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Introduction

One of the basic steps of Galilei’s formulation of the scientific method[1]
is the creation of a mathematical model which does not only embody all
known aspects of a certain natural phenomenon, but can in principle ex-
plain effects yet to be observed: the formulation of archetypes is, by conse-
quence, a building block of several experimental sciences, between them
being, of course, physics. A typical example is represented by solid state
physics: while solving the Schrödinger equation for 1023 atoms is by far
an unsolvable problem, the possibility to describe such a system through
simpler mathematical models provides several useful quantitative predic-
tions which can be tested in the laboratory. However, solving models is
not always an easy task, especially in the context of quantum mechan-
ics. While numerical simulations based on classical computers can pro-
vide very accurate description to many-particle problems within classical
statistical mechanics[2], no general solution method is known at the quan-
tum level.

Almost thirty years ago, Richard Feynman proposed to invert the ar-
chetype paradigm[3]: instead of starting from a physical phenomenon
which requires a quantitative explanation, one can first consider the model
(archetype) and try to solve it by implementing its microscopic properties
into a quantum simulator, that is, a highly controllable experimental setup
in which one can faithfully mimic the basic properties of the archetype in
question. The breakthrough proposal by Jaksch and coworkers [4] to em-
ulate the so-called Bose-Hubbard model by using ultracold bosonic atoms
loaded into optical potentials has paved the way to an entire new field
in theoretical and experimental physics, that is, the investigation of ultra-
cold matter in deep connection with many-body problems usually associ-
ated with other research fields such as condensed matter, high-energy and
chemical physics. Remarkable experimental results related to many-body
phenomena have already been achieved; between them, it is worth citing
the superfluid-Mott insulator transition[5], the BEC-BCS crossover[6, 7]
and the fermionization of one-dimensional bosonic gases[8, 9].
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Two relevant questions naturally arise: how can we validate a quantum
emulator? Is it possible to disclose new physics, and clarify long-standing theo-
retical problems?

The aim of the work presented here is to provide some quantitative an-
swers to these questions in the context of one-dimensional systems. Low
dimensional systems have remarkable differences with respect to 3D ones:
from a theoretical standpoint, let us just mention that several solving tech-
niques are available, and that the dominant role of quantum fluctuations
can give rise to a rich variety of exotic phenomena. From the experimen-
tal point of view, cold atomic ensembles can be easily confined in 1D and,
in addition, a growing number of materials can be described within 1D
physics. Before coming to our original contributions, we will briefly re-
view some 1D peculiarities in Chapter 1; then, we present our results di-
vided in three parts, as described below.

In the first part of this thesis, we discuss how cold atoms can effi-
ciently simulate quantum field theories. We focus on the so-called sine-
Gordon model, an integrable theory widely studied in several ambits, from
high-energy physics to condensed matter. By comparing analytical results
with experimental measurements, we validate the system of interest as a
powerful analog simulator, whose applications to a variety of many-body
problems in low-dimensional physics can be of great interest for elucidat-
ing open problems.

In the second part, we present a series of results on one-dimensional
multi-species Fermi gases. We first consider a variant of the Hubbard
model(HM) in which the hopping rates are species-dependent(Chapter 3
and 4), and investigate some of its properties by means of numerical and
analytical methods; interestingly, exotic effects, such as topological order
and crystalline structure, can appear even in this relatively basic model. In
Chapter 5, we turn our attention on dissipative effects on a three-species
HM, which allow for the stabilization of a color superfluid phase which
presents some analogies with the correspondent one in high-density QCD.
In Chapter 6, we present a brief outlook on bosonic mixtures in one dimen-
sion and their relation with quantum magnetism, which is currently under
investigation.

In the third and last part, the effect of non-local interactions usually
present in cold dipolar gases is investigated in various setups. In Chapter
7, we consider a basic 1D geometry with purely repulsive interaction, and
propose a quantitative field theoretical description for general interaction
shape and strength. Part of these results are then employed in Chapter 8,
where we show how a system composed of two coupled wires of dipolar
particles displays a very rich phase diagram, including composite crystals
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and the appearance of many-body bound states such as trimers. In Chap-
ter 9, we show how dipolar bosons can also display various magnetic or-
ders such as ferro-, antiferromagnetism and even topological order, which
can be retained also in presence of a trapping potential requiring a mini-
mal population control.
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Chapter 1

Quantum matter in low
dimensionality: a brief overview

This introductory chapter is devoted to the interesting features of low
dimensional systems, with a particular emphasis on 1D physics. While
we are far away from a complete presentation (for which we address the
reader to classic texts such as Refs. [10] and [11]), we hope the topics
treated below might give a rough idea on some peculiarities of one-dimensional
systems.

In the first section, we present a theoretical point of view on low di-
mensionalities, illustrating general results and approaches to tackle many-
body problems in one dimensional systems; in the second one, we give an
overview on experimental realizations of such systems, starting from more
standard condensed matter environments such as carbon nanotubes and
Quantum Hall edge states, and finally focusing on quantum optics setups
such as ultracold atoms and molecules loaded into optical lattices.

1.1 How does ”quantum” matter in one-dimension?

The concept of symmetry has been fundamental in several ambits of hu-
man knowledge, ranging from sculpture and architecture to mathematics
and biology. While most of its original understanding has been related
to simple geometrical intuitions, the considerable progresses in topology
and group theory in the last two centuries have strongly linked this rather
abstract concept to the quantitative understanding of mathematical struc-
tures, equipping theoretical physicists with a powerful instrument to in-
terpret a plethora of intriguing phenomena from high-energy physics to
condensed matter systems.
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Chapter 1. Quantum matter in low dimensionality: a brief
overview

One-dimensional physics flourishes of peculiarities, and, of course, sym-
metry is one of them.

1.1.1 Mermin-Wagner-Hohenberg theorem

One of the main general results in 1D physics is related to the so called
spontaneous symmetry breaking (SSB) mechanism[12, 13, 14]. In statistical
mechanics and quantum field theory, when a certain ground state exhibits
less symmetry than the related Hamiltonian, one says that a certain sym-
metry has been broken: that’s the essence of SSB. While various interesting
phenomena, such as the emergence of superconductivity, can be explained
in these terms, the most intuitive view on the subject is usually associ-
ated with the emergence of spontaneous magnetization in solids: given
a certain ordered configuration C which minimizes the energy functional,
an exactly opposite configuration C′ with the same energy always exists.
Nonetheless, the state of the system is not invariant under transformation
C ↔ C′, and thus this exchange symmetry is broken[13].

The curious point is, in low dimensional systems, SSB suffers from
a no-go theorem known as the Mermin-Wagner(MW) theorem (or Mermin-
Wagner-Hohenberg(MWH) theorem). In their seminal paper [15], Mermin
and Wagner showed that the Heisenberg model[16]:

HHeis =
∑

i,j

Jij
~Si
~Sj − hSz

q (1.1)

cannot display a finite magnetizationm(h) at finite temperature in one and
two dimension, and at zero temperature in one dimension, if the interac-
tion coefficients are short-range, that is:

J̄ =
1

2N
∑

i,j

|Jij||~xi − ~xj |2 <∞ (1.2)

Here, N is the number of sites, ~S are standard spin operators and Sz
q is

the so-called spin density wave operator [15]. In a similar fashion, Hohen-
berg [17] proved that a state cannot display a standard superfluid order in
one and two dimensions at finite temperature using the so called Bogoli-
ubov inequality[18, 19], which turns out to be fundamental even in the MW
formulation.

The profound meaning of the MWH theorem is deeply rooted into the
allowed symmetry of the system, being it quantum or classical. In its
more general form, the MWH theorem states that, for short-range forces,

2



1.1. How does ”quantum” matter in one-dimension?

no phase transition associated with the SSB of a Lie group of symmetry
can take place in space dimension d < 3(4) for any T > 0 for a quantum
(classical) system[14]. Interesting enough, a deep connection with a well
known results in quantum field theory, the Coleman theorem[20], has been
elucidated [13].

A natural question that arises is then: are there phase transition in one
dimension? If so, how can we distinguish between different phases?

When replying to this query, the first element that should be taken
into account is that, while SSB cannot involve continuos symmetries, dis-
crete ones can still be broken. Typical examples of this situation are the
superfluid-Mott insulator phase transition in the Bose-Hubbard model [21],
where the translational symmetry U(1) is reduced to a discrete one related
to the presence of an underlying lattice structure, and the Haldane phase
of spin-1 chains [22], where non-explicit Z2 symmetries are broken.

Another interesting feature of 1D systems is the so-called quasi-long
range order(QLRO), which emerges in low dimensional critical theories as
we will see in the next section.

1.1.2 Conformal symmetry in 1D

One of the most remarkable results in the context of 1D systems is related
to the so called conformal symmetry [23, 24]. When a one dimensional quan-
tum system is translationally and rotationally invariant, and, at the same
time, does not display a typical length scale (that is, is also scale invari-
ant), an additional symmetry, known as conformal, is also satisfied[25].
An analogous result holds for 2D classical systems[23].

The main effect of conformal invariance manifests itself in the asymp-
totic behavior of correlation functions. Let us consider, e.g., an action S(Φ)
and a two-point function:

〈φ1(x1)φ2(x2)〉 =
1

Z

∫

[dΦ]φ1(x1)φ2(x2)e
−S(Φ) (1.3)

where Z =
∫

[dΦ]e−S(Φ) and φ1,2 are fields with dimension ∆1,2. Applying
scale, translational and rotational invariance, one gets:

〈φ1(x1)φ2(x2)〉 ≃
C12

|x1 − x2|∆1+∆2
(1.4)

which, considering also conformal invariance, reduces to[23]:

〈φ1(x1)φ2(x2)〉 = δ(∆1 − ∆2) ∗
C12

|x1 − x2|∆1
. (1.5)

3



Chapter 1. Quantum matter in low dimensionality: a brief
overview

This simple result has a remarkable consequence: in 1D critical models
described by a conformal field theory (CFT), all correlation functions de-
cay as power law at long distances. This immediately traces out SSB, in
accordance with MWH theorem. One can anyway distinguish between
different phases by looking at correlation function decay: in particular, the
slowest decaying correlation is refereed as dominant, the remaining ones
being subdominant [11]. We can then define that a system displays quasi-
long-range order in a certain order parameter if the corresponding corre-
lation function is dominant. As a simple example, let us consider a gas
of bosons interacting via a repulsive delta-like potential. In 3D, bosons
can condense, establishing a finite order parameter 〈b〉 6= 0; while in 1D
this contingency is ruled out, one can still have a correspondent phase,
which is usually referred as 1D superfluid, when 〈b†xby〉 is the slowest de-
caying correlation function (for further details, see Chapter 2 and relative
references).

1.1.3 How to tackle 1D problems

The relevant role of quantum fluctuations, related to the results stated
above, is responsible for the breakdown of some relevant many-body tech-
niques when analyzing 1D models: between them, it is worth mentioning
the mean field approach[14], the Landau theory of Fermi liquids[26], and
most of diagrammatic techniques[11]. Nevertheless, various alternative
numerical and analytical approaches work extremely well in 1D.

From the numerical side, exact diagonalization of relatively large sys-
tems (up to more than 30 sites for spin 1/2 chains), combined with field
theory techniques, has provided accurate solution of non-trivial problems
such as the exact location of infinite-order phase transitions [11]. In addi-
tion, the so called sign problem of Quantum Monte Carlo (QMC) [11] meth-
ods when applied to fermionic models can be often neglected in 1D by
mapping fermions to hard-core bosons through a Jordan-Wigner transfor-
mation [27]. Furthermore, the groundbreaking formulation of the density-
matrix-renormalization group algorithm (DMRG) [28] has allowed the in-
vestigation of much larger systems with less computational effort, estab-
lishing DMRG as a state of art method to solve 1D problems at zero tem-
perature. This method represents a substantial improvement with respect
to standard numerical renormalization group algorithms [29], whose break-
down was evident even for non-interacting systems. It allows for precise
numerical estimates of several physical quantities such as ground and ex-
cited state and energies, correlation functions and Renyi entropies, and

4



1.1. How does ”quantum” matter in one-dimension?

combined with finite size scaling theories gives a very accurate description
of thermodynamic phase diagrams for 1D and quasi-1D systems. In this
thesis, we employed a code developed in our group (in particular by Prof.
Fabio Ortolani) with some extensions used to investigate system with non-
local interactions, as explained in Chapters 8 and 9.

On the analytical side, the relative simpleness of 1D many-body prob-
lems has allowed for the formulation of exact solutions via Bethe ansatz:
in essence, the system can be exactly diagonalized using purely analyti-
cal tools. Let us also mention the possibility to infer finite temperature
properties of integrable systems within the thermodynamical Bethe ansatz
framework [30].

However, all of these techniques dramatically improve when the un-
derlying field theoretical background of a certain model is known.

1.1.4 Universality classes: Tomonaga-Luttinger liquids and

sine-Gordon model

One of the most interesting field theory background in 1D bosonic, fer-
mionic and even spin systems is the so called Tomonaga-Luttinger liquid
(TLL) [31, 32], directly linked to the related model (TLM). The basic idea is,
one can map most of 1D models into compactified bosonic field theories,
whose complexity is determined by the initial number of degrees of free-
dom and by the nature of the interaction. This mapping is realized in the
context of the bosonization technique [33, 10, 11] (see Appendix for a brief
overview), and, once it is performed, it leaves us with one (or more) TLM,
which can be exactly solved and from which one can extract all wanted
correlation functions. In certain cases, additional terms, known in con-
densed matter as backward and forward scattering, can appear and give rise
to an energy gap in the spectrum. In these cases, the underlying field the-
ory is often embodied in the so called sine-Gordon model (sGM), which is
of particular interest since it can unify in a single field theory background
various mechanisms such as superfluid to Mott insulator and crystalline
transition and several pairing mechanism in one dimension[10, 11].

In the remaining of this thesis, we will encounter several examples of
such universality classes and show how, despite a very common theoret-
ical background, they can give rise to an unexpected variety of physical
phenomena (see Table 1.1 for a short-list).
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Chapter 1. Quantum matter in low dimensionality: a brief
overview

Universality classes /
Microscopic models

sine-Gordon Tomonaga-Luttinger

Bosons in a periodic potential
(Chapter 2)

Pinning transition Superfluidity in the
Lieb-Liniger model

Asymmetric Hubbard model
(Chapter 3 and 4)

Crystalline
transition

CDW/SS crossover

Constrained three-species
Hubbard model (Chapter 5)

Two-color atomic
superfluidity

Three-color atomic
superfluidity

Asymmetric Bose-Bose
mixtures (Chapter 6)

SCF-Neél transition –

Dipolar bosons and fermions
in periodic potentials

(Chapter 7)

Class of crystalline
transitions

SF/CDW crossover

2-leg dipolar ladder
(Chapter 8)

multiparticle
pairing (trimer

liquids)

CDW/SS crossover

Constrained dipolar bosons
(Chapter 9)

BKT transition
toward hidden

order

—

Table 1.1: Models investigated in this thesis and universality classes in-
volved in each problem; for abbreviations, see the corresponding chapter.

1.2 Experimental realization of one dimensional

systems

One of the most remarkable technological advances of the last half-century
has been the possibility to experimentally realize and investigate physical
systems in reduced dimensionality, e.g., where only certain spatial degrees
of freedom are relevant. The first breakthrough observation of the integer
Quantum Hall Effect [34] in 1980 has paved the way to a series of theoreti-
cal efforts directly linked to the possibility to explain physical phenomena
in D < 3. The D=2 jungle is very broad and intricated: among all, it is
worth citing remarkable experiments on high-temperature superconduc-
tivity [35], graphene [36] and topological insulators [38].

Interest on the 1D world is instead more recent, albeit early experi-
ments on polymers structure were already performed in the late 70’s. The
notable technological advances in material science such as better sam-
ple preparation and improved probing techniques have shown that many

6



1.2. Experimental realization of one dimensional systems

condensed matter systems display 1D properties. Between them, edge
states in fractional Quantum Hall material have been shown to behave as
chiral TLL[39], as well as carbon nanotubes[37] and several spin-ladder
materials[11]. While several groundbreaking 1D features have already
been observed, material science is still characterized by a limited possibil-
ity to ”tune” material properties and access a limited number of underly-
ing models. On the contrary, ultracold atoms and molecules trapped into
optical potentials have opened a new perspective in many-body physics
of low dimensional systems.

1.2.1 Ultracold atoms and molecules loaded into optical lat-

tices: a dream for theoreticians.

The realization of Bose-Einstein condensation in 1995 [40, 41] represented
one of the most remarkable experimental achievements in basic quantum
mechanics back from its origin: the possibility to cool up to 105 alkali
atoms down to less than a µK allowed for the observation of this macro-
scopic effect, consequence of a microscopic property such as Bose-Einstein
statistic. From the point of view of strong correlations, however, these
systems did not look immediately interesting because, among all, of their
very dilute nature.

Two groundbreaking contributions then came into play. The first one
was the observation of Feshbach resonances [42], which allow to tune the
interparticle scattering length, and so the interactions, by simply tuning
the magnetic field which acts on the atoms [43]. The second one was the
idea to use optical potentials, created by counter propagating laser beams
beams, to simulate a periodic potential [4], known as optical lattice, very
similar to the one created by ions in standard materials. The realization
of the superfluid to Mott insulator transition in a Bose gas subject to a
3D optical lattice paved the way to the observation of several strongly
interacting states of matter such as the Tonks-Girardeau and super-Tonks
gas, fermionic insulators and pairing regimes, just to cite few examples
(see [44] and [45] for a complete overview).

In a quantum optical setup, one can tune with impressive accuracy all
the ingredients of a certain model, such as particle statistics, interactions
and disorder, and configurational space, in both geometry and dimension-
ality. The situation is thus quite different with respect to condensed mat-
ter systems, where there is little to none control on several microscopic
properties, making a rigorous correspondence from a certain model to a
physical system challenging.

7



Chapter 1. Quantum matter in low dimensionality: a brief
overview

Ultracold atoms (and molecules, as we will see later in Part III) provide
then an unmatched background to test a variety of theoretical techniques
and investigate physical problems so far unsolved, such as HTc supercon-
ductivity, supersolidity and thermalization in quantum dynamics [44, 46].
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Part I

Quantum emulators in one
dimension

9





In recent years, the idea of a quantum simulator has emerged as a
useful tool to investigate physical phenomena whose explanation is still
in question. Differently with respect to classical systems, quantum ones
are much harder to simulate due to the exponential growth of the Hilbert
space, which implies that a huge amount of computational resources are
needed in order to efficiently describe real systems and physical processes.
The basic idea of quantum emulation, or quantum analog simulation, is, in
fact, quite natural[3, 47, 48]: in order to solve a quantum mechanical prob-
lem, one can employ a specifically designed laboratory quantum system
which efficiently describe the considered model. Thus, quantum simu-
lations do not only provide a specific insight on unsolved problems, but
would also allow for accurate tests of various theoretical techniques em-
ployed to approximately solve the problem itself. In addition, quantum
analog simulations are typically much less demanding than a complete,
programmable quantum computer; they do not require an almost perfect
realization of a quantum gate or error correction, and small number of
qubits are usually needed in order to get appropriate answers.

While there is a broad plethora of yet unexplained physical phenom-
ena, the possibility to realize a quantum emulator would be of extreme in-
terest in two specific fields: quantum field theory (QFT) and strongly cor-
related systems (SCS). This is mainly due to the fact that, in both fields, i)
controlled numerical algorithm are usually limited to particular configura-
tions and are in general not universal, and ii) longstanding problems such
as High-temperature superconductivity (HTc) and the complete phase di-
agram of QCD are yet to be solved.

In SCS, the main problem is related to the fact that while bosonic sys-
tems can be faithfully simulated via quantum MonteCarlo (QMC) calcula-
tions, fermionic and frustrated spin models are affected by the so-called
sign problem, which reduces the possibility to treat them within QMC-
based approaches. While different algorithms such as exact diagonaliza-
tion, density-matrix renormalization group (DMRG) or dynamical mean-
field theory (DMFT) have provided alternative methods for specific di-
mensional configurations, relevant models typical in SCS are yet to be
solved; between them is the so-called Hubbard model (HM)[49, 50], a simple
lattice model whose Hamiltonian contains a kinetic term and a local inter-
action which mimics a screened Coulomb repulsion between electrons:

HHM = −t
∑

<i,j>,σ=↑,↓

(c†i,σcj,σ) + U
∑

i

ni,↑ni,↓. (1.6)

Despite its simplicity, an exact solution of (1.6) is known only in the one
dimensional case [51, 52]. The suggestion that the 2D version of the HM

11



Figure 1.1: Typical examples of analog quantum simulators: cold atoms
into optical lattices(top, left), a string of trapped ions(top, right) and su-
perconducting circuits(bottom). Image from Ref. [48].

on a square lattice could explain the basic mechanism of high tempera-
ture superconductivity has strongly increased the interest on the HM itself.
However, despite numerous results on the subject, a complete phase dia-
gram is still missing. Analogous problems have been posed in QFT, where
analytical techniques often reduce to perturbative arguments, and numer-
ical simulations are challenging. In both contexts, a quantum simulator
would then provide a groundbreaking insight on many unsolved prob-
lems. In recent years, several experimental setups have been proposed to
simulate specific models: the reign of quantum simulators is quite rich,
ranging from electrons in superconducting circuits and arrays of quantum
dots [48] to trapped ions [53, 54, 55], photons and polaritons in arrays of
cavities [56] (some typical examples are sketched in Fig. 1.1). In particular,
cold atomic gases confined into optical lattices [4] have already proved to
be a faithful simulator of typical condensed matter problems in a series of
notable experiments [5, 57] (see Fig. 1.2) which describe at different levels
the Mott Insulator-superfluid transition of the Bose-Hubbard model [21].
The broad degree of control and tunability combined with efficient prob-
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ing techniques makes these systems suitable candidates to simulate not
only SCS, but also quantum field theories, as recently emerged in vari-
ous theoretical proposal (see, e.g., Ref. [58] and references therein). While
several results have already been achieved with trapped ions, such as the
quantum simulation of the Dirac equation [53] and the Klein paradox [54],
similar results were not available with cold atoms up to 2 years ago.

Figure 1.2: Superfluid to Mott insulator quantum phase transition as
realized in Ref. [5]: by loading a Bose-Einstein condensate of 87Rb atoms
into a 3D optical lattice, Greiner and coworkers were able to show that the
system undergoes a quantum phase transition from a superfluid phase to
a Mott insulator as the depth of the lattice is increased.

At first hint, the first requirement for a quantum emulator is the possi-
bility to validate its prediction towards known results, at least in some lim-
its. A similar procedure has been carried out comparing extensive QMC
results on the finite-temperature Bose-Hubbard model with experimental
results [57]. The validation procedure constitutes a fundamental step to-
ward simulation of more challenging theoretical problems.

In the remainder of the chapter, we will discuss the validation proce-
dure of a cold atomic setups with respect to a well known QFT, the sine-
Gordon model (SGM) [10, 59, 60]. Our validation is based on the integrable
nature of the SGM, which provides us very accurate analytical results to be
compared with experimental findings. The remarkable matching of theo-
retical predictions with experiments paves the way to the investigation of
more complex problem related to 1D systems, such as transport properties
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of Luttinger liquids and quantum dynamic.
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Chapter 2

Validation of a quantum analog
simulator: sine-Gordon model
with cold atoms

One of the most remarkable results of quantum mechanics is the fact
that many-body quantum systems may exhibit phase transitions even at
zero temperature[12]. Quantum fluctuations, deeply rooted in Heisen-
berg’s uncertainty principle, and not thermal fluctuations, drive the sys-
tem from one phase to another. Typically, the relative strength of two com-
peting terms in the system’s Hamiltonian is changed across a finite critical
value. A well-known example is the Mott-Hubbard quantum phase tran-
sition from a superfluid to an insulating phase[4, 5], which has been ob-
served for weakly interacting bosonic atomic gases. However, for stron-
gly interacting quantum systems confined to lower-dimensional geome-
try a novel type of quantum phase transition may be induced for which
an arbitrarily weak perturbation to the Hamiltonian is sufficient to drive
the transition[11, 10]. Here, for a one-dimensional (1D) quantum gas of
bosonic caesium atoms with tunable interactions, we observe the sine-
Gordon quantum phase transition from a superfluid Luttinger liquid to
a Mott-insulator [61, 62]. For sufficiently strong interactions, the transi-
tion is induced by adding an arbitrarily weak optical lattice commensu-
rate with the atomic granularity, which leads to immediate pinning of the
atoms. We map out the phase diagram and find that our measurements in
the strongly interacting regime agree well with a quantum field descrip-
tion based on the exactly solvable sine-Gordon model[59]. We trace the
phase boundary all the way to the weakly interacting regime where we
find good agreement with the predictions of the 1D Bose-Hubbard model.
Our results open up the experimental study of quantum phase transitions,
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Chapter 2. Validation of a quantum analog simulator:
sine-Gordon model with cold atoms

Figure 2.1: Comparing two types of superfluid-to-Mott-insulator phase
transitions in 1D. Schematic density distributions (grey) in the presence
of a periodic potential (red solid line). a, Mott-Hubbard type quantum
phase transition for weak interactions[5]. The system is still superfluid at
finite lattice depth (top). The transition to the insulating state is induced
by raising the lattice depth above a finite critical value (bottom). b, Sine-
Gordon type quantum phase transition for strong interactions[61]. In the
absence of any perturbation, the system is a strongly correlated superfluid
(top). For sufficiently strong interactions, not necessarily infinitely strong,
an arbitrarily weak perturbation by a lattice potential commensurate with
the system’s granularity induces the transition to the insulating Mott state
(bottom).

criticality, and transport phenomena beyond Hubbard-type models in the
context of ultracold gases.

2.1 Quantum sine-Gordon model with cold atoms

Ultracold atomic gases are a versatile tunable laboratory system for the in-
vestigation of complex many-body quantum phenomena[44]. The study
of quantum phases and quantum phase transitions is greatly enriched by
the possibility to independently control the kinetic energy and the inter-
actions. In deep optical lattice potentials the many-body dynamics for a
weakly interacting gas is, to a very good approximation, governed mi-
croscopically by a Hubbard Hamiltonian[4] with a local onsite interaction
energy U and kinetic energy J , which corresponds to tunneling of atoms
from one lattice site to the next. Experiments with Bose-Einstein conden-
sates (BEC) of Rb atoms have demonstrated the quantum phase transi-
tion from a superfluid phase for large J to an insulating Mott-Hubbard
(MH) phase[5]. The transition between these two phases was obtained by
quenching J in a lattice of finite depth. Recent experiments with fermio-
nic atoms have demonstrated the presence of a fermionic MH insulating
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2.1. Quantum sine-Gordon model with cold atoms

state[63, 64], potentially opening the way to the study of high-temperature
superconductivity in proximity of the MH phase in 2D.

Pinning transition with ultracold bosons

While the focus in the study of quantum phase transitions in the context of
ultracold atoms has so far been on Hubbard-type physics in the weakly in-
teracting regime, novel quantum phenomena occur in lower dimensions,
where the effects of quantum fluctuations and correlations are enhanced.
In a 1D bosonic gas, strong repulsive interactions lead to the formation
of a Tonks-Girardeau (TG) gas, where bosons minimize their interaction
energy by avoiding spatial overlap and acquire fermionic properties[65, 9,
8, 66]. The addition of an arbitrarily weak lattice potential commensurate
with the atomic density, i.e. n ∼ 2/λ, where n is the linear 1D density and
λ/2 is the lattice periodicity, is expected to lead to a novel kind of quan-
tum phase transition[11, 61]: the strongly correlated 1D gas is immediately
pinned by the lattice and the superfluid TG phase is turned into an insulat-
ing, gapped phase. Figure 2.1 contrasts the Hubbard-type superfluid-to-
Mott-insulator transition to this pinning transition. Given the universality
of 1D quantum physics, the pinning transition will occur for interacting
bosons as well as for fermions in 1D and has been discussed with respect
to a variety of quantum models in low dimensions[11].

The pinning transition is described by the (1+1) quantum sine-Gordon
(sG) model, which is an exactly solvable quantum field theory, extensively
studied in high energy, condensed matter, and mathematical physics[10].
The sG Hamiltonian reads

H =
~vs

2π

∫

dx[(∂xθ)
2 + (∂xφ)2 + V cos(

√
4Kθ)]. (2.1)

Here, ∂xθ and ∂xφ are the fluctuations of the long-wavelength density and
phase fields θ and φ, respectively, of the hydrodynamic description of the
1D liquid with commutation relation [∂xθ(x), φ(y)] = iπδ(x − y), vs is the
velocity of the soundlike excitations of the 1D gas, V = V nπ/(~vs) is pro-
portional to the depth V of a weak lattice[11, 61], and ~ is Planck’s con-
stant h divided by 2π. For vanishing lattice V = 0, Eq. (2.1) describes a
Luttinger liquid, where the strength of interactions is parameterized by
the dimensionless parameter K = ~πn/(mvs), which determines the long-
distance power-law decay of the correlation functions, e.g. 〈n(x)n(x′)〉 ∼
n2 + cK/(x− x′)2 + c′ cos(2πn ∗ (x− x′))/(x− x′)2K + ... , with c and c′ con-
stants and m the atomic mass. The sG model with a weak but finite lattice
predicts a quantum phase transition of the Berezinskii-Kosterlitz-Thouless
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(BKT) type between a superfluid state for K > Kc = 2, where the shal-
low lattice is an irrelevant perturbation, to an insulating Mott phase for
K < Kc, for which the spectrum is gapped for any value of V .

While in general K is a phenomenological parameter, in the case of a
1D bosonic gas it can be microscopically related to the Lieb-Liniger pa-
rameter γ = mg/(~2n), which characterizes interactions in a homogenous
1D system[67] (see section 2.2). Here, g ≃ 2~ω⊥a3D is the coupling con-
stant of the 1D δ-function interaction potential U(x) = gδ(x), where ω⊥

is the frequency of transverse confinement and a3D is the 3D scattering
length. The strength of interactions, and thus K, can be tuned by vary-
ing a3D near a Feshbach resonance[43]. The TG regime corresponds to
γ ≫ 1. Using the relation between K and γ, Büchler and coworkers[61]
have shown that particles are pinned for experimentally accessible values
of γ > γc ≃ 3.5 in the limit of a vanishingly weak lattice. The pinning
transition is expected to continuously transform into the MH-type quan-
tum phase transition, which occurs for the weakly interacting gas when
the lattice depth becomes sufficiently large. Here, using a quantum gas
of caesium (Cs) atoms with tunable interactions confined to an array of
independent 1D tubes (see section 2.2), we drive the superfluid-to-Mott-
insulator phase transition by varying γ and determine the phase boundary
all the way from the strongly to the weakly interacting regime using mod-
ulation spectroscopy and measurement of transport. For shallow lattices
under conditions of commensurability, we observe immediate pinning of
the particles for strong interactions when γ > γc.

Experimental results and comparison with theory

We first discuss our experiments in the strongly interacting regime. We
start with a 3D Bose-Einstein condensate (BEC) of typically 1.3 × 105 Cs
atoms without detectable thermal fraction in a crossed-beam dipole trap
with magnetic levitation[68] and initialize our system by creating a con-
ventional 3D MH-state in a deep 3D lattice at U/(6J) ≈ 75 with precisely
one atom per lattice site[5]. We find, by reversing the loading, that the pro-
cedure does not lead to heating of the sample. The array of 1D tubes is ob-
tained by reducing the lattice depth V along one direction. Our procedure
ensures that a majority of tubes has a near-commensurate number density
(see Methods). A Feshbach resonance allows us to control a3D with a pre-
cision of 3 a0 limited by the presence of the magnetic field gradient. Here,
a0 is Bohr’s radius. For the case of the shallow lattice, we probe the state of
the system by amplitude modulation spectroscopy[69, 70]. We determine
the presence of an excitation gapEg by testing whether some energy can be
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2.1. Quantum sine-Gordon model with cold atoms

deposited into the 1D system at a given excitation frequency f . The lattice
depth V is modulated at f by 25% to 45% for 40 − 60 ms. After ramp-
ing down the lattice beams adiabatically with respect to the lattice band
structure and after a levitated expansion time of 40− 60 ms[68], we detect
the atoms by time-of-flight absorption imaging. We determine the spatial
width of the atomic sample from a gaussian fit to the absorption profile
and obtain the change δ of the spatial width compared to the unmodulated
case as a function of f . Two typical measurements are shown in Fig. 2.2(a),
one in the superfluid phase and one deep in the 1D Mott phase at the same
value for the lattice depth, V = 1.5(1)ER, where ER = h2/(2mλ2) is the
photon recoil energy. For weak interactions the system exhibits a linear in-
crease for δ as a function of f , which we attribute to the superfluid charac-
ter of the gas. For strong interactions, the increase, after a slow rise, shows
a clear kink. We attribute the initial slow rise to excitation of residual su-
perfluid portions of our inhomogeneous system and the sudden change
in slope to the presence of an excitation gap. We associate the axis inter-
cept fg obtained from a linear fit to the steep part of the spectrum with the
frequency of the gap. To determine the phase transition from the 1D Mott
state to the superfluid state, we repeat this measurement for a given depth
V as we scan γ by changing a3D. A typical result is shown in Fig. 2.2(c).
The gap closes as γ is reduced. For values V ≤ 2.0ER, the transition point
is identified with the abrupt step, i.e. we determine the critical value γc,V

at which the transition happens by an error-function fit to the data. Note
that we always observe some small residual value for fg of about 120 Hz
for weak interactions. In general, we find that the measured value for the
frequency of the gap is robust against variations of modulation amplitude,
while the slope increases with stronger modulation.

For comparison, we present in Fig. 2.2(b) and (d) excitation spectra for
an intermediate value of the lattice depth and for the case of a deep lattice,
respectively. For V = 3.0(2)ER the spectrum shows additional structure
for high frequencies as band structure comes into play. We find that for
V > 2.0ER the gap opens up approximately linearly as a function of γ
beyond a critical γc,V , see inset to Fig. 2.2(c). For deep lattices and for com-
paratively weak interactions the spectrum exhibits a broad distribution
characteristic of a superfluid. For stronger interactions we recover the dis-
crete excitation spectrum of the Mott phase in the Hubbard regime[5, 69]
with a pronounced peak at f = 1.0 U/h. Additional peaks[71] can be
found at f = 0.5 U/h and above f = 1.5 U/h.

For the case of a deep lattice, we find that the state of the system is
very sensitively probed by transport measurements[73, 72]. A character-
istic property of the Mott state is the inhibition of particle motion. In our
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Figure 2.2: Modulation spectroscopy on bosons in 1D. a, b, d, Excitation
spectra for low, intermediate, and high lattice depth V . The change δ of
the spatial width after amplitude modulation is plotted as a function of the
modulation frequency f for different values of γ. a, Characteristic spectra
for V = 1.5(1)ER in the superfluid (squares, a3D = 115(2) a0, γ = 1.0(1))
and in the Mott regime (circles, a3D = 261(2) a0, γ = 3.1(2)). The solid lines
are linear fits to the high-frequency part of the spectrum. We determine
the axis intercept fg as indicated. b, Spectra for V = 3.0(2)ER. The system
is superfluid at γ = 0.51(6) (squares), while it exhibits a gap for γ = 1.6(1)
(triangles) and γ = 4.1(3) (circles). c, Determination of the transition point
for the case of the shallow lattice with V = 1.5(1)ER. The frequency fg is
plotted as a function of γ. The solid line is an error-function fit to the data.
The inset plots fg as a function of γ for V = 3.0(2)ER. d, Spectra for V =
9.0(5)ER for weak (squares, γ = 0.10(3)) and strong (circles, γ = 8.1(4))
interactions in the superfluid (SF) and Mott insulator (MI) regimes. Here,
f is in units of U . Modulation parameters and errors bars are discussed in
the Methods.
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experiment with the capability to tune interactions we expect the phase
transition to manifests itself, at fixed V , through a strong suppression of
transport when the strength of the interaction is raised above a certain crit-
ical value. Essentially, we test whether momentum can be imparted to the
1D system as a function of interaction strength. For a given V we apply a
weak axial magnetic force for a brief time to the interacting system, chosen
such that the imparted momentum would be approximately 0.2~k if the
system were non-interacting. Then, as a function of a3D, we determine the
center-of-mass displacement x0 of the sample after a fixed time of flight.
Fig. 2.3 shows that x0 decreases monotonically with a3D. For the case of a
deep lattice with V = 9.0(5)ER the quenching of transport is abrupt. At a
certain critical value for a3D transport is fully inhibited[74, 75]. We find the
critical a3D by a linear fit to the decreasing data and by determining the axis
intercept and derive from this a critical γc,V . Reducing the lattice depth
to V = 5.0(3)ER and V = 2.0(1)ER leads to a less abrupt quenching of
transport. For stronger interactions, the decrease starts to level off. Nev-
ertheless, the initial decrease is still linear, allowing us to determine the
critical γc,V by an extrapolation of the initially linear decrease to zero. The
inset to Fig. 2.3 shows the measured critical ratio (U/J)c determined by
our transport method as a function of lattice depth V . When we compare
our results with the predicted value[76] of (U/J)c ≈ 3.85 for the transition
in 1D, we find a slight systematic overestimation of the transition point.
This, however, is expected in view of e.g. the spatial inhomogeneity of the
sample and the BKT-type nature of the transition in a finite size system.

Summary

We summarize our results in Fig. 2.4, where we present the phase diagram
as a function of 1/γ and V . The set {γc,V } defines the phase boundary be-
tween the 1D Mott insulator and the 1D superfluid. The measurements
based on modulation spectroscopy cover a range from V = 4ER down to
0.5ER (circles), while the transport measurements extend from V = 2ER

to 10ER (squares). In the weakly interacting regime, 1/γ > 2, our data are
in good agreement with the prediction of the MH model (dashed line). In
the strongly interacting regime, 1/γ < 1, the measured phase boundary
extrapolates to a finite critical value 1/γc for the Lieb-Liniger parameter as
the lattice depth V is reduced to zero. Our results are in excellent quanti-
tative agreement with the theory for a commensurate system based on the
sine-Gordon model (solid line, see Methods), for which γc = 3.5. We also
find good agreement between our two types of measurement techniques
in the intermediate regime (V = 2ER to 4ER). Our results demonstrate the
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Figure 2.3: Transport measurements on the 1D Bose gas. Center-of-mass
displacement x0 as a function of a3D for different values of V (V = 9.0(5)ER

(diamonds), V = 5.0(3)ER (squares), V = 2.0(1)ER (circles)). We extrap-
olate the linear slope at small values for a3D and associate the transition
point with the axis intercept. For the data with V = 2.0(1)ER transport is
not fully quenched as the condition of commensurability is not fulfilled for
all atoms. All errors are the 1σ statistical error. The inset plots the mesured
critical ratio (U/J)c at the transition point as a function of lattice depth V .
The dashed line indicates the theoretical result (U/J)c ≈ 3.85 for the 1D
Bose-Hubbard regime[76].
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striking consequence of strong interactions in 1D geometry in the presence
of a lattice: Beyond a critical value γc, an insulating Mott state exists for
vanishingly small lattice depth V . The particles are immediately pinned
by the lattice.

We measure a finite gap energy Eg for γ > γc in the regime of a shallow
lattice. In the limit of γ → ∞ and V → 0 one would expect the simple
relation Eg = V/2 as the bosonic system has become fully fermionized and
the lattice effectively induces a band insulator of fermions[61]. In the inset
to Fig. 2.4 we plot the measured Eg as a function of V at fixed γ = 11(1).
For V < 1ER our data is in good agreement with the analytical result for
the gap energy at finite γ (see Methods). Note that, for V ≥ 1ER, we
observe a deviation for Eg away from the predicted values. This deviation
occurs at rather shallow lattices. However, one does expect the curve to
have a reduced slope for deeper lattices, for which Eg becomes of order U
and is only weakly dependent on V .

Our results are a benchmark realization of quantum field theory mod-
els with tunable parameters in cold atomic systems. These results open
up the experimental study of the out-of-equilibrium properties of sine-
Gordon-type models. In particular, thermalization in integrable models
beyond the Luttinger liquid model, quenches across quantum phase tran-
sitions, and their relations to the breakdown of the adiabatic theorem in
low dimensions can now be investigated with full tunability of system pa-
rameters.

2.2 Methods Summary

2.2.1 Sample preparation.

We begin with a BEC with no detectable thermal fraction of typically 1.3×
105 Cs atoms in the |F = 3, mF = 3> hyperfine ground state in a crossed-
beam dipole trap with magnetic levitation. Details of the BEC prepara-
tion are presented elsewhere[68]. The BEC is adiabatically transferred to
the 3D lattice by exponentially ramping up the power in the lattice laser
beams within 300 ms. We create a 3D Hubbard-type Mott insulator with
precisely one atom per site in the central region of the trap by adjusting
the external dipole trap confinement prior to loading into the lattice. The
array of vertically oriented tubes is created by ramping down the power
in the vertically propagating beam pair. Typical trapping frequencies for
the tubes are ωr,z = 2π× (12300(200), 21.9(3)) Hz along the transversal and
longitudinal directions, respectively.
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Figure 2.4: Phase diagram for the strongly interacting 1D Bose gas. Su-
perfluid and Mott insulating phases in 1D versus inverse Lieb-Lininger in-
teraction parameter 1/γ and optical lattice depth V in units of the photon
recoil energy ER. The critical interaction parameter is γc. For strong in-
teractions and shallow lattices we determine the transition by amplitude
modulation spectroscopy (circles). For weak interactions and deep lattices
we probe the phase boundary by transport measurements (squares). The
solid (dashed) line is the prediction from the sine-Gordon (Bose-Hubbard)
model. Error bars are discussed in the Methods. The inset plots the mea-
sured gap energy Eg = hfg as a function of V for γ = 11(1) and compares
our data to the analytical result for finite γ as given by the sine-Gordon
model (solid line, see Methods). Also shown is the universal behavior
Eg = V/2, which is valid for non-interacting fermions (dashed line).
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It is not necessary to strictly adhere to the commensurate density con-
dition to observe the pinning transition at very weak lattices[61]. How-
ever, we prepare our sample such that the commensurability condition
is on average best fulfilled over the inhomogeneously populated array of
tubes. We find this optimal configuration when the total atom number
is chosen such that the peak density of the center tube is approximately
1.2 nc, where nc = 2/λ is the commensurate 1D density. Typically there are
about 60 atoms in the center tube.

2.2.2 Phase transition line.

For the case of a 1D Bose gas in a weak optical lattice the effective sine-
Gordon Hamiltonian Eq. (2.1) is realized. In this regime, the BKT tran-
sition line between the superfluid and the Mott-insulating phases can be
derived in terms of V and γ = γc,V as

V

ER
= 2

(

π
√

γ − γ3/2/(2π)
− 2

)

.

When the system is weakly interacting, γ ≪ 1, and for deeper lattices, V ≫
1ER, the system can be described by the Bose-Hubbard Hamiltonian[4]. In
this regime, the quantum phase transition between a superfluid and a MH
state occurs at[76] (U/J)c ≈ 3.85, which determines a transition line in the
(V, γ) - plane via

4V

ER
= ln2

[

2
√

2π

γ

(

U

J

)

c

√

V

ER

]

.

Here, J is the hopping energy, and U is onsite interaction energy of the
Bose-Hubbard model.

2.3 Methods

2.3.1 1D Bose gas in a weak optical lattice.

In the absence of the optical lattice, V = 0, the Luttinger liquid parameter
K can be expressed in terms of the Lieb-Liniger parameter γ = gm/(~2n)
for all strengths of interactions[67, 182]. For γ ≤ 10 and γ ≫ 10 one gets

K ≃ π/
√

γ − γ3/2/(2π) and K ≃ (1 + 2/γ)2, respectively. The addition of
a weak but finite commensurate optical lattice with V ≤ 1ER realizes the
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effective sine-Gordon Hamiltonian Eq. (2.1). Using a perturbative renor-
malization group approach, the BKT transition line between the superfluid
and the Mott-insulating phases can be derived in terms of V and γ = γc,V

as
V

ER
= 2

(

π
√

γ − γ3/2/(2π)
− 2

)

.

For small lattice depths, the integrable structure of the sine-Gordon model[60,
78] allows one to derive the following analytical expression for the depen-
dence of the spectral gap Eg on V and K

Eg

ER
=

8Γ[ πK
2(2−K)

]
√
πΓ[1

2
2+K(π−1)

2−K
]

[

(

K2V

16ER

)

Γ[1 − K
2
]

Γ[1 + K
2
]

]
1

2−K

.

Here, Γ is the gamma function. For strong interactions K ≃ 1, the de-
pendence of the gap on V is linear, and Eg approaches the free fermion
value Eg = V/2. In the vicinity of K = 2, the gap closes exponentially
approaching the BKT transition line.

2.3.2 Deep lattice: the Bose-Hubbard model.

In the weakly interacting regime γ ≪ 1, for V ≫ 1ER, when all atoms
occupy the lowest vibrational state in each potential well of the lattice, the
system can be described by the following Bose-Hubbard model[4]

H = −J
∑

i

(b†ibi+1 + h.c.) +
U

2

∑

i

b†ib
†
ibibi.

Here, bi (b†i ) is the operator destroying (creating) a bosonic particle at the

position of the ith-well, J = 4ER(V/ER)
3
4 exp[−2

√

V/ER]/
√
π is the hop-

ping energy, and U =
√

2πg(V/ER)1/4/λ is onsite interaction energy. The
quantum phase transition between a superfluid and a MH state occurs
at[76] (U/J)c ≈ 3.85, which determines a transition line in the (V, γ) - plane
via

4V

ER
= ln2

[

2
√

2π

γ

(

U

J

)

c

√

V

ER

]

.

2.3.3 Magnetic Feshbach resonance

The strength of interaction can be tuned by means of a broad magnetic
Feshbach resonance with a pole at −11.7 G and with a zero crossing for
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the scattering length near 17 G[68]. To hold the atoms in the vertically
oriented tubes, magnetic levitation by means of a magnetic field gradient
is applied. For a cesium atom in the hyperfine state {F = 3, mF = 3} a
magnetic field gradient of 31.1 G/cm cancels the gravitational force.

2.3.4 Lattice loading and array of 1D tubes.

We create a 3D optical lattice by interference of 3 pairs of counterprop-
agating dipole trap laser beams at wavelength λ = 1064.5 nm with 1/e2

beam waists of ∼ 350 µm. The atomic BEC, initially trapped in a crossed-
beam dipole trap, is adiabatically transferred to the 3D lattice by expo-
nentially ramping up the power in the lattice laser beams within 300 ms.
At the same time we increase the interaction strength by linearly raising
the magnetic field strength and finally reach a 3D Hubbard-type Mott in-
sulator with precisely one atom per site in the central region. The ar-
ray of vertically oriented tubes is created by linearly ramping down the
power in the vertically propagating beam pair in 100 ms reaching lattice
depths from 10 to 0.5 ER. At the same time we linearly reduce the mag-
netic field strength to set a3D. Typical trapping frequencies for the tubes
are ωr,z = 2π × (12300(200), 21.9(3)) Hz along the transversal and longi-
tudinal directions, respectively. The depth of the lattice along the tubes is
calibrated by the pulsed Raman-Nath technique[79]. The transversal trap-
ping frequencies of the tubes are determined by parametric heating mea-
surements. The distribution of the atom number per tube can be directly
determined from the density distribution in the Mott-insulating phase and
shows an occupation of about 60 atoms in the center tube. Here, we as-
sume a constant filling factor of one atom and no thermal or superfluid
components. In view of our inhomogeneous system we calculate γ, for a
given tube, by assuming a 1D Thomas-Fermi distribution and taking the
center density. The reported γ is a weighted average over all tubes.

2.3.5 Commensurability.

To observe the pinning transition it is not necessary to fulfill the condi-
tion of commensurability precisely[61]. A finite commensurability param-
eter Q = 2π(n − nc) corresponds to a shift δµ of the chemical potential.
Here, nc = 2/λ is the commensurate 1D density. The system stays locked
to the Mott insulating phase as long as δµ remains smaller than the en-
ergy necessary to add another atom. When Q rises beyond a critical value
Qc(γ, V ), the system develops finite density excitations, which destroy the
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long range order of the Mott insulator. We find that, for the array of 1D
tubes, the commensurability condition in the superfluid regime is fulfilled
best when the total atom number is chosen in such a way that the peak
density of the center tube is approximately 1.2 nc.

2.3.6 Modulation parameters and error bars.

For the data in Fig. 2.2 a, b, d we chose the following modulation times and
amplitudes: a 40 ms, 35%, b 40 ms, 30%, d 30 ms, 35% for the superfluid
phase and 25% for the Mott phase. In Fig. 2.2 a, b, d, the error bars for δ
reflect the 1σ statistical error. In Fig. 2.2 c, the error bars for fg are derived
from the 1σ error on the fit parameters. The error for γ results from the
1σ statistical error of the independent input variables and the spread of
γ due to the distribution of tubes. For the data in Fig. 2.4 the error in
γ is derived from the 1σ error of the fit parameters for the modulation
measurements. For the transport measurements, the error in γ results from
the 1σ statistical error of the independent input variables and the spread
of γ due to the distribution of tubes.
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Atomic bosonic and fermionic
mixtures
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Recent experimental advances in trapping and cooling fermionic atomic
gases [63, 64, 80, 81, 82, 83, 84, 85, 86] have paved the way to a series
of theoretical studies involving not only Fermi gases [87], but also Bose-
Fermi(BF), Fermi-Fermi(FF) and multispecies Fermi mixtures [44]. These
achievements are of strong interest with respect to various topics in many-
body physics. A natural parallelism emerges between two-species Fermi
mixtures and electrons in metals: in this case, the spin degree of freedom
in embodied in the system by i) considering mixtures of different atomic
species or ii) employing species dependent optical lattices, which affect
the tunneling rate of each species in a different way, thus allowing for a
complete and almost unconstrained control over all system parameters,
included dimensionality of the sample.

Figure 2.5: Fermi surface of atoms in an optical lattice: typical quasi-
momentum distribution of a Fermi gas loaded into an optical lattice; from
left to right, the number of particles is increased in such a way that atoms
in the center of the trap start occupying higher bands. Image taken from
Tilman Esslinger’s group website.

A particular interest has been devoted to one dimensional systems,
where exotic phenomena such as FFLO pairing and spin-charge separa-
tion may occur[88]. While in 1D powerful theoretical instruments are at
disposal, there are still open problems regarding a variety of fermionic
systems, between them being a slight modification of the HM, known as
the asymmetric Hubbard model (AHM):

H = −
∑

jσ

tσ(c†jσcj+1σ + h.c.) + U
∑

j

nj↑nj↓ (2.2)

where the hopping coefficients are in general different, t↑ 6= t↓. Differ-
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ently with respect to the HM, this model is not exactly solvable; several
approaches have been employed to describe its phase diagram, revealing
a rich structure which can be in principle observed in cold atom experi-
ments. In the first chapter of this section, we will quantitatively address
some open questions regarding its pairing regimes and the so called phase
separation (PS) phenomena, which have been already observed in the con-
text of 3D FF mixtures [86] [see Fig.2.6]. We will employ two perturba-
tive analytical techniques accompanied by numerical calculations based
on the DMRG algorithm, and find out a strong filling dependence of the
PS regimes. Then, we will present numerical results which show how ex-
otic phenomena such as true crystals and topological phases can occur in
certain parts of the phase diagram: remarkably, these phases were known
to be stabilized only in presence of non-local interactions, whereas in our
case only a local one in included. This feature shows how the breaking of
the SU(2) symmetry related to t↑ = t↓ in the HM can effectively generate
non-local interactions, which emerge naturally in perturbative arguments
in several models but do not usually influence the underlying effective
field theory as they do for the AHM. Let us finally notice that all of these
results are also valid (up to a proper rescaling of certain correlation func-
tions) for hard-core Bose-Bose mixtures, which in 1D can be mapped to FF
mixture via the so-called Jordan-Wigner transformation.

In Chapter 5, we will instead focus on a slightly different subject. It is
widely known that ultracold fermionic mixtures suffers from three-body
recombination processes, which become considerable in presence of a Fano-
Feshbach resonance(FR). Once three particles come close to each other, they
do interact through a short range potential which, under certain circum-
stances, can favor the formation of a two-body bound state; the energy
released during the process is then partially absorbed by the remaining
particle, which is then expelled by the system. A typical example of three-
body losses in heterogeneous Fermi mixtures is schematically presented in
Fig. 2.7: once a three-species 6Li gas is trapped, the fraction of remaining
atoms abruptly changes close to a scattering resonance.

Dissipative processes are thus usually a nasty feature, which may stron-
gly reduce the possibility to observe exotic phases like, e.g., trimer liquids
[89, 90]. However, due to the so called Quantum Zeno effect [91], a strongly
dissipative systems turns out to be effectively stable on short timescales;
namely, if the loss rate Γ associate to three-body recombination is much
larger than the typical energy scale of the system δ, the number of parti-
cles is essentially conserved up to timescales proportional to Γ/δ2. Taking
advantage of this mechanism, Syassen and coworkers have been able to
realize a Tonks-Girardeau gas with Feshbach molecules [92], which are
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Figure 2.6: Phase separation in a two-species Fermi gas: real space den-
sity distribution of un unbalanced FF mixture with attractive interactions:
phase separation emerges a long as the gas gets polarized[see Ref. [86] for
more details]. Image taken from Randy Hulet’s group website.

usually unstable towards two-body scattering.
The possibility to use losses as effective many-body interactions has

been proposed in [93], considering in detail a standard Bose-Hubbard model.
The effect of strong three-body losses in such a system effectively cuts the
Hilbert space up to double occupancies, allowing to investigate the attrac-
tive regime, usually not accessible because of many-body collapse. Even
in this simple case, various interesting phenomena such as a dimer liquid
and Ising-type criticality emerge. In Chapter 5, we will illustrate how such
three-body effective interactions can give rise to anomalous pairing mech-
anism in one dimensional three-species gases, stabilizing an atomic color
superfluid analog to the color flavor locked phase suggested to appear in
high-density QCD.

As a final outlook, in Chapter 6 we will present some numerical results
on the possibility to realize magnetic phases such as counter flow superflu-
idity and Néel antiferromagnet in strongly unbalanced two species bosonic
mixtures, giving a particular emphasis on the 87Rb-41K experimental setup
developed at LENS.
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Figure 2.7: Scattering properties and three-body losses in 6Li: a) remain-
ing fraction of atoms in a three species 6Li mixture after 250 ms as a func-
tion of the magnetic field; b) same results for a two-species mixture; two-
body scattering length for different interspecies interactions; for more de-
tails, see [84]. Image taken from the website of Selim Jochim’s group.
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Chapter 3

Fermi-Fermi mixtures: pairing
regimes and phase separation in
the asymmetric Hubbard model.

We address some open questions regarding the phase diagram of the one-
dimensional Hubbard model with asymmetric hopping coefficients and
balanced species. In the attractive regime we present a numerical study of
the passage from on-site pairing dominant correlations at small asymme-
tries to charge-density waves in the region with markedly different hop-
ping coefficients. In the repulsive regime we exploit two analytical treat-
ments in the strong- and weak-coupling regimes in order to locate the on-
set of phase separation at small and large asymmetries respectively.

3.1 Introduction

In this chapter we study a variation of the one-dimensional Hubbard model
(HM) in which the difference between the hopping amplitudes, say t↑ > t↓,
is responsible for an explicit breaking of the rotational symmetry. It is de-
scribed by the Hamiltonian

H = −
∑

jσ

tσ(c†jσcj+1σ + h.c.) + U
∑

j

nj↑nj↓ (3.1)

where cjσ denotes the annihilation operator of a fermion with σ =↑, ↓ at

site j and njσ = c†jσcjσ are the associated number operators.
This asymmetric Hubbard model (AHM) has been studied in the past

[94] to describe the essential features of the metal-insulator transition in
rare-earth materials and transition-metal oxides; in this case σ represents
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two types of spinless fermions (the real spin being considered not essen-
tial for the transition to be modelled). The “light” particles are described
by band (Bloch) states, while the “heavy” ones tend to be localized on
lattice (Wannier) sites. More recently, this model has gained a renewed
interest in experiments with optical lattices, in which both the effective
strengths of the kinetic and of the potential parts can be varied in a rather
controlled way, including the possibility of reaching the attractive regime
U < 0. The possibility to use cold atoms [44, 4] to engineer condensed
matter systems with a high tunability offers an experimental way to test
theoretical results with great accuracy. Two-species models with different
hopping coefficients can also be realized by trapping atomic clouds with
two internal states of different angular momentum, thereby introducing a
spin dependent optical lattice, which enables to modify the ratio a = t↓/t↑
by controlling the depth of the optical lattice [95]. Yet another possibility is
to trap two different species of fermionic atoms, so that the “anisotropy”
a is given naturally by the ratio of masses. In the context of cold atoms
in optical lattices the subscripts σ =↑, ↓ are not related to the electron spin
but label the two different species of fermions, either different atoms with
half-integer spin or different excited states of one atomic specie with fine
structure splitting.

Many recent papers on the subject are devoted to the onset of the so-
called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, which may occur
with unbalanced species [96, 97]. In this chapter we will consider instead
the case of balanced species: N↑ = N↓. The parameters that influence
the phase diagram can be cast in the form of an anisotropy coefficient
z = (t↑ − t↓)/(t↑ + t↓) = (1 − a)/(1 + a) and a dimensionless onsite po-
tential u = U/t, where t = (t↑ + t↓)/2 is an overall energy scale. In ad-
dition one can consider the effect of the total filling n = N/L, N being
the total number of fermions and L the chain length. At variance with
the typical situation in condensed matter physics, where the bulk filling
and magnetization mz = (n↑ − n↓)/2 are controlled in a grand-canonical
framework by the chemical potential and an external magnetic field re-
spectively, in the context of cold atoms it is conceivable to fix indepen-
dently the number of particles in each of the two species, despite the fact
that only a given choice of the densities n↑ and n↓ might correspond to
the absolute minimum of the grand potential. Henceforth we will assume
that they are equally populated, that is n↑ = n↓ = n/2 and we will limit
ourselves to n < 1. Note that if E(n,mz) is the energy in a given sec-
tor of n and mz (these two quantities are good quantum numbers also in
the asymmetric case), then a particle-hole transformation njσ → (1 − njσ)
leads to E(2 − n,−mz) = E(n,mz) − UL(n − 1), so that for mz = 0 it is
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3.2. Superconducting properties: singlet-pairing to
charge-density wave transition at U < 0

sufficient to analyze the phase diagram for positive and negative U and
n < 1, in order to infer features also at n > 1. The phase diagram at half-
filling, n = 1, has been studied in ref. [98], soon after the development of
White’s density-matrix renormalization group (DMRG) method [28]. The
limiting case of the symmetric HM (z = 0) can be solved exactly via the
Bethe ansatz approach [99]. The opposite extremal case z = 1 is usually
called the Falicov-Kimball (FK) model. In any dimensionality, it has been
proven [100] that for large positive U and n 6=1 the system has a ground
state characterized by a spatially non-homogeneous density profile, called
phase-separated (PS) state. This phase persists also for z . 1 [101] and can
be interpreted as the result of an effective attractive interaction between
light fermions, mediated by the heavy ones (see [102] in 1D and [103] in
2D). At smaller asymmetries, the system is instead in a more conventional
spatially homogeneous phase (HP). The ground state phase diagram for
the model in the mz = 0 sector has been discussed in [88] by means of the
bosonization approach. In this context [104] the HP-PS transition line at
u > 0 has been interpreted as the curve in (z, u)-plane where the velocity
of one of the two decoupled bosonic modes vanishes.

Let us summarize the content of this chapter. In Sec. 3.2 we will study
numerically the attractive regime (U < 0), by using a DMRG program. In
particular we will examine which kind of correlations (charge or pairing)
is dominant in this region of the phase diagram. Then we will move to
consider the repulsive (U > 0) regime. In Sec. 3.3 we will analytically
discuss the weak coupling regime (|U | ≪ tσ) by means of a variational
method that compares the energy of the PS state with that of the HP state,
the latter being calculated within a second order perturbation analysis. In
Sec. 3.4 we move to study the strong coupling regime (U ≫ tσ) in order
to determine a phase diagram which includes also different types of PS
states. The results are summarized and the conclusions are drawn in Sec.
3.5. A cartoon representation of the different phases to which we refer in
the following can be found in Fig. 3.1.

3.2 Superconducting properties: singlet-pairing

to charge-density wave transition at U < 0

One of the open points raised in ref. [88] is the existence of regions atU < 0
characterized by dominating charge-density wave (CDW) correlations in-
stead of the singlet-superconducting (SS) ones that one has in the attractive
symmetric HM. On a lattice the CDW and the SS correlation functions are
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Figure 3.1: Schematic representation of the phases discussed in the text.
Large and small disks represent heavy and light fermions respectively.
The ellipsis encircling the pairs in the SS phase denotes onsite pairing.

defined respectively as

C(r) = 〈njnj+r〉 − 〈nj〉〈nj+r〉

P (r) = 〈η†jηj+r〉
where nj = nj↑+nj↓ while ηj = cj↓cj↑ is the operator that destroys an onsite
pair with singlet spin wavefunction. At large distances r, bosonization
procedures predict [11]

C(r) ∼ −Kρ

π2r2
+ A

cos(2kF r)

rKρ+Kσ

P (r) ∼ B

r1/Kρ+Kσ

where A and B are constants, and Kρ and Kσ are the Luttinger parameters
for the charge and spin degrees of freedom respectively. ClearlyC(r) dom-
inates over P (r) when Kρ < 1, while Kσ has to be fixed to 0 for gapped
spin phases. A numerical estimate of Kρ from finite-size data can be ob-
tained as in ref. [105] by considering the structure factor

S(q) =
∑

r

eiqr〈njnj+r〉

Here we have dropped the dependence on j because we implicitly as-
sume that the correlation functions are translationally invariant due to pe-
riodic boundary conditions (PBC). The value S(q = 0) corresponds to the
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Figure 3.2: Example
of cubic splines in-
terpolation to locate
the transition point
and the associated
error, using the
DMRG data of table
3.1. The horizontal
solid segment at
Kρ = 1 indicates the
reported interval.

average correlation and it diverges in the thermodynamic limit, since typ-
ically 〈njnj+r〉 saturates at a finite value n2 for large distances. So one may
consider the connected charge correlation C(r) in order to avoid this diver-
gence. This choice affects the structure factor only at q = 0 and bosoniza-
tion predicts that the value of Kρ is directly related to the limit q → 0

S(q) ≃ Kρ
q

π
+ . . .

Following the procedure of ref. [105] by selecting the smallest possible
non-vanishing momentum compatible with PBC q1 = 2π/L one builds a
sequence that approximates the linear slope

Kρ(L) = S(q1)
L

2
.

The dependence on L indicates that the sequence has to be extrapolated
to L → ∞ in order to obtain the limit q → 0 and the parameter Kρ. The
DMRG results corresponding to various fillings n = 0.4, 0.6, 0.8 with
z = 0.2, 0.5, 0.65, 0.8 and u = −0.001, −0.5, −3 are reported in table 3.1;
in the caption we have reported also the relevant features of our DMRG
numerical calculations. For a fixed value of u < 0 we always find that the
extrapolated Kρ decreases with increasing z. From this grid of points we
can have an idea of the SS-CDW transition curve by locating the points at
which Kρ = 1. This has been done interpolating the data with splines. An
example of this procedure is given in Fig. 3.2, while the global results are
plotted in Fig. 3.3.
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u \ z 0.2 0.5 0.65 0.8

n = 0.4

−10−3 1.001 ± 0.002‡ 0.9978 ± 0.0002∗ 0.994 ± 0.001∗ 0.986 ± 0.004∗

−0.5 1.0700 ± 0.0004 1.038 ± 0.001 0.992 ± 0.002 0.906 ± 0.003

−3 1.4209 ± 0.0005 1.2528 ± 0.0003 1.0976 ± 0.0002 0.86715 ± 0.00005

n = 0.6

−10−3 1.0034 ± 0.0008∗ 1.001 ± 0.001‡ 1.000 ± 0.002‡ 0.998 ± 0.004‡

−0.5 1.050 ± 0.001‡ 1.04 ± 0.01‡ 1.03 ± 0.02‡ 1.00 ± 0.05‡

−3 1.26016 ± 0.00007 1.110 ± 0.003 0.969 ± 0.004 0.751 ± 0.004

n = 0.8

−10−3 1.008 ± 0.002∗ 0.9976 ± 0.0001∗ 0.983 ± 0.005 0.951 ± 0.009

−0.5 1.045 ± 0.005‡ 1.014 ± 0.001 0.980 ± 0.002 0.913 ± 0.002

−3 1.1603 ± 0.0001 1.0163 ± 0.0008 0.880 ± 0.001 0.6722 ± 0.0008

Table 3.1: Extrapolations for the parameter Kρ from DMRG simulations
with PBC, L = 10, 20, 30, 40, 50, 1100-1300 optimized states and seven
finite-system sweeps. This conservative choice guarantees an energy rela-
tive error of O(10−6) up to L = 30 and O(10−5) up to L = 50 (recall that the
charge degrees of freedom are always gapless). Unless otherwise speci-
fied the extrapolations have been performed using quadratic fits in 1/L
and the error bars are evaluated according to [106] (Chapter 15) using the
sum of squared differences normalized to the fit degrees of freedom as a
measure of the spread in the ordinates. ‡: Oscillating about reported value
with spread. *: Linear fit in 1/L.

In ref. [88] (Fig. 1 therein) the authors report a triangular region ob-
tained by means of bosonization at u < 0 where the dominant correlations
are CDW or SS depending on the filling. Here we observe that the shape of
the transition line is indeed dependent on n: for u < −0.5 the separation
line might have both a negative and a positive slope, depending on the
value of n. For small (negative) u the curve has always a negative slope.
Because of the uncertainty related to DMRG and finite-size effects, our es-
timate of the transition points is limited to u ≤ −10−3; moving closer to
u = 0 would produce values of Kρ essentially always equal to 1 within the
numerical error, for all values of z, so we have not pushed our analysis
and conclusions closer to u = 0.

Finally we should mention that a direct inspection of the charge cor-
relation functions in real and in Fourier space reveals that the only char-
acteristic wavenumber is 2kF = πn, where typically the structure factor
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3.3. Phase separation in the weak-coupling limit

Figure 3.3: Numerical estimates of the transition lines from SS (on the left)
to CDW (on the right) dominant correlations in the attractive regime for
the values of filling reported in the legend. Not all the data used to ob-
tain the figure have been reported in table 3.1. The error bars associated
to the transition point have been determined by means of splines passing
through the upper and lower edges of each interval of possible values of
Kρ reported in the table (see the construction of Fig. 3.2); when the un-
certainty in z turned to be smaller than 10−2 we have conventionally set it
to this value to account for the approximation introduced by cubic splines
interpolation. The lines joining the points are guides to the eye.

displays a peak for u < 0, but there is neither FFLO behavior - as expected
since we have selected balanced species - nor a collapse (predicted at suf-
ficiently large negative u [107]).

3.3 Phase separation in the weak-coupling limit

From a quantitative point of view, bosonization cannot be conclusive about
the location of the HP to PS transition at z ∼= 1. This is due to the fact that,
while a continuum limit approach is justified close to z = 0, in the FK limit
even a small U can involve processes away from the Fermi surface, and so
the requirement |U | ≪ min[t↑, t↓] strictly reduces the range of reliably of
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this approach[88].
Numerical data [108] indicate that in the highly asymmetric regime

phase separation appears above a critical value of U which approaches
zero in the low-density limit.

When approaching the FK limit z → 1, the kinetic energy of the lighter
species becomes the dominant term of the Hamiltonian at weak coupling,
U ≪ t↑. For U > 0, the competition between the light particle kinetic
energy and the repulsive on-site interaction can drive the system into an
instability with respect to phase separation [101]: there exists a critical
value uPS(z, n) above which light particles will occupy a large region of
the system where ni↓ = 0, creating an effective pressure which confines
heavy particles into a small region with density close to 1; this effect is
reminiscent of the phase separated regime present in the FK model in the
repulsive regime.

Different numerical and analytical methods have been proposed in lit-
erature to identify this phase transition between the HP and the PS regimes
[104, 109, 108]. In the following, we will (i) apply a second order pertur-
bation theory approach, first introduced [110] to study the ground state of
the weakly interacting symmetric HM, to compute the energy of a homo-
geneous phase ground state of the AHM and (ii) compare HP and PS state
energies in order to detect the line of quantum phase transition as a func-
tion of the original model parameters z, u, n. Finally, a comparison with
previous results will be presented.

3.3.1 Trial wave functions

In the low coupling regime, we can consider as extended ground state the
exact one at U = 0 (and t↓ 6= 0), which can be obtained by filling both
Fermi bands up to kFσ:

|Ψ〉HP =
∏

|q|≤kF↓

c̃†q↓
∏

|k|≤kF↑

c̃†k↑|0〉 (3.2)

where |0〉 represents the zero-fermions vacuum and c̃†kσ are the creation
fermionic operators in Fourier space. While |ψ〉HP is not an exact eigen-
state of the full Hamiltonian, perturbation theory above this ansatz have
provided excellent results for z = 0 [110], where a comparison with the
exact solution is possible, and, as shown later in the section, even in the
highly asymmetric regime.

The PS ground state instead can be obtained in the following way: first,
we confine all heavy particles in a given part of the lattice of relative length
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ν, with (L − N↑)/L ≥ ν ≥ N↓/L; then we consider two different chains of
length L↓ = νL, L↑ = L(1 − ν) respectively and then fill the new Fermi
bands till the momenta k′Fσ = πNσ/Lσ:

|Ψ(ν)〉PS =
∏

|q′|≤k′
F↓

c̃†q′↓
∏

|k′|≤k′
F↑

c̃†k′↑|0〉.

In practice we have to consider that the effective light-particle and heavy-
particle “chain lengths” are not L but L(1 − ν) and Lν, respectively.

In addition, we can define a totally segregated state (TSS) as the one with
a completely full region of heavy particles, i.e. ν = N↓/L. In this case, the
variational wave function can be written as:

|Ψ〉TSS =
∏

(1−n↓)L<j<L

c†j↓
∏

|k′|≤k′
F↑

c̃†k′↑|0〉.

where now the down-fermion creation operators are taken in real space
representation. Both TSS and PS state trial wave functions are eigenstate of
the Hamiltonian up to a boundary term which we neglect in the following
L→ ∞ limit.

3.3.2 Ground state energies

The instability of a homogeneous ground state towards a phase separated
one can be analyzed by computing the corresponding zero temperature
energy:

EPS =
PS〈Ψ|H|Ψ〉PS

L
, EHP =

HP 〈Ψ|H|Ψ〉HP

L
and by comparing them to get the phase transition hypersurface in param-
eter space described by:

EPS(n↑, n↓, U, z) − EHP (n↑, n↓, U, z) = 0

A similar criterion can be applied to distinguish between TSS and PS state
without segregation, as described later in the section. We remark that in
the PS region, due to the fact that within the two subchains of length L↑,↓

the up and down particles do not overlap, the interaction term provides
at most a boundary contribution which can be neglected in the thermody-
namic limit. We will come back to this point later.

We can then compute the PS state energy density EPS considering only
the kinetic term contribution. For a general ν, the result is

EPS(ν) = −t(1 + z)
2(1 − ν)

π
sin

(

πn↑

1 − ν

)

(3.3)
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−t(1 − z)
2ν

π
sin
(πn↓

ν

)

As already stated in [101] (in particular Sec. 3 therein), it is possible to
fix the lowest energy state with respect to ν searching for a minimum of
(3.3) at fixed densities and hopping rates. The corresponding condition
∂νEPS = 0 becomes

(1 + z) sin

(

πn↑

1 − ν

)

− πn↑

1 − ν
cos

(

πn↑

1 − ν

)

= (1 − z)
[

sin
(πn↓

ν

)

− πn↓

ν
cos
(πn↓

ν

)]

(3.4)

If there exists a value of ν, ν∗ with 1 − n↑ > ν∗ > n↓, which satisfies this
condition, then the lowest energy state is |Ψ(ν∗)〉PS; otherwise, the mini-
mum of EPS lies on the boundary ν∗ = n↓ and TSS is energetically more
favorable. The boundary between these two regions is described by the
condition ∂EPS/∂ν|ν=n↓

= 0; the solution of this equation provides a char-
acteristic anisotropy coefficient z̄ for given n↑,↓ that turns out to be inde-
pendent of u. We expect that z̄ represents a good estimate for the phase
transition between TSS and ν 6= n↓ states even at intermediate couplings.
In fact, we find good agreement with the values corresponding to the (al-
most) horizontal lines plotted in Fig. 3 of ref. [108].

As said before, here we consider only the balanced case n↑ = n↓ = n/2,
for which the condition that yields the optimal ν = ν∗(z) in the range
ν ∈ (n/2, 1 − n/2) simplifies to

z =
f
(

πn
2ν

)

− f
(

πn
2(1−ν)

)

f
(

πn
2ν

)

+ f
(

πn
2(1−ν)

) (3.5)

with f(x) = sin x − x cosx. The upper limit for ν is formally obtained
by compressing the up-electrons so that 1 − ν = n/2. When ν = 1/2 the
numerator of the right-hand side vanishes and z reaches the minimum
possible value z = 0. When ν = νmin = n/2 the right-hand side has the
value

z̄(n) =
π − f(πn/(2 − n))

π + f(πn/(2 − n))
.

This function decreases monotonically with the filling from z̄(0) = 1 to
z̄(1) = 0. If z ≥ z̄(n), the minimum energy is attained at the lower limit
ν∗ = n/2, corresponding to maximum compression of the down-fermions,
independently of value of z. Clearly, high densities favor a TSS state, since
a large amount of light particles produce a sufficient pressure in order to
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Figure 3.4: Right panel: Plot of the function z̄(n). Left panel: Optimal
value of ν as a function of z in the whole interval [0, 1] for filling n = 1/2.

compress all heavy particles in a very small region. When the density is
low enough, this condition cannot be satisfied, except at very large mass
imbalances, and heavy particles still contribute to the kinetic energy of the
system. Fig. 3.4 shows an example of such a construction for n = 1/2.

The energy density of the HP state receives instead both kinetic and
interaction contributions: EHP = ET + EU . The kinetic part is equivalent to
the ground state energy density of the non-interacting case

ET = −t(1 + z)
2

π
sin(πn↑) − t(1 − z)

2

π
sin(πn↓) (3.6)

whereas the interacting part in the weak coupling limit can be expressed
as a series in U applying a second order perturbation theory [110]:

EU =
1

L
HP 〈Ψ|HU |Ψ〉HP

+
1

L

(

HP 〈Ψ|HU
1

ET −H0
HU |Ψ〉HP

)

conn

+ O(U3)

where (...)conn indicates a sum over connected diagrams and H0 denotes
the unperturbed Hamiltonian. The first order contribution is obtained
rewriting the number operators in momentum space, thus obtaining

HP 〈Ψ|HU |Ψ〉HP = LUn↑n↓ (3.7)

while the second order contribution can be computed evaluating Gold-
stone diagrams:

E (2)
HP = − U2

t(2π)3

ϑ(kF↑, k↓, a)

(1 + z)
(3.8)

45



Chapter 3. Fermi-Fermi mixtures: pairing regimes and phase
separation in the asymmetric Hubbard model.

0.5 1.0 1.5 2.0 2.5 3.0 U�t
-0.7

-0.6

-0.5

-0.4

-0.3

EHP

Figure 3.5: Energy density of the HP state at n = 1 for different asymmetry

parameters: upper red line t↓/t↑ = 0.1, lower blue line t↓/t↑ = 0.3.

ϑ(kF↑, k↓, a) ≡
∫ π

2

0

dq

sin q

∫ q

−q

dk×

×
∫ q

−q

dk′

sin(k + kF↑) + a sin(k′ + kF↓)
.

Integrating the previous expression numerically, we can give a quantita-
tive estimate of the phase boundary near the FK limit. Furthermore, by
comparing EHP up to second order (plotted in Fig. 3.5) with previous nu-
merical results [108], we have a good check that at half filling the varia-
tional ground state (3.2) is a correct description of the system even at finite
U/t↑ ≤ 3.

3.3.3 Phase boundaries

The weak-coupling phase diagram is generally characterized by two types
of phase transition: one between the HP state and the PS region, and the
other one between different types of PS states.

Combining Eqs.(3.3), (3.6), (3.7) and (3.8), the first mentioned phase
transition line is determined by the equation:

2 sin
(πn

2

)

− (1 + z)
2 − n

2
sin

(

πn

2 − n

)

=

π

2
u

[

n2

4
− u

ϑ(kF↑, kF↑, a)

(2π)3(1 + z)

]

(3.9)
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Figure 3.6: Second-order perturbative contribution at half filling
ϑ(π/2, π/2, a)/(2π)3 for different values of a; solid line is a guide for the
eye.

Table 3.2 shows how the correlated energy factor depends on kF↑ and z =
(1 − a)/(1 + a). In general, the larger the asymmetry z is (the smaller is a)
the larger is ϑ. An illustrative plot at half-filling is presented in Fig. 3.6.
Furthermore ϑ approaches 0 in the low-density limit and grows with the
filling.

a\kF↓ = πn/2 π/3 π/4 π/6
0.01 0.028 0.022 0.013
0.05 0.027 0.021 0.012
0.1 0.026 0.02 0.012

0.15 0.025 0.019 0.012
0.2 0.024 0.018 0.011

Table 3.2: Numerical values for ϑ(kF↑, kF↑, a)/(2π)3 below half filling. No-
tice that the term (1 + z) in the denominator of Eq. (3.8) has not been
included in the definition of ϑ so to have a more direct comparison with
ref. [110].

We will consider first the case when the density is medium-high: n↑ =
n↓ = n/2 > 0.25, when a transition from HP to TSS state should always
take place, being ν∗ > n/2 unfavored. By inspecting Eq. (3.9) it turns
out that the ground state in the weak coupling limit is always homoge-
neous, even for large z (a < 0.2, i.e. z > 2/3). This fact agrees with pre-
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vious numerical results [108] showing that the TSS phase is present only
for U/t↑ & 2.5. Even close to quarter filling, the phase transition in the
FK limit is predicted at U/t↑ = 1.15, which is beyond the weak coupling
regime we are considering in this section.

Let us examine now the low density regime: n↑ = n↓ = n/2 < 0.25,
where the TSS might be the ground state only at very small a. Now we
have to determine the transition point from HP to TSS state in the FK
limit (a very small) as well as to explore the possibility of a transition to
a PS state with ν > n↓ for larger values of a. We will examine first the
n = 1/3 case as an example. In the highly asymmetric regime (a < 0.01,
i.e. z > 0.98), we again find a transition from a HP to a TSS state which
happens for values of U(n = 1/3)/t↑ ∼ 0.3. As explained in the previous
section, using Eqs. (3.3) and (3.4) we can determine the phase transition
line between TSS and a PS state with ν 6= n↓. This transition occurs for
t↓(n = 1/3)/t↑ ∼ 0.025, a value which turns out to be independent of U
since no contributions from the correlation energy are present. These tran-
sition points are in good accordance with the numerical results reported
in [108], and allow us to complete a general weak coupling phase dia-
gram in the highly asymmetric regime for n = 1/3, which is shown in
Fig. 3.7. At smaller densities, the critical value U(n)/t↑ at which one finds
the transition from the HP to the TSS state becomes smaller. For exam-
ple U(n = 1/6)/t↑ ∼ 0.06, while U(n = 1/12)/t↑ . 10−3. We notice that
it is impossible, within our perturbative approach (see Eq. (3.9)), to find
for this coefficient a value equal to zero: its value decreases as n becomes
smaller but stays always finite, going to zero smoothly as n tends to zero.
In addition, the TSS is always unstable with respect to a PS one, the tran-
sition now appearing at lower asymmetries (t↓(n = 1/6)/t↑ ∼ 2.5 × 10−3,
t↓(n = 1/12)/t↑ ∼ 2.7 × 10−4), whose values are still essentially insensitive
to U .

3.4 Phase separation in the strong-coupling limit

In this section we analyze the case of strong repulsive onsite interaction be-
tween fermions, corresponding to tσ ≪ U , a regime which is of particular
interest for the experimental realization of the symmetric (z = 0) model in
a cold atom system [63], in which a Mott-insulator phase at half filling was
found. One of the questions left open by bosonization is what happens to
the HS-PS transition curve close to z = 0. From the phase diagrams in
refs. [88] and [107] it is not clear whether it approaches a finite value when
z → 0 or, conversely, if there is a characteristic value of z 6= 0 at which it
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Figure 3.7: Weak-coupling
phase diagram with
n = 1/3: white region
represents the homoge-
neous state (HP), green
regions are different phase
separated states. The
phase transition lines are
computed using Eq. (3.4)
(dashed) and Eq. (3.9)
(solid). In this section we
have adopted the parame-
ters U/t↑ = u/(1 + z) and
a = t↓/t↑ = (1 − z)/(1 + z)
instead of u and z to fa-
cilitate the comparison
with previous results in the
weak-coupling region.

diverges, as indicated also by some data on short sizes in ref. [111] (Sec. IV
therein). To study this regime, we will construct an effective Hamiltonian
that is able to describe the AHM when the parameter t can be considered
as a small perturbation with respect to U , for a generic filling, by using the
method of the flow equations, developed by Wegner [112] and applied to
the HM in [113]. The advantages of using such a technique are extensively
described in [113]. We only remark here that it yields a very general pro-
cedure which, in a recursive way, allows to find an effective Hamiltonian
at any order of perturbation, for arbitrary fillings and geometries.

We start by decomposing the fermionic Hilbert space of the model into
the subspaces Hk with exactly k fermionic pairs (double occupancies):

H = ⊕N/2
k=0Hk. The projectors Pk on these subspaces are defined via the

generating function

N
∑

k=0

Pkx
k =

∏

i∈L

[1 − (1 − x)ni↑ni↓] .

The kinetic energy term for the spin σ fermions, Tσ =
∑

<ij> c
†
iσcjσ, can be

decomposed into three parts Tσ = T0σ+T+1σ+T−1σ, which change the num-

ber of pairs by δk = m = 0,+1,−1. In other words: Tmσ =
∑N

k=0 Pk+mTσPk.
In these expressions, we have introduced the sum over < ij > which de-
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notes nearest-neighbors sites i and j (with the couples ij and ji counted
once each) since the procedure we are going to discuss is generalizable to
any dimension. More explicitly:

T0σ =
∑

<ij>

[

niσ̄c
†
iσcjσnjσ̄ + (1 − niσ̄)c†iσcjσ(1 − njσ̄)

]

T+1σ =
∑

<ij>

niσ̄c
†
iσcjσ(1 − njσ̄)

T−1σ =
∑

<ij>

(1 − niσ̄)c†iσcjσnjσ̄

It is not difficult to verify that [Nd, Tmσ] = mTmσ , where Nd =
∑

i ni↑ni↓,
reflecting the transition from the Hilbert space Hk to Hk+m. To discuss
higher-order interactions terms, it is useful to introduce products of hop-

ping operators, T (k)
σ1...σk(m) = Tm1σ1 ...Tmkσk

with the index vector m =
(m1, m2, ..., mk). It is found that the commutator of such an operator prod-

uct with Nd involves the total weight of the product, M(m) =
∑k

i=1mi,

and generally reads
[

Nd, T
(k)
σ1...σk(m)

]

= M(m)T
(k)
σ1...σk(m). We want now

to find an effective Hamiltonian which does not mix the different Hilbert
space sectors Hk, i.e. which conserves the total number of local pairs,
thus suited to study physical properties at energy and temperature scales
which are well below the Hubbard energy |U |. To do so, we consider a con-
tinuous unitary transformation which allows to remove interactions with
non-vanishing overlap between different Hilbert space sectors. Thus, the
transformed Hamiltonian depends on a continuous flow parameter l:

H(l) = −
∑

σ

tσΘσ(l) + UNd

where the generalized kinetic energy term Θσ(l) contains all order interac-
tions which are generated by the transformation:

Θσ(l) =

∞
∑

k=1

tk−1
σ

Uk−1

∑

{m}

F (k)
σ1...σk

(l;m)T (k)
σ1...σk

(m) (3.10)

Here F
(k)
σ1...σk denote suitable coupling functions that have to be determined

by asking that the unitary transformation cancels all terms that do not
conserve the number of local pairs. The flow equations for these coupling
functions follow from the equation of the flow for the Hamiltonian [112]:

dH(l)

dl
= [ησ(l), H(l)] (3.11)
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which has been written here by using the (antihermitean) generator of the
transformation

ησ(l) =
tσ
U

[V,Θσ(l)] =

=
∞
∑

k=1

tkσ
Uk

∑

{m}

M(m)F (k)
σ1...σk

(l;m)T (k)
σ1...σk

(m)

Now, after imposing both the initial conditions (F
(1)
σ1 (0;m) = 1 and

F
(k)
σ1...σk(0; m) = 0 for k > 1) and the symmetries related to hermiticity and

particle-hole transformation c†iσ → ciσ, which reverses the sign of the hop-
ping term, one can recast the original flow equation (3.11) in a recursive
set of coupled nonlinear differential equations. From these equations it is
easy to see that all the terms which connect different sectors of the Hilbert
space vanish in the limit l → ∞. At the second order we find that the
effective Hamiltonian reads as:

Hs−c = −t↑
∑

<ij>

[

ni↓c
†
i↑cj↑nj↓ + (1 − ni↓)c

†
i↑cj↑(1 − nj↓)

]

−t↓
∑

<ij>

[

ni↑c
†
i↓cj↓nj↑ + (1 − ni↑)c

†
i↓cj↓(1 − nj↑)

]

+ J
∑

<ij>

[

Sx
i S

x
j + Sy

i S
y
j + ∆(Sz

i S
z
j − ninj/4)

]

+ UNd (3.12)

where Sx,y,z
i are the spin operators at site i, J = 2t↑t↓/U and ∆ = (t2↑ +

t2↓)/2t↑t↓ ≥ 1. At half filling, n = 1, we get, in according to Takahasi’s
theorem [114], that the terms corresponding to the odd orders of the ex-
pansion (in the our case the first two lines) vanish and we find the same
Hamiltonian obtained in [98] representing a spin chain with an anisotropy
term ∆ ≥ 1 along the z−axis (XXZ chain): the spin excitations are gapped
and the spin-spin correlators decay exponentially with the distance. Also,
in the limit t↑ = t↓ (symmetric HM) the anisotropy term ∆ becomes 1 and
we find the well-known Heisenberg Hamiltonian (XXX chain), as it should
be.

It is well known [98] that for z > 0 the system is in the Néel-like phase,
with non-vanishing charge and spin gap and true long-range order. Here
we are interested in examining the two limiting cases z = 1 (FK model)
and z = 0 (Hubbard model) to study, more precisely, (i) the phase ap-
pearing in the Hubbard model when U → ∞, i.e. the so called spinless
fermions phase (SF), where the orientation of the spins loses its relevance
since the doubly occupied sites are strictly forbidden, and (ii) the PS state
predicted in the FK model where the two fermionic species are demixed.
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3.4.1 Spinless fermions

The SF state |Ψ〉SF of the Hubbard model in the limit U → ∞ at filling
n = N/L ≤ 1 and equally populated species n↑ = n↓ = n/2 is rotationally
invariant and invariant under the up-down exchange. In this case, the
expectation value of the hopping terms of the Hamiltonian (3.12) reads as
follows

SF 〈Ψ|[−t
∑

j,σ

(c†jσcj+1σ + h.c.) − tz
∑

j

(c†j↑cj+1↑ + h.c.)

+tz
∑

j

(c†j↓cj+1↓ + h.c.)]|Ψ〉SF = −2t

π
sin(πn)

As for the J-terms, we can borrow directly its expression from (A3) of
[115]:

SF 〈Ψ|∑j njnj+1|Ψ〉SF

L
= n2 − sin2(πn)

π2
(3.13)

Moreover, since |Ψ〉SF is SU(2)-invariant, we can write

SF 〈Ψ|∑j S
α
j S

α
j+1|Ψ〉SF

L
=

1

3

SF 〈Ψ|∑j
~Sj · ~Sj+1|Ψ〉SF

L
(3.14)

for α = x, y, z even if the J-part in the strong-coupling Hamiltonian is
anisotropic, where now, from (A3) and (A4) of of [115], we find

SF 〈Ψ|∑j
~Sj · ~Sj+1|Ψ〉SF

L
=

(

1

4
− ln 2

)[

n2 − sin2(πn)

π2

]

.

Collecting all the pieces it is easy to see that

ESF =
SF 〈Ψ|Hs−c|Ψ〉SF

L
= −2t

π
sin(πn)+

+
4t2(1 − z2)

U

[

n2 − sin2(πn)

π2

] [

2 + ∆

3

(

− ln 2 +
1

4

)

− 1

4

]

As an example, in Fig. 3.8 we plot the local densities of fermions ob-
tained numerically on a chain with L = 60 and open boundary conditions
(OBC), z = 0.1, n = 0.2 and u = 100. The two species tend to occupy
alternate regions but the fraction of double occupation is still significant.
The comparison with the total density profile for spinless fermions at the
same equivalent filling shows that the SF state is a good description of the
ground state in this case. We have verified that the same happens if the
filling is increased up to n = 0.9, the other parameters being unchanged.
On the contrary, if we still fix u = 100, n = 0.2 but increase the anisotropy
to z = 0.3, appreciable differences in the density profiles start to appear.
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Figure 3.8: Spatial
density profiles for
an open chain with
z = 0.1, filling n = 0.2
and u = 100. The
continuous curve
labelled SF is the
local density for an
equivalent chain of
spinless fermions (i.e.
Eq. (3.17) with ℓ = L
and p = nL), showing
a very good agree-
ment with the spinful
numerical data.

3.4.2 Spatially separated states

In the strong-coupling approach we can actually formulate a slightly more
general form of the PS state with respect to that of Sec. 3.3.1 which, how-
ever, leads formally to the same analytical expressions. Let us consider a
sequence ofM contiguous intervals Ij↑, Ij↓ (j = 1, . . . ,M) and a state |Ψ〉PS

in which the up and down spins are separated in the sense that there are no
doubly occupied sites, I1↑ contains only up spins, I1↓ contains only down
spins, then again I2↑ with up spins and so on. Let Ljσ and Njσ, respec-
tively, the number of sites and the number of electrons in the interval Ijσ.
We then make the further strong assumption that each up or down inter-
val, irrespective of its length, is equally filled meaning that n̄↑ = Nj↑/Lj↑

and n̄↓ = Nj↓/Lj↓ do not depend on j. Now, if

νL =
M
∑

j=1

Lj↓ , (1 − ν)L =
M
∑

j=1

Lj↑

are the total lengths associated with the motion of down and up spins we

have N↑ =
∑M

j=Nj↑ =
∑M

j=1 n̄↑Lj↑ = n̄↑L(1 − ν) and similarly N↓ = n̄↓Lν
and so, for equally populated species n̄↑ = n/[2(1 − ν)] and n̄↓ = n/(2ν).

We first consider the thermodynamic limit in the case in which the in-
terface points (which are 2M in number) do not contribute to the bulk
energy density (limL→∞ 2M/L = 0) and, at the same time, each interval is
extensively large ( limL→∞ Ljσ/L > 0), so that for every interval we can
use the formula for the kinetic energy density of free fermions without
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worrying about finite-size and/or boundary effects:

PS〈Ψ|Ts−c|Ψ〉PS

L
=

∑M
j=1Lj↑

L

[

−2t↑
π

sin

(

π
n

2(1 − ν)

)]

+

∑M
j=1Lj↓

L

[

−2t↓
π

sin
(

π
n

2ν

)

]

= −2t↑
π

(1 − ν) sin

(

π
n

2(1 − ν)

)

− 2t↓
π
ν sin

(

π
n

2ν

)

.

Note that we do not necessarily require that the heavy (down) species is
fully compressed, meaning ν = n/2. The value for ν will be determined
variationally in order to give the smallest possible energy at a fixed z, ex-
actly as done in Sec. 3.3.2. Let us now calculate the energy of such a state.

As far as the J-term is concerned we first note that the transverse part
is vanishing. In fact both Sx

j and Sy
j are composed by spin-flip terms like

c†jσcjσ̄ but each interval contains spins of only one specie. Next, all the
∆-term can be rewritten as

∆
(

Sz
jS

z
j+1 −

njnj+1

4

)

=
∆

4
[(nj↑ − nj↓)(nj+1↑ − nj+1↓)

− (nj↑ + nj↓)((nj+1↑ + nj+1↓)] = −∆

2
(nj↑nj+1↓ + nj↓nj+1↑). (3.15)

When the expectation value on |Ψ〉PS is taken, the up and down parts
factorize and there can be non-vanishing contributions only when j and
j + 1 are at an interface between two intervals carrying opposite spins. If,
as assumed above, the number of interface points does not grow as L we
can neglect these contributions in the limit L → ∞. Therefore the energy
density of the PS state reads

EPS(ν) =
PS〈Ψ|Hs−c|Ψ〉PS

L

= −2t↑
π

(1 − ν) sin

(

π
n

2(1 − ν)

)

− 2t↓
π
ν sin

(

π
n

2ν

)

.

As anticipated, this expression coincides with Eq. (3.3) in the balanced
case n↑ = n↓ = n/2. In Fig. 3.9 we present two examples of the spatial
density profile for large u and intermediate/large z, from which the spa-
tial separation of the two species can be clearly inferred. Note also that
the light species occupies regions with a non-vanishing fraction of empty
sites and an oscillating density profile 〈nj↑〉 is seen. Nonetheless the local
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Figure 3.9:
Spatial density
profiles for
open chains
with z = 0.5
and z = 0.9
(offset by +0.4
for clarity),
filling n = 0.2
and u = 100.

density in the intervals occupied by the heavy fermions does not reach 1,
so in these case we do not have a TSS as instead, for example, in Fig. 3 of
ref. [116] valid for u = 20, z = 2/3, filling n = 0.8 on 40 sites (reproduced
in our calculations but not shown here).

3.4.3 PS’: Extensive number of intervals M = αL

In order to treat also the case in which the number of interfaces scales
as a finite fraction α of the total number of sites, we will assume that all
the intervals hosting up spins are equally long and equally filled: Lj↑ = ℓ↑,
Nj↑ = p↑ ∀j = 1, . . . ,M so that ℓ↑ = (1−ν)/α and p↑ = n/(2α); similarly for
the intervals with down spins ℓ↓ = ν/α and p↓ = n/(2α) = p↑. Note that,
for equally populated species, necessarily the finite number of electrons in
each interval is the same for up or down spins, while the finite lengths are
in general different. The energy density of this type of phase separated
state will therefore have the form

EPS′ =
M

L
(κ↑ + κ↓) −

J∆

L

L
∑

j=1

(〈nj↑〉〈nj+1↓〉 + 〈nj↓〉〈nj+1↑〉)

where κ↑,↓ are the kinetic energies of p = p↑ = p↓ up or down fermions
on intervals of length ℓ↑,↓ with OBC, while the ∆-term comes from Eq.
(3.15) and now cannot be neglected. The on-site terms 〈njσ〉 also have to
be evaluated in the same fashion and will be localized at the left or right
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end of the intervals (with equal values). Let us denote them by ησ; we
have a contribution 〈nright↑〉〈nleft↓〉 + 〈nright↓〉〈nleft↑〉 = 2η↑η↓ for each of the
M pairs of up+down intervals so that

EPS′ = α(κ↑ + κ↓ − 2J∆η↑η↓).

The calculation of the kinetic energy and of the surface density for an
effective open chain of ℓ sites with p free fermions is given in the adden-
dum 3.5, leading to:

EPS′ = αt{(1 + z)







1 −
sin
[

π(2p+1)
2(ℓ↑+1)

]

sin
[

π
2(ℓ↑+1)

]







+(1 − z)
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The conditions p ≤ ℓ↑ and p ≤ ℓ↓ define the range of ν ∈ [n/2, 1 − n/2],
while the conditions p ≥ 1, ℓ↑ ≥ 1 and ℓ↓ ≥ 1 imply α ≤ min(n/2, ν, 1−ν) =
n/2. Once this expression is minimized by suitable values of α and ν in this
range we should, at least, check if the resulting energy density is smaller
than the optimal energy density EPS determined above for the same values
of z, n and, now, also u.

Finally, we mention that we have also tried to enlarge the set of trial/variational
states by including the homogeneous one (defined in Sec. 3.3), which is the
correct ground state in the limit U = 0 for all z. However we have veri-
fied that this additional state, for the fillings we have considered, could
become relevant only when u . 1, outside the domain of validity of the
strong-coupling approach. Therefore, for the sake of compactness, we do
not report these results here.

3.4.4 Phase boundaries

From the condition EPS < ESF we get

−2(1 + z)

π
(1 − ν∗) sin

(

π
n

2(1 − ν∗)

)
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−2(1 − z)

π
ν∗ sin
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π
n

2ν∗

)

< −2

π
sin(πn)

+
4(1 − z2)

u

[

n2 − sin2(πn)

π2

] [

2 + ∆

3

(

− ln 2 +
1

4

)

− 1

4

]

that is u < uPS(z) for d(n, z) > 0 or u > uPS(z) otherwise, having defined

d(n, z) = sin(πn) − (1 + z)(1 − ν∗) sin

[

π
n

2(1 − ν∗)

]

−(1 − z)ν∗ sin
(

π
n

2ν∗

)

and

uPS(n, z) = 2π(1 − z2)

[

n2 − sin2(πn)
π2

]

[

2+∆
3

(

− ln 2 + 1
4

)

− 1
4

]

d(n, z)

Now we can draw a phase diagram in the (z, u)-plane for a fixed value
of the total filling n by indicating the regions where the PS or the SF state
has the lower energy. We show two examples (for n = 0.4 and 0.9) in Figs.
3.10 and 3.11, respectively. We have analyzed in detail also the phase dia-
gram for n = 0.6 (not shown), that turns out be qualitatively similar to the
one for n = 0.4. Having in mind that bosonization could be considered
quantitatively reliable only for small values of the interaction, we have
reported in the figures (dashed lines) the curves of Wentzel-Bardeen insta-
bility [107] where the velocity of one of the bosonization modes vanishes
thereby indicating phase separation. In addition, we have considered two
typical cases of PS at n = 0.9 (L = 20, 40, 60), namely those at u = 100 for
z = 0.1 and at u = 5 for z = 0.9. In both cases, the charge structure factor
S(q) (as defined in Sec. 3.2) displays a divergence for q → 0 typical of PS
states [105] and a peak at q = 4kF (mod2π) = 2πn(mod2π) = 2π(1 − n).

In the strong-coupling approach the most interesting thing to under-
stand seems to be the divergence of the transition line separating PS from
SF behavior at small z and large u. We have verified that when ν = ν∗(z)
is inserted into d(n, z) the denominator appearing in uPS(n, z) is always
negative. In order to estimate uPS(n, z) analytically we set ν∗(z) = 1/2 −
zν1 − z2ν2 +O(z3) with ν1,2 > 0 (see Fig. 3.4) and expand d(n, z) for z → 0

d(n, z) = −2ν1[f(πn) − π2n2ν1 sin(πn)]z2 + O(z3)

so that at leading order

uPS(n, z) =
1

z2

π ln 2
[

n2 − sin2(πn)
π2

]

[1 +O(z)]

ν1(n)[f(πn) − π2n2ν1(n) sin(πn)]
(3.16)
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Figure 3.10: Transition lines in the (z, u)-plane at filling n = 0.4 indicat-
ing how the ground state changes from SF to PS. In the separated regime
above the transition lines, the state can be either PS (left) or TSS (right) (see
Sec. 3.3.2) and the separation between the two is marked by the vertical
lines (analogously to Fig. 3 of ref. [108]). The dashed line corresponds to
the bosonization prediction.

Figure 3.11: Same as Fig. 3.10 but with filling n = 0.9. Now also the PS’
(see text) state is relevant for moderate values of u and the corresponding
transition lines with SF and PS are marked.
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with f(x) = sin x − x cosx as before. As far ν1(n) as is concerned, by
inserting ν = 1/2 − zν1 + O(z2) in Eq. (3.5) and solving at first order in
z we get ν1(n) = f(πn)/[f ′(πn)2πn]. In summary, our analytical approach
predicts that there is no finite value of z below which PS disappears; by
moving to a sufficiently large repulsive coupling it is always possible to
induce a PS at arbitrarily small anisotropy.

3.4.5 Inclusion of phase separated states with an infinite

number of interfaces

We have compared the energy density of the PS state at given values of
n and z with the corresponding value for the PS’ state discussed in Sec.
3.4.3. At small filling, say n = 0.1, the two variational solutions (with
respect to ν or ν and α, respectively) coincide in the sense that the optimal
value α∗ → 0 and the optimal value of ν is the same. Moreover EPS′ ≥ EPS.
When the filling is increased to, say, n = 0.4 the situation is similar with
the exception of a small region (u . 0.8 for z = 0 or u . 2.8 for z = 0.9) that
can be considered to be outside the scope of the strong-coupling approach.
At n = 0.6, the PS’ solution can be ignored for u & 3.2 (a result checked at
z = 0 and z = 0.1) or u & 5.2 (as checked at z = 0.5 and z = 0.9). Thus,
close to half-filling the PS’ becomes relevant also at intermediate values of
u and we have examined it in more detail.

Let us fix n = 0.9; in the symmetric case z = 0 the optimal value of α
remains at its maximum α∗ = n/2 for u < 32 where it starts to decrease
to reach α∗ = 0 at u ∼= 44.3; the PS’ state has a lower energy density with
respect to the PS one for u . 45.8. For positive z as long as z ≤ 0.43 the PS’
solution is never better than the ones considered before. When z increases
further the PS’ state is favored over the PS or even the SF one; the region at
large z and moderate uwhere |Ψ〉PS′ has a lower energy is characterised by
the fact that α∗ = n/2 and ν∗ = n/2 so that p = ℓ↓ = 1 meaning that all the
down spins are isolated from each other. This configuration resembles the
trimer crystal phase found in ref. [117], with a mixture of hardcore bosons
with attractive interaction and fillings 1/3 and 2/3, which is equivalent to
a repulsive case with balanced species and total filling 2/3 when a particle-
hole transformation is performed.

3.5 Conclusions

Our study, which combines analytical calculations in the strong- and weak-
coupling regimes and DMRG simulations both for attractive and repulsive
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interaction, sheds some light on three qualitative and quantitative ques-
tions that are still open in the literature of the 1D AHM:

1. The shape of the transition line from SS to CDW dominant correla-
tions for U < 0 is filling-dependent and re-entrant in some cases (see
Fig. 3.3);

2. Phase separation and phase segregation take place close to the Falicov-
Kimball limit above an interaction value Uc which depends on the
population in such a way that it approaches zero in the small den-
sity regime. Furthermore, transitions between phase separation and
phase segregation at varying interaction take place at a nearly con-
stant asymmetry;

3. For small asymmetry, close to the Hubbard limit t↓ . t↑, the SF-PS
transition takes place at larger and larger values of U ; Eq. (3.16), ob-
tained in the framework of a variational strong-coupling argument,
indicates that an arbitrarily small asymmetry is sufficient, at very
large repulsions, to create a phase separated state which destroys
the spinless fermion-like ground state of the Hubbard model.

Addendum: Free spinless fermions with open bound-

ary conditions

The eigenfunctions of the hopping operator −t∑L−2
j=1 (c†jcj+1 + h.c.) have

the form

ϕm(j) =

√

2

ℓ+ 1
sin(kmj) , km =

πm

ℓ+ 1
, m = 1, . . . , ℓ

and the dispersion relation is formally the same as in the case of PBC
ǫ(km) = −2t cos(km) so

κ = −2t

p
∑

m=1

cos

(

πm

ℓ+ 1

)

= t







1 −
sin
[

π(2p+1)
2(ℓ+1)

]

sin
[

π
2(ℓ+1)

]







where p ≤ ℓ is the number of particles.
To compute the average density on the j-th site 〈nj〉 we pass to the

creation/annihilation operators in k-space

cj =

√

2

L+ 1

ℓ
∑

m=1

sin

(

πm

ℓ+ 1
j

)

c̃km
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〈nj〉 =
2

L+ 1

∑

m,m′

sin

(

πm

ℓ+ 1
j

)

sin

(

πm′

ℓ+ 1
j

)

×

×〈0|c̃k1 . . . c̃kp(c̃
†
km
c̃km′ )c̃

†
kp
. . . c̃†k1

|0〉
The only non-vanishing possibility within the matrix element for the vac-
uum |0〉 filled up to the momentum kp = πp/(ℓ+ 1) is m′ = m, so we have
the characteristic function of the Fermi sea nkm

〈nj〉 =
2

ℓ+ 1

p
∑

m=1

sin2

(

πm

ℓ + 1
j

)

=
p

ℓ+ 1
− 1

ℓ+ 1

p
∑

m=1

cos

(

2πm

ℓ+ 1
j

)

=
2p+ 1

2(ℓ+ 1)
−

sin
[

π(2p+1)
ℓ+1

j
]

2(ℓ+ 1) sin
(

π
ℓ+1

j
) (3.17)

The density at the edge is obtained by setting j = 1.
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Chapter 4

Pairing, crystallization and
Haldane liquid of mass
unbalanced atomic mixtures in
one-dimensional optical lattices

We numerically determine the very rich phase diagram of mass-imbalanced
binary mixtures of hardcore bosons (or equivalently of fermions, or hardcore-
Bose/Fermi mixtures) loaded in one-dimensional optical lattices. Focus-
ing on commensurate fillings away from half filling, we find a fundamen-
tal asymmetry between attractive and repulsive interactions. Attraction is
found to always lead to pairing, associated with a spin gap, and to pair
crystallization for very strong mass imbalance. In the repulsive case the
two atomic components remain instead fully gapless over a large parame-
ter range. Only a very strong mass imbalance leads to the opening of a spin
gap, associated with a novel Haldane liquid phase exhibiting topological
string order. This phase is the precursor of a crystalline phase occurring for
an even stronger mass imbalance. This fundamental asymmetry is at odds
with recent theoretical predictions, and can be tested directly via time-of-
flight experiments on trapped cold atoms.

One-dimensional quantum liquids occupy a special place in the con-
text of quantum many-body systems: indeed interactions of any strength
lead to quantum fluctuations as strong as to discard Bose condensation
for bosons and the Fermi liquid picture for fermions down to zero tem-
perature. For sufficiently weak interactions a new unifying paradigm of
the so-called Tomonaga-Luttinger liquids (TLL) emerges [11], character-
ized by the fact that all elementary excitations are gapless, and both diag-
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Figure 4.1: Phase diagram of a mass-imbalanced atomic mixture with fill-
ing na = nb = 1/3. The phase boundaries are determined via QMC; the
open diamonds indicate points in parameter space for which DMRG finds
a fully gapped Wigner crystal phase of type (II). The dashed line indicate
the FK gap ∆k/Ja for kink-antikink pairs. The left panel presents a sketch
of the phases: 2 TLL = 2 Tomonaga-Luttinger liquids; PS = phase sep-
arated; HL = Haldane liquid; PSF = pair superfluid; aCDW = algebraic
charge density wave; (I) and (II): Wigner crystals.

onal and off-diagonal correlations decay algebraically with the distance.
Recent advances in the trapping of ultracold atoms in optical lattices al-
low to realize one-dimensional quantum liquids in a highly flexible way,
with the possibility of fully controlling the statistics and the interaction
strength [44]. Recent experiments have demonstrated the physics of one-
dimensional Bose gases with strong interactions up to the hardcore (or
Tonks-Girardeau) limit [9, 8] (see also Chapter 2). A special role in the
context of one-dimensional systems is played by binary mixtures, either
bosonic, fermionic, or Bose-Fermi ones, for which TLL theory predicts the
separation of spin and charge modes [11]. In the case of particles with
equal masses and repulsive short-range interactions, both charge and spin
sectors can be gapless, and one recovers an effective picture of two de-
coupled TLLs. Such a picture can be made unstable via several mecha-
nisms: via Mott localization in presence of an underlying lattice and for
integer total filling; via localization into a Wigner crystal in presence of
a strong off-site repulsion; via phase separation; or via the formation of
bound states (e.g. Cooper pairs for attractive interactions) leading to the
appearance of a spin gap.

Here we show that the TLL picture undergoes a complex series of in-
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stabilities in binary mixtures with mass imbalance between the two species.
We focus here on quantum particles on a lattice with intraspecies hard-
core repulsion and on-site interspecies interactions, describing at the same
time spin-1/2 fermions, spin-1/2 hardcore bosons, and mixtures of hard-
core bosons and spinless fermions. The system Hamiltonian reads

H =
∑

i

[

−(Jaa
†
iai+1 + Jbb

†
ibi+1 + h.c.) + Uni,ani,b

]

(4.1)

in which a and b correspond to the two atomic species. Mass imbalance is
controlled by the ratio j = Jb/Ja. As far as the spectrum and the diago-
nal observables are concerned, we do not need to specify the statistics of
the a and b operators; for what concerns off-diagonal observables, on the
other hand, in the following we will refer explicitly to hardcore bosons,
satisfying bosonic commutation relations off-site and fermionic anticom-
mutation relations on-site. The denomination of the many-body phases
will also be mostly inspired by the case of hardcore-boson mixtures.

We will consider both repulsive (U > 0) and attractive (U < 0) inter-
actions, and we will here focus on the case of equal densities away from
half filling, na = nb = n 6= 1/2. Our results refer to a commensurate
filling n = 1/p with integer p (or equivalently n = 1 − 1/p). The sys-
tem with equal masses, Ja = Jb, is integrable [52]: it features spin-charge
separation into two TLL in the repulsive case; in the attractive case an
a-b bound state appears, associated with the opening of a spin gap, and
only the charge sector remains gapless, giving rise to a paired superfluid
(PSF) phase. The case of mass imbalance has been studied recently by
bosonization [88, 107, 104], and numerically via the density-matrix renor-
malization group (DMRG) and related approaches [118, 97] (see also the
previous Chapter).

Making use of numerically exact methods, here we determine com-
prehensively the rich phase diagram of the system with mass imbalance,
Jb < Ja, as shown in Fig. 4.1. The latter figure refers to the case n = 1/3, but
the qualitative features are generic for commensurate fillings. Our main
findings are the following: 1) In the attractive case, the PSF phase is found
to persist up to strong imbalance, at which the system becomes unstable
to the formation of a Wigner crystal of pairs. 2) In the repulsive case, on
the other hand, the double TLL of the mass-balanced case survives up to
a large imbalance, at which two different instabilities appear. For suffi-
ciently large repulsion, the two species phase-separate. For weaker repul-
sion, first a spin-gap opens, associated with the appearance of an exotic
Haldane liquid (HL) phase with fluctuating magnetic order captured by
a string order parameter; this phase is the precursor of a Wigner-crystal
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phase with pinned b particles, and a particles localized in the interstitial
regions.

Before discussing the detailed derivation of the phase diagram, we
point out that the physics described in this paper is largely accessible to
current experimental setups on stable ultracold mixtures in one-dimensional
optical lattices. The mass imbalance can be realized with heteronuclear
mixtures (e.g. 40K-6Li, for the fermionic case, 41K-87Rb for the bosonic case,
and 40K-87Rb for the Bose-Fermi case [43]), and with homonuclear mix-
tures in different hyperfine states, and it can be continuously tuned by
using lasers with a wavelength close to the magic value or to an atomic
resonance for one of the two species. The interspecies interaction can be
tuned by Feshbach resonances, as widely demonstrated in the recent liter-
ature [43]. Given the unique opportunity offered by cold atoms to realize
the asymmetric mixtures treated in this paper, in the following we will
repeatedly refer to the experimental implications of our results.

The phase diagram of Fig. 4.1 is the result of a joint numerical study
based on quantum Monte Carlo (QMC) and DMRG. Our QMC calcula-
tions are based on a canonical formulation [119] of the Stochastic Series
Expansion approach with directed loops [120], applied to chains with up
to L = 150 sites with periodic boundary conditions, and at temperatures
βJb = L capturing the T = 0 physics for both species. Our DMRG calcula-
tions apply to chains with up to L = 144 with open boundary conditions
and retaining up to M = 1156 states, and with periodic boundary condi-
tions up to L = 48 keeping up to M = 1800 states and 7 finite-size sweeps.

We start our discussion by the attractive case. For a very broad range of
mass imbalance, the system displays a PSF phase, characterized by quasi-
condensation of bound a-b pairs, giving rise to an algebraic decay of the
pairing correlation function [11]:

Gab(r) = 〈a†ib†ibi+rai+r〉 ∼ r−1/Kρ; (4.2)

density-density correlations are also decaying algebraically as

Cρ(r) = 〈nini+r〉 − n2 ≈ − Kρ

π2r2
+ A

cos(2πnr)

rKρ
; (4.3)

here ni = ni,a + ni,b, and Kρ is the charge Luttinger exponent. For equal
masses Kρ > 1 [11] for all |U | > 0, so that the dominant correlations are
the pairing ones. We extract the Luttinger exponent from the slope of the
density structure factor at q → 0, Sρ(q) =

∑

r exp(iqr)Cab(r) ≈ Kρ q/π, and
we find that mass imbalance leads to a reduction of Kρ, consistently with
what observed for other fillings in the previous Chapter by using DMRG
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techniques. For large mass imbalance the Luttinger exponent Kρ becomes
smaller than one: this corresponds to the loss of quasi-condensation, in
favor a quasi-solid phase (or algebraic charge density wave, aCDW), with
dominant density correlations. This phase is the precursor of a quantum
phase transition to a Wigner crystal of pairs – phase (II) of Fig. 4.1 – with
the onset of long-range density order at wavevector Q = 2πn. We de-
termine the extent of the crystalline phase via QMC by determining the
mass imbalance at which Sρ(Q) starts diverging linearly with system size;
and by DMRG detecting the onset of the exponential decrease of Gab and
Cab, marking the opening of a charge gap [121]. The crystalline phase is
well understood coming from the Falicov-Kimball (FK) limit, Jb = 0. In
this limit, which is easily treated with exact diagonalization, we find that
the ground state corresponds to the Wigner crystal of pairs for all values
U < 0. The gap ∆k to the formation of kink-antikink pairs in the crystal
is found to be a non-monotic function of |U |, displaying an intermediate
maximum. We observe that, for small |U |, the boundary of the crystalline
region follows closely the locus at which the gap ∆k equals Jb, and it has
a re-entrant shape mimicking the non-monotonic behavior of the gap as
a function of U . This shows that the quantum melting transition corre-
sponds to a condensation of kink-antikink pairs in the ground state.

The repulsive side of the phase diagram is more complex. Based on
a bosonization and renormalization group approach, Refs. [88, 107] con-
clude that a spin gap should open for any infinitesimal mass imbalance as
∆s ≈ Λ exp(−A′/|Ja − Jb|) for Jb . Ja, where Λ ∼ Ja, Jb. On the contrary,
Ref.[104], also based upon bosonization, concludes that the spin gap is ab-
sent in the repulsive case. In contrast to Refs.[88] and [107], all our numer-
ical findings point toward the persistence of a fully gapless TLL behavior
for both the charge and spin sector over a dominant portion of the phase
diagram. Our conclusion is based on a number of crossed evidences. First

of all, we observe that the one body correlation functions Ga(r) = 〈a†iai+r〉
and Gb(r) = 〈b†ibi+r〉 can be very well fitted with the simple power-law
form Ga(b)(r) = Aa(b)d(r|L)−1/(2Ka(b)), where d(r|L) = L| sin(πr/L)|/π is the
conformal distance (see Fig. 4.2). In particular we find that, for weak and
moderate repulsions, Ka(b) > 0.5, which implies that the momentum dis-
tribution na(b)(q) =

∑

r exp(iqr)Ga(b)(r) displays a quasi-condensation di-
vergent peak at q = 0, to be detected in time-of-flight experiments.

Moreover we investigate the spin-spin correlation function

Cσ(r) = 〈Sz
i S

z
i+r〉 ≈ − K∗

σ

π2r2
+ A

cos(2πnr)

rKρ+K∗
σ

; (4.4)

where Si = (ni,a−ni,b)/2, andK∗
σ is the spin Luttinger exponent; in absence
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Figure 4.2: Evidences for the absence of spin gap for moderate mass im-
balance. The left panels show the Green’s function for both species (solid
lines are fits to Aa(b)d(r|L)−1/(2Ka(b)), L = 96) and the extrapolated K∗

σ ex-
ponent for U/Ja = 4 and various j values. In the right panel, we plot the
block entropy Sl as a function of the conformal length in logarithmic scale
(up to a constant contribution) for chains with L = 120 sites and different
values of U, j; black thick line are reference line for c = 2 (upper 3) and
c = 1 conformal field theories.

of a spin gap K∗
σ ≥ 1. We extract the Luttinger exponent from the low-q

behavior of the spin structure factor, Sσ(q) ≈ K∗
σ q/π, extrapolating the

finite-size estimate K∗
σ(L) = [(L/2)Sσ(2π/L;L) + (L/4)Sσ(4π/L;L)]/2 to

the thermodynamic limit L → ∞. We find that mass imbalance leads
initially to a growth of K∗

σ above the exact value K∗
σ = 1 for the balanced

case; K∗
σ is found to decrease again towards 1 and further drop to zero

only for strong mass imbalance (see Fig. 4.2).

Finally we exploit the fact that an explicit counting of the number of
gapless degrees of freedom in the system comes from the central charge c
of the conformal field theory corresponding to our model of interest. This
quantity can be directly extracted via DMRG, using the fundamental re-
sult that the entanglement entropy (EE) of a boundary block of the system
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grows with the size l of the block [122] as

Sl = −Tr(ρl log2 ρl) ≈
c

6
log2[d(l|L)] + const. (4.5)

where ρl is the reduced density matrix of the boundary block. Fig. 4.2
shows that the scaling of the EE is fully consistent with c = 2 providing
further evidence for the fact that the TLL has two gapless components
even for a significant mass imbalance.

Figure 4.3: Left panels: appearance of a spin gap for U/Ja = 1 and increas-
ing mass imbalance, and concomitant appearance of string order. Right
panel: evolution of the string-order parameter with mass imbalance.

On the other hand, a careful study of the behavior of the system shows
that the two-component TLL becomes indeed unstable to the formation
of a spin gap for strong mass imbalance (j . 1/4 for n = 1/3). The spin
gap, albeit rather small, leaves a clear signature in the Luttinger exponent
K∗

σ, which is found to extrapolate to a value smaller than 1, as shown in
Fig. 4.3. The opening of a spin gap signals the formation of a bound state
of some sort: but what could this bound state be in a purely repulsive
system? We argue that a bound state can appear between the light a parti-
cles and the holes of the b species, which are in a commensurate proportion

69



Chapter 4. Pairing, crystallization and Haldane liquid of mass
unbalanced atomic mixtures in one-dimensional optical lattic es

m = (1−n)/n to the a particles. As shown in Ref. [123], a sufficiently strong
mass imbalance can indeed bind together particle composites in 1D quan-
tum fluids - in the specific case of n = 1/3 we have trimers formed by one a
particle and two b holes (b̄). If the a-mb̄ composites have mutual repulsive
interactions, as observed in the case of trimers [117], their binding favors
configurations of the type ..a0ba0b0a0b0ab... in which the a and b particles
alternate spatially. Such configurations, albeit lacking long-range density
order, contain strong non-local correlations that can be captured using a
string order parameter

Oz(L) = −
〈

σz
0 e

iπ
PL/2−1

j=1 σz
j σz

L/2

〉

(4.6)

where σz
i = 2Sz

i = ni,a − ni,b. This is the analog of the string order pa-
rameter introduced in Ref. [124] to capture the hidden order of Haldane
chains. As shown in Fig. 4.3, we observe indeed that Oz(L→ ∞) becomes
finite at the onset of the spin gap. A fundamental difference with the case
of Haldane chains is that here string order appears in a globally gapless
system, which can be termed a Haldane liquid (HL), as first introduced in
Ref. [125] for a 1D lattice gas of dipolar fermionic molecules.

The HL appears as a ”fluid” precursor of a truly crystalline phase -
phase (II) in Fig. 4.1 - which occurs for moderate repulsion and extreme
mass imbalance; this phase is a Wigner crystal of repulsive a-mb̄ compos-
ites, equivalent to the one discussed in Ref. [117] (see discussion of the
quantum phase transition leading to it in Ref. [121]).

Our theoretical results have immediate consequences for current ex-
periments on one-dimensional mixtures of mass-imbalanced cold atoms.
Such experiments can probe both attractive and repulsive interactions,
within the same experimental conditions, via the use of Feshbach reso-
nances [43]. Our phase diagram reveals a fundamental asymmetry be-
tween the attractive and the repulsive case for weak and moderate mass
imbalance, with the formation of bound pairs on the attractive side and
the absence of spin gap on the repulsive one. This asymmetry is very
well seen in time of flight experiments probing the momentum distribu-
tions na(k), nb(k), which are very broad on the attractive side, while they
exhibit sharp quasi-condensation peaks on the repulsive side – as shown
in Fig. 4.4. This asymmetry can be used as strong evidence of pairing on
the attractive side. A partial symmetry is recovered only for strong mass
imbalance, with the opening of a spin gap in the repulsive case, and the
occurrence of a crystalline phase for both signs of the interaction. This is
also well captured by the momentum distributions, showing this time a
suppression of the quasi-condensation peaks on the repulsive side due to
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Figure 4.4: Evolution of the momentum distribution of both species on a
L = 60 chain, for interactions spanning the repulsive and the attractive
side at fixed mass imbalance. From top to bottom: j = 2/3, 1/10, 1/20.

the appearance of the HL phase and of the crystalline phase.
Another very attractive feature of the model in question is appearance

of a gapless phase exhibiting string order (SO). Contrary to other models
with SO investigated in the recent literature [126, 125] the present one has
on-site interactions only, namely it can be realized in current experiments
on van-der-Waals interacting gases. The only drawback is that long-range
SO is very weak and very fragile to any finite temperature. Yet current
cold-atom experiments can only probe short-range SO correlations due
to the inhomogeneous trapping. Our simulations indicate that SO corre-
lations are the strongest diagonal correlations in the system, and hence
they will be clearly visible via spin-dependent in-situ imaging [127]. The
requirement of simultaneous imaging of the two species is crucial to ob-
serve SO, because SO is not accompanied by density order of any of the
two species separately. The evolution of short-range SO correlations is
presented in Ref. [121].
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Chapter 5

Three-species mixtures: a color
superfluid via three-body losses.

Large three-body loss rates in a three-component Fermi gas confined in
an optical lattice can dynamically prevent atoms from tunneling so as to
occupy a lattice site with three atoms. This effective constraint not only
suppresses the occurrence of actual loss events, but stabilises BCS pairing
phases by suppressing the formation of trions. We study the effect of the
constraint on the many-body physics using bosonisation and density ma-
trix renormalisation group techniques (DMRG), and also investigate the
full dissipative dynamics including loss for the example of 6Li.

5.1 Three-body losses as three-body interactions

Recent developments in the experimental control of degenerate Fermi gases
with cold atoms [63, 64, 80, 81, 82, 83] have paved the way for the study
of three-component Fermi mixtures of different species or internal states
[84, 85]. For attractive two-body interactions, these systems offer a chance
to observe competition between an atomic colour superfluid phase, which
has BCS pairing of different components, and a phase of trions, formed of
three atoms of different colour [128, 129, 89, 90, 130, 131]. In a broader con-
text, colour superfluids appear in different forms, e.g., in QCD [132]. A key
feature of current atomic physics experiments, though (e.g., with Lithium),
is the large three-body loss rate observed in these mixtures [84, 85]. Here
we discuss how these high loss rates, which are normally undesirable, can
give rise to an effective three-body hard-core constraint [93, 133, 92, 134]
when the gas is loaded into an optical lattice [44]. This constraint would
stabilise the system, suppressing three-body occupation of lattice sites,
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and thus actual loss events. Moreover, trion formation will also be sup-
pressed, enhancing pairing phases such as the atomic colour superfluid.

Below we analyze this process quantitatively, focussing on a 1D sys-
tem. This focus allows us (i) to compute the phase diagram in the presence
of a constraint by combining Tomonaga Luttinger Liquid (TLL) bosonisa-
tion techniques with density matrix renormalisation group (DMRG), and
then (ii) to make quantitative predictions for the full non-equilibrium dy-
namics for realistic experimental parameters by combining time-dependent
DMRG methods [135, 136, 137, 138, 139] with quantum trajectories tech-
niques [93]. The consequences of the constraint are particularly striking
in 1D because when all two-body interactions are attractive, the atomic
colour superfluid (ACS) phase is normally absent in the absence of the
constraint (in fact BCS correlations decay exponentially). Instead, compe-
tition is observed between a charge-density wave (CDW) and a phase with
symmetric (on-site) trions (ST) [89, 90] (see Fig. 5.1 a). We show that the
constraint prevents ST formation and produces an ACS phase with domi-
nant, algebraically decaying BCS pairing correlations. This competes with
a CDW and off-site trions (OT) (see Fig. 1b).

A three component Fermi gas in the lowest band of an optical lattice is
described by the Hamiltonian (~ = 1)

HU = −
∑

〈i,j〉,σ

Jσ(c
†
i,σcj,σ + h.c.) +

∑

i,σ

Uσmi,σmi,σ+1, (5.1)

where 〈i, j〉 denotes a sum over neighbouring sites, c†i,σ, ci,σ are fermionic

operators with a species index σ = 1, 2, 3, mi,σ = c†i,σci,σ, Jσ are the tun-
nelling amplitudes, and Uσ are the onsite interaction energy shifts. In the
following, we will consider balanced densities m̄σ = n̄/3 for total mean
number density n̄, and in typical realisations we will have equal tunnelling
amplitudes Jσ = J . This model is valid in the limit Jσ, Uσn̄ ≪ ω, with ω
the energy separation between the lowest two Bloch bands.

Three-body recombination will result in decay into the continuum of
unbound states, i.e., loss from the optical lattice. The decay dynamics can
be described by a master equation in which loss occurs from a single site
occupied by three atoms at a rate γ3 [93],

ρ̇(N) = −i
(

Heffρ
(N) − ρ(N)H†

eff

)

+ γ3

∑

i

tiρ
(N+3)t†i ,

where ρ(N) is the system density operator for a total number of N atoms,

ti = ci,1ci,2ci,3, and the effective Hamiltonian is Heff = HU − iγ3t
†
i ti/2. If we

74



5.2. Phase diagram in the constrained regime

Figure 5.1: Qualitative phase diagram for attractive interactions U < 0 and
equal populations n̄/3 of each component in a three-component 1D Fermi
gas. These are shown in the SU(3) symmetric case (where all pairwise in-
teractions between different components are of equal strength), a) without
and b) with a three-body hard-core constraint arising from three-body loss.
The unconstrained case is characterised by competition between symmet-
ric (on-site) trions (ST) and a charge-density wave (CDW). The hard-core
constraint suppresses trion formation, stabilising BCS pairing in an atomic
colour superfluid (ACS), which competes with a CDW and off-site trions
(OT).

begin with an initial state not involving three body occupation, then via a
mechanism analogous to the quantum Zeno effect, a large loss rate γ3 ≫ J
will suppress coherent tunnelling that would produce triply occupied sites.
For large γ3/J , loss occurs at an effective rate that decreases as J2/γ3 in
second-order perturbation theory. Then, on a timescale ∼ γ3/J

2 where
loss can be neglected, the system dynamics is described by the constrained
Hamiltonian

HC = PHUP, P =
∏

j

Pj =
∏

j

(1 −mj,1mj,2mj,3),

where P is a projector onto the subspace of states with at most two atoms
per site.

5.2 Phase diagram in the constrained regime

Below we first compute the ground state of HC and determining the phase
diagram in the presence of a perfect constraint. We treat both the SU(3)
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symmetric case where all interaction constants are equal (as could be re-
alised, e.g., with nuclear spin states in alkaline earth atoms [140]), and
the case where interactions are unequal (as are typical in Lithium exper-
iments at low magnetic fields [84, 85]). We then return to the full pic-
ture of the non-equilibrium dynamics by computing time evolution under
the master equation. This both allows us to test the assumption that loss
probabilities are small on relevant experimental timescales, and to inves-
tigate time-dependent preparation of states. In particular, we investigate
the production of an ACS state for the case of 6Li for typical experimental
parameters.

In 1D, the phase diagram is determined by identifying the dominant
order in the system in different parameter regimes. To do this, we con-
sider the behavior of correlation functions, and determine which is the
strongest at long distances. The orders shown in Fig. 5.1 b are: CDW
for which we compute the correlation function C(x) ∝ 〈nini+x〉 of the to-
tal density operator ni =

∑

αmi,α, ACS with BCS correlations Pσ(x) ∝
〈d†i,σd†i,σ+1di+x,σdi+x,σ+1〉 and OT withOT (x) ∝ 〈t̃†i,σ t̃i+x,σ〉with t̃i,σ = di,σdi,σ+1di+1,σ+2.
Below we determine the behavior of these correlation functions via boson-
isation and DMRG methods, determining whether the decay is exponen-
tial or algebraic, and finding decay exponents DCDW , DACS , and DOT in
the case of the latter.

5.2.1 Bosonisation formalism for the constrained Hamilto-

nian

In order to apply the bosonisation formalism we identify an exact map-
ping of the constrained fermionic Hamiltonian HC to an unconstrained
fermionic Hamiltonian which automatically respects the constraint, at the
expense of including higher order interactions. We introduce projected

operators d†iσ = (
∏

j 6=i Pj)c
†
iσ, diσ = (

∏

j 6=i Pj)ciσ, entirely in terms of which
we express the Hamiltonian. We verify (i) that the operators diσ obey
fermionic commutations on the subspace where at most two atoms oc-
cupy any site, and that (ii) the Hamiltonian has vanishing matrix elements
in the space with occupations greater than two and (iii) acts as zero on
any state in this latter space. Thus, we arrive at a fermionic Hamilto-
nian with built-in constraint, which we analyse with standard bosonisa-
tion techniques. Here we summarise the results, with the calculations pre-
sented in more detail in a forthcoming work [141]. We introduce three

bosonic fields φσ(x) related to the continuum version of (d†iσ, diσ), from
which we can construct a Hamiltonian by taking the linear combinations
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φc = (φ1 + φ2 + φ3)/
√

3, which represents collective fluctuations of the to-
tal density, and φs1 = (φ1 − φ2)/

√
2 and φs2 = (φ1 + φ2 − 2φ3)/

√
6, which

represent the spin sectors. If we define TLL parameters Kα and conjugate
momentum fields Πα corresponding to each field φα (α ∈ {c, s1, s2}), we
then obtain

H =
∑

α=c,s1,s2

{

v

2
[KαΠ2

α +
1

Kα
(∂xφα)2]

}

+

− 2gss

a2
cos[

√
2πφs1] cos[

√
6πφs2] −

gs

a2
cos[

√
8πφs1],

where v = 2aJ sin[πn̄/3] is the Fermi velocity, a is the lattice spacing. The
coefficients gss and gs exhibit non-trivial dependence on U/J and mσ, as
do Kα.

The dependence of the decay exponents for different orders on Kα can
be extracted from the formalism, and by expanding Kα in the weak inter-
action limit we obtain also the dependence on U/J and n̄. We will present
these formulas, which are not very compact, in a longer article [141]. The
key results are summarised in the paragraph below, and are benchmarked
against values extracted from numerical simulations in Table I.

5.2.2 Phase diagram from bosonisation

For comparison, the qualitative phase diagram for attractive interactions
Uσ < 0 in the absence of the hard-core constraint is depicted in Fig. 5.1 a.
There are two phases, one with symmetric (on-site) trion (ST) order and
the other with charge-density-wave (CDW) order, which actually cross
over into one another, the transition line marking where algebraic decay
is equally strong. This was previously studied for equal attractive inter-
actions using a combination of the TLL formalism and DMRG methods
[89, 90]. In a wide region near the SU(3) symmetric line Uσ = U < 0,
CDW is dominant for higher densities and intermediate interactions. A
particular feature of this case is that a gap appears in the entire spin sec-
tor, so that in contrast to a two-species Fermi gas, ACS correlations decay
exponentially (as do spin-density wave correlations).

In the presence of the constraint this picture changes substantially (see
Fig. 5.1 b with small |U/J |). The ST phase is suppressed by the constraint,
and for most regions of the diagram the spin sector is gapless, so that all
correlations decay algebraically. We observe competition between an OT,
a CDW, and an ACS phase, which for equal interactions involves simulta-
neous pairing of all three pairs of components. The only exception to this
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is at low densities n̄ < 0.2 and intermediate interactions, where bosoniza-
tion results predict a second order transition below which ACS correla-
tions again decay exponentially and OT correlations dominate over CDW
correlations. At higher densities, there is a crossover from the ACS to the
CDW phase. In the case of unequal interactions, the charge sector and two
spin sectors are coupled [141]. For sufficiently strong imbalance in Uα a
gap in the spin sector may open, so that only BCS-pairing for the channel
with the largest |Uα| survives.

Figure 5.2: a) ACS-correlations Pσ(x) with (solid line) and without (dash-
dotted line) the three-body constraint as a function of distance x on a 40
site lattice. b) - d) Pσ(x) with CDW-correlations C(x) and off-site trion cor-
relations OT (x) for different values of U , at a density m̄1 = m̄2 = m̄3 = 0.2,
with the constraint. In qualitative agreement with bosonisation, we ob-
serve that for weak coupling (b) CDW clearly dominates. As the cou-
pling is increased (b-d), ACS appears to dominate. For the values shown
here, ACS dominates off-site trions, with OT (x) decaying exponentially
for strong coupling.
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5.2.3 Ground state of HC from DMRG (equal interactions)

To underpin these results quantitatively and go beyond weak-coupling,
we present calculations based on DMRG methods [135, 136, 137, 138, 139].
In Fig. 5.2, we see again the striking comparison between the ACS correla-
tions in the ground states for HU and HC , which exhibit exponential decay
without the hard-core constraint, and algebraic decay in the presence of
the constraint. In Figs. 2b-c we show a comparison of the correlations
corresponding to the ACS (Pσ(x)), CDW (Cσ(x)) and OT (OT (x)), in the
ground state of the model with a three-body hard-core constraint (HC).
These are presented for symmetric but varying interactions from weak to
strong coupling, U/J ∈ [−10,−0.3]. For increasing interactions, the values
of Pσ(x) become larger with respect to Cσ(x), so that the ACS appears to
dominate for stronger interactions. While off-site trions still show alge-
braic decay for U/J ≥ −2, they are subdominant to the ACS and CDW,
and they decay exponentially for U/J ≤ −5 (Figs. 5.2 b-d). This is a strong
deviation from the weak-coupling bosonisation results, and could indicate
an instability (e.g., towards phase separation), or the appearance of a gap
in the dual field of the charge sector. However, with system sizes of 40
lattice sites, we have not observed any evidence of phase separation.

Extracting the exponents of the algebraic decay of the correlation func-
tions further confirms this picture, as shown in Table 1. The constrained
model sees an enhancement of ACS correlations with decreasing U , while
CDW correlations generally decay faster as U is lowered. In the weak cou-
pling regime we also generally observe good agreement with the pertur-
bative values of the exponents from TLL-theory. In the strong coupling
regime (U/J ≤ −5) for the constrained case, the exponents DACS and
DCDW saturate, with DACS taking a value compatible with the TLL pre-
diction.

5.2.4 Ground state of HC from DMRG (unequal interac-

tions)

In the case of asymmetric interactions we also observe an ACS pairing,
but with only the two components paired that exhibit the strongest inter-
actions. As an example, we consider the case of 6Li, where in Fig. 5.3 a we
plot the Hamiltonian parameters as a function of magnetic field strength
near 500-700 G for a fixed lattice depth. From the pairing correlations
shown in Fig. 3b, we see that at 500 G, the only algebraically decaying
correlations are those corresponding to components 1 and 3, which have
the strongest interparticle interaction.
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−U/J DACS DCDW DOT

0.3 1.71(0.02)/2.04 1.39(0.02)/1.95 3.3(0.3)/3.00
0.6 1.66(0.02)/2.03 1.40(0.03)/1.96 3.3(0.3)/3.00
1 1.60(0.02) 1.40(0.03) 3.1(0.4)
2 1.4(0.2) 1.4(0.1) 3.0(0.4)

5,8,10 1.4(0.4) 1.4(0.3) exp

Table 5.1: Exponents for algebraic decay of correlations, computed for
ground states in a system of 40 lattice sites with m̄σ = 0.2 by fitting a
power law to the periodic peaks of the correlations (see Fig. 5.2). Errors
are given in parentheses, analytic values in the weak coupling limit are
given to the right of slashes. We find agreement with the qualitative pre-
dictions of analytic theory, i.e. for weak coupling we start out with the
CDW-phase dominant, from where DCDW remains constant whilst DACS

and DOT decrease with increasing |U/J |. We further observe a transition
to exponential decay for the off-site trions in the strong coupling limit.

5.2.5 Time-dependent preparation of an ACS phase with
6Li

Considering this example, we now return to the full time-dependent dy-
namics including three-body loss, in order to demonstrate a method to
produce these ACS states in 6Li. We simulate the many-body master equa-
tion on 12-24 lattice sites by combining time-dependent DMRG methods
with quantum trajectories techniques, as described in [93]. We assume that
the lattice is initially loaded at a magnetic field of 615 G, where the repul-
sive interactions (see Fig. 5.3 a) will stabilise the system in the presence
of loss. We then consider a time-dependent ramp of the magnetic field
to 500 G. The characteristics of the ramp we choose (shown in Fig. 5.3 c)
are: (i) it is adiabatic until 565 G, where the components 2 and 3 become
paired, (ii) it is fast from 565− 500 G, where onsite trions become energeti-
cally favored (

∑

α Uα < U2) and where for fields larger than 520 G, γ3 is too
small to prevent triple occupation (see Fig. 5.3 a), and (iii) after a hold time
Th,1 = 16J−1 we add a swap between species 1 and 2 via a fast laser pulse
at the end of the ramp, after which there is a second hold time Th,2 = 20J−1.
The ACS correlations in the final state after the swap (Fig. 5.3 d) then ex-
hibit dominant pairing between species 1 and 3, as would be expected in
the ground state for the parameters of 6Li atB = 500 G with the constraint.
The other pairing channels are clearly subdominant, and trion formation
is also strongly suppressed during the ramp (max(T (x)) ≈ (O)(10−8)). The
probability that no decay event occurs during the ramp shown here for 12
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Figure 5.3: a) Hubbard parameters U1, U2, U3 and three-body loss rate
γ3 for 6Li as function of external magnetic field B, for a lattice depth of
Vax = 5 ER in axial direction, and Vrad = 20 ER in radial direction. b) ACS
correlations for the ground state of HC at B = 500 G, computed for a sys-
tem of 30 lattice sites, m̄σ = 2/15, σ = 1, 2, 3. The dash-dotted line shows
P3(x), dashed line P1(x), dotted line denotes P2(x). As U3 < U2 ≪ U1,
we see 1 − 3 pairing dominate, with all other pairing exponentially sup-
pressed. c) Left scale, dashed line: Magnetic field B(t) for the ramp. Right
scale, solid line: Probability of no three body loss having occurred at time
t. d) ACS correlations after the time-dependent ramp of the magnetic field
shown in d), beginning from the ground state at 615 G, with m̄σ = 0.167,
on 12 sites.

lattice sites is 79%.

In higher dimensions, we expect that actual losses will be suppressed
on a lattice by the effect discussed here, and that the ACS phase [128, 129]
will also be stabilised due to suppressed trion formation.

5.3 Addendum: detailed constraint mapping

In order to implement correctly the constraint onto the model, we can de-
fine an Hamiltonian that embodies the constraint itself via non-local pro-
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jectors:

H = PHHubbard−3speciesP (5.2)

or alternatively, insert a strong repulsion term:

∑

i

Γ3nIinIIinIIIi

to avoid triple occupancies. In the following, we will first take a quick
look on the effect of this type of term and then we will proceed studying
(5.2) in the weak coupling limit.

5.3.1 Toy model: Γ3 → ∞
Considering simply a standard 3-species hamiltonian with a term:

∑

i

Γ3nIinIIinIIIi, Γ3 ≫ 1

we have simply that the spin sector become gapless and the charge
sector has λc ≫ 1, Kc ∼ 0. Inserting an ultra strong coupling in the
theory can be anyway a problem, our interest being studying the interplay
between the interaction t, U and the populations n.

5.3.2 Effective theory and pseudofermionic mapping

Suppose now that we want to treat the original hamiltonian exactly, that
is we start from:

H =

L
∏

j=1

(1 −Mj)

[

N
∑

i=1

Hi

]

L
∏

k=1

(1 −Mk) (5.3)

Mj = mIjmIIjmIIIj, mαj = c†αjcαj , Pj ≡ 1 −Mj

Hi = −t
∑

iα

(c†iαci+1α + h.c.) +
∑

i,α

Uαmiαmiα+1

This hamiltonian clearly acts only on the physical subsector of the Hilbert
space, that is it extracts the correct information from the partition function.
In this picture, we have not strong interactions so we can proceed to a low
coupling treatment; anyway, the non-locality induced by the projectors
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should be somehow embedded into local terms. Let’s now consider a new
set of operators:

d†αj =
∏

k 6=j

Pkc
†
αj, dαj =

∏

k 6=j

Pkcαj

that present the following commutation relations when applied on physi-
cal or unphysical states:

{d†iα, djβ} = (
∏

k 6=i,j

Pk)[c
†
iαPiPjcjβ + cjβPjPic

†
iα]
∏

k′ 6=i,j

Pk′

then

{d†iα, djβ}U = 0 = {d†iα, djβ}P

and the analog holds for commutators involving creation and annihi-
lation operators. On the same site, we have:

{d†iα, diβ} = (
∏

k 6=i

Pk)[c
†
iαcjβ + cjβc

†
iα](
∏

k′ 6=i

Pk′)

that leads to:

{d†iα, diβ}Uk 6=i
= 0, {d†iα, diβ}P = δαβ = {d†iα, diβ}Ui

We have then proved that, on the physical part of the Hilbert space, these
operators act like fermions, whereas on the unphysical part, due to the
previous relation, they act like quasi-fermions. Due to the fact that only the
physical space is now relevant, we can treat then as real fermionic opera-
tors. Before considering the total hamiltonian, let’s remark the following
properties:

mαj

∏

k 6=j

Pk = nαj , nαj ≡ d†αjdαj , Ei = 1 − n1in2in3i

Ei = 1 −m1im2im3i

∏

k 6=i

Pk

Pi(
∏

j 6=i

Pj) = (1 −m1im2im3i

∏

k 6=i

Pk)(
∏

j 6=i

Pj) = Ei(
∏

j 6=i

Pj) (5.4)

Eid
†
iα = d†iα − d†iαniβniγ = d†iα(1 − niβniγ)

diαEi = diα − diαniβniγ = diα(1 − niβniγ)
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We can now rewrite (5.3) as a function of these new operators starting
from the hopping term:

K = −t
∑

i,α

PiPi+1(
∏

j 6=i,i+1

Pj)[c
†
iαci+1α + h.c](

∏

j 6=i,i+1

Pj)PiPi+1 =

= −t
∑

iα

[

Pi(
∏

j 6=i

Pj)c
†
iαci+1α(

∏

j 6=i+1

Pj)Pi+1 + Pi+1(
∏

j 6=i+1

Pj)c
†
i+1αciα(

∏

j 6=i

Pj)Pi

]

=

= −t
∑

iα

{

Ei(
∏

j 6=i

Pj)c
†
iαci+1α(

∏

j 6=i+1

Pj)Ei+1 + Ei+1(
∏

j 6=i+1

Pj)c
†
i+1αciα(

∏

j 6=i

Pj)Ei

}

=

= −t
∑

iα

[

Eid
†
iαdi+1αEi+1 + Ei+1d

†
i+1αdiαEi

]

=

= −t
∑

iα

[

(d†iαdi+1α + h.c.)(1 − niα+1niα+2)(1 − ni+1α+1ni+1α+2)
]

It is easy to check that:

K|ψ〉U = 0

For the potential part, we got:

U =
∑

iα

UαPi(
∏

j 6=i

Pj)miαmiα+1(
∏

j 6=i

Pj)Pi =

=
∑

iα

UαEi(
∏

j 6=i

Pj)miαmiα+1(
∏

j 6=i

Pj)Ei =

=
∑

iα

UαEiniαniα+1Ei =

=
∑

iα

Uαniαniα+1(1 − niα+2)

and again:
U |φ〉U = 0

Then, the final effective hamiltonian in terms of d’s operator is:

Heff = −t
∑

iα

[

(d†iαdi+1α + h.c.)(1 − niα+1niα+2)(1 − ni+1α+1ni+1α+2)
]

+

+
∑

iα

Uαniαniα+1(1 − niα+2) (5.5)

with the same initial fillings for the different species.
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Chapter 6

Outlook: quantum magnetism
and Bose-Bose mixtures

Quantum magnetism is an old and fascinating problem in many-body
physics, in deep connection with various phenomena such as HTc, topo-
logical order etc.. However, its observation in cold atomic setups is quite
challenging due to the relative strength of the exchange interaction with
respect to temperature of the order of 10nK. Furthermore, the role of the
trapping potential is crucial for, e.g., antiferromagnetic phases, where dif-
ferent type of commensurabilities must be realized at the same time. In
the following, we present preliminary datas on a numerical analysis of
1D strongly asymmetric Bose-Bose mixtures, which in principle allow for
the observation of various magnetic phases. While our final interest is
in understanding the inhomogeneous situation, we will first focus on the
homogeneous one, considering as an example a strongly asymmetric mix-
ture comparable with a 87Rb-41K mixture currently available at the LENS
laboratory in Florence[142].

6.1 Bose-Bose mixtures: phase diagram from bosoniza-

tion

The qualitative phase diagram from bosonization for Bose-Bose mixtures
does not different substantially from the fermionic one, except for the fact
that gapless regimes usually correspond to standard single species super-
fluid order, which is forbidden for fermions. Provided that interspecies
interaction are repulsive, the main instabilities are:

• super-counterflow(SCF) phase; namely, a superfluid gas of particle-
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Chapter 6. Outlook: quantum magnetism and Bose-Bose
mixtures

Phases ∆c ∆s Kc Ks

2TLL 0 0 > 1 > 1
SCF 6= 0 0 – > 1
AFM 6= 0 6= 0 – –

Table 6.1: Properties of homogenous phases of a two-species Bose-Bose
mixture.

hole pairs, which does not require equal densities but only commen-
surate ones;

• antiferromagnetic Neel phase(AFM), analog of the standard XXZ phase,
characterized by a fixed order abababa...;

• ferromagnetic phase(FM), which in our case corresponds to phase sep-
aration(PS).

While PS is not captured by a TLL formalism (in fact, it does correspond
to a breakdown of the theory[143]), the AFM phase corresponds to two-
gapped sectors, whereas SCF corresponds to a gapped charge sector, the
spin one being gapless. In the following, we will concentrate on equal
and commensurate populations n1 = n2 = 1/2; in that case, the additional
requirement Ks > 1 has to be satisfied in the SCF phase.

6.2 Numerical analysis

In the following, we present some DMRG results on the homogeneous
phase diagram of the following lattice Hamiltonian:

H = −
∑

α=1,2

∑

i

tα(b†i,αbi+1,α +h.c.)+U12

∑

i

ni,1ni,2+
∑

α

Uα

2

∑

i

ni,α(ni,α−1)

(6.1)
for strongly asymmetric configurations, which usually favors AFM order-
ing. Our analysis is mainly based on the estimate of the spin and charge
gap in the thermodynamic limit, which combines finite size calculations
with a subsequent extrapolation. The finite size charge and spin gaps are
defined as:

∆C =
E(NA + 1, NB + 1) + E(NA − 1, NB − 1) − 2E(NA, NB)

2
(6.2)
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6.2. Numerical analysis

Figure 6.1: ∆c scaling as a function of 1/L for different interspecies inter-
action U12.

∆S =
E(NA − 1, NB + 1) + E(NA + 1, NB − 1) − 2E(NA, NB)

2
. (6.3)

Once the thermodynamic limit is extrapolated (as a example, see Fig. 6.1),
one can argue the phase diagram according to Table 6.1.

6.2.1 Phase diagram at equal densities

At first instance, it is interesting to discuss what happens in 6.1 when one
changes U12. In Fig. 6.2, we plot the spin and charge gap for a sample
configuration with t1 = 0.024, U2 = 11.08, with tb = 2 as the energy unit
and the a-species in the hard-core limit. Both gaps open at small values of
U12, signaling that the SCF region is narrow; remarkably, ∆s is non mono-
tonic in U12, and it closes at strong coupling, signaling that the AFM phase
is embedded between 2 SCF regions. This second transition point, we
should belong to the BKT universality class, is in good accordance with a
perturbative expansion based on the XXZ spin-1/2 model[144].

We are now applying the same method in order to accurately shape
the 87Rb-41K 1D phase diagram; an advantage of this method is that it can
give rather good estimates on the critical temperature needed to stabilize
magnetism, which is usually smaller than the gaps which protect long-
range order.
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Chapter 6. Outlook: quantum magnetism and Bose-Bose
mixtures
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Figure 6.2: Thermodinamic values of the gaps as a function of U12. Upper
panel: ∆c (green triangles) and ∆s (red circles). Lower panel: spin gap.
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Part III

Long-range interacting systems in
1D and quasi-1D geometries
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As we have seen in the previous chapters, ultracold atoms are very well
suited to investigate and eventually simulate many-body physics with a
high degree of tunability and control. There is, however, a severe limi-
tation, which makes the observation of several phenomena, such as, e.g.,
quantum magnetism and supersolidity, challenging. In fact, despite the re-
fined use of Feshbach resonances, the interaction in these setups is always
characterized by a very small effective range: in a standard optical lattice
of height V ≃ 5Er, the overlap of nearest-neighbor Wannier functions is
usually 3 order of magnitudes smaller than the typical onsite contribution.

One of the main experimental advances of the last decade has been
the possibility to trap and control cold gases in which interactions are not
restricted to standard scattering processes, but are instead non-local in na-
ture. The first remarkable example is represented by magnetic atoms. Usu-
ally, alkali atoms in the ground state have a magnetic moment of the order
of the Bohr magneton µB, so that the energy scale associated with dipolar
magnetic interaction is much smaller than all other ones which come into
play. However, other atoms such as Dy, Cr or Er have much larger mag-
netic dipole moments in their ground state, so that dipolar effects may
become tangible and influence both static and dynamical properties [145].
The first example of such a possibility has been shown in [146], where a
BEC of 52Cr atoms was prepared and the subsequent expanding dynamics
of the cloud revealed dipolar effects. Up to date, the only magnetic atoms
which have been Bose-condensed are Cr and Dy [146, 147, 148], but the
field is in rapid progress, and new elements such as Er are currently under
investigation.

While magnetic atoms have shed some light into the realm of long-
range interactions, the limited magnitude of the dipole-dipole interaction
between them still limits their range of applicability to many-body prob-
lems. On the contrary, heteronuclear molecular gases do not suffer from
this disadvantage, and can present electric dipole moments orders of mag-
nitude larger than the magnetic one in 52Cr or Dy [145]. While no BEC
nor degenerate Fermi gas has yet been realized in the laboratory, major
progress in this direction includes the realization of high-density samples
of homonuclear Cs2 molecules in their rovibrational ground state [149]
and an efficient laser cooling of a single SrF molecule [150]. Up to now,
the most promising approach toward a high-density sample of heteronu-
clear, polar molecules consists in starting from an already ultracold two-
species atomic mixture and then employ a Feshbach resonance to create
molecules, which are finally cooled down to their rovibrational ground
state by a photoassociation process known as STIRAP. Remarkable results
have been already obtained in Freiburg [151] with LiCs and, in particular,
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Figure 6.3: Density profile of a 52Cr Bose-Einstein condensate as a function
of the isotropic contact interaction tuned via Feshbach resonance[152]. In
the cartoons, the green-red arrow denotes the magnetic dipole moment
(which remains constant) and the grey area indicates how large the con-
tact interaction contribution is. In the top case, isotropic interactions dom-
inates, whereas in the lower case, the dominant contribution comes from
anisotropic dipolar interactions, which induces a direct signature in the
strongly anisotropic cloud aspect ratio. Image taken from Tilman Pfau’s
website.

at JILA with fermionic RbK molecules [153, 154].
The benchmark realization and control of degenerate, ultracold gases

of polar molecules would open the door to the study of several quantum
phenomena, its application ranging from quantum computing to ultracold
chemistry and few-body physics (for a complete review, see Ref. [155]
and related articles on the same issue). At the many-body level, these
gases allow to investigate a series of complex behaviors which are usually
connected to non-local interactions such as supersolidity, quantum mag-
netism (without any intrinsic temperature limitation, contrary to ultracold
atomic gases), bilayer and multilayer physics [145, 156, 157]. A typical ex-
ample is shown in Fig. 6.4, in which the phase diagram of the extended
Bose-Hubbard model(EBH):

HEBH = −J
∑

<i,j>

(b†ibj + h.c.) + µ
∑

i

ni + V
∑

i6=j

ninj

d(i− j)3
(6.4)

is presented as a function of the hopping rate J , the chemical potential µ
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Figure 6.4: Phase diagram of bosonic dipoles in a 2D square lattice as a
function of the chemical potential µ and the hopping J with respect to
the dipolar interaction strength V ; the system remains superfluid as long
as the hopping rate is large enough, and eventually orders into a regular
patter forming a crystal in the strongly interacting regime for each rational
filling; sample configurations are sketched in Panels b, c, d. In addition,
a supersolid phase appears around he Mott lobes. Image courtesy of G.
Pupillo, taken from [158].

and the dipole-dipole interaction strength V (d(i − j) represents the dis-
tance between points i and j on a plane) in the case of a 2D square lattice
with dipole moments aligned perpendicularly to the plane itself. Even
in this simple case, the phase diagram includes checkboard (Mott insula-
tors with less than one particle per site) and supersolid phases which are
hardly realizable with purely contact interactions.

However, since we are not dealing with atoms anymore but molecules,
undesirable chemical reactions can play a major role by enhancing inelas-
tic processes in certain parameter regimes due to the anisotropic nature of
dipole-dipole interactions: the related losses could then affect the stabil-
ity of the entire system, preventing a clear observation of equilibrium and
non-equilibrium properties. A typical example is shown in Fig. 6.5: in the
case of a 3D gas of RbK molecules, the loss rate increases with the inter-
action strength, so that the strongly interacting regime suffers from strong
two-body losses. However, in reduced dimensionality such as 2D pan-
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Figure 6.5: Inelastic loss rate β (in scale of the initial temperature T0) as a
function of the dipole moment d for RbK polar molecules in the rovibra-
tional ground state; dashed and solid lines represent quantitative theoreti-
cal predictions. The inset describes the dipole moment dependence on the
applied electric field. Image taken from Ref. [153].

cakes or 1D tubes, inelastic collisions can be suppressed when the dipole
moments are aligned perpendicularly to each other, so that the strong in-
plane repulsion prevent molecules from coming too close to each other
[159, 160]. In addition, this setup allows to investigate mixed dimension-
ality systems, such as multilayer (quasi-2D) and multitube (quasi-1D) con-
figurations [145].

In this final part, we will investigate several effects related to dipolar
interactions in 1D and quasi 1D geometries from a many-body point of
view. While the methods applied here are essentially the same as in the
previous parts, the non-trivial effects of long-range interactions reveals
drastic effects related to several observables in a physical systems [161].

In Chapter 7, we will consider the simplest configuration, namely a
single species gas confined in a purely 1D tube where the interparticle
potential is proportional to 1/rβ. The case β = 1 has been already in-
vestigated in the context of two-species electron gases in a seminal pa-
per by Schulz[162], where the appearance of strong deviations from the
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Tomonaga-Luttinger liquid (TLL) universality class have been shown to
lead to the formation of so called Wigner crystal, driven by ultraviolet di-
vergences of the Coulomb potential in 1D. For β > 1, the potential is in-
stead integrable, and a proper description of the system can be given in
term of a TLL; we will present a procedure which allow to calculate the
corresponding TLL parameter for arbitrary densities, shape and strength
of the interaction, and compare our results with both numerical simula-
tions and the exact solution at β = 2 (Calogero-Sutherland model [187, ?]).
We will then discuss the appearance of a Devil’s staircase-like structure
in presence of an optical lattice, which shows remarkable differences with
respect to the classical one, by employing a mapping to the sine-Gordon
model, and we finally discuss what type of insulating states can be de-
tected in state of art experiments with Feshbach and polar molecules.

In Chapter 8, we discuss what happens in quasi-1D geometries known
as ladders. By combining analytical and DMRG techniques, we first ex-
plore the equal density phase diagram, revealing strong parallelisms with
bilayer physics and underlying how long-range interactions affect pairing
and crystalline instabilities. Then, we analyze the unbalanced case, explor-
ing the possibility to stabilize ground states characterized by exotic bound
states composed by more than two particles. In particular, we find out
that a trimer liquid is stable in a wide region of the phase diagram, and
surprisingly survives even in presence of a trapping potential.

Finally, in Chapter 9, we will investigate the effect or three-body losses
in a bosonic system with attractive onsite interactions. By employing an
exact mapping to a spin-1 chain, we will show how ferromagnetic, anti-
ferromagnetic and Haldane-like phases can be stabilized in a such a setup,
deriving the complete commensurate phase diagram with DMRG simu-
lations, and comparing its strong coupling limit with a simpler nearest-
neighbor interaction approximation. Remarkably, these phases turn out to
be quite stable even in an inhomogeneous setup, as present in ultracold
bosons experiments, for a wide range of densities.

It is finally worth mentioning that other quantum-optics based setups,
such as Feshbach molecules and Rydberg atoms, are suitable for investiga-
tion of many body phenomena linked to long range interactions: we refer
the reader to specific reviews on the subject (Refs. [164] and [145, 165]
respectively) for details.
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Chapter 7

A new class of insulators: the
Luttinger Staircase.

We study one dimensional fermionic and bosonic gases with repulsive
power-law interactions 1/|x|β, with β > 1, in the framework of Tomonaga-
Luttinger liquid (TLL) theory. We obtain an accurate analytical expression
linking the TLL parameter to the microscopic Hamiltonian, for arbitrary
β and strength of the interactions. In the presence of a small periodic po-
tential, power-law interactions make the TLL unstable towards the forma-
tion of a cascade of lattice solids with fractional filling, a “Luttinger stair-
case”. Several of these quantum phases and phase transitions are realized
with groundstate polar molecules and weakly-bound magnetic Feshbach
molecules.

7.1 Single wire with long-range interactions

There is presently considerable interest in quantum degenerate gases with
long range interactions in reduced geometries [145]. This is motivated
by recent experiments with polar molecules [154, 153, 151, 166, 167, 168,
169, 170], where electric dipole moments associated with rotational exci-
tations lead to strong, anisotropic dipolar interactions [153], but also by
experiments with atomic gases with strong magnetic dipoles [147]. For
polar molecules, electric dipoles can be manipulated with external mi-
crowave AC and DC electric fields, which provides a toolbox to tailor the
many-body interactions, and in combination with optical trapping in 1D
or 2D promises the realization of stable exotic, strongly correlated quan-
tum phases with long range interactions [159, 160, 171].

An intriguing example is given by polar molecules trapped in a 1D
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Chapter 7. A new class of insulators: the Luttinger Staircase.

wire [see Fig. 8.1(a)] [172, 173, 174, 175, 176], where long range interac-
tions compete with an optical lattice in a commensurate - incommensu-
rate transition. In the zero-tunneling limit in a deep lattice, this leads to
the formation of a devil’s staircase, that is, a continuous and non differen-
tiable (Cantor) function for the ground state filling fraction as function of
the chemical potential µ, studied first in the context of atomic monolayers
adsorbed on solids [177, 178]. While recent studies at finite hopping have
already shown a modification of this structure in a deep lattice [179, 158],
the challenge is now to investigate the quantum regime where large ki-
netic energies compete with both interaction strengths and periodic con-
finement.

Below we show that using bosonization techniques [10, 11] the classi-
fication of quantum phases can be derived analytically for all power law
interactions Cβ/|x|β with β > 1 and for arbitrary relative strengths of the
kinetic energy and the long-range repulsion. Remarkably, the parameters
of the effective bosonized theory can be accurately obtained in analytical
form for all β in terms of the microscopic Hamiltonian, even in the absence
of integrability. This provides us with a universal phase diagram where
the cases of repulsive Van der Waals (β = 6) and dipolar interactions
(β = 3) should be accessible in polar molecule experiments [159, 160, 171].
In contrast to the classical devil’s staircase, where lattice solids are stable
over a finite interval in µ for every rational filling fraction between 0 and 1,
and the total measure of such interval exhausts the full range of µ, we find
that in the 1D quantum case large kinetic energies prevent the formation
of ordered states, where the average interparticle distance is not constant.
This drastically reduces the number of ”steps” in the staircase to a num-
ber not dense in the interval ]0, 1], i.e. a Luttinger staircase. Signatures of
these quantum phases are excitations in the form of solitons and breathers,
detectable via Bragg scattering.

We assume that the polar molecules are polarized by external electric
fields, and confined to a 1D geometry, e.g., by a sufficiently deep 2D opti-
cal lattice with frequency ω⊥. The shape of the long distance interactions
can be tuned by coupling the lowest rotational manifolds of each molecule
with DC and microwave AC fields. As shown in Refs. [159, 160, 171] we
can tune between β = 3 with C3 = d2/ǫ0, where d is the dipole moment
induced by an electric field EDC and ǫ0 the vacuum permittivity, and β = 6
with C6 ∝ d4/~∆, where ∆ the detuning of a microwave field EAC cou-
pling the ground to the first excited rotational manifold. For average inter-
particle distances a ≫ (Cβ/~ω⊥)1/β the gas dynamics is one-dimensional
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7.1. Single wire with long-range interactions

Figure 7.1: (a) Experimental setup (sketch): an array of 1D polar molecular gases
is formed along x (green tubes); molecules are polarized perpendicular to x. (b1)
Groundstate configuration in the solid phase with filling 1/p = 1/3. (b2) soli-
ton and antisoliton excitations with repulsive interactions with 1/p = 1. (b2) a
breather, 1/p = 1 (text).

and microscopically described by the Hamiltonian

H =

∫

dx ψ†(x)

[

− ~2

2m
∂2

x + U(x)

]

ψ(x)

+
1

8π

∫

dx dx′ψ†(x)ψ†(x′)
Cβ

|x− x′|βψ(x′)ψ(x). (7.1)

Here, ψ(x) is a field operator for molecules, which can be either fermionic
or bosonic, m is the particle mass, and U(x) = U sin2(2πx/λ) is a weak
periodic potential, as provided by a shallow optical lattice of strength UL ≡
U/ER . 1, with ER = h2/2mλ2 and λ the lattice wavelength. For the case
β = 3 with experimentally relevant molecules such as LiCs, RbCs or KRb
molecules (dmax = 5.6, 1.25 and 0.5 Debye, respectively) and confinement
ω⊥ = 2π × 100 kHz, (Cβ/~ω⊥)1/3 is of the order of 360, 130 and 80nm,
respectively [159, 160, 171, 180, 181].

Homogeneous quantum fluid

In the absence of an optical lattice (UL = 0) the short range character of
power-law interactions with β > 1 allows a description of the low en-
ergy physics in terms of Tomonaga-Luttinger liquid (TLL) theory [11, 162].
Here, we first consider the bosonic case, and then discuss the differences
with the fermionic one. The TLL effective Hamiltonian is given by [33, 174]

H = ~v

∫

dx
[

(∂xθ(x))
2/K +K(∂xφ(x))2

]

/(2π). (7.2)
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Here, the field ψ(x) in Eq. (7.1) is replaced byψ(x) ∼
√

n+ ∂xθ(x)/π exp[iφ(x)]
in a hydrodynamic approach, and ∂xθ(x) and ∂xφ(x) characterize the long-
wavelength fluctuations of the density n and of the phase φ(x), respec-
tively, with [∂xθ(x), φ(y)] = iπδ(x − y). The liquid is completely charac-
terized by the sound velocity v and Luttinger parameter K = ~nπ/(mv),
which determines the algebraic decay of the correlation functions

〈n(x)n(x′)〉 ∼ |x− x′|−2K , 〈ψ(x)ψ†(x′)〉 ∼ |x− x′|−1/2K . (7.3)

In general,K can be related to the microscopic parameters of the Hamil-
tonian only for exactly solvable models, e.g., contact interactions or β = 2
[Calogero-Sutherland (CS) model]. Below we show that the dependence
of K on the microscopic parameters in (7.1) can be given analytically for
arbitrary shape and strength of interactions,

K =
[

1 + β(β + 1)ζ(β)nβ−2Rβ/(2π
2)
]−1/2

, (7.4)

with nβ−2Rβ the dimensionless interaction strength, andRβ ≡ mCβ/(2π~2)
(see Fig.7.3). In contrast to familiar bosonic gases with contact interactions
where K ≥ 1 [11, 182, 61], long-range power-law interactions constrain K
to values 1 ≥ K > 0, whereK = 1 corresponds to the Tonks-Girardeau gas
limit andK = 0 to a system with long-range order [162]. Eq. (7.4) allows us
to readily determine the phase diagram for UL = 0, by comparing the rela-
tive decay of the correlation functions in (7.3): a crossover from superfluid
(SF) to charge-density wave (CDW) behavior takes place at Kc = 0.5. The
fermionic gas is also described by Eqs. (8.2) and (7.4), however its phase
diagram displays a CDW behavior at all interaction strengths. In addi-
tion, correlation functions in (7.3) have a slightly different long-distance
decay [10, 11]. In the following, statistics will not be relevant, and thus we
deal with both cases at the same time.

7.1.1 The Luttinger staircase

A cascade of insulating lattice solids can be realized from a TLL with
power-law interactions, by introducing a vanishingly-small periodic lat-
tice potential, as provided by the shallow optical lattice U(x) in Eq. (7.1).
Combining the complete density operator with the periodic term U(x) [61],
one obtains

∑

r

Ur ≡
∑

r

{ U
πΛ2

∫

cos[r2θ(x) +Qr(n, λ)x]dx

}

, (7.5)
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7.1. Single wire with long-range interactions

Figure 7.2: (a) Commensurate phase diagram for bosons with dipolar
interactions β = 3, and lattice depth UL = 0.1. Physical configurations
correspond to commensurate fillings nλ/2 ≡ 1/p, with p ∈ N (horizon-
tal lines are guides to the eye for p ≤ 10). Quantum phase transitions
from a TLL to a lattice solid [or Mott insulator, (MI)] occur for each 1/p
at the position of the dots on the continuous line, while red and blue dots
on dashed lines indicate crossovers. MI1 and MI2 indicate MI with soli-
tonic and breather excitations, respectively (see Fig.1). (b) Phase diagram
at commensurate filling 1/p = 1/3 in the UL vs nR3 plane. Continuous
line: quantum phase transition between a TLL and a lattice solid. The
phase diagram for fermions is identical to the one for bosons, except the
TLL is always a CDW.

with Qr(n, λ) ≡ 2π (rn− 2/λ) and r ∈ N. Here, U ≡ πnUΛ2/2, where Λ
is a cutoff that fixes the energy scale of the initial Hamiltonian [10, 11].
The term Qr in Eq. (7.5) is responsible for a possible competition between
two lengths scales: the interparticle distance 1/n and the lattice period
λ/2. We can then distinguish two different situations: a commensurate one
with Qr = 0, where the length-scales do not compete, corresponding to
the condition 2/(λn) = p ∈ N, and an incommensurate one with Qr 6= 0,
where a competition is present.

In all commensurate cases 2/(λn) = p ∈ N, the most relevant term
due to the optical lattice in (7.5) in the renormalization-group sense is Up.
Keeping only this term, the system becomes equivalent to a sine-Gordon
model [10, 11], where the scaling dimension of the cosine operator is af-
fected by the interparticle interactions through K and by the optical lattice
through U . For p > 1 we then expect that for weak interactions and small
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depth of the optical lattice the cosine term in (7.5) is irrelevant and the TLL
liquid is preserved, with correlation functions decaying polynomially as
in (7.3). However, when the cosine term is relevant, we have a non-zero
expectation value 〈cos[p

√
4πφ(x)]〉 6= 0 and the system is pinned on the

lattice. This pinning corresponds to the breakdown of TLL and to the for-
mation of a lattice solid, or Mott insulator (MI), with particles localized at
individual sites of the lattice, every p lattice sites. In this phase, the excita-
tion spectrum is gapped and the off-diagonal correlation function decays
exponentially. Using Berezinskii-Kosterlitz-Thouless (BKT) scaling near
criticality [10, 11], we find that for each p the gapped phase occurs for

2 + UL > Kp2, (7.6)

with UL ≡ U/ER . 1. Eq. (7.6) is remarkable in that it shows that power-
law interactions make possible the realization of an infinite series of gapped
phases at lattice filling less than one [Fig. 8.1(b1) for p = 3]. The case p = 1
is peculiar as Eq. (7.6) is always satisfied, implying a lattice solid for a
vanishingly small UL. The cascade of solids with p ∈ N corresponds to a
quantum version of a Devil’s staircase structure, where large kinetic ener-
gies of order of ER prevent the formation of ordered states where the aver-
age interparticle distance is not constant. This is in contrast to the classical
Devil’s staircase of the Frenkel-Kontorova model [177, 178], where com-
mensurability is also allowed for rational fillings r ∈ Q 6= N. Evidence
of this classical case have been recently found in the deep lattice limit of
Refs. [179, 158] for β = 3, in 1D and 2D.

Equation (7.6) shows that a gap is favored by high densities, strong
interactions and finite (small) lattice depths. For UL < 1 a good estimate
for the gap ∆ is given by [78]

∆ =
8√
π

Γ[ πK
(4−2K)

]

Γ[2+K(π−1)
4−2K

]

(

K2UL

16

Γ[1 − K
2
]

Γ[1 + K
2
]

)
1

2−K

. (7.7)

When K is close to 1/p2, ∆ approaches the massive fermion limit ∆ ∼ U/2
recently observed for p = 1 with contact interactions [61] (see Chapter 2
for details), whereas close to the BKT transition it closes exponentially. In
the vicinity of the BKT transition excitations are of the soliton/antisoliton
type, which in the massive fermion limit correspond to weakly repulsive
particles and holes, Fig. 8.1(b2). In contrast to contact interactions, power-
law interactions allow one to tune the sign of the soliton-antisoliton inter-
actions from repulsive (K > 1/p2) to attractive (K < 1/p2), giving rise to
soliton-antisoliton bound states called breathers [Fig. 8.1(b3)]. These excita-
tions are confined in space but oscillatory in time, and are stable solutions
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7.1. Single wire with long-range interactions

KRb RbCs LiCs 52Cr2
164Dy2

166Er2

UL(1) 0+ 0+ 0+ 0+ 0+ 0+

UL(1/2) 0.8 0+ 0+ 1.9 1.5 1.7
UL(1/3) - 1.4 0+ - - -

Table 7.1: Minimal lattice depth UL(1/p) for a lattice solid at filling 1/p, for
groundstate polar molecules (KRb, RbCs, LiCs) and magnetic Feshbach
molecules (52Cr2,164Dy2,166Er2); an arbitrarily small periodic potential pins
the TLL for 0+. Lattice depths with UL(1/p) & 2, where the sine-Gordon
picture breaks down (see Chapter 2), are not considered.

of the equations of motion for the sine-Gordon model [10, 11]. The number
of breather excitations is N = 2(1/K − 1), with energy

Mb(n
′) = 2∆ sin[πn′/(4/K − 2)], n′ ≤ N . (7.8)

For K < 1/(2p2) breathers are the lowest-energy excitations, qualitatively
changing the spectrum of the insulating phase with respect to the familiar
case of contact interactions. Strong power-law interactions will allow for
an unambiguous observation of this localized topological excitations, with
applications ranging from Josephson junctions to conjugated polymers,
see below [183, 184]. In the vicinity of commensurate fillings (p ∈ N),
the system exhibits a gap as long as the energy shift due to Qr 6= 0 re-
mains small with respect to K∆/2, the energy required to add a particle:
this ensures stability of the phases above with respect to small density
changes. Above a criticalQc a commensurate-incommensurate phase tran-
sition takes place from an insulator to a gapless phase, similar to contact
interactions [185, 61]. For generic values of Qr 6= 0, the TLL is stable.

Figure 7.2(a) shows the commensurate phase diagram for the case of bosonic
particles with dipole-dipole interactions β = 3 as a function of the lattice
filling 1/p = nλ/2 and the strength of interactions R3. The lattice depth
is UL = 0.1. For each p ∈ N, the BKT quantum phase transition occurs at
the position of the dot along the continuous line, while dots on the dashed
lines characterize crossovers. The regions denoted as MI1 and MI2 cor-
respond to MI with soliton/antisoliton and breather excitations, respec-
tively, and the dashed line signals the crossover for K = 1/(2p2). Panel (b)
shows the transition between the TLL and solid behavior as a function of
the lattice depth and nR3 for the case of p = 3. The phase diagram for fer-
mionic particles is identical to Fig. 7.2, except that the TLL phase is always
a CDW. Phase diagrams for β 6= 3 look qualitatively similar to Fig. 7.2.
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Figure 7.3: (a) TLL parameter K vs the dimensionless interaction strength
nβ−2Rβ for dipolar interactions β = 3. Line: analytic result Eq. (7.4). Squares
and dots: quantum Monte-Carlo (QMC) results of Refs. [174] and [176], respec-
tively. Inset: K vs nβ−2Rβ with β = 2. Continuous line: Eq. (7.4). Dashed line:
exact Calogero-Sutherland model. (b) TLL velocity v vs nR3 for β = 3, with
v0 ≡ ~/(

√
2mR3). Line and dots: analytic and QMC results of Ref. [175], respec-

tively.

In Table 7.1 we list the estimated minimal lattice depth necessary to
realize a MI with filling 1/p, for a few groundstate polar molecules. In
addition, we report estimates for magnetic Feshbach molecules, where the
magnetic dipole moment is taken as twice the atomic one [186]. The re-
alization of insulating states with, e.g., p = 2 will help stabilize highly-
excited Feshbach molecules against three-body recombination, opening
the way to the realization of strongly-correlated lattice phases.

7.1.2 Analytical expression for K

For UL = 0, Eq. (7.1) describes an effective, strictly one-dimensional, scale
invariant theory, dependent only on nβ−2Rβ at all length/energy scales.
After rescaling, dimensionless interactions read V (y ≡ rn) = Rβn

β−2/yβ,
and ultraviolet divergences in Eq. (7.1) can be treated by introducing a
dimensionless cut-off A [10, 11]. We choose A such that V (y) ∝ (y +
A)−β, so that scale-invariance is preserved explicitly: the shape of the reg-
ularized potential is independent of Cβ and n. We can now fix A self-
consistently in the effective 1D theory, as follows [consistency with the
microscopic derivation of (7.1) implies A/n & (Cβ/~ω⊥)1/β]. We com-
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7.1. Single wire with long-range interactions

pute K analytically in the strong- (nβ−2Rβ ≫ 1) and in the weak-coupling
(nβ−2Rβ ≪ 1) limits as Ks = π/[β(β + 1)ζ(β)Rβn

β−2/2]1/2 [175] and Kw =
(1+nβ−2RβṼ (0)/2π)−1/2 [10, 11], respectively, with Ṽ (0) = A1−β/(β−1) the
Fourier transform of V (y) at zero-momentum, and ζ the Riemann Zeta-
function. Due to the similar functional dependence, we then fix A =
[β(β − 1)(β + 1)ζ(β)/π]1/(1−β) by matching Kw = Ks for nβ−2Rβ ≫ 1 and
obtain the approximate Eq. (7.4) 1.

Expression (7.4) compares favorably with known exact results. In Fig. 7.3(a)
(Inset) we compare it to the exact expression KCS = 2/(1 +

√
1 + 2R2)

for β = 2, which we derive from the Bethe-Ansatz solution of the CS-
model [187, 188]. We find quantitative agreement between the two curves
for the entire range of interaction strengths 0 < R2 ≤ 100, with a maximal
relative difference of about 5% at R2 ≃ 1, and recover the n-independence
of the CS model [187, 188, 189]. Furthermore, in the main figure we com-
pare K = 1/

√
1 + 0.73nR3, as derived from Eq. (7.4) for β = 3, to the

numerical quantum Monte-Carlo results of Refs. [174] and [176] (black
squares and red dots, respectively), finding good agreement for 0 < nR3 ≤
1000. In panel (b), we also plot the velocity v in the same range of nR3 val-
ues, finding excellent agreement with the results of [174]. This fixes the
phenomenological parameters in the effective Hamiltonian (8.2). We are
not aware of exact results for β > 3 to compare with our predictions.

The extension of the techniques described here to several species will
enable a microscopic treatment of strongly correlated phenomena in mix-
tures of polar molecules in single- and multi-tube configurations, as rele-
vant to experiments [153], in particular exotic phases such as bond-ordered
density waves and trimer liquids.

1This fails for the Coulomb case [162] [ζ(β) not defined], with the cut-off usually fixed
by the microscopic theory.
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Chapter 8

Two-leg dipolar ladder: quasi-1D
crystals and exotic bound states.

We investigate the pairing and crystalline instabilities of bosonic and fer-
mionic polar molecules confined to a ladder geometry[190, 191]. By means
of analytical and quasi-exact numerical techniques, we show that gases of
composite molecular dimers as well as trimers can be stabilized as a func-
tion of the density difference between the wires. A shallow optical lattice
can pin both liquids, realizing crystals of composite bosons or fermions.
We show that these exotic quantum phases should be realizable under cur-
rent experimental conditions in finite-size confining potentials.

8.1 Introduction

The confinement of groundstate polar molecules to low-dimensional ge-
ometries combined with their polarization using external fields opens the
possibility of studying novel inter-molecular pairing mechanisms associ-
ated with dipole-dipole interactions in a setup where collisional losses are
suppressed[153]. This has lead to the prediction of several novel quantum
phases in coupled two-dimensional (2D) layers as well as one-dimensional
(1D) wires, such as spontaneous 2D inter-layer superfluidity, analogous
to bi-exciton condensation, and molecular 1D polymers. One question
is whether these pairing mechanisms, which in their basic form rely on
the pairing of two dipoles separated by a confining potential, can be gen-
eralized to complex multi-molecular structures and whether these few-
molecule structures can be stabilized in finite-density many-body phases.

In this Chapter we focus on the physics of polar molecules confined
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exotic bound states.

Figure 8.1: Panel a: typical configuration of a two-leg ladder. Panels b-d:
cartoons of phases discussed in the text: DC(b), DL(c) and TL(d)(see text).
(e-f) Density distributions n1(black, darker) and n2(red) of a trapped gas
with K = 0.03, t2 = 0.01, d1 = 3 = 6d2, g = λ/2. e: n2 = 2n1 = 12, f:
n2 = 2n1 + 2 = 14 respectively; as a reference, blue points denote 2n1.
L = 60 denote the trap center.

to two coupled 1D wires, under realistic conditions where the number of
molecules can very across the tubes. This situation leads to a rich phase
diagram, which we describe entirely. We find that: (i) when tubes are
identical, a two-body bound state is always present and responsible for
realizing dimer liquids, similar to 2D [192, 193]. However, in general, few-
body pairing across the tubes is favored for any rational ratio of popula-
tions between the tubes P = p/q, with p, q ∈ N, which is a set dense
between ]0, 1]. In particular, we prove that a gas of trimers, composite
bosons or fermions involving two particles on one tube and one in the
other, can be realized in state of art experiments with cold polar molecules.
Crucially, repulsive intra-tube interactions as well as negligible inter-tube
tunneling ensure collisional stability. These dimer and trimer liquids can
then be pinned by a weak period potential, which can stabilize a quasi-1D
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8.2. Model Hamiltonian

composite crystal with long-range diagonal order (TLRO). In general one
would expect that these exotic bound-states and the ensuing few-body liq-
uids to be unstable under realistic conditions where particles are confined
by finite-size harmonic potentials. Surprisingly, we find that in the pres-
ence of confining potentials the gases realize stable wedding-cake struc-
tures of few-body composite molecules with different numbers of parti-
cles per macro-molecule. These structures are found to be robust against
small fluctuations in the populations in the various tubes.

8.2 Model Hamiltonian

Our starting point is the Hamiltonian H =
∑

αHα + H12 describing the
dynamics of molecules in the configuration of Fig. 8.1, with α = 1, 2 and
Hα the single-wire term

Hα =

∫

dx ψ†
α(x)

[

− ~2

2mα
∂2

x + Uα(x)

]

ψα(x) (8.1)

+
d2

α

8π

∫

dx dx′
1

|x− x′|3nα(x)nα(x′),

and H12 = (d1d2)/(8π)
∫

dxdx′V (x−x′)n1(x)n2(x
′) the inter-wire coupling,

with V (x− x′) = [1− 3 cos2(θ)]/[g2 + (x− x′)2]3/2 showing a short-distance
inter-wire attraction. Here, mα, dα are the mass and the dipole strength
respectively, and ψα (ψ†

α) are fermionic or bosonic annihilation (creation)
operators, with nα(x) = ψ†

α(x)ψα(x); Uα(x) = Uα sin2(2πx/λ) represents
an underlying periodic potential, as usually provided by an optical lat-
tice [44] with wavelength λ and depth Uα; θ is the angle between particles
in different wires, with distance g, Fig. 8.1.

In the previous Chapter, it is shown that in the absence of an optical
lattice (Uα = 0) and of inter-wire interactions, the dynamics in each wire
is described by an effective Tomonaga-Luttinger liquid (TLL) theory [33]
with Hamiltonian [11, 10]

Hα =
~vα

2π

∫

dx
[

(∂xϑα(x))2/Kα +Kα(∂xφα(x))2
]

.

Here vα and Kα = (1 + 0.73nαRα)−1/2 are the effective sound velocity and
the TLL parameter, respectively[?], with Rα = mαd

2
α/(2π~2) the intra-wire

dipole length, and ϑα, φα represent long-wavelength density and phase
fluctuations[11, 10]. For finite interactions, Eq. (8.2) is then effectively de-
scribed by H =

∑

α Hα + H12, with H12 = Hf + Hb. Here, in the weak
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coupling regime and approximating the interwire interaction with its zero-
component Fourier transform[11, 10],

Hf = − d1d2

24g2π3

∫

dx∂xϑ1(x)∂xϑ2(x) (8.2)

is the quadratic forward-scattering part of the interactions [11, 10], and Hb

is the back scattering part, with a typical sine-Gordon-type (sG) form, to
be discussed below. As customary, the effect of Hf is to modify the ef-
fective parameters in the two coupled TLLs, while Hb can induce novel
pairing instabilities. Here, we first discuss the case of two identical (bal-
anced) coupled wires, and then the more general case of (unbalanced) wires
with different densities, molecular masses and interactions.

8.2.1 Balanced case

In the balanced case, the quadratic part
∑

α Hα + Hf of H can be diagonal-
ized by introducing standard charge and spin fields, ϑc,s = (ϑ1 ± ϑ2)/

√
2,

leading to a description in terms of coupled TLLs with effective parame-
ters Kc,s. For weak interactions we estimate

Kc,s = K1 [1 ∓ Γ12K1/v1]
−1/2 , (8.3)

with Γ12 = d2
1/(24π2~g2). The term Hb has the sG form

Hb ∝ −n
2
1d1d2

12g2π

∫

dx cos[2
√

2ϑs(x)], (8.4)

and, in agreement to Berezinskii-Kosterlitz-Thouless (BKT) theory [10], it
is relevant, thus opening a spin gap, ifKs < 1; this condition is always sat-
isfied in Eq. (8.3), showing that, similar to the 2D case, pairing of molecules
across the wires is always favored in 1D, even for an infinitesimally small
attraction between the wires with g, Rα ≪ n−1

α . The role of dipolar interac-
tions is evident in the charge sector: in contrast to models with attractive
contact interactions such as the Hubbard model[11, 10], here Kc can be
much smaller than 1; as an example, in the strongly interacting regime
nαRα ≫ 1, where dimers are well approximated by tightly-bound com-
posite particles with effective mass M = 2m and dipole strength D =
2d, Kc ≃ 2/(1 + 0.37nαRα)1/2. As a result, the many-body groundstate
shows a crossover from a dimer liquid (DL) with dominant pair correla-

tions D(x) = 〈ψ†
1,iψ

†
2,iψ1,i+xψ2,i+x〉 ∼ |x|−1/Kc for Kc > 1 to a charge-density

wave (CDW) with dominant density correlations G(x) = 〈nini+x〉 ∼ |x|−Kc
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Figure 8.2: Panel a: phase diagram in the balanced case with n1 = n2 =
1/5 in the deep lattice regime, g = λ/4. Green triangles, red circles and
blue squares denote DL, CDW and DC phases respectively; dashed and
dot-dashed lines are qualitative phase boundaries. Inset: scaling of ∆s

as a function of d for different populations and interwire distances: n =
1/5, g = 0.35λ (red squares), n = 2/5, g = λ/2 (green triangles) and n =
1/5, g = λ/2 (black circles). Panel b: suppression of D(x) with increasing
interaction. Here g = λ/4, n1 = n2 = 1/5 and d = 0.5 (DL), 1.3 (CDW) and
2.2 (DC) from top to bottom, thick lines; the dot-dashed line is an algebraic
references, 1/x25/4 .

for Kc < 1, ni = ni,1 + ni,2. In this regime the addition of a shallow lat-
tice potential commensurate with the dimer density immediately pins the
CDW, inducing a quantum phase transition to an insulating phase. Here
the lattice has the sG form[11, 10] (see the previous Chapter):

Hbc
OL ∝ n2

1d1d2

g2

∫

dx cos[2f
√

2ϑc(x)], (8.5)

with f ∈ N. BKT-scaling then shows that an insulating dimer crystal (DC)
is stabilized whenever the commensurability condition nλ/2 = 1/f is sat-
isfied and K < Kc = 4/f 2, forming a Luttinger staircase as illustrated in
Chapter 7; each DC is characterized by a periodic structure with one dimer
every f sites and is gapped.

We verify numerically these predictions in the deep lattice regime U/Er ≫
1, with Er the lattice recoil, where an appropriate description is given in
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terms of an anisotropic extended Hubbard model (AEHM) [145]:

Ĥ = −
∑

α,i

tα(c†α,icα,i+1 + h.c.) − 2d1d2

g3

∑

i

n1,in2,i +

+
∑

i<j

[

d1d2Vij(n1,in2,j + n2,in1,j) +
∑

α

d2
αnα,inα,j

(j − i)3

]

.

Here Vij describes the anisotropic part of the dipolar interaction, tα = 1
sets the energy scale. In the balanced case, dα = d and nα = n. The field
theoretical description of Eq. (8.6) in terms of continuum fields is equiva-
lent to the one in the limit of a shallow lattice given above, and we thus
expect a similar qualitative behavior. Figure 8.2 shows the phase diagram
for a commensurate density nα = 1/5, where the numerical data are ob-
tained using a quasi-exact Density-Matrix-Renormalization-Group tech-
nique [28, 29]. By fixing g = λ/4 and increasing d, we find first a crossover
from a TLL of dimers (DL) to a DCDW, and then a BKT-type pinning
quantum phase transition to a DC with nα = 1/5 (phase boundaries are
discussed in [194]). Examples of D(x) are plotted in panel (b) for all three
phases, where the dash-dotted line marks the transition from power-law
to exponential decay. We also calculate the spin gap ∆s, by performing a
finite-size scaling of ∆s(L) = EL(N,N)−EL(N+1, N−1), with EL(M,M ′)
the ground state energy at finite size L in the sector with n1 = M,n2 = M ′,
for different densities and g [Inset of panel (a)]. We find that a finite gap
is present in the entire phase diagram, as expected, although it is small for
weak interactions due to the BKT scaling ∆s ∝ exp[−βd2][10].

8.2.2 Unbalanced case

The unbalanced case presents unconventional instabilities. As shown in [123,
195], the Haldane expansion of density operators [33] in a two-component
TLL generates a infinite series of massive terms coming from different
combinations of vertex operators

Hb =
∑

p,q∈N

Gp,q

∫

dx cos[2x(pkF1 − qkF2) + 2(pθ1 − qθ2)],

where Gp,q are model dependent coefficients and kFα = πnα. With the ex-
ception of the simplest case p = q = 1, these terms are usually neglected
for two reasons: i) if the oscillatory factor Fp,q = pkF1 − qkF2 is non-zero,
they cannot contribute to the long-wavelength theory due to strong fluctu-
ations, whereas ii) when Fp,q = 0 for p+ q > 2 they are irrelevant from the
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renormalization group point of view due to their large scaling dimension.
However, we find that strong dipolar interactions drastically enhance the
effect of H[194], allowing the formation of multiparticle composites [123], or
multimers, made of one particle on the upper wire and κ particles on the
lower one. Analogous to the above discussion of dimers, the system may
behave as a multimer liquid, uniquely identified by the finite gap associ-
ated with the bound state formation and an algebraic decay of multimer
correlations

〈M†(0)M(x)〉, M = (ψ1)
κψ2, (8.6)

while the single-particle and dimer correlations D(x) decay exponentially.
To prove this, let us consider, e.g., a population n2 = κ ∗ n1, κ ∈ N in the
lower wire. In that case, the condition Fκ,1 = 0 is satisfied, and the more
relevant term in Hb has the sG form

Gκ,1

∫

dx cos[2(κϑ1 − ϑ2)]. (8.7)

Neglecting effective spin-charge interaction and collapse instabilities, we
expect a BKT transition from two TLLs to a multimer liquid when the ef-
fective spin parameter KM = (1 + κK1K2g/(κ

2K1 + K2))
−1, defined with

respect to the multimer field ϑM = (κϑ1 − ϑ2)/
√

2 is smaller than 1, which
suggests that very large interaction strengths are needed to stabilize mul-
timers with κ > 2. In the following, we thus investigate in detail the
possibility to stabilize a trimer liquid (TL), with n2 = 2n1. We consider
the lattice case of Eq. (8.6) with both interaction and hopping asymmetry,
quantified by the ratios d2/d1 and t2/t1.

A first hint on possible TL instabilities is provided by the binding en-
ergy of the three body problem, ∆B = limL→∞[EL(1, 1)+EL(0, 1)−EL(1, 2)].
Numerical results for three archetype cases are plotted in the inset of Fig.
8.3a, showing that ∆B > 0 up to a certain value of t2 which depends on
both d1 and d2. We have then investigated the t2 . 0.3 region for different
values of d1, d2 and density n2 = 1/5, 1/10 on systems up to L = 120 with
DMRG. The TL phase is characterized by an exponential decay of both

D(x) and single particle correlation function Cα(x) = 〈c†α,icα,i+x〉, whereas
the trimer correlator

T (x) = 〈c†1,ic
†
2,ic

†
2,i+1c2,i+x+1c2,i+xc1,i+x〉 (8.8)

decays algebraically, while when no correlation is exponentially suppressed
the systems behaves like a two-fold TLL(see Fig.8.3b-c). In addition, strong
asymmetry can lead to phase separation (PS) between high- and low-density
regions. The phase diagram for d1 = 6d2, n2 = 1/10 is plotted in Fig.8.3b(see

113



Chapter 8. Two-leg dipolar ladder: quasi-1D crystals and
exotic bound states.

0 0.3 0.6
10

-3

10
-2

10
-1

∆
B

8 x 32

10
-6

10
-2

64

b) c)

8 x 32 64

0 0.1 0.3 0.4t
2 

/t
1

0

1

2

PS

TL

2TLL

a)

Figure 8.3: Panel a: unbalanced numerical phase diagram for n2 = 2n1 =
1/10 at d1 = 6d2, g = λ/2: red points, yellow triangles and black squares
denote points in the TL, 2TLL and PS region; lines are guide for the
eye. Inset: trimer binding energy ∆B for different Hamiltonian parame-
ter (d1/t1, d2/t1) in linear-log scale as a function of t2/t1: red triangles (0.5,
3), blue squares (0.3, 1.8) and green circles (0.5,2). Panels b-c: correlation
functions T (x)(green squares), C1(x)(red triangles) and D(x)(black circles)
in a L = 120 sites system: TL(b; d1 = 3 = 6d2, t2 = 0.1) and TLL phase(c;
d1 = 2.4 = 6d2, t2 = 0.4).

also [194]): the TL extends in a broad region, and survives even with rel-
atively small interaction strength and interaction asymmetry; however, in
both cases small hopping rates t2 ≤ 0.2 are needed. In the strongly inter-
acting regime, phase separation occurs.

8.2.3 Effect of the trap

. The fate of these exotic bound states in a trapped system is, however, not
guaranteed. First of all, one needs to identify a proper local order param-
eter which can give evidence of a paired states. In the TL case, we found
that the quantity δni = 2n1,i − n2,i, which describes the matching between
the density of the majority component with respect to double the minority
one, provides a useful tool to distinguish between different phases in the
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inhomogenous system[194]. We have then performed DMRG calculations

introducing a trapping potential of the form Ĥtrap = (K/L2)
∑

i ni(L/2−i)2

for different values of K and t2 = 0.01, d1 = 3 = 6d2, checking what are
the required trap strength needed to stabilize a TL. The numerical results
show how a shallow trap strength of order K . 0.3 allows trimer to ap-
pear in the middle of the system: remarkably, the TL is stable even for not
exactly matched densities 2n1 6= n2, as can be inferred in Fig. 8.1 e-f (see
also [194]). In addition, the large effective mass of the trimers push them
towards the middle region, while dimers and single particles usually ap-
pear in the wings (Fig 8.1 f and [194]).
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Chapter 9

Magnetic phases with long-range
interactions: hidden order via
three-body losses

We study the emergence of several magnetic phases in dipolar bosonic
gases subject to three-body loss mechanism employing numerical simu-
lations based on the density matrix renormalization group(DMRG) algo-
rithm. After mapping the original Hamiltonian in spin language, we find
a strong parallelism between the bosonic theory and the spin-1 Heisen-
berg model with single ion anisotropy and long-range interactions. A rich
phase diagram, including ferromagnetic, antiferromagnetic and non-local
ordered phases, emerges in the one-dimensional case, and is preserved
even in presence of a trapping potential.

9.1 Introduction

Recent experimental advances in controlling ultracold gases of magnetic
atoms[146, 147] and polar molecules[154, 151, 153] have paved the way to
the investigation of several quantum many-body phenomena[145, 156].
These setups naturally provide anisotropic, long-range dipolar interac-
tions, which can be tuned and manipulated with high accuracy in order to
access the physics of spin systems[196] and Hubbard-like models[145, 156]
loaded into optical lattices[44]. Considerable theoretical efforts have fo-
cused on one dimensional geometry, where non-local interactions play a
fundamental role in stabilizing interesting phenomena such as supersolidity[197],
checkboard insulator[179] (see also Chapter 7) and insulating phases char-
acterized by non-local order parameters[126, 198].
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Furthermore, dissipative processes have emerged as an additional, rel-
evant source of interaction. Two-body losses have been successfully em-
ployed to engineer hard core interactions in molecular gases[92], thus lead-
ing to the stabilization of a Tonks-Giradeau gas, and three-body losses
have been proposed as a dynamical source of three-body interaction[93]
which stabilizes dimer-superfluidity[93, 199, 200], color-superfluidity (as
investigated in Chapter 5)and Pfaffian-like states[133, 201] with ultracold
atoms.

The aim of this Chapter is to investigate the interplay between local
(two- and three-body) and non-local interactions in low dimensional sys-
tems of ultracold dipolar bosons. We focus on a one dimensional geom-
etry, and find that the phase diagram of such systems strongly resem-
bles that of the spin-1 Heisenberg model with Ising-like and single ion
anisotropy [202, 22, 203, 204, 205], or λ−D model, extensively studied in
the past in the contest of one-dimensional spin chains. We present numer-
ical results on the phase diagram, which exhibits ferromagnetic, antifer-
romagnetic and hidden order phases, and finally discuss the stability of
these phases in presence of a trapping potential and density fluctuations,
as naturally present in cold atomic and molecular setups. Several of the
magnetic phases discussed do not require strong dipolar interactions, and
can thus be observed even with magnetic atoms, where dipolar interaction
is usually much smaller than any other relevant energy scale[145].

The chapter is organized as follows: in Sec. 9.2, we describe the paral-
lelism between constrained bosonic gases and spin systems and introduce
the Hamiltonian, which is then investigated by DMRG simulations and
strong coupling arguments in Sec. 9.3. In Sec. 9.4 we extend the numerical
simulations to the inhomogeneous case; finally, we draw our conclusions
in Sec. 9.5.

9.2 Bosonic Hamiltonian and λ-D model

Dipolar bosons confined in a one dimensional geometry and subject to a
deep optical lattice are generally described by the following Hamiltonian
[?]:

H = −t
∑

〈i,j〉

b†ibj +
U

2

∑

i

ni (ni − 1) + µ
∑

i

ni +

+ k
∑

i

(i− L/2)2ni + Λ
∑

i<j

ninj

(j − i)3
. (9.1)
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Here, b†i , bi, ni are bosonic creation, annihilation and number operator at
site i, the first line describes the standard Bose-Hubbard model, where t is
the hopping term between nearest neighbor sites and U the onsite inter-
action, and the last line includes trapping and long-distance dipolar po-
tentials. The hopping coefficient t varies with the depth of the underlying
optical lattice, whereas Λ can be tuned by varying the applied EC electric
field; finally, the onsite interaction U depends on the short-distance details
of the interparticle interaction[206] and, for magnetic atoms, can be con-
trolled by using Feshbach resonances[43]. The phase diagram of Eq. (9.1)
with U > 0 has been investigated in several regimes: at unitary filling,
a new insulating phase characterized by hidden order has been predicted
between a Mott insulator and a charge density wave[126, 198], whereas for
densities n̄ < 1 and strong repulsive interaction U ≫ t a devil’s staircase
of insulating phases appears as a function of the chemical potential[179].
However, the attractive regime U < 0 has so far been neglected. This
is partially due to the fact that losses given by strong three-body recom-
bination are enhanced in this regime, thus making a time-dependent de-
scription of the system more suitable in order to take into account dissi-
pative effects[207]. The situation can be though strongly simplified when
the decay rate γ3[93] associated with three-body loss processes is much
larger than the typical tunneling rate, i.e. γ3 ≫ t: in this regime, a mecha-
nism analogous to the quantum Zeno effect gives rise to an effective strong
three-body repulsion, which can be implemented in the Hamiltonian with

the additional condition (b†i )
3 = 0[93].

The opportunity to engineer strong three-body repulsion has then two
striking effects: i) the system is in general stable regardless of the sign of
the couplings U,Λ and ii) the onsite Hilbert space is reduced to |0〉, |1〉, |2〉,
thus resembling a spin-1 system. This correspondence is further clarified
after introducing spin-1 operators S+

i , S
−
i , S

z
i and performing the follow-

ing mapping:

ni = 1 − Sz
i , b†i = αS−

i + β(Sz
i S

−
i + S−

i S
z
i ) (9.2)

where α = (2 +
√

2)/4, β = −(2 −
√

2)/4 are fixed by commutation re-
lations, as described in appendix 9.5.1. From now on, we will consider a
fixed density n̄ = 1, then obtaining (fixing t = 1):

H = −
∑

<i,j>

S+
i S

−
j (J + J1S

z
i + J2S

z
j + J3S

z
i S

z
j ) + (9.3)

+ Λ
∑

i<j

Sz
i S

z
j

(j − i)3
+
U

2

∑

i

(Sz
i )

2 − k
∑

i

(i− L/2)2Sz
i
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Figure 9.1: : homogeneous phase diagram for dipolar bosons on an optical
lattice with three-body hard core constraint at filling n̄ = 1 (see text): tri-
angles, squares, diamonds, black and red points denote numerical results,
while the black dashed line describes an approximate strong coupling de-
scription for |U | ≫ J .

where the first line includes a nearest-neighbor exchange with J = α2−β2

and correlated exchange terms with J1 =
√

2β, J2 = 2β and J3 = 4β2,
which break particle-hole symmetry, as required for constrained bosons.

We notice that Eq. (9.3) is a generalization of the so called λ − D
model[202], extensively studied over the last two decades both from ana-
lytical and numerical points of view.

The spin-1 λ − D model presents a rich phase diagram: in addition
to ferromagnetic and antiferromagnetic (AFM) phases, in a broad region
of the parameter space competition between local and non-local inter-
actions favors the so-called Haldane phase (as expected for integer spin
chains[208, 209]), which displays a gap in the energy spectrum, a unique
ground state (at least in the thermodynamic limit, whereas it is four-fold
degenerate for chains of finite size), a finite correlation length, and thus
no long-range order even if it is possible to define suitable string correla-
tion functions that measure a hidden topological order. The spin liquid
picture introduced by Tasaki[22] provides a intuitive understanding of the
Haldane phase: let us assign the presence of an effective spin-1/2 particle
with spin pointing up (down) if at the i-th lattice site Sz

i = +1(−1) and
no particles if Sz

i = 0. The Haldane phase is then interpreted as a liquid
in which these effective particles carry no positional order along the chain
but still retain antiferromagnetic (AFM) order in their effective spins. The
positional disorder is associated with the absence of long-range order in
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9.3. Homogeneous phase diagram.

Figure 9.2: : cartoon of magnetic phases related to the model in Eq.(9.1,9.3):
from top to bottom, ferromagnetic, Haldane and Néel phase in bosonic
and spin language(see text).

the usual spin-1 correlation functions

Cα(j) = (−1)j〈Sα
i S

α
i+j〉 α = x, y, z (9.4)

whereas the spin-1/2 magnetic order that we would get if all the sites with
Sz

i = 0 were taken off from the chain is measured by the asymptotic value
of the string order parameters (SOP)[124]:

Oα(j) = 〈Sα
l e

iπ
P

l<k<j+l Sα
k Sα

l+j〉, α = x, y, z. (9.5)

As shown thoroughly by Kennedy and Tasaki [203] the λ−D model pos-
sesses an hidden (non-local) Z2 × Z2 symmetry, and the non-vanishing
values of the SOP can be understood as the breaking of such a symmetry.

9.3 Homogeneous phase diagram.

In order to exploit a complete parallelism between Eq. (9.3) and the λ−D
model, we investigate its phase diagram in the homogeneous case, k = 0,
by means of numerical simulations based on the density-matrix renormal-
ization group (DMRG) algorithm [28], truncating the dipolar interaction
up to fifth-nearest-neighbors [210]. Let us summarize the main results, as
schematically presented in Fig. 9.1: the Λ > 0 region displays i) an antifer-
romagnetic Néel-like phase (NP), where doubly occupied sites alternate
with empty ones in a periodic pattern, ii) an Haldane insulator phase (HI),
where doubly occupied and empty sites are separated by strings of sin-
gle occupied ones[126, 211](see Fig. 9.2), and iii) two superfluid phases,
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Figure 9.3: : superfluid correlations in double logarithmic scale as a func-
tion of the distance from the middle in a L = 120 chain. Red (dashed)
and black (thick) lines represent DSF and SF phase respectively, with
U = −6.5,Λ = 0 and U = −3,Λ = 0.05.

in which the superfluid components are single bosons (SF) and dimers
(DSF) respectively. In the Λ < 0 regime, both superfluid phases collapse
beyond a critical value of Λ into a ferromagnetic phase (FP), where the
mutual attraction between bosons gives rise to a region of constant den-
sity n̄ = 2. The system thus displays all phases and phase transitions of the
λ−D model with attractive single-ion anisotropy; there are however some
quantitative differences. First, both SF and DSF, which correspond to the
XY phases in spin language, extend on a broad region around Λ = 0 due to
the presence of correlated hopping terms which disadvantage long-range
order. In addition, the HI region is present even at larger Λ, as expected
due to long-range frustration of dipolar interactions with respect to anti-
ferromagnetic ordering[126].

Different phases are uniquely characterized by the asymptotic decay of
correlation functions[212]. In the SF phase, both single particle and dimer
superfluid correlations

B(j) = 〈b†ibi+j〉 ∝ Cx(j), D(j) = 〈(b†i)2(bi+j)
2〉 (9.6)

decay algebraically; by contrast, in all other phases B is exponentially
suppressed, whereas D decays algebraically in the DSF phase, as can be
seen in Fig. 9.3. Magnetic phases are instead characterized by a non-
vanishing asymptotic value of certain correlation functions: in the HI, both
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Figure 9.4: : magnetic order parameters in double logarithmic scale as
a function of the distance from the middle in a L = 120 chain. Black
(dashed), red (thick) and green (dot-dashed) represent (U = −3,Λ =
0.05), (−3, 0.7), (−3, 1.3) respectively.

Ox,Oz decay to a constant at long distances while Cz vanishes exponen-
tially, whereas in the NP Ox decays exponentially and Oz, Cz are constant.
All magnetic order parameters decay at long distances in both SF and DSF
phases. Correlation functions have been computed by analyzing systems
of size L=60, 80, 100 and 120 sites, with up to 600 states per block, 4 sweeps
and open boundary conditions. Fig. 9.4 describes typical decays in the SF
(black, dashed), HI (red, thick) and NP (green, dot-dashed) of the mag-
netic order parameters.

Haldane insulator - Néel phase . Any one of the pairs {Cz,Oz}, {Cz,Ox}
or {Ox,Oz} can be used to give an accurate description of the HI-NP bound-
ary: from Figs. 9.5, 9.6, it can be inferred that the bulk asymptotic behavior
of these correlators is well described already for L = 60. This feature is not
surprising, considering that in the λ−D model this transition is believed to
belong to the Ising-type universality class[205]. However, the same cannot
be said when considering the other phase transitions present in the model.

Superfluid - Dimer superfluid . The SF-DSF phase transition corresponds
to a level crossing in the spectrum between excitations with Sz = ±1 and
Sz = ±2, with finite size gaps ∆1 and ∆2 respectively [205]. This condition
stems from the fact that, beyond a critical attraction −Uc(Λ) ≫ J , a fi-
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Figure 9.5: Cz(x) correlation function at the HI-NP boundary for chains
of different lengths L = 60, 80, 100, 120, panels a,b,c and d respectively;
correlations are taken with respect to the center of the chain. Here, U = −3,
and, from top to bottom, Λ = 1.1 (orange), Λ = 1.05 (blue), Λ = 1 (green),
Λ = 0.95 (red) and Λ = 0.9 (black).

nite energy is required to break dimers, and thus exciting the system in the
Sz = ±1 sector would become energetically unfavorable. We determine
the phase boundary (marked by blue diamonds in Fig. 9.1) by calculating
finite size gaps

∆α=1,2(L) =
E(N + α;L) + E(N − α;L) − 2E(N ;L)

2

for periodic chains of several lengths and then by imposing that, at the
phase transition, the condition limL→∞(∆1(L) − ∆2(L)) = 0 is satisfied; a
typical set of data for Λ = −0.1 is presented in Fig. 9.7.

Superfluid - Haldane insulator and Dimer superfluid - Néel phase . Fi-
nite size calculations are also useful to better shape the SF-HI and DSF-NP
transitions, which, in analogy with the λ−D model[213, 214, 215], should
belong to the Berezinskii-Kosterlitz-Thouless (BKT) universality class[12],
albeit the non trivial nature of non-local interaction can in principle lead
to different critical behaviors. BKT transitions are usually hard to deter-
mine due to the exponential opening of the gap; however, string order
parameters have been shown to provide a rather accurate estimate of the
transition points[213, 215]. In the following, we consider systems with pe-
riodic boundary conditions, in order to avoid boundary effects, with up
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Figure 9.6: String correlator Ox(x) at the HI-NP boundary for chains of
different lengths L = 60, 80, 100, 120, panels a,b,c and d respectively; cor-
relations are taken with respect to the center of the chain. Here, U = −3,
and, from top to bottom, Λ = 0.9 (black), Λ = 0.95 (red), Λ = 1 (green),
Λ = 1.05 (blue) and Λ = 1.1 (orange).

to L = 42 sites, and calculate the string order parameter from the first to
the L/2 + 1 site, Oz(x − x′ = L/2), which represents a suitable order pa-
rameter for both SF-HI and DSF-NP transitions[205]. Then, we estimate its
asymptotic value C1 by fitting the datas with the following scaling form:

Oz(L/2) = C1 +
C2

LC3
. (9.7)

This method has been successfully employed to study the same transition
in the λ − D model within an exact diagonalization approach[213]. The
usual error of this procedure is related to the DMRG truncation error, al-
ways smaller than 3 ∗ 10−5, and to the algebraic fit [106]: by employing
numerical datas with 20 ≤ L ≤ 42, we then estimate that the asymptotic
value C1 is non-vanishing within numerical error as long as C1 > 0.005. A
typical example of the estimate of C1 is described in Fig. 9.8, where differ-
ent datas are presented for U = −0.8, 0.1 ≤ Λ ≤ 0.5. In Fig. 9.9, we plot C1

as a function of both U (fixing Λ = 0.1, 0.2, 0.3) and Λ (fixing U = −0.8,−2);
the asymptotic value of the string order parameter increases with both Λ
and |U |. The corresponding transition points are marked by red triangles
in Fig. 9.1.
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Figure 9.7: Left panel: dependence of ∆ = ∆1 − ∆2 on U for Λ = −0.1
and different chain lengths: L = 8 (black circles), L = 12 (red squares),
L = 16 (green stars), L = 20 (blue diamond) and L = 24 (orange triangles).
Dashed lines are guides for the eye. Right panel: critical value of the SF-DSF
transition as a function of 1/L for Λ = −0.1; circles represent numerical
datas, line is a best fit of the type a1 + a2/L+ a3/L
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Figure 9.8: Finite-size scaling of Oz(L/2) for U = −0.8 by using Eq. (9.7)
(see text). From top to bottom: Λ = 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15 and
0.1.

Ferromagnetic phase - Superfluid . A clear evidence of the FP-SF tran-
sition emerges instead when the ground state energy density EGS(L) ap-
proaches the exact value for ferromagnetic states EFP in the thermody-
namic limit[205]. The transition line, marked by black dots in Fig.(9.1), is
obtained by requiring that limL→∞ EGS(L) = EFP .

9.3.1 Strong coupling regime

In the large |U | regime, the quantitative difference between dipolar and
nearest-neighbor(NN) interaction can be investigated with a perturbative
argument. If |U | ≫ |Λ|, J , the effective Hilbert space is reduced to Sz = ±1,
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Figure 9.9: Left panel: string order parameter C1 for U = −0.8,−2 (black
circles and red squares respectively) as a function of Λ. Right panel: C1 for
Λ = 0.1, 0.2, 0.3 (black squares, red diamonds and blue circles respectively)
as a function of U . In both panels, lines are guide for the eye.

that is, bosons are tightly bound in dimers, so that we can map the spin-1
problem into a spin-1/2 theory employing the following identities[214]:

Sz
i = 2sz

j , S+
j S

+
j = 2s+

j , S−
j S

−
j = 2s−j (9.8)

S+
j S

−
j = 2(1/2 + sz

j ), S−
j S

+
j = 2(1/2 − sz

j ) (9.9)

where ~s is a spin-1/2 operator. After a proper rescaling, the strong cou-
pling Hamiltonian including only NN interaction is mapped into a spin-
1/2 XXZ chain:

Hsc =
∑

<i,j>

(s+
i s

−
j + (1 − ∆)sz

i s
z
j), ∆ = −2/Λ|U |. (9.10)

From the exact solution of Eq.(9.10)[216], we argue that the system is in
a DSF phase as long as − 2

|U |
≤ Λ ≤ 0; the DSF-FP and DSF-NP transi-

tions are located at Λ
(c)
NN = − 2

|U |
, 0 respectively. We can now compare this

criterion, derived considering only NN interactions, with the numerical
one, obtained from DMRG as previously described. The DSF-FP transition
(black dashed line in Fig.9.1 ) is then predicted at −Λ ≃ 2/|U |, whereas nu-
merical values (including dipolar interaction) for, e.g., U = −10, indicate
−Λ ≃ 1.75/|U |; in this regime, dipolar interactions show a small quantita-
tive difference with respect to standard NN couplings.

9.4 Effect of a trapping potential.

The observation of the different magnetic orders discussed above in a stan-
dard cold atom experiment is strictly related to the possibility of stabiliz-
ing these phases even in an inhomogeneous background. In fact, atoms
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and molecules are loaded into a trapping potential, which introduces a
position-dependent term in the Hamiltonian with a minimum at the trap
center, namely, the first term in the second line of Eq.(9.1). In this setup,
another energy scale comes into play; particles will try to minimize their
potential energy by concentrating in the middle of the trap, thus display-
ing a strong spatial dependence of the local density 〈ni〉. This feature is
in sharp contrast to the ideal configuration needed to realize the magnetic
phases described above, all of them requiring a constant density in the
thermodynamic limit. Our goal here is to investigate what are the proper
trap configurations needed to stabilize a magnetic phase in this inhomo-
geneous setup: in particular, we will focus our attention to the region in
the middle of the confining potential, where it is usually easier to create
large regions of space at constant density[44, 217]. First of all, let us briefly
discuss what happens the in the FP: in analogy to a standard Mott-like
phase[44], it can always be realized by considering a sufficiently strong
trap such that the density is maximized in the middle, 〈ni〉 = 2. This sim-
ple argument cannot be extended to neither HI or NP: in fact, a very strong
trap will simply destroy these types of order. In this section, we will thus
focus on the stability of these two orders in presence of a trapping poten-
tial.

We identify a certain magnetic order in a region of space by requiring
that i) the region is at constant density, 〈ni〉 = 1, and ii) the proper order
parameters with respect to the middle of the trap, defined as:

Oα=x,z(L/2, j) = 〈Sα
L/2e

iπ
P

L/2<k<j+L/2 Sα
k Sα

L/2+j〉 (9.11)

Cz(L/2, j) = (−1)j〈Sz
L/2S

z
L/2+j〉 (9.12)

where j is the distance from L/2, behave as expected in the HI or in the
NP up to a certain range. We performed DMRG simulations on a L = 80
sites chain, fixing as energy unit for the trapping potential k∗ = 1/(L/2)2 =
1/1600, and kept as much as 600 states per block with 10 finite-size sweeps
[28]. Since a trapping potential favors a configuration where the particles
are in the middle of the chain, we focused on a N = 40 particles system:
this assures that the density close to the chain boundary rapidly goes to
zero, thus avoiding possible finite-size effects and, at the same time, allows
for a constant density of order 1 in the middle of the system.

9.4.1 Haldane order

We start our treatment by considering the possibility to stabilize hidden
order in an inhomogeneous system. As a sample configuration, we fixed
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Figure 9.10: : density distribution as a function of the distance from the
trap center for U = −2.5,Λ = 0.9. Top panel: fixed population N = 40 and
different trap strength k = 7.5k∗ (black, dotted), 8.5k∗ (red, thick), 9.5k∗

(green, dashed) and 10.5k∗ (blue, dot-dashed). Bottom panel: fixed trap
strength k = 9k∗ and different populations: N=36 (black, dot-dashed), 38
(red, dashed), 40 (green, thick), 42 (blue, dot-dot-dashed) and 44 (orange,
dotted).

U = −2.5,Λ = 0.9 such that the corresponding homogeneous phase at
integer filling is an HI. In a very shallow trap, the non-local interparticle
repulsion would drive the system in a very dilute limit with 〈ni〉 < 1 all
over the trap, whereas in the opposite strong trap limit, an high density
region with 〈ni〉 > 1 would be stabilized in the middle. We shall then
focus on an intermediate regime in order to satisfy the density requirement
〈ni〉 = 1 needed in the HI.

In Fig. 9.10, upper panel, we plot the density distribution as a function
of the distance from the trap center for different values of k, 7.5 ≤ k/k∗ ≤
10.5: the requirement 〈ni〉 = 1 is satisfied for values of the trap strength
inside the interval 8.5 ≤ k/k∗ ≤ 9.5. In order to verify whether hidden
order is present or not, we plot the relevant magnetic order parameters as
defined in Eqs. 9.11, 9.12 in Fig. 9.11; in the interval 8.5 ≤ k/k∗ ≤ 9.5,
the string order parameter Oz is constant up to a certain distance from the
trap, and at the same time Cz decays, then proving that particles close to
the trap center display HI; outside of the constant density region, the order
is lost, as can also be seen by looking at Oz.

However, while an accurate fine tuning of the trap strength does not
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Figure 9.11: : magnetic order parameters Cz(L/2, j) (top panel) and
Oz(L/2, j) (bottom panel) as a function of the distance from the trap cen-
ter for U = −2.5,Λ = 0.9, N = 40 and different values of k: k = 7.5k∗

(black, dotted), 8.5k∗ (red, thick), 9.5k∗ (green, dashed) and 10.5k∗ (blue,
dot-dashed).

present major difficulties in a typical experimental setup, a proper con-
trol over populations in a tube is challenging, and it is thus instructive
to investigate small population unbalance with respect to the previous
N = 40 case. In Fig. 9.10, lower panel, we plot the density distribution
at a fixed trap strength k = 9k∗ for different total number of particles
N = 36, 38, 40, 42 and 44, while the corresponding order parameters are
plotted in Fig. 9.12. We notice that the Haldane phase is unstable when
N ≥ 42 since too many particles concentrate in the middle of the trap,
whereas it is stable for N ≤ 40; we can then conclude that a large popula-
tion difference of order δN ∼ 0.1 prevents the HI phase to stabilize in the
center of the trap.

9.4.2 Antiferromagnetic ordering

We turn now our attention to the NP by fixing U = −4,Λ = 1.5. As al-
ready discussed for the HI, a very shallow trap is not sufficient to stabilize
antiferromagnetic order in the trap due to density requirements, whereas
a too strong trap would prevent it by concentrating too many particles in
the trapping potential minimum. The density distribution as a function of
the trap strength in the interval 5 ≤ k/k∗ ≤ 20 is presented in Fig. 9.13,
upper panel; a large region with 〈ni〉 = 1 is stable in the middle as long as
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Figure 9.12: : magnetic order parameters Cz(L/2, j) (top panel) and
Oz(L/2, j) (bottom panel) as a function of the distance from the trap cen-
ter for U = −2.5,Λ = 0.9, k = 9k∗ and different number of particles N=36
(black, dot-dashed), 38 (red, dashed), 40 (green, thick), 42 (blue, dot-dot-
dashed) and 44 (orange, dotted).

k > 5k∗, and, remarkably, the size of this region increases with increasing
k, including up to 30 particles when k = 20k∗. The corresponding mag-
netic order parameters are plotted in Fig. 9.14; both Cz and Oz are constant
in the middle of the trap as long as k > 5k∗, and their plateau extends all
over the constant density region.

Small changes in the total number of particles do not alter this picture
significantly. In Fig. 9.13, lower panel, we plot the density distribution
at a fixed trap strength k = 12k∗ and different total number of particles
N = 36, 38, 40, 42; a constant region in the middle of the trap is always
present and, in addition, it displays antiferromagnetic correlations, as can
be inferred from the magnetic order parameters presented in Fig. 9.15.

We can then conclude that, while both the HI and NP are incompress-
ible, the former requires a finer tuning of the trapping potential and a more
accurate control of the population of the system in order to be stabilized
in the centre of the trap.

9.5 Conclusions

We have investigated the effect of a three-body hard-core constraint in a
one dimensional system of dipolar bosons such as magnetic atoms or po-
lar molecules confined in a one dimensional tube by optical lattices. After
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Figure 9.13: : density distribution as a function of the distance from the
trap center for U = −4,Λ = 1.5. Top panel: fixed population N = 40 and
different trap strength k = 5k∗ (black, dotted), 7k∗ (red, thick), 9k∗ (green,
dashed), 11k∗ (blue, dot-dashed) and 20k∗ (orange, dot-dot-dashed). Bot-
tom panel: fixed trap strength k = 12k∗ and different populations: N=36
(black, dot-dashed), 38(red, dashed), 40 (green, thick) and 42 (blue, dot-
dot-dashed).
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Figure 9.14: : magnetic order parameters Cz(L/2, j) (top panel) and
Oz(L/2, j) (bottom panel) as a function of the distance from the trap cen-
ter for U = −4,Λ = 1.5, N = 40 and different values of k: k = 5k∗ (black,
dotted), 7k∗ (red, thick), 9k∗ (green, dashed), 11k∗ (blue, dot-dashed) and
20k∗ (orange, dot-dot-dashed).

132



9.5. Conclusions

10
0,01

0,1

1C

10 j
0,01

0,1

1O

z

z

Figure 9.15: : magnetic order parameters Cz(L/2, j) (top panel) and
Oz(L/2, j) (bottom panel) as a function of the distance from the trap cen-
ter for U = −4,Λ = 1.5, k = 12k∗ and different number of particles: N=36
(black, dot-dashed), 38(red, dashed), 40 (green, thick) and 42 (blue, dot-
dot-dashed).

mapping the original problem in spin language, a strong parallelism be-
tween the system and the λ − D model is established and confirmed by
DMRG calculations; we have shown that ferromagnetic, antiferromagnetic
and hidden orders can be stabilized in this framework, and that dipolar
interactions give rise to small quantitative changes in the phase diagram
with respect to more usual nearest-neighbor interactions.

Finally, we have considered the effect of a confining potential, as usu-
ally present in cold atomic gas experimental setups. Remarkably, both HI
and FP can be stabilized in a large region in the middle of the trap even
if the total population is not exactly controlled; the realization of the HI
needs however an appropriate trap tuning. This feature opens up the pos-
sibility to observe strongly correlated phases in cold gases of magnetic
atoms such as Dy, Cr or Er[146, 145], which are usually characterized by
relatively small dipolar interactions. All of these phases can be probed
via noise correlations[218], or, in the HI case, via Bragg spectroscopy[126]
or in-situ imaging[219, 217]. Finally, this setup can be adapted to inves-
tigate spin-1 Heisenberg-like models in 2-D systems, where various in-
teresting phases such as field induced supersolidity have been recently
suggested[220] or else extended in order to consider the effect of disorder
in such systems.
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9.5.1 Addendum: constrained bosons - spin-1 mapping

The constraint
(

b†
)3 |0〉 = 0 allows us to make the following correspon-

dence between the reduced bosonic Hilbert space and that of a spin-1

|0〉 → | ↑〉 |1〉 → |0̃〉 |2〉 → | ↓〉 (9.13)

where | ↑〉, |0̃〉 and | ↓〉 are eigenstates of Sz with eigenvalues +1, 0 and −1
respectively. The corresponding operator mapping is:

b†b = 1 − Sz (9.14)

b = αS+ + β
(

SzS+ + S+Sz
)

(9.15)

where the coefficients α, β have to be determined by imposing the correct
action on the Hilbert space and commutation relations. Verifying the for-
mer, we have:

b|0〉 = 0 [αS+ + β (SzS+ + S+Sz)] | ↑〉 = 0
b|1〉 = |0〉 [αS+ + β (SzS+ + S+Sz)] |0̃〉

=
(

α
√

2 + β
√

2
)

| ↑〉
(9.16)

b|2〉 =
√

2|1〉 [αS+ + β (SzS+ + S+Sz)] | ↓〉
=
(

α
√

2 − β
√

2
)

|0̃〉. (9.17)

It follows then

α + β =
1√
2

α− β = 1. (9.18)

Furthermore, if we write down the number operator in terms of spin-1
operators

b†b→ S = α2S−S+ + β2
(

S−SzS+Sz + S−SzSzS++

+ SzS−S+Sz + SzS−SzS+
)

(9.19)

+ αβ
(

S−S+Sz + 2S−SzS+ + SzS−S+
)

and we apply it to number eigenstates, we get:

b†b|0〉 = 0 S| ↑〉 = 0

b†b|1〉 = |1〉 S|0̃〉 = 2 (α + β)2 |0̃〉 = |0̃〉
b†b|2〉 = 2|2〉 S| ↓〉 = 2 (α− β)2 | ↓〉 = 2| ↓〉.

(9.20)
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We will now show that the operators defined by our mapping satisfy the
correct commutation relations. Since we are considering constrained bosons
the usual bosonic commutation relation becomes[221]

[

b, b†
]

= |0〉〈0|+ |1〉〈1| − 2|2〉〈2|. (9.21)

Recalling that

[

S+, S−
]

= 2Sz (9.22)
{

S+, S−
}

= 2
(

S (S + 1) − (Sz)2)

we have

[

b, b†
]

= −8αβ + 2
(

α2 + β2
)

Sz + 12αβ (Sz)2 (9.23)

and then

〈0|
[

b, b†
]

|0〉 = 2 (α + β)2 = 1

〈1|
[

b, b†
]

|1〉 = −8αβ = 1 (9.24)

〈2|
[

b, b†
]

|2〉 = −2 (α− β)2 = −2.

In order these relations to be satisfied we must have

α =
2 +

√
2

4
β = −2 −

√
2

4
. (9.25)
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Conclusions and perspectives

We discussed two relevant aspects of cold atomic gases confined in low
dimensional geometries. In the first part, we proved that quantum sim-
ulators of 1D quantum field theories can provide accurate answers at the
many-body level, by comparing results of integrable models with experi-
mental datas. Then, we investigated some fermionic and bosonic models
with allow to stabilize very interesting phases: phase separation, topolog-
ical and crystalline order, quantum magnetism and atomic color superflu-
idity are the main examples of our findings. In the last part, we turned
our attention to the role of non-local interactions in 1D, starting from basic
results on TLLs and Mott insulators, then moving towards exotic pairing
and magnetic phases. We discuss in each chapter possible experimental
realization of our theoretical findings, with particular attention to external
potentials and typical parameter regimes reachable in state of art experi-
ments.

Even though the interest in 1D physics has strongly increased in re-
cent years, there is still very interesting physics to be explored, and cold
molecules and atoms in optical lattices provide an almost ideal setup to
compare theory with experiments. While equilibrium physics is well un-
derstood, exotic phenomena related, e.g., to non trivial dipolar interac-
tions can emerge even in simple geometrical setups. Furthermore, out-
of-equilibrium phenomena have been under the microscope in the last few
years, and despite several interesting results, a complete understanding
is still missing. In this context, the possibility to adapt the rich equilib-
rium formalism to out-of-equilibrium situation may strongly improve our
understanding of several interesting many-body problems such as open
quantum systems, quantum quenches and thermalization.
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[76] S. Rapsch, U. Schollwöck, W. Zwerger, Europhys. Lett. 46 559 (1999).

[77] Cazalilla, M. A. Bosonizing one-dimensional cold atomic gases. Jour-
nal of Physics B: AMOP 37, S1-S47 (2004).

[78] A. Zamolodchikov, Int. J. Mod. Phys. A 10, 1125 (1995).

146



BIBLIOGRAPHY

[79] P. L. Gould, G. A. Ruff and D. E. Pritchard, Phys. Rev. Lett. 56, 827
(1986).

[80] J. T. Stewart, J. P. Gaebler, and D. S. Jin, Nature, 744 (2008).

[81] C. H. Schunck, Y. Shin, A. Schirotzek, and W. Ketterle, Nature 454,
739 (2008).

[82] E. Wille et al., Phys. Rev. Lett. 100, 053201 (2008).

[83] A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein, Phys. Rev.
Lett. 102, 230402 (2009).

[84] T. B. Ottenstein et al., Phys. Rev. Lett. 101, 203202 (2008).

[85] J. H. Huckans et al., Phys. Rev. Lett. 102, 165302 (2009).

[86] G. B. Partridge et al., Phys. Rev. Lett. 97, 190407 (2006).

[87] S. Giorgini, L. P. Pitaevskii and S. Stringari, Rev. Mod. Phys. 80, 1215
(2008).

[88] M. A. Cazalilla et al., Phys. Rev. Lett. 95, 226402 (2005).

[89] S. Capponi et al., Phys. Rev. A 77, 013624 (2008).

[90] P. Azaria et al., Phys. Rev. A 80, 041604 (2009).

[91] C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2005).

[92] N. Syassen et al., Science 320, 1329 (2008).

[93] A. J. Daley et al., Phys. Rev. Lett. 102, 040402 (2009).

[94] L. M. Falicov, J. C. Kimball, Phys. Rev. Lett. 22, 997 (1969).

[95] W. V. Liu, F. Wilczek, P. Zoller, Phys. Rev. A 70, 033603 (2004).

[96] G. G. Batrouni, M. J. Wolak, F. Hbert, V. G. Rousseau, Europhys. Lett.
86, 47006 (2009).

[97] B. Wang, H.-D. Chen, S. Das Sarma, Phys. Rev. A 79, 051604(R) (2009).

[98] G. Fath, Z. Domański, R. Lemański, Phys. Rev. B 52, 13910 (1995).

[99] E. H. Lieb, F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).

147



BIBLIOGRAPHY

[100] J. K. Freericks, E. H. Lieb, D. Ueltschi, Phys. Rev. Lett. 88, 106401
(2002).

[101] D. Ueltschi, J. Stat. Phys. 116, 681 (2004).
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