2), shifting the equilibrium in favour of the cis structure, giving a great predominance of the 

olefin type Z. 
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Scheme 7.3. Reaction between ylide 1 and benzaldehyde 3a. 

 

In the reaction with ortho-tolylaldehyde (3b), the overcrowding on the pentacoordinate intermediates 

is similar to those found in the reaction with benzaldehyde, bringing to a little increase of the E/Z 

ratio in favour of Z olefin (k1>>k2). 

 

On the contrary, when a more hindered compound as mesitaldehyde (3d) is used (Scheme 7.4) the 

overcrowding on the pentacoordinated intermediate becomes very high, both for the cis intermediate 

and the trans, which collapse with similar rate (k1~k2), bringing to a drastic increase of the E/Z ratio 

(48/52). 

It should be noted that the ratio E/Z is also depending from the reaction temperature. 

In fact, when we carried out the reaction with 3a at 0 °C (Table 7.1, entry 9) we obtained a ratio E/Z 

of 11/89 while at room temperature the ratio was 18/82 confirming again that B-cis oxaphosphetane 

have a superior rate of decomposition with respect to the trans one. 

The same considerations are worth for all reactions with other aldehydic compounds. 
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Scheme 7.4. Reaction between ylide 1 and mesytaldehyde 3d. 

 

 

7.2.2 Variable Temperature 31P NMR study 

 

To complete this investigation we have carried out a study at 31P NMR spectroscopy in order to 

observe the cis and trans oxaphosphetane intermediates of the above reaction between non-stabilized 

phosphorus ylide and aldehydes. 

Typical experiment was carried out with ethyltriphenylphosphonium bromide (1) under argon. The 

salt 1, suspended in dry tetrahydrofuran was treated with potassium tert-butylate at 25 °C to generate 

the ylide, evidenced in the relative 31P NMR spectrum as a sharp singlet at 15.1 ppm. Addition, 

directly in the NMR tube at –78°C, of an equimolar amount of benzaldeyde to the above reaction 

mixture produced a spectrum with two signals in the region of pentacoordinate species, –60.6 ppm 

(cis-oxaphosphetane, probably the form A) and –60.7 ppm (trans-oxaphosphetane, probably the form 

A). The cis/trans ratio was about 9/91 and this high preference for the trans isomer was predicted on 

the basis of the rules which govern the phosphorus pentacoordination.8 It should be noted that the cis 

and trans configuration was unequivocally determined by Maryanoff.7c By increasimg the 

temperature of the NMR probe until –30 °C, a new singlet arose at 29.3 ppm was detected, due to the 

formation of triphenylphosphine oxide. At the end of the reaction the ratio between Z/E olefins was 

82/18, which did not reflect the original ratio of cis/trans oxaphosphetanes (9/91). Probably this is 

due to the conversion of trans to cis oxaphosphetane during the process by retro-Wittig. Our 

assignement of the signals to cis and trans oxaphosphetanes (–60.6 ppm for cis-oxaphosphetane and –

60.7 ppm for trans-oxaphosphetane) corresponds to the assignement made by Maryanoff and 
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determined via chemical argument. However, it should be noted that the ratio between cis and trans 

oxaphosphetanes reported by Maryanoff was 4:1 in contrast with our result of 1:9. But this is 

certainly due to the contamination of reagents such as hexamethyldisilazide which can interfere with 

the stability of oxaphosphetanes and probably this interference determine also a small difference of 

their 31P NMR chemical shifts (–61.2 ppm and –61.6 ppm). 

The low temperature experiments has been performed also for the aldehydes 3b and 3d. In the 

reaction with the aldehyde 3b, the 31P NMR spectrum showed the presence of two peaks at –61.1 

ppm and –61.8 ppm in a relative ratio of 10/90, ascribed (by analogy with the reaction with 

benzaldehyde 3a) to cis and trans oxaphosphetanes. 

In the reaction with the aldehyde 3d, the 31P NMR spectrum showed the presence of two peaks at –

61.6 ppm and –62.0 ppm in a ratio of 27/73 respectively, ascribed (by analogy with the reaction with 

benzaldehyde 3a) to cis and trans oxaphosphetanes in a mixture of A and B isomers. 

Then we will obtain always the prevalence of the Z olefin because a cis-oxaphosphetane is much 

more unstable than the trans one. The E/Z ratio in this case depends only on the steric effects which 

are very crucial in pentacoordinated compounds in causing the instability of these hypervalent 

species.  

As result of the different decomposition rates, if we want to further increase the amount of the Z 

olefin is enough to carry out the reaction at lower temperatures (see Table 7.1, entries 9 and 10). 

This consideration would seem applicable only at the non-stabilized ylide, which bring to favour the 

formation of the Z olefin.  

Now we wish to evaluate if our mechanistic proposal might give a possible explanation also of the 

high E selectivity obtained with stabilized ylides. 

 

 

7.2.3 Case of stabilized ylides  

 

Stabilized ylides have been the subject of numerous mechanistic studies,2a,2d,4d,13 marinoffref but none 

have shown evidence for oxaphosphetane intermediates. Probably, the related intermediate adducts 

are difficult to form at low temperature while at room temperature they decompose to alkenes too 

rapidly for their detection. 

In Scheme 7.5 are reported the reactions which have been carried out between the stabilized ylide 7 

(1-phenyl-2-(triphenyl-λ5-phosphanylidene)ethan-1-one), and aldehydes 3a–c. 

In table 7.1, entries 11–13, the E/Z ratios of obtained olefins 8a–c are reported. 
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Scheme 7.5. Reactions with stabilized ylide 7. 

 

The reactions were carried out in the same experimental conditions of the above reported reactions 

with non-stabilized ylides. 

It should be noted that the reactions carried out at room temperature gave product yields lower with 

respect to those carried out at higher temperature (50°C). However, the ratio E/Z remain always the 

same. Firstly, we carried out the reactions at room temperature hoping that in these conditions the 

intermediate adducts might be detected and for this purpose we monitored the reaction at room 

temperature through 31P NMR spectroscopy. Since no intermediate have been detected in these 

conditions, we tried to identify the oxaphosphetanes intermediates by reaction at lower temperature (–

100 °C and 0 °C) between ylide 7 and aldehyde 3a. Unfortunately, also in these cases, no detection of 

cis- and trans-oxaphosphetanes was observed. 

We have obtained always an high E stereoselectivity (see entries 11–13 in Table 7.1), but in these 

cases it is not possible to affirm that an equilibration between cis- and trans-oxaphosphetanes occurs.  

Probably, in the case of stabilized ylides, the oxaphosphetanic intermediates B (cis and trans) are 

more favored with respect to the corresponding oxaphosphetanes A (in contrast with that occurring in 

the non-stabilized ylides). This is due to the presence of the electron-withdrawing group on the ylidic 

moiety that strongly enhances the apicophilicity12 of the carbon atom bound to the phosphorus atom, 

thus favoring the apical position of the group bound to this carbon atom. In addition, it is more 

probable that the formation of the B-trans intermediate is favoured with respect to B-cis one. This is 

accord with that occurs in non-stabilized ylides in which the corresponding B-trans is favored with 

respect to B-cis (the ratio of the two 31P NMR signals of oxaphosphetanes B-trans and B-cis was 
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90/10 for the case aldehyde CCC or 70/30 for the cases of aldehyde HHH). In addition, the presence 

of the electron-withdrawing group permits a very fast decomposition of these oxaphosphetanes, 

explaining the difficulty to detect these intermediates in the 31P NMR spectra.  

It should be noted that the ratio E/Z for olefins 8a–c (entries 11–13 of  Table 7.1) are very similar 

(96/4, 95/5, 93/7), indicating that in these cases steric effects have no influence on the ratio E/Z. 

In addition, in the cases of stabilized ylide the form B may be in equilibrium with the zwitterionic 

species (see Figure 7.2), stabilized by the electron withdrawing group, in which the trans isomer is 

favored giving preferentially the E olefin. However, it should be noted that no zwitterionic species are 

detected in the 31P NMR spectra. Even if such a species are formed, they could be at very low 

concentration, not sufficient for their detection, as it occurs with oxaphosphetanes. 

Then, on the basis of these data we can propose for the stabilized ylides a mechanism very similar to 

that described in Scheme 7.1 for non-stabilized ylides, with the difference that the equilibrium 

between the intermediate isomers A and B is shifted towards the isomers B which collapses very fast 

to the final olefins, prior to re-equilibrate with A forms. Then, in the case of stabilized ylides the 

retro-Wittig is practically inexistent. 
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Figure 7.2. Hypothetic zwitterionic forms 

 

 

7.3 Experimental section 

7.3.1 General 

 
31P NMR spectra were recorded on Varian Mercury 400 or Inova 600 spectrometers, operating at 

161.89 or 242.77 MHz, respectively.  

Chemical shifts are referenced to external standard aq. 85% H3PO4. J values are given in Hz. GC-MS 

analyses were performed on an gas chromatograph equipped with a (5%-phenyl)-ethylpolysiloxane 

column (30 m length, 0.250 mm i.d., 0.25 µm thickness), interfaced to a quadrupole mass detector. 
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Mass spectra were recorded at an ionisation voltage of 70 eV in the EI mode. THF was distilled 

from sodium/benzophenone etyl, and all solvents were purified appropriately and degassed 

immediately prior to use. Air- and moisture-sensitive solutions and reagents were handled in dried 

apparatus under dry Argon using standard Schlenk-type techniques. 

All products herein reported are known compounds and their chemico-physical data agree with those 

of authentic commercial samples ((Z)-4a, (E)-4a, (Z)-4h, (E)-4h, (Z)-8a and (E)-8a), or (for cases 

(Z)-4b,14 (E)-4b, 14 (Z)-4c, 15 (E)-4c, 16 (Z)-4d, 17 (E)-4d, 17 (Z)-4e, 18 (E)-4e, 18 (Z)-4f, (E)-4f, 19 (Z)-

4g, 20 (E)-4g, 20 (Z)-8b, (E)-8b, 21 (Z)-8c and (E)-8c22) with those reported in the literature. 

 

7.3.2 Wittig reaction. General method  

 

Potassium tert-butylate (89.6 mg, 0.8 mmol) was added to a mixture of triphenylethyl phosphonium 

bromide (300 mg, 0.8 mmol) [or 373 mg (0.8 mmol) of phenacyltriphenylphosphonium bromide] in 

dry THF (3 mL). The colour of the mixture became orange. After 5 minutes 1 equivalent of aldehyde 

(0.8 mmol) was added. The reaction became instantly white. The reaction course was monitored by 

GC-MS spectroscopy. 

 

(1Z)–prop–1–en–1–ylbenzene (Z)-4a: major product. MS (70 eV, EI): m/z (%) = 118 (M+, 71), 117 (100), 115 

(41), 103 (9), 91 (31), 77 (7), 63 (7), 51 (7). 

 

(1E)–prop–1–en–1–ylbenzene (E)-4a: minor product. MS (70 eV, EI): m/z (%) = 118 (M+, 70), 117 

(100), 115 (40), 103 (9), 91 (30), 77 (7), 65 (9), 51 (9). 

 

1–methyl–2–[(1Z)–prop–1–en–1–yl]benzene (Z)-4b: major product. MS (70 eV, EI): m/z (%) = 132 

(M+, 63), 117 (100), 115 (50), 105 (5), 91 (26), 77 (8), 65 (8), 51 (6). 

 

1–methyl–2–[(1E)–prop–1–en–1–yl]benzene (E)-4b: minor product. MS (70 eV, EI): m/z (%) = 132 

(M+, 61), 117 (100), 115 (47), 105 (12), 91 (26), 77 (9), 65 (10), 51 (7). 

 

1–chloro–2–[(1Z)–prop–1–en–1–yl]benzene (Z)-4c: major product. MS (70 eV, EI): m/z (%) = 152 

(M+, 46), 117 (100), 115 (87), 101 (5), 91 (11), 75 (10), 63 (11), 57 (9), 51 (6). 

 

1–chloro–2–[(1E)–prop–1–en–1–yl]benzene (E)-4c: minor product. MS (70 eV, EI): m/z (%) = 152 

(M+, 49), 117 (100), 115 (83), 101 (4), 91 (15), 75 (9), 63 (11), 57 (9), 51 (8). 
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1,3,5–trimethyl–2–[(1Z)–prop–1–en–1–yl]benzene (Z)-4d: major product. MS (70 eV, EI): m/z (%) 

= 160 (M+, 58), 145 (100), 128 (26), 115 (20), 105 (12), 91 (11), 77 (8). 

 

1,3,5–trimethyl–2–[(1E)–prop–1–en–1–yl]benzene (E)-4d: minor producr. MS (70 eV, EI): m/z 

(%) = 160 (M+, 67), 145 (100), 128 (23), 115 (17), 105 (11), 91 (9), 77 (6). 

 

1–[(1Z)–prop–1–en–1–yl]naphthalene (Z)-4e: major product. MS (70 eV, EI): m/z (%) = 168 (M+, 

49), 153 (100), 139 (8), 128 (4), 115 (10), 83 (5), 76 (3). 

 

1–[(1E)–prop–1–en–1–yl]naphthalene (E)-4e: minor product. MS (70 eV, EI): m/z (%) = 168 (M+, 

51), 153 (100), 139 (6), 128 (5), 115 (11), 83 (9), 76 (4). 

 

9–[(1Z)–prop–1–en–1–yl]anthracene (Z)-4f: major product. MS (70 eV, EI): m/z (%) = 218 (M+, 

75), 203 (100), 189 (11), 108 (9), 101 (14). 

 

9–[(1E)–prop–1–en–1–yl]anthracene (E)-4f: minor product. MS (70 eV, EI): m/z (%) = 218 (M+, 

76), 203 (100), 189 (10), 108 (9), 101 (12). 

 

(2Z)–but–2–en–1–ylbenzene (Z)-4g: major product. MS (70 eV, EI): m/z (%) = 132 (M+, 56), 117 

(100), 115 (42), 91 (40), 78 (9), 65 (11), 51 (9). 

 

(2E)–but–2–en–1–ylbenzene (E)-4g: minor product. MS (70 eV, EI): m/z (%) = 132 (M+, 51), 117 

(100), 115 (44), 104 (4), 91 (37), 77 (12), 65 (13), 51 (12). 

 

(2Z)–oct–2–ene (Z)-4h: major product. MS (70 eV, EI): m/z (%) = 112 (M+, 49), 83 (26), 70 (56), 55 

(100). 

 

(2E)–oct–2–ene (E)-4h: minor product. MS (70 eV, EI): m/z (%) = 112 (M+, 32), 83 (19), 70 (45), 55 

(100). 

 

(2Z)–1,3–diphenylprop–2–en–1–one (Z)-8a: minor product. MS (70 eV, EI): m/z (%) = 208 (M+, 

40), 207 (100), 193 (16), 177 (7), 165 (8), 131 (13), 103 (17), 77 (22), 51 (9). 

 

(2E)–1,3–diphenylprop–2–en–1–one (Z)-8a: major product. MS (70 eV, EI): m/z (%) = 208 (M+, 

60), 207 (100), 191 (4), 179 (19), 165 (10), 131 (28), 103 (25), 77 (55), 51 (18). 
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(2Z)–3–(2–methylphenyl)–1–phenylprop–2–en–1–one (Z)-8b: minor product. MS (70 eV, EI): m/z 

(%) = 222 (M+, 56), 207 (68), 193 (39), 178 (20), 165 (16), 143 (7), 131 (15), 115 (100), 103 (39), 91 

(64), 77 (21), 65 (23) 51 (16). 

 

(2E)–3–(2–methylphenyl)–1–phenylprop–2–en–1–one (E)-8b: major product. MS (70 eV, EI): m/z 

(%) = 222 (M+, 91), 204 (22), 191 (17), 178 (34), 165 (17), 145 (7), 131 (18), 115 (100), 103 (62), 91 

(72), 77 (15), 65 (25) 51 (16). 

 

(2Z)–3–(2–chlorolphenyl)–1–phenylprop–2–en–1–one (Z)-8c: minor product. MS (70 eV, EI): m/z 

(%) = 242 (M+, 11), 207 (100), 178 (9), 137 (5), 105 (11), 89 (4), 77 (19), 51 (5). 

 

(2E)–3–(2–chlorolphenyl)–1–phenylprop–2–en–1–one (E)-8c: major product. MS (70 eV, EI): m/z 

(%) = 242 (M+, 1), 207 (100), 178 (7), 137 (3), 105 (7), 89 (2), 77 (15), 51 (6). 

 

7.3.3 Variable temperature 31P NMR experiments. 

 

7.3.3.1 Case a (reaction with non-stabilized ylide 2). Typical procedure 

 

Potassium tert-butylate (8.96 mg, 0.08 mmol) was added, at room temperature and under argon 

atmosphere, to a mixture of triphenylethyl phosphonium bromide (1, 30 mg, 0.08 mmol) in dry THF 

(2 mL). When the colour of the mixture became orange indicating the formation of the ylide 2, the 

mixture was transferred into an NMR spectroscopy tube and cooled at –78 °C. The 31P NMR 

spectrum of the ylide was recorded at this temperature (δ = 15.1 ppm), then 1 eq. of 3a was quickly 

added and the 31P NMR spectrum of the reaction mixture was recorded. Two new signals appeared in 

the spectrum, at –60.6 ppm (cis-oxaphosphetane), and –60.7 ppm (trans-oxaphosphetane) that 

integrated 9/91, respectively. On gradually warming the temperature of the probe until +25 °C, the 

oxaphosphetane and ylide peaks gradually disappeared, and a new singlet arose at +29.3 ppm (it 

began to appear at about –30 °C) due to the formation of triphenylphosphine oxide. The GC-MS 

analysis of the final reaction mixture showed presence of the E-4a /Z-4a olefins in 18/82 relative 

ratio, as reported in Table 1.  
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7.3.3.2 Case b (reaction with stabilized ylide 7). Typical procedure: 

 

tert-butylate (8.96 mg, 0.08 mmol) was added, at room temperature and under argon atmosphere, to a 

mixture of phenacyltriphenylphosphonium bromide (37.3 mg, 0.08 mmol) in dry THF (2 mL). When 

the colour of the mixture became orange indicating the formation of the ylide. The mixture was 

transferred into an NMR spectroscopy tube and cooled at –100 °C. The 31P NMR spectrum of the 

ylide 7 was recorded at this temperature (17.0 ppm) then 1 eq. of 3a was quickly added and the 31P 

NMR spectrum of the reaction mixture was recorded but in this case no signals in the pentacoordinate 

phosphorus intermediate region were detected. On gradually warming the temperature of the probe 

until +25 °C, the ylide peak gradually disappeared, and a new singlet arose at 29.3 ppm (it appeared 

at about –30 °C) due to the formation of triphenylphosphine oxide. No intermediates were detected 

also when the reaction course was monitored at 0 °C and at 25 °C. The GC-MS analysis of the final 

reaction mixture showed presence of E-8a /Z-8a olefins in 96/4 relative ratio.  
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Chapter 8 
 

 

 

ROLE OF THE HEXACOORDINATION OF PHOSPHORUS: 

SYNTHESIS OF ASYMMETRIC PHOSPHINES1 

 

 

8.1  Introduction 

 

Up to now, many studies have reported that the outcome of the reactions involving phosphorus is 

governed by the formation of pentacoordinate intermediates. The ability of molecule 1 to stabilize 

also hypercoordinated phosphorus intermediates prompted us to verify whether hexacoordinate 

phosphorus intermediates also play a role in determining the stereochemical outcome of reactions 

involving phosphorus species. 

For this purpose, we decided to study what happens when an unsymmetrical bis-Grignard reagent 

such as 1,4-bis(bromomagnesio)pentane (5) is used. In this case the formation of a mixture of 

pentacoordinate intermediates is possible. Addition of a mono-Grignard reagent to these latter could 

give different hexacoordinate intermediates, resulting in different ratios of diastereomeric 

phospholanes such as 7. 

 

8.2 Results and discussion 

 

Asymmetric tertiary phosphines 7a–f have been obtained in different diastereomeric cis/trans ratios 

by reaction between benzothiadiphosphole (1) and the unsymmetrical bis-Grignard reagent 5, 

followed by addition of a mono-Grignard reagent (6a–f). The phosphines cis-7a–f and trans-7a–f 

(each as racemic mixture) were separated as sulfides 8a–f by adding elemental sulfur2 to the crude 

reaction mixture (Scheme 8.1) and fully characterized. For the sake of simplicity only one enantiomer 
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of both cis- and trans- isomers is represented in Scheme 8.1, but each of them is produced as racemic 

mixture. 
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Scheme 8.1. Diastereoselective one-pot formation of phospholanes 7 and their sulfides 8. 

 

The reaction course was monitored by GC-MS, showing the presence, in the reaction mixture, of two 

compounds characterized by the same molecular ion and mass fragmentation, corresponding to the 

two possible, cis- and trans-, isomers. The yields and the relative diastereomeric ratios of the 

products are collected in Table 8.1. 

 

Table 8.1. Reaction results 

RMgX Product (Yield %) a d.r. (cis/trans)b 

6a  (R = methyl) 8a (60) 75 : 25 

6b  (R = ethyl) 8b (70) 70 : 30 

6c  (R = benzyl) 8c (65) 67 : 33 

6d  (R = 2,2-dimethylvinyl) 8d (35) 55 : 45 

6e  (R= i-propyl) 8e (63) 50 : 50 

6f  (R = t-butyl) 8f (62) 5 : 95 

Yields and diastereomeric relative ratios of phosphine sulfides 8a–f. a) Yields of pure isolated sulfides. b) Calculated on 

sulfides by GC-MS. 

 

The cis or trans configuration of each diastereoisomer was established by means of 1H NOE NMR 

experiments on samples containing both the isomers. Because of the overlapping of many signals 

caused by the 1H–31P heteronuclear coupling, the NOE experiments were carried out under 

phosphorus decoupling conditions. A comparison between the relative GC-MS retention times and 
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31P NMR chemical shifts of the two diastereoisomers with data obtained through NOE experiments 

showed that the trans isomer, in all cases, had both the lower retention time and the down-field 31P 

resonance, with respect to the cis-isomer. 

As shown in Table 8.1, the use of Grignard reagents 6a–d gave the corresponding tertiary phosphine 

sulfides in cis/trans ratio slowly decreasing from 75/25 to 55/45 in parallel with the increase of the 

steric hindrance of the R group, whereas the use of a very bulky Grignard reagent, as tert-

butylmagnesium chloride (6f), caused a strong enhancement of the diastereoselectivity degree, but in 

the opposite sense with respect to that observed in cases a–d. A border-line situation occurred using 

isopropyl derivative 6e, that produced equimolar amount of cis and trans isomers. 

The inversion of the diastereoselection observed on going from n-alkyl to more bulky Grignard 

reagents might be explained considering the penta- and hexa-coordinate phosphorus intermediates 

involved in the reaction and shown, in a simplified manner, in Scheme 8.2. 
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Scheme 8.2. Simplified proposed pathways to explain the diastereoselective outcome of the reaction of 

benzothiadiphosphole 1 with the couple bis-Grignard reagent 5 / mono-Grignard reagent. 
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Firstly, we take in consideration the formation of pentacoordinate intermediates. Since the bis-

Grignard reagent 5 is unsymmetrical, in principle, its addition to reagent 1 can produce four possible 

pentacordinate intermediates AI–AIV , whose relative stereochemical relationships are as follows: 

intermediates AI and AII are enantiomeric forms, as well as AIII  and AIV , while AI and AIII , as well as 

AII  and AIV , can be converted into one another through pseudorotation (TR or Berry) processes.3,4 

Since there is an intramolecular overcrowding in trigonal-bipyramidal structures5 the steric factors 

will have a considerable influence on the stability of such intermediates. In particular, one can state 

that AI and AII  will be more favoured than AIII  and AIV , respectively, because in structures AI  and AII  

the methyl substituent of the phospholane ring is bonded to the carbon atom arranged in the less 

sterically hindered equatorial position. As previously reported for the reaction between 1 and 

symmetrical bis-Grignard reagents,5 also in present case pentacoordinate species AI–AIV  are 

stabilized by the presence of three cycles around one phosphorus atom. This increases the life-time of 

these species permitting us to detect them and to follow the reaction course through 31P NMR 

spectroscopy. However, the interconversion rate of these isomers give rise to only one averaged 

signal as two doublets at δ= –10.7 (1JP-P = 196 Hz) and δ= –44.4 (1JP-P = 196 Hz) ppm. 

Nevertheless, the relative stability of pentacoordinate intermediates AI–AIV  is not the factor 

responsible for the stereochemical outcome of our reactions, since in these pentacoordinate 

intermediates the substituent derived from the addition of the mono-Grignard reagent (which drives 

the diastereoselectivity observed) is not yet present. 

An explanation of the results shown in Table 781 can only be made by considering the fate of these 

intermediates when the mono-Grignard reagent is added to them. The nucleophilic attack of the 

mono-Grignard reagent on the pentacoordinate phosphorus atom of intermediates AI–AIV  can 

generate four hexacoordinated diastereomeric forms BI–BIV , each together with its own enantiomeric 

form: these latter species, for sake of simplicity, are neither shown in Scheme 8.3, nor considered in 

the following discussion. In intermediates BI  and BIV  the methyl substituent on the phospholane ring 

and the R group on the hypercoordinate phosphorus atom are in trans relationship, while in BII  and 

BIII  they are in cis relative position and one can evince that trans-forms are less hindered, and thus 

more stable, than cis ones. Hexacoordinate intermediates B spontaneously collapse, as already 

reported,6 giving racemic mixtures of trans- and cis-phospholanes in relative ratio depending on the 

mono-Grignard reagent added to pentacoordinate precursor. 

The possibility that one of the five-membered rings containing P-S bond in AI–IV  is cleaved upon 

addition of the acyclic Grignard reagent to lead another pentacoordinate species with breakage of a P-

S bond can not be completely excluded. In fact, we know that penta- and hexacoordinated species 

may be, in particular conditions, in equilibrium with their ionic forms and, consequently, the 31P 
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NMR signal will be an average of the two forms. However, in the present case, we think that the 

amount of ionic form for B-like species (δ31P ~ –60 ppm) is very low because the hexacoordinate B 

species is stabilized by the presence of the further cycle formed after addition of the bis-Grignard 

reagent. With these considerations in mind, it is very probable that in the case of the hexacoordinate 

species bearing acyclic groups previously reported in ref. 6 (δ31P = –48.7 ppm), not stabilized by this 

further ring, the equilibrium is shifted towards the ionic form, and, consequently, its signal is shifted 

downfield. In this manner is explained the apparent disagreement between the two signals for the two 

different hexacoordinate species. 

The different diastereoselectivity observed on going from case a to f can be explained as follows: in 

cases a–d, in which the steric hindrance of the R substituent is similar and not very high, trans and cis 

hexacoordinate intermediates can be formed in similar amount, but, once formed, cis- form, being 

less stable than trans-form, immediately collapses causing the shift of the equilibria,7 depicted in 

Scheme 8.2, toward the formation of further amount of cis-intermediate, thus providing a final major 

amount of cis-phosphine. On the contrary, in case f, when R = t-Bu, the high steric hindrance of this 

substituent causes formation of hexacoordinate intermediates in very different relative amount, 

favouring trans- species BI and BIV , which can not equilibrate and rapidly collapse giving almost 

exclusively trans phosphine 7f. In the case of i-propyl substituent (case e), all these factors offset 

each other to provide equimolar amount of the two trans- and cis- diastereomeric phosphines 7e. 

This hypothesis not only explains the experimental results, but it has been verified monitoring the 

reaction course by means of 31P NMR spectroscopy. As shown in Figure 6.1 for case a (R=Me), 

chosen as example, after the addition of the bis-Grignard reagent 2 to a solution of compound 1 (Fig. 

8.1, spectrum a), the 31P NMR spectrum of the crude reaction mixture showed (Fig. 8.1, spectrum b) 

disappearance of signals of starting compound 1 and concomitant appearance of a new couple of 

doublets (δ= –10.7 (1JP-P = 196 Hz) and δ= –44.4 ppm (1JP-P = 196 Hz) in the region of 

pentacoordinate species A-like.8,9 

Immediately after the addition of CH3MgBr, appearance of new signals, in low amount, ascribed to 

hexacoordinate intermediates, was detected (Fig. 8.1, spectrum c), together with the signals of the 

diastereomeric tertiary cyclic phosphines 7a (δ= –19.3 and –28.6 ppm) derived from the spontaneous 

and rapid collapse of hexacoordinate species. 
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Figure 8.1. Monitoring over time the reaction course from compound 1 to phosphine sulfides 8a through 31P NMR 

spectroscopy of the crude reaction mixture in THF. 

 

With time, we observed a slow decrease of signals corresponding to pentacoordinate intermediate and 

a concomitant gradual increase of signals belonging to the phosphines, until the situation depicted by 

spectrum d of Fig. 8.1, where the height of the signals ascribed to hexacoordinate intermediates, even 

if low, remain unmodified until the end of the reaction, with concomitant increasing of the signals of 

the diastereomeric phosphines 7a (in Fig. 8.1, spectrum d shows also signals of the magnesium salt of 

residue of 1, and of its neutral form (labelled as 4H). Addition of an excess of elemental sulfur to the 

crude final reaction mixture caused (Fig. 8.1, spectrum e) the shift of the signals of phosphines 7a 

toward those of the corresponding sulphides 8a. 

In case b (R = Et), the 31P NMR spectrum showed two couples of doublets in the region of 

hexacoordinate species10 [δ= 89.4 (d, J = 113 Hz), δ = -61.2 (d, J = 113 Hz) ppm and δ = 85.3 (d, J = 

103 Hz) and δ = -57.0 (d, J = 103 Hz) ppm] which might correspond to the two most stable 

a: reagent 1

b: pentacoordinated intermediate A

c: penta- and  hexacoordinate intermediates A and B and phosphanes 7a

d: intermediate B, phosphanes 7a, residue 4, and its neutral form (4H)

e: phosphane sulphides 8a
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trans-8a
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B
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diastereoisomeric forms B or, more likely, to averaged signals of trans (BI and BIII ) and cis (BII  and 

BIV ) species. In the case a (R = Me) only one doublet was detected (δ = 83.4 ppm (d, J = 115 Hz); δ = 

–61.2 ppm (d, J = 115 Hz) probably belonging to trans-species. 

In case f, when t-BuMgCl was added to the solution containing the pentacoordinate specie, only one 

couple of doublets, in very low amount, appeared in the 31P NMR spectrum, together with the signals 

of tertiary phosphines 7f (with a huge excess of the signal belonging to trans-7f) and of compound 4. 

Probably, in this case the signal of the hexacoordinate intermediate precursor of cis-phosphine is 

present in amount so small as not to be detectable. In all cases, after addition of elemental sulfur to 

the final reaction mixture, 31P NMR spectrum showed mainly signals related to cis/trans phosphine 

sulfides 8. 

 

8.3  Experimental section 

 

8.3.1 General 

 
1H, 13C and 31P NMR spectra were recorded at 400, 100.56 and 161.89 MHz, respectively. 

Phosphorus decoupled 1H NOE NMR spectra were recorded at 600 MHz. Chemical shifts are 

referenced to TMS for 1H NMR in CDCl3, to the solvent for 13C NMR (δ =77.0 ppm for CDCl3) and 

to external standard 85% H3PO4 for 31P NMR. J values are given in Hz. GC-MS analyses were 

performed on an gas chromatograph equipped with a (5%-phenyl)-methylpolysiloxane column (30 m. 

length, 0.250 mm. i.d., 0.25µm thickness), interfaced to a quadrupole mass detector. Mass spectra 

were recorded at an ionisation voltage of 70 eV in the EI mode. All compounds 8a–f showed 

characteristic IR signals at 700–732 cm-1 (P=S). THF was distilled from sodium/benzophenone ketyl, 

and all solvents were purified appropriately and degassed immediately prior to use. All Grignard 

reagents used were commercially available or prepared from bromoalkane and magnesium turnings 

and were titrated immediately prior to use by standard methods. Air- and moisture-sensitive solutions 

and reagents were handled in dried apparatus under dry argon using standard Schlenk-type 

techniques. 
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8.3.2 Synthesis for tertiary cyclic phosphine sulph ides. General procedure 

 

Bis-Grignard reagent 5 (0.333 mmol), prepared from the corresponding bromide and magnesium 

turnings, was added to a solution of benzothiadiphosphole 1 (0.102 g, 0.333 mmol) in anhydrous THF 

(3 mL) under dry argon. After about 10 min, mono-Grignard reagent (RMgX, 0.400 mmol) was 

added. After about 30–40 min, sulphur (0.500 mmol) was added to obtain phosphine sulphides. After 

5–10 min, the reaction mixture was treated with water. Extraction with CH2Cl2, treatment with 

anhydrous Na2SO4 and concentration under vacuum gave a mixture of the phosphine sulphides. 

Phosphine sulfides were purified by bulb-to-bulb distillation and/or by flash chromatography on silica 

gel column (eluent: dichloromethane). 

 

1,2-dimethylphospholane-1-sulphide (8a): colorless oil, b.p.: 140–160 °C (0.1 mmHg, mixture of 

cis and trans isomers); cis-8a: 1H NMR (400 MHz, CDCl3, 25 °C, TMS) δ= 2.40–1.90 (m.s, 3H; 

CHCH3 and CH2P), 1.90–1.76 (m, 2H; CH2), 1.65 (d, 2J(H,P)=12.3 Hz, 3H; CH3P), 1.46–1.30 (m, 

1H), 1.24 (dd, 3J(H,P)=17.3 Hz, 3J(H,H)=7.1 Hz, 3H; CH3CHP), 0.98–0.84 ppm (m, 1H); 13C NMR 

(100.56 MHz, CDCl3, 25 °C) δ=41.4 (d, 1J(C,P)=54.3 Hz; CHP), 34.0 (d, 2J(C,P)=12.2 Hz; CH2), 

33.5 (d, 1J(C,P)=52.1 Hz; CH2P), 23.1 (d, 2J(C,P)=3.9 Hz; CH2), 20.6 (d, 1J(C,P)=53.5 Hz; CH3P), 

12.3 ppm (d, 2J(C,P)=1.6 Hz; CH3CHP); 31P NMR (161.89 MHz, CDCl3, 25 °C, ext. H3PO4): δ= 60.2 

ppm (m); MS (70 eV): m/z (%): 148 (M+, 100), 133 (32), 120 (41), 115 (29), 106 (30), 94 (14), 78 

(34), 63 (47). trans-8a: 1H NMR (400 MHz, CDCl3, 25 °C, TMS) δ= 2.40–1.90 (m.s, 3H; CHCH3 

and CH2P), 1.90–1.76 (m, 2H; CH2), 1.77 (d, 2J(H,P)=12.6 Hz, 3H; CH3P), 1.46–1.30 (m, 1H), 1.25 

(dd, 3J(H,P)=17.7 Hz, 3J(H,H)=6.9 Hz, 3H; CH3CHP), 0.98–0.84 ppm (m, 1H); 13C NMR (100.56 

MHz, CDCl3, 25 °C) δ=35.5 (d, 1J(C,P)=50.1 Hz; CHP), 34.8 (d, 1J(C,P)=51.3 Hz; CH2P), 32.7 (d, 
2J(C,P)=14.9 Hz; CH2), 22.3 (d, 2J(C,P)=3.1 Hz; CH2), 21.5 (d, 1J(C,P)=47.5 Hz; CH3P), 14.1 ppm 

(s; CH3CHP); 31P NMR (161.89 MHz, CDCl3, 25 °C, ext. H3PO4): δ=61.9 ppm (m); MS (70 eV): m/z 

(%):148 (M+, 100), 133 (28), 120 (39), 115 (15), 106 (50), 94 (19), 78 (48), 63 (42). Elemental 

analysis calcd (%) for C6H13PS: C 48.62, H 8.84; found: C 48.44, H 8.81. 

 

1-ethyl-2-methylphospholane-1-sulphide (8b): colorless oil, b.p.: 145–155 °C (0.1 mmHg, mixture 

of cis and trans isomers); cis-8b: 1H NMR (400 MHz, CDCl3, 25 °C, TMS) δ= 2.50–1.60 (m.s, 7H; 

CH and CH2), 1.60–1.23 (m, 4H), 1.35 (dd, 3J(H,P)=16.3 Hz, 3J(H,H)=7.4 Hz, 3H; CH3CHP), 1.09–

0.50 ppm (m, 1H); 13C NMR (100.56 MHz, CDCl3, 25 °C) δ=42.0 (d, 1J(C,P)=51.5 Hz; CH), 34.3 (d, 
2J(C,P)=10.9 Hz; CH2), 31.5 (d, 1J(C,P)=50.3 Hz; CH2), 23.1 (d, 2J(C,P)=3.4 Hz; CH2), 22.1 (d, 
1J(C,P)=45.7 Hz; CH2), 12.4 (d, 2J(C,P)=1.6 Hz; CH3CHP), 6.4 ppm (d, 2J(C,P)=4.7 Hz; CH3CH2P); 
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31P NMR (161.89 MHz, CDCl3, 25 °C, ext. H3PO4): δ=68.7 ppm (m); MS (70 eV): 162 (M+, 93), 134 

(100), 119 (11), 106 (19), 100 (14), 92 (26), 63 (35). trans-8b: 1H NMR (400 MHz, CDCl3, 25 °C, 

TMS) δ=2.50–1.60 (m.s, 7H; CH and CH2), 1.60–1.38 (m, 4H), 1.40 (dd, 3J(H,P)=17.5 Hz, 
3J(H,H)=7.6 Hz, 3H; CH3CHP), 1.09–0.50 ppm (m, 1H); 13C NMR (100.56 MHz, CDCl3, 25 °C) 

δ=36.6 (d, J= 9.9 Hz; CH2), 33.7 (d, 1J(C,P)=51.0 Hz; CH), 33.0 (d, 1J(C,P)=50.9 Hz; CH2), 26.9 (d, 
1J(C,P)=48.3 Hz; CH2), 23.4 (d, 2J(C,P)=4.3 Hz; CH2), 14.4 (s, CH3), 6.9 ppm (d, 2J(C,P)=4.3 Hz; 

CH3CH2P), 31P NMR (161.89 MHz, CDCl3, 25 °C, ext. H3PO4): δ=71.6 ppm (m); MS (70 eV): m/z 

(%): 162 (M+, 84), 134 (100), 119 (10), 106 (15), 100 (12), 92 (35), 63 (36). Elemental analysis calcd 

(%) for C7H15PS: C 51.82, H 9.32; found: C 51.90, H 9.35. 

 

1-benzyl-2-methylphospholane-1-sulphide (8c): colorless oil, b.p.: 145–165 °C (0.1 mmHg, 

mixture of cis and trans isomers); cis-8c: 1H NMR (400 MHz, CDCl3, 25 °C, TMS) δ= 7.37–7.25 

(m.s, 5H; Ph), 3.20 (dd, J=14.4 Hz, J=14.4 Hz, 1H; CH2Ph), 3.11 (dd, J=13.7 Hz, J=8.9 Hz, 1H; 

CH2Ph), 2.44–0.82 ppm (m.s, 7H), 1.32 ppm (dd, 3J=16.1 Hz, 3J=6.9 Hz, 3H; CH3CHP); 13C NMR 

(100.56 MHz, CDCl3, 25 °C) δ=131.5 (d, J(C,P)=7.9 Hz; C), 130.4 (d, J(C,P)=4.8 Hz; CH), 128.8 (d, 

J(C,P)=2.4 Hz; CH), 127.5 (d, J(C,P)=3.2 Hz; CH), 42.8 (d, 1J(C,P)= 50.9 Hz; CH), 37.6 (d, 
1J(C,P)=39.2 Hz; CH2), 34.2 (d, 2J(C,P)= 10.4 Hz; CH2), 30.5 (d, 1J(C,P)=50.6 Hz; CH2), 23.0 (d, 
2J(C,P)=4.7 Hz; CH2), 12.4 ppm (d, 2J(C,P)=1.6 Hz; CH3); 

31P NMR (161.89 MHz, CDCl3, 25 °C, 

ext. H3PO4) δ=65.6 ppm (m); MS (70 eV): m/z (%): 224 (M+, 93), 133 (99), 91 (100), 63 (30). trans-

8c: 1H NMR (400 MHz, CDCl3, 25 °C, TMS) δ=7.38–7.25 (m.s, 5H; Ph), 3.36 (d, J=13.7 Hz, 2H; 

CH2Ph), 2.44–0.82 ppm (m.s, 7H), 1.14 ppm (dd, 3J=17.6 Hz, 3J=6.9 Hz, 3H; CH3CHP); 13C NMR 

(100.56 MHz, CDCl3, 25 °C) δ=132.1 (d, J(C,P)=7.9 Hz; C), 129.9 (d, J(C,P)=4.8 Hz; CH), 128.9 (d, 

J(C,P)=3.3 Hz; CH), 127.6 (d, J(C,P)=3.3 Hz; CH), 42.2 (d, 1J(C,P)=41.0 Hz; CH2), 34.4 (d, 
2J(C,P)=10.4 Hz; CH2), 33.3 (d, 1J(C,P)=51.7 Hz; CH2), 33.1 (d, 1J(C,P)=50.6 Hz; CH), 23.6 (d, 
2J(C,P)=4.4 Hz; CH2), 14.2 ppm (CH3); 

31P NMR (161.89 MHz, CDCl3, 25 °C, ext. H3PO4): δ=68.1 

ppm (m); MS (70 eV): m/z (%): 224 (M+, 81), 133 (94), 91 (100), 63 (27). Elemental analysis calcd 

(%) for C12H17PS: C 64.26, H 7.64; found: C 64.14, H 7.67. 

 

2-methyl-1-(2-methylprop-1-en-1-yl)phospholane 1-sulphide (8d): colorless oil, mixture of cis and 

trans isomers; cis-8d:  1H NMR (400 MHz, CDCl3, 25 °C, TMS) δ= 5.62 (d, 2J(H,P)=24.0 Hz; 

=CHP), 2.60–1.86 (m, 3H; CH and CH2), 2.30 (dd, J=2.5 Hz, J=1.0 Hz, 3H; CH3CH=), 1.91 (dd, 

J=1.1 Hz, J=1.1 Hz, 3H; CH3CH=), 1.70–1.58 (m, 2H), 1.48–1.24 (m, 1H), 1.29 (dd, 2J(H,P)=18.0 

Hz, 3J(H,H)=6.3 Hz, 3H; CH3CHP), 1.00–0.78 ppm (m, 1H); 13C NMR (100.56 MHz, CDCl3, 25 °C) 

δ=133.3 (d, 2J(C,P)=10.5 Hz; (CH3)2C=), 114.6 (d, 1J(C,P)=72.3 Hz; C=CHP), 43.8 (d, 1J(C,P)=55.2 
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Hz; CHP), 35.7 (d, 1J(C,P)=55.1 Hz; CH2), 34.1 (d, 2J(C,P)=10.3 Hz; CH2), 28.8 (d, 3J(C,P)=16.2 Hz; 

CH3C=CHP), 23.4 (d, 2J(C,P)=4.6 Hz; CH2), 22.0 (d, 3J(C,P)=7.9 Hz; CH3=CHP), 13.1 ppm (d, 
2J(C,P)=1.7 Hz; CH3CHP); 31P NMR (161.89 MHz, CDCl3, 25 °C, ext. H3PO4): δ=51.4 ppm (m); MS 

(70 eV): m/z (%): 188 (M+, 100), 173 (11), 155 (15), 133 (31), 117 (9), 99 (21), 86 (21), 63 (36). 

trans-8d: 1H NMR (400 MHz, CDCl3, 25 °C, TMS) δ=5.53 (d, 2J(H,P)=24.4 Hz; =CHP), 2.58–1.84 

(m, 3H; CH and CH2), 2.20 (dd, J=2.4 Hz, J=1.1 Hz, 3H; CH3CH=), 1.95 (dd, J=1.2 Hz, J=1.2 Hz, 

3H; CH3CH=), 1.70–1.56 (m, 2H), 1.46–1.22 (m, 1H), 1.23 (dd, 2J(H,P)=16.8 Hz, 3J(H,H)=6.7 Hz, 

3H; CH3CHP), 1.02–0.76 ppm (m, 1H); 13C NMR (100.56 MHz, CDCl3, 25 °C): δ=133.4 (d, 
2J(C,P)=11.0 Hz; (CH3)2CH=), 120.5 (d, 1J(C,P)=73.6 Hz; C=CHP), 36.7 (d, 1J(C,P)=54.9 Hz; CH2), 

36.6 (d, 1J(C,P)=54.6 Hz; CH), 34.3 (d, 2J(C,P)=10.0 Hz; CH2), 28.2 (d, 3J(C,P)=16.2 Hz; 

CH3=CHP), 23.0 (d, 2J(C,P)=4.0 Hz; CH2), 21.9 (d, 3J(C,P)=8.0 Hz; CH3=CHP), 14.2 ppm (s, 

CH3CHP); 31P NMR (161.89 MHz, CDCl3, 25 °C, ext. H3PO4): δ=53.9 ppm (m); MS (70 eV): m/z 

(%): 188 (M+, 100), 173 (11), 155 (12), 133 (29), 119 (9), 99 (12), 86 (14), 63 (33). Elemental 

analysis calcd (%) for C9H17PS: C 57.42, H 9.10; found: C 57.21, H 9.13. 

 

1-isopropyl-2-methylphospholane-1-sulphide (8e): colorless oil, b.p.: 145–165 °C (0.1 mmHg, 1:1 

mixture of cis and trans isomers); 1H NMR (400 MHz, CDCl3, 25 °C, TMS) δ= 2.40–2.20 (m, 2H), 

2.16–1.85 (m, 4H), 1.70–1.33 (m, 2H), 1.32–1.15 ppm (m, 9H); 13C NMR (100.56 MHz, CDCl3, 25 

°C) δ=42.9 (d, 1J(C,P)=49.0 Hz; CH), 34.9 (d, 2J(C,P)=5.5 Hz; CH2), 34.8 (d, 2J(C,P)=5.0 Hz; CH2), 

32.8 (d, 1J(C,P)=49.9 Hz; CH), 32.4 (d, 1J(C,P)=49.9 Hz; CH2), 31.0 (d, 1J(C,P)=49.5 Hz; CH2), 30.9 

(d, 1J(C,P)=46.4 Hz; CH), 26.8 (d, 1J(C,P)=44.6 Hz; CH), 23.7 (d, 2J(C,P)=4.2 Hz; CH2), 22.7 (d, 
2J(C,P)=4.0 Hz; CH2), 17.0 (d, 2J(C,P)=2.5 Hz; CH3), 16.9 (d, 2J(C,P)=1.8 Hz; CH3), 16.5 (d, 
2J(C,P)=1.9 Hz; CH3), 15.8 (d, 2J(C,P)=2.4 Hz; CH3), 14.7 (CH3), 13.5 ppm (d, 2J(C,P)=1.7 Hz; 

CH3); cis-8e: 31P NMR (161.89 MHz, CDCl3, 25 °C, ext. H3PO4): δ=76.4 ppm (m); MS (70 eV): m/z 

(%): 176 (M+, 59), 134 (100), 119 (11), 106 (15), 100 (14), 92 (15), 63 (26). trans-8e: 31P NMR 

(161.89 MHz, CDCl3, 25 °C, ext. H3PO4): δ= 79.5 ppm (m); MS (70 eV): m/z (%): 176 (M+, 56), 134 

(100), 119 (10), 106 (13), 100 (14), 92 (15), 63 (21). Elemental analysis calcd (%) for C8H17PS: C 

54.51, H 9.72; found: C 54.43, H 9.69. 

 

1-tert-butyl-2-methylphospholane-1-sulphide (8f): colorless oil, b.p.: 180–200 °C (0.1 mmHg, 

mixture of cis and trans isomers); cis-8f: 1H NMR (400 MHz, CDCl3, 25 °C, TMS) δ=2.45–2.12 (m, 

2H), 2.12–1.82 (m, 2H), 1.68–1.51 (m, 2H), 1.42 (dd, J= 15.1 Hz, J= 7.3 Hz, 3H), 1.31 (d, J= 15.5 

Hz, 9H), 1.01–0.78 ppm (m, 1H); 31P NMR (161.89 MHz, CDCl3, 25 °C, ext. H3PO4): δ=83.0 ppm 

(m); MS (70 eV): m/z (%): 190 (M+, 39), 134 (100), 119 (10), 100 (13), 92 (30), 69 (22), 63 (31), 57 
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(66). trans-8f : 1H NMR (400 MHz, CDCl3, 25 °C, TMS) δ=2.50–2.40 (m, 1H), 2.22–2.13 (m, 1H), 

2.14–2.00 (m, 2H), 1.93–1.53 (m, 2H), 1.26 (dd, J1= 16.4 Hz, J2= 7.0 Hz, 3H), 1.24 (d, J= 15.7 Hz, 

9H), 1.01–0.78 ppm (m, 1H); 13C NMR (100.56 MHz, CDCl3, 25 °C) δ=35.1 (d, 2J(C,P)=9.0 Hz; 

CH2), 33.7 (d, 1J(C,P)=44.1 Hz; C), 31.3 (d, 1J(C,P)=48.9 Hz; CH2), 30.0 (d, 1J(C,P)=47.6 Hz; CH), 

24.9 (d, 2J=(C,P)=1.5 Hz; CH3), 24.5 (d, J(C,P)=3.3 Hz; CH2), 15.0 ppm (CH3); 
31P NMR (161.89 

MHz, CDCl3, 25 °C, ext. H3PO4): δ=86.1 ppm (m); MS (70 eV): m/z (%): 190 (M+, 37), 134 (100), 

119 (23), 92 (23), 101 (22), 64 (79), 57 (67). Elemental analysis calcd (%) for C9H19PS: C 56.81, H 

10.06; found: C 56.87, H 10.09. 
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With the term “prebiotic chemistry” we mean all reactions which could lead 

to the beginning of life, without the intervention of biological molecules. 

We think that these reactions occur in water, in mild conditions, at room 

temperature (or at max 40 °C) and with simple molecules present in 

primordial Earth. 

These reactions should have led to more complex compounds (RNA, DNA, 

enzymes, etc.) which have started to life. 
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Chapter 9 
 
 
 

ORIGIN OF LIFE 

 
 

9.1 Origin of life theories 

 

How life began on Earth is one of the great scientific mysteries. However, the question how do 

simple organic molecules go towards the life is largely unanswered even if there are many 

hypotheses. Some of these postulate the early appearance of nucleic acids (“RNA-first”) whereas 

others postulate the evolution of simple biochemical reactions and pathways first (“metabolism-

first”).  

There are many other theories about the origin of life. 

The first question, to which scientist have tried to answer, is how the first organic molecules (amino 

acids, sugars and other simple molecules) are originated. 

Miller and Urkey1 have conducted some experiments using a mixture of ammonia, methane, 

hydrogen, nitrogen, carbon’s oxides and water steam, irradiating the mixture with electricity. From 

this experiment they obtain a complex mixture containing some molecules such amino acids, 

aldehydes and ureas (scheme 9.1). 
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Scheme 9.1 schematization of Miller-Urkey results. 

 

 

 

Other similar experiments were conducted by Orò with cyanuric acid to obtain Adenine (scheme 9.2). 

 

H N
N

N N
H

N

NH2

5

cyanuric acid

adenine  
Scheme 9.2 Experiment of Orò. 

 

The second question concerns the synthesis of polipeptides, Fox and Bada2 have hypothesized that 

the poliphosphates could promote a synthesis of proteins. 

Other scientists consider that origin of life could not have happened in water but on the mineral 

surfaces, which would function as catalyst, promoting the formation of lipidic “bubbles”, which took 
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place the peptide synthesys. An other similar theory, postulated by Graham Cairns-Smith, believes 

that the life could occur on a silicate surface (clay).3  

All these theories belong to the metabolic approach.  

The RNA-world, probably, is the most accredited theory to explain the origin of life. 

In this theory the life starts after the formation of RNA molecules, which may have catalyzed the 

other biological reactions, as they can function as enzymes (ribozime). 

Some theories believe that may have existed molecules similar to RNA but more simple, these 

compounds would be more stable respect to the RNA. One of these molecules is PNA4 (figure 9.1), 

but many other were hypothesized (TNA, GNA, etc.), among these are also the PHA (Policyclic 

hydrocarbons aromatic). 

 

 
Figure 9.1 PNA fragment. 

 

The last question is the origin of the homochirality. Intervention of ribozime could be explain the 

homochirality, but in the last years has evolved a new theory, hypothesized that the homochirality is 

due to the amino acid Serine, which forms a strong bond whit other amino acids with similar 

chirality. 
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Chapter 10 

 

 

 

THE STRANGE STABILITY OF THE PHOSPHOENOLPYRUVATE 

(PEP)1 

 

 

10.1 Introduction 
 

The chief obstacle to understand the metabolic origin of life or RNA-based life is to identify a 

plausible mechanism for overcoming the clutter wrought by abiotic chemistry2. Probably from simple 

abiotic and then prebiotic reactions we could arrive to simple pre-RNA molecules.  

This yet unknown, but possible, “self-organized, or autocatalytic mechanism, or driver reaction”3 

might be active also in controlling the easy formation and activity of small molecules such as 

phosphoenolpyruvate (PEP) or others related simple phosphorus compounds and in explaining their 

high performance in the process of phosphorylation which is essential in the chemical evolution of 

life. 

Most of the reactions occurring through organophosphorus intermediates are drived by the ability of 

the phosphorus to form “hypercoordinate” species, mainly penta- and hexa-coordinate,4,5 which are 

fluxional species because they may undergo positional changes among substituents. For example, 

phosphoryl transfer reactions, which are basic biological processes, are generally assumed to involve 

pentacoordinated intermediates, that influence the outcome of the reactions.6 The trigonal 

bipyramidal geometry (TBP) represents the most common structure of pentacoordinated phosphorus 

intermediates. 

Sufficiently long-lived pentacoordinated intermediates can undergo stereomutation or positional 

interchange of the substituents at pentacoordinated phosphorus by a Turnstile rotation7 (TR) or a 

resultwise equivalent Berry pseudorotation8 (BPR) that are very rapid processes, since the energy 

barriers of pseudorotation are usually relatively low.9 The relative position of the substituents in 

pentacoordinated compounds depends on their steric hindrance and apicophilicity. Apicophilicity is 

the relative preference of substituents to occupy the apical positions as opposed to the equatorial 
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positions in trigonal bipyramidal (TBP) structures: a number of experimental results and theoretical 

calculations have indicated a general propensity of the more electronegative substituents to prefer the 

apical positions; in addition, bulky ligands prefer the equatorial positions.10 Their stability strongly 

depends from their structure; in particular, when it is possible, the formation of a cycle around the 

pentacoordinate phosphorus atom is favored over that of the corresponding acyclic intermediate by a 

factor of 106–108, as reported by Westheimer.11 In this way any other possible collateral reaction in 

which the phosphorus atom belongs to an acyclic pentacoordinate intermediate is practically 

minimized or annulled. 

From these considerations it can be deduced that the super-activated formation of cyclic 

pentacoordinate phosphorus intermediates might be a possible candidate for this hypothesized 

important “self-organized or autocatalytic mechanism” acting either on simple molecules or on 

complex molecules in processes in which phosphorylation or dephosphorylation reactions are 

involved, processes which are the centerpiece for the evolution of life. In fact, strongly activated 

phosphorylation processes involving small molecules as the so-called “high-energy” biomolecules 

(e.g. PEP) might be explained postulating the very favored formation of cyclic pentacoordinate 

phosphorus intermediates.6,12,13 

We have study the hydrolysis of PEP to explain why PEP is a very powerful phosphorylating agent 

for alcohol moiety in metabolic processes but is very stable in water and to see if the mechanism 

found for PEP may be applied also to the non-enzymatic cleavage or elongation of RNA molecules. 

PEP is a simple three-carbon molecule, containing a phosphoryl group, that occupies a central role in 

primary metabolism, it is a very strong phosphorylating agent, permitting a wide range of metabolic 

events.14 It might be one of the first prebiotic molecules originating probably from glucose in an 

aqueous puddle of the primitive Earth.15 

PEP is a compound very stable in aqueous solution. In fact, the non-enzymatic hydrolysis of PEP 

occurs at high temperature (60–75 °C), while the hydrolytic rate is enhanced at room temperature 

only in the presence of several metal ions.16 In contrast, when PEP is in the presence of alcohol it is 

very unstable and immediately the formation of phosphorylation products occurs. What is the reason 

of these contrasting behaviours? 

Benkovic17 studied the non-enzymatic hydrolysis of PEP and postulated a mechanism in which the 

cyclic phosphate 2 (Scheme 9.1), isolated by Kirby,18 is involved as intermediate. Consequently, they 

supposed the formation of a cyclic pentacoordinate phosphorus intermediate or transition state as 

precursor of the cyclic phosphate 2. 
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10.2 Results and discussion 
 

10.2.1 Hydrolysis of PEP 
 

We have reinvestigated this non-enzymatic hydrolysis of PEP by following the course of the reaction 

by 31P NMR spectroscopy. On the basis of our spectroscopic studies, reported below, and on the basis 

of the large number of studies that now exist concerning cyclic hypervalent phosphorus 

intermediates6,19 we have drawn a mechanism which give a clear explanation of the contrasting 

behaviour of PEP. In other words, we will explain why PEP is very resistant to hydrolysis while it is, 

in apparent contrast, a powerful phosphorylating agent of alcohols (e.g. it easily undergoes addition 

of methanol). This phenomenon can be explained as shown in Scheme 10.1. 
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Scheme 10.1. Mechanism of non-enzymatic hydrolysis of PEP. When dissolved in water (neutral conditions) at room 

temperature PEP (1) exists prevalently in the cyclic form TBP1, stable at least for four months. In acidic (pH~2) aqueous 

solution 1 is completely hydrolyzed giving H3PO4 and pyruvic acid in about three months. In acidic (pH~2) aqueous 

solution and at 60 °C 1 is completely hydrolyzed after 6 hours. Intermediate 2 is very important in this process. 

 

An intramolecular nucleophilic attack, via b, by the hydroxyl oxygen atom of the carboxy group to 

the P=O group of PEP (1) could form a cyclic pentacoordinate phosphorus intermediate such as 

TBP1 which is more stable of a factor of about 106-8 with respect to the corresponding acyclic 
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pentacoordinate intermediate acTBP1 derived by the attack of water, via a, on the same P=O group 

(Scheme 1). As a consequence of this huge rate difference between intra- and intermolecular 

pathways a and b, water cannot attack P=O group of PEP and this explains the great stability of PEP 

in water. Decomposition of TBP1, via c, by elimination of water, gives, in very small amount, the 

cyclic phosphate intermediate 2. Addition of water to 2 could give again intermediate TBP1 together 

with TBP2. Permutational isomerization of TBP1 might also give the pentacoordinate intermediate 

TBP2. On the other hand, since the more electron-acceptor group tends to prefer the apical positions, 

the formation of the intermediate TBP2 is very disfavoured with respect to that of TBP1 (in fact, the 

PO-C=O group, in apical position in TBP1, is more apicophilic than the PO-C=C– group, in apical 

position in TBP2). 

Then, decomposition of the intermediate TBP2, via e, gives pyruvoyl dihydrogen phosphate (3) 

which now can undergo easily an attack by water. In this manner is formed pentacoordinate 

phosphorus compound 1-oxo-1-[(tetrahydroxyphosphoranyl)oxy]acetone (4), which immediately 

collapses to pyruvic acid and phosphoric acid. From Scheme 10.1 it is evident that hydrolysis comes 

only from the intermediate TBP2 derived principally from 2. A small portion of TBP2 could derive 

from TBP1 but this process might be very disfavoured in normal reaction conditions (room 

temperature and absence of metal ions) where TBP1 is presumably largely favoured over TBP2 

because the PO-C=O group is more apicophilic than the PO-C=C- group. 

With these considerations in mind, we carried out hydrolysis of PEP in different experimental 

conditions and the reaction course was followed through 31P NMR spectroscopy. 

When PEP was dissolved at room temperature in neutral aqueous solution we noted only the 

formation of an intermediate which spectroscopic data are (Figure 10.1) in agreement with structure 

TBP1 (Scheme 10.1). 

 

 

 

 

 

 

 

 

 

Figure 10.1. Expanded views of 31P NMR (right, δ31P = –3.8 ppm) and 13C NMR spectra of PEP dissolved in D2O: δ13C = 

166.6 (d, J= 6.9 Hz), 144.6 (d, J= 7.1 Hz), 109.2 ppm (d, J= 3.8 Hz). 
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This compound gives a signal, in 31P NMR spectrum, at δ31P = –3.8 ppm. It is stable also after several 

months and not intermediates as 2, TBP2, 4, neither trace of phosphoric acid are found also after four 

months. It should be noted that the 31P NMR chemical shift of PEP in water it has been reported19 to 

be δ= – 3.61 ppm, in agreement with our findings. 

The hypothesis that PEP in aqueous solution is in a cyclic form, and consequently with the 

phosphorus atom in a pentacoordinate state, was confirmed by 13C NMR analysis (Figure 10.1). The 

obtained spectral data: δ13C = 166.6 (d, J= 6.9 Hz), 144.6 (d, J= 7.1 Hz), 109.2 ppm (d, J= 3.8 Hz) are 

consistent with a cyclic structure for TBP1. Particularly diagnostic are the very close values of the 

two coupling constants of the signals belonging to the carboxyl carbon atom (C-1) and to the vinylic 

carbon atom (C-2) that indicate that they are members of a cyclic structure. In fact, in the acyclic 

structure 1, these coupling constant values can not expected to be so similar, because vinylic carbon 

atom is characterized by a 2JP-C coupling constant, while for the carboxyl carbon atom a smaller 3JP-C 

must be found. These considerations are supported also by the fact that similar values of 2JP-C 

coupling constant were found for the cyclic compound 2, prepared as reported in literature.19 These 

data demonstrate that PEP in aqueous solution is very stable and, surprisingly, it is prevalently in a 

cyclic form in which its phosphorus atom is pentacoordinate, as well described by the structure of 

TBP1. It should be noted that X-Ray diffraction analysis of PEP in solid state revealed that it is an 

acyclic compound.21 

When the hydrolysis of PEP was carried out in acidic conditions (pH~2), at room temperature, we 

observed again the immediate formation of TBP1 but also the slow formation of the final product of 

hydrolysis (phosphoric acid, δ31P = 0.5 ppm). The reaction reached the end point after about three 

months. 

Furthermore, when this reaction was carried out at 60 °C, after one hour we observed again a high 

intensity signal of TBP1, a very small and transient signal probably belonging to compound 2 (δ31P = 

+2.4 ppm), a low intensity signal ascribed to 4 (δ31P = –10.0 ppm) and a consistent signal of 

phosphoric acid. At the end of the reaction, after about 6 hours, only the signal of phosphoric acid 

was present in the 31P NMR spectrum. 

 

10.2.2 Hydrolysis of cyclic phosphate 2 
 

Probably, the true powerful phosphorylating agent in this mixture of intermediates is the cyclic 

phosphate 2. A demonstration of this statement comes from the hydrolysis of compound 2. In fact, 

when we carried out, at room temperature, the hydrolysis on pure compound 2, synthesized by using 

the procedure reported by Kirby,18 we saw (by following the reaction course through 31P NMR 
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spectroscopy) the immediate appearance of a broad signal at δ31P = –3.7 ppm, ascribed to TBP1 and 

TBP2, probably in equilibrium. After a few minutes a sharp signal of TBP1 (δ31P = –3.8) and an high 

intensity signal of phosphoric acid (δ31P = +0.7 ppm) together with a low intensity signal of 4, 

appeared (see Scheme 10.1). When, at this point, the reaction temperature was raised until 60 °C we 

observed, after two additional hours, the total disappearance of TBP1 and the total formation of 

phosphoric acid. 

This can be explained in this manner. Addition of water to 2 is very fast because it is carried out on a 

phosphoryl group of a cyclic compound which is more activated of about 106-8 fold with respect to a 

correspondent acyclic compound. In this case the addition of water can occur in two directions with 

the same probability. The one opposite to the bond PO-CO- give pentacoordinate intermediate TBP1, 

the other opposite to the bond POC=C- give pentacoordinate intermediate TBP2. 

Intermediate TBP2 which, in the first time, is the 50% of the two intermediates, immediately gives 

pyruvic acid and phosphoric acid probably via the pyruvoyl dihydrogen phosphate (3) and, after 

addition of water, via intermediate 4 which immediately collapses to pyruvic acid and phosphoric 

acid. A small part of TBP2 might be also trasformed into its isomer TBP1. The intermediate TBP1 is 

very stable and then it can interconvert to isomer TBP2 or it can be transformed in compound 2 only 

when the reaction is carried out at 60 °C. In this manner all initial compound 2 is totally hydrolyzed 

after about two additional hours. 

 

10.2.3 Addition of methanol to 2 and to PEP 
 

Firstly we will discuss what happen during the phosphorylation of an alcohol (methanol) starting 

from compound 2, then we will report the results of our study on the case of PEP. 

Theoretcally, the dissolution of compound 2 in dry methanol should produce, as first intermediates, 

TBP3 and TBP4 (Scheme 10.2). But these intermediates, having in apical positions a OMe group, 

prefer to permutate (by TR process7) to the corresponding isomers TBP5 and TBP6 where in apical 

position there is an OH group which is more apicophilic than OMe. In fact, OMe is bulkier than OH. 

If the reaction is carried out with an alcohol larger than methanol, this preference would be greater 

than with methanol. In this manner, having only intermediates TBP5 and TBP6 in which OMe group 

is in equatorial position it is not possible to have elimination of MeOH with reformation of 2 (it 

should be remembered that in a TBP pentacoordinate intermediate the departure of a group can occur 

only when it is in apical positions).22, 23 On the contrary, in the case of addition of water to 2 (above 

experiment, Scheme 10.1) we have always intermediate TBP1 or TBP2 in which it is possible to 

eliminate water with reformation of 2, and for this reason the total rate of the hydrolysis is very slow. 
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These considerations should explain why PEP prefers to phosphorylate an alcohol rather than water. 
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Scheme 10.2. Phosphorylation of methanol starting from pure 2. 

 

Experimentally we found a confirmation of this hypothesis. When compound 2 was treated with dry 

methanol at room temperature and the course of reaction followed by 31P NMR spectroscopy we 

observed the immediate appearance of a signal at 31P NMR (δ31P = –2.6 ppm) ascribed to TBP5 and 

TBP6, probably in rapid equilibrium, as found for TBP1 and TBP2 in the case of PEP. After a few 

minutes the formation of methyl cyclic phosphate 5 (δ31P = +2.4 ppm) occurred with concomitant 

decrease of signal of TBP5 and TBP6. After about three hours prevalent presence of 5 was detected. 

By addition of water to the methanolic solution of 5 we observed, after one hour, in 1H and 31P MMR 

spectra, the formation of methyl phosphate 6 (δ31P = +1.5 ppm) and pyruvic acid. Subsequently, these 

results were confirmed when we dissolved PEP (1) in a solution of dry methanol at 60 °C. In this case 

we found similar results. 
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10.2.4 Hydrolysis of PEP in the presence of metal i ons 
 

When the hydrolysis of PEP is carried out in presence of some metal ions such as Mg++ or Hg++ the 

hydrolytic rate is enhanced. Benkovic16 studied the catalytic activity of these metal ions on the 

hydrolysis of PEP via kinetic measurements. He found for Mg++ a good activity but surprisingly for 

Hg++ he found an increase of the hydrolysis rate of a factor of about 106, similar to that of the 

enzymatic hydrolysis. Now, with our knowledge about the factors which influence the apicophilicity 

of a group we could explain also this catalytic activity. 

It is well-known24 that mercury ion forms labile interactions with olefin bond. In analogous manner 

the POC=C- group in TBP2 is coordinated with Hg++ and consequently this group becomes more 

apicophilic than PO-C=O, so stabilizing the intermediate TBP2. In this manner (Scheme 10.3) the 

equilibrium is totally shifted towards Hg-TBP2 in which the POC=C-Hg group, owing to its high 

electron-withdrawing power, is the most apicophilic and thus the best leaving group. This causes the 

immediate apical departure of this substituent and the formation of the acyclic pyruvoyl dihydrogen 

phosphate (3) which immediately undergoes hydrolysis. 
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Scheme 10.3. Metal ions catalysis in PEP hydrolysis 

 

Actually, when the hydrolysis of PEP was carried at room temperature in the presence Hg++ ions, and 

the reaction course was followed by 31P NMR spectroscopy, we observed the immediate appearance 

of a signal at δ31P = –4.1 ppm, probably belonging to Hg-TBP2 and the concomitant appearance of 

the signal of phosphoric acid. The end of the reaction occurred after about 4 days at room 

temperature. When the same reaction was carried out at 60 °C it appeared to be complete after few 

minutes. When the hydrolysis of PEP was carried at room temperature in presence of Mg++ ions we 

observed, after 20 minutes, a signal at δ31P = –4.3 ppm indicating the presence of a complex with 

Mg++ (Mg-TBP1 in Scheme 9.3) together with the signal of phosphoric acid. At the end of the 
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reaction, after about 4 months, we observed only the signal of phosphoric acid. When this reaction 

was carried out at 60 °C, its end point occurred after 4 hours. Probably in this case the coordination of 

Mg with the two oxygen atoms, as depicted in Scheme 10.3, favors the departure of the OH group in 

apical position causing the formation of compound 2, which is the true phosphorylating agent. 

In all these mechanisms it has not to excluded the formation of hexacoordinated species which are 

probably very unstable because they have only one cycle around the P atom.4,5 For this reason we did 

not detect suitable signals in the 31P NMR spectrum. 

 

10.2.5 Correlation with RNA 
 

Now, we go to see if the mechanism found for PEP may be applied in similar manner also to the non-

enzymatic cleavage (or elongation) of RNA molecules. The mechanistic details of the non-enzymatic 

hydrolysis of RNA remain obscure, despite extensive efforts over many years.20,25 The emphasis of 

the recent investigations on RNA hydrolysis was focused on the study and the role of the factors that 

govern the formation, isomerisation, and breakdown of the pentacoordinated phosphorus 

intermediates such as B (Scheme 10.4) involved in this process. Now we repropose this generally 

accepted mechanism but on the light of the results obtained on the hydrolysis of PEP. In particular, 

we will see how occur the formation of the pentacoordinate intermediate B and of the cyclic 

intermediate C, which are very similar to intermediates TBP1 and 2, respectively, involved in PEP 

mechanism depicted in Scheme 10.1.  

As shown in the proposed mechanism (Scheme 10.4), the 2'-oxygen of the ribose ring firstly attacks 

the phosphorus atom (Scheme 10.4, structure A) acting as an internal nucleophile to generate the 

cyclic pentacoordinate intermediate or transition state B. This attack should be more activated by a 

factor of ~106 fold with respect to any other external nucleophilic attack, such as that with water, 

which would give formation of a disfavored acyclic pentacoordinate transition state. The cyclic 

phosphodiester C can be obtained by collapse of the pentacoordinate intermediate B after departure 

of the group O-5’ which is the most apicophilic group in B. Now, once formed C, which is very 

similar to compound 2 in PEP mechanism, it can easily undergo an attack, activated by its cyclic 

form, by the nucleophile H2O, with formation of the stabilized cyclic pentacoordinate intermediate or 

transition state D, which then collapses, giving the product of hydrolysis E. 
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Scheme 10.4. Proposed mechanism of self-cleavage or hydrolysis of ribozymes with formation of cyclic phosphodiester 

C causing the 3’-5’ bond cutting of the RNA chain. Structure A represents the 3’,5’-phosphodiester linkage in the ground-

state configuration. N group represents any of the four natural nucleotide base moieties. Dashed lines depict the 

continuation of the RNA chain. It is reported25 that the 5’-thio RNA was cleaved almost two orders of magnitude more 

rapidly than the parental 5’-oxy RNA substrate. This is in accord with a possible better coordination of Mg ion on sulfur 

than on oxygen. 

 

It should be noted that the O-2’ group is more apicophilic and leaving group than O-3’ in all 

pentacoordinate cyclic intermediates as those shown in Scheme 10.4. This is due to the presence of 

the N group (N represent one of the four natural nucleotide base moieties), which is more electron-

withdrawing than C-5’. In this manner is also explained the exclusive ligation of phosphoryl group in 

O-3’ position in the RNA chain. These last steps can also explain the facile elongation of RNA, 

which is the reverse (normal arrows in Scheme 10.4) of the cleavage reaction (dotted arrows). 

It should be noted that on the basis of these different apicophilicities of OH groups caused by the 

presence of N-base bonded at C-1’ we can deduce that in the natural formation of a ribonucleotide, 
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the RNA building block, the attack on the sugar by the N base must occur before the phosphorylation 

which, consequently, selects the O-3’ position. In other words, we think that the natural assembling 

of a ribonucleotide must occur in a “self-organized process” in which probably the first step would be 

the attack of the nitrogen base on the sugar. 

Obviously, in the mechanism depicted in Scheme 9.4, metal ions such as Mg++ could play a key role 

in driving the reaction in one direction or its reverse. For example, coordination of the magnesium ion 

to the 5’ oxygen should favor the apical position of this group and its subsequent departure. 

In addition, this mechanism might explain both the difficulty of RNA to undergo hydrolysis and its 

ability to facilitate chemical transformations such as its elongation process as well as peptide bond 

formation and transesterification.27 We suspect that in these transformations the cyclic phosphate C is 

the true “catalyst” of the ribozyme, similar to the cyclic phosphate intermediate 2 of PEP. 

 

 

10.3 Experimental section 
 

10.3.1 General 
 

NMR spectra were recorded at 300, 400 or 600 MHz for 1H NMR, at 75.45, 100.57 or 150.82 MHz 

for 13C NMR and at 161.89 MHz for 31P NMR, with Varian Gemini 300, Varian Mercury 400 or 

Varian Inova 600 instruments. 31P NMR chemical shifts were referenced to external standard 85% 

H3PO4 aqueous solution, 1H and 13C NMR chemical shifts for samples dissolved in pyridine-d5 were 

referenced to solvent (8.72 and 149.5 ppm for the lowest field signal in 1H and 13C spectrum, 

respectively); for those dissolved in D2O, to external 3-(trimethylsilyl)propionic acid; and to CD3CN 

(1.93 and 1.26 ppm for 1H and 13C spectrum, respectively).13C and 31P NMR spectra were recorded in 

a 1H broad-band decoupling mode. J values are given in Hz. All commercially available solvents and 

reagents were >99.5% pure. 2-(Phosphonooxy)acrylic acid (PEP, 1) was purchased, as potassium or 

cyclohexylammonium salt, from Sigma-Aldrich.  
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10.3.2 Structure of 2-(phosphonooxy)acrylic acid (1 , PEP) in water 
 

0.015 g (0.073 mmol) of potassium salt of 1 was dissolved in 0.7 mL of D2O and the solution was 

poured in a NMR tube. 31P NMR spectrum of the solution showed a signal ascribed to compound 

TBP1, stable in solution for at least four months. 

  

2,2,2-trihydroxy-5-methylene-1,3,2λλλλ5-dioxaphospholan-4-one (TBP1): 31P NMR (161.89 MHz, 

D2O): δ = –3.8 ppm; 1H NMR (400 MHz, D2O): δ = 5.74 (dd, J= 2.5 Hz, J= 2.5 Hz, 1H), 5.40 ppm 

(dd, J= 2.1 Hz, J= 2.5 Hz, 1H); 13C NMR (150.82 MHz, D2O): δ = 166.6 (d, J= 6.9 Hz), 144.6 (d, J= 

7.1 Hz), 109.2 ppm (d, J= 3.8 Hz). 

 

10.3.3 Behaviour of compound 1 in acidic aqueous me dium 
 

Compound 1 (as potassium salt) was dissolved in 0.7 mL of acidic (DCl) D2O solution (pD~2). 

Immediately, the 31P NMR spectrum showed a signal ascribed to compound TBP1 (δ31P –3.8 ppm) 

(see above). After about 24 h at room temperature, the 31P NMR spectrum showed presence of a 

signal at δ +0.5 ppm, corresponding to that of deuterated phosphoric acid (checked through addition 

of a little amount of an authentic sample of H3PO4). After 40 days, 31P NMR spectrum showed the 

two signals of D3PO4/TBP1 in 40/60 relative height. The reaction was complete after about three 

months. 

The same experiment was carried out at 60 °C in the NMR tube: after one hour the 31P NMR 

spectrum showed presence of the signal of TBP1, a transient signal at δ= +2.4 ppm, probably 

belonging to compound 2, the signal of 1-oxo-1-[(tetrahydroxyphosphoranyl)oxy]acetone (4) (δ31P 

= –10.0 ppm) and that of deuterated phosphoric acid, in about 100:1:7:15 relative ratio. After 6 hours 

the only signal detected was that of D3PO4. 

 

10.3.4 Behaviour of 2-hydroxy-5-methylene-1,3,2-dio xaphospholan-4-one 2-oxide (2) 
 

Compound 2 was synthesized in pyridine as previously described.17 Structure of 2 (or of its 

cyclohexylammonium salt) was ascertained in non-hydrolytic conditions; its spectral data in different 

solvents are as follows: 
1H NMR (400 MHz, pyridine-d5): δ = 6.24 (dd, J= 2.2 Hz, J= 2.2 Hz, 1H), 5.94 ppm (dd, J= 1.9 Hz, 

J= 2.2 Hz, 1H); 1H NMR (300 MHz, CD3CN): δ = 5.91 (dd, J= 2.2 Hz, J= 2.2 Hz, 1H), 5.61 ppm (dd, 
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J= 2.1 Hz, J= 2.2 Hz, 1H); 13C NMR (75.45 MHz, CD3CN): δ = 163.8 (d, J= 6.6 Hz, C=O), 144.4 (d, 

J= 7.2 Hz, CC=O), 111.3 ppm (d, J= 4.6 Hz, CH2); 
31P NMR (161.89 MHz, CDCl3): δ = +2.1 ppm. 

Compound 2 (0.010 g) was dissolved in D2O in a NMR tube: immediately was observed presence, in 
31P NMR spectrum, of compounds TBP1 (δ = –3.8 ppm), D3PO4 and 4 in 20:10:1 relative height. At 

this point, the reaction temperature was raised until 60°C: after two hours a this temperature, only 

presence of deuterated phosphoric acid was detected. 

 

10.3.5 Addition of methanol at room temperature to pure compound 2 
 

0.010 g (0.074 mmol) of compound 2 was dissolved in anhydrous methanol (0.7 mL) in an NMR tube 

and kept at room temperature. The 31P NMR spectrum showed a signal corresponding to 

intermediates TBP5 and TBP6 (δ31P = –2.6 ppm). After a few minutes signal of TBP5 and TBP6 

decreased and concomitantly the signal (δ31P  = +2.4 ppm) probably belonging to the  methyl cyclic 

phosphate 5 appeared. After about three hours prevalent presence of 5 was detected. Water was added 

to this solution and, after one hour 1H NMR and 31P NMR spectra showed presence of methyl 

dihydrogen phosphate (6) (δ31P  = +1.5 ppm) and pyruvic acid. 

 

10.3.6 Addition of methanol at 60 °C to PEP (1) 
 

In this case PEP (1) was dissolved in dry methanol at 60 °C. We found in the first time a very low 

signal (δ31P = –3.8 ppm) belonging to intermediates TBP1 and TBP2, then appeared signals of 

intermediates TBP5 and TBP6 (δ31P = –2.6 ppm) and that of the very unstable methyl cyclic 

phosphate 5 (δ31P = +2.4 ppm). This spectrum showed also two signals at δ31P = –2.3 ppm and δ31P 

+3.4 ppm corresponding to 2-hydroxy-2,2-dimethoxy-5-methylene-1,3,2λ5-dioxaphospholan-4-one 

(derived from a second attack by methanol on intermediate 5) and to dimethyl pyruvoyl phosphate, 

respectively. After addition of water we observed immediate formation of methyl phosphate 6 (δ31P = 

+1.5 ppm) and dimethyl phosphate (δ31P = +2.8 ppm). 
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10.3.7 Hydrolysis of PEP in the presence of Hg ++ ions 
 

To a solution of 0.015 g (0.073 mmol) of potassium salt of 1 in water (2.0 mL) 0.022g (0.073 mmol) 

of HgSO4 was added at room temperature. The reaction course was followed by 31P NMR 

spectroscopy: the immediate appearance of a signal at δ31P = –4.1 ppm, probably belonging to Hg-

TBP2, and the concomitant appearance of the signal of phosphoric acid was observed. The reaction 

appeared complete after about 4 days. When the same reaction was carried out at 60 °C it appeared to 

be complete after a few minutes. 

 

10.3.8 Hydrolysis of PEP in the presence of Mg ++ ions 
 

To a solution of 0.015 g (0.073 mmol) of potassium salt of in water (1.0 mL) 0.007g (0.073 mmol) of 

MgCl2 was added at room temperature. The reaction course was followed by 31P NMR spectroscopy, 

the appearance after about 20 min. of a signal at δ31P = –4.3 ppm, probably belonging to Mg-TBP2, 

was observed together with the signal of phosphoric acid. The reaction reached the completeness after 

about 4 months. When this reaction was carried out at 60 °C, its end-point occurred after 4 hours. 
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Chapter 11 
 

 

 

FIRST PREBIOTIC GENERATION OF A RIBONUCLEOTIDE FROM  
ADENINE, D–RIBOSE AND TRIMETAPHOSPHATE

1 

 
 

11.1 Intoduction 
 
The idea that RNA might have formed spontaneously at some stage on early Earth has inspired many 

searches for obtaining some feasible prebiotic syntheses of ribonucleotides, the building blocks of 

RNA.2 For many years, efforts to understand the prebiotic synthesis of a ribonucleotide have been 

based on the assumption that a ribonucleotide could have assembled from three molecular 

components: a nucleobase, a ribose sugar and a phosphate. But, so far, the main difficulties have been 

in how to combine these three components.3,4 In particular, the most frustrating has been the failure to 

find an efficient procedure4b,5 to join together the nucleobase and the ribose thus casting doubt on the 

feasibility of these molecules to spontaneously combine in the primordial Earth. For this reason, the 

idea that a molecule as complex as RNA could have assembled spontaneously from its components 

now is viewed with increasing scepticism.3 Recently, Sutherland et al.6 accepting the impossibility of 

a spontaneous assembling of the three simple components have explored a totally different approach 

for pyrimidine ribonucleotide synthesis in which the sugar and the nucleobase emerge from a 

common precursor after several steps in different reaction conditions.  

 

11.2 Results and discussion 
 
Now, we report1 that a spontaneous self-assembling of the three components is permitted giving 

natural adenosine monophosphates (AMP) as final products. In fact, a very feasible synthesis of a 

ribonucleotide (adenosine monophosphates), from its three molecular components, a nucleobase 

(adenine), a sugar (D-ribose) and a phosphate (trimetaphosphate or P4O10), occurs giving adenosine 

monophosphates in good yields. The synthesis is made in aqueous solution and in a have postulated,7 

on the basis of experimental data, that the evolution of life should be governed or driven by a 



 

116 
 

mechanism in which the formation of cyclic pentacoordinate phosphorus intermediates is more 

activated of 106–8 fold with respect to other collateral processes.8 

In other words, it is necessary to find primordial phosphorylating reagents containing the phosphate 

group belonging to a cycle in order to obtain very activated cyclic pentacoordinate phosphorus 

intermediates.9 One of the primordial cyclic reagents was very likely P4O10. The discovery of 

Yamagata10 demonstrating that P4O10 and its derivatives as trimetaphosphate (TMP) are produced 

from volcano magma is, in this context, very important. TMP is a very stable cyclic compound 

containing three phosphate groups used for condensation and phosphorylation reactions.11 For this 

reason we began to study the possibility to obtain a ribonucleotide (adenosine phosphates) by a 

simple reaction in aqueous solution of a mixture of D-ribose, adenine and a cyclic phosphate as TMP 

(Scheme 11.1), monitoring for 60 days two types of reactions: one with a highly concentrated mixture 

of the three components in water, and another at high dilution. 
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Scheme 1. One-pot generation of adenosine monophosphates in aqueous solution from adenine, D-ribose and sodium 

trimetaphosphate 

 

It should be noted that D-ribose in solution is in equilibrium between different forms (α-pyranose 

20%, β-pyranose 60%, α-furanose 5%, β-furanose 15%).12 Then, the formation of natural adenosine, 

adenine b-ribofuranoside, can be obtained together with other isomeric forms derived from the 

reaction between adenine and other isomers of ribose. It should be noted that the four forms of 

adenine ribofuranosides and adenine ribopyranosides are in equilibrium.13 Then, in our process it will 

be necessary to consider these equilibria, the different possible nucleosides,3b,c and to understand if, at 

the end of the reaction, a preferential formation of some isomers could occur. As first attempt we 

performed a reaction at high concentration (~0.1 M) of the reagents and at a pH value in the range 

7.0–6.5. Trisodium salt of TMP (459 mg, 1.5 mmol), D-ribose (150 mg, 1.0 mmol) and adenine (135 

mg, 1.0 mmol) were added in 10 mL of water (a small amount of sodium azide was added as an 

aseptic) in a 1.5 : 1 : 1 relative molar ratio (pH ≈ 7.0). At this concentration value adenine, being 
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much less soluble with respect to the two other reagents, remains partially undissolved. The initial pH 

(pH ≈ 7.0) was that obtained after introduction of the three components in water. Variations of pH 

until the final value of 6.5 are due to the very slow hydrolysis of trimetaphosphate with formation of 

phosphoric acid which forms a salt with the remaining adenine. In these conditions, the final yield of 

adenosine monophosphates is very low, about 10%. Subsequently, we have carried out a reaction at 

high dilution in which all the reagents were completely dissolved and probably some eventual 

collateral reactions are minimized. The reaction was carried out in water solution (pH ≈ 7.0–6.5) with 

high dilution of the three reagents (1.85 x 10-4 M). Adenine (50 mg, 0.37 mmol), D-ribose (55 mg, 

0.37 mmol), and trisodium salt of TMP (168 mg, 0.55 mmol) were dissolved in 2 L of aseptic water, 

in a 1 : 1 : 1.5 relative molar ratio. The reaction course was followed by HPLC and, after 

lyophilization, by 1H and 31P NMR spectroscopy. Very probably, the first step that occurs in the 

mixture is the attack of TMP on the anomeric OH group of ribose isomers giving unstable 

pentacoordinated intermediates (see intermediates A, B, and C in the mechanism). In the second step 

we have condensation of adenine with concomitant formation of AMPs and adenosine isomers. In 

fact, in the first time of the reaction (5 days) we observed by HPLC the formation of AMPs and 

adenosine isomers in a ratio of about 1 : 1. The adenosine isomers are adenosine β-ribofuranoside and 

adenosine α-ribofuranoside (in a relative ratio of about 6 : 1 calculated from 1H NMR of a reaction 

mixture). They have been assigned on the basis of a comparison with the isomers obtained by keeping 

natural adenosine for several days in aqueous solution. In these conditions a slow isomerization of 

adenosine occurs and the two isomers, adenosine β-ribofuranoside and adenosine α-ribofuranoside, 

have been identified by comparison of their 1H NMR data with the published13 chemical shifts for the 

adenosine isomers. After about 25 days we have as major product AMPs in which the 3’-AMP and 

20’AMP are in a ratio of about 3 : 2. A small amount of cyclic 2’,3’-AMP (2’,3’-cAMP) was also 

observed. 

After about 45 days we have a total disappearance of 2’,3’-cAMP and a gradual decrease of the 

relative amount of the different adenosine monophosphates indicating a probable formation of short 

oligonucleotides that might arise from the cyclic phosphate and 5’-OH of 3’-AMP. The AMPs are 

separated by preparative HPLC. The structures have been assigned by 1H NMR by comparison with 

authentic commercial samples. The total yield, after about 30–40 days, in adenosine monophosphates, 

is of about 35%. No traces of ATP or 5’-AMP were detected by HPLC and 31P NMR spectroscopy. 

Then, the global process is highly regio-, chemio-, and stereoselective because we found only AMP 

in β-furanose forms which are the natural nucleotides. It should be noted that in the literature14 is 

reported a similar phosphorylation reaction with commercial samples of adenosine and TMP (or 

P4O10)
10b in different reaction conditions. The reported14a,b results are very close to our data with 
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exclusive formation of 2’- and 3’-adenosine phosphates and exclusion of 5’-AMP and ATP. The 

reported4b very low yields (4%) of natural adenosine obtained by adenine and D-ribose with TMP at 

100 °C for several hours could be explained by the concomitant formation of adenosine phosphates 

(or by the decomposition and isomerization13 of adenosine at 100 °C) which were not considered by 

the authors. Our relatively low yield (35%) might be due to the lack of free adenine in the solution 

due to the formation, after about 30 days, of a small amount of phosphoric acid which forms a salt 

with the remaining adenine. In the light of these considerations, and in order to increase the yields of 

reaction products, we carried out the reaction with an excess of adenine. In particular, when we used 

adenine, D-ribose, and TMP in 1.2 : 1 : 1.5 relative molar ratio and in these conditions, after 35–40 

days, the yields in adenosine monophosphates reached 43% with respect to the ribose. When the 

reaction is carried out with equimolar amounts of the three reagents we obtained after about 30 days 

formation of relevant amount of AMP isomers indicating that TMP is reformed after the first step or 

gives directly the AMPs without relevant formation of adenosine (see Scheme 11.2). 

Preliminary results show that a similar reaction occurs with guanidine obtaining guanosine 

phosphates.  

Finally, it has to be noted that the use of P4O10 instead of TMP gave a similar behaviour but with 

minor yields in AMP because of its major instability in water that gives rise, after several days, to 

phosphoric acid which forms a salt with adenine. 

It should be noted that the process is activated when in the solution Mg2+ ions are present.4,11 

Actually, in this case the reactions reached the end after only 20 days (yield in adenosine 

monophosphates is of about 45%) thus suggesting that the magnesium ions act as catalysts for all the 

process (both condensation and phosphorylation). Very likely, the first step of this reaction is the 

preferential phosphorylation (by TMP) of the hydroxy anomeric group of the ribose, which is the 

most reactive, to give ribose-1-TMP as pentacoordinated phosphorus intermediates A and B (Scheme 

11.2). The TMP group is a very good leaving group and could activate a second step, involving the 

subsequent nucleophilic attack of adenine from the opposite side with reformation of TMP thus 

producing adenosines (probably15 in furanose forms). However, it is also possible that a bicyclic 

pentacoordinate phosphorus intermediate C is preferred9 over A and B for its two cycles around the P 

atom. In this case, the attack of adenine is now obliged to go in the opposite side of the O-group 

giving the new intermediate D which can be formed also by direct attack of TMP on β-adenosyl 

furanoside. 

The hydrolysis of intermediate D gives 2’,3’-cAMP which by subsequent hydrolysis gives 2’-AMP 

and 3’-AMP. The attack of TMP on adenosines to give phosphorylated adenosines is probably driven 

both by the position of the adenylic moiety and by the presence of the two OH groups in the cis 
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relative position of the ribose moiety in the adenosine ribofuranoside form. In the adenosine 

ribopyranoside form the position of the two OH groups is disfavored to form a cyclic phosphate. It is 

reported15 that the transformation of ribose into its cyclophosphates belongs to the functionalizations 

of the ribose molecule which selects the furanose form from the sugar’s furanose/pyranose 

equilibrium. For this reason we found only adenosine β-ribofuranoside monophosphates, determined 

by their 1H NMR. These factors conduct to the preferential formation of 2’,3’-cAMP that in aqueous 

solution can be hydrolyzed to adenosine-2’-phosphate and adenosine-3’- phosphate (Scheme 11.2). In 

this manner the 5’-hydroxy group remains free, thus explaining why we could detect neither 5’-AMP 

nor ATP. It is reported14a that when deoxyadenosine is reacted with TMP, only 3’- and 5’-

monophosphates are obtained in very low yield (2%) suggesting a disfavored formation of a 3’,5’-

cyclic phosphate. This is in good accord with our mechanism which is also in agreement with 

reported data in which it has been observed4b that when α- and β-D-ribofuranose-1-phosphate or any 

phosphate-containing products were heated with adenine no formation of adenosines was observed. 

This is in accord with the formation of unstable intermediates such as A, B, and C. It is reported16 

that in some cases the 9-N in adenine is the prevalent position of a nucleophilicattack. 
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Scheme 11.2. Proposed reaction mechanism. 
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Chapter 12 
 

 

 

 

FACILE SYNTHESIS OF HYDANTOINS AND THIOHYDANTOINS 

IN AQUEOUS SOLUTION 1 

 

 

12.1 Introduction 
 

After the discovery of the spontaneous, and prebiotic, formaton of ribonucleotides (Chapter 10), we 

have focalized our actention to the synthesis of the costituents of RNA (sugar, nitrogen bases). In 

particular we want studied the synthesis of the nucleobases in prebiotic condiction.  

For our synthesis we have choise the uracile as target molecule (figure 12.1). 

 

N
H

NH

O

O
 

 

Figure 12.1.  Structure of uracile. 

 

As starting material we have hypothesized a urea, and glyceraldehyde, that certly two prebiotic 

compounds, and as condensantig agent, we use in first time trimetaphosphate but the reaction don’t 

occur, after we have traied with phosphoric anidhride, P4O10, also this compound was present in the 

primordial Earth.  

The reaction with P4O10, don’t give uarcile, as we expected. The study of the reaction mixture have 

shown the presence of 5-methylhydantoin, that are five member heterocyclic compounds (figure 

12.2). 
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Figure 12.2 5-methylhydantoins. 

 

Hydantoins and thiohydantoins are compounds that have a reactive urea (or thiourea) core. They are 

an important structural moiety found in several natural products and pharmacologically important 

compounds.2-6 They are well known for diverse biological activities and play a key role as 

antiarrhythmics,7 anticonvulsants,8 antitumor compounds,9 aldose reductase inhibitors,10 anti-

inflammatory compounds,11 and antiandrogens.12 

Synthetically, hydantoins are important precursors of amino acids, via either acid-, base- or enzyme-

catalysed hydrolysis. The Bucherer–Bergs reaction13 (Scheme 12.1) is the most commonly used 

method for the synthesis of hydantoins. This multicomponent reaction starts from an aldehyde or a 

ketone whose ready availability makes the Bucherer–Bergs reaction an attractive method for the 

synthesis of hydantoins. However, the use of KCN lead to problems on safety, causing the reaction to 

often be conducted within a sealed tube at a temperature of 80 °C. One improvement on the 

Bucherer-Bergs reaction has been the use of ultrasonication.14 

 

O

R

R'

KCN, (NH4)2CO3

N
H

H
N

O

O

R'

R

 

 

Scheme 12.1. Bucherer–Bergs reaction. 

 

Other methods furnishing hydantoins include the treatment of amino amides with triphosgene,15 the 

reaction of amino acids with acetic anhydride and ammonium thiocyanate (to give the 

thiohydantoins),16 the combination of carbodiimides with unsaturated carboxylic acids, and the 

treatment of nitriles with organometallic reagents followed by addition of potassium cyanide and 

ammonium carbonate.17,18 Both microwave19 and solid phase20,21 technologies have been employed in 

the synthesis of hydantoins. There are also more esoteric syntheses of hydantoins that involve 

complex rearrangements.22,23 Several syntheses of thiohydantoins have also been reported.16,24 

Now we wish to propose a three components synthesis of some simple hydantoins and thiohydantoins 

using as starting materials compounds available in the primordial Earth. 
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These compounds are urea, glyoxal (and its simple derivatives) and P4O10, very likely one of the first 

primordial condensing reagents. The discovery of Yamagata25 demonstrating that P4O10 is produced 

from volcano magma is, in this context, very important. In other words, P4O10 is certainly a prebiotic 

reagent which can be involved in several reactions25b as phosphorylation, condensation, dehydration, 

dealcoholysis, and many others. 

 

12.2 Results and Discussion 
 

The synthesis of hydantoins is made in aqueous solution in a ‘one-pot’ manner or by adding 

separately the three reagents (urea or N-methylurea, glyoxal, and P4O10) at room temperature. 

The results are summarized in Schemes 12.2 and 12.3. 
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Scheme 12.2. Hydantoins from urea (1) and aldehydes 2–4. 

 

The best yields (60–70%) are obtained when the reagents are added separately with first addition of 

aldehyde (1 mmol) to P4O10 (1 mmol) and then urea (1 mmol). Similar yields (50–60%) are obtained 

when the reagents are dissolved simultaneously in water (one-pot manner). 

The hydantoins are separated from the reaction mixture after partial removal of water by 

lyophilization “in vacuo” followed by continuous liquid/liquid extraction of the aqueous residue with 

ethyl acetate. The yields are of about 60–70%, depending on the number of extractions. 
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When we used two eq of urea and one eq of glyoxal and P4O10 we obtained as maior product 

glycouril (7), in 75% yield, that crystallized from the aqueous solution.26 This class of compounds is 

also of interest for its biological activity, in particular psychotropic activity.27 

When we used N-methylurea (8) we obtained a mixture of the two isomers 9 and 10 (or 11 and 12) in 

a relative molar ratio of  70:30 (Scheme 12.3). 
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Scheme 12.3. Hydantoins from N-methylurea (8) and aldehydes 2 and 3. 

 

In similar manner we have obtained several thiohydantoins 15–19 (See Scheme 12.4). It should be 

noted that in the reaction between aldehyde 3 and N-methylthiourea 14, we obtain only one of the 

two possible isomers, in particular, we established, by 1H NOE NMR experiment, that the structure of 

the product is that of compound 17 (see Scheme 12.4). 
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Scheme 12.4. Thiohydantoins from thiourea (13) or N-methylthiourea (14) and aldehydes 2 and 3 

 

All products have been identified by 1H NMR and GC-MS spectroscopy and their spectral data have 

been compared with those reported in literature. 

The method is attractive for its simplicity since it requires only the blending of the three components 

in aqueous solution and at room temperature for ten minutes. 
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It should be noted that the synthesis can be carried out also with a large excess of 85% aq. H3PO4 (2.5 

mmol), but in this case the reaction time is of two hours and the yields are lower (50–60%). It is also 

known28 that the same hydantoins can be obtained using HCl but in this case the reaction was carried 

out at 90 °C for one hour. The reaction carried out with NaOH at room temperature do not give 

hydantoins. 

 

12.3 Reaction mechanism 
 

It is known that cyclic phosphorus compounds containing a phosphoryl group react with a 

nucleophile faster (of a factor of 106-8) with respect to the corresponding acyclic compound, to give 

the relative pentacoordinate species.28a This is due to the major stability of this cyclic 

pentacoordinated intermediate than the corresponding acyclic pentacoordinated intermediate. 

P4O10 has a polycyclic structure while H3PO4 has an acyclic structure (Figure 12.3): based on the 

above considerations, we can predict that P4O10 would react faster than H3PO4, as the experimental 

data have confirmed. 
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Figure 12.3. Structures of: P4O10 (a), H3PO4 (b), and their relative pentacoordinate species (c) and (d). 

From these data we proposed the reaction mechanism reported in Scheme 12.5. 
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Scheme 12.5. Proposed mechanism of formation of hydantoin 5 from glyoxal. 

 

The initial step probably involves the hydration of the aldehyde and then the phosphorylation by 

P4O10 of two hydroxy-groups with formation of the intermediate A which is stable. It is important to 

emphasize that in the case of P4O10 this step is very fast, while when H3PO4 is used, this kind of 

intermediate is disfavored because the corresponding intermediate A-like is not a cyclic 

pentacoordinated intermediate, as in the case of P4O10, which is stabilized28 by a factor of 106-8 with 

respect to the corresponding acyclic intermediate. The subsequent nucleophilic attack of urea gives 

condensation and cyclization with probable formation of intermediate B which collapses to hydantoin. 

In the process there is reformation of P4O10 as shown in the decomposition of intermediate B. This is 

supported by the fact that in the 31P NMR spectrum of the reaction mixture we noted always the signal 

of P4O10 (δ = -23 ppm), also at the end of the reaction. Only after some days we noted the signal of 

H3PO4 due to the partial hydrolysis of P4O10. In addition, the reaction goes to the end with the same 

product yield even when it is carried out with only 0.5 eq of P4O10. In the case of other aldehydes, a 

mechanism analogous to that depicted in Scheme 5 could occurr. 
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12.4 Experimental section 
 

12.4.1 General 
 
1H and 31P NMR spectra were recorded at 300 and 121.45 MHz, respectively. Chemical shifts are 

referenced to the solvent (δ = 2.50 ppm for 1H NMR in DMSO–d6 and to external standard aq. 85% 

H3PO4 for 31P NMR). J values are given in Hz. GC-MS analyses were performed on an gas 

chromatograph equipped with a (5%-phenyl)-methylpolysiloxane column (30 m length, 0.250 mm. 

i.d., 0.25µm thickness), interfaced to a quadrupole mass detector. Mass spectra were recorded at an 

ionisation voltage of 70 eV in the EI mode. 

 

12.4.2 Synthesis of hydantoins and thiohydantoins. General procedure 
 

To a stirred solution of aldehyde (0.6 mmol) in H2O (10 mL), P4O10 (170 mg, 0.6 mmol) was added. 

After 5 minutes urea (or thiourea) (0.6 mmol) was added, and the mixture was stirred at room 

temperature for 10 minutes. The solvent was partially removed by lyophilization “in vacuo” and the 

product was isolated from the crude residue through several liquid/liquid extractions with ethyl 

acetate. After removal of the organic solvent, the product was purified by flash chromatography or by 

simple crystallization. The yields were in the range 60–70% and are depending on the number of 

extractions. 

 

12.4.3 Synthesis of hydantoins using H 3PO4 

 

To a stirred solution of aldehyde (0.6 mmol) in H2O (10 mL), aq. 85% H3PO4 (170 µL, 2.5 mmol) 

was added. After 5 minutes urea (0.6 mmol) was added, and the mixture was stirred at room 

temperature for 10 minutes. The GC–MS analyses shows the presence of the product but in very low 

amount. The end of the reaction occurred after two hours and the corresponding hydantoins were 

obtained in 50-60% yield. 

 

Imidazoline-2,4-dione (5) (Hydantoin): white solid; yield: 63%; m.p. 222–223 °C (Lit.:30 221–223 

°C), 1H NMR (300 MHz, DMSO-d6) δ= 10.58 (bs, 1 H), 7.65 (bs, 1 H), 3.85 (s, 2 H); MS (m/z, %): 

100 (M+, 100), 72 (45), 57 (20). 
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5-Methylimidazoline-2,4-dione (6) (5-methyl hydantoin): white solid; yield 60%; m.p. 146–148 °C 

(Lit.:31 147–148 °C) 1H NMR (300 MHz, DMSO-d6) δ= 10.60 (bs, 1 H), 8.00 (s, 1 H), 4.03 (dq, J1-

Me= 7.1 Hz, 1 H) 1.25 (d, J1-5= 7.1 Hz, 3 H); MS (m/z, %): 114 (M+, 100), 99 (22), 86 (73), 71 (28). 

 

Tetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione (7) (glycouril): white crystal; yield 68%; 

m.p. 357 °C (dec.) (Lit.:27 360 °C, dec.), 1H NMR (300 MHz, DMSO-d6) δ= 7.14 (s, 4 H), 5.23 (s, 2 

H); ES+: (m/z) = 143 (M + H), 165 (M + Na). 

 

1-Methylimidazoline-2,4-dione (9): (1-methyl hydantoin) white solid; yield 35%; m.p. 156–158 °C 

(Lit.:32 158 °C), 1H NMR (300 MHz, DMSO-d6) δ= 10.70 (bs, 1 H), 3.91 (s, 2 H), 2.80 (s, 3 H); MS 

(m/z, %): 114 (M+, 100), 96 (5), 86 (17), 73 (17); 58 (51). 

 

3-Methylimidazoline-2,4-dione(10): (3-methyl hydantoin) white solid; yield 30%; m.p. 183-184 °C 

(Lit.:33 185–186 °C), 1H NMR (300 MHz, DMSO-d6) δ= 7.63 (s, 1 H), 3.85 (s , 2 H), 3.00 (s, 3 H); 

MS (m/z, %): 114 (M+, 100), 96 (6), 86 (6), 70 (8); 56 (4). 

 

1,5-Dimethylimidazoline-2,4-dione (11): (1,5-dimethyl hydantoin) white solid; yield 33%; m.p. 132–

133 °C (Lit.:34 131 °C), 1H NMR (300 MHz, DMSO-d6) δ= 10.73 (bs, 1 H) 3.97 (q, J = 7.0 Hz, 1 H), 

2.80 (s, 3 H), 1.28 (d, J= 7.0, 3 H); MS (m/z, %): 128 (M+, 100), 113 (97), 100 (2), 83 (1); 70 (29), 56 

(41). 

 

3,5-Dimethylimidazoline-2,4-dione (12): (3,5-dimethyl hydantoin) white solid; yield 37%; m.p. 111–

113 °C (Lit.:35 110–111 °C), 1H NMR (300 MHz, DMSO–d6) δ= 7.68 (bs, 1 H), 4.08 (dq, J1-Me= 7.1 

Hz, J1-5= 1.3 Hz, 1 H) 3.05 (s, 3 H), 1.50 (d. J= 7.1 Hz, 3 H); MS (m/z, %): 128 (M+, 100), 113 (14), 

100 (38), 85 (5); 70 (11); 58 (46). 

 

2-sulfanylideneimidazolidin-4-one (15): (thiohydantoin) yellow solid; yield 61%; m.p.= 228–230 °C 

(Lit.:36 229–231 °C); 1H NMR (300 MHz DMSO–d6) δ= 11.64 (s, 1 H), 9.91 (s, 1 H), 4.12 (s, 2 H). 

 

5-methyl-2-sulfanylideneimidazolidin-4-one (16): (5-methyl thiohydantoin) pale yellow solid; yield 

70%; m.p.= 163–166 °C (Lit.:36 165–166 °C); 1H NMR (300 MHz DMSO–d6) δ= 11.59 (s, 1H), 9.98 

(s, 1H), (dq, J1= 7.0 Hz, J2= 1.5 Hz, 1H), 1.26 (d, J1= 7.0 Hz, 3H). 
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3,5-dimethyl-2-sulfanylideneimidazolidin-4-one (17): (3,5-dimethyl thiohydantoin) yellow solid; 

yield 66%; m.p.= 171–172 °C (Lit.:37 170–173 °C); 1H NMR (300 MHz DMSO–d6) δ= 10.29 (bs, 

1H), 4.26 (dq, J1= 7.0 Hz, J2= 1.0 Hz, 1H), 3.04 (s, 3H), 1.27 (d, J1= 7.0 Hz, 3H). 

 

1-methyl-2-sulfanylideneimidazolidin-4-one (18): (1-methyl thiohydantoin) pale yellow solid; yield 

15%; m.p.= 223-224 °C (Lit.:38 222-224 °C); 1H NMR (300 MHz DMSO–d6) δ= 11.59 (s, 1H), 4.15 

(s, 2H), 3.08 (s, 3H). 

 

3-methyl-2-sulfanylideneimidazolidin-4-one (19): (3-methyl thiohydantoin) yellow solid; yield 

53%; m.p. = 166-168 °C (Lit.:24a 167–168 °C); 1H NMR (300 MHz DMSO–d6) δ= 10.12 (s, 1H), 4.10 

(s, 2H), 3.05 (s, 3H). 
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CONCLUSIONS 

 
 
In conclusion we think that the origin of life is due fundamentally to the volcanoes activity that 

have brought to the surface of the earth heat, water, and a great mixture of organic compounds 

which are essential for the origin of life. 

However the big question is: what happened next? 

We tried to respond to this question. On the basis of our precedent studies on abiotic chemistry of 

phosphorus, we have hypotesized that phosphorus containing compounds (in particular cyclic 

species) may have played a key role in the origin of life. 

In fact we found that simple phosphorus cyclic compounds, as P4O10 or P3O9, present in the volcano 

magma, 6could be very important in the primordial Earth, activating a reaction by a factor 106-8, 

minimizing other collateral reactions through the formation of very activated hypercoordinated 

species that drived only some processes favouring the start of the life. 

These processes occur in a prebiotic soup where the most proper place had to be a lake near to an 

active volcano which, as a chemist, provides the reagents to carry out some important reactions for 

the evolution of life. 
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Chapter 13 
 
 
 
 

SYNTHESIS AND MOLECULAR STRUCTURE FOR 

COMPLEXES FORMED BY LITHIUM COMPOUND AND 

AMINOMETHYLPHOSPHONIC ACID 

 

 

13.1 Introduction 
 

Since the isolation of 2-aminoethylphosphonate,1 natural compounds containing phosphorus-carbon 

bond2,3 have been subject to many research. In particular amino-phosphonic (or -phosphinic) acids 

are study in many field of chemistry, for their biological applications,4 and also for the industrial 

interest5, because some of them are commercial products as herbicides.6,7 

The aminophosphonic acids are the equivalent phosphorylate of the amino acids. In literature are 

reported some method for the synthesis of this class of compounds.8-11 

Recently, studies concerning metal complexes of phosphonic amino acids are receiving 

considerable interest, because some of these complexes are potential anticancer. 

The structures of the amino phosphonic acid metal-complex vary from discrete molecules to 

polymers.12-18 

In literature was reported some structural analysis for the complexes between 

aminomethylphosphonic acid (AMP) (aminophosphonic acid equivalent of glycine) and metal 

atoms19-23 and for the free acid.24 

Herein we report, for the first time, the synthesis and structural characterization for the lithium 

complexes of aminomethylphosphonic acid (AMP). Moreover we investigated the influence of the 

reaction conditions and the crystallization methods on the structure outcome. 
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13.2 Results and discussion 
 

We wished to examine the outcome of the reaction between aminomethylphosphonic acid (AMP) 

with lithium compounds, changing the reaction conditions, kind of lithium compound and method 

of crystallization. 

In particular, we studied four reactions which led to obtain three different crystalline structures. 

All structures are characterized by similar asymmetric units, where a molecule of AMP is bonded 

with lithium atom, which is coordinated with a molecule of water. In one case we obtain a dimmer 

of this structure (see Figure 13.1).  

 

   

 

 

Figure 13.1. Asymmetric unit:  a) Asymmetric unit of reaction between AMP+LiOH 1/1; b) Asymmetric unit of 

reaction between AMP+LiOH 1/1 with methanol as co-solvent for the crystallization; c) Asymmetric unit of reaction 

between AMP+Li2CO3 1/1. 

 

 

First reaction was carried out mixing AMP and LiOH in water in stoichiometric amount. The 

crystallization occurred at room temperature by evaporation of the solvent. 

We obtained a suitable single crystal. X ray diffractometry analysis showed that the structure is 

characterized by plans whose lattice is formed by eight-member rings and sixteen-member rings 

(see figure 13.2). 
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Figure 13.2 Structure of AMP+LiOH . a) View of plan locking along the a axis, where it is clear the presence of  the 

eight-member rings and the sixteen-member rings; b) view of plans locking along the b axis, where it is note the 

reciprocal disposition of the plans. 

 

Second reaction was carried out with a double amount of LiOH, and the other reaction conditions 

were the same as the first reaction. X ray diffractometry analysis showed that the structure is the 

same to that of the first reaction. 

In this structure is present an inversion center localized in the center of the unit cell (see figure 

13.3). 
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Figure 13.3 Inversion center. Position of the inversion center. 

 

 

In the third reaction we changed the crystallization methodology, using methanol as co-solvent, the 

other reaction condition remained the same of the other reactions. In this case we obtained the 

asymmetric unit similar to the other two previously described, but the lattice structure is 

characterized by chains formed by eight-member rings alternating with four-member rings (see 

figure 13.4). 
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Figure 13.4 Structure of AMP+LiOH crystallized with methanol. a) Unit cell locking along the a axis, b) chain, 

where is clear the presence of eight-member rings and the four-member rings. 

 

 

The last reaction was performed with a different lithium compound. We used Li2CO3 in 

stoichiometric amount. 

Also in this case we obtained a structure characterized by chains as that of the third reaction, but the 

asymmetric unit is a dimer (see figure 13.5). 

Last two structures are quite similar, but the difference in the asymmetric units (one is monomer 

and the other is a dimer) involve a little difference in chains construction. In fact comparing the two 

unit cells is evident that in the second one there is staggering of the two parts that compose the 

asymmetric unit, this staggering involve the difference in the chains. 

In the first one all eight-member rings are all equal, in the second chain there are two types of eight-

member rings, alternating between them. 
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Figure 13.5 Structure of AMP+Li 2CO3. a) Unit cell locking along the a axis, where is evident the staggering of two 

parts that compose the asymmetric unit; b) chain, where is clear the presence of two types of eight-member rings. 

 

13.3 Conclusion 
 

In conclusion we have reported the synthesis of three different structures for the complex formed by 

aminomethylphosphonic acid and lithium compounds. From these studies we can affirmed that the 

principals factors that driven the formation of the structure are the kind of lithium compound and 

the crystallization method, while the molar ratio between two reagents not influenced the outcome 

of the reaction. 
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13.3 Experimental section 
 

13.3.1 General 
 

Standard glassware was used for the reaction. The water was deionized. All reaction was carried out 

in atmospheric condition. Lithium compounds, was commercially available and used without 

further purification. Aminomethylphosphonic acid was synthesized by Hägele, in according with 

methodology reported in literature. 

Crystallographic experiments were performed with an Oxford Xcalibur3 diffractometer equipped 

with a Spellman generator (50 kV, 40 mA) and a Kappa CCD detector, operating with Mo-Kα 

radiation (λ = 0.71071 Å). Data collection was performed with the Crysalis CCD software; Crysalis 

RED software was used for data reduction. Absorption correction by using the SCALE3 

ABSPACK multiscan method was applied. The structures were solved with SHELXS-97, refined 

with SHELXL-97 and finally checked by using PLATON.  

13.4.2. AMP+ LiOH 1/1  
 

23 mg (0.25 mmol) of aminomethylphosphonic acid and 6 mg of LiOH were dissolved in 3 mL of 

water in an open vial and heating to 70 °C, after one hour two reagents were completely dissolved, 

the reaction mixture was put to crystallize at room temperature. The crystallization occurs by 

solvent evaporation. Crystal was separated by filtration. Crystal data are reported in table 13.1. 

Selected bond lengths and bond angles are reported in table 13.2.  

14.3.3 AMP+ LiOH 2/1 

 
23 mg (0.25 mmol) of aminomethylphosphonic acid and 12 mg of LiOH were dissolved in 3 mL of 

water in an open vial and heating to 70 °C, after one hour two reagents were completely dissolved, 

the reaction mixture was put to crystallize at room temperature. The crystallization occurs by 

solvent evaporation. Crystal was separated by filtration.  

14.4.4 AMP+ LiOH 1/1 crystallization with Methanol 
 

23 mg (0.25 mmol) of aminomethylphosphonic acid and 6 mg of LiOH were dissolved in 3 mL of 

water in an open vial and heating to 70 °C, after dissolution, the vial with reaction mixture, was put 

in a wider vial, which were placed 3 mL of methanol. The wider vial was stoppered. The 

crystallization occurs by slowly evaporation of methanol, which mixes with the water into the 



 

144 
 

smaller vial, causing a decrease in polarity, thus favouring the crystallization. Crystal was separated 

by filtration. Crystal data are reported in table 13.1. Selected bond lengths and bond angles are 

reported in table 13.2. 

 

13.4.5 AMP+ Li 2CO3 1/1 
 

46 mg (0.5 mmol) of aminomethylphosphonic acid and 18.5 mg of Li2CO3 were dissolved in 2 mL 

of water in an open vial, after dissolution of the reagents the reaction mixture was put to crystallize 

at room temperature. The crystallization occurs by solvent evaporation. Crystal was separated by 

filtration. Crystal data are reported in table 13.1. Selected bond lengths and bond angles are reported 

in table 13.2.  
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Tabella 13.1 Crystallographic data 

 

 AMP+LiOH 1/1 AMP+LiOH 1/1 (CH3OH) AMP+Li 2CO3 1/1 

Empirical formula CH7NO4PLi CH7NO4PLi C2H14N2O8P2Li 2 

Formula weight  135,027 135,027 270,055 

T (K) 173 173 173 

Crystal size (mm) 0.30x0.30x0.10 0.15x0.20x0.13 0.21x0.10x0.11 

Crystal description colourless block colourless block colourless block 

Space group P21/n P21/n P21/c 

Crystal system Monoclinic Monoclinic Monoclinic 

a (Ǻ) 5.7712(2) 5.1407(3) 10.2884(5) 

b (Ǻ) 9.3542(3) 9.1292(5) 9.1149(4) 

c (Ǻ) 9.4656(4) 10.9184(6) 10.9223(4) 

α (α (α (α (°)    90.000 90.000 90.000 

β (β (β (β (°)    107.591(4) 103.414(5) 103.765(4) 

γ (γ (γ (γ (°)    90.000 90.000 90.000 

V (Ǻ3) 487.10(3) 498.43(5) 994.85(8) 

Z  5 5 11 

ρ ρ ρ ρ calcd 1.380 1.348 1.486 

µ [mm–1] 0.489 0.478 0.527 

F(000) 200.0 200.0 440.0 

θ range [°] 4.30–24.99 4.44 –24.99 4.45–25.00 

Index ranges -6 ≤ h ≤ 6 

-11 ≤ k ≤ 11 

-11 ≤ l ≤ 11 

-6 ≤ h ≤ 6 

-10 ≤ k ≤ 10 

-12 ≤ l ≤ 12 

-10 ≤ h ≤ 12 

-10 ≤ k ≤ 10 

-12 ≤ l ≤ 12 

Reflns. collected 6252 6210 4578 

Reflns. obsd 758 758 1163 

Reflns. unique 851 (Rint 0.0267) 866 (Rint 0.0320) 1739 (Rint 0.0331) 

R1, Wr2 (2σ data) 0.0229 ,0.0647 0.0408, 0.1061 0.0349, 0.0792 

R1, Wr2 (all data) 0.0260, 0.0660 0.0469, 0.1092 0.0538, 0.0823 

GOOF on F2 1.161 1.101 1.078 

Peak/hole [eÅ–3] 0.344/-0.362 0.759/-0.802 0.701/-0.316 

Table 13.2. Bond lengths(Ǻ), Bond angles (°) 
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 AMP+LiOH 1/1 AMP+LiOH 1/1 

(CH3OH) 

AMP+Li2CO3 1/1 

Bond lengths    

Li(1) – O(1) 1.961(2) 1.988(6) 1.948(5) 

Li(1) – O(4) 1.981(2) 1.949(6) 1.935(6) 

P(1) – O(1) 1.5332(12) 1.494(2) 1.510(2) 

P(1) – O(2) 1.5085(12) 1.501(3) 1.513(2) 

P(1) – O(3) 1.5217(12) 1.496(2) 1.509(2) 

P(1) – C(1) 1.8161(16) 1.819(3) 1.817(3) 

C(1) – N(1) 1.490(2) 1.481(4) 1.484(4) 

Li(2) – O(5)   1.898(5) 

Li(2) – O(8)   1.973(6) 

P(2) – O(5)   1.510(2) 

P(2) – O(6)   1.5106(19) 

P(2) – O(7)   1.520(2) 

P(2) – C(2)   1.816(3) 

C(2) – N(2)   1.472(4) 

Bond angles    

O(4) – Li(1) – O(1) 109.13(14) 112.0(3) 103.8(2) 

Li(1) – O(1) – P(1) 118.27(10) 127.2(2) 129.9(2) 

O(1) – P(1) – O(2) 113.40(7) 112.3(2) 113.89(12) 

O(1) – P(1) – O(3) 11.7786) 114.47(17) 113.59(13) 

O(1) – P(1) – C(1) 104.32(7) 103.23(14) 105.63(13) 

O(2) – P(1) – O(3) 112.67(7) 111.5(2) 111.45(13) 

O(2) – P(1) – C(1) 107.48(7) 107.79(15) 103.84(13) 

O(3) – P(1) – C(1) 106.52(7) 106.77(14) 107.56(14) 

P(1) – C(1) – N(1) 11.24(11) 114.6(2) 114.3(2) 

O(1) – Li(1) – O(6)   108.3(3) 

O(4) – Li(1) – O(6)   121.5(3) 

O(8) – Li(2) – O(1)   97.9(2) 

Li(2) – O(1) – P(2)   136.7(2) 

O(1) – P(1) – O(2)   114.44(12) 

O(1) – P(1) – O(3)   111.23(12) 

O(1) – P(1) – C(1)   107.42(13) 
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O(2) – P(1) – O(3)   112.96(12) 

O(2) – P(1) – C(1)   102.44(13) 

O(3) – P(1) – C(1)   107.60(13) 

P(1) – C(1) – N(1)   114.6(2) 
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