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 The real dynamic problem begins where there are 

less invariants than degrees of freedom 

[Poincaré, introduction to Méthodes nouvelles de 

la mécanique céleste, 1892]  
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Introduction  

I.1 SYSTEM BRIEF DESCRIPTION 

The first mechanical cutting bar was created in the USA in 1822 by Bailey [54]. In the 

following years the system was implemented using harvester based principles, and only 

reached Europe approximately in the mid 19th century for forage and grass cutting [44]. 

The standard type cutter bar (or sickle bar) consists essentially of three basic component parts: 

the carrying frame, supporting all the other parts, the cutting systems, a double or single 

reciprocating multi-teeth blade, and the drive system that transfers the power from a dedicated 

engine, or from the tractor Power Take Off, directly to the blade [53].  

The simplest cutting system consists of a single movable reciprocating cutting tool, which 

leads its cutting work in conjunction with a stationary counterbar that usually acts as carrying 

frame too (Figure I. 1). The cutting tool is typically a high quality steel bar on which are 

riveted the knives (or teeth), which are standardized trapezoidal tempered steel plates, while 

the counterbar is a steel bar on which are screwed the fingers. The latter have cut-outs in which 

knives hide at instantaneous extreme positions or through which they pass and also act as guard 

against impact with rocks and soil unevenness. The greased tight contact between the two 

members is guaranteed by clips fixed with screws to the counterbar, serving as guide and easily 

replaceable when worn-out [8]. 

With the forward motion of the system, plants, stalk and shrub to be cut are trapped cyclically 

in little bundle between knives and fingers and, since the cutting action is carried only by the 

knife thanks to the opposite support carried by the finger, the cut occurs in shear mode (Figure 

I. 1). Sometimes the counterbar is provided with countercutting edges, the ledger plates, which 

are riveted to the fingers and involve a cutting action from both sides of stalk bundles [8, 23 

and 44]. 

Recently, following this improvement and alternatively to the single movable blade, double 

blade cutter bars have been introduced. With this type of cutting system the stationary 

counterbar disappear, leaving its place to a second, same kind and counter-phase movable 

cutting tool (Figure I. 1). The resultant cutting action occurs again in shear mode, because the 

two blades carry the cutting and counter action each other reciprocally, but the guard action 

fails [23, 56]. 

In both cases, the moving blade is equipped with many teeth, to allow a shorter blade stroke 

with a large overall cutting front, while each tooth have cutting edges on both oblique sides, to 

allow the cutting action both on forward and return paths. 
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Figure I. 1 – Single blade cutter bar and its transversal section, on the left, and working principia for 
different type of single (a and b) and double (c) blade cutter bars, on the right: counterbar (1), clips (2), 
blade knives (3), fingers (4), conrod small end (5) and link for the tractor frame (6).  

The drive system must convert the rotary motion of the PTO, or the rotary motion of a 

dedicated engine, in a reciprocating motion useful for the blade. As underlined later on (see 

Paragraph II.3.3), this conversion has a strong influence on the overall equilibrium of the cutter 

bar, and hence it affects some of the main working properties like the allowed blade speed, the 

feed rate and the power request [29, 45 and 58]. 

Nowadays this task it is commonly carried out by means of an eccentric crank-connecting rod 

planar mechanism, but even hydraulic transmissions and other different spatial, planar or 

pendular mechanisms have been used over the years [5, 30], with the main purpose of a 

balance improving and vibration reduction of the whole system [23, 53]. Anyway, in spite of 

the high influence upon the working properties and the increased utilization of cutting bars 

even for pruning [16, 27] the crank-conrod mechanism remains the most commonly adopted 

drive system. What is more, this mechanism has never been substantially modified because of 

its simplicity and economic construction [37, 45]. 

Cutter bars are typically used in simple agricultural machineries, like mowers for grass and 

weed cutting, and constitute the standard cutting apparatus in combine harvesters, for forage 

and hay harvesting [2, 23]. Recently, these cutting systems have been introduced even for fruit 

trees and vineyards trimming, pruning, thinning and leaves removal, commonly with a planar 

crank mechanism of motion and with the aid of simple supporting structures allowing them to 

be directly linked to the tractor [16, 24, 27, 43 and 48], Figure I. 2. Anyway, standard cutter 

bars are generally recognized not to be suitable for this task, having an upper cutting limit of 20 

– 25 mm in diameter [28]. 
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Figure I. 2 – Less (up) and more recent (down) examples of use of standard cutter bar for pruning trees 
and vineyards trimming and thinning, with a classical cantilever applications. 

I.2 AIM AND PROCEEDING 

The main problem regarding this cutting system is the vibration phenomena that arises during 

the work, particularly for the single blade type and when the cutter bar is constrained to the 

main structure by only one of the two lateral ends (overhanging cutter bar), typically for weeds 

cutting purposes. For high rotational speed the order of magnitude for this effect can overcome 

200 mm, hence it can be considered as large oscillation, while when the cutter bar is 

constrained by both the two ends, for low rotational speeds or in case of double blade cutter 

bar, the effect is still present but with a lower magnitude [23, 30, 53 and 54]. 

These vibrations affect negatively both cutting quality and working safety in a significant way, 

while the bar should “float” easily over the ground, without bouncing [53]. The situation gets 

worse when pruning trees and vineyards. Indeed, the increased and more discontinuous cutting 

resistance carried by tree branches and shrubs requires a larger amount of power and the bar 
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has to be stronger and stiffer. Hence, the already existing vibratory phenomena increases, thus 

considerably diminishing both cutting quality and safety [42]. 

In an attempt to avoid these problems, and hence reduce the oscillating deflection of the cutter 

bar tip, the manufacturers usually tend to use longer conrods [8], to limit the total cutting width 

or even suggest the use of double blade mechanisms [23, 56], generally reducing the versatility 

of the system, increasing its cost, wear, tear and the chances of jamming and breaking [5, 38 

and 53]. Besides, to evaluate the real extent of these problems the system dynamics have to be 

analyzed in detail and the cutting resistance mathematically estimated in order to obtain a 

quantitative description of the system behaviour in the specific case trees pruning, since the 

working conditions are totally different from the standard ones. 

Early studies on the cutter bar regarded the cutting area optimization under different tool 

configurations and the evaluation of the cutting speed influence in relation to geometric 

parameters, with different levels of approximation [10, 30, 32, 51 and 53]. These researches, 

involving only kinematic analysis, regarded cutting action optimization for grasses and forages, 

so they are not suitable in the case of larger shrubs [24, 28 and 30]. In this latter situation, 

indeed, factors prevailed like counterbar configuration, the actual deflection and resistance of 

the shrub under cutting [5, 51] and dynamic factors like instantaneous cutting force, torque or 

motion shape over time become significant.  

Later studies evaluated the cutting force for different configurations of the blade and 

counterbar [29, 58] and cutting efficiency in function of several geometric tool parameters 

[40]. Dynamic analysis has been also carried out [2, 32] and, in addition, some empirical 

models for cutting resistance have been developed using energetic criteria [11, 53] or 

experimental data obtained in static cutting conditions [14, 31, 52 and 58].  

Anyway, even if there have been many attempts, none of them have worked so well that it can 

be said the mentioned vibratory phenomena have been solved. The cutter bar system remains 

still far from ideal in its basic design [15], the disequilibrium problem remains generally 

unsolved, its causes is not analyzed nor solution is theoretically proposed.  

Nevertheless, clashing with the old axiom that there is nothing new under the sun [30], several 

aspects have still to be clarified, especially regarding the dynamic behaviour of the whole 

system under these new working conditions. These include, firstly, the influence of inertia 

forces and motion irregularity on the mechanism disequilibrium. Also, it would be useful to 

determine the effect of the shrub on the mentioned motion irregularity as well as the correlation 

between the cutter bar geometric, kinematic and dynamic parameters and the motion law of the 

driving mechanism, so that to characterize the disequilibrium in terms of these parameters. 
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Finally, the disequilibrium source would have to be directly investigated, rather than try to find 

a palliative solution to improve the cutter bar balancing and efficiency. 

In order to investigate these aspects, with the main purpose of understanding the disequilibrium 

sources and hence to develop a suitable solution, only the more common and problematic 

cutter bar type will be taken under consideration here below: this is the single blade type, with 

a planar slider-crank mechanism of motion, since it is the most commonly used in pruning 

trees where the cutting resistance is higher and the vibration level as well. The developed 

analysis and the proposed alternative solution could be then reviewed and extended, with the 

right modifications, even for double blade cutter bars. 

The aim of this thesis is not only the construction of a single blade cutter bar complete 

mathematical model, in the case of a crank-conrod mechanism drive system and for the 

particular working condition of branches cutting, but also to investigate directly and in the 

widest way the disequilibrium source, together with carry the proposal of an alternative 

solution against the vibratory problems. 

In Chapter II this task is started with the development of a new and simplified mathematical 

(dynamic) model for the cutting resistance. Successively, the dynamic model of the whole 

cutter bar, that is the sum of its equilibrium equations and its equation of motion, is worked 

out. Chapter II ends with some consideration on the balancing enhancement and on the energy 

requirements in standard working conditions. 

The developed model is then numerically integrated, to gain the mechanism motion law and all 

the mathematical functions that defines the system disequilibrium and affect its balancing. This 

outcomes allow, in Chapter III, the optimization of the system in relation to the material being 

cut and in relation to the geometric and dynamic characteristics of the cutter bar itself, by 

means of a sensitivity analysis based on the influencing parameters involved in the system 

dynamics. This analysis yields to important information which are useful not only for the 

understanding of the unbalancing sources, but also for a general system improvement. 

Chapter IV regards the development of an alternative solution, using a modified crank – conrod 

drive system. This alternative solution, proposed for the system optimization in relation to the 

highlighted disequilibrium phenomena, is based always on the flywheel principia but uses even 

a pair of non circular gears. The application of this new solution is firstly designed for the 

present arrangement and, secondly, numerically simulated in a way that allows understanding 

the benefits carried to the system even in standard working conditions. 

Chapter V finally reports the thesis conclusions, overlooking the whole research from the 

beginning to its temporary end. 
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II.1 INTRODUCTION 

Nella modellazione del sistema dinamico, in taluni casi è sufficiente uno schema a 

corpi rigidi tra loro genericamente interconnessi, mentre per altri è necessario 

considerare la deformabilità distribuita dei vari elementi [...] è necessaria inoltre 

la conoscenza dei diversi campi di forze a cui i vari elementi sono soggetti nella 

loro forma più completa, poiché tali campi influenzano in maniera determinante il 

comportamento del sistema stesso [13]. 

When modelling the dynamical system, sometimes it is adequate to assume a 

scheme with generically interconnected rigid bodies, while in other cases it is 

necessary to take under consideration the distributed deformability of each part 

[…] it is necessary as well the complete knowledge of the diverse force fields 

under which each part is subjected, because these fields influence decisively the 

behaviour of the whole system itself [free translation from the original version]. 

In this chapter, the dynamic behaviour of reciprocating single blade cutter bar with slider-crank 

mechanism of motion will be taken under consideration. Thereby, the description of the 

equilibrium for each component of the system will be carried out, beginning from the 

kinematic analysis of the drive system through the highlight of each acting force field (both 

external and internal). These force fields are generic functions of the unique DOF that will be 

than assumed. Wherethrough making clear these dependences, it will be possible to describe 

the whole equilibrium in function of the solely assumed DOF and hence to deduce the drive 

system single DOF equation of motion (Paragraph II.3.3).  

The equation of motion will be subsequently integrated, resulting in the mechanism’s motion 

law which constitutes, together with the equilibrium equations, the system mathematical 

model. 

Before all, anyway, the external force field carried by the material being cut, namely the 

cutting resistance, has to be defined from a mathematical standpoint.  

II.2 CUTTING RESISTANCE 

The cutting action is carried out by means of the reciprocating rectilinear motion of the blade in 

conjunction with the rectilinear forward motion of the carrying machine (i.e. the tractor), so 

that each knife follows the same sinusoidal path, which is the basis for the definition of the 

cutting pattern, Figure II. 1 [10, 30].  
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Figure II. 1 – Teeth cutting pattern (on the left) and effective cutting area (on the right). 

In the past many studies clarified several aspects about this sort of operation. Initially, 

researches has mainly involved kinematic and geometric analysis of the tool pattern for forage 

and grass cutting, with the purpose of maximize the cutting area covered by the blade and 

optimize its speed (i.e. the blade average speed). 

Afterwards, dynamic analysis and experimental tests have evaluated the average (or sometimes 

the instantaneous) value of the minimum knife cutting force required to carry out the cutting 

action, on the basis of the knife geometry and the cut configuration [7]. Various and similar 

expressions have been then formulated, with the purpose of understanding the cutting 

resistance trend as a function of the knife displacement inside the plant. These models take 

under consideration several factors, like the knife edge shape (edge bevel angle), plant 

characteristics (material Poisson’s ratio, bulk, compressive or elasticity modulus), a not well 

specified value for the initial material compressive strength and internal friction.  

Finally, the cutting force shape in function of the knife displacement has been experimentally 

described only in the case of static cutting (i.e. cutting performed slowly) [14]. 

II.2.1 Model development 

With nothing to steal from these basilar analysis, and without the willingness of a more 

complete and in-depth description of the knife cutting action1, for the purpose of the 

                                                 
1 For this purpose see: Y. Hirai, E. Inoue, K. Mori: “Reaction Force Of Wheat Stalks During The Reel Operation 
Of A Combine Harvester”, Proceedings of the International Conference on Crop Harvesting and Processing, 9-11 
February 2003 (Louisville, Kentucky USA), ASAE Publication Number 701P1103e,Graeme Quick ed., 2003. 
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subsequent equilibrium analysis a different kind of cutting resistance model could be more 

useful. 

In the context of a dynamical analysis it could be useful to have a simplified model allowing 

the description of the cutting resistance instantaneous dependence not only upon the 

displacement of the knife, but even upon its speed, which is not uniform and is one of the most 

important parameters during the cutting path. Moreover, because of what will be mentioned 

below, in the case here studied it is impossible to exactly know the instantaneous displacement 

of the knife inside the plant, while more useful it would be to have a model based on the 

absolute (kinematically predictable) displacement of the knife. Finally, the mentioned 

dependence of the model upon geometrical factors could be a strong limitation in applying the 

cutting resistance model as a reference for different cases. For this purpose it could be easier 

and reasonable to have a simplified model that neglect this dependence and hence could be 

used for different knife geometries. 

Calling with R the instantaneous cutting resistance carried by the plant, hereafter has been 

explained a short and qualitatively description of the cutting action to develop a simplified 

dynamic model for this force field. To this end, the whole action is hence subdivided in four 

main stages and the knife is assumed to feed in the solely direction of its reciprocating motion2 

[5, 7, 52, 53]. 

In the first stage the shrubs, moving frontally and perpendicularly to the blade, are subdivided 

in little bundles by the fingers, until the knives finished their forward and return stroke. 

Therefore, the effective cutting action lasts for a portion much shorter than the entire stroke of 

the knife, since the dimension occupied by the fingers cannot be covered with shrubs, and even 

since the cut cannot begin until the shrubs reach the countercutting support and the consequent 

opening force, carried along the fibres by the knife, overcomes the material shear strength. 

So, being x1 the blade displacement and calling with x0A the mean value of x for which the 

plant reaches the countercutting support, for x < x0A no cutting is possible, and R is due only to 

the stalks bending and to their bending stiffness, value that is negligible in comparison to the 

overall cutting force in the case of a counterblade is present [53]: 

A011 for0 xxkxR <≈= , stage 0 (II.1) 

                                                 
2 This is an approximation. Actually, the generic knife presses the shrubs with a certain force perpendicularly to 
the knife edge itself, and simultaneously travels toward a certain direction s, following the sinusoidal path as 
specified above. Because of this movement, the stalks slide across the knife edge and, considering the friction 
between the knife edge and the material, the direction of motion of the knife relatively to the stalk can be deduced 
by the path s adding, or subtracting, depending on the specific position, the angle of friction.  
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The value of x0A, which depends on the quantity of shrubs under cutting, can be estimated 

statistically and in function of geometric parameters. 

Successively, reached by both the knife and the countercutting edge, the bundles are squeezed 

in between, and a certain amount of stalk slides on the knife edge. Anyhow, at this early stage 

(A) the effective cutting action didn’t take already place since the knife force is not high 

enough to carry out the cutting action. Hence, the generic bundle of biological material is 

compressed and the resistance R is due only to the compressive strength of the plant RC 

( ) AB1A0formaterial xxxRR C <≤= , stage A (II.2) 

that depends intrinsically upon the material being cut and will represent the starting value of 

the cutting resistance in function of the blade displacement. 

In correspondence to point xAB, the knife cutting force reaches the minimum value needed to 

begin the cut, and the shrubs stop their sliding movement relatively to the knife because of the 

pressure and the friction. Here, the opening force carried by the knife in the direction of the 

plant fibres overcomes the shear strength of the biological material, keeping on even the 

compressive action. Hence, during this stage (B) the cutting action coexists with the 

compressive one and the total needed cutting force rises both because of the increase in shrubs 

quantity and in the value of the shear strength: 

( ) AB1forq.tyshrubs material, xxRR T ≥= , stage B and C (II.3) 

At point xBC the maximum value of the necessary cutting force RT is reached, and the material 

under cutting is structurally destroyed. From this point onwards there is no more compressive 

action and the value of R decreases, due both to the settlement in the biological structure and 

the decrease in shrubs quantity. 

Figure II. 2 represents some examples of cutting force trend in function of the knife 

displacement, in the case of a single shrub and when cut is performed slowly (static cutting). 

Obviously, when there are more shrubs under the same knife edge, which is a standard 

circumstance in working conditions, the total cutting force raises and the corresponding cutting 

diagram is different. In this case for each shrub it could be assumed a diagram similar to the 

above one, with a force peak translated on the abscissa because of the difference in their 

position inside the space between knife and finger. Finally, for more knife edges working 

simultaneously, like in practice, the total force shape could be very different, since the shrubs 

randomly fit the spaces between knives and fingers. Raising the quantity of shrubs being cut, 

the case approximates again to the situation of a uniform distribution of material, like for 

forages, and the cutting force becomes proportional to the cutting area again [31]. 
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Figure II. 2 – Examples of cutting force/displacement diagram for different fibrous materials, obtained 
experimentally with a static cut of a single shrub. 

Taking into account the description made above, the conventional simplified model for the 

trend of R(x1) is built beginning from the analysis carried out by Kepner, [31], The Author 

analyses a generic double blade cutting bar and the instantaneous cutting force3 generated. This 

force is calculated neglecting friction and inertia forces, and so it corresponds to our definition 

of the cutting resistance R4. Considering a single pair of knife edges, Kepner highlight how this 

force is basically proportional to the infinitesimal area dA being cut by the two knife edges5 in 

their reciprocal approaching dxk + dxp (Figure II. 3): 

pk dxdx
dAER

+
⋅

=  (II.4) 

where k and p mean respectively knife and plate (the second movable knife). In the case of a 

single blade cutter bar it is: 

                                                 
3 The Author uses the expression “averaged cutting force exerted during any increment of time” because he 
develops the analysis on the basis of little and not infinitesimal increments of displacement x1. Passing to 
infinitesimal quantity, the notion “averaged” loses its meaning and the force function is translated into the present 
one.    
4 For this assertion see equation  at page 38. Neglecting inertia and friction forces the knife active cutting foce 
becomes equal to the plant passive cutting resistance.   

II.28

5 And measured in the plane of motion of the knife edge itself. 
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1
1,0

dx
dAERdxdxdx kp ⋅=⇒==  (II.5) 

where dA is the area actually mowed by the knife during its infinitesimal displacement dx1 and 

E represents the specific energy required for the cut, measured in J/m2. This specific energy is a 

solely function of the material being cut and it is calculated integrating the cutting force during 

the whole knife stroke, so it takes into account both the compression energy and the energy 

effectively used in the cut [46]. 

 

Figure II. 3 – Single blade cutting diagram for the right edge of a knife tooth, [31]. The real cutting area is 
dotted in grey, while the continuous red curve represents the tooth path. It could be observed the tiny 
approximation that has been made by neglecting the fingers dimensions. On the right the cutting area 
calculation scheme is represented. 

During the work the area covered by the knife movement is a little different from the area 

effectively mowed, because of the knives and fingers dimensions themselves. This difference is 

negligible for single blade systems [31] (Figure II. 3), hence the value of R can be obtained by 

matching these areas and calculating dA as the covered area:  

ϑ
ϑ

=ϑ⋅
ϑ

⋅⋅⋅=⋅⋅= dxzxd
d
dt

dt
dxxzdxxzdA &

&3
1

3
131  (II.6) 
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where z is the total knives number6,  is the forward speed of the tractor carrying the cutting 

system (supposed to be uniform and in the x3 direction) in m s-1, x1 is the blade displacement in 

m,  is the crank rotational speed in rad s-1 and dϑ is the crank infinitesimal rotational 

displacement in rad. From II.5 and II.6, the cutting resistance is:  

3x&

ϑ&

1

1
3

11 x
xxEz

dx
dt

dt
d

d
dAE

dx
dAER

&
&=⋅

ϑ
⋅

ϑ
⋅=⋅=  (II.7) 

where  is the instantaneous blade speed in m s-1. This equation is in good agreement even 

with the results of other Authors [22], where R results to be inversely proportional to the first 

power of the cutting speed. 

1x&

Finally, Introducing the statistical coefficient p = p1·p2 (%), which takes into consideration the 

random filling of the cutting area (p1) and the number of teeth simultaneously in action (p2), for 

the forward (increasing value for x1) and return stroke (decreasing value for x1), respectively, it 

gives:  

( )
( )

( )ϑ=
⎪⎩

⎪
⎨
⎧

ϑ−

ϑ
= D

xxc

x
xpzE

x
R

11

1

3
1

11
&

&
&

 (II.8) 

whose direction is always opposed to the blade speed:  

( )1sgn xRR &
v

−=  (II.9) 

and where c is the blade overall stroke in m: 

( ) ( )IO tantan β−β= eec  (II.10) 

with e the mechanism eccentricity (m) while βO and βI are the conrod angle calculated 

respectively at the outer and inner dead centre positions of the mechanism (rad)7.   

This model represents a first approximation of the cutting resistance, where the shrubs are cut 

instantaneously at the first contact with the knife: it doesn’t take into account what above 

described, that is the cut can occur only along the line EF (Figure II. 3), locus where knife and 

finger meet. Hence the obtained trend, as it is in (II.8), should be limited to a certain window in 

respect to the overall blade stroke [31, 51]. 

For this purpose it could be assumed that the calculated trend remains valid between the 

coordinates xE and xF (m) that characterize the beginning and the end of the line EF on the x1 

direction, while the force is null elsewhere:  

                                                 
6 The number of knives and not the number of knife edges (the twice) because the edges belonging to the same 
knife never work at the same time. 
7 For their calculation see next Paragraph 
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( )
( )

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤ϑ=
⎪⎩

⎪
⎨
⎧

ϑ−

ϑ
=

><=

FE

FE

xxxD
xxc

x
xpzE

x
R

xxxxR

1
11

1

3
1

11

for11

andfor0

&
&

&

 (II.11) 

Calculating these two coordinates, it could be observed that for shrubs with a certain thickness, 

but not for forages as it was in [31], the line EF doesn’t coincide with the finger edge anymore, 

as far as the quantity of shrubs under cutting increases. Simplifying the problem, this 

observation could be neglected and the finger edge could be taken as the definition of the line 

EF: calling with 2r the overall stroke (m), with FE ed FF respectively the bottom and head 

finger width (m) and with KE e KF respectively the bottom and head knife width (m), it is:  

222
222

FFF

EEE

FKrx
FKrx

−−=
−−=

 (II.12) 

that has to be considered only for the cutting (forward) stroke of each knife edge: for example, 

during the forward stroke of the left hand edge (left hand cutting stroke), the right hand edge 

doesn’t cut anything while it accumulates material for the subsequent returning stroke (right 

hand cutting stroke), and vice versa. Hence, assuming conventionally the positive forces 

consistent with the positive knife speed (increasing blade displacement) it becomes: 

( ) ( )

( ) (
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 (II.13) 

For fresh vineyard wood it can be estimated E = 3·102 J/m2 (see [46]8) while the two statistical 

rates may be assumed to be p1 = 33% and p2 = 50% for an averaged situation. The resulting 

trend of the cutting resistance R, which is then assumed for the subsequent analysis, is 

calculated and shown in Figure II. 4 for different values of the total filling rate p, while in 

 
8 In the ASAE book the quantity E is named as ENCSAE, the specific cutting energy per unit field area (the area 
being cut) and it is measured in KJ/m2. Its value is calculated as: 
 
ENCSAE = ENCSA · AESF/1000 (II.13b) 
 
where ENCSA is the specific cutting energy per unit cut solids area (the area of solid material), measured in 
J/mm2, while AESF is the total solids base area per unit field area of all plants, in mm2/m2. For the case of 
vineyard wood, the specific values of these parameters are not reported in the book, but they can be estimated 
within the uncertainty that these values experimentally have, that is E = 0.1 ÷ 0.4 kJ/m2. Being prudent, a value a 
bit greater than the average one may be assumed, and so E = 0.3·103 J/m2. 
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Figure II. 5 it has been calculated for different values of the average running speed ω. In line 

with other Authors [30, 52] and with practice, it can be seen that R decreases with increasing 

average running speed. 
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Figure II. 4 – Cutting resistance as a function of normalized and dimensionless time πϑ= 2t̂ , for different 
values of filling percentage p. For the definition of t  see Paragraph III.2, page 56. ˆ
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Figure II. 5 – Cutting resistance as a function of normalized time, for different values of the average 
running speed ω. 

 33



 Analysis of Reciprocating Single Blade Cutter Bars 
 

II.2.2 Model benefits and limits 

The model obtained for the plant cutting resistance has the main benefit to be analytically 

simple and to be based on some of the blade kinematic and geometrical parameters (z, 

). These dependences amplify the model possibility of application, allowing it to 

be well adapted for different kind of cutting bars. 

113 and, xxx &&

The developed model is fundamentally a kinematic model of cutting, while from the plant 

point of view it depends solely on the plant energetic parameter E. This is a great simplification 

from a biological standpoint but carries an advantage in terms of computation, benefit that will 

be discussed successively in Paragraph II.5. 

It has to be remembered, anyway, that what above developed is only a qualitative model for the 

plant cutting resistance. This model is useful for the subsequent calculation and it would be 

helpful even for a comparison between the results of different cutting bars. Anyway it cannot 

be used for a comparison with experimental data not only because of the approximations 

introduced, but also because in practice there are several variables bringing their influence on 

the real trend of this force [7, 52]. 

For instance, the stochastic variability of E within the same kind of plant and even within the 

same shrub during the cut can just introduce a not negligible discrepancy with the model. This 

energetic coefficient, that is calculated integrating the force itself during the cutting path, 

cannot highlight the differences within the path due to the compression or the fibres structure 

destruction. To allow these aspects to be taken into account, the instantaneous value of the 

specific energy E(t) has to be considered instead of the averaged one, evaluating the 

dependence of E upon the coordinate x1 and so raising the complexity of the model. As a 

matter of fact, while cutting plants which have a specific fibrous structural resistance, the value 

of the work involved depends on the direction of cutting and not only on the magnitude of the 

cross section surface. It depends, also, on the positioning of the knife relatively to the stalk. 

Moreover, the plant resistance is not uniform even in relation to the quantity of biological 

material that is instantaneously cut. The stochastic parameter p has been hence introduced and 

assumed constant to avoid this variability.   

In conclusion, the cutting resistance has an extremely variable trend in practice, due to the 

instantaneous values of E and p. Their constancy is an approximation, which have been made 

for simplicity purposes.  
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II.3 CUTTER BAR 

Figure II. 6 shows a typical single blade cutter bar. The carrying frame, integral with the 

toothed counterbar, is fixed on the tractor chassis and acts as a guide for the motion of a 

reciprocating steel plate on which the tempered steel trapezoidal teeth are bolted or welded. 

The counterbar teeth help to divide the shrub into sheaves to facilitate the cut, and act as a 

counterpart to the cutting action of the blade teeth. The drive system, an eccentric crank-conrod 

mechanism, is connected to a hydraulic motor that takes power from the tractor hydraulic 

circuit [30].   

 
Figure II. 6 – Reciprocating single blade cutter bar: hydraulic connection (1), hydraulic motor (2), dap-
joint for the tractor chassis (3), counterbar (4), blade (5), crank disc (6), connecting rod (7), counterbar 
teeth (8), blade teeth (9). 

In the following subparagraphs the kinematic and dynamic analysis of this mechanical system 

are carried out, considering separately the drive system and the counterbar, together with the 

development of the mechanism equation of motion by means the application of an energetic 

criteria. 

The crank – conrod drive system is well known from an engineering point of view, and also 

clearly and completely explained in many mechanical engineering books, both practically and 

mathematically. Anyway it could be stated that, in practice, its application is mainly analyzed 

making some approximations, like the uniformity of the crank rotational speed and, sometimes, 

the negligibility of the mechanism eccentricity [1, 25]. These assumptions, that are clearly 

rightful and explainable in common cases like internal combustion engines or automatic 

machineries, cannot be made here. This is because they refer to parameters which have to be 

deeply analyzed and their influence has to be clarified before any assumption is made. 

Hence it has been found helpful to report in this thesis a complete analysis of the mechanism 

which doesn’t make any preliminary assumption, nor approximation. However, the chance to 

assume any approximation remains up till the sensibility analysis will be carried out in the next 

Chapter. 
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The mathematical model of the system is developed assuming the crank angular position ϑ 

(rad) as the unique DOF, measured from the outer dead center position and considering the 

general case of a non – uniform rotational crank speed ( ). Considering each 

member as infinitely rigid, the kinematic single DOF equations of the mechanism as well as 

the equations of equilibrium for each component can be written. 

constant≠ϑ&

The reference frame is assumed as originating from the conrod motion plane, at the crank 

rotational axis projection. The X1 axis coincides with the blade direction of motion, moving 

positive on the inward stroke, the X3 axis coincides with the crank rotational axis in the tractor 

direction of travel, and the X2 axis is consequently determined.  

II.3.1 Crank-conrod mechanism kinematics and dynamics 

The mechanism kinematics is now analyzed. The blade displacement is identified with the 

conrod small end displacement x1(ϑ) (m), and it can be written as (Figure II. 7): 

( ) ( ) ( )ϑ=ϑ⋅−λ+ϑλ−⋅−⋅+= 1
2

O1 *cos*sin1βcos xr'llrx   (II.14) 

where ϑ* = (ϑ – βO) is the crank angular position, measured from the horizontal X1 negative 

position of the crank itself, and β (rad) is the conrod angle. The βO and βI values, respectively 

the conrod angle at the outer and inner dead centre positions, are determined geometrically 

from:  

( ) eh'hrl =−=⋅+ Oβsin  (II.15) 

( ) erl =⋅− Iβsin  (II.16) 

and: 

r = crank radius (m) 

l  = conrod length (m) 

λ  = r/l, stroke – conrod ratio 

λ’  = e/l , eccentricity ratio 

e  = h – h’, mechanism eccentricity (m) 

h  = distance, in the X2 direction, between the cutting line and crank rotational axis (m) 

h’  = distance, in the X2 direction, between the cutting line and conrod small end (m) 

ϑ*  = (ϑ – βO), crank angular position measured from the horizontal X1 negative direction 

(rad) 

The blade linear speed  (m s-1) and acceleration  (m s-2) are, consequently: 1x& 1x&&

( ) ( )ϑϑ=ϑλ+ϑλ+ϑ⋅⋅ϑ= &&& rf'rx *cos*2sin2*sin1  (II.17) 

 36 



Models  

( ) ( )

( ) ( ) 2

2
1 *cos*2sin2*sin*sin*2cos*cos

ϑϑ′+ϑϑ=

=ϑλ+ϑλ+ϑ⋅⋅ϑ+ϑλ−ϑλ+ϑ⋅⋅ϑ=

&&&

&&&&&

frrf

'r'rx
 (II.18) 

where  and ϑ  are respectively the crank rotational speed (rad s-1) and acceleration (rad s-2), 

while: 

ϑ& &&

( ) *cos*2sin2*sin ϑλ+ϑλ+ϑ=ϑ 'f  (II.19) 

and 

( ) ( )
ϑ
ϑ

=ϑ′
d

dff  (II.20) 

are functions defined only for clearness purpose. 

 
Figure II. 7 – Mechanism diagram. ODC and IDC represent respectively the outer and the inner dead 
centre positions.  

The expression for the blade linear acceleration is the sum of two terms. If the crank rotational 

speed was supposed to be constant  = ω, the second of these terms would be null because of 

 and the analysis would consequently be greatly simplified. Anyway this particular 

circumstance could not be assumed here, the motion irregularity being still unknown. The 

consequences of this consideration will be shown in the next Chapter. 

ϑ&

0=ϑ&&

To study the dynamic equilibrium, the mechanism has been split into its basic components. 

The blade mass mb (kg) has been concentrated on its centre of gravity Gb, while the conrod 

inertia has been reduced to an equivalent system having a rotational mass integral with the 

crank mc1 (kg) and a translational mass integral with the blade mc2 (kg) [3]:  
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ccc
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 (II.21) 

respectively at the distance lc1 (m) and lc2 (m) from the conrod centre of gravity. Hence the 

total translational mass mT  (kg) is the sum of mc2 and the blade mass mb: 

2cbT mmm +=  (II.22) 

while the rotational bodies total inertia momentum is  

JT = Jm + Jd + mb1 r 2 (II.23) 

where Jm (kg m2) and Jd (kg m2) are respectively the motor and crank disc inertia momentums. 

Neglecting the system weight9 and considering all the kinematic pairs but the sliding one 

(blade – counterbar) as ideal, the input variables are the driving torque C(t) (Nm), applied to 

the disc rotational axis, the friction force Fa (N) between the blade and counterbar and the 

cutting resistance R (N), both applied on the blade opposite to its speed direction. 

Based on the d’Alembert principle, the rotational equilibrium around the X3 axis is: 

( ) ϑ=⋅− &&
Tc JbFtC  (II.24) 

where Fc (N) is the axial force on the conrod and b = b(ϑ) (m) is the minimum instantaneous 

distance between the conrod axis and crank rotational centre, measured on the X1X2 plane: 

( ) ( ) ( ) ( ⎟
⎠
⎞⎜

⎝
⎛ λ+ϑλ⋅ϑ+λ+ϑλ−⋅ϑ⋅=β+ϑ⋅=ϑ '*sin*cos'*sin1*sin*sin 2rrb )

)

 (II.25) 

So, having the most general trend for the driving torque C(t) and the resistance torque Fc·b(ϑ), 

it is not possible to exclude a priori the existence of the rotational acceleration . Its trend will 

be drawn by the equation of motion analysis. 

ϑ&&

Dividing  Fc into its X1 and X2 components results that: 

( 2
1 '*sin1cos λ+ϑλ−⋅=β⋅= ccc FFF  (II.26) 

( '*sinsin2 λ+ )ϑλ⋅=β⋅= ccc FFF  (II.27) 

So, the blade translational equilibrium in X1 direction is (Figure II. 8):  

011 =−−⋅− RFxmF aTc &&  (II.28) 

where  is the inertia force of the translational bodies applied to the blade centre of 

gravity Gb and opposite to the blade acceleration direction. 

1xmT &&⋅−

                                                 
9 The system weight force changes in direction with the working layout of the cutter bar (horizontal, vertical or 
more generally oblique layout). This force has been neglected because its value is considerably lower than the 
values of the other forces involved in the analysis. Moreover its value is constant and, as it is well known from the 
mechanics of vibrations [13], a constant force implies only a translation in the equilibrium point displacement, 
while the dynamic behavior in the neighbourhood of this point remains the same. Hence, this neglect allow to 
consider any working layout of the cutter bar and conduct a more general analysis.   
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Figure II. 8 – Particular of the blade with forces and torques, on the left, and blade equilibrium diagram, 
on the right. 

The translational equilibrium along the X2 axis is: 

scs FFFR +=+ 22  (II.29) 

where R2 (N) is the counterbar reaction in the X2 direction, while the clamping force Fs (N) of 

the counterbar on the blade appear on both sides of the equation since it is auto-equilibrated. 

Hence the friction force Fa due to the total force in the X2 direction is: 

( sca FFF +µ= 2 )  (II.30) 

with µ being the friction coefficient. Using equation (II.28) this becomes: 

( )( )
β⋅µ−

+β⋅⋅+µ
=

tan1
tan1 sT

a
FxmRF

&&
 (II.31) 

where  

( ) ( ) ( )ϑ=ϑλ+λ′−ϑλ+λ′=β g2*sin1*sintan  (II.32) 

Finally, the hypothesis of an ideal cutting line is assumed, so that the cutting resistance R is 

idealized to lie on it. This line is parallel to the X1 axis and is assumed to be placed on the 

bottom surface of the blade teeth, at a distance of 2/3 of the total teeth height from the teeth tip. 

The friction force Fa has ideally the same action line, while the counterbar reaction R2 belongs 

to the vertical plane through this line and the X2 axis, in the middle of the blade (Figure II. 8). 

Analyzing the blade rotational equilibrium, and considering the vertical and horizontal offsets 

of the conrod small end from the defined cutting line, it is possible to identify three 

disequilibrium torques (Figure II. 9):  

( ) HFh''h'xmh'FC cTc ⋅−−⋅⋅−⋅= 2113 &&  (II.33) 
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dFC c ⋅= 21  (II.34) 

d''xmdFC Tc ⋅⋅−⋅= 112 &&  (II.35) 

Where it is: 

H = distance, in the X1 direction, between the middle of the blade and the conrod small end 

(m) 

h” = distance, in the X2 direction, between the blade centre of gravity and conrod small end 

(m) 

d = distance, in the X3 direction, between the cutting line and conrod small end (m) 

d”  = distance, in the X3 direction, between the cutting line and blade centre of gravity (m) 

Cj = generic disequilibrium torque around the j axis, with j = 1, 2, 3 (N m). 

II.3.2 Counterbar equilibrium 

The forces and torques from the blade (Fa, Fc2, C1, C2, C3), together with the external forces 

(R) and the forces from the crank pin (Fc1, Fc2), are supported by the counterbar carrying 

frame, fixed to the tractor chassis by means of a dap-joint. 

The translational equilibrium of the counterbar carrying frame (Figure II. 9) in the three 

directions is: 
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 (II.36) 

where Vj (N) is the generic dap – joint reaction force and Fij (N) is the counterbar inertia force 

in the j direction, with j = 1, 2, 3. Using equations (II.28, II.29) and observing that there are no 

external forces in the X2 and X3 directions, these equations become:   

  (II.37) 
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Defining the barycentric axis as the Xj direction through the counterbar centre of gravity, with j 

= 1,2 and 3, the rotational equilibrium around the barycentric X3 axis is:  

( )

( ) ( ) ( ) 0

coscos

2122122

2122333

=⋅++−+−⋅−−++⋅+−

+⋅+⋅−−β⋅+ϑ⋅++++

GSGSGLcGSGLa

cGSVi

xVxxh''h'hFxxh''h'FR

aFxValrHRCCC
 (II.38) 

where: 

CVj = generic dap-joint reaction torque around the j axis, with j = 1, 2, 3 (N m) 
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Cij = generic counterbar inertia torque around the j axis, with j = 1, 2, 3 (N m) 

a = distance, in the X1 direction, between the counterbar centre of gravity and crank 

rotational axis (m) 

xGSj = distance, in the j direction, between the dap-joint and counterbar centre of gravity (m) 

xGLj = distance, in the j direction, between the dap-joint and blade centre of gravity (m) 

Observing that: 

β⋅−ϑ⋅=−=− senlsenrehh'  (II.39) 

and substituting equations (II.28, II.29, II.33, II.37 and II.39) into (II.38) after few passages it 

becomes: 

( ) 3221122133 TxxxmCJxVxVCC GSGLTTGSGSVi =−⋅−−ϑ=⋅−⋅++ &&&&  (II.40) 

The rotational equilibrium around the barycentric X1 axis, using equations (II.34) and (II.37), 

is:  

0233211 =⋅+⋅−+ GSGSVi xVxVCC  (II.41) 

Finally, the rotational equilibrium around the barycentric X2 axis is:  

( ) ( ) 03313113222 =−+⋅+−⋅+⋅+⋅−++ GSGLabGSGSVi xd"xFRa'FxVxVCCC  (II.42) 

where a’ is the distance, in the X3 direction, between the conrod small end and counterbar 

centre of gravity. Using equations (II.35, II.37), equation (II.42) becomes: 

( ) 2331311222 TxxxmxVxVCC GSGLTGSGSVi =−⋅−=⋅+⋅−+ &&  (II.43) 

The set of equations (II.37, II.40, II.41 II.43) describes the system dynamic equilibrium. These 

equations are statically coupled, since the dap – joint has a finite structural stiffness. 

 

Figure II. 9 – Cutter bar diagram. 
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II.3.3 Equation of motion 

The equilibrium equation (II.24) written in function of the solely DOF ϑ and of its derivatives 

represents the mechanism’s equation of motion. As well as for the equilibrium equations, this 

equation is useful to understand the mechanism behavior, but in a different way. Anyway, 

before proceeding with its development it is necessary to clarify the motion running conditions 

in which the cutter bar behaves. Moreover, it is necessary a further analysis of each term of the 

equation itself.  

As it could be understood from the above equilibrium analysis, the whole force system 

involved in the cutter bar analysis is function of the DOF ϑ and so it varies with a periodic law. 

Hence, any external or internal force or torque acting on the cutter bar can be written in terms 

of ϑ and its derivatives. Moreover, in absence of any external not deterministic and not 

foreseen noise, even the rotational speed and acceleration are periodic functions of the angular 

displacement ϑ and they can be written in terms of it. They oscillate around their average 

values with period T whose value is unique and it is due to the motor axis rotation average 

running speed. 

Under these particular circumstances it is said that the mechanical system behaves in a periodic 

running condition, which was expected to be because of the presence of a reciprocating driving 

mechanism. The not uniform but periodic shape of the rotational speed in time implies 

obviously the existence of the rotational acceleration , that leads the system to be subjected 

to continuous transitories, shorter than a singular axis rotation, and never to have an absolute 

running condition.  

ϑ&&

Hereby, assuming a deterministic model, the crank mechanism motion is periodic, with period 

ωπ= 2T , where ω is the average value of the rotational speed. Let us analyze any force in 

( ) ϑ=⋅− &&
Tc JbFtC  (II.44) 

to highlight its dependence on the solely DOF and its derivatives, that is the demonstration of a 

periodic running condition subsistence. 

The resistance torque is , where the dependence of b on ϑ has already been highlighted 

and Fc is (II.26, II.28): 

( )ϑ⋅bFc

( ) ( )2
1 '*sin1 λ+ϑλ−++⋅= RFxmF aTc &&  (II.45) 

where, as it can be seen from equations (II.8, II.18 and II.31):  

( )ϑϑϑ= &&&&&&& ,,11 xx  (II.46) 
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( ) ( )ϑϑϑ=β= &&&&& ,,,,1 aaa FRxFF  (II.47) 

( )ϑϑ &,RR =  (II.48) 

and so even 

( )ϑϑϑ= &&& ,,cc FF  (II.49) 

is a periodic function of ϑ. 

To couch the driving torque as a function of ϑ the hydraulic motor functional 

diagram ( )ϑ= &CC  is used, as well as in the case of absolute running conditions. It has to be 

observed that these diagrams cannot be used generally under periodic running conditions [25], 

especially when the oscillation period is shorter than the duration of a single revolution of the 

axis. This obstacle is overtaken assuming that the driving torque is independent from ϑ, as it 

could be expected using an hydraulic motor, and from . That is, the fluctuation of  doesn’t 

influence the diagram shape but only modifies the working point coordinates on the diagram 

itself. The evidence for this assertion can be found observing the functional diagram, where 

curves within the same family have a similar shape, which doesn’t vary with a change in speed. 

Hence, for small values of rotational speed fluctuation, the motor functional curve can be 

developed as a Taylor series about the rotational speed average value ω [25], neglecting the 

terms over the first10: 

ϑ&& ϑ&

( ) ( ) ( )ω−ϑ+=ω−ϑ⎥
⎤

⎢
⎡

ϑ
+ &&

& kCC
d
d

⎦⎣
ω≈

ω

CC  (II.50) 

where C  (N⋅m) is the driving torque average value, that is the torque evaluated for the average 

rotational speed, while k (kg m2 s-1) is the motor stiffness, in this case meaning hydraulic plant 

stiffness11. Particularly, k represents the slope of the curve considered in the diagram, 

                                                 
10 Neglecting higher order terms corresponds to assert the small value of the rotational speed fluctuation. 
11 To define completely equation ( ) the motor functional diagram is used. Upon it, in case of absolute running 
conditions, the working point depends solely on the working characteristics of the hydraulic plant that supply the 
motor. As it could be seen from the diagram showed as an example in the figure below, the nominal value of the 
driving torque C* and the nominal rotational speed ω* (respectively M and min-1 in the functional diagram) are 
functions of the theoretical pressure difference ∆p between the motor intake and outtake and of the theoretical 
input flow Q, both plants characteristics. It is: 

II.50

MHVpC ηη⋅⋅∆=*  (II.49a) 

where ηH and ηM are respectively the hydraulic and mechanical efficiency of the motor, while V is its cylinder 
volume at any revolution. The nominal rotational speed is a function of V and Q: 

VV
Q

η=ω*  (II.49b) 

where ηV is named volumetric efficiency  
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calculated in the abscissa point where , and it identifies the motor (hydraulic plant) 

tendency to maintain a given rotational speed with variations in the resistance torque.  

ω=ϑ&

Equation (II.50) asserts that the driving torque is a function of the first derivative of the DOF 

( )ϑ&CC = . Thus, since any terms involved in equation (II.24) is a function of the unique DOF 

and its derivatives, a periodic running condition subsists. 

The equation of motion can be written on the basis of equation (II.24), as it has been said 

above, that is, following the forces approach. Anyway here an energetic approach has been 

                                                                                                                                                           

 
Hence, given the hydraulic plant and the motor, the pressure gap ∆p can be varied with the apposite regulation 
valve at the motor intake, or the input flow Q can be modified with the tractor gas throttle. Thus it is possible to 
obtain the wanted values for the torque C* and for the rotational speed ω*, accordingly to the above equations, 
adjusting the working point on the diagram and optimizing the overall motor efficiency 

MHV ηηη=η . 
Besides, in case of periodic running conditions the nominal values lose their meaning. The rotational speed is 
periodically variable, and with it even the driving torque but, anyway, equations ( ) and ( ) remain valid 
if the averaged values ω and 

II.49a II.49b
(ω)C  are assumed in the calculus, rather than the nominal ones, as well as the 

constant k. Hence in this case, acting on the tractor gas throttle or on the motor intake hydraulic valve, the average 
rotational speed is modified on the basis of equation ( ), but the driving torque trend, and hence its average 
value and the coefficient k, depends only upon the resistance and inertia torques, as it is well highlighted by 
equation (II.24). Therefore, given the quantities V and Q, the average rotational speed ω is set from equation 
( ), the average driving torque is equal to the average resistance one, while the coefficient k is  

II.49b

II.49b
 (II.49c) 

MHV
d

pd
d
dCk ηη⋅⎥⎦

⎤
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ϑ
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=⎥⎦
⎤
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⎡

ϑ
=

ωω
&&

where V = constant and where it has been assumed negligible any efficiency variations with small changes in the 
running speed: 

 (II.49d) 0=⎥⎦
⎤

⎢⎣
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ϑ
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Equation (II.49c) finally highlights that the driving torque oscillation amplitude, anyhow limited for the 
considered running speed variations, comes only from the variance of the pressure gap ∆p. The amplitude of the 
pressure gap variance, in its turn, depends only upon the plant ability to maintain unaltered its functional 
characteristics against variations of the externally imposed load. Hence the motor stiffness means here plant 
stiffness. 
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assumed, because it is suitable for some further observations that will be carried subsequently. 

Hence, the most general motion of the single DOF crank – conrod mechanism can be analyzed 

using the kinematic energy theorem: 

dt
dEWWW drm =++  (II.51) 

where Wm, Wr and Wd are respectively the driving, the resistance and the dissipative power, 

while the term on the right side represents the variation in the kinematic energy of every 

movable part of the mechanism, rotational and translational.  

This equation gives a deeper view on some assertion made above. When the sum of the 

external force powers is positive, the kinematic energy of the mechanism increases while, on 

the contrary, when this sum is negative the system reduces its kinematic energy. That is an 

explanation for the instantaneous variation in the rotational speed . Hence, the inertia terms 

can be thought as an “energy reservoir”: when the system accelerates the inertia terms store the 

surplus energy in respect to that used in the cutting action and friction overtaking, while when 

the system decelerates they give it back to make up for the lack of driving power.  

ϑ&

On left side of (II.51) it is12: 

( ) ( )ϑω−ϑ+ϑω=ϑ= &&&& kCCWm  (II.52) 

( )ϑ−=−= DxRWr 1&  (II.53) 

( ) ( ) ( )( )
( )ϑµ−

+ϑ⋅+µ
⋅ϑϑ−=−=

g
FgxmRfrxFW sT

ad 1
1

1
&&&&  (II.54) 

where the negative signs are due to the discordance between the force direction and the blade 

speed direction (that’s why they are the dissipative and resistance terms), while the kinematic 

energy variation is:  

( )[ ] ( ) ( )[ ] 32222
1

2

2
1

2
1

ϑ⋅ϑ′ϑ+ϑϑ⋅ϑ+=⎟
⎠
⎞

⎜
⎝
⎛ +ϑ= &&&&&& ffrmfrmJxmJ

dt
d

dt
dE

TTTTT  (II.55) 

Substituting the four above equations into equation (II.51) and collecting in respect of ϑ and its 

derivatives, it becomes: 
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 (II.56) 

                                                 
12 With not ideal constraints the dissipative power cannot be neglected. Here the solely contribution of the friction 
between the blade and the counterbar is taken into account because it is the most important one. 
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and so: 
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where f(ϑ), f’(ϑ), g(ϑ) and D(ϑ) have already been shown, while A(ϑ) and B(ϑ) are the 

following functions of the DOF: 

( ) ( )⎟⎟
⎠

⎞
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ϑµ−

=ϑ
g

rmA T 1
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Obviously equation (II.57) assumes three different forms depending on the value of ϑ, since 

the form of D(ϑ) is (II.11, II.13): 
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 (II.60) 

where ϑE and ϑF are respectively the crank angles for which (see equation II.12): 

( ) Exx
E

=ϑ
ϑ=ϑ1  (II.61) 

( ) Fxx
F

=ϑ
ϑ=ϑ1  (II.62) 

Equation (II.57) is the equation of motion of the mechanism. It is an ordinary non – 

homogeneous second order differential equation, strongly non – linear and with ϑ dependent 

coefficients. This kind of differential equation doesn’t admit, generally, a closed form solution 

[1, 13 and 49], but it can be numerically integrated13 assuming convenient boundary 

conditions. The solution of equation (II.57) represents the motion law ϑ(t) of the mechanism. 

Using the geometric and inertia characteristics of a common cutter bar sold on the Italian 

market (type Regina, Lotti srl, Faenza, Italy), and using standard working conditions, the 

equation of motion (II.57) has been numerically integrated (see Appendix A for the code list). 

The assumed boundary conditions are the values of the rotational speed for the minimum and 

maximum value of the integration time, assumed to be equal to the rotational speed average 

value. 

                                                 
13 Here, anyway, every term in the equation is periodic. Hence an exact closed form solution can be found 
reducing the equation itself to an equivalent first order system and subsequently developing it as a Fourier series. 
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From the obtained motion law, the time shape of all the ϑ dependent functions shown above 

has been calculated, numerically, as well as the functions ( )ϑϑ&  and ( )ϑϑ&& . Any force and torque 

in the equilibrium analysis has been then expressed in function of the solely DOF.  

II.4 ON THE BALANCING OF CRANK – CONROD MECHANISMS 

The minimization of the system disequilibrium could be faced by means of three different 

approaches. 

The first approaching way is optimizing the geometry of the mechanism. Following this 

approach the system geometry is modified in a way that allows minimizing both forces and 

torques magnitudes. This geometrical optimization can be carried out on the basis of the 

mechanism’s equilibrium equations. Anyway, this kind of approach has to be seen only as a 

preliminary design optimization of the system because, as it will be observed, it allows 

obtaining only a limited level of balancing. 

Another way is to optimize the dynamics of the mechanism. Following this approach the 

system dynamic is modified, in a way that allows minimizing forces and torques magnitudes 

and dynamic fluctuations. This is the commonly adopted approach for this kind of 

mechanisms, and implies the use of additional ballasts and inertial bodies in a way that the 

dynamic of the mechanism is finally changed. This approach can be carried out on the basis of 

the equations of motion too but, as it is well known, it allows obtaining only a limited level of 

balancing. Moreover its application introduces a high level of complexity. 

The last method to face the disequilibrium is to directly optimize the motion law: following 

this approach the system’s kinematics is modified, in a way that allows minimizing both forces 

and torques dynamic fluctuations over time. This optimization can be carried out on the solely 

basis of the mechanism’s motion law. 

Only the latter approach will be taken into consideration and developed in this thesis, in a 

separate Chapter, the dynamic balancing being well adopted and deeply analyzed in more 

specialized texts. Before continuing further, anyway, some considerations on the equilibrium 

equations could allow a preliminary design optimization of the system, that is following the 

first approach. This will allow a roughly understanding on which are the dynamic and 

geometric factors that have more influence on the system disequilibrium, which is important 

for the analysis conducted in the next chapter. 

Analyzing the equilibrium, the unbalancing could be clarified. The forces are not null only for 

the X1 translation direction (II.37) and the rotations around the X2 and X3 directions (II.43, 
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II.40). 

In the X1 direction the force produces a disequilibrium, and so a vibrational movement, which 

is not of major importance for the cutting quality. Moreover, using nominal working 

parameters which will be explained hereafter, the force has nominal fluctuation amplitude of 

only about 600 N. With this order of magnitude, and even because the cutter bar could be 

considered longitudinally infinitely stiff, the disequilibrium could be considered as negligible. 

The unbalanced torque around the X2 direction T2 has a nominal fluctuation amplitude of 

slightly less than 10 Nm, which is not a negligible value. Anyway this value can be reduced by 

means of a change in the cutter bar geometry, making the blade and counterbar centres of 

gravity coincide in the X3 direction 

33 GSGL xx ≈  (II.63) 

The unbalanced torque around the X3 direction T3 has the most influence on cutting quality, 

because it makes the cutter bar move in the plane that is perpendicular to the tractor direction 

of travel. Moreover its magnitude is the most severe, with nominal fluctuation amplitude of 

about 24 Nm, which is about 350 kg at the cutter bar end tip (Figure II. 11). This force arise 

from the sum of three components: the torque caused by the blade translational inertia force 

, the (crank disc) inertia torque  and the driving torque C, each one 

fluctuating as shown in Figure II. 10. 

( 221 GSGLT xxxm −− && ) ϑ− &&
TJ

Under nominal working conditions, the first of the three components has the main contribution 

to the total unbalancing amplitude, with an average value of about 69% of the overall 

fluctuation. Anyway, as stated before, this value is geometrically avoidable making the blade 

and counterbar centres of gravity coincide in the X2 direction. 

22 GSGL xx ≈   (II.64) 

i.e. having the counterbar centre of gravity practically on the cutting line. This means moving 

the hydraulic motor closer to the blade, making the mechanism less eccentric as stated by 

previous Authors [30], or leaving the engine in the same position but adding an equivalent 

ballast on the opposite side of the blade. 

On the other hand the second component of T3, the inertia torque, is practically negligible, with 

an average contribution of less than 0.50% of the overall fluctuation, while the driving torque, 

which gives 30.50% of the total forcing magnitude, is strongly ϑ dependent, highly 

discontinuous and absolutely not geometrically reducible. This final observation has suggested 

to analyze directly the motion law ϑ(t) in order to understand how to make the driving torque 

more uniform. 
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Figure II. 10 – The diagram shows (a) the driving torque, (b) the torque due to blade inertia and (c) the 
inertia torque due to crank disc as a function of normalized time. 
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Figure II. 11 – The diagram shows the overall unbalanced torque around the X3 direction, that is the 
superposition of the three contribution showed above. 
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II.5 DISSIPATIVE AND RESISTANCE POWERS MEASUREMENT 

Performing some experimental measures, it is possible to estimate the different influence that 

friction and cutting force have on the overall energy requirement of the system and, finally, to 

evaluate the energy quote effectively used for the cutting action.  

Multiplying each member of equation (II.51) for dt and integrating over a whole crank cycle 

the total kinematic energy variation has to be null, because of the subsistence of a periodic 

running condition with angular period 2π, precisely. Hence it is: 

( ) ( 0=++⋅=++∫
+

drm

Tt

t drm WWWTdtWWW )  (II.65) 

where drm WWW and,  are the averaged value, on a cycle basis, of the respective powers. 

Under these conditions, the power adsorbed by the system (negative) is the driving power 

(positive) changed in sign and divided by the hydraulic motor total efficiency 

V∆pCWW
VMHT

m
a ⋅−=

ω
−=−=

ηηηη
 (II.66) 

The main quote of this power is used for the cutting action ( rW ), while the rest is dissipated 

( dW ) [8, 30]: 

T

d

T

r
a

WWW
ηη

+=  (II.67) 

The dissipative power is mainly due to mechanism frictions, while secondly it is due even to 

the losses in cutting action and plant deflection and transportation [2, 46]. Neglecting the 

second kind of contribute in respect to the first one14, the dissipative power average value can 

be easily evaluated measuring the total power adsorbed by the system with nothing to cut (i.e. 

in void working conditions): 

T

d
Ra

WW
η0

=
=

 (II.68) 

In this way, remembering equation (II.54) and applying a linear regression proceeding, an 

experimental measurement of the friction coefficient can be obtained. 

Substituting then equation (II.66) into equation (II.67) and using equation (II.68), it becomes: 

( ) TRar WV∆pW η
0

⋅+⋅−=
=

 (II.69) 

                                                 
14 Even in the preceding Paragraph it has been tacitly neglected the second contribute. Indeed this contribute is  
generally higly lower than the first one, in case of grass and forage cutting [2], and it could be supposed to be even 
lower in case of larger shrubs. 
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where (∆p·V) and 
0=RaW  have opposite signs. Hence, the power quote effectively used for the 

cutting action, the net cutting power average value rW , can be easily evaluated measuring both 

the powers adsorbed in void and standard working conditions. Having this value, moreover, 

and remembering equations (II.11) and (II.53), the specific cutting energy E can be 

experimentally evaluated. 
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III.1 INTRODUCTION 

Using the characteristics of a common cutter bar and using standard working conditions, the 

equation of motion (II.57) has been numerically integrated15, obtaining the motion law and all 

the ϑ dependent function trends in time. 

Having these functions, the disequilibrium can be characterized in terms of any force 

contribution or even in terms of the overall forces and torques magnitudes and fluctuations in 

and around each direction. However, as it can be well understood from the equations in the 

preceding Chapter, these functions depend upon a lot of different factors. Hence, the variance 

of anyone of these factors implies a change in these functions and in their shapes so, finally, a 

change in the overall disequilibrium. To look at the disequilibrium modifications by means of 

changing the influencing parameter take the name of sensitivity analysis. 

In this chapter, the sensitivity analysis has been conducted analyzing the variance of the most 

important functions with some of the cutter bar main operational parameters. The influencing 

parameters chosen are total filling coefficient p (estimated nominal at 16.67%), average 

rotational speed ω (nominal at 31.40 rad s-1) and rotational inertia JT, simulating different crank 

disc diameters D (nominal at 0.13 m). Then the influence of some other parameters has been 

investigated, such as conrod length l (nominal at 0.39 m) and clamping force Fs (estimated 

nominal at 500 N). The mentioned nominal values are obtained directly from the manufacturer 

and experimentally by the used cutter bar. The disequilibrium functions has been all analyzed 

under the variance of these parameters, but only the most influenced ones has been shown in 

the following, that are the rotational speed and the driving torque. 

With the sensitivity analysis on the coefficient p it is possible to highlight what the differences 

are in motion shape and cutter bar disequilibrium while the cutter bar is working with more or 

less or even without shrubs. The latter is a useful case to observe the cutter bar’s own 

disequilibrium, and to characterize the presence and the damping effect of shrubs during the 

work activity. 

Moreover, the analysis based on the variation of the average rotational speed allows not only to 

individuate the optimal running speed by which the system minimizes the existing overall 

disequilibrium, but also to clarify the motion irregularity against such a variable resistance 

torque. 

                                                 
15 For the code lists see Appendix B. 
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Finally, simulating different crank disc sizes it is possible to highlight the influence of the disc 

itself on the motion irregularity, obtaining useful information for the system design as well as 

from the analysis of others influencing factors like the conrod length. 

III.2 SENSITIVITY ANALYSIS RESULTS 

In the following the motion law has been analyzed on the basis of a single cycle, i.e. one crank 

revolution, between the times t and (t + T), where t is a general point in time and T is the cycle 

period in seconds. Each function has been then expressed and analyzed as a function of the 

normalized and dimensionless time Ttt =ˆ , for comparison purposes. The analysis regards the 

variances in the trend of the rotational speed ( )t̂ϑ&  and in the trend of the driving torque ( )tC ˆ , 

while other ϑ dependant functions are highlighted at the end of the Chapter. 

III.2.1 Rotational speed trend in time 

The motion law analysis points out, firstly, a periodic oscillatory time – shape for the rotational 

speed ( )t̂ϑ& , with period T, average value 

( )∫
+

ϑ=ω
Tt

t
dtt

T
&1  (III.1) 

and discontinuities just in correspondence to the cutting resistance beginning and ending 

(Figure III. 1). This preliminary result bears out the initially assumed hypothesis of a non – 

uniform crank rotational speed. 

The periodic trend of the rotational speed can be understood by looking better at the equation 

of motion. Indeed, assuming 16 equation (II.57) can be rewritten as ( ) ( )ϑϑ=ϑδ &

( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )ϑ=ϑδ⋅ϑ+ϑδ⋅−ϑδ⋅ϑ′ϑϑ+ϑδ
ϑ

⋅ϑϑ+ FBkffA
dt

dzfAJT
232  (III.2) 

that is an ordinary non – homogeneous nonlinear first order differential equation in , with 

ϑ dependent coefficients. This change of variable can be made since the DOF ϑ appears only 

by means of its first and second derivatives, other than in the multiplicative coefficients. 

( )ϑδ

This change corresponds to considering an equivalent system, with ϑ as independent variable 

and  as unique DOF. Beneath this perspective, equation (III.2) represents the nonlinear ( )ϑδ

                                                 
16 The instantaneous rotational speed is represented here in function of the unique DOF ϑ because of what has 
been written in Paragraph II.3.3.  
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forced vibration of the equivalent system, which vibrates in ( )ϑδ  with the following forcing 

function: 

( ) ( ) ( ) ( )
( ) ( )( ϑϑ=
ϑµ−

ϑ
−=

ϑϑ
−=ϑ RF

g
D

rm
ADF

T

,
12 )  (III.3) 

with D(ϑ) given by (II.60).  
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Figure III. 1 – Rotational speed trend in function of the normalized time. Four points of discontinuity 
appear in correspondence of the cutting resistance beginning and ending, both for the case of forward and 
return strokes. For this assertion please compare figures at page 33. 

Hence, after a short transient in which ( )ϑδ  (i.e. the rotational speed) follows the trend given 

by the general solution of the associated homogeneous equation, it enters in a periodic steady 

state given by the particular solution of equation (III.2). 

As it is well known, this particular solution depends only upon the forcing function F(ϑ), that 

is a periodic function of ϑ and, precisely, follows the trend of the cutting resistance R(ϑ) 

somehow modified by the sine of ϑ. Indeed, as it could be observed in Figure III. 1, the 

particular solution for the rotational speed has a periodic steady trend in which the cutting 

resistance peaks arise, smoothed and lightly modified by an overall sinusoidal baseline trend. 

Furthermore, assuming the value of the average rotational speed ω, the value of the forcing 

period T results from: 

ω
π

=ϑ
ω

= ∫
π+ϑ

ϑ

21 2
dT  (III.4) 
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that is the period of the rotational speed oscillatory trend too. From this, equation (III.1) is 

determined: 

∫∫∫
++π+ϑ

ϑ
ϑ=

ϑ
=ϑ=ω

Tt

t

Tt

t
dt

T
dt

dt
d

T
d

T
&111 2

 (III.5) 

A useful parameter to clarify the trend of ( )tϑ&  is the motion irregularity, commonly adopted 

for non–uniform rotational speed analysis and defined as the rotational speed maximum 

amplitude in percentage of its average value: 

( ) 100×
ω

ϑ−ϑ
=φϑ

MINMAX
&&

&  (III.6) 

which is also calculated on the basis of a single cycle. 

Figure III. 2 shows the changes in this shape for different total filling percentages. It can be 

clearly seen that, as it was expected to be, the higher is the percentage (i.e. the greater is the 

cutting resistance) the wider is the irregularity in motion, with consequently higher 

discontinuity (depressive) peaks. A secondary consequence is that, to face up to higher 

discontinuity peaks, and also to maintain the imposed17 average speed value, the rotational 

speed values increase out of these depressive peaks. 
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Figure III. 2 – Rotational speed as a function of normalized time, for different values of filling percentage 
p. 

                                                 
17 The averaged value of the rotational speed is externally imposed by the tractor gas throttle (see note 11 at page 
43). 
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With null cutting resistance (p = 0%) the motion irregularity ϑφ &  is about 2.50%, that means the 

existence of a characteristic irregularity due to the implicit nature of the mechanism, while at 

the nominal working condition this irregularity is about 3%, increasing to 6.50% with total 

filling (p = 100%). So it can be seen that, under the nominal working conditions, the 

irregularity is mainly due to the system itself (in a quote of 2.50%) and only a little to the plant 

resistance R (0.50%). 

The reason for the rotational speed to be so highly dependant upon the total filling percentage 

is due always to the forcing function (III.3), which is proportional to the following parameters: 

( ) ( )elrxEzpF ,,,,,, 3&∝ϑ  (III.7) 

But while p and E can change instantaneously, the number of teeth z, forward speed , and 

crank radius r are unchangeable18. 

3x&

Figure III. 3 shows the variance in rotational speed shape with different crank disc diameters. 

Here the analysis highlight that the influence of crank disc inertia on  is absolutely 

negligible with D less than once or even twice the nominal value, as it can be well seen from 

the figure zoom. Increasing the diameter further, 

( )τϑ&

ϑφ &  reduces to 1% for D about four times the 

nominal one and it approximately disappears for D = 1.30 m, i.e. ten times the commonly used 

diameter. Hence, the nominal crank disc (D = 0.13 m) is clearly shown to be inefficient for 

motion regularization, while its presence begin to be useful for diameters in the orders of half a 

metre.  

The reason for this crank disc influence is not explainable by looking at the forcing function 

F(ϑ). Indeed, an increase in the crank disc acts directly on the total inertia momentum JT, 

increasing the inertia torque and making the rotational speed to be directly more uniform. 

Finally, Figure III. 4 shows the variance in rotational speed shape for different values of the 

imposed average value ω. To enable a comparison even with different absolute scales, the 

diagram represents the rotational speed percentage variation rather than the absolute value.  

This speed percentage variation is defined as the instantaneous difference between the 

rotational speed and its average value, as a percentage of the average value itself 

( ) 100% ×
ω

ω−ϑ
=ϑ∆

&
&  (III.8) 

                                                 
18 In the above analysis, the total filling percentage p can be easily replaced by the specific cutting energy E, being 
the forcing function directly proportional to both parameters and having them been assumed as constant but, 
actually, both variable instantaneously in time (see page 34, Paragraph II.2.2). 
Moreover, while the forward speed is externally imposed, choosing a certain cutter bar it means to have a fixed 
number of teeth z, and having each tooth standard dimensions, even the crank radius is fixed, as the double of the 
tooth major base.  
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Figure III. 3 – Rotational speed as a function of normalized time, for different crank disc diameter values. 
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Figure III. 4 – Rotational speed variation as a function of normalized time, for different average running 
speeds. The speed percentage variation, has been used rather than the absolute speed for comparing scale. 

Raising the average rotational speed from the value of 15.71 rad s-1 (150 rpm),  firstly 

reduces to the minimum value of 2.50%, at an average speed of 52.40 rad s-1 (500 rpm) while, 

after this point of minimum,  begins to increase proportionally to the average speed. This 

ϑφ &

ϑφ &
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means the existence of an optimum rotational speed, that is approximately 500 rpm but can be 

more accurately investigated, that minimizes the motion irregularity, as shown in Figure III. 4. 

Moreover, it has to be noticed that with an increase in the average speed value the fluctuation 

shape is gradually more smoothed, due to the fact that the cutting resistance R becomes 

increasingly negligible19.  

III.2.2 Driving torque trend in time 

As it can be seen, the motion irregularity is not very pronounced. Anyway, as a consequence of 

this irregularity, the driving torque follows the same fluctuation, with a similar discontinuous 

and periodic trend over time, but with a really not–negligible fluctuation amplitude (Figure III. 

5). This is important because, as it has been mentioned for the equilibrium equations analysis 

(Paragraph II.4), the driving torque makes the major and unavoidable contribution to the 

system unbalancing. 
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Figure III. 5 – Driving torque as a function of normalized time. The trend is similar to the rotational speed 
one, being the torque recognized to be linearly dependent upon it. 

As a matter of fact, the torque trend in time can be qualitatively foreseen looking at the 

preceding diagrams, because of the driving torque has been recognized to depend linearly upon 

the instantaneous rotational speed (II.50), with k being a negative number and assumed to be 

constant.  

                                                 
19 For this assertion please compare with Figure II. 5. 
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Hence, the driving torque also has a periodic oscillatory time – shape, with the same period T 

of the rotational speed and average value 

( )∫
+

=
Tt

t
dttC

T
C 1  (III.9) 

Figure III. 6 shows the variance in driving torque with different filling percentages p. As 

before, two discontinuities appear in correspondence to the cutting resistance beginning and 

ending, yielding high torque irregularity with the filling percentage increase. Anyway, 

differently from before where the peaks intensity influenced the whole motion shape, it could 

be seen here that it doesn’t happen. This happens because the torque average value is not 

externally imposed, but depends upon the resistance and inertia torques20, the main 

consequence being the torque average value itself increases with the filling percentage.  
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Figure III. 6 – Torque as a function of normalized time, for different values of the filling percentage p. 

With a null cutting resistance the torque average value is about 3 Nm for the forward stroke 

and -2.80 Nm for the return one, almost but not null on the entire cycle only because of the 

friction and the inertia forces, with an overall fluctuation amplitude of about 13.70 Nm. These 

values characterize the cutter bar’s own disequilibrium. The mentioned values increase 

respectively to 3.90 Nm, -1.80 Nm and 15 Nm under the nominal working condition and up to 

8.50 Nm, 3.70 Nm and 33 Nm in the case of total filling. 

                                                 
20 For this assertion please see note 11 at page 43. 

 62 



Sensitivity Analysis  

Diagram of Figure III. 6, if used in conjunction with the hydraulic engine functional diagram 

( )ϑ= &CC , provides an important tool to avoid system’s jams or breakings due to an overfilling. 

Indeed, knowing the plant characteristics ∆p and Q (note 11 at page 43) the optimal and 

maximum torque values which can be supplied by the hydraulic motor are defined by the 

functional diagram. Hence, if the supposed filling percentage in working conditions leads to a 

driving torque peak values grater than the maximum provided by the plant, it could be foreseen 

the need of a more powerful plant, or the system risks to jam or break. 

With a torque sensitivity analysis based on the variation of the crank disc diameter (Figure III. 

7) it is possible to understand the usefulness of the crank disc inertia, as stated by other 

Authors [54]. The disc does not significantly influence the average value of the torque, either 

for the forward or return stroke, but has some effect on the torque overall shape and amplitude 

only when its value is very high. Under the nominal working conditions and with the 

commonly used diameter, the disc produces a totally negligible inertia torque for the driving 

torque smoothing, with a cycle peak about eight times higher than the average value. The 

nominal situation is practically like if there was no disc, as it is clearly highlighted by the 

figure zoom. The peak values diminish to three times the average torque for a diameter about 

four times the nominal one, until an approximately one to one proportion in the improbable 

case of a 1.30 m disc diameter. 
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Figure III. 7 – Torque as a function of normalized time, for different crank disc diameters. 
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The disc ineffectiveness is mainly due to the really low average rotational speed, which is a 

particular characteristic of this kind of cutting system [30], while as it is well known the 

additive inertia carried by flywheels plays its role at high rotational speed. So, as it is shown in 

Figure III. 8 where the driving torque variance is analyzed in function of different running 

speeds, with an increasing average rotational speed the torque irregularity at first diminishes, 

because of the disc inertia increases its effect. Besides, raising further the rotational speed this 

effect overlaps with the pure average running speed effect, which tends to increase the driving 

torque peaks intensity, accordingly to equation (II.50). Consequently, with the nominal 

diameter even the torque fluctuation amplitude has a minimum value being near the average 

rotational speed of 52.40 rad s-1. Raising further on the speed, the overall amplitude increases 

again and the discontinuities due to cutting resistance become increasingly smoothed. 
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Figure III. 8 – Torque as a function of normalized time, for different average running speeds. 

The driving torque sensitivity analysis has also been conducted for variations in clamping force 

and conrod length values. In the former case, as it was expected to be, the torque increases with 

clamping force, but without changes to the overall shape and average value (Figure III. 9). This 

because the clamping force Fs appears in the equation of motion (III.2) only through the 

multiplicative coefficient B(ϑ) and not in the forcing function F(ϑ). In addition, in the case of 

an increase in conrod length the torque fluctuation amplitude also slightly increases, clashing 
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with the common use of a longer conrod to better balancing the system (Figure III. 10), while 

the torque average value doesn’t significantly change even doubling the conrod length. 

-32.0

-24.0

-16.0

-8.0

0.0

8.0

16.0

24.0

32.0

40.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

normalized time τ

to
rq

ue
 C

 [N
m

]

Fs = 0 N
Fs = 460 N
Fs = 1620 N
Fs = 3480 N

 

Figure III. 9 – Torque as a function of normalized time, for different values of clamping force FS. 
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Figure III. 10 – Torque as a function of normalized time, for different values of conrod length l. 

 

 65



 Analysis of Reciprocating Single Blade Cutter Bars 
 

III.2.3 Other functions trend in time 

Another function that could be useful to analyze from a sensitivity point of view is the overall 

unbalancing torque T3 that lead to the rotational disequilibrium around the X3 axis (II.40):  

( 2213 GSGLTT xxxmCJT −⋅−−ϑ= &&&& )

)

 (III.10) 

As it could be seen from Figure III. 11, this function is practically not influenced by the 

variance of the crank disc inertia. While the contribute led by the driving torque C is influenced 

as shown in Figure III. 7, diminishing with the disc inertia increasing, and the torque due to the 

blade inertia  is independent against changing in the disc inertia, the 

contribute led by the inertia torque  compensates the variance of the first one, increasing 

proportionally to the disc inertia and leaving the overall torque practically unaltered. 

( 221 GSGLT xxxm −⋅− &&

ϑ&&TJ

This has a great importance, showing finally the total usefulness of the disc for the system 

balancing improvement. 
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Figure III. 11 – Resistance Torque T3 as a function of normalized time, for different crank disc diameters 
d. 

Considering the variance of the filling percentage coefficient p, moreover, the disequilibrium 

torque is influenced only because of the driving torque contribute and, indeed, it assumes the 

same shape over time, with the same kind of discontinuities (Figure III. 12). 
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Figure III. 12 – Resistance Torque T3 as a function of normalized time, for values of the filling percentage 
p. 

Finally, increasing the average running speed the amplitude of the disequilibrium torque 

fluctuation increase proportionally, being the torque due to the blade inertia increasingly 

important (Figure III. 13). 
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Figure III. 13 – Torque as a function of normalized time, for different average running speeds.
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IV.1 INTRODUCTION 

As it has been shown in Paragraph II.3.3, the system works in a periodic running condition, 

with a not-constant rotational speed. Moreover, following what described in Paragraph II.4 let 

us analyze again the disequilibrium torque around the X3 direction, that is the right member of 

equation (II.40): 

( )2213 GSGLTT xxxmCJT −⋅−−ϑ= &&&&  (IV.1) 

Neglecting the last term which could be geometrically avoided, using equation (II.24) the 

unbalanced torque becomes: 

( ) ( )ϑ⋅ϑϑϑ−=−ϑ≈ bFCJT cT
&&&&& ,,3  (IV.2) 

that is finally the resistance torque, strongly dependant on ϑ and its derivatives, and with the 

trend represented in Figure IV. 1 
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Figure IV. 1 – Resistance torque trend in function of the normalized time, standard conditions. 

In other situations, like for internal combustion engines, the disequilibrium torque is 

represented exclusively by the driving torque, that make the chassis structure vibrate. Hence, 

commonly, the purpose is to regularize the driving torque, having the rotational speed as more 

uniform as possible, because of the existence of a direct correlation between driving torque and 
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rotational speed. A large flywheel is set on the engine output revolution axis, because the 

engine causes the disequilibrium, while the operating machine has to run uniformly [1, 25]. 

In the case here analyzed the situation is totally different. The disequilibrium is caused by the 

resistance torque and not by the driving one, because of the crank – conrod mechanism is here 

part of the operating machine, and not part of the engine. Hence, in this particular case it is 

totally useless to have a flywheel on the output axis of the hydraulic motor, because the motor 

itself is not the source of the disequilibrium. 

Following the sensitivity analysis upon the crank disc diameter it could be thought that a larger 

diameter helps to reduce the disequilibrium, but it is not. Having a bigger flywheel instead of 

the standard one on the motor axis, make the rotational speed to be more uniform, the driving 

torque as well, but not the resistance torque that is the sum of driving torque and inertia torque. 

With an increase in the flywheel diameter the resistance torque becomes slightly more uniform 

but greatly less than the driving one, because while both driving torque and rotational speed 

become more uniform, and hence the rotational acceleration decrease, the inertia term JT 

increase significantly, making the resistance torque remain not uniform. Hence the 

disequilibrium remains even if the driving torque and the rotational speed are regularized with 

a large crank disc (Figure IV. 2). 
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Figure IV. 2 – Changes in the resistance torque trend in function of the crank disc diameter d. As it could 
be clearly seen, and differently from the driving one, the resistance torque is not influenced by the crank 
disc diameter. 
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IV.2 ADDITIVE SHAFT WITH NON CIRCULAR GEARING 

The basic principia on which the flywheel act is to introduce an additive (inertia) torque 

between the driving and the resistance torques [1, 25, 30]. In the following, on the same basic 

principia, an alternative solution is adopted to introduce an additive torque on the motor 

rotational axis, which makes use of a flywheel and a pair of non circular gears. But where the 

purpose was to regularize the driving torque, here it is to regularize the resistance one (Figure 

IV. 3). 

 
Figure IV. 3 – An additive torque is introduced between the motor and the crank, with the purpose of 
regularize the resistance torque. 

Although variable radius gears are not very diffuse, they are essential for automatic equipment 

and other applications where there is not only a need for speed variation control during the 

working cycle, but also if a purely mechanical system is desired [17, 18]. 

Except for elliptical gears [6], until recently variable radius gears have been limited in their 

diffusion because of the production costs and because of the lack of generalized knowledge 

about production methodologies. Anyway, different and costless methodologies has been 

recently implemented for cylindrical gears cutting, like wire cutting, which has changed the 

prospective upon the non circular gears utilization even for cheap mechanisms [4, 50]. 

Therefore, the first goal has been here to establish a useful application for the non circular 

gearing on which basis the above mentioned additive torque could be supplied to regularize the 

resistance torque, the fundamental idea being to supply a cyclically variable additive torque by 

means of a cyclically variable gear ratio [18, 20, 21, 33, 41 and 57]. This application, anyway, 

had to be as less invasive as possible, so that the overall mechanism had not to be deeply 

modified in its own structure and its cost had presumably not to grow up too much. 

After the application scheme has been developed, the gear design has to be realized on the 

basis of the single necessary condition of resistance torque regularization. From this condition 
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the gear ratio trend in time could be obtained, while the two gear pitch lines could be 

determined on the basis of the gear ratio and of geometrical constraints.  

IV.2.1 Arrangement description and gear ratio calculation 

Let us define the motor rotational axis as the primary shaft (1) and remove the crank disc, 

setting on its original position a non circular pinion gear [18, 20, 21 and 41]. Rewriting the 

rotational equilibrium around the X3 axis it is: 

ϑ=⋅−+ &&
1JbFCC cADD  (IV.3) 

where J1 is the total inertia momentum of the primary shaft in the new configuration, with the 

pinion but without the disc, while CADD is an additive time-variable torque led through the 

pinion and such as the resistance torque becomes constant: 

constant1 =ϑ−+=⋅ &&JCCbF ADDc  (IV.4) 

The latter is the functional equation needed for the proceeding. This additive torque is supplied 

by a secondary parallel shaft (2), which carries a flywheel and a non circular driven gear which 

meshes with the primary shaft’s pinion (Figure IV. 4). 

 
Figure IV. 4 – Arrangement for the application of non circular gearing. The driving gear acts even as 
crank for the crank – conrod mechanism, while the secondary shaft carries both the driven non circular 
gear and the flywheel. 
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In this way the additive torque is supplied between the driving one, provided by the motor, and 

the resistance one, provided through the crank – conrod mechanism. Writing the kinematic 

energy theorem for the secondary shaft: 

dt
dEWW OUTIN

2=+  (IV.5) 

where WIN is the input power, adsorbed by the secondary from the primary shaft, WOUT is the 

output power, supplied by the secondary to the primary shaft, while E2 is the kinematic energy 

of the secondary shaft. With the commonly adopted sign convention, the adsorbed power is 

positive while the supplied one is negative, so that the energy contents of the secondary shaft 

decreases (increases) when the power flows from it (from the primary shaft) to the primary 

shaft (to it). Anyway, the power exchange between the two shafts occurs only through the non 

circular gearing and hence the power cannot be adsorbed and supplied simultaneously. When 

the power is adsorbed it cannot be supplied, and vice versa. Hence, it can be written generally: 

222
2
2222 2

1
ϑϑ=⎟

⎠
⎞

⎜
⎝
⎛ ϑ=ϑ⋅ &&&&& JJ

dt
dC  (IV.6) 

where C2,  and J2 are respectively the torque, instantaneous rotational speed and total inertia 

momentum of the secondary shaft. It follows that 

2ϑ&

222 ϑ⋅= &&JC  (IV.7) 

Moreover, because of the power conservation between the meshed gears it is: 

ϑ⋅=ϑ⋅ &&
ADDCC 22  

and hence, the additive torque supplied from the secondary to the primary shaft is 

( )tJCCADD τϑ=
ϑ
ϑ

⋅= 22
2

2
&&

&

&
 (IV.8) 

where τ(t) is the time-variable gear ratio.  

Equation (IV.4) is satisfied writing: 

( ) 0=⋅bF
dt
d

c  (IV.9) 

and so: 

( )( 0221 =ϑτϑ+ϑ− &&&& JJC
dt
d )  (IV.10) 

Let us analyze each term separately and write them in function of the DOF, its derivatives and 

in function of the gear ratio. From equation (II.50) it is: 

ϑ⋅= &&kC
dt
d  (IV.11) 
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while  

( ) ϑ−=ϑ− &&&&&
11 JJ

dt
d  (IV.12) 

where  is the rotational jerk of the primary shaft. Moreover it is: ϑ&&&

( ) ϑ⋅τ=ϑ && t2  (IV.13) 

and hence the rotational acceleration and jerk of the secondary shaft are respectively: 

( )( ) ϑ⋅τ+ϑ⋅
τ

=ϑ⋅τ=ϑ &&&&&&
dt
dt

dt
d

2  (IV.14) 

and 

ϑ⋅τ+ϑ⋅
τ

⋅+ϑ⋅
τ

=⎟
⎠
⎞

⎜
⎝
⎛ ϑ⋅τ+ϑ⋅

τ
=ϑ=

ϑ &&&&&&&&&&&&
&&

dt
d

dt
d

dt
d

dt
d

dt
d 22

2

2
2  (IV.15) 

So considering the last term of equation (IV.10): 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ τ

⋅ϑ+τ⋅ϑ=τϑ
dt
dJJ

dt
d

22222
&&&&&&&  (IV.16) 

and substituting it becomes: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ τ

⋅ϑ+τ⋅ϑ+τ
τ

⋅ϑ+τ
τ

⋅ϑ=τϑ
2

2
2

2

222 3
dt
d

dt
d

dt
dJJ

dt
d &&&&&&&&&  (IV.17) 

Finally, introducing equations (IV.11, IV.12 and IV.17) into (IV.10) and collecting in respect 

of the DOF derivatives, it becomes 

03 3

3

2

12
2

2

2

2

2

2

=
ϑ

⋅⎥
⎦

⎤
⎢
⎣

⎡
−τ+

ϑ
⋅⎥

⎦

⎤
⎢
⎣

⎡
+τ

τ
+

ϑ
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ τ

+τ
τ

dt
d

J
J

dt
d

J
k

dt
d

dt
d

dt
d

dt
d

 (IV.18) 

that could be further simplified with a variable change. Naming  

τ
τ

=
γ

dt
d

dt
d  (IV.19) 

it is consequently: 
2

2

2

2

2

⎟
⎠
⎞

⎜
⎝
⎛ τ

+τ
τ

=
γ

dt
d

dt
d

dt
d  (IV.20) 

and the dimensionless substituting variable 

2

2
1

τ=τ
τ

=
γ

=γ ∫ ∫ dt
dt
ddt

dt
d  (IV.21) 

Substituting these quantities into equation (IV.18) it finally becomes: 
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2

2

2
3

3

2

1
3

3

2

2

2

2

23
dt
d

J
k

dt
d

J
J

dt
d

dt
d

dt
d

dt
d

dt
d ϑ

⋅−
ϑ

⋅=γ⋅⎥
⎦

⎤
⎢
⎣

⎡ ϑ
+

γ
⋅⎥

⎦

⎤
⎢
⎣

⎡ ϑ
+

γ
⋅⎥⎦

⎤
⎢⎣
⎡ ϑ  (IV.22)

  

Moreover, the application of a secondary shaft parallel and geared to the primary one doesn’t 

introduce any change in the equation of motion. Indeed, the kinematic energy theorem (II.51) 

for the whole system becomes:  

dt
dE

dt
dEWWWW ADDdrm

2+=+++  (IV.23) 

where WADD is the additive power given to the system by the secondary shaft 

22 ϑ⋅= &CWADD  (IV.24) 

But remembering equation (IV.6) and simplifying, it is finally again: 

dt
dEWWW drm =++  (IV.25) 

That leads to the same equation of motion that has been developed in Paragraph II.3.3 with the 

only change in the new value of the total inertia momentum of the primary shaft: 

( ) ( )[ ] ( ) ( ) ( )[ ] ( )

( ) ( )( ) 02

23

2

2
2

1

=ϑϑ+

+⎟
⎠
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⎛ ϑ
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⎠
⎞
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⎝
⎛ ϑ

⋅−⎟
⎠
⎞

⎜
⎝
⎛ ϑ

⋅ϑ′ϑϑ+⎟
⎠
⎞

⎜
⎝
⎛ ϑ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϑ
⋅ϑϑ+

rmAD

dt
dB

dt
dk

dt
dffA

dt
d

dt
dfAJ

T

 

(IV.26)

  

Functional equation (IV.22) together with the new equation of motion (IV.26), that is the 

constitutive equation, forms an ordinary non-linear and non-homogeneous differential equation 

system, with ϑ – dependent coefficients, that is of second order in respect of γ(t) and of third 

order in respect of ϑ( )t . The solution of this equation is the gear ratio trend in time (IV.21)  

γ=τ 2  (IV.27) 

and the new (practically unchanged) motion law of the primary shaft. 

Because of what mentioned in Paragraph II.3.3, every quantity that appears in these 

expressions depends only upon the DOF ϑ. As a consequence, always under deterministic 

( ) ( )
conditions, even the function γ and so the gear ratio have to have the same dependence 

ϑγ=ϑτ=τ 2  (IV.28) 

 periodic trend with period T = 2π/ω21. Hence the secondary shaft has a periodic motion 

too. 

                                                

and a

 
21 Please refer to equation III.1. 
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Since the gear ratio τ is absent from the new equation of motion (IV.26) and the DOF ϑ is 

absent from the functional equation (IV.22)22, it is now clear that the trend of ϑ(t) is not 

influenced by the presence of the secondary shaft and by the non circular gearing. It can be said 

that the two variables are directly de-coupled.  

Hence, because of the particular application and because of the procedure by which it has been 

obtained, it is the gear ratio trend that follows the motion law by means of the rotational speed, 

acceleration and jerk trends in time, in a way such as to satisfy the functional equation and 

hence to annihilate the resistance torque variance, with the aid of the secondary shaft inertia. 

The only change in the motion law, in respect to the shape analyzed in Chapter III, is due to the 

absence of the disc and its substitution with the gear pinion. 

IV.2.2 Generation of variable radius pitch lines 

Both the two non circular gear pith lines can be obtained from the functional equation together 

with respecting a series of geometrical and kinematic constraints [18, 57]. The first condition 

regards the wheelbase satisfaction, i.e. the distance between the two gear axes must be constant 

and equal to a certain given value at any instant: 

( ) ( )( ) ∆=ϑϑ+ϑ 221 RR  (IV.29) 

where ∆ is the (constant) wheelbase value while R1(ϑ) and R2(ϑ2(ϑ)) are corresponding values 

of respectively the primary and secondary gear radii. The second condition regards the gearing 

mesh continuity, that means at any rotation of the primary shaft pitch line it has to correspond a 

rotation of the secondary one. This condition has to be satisfied independently from the two 

pitch lines overall lengths, so reasoning for infinitesimal quantities it is: 

21 dsds =  (IV.30) 

where dsi represent the arc length, on the i – shaft, of the pitch line movement, that is:  

( ) ( )( ) 2221 ϑϑϑ=ϑϑ dRdR  (IV.31) 

This means, as well, the absence of sliding between the two gears. 

However, it is clear that in order to obtain a not only continuous but also periodic variation of 

the gear ratio τ(ϑ), the ratio between the lengths of the two pitch lines must be a rational 

number. Hence, the gear ratio average value τ , evaluated on the basis of a single cycle of 

period T, has to be an integer number too. As a consequence, each tooth will mesh always with 

another tooth, or with a fixed number of teeth if τ  is greater than 1. That is, at any angle ϑ will 

                                                 
22 It is present but only by means of its first and second derivatives. 
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correspond a specific radius or a fixed number of radii of the secondary gear, this number 

depending upon the gear ratio average value itself. 

Hence, imposing the gear ratio average value to be an integer number 

( ) q2
2

π=ϑϑτ∫
π+ϑ

ϑ
d  (IV.32) 

where q is integer. Hence, it means  

( ) q
2
1 2

=ϑϑτ
π

=τ ∫
π+ϑ

ϑ
d  (IV.33) 

And the two above conditions become: 

( ) ( ) ∆=ϑ+ϑ 21 RR  (IV.34) 

( ) ( ) 221 ϑϑ=ϑϑ dRdR  (IV.35) 

But since 

( )
ϑ
ϑ

=
ϑ

ϑ
=

ϑ
ϑ

=ϑτ
d
d

d
dt

dt
d 222

&

&
 (IV.36) 

from condition (IV.35) it is 

( )
( ) ( )ϑτ=

ϑ
ϑ

=
ϑ
ϑ

d
d

R
R 2

2

1  (IV.37) 

and substituting into condition (IV.34) it is 

( ) ( )ϑτ+
∆

=ϑ
12R  (IV.38) 

and consequently again from condition (IV.35) it is: 

( ) ( )
( )ϑτ+
ϑτ∆

=ϑ
11R  (IV.39) 

The two radii obtained above describe the pitch lines of a non circular gear pair that is able to 

generate the prescribed motion law and additive torque, which annihilate the resistance torque 

variance as needed. 

IV.2.3 Other constraints 

Some observation has still to be marked about the constraints that have to be satisfied other 

than what already assumed and imposed. 

The first assumption was the periodic trend of τ, which descend directly from the fact that τ 

must be a function of the solely DOF. The satisfaction of this fundamental condition is 

implicitly guaranteed by equation system (IV.22, IV.26), because all the coefficients involved 

in this system are ϑ – dependent. Moreover, the only three constraints imposed were the 
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integer value for the average gear ratio τ  (IV.33), the constancy of the wheelbase ∆ (IV.34) 

and the meshing continuity (IV.35) 

Anyway, some other constraints are important for the good design of the gear pair. First of all, 

it is necessary the two pitch lines to be both closed geometries, always to guarantee the 

continuity of motion. But while the closeness constraint upon the driving gear is obviously 

guaranteed by the periodicity of the DOF itself, the pitch closeness for the driven gear can be 

expressed by the following boundary condition: 

( )( )
( )( ) ( )⎪⎩

⎪
⎨
⎧

π+ϑ=πϑ=π+ϑϑ

ϑ=ϑϑ

qzqt

t

222 20202

2002
 (IV.40) 

where t0 is an arbitrary point in time. But as it has been said, the driven gear angle of rotation 

ϑ2 depends only upon the DOF ϑ and hence, always because of its periodicity, ϑ2 is periodic as 

well. Hence, by the assumption of periodicity for τ the constrain equation (IV.40) is also 

satisfied. 

In the same way, this assumption of periodicity guarantees also the continuity (and 

differentiability up to the second order) for the driven gear angle of rotation ϑ2, essential 

conditions for the smoothness of running. In fact, while this condition upon the driving gear 

angle of rotation is guaranteed by the integrability of the motion law, the same condition upon 

the driven gear could be written as 

( ) ( )

( ) ( )
⎪
⎪

⎩

⎪
⎪

⎨

⎧

ϑ
ϑ

=
ϑ
ϑ

ϑ
ϑ

=
ϑ
ϑ

π+ϑϑ

π+ϑϑ

qtt

qtt

d
d

d
d

d
d

d
d

2
2
2

2

2
2

2

2

22

00

00

 (IV.41) 

and remembering (IV.37): 

( )( ) ( )( )

( )
( )

( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

ϑ
ϑτ

=
ϑ
ϑτ

π+ϑτ=ϑτ

π+ϑϑ qtt d
d

d
d

qtt

2

00

00

2

 (IV.42) 

These two equations represent respectively the periodicity and first derivability of the gear 

ratio, in respect to ϑ. While the first one is clearly satisfied by the assumption of periodicity for 

τ, the second one needs some explanations. This equation could be rewritten as: 

( )
( )

( )
( ) π+ϑϑ

⎟
⎠
⎞

⎜
⎝
⎛

ϑ
⋅

ϑτ
=⎟

⎠
⎞

⎜
⎝
⎛

ϑ
⋅

ϑτ

qtt d
dt

dt
d

d
dt

dt
d

200

 (IV.43) 

that is: 
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( ) ( ) π+ϑϑ ϑ
τ

=
ϑ
τ

qtt 200
&
&

&
&

 (IV.44) 

This equation is satisfied always by the periodicity of τ, which implies the periodicity of its 

first derivative , and by the periodicity of ϑ too, which as seen implies the periodicity of its 

first derivative . 

τ&

ϑ&

Hence any other important condition is implicitly satisfied by the three imposed constraint 

together with the assumption of periodicity for τ. 

Last but not least, the pitch lines mustn’t contain reverse portions, to avoid retrograde motion 

for the driven gear. This condition is satisfied by imposing the gear ratio function to be positive 

everywhere upon its domain:  

( ) ϑ∀>ϑτ 0  (IV.45) 

Moreover to have a sort of uniformity in the gear dimensions, and for limiting the system 

overall dimensions, it is helpful if τ  is not too far from the unity. 

IV.3 SOLUTION APPLICATION IN VOID WORKING CONDITIONS 

The alternative solution above analyzed was numerically applied using the characteristics of a 

specific cutter bar case study23. For this purpose, equations (IV.22) and (IV.26) were 

numerically integrated (see Appendix C) in the special case of void working conditions [34]. 

The boundary conditions was the values of the gear ratio at the minimum and maximum values 

of the integration time, chosen in a way such as the averaged one results to be integer, together 

with the two values of the rotational speed, assumed to be equal to the rotational speed average 

value as well as in Paragraph II.3.3. 

The choice to design the solution in the special case of void working conditions is due to the 

fact that the cutting resistance assumed here for the analysis is a model. And, as it has been 

said, this is a qualitative model, useful for understanding the unbalance and the system 

behavior. But, this model influences the motion law greatly, as it could be seen form the 

figures in Paragraph III.2.1. Consequently, because of the gear profiles derive directly from the 

motion law together with the imposed functional condition, it would not be useful to have a 

gear profiles that reflect exactly a qualitative cutting resistance model, which has been 

supposed not to be directly comparable with the real trend of the cutting resistance. 

                                                 
23 The same specific cutter bar case study adopted for the analysis of the equation of motion has been used. 
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Hence, the gears was designed to annihilate the unbalancing torque without any shrub under 

cut while, subsequently, the benefit introduced even in standard working conditions was 

evaluated. 

IV.3.1 Gear profiles and discussion 

The gear pitch line profiles obtained numerically are shown in Figure IV. 5, where the scale is 

in metres. The solution presented is set for a unitary average gear ratio, and for a secondary 

shaft inertia momentum equivalent to the standard primary one (i.e. the standard crank disc is 

used as flywheel but on the secondary shaft). 

 

Figure IV. 5 – Non circular gear pitch lines profile. 

It has to be noticed that the gear ratio, and hence even both the pitch line profiles, depend on 

the motion law ϑ(t), independently defined, on the primary and secondary inertia momentums 

J1 and J2 and on the motor stiffness k, (IV.22):  
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This differential equation can be rewritten as: 
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where the DOF ϑ doesn’t appear anymore. This is, precisely, an ordinary linear non – 

homogeneous second order differential equation in ( )ϑγ & , with coefficients dependent upon the 

instantaneous rotational speed dtdϑ=ϑ&  and its first and second derivatives. 

This corresponds to considering a system with  as independent variable and ϑ& ( )ϑγ &  as unique 

DOF. Hence, equation (IV.47) represents the linear forced vibration of this system, which 

vibrates in ( )ϑγ &  with forcing function: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϑϑ
=

ϑ
⋅−

ϑ
⋅=ϑ kJJ

dt
d

dt
dG

dt
d

J
k

dt
d

J
JG ,,,, 212

2

2
2

2

2

1
&&&&

&  (IV.48) 

After a short transient, the gear ratio ( )ϑγ &  (IV.21) enters in a periodic steady trend given by the 

particular solution of equation (IV.47) that depends only upon the forcing function G( ϑ ). The 

latter is periodic with  first and second derivatives (Figure IV. 6) and is influenced by the 

values of J1, J2 and k. 

&
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Figure IV. 6 – Trend of the forcing function of the gear ratio differential equation, in function of 
normalized time. 

Looking at these parameters and how they appear in the forcing function, it is generally: 

22

1

J
k

J
J

<<  (IV.49) 
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that is, the jerk component of the forcing function 33
21 dtdJJ ϑ⋅  is absolutely negligible in 

respect to the acceleration component 22
2 dtdJk ϑ⋅− , as it could be seen from Figure IV. 7. 
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Figure IV. 7 – Comparison between the trend of the two components of the forcing function of the gear 
ratio differential equation. 

 

Figure IV. 8 – Gear ratio trend in function of normalized time 
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Figure IV. 9 – Gear radii in function of normalized time. 

Hence, the strongest influence on the gear ratio is given by the rotational acceleration trend and 

by the ratio between the motor stiffness k and the secondary inertia momentum J2, while the 

inertia momentum of the primary shaft doesn’t have any considerable effect. 

So, it is clear that having certain hydraulic motor and supplying plant (i.e. reasoning for a fixed 

value of k), the gear ratio trend remains solely and univocally defined by the value of the 

secondary shaft inertia momentum J2, together with the primary shaft rotational acceleration 

trend, the latter being determined by the independently defined motion law of the mechanism. 

Finally the gear ratio and the two radii trends are shown respectively in Figure IV. 8 and Figure 

IV. 9 in function of normalized time. 

IV.3.2 Benefits in void and standard working conditions 

Figure IV. 10 shows the unbalancing torque trend in time in the case of void working 

conditions. The torque considered is defined by equation (IV.2), i.e. presuming that the torque 

contribute due to the blade inertia force had been made pointless by a geometric change in the 

system layout. The two curves represent respectively the standard mechanism case (the dotted 

curve) and the case of non circular gear application (the continuous curve). The benefits 

obtained by the application of this solution are clear, the unbalancing torque becoming constant 

as needed. 
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Hence, in the case of void working conditions the proposed solution is able to reach the scope 

of annihilating the unbalancing torque, completely. 
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Figure IV. 10 – Unbalancing torque in function of normalized time, in the specific case of void working 
condition (p = 0%). 

Anyway, the void working conditions is only a reference situation, while the situation to look 

at for understanding the real benefits is with standard working conditions. For this purpose 

Figure IV. 11 shows the sensitivity analysis of the adopted solution for different value of the 

filling percentage p, that is from the design situation of void working conditions to the total 

filled condition. From this perspective, it is evident that the higher is the percentage of filling, 

the worse the alternative solution works, but a certain benefit is still present. 

Indeed referring to Figure III. 12 at page 67, which shows the unbalancing torque trend in time 

in function of the filling percentage but without the application of the non circular gearing, the 

amount of this benefit can be calculated. It could be seen that the amplitude of the torque 

oscillation was nearly 25 Nm in both void and standard working conditions (p = 16.67%), 

while it increased to 27 Nm for p = 50% up till 37 Nm for the total filled condition. Looking at 

Figure IV. 11, the adopted solution reduces this amplitude respectively to 0 Nm, 4.30 Nm, 13 

Nm and 26.4 Nm, with a positive gain on the unbalancing torque respectively of 100% in void 

working conditions, 83.70% for standard working conditions, 52% for half filled conditions 

and 28.70% for the condition of total filling. 
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Figure IV. 11 – Unbalancing torque in function of normalized time, for different values of the total filling 
percentage. 
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Conclusions  

Beginning with the development of the necessary models, and continuing through the analysis 

of the system till the evaluation of an alternative innovative solution, this thesis has been able 

to give a contribution in the comprehension and optimization of cutter bar mechanisms, under 

the most general standpoint. The aim, which was to develop a study such as to finally achieve 

an improvement in the operational quality of the system, has been attained. 

Firstly, a new and simplified model for the plant cutting resistance has been developed, on a 

theoretical basis which comes from a complete and deep literature analysis. This model, which 

has a kinematic character and can cover different kind of plants by means of the specific 

cutting energy parameter, has been successively useful for highlighting the cutting parameters 

influence on the whole system behavior. 

Secondly, a complete dynamic model of the single blade cutter bar has been constructed. 

Although obtained by using characteristics and layout of a specific case study, it has been able 

to point out the system disequilibrium, independently from the cutter bar characteristics 

themselves, by means of the counterbar equilibrium equations. These equations are general and 

can be used for a broad range of application regarding single blade cutter bar systems.  

Moreover, by developing the equation of motion of the driving mechanism, this model has 

been able to describe this disequilibrium in the time domain, in function of the mechanism 

geometric, kinematic and dynamic characteristics. For this purpose, the developed model has 

been numerically integrated, allowing the analysis of the variance in the system behavior in 

function of the variance of several cutter bar parameters. This analysis has succeeded not only 

in pointing out the system disequilibrium sources, that is the driving torque instability against 

an extremely variable resistance torque, but also for a general system improvement. 

Indeed, through the counterbar equilibrium equations analysis it has been made clear that the 

main source of vibration is the periodic torque instability, whereas the inertia torque carried by 

the crank disc is almost negligible because of the low engine rotational speed. Also, the torques 

caused by the blade inertia force have been found to be another component of the 

disequilibrium source, but they are all geometrically avoidable by making the counterbar and 

blade centres of gravity coincide in the respective directions.  

The motion law numerical analysis has also highlighted an optimal engine running speed, 

which is able to minimize the driving torque instability, whereas the crank disc has been 

clarified to be totally inefficient for this purpose, as it is an increase in conrod length or a 

reduction in the blade clamping force. 

Until this point the analysis has been carried out on the basis of an existing system. Besides the 

above mentioned results, the analysis has mainly evidenced that the mechanism cannot be 
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totally equilibrated by means of the solely change in the cutter bar geometric parameters, i.e. 

the disequilibrium torque has never been totally annihilated within the sensitivity analysis. The 

only way that has been found able to attain this purpose is to operate on, or to gain some 

control over the mechanism motion law. 

Hence, a double action has been designed for the cutter bar improvement and disequilibrium 

total abatement. 

The first action is, as it has been nodded, to modify the overall layout and hence make the 

system less eccentric. Precisely, it is necessary to make the counterbar and blade centres of 

gravity coincide in the direction that belongs both to the plane perpendicular to the tractor 

forward motion and to the plane perpendicular to the blade motion. This action reduces the 

oscillation source up to almost an averagely 70% in the above defined direction. It has to be 

noticed that, however, this first part of the solution has been theoretically highlighted, but its 

design has been left to the cutter bar manufacturer.  

The remaining quote of the unbalance has been found to be not geometrically avoidable. 

Hence, the second action follows another approach, and precisely it makes use of a secondary 

shaft, parallel to the motor one, which carries the same standard flywheel that has been 

removed from the primary shaft. The two shafts are then linked together by means of a keyed 

and well defined non circular gearing, whose meshing profiles are developed on the basis of a 

single functional equation and some constitutive conditions. 

This second part of the solution has been designed for void working conditions, situation in 

which it carries a total annihilation of the disequilibrium remain quote, while in standard 

working conditions it has been found to reduce this quote of approximately the 80%. 

However, it has to be remarked that the attained results and the developed solution have a 

general purpose and can be used widely, even if they have been obtained by the analysis on a 

specific cutter bar. Moreover, the codes developed for these analysis and design are easily 

understandable and the values introduced could be changed for the analysis of different cutter 

bars. Also, the equations written within the codes can be rewritten to conduct the analysis for 

different kind of mechanism. By this way the analysis and the proposed alternative solution 

could be then reviewed and extended, with the right modifications, even for double blade cutter 

bars. 
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A.1 MAPLE CODE FOR SOLVING THE EQUATION OF MOTION 

Equation of motion (II.57) was numerically integrated to obtain the mechanism’s motion law 

ϑ(t). The code for this purpose was realized with MAPLE 9 and is listed below together with 

some comments [9, 12, 19, 35, 39, 47 and 55]. 

The exact values was obtained by the manufacturer and measuring the geometry of a case 

study, while the others are explained in lateral comments. 

 
# INITIAL SETTINGS: 
restart:  
Digits := 8:  
with(plots):  
with(plottools):  
with(LinearAlgebra):  
with(process):  
_EnvExplicit = true:  
with(CurveFitting):  
with(RealDomain):   
 
 
# EXACT VALUES: 
n := 300:        #average running speed 
omega := evalf(2*Pi*n/60): 
l:= 0.394:        #conrod length 
e := 0.0844:       #eccentricity 
r := 0.038:       #crank radius 
lambda := r/l:       #stroke – conrod ratio 
lambda1 := e/l:      #eccentricity ratio 
h1 := 0.027:       #distance 
h2 := 0.00373:       #distance 
Lama := 1.444:       #blade length 
HD := -0.490:       #distance 
s1 := 0.015:       #thickness 
s2 := 0.030:       #thickness 
d := 0.13:        #crank disc diameter 
delta := 7845:      #steel density 
mbmezza := 0.2465:      #mass 
m := 3.645 + mbmezza:      #mass 
mnott := 0.3:       #mass 
betaPME := arcsin(e/(l+r)):     #conrod angle at ODC 
betaPMI := arcsin(e/(l-r)):     #conrod angle at IDC 
J:= proc(d) 

(mbmezza+1/2*mnott)*r^2+1/2^5*delta*evalf(Pi)*(d^4*s1+0.05^4*s2-
.025^4*s1-4*.025^2*s1*r^2):  

end proc:       #total inertia momentum 
mB:=32.7:        #mass 
xGS1 := 167.56/1000:      #baricentric distance, 
measured 
xGS2 := 16.728/1000:     #baricentric distance, 
measured 
xGS3 := 29.844/1000:     #baricentric distance, 
measured 
xGL2 := (15.77+16.77)/1000 + xGS2:   #baricentric distance, 
measured 
xGL3 := 67.13/1000 + xGS3:    #baricentric distance, 
measured 
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deltaz := xGS3 - xGL3:     #distance 
deltay := xGS2 - xGL2:     #distance 
theta_PMI := evalf(Pi) + betaPME - betaPMI:  #crank angle at IDC 
corsa := (r+l)*cos(betaPME)-(l-r)*cos(betaPMI):  #stroke 
nc := 19:        #teeth number 
CHI := 0.2:       #time parameter 
chi := 0.01:      #time parameter 
 
 
# ESTIMATED VALUES 
va := 8/3.6:       #forward speed average value 
Fs := 500: #clamping force average value, measured with a 

dynamometer  
eta := 0.846:     #total efficiency, from the hydraulic motor 

diagram 
E := 3*10^(2): #mean value (see note 8 at page 32) 
km := -16.4243:  #motor stiffness, obtained from the hydraulic 

motor diagram 
mu := 0.225: #friction coefficient 
 
 
# HYPOTHESIS: 
BF := 0.015:  #tooth dimension, measured 
LF:= 0.0266:  #tooth dimension, measured 
BE:= 2*r:  #tooth dimension, measured 
LE:= 0.0466:  #tooth dimension, measured 
xE := 2*r-BE/2-LE/2:  #cutting window initial value 
xF := 2*r-BF/2-LF/2:  #cutting window final value 
p := .1667: #total filling percentage 
 
The integration of the equation of motion occurs recursively, because the average torque value 

is not known while it is strictly necessary for the integration of the equation itself. Hence the 

recurrence occurs with an initial assumed value of the driving torque average value, the same 

being recalculated at the end of the cycle, after the equation integration, and the whole cycle 

recalculated. The loop continues till the first and second values coincide. 

Moreover, it could be noticed below that the integration of the differential equation is listed as 

an initial value problem (IVP), with defined initial conditions. On the contrary, this is a 

boundary value problem (BVP), for the periodicity of the solution which depends essentially 

on the boundary conditions themselves. 

This procedure was adopted because of the difficulty of integration with a BVP solver, within 

the MAPLE environment. Hence the solution was initially obtained as a boundary value 

problem, with a BVP solver but with long time integration and great memory usage, and the 

correspondent initial condition values were calculated. Hence the IVP solver together with the 

calculated initial conditions is called for any subsequent calculations, using a fewer amount of 

memory and time saving. 
 
# CYCLE SETTINGS AND BOUNDARY CONDITIONS: 
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Cm_media := 0.1: #initially assumed driving 
torque average value 

Cm_0 := 0: #initial driving torque 
comparison value 

tempo := time():  
ciclo := proc() 

global 
j,k,Cm_0,omega,periodo,MIN,MAX,n_giri,theta,x_pt,x_2pt,res1,res2, 
res,Fi,Fa,Cm,eq_moto,sol_moto,th,th_pt,th_2pt,TH2PT,th_3pt,TH3PT,Fbx, 
regime_medio,Cm_media,Cm_media1,Cm_media2,incl_x,R,ti,ci_moto,epsilon, 
beta,x,ni,tempo: 

NumericEvent(invalid_operation, 1): #avoid singularities 
ti := 1.0: ni := n: #time for initial 

conditions 
ci_moto := theta(ti)=0, D(theta)(ti)=Pi*ni/30: #initial conditions   
epsilon := 1/1000: #cycle accuracy on the 

driving torque  
    

beta := t -> arcsin(lambda1+lambda*sin(theta(t)-betaPME)):  
 #conrod angle 
x := t -> (r+l)*cos(betaPME)-l*cos(beta(t))-r*cos(theta(t)-betaPME): 
 #blade displacement 
omega := evalf(2*Pi*n/60): #running speed 
periodo := evalf(60/n): #period 
MIN := ti + CHI: #integration minimum value 
MAX := MIN + periodo: #integration maximum value 
n_giri := (MAX-MIN+2*CHI)*n/60: #total number of rotations 
 
 
# EQUATION OF MOTION INTEGRATION CYCLE (DRIVING TORQUE AND 
RUNNING SPEED CALCULATION): 
for j from 1 while abs(Cm_media-Cm_0)>epsilon do  
 Cm_0 := Cm_media: 
 x_pt := t -> diff(x(t),t):    #blade velocity 
 x_2pt := t -> diff(x_pt(t),t):   #blade acceleration 
 res1 := t -> p*E*nc*va*x(t)/x_pt(t): 
 res2 := t -> -p*E*nc*va*(x(t)-corsa)/x_pt(t): 

res := t -> piecewise((x(t)>xE and x(t)<xF and sin(theta(t))>0), 
res1(t), (x(t)>xE and x(t)<xF and sin(theta(t))<0), res2(t)); 

        #cutting resistance 
 Fi := t -> m*x_2pt(t):      
        #blade inertia force 

Fa := t -> mu*(Fs+(res(t)+Fi(t))*tan(beta(t)))/(1-mu*tan(beta(t))): 
        #friction force  
Cm := t -> Cm_0 + km*(diff(theta(t),t)-omega):   
       #driving torque 
eq_moto := Cm(t)*diff(theta(t),t) - res(t)*x_pt(t) - Fa(t)*x_pt(t) - 

J(d)*diff(theta(t),t,t)*diff(theta(t),t) - m*x_pt(t)*x_2pt(t) = 
0:      #equation of motion 

sol_moto := dsolve({eq_moto, ci_moto}, numeric, output=listprocedure, 
maxfun=50000, range=MIN-CHI..MAX+CHI): 

       #integration 
th := subs(sol_moto,theta(t)):  #solution for the crank angle 
th_pt := subs(sol_moto,diff(theta(t),t)):  

#solution for the 
instantaneous rotational 
speed 

 th_2pt := t -> solve(eq_moto,diff(theta(t),t,t)): 
#solution for the 
instantaneous rotational 
acceleration 
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Fbx := t -> cos(beta(t))*(Cm(t)-J(d)*th_2pt(t))/(r*sin(theta(t) - 
betaPME + beta(t))):  #horizontal force on the conrod 

regime_medio := evalf(60/(2*Pi)*(1/(periodo)))* evalf(Int(th_pt(t), 
t=MIN..MAX, method = _Gquad)):   

#average rotational speed 
Cm_media := 1/periodo*evalf(Int(Cm_0 + km*(th_pt(t)-omega), 

t=MIN..MAX, method = _Gquad)):  
#average driving torque 

end do: 
Cm_media1 := evalf(2/periodo*Int(Cm_0 + km*(th_pt(t)-omega),t=MIN..MIN+ 

periodo/2, method = _Gquad)):  #average driving torque on  
the forward stroke 

Cm_media2 := evalf(2/periodo*Int(Cm_0 + km*(th_pt(t)-omega), t=MAX-
periodo/2..MAX, method = _Gquad)):     

#average driving torque on  
the return stroke 

tempo := time() - tempo: 
printf("Convergenza in %d iterazioni (%g secondi):\nCoppia motrice media = 

%g Nm, regime medio di rotazione = %g 
giri/min\n",j,tempo,Cm_0,regime_medio); 

printf("Coppia motrice media (corsa di andata) = %g Nm\nCoppia motrice media 
(corsa di ritorno) = %g Nm\n",Cm_media1,Cm_media2); 

end proc: 
evalf(ciclo()):     #cycle evaluation 
gc(); 
appendto(terminal); 
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The sensitivity analysis was carried out on the basis of the motion law and how it is modified 

with a discrete variance of a single chosen parameter, for different influencing parameters. 

Hence the code for the sensitivity analysis, always realized in MAPLE 9 environment, is 

different for each parameter. 

How the motion low and other depending functions are modified in relatively to the chosen 

parameter variance is shown in Chapter III, where each diagram is obtained as a sequence of 

points calculated with the following codes and printed out in an EXCEL file. 

In the follow codes, only the first is commented, the others being the equivalent code for a 

different parameter. 

B.1 MAPLE CODE FOR THE SENSITIVITY ANALYSIS ON THE PARAMETER “d” 

# SETTINGS: 
d := 0:           
MM := 4:  
INIZ := 1:  
var := d:  
VAR := convert(var, string): 
 
In Maple, to make a better and easier use of a defined function, i.e. the functions upon which 

the sensitivity analysis is needed beneath the variance of a certain parameter, it is necessary to 

redefine it in terms of the equation of motion solutions (angular displacement, speed and 

acceleration). 

 
# DEFINITION OF THE SENSITIVITY FUNCTIONS: 
X := subs(theta(t)=th(t), x(t)): 
X_pt := subs(diff(theta(t),t)=th_pt(t),theta(t)=th(t), x_pt(t)): 
Res := subs(diff(theta(t),t)=th_pt(t),theta(t)=th(t), res(t)): 
X_2pt := subs(diff(theta(t),t,t)=th_2pt(t), diff(theta(t),t)=th_pt(t), 

theta(t)=th(t), x_2pt(t)): 
FI := m*X_2pt: 
Th_2pt := subs(diff(theta(t),t)=th_pt(t), theta(t)=th(t), th_2pt(t)): 
CM := subs(diff(theta(t),t)=th_pt(t), Cm(t)): 
FBX := subs(diff(theta(t),t)=th_pt(t), theta(t)=th(t), Fbx(t)): 
 
 
# SENSITIVITY ANALYSIS CYCLE AND XLS DIAGRAM CONSTRUCTION: 
appendto(nomefile); 
tempo_inizio_statement := time(): 
for i from INIZ while i<=MM do         

d := 0.1516*i^2-0.3246*i+0.173; #discrete variance (4 values) 
of the chosen influencing 
parameter 

variabile := convert(evalf(var*1000,3), string);  
 legg := cat(VAR," = ",variabile,unità); 

printf("\nVERIFICA DEI PLOT PER LE CURVE N.%d (con %s = 
%g%s)",i,VAR,var,unità); 

 tempo := time(): 
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 Cm_media := 0.1: 
 Cm_0 := 0: 

printf("\nCOSTRUZIONE DEI PLOT PER LE CURVE N.%d (con %s = %g%s) - 
Calcolo in corso\n",i,VAR,var,unità); 

 evalf(ciclo()):     #motion law evaluation 
 tempo := time() - tempo: 

printf("Calcolo riuscito in %d iterazioni (%g secondi):\nCoppia 
motrice media = %g Nm, regime medio di rotazione = %g 
rpm\n",j,tempo,Cm_0,regime_medio); 

printf("Coppia motrice media (corsa di andata) = %g Nm\nCoppia motrice 
media (corsa di ritorno) = %g Nm\n",Cm_media1,Cm_media2);  

 appendto(terminal); 
 printf("\ninizio calcolo per %s = %g%s",VAR,var,unità); 
 appendto(nomedata);    #here the name of the EXCEL  

file to be created 
 printf("\n\n"); 
 risp := rhs(sol_moto[1]),rhs(sol_moto[2]),rhs(sol_moto[3]): 
 printf("%s",legg); 

printf("\ntempo\tangolo di manovella\tvelocità angolare\tvariazione  
percentuale della velocità angolare\tcoppia motrice\tresistenza 
al taglio\tcoppia d'inerzia\tcoppia di Fi nel piano XY\tcoppia 
di Fi nel piano XZ\tforza motrice di taglio"); 

 printf("\n[s]\t[rad]\t[rad/s]\t[Nm]\t[N]\t[Nm]\t[Nm]\t[Nm]\t[N]\n\n"); 
risoluzione := 1000;    #diagrams resolution of 1000  

points 
 i_incr := 1/(5*risoluzione*n)*300:   
 MASSIMO := (periodo)/i_incr; 

for ii from 0 to MASSIMO do 
printf("%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t

%+.5f\n",risp(MIN+ii*i_incr)[1],risp(MIN+ii*i_incr)[2],ris
p(MIN+ii*i_incr)[3],Cm_0 + km*(th_pt(MIN+ii*i_incr)-
omega), eval(Res, t=MIN+ii*i_incr),J(d)*eval(Th_2pt, 
t=MIN+ii*i_incr),eval(FI 
*deltaz,t=MIN+ii*i_incr),eval(FI*deltay,t=MIN+ii*i_incr),e
val(FBX,t=MIN+ii*i_incr));   

#diagrams points calculation 
and output 

 end do:  
 tempo := time() - tempo: 
 appendto(terminal); 
 printf("\ncalcolo concluso in %g secondi",tempo); 
 appendto(nomefile); 
end do: 
tempo_statement := (time() - tempo_inizio_statement)/60: 
printf("\n\n\nCalcolo concluso in %g minuti",tempo_statement); 
gc(); 
appendto(terminal); 

B.2 MAPLE CODE FOR THE SENSITIVITY ANALYSIS ON THE PARAMETER “p” 

# SETTINGS: 
p := 0:           
MM := 4:  
INIZ := 1:  
var := p:  
VAR := convert(var, string): 
 
 
# DEFINITION OF THE SENSITIVITY FUNCTIONS: 
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X := subs(theta(t)=th(t), x(t)): 
X_pt := subs(diff(theta(t),t)=th_pt(t),theta(t)=th(t), x_pt(t)): 
Res := subs(diff(theta(t),t)=th_pt(t),theta(t)=th(t), res(t)): 
X_2pt := subs(diff(theta(t),t,t)=th_2pt(t), diff(theta(t),t)=th_pt(t), 

theta(t)=th(t), x_2pt(t)): 
FI := m*X_2pt: 
Th_2pt := subs(diff(theta(t),t)=th_pt(t), theta(t)=th(t), th_2pt(t)): 
CM := subs(diff(theta(t),t)=th_pt(t), Cm(t)): 
FBX := subs(diff(theta(t),t)=th_pt(t), theta(t)=th(t), Fbx(t)): 
 
 
# SENSITIVITY ANALYSIS CYCLE AND XLS DIAGRAM CONSTRUCTION: 
appendto(nomefile); 
tempo_inizio_statement := time(): 
for i from INIZ while i<=MM do       
 p := 0.0833*i^2-0.0833*i;       
 variabile := convert(evalf(var*100,3), string);  
 legg := cat(VAR," = ",variabile,unità); 

printf("\nVERIFICA DEI PLOT PER LE CURVE N.%d (con %s = %g%s)",i,VAR, 
var,unità); 

 tempo := time(): 
 Cm_media := 0.1: 
 Cm_0 := 0: 

printf("\nCOSTRUZIONE DEI PLOT PER LE CURVE N.%d (con %s = %g%s) - 
Calcolo in corso\n",i,VAR,var,unità); 

 evalf(ciclo()): 
 tempo := time() - tempo: 

printf("Calcolo riuscito in %d iterazioni (%g secondi):\nCoppia 
motrice media = %g Nm, regime medio di rotazione = %g 
rpm\n",j,tempo,Cm_0, regime_medio); 

printf("Coppia motrice media (corsa di andata) = %g Nm\nCoppia motrice 
media (corsa di ritorno) = %g Nm\n",Cm_media1,Cm_media2);  

 appendto(terminal); 
 printf("\ninizio calcolo per %s = %g%s",VAR,var,unità); 
 appendto(nomedata); 
 printf("\n\n"); 
 risp := rhs(sol_moto[1]),rhs(sol_moto[2]),rhs(sol_moto[3]): 
 printf("%s",legg); 

printf("\ntempo\tangolo di manovella\tvelocità angolare\tvariazione  
percentuale della velocità angolare\tcoppia motrice\tresistenza 
al taglio\tcoppia d'inerzia\tcoppia di Fi nel piano XY\tcoppia 
di Fi nel piano XZ\tforza motrice di taglio"); 

 printf("\n[s]\t[rad]\t[rad/s]\t[Nm]\t[N]\t[Nm]\t[Nm]\t[Nm]\t[N]\n\n"); 
 risoluzione := 1000;       
 i_incr := 1/(5*risoluzione*n)*300:   
 MASSIMO := (periodo)/i_incr; 

for ii from 0 to MASSIMO do 
printf("%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t 

%+.5f\n",risp(MIN+ii*i_incr)[1],risp(MIN+ii*i_incr)[2], 
risp(MIN+ii*i_incr)[3],Cm_0 + km*(th_pt(MIN+ii*i_incr)-
omega),eval(Res,t=MIN+ii*i_incr),J()*eval(Th_2pt, 
t=MIN+ii* i_incr), 
eval(FI*deltaz,t=MIN+ii*i_incr),eval(FI*deltay, 
t=MIN+ii*i_incr),eval(FBX, t=MIN+ii*i_incr)); 

 end do: 
 tempo := time() - tempo: 
 appendto(terminal); 
 printf("\ncalcolo concluso in %g secondi",tempo); 
 appendto(nomefile);  
end do: 
tempo_statement := (time() - tempo_inizio_statement)/60: 
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printf("\n\n\nCalcolo concluso in %g minuti",tempo_statement); 
gc(); 
appendto(terminal); 

B.3 MAPLE CODE FOR THE SENSITIVITY ANALYSIS ON THE PARAMETER “FS” 

# SETTINGS: 
Fs := 0:           
MM := 4:  
INIZ := 1:  
var := Fs:  
VAR := convert(var, string): 
 
 
# DEFINITION OF THE SENSITIVITY FUNCTIONS: 
X := subs(theta(t)=th(t), x(t)): 
X_pt := subs(diff(theta(t),t)=th_pt(t),theta(t)=th(t), x_pt(t)): 
Res := subs(diff(theta(t),t)=th_pt(t),theta(t)=th(t), res(t)): 
X_2pt := subs(diff(theta(t),t,t)=th_2pt(t), diff(theta(t),t)=th_pt(t), 

theta(t)=th(t), x_2pt(t)): 
FI := m*X_2pt: 
Th_2pt := subs(diff(theta(t),t)=th_pt(t), theta(t)=th(t), th_2pt(t)): 
CM := subs(diff(theta(t),t)=th_pt(t), Cm(t)): 
FBX := subs(diff(theta(t),t)=th_pt(t), theta(t)=th(t), Fbx(t)): 
 
 
# SENSITIVITY ANALYSIS CYCLE AND XLS DIAGRAM CONSTRUCTION: 
appendto(nomefile); 
tempo_inizio_statement := time(): 
for i from INIZ while i<=MM do         
 Fs := 350*i^2-590*i+240;      
 variabile := convert(evalf(var*1000,3)/1000, string);  
 legg := cat(VAR," = ",variabile,unità); 

printf("\nVERIFICA DEI PLOT PER LE CURVE N.%d (con %s = 
%g%s)",i,VAR,var, unità); 

 tempo := time(): 
 Cm_media := 0.1: 
 Cm_0 := 0: 

printf("\nCOSTRUZIONE DEI PLOT PER LE CURVE N.%d (con %s = %g%s) - 
Calcolo in corso\n",i,VAR,var,unità); 

 evalf(ciclo()): 
 tempo := time() - tempo: 

printf("Calcolo riuscito in %d iterazioni (%g secondi):\nCoppia 
motrice media = %g Nm, regime medio di rotazione = %g 
rpm\n",j,tempo,Cm_0, regime_medio); 

printf("Coppia motrice media (corsa di andata) = %g Nm\nCoppia motrice 
media (corsa di ritorno) = %g Nm\n",Cm_media1,Cm_media2);  

 appendto(terminal); 
 printf("\ninizio calcolo per %s = %g%s",VAR,var,unità); 
 appendto(nomedata); 
 printf("\n\n"); 
 risp := rhs(sol_moto[1]),rhs(sol_moto[2]),rhs(sol_moto[3]): 
 printf("%s",legg); 

printf("\ntempo\tangolo di manovella\tvelocità angolare\tvariazione  
percentuale della velocità angolare\tcoppia motrice\tresistenza 
al taglio\tcoppia d'inerzia\tcoppia di Fi nel piano XY\tcoppia 
di Fi nel piano XZ\tforza motrice di taglio"); 

 printf("\n[s]\t[rad]\t[rad/s]\t[Nm]\t[N]\t[Nm]\t[Nm]\t[Nm]\t[N]\n\n"); 
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 risoluzione := 1000;       
 i_incr := 1/(5*risoluzione*n)*300:   
 MASSIMO := (periodo)/i_incr; 
 for ii from 0 to MASSIMO do 

printf("%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t
%+.5f\n",risp(MIN+ii*i_incr)[1],risp(MIN+ii*i_incr)[2],ris
p(MIN+ii*i_incr)[3],Cm_0 + km*(th_pt(MIN+ii*i_incr)-
omega),eval(Res,t= MIN+ii*i_incr),J()*eval(Th_2pt, 
t=MIN+ii*i_incr),eval(FI* 
deltaz,t=MIN+ii*i_incr),eval(FI*deltay, 
t=MIN+ii*i_incr),eval( FBX,t=MIN+ii*i_incr)); 

 end do: 
 tempo := time() - tempo: 
 appendto(terminal); 
 printf("\ncalcolo concluso in %g secondi",tempo); 
 appendto(nomefile);  
end do: 
tempo_statement := (time() - tempo_inizio_statement)/60: 
printf("\n\n\nCalcolo concluso in %g minuti",tempo_statement); 
gc(); 
appendto(terminal); 

B.4 MAPLE CODE FOR THE SENSITIVITY ANALYSIS ON THE PARAMETER “n” 

# SETTINGS: 
n := 150:           
MM := 4:  
INIZ := 1:  
var := n:  
VAR := convert(var, string): 
 
 
# DEFINITION OF THE SENSITIVITY FUNCTIONS: 
X := subs(theta(t)=th(t), x(t)): 
X_pt := subs(diff(theta(t),t)=th_pt(t),theta(t)=th(t), x_pt(t)): 
Res := subs(diff(theta(t),t)=th_pt(t),theta(t)=th(t), res(t)): 
X_2pt := subs(diff(theta(t),t,t)=th_2pt(t), diff(theta(t),t)=th_pt(t), 

theta(t)=th(t), x_2pt(t)): 
FI := m*X_2pt: 
Th_2pt := subs(diff(theta(t),t)=th_pt(t), theta(t)=th(t), th_2pt(t)): 
CM := subs(diff(theta(t),t)=th_pt(t), Cm(t)): 
FBX := subs(diff(theta(t),t)=th_pt(t), theta(t)=th(t), Fbx(t)): 
 
 
# SENSITIVITY ANALYSIS CYCLE AND XLS DIAGRAM CONSTRUCTION: 
appendto(nomefile);  
tempo_inizio_statement := time(): 
for i from INIZ while i<=MM do       
 n := 150*i^2-300*i+300;       
 regime := convert(evalf(n*1000,3)/1000, string); 
 legg := cat(" n = ",regime," rpm"); 

printf("\nVERIFICA DEI PLOT PER LE CURVE N.%d (con %s = %g 
rpm)",i,VAR, var); 

 tempo := time(): 
 Cm_media := 0.1: 
 Cm_0 := 0: 

printf("\nCOSTRUZIONE DEI PLOT PER LE CURVE N.%d (con %s = %g rpm) - 
Calcolo in corso\n",i,VAR,var); 
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 evalf(ciclo()): 
 tempo := time() - tempo: 

printf("Calcolo riuscito in %d iterazioni (%g secondi):\nCoppia 
motrice media = %g Nm, regime medio di rotazione = %g 
rpm\n",j,tempo,Cm_0, regime_medio); 

printf("Coppia motrice media (corsa di andata) = %g Nm\nCoppia motrice 
media (corsa di ritorno) = %g Nm\n",Cm_media1,Cm_media2);  

 appendto(terminal); 
 printf("\ninizio calcolo per %s = %g rpm",VAR,var); 
 appendto(nomedata); 
 printf("\n\n"); 
 risp := rhs(sol_moto[1]),rhs(sol_moto[2]),rhs(sol_moto[3]): 
 printf("%s",legg); 

printf("\ntempo\tangolo di manovella\tvelocità angolare\tvariazione  
percentuale della velocità angolare\tcoppia motrice\tresistenza 
al taglio\tcoppia d'inerzia\tcoppia di Fi nel piano XY\tcoppia 
di Fi nel piano XZ\tforza motrice di taglio"); 

printf("\n[s]\t[rad]\t[rad/s]\t[percentuale]\t[Nm]\t[N]\t[Nm]\t[Nm]\t[
Nm]\t[N]\n\n"); 

 risoluzione := 1000;     
 i_incr := 1/(5*risoluzione*n)*300:   
 MASSIMO := (periodo)/i_incr; 
 for ii from 0 to MASSIMO do 

printf("%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t
%+.5f\t%+.5f\n",risp(MIN+ii*i_incr)[1],risp(MIN+ii*i_incr)
[2],risp(MIN+ii*i_incr)[3],(risp(MIN+ii*i_incr)[3]-
omega)/omega*100, Cm_0 + km*(th_pt(MIN+ii*i_incr)-
omega),eval(Res,t=MIN+ii* i_incr),J()*eval(Th_2pt, 
t=MIN+ii*i_incr),eval(FI*deltaz, 
t=MIN+ii*i_incr),eval(FI*deltay, 
t=MIN+ii*i_incr),eval(FBX, t=MIN+ii*i_incr)); 

 end do: 
 appendto(terminal); 
 tempo := time() - tempo: 
 printf("\ncalcolo concluso in %g secondi",tempo); 
 appendto(nomefile); 
end do:  
tempo_statement := (time() - tempo_inizio_statement)/60: 
printf("\n\n\nCalcolo concluso in %g minuti",tempo_statement); 
gc(); 
appendto(terminal); 

B.5 MAPLE CODE FOR THE SENSITIVITY ANALYSIS ON THE PARAMETER “l” 

# SETTINGS: 
l := 0.197:           
MM := 4:  
INIZ := 1:  
var := l:  
VAR := convert(var, string): 
 
 
# DEFINITION OF THE SENSITIVITY FUNCTIONS: 
X := subs(theta(t)=th(t), x(t)): 
X_pt := subs(diff(theta(t),t)=th_pt(t),theta(t)=th(t), x_pt(t)): 
Res := subs(diff(theta(t),t)=th_pt(t),theta(t)=th(t), res(t)): 
X_2pt := subs(diff(theta(t),t,t)=th_2pt(t), diff(theta(t),t)=th_pt(t), 

theta(t)=th(t), x_2pt(t)): 
FI := m*X_2pt: 
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Th_2pt := subs(diff(theta(t),t)=th_pt(t), theta(t)=th(t), th_2pt(t)): 
CM := subs(diff(theta(t),t)=th_pt(t), Cm(t)): 
FBX := subs(diff(theta(t),t)=th_pt(t), theta(t)=th(t), Fbx(t)): 
 
 
# SENSITIVITY ANALYSIS CYCLE AND XLS DIAGRAM CONSTRUCTION: 
appendto(nomefile); 
tempo_inizio_statement := time(): 
for i from INIZ while i<=MM do       
 l := 0.197*i; 
 variabile := convert(evalf(var*1000,3), string);  
 legg := cat(VAR," = ",variabile,unità); 

printf("\nVERIFICA DEI PLOT PER LE CURVE N.%d (con %s = 
%g%s)",i,VAR,var,unità); 

 tempo := time(): 
 Cm_media := 0.1: 
 Cm_0 := 0: 

printf("\nCOSTRUZIONE DEI PLOT PER LE CURVE N.%d (con %s = %g%s) - 
Calcolo in corso\n",i,VAR,var,unità); 

 evalf(ciclo()): 
 tempo := time() - tempo: 

printf("Calcolo riuscito in %d iterazioni (%g secondi):\nCoppia 
motrice media = %g Nm, regime medio di rotazione = %g 
rpm\n",j,tempo,Cm_0,regime_medio); 

printf("Coppia motrice media (corsa di andata) = %g Nm\nCoppia motrice 
media (corsa di ritorno) = %g Nm\n",Cm_media1,Cm_media2);  

 appendto(terminal); 
 printf("\ninizio calcolo per %s = %g%s",VAR,var,unità); 
 appendto(nomedata); 
 printf("\n\n"); 
 risp := rhs(sol_moto[1]),rhs(sol_moto[2]),rhs(sol_moto[3]): 
 printf("%s",legg); 

printf("\ntempo\tangolo di manovella\tvelocità angolare\tvariazione  
percentuale della velocità angolare\tcoppia motrice\tresistenza 
al taglio\tcoppia d'inerzia\tcoppia di Fi nel piano XY\tcoppia 
di Fi nel piano XZ\tforza motrice di taglio"); 

 printf("\n[s]\t[rad]\t[rad/s]\t[Nm]\t[N]\t[Nm]\t[Nm]\t[Nm]\t[N]\n\n"); 
 risoluzione := 1000;       
 i_incr := 1/(5*risoluzione*n)*300:   
 MASSIMO := (periodo)/i_incr; 

for ii from 0 to MASSIMO do 
printf("%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\t

%+.5f\n",risp(MIN+ii*i_incr)[1],risp(MIN+ii*i_incr)[2],ris
p(MIN+ii*i_incr)[3],Cm_0 + km*(th_pt(MIN+ii*i_incr)-
omega),eval(Res, t=MIN+ii*i_incr),J()*eval(Th_2pt, 
t=MIN+ii*i_incr),eval(FI* 
deltaz,t=MIN+ii*i_incr),eval(FI*deltay,t=MIN+ii*i_incr),ev
al(FBX, t=MIN+ii*i_incr)); 

 end do:  
 tempo := time() - tempo: 
 appendto(terminal); 
 printf("\ncalcolo concluso in %g secondi",tempo); 
 appendto(nomefile); 
end do: 
tempo_statement := (time() - tempo_inizio_statement)/60: 
printf("\n\n\nCalcolo concluso in %g minuti",tempo_statement); 
gc(); 
appendto(terminal); 
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C.1 MAPLE CODE FOR THE APPLICATION OF  NON CIRCULAR GEARING 

Functional equation (IV.22) together with constitutive equation (IV.26) were numerically 

integrated to obtain the new mechanism’s motion law ϑ(t) and the gear ratio τ(ϑ) trend. The 

code for this purpose was always realized in MAPLE 9 and it is listed below together with 

some comments [9, 12, 19, 39, 47 and 55]. 

 
# NEW DATA: 
INT := d: 
Js := evalf(J(INT)*2): 
E := 0:  
 
 
# EQUATION OF MOTION RE-INTEGRATION WITH NEW DATA: 
Cm_media := 0.1: 
Cm_0 := 0: 
tempo := time(): 
evalf(ciclo()): 
tempo := time() - tempo: 
printf("Calcolo riuscito in %d iterazioni (%g secondi):\nCoppia motrice 

media = %g Nm, regime medio di rotazione = %g 
rpm\n",j,tempo,Cm_0,regime_medio); 

printf("Coppia motrice media (corsa di andata) = %g Nm\nCoppia motrice media 
(corsa di ritorno) = %g Nm",Cm_media1,Cm_media2);  

 
 
# RE-DEFINITION OF THE KNOWN FUNCTIONS IN POLYNOMIAL FORM: 
printf("\n\nValutazione dell'andamento della soluzione in forma polinomiale 

in corso"): 
solp := dsolve({eq_moto, ci_moto}, numeric, output=piecewise, range=MIN-

CHI..MAX+CHI): 
TH1PT := t -> convert(subs(solp,diff(theta(t),t)),float): 
printf("Valutazione dell'andamento dell'Accelerazione angolare in forma 

polinomiale in corso\n"): 
TH2PT := t -> rhs(diff(solp[3],t)):   
printf("Valutazione dell'andamento del Jerk angolare in forma polinomiale in 

corso"): 
TH3PT := t -> rhs(diff(solp[3],t,t)): 
gc(); 
 
 
# FUNCTIONAL EQUATION INTEGRATING CYCLE: 
Digits := 6: 
tempo := time(): 
cicloRNC := proc() 
 global cc_RNC,eq_RNC,sol_RNC,tempo,thau,dthau,tau_medio: 

cc_RNC := tau(MIN)=1.646+1/100*sigma, tau(MAX)=1.646+1/100*sigma: 
eq_RNC := TH1PT(t)*(diff(tau(t),t,t)*tau(t) + (diff(tau(t),t))^2) + 

3*TH2PT(t)*diff(tau(t),t)*tau(t) +  TH3PT(t)*(tau(t))^2 + 
(km*TH2PT(t) - J(d)*TH3PT(t))/Js=0: 

printf("SOLUZIONE NUMERICA DELLA NUOVA EQUAZIONE DI MOTO (RNC) - 
Calcolo in corso"): 

sol_RNC := dsolve({eq_RNC, cc_RNC}, numeric, output=listprocedure, 
known=[th,th_pt,TH2PT,TH3PT], method=bvp[middefer], 
maxmesh=8000, continuation=sigma, interpolant=false, abserr=2e-
3): 
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 tempo := time() - tempo: 
 printf("Calcolo concluso in %g minuti",tempo/60); 
 thau := subs(sol_RNC,tau(t)): 
 dthau := subs(sol_RNC,diff(tau(t),t)): 

tau_medio := evalf(1/(periodo))*evalf(Int(thau(t), t=MIN..MAX, method 
= _Gquad)): 

 printf("\nValore medio del rapporto di trasmissione: %g\n",tau_medio); 
end proc: 
evalf(cicloRNC()): 
odeplot(sol_RNC, [t, diff(tau(t),t)], numpoints=1000, thickness=1); 
od
 
eplot(sol_RNC, [t, tau(t)], MIN..MAX, numpoints=1000, thickness=1);  

# PERIODICITY ASSIGNEMENT FOR THE GEAR RATIO 
Tau := proc(k) 
 num := (k-MIN)/periodo: 
 numa :=floor(num): 
 return thau(k-numa*(MAX-MIN)):  
end proc: 
Tau||1 := proc(k) 
 num := (k-MIN)/periodo: 
 numa :=floor(num): 
 return dthau(k-numa*(MAX-MIN)):  
end proc: 
gc(); 
 
 
# PLOT OF THE NON CIRCUALR GEARING ANIMATION 
tempo := time(): 
radius_i := t -> INT*Tau(t)/(1+Tau(t)): 
radius_o := t -> INT/(1+Tau(t)): 
tho := T -> Int(Tau(t)*th_pt(t), t=MIN..T, method = _Gquad): 
ruote := proc(dt) 
 global ruota_i,ruota_o,raggio_i,raggio_o: 

ruota_i := plot([radius_i(t)*cos(th(t+dt)), 
radius_i(t)*sin(th(t+dt)),t=MIN..MAX],scaling=constrained,color=
blue,axes=boxed,thickness=2): 

ruota_o := plot([INT – radius_o(t)*cos(th(t+dt)),radius_o(t)* 
sin(th(t+dt)), t=MIN..MAX], scaling=constrained, color=red, 
axes=boxed,thickness=2): 

raggio_i := line([0,0], [radius_i(MIN)*cos(th(MIN+dt)), radius_i(MIN)* 
sin(th(MIN+dt))], color=blue, linestyle=1, thickness=2); 

raggio_o := line([INT,0], [INT-
radius_o(MIN)*cos(th(MIN+dt)),radius_o(MIN)*sin(th(MIN+dt))], 
color=red, linestyle=1, thickness=2); 

 display(ruota_i,ruota_o,raggio_i,raggio_o); 
end: 
centro_i := plot([0,0,t=MIN..MAX],color=blue,style=point,symbol=cross, 

axes=boxed): 
centro_o := plot([INT,0,t=MIN..MAX],color=red,style=point,symbol=cross, 

axes=boxed): 
ruote_moto := animate( ruote, [dt], dt=0..periodo, color=blue, 

scaling=constrained, frames=100 ): 
display(centro_i,centro_o,ruote_moto); 
tempo := time() - tempo: 
printf("Costruzione dei plot conclusa in %g minuti",tempo/60); 
gc(); 
# XLS PROFILES CONSTRUCTION: 
tempo_inizio_statement := time(): 
appendto(nomedata); 
MASSIMO := 1000: 
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risoluzione := 1/MASSIMO: 
xi := t -> radius_i(t)*cos(th(t)): 
yi := t -> radius_i(t)*sin(th(t)): 
xo := t -> radius_o(t)*cos(th(t)): 
yo := t -> radius_o(t)*sin(th(t)): 
printf("\nrisoluzione a %d punti su ciascuna primitiva",MASSIMO); 
printf("\nil quadro cartesiano è centrato sull'asse di rotazione di ciascuna 

ruota"); 
printf("\n\n"); 
printf("\npunto\tascissa ruota 1\tordinata ruota 1\t\tascissa ruota 

2\tordinata ruota 2"); 
printf("\nnum.\t[m]\t[m]\t\t[m]\t[m]\n\n"); 
for i from 0 to MASSIMO do     

printf("%d\t%+.5f\t%+.5f\t\t%+.5f\t%+.5f\n",i,xi(MIN+i*periodo*risoluz
ione),yi(MIN+i*periodo*risoluzione),xo(MIN+i*periodo*risoluzione
),yo(MIN+i*periodo*risoluzione)); 

end do: 
tempo_statement := (time() - tempo_inizio_statement): 
appendto(terminal); 
printf("\ncalcolo concluso in %g minuti",tempo_statement/60); 
gc(); 

C.2 MAPLE CODE FOR THE NON CIRCULAR GEARING SENSITIVITY ANALYSIS  

The following code regards the sensitivity analysis upon the disequilibrium torque T3 (IV.2). 

The first part of the code regards the comparison between its trend with and without the 

application of the non circular gearing solution, both analyzed in void working conditions, 

while the second part regards the comparison between the T3 trends with the non circular 

gearing application discussed in Chapter IV, but with different filling conditions, ranging from 

the void to the total filled condition. 

The codes are always realized in MAPLE 9 and the results are shown in Paragraph IV.3, where 

each diagram is obtained as a sequence of points calculated with the codes and printed out in 

an EXCEL file. 

 

# PERIODICITY ASSIGNEMENT FOR THE MOTION LAW AND DEFINITON OF THE 
ADDITIVE TORQUE  
Theta := proc(k) 
 num := (k-MIN)/periodo: 
 numa := floor(num): 
 return evalf(th(k-numa*(MAX-MIN))):  
end proc: 
Theta||1 := proc(k) 
 num := (k-MIN)/periodo: 
 numa := floor(num): 
 return evalf(th_pt(k-numa*(MAX-MIN))):  
end proc: 
Theta||2 := proc(k) 
 return evalf(subs(diff(theta(t),t)=Theta||1(k), 
theta(t)=Theta(k),th2(t))): 
end proc: 
Theta||3 := proc(k) 
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return evalf(subs(diff(theta(t),t,t)=Theta||2(k), 
diff(theta(t),t)=Theta||1(k), theta(t)=Theta(k), th3(t))): 

end proc: 
Cadd := t -> Js*(Tau||1(t)*Theta||1(t)+Tau(t)*Theta||2(t))*Tau(t): 
 
 
# WITHOUT AND WITH NON CIRCULAR GEAR COMPARISON, VOID CONDITIONS 
tempo_inizio_statement := time(): 
nomedata2 := "RNC_torque_cfr.xls": 
appendto(nomedata2); 
MASSIMO := 1000: 
risoluzione := 1/MASSIMO: 
printf("\nrisoluzione a %d punti",MASSIMO); 
printf("\n\n"); 
printf("\ntime\tResistan Torque\tResistance Torque"); 
printf("\n \twithout ncg\twith ncg"); 
printf("\n[s]\t[Nm]\t[Nm]\n\n"); 
for i from 0 to MASSIMO do     
 CM := t -> Cm_0 + km*(Theta||1(MIN+i*periodo*risoluzione)-omega): 
 Cres := t -> CM(t) - J(d)*Theta||2(t): 
 CresRNC := t -> CM(t) + Cadd(t) - J(d)*Theta||2(t): 

printf("%+.5f\t%+.5f\t%+.5f\n",MIN+i*periodo*risoluzione,Cres(MIN+i*pe
riodo*risoluzione),CresRNC(MIN+i*periodo*risoluzione)); 

end do: 
tempo_statement := (time() - tempo_inizio_statement): 
appendto(terminal); 
printf("\ncalcolo concluso in %g secondi",tempo_statement); 
gc(); 
 
 
# VOID AND FILLED CONDITIONS COMPARISON 
tempo := time(): 
nomedata3 := "RNC_filling_cfr.xls": 
E := 3*10^(2): 
MASSIMO := 1000: 
risoluzione := 1/MASSIMO: 
appendto(nomedata3); 
printf("\nrisoluzione a %d punti",MASSIMO); 
printf("\n\n"); 
printf("\ntime\tResistan Torque\tResistance Torque\tResistan 

Torque\tResistance Torque"); 
printf("\n \twith p=0.000\twith p=0.167\twith p=0.500\twith p=0.100"); 
printf("\n[s] \t[Nm]\t[Nm]\t[Nm]\t[Nm]\n\n"); 
for k from 1 to 4 do 
 p := 0.0833*k^2-0.0833*k; 
 appendto(terminal): 
 Cm_media := 0.1: 
 Cm_0 := 0: 
 evalf(ciclo()): 
 Th_2pt := subs(diff(theta(t),t)=th_pt(t), theta(t)=th(t), th_2pt(t)): 
 CM := subs(diff(theta(t),t)=th_pt(t), Cm(t)): 
 appendto(nomedata3): 
 for i from 0 to MASSIMO do 

printf("%+.5f\t%+.5f\n",MIN+i*periodo*risoluzione,eval(CM,t=MIN+
i*periodo*risoluzione) + Cadd(MIN+i*periodo*risoluzione) - 
J(d)*eval(Th_2pt,t=MIN+i*periodo*risoluzione)); 

 end do: 
 printf("\n\n\n\n"): 
end do: 
tempo := time() - tempo: 
appendto(terminal); 
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printf("\ncalcolo concluso in %g minuti",tempo/60); 
gc(); 
 
 
# FORCING FUNCTION ANALYSIS  
tempo := time(): 
nomedata4 := "RNC_forcing_function.xls": 
MASSIMO := 1000: 
risoluzione := 1/MASSIMO: 
FF_J1 := t -> J(d)/Js*Theta||3(t): 
FF_k := t -> -km/Js*Theta||2(t): 
FF := t -> FF_J1(t) + FF_k(t): 
appendto(nomedata4); 
printf("\nrisoluzione a %d punti",MASSIMO); 
printf("\n\n"); 
printf("\ntime\tnormalized time\tFORCING FUNCTION\tJ1 COMPONENT\tk 

COMPONENT"); 
printf("\n[s]\t\t[s-3]\t[s-3]\n\n"); 
for i from 0 to MASSIMO do 
 clock := MIN+i*periodo*risoluzione: 

printf("%+.5f\t%+.5f\t%+.5f\t%+.5f\t%+.5f\n",clock,(clock-MIN)/(MAX-
MIN),FF(clock),FF_J1(clock),FF_k(clock));    

end do: 
tempo := time() - tempo: 
appendto(terminal); 
printf("\ncalcolo concluso in %g secondi",tempo); 
gc(); 
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