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Abstract

Interactive theorem provers are tools designed for the certification of formal proofs

developed by means of man-machine collaboration. Formal proofs obtained in this

way cover a large variety of logical theories, ranging from the branches of mainstream

mathematics, to the field of software verification. The border between these two

worlds is marked by results in theoretical computer science and proofs related to

the metatheory of programming languages. This last field, which is an obvious

application of interactive theorem proving, poses nonetheless a serious challenge to

the users of such tools, due both to the particularly structured way in which these

proofs are constructed, and to difficulties related to the management of notions

typical of programming languages like variable binding.

During our PhD, we worked as part of the development team of the Matita inter-

active theorem prover, a light-weight system based on the Calculus of (Co)Inductive

Constructions developed at the University of Bologna under the supervision of An-

drea Asperti. In this period of time, Matita underwent a large reimplementation

effort, whose aim was to deliver a more compact and maintainable system, based

on well-reasoned design choices. We devoted a substantial part of our work to the

implementation of user level, general purpose tactics, which are particularly used in

formalizations that involve the metatheory of programming languages.

This thesis is composed of two parts, discussing our experience in the develop-

ment of Matita and its use in the mechanization of the metatheory of programming

languages. More specifically, part I covers:
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• the results of our effort in providing a better framework for the development

of tactics for Matita, in order to make their implementation and debugging

easier, also resulting in a much clearer code;

• a discussion of the implementation of two tactics, providing infrastructure for

the unification of constructor forms and the inversion of inductive predicates;

we point out interactions between induction and inversion and provide an

advancement over the state of the art.

In the second part of the thesis, we focus on aspects related to the formalization

of programming languages. We describe two works of ours:

• a discussion of basic issues we encountered in our formalizations of part 1A of

the Poplmark challenge, where we apply the extended inversion principles we

implemented for Matita;

• a formalization of an algebraic logical framework, posing more complex chal-

lenges, including multiple binding and a form of hereditary substitution; this

work adopts, for the encoding of binding, an extension of Masahiko Sato’s

canonical locally named representation we designed during our visit to the

Laboratory for Foundations of Computer Science at the University of Edin-

burgh, under the supervision of Randy Pollack.
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Introduction



2 Chapter 1. Introduction

This thesis describes issues related to the mechanization of the metatheory of

programming languages in the Matita interactive theorem prover [37], discussing

on one hand the implementation of the tool, and on the other hand the use of the

system in some formalizations.

During our PhD, we worked as part of the Matita development team. Matita is

a relatively new tool, developed at the University of Bologna under the supervision

of prof. Andrea Asperti during the last ten years. It is based on type theory, using

the Calculus of Inductive Constructions as its foundational language ([69, 46, 22]).

One of the main goals of the Matita team, in the last few years, has been a deep

revisitation of the whole system, in order to have a more compact tool. This was

motivated by our experience telling us that the size of the code of an interactive

theorem prover is influenced by a number of minor implementative choices whose

impact is not completely clear until very late during the development of the tool.

Since correcting these issues by means of patches did not seem a viable option,

it was decided that the system would benefit from a reimplementation of its most

important components. This would ultimately result in a simpler, more documented

design, reducing the number of bugs, improving the maintainability of the system

and allowing for a faster training for new developers. Furthermore, a lighter system

is also expected to make it easier to experiment with new functionality.

This effort ultimately resulted in a complete rewriting of the kernel of Matita,

implementing the reduction machinery and the typechecker of a slightly different

version of CIC, which was described in a journal paper we coauthored with the rest

of the Matita team [4]. This was followed by a new implementation of the refiner,

which is the component of the system responsible for bridging the gap between the

logic and the user, implementing a type inference algorithm that allows the system

to deal with the partially specified proofs typical of user interaction. As part of

the unification algorithm of the new refiner, we cooperated in the development of a

new technique (called unification hints and described in [5]) that generalizes existing

mechanisms like canonical structures and type classes ([63, 67]).

The last step in the revisitation of the system, which is described in this thesis,
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concerns the outer layer of Matita, responsible for the interaction with the user by

means of proof building statements known as tactics, in the style made popular by

the LCF theorem prover [24]. Our work in the implementation of the tactics for

the new version of Matita focused on those tactics that, while being useful in many

formalizations, are particularly critical in the mechanization of the metatheory of

programming languages.

This thesis is divided in two parts, describing our experience in the implementa-

tion of Matita and its use as a tool for the formalization of properties of programming

languages.

The first part is composed of three chapters. Chapter 2, which is based on our

work with Asperti, Sacerdoti and Tassi [6], describes the approach to the imple-

mentation of tactics that we followed in the new version of Matita. We identify

some limitations of the LCF representation for tactics, which is still used as the

basis for many current theorem provers. We propose a new type for tactics, which

we implemented as part of the new version of Matita. We also describe the basic

infrastructure that we provide for the implementation of tactics for Matita.

Chapter 3 discusses our implementation of the destruct tactic, whose job is to

perform first-order unification of constructor forms involved in equational hypothe-

ses, popularized by C. McBride [39]. The chapter starts by recalling some notions

about inductive definitions of equality, then proceeds with an abstract discussion

of unification of constructor forms. We then present our implementation of the

destruct tactic, providing a relatively uniform treatment for equations based on

Leibniz’s equality or on John Major’s equality. This means that, when we dealing

with Leibniz’s equality on a type for which the Uniqueness of Identity Proofs has

been proved, we are able to perform first order unification of constructor forms us-

ing almost the same technique that we would use if we were assuming John Major’s

equality together with its elimination rule.

In chapter 4, we discuss inversion principles [15, 38, 40], providing the equivalent

of the informal notion of inversion of an inductive rule that is common especially in

logic, and used in many proofs related to theoretical computer science. While inver-
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sion principles are commonplace in interactive theorem provers, to our knowledge,

nobody has ever pointed out their relation with induction principles. Inversion prin-

ciples bear a faint resemblance to induction principles, essentially because they are

both backwards reasoning techniques; however, somewhat counterintuitively, they

do not provide access to induction hypotheses; on the other side, induction princi-

ples are not a substitute for inversion. When a mixed notion of induction/inversion

is needed, the most common strategy is to understand this complex operation as an

induction on the height of a proof tree, followed by inversion on the last rule used

in the proof; such proof techniques are quite inelegant and also require a relatively

important effort by the user to give a formal justification of what is, in the informal

proof, a simple proof step. In the chapter, we explain why inversion principles do

not provide induction hypotheses, and we identify a class of inductive predicates

for which, in certain situations, it is possible to obtain mixed induction/inversion

hypotheses; these induction/inversion principles are automatized in Matita, thus

relieving the user of the burden of justifying their use.

The second part of the thesis is devoted to formalizations involving the mech-

anization of the metatheory of programming languages. In recent years, this has

been a particularly lively research field, especially for what concerns the study of en-

codings of binding structures that are suitable to formalization. Benchmarks, such

as the POPLmark challenge [7], have also been proposed in order to evaluate the

progress of tools and techniques.

Chapter 5 describes different formalizations of part 1A of the PoplMark chal-

lenge, involving the type sublanguage of System F<:. The formalizations are carried

on using three basic encodings of binding structures: de Bruijn’s nameless encod-

ing [44], the locally nameless encoding [23, 13], and a fully named representation,

which is very close to the informal syntax. The three formalizations allow a compar-

ison of the three approaches to encoding of variable binding. In the formalizations,

we exploit the induction/inversion principles that we identified and justified in chap-

ter 4.

Chapters 6 and 7, which conclude the dissertation, are devoted to a more recent,
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yet very promising, technique for the representation of binding, which was intro-

duced by Masahiko Sato [61] and formalized the first time by Randy Pollack [62]

in the context of pure λ-calculus. This technique provides a local encoding of bind-

ing (essentially meaning that the syntax distinguishes between bound variables and

free variables); in contrast with the locally nameless encoding, in the Sato encoding

bound variables are identified by names instead of indices. This makes the Sato

encoding a relative of the locally named encoding used by McKinna and Pollack

in [41, 42]: however, the Sato encoding is canonical, meaning that α-equivalence is

syntactical equality: this is made possible by a well-formedness predicate that ba-

sically identifies only one of the members of each α-equivalence class as legal. The

choice of bound variables is made deterministically by means of a height function.

Chapter 6 recalls the theory behind the Sato encoding of binding structures,

introducing the syntax of the λ-calculus formalized in the Sato style, the well-

formedness predicate, and the goodness properties for heights, ensuring that the

representation is adequate. This will be followed by the discussion of a formaliza-

tion of Pottinger’s multivariate λ-calculus ([53]), extending the Sato representation

to a more complex setting where the same syntactical form can bind an arbitrary

number of variables at once.

Chapter 7 is the result of our work at the LFCS of the University of Edinburgh

under the supervision of Dr. Pollack. It presents a formalization of Plotkin’s DM-

BEL logical framework ([49]) using the Sato encoding. DMBEL poses interesting

challenges to a formalization, including the presence of dependent types and a no-

tion of substitution, known as hereditary substitution, that simultaneously performs

some “reduction” in order to keep DMBEL expressions in canonical form. The chap-

ter presents the syntax of DMBEL and its typing rules. Afterwards, we present an

extension of the Sato encoding designed to accomodate multiple binding: we give

a refined notion of height and define the corresponding excellence properties ensur-

ing that our representation is adequate. Finally we put the representation to work,

providing the formal syntax for DMBEL in the Sato representation and showing

that whenever a term is well typed, then it is also well formed according to the
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Sato representation. To prove this property, we need some metatheoretical proofs

including the fact that a well typed term is closed in its typing context.

All the formalizations discussed in the second part of the thesis are publicly

available on the author’s webpage http://www.cs.unibo.it/~ricciott/.

Common notation used in the thesis

Throughout this thesis, it will be often necessary to refer to lists of entities of the

same kind. Names referring to lists will be noted with an overline, e.g. x. An

operation returning the length of a list is always defined, and noted |x|. When

referring to a list by means of the sequence of its arguments, we will generally write

the elements in their order, using commas as separators (e.g.: x1, x2, . . . , xk). In

concrete settings, for example when discussing a formalization, we will also use the

ML inspired notation [x1;x2; . . . ;xk] (as a special case, [] will refer to the empty list).

In both notations, however, lists should be intended as data structures growing on

the right (i.e. the opposite of an ML list). The reverse of a given list x will be noted

as (x)rev .

For the sake of conciseness, it is sometimes particularly convenient to make the

length of a list explicit, while still referring to it with a single name: when we

write xn, we intend that xn is a list of exactly n items and, in particular, that it is

an abbreviation for x0, x1, x2, . . . , xn−1 (notice the 0-based indexing). This is also

beneficial in cases where a prefix of some list must be referred to explicitly: whenever

m < n, a list xm must always be intended as containing the first m items of list xn.

The notation for lists is extended to binders. In the case where a binder requires

type annotations for its bound variables, we will use telescopes, in the style popu-

larized by de Bruijn ([16]): whenever B is a binder, xn is a list of n variable names,

Tn is a list of n types, and t is admissible as the body of the binder, we will write

Bxn : Tn.t for Bx0 : T0 . . . Bxn−1 : Tn−1.t; the meaning of the notation Bx : T .t is

similar, with x and T having the same, unspecified length.

http://www.cs.unibo.it/~ricciott/
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In chapters 5, 6 and 7 discussing formalizations of languages, we will employ the

common notation (X Y ) to express the operation swapping two names X and Y ,

keeping all the other names the same, i.e.

(X Y )(Z) ,


Y if Z = X

X if Z = Y

Z otherwise

This notation will be extended to lists of names having the same length, intending

iterated swap of names:

(Xn Yn) = (X0 Y0) ◦ (X1 Y1) ◦ · · · ◦ (Xn−1 Yn−1)

While single swaps are involutions, list swaps are not. However they are still in-

vertible: the inverse list swap is obtained by taking the reverse lists of Xn and

Yn.

∀Z.(Xn Yn)(((Xn)rev (Yn)rev)(Z)) = ((Xn)rev (Yn)rev)(Xn Yn(Z)) = Z
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This dissertation discusses matters related to the development of the Matita in-

teractive theorem prover and its use as a tool for the formalization of the metatheory

of programming languages. The current chapter is devoted to presenting the system,

in order to lay the foundations for the following discussion. We will give a rather

high-level account of the relevant parts of the architecture of Matita, followed by a

brief discussion of its foundational language.

Our main interest will be in the development of tactics for Matita, that is de-

scribed in the second part of the chapter. We give an account of the new architecture

of the tactic subsystem we implemented with the rest of the Matita team, which is

also described in [6].

The structure of the chapter is as follows: Section 2.1 is devoted to the architec-

ture of Matita and to basic notions concerning its implementation of the Calculus of

(Co)Inductive Constructions; Section 2.2 recalls the original notion of tactic in the

LCF proof assistant; Section 2.3 describes the old implementation of tactics; finally,

in Section 2.4 we present the type implemented in the new version of Matita.

2.1 Architecture of Matita

An interactive theorem prover is a system that allows the user to interactively prove

a theorem by entering commands, called tactics, that allow to reduce the initial con-

jecture to new, simpler ones until all conjectures are trivially proved. Conjectures,

which are also called goals, can be described as sequents, i.e. pairs formed by the

list of hypotheses to be used and the local thesis to be proved. Many interactive

theorem provers, including Matita, are based on type theory, by means of the Curry-

Howard isomorphism: proofs are represented by terms of a foundational language

(in our case, the Calculus of (Co)Inductive Constructions) and formulae by types of

the same formalism.

The role of the theorem prover is to provide an interface to the user for the

construction of the proofs and to guarantee their soundness (this corresponds to the

typechecking of the term encoding the proof).
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To partially bridge the gap between informal mathematics and the strict, pedant

syntax of logical formalisms, Matita employs several representations of terms, pro-

cessed by different components of the tool.

• Completely specified terms are an implementation of classical CIC terms,

roughly as they are presented in theoretical works. At this level, terms are

fully annotated with the required types, making syntax particularly verbose.

The kernel of Matita is the trusted component of the system in charge of

proof checking, essentially composed of an implementation of CIC reduction

machines and of a CIC typechecker.

• Partially specified terms are an extension of CIC terms possibly contain-

ing holes or placeholders in place of some subterms. Such holes include lin-

ear untyped placeholders (called implicits) and typed metavariables (that are

Curry-Howard isomorphic to conjectures, or subproofs that are yet to be filled

in). Partially specified terms play a role in intermediate representations of on-

going proofs, but also in the possibility, for the human user working with the

tool, to omit redundant information when introducing terms. Such missing

information can later be inferred by a component called refiner, implementing

type inference and unification.

• Content level terms are an abstraction of the syntactic structure of terms

as they are provided by the user. Content level terms allow notational abuse,

overloading of operators, and similar peculiarities that are typical of informal

mathematics. A disambiguation engine performs a translation from this level

to partially specified terms.

• For the sake of completeness, we must also cite presentation level terms,

which capture the proper formatting of mathematical structures as they are

presented to the user. They play no role in our discussion.
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2.1.1 Syntax and notation of CIC terms

We give here a description of the syntax of CIC as it is implemented in Matita.

We only discuss in detail some of the concepts needed for understanding the rest of

the dissertation. The following presentation is a simplification of the one we gave

in [4] together with Asperti, Sacerdoti Coen, and Tassi, and is also more abstract.

Furthermore, we will also omit details, especially about (co)fixpoints and coinductive

definitions, which are not needed for our discussion.

t, u, v, . . . ::= x variables

| c constants

| Prop | Typei sorts

| t u application

| λx : t.u λ-abstraction

| let (x : t) := u in v local definitions

| Πx : t.u dependent product

| match t in I return u [ case analysis

k1 x1 ⇒ v1 | . . . | kn xn ⇒ vn

]

| ? implicit arguments

| ?j[lc] metavariable occurrence (with local context)

Table 2.1: CIC terms syntax

Table 2.1.1 shows the syntax of CIC terms. While in CIC types and sorts also

fall in the common notion of term, in the rest of the discussion, to increase the

readability, we will allow ourselves to use the syntactic convention of indicating

types (terms used as types) using letters T, U, V, . . . and sorts with σ, τ, . . .. I will

be reserved to refer to inductive type, and k to inductive type constructors.

Variables, applications, λ-abstractions and dependent products are well-known

key ingredients of typed lambda calculi, and there is little to add here. Local defini-
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tions (or let-ins) are a fairly obvious extension inspired by functional programming

languages. Some words are deserved by sorts, which include an impredicative sort of

(computationally irrelevant) propositions, called Prop, and a predicative hierarchy

of universes (in the style of [36]), denoted by Typei, where the subscript references

one of the user-declared universes.1

Constants are the other user defined notion: in general, they are names for object

that include

• declarations (axioms, variables...)

• definitions (functions, theorems...)

• recursive and corecursive functions (also known as (co)fixpoints)

• (co)inductive types

• constructors of (co)inductive types

Constants are declared in an environment that we will consider fixed in this disser-

tation.

Finally, as we already said, metavariables ([21, 43]) represent currently open con-

jectures. Their occurrences are equipped with explicit substitutions (local contexts)

that we shall ignore for our purposes.

Inductive types

The shape of the definition of an inductive type I can be approximated2 as

inductive I (x0 : U0) · · · (xh−1 : Uh−1) : Πxh : Uh, . . . , xn−1 : Un−1.σ , {
k0 : C0;

. . .

km−1 : Cm−1

}

1When the actual universe being referenced is unimportant, we will just write Type
2Matita also allows mutual inductive type definitions, whose syntax is not relevant for this

discussion.
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This definition declares an inductive type I of arity Πxn : Un.σ, whose constructors

are k0, . . . , km−1. I actually represents an inductive family, parametrized on variables

x0, . . . , xh−1 that must be used uniformly in I: we call them left parameters or simply

parameters. Variables xh, . . . , xn−1, called indices or right parameters, are allowed

to be instantiated non-uniformly in I, but are also subject to stricter typechecking

conditions.

The types of the constructors Ci must match the following form:

Ci , Πy0 : V0, . . . , yk−1 : Vk−1.I x0 · · ·xh−1 uh . . . un−1

In particular, notice that left parameters are used uniformly in the target type of

the constructor, while indices range over generic terms. The same restriction holds

for recursive occurrences of the type I in V0, . . . , Vk−1. This is better described by a

concrete type definition of vectors:

inductive vector (T : Type0) : Πn : nat.Type0 , {
vnil : vector T 0;

vcons : Πx1 : nat, x2 : T, x3 : vector T x1.vector T (S x1)

}

where S constructs the successor of a given natural number. Since the type T of

the values contained in the vector is fixed in the definition, it is declared as a left

parameter; however, during the constructor of a vector, its length n assumes different

values; therefore it must be declared as a right parameter.

Finally, to be accepted by the typechecker, an inductive definition must satisfy

some additional conditions, which we state for the sake of completeness:

• the universe σ in which I lives has to be greater or equal to the sort of each

of its constructors;

• for each constructor ki : Πyk : Vk.I u, I must occur strictly positively in Vk.

We are not interested in providing the details or the justification for these checks.

For a discussion of the theoretical foundations of inductive types, the reader may

consult [46].
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Case analysis

Among the various categories of terms, the case analysis construct, which is similar

to the match-with statement of ML-like languages, has a particularly important role

in the treatment of inductive definitions. The expression

match t in I return u [

k0 xp0 ⇒ v0 | . . . | kn−1 xpn−1 ⇒ vn−1

]

involves a term t of some inductive type I and a list of branches k0 xp0 ⇒ v0 . . .

kn−1 xpn−1 ⇒ vn−1, one for each constructor ki of I. Each list of variables xpi is

morally an abstraction over the corresponding output term vi and must match the

type and arity of constructor ki. If t is syntactically equal to ki t′, then the case

analysis reduces to vi{t′/xpi}.
Finally, u is the return type of the case analysis: due to the dependent type dis-

cipline, the type of a case analysis can depend on the type and value of the matching

term; given this setting, the typechecker would not always be able to guess a uniform

return type for all branches, which must therefore be explicitly provided. Moreover,

the case analysis construct also distinguishes between left and right parameters sim-

ilarly to inductive type definitions. If I has arity Πx0 : V0, . . . , xh−1 : Vh−1, xh :

Vh, . . . , xm−1 : Vm−1.σ, with h left parameters and m − h right parameters, and t

has type I t′0 · · · t′h−1 t
′
h · · · t′m−1, then u must be a term in the form

λxh : V ′h, . . . , xm−1 : V ′m−1, y : I t′0 · · · t′h−1 xh · · ·xm−1.T

for some type T , where each V ′i is obtained from Vi instantiating the left parameters

correctly (V ′i = Vi{t′0,...,t′h−1/x0,...,xh−1}). The type of the whole case analysis expression

will then be u t′h · · · t′m−1 t.

The typing rule for match is shown in Figure 2.1. While most of its hypotheses

correspond to the discussion we have just made, it also makes a reference to the

possibility that a pattern matching towards some sort τ may not be allowed. The

reason not to allow elimination lies in the distinction between computationally rel-

evant parts of a proof (when a term does not have sort Prop) and parts which have
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inductive I (x0 : T0) · · · (xh−1 : Th−1)

: Πxh : Th, . . . , xm−1 : Tm−1.σ

, {k0 : C0; . . . ; kn−1 : Cn−1}

 is defined

Γ ` t : I t0 · · · tm−1

Γ ` u : Πxh : Th{t0,...,th−1/x0,...,xh−1}, . . . , xm−1 : Tm−1{t0,...,th−1/x0,...,xh−1}.τ
elimination of I towards sort τ is allowed

(Γ ` λxpj .vj : ∆{Cj{t0,...,th−1/x0,...,xh−1}, u, (kj t0 · · · th−1)})j=0,...,n−1

Γ ` match t in I return u with [k0 xp0 ⇒ v0|...|kn−1 xpn−1 ⇒ vn−1] : u th · · · tm−1 t

where we define ∆{. . .} as

∆{(I t0 · · · tn−1), u, t} = (u t0 · · · tn−1 t)

∆{Πx : T.C, u, t} = Πx : T.∆{C, u, (c x)}

Figure 2.1: CIC rule for case analysis

no computational content (terms whose sort is Prop). This distinction is crucial for

code exportation and proof-irrelevance: the computationally irrelevant subterms are

completely forgotten during the automatic exportation of code. Thus, eliminating

a non-informative type to obtain an informative type must not be allowed, unless

there is only one way in which the elimination can be performed.

2.2 LCF tactics

Before turning to tactic implementation in Matita, we want to recall the represen-

tation of tactics in the LCF proof assistant (see also [24], page 210):

type thm

type proof = thm list -> thm

type goal = form list * form

type tactic = goal -> (goal list * proof)
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A goal is a pair formed by a context (a list of formulas that are the hypotheses) and a

formula that is the thesis. A tactic can be applied to just one goal and returns both

a list of new goals to be proved and a “proof”. Intuitively, the tactic reduces the goal

to a possibly empty list of simpler goals and asserts the existence of a “procedure”

to build a proof (represented in LCF by the type thm) of the goal from the proofs of

the subgoals. This procedure has type proof, i.e. it is an actual ML function from

a list of proofs (thms) to a proof thm. The thm data type is abstract: only functions

(i.e. tactics) defined in the ML module can directly construct inhabitants of thm,

while functions defined outside the module can only combine tactics to build proofs.

Thus, if the tactics defined in the module are correct, i.e. they implement sound

logical rules, all the system is guaranteed to be correct. It is this latter property

that has made the LCF representation so attractive as to allow the technique to

become standard.

What is actually stored in the thm data type is unspecified in the “LCF ap-

proach”: it could range from just the goal that is proved (if we are only interested

in provability) to a proof term that is a trace of the proof (if we are interested in

inspecting and manipulating the proof, e.g. for proof extraction or independent

checking). Nevertheless, the thm data type can only represent completed proofs

(hence the name thm that stands for “theorem”). During interactive proof construc-

tion, an ongoing proof will be represented only by an ML function from a list of thms

to a thm. Such a function is obtained by composing together the second component

of the return type of the tactics used so far. Being a function, it cannot be inspected

or modified in any way.

The LCF data types we have presented are not sufficient alone to fully represent

the state of the system between tactics application, i.e. when further input is re-

quired to the user. The system needs to store somewhere the set of goals currently

open and the function that represents the on-going proof. Moreover, since a tactic

can be applied by design only to a single goal, it must also single out one of the

opened goals, called the focused goal, which will be the argument of the next tactic.
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LCF also introduced the notion of tactical, which is a higher-order tactic. Tac-

ticals are used to build complex, branching proofs from given tactics by applying

tactics according to some strategy. Since the first tactic application can open more

than one sequent, during a tactical application we also have the notion of current

goals, which usually are the new goals recently opened by tactic application during

the execution of the tactical. In particular, a tactical must decide the order in which

current goals get the focus and the way goals opened by different focused goals are

merged together in the set of all current goals. Since the LCF types do not allow

to represent these intermediate states, the implementations of the different systems

either record this information in the thm data type, or leave this information implicit

in the control flow data structures (e.g. the stack) of the code that implements the

tacticals. In his PhD thesis [33], Kirchner has described an elegant monad, called

the proof monad, which allows to lift LCF tactics to tactics and tacticals working

on the enriched representation.

2.3 Tactics in Matita 0.x

While the implementation of tactics in the old versions of Matita is clearly inspired

by the LCF approach, the theorem prover also includes some features designed to

address several of its limitations. The main difference concerns the type proof of

incomplete proofs, which in the LCF approach is a function and cannot be inspected.

In Matita, instead, a proof is a concrete type, containing the proof object in the

form of a CIC term, possibly containing “holes” for currently open conjectures.

Existentially quantified metavariables (also allowed by many other current theo-

rem provers) stand for terms that are currently unknown and that will be instanti-

ated later on, usually by means of unification. They arise in three different situations.

The first one is when they correspond to implicit, not fully constrained information

in a formula, e.g. when the infix notation “ + ” is used for the operation of an

unknown semi-group in the expression ∀x, y.x + y = y + x, which is interpreted as

∀x, y :?G.x+?G y = y+?Gx (where ?G is a metavariable to be instantiated later). The
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second one is when the user applies a backwards deduction rule, like ∃-introduction,

but prefers to delay the choice of the witnesses as much as possible, in the spirit

of constraint programming. The third situation generalizes the previous one and is

obtained when a deduction rule, e.g. transitivity, is matched (or unified) against

the goal, and some metavariables remain free.

Metavariables are not compatible with the LCF data type, since a metavariable

can be instantiated by one tactic and the instantiation must be applied to every

formula in every goal. The latter operation cannot be performed by the tactic, since

it takes in input only the focused goal and not the set of all goals. The observation

is not novel and can be explicitly found, for instance, in [1] where Paulson writes

“the validation model above does not handle unification. Goals may not contain

unknowns to be instantiated later. As a consequence, the LCF user must supply an

explicit term at each ∃:right step”.

On the contrary, in Matita 0.x, tactics are represented as follows:

type proof =

uri option * metasenv * substitution *

term Lazy.t * term * attribute list

type goal = int

type status = proof * goal

type tactic

val mk_tactic: (status -> proof * goal list) -> tactic

The type proof is a tuple containing, among other things, two terms: the first

one is the incomplete proof object, while the second keeps its type, i.e. the statement

of the theorem being proved. The other items include metasenv and substitution

structures that are used for keeping track of the metavariables used in the proof:

the first is an environment declaring the names of currently open (uninstantiated)

metavariables, the context in which they were created and their types; the second is
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a map from instantiated metavariables to their values, which will be applied lazily

at the end of proof.

A tactic acts on a status, containing the incomplete proof and a goal identifying

one of the open metavariables, returning a modified proof and a (possibly empty)

list of goals, identifying newly created metavariables resulting from the application

of the tactic. When a tactic instantiates a metavariable, it can possibly instantiate

other metavariables by side effect, since the metasenv and substitution structures

are shared by all the subgoals.

Having a concrete datatype for incomplete proofs also provides other advantages,

including the possibility of performing partial code extraction, and the ability of

rendering incomplete proofs.

2.3.1 Tinycals

An additional difference between LCF and Matita 0.x is related to tacticals. Matita,

like most modern interactive theorem provers, offers a user interface based on a

textual script, input by the user, that is step-by-step checked by the system. The

checked part is locked: no edit can be performed on that part without retracting

the checked commands (i.e. an undo operation affecting the status of the ongoing

proof is performed).

This interaction paradigm suffers from the big step execution semantics of LCF

tacticals, which are still today the primary tool to combine together tactics and

give a structure to proof scripts. The big step step semantics of tacticals is forced

by their type. Being higher-order tactics, they can be executed only when all their

arguments are provided. Or better, there is no semantics for the tactical if some of

its arguments are unknown.

For example, when a tactic opens heterogeneous goals the user may want to use

the branching tactical ([ ... ; ... ; ... ]) to run appropriate tactics on every

branch. Since it is unlikely that he is able to fill all the blanks (i.e. ...) in a row

he is forced by the system to continuously refine its compound command, execute

it to see the result, and retract to able to further refine it. This loop is not only
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annoying, requiring additional key-presses or mouse clicks, but also forces the user

to type the refined command in a blind way, since he cannot edit the script before

he asks the system to retract the last command, and this operation also changes the

displayed proof status (i.e. the user has to type the next command step looking at

how the goal was many steps before).

Structuring the proof script makes it easier to fix it when it breaks, since the

structure of the proof is more explicit. For example failures are detected early since

new goals coming from the application of modified lemmas pop up in the right part

of the proof (i.e. they are no accidentally delayed). If the user interface does not

push the user into giving a proper structure to the proof script, it is unlikely that

he would be happy to perform a major redesign of the axioms or basic definitions

he is using, since this would break proof scripts, and fixing them would be a very

expensive operation.

Another strong point against a big step evaluation semantics of operators to

combine commands and structure scripts is that, unless the interaction language is

declarative, just reading the proof script is not enough to re-read a proof: single

commands have to be executed step-by-step to understand what is going on. In a

system equipped with standard (big-step executed) tacticals, what is usually done

is (in the rare case in which the proof is structured) to de-structure the proof on the

fly, modifying the proof script in such a way that only a part of every compound

command is executed. Re-reading a proof script is not only necessary during talks or

demos, but is the main activity a team member performs when fixing a script he is

not the author of (i.e. that he is not supposed to deeply understand). Given that the

cost of writing a formal, mechanically checkable, proof is very high, we believe that

every design choice that makes collaboration on the formalization activity harder is

to be avoided.

In [55], Sacerdoti Coen, Tassi and Zacchiroli introduced a de-structured lan-

guage for tacticals (called tinycals) that was implemented in Matita 0.x using an

additional data structure (similar to the stack that is used to execute functions in

a regular programming language). This allows the user, for example, to type just
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the command ‘[’ and see its result, then use a tactic, then move to the following

goal typing the command ‘|’ and after he is done with the proof branches type the

command ‘]’.

The benefit of the approach is clear: however, since the tinycals stack is not

accessible by tactics, they must be implemented as an additional layer. In other

words, tactics do not know anything about tinycals and cannot take advantage from

them.

2.3.2 Limitations

We now describe some limitations of the Matita 0.x approach to tactics that we

tried to address.

All tactics are local A direct consequence of existential metavariables is that

a “wrong” instantiation of one of them can make a different goal false, hence not

provable. As an example, consider two goals generated by a transitivity law: Γ `
a ≤?x and Γ `?x ≤ b. Here ?x stands for the intermediate (still unknown) term c

that makes proving Γ ` a ≤ c and Γ ` c ≤ b easier than proving Γ ` a ≤ b. If a

tactic (especially an automatic one) has a local view over the set of open conjectures

(i.e. knows just the goal Γ ` a ≤?x), it is unlikely to find an instantiation for ?x that

makes proving Γ `?x ≤ b simpler or even possible (think for example of the trivial

but useless solution ?x := a that is obtained proving the first goal with the reflexive

property of ≤). More to the point, restricting the view of tactics to a single input

sequent gives them not enough information to detect valid but pointless instantiation

of metavariables. With the exception of Isabelle, all other major proof assistants

that have accommodated metavariable still see a tactic as a function whose input

is just one focused goal and thus does not allow the implementation of non-local

tactics in the spirit of constraint programming. While Matita 0.x tactics have a

view of the whole proof object, they do not know if the user has selected multiple

goals, since they cannot see the tinycals stack.
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A different motivation for introducing non-local tactics is given by the wish to

extend the user-level Ltac language of Coq [17] with a pattern matching construct

over the set of all goals, in the spirit of what is allowed over contexts. Ltac allows

the lightweight definition in a script file of ad-hoc tactics that match certain con-

figurations and proceed in the proofs exploiting the domain-knowledge. It would

be useful to detect global configurations in order to look for goals that have certain

shapes (e.g. can be closed using decision procedures or are more likely to be false

or are all instances of a more general conjecture).

Poor implementation of declarative languages The languages of proof assis-

tants are often classified between declarative and procedural ones.

In procedural languages, the user uses tactics that specify how the goal must

be manipulated, but not what is expected from the manipulation. Intuitively, it

corresponds to the information that remains in a derivation tree by erasing from the

premises of each rule all (sub)-formulas that also occur in the rule conclusion. Most

tactics for procedural languages are used to find proofs in a top-down way, since

the amount of information that can be omitted is maximized in this way. However,

tactics for bottom-up reasoning (like tactics to generate logical cuts) can also be

present, but are usually more verbose.

In declarative languages, the user uses commands (that we identify with tactics)

to build proofs by specifying what is proved at each step, usually omitting how it is

proved. Automation supplies the missing justifications. Intuitively, it corresponds

to the information that remains in a derivation tree when the name of every rule

is omitted and only the tree structure and the formula are kept. Most tactics for

declarative languages are used to describe proofs in a bottom-up way. Not every

declarative language has tactics for top-down proof steps, but at least case analysis

and induction are better captured in this way.

A long standing line of research [28, 70] has tried to implement declarative lan-

guages, i.e. declarative tactics, on top of procedural ones. However, the results so

far have never been completely satisfactory for two different reasons.
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The first has to do with goal selection: when the user needs to prove multiple

goals (e.g. the branches of a proof by induction, or the components of a conjuc-

tion), declarative languages like Isar [68] allow to dynamically select the goal to

be proved, or even to prove something, matching it against the open goal set only

later, and possibly up to some easy deductions. Procedural tactics, together with

the LCF limitation of just one focused goal, do not allow to implement properly this

behaviour. Note that this is exactly the type of control over the proof history that

tinycals allow.

The second has to do with information flow: in languages like Isar and Mizar a

forward reasoning tactic can prove some fact and at the same time schedule it for

usage by the tactic that ends the subproof. The latter tactic can only use the facts

explicitly listed by the user in addition to those accumulated by previous tactics.

The LCF data type does not allow to pass information around from one tactic to

the next ones.

Unclassified goals For a formal system, every conjecture is the same: a set of

hypotheses and a conclusion. This is reflected by the LCF type for tactics, where

the only distinction between newly generated goals is their position in the output

list. For example, when we proceed by induction, we know that some of the new

conjectures will need the application of the inductive hypothesis to be solved, while

other goals do not. This information is lost in the coarse LCF tactic type, but

could be exploited by the system, for example, automatically running procedures

like rippling on all inductive cases.

Another example where some new goals deserve a special treatment is generalized

rewriting (rewriting with setoids). In that case, a rewriting step generates goals of

two kinds: the rewritten conclusion, and a proof that the context under which the

rewriting took place is made of morphisms. The latter class of goals can usually

be solved automatically, once the user has proved that every elementary functional

symbol is a morphism.

Some interactive provers, most notably PVS and ACL2, collect sets of side con-
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ditions (like subtyping judgements) the user is not expected to immediately solve.

Most of these side conditions become trivial when the user enriches the context with

additional facts or assumptions and are thus temporarily set aside by these systems.

2.4 A new type for tactics

In Matita 1.0 (the new version of the system, which is currently nearing completion)

we use a refined status type for the proof status defined as the following OCaml

type.

(*

* nCic.ml :

* type obj = NUri.uri * int * metasenv * substitution * obj_kind

*)

type tac_status = {

pstatus : NCic.obj;

gstatus : context_stack;

}

type tactic = tac_status -> tac_status

A tactic status (tac_status) is made of a proof status pstatus and a context

stack gstatus. The proof status component carries a (partial) proof object made

of a set of open goals and existentially quantified metavariables (metasenv), and

a data type for partial proofs. In our proposal, goals and existentially quantified

metavariables are handled uniformly, for instance by showing all of them to the user

as goals and by allowing tactics to either instantiate a metavariable (with a term)

or a goal (with a proof).

The context stack is responsible for high-level proof structuring (allowing re-

ordering, focusing, postponing or tagging of goal sets), similarly to the old tinycals
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stack. The context stack that equips the proof object also plays the same role of

the indexed proof tree in [33]. We will denote tactic statuses by P , or (ω;κ), where

ω represents a proof object and κ a context stack.

The major difference of our type for tactics with the standard LCF one is that

the input is no longer a single goal, but a global view of the ongoing proof which can

be altered. Moreover, it is possible to focus simultaneously on a set of goals. For

example a tactic could make no progress (in terms of closing open goals) but it could

change the focus to the set of goals in which an existentially quantified metavariable

occurs; then another tactic performing automatic proof search could be run on the

focused goal set to find an instantiation for the metavariable that allows to solve all

goals simultaneously.

type task =

int * [ ‘Open | ‘Closed ] * goal * [> ‘No_tag ]

type context = task list * task list

type context_stack = context list

Figure 2.2: Sample implementation of context stacks

We now get into the detail of context stacks. Context stacks are built on the

notion of task, a higher level abstraction of metavariables (or goals). Tasks index

metavariables with numbers that are more easily understood by the user, also dis-

tinguishing between open (uninstantiated) and closed (instantiated) tasks. A task

can also be associated an arbitrary tag (e.g. to mark it for automation); the unim-

portant tag will be denoted by �. A goal can be present in the stack only once. We

will use the notation

#n 7→?k, tag

to refer to the open task associating index #n with metavariable ?k and tag tag .

Likewise, notation

#n 7→ �?k, tag
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refers to a similar, but closed task. We shall also use the symbol � to indicate a

standard, unimportant tag.

Lists of tasks will be denoted by letters γ, δ. We also provide a notation γ(#n1, . . . ,#nk)

to indicate the sublist of γ containing exactly those tasks indexed by #n1, . . . ,#nk.

The contexts contained in the stack are pairs in the form 〈γ, δ〉, where γ contains

the focused tasks, and δ the locally postponed tasks.

For contexts stacks, we will borrow the usual sequence notation 〈γ, δ〉. The

intended semantics of the stack is that a tactic should normally act on all the

focused tasks at once, as designated by the topmost context in the stack, and finally

update the list of focused tasks with the newly generated tasks.

This behaviour is illustrated by the following pseudo-tactic:

P = (ω; 〈γ, δ〉, 〈γ′, δ′〉)
act on tasks γ of ω, obtaining ω′

γ′′ = new open tasks in ω′

puretac(P) = (ω′; 〈γ′′, δ〉, 〈γ′, δ′〉)

The initial stack is composed of the single context 〈(#0 7→?k, �), ∅〉 where ?k

refers to the original goal stated by the user.

Along with pure tactics only acting on the currently focused tasks, our type

for tactics allows to express proof structuring commands that in usual systems are

implemented as tacticals (higher-order tactics), including Matita 0.x tinycals. We

will now see how to express tinycals in Matita 1.0.

Branching A new context is pushed onto the stack by the branching tinycal ([)

that is used in order to be able to re-focus only on subsets of the focused tasks, for

instance to apply different tactics to each goal.

γ = (#n1 7→?k1 , tag1), . . . , (#nm 7→?km , tagm)

P = (ω; 〈γ, δ〉, 〈γ′, δ′〉)
γ1 = (#1 7→?k1 , tag1)

γ2 = (#2 7→?k2 , tag2), . . . , (#m 7→?km , tagm)

branch(P) = (ω; 〈γ1, ∅〉, 〈γ2, δ〉, 〈γ′, δ′〉)



30 Chapter 2. Tactics in the Matita interactive theorem prover

When the branching tinycal is used, the tasks in γ are re-numbered with their

position in the list γ: thus the user will be able to refer to them using indices

#1, . . . ,#n, where n is the number of originally focused tasks. The topmost context

〈γ, δ〉 is then split in two parts, identifying together a new level of nesting in the

proof structure. The new topmost context 〈γ1, ∅〉 is made of just one focused task

(indexed by #1 and no postponed tasks; the following context 〈γ2, δ〉 is similar to

the previous topmost context, except for the removal of task #1: the user can switch

to tasks in γ2 using the shift and positioning tinycals.

let branch_tac status =

let new_gstatus =

match status.gstatus with

| [] -> assert false

| (g, t) :: s ->

match init_pos g with (* numbers goals *)

| [] | [ _ ] -> fail

| task :: tl -> ([task], []) :: (tl, t) :: s

in

{ status with gstatus = new_gstatus }

Figure 2.3: Sample implementation of the branching tinycal

Shift The user can stop working on a single focused task and move to the next

one using the shift tinycal (|).

P = (ω; 〈γ1, δ1〉, 〈γ2, δ2〉, 〈γ′, δ′〉)
γ2 = (#n 7→?k, tag), γ′2
γ0 := (#n 7→?k, tag)

γ′1 := filter open(γ1)

shift(P) = (ω; 〈γ0, δ1 ∪ γ′1〉, 〈γ′2, δ2〉, 〈γ′, δ′〉)

The shift tinycal operates in a context stack containing at least two contexts

〈γ1, δ1〉 and 〈γ2, δ2〉 (resulting from a previous application of the branch tinycal and
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together identifying the current level of nesting). It moves what is currently focused

(γ1) on the postponed list at the top of the stack (δ ∪ γ′1 in the conclusion of the

rule); simultaneously, the first task contained in γ2 is moved to the new focused list

γ0. The filter open operation is used to remove all already closed tasks from γ1, so

that they do not get vacuously postponed.

let shift_tac status =

let new_gstatus =

match status.gstatus with

| (g, t) :: (g’, t’) :: s ->

(match g’ with

| [] -> fail

| loc :: loc_tl ->

(([ loc ], t ∪ filter_open g)

:: (loc_tl, t’) :: s))

| _ -> fail

in

status with gstatus = new_gstatus

Figure 2.4: Sample implementation of the shift tinycal

Positioning Immediately after the use of branching or shift, it is possible to use

the positioning tinycal (i1, . . . , im :) to stop working on the currently focused tasks

and focus on the task numbered by i1, . . . , im in the current proof nesting level.

P = (ω; 〈γ1, δ1〉, 〈γ2, δ2〉, 〈γ′, δ′〉)
γ1 = (#n 7→?k, tag)

γ0 := (γ1 ∪ γ2)(#im)

pos#im(P) = (ω; 〈γ0, δ1〉, 〈(γ1 ∪ γ2) \ γ0, δ2〉, 〈γ′, δ′〉)

Similarly to the shift tinycal, we operate on a context stack containing at least

two contexts 〈γ1, δ1〉 and 〈γ2, δ2〉. We obtain the new focused task list γ0 selecting
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from γ1 ∪ γ2 those tasks indexed by #im; its complement (γ1 ∪ γ2) \ γ0 is put as the

focused list of the second context, so that its elements may be focused later by shift

or positioning.

The wildcard tinycal (*:) is a specialized version of positioning, providing a

shortcut for focusing on all the remaining non-postponed tasks of the current nesting

level.

P = (ω; 〈γ1, δ1〉, 〈γ2, δ2〉, 〈γ′, δ′〉)
γ1 = (#n 7→?k, tag)

wildcard(P) = (ω; 〈γ1 ∪ γ2, δ1〉, 〈∅, δ2〉, 〈γ′, δ′〉)

Merging The merge tinycal (]) closes the current level of nesting by merging the

two contexts at the top of the stack. Its most common use when the currend focused

tasks list is empty, and we need to rise to the outer nesting level to go on with the

proof.

P = (ω; 〈γ1, δ1〉, 〈γ2, δ2〉, 〈γ′, δ′〉)
merge(P) = (ω; 〈γ2 ∪ filter open(γ1) ∪ δ1, δ2〉, 〈γ′, δ′〉)

The two lists of focused tasks γ1 and γ2 are merged in the new topmost con-

text, together with the postponed tasks of the previous topmost context (δ1). The

filter open operation is used with similar purposes to its occurrence in the shift

tinycal.

Note that the composition of ‘[’, multiple ‘|’s and ‘]’ is semantically equivalent

to the “thens” LCF tactical.

Skipping closed tasks We have not discussed so far the use of closed tasks. Since

we use goals (hence tasks) to represent also metavariables, a tactic can instantiate a

metavariable which is not currently focused and thus can be anywhere in the context

stack. In this case, we mark the task as closed so that, when the user will later focus

on it, he will be aware that the goal has already been automatically closed by side

effects. The only tactic which works on closed tasks is the skip tinycal that just

removes the task by leaving in the script an acknowledgement (the skip occurrence)

of the automatic choice.
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let pos_tac i_s status =

let new_gstatus =

match status.gstatus with

| [] -> assert false

| ([ loc ], t) :: (g’, t’) :: s

when is_fresh loc ->

let l_js =

filter (fun i,_ -> i ∈ i_s) ([loc] ∪ g’)

in

((l_js, t)

:: (([ loc ] ∪ g’) \ l_js, t’) :: s)

| _ -> fail

in

status with gstatus = new_gstatus

let wildcard_tac status =

let new_gstatus =

match status.gstatus with

| [] -> assert false

| ([ g ] , t) :: (g’, t’) :: s ->

(([g] ∪ g’, t) :: ([], t’) :: s)

| _ -> fail

in

status with gstatus = new_gstatus

Figure 2.5: Sample implementation of positioning tinycals

P = (ω; 〈γ, δ〉, 〈γ′, δ′〉)
(γ(i) = �#i 7→?ki , tag i)∀i∈dom(Γ)

skip(P) = (ω; 〈∅, δ〉, 〈γ′, δ′〉)
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let merge_tac status =

let new_gstatus =

match status.gstatus with

| [] -> assert false

| (g, t) :: (g’, t’) :: s ->

((t ∪ filter_open g ∪ g’, t’) :: s)

| _ -> fail

in

status with gstatus = new_gstatus

Figure 2.6: Sample implementation of the merge tinycal

The skip tinycal checks that all the focused tasks in the current context are

closed and, in this case, it clears them out.

let skip_tac status =

let new_gstatus =

match status.gstatus with

| [] -> assert false

| (gl, t) :: s ->

let gl = map (fun _,_,x,_ -> x) gl in

if exists ((=) ‘Open) gl then fail

else ([], t) :: s

in

{ status with gstatus = new_gstatus }

Figure 2.7: Sample implementation of the skip tinycal

Other tinycals described in [55] require a slightly more elaborate context stack.

The most interesting ones are the pair focus/unfocus that allows to focus on an

arbitrary subset of the goals, whereas the focusing tinycals we have described only

allows to focus on a subset of the tasks that were focused when [ was most recently
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used.

2.4.1 LCF-like tactics

Tactics as presented so far can freely manipulate the context stack. For instance,

tinycals are just tactics that change the stack without changing the goals. However,

the most frequent case for a tactic is still that it acts locally on a single focused goal,

and does not care about focusing or postponement of the generated goals. For this

reason we introduce a simplified type that corresponds to the LCF type extended

to support metavariables.

type lcf_tactic =

proof_status -> goal -> proof_status

An lcf_tactic takes as input a proof status and the focused goal (that must

belong to the proof status) and returns a new proof status. The list of new goals

can be computed by comparing the metasenv in input and in output. Passing the

metasenv (and proof object) around allows the tactic to instantiate metavariables

all over the proof. The justification for the tactic is recorded in the proof object.

Since we put no requirements on the latter, we are free to implement it either as an

ML function or as a concrete, inspectable, data structure like a λ-term if our system

is based on the Curry-Howard isomorphism: this is what happens in Matita.

An lcf_tactic can be lifted to a tactic by applying it in sequence to each

focused goal, collecting all the opened goals and turning all of them into the new

focused goals on top of the stack. This is implemented by the distribute tactic. We

formally express the tactic using an auxiliary definition

τ � 〈ω, γ, γo, γc〉 7→ 〈ω′, γ′o, γ′c〉

This expression represents the evaluation of an LCF-like tactic τ on a proof object ω,

with focused goals γ. ω′ is the final, modified proof object, and γ′o and γ′c are the sets

of new open and closed goals after executing τ ; finally γo and γc are accumulators,

used in intermediate steps of the evaluation.
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Executing an LCF-like tactic on a set of focused goals is equivalent to executing

it in sequence on each goal. If the set is empty, the proof object and the sets of new

open and closed goals do not change

τ � 〈ω, ∅, γo, γc〉 7→ 〈ω, γo, γc〉

If γ =?k, γ
′′ (i.e. there is at least one focused goal), there are two cases, depending

on whether ?k is an open goal, or it has been closed by side effect. In the latter case

(i.e. ?k ∈ γc), we ignore ?k and proceed to the remaining goals by recursion on γ′′.

γ =?k, γ
′′

?k ∈ γc
τ � 〈ω, γ′′, γo, γc〉 7→ 〈ω′, γ′o, γ′c〉
τ � 〈ω, γ, γo, γc〉 7→ 〈ω′, γ′o, γ′c〉

If ?k is still open, we first execute τ on ?k obtaining a new proof object ω′, update

the accumulators with the new open and closed goals after this execution of τ , and

finally perform recursion on γ′′.

γ =?k, γ
′′

?k /∈ γc
τ(ω, ?k) = ω′

〈γ′o, γ′c〉 := compare statuses(ω, ω′)

τ � 〈ω′, γ′′, (γo ∪ {?k}) \ γ′c, γc ∪ γ′c〉 7→ 〈ω′′, γ′′o , γ′′c 〉
τ � 〈ω, γ, γo, γc〉 7→ 〈ω′′, γ′′o , γ′′c 〉

Here compare statuses is used to obtain the pair of new open and closed goals

by comparing the proof statuses before and after executing τ .

The distribute tactic is finally obtained from the above definition, beginning with

the accumulators being empty.

P = (ω; 〈γ, δ〉, 〈γ′, δ′〉)
τ � 〈ω, γ, ∅, ∅〉 7→ 〈ω′, γo, γc〉

distributeτ (P) = (ω′; 〈γo, δ \ γc〉, deep close(γc, 〈γ′, δ′〉))
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The γo and γc resulting from iterative execution of τ are used to synthesize the

new context stack: the new focused tasks correspond to new open goals, while new

closed goals are removed from postponed tasks. The operation deep close(γc, 〈γ′, δ′〉)
is used to update the rest of the context stack, marking closed tasks with �.

When implementing an lcf_tactic, it is sometimes useful to call a tactic on

one goal but, because of lack of the context stack, an lcf_tactic can only directly

call another lcf_tactic. Therefore, we introduce the exec operation to turn a tactic

T into an lcf_tactic by equipping the proof status with a singleton context stack

and by forgetting the returned context stack.

γ := (#0 7→?k, �)
P = (ω; 〈γ, ∅〉)

T (P) = (ω′; 〈γ′, τ ′〉)
execT (ω, ?k) = ω′

The functions exec and distribute_tac form a retraction pair: for each proof

status s and goal i,

exec (distribute_tac lcf_tac) s g = lcf_tac s g

They are inverse functions when applied to just one focused goal or alternatively

when restricted to LCF-like tactics, i.e. tactics that ignore the context stack and

that behave in the same way when applied at once to a set of focused goals and to

each goal in turn. Thus, we can provide a semantics preserving embedding of any

LCF tactic into our new data type for tactics. Moreover, as proved in [55], we can

also provide a semantics preserving embedding of all LCF tacticals. In the current

presentation, this is achieved by means of the block tactic that allows to execute a

list of tactics in sequence:

block ∅(P) = P
T (P) = P ′

blockT ′(P ′) = P ′′

blockT ,T ′(P) = P ′′

This allows us to implement LCF tactical thens as:

thens(T , T ′) := blockT ,branch,separate(T ′),merge

where separate(T ′1 , . . . , T ′n) = T ′1 , shift , . . . , shift , T ′n.
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2.4.2 Final remarks

Since our tactics are applied to the whole proof status, they can reason globally

on it, e.g. by using constraint programming techniques to instantiate metavariables

constrained by multiple goals. The context stack also provides a list of focused goals

tactics are supposed to act on, favouring a kind of reasoning that is intermediate

between the global one and the local one of LCF. As in the previous case, abstract

data types can be used to prevent global reasoning in favour of the intermediate

one.

As a side effect, Tinycals, introduced in [55] with the precise aim of improving

the user interface of proof assistants by letting the user effectively write structured

scripts, can now be implemented as a special kind of tactics. This contrasts with

the previous situation, where they were additional commands to be interleaved with

tactics.

Another complaint on the old type for tactics regarded the implementation of

declarative commands to perform case analysis or induction. We can now deal with

this issue. Suppose that we want to implement a language with the following four

commands (tactics):

by induction on T we want to prove P

by cases on T we want to prove P

case X (arg1: T1) ... (argn: Tn):

by induction hypothesis we know P (H)

A proof by cases or induction is started using one of the first two tactics and continues

by switching in turn to each case using the third tactic, as in the following example:

by induction on n we want to prove n + 0 = n

case O:

....

case S (m: nat):

by induction hypothesis we know m+0 = m (IH)

...
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The user should be free to process the cases in any order. Thus the case tac-

tic should first focus on the goal that corresponds to the name of the constructor

used. While LCF tactics can only work on the focused goal, and focusing must

be performed outside the tactic (the case command cannot be implemented as a

tactic and thus it cannot be easily re-used inside other tactics), in our approach,

the by cases/induction tactics can open several new goals that are all focused at

once and the case tactic simply works on the wanted case only by focusing on it.

Moreover, the semantics of declarative tactics are often based on a working set

of justifications that are incrementally accumulated to prove the thesis. E.g. in the

Isar-like declarative script

n = 2 * m by H

moreover

m * 2 = x + 1 by K

hence

n = x + 1 by sym_times

the third inference is justified by the first two propositions and sym_times. Thus

the semantics of moreover and hence is that of accumulating the justifications in

some set which must be passed around in the proof status. The LCF data type

for tactics does not allow to implement this set, whereas in our proposal the proof

status can store any information. In particular, this kind of information is better

stored in the context stack, e.g. in the form of tags.

A last complaint involved untagged goals. In the new type for tactics, goals

are freely tagged in the context stack to attach information to them. A typical

application consists in marking proofs of side conditions that the system should try

to solve automatically, for instance by resorting to a database of ad-hoc lemmas as

in the implementation of Type Classes in Coq by Sozeau [63].
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(* distribute_tac: lcf_tactic -> tactic *)

let distribute_tac tac status =

match status.gstatus with

| [] -> assert false

| (g, t) :: s ->

(* aux [pstatus] [open goals] [close goals] *)

let rec aux s go gc =

function

| [] -> s, go, gc

| (_,switch,n,_) :: loc_tl ->

let s, go, gc =

(* a metavariable could have been closed

* by side effect *)

if n ∈ gc then s, go, gc

else

let sn = tac s n in

let go’,gc’ = compare_statuses s sn in

sn,((go ∪ [n]) \ gc’) ∪ go’,gc ∪ gc’

in

aux s go gc loc_tl

in

let s0, go0, gc0 = status.pstatus, [], [] in

let sn, gon, gcn = aux s0 go0 gc0 g in

(* deep_close sets all instantiated metavariables

* to ‘Close *)

let stack = (gon, t \ gcn) :: deep_close gcn s

in

{ gstatus = stack; pstatus = sn }

Figure 2.8: Sample implementation of distribute tactic
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(* exec: tactic -> lcf_tactic *)

let exec tac pstatus g =

let stack = [ [0, ‘Open, g, ‘No_tag ], [] ] in

let status =

tac { gstatus = stack ; pstatus = pstatus }

in

status.pstatus

Figure 2.9: Sample implementation of exec
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Chapter 3

Unification of constructor forms in

Matita
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3.1 Overview

In this chapter, we report about our implementation of the destruct tactic, which is

an automated facility to manage equations on inductive types, performing substitu-

tions whenever possible, and ultimately simplifying the status of an on-going proof.

This kind of operation, which is often called “object-level unification”, because of

its analogies with first-order unification ([54]), is especially valuable in logical devel-

opments dealing with data-structures or inductively-defined predicates.

While the implementation we give is clearly based on McBride’s original work ([39]),

we describe some aspects that are specific to our version, including direct support

for the unification of Leibniz equalities.

3.2 Two notions of equality

In type theory, equality is often defined as an inductive predicate having a sin-

gle “reflexivity” constructor. We describe two common definitions following this

approach.

3.2.1 Leibniz’s equality

Leibniz’s principle of the identity of indiscernibles roughly states that two entities

are equal if any property of the first also holds for the second and vice-versa. This

can be translated in the Calculus of Constructions as

eqL[x, y : T ] , ΠP : T → Type.(P x↔ P y)

In CIC, however, it is more convenient to use the following inductive definition:� �
inductive eq (T:Type) (x:T) : ∀ y:T.Prop :=

| refl : eq T x x.� �
If x and y have the same type T , we will write x = y for eq T x y; we will also write

Rx for the proof of x = x obtained using the constructor refl. This definition, which
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can only be used if x and y have the same type T , is also called “Leibniz equality”,

because the principle of the identity of indiscernibles is an instance of the elimination

principle E= of eq:

E= : ΠT : Type, x : T.

ΠP : (Πx0 : T, p0 : x = x0.Type).P x Rx →
Πy : T, e : x = y.P y e

This elimination principle, read backwards, performs rewriting of the goal P y e into

P x Rx according to an equation e : x = y. Since E= is an elimination principle, the

following reduction rule holds:

E= T x P p x Rx .ι p

3.2.2 John Major equality

John Major equality is similar to Leibniz equality, except that it is possible to equate

terms inhabiting different types. However, as in Leibniz equality, every term is only

equal to itself; thus when two terms are equal, so must be their types.

John Major equality is also defined as an inductive type:� �
inductive JMeq (T:Type) (x:T) : ∀U:Type.∀ y:U.Prop :=

| refl jmeq : JMeq T x T x.� �
If x has type T and y has type U , we will write x ' y for JMeq T x U y. We also

write RJ
x for the identity proof of x ' x obtained using constructor refl_jmeq.

The standard elimination principle for John Major equality is not particularly

useful. To really be able to rewrite using ', we must introduce in the system a

specific axiom for rewriting:

JMeqElim : ΠT : Type, x : T.

ΠP : (Πx0 : T, p0 : x ' x0.Type).P x RJ
x →

Πy : T, e : x ' y.P y e.
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The intended behaviour of JMeqElim should be that of an elimination principle:

similarly to the Leibniz case, the following reduction rule should hold.

JMeqElim T x P p x RJ
x . p

However, axioms are treated as black boxes by the system, therefore such a term

does not reduce. In general, the use of JMeq makes the proofs and definitions given

in Matita less computational. To alleviate this problem, we also want to provide a

reasonable support for Leibniz equations on dependent types.

3.3 Rewriting dependent types with Leibniz equal-

ity

When we deal with dependent types, it is often the case that we must deal with

telescopes of equations, rather than single equations. For example, suppose that we

are given two vectors v of length m and w of length n, and that we also know that

the equality between dependent pairs

〈m, v〉 = 〈n,w〉

holds. This is a perfectly legal Leibniz equality, since both terms in the equation

have the same type Σx : N.vec x. We would like to state that v and w are equal;

however, this statement is only meaningful under the condition that m and n are

also equal. Because of the dependent typing discipline, if we want to rewrite v

with w, we are forced to also rewrite m with n at the same time, in the goal and

possibly in some hypotheses too. In case of a more complicated dependent type, it

is necessary to rewrite an arbitrary number of terms at the same time.

After McBride’s work [39], there is a general agreement that using John Major

equality is a very natural way to deal with equations on dependent types. Since

John Major equality does not impose any constraint on the types of the terms being

equated, it is actually possible to state m ' n and v ' w. Furthermore, it is possible
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to state the simultaneous rewriting principle

EqSubst2 : ΠT0 : Type, T1 : (Πx0 : T0.Type).

ΠP : (Πx0 : T0, x1 : T0 x0.Type).

Πa0 : T0, a1 : T1 a0.P a0 a1 →
Πb0 : T0.a0 ' b0 →
Πb1 : T1 b0.a1 ' b1 → P b0 b1

that is also provable assuming the specific elimination principle of John Major equal-

ity. This principle is easily extended to telescopes of equations of any length.

As known in folklore, there is no actual need for John Major equality to state

such principles. The reason behind this choice is mostly practical, as simultaneous

rewriting for Leibniz equality is more difficult to derive and justify. In this section

we give a formal account of simultaneous rewriting with Leibniz equality.

3.3.1 Leibniz telescopes

As we just said, the Leibniz equality v = w is not legal, since the lengths m and n

of the two vectors are not convertible. It is however possible to prove that they are

propositionally equal: in fact, we may derive a hypothesis

e0 : m = n

Using the elimination principle of the Leibniz equality, we can rewrite v using equa-

tion e0. The rewritten vector has type vec n and can be equated to w, which has

the same type:

e1 : E= N m (λx, p.vec x) v n e0 = w

We say that e0, e1 is a Leibniz telescope of length 2. Also, the elimination principle

E= can be thought of as a rewriting principle for telescopes of length 1. We will

therefore reference it by the notation

ρ1[T0, T1, a0, a1, b0, e0] = E= T0 a0 T1 a1 b0 e0
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For telescopes of arbitrary length, the i-th equation must depend on all the

previous i − 1 equations: this amounts to rewriting its lefthand side simultane-

ously with a telescope. Assume we already defined the rewriting principle of order

i − 1 (notation: ρi−1); then the i-th equation in the telescope will be in the form

ρi[Ti, ai, bi−1, ei−1] = bi where we are equating ai and bi, under the assumption that

the telescope ei−1 equates the two sequences of terms ai−1 and bi−1. Ti is used to

reconstruct the types of all the ai and bi.

3.3.2 Simultaneous rewriting principles

The previous commentary shows that Leibniz simultaneous rewriting principles,

compared with their John Major equivalents, have a more critical status: not only

are they used to rewrite telescopes of equations, but they are also needed to actually

define them!

For a gentle introduction to Leibniz rewriting principles, let us first introduce

the second order principle ρ2, used to rewrite with telescopes of length 2, which is

similar to the EqSubst2 used for John Major equality.

ρ2 : ΠT0 : Type, a0 : T0.

ΠT1 : (Πx0 : T0, p0 : a0 = x0.Type), a1 : T1 a0 Ra0 .

ΠT2 : (Πx0 : T0, p0 : a0 = x0, x1 : T1 x0 p0.

ρ1[T0, T1, a0, a1, x0, p0] = x1 → Type).

T2 a0 Ra0 a1 Ra1 →
Πb0 : T0.Πe0 : a0 = b0.

Πb1 : T1 b0 e0.Πe1 : ρ1[T0, T1, a0, a1, b0, e0] = b1.

T2 b0 e0 b1 e1

This principle, which is provable, is not very different from EqSubst2, except for the

fact that it references Leibniz telescopes, made of explicitly rewritten terms. This

ultimately requires the types T1 and T2 to be abstracted on telescopes of equations,

too.

In the general case, to build an n-th order rewriting principle, we first define

ρ0 : λT0 : Type, x0 : T0.x0 (rewriting with 0 equations is the identity) and ρ1 , E=
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(rewriting with 1 equation is performed by the usual elimination principle for =).

Then, to define the ρn+2, for any natural number n, we will have to assume that

the lower order principles ρ0, . . . , ρn+1 have been defined, since a telescope of length

n+ 2 references those rewriting principles.

The reader might be worried that, telescopes being defined in terms of rewriting

principles, and rewriting principles defined in terms of telescopes, those definitions

might be circular. However, if we construct rewriting principles bottom-up, be-

ginning with ρ2 and finally reaching any ρn, we can convince ourselves that the

definition is well posed. We still have to give a fully formal definition of the ρn

principles. First, in Table 3.1, we define the type of ρn.

The definition is built by means of parametric sub-expressions. The type of ρn

is provided by Mn
0 , which alternatively abstracts predicates Tn and terms an (such

that the type of each ai is obtained in terms of Ti and the previous ai−1); then

Nn
0 [Tn, an] abstracts alternatively over terms bn−1 and the telescope of equations

en−1. Each ei respects the shape of the telescope, with ai as the lefthand side and

bi as the righthand side. The type of each bi is returned from Ti, using the previous

bi and ei as its arguments.

The type of each predicate Tm, depending on the previous values of Tm and am,

is built by an auxiliary definition V m
0 [Tm, am], abstracting alternatively on terms xm

and equations pm; these two are typed similarly to the bi and ei.

We will not content ourselves with assuming the existence of the ρn principles:

it is possible to define them concretely, in terms of the elimination principle E=,

as shown in Table 3.2. The definition of ρn, where n ≥ 2, begins with a sequence

of λ-abstractions matching in number and type the Π-abstractions of Mn
0 ; then,

to rewrite the telescope en, we first rewrite the single equation en−1, followed by a

“recursive” rewriting of order n−1 on the subtelescope en−1. Notice that “recursion”

here is purely at the meta-level: ρn, strictly speaking, is not defined as a recursive

CIC function. There is no easy way to define ρn once and for all for any n, because

the type of ρn mentions ρn−1, and the type system of Matita does not allow a

recursive definition to occur inside its own type. However, we can still derive single
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V n
n [Tn, an, xn, pn] , Type

V n
i [Tn, an, xi, pi] , Πxi : Ti x0 p0 · · ·xi−1 pi−1.

Πpi : ρi[Ti+1, ai+1, xi, pi] = xi.

V n
i+1[Tn, an, xi+1, pi+1] (when i < n)

Mn
n [Tn, an] , ΠTn : V n

0 [Tn, an].

Πan : Tn a0 Ra0 · · · an−1 Ran−1 .

Nn
0 [Tn+1, an+1]

Mn
i [Ti, ai] , ΠTi : V i

0 [Ti, ai].

Πai : Ti a0 Ra0 · · · ai−1 Rai−1
.

Mn
i+1[Ti+1, ai+1] (when i < n)

Nn
n [Tn+1, an+1, bn, en] , Tn b0 e0 · · · bn−1 en−1

Nn
i [Tn+1, an+1, bi, ei] , Πbi : Ti b0 e0 · · · bi−1 ei−1.

Πei : ρi[Ti+1, ai+1, bi, ei] = bi.

Nn
i+1[Tn+1, an+1, bi+1, ei+1] (when i < n)

ρn : Mn
0

ρn[Tn+1, an+1, xn, pn] , ρn T0 a0 · · ·Tn an x0 p0 · · ·xn−1 pn−1

Table 3.1: The type of n-th order rewriting principles

n-th order instances of ρ.

Proposition 3.1 For all natural numbers n, the definition of ρn is well founded.

Proof: For n ≤ 1, the statement is trivial. For n ≥ 2, we show that the definition

we gave is well founded. We define the degree of the expressions involved in the
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ρ0 , λT0, a0.a0

ρ1 , E=

ρn+2 , λT0, a0, . . . , Tn+2, an+2, b0, e0, . . . , bn+1, en+1.

ρ1 (Tn+1 b0 e0 · · · bn en) (ρn+1[Tn+2, an+2, bn+1, en+1])

(λyn+1, qn+1.Tn+2 b0 e0 bn en yn+1 qn+1)

(ρn+1 T0 a0 · · ·Tn an
(λx0, p0, . . . , xn, pn.

Tn+2 x0 p0 · · · xn pn
(ρn+1[Tn+2, an+2, xn+1, pn+1])

Rρn+1[Tn+2,an+2,xn+1,pn+1])

an+1 b0 e0 · · · bn en)

bn+1 en+1

Table 3.2: n-th order rewriting principles

definition as the following quadruples:

degree(V 0
0 ) = degree(M0

0 ) = degree(N0
0 ) = degree(ρ0) = 〈0, 0, 0, 0〉

degree(V m
i ) = 〈m− 1,m, 0,m− i〉

degree(Mm
i ) = 〈m,m− 1, 1,m− i〉

degree(Nm
i ) = 〈m,m− 1, 0,m− i〉

degree(ρm) = 〈m,m, 0, 0〉

This implicitly assumes i ≤ m, which is always satisfied in the definition. Then,

by direct inspection, we see that the expressions V,M,N, ρ are defined in terms of

subexpression of lesser degree, under lexicographic ordering of quadruples. Since

lexicographic ordering is well-founded, so is the definition of ρn. 2

Our interest being the implementation of tactics for rewriting with dependent

types, we only state that all rewriting principles are well typed.

Claim 3.2 For all natural numbers n, ρn is well typed.
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A completely formal proof of this assertion would require a very involved well-

founded induction. An informal though not completely satisfactory argument to

justify the claim can be obtained considering the type of ρn compared to that of

ρn−1. It is easy to convince ourselves that the abstractions of ρn−1 are a subset

of those of ρn: therefore, for ρn to be well typed, if ρn−1 is, we can assume the

types of Tn, an, bn−1, en−1 to be well formed. So, the only abstracted variables whose

types might not be well-formed are Tn, an, bn−1 and en−1. However, inspecting the

definition, we see that their types are, essentially, composed of subexpressions of the

well-formed types of Tn, an, bn−1, en−1.

3.4 The destruct tactic

This section discusses the implementation of the destruct tactic, implementing uni-

fication for constructor forms, in a style which is close to McBride’s style. Differences

in the implementation reflect the possibility of using only Leibniz equality with its

ρn rewriting principles. Our tactic is sufficiently generic to allow unification for both

Leibniz equality and John Major equality, with a large base of shared code between

the two. Currently, the implementation does not discriminate cyclic equations.

Our discussion will only describe the behaviour of the tactic in the case of Leibniz

equations, since it is more general than the John Major case. Before discussing the

details, we give a formal definition of constructor form:

Definition 3.1 The set of terms in constructor form is the smallest set S such

that:

• x ∈ S for all variables x;

• if k is an inductive type constructor and t1, . . . , tn ∈ S, then (k t1 · · · tn) ∈ S.

An equation is said to be in constructor form if both sides of the equation are terms

in constructor form.
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Because we allow the use of Leibniz equality, in our discussion, we will also need

to consider a more general form of equation:

Definition 3.2 An equation is said to be in rewritten constructor form if it is in

the form

ρn[Tn+1; an+1; bn; en] = bn

and the terms an and bn are in constructor form.

In practice, in rewritten constructor forms we allow that the constructor form in the

left hand side be rewritten by a Leibniz telescope, so that its type matches the type

of the right hand side.

The destruct tactic is essentially an LCF-like tactic (in the sense made clear

in Section 2.4.1): it works locally on a single goal and either produces a single new

goal, whose context has been rewritten as required; or it closes the selected goal

when it is possible to prove a contradiction. The status P on which an LCF-like

tactic works can be described as

P : (Γ ` Φ)

where Γ is the context of the single selected goal, and Φ its thesis. In the rest of the

chapter, we will note the effect of executing a tactic α on an LCF status P , possibly

with additional parameters x, as

α(P , x) : (Γ′ ` Φ′)

if α returns a single new goal with updated context Γ′ and updated thesis Φ′, and

as

α(P , x) : ∅

if α closes the current goal.

In the next section, we discuss the basic steps performed by the tactic. In

Sections 3.4.2 and 3.4.3, we will see how those operation can be combined to perform

the unification.
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3.4.1 Unification steps

Streicher’s K property

Identities are trivial tautologies and as such provide no useful information to prove

the goal. Therefore, we just want to discard them, no matter what the term involved

in the identity is. However, in our setting we should also consider the possibility

that an identity hypothesis is explicitly referenced in the goal. Concretely, if the

current goal is in the form

Γ, P : t = t→ Prop ` Πe : t = t.P e

we would like to turn it in a form where e has been substituted by the canonical

reflexivity proof Rt. Unfortunately, as we know, uniqueness of identity proofs is

not provable in standard CIC in the general case ([30, 31]), being equivalent to the

elimination principle for John Major equality. The only thing we can do is to assume

that uniqueness of identity proofs, in the form of Streicher’s K property, has been

proved for the type involved in the equation, either concretely or as an axiom. This

allows us to construct an operation κ transforming proof problems as follows:

κ(P) : Γ ` Φ[Rt]

P : Γ ` Πe : t = t.Φ[e]

Therefore, as expected, we cannot perform unification without assuming some form

of axiom: however, using Leibniz equality, we can limit the use of axioms to the

case where we really need to rewrite an identity as the reflexivity proof (compare

this to the case of John Major equalities, where every rewriting step corresponds

to an instance of an axiom). Furthermore, while uniqueness of identity proofs is

not provable in general, it can be proved for a reasonably general class of types (for

example, we can prove that identity on natural numbers has the K property): in

these cases, the system can be instructed to use concrete instances of the K property,

instead of the generic axiom.
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Substitution

Substitution is the operation we perform when we want to get rid of an equational

hypothesis that is not an identity, and one of its sides is a variable. Intuitively, if

an equation e has type x = t, we can use the rewriting principle ρ1 to substitute all

occurrences of x with t in the goal. More formally, we provide an operation ς that

behaves as follows:

ς(P , e) : Γ,Γ′ ` Φ[t,Rt]

P : Γ, e : x = t,Γ′ ` Φ[x, e]

A careful reader should immediately notice that the assumptions we made are not

enough to ensure that using ς we will obtain a well typed goal. In fact, it is not

always possible to substitute all the occurrences of some variable without breaking

the dependent typing discipline. In the judgement

n : N, f : ∀m : N, v : vec m→ bool, w : vec n, e : n = 0 ` f n w = true

replacing n with 0 is not allowed: f 0 w is not well typed, because the type of w is

vec n, which is not convertible with vec 0.

Clearly, this problem arises because the hypothesis w used in the goal has not

been rewritten. If we generalize the goal with respect to w before performing the

substitution, then the operation will be successful.

Another problem is that the substitution operation also clears hypothesis e from

the context, even though it could be possibly used in subcontext Γ′. This could

also be solved generalizing hypotheses from Γ′ as needed. The destruct tactic will

use operation ς carefully, after generalizing all the hypotheses depending from the

variable being rewritten.

Cascade generalization

Generalization of a hypothesis is the operation, performed at the user level by the

generalize tactic, corresponding to the proof step

γ0(P , t) : Γ, t : T,∆ ` Πx : T.Φ[x]

P : Γ, t : T,∆ ` Φ[t]
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the intended meaning of the operation being “to obtain a proof of Φ[t], we will prove

the stronger statement Πx : T.Φ[x]”.

As we said in the previous paragraph, it is often necessary, in order to perform a

substitution step, to generalize all the hypotheses depending on the variable x being

substituted. This not only includes hypotheses directly referencing x in their types,

but also those hypotheses referencing other hypotheses recursively depending on x.

We call the operation used to collect all this hypotheses cascade selection and the

resulting generalization cascade generalization.

Cascade selection is implemented by the following algorithm:

1. We start with a context Γ and a list acc that we will progressively fill with the

names of hypotheses we need to generalize; acc will be initialized with a single-

ton list containing the name of the hypothesis from which we want to compute

the dependencies (e.g. the name of the variable we want to substitute);

2. If Γ is empty, just return acc;

3. If Γ = h : T,Γ′, we check if any of the hypotheses in acc occurs in T : in this

case, we add h to acc; otherwise, we keep acc the same.

4. Finally, we iterate the procedure on Γ′ and the updated acc.

We provide two versions of the cascade generalization operation. In one case, we

just want to generalize all the hypotheses depending on one variable:

cascade select(Γ, x) = [t1; . . . ; tn]

t1 : T1, . . . , tn : Tn ∈ Γ

γ(P , x) : Γ ` Πt1 : T1, . . . , tn : Tn.Φ[t1; . . . ; tn]

P : Γ ` Φ[t1; . . . ; tn]

In a slightly different case, there is a single hypothesis we do not want to gen-

eralize: we will remove it from the list obtained using cascade selection just after

performing that operation (we write l1 \ l2 to mean the list obtained after removing

the items in l2 from the list l1)
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cascade select(Γ, x) \ [e] = [t1; . . . ; tn]

t1 : T1, . . . , tn : Tn ∈ Γ

γ′(P , x, e) : Γ ` Πt1 : T1, . . . , tn : Tn.Φ[t1; . . . ; tn]

P : Γ ` Φ[t1; . . . ; tn]

Injectivity and discrimination

When considering a hypothesis equating (possibly applied) constructors, there are

two possible cases: if the two constructors are different, then the hypothesis is

inconsistent, making the goal vacuously true

$(P , e) : ∅
k1 and k2 are different constructors

P : Γ, e : k1 t = k2 u,∆ ` Φ

If on the other hand the terms in the equation being considered consist of the

same (possibly applied) constructor, then an injectivity rule holds:

$(P , e) : Γ, e : k tn = k un,∆ ` ∀en : tn = un.Φ

P : Γ, e : k tn = k un,∆ ` Φ

where en : tn = un is a Leibniz telescope of equations. In particular, each term ti

appears as the argument of a rewriting principle involving the previous ei equations.

This marks a major difference with respect to the unification algorithm implemented

in [39], where new equations introduced by injectivity are in constructor form. In

our setting, instead, new equations contain applications of rewriting principles (what

we have called “rewritten constructor form”). The unification procedure will make

sure that these rewriting principles disappear before we actually introduce the new

equational hypotheses in the context; therefore the shape of the problem is not

affected and unification of constructor forms works as expected.

The two seemingly different operations of injectivity and discrimination of con-

flicts are actually performed by means of the same injectivity/discrimination lemma.
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Given an inductive type I t, its discrimination principle has the following type:

δI t , Πx, y : I t.match x with

[k0 xm0 ⇒ p0

...

|kn−1 xmn−1 ⇒ pn−1]

pi , match y with

[k0 ym0 ⇒ ΠΦ : Type.Φ
...

|ki−1 ymi−1
⇒ ΠΦ : Type.Φ

|ki ymi
⇒ ΠΦ : Type.(Πemi

: xmi
= ymi

.Φ)→ Φ

|ki+1 ymi+1
⇒ ΠΦ : Type.Φ

...

|kn−1 ymn−1 ⇒ ΠΦ : Type.Φ]

This principle is stated by means of two nested case analysis operations. Whenever

two terms x and y are equal, we analyze both of them: if the number of constructors

of I is n, there are exactly n2 cases to consider, for each possible combination of

constructors used to obtain x and y. We can imagine these cases to be disposed in

a square matrix, where the columns correspond to the n possible constructors for x

and the rows have the same role with respect to y. If x and y fall on the diagonal,

then x is actually ki xmi
and y is ki ymi

, where mi is the number of arguments of

the i-th constructor ki; then to prove any given goal Φ, we can also assume the

telescope of equalities emi
: xmi

= ymi
. If on the other hand by analysing x and y

we fall outside the diagonal, then we are in an inconsistent case and can prove any

property Φ for free.

Proving δI t is easy. We just introduce in the context the terms x and y, and

the hypothesis equating them:
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x : I t
y : I t
H : x = y

Mx,y

where Mx,y is an abbreviation for the term composed of the nested case analyses on

x and y. Using hypothesis H, we can rewrite y as x. This yields the new goal

x : I t
y : I t
H : x = y

Mx,x

where we only need to prove the properties on the diagonal, having already discarded

all the inconsistent cases for free. Then we perform case analysis on x: we get a

different subgoal for each possible constructor. Each of the subgoals will be in the

form

x : I t
y : I t
H : x = y

x1 : T1

...

xmi
: Tmi

Φ : Type

H1 : Πemi
: xmi

= xmi
.Φ

Φ

However this is almost trivial: it is sufficient to instantiate each ei with the identity

on the corresponding term Rxi . Notice that the notation for telescopes hides the

fact that the i-th equation should have the form

ei : ρi[. . . ;xi+1;xi; ei] = xi

However, assuming that the previous i − 1 equations have been instantiated with

identities, this reduces to

ei : xi = xi
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which can be proved by means of Rxi too.

Introduction of hypotheses

The last operation used in the unification algorithm is introduction of new hypothe-

ses, which at the user level is performed by the # tactic. This operation allows us

to introduce in the context:

• old hypotheses that have been generalized by a cascade generalization and

then rewritten;

• new equational hypotheses resulting from an injectivity step.

ϑ(P , y) : Γ, y : T ` Φ[y]

P : Γ ` Πx : T.Φ[x]

3.4.2 Analysis of the equations

Given any equation, the destruct tactic must first of all understand in which of

the cases for the unification algorithm it falls. Suppose that the equation being

considered is in the form t = u; the analysis is performed as follows:

1. First, perform a convertibility check on t and u: if t ∼= u, then the equation is

really an identity and it should be cleared using the κ operation;

2. Else, if t and u are both constructor applications, check if the constructors

being applied are the same; in this case, the equation is an injectivity case;

otherwise, it is a conflict case; in both cases, we will use the $ operation;

3. Else, at least one of the two terms is a variable; perform an occur check in

the other term: if the variable does not occur in the term, use operation ς;

otherwise the cyclic equation should be discriminated: in this unimplemented

case we will explicitly ask for user intervention.
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3.4.3 The unification algorithm

The unification algorithm implemented by destruct searches for equations to be

unified, scanning the context from the first element to the last one. The procedure

considers at each step the proof problem P , the number of hypotheses that have

been added to the thesis, as a result of a cascade generalization or an injectivity step

(nprods), and also a list of names of hypotheses that have already been considered

by the unification algorithm, but not yet removed from the context (acc). At each

step, the set of the active equations includes all the equations appearing either in the

context or in the first nprods abstractions of the goal, minus the inactive equations

referenced in acc.

The algorithm proceeds as follows:

1. If the context contains at least one equation, we scan the context and select the

first active equation e. The lefthand side is reduced to weak head normal form

(to put it in regular constructor form in case it is still in rewritten constructor

form); then we analyze the shape of the equation. The following steps depend

on the result of the analysis:

(a) in the case of injectivity or conflict, we apply the discrimination principle;

if it was injectivity, then we increment nprods by the number h of new

equations introduced by that operation, we add e to acc and finally we

iterate the procedure

destruct(P , nprods, acc) = destruct($(P , e), nprods + h, e :: acc)

In the case of conflict, we terminate the procedure after closing the goal:

destruct(P , nprods, acc) = $(P , e)

(b) in the case of a substitution, we perform a cascade generalization of all

hypotheses depending on the variable x being substituted, except e, and
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then use the rewriting step we defined earlier; finally we iterate the pro-

cedure, after adding to nprods the number h of hypotheses being gener-

alized:

destruct(P , nprods, acc) = destruct(ς(γ′(P , x, e), e), nprods + h, acc)

(c) in the case of an identity, we perform a cascade generalization of all

hypotheses depending on equation e, we also generalize e and finally use

the operation κ and iterate the tactic

destruct(P , nprods, acc) = destruct(κ(γ0(γ(P , e), e)), nprods, acc)

2. if there are no more equations and nprods > 0, we try introducing an hypoth-

esis from the thesis, decrement nprods and iterate the tactic

destruct(P , nprods, acc) = destruct(ϑ(P , x), nprods− 1, acc)

3. otherwise, we stop.

3.4.4 Proof of termination

We will now prove that the algorithm always terminates, by means of the classical

argument using lexicographic ordering on a properly defined tuple. This proof is

similar to the one given by McBride: the only complication comes from the fact that

since our algorithm considers not only equations appearing in the context, but also

some appearing in the goal.

Because of this peculiarity we will consider the set of all active equations in the

problem (according to the definition given a few lines before) appearing in construc-

tor form (either regular or rewritten).

We will then consider the size of the current problem as defined by a quadruple

〈a, b, c, d〉

where
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• a is the number of variables in the problem

• b is the number of constructor symbols appearing in the equations

• c is the number of active equations in the problem

• d is equal to the current value of nprods

Theorem 3.3 For all constructor form unification problems, the sequence of tran-

sition rule applications determined at each stage by the leading equation is finite.

Proof: We consider the various cases of the algorithm separately, showing that each

of them makes the size of the problem shrink:

• in case 1(a), we apply the injection/discrimination principle, which either

closes the current goal, or produces a new goal adding the current equation

to acc, thus making it inactive; in the first subcase, the algorithm terminates

immediately; in the second subcase, b shrinks, while a is not incremented;

• in case 1(b), substituting all occurrences of a variable decrements a by 1;

• in case 1(c), the number of active equations (c) is decremented by 1, while a

and b do not grow;

• in case 2, we decrement d, and all other values stay the same;

• case 3 stops immediately.

2

The nprods parameter is not strictly needed by the algorithm, but is used to en-

sure that the user, after applying the tactic, is presented with a familiar context. In

particular, we do not want to introduce more hypotheses than those strictly needed

to unify equalities in the context: if the original thesis was a product, possibly con-

taining more equational hypotheses, these should not be introduced in the context.

The check nprods > 0 at point 3 of the algorithm, ensures that the introduction

step cannot fire in such a situation.
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3.4.5 Advantages of our implementation

We have introduced an algorithm for performing unification of constructor forms

that is inspired by McBride’s simplify tactic, but differs from it in two respects:

1. it allows the user to use Leibniz equality instead of John Major equality;

2. it considers the case where an equation is mentioned in another hypothesis

or in the goal, and explicits a cascade generalization operation to manage the

added complexity.

The possibility of using Leibniz equality does not imply that in general we are

able to perform unification without assuming axioms (like Streicher’s K). However,

while John Major equality needs axioms for both rewriting and clearing of identi-

ties, the rewriting principles of Leibniz equality (including simultaneous rewriting

principles) are definable in plain CIC. This means that we are able to prove more

properties without resorting to axioms. Consider for example the following goal,

containing an equality on dependent pairs:

m : N

n : N

v : vec m

w : vec n

P : ∀x1, x2 : N.∀y1 : vec x1.∀y2 : vec x2.Prop

e : 〈m, v〉 =Σx:N.vec x 〈n,w〉
P m n v w

The algorithm will:

1. Perform an injectivity step on equation e, producing a new goal

∀e1 : m = n.∀e2 : ρ1[N, vec,m, n, v, e1] = w.P m n v w

2. Introduce a new hypothesis e1 : m = n in the context
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3. Replace m with n (by means of hypothesis e1) after generalizing hypothesis v,

yielding the goal

∀v : vec n.∀e2 : ρ1[N, vec, n, n, v,Rn] = w.P n n v w

which reduces to

∀v : vec n.∀e2 : v = w.P n n v w

4. Introduce the hypotheses v : vec n and e2 : v = w.

5. Rewrite with e2 to obtain the final goal

P n n w w

Notice how we managed to avoid the use of axioms: if we used John Major

equality, all the rewriting steps would resort to axioms.

Furthermore, since the only axiom we need to deal in general with Leibniz equa-

tions is Streicher’s K property, the user can easily provide specialized, provable

versions of K for decidable types. This is especially useful inside the definition of

dependently typed algorithms, since axioms are opaque components that can block

the evaluation of a function. If we used John Major equality, we woul also need to

derive a rewriting principle from the specialized version of K.

The point concerning dependent occurrences of equations in other hypotheses or

in the goal is more subtle. Clearly the ability to deal with this situation is more

critical in the case of Leibniz equalities, because Leibniz telescopes are built precisely

employing references to other equations, as opposed to John Major telescopes – in

fact, McBride’s algorithm never introduces this kind of dependencies. However,

it is still possible that the dependencies are already present in the original goal,

before performing unification. This is possible even in very simple cases: consider

for example this program definition in Coq:

Program Definition tail (n : nat) (v : Vec (S n)) :

{ w : Vec n | exists m, JMeq v (vcons n m w) } :=
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match v with

| vnil => _

| vcons m k w => w

end.

The definition opens, among other, a proof obligation

n : N

v : vec (S n)

m : N

k : N

w : vec m

H1 : S m = S n

H2 : vcons m k w ' v

∃m0 : N.v ' vcons n m0 (ρ1[N, vec,m, n, w, (H∗ n v m k w H1 H2)])

where H∗ is a proof of

∀n : N.∀v : vec (S n).∀m,n : N.∀w : vec m.S m = S n⇒ vcons m k w = v ⇒ m = n

Clearly, H1 and H2 occur in the goal, needing, for the purposes of unification, an

algorithm capable of performing cascade generalizations, like the one we presented

in this chapter.



Chapter 4

Inversion revisited
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In this chapter, we report about our development of the inversion tactic for

Matita. The implementation follows the style made popular by McBride in [40],

but is also more flexible, supporting a novel notion of mixed induction/inversion

principles. The structure of the chapter is as follows: the first section introduces

the notion of inversion of an inductive predicate; in section 2 and section 3 we

describe respectively the definition of inversion principles and their extension to

induction/inversion; finally section 4 discusses the implementation.

4.1 Backwards reasoning

In mathematics, and particularly in logic and computer science, it is common to

define predicates by means of inductive deduction rules: when we do this, we assert

that any proof of such a predicate can be obtained only by combining a finite number

of copies of the deduction rules in a legal way. In CIC, and consequentially in Matita,

it is possible to model this notion by means of a proper inductive type: conforming

to the Curry-Howard correspondence, the inductive type encodes the predicate,

and terms of that inductive type represent its possible proofs; each deduction rule

corresponds to one and only one constructor of the inductive type, and vice-versa.

Inductive types also match the requirement of finiteness of the proofs: each term of

an inductive type must be obtained by combining its constructors a finite number

of times.

When a predicate is defined by means of deduction rules, we expect that its

proof may be inspected, in such a way that reasoning on the rules used to derive

it should be possible. For example, let us assume that the “is even” predicate is

defined using two deduction rules: the first one, which we call Even-O, has no

hypothesis and states that 0 is an even number; the second one, called Even-SS,

says that applying the successor function to a given natural number n, we obtain an

even number S (S n), provided that we already proved that n is even. While this

definition might seem somewhat unnatural (mathematicians would usually define

even numbers as those that can be obtained multiplying some natural number by
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2), it will serve as our toy example in the rest of this section. The two rules and

their representation in Matita as an inductive type are shown in Figure 4.1.

There are a small amount of proof techniques based on this principle that we

call generically backwards reasoning : they include case analysis on the last rule used

in the proof tree and, more importantly, structural induction on the proof tree.

4.1.1 Case analysis

In CIC, case analysis has a direct representation as the match statement, used to

decompose an inductive term, analyzing the constructors used to obtain it. Matita

(not unlike Coq) provides an interface to it as the cases tactic. Suppose the user is

facing the goal

n : nat

H1 : n is even

P n

where P is some unary property on natural numbers. Using case analysis on the

hypothesis H1, the user can reason on the last rule used in its derivation, thus

reducing the proof to two supposedly simpler subgoals (one for each of the deduction

rules for the “is even” predicate): if H1 was obtained by means of Even-O, then n

must be 0, and our goal becomes P 0:

n : nat

H1 : n is even

P O

If on the other hand rule Even-SS was used, than we know that n is really S (S m)

for some m, and that m is also even, corresponding to the new goal

(Even-O)
0 is even

n is even (Even-SS)
S (S n) is even

� �
inductive even : nat → Prop :=

| even O : even O

| even SS : ∀n:nat.even n → even (S (S n)).� �
Figure 4.1: Definining an inductive predicate in Matita



70 Chapter 4. Inversion revisited

n : nat

H1 : n is even

m : nat

H2 : m is even

P (S (S m))

4.1.2 Structural induction

The previous is sufficient to show that very simple properties hold: for example, we

could prove that n, being even, is either 0 or strictly greater than 1 (each possibility

being immediate consequences of one of the deduction rules of “is even”). However,

most interesting properties require, to be proved, more sophisticated backwards

reasoning, like the one provided by structural induction.

Structural induction is similar to case analysis in the sense that it also opens

a subgoal for each of the possible constructors of the term we are decomposing.

However it also offers additional induction hypotheses on each of its “immediate

subterms” of the same inductive type. For example, it is possible to prove that

every even number is the double of some natural number by structural induction:

we get two subgoals

n : nat

H1 : n is even

∃p.0 = p ∗ 2

n : nat

H1 : n is even

m : nat

H2 : m is even

IH : ∃q.m = q ∗ 2

∃p.S (S m) = p ∗ 2

In the second subgoal, since H2 is an immediate subproof of the hypothesis H1 on

which we are performing induction, we get an associated induction hypothesis IH.

By IH, we can rewrite S (S m) as S (S (q ∗ 2)), which is equal to (S q) ∗ 2 up to a

computation step1. Therefore, to prove the goal it is sufficient to take p = S q.

1Assuming a proper definition of multiplication as a recursive function.
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CIC provides induction principles for all inductive types: depending on the ver-

sion of the calculus, they can be either a primitive operation (just like the match

expressions) or proved in terms of case analysis and terminating recursion. Even

though Matita follows the latter style, induction principles are proved automatically

by the system, so that we can actually consider them as primitive operations. They

are applied by the elim tactic.

4.1.3 Inversion

At first sight, the previous two tactics seem to accomodate most of the informal proof

techniques involving inductively defined predicates. However, the above approaches

fail in slightly more involved scenarios. Consider for example the very simple goal

n : nat

H1 : S n is even

n > 0

Apparently, case analysis on H1 is sufficient to make the proof trivial: in fact,

the proof of “S n is even” can only be obtained by means of the Even-SS rule

(Even-O would never work, since 0 is not the successor of any natural number);

then n is equal to S m for some natural number m, and we only need to prove that

S m > 0. However, the cases tactic yields two new subgoals

n : nat

H1 : n is even

n > 0

n : nat

H1 : n is even

m : nat

H2 : m is even

n > 0

failing to meet logical intuition for two reasons:

• It considers the subcase for S n equal 0, even though this is inconsistent, but

does not provide any new, manifestly contradictory hypothesis, not allowing

to discard this impossible case
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• While case analysis identifies S n with terms 0 and S (S m) (depending on

the goal), this identification is only implicit: the system provides no explicit

hypothesis stating that S n must be equal to another term: therefore we are

left with the same n > 0 goal to prove, without knowing (explicitly) any new

information concerning n.

Using induction rather than case analysis yields a similar result.

The reason behind this behaviour stands in the way case analysis is implemented.

Proving a theorem under a set of hypotheses amounts to instantiating a metavariable

with a term of the type corresponding to the statement of the theorem, in the typing

context defined by the hypotheses. The proof problem can then be described as the

typing judgment

n : nat, H1 : S n is even `?1 : n > 0

where ?1 is a metavariable, representing the proof the user still has to fill in. Per-

forming case anlysis on H1 is equivalent to instantiating ?1 with the following match

statement on H1� �
match H1 in even return ?2 with

[ even O ⇒ ?3

| even SS (m:nat) (H2:even m) ⇒ ?4 ]� �
where, by the typing discipline of match statements, ?2 (S n) H1 should be con-

vertible with n > 0: this means that the unification engine of the theorem prover

should synthesize a function that, when applied to S n and H1, returns the type

n > 0. This is a higher order unification problem and as such it has no most general

unifier. Only in particularly fortunate cases (like the ones in the previous examples)

the system is able to infer a decent value for ?2; since however this time neither S n

nor H1 match a subterm of n > 0, Matita instantiates ?2 with λx1, x2.n > 0. This

yields new subgoals for ?3 and ?4

n : nat, H1 : S n is even `?3 :?2 0 even O

n : nat, H1 : S n is even,m : nat, H2 : m is even `?4 :?2 (S (S m)) (even SS m)
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or, after substituting ?2

n : nat, H1 : S n is even `?3 : n > 0

n : nat, H1 : S n is even,m : nat, H2 : m is even `?4 : n > 0

It is possible to overcome this limitation. One possibility is to prove a separate

inversion lemma for all inductive predicates. In the case of “is even”, the lemma

states:

Πx : nat.x is even→ x = 0 ∨ ∃y.x = S (S y) ∧ y is even

Inversion lemmata can be more easily proved by case analysis, and then used to

perform backwards reasoning in the more general case. If we apply this inversion

lemma, instead of the cases tactic, we still have to prove n > 0 in two subgoals:

however, in the first goal we will have an explicit hypothesis saying S n = 0, and in

the second one, a similar one stating that S n = S (S m).

Not only is this a general technique, but it can even be automatized, as shown by

Cornes and Terrasse in Coq [15]. In [40], McBride suggested that the statement of

inversion lemmata should be formulated in a different way, reminiscent of induction

principles. The rest of the chapter discusses our implementation and extension of

inversion lemmata in the style of McBride.

4.2 Proving inversion principles

Suppose we are given the following inductive type:� �
inductive I : ∀x1 : T1, . . . , xn : Tn.σ :=

| c1 : ∀ y1
1 : U1

1 , . . . , y
1
k1

: U1
k1
.I t11 · · · t1n

...

| cm : ∀ ym1 : Um1 , . . . , y
m
km

: Umkm .I t
m
1 · · · tmn� �
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We want to prove an inversion lemma for I with the following statement:

Πx1 : T1, . . . , xn : Tn.

ΠP : ∀z1 : T1, . . . , zn : Tn.τ.

(∀y1
1 : U1

1 , . . . , y
1
k1

: U1
k1
.x1 = t11 → . . .→ xn = t1n → P t11 · · · t1n)→

...

(∀ym1 : Um
1 , . . . , y

m
km

: Um
km
.x1 = tm1 → . . .→ xn = tmn → P tm1 · · · tmn )→

I x1 · · ·xn → P x1 · · ·xn

Basically, this provides a case analysis operation enriched with an equation for

each right parameter of the inductive type I. Unsurprisingly, the lemma can be

proved with a clever use of a match expression:

λx1, . . . , xn.λP.

λH1, . . . , Hm.λt.

match t in I return λz1, . . . , zn, w.x1 = z1 → . . . xn = zn → P z1 · · · zn
with

[c1 y
1
1 · · · y1

k1
⇒ H1 y

1
1 · · · y1

k1

...

|cm ym1 · · · ymkm ⇒ Hm ym1 · · · ymkm ]

4.3 Mixing induction and inversion

In informal mathematics, structural induction and case analysis on the final rule of

a proof tree are often usend conjunctly. However as we will see in a few moments,

at least in the Calculus of (Co)Inductive Constructions, structural induction does

not allow to perform at once case analysis on the final rule, unless we give up on

using the induction hypotheses. In this section we present the unusual technique of

induction/inversion, which in some cases can be used to justify the informal notion

of structural induction.

We start recalling the rule for induction over indexed inductive definitions. An

indexed inductive definition is similar to an inductive type, but it defines at once

a set of mutually-recursive inductive types differing by the values of some indices.
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Syntactically, the declaration of an inductive family is isomorphic to the declara-

tion of a judgement by giving its introduction rules. The family parameters are

the arguments of the judgement. The derivation rules are the constructors of the

inductive family. Positivity conditions must be satisfied by the derivation rules to

ensure existence of the least fixpoint solution of the set of recursive rules. When

the judgement is 0-ary (i.e. it has no parameters), we obtain a simple inductive

definition. In this case, the conclusion of all derivation rules is simply the name of

the inductive type being defined, providing no information.

Once an inductive family I is declared by giving its derivation rules (its con-

structors), we obtain for free recursion over the inductive family as the elimination

principle corresponding to the introduction rules.2 We briefly recall the typing judge-

ment of induction principles for arbitrary inductive families: our syntax is similar

to the one given by [69] up to some minor differences.

Assume an inductive type I of arity ∀xn : Tn.σ, where σ is a sort. Suppose that

P is a predicate of type ∀xn : Tn.I xn → τ , where τ is a sort, and t has type I un for

some (properly typed) terms un. The application of the proper induction principle

on t to prove P un t is written

EτI (un, t, P ){fm}

where fm are the proof terms for each of the m sub-cases of the induction (one for

each of the constructors of I). The expected type for the fm is computed by the

following definition:

Definition 4.1 Let Γ be a CIC context, c, T,Q CIC terms. The operators ∆Q{Γ; c :

T} and ΘQ{Γ;T} are defined as follows:

∆Q{Γ; c : I t} ≡ ΘQ{Γ;Q t c}
∆Q{Γ; c : ∀x : T.U} ≡ ∀x : T.∆Q{Γ, x : T ; c x : U}
otherwise undefined

2Actually, in Matita elimination principles are not primitive, but are defined by means of well-

founded recursion; this definition, however, is fully automated.



76 Chapter 4. Inversion revisited

ΘQ{∅;T} ≡ T

ΘQ{Γ, x : ∀y : V .I t;T} ≡ ΘQ{Γ; ∀y : V .Q t (x y)→ T}
ΘQ{Γ, x : U ;T} ≡ ΘQ{Γ;T} if the head of U is not I
otherwise undefined

Let kIi of type KIi (i = 1, . . . ,m) be the constructors of type I. Then we can

write the typing rule for the induction principle as follows:

Γ ` I : ∀xn : Tn.σ

for all i = 0, . . . , n− 1: Γ ` ui : Ti{u0,...,ui−1/x0,...,xi−1}
Γ ` t : I un Γ ` P : ∀xn : Tn.I xn → τ

for all j = 0, . . . ,m− 1: Γ ` fj : ∆P{∅; kj : Kj}
elimination of I towards sort τ is allowed3

Γ ` EτI (un, t, P ){fm} : P un t
(Elim)

As we discussed earlier, induction principles for indexed inductive definitions

are not well-suited for immediate applications to hypotheses in which the family

parameters are instantiated with anything but variables. Applying the induction

principle to some premise, we are left with a case for every constructor, disregarding

the fact that only some of them could have been applied in this case. Moreover,

they are exactly the same cases we would obtain by changing the indices to any

other expression keeping the hypothesis well-typed. Inversion is the (derived) proof

principle we need in these cases.

Inversion allows to invert derivation rules by replacing in a hypothesis a judge-

ment with a disjunction of all the ways in which it can be obtained. Operationally,

it is sufficient to perform first-order unification of the hypothesis with the conclu-

sion of every derivation rule and, in case of success, augment the conjunction of the

premises of the derivation rules with the equalities imposed by the unifier.

3The condition on allowed sort eliminations is not relevant to the subject of this paper; the

interested reader can find more information in [69] (for a general account of elimination in CIC)

and [4] (for the actual type system implemented in Matita).
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(Lesseq-O)
0 ≤ 0

m ≤ n
(Lesseq-S)

m ≤ S n

m ≤ n
(Lesseq-SS)

S m ≤ S n

� �
inductive lesseq : nat → nat → Prop :=

| lesseq O :

lesseq O O

| lesseq S :

∀m,n:nat.lesseq m n → lesseq m (S n)

| lesseq SS :

∀m,n:nat.lesseq m n → lesseq (S m) (S n).� �
Figure 4.2: Example: a definition of less-or-equal

Usually, in pen & paper proofs, it is inversion, and not induction, that is used

in presence of judgements. The problem with inversion is that it does not provide

inductive hypotheses over the new premises. Thus, most of the time, inversion on a

judgement follows induction on the arguments of the judgement. For instance, as we

will see in Chapter 5, the specification of POPLmark proves transitivity for F<: by

induction over types followed by “induction with case analysis” (apparently similar

to inversion) on the typing judgment. Note, however, that the similarity may not be

correct since inversion does not provide access to an “inner inductive hypothesis”.

To provide here an example of reasoning requiring mixed induction and inversion,

we will use a specially crafted definition of the ≤ relation on natural numbers, that is

given in Figure 4.2. We give an informal proof that this definition of ≤ is transitive.

Theorem 4.1 If m ≤ n and n ≤ p, then m ≤ p.

Proof: Assume m ≤ n: we want to prove that for all p, n ≤ p implies m ≤ p. By

structural induction on the derivation of m ≤ n, we have three cases:

• Case Lesseq-O: we have m = n = 0. The thesis becomes ∀p.p ≤ 0⇒ p ≤ 0,

which is trivial.

• Case Lesseq-S: for some n′, we have n = S n′ and m ≤ n′. By induction

hypothesis, we know that for all q, n′ ≤ q implies m ≤ q. The thesis becomes

∀p.S n′ ≤ p ⇒ m ≤ p. Assume S n′ ≤ p: we perform inner induction on its

derivation, with case analysis on the last rule used, which yields three subcases:
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– Subcase Lesseq-O is vacuous since the conclusion of this rule does not

match S n′ ≤ p.

– Subcase Lesseq-S: for some p′, we have p = S p′ and S n′ ≤ p′. By

the inner induction hypothesis, m ≤ p′; therefore, by rule Lesseq-S,

m ≤ S p′ = p, as needed.

– Subcase Lesseq-SS: for some p′, we have p = S p′ and n′ ≤ p′. By the

outer induction hypothesis, after choosing q := p′, we get m ≤ p′. Then

by rule Lesseq-S, m ≤ S p′ = p, as needed.

• Case Lesseq-SS: for some m′, n′, we have m = S m′, n = S n′ and m′ ≤ n′.

By induction hypothesis, we know that for all q, n′ ≤ q implies m′ ≤ q. The

thesis becomes ∀p.S n′ ≤ p⇒ S m′ ≤ p. Assume S n′ ≤ p: we perform inner

induction on its derivation, with case analysis on the last rule used, which

yields three subcases:

– Subcase Lesseq-O is vacuous since the conclusion of this rule does not

match S n′ ≤ p.

– Subcase Lesseq-S: for some p′, we have p = S p′ and S n′ ≤ p′. By

the inner induction hypothesis, S m′ ≤ p′; therefore, by rule Lesseq-S,

S m ≤ S p′ = p, as needed.

– Subcase Lesseq-SS: for some p′, we have p = S p′ and n′ ≤ p′. By the

outer induction hypothesis, after choosing q := p′, we get m′ ≤ p′. Then

by rule Lesseq-SS, S m′ ≤ S p′ = p, as needed.

2

The proof is informal because we have not clarified what is meant by “inner

induction with case analysis on the last rule”, even though it seems relatively nat-

ural. It is not regular induction, because that would not allow us to discriminate

inconsistent subcases (as we did in the two occurrences beginning with “Subcase

Lesseq-O”); and it is not regular inversion, because it does not provide an inner

induction hypothesis.
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Now suppose for a moment that we can prove the following principle:

Proposition 4.2 Let P be a binary predicate on natural numbers. For all natural

numbers x1, x2, x1 ≤ x2 implies P x1 x2 provided that the following properties hold:

• x1 = 0⇒ P 0 0;

• ∀m,n : N.m ≤ n⇒ (x1 = m⇒ P m n)⇒ x1 = m⇒ P m (S n);

• ∀m,n : N.m ≤ n⇒ (x1 = m⇒ P m n)⇒ x1 = S m⇒ P (S m) (S n).

The statement resembles inversion, except that we have equations for the first

argument of ≤, but not for the second. Apart from that, there is a notable difference:

in the second branch of the principle, we have a usable induction hypothesis (which

we underlined to make it more visible). The third branch still has an unusable

induction hypothesis, because it requires x1 to be equal to m, even though we know

that it is equal to S m.

We call this kind of hybrid inversion rule, which also provides some induction

hypotheses, an induction/inversion principle. Notice that this principle is exactly

what we need to justify the inner induction with case analysis of the previous ex-

ample, since the inner induction hypothesis is only used in the second branch of the

induction, and the equation (x1 = 0) provided by the first branch is sufficient to

discriminate the inconsistent case.

We will explain the theory of induction/inversion in the next section. For the

moment, we just want to point out that the third branch of the principle still does

not provide an accessible induction hypothesis, ultimately because the first argument

of ≤ is not the same in both the premise and the conclusion of rule Lesseq-SS.

4.3.1 Defining induction/inversion principles

Consider how regular inversion could be proved if case analysis were replaced by

induction.
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Given a predicate P : ∀zn : Tn.I zn → σ and a vector of properly typed variables

xn, we define the augmented predicate

P̂ [xn] , λzn : Tn.λz : I zn.x0 = z0 → . . .→ xn−1 = zn−1 → P zn z

Depending on the actual arity of I, the well typedness of P̂ might depend on the

definition of =. In the general discussion of inversion and induction/inversion prin-

ciples, we will assume that = is John Major’s equality: under this assumption, P̂ is

always well typed.

It is possible to prove the inversion principle applying the regular induction

principle for I to the augmented predicate, as follows

ÊτI , λP, xn, x,Hm.EτI (xn, x, P̂ [xn]){fm} Rx0 · · ·Rxn−1

: ∀P : (∀zn : Tn[zn].I zn → σ).

∀xn : Tn[xn].∀x : I xn.∀fm : Hm[xn].P xn x

where the actual shape of the Hi[xn] is the one required by the induction principle

and Rt is the trivial reflexivity proof of t = t.

Now, let’s take a look at the types Hm[xn], representing the subgoals we will

have to fill in after applying such a principle. As an example, suppose that I and

its i-th constructor ki have the following concrete types:

I : N→ Prop

ki : I 0→ I 1

then we have

Hi[x0] = Πy : I 0.P̂ [x0] 0 y → P̂ [x0] 1 (ki y)

= Πy : I 0. (x0 = 0→ P 0 y)︸ ︷︷ ︸
IH

→ x0 = 1→ P 1 (ki y)

where IH represents the induction hypothesis associated to the argument of con-

structor ki. Notably, IH is guarded by the condition x0 = 0, which is not attainable

– indeed, an equational inversion hypothesis tells us that x0 = 1. This is ultimately

due to the index of the inductive type not being used uniformly in the premise and
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in the conclusion of the constructor. If instead the index had stayed the same, then

IH would have been usable.

It is now clear why induction hypotheses are not provided by inversion rules: in

the general case, they are dropped because inaccessible. This is what actually hap-

pens in the implementation of the Coq and Matita proof assistants, where inversion

principles are automatically generated following the idea just described. However,

there are situations where the induction hypothesis remains accessible.

We can generalise the previous observation to obtain the following improved

induction rule: if a family parameter is globally constant, i.e. it remains the same

in each recursive occurrence of the inductive family in its derivation rules, then the

family parameter is not quantified in each premise of the induction principle, but

it occurs instantiated with the value of the actual parameter in the hypothesis the

principle is applied to. This is indeed the case for the induction principles of the

Coq and Matita theorem provers. This observation is actually internalised in the

meta-theory of the Calculus of (Co)Inductive Constructions, which allows global

universal quantifications for inductive families to simplify the implementation and

to have more liberal type-checking rules. However, it is possible to think of situations

where an index is used uniformly in some constructors, but not in other. In such

cases, it would still be possible to gain access to induction hypotheses, limited to

some of the constructors. Moreover, there is the possibility that some of the indices

of a constructor are used uniformly, while other indices are not. In this case, we

would be able to use the induction hypothesis, provided that we agree to lose some

equational hypotheses over non-uniform indices. These considerations drive us to

define the following notion of induction/inversion principle we are interested in:

Theorem 4.3 (Induction/inversion principle) Given an inductive family, we

say that a formal family parameter is locally constant to one premise of one deriva-

tion rule if its actual value does not differ from that in the conclusion of the rule. We

get a different induction/inversion principle for each subset S of the family parame-

ters subject to the restriction that, if the type of a family parameter in S depends on

another family parameter, the latter must also be in S. The principle has the shape
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of an inversion principle with additional, accessible induction hypotheses provided

for all those recursive arguments whose locally constant parameters are a superset

of S. Moreover, as in inversion principles, in each case we get a unifier as a set

of additional hypotheses Fi = Ai where Fi is a family parameter in S and Ai is the

corresponding actual parameter in the conclusion of the inference rule.

Proof: Let I be an inductive family with arity ∀zn : Tn.σ and constructors km : Km.

Let P be a predicate of type ∀zn : Tn.I zn → τ . Assume that S = {s1, . . . , s|S|} and

that x0, . . . , xn−1 are properly typed variables. We define PS [xn] as the predicate P

partially augmented over the set S:

PS [xn] , λzn : Tn.λz : I zn.xs1 = zs1 → . . .→ xs|S| = zs|S| → P zn z

Then we can prove the S-induction/inversion principle as follows

EτI,S , λP : (∀xn : Tn.I xn → τ).

λxn : Tn.λx : I xn.
λf0 : ∆PS [xn]{∅; k0 : K0}.
· · ·
λfm−1 : ∆PS [xn]{∅; km−1 : Km−1}.
EτI (xn, x, PS [xn]){fm} Rxs1

· · ·Rxs|S|

: ∀P : (∀xn : Tn.I xn → τ).

∀xn : Tn.∀x : I xn.
∆PS [xn]{∅; k0 : K0} →
· · ·
∆PS [xn]{∅; km−1 : Km−1} →
P xn x

To show that this definition satisfies the specification of an S-induction/inversion

principle, we must prove that:

1. The type of each subcase fi is provided with an equational hypothesis for

each index j in the set S, stating that the family parameter of index j of the

inverted term is equal to the corresponding paremeter in the target type of ki.
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But this is, by definition, the role of the partially augmented predicate PS . If

Ki : ∀y : U.V u, then the type of fi is of the form

∀y : U.IH 1 → · · · → · · · IH r

→ xs1 = us1 → · · · → xs|S| = us|S|

→ P u (ki y)

thus satisfying the request.

2. Induction hypotheses such that all the parameters with index in S are locally

constant are accessible. For this to happen, induction hypotheses must be in

the form

IH , ∀a.xs1 = us1 → · · · → xs|S| = us|S| → P un v

such that FV (usi) ∩ a = ∅ for all i, and the goal must be

xs1 = u′s1 → · · · → xs|S| = u′s|S| → P u′n v
′.

such that for all i ∈ S, ui = u′i. We can then introduce from the goal the new

hypotheses e|S| and feed them to IH , obtaining

IH ′ , λa.IH a e|S| : ∀a.P un v

whose shape is the same of a regular, accessible induction hypothesis.

2

It is now clear that this induction/inversion lemma is exactly what we need to

justify the informal proof, since it allows us to use induction hypotheses, but also

to (partially) perform case analysis on the final rule of the derivation.

These induction/inversion rules can be automatically generated from the deriva-

tion rules of the judgement and, as well as the standard induction and inversion

rules, are fully determined once the judgement is inductively defined. On the other

hand, when the judgement has n family parameters, we can generate 2n different

induction/inversion principles. Indeed, standard induction and standard inversion

correspond respectively to the empty and full sets of family parameters. A first
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observation to reduce the number of principles to generate is that a set of induc-

tion/inversion principles makes sense only if its elements provide different induction

hypotheses. In turn, this depends on the variety of locally constant parameters in

the rules. Even if a large number of principles are worth generating, we can expect

the proof assistant to dynamically generate them when needed.

As far as we know, the conditions for induction/inversion principles have never

been characterised before. However, we have detected them in other proofs about

the meta-theory of programming languages, such as the ones on LambdaDelta by

F. Guidi[25]. We claim that better knowledge of them could easily result in shorter

and deeper proofs.

4.4 Implementation of inversion principles in Matita

In Matita, full inversion principles for elimination towards all admissable sorts are

generated automatically upon definition of a new inductive type having at least one

right parameter. Clearly, it is impossible to do the same for induction/inversion

principles, as the number of such principles grows very quickly with the number

of right parameters. Whenever an induction/inversion principle is needed, the user

must require explicitly that the system derive it, by means of the inverter statement� �
inverter <principle name> for <inductive type> [<selection>] [:

<target sort> ]� �
where <inductive type> is the name of the inductive type for which an induc-

tion/inversion principle should be derived, <selection> is a pattern used to express

the S set, and <target sort> identifies the target sort of the predicate on which the

principle should act.

While it would be possible to define inversion principles generating directly a

proof term for them, this approach has multiple drawbacks:

• the machinery to build such a proof term is relatively lengthy and specialized:

we would like to keep the code designed specifically for performing inversion
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of inductive predicates to a minimum;

• it is not easy to debug a CIC principle derived in a single step by means of an

explicit proof term: this contrasts a lot with the way a user would prove such

a principle, using an incremental, step by step strategy, also allowing him to

understand immediately what is going wrong in case of error;

• proof terms are fully disambiguated: this means that many theory-specific

notions have to be hard-coded in the procedure generating the inversion prin-

ciple; specifically, we are very worried that we would have to choose once for

all which definition of equality should be used by the inversion principle –

Leibniz, dependent, John Major, etc.

Following our previous recommendation for tactics implementation, we build in-

version principles on the existing tactic language, describing CIC terms by means

of their representation as abstract syntax trees, instead of the more strict repre-

sentation used by the typechecker, and also trying to keep the use of CIC terms

to a minimum. In ASTs, it is possible to omit type annotations in many cases,

and, furthermore, there is no need to deal with de Bruijn indices, since variables are

represented by means of names. It is also possible to exploit user-level notation to

identify the notion of equality that the user has currently loaded.

Concretely, the code implementing the generation of inversion principles, given

an inductive type I with h left parameters, k right parameters and m constructors,

will try to execute the following (pseudo-)proof script:� �
lemma I inversion : ∀x1:? ... ∀xh+k:?.

∀P: (∀ y1 :? ... ∀ yk :?.σ).

∀H1 :? ... ∀Hm :?.

∀Hterm: I x1 ... xh+k.

P xh+1 ... xh+k.

(∗ this opens one subgoal for the main theorem and a subgoal for all

∗ the uninstantiated metavariables we used in the statement

∗)
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[ (∗ main proof ∗)

#x1 ... xh+k P H1 ... Hm;

cut (xs1 = xs1 →... →xsk = xsk →P xh+1 ... xh+k;

[ (∗ main proof continued ∗)

#Hcut; apply Hcut;

(∗ opens a reflexivity proof for each selected right parameter:

∗ we close all of them at once

∗)

apply refl;

| (∗ proof of the cut theorem ∗)

(∗ by induction on Hterm, matching only the rhs of each equality in the goal ∗)

elim Hterm in ` (???% →... ???% → %)

(∗ a subcase for each constructor ∗)

[ apply H1;

| ...

| apply Hm ]

]

]

(∗ all metavariables have been instantiated by now ∗)

skip;

qed.� �
The script uses metavariables heavily in order to have most of the CIC terms derived

by Matita’s refiner. Only two non-trivial terms are generated by the tactic: a partial

statement of the theorem, composed of a set of nested products abstracting the

parameters of the inductive type x1, . . . , xh+k, the goal predicate P , hypotheses for

each of the subgoals generated by the inversion H1, . . . , Hm, and the term Hterm

to which inversion should be applied; and the statement of a “cut theorem” that

introduces an equality for each right parameter belonging to the selection set S =

{s1, . . . , sk}, which is really the heart of the inversion principle. While the types of

the H1, . . . , Hm are initially kept undefined, they are instantiated by the apply Hi

statements to be exactly the subgoals required by the inversion principle.
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This generic proof script, developed interactively with the Matita system, is

easily translated to OCaml code thanks to the new design of the tactics subsystem:

...

let cut_theorem =

let rs = List.map (fun x -> mk_id x) rs in

mk_arrows rs rs selection (mk_appl (mk_id "P"::rs)) in

let cut = mk_appl [CicNotationPt.Binder

(‘Lambda, (mk_id "Hcut", Some cut_theorem),

CicNotationPt.Implicit (‘Tagged "end"));

CicNotationPt.Implicit (‘Tagged "cut")] in

let intros = List.map (fun x -> pp (lazy x); NTactics.intro_tac x)

(xs@["P"]@hyplist@["Hterm"]) in

let where =

"",0,(None,[],

Some (

mk_arrows ~pattern:true

(HExtlib.mk_list (CicNotationPt.Implicit ‘JustOne) (List.length ys))

(HExtlib.mk_list CicNotationPt.UserInput (List.length ys))

selection CicNotationPt.UserInput)) in

let elim_tac = if is_ind then NTactics.elim_tac else NTactics.cases_tac in

let status =

NTactics.block_tac

(NTactics.branch_tac ::

NTactics.case_tac "inv" ::

(intros @

[NTactics.apply_tac ("",0,cut);

NTactics.branch_tac;

NTactics.case_tac "end";

NTactics.apply_tac ("",0,mk_id "Hcut");

NTactics.apply_tac ("",0,mk_id "refl");
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NTactics.shift_tac;

elim_tac ~what:("",0,mk_id "Hterm") ~where;

NTactics.branch_tac ~force:true] @

HExtlib.list_concat ~sep:[NTactics.shift_tac]

(List.map (fun id-> [NTactics.apply_tac ("",0,mk_id id)]) hyplist) @

[NTactics.merge_tac;

NTactics.merge_tac;

NTactics.merge_tac;

NTactics.skip_tac])) status in

...

where the proof script is clearly discernible as an argument of NTactics.block tac.
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5.1 Introduction

The POPLmark challenge [7] is a set of “benchmarks” proposed by an international

group of researchers in order to assess the advances of theorem proving for the

verification of properties of programming languages and to promote the use and

enhancement of proof assistant technology.

The set of problems has been chosen to capture many of the most critical issues in

formalizing the metatheory of programming languages, comprising scope, binding,

typing, and reduction. In particular, the challenge focuses on some theoretical

aspects of System F<: [11], that is a language joining a simple and tractable syntax

with a sufficiently rich and complex metatheory.

Arguably, issues related to the representation of binding structures are among

the most significant choices when formalizing the metatheory of a programming

language. Over the years, a number of different styles have been proposed to deal

with binding, roughly divided in two different categories: first order encodings,

also called concrete encodings, where binding is manipulated as an ordinary data

structure, and higher order approaches, where binders are represented as functions,

essentially reusing the binding (and instantiation) capabilities of the metalanguage.

Concrete encodings include some of the best known styles, like the näıve named en-

coding (where bound and free variables are represented by the same sort of names,

similarly to informal syntax), and the de Bruijn nameless encoding (which repre-

sents variables using indices pointing to the binder that declares them). Higher

order encodings include styles particularly popular for formalizing languages in log-

ical frameworks, like higher-order abstract syntax ([47, 26]) and weak higher-order

abstract syntax ([18]).

While techniques to employ higher order approaches have also been devised for

stronger type theories like those of Coq, Isabelle, and Matita (most notably two-

level approaches, described for example in [10]), we feel that the most natural way

to deal with binding in these systems is still to use concrete representations. In

this chapter, we discuss the formalization of part 1A of the POPLmark challenge



Chapter 5. Some concrete encodings of binding structures 93

using three concrete representations. While we review mainly classical techniques to

formalize programming languages, our examples are a good setting to introduce the

formalization of the metatheory of programming languages. Furthermore, we put to

work the induction/inversion principles discussed in Chapter 4 and we analyse the

issue of “formal adequacy” (in the sense of [14]).

The structure of the chapter is the following: Section 5.2 discusses the three rep-

resentations of bound and free variables which we used in our solutions; in Section 5.3

we describe the proof principles and the main proofs of our solutions; Section 5.5

concludes.

5.2 Concrete encodings of variable bindings

System F<: is a second order lambda calculus enriched with a subtyping relation

<:. Syntactically, it can be understood as a variant of System F, where binders

involving type variables also carry annotations representing upper bounds on the

concrete types that can instantiate the corresponding variable. For example, ΛXT .t

and ∀XT .U abstract respectively a term t and a type U over types X that are

subtypes of T .

Since the focus of part 1 of the POPLmark challenge is on the formalization of

proofs concerning the type sublanguage of F<:, we will not spend time discussing the

full syntax of F<:, and only report here the details needed to discuss the formalized

syntax of types and typing environments here. For the full syntax of F<:, see [11].

S, T, . . . ::= Types

| X,Y, . . . type variables

| Top the supertype of any type

| S → T functions from S to T

| ∀XS .T bounded universal quantifier

Figure 5.1: Syntax of the type sublanguage of F<:
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Γ ` Top (WFT-Top)

X ∈ dom(Γ)

Γ ` X
(WFT-TVar)

Γ ` S Γ ` T

Γ ` S → T
(WFT-Arrow)

X /∈ dom(Γ) Γ ` T Γ, X <: T ` U

Γ ` ∀X <: T.U
(WFT-Forall)

∅ ` � (WFE-Empty)

x /∈ dom(Γ) Γ ` T

Γ, x : T ` �
(WFE-Cons1)

X /∈ dom(Γ) Γ ` T

Γ, X <: T ` �
(WFE-Cons2)

Γ ` � Γ ` S

Γ ` S <: Top
(SA-Top)

Γ ` � X ∈ dom(Γ)

Γ ` X <: X
(SA-Refl-TVar)

X <: U ∈ Γ Γ ` U <: T

Γ ` X <: T
(SA-Trans-TVar)

Γ ` T1 <: S1 Γ ` S2 <: T2

Γ ` S1 → S2 <: T1 → T2

(SA-Arrow)

Γ ` T1 <: S1 Γ, X <: T1 ` S2 <: T2

Γ ` ∀XS1 .S2 <: ∀XT1 .T2

(SA-All)

Figure 5.2: Well-formedness and subtyping rules of F<:

The type sublanguage of F<: (Fig. 5.1) consists of type variables, the type Top

(which is supertype of any type), arrow types (functions from one type to another)

and universal types (polymorphic expressions); environments may carry both typ-

ing constraints (on term variables) and subtyping constraints (on type variables).

Figure 5.2 shows the subset of the F<: typesystem we formalized. Notice that in
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this formulation of the type system, the subtyping judgment is formalized by means

of an algorithmic rules, which are directed by the syntax. Instead, the original pre-

sentation of F<: replaced rules SA-Refl-TVar and SA-Trans-TVar with the

following declarative rules:

X <: U ∈ Γ Γ ` �

Γ ` X <: U
(SA-TVar)

Γ ` T

Γ ` T <: T
(SA-Refl-TVar)

Γ ` S <: T Γ ` T <: U

Γ ` S <: U
(SA-Trans-TVar)

Part 1a of the POPLmark challenge asks to prove that the two formulations of

algorithmic subtyping are equivalent and, in particular, that algorithmic subtyping

is reflexive and transitive.

Since F<: makes use of binders not only in terms, but also in types, we must deal

with the well-known problems of α-equivalence and avoidance of variable capture.

The most common approaches to these difficulties require to rewrite the syntax in

such a way that α-equivalent terms are syntactically equal. One way to do this is to

drop names altogether: variables can be expressed by means of indices, whose value

uniquely identifies the level at which the variable is bound; this is how de Bruijn’s

representation works (Fig. 5.3).

S, T, . . . ::= Types

| #0,#1, . . . type indices

| Top the supertype of any type

| S → T functions from S to T

| ∀S .T bounded universal quantifier

Figure 5.3: Syntax of F<: (de Bruijn): types

A de Bruijn index expresses the number of binders, on the path between the

index we are considering and the root of the AST, to reach the binder we want
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S, T, . . . ::= Types

| X,Y, . . . free type variables

| #0,#1, . . . type indices

| Top the supertype of any type

| S → T functions from S to T

| ∀S .T bounded universal quantifier

Figure 5.4: Syntax of F<: (locally nameless): types

to reference. Dangling indices will then represent free variables. This poses one

inconvenience with de Bruijn’s representation: when performing a substitution, in-

dices representing free variables in the substituted term might need to be updated

(lifted) in order to stay coherent; this can complicate both the statements and the

proofs of many lemmata. The locally nameless representation [52] is a variation

on de Bruijn’s representation, where bound variables are represented by indices (so

that α-equivalence and equality are the same) and free variables are represented by

names (eliminating the need to lift free indices in substituted terms). While the

locally nameless style does not forbid dangling indices, well formed expressions will

belong to the subset of locally closed expressions, i.e. expressions that may contain

free variable names, but not dangling indices. The syntax locally nameless syntax

is the same as the de Bruijn representation, except for the addition of free type

variables (Fig. 5.4).

Typing environments in the locally nameless approach are similar to their in-

formal counterparts. They are defined as lists of bounds, which are pairs (variable

name, type), together with a boolean value to discriminate typing bounds on term

variables from subtyping bounds on type variables.

In the de Bruijn approach, we do not have names and bounds are identified by

their position inside the environment. The dangling indices inside a bound must

be resolved in the part of the environment which precedes that bound (essentially,

this means that entries in a context are treated as a specific kind of binder). We

will use the notation • <: T to refer to a subtyping bound in a de Bruijn typing
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environment.

The last concrete approach to binding we take into account is the named variables

approach, in which names are used for both free and bound variables. Its syntax

is the closest possible to the informal presentation of Fig. 5.1: however we will see

that the formalization of its type system requires some additional care.

5.3 Formalization

We now discuss our formalizations of Part 1A of the POPLmark challenge. The

first part of this section deals with the formalization of the type system using the

encodings mentioned in Section 5.2. In the second part, we present some of the

proof principles used in the solutions. Finally, we describe the main proofs of each

formalization.

5.3.1 The type system

To restate the well-formedness and subtyping judgments in the de Bruijn encoding,

it is sufficient to remember the key differences of this encoding with respect to the

informal syntax:

• named variables are replaced by indices, with an explicit management of bind-

ing: the dangling index #n refers to the n-th entry of its environment (from

right to left, 0 based);

• each environment entry lives in a different environment: in order to use the

content of an environment entry in a judgment, we must relocate it to the

environment of that judgment.

The first change happens to be more of an advantage than an issue: it allows

us not to worry at all about names, at the same time keeping the statement of

rules concerning binding very natural, similar to informal practice. The second

change, however, needs a more careful handling, since relocation must be treated
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explicitly. Fig. 5.5 shows the de Bruijn formalization of the less trivial rules of F<::

the notations |Γ| and Γ(n) refer respectively to the length of environment Γ and to

the n-th entry of Γ; T ↑ n is the variable lifting operation, defined as follows:

T ↑k n =



#m ↑k n = m+ n if k ≤ m

#m ↑k n = m if k > m

Top ↑k n = Top

(U → V ) ↑k n = (U ↑k n)→ (V ↑k n)

(∀U .V ) ↑k n = ∀U↑kn.(V ↑k+1 n)

T ↑ n = T ↑0 n

Lifting provides the notion of relocation we needed, since each environment entry

lives in an initial segment of the full environment.

n < |Γ|

Γ ` #n
(WFT-TFree)

Γ ` T Γ, • <: T ` U

Γ ` ∀T .U
(WFT-All)

Γ ` � n < |Γ|

Γ ` #n <: #n
(SA-Refl-TVar)

Γ(n) = • <: U Γ ` (U ↑ n+ 1) <: T

Γ ` #n <: T
(SA-Trans-TVar)

Γ ` T1 <: S1 Γ, • <: T1 ` S2 <: T2

Γ ` ∀S1 .S2 <: ∀T1 .T2

(SA-All)

Figure 5.5: Some rules of the de Bruijn-style formalization of F<:.

In the locally nameless encoding, we get a more immediate treatment of envi-

ronments, since relocation of environment entries is not needed. On the contrary,

binding needs a more complex treatment, because of the use of explicit names for

free variables. In particular, the rules whose conclusions involve binders cannot be
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fully structural on types: on one side, we want the type system to only deal with

locally closed types (since locally-closedness is a necessary condition for a type to

be well formed); on the other side, in a well formed type ∀U .V , V is in general not

locally closed.

Of course the solution is to replace the dangling index #0 of V with a proper free

variable X. However this kind of reasoning hides more complexity than meets the

eye. For example, we might translate the All rule to the locally nameless encoding,

obtaining easily:

Γ ` T1 <: S1 Γ, X <: T1 ` S2{X/#0} <: T2{X/#0}

Γ ` ∀S1 .S2 <: ∀T1 .T2

where S2{X/#0} means “the type S2 where every occurrence of the dangling index

#0 has been replaced with a free type name X”. Please notice the use of X: nowhere

do we state if the right premise should hold for a specific X or for any X. Indeed,

both alternatives are partially incorrect because, for reasons of well-formedness, we

must require that X be fresh; assuming this condition of well-formedness is met,

alternative solutions for quantification have been proposed in literature. Universal

and existential quantification lead to formulations of the type system which we

respectively call strong and weak (after Urban and Pollack [65]). However, these

names are somewhat misleading since it can be proved that the two formulations

are logically equivalent: this comes from the fact that the subtyping judgment is an

equivariant predicate, i.e. one whose validity is invariant under finite permutations

of variable names.

The concept of equivariance, which is a key point of nominal logics [48], was

exploited in the solution proposed by Leroy [34], as well as in a previous version of

our locally nameless solution. However, upon discovering that the proofs related to

equivariance accounted for about one third of our code, we decided to go for a more

direct approach.

It can be noted that, in informal logical practice, it is convenient to use the weak

(existential) variant when we want to construct a proof of Γ ` ∀S1 .S2 <: ∀T1 .T2
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(we only need to show that the premises hold for one suitable X); on the other

hand, when reasoning backwards, the strong (universal) variant is more useful, as it

provides stronger induction principles. A more complex co-finite quantification [8]

has been used by Charguéraud for his locally nameless solution in Coq. In our

locally nameless solution, we chose to use the strong formulation of the type system,

which is sufficient to obtain very compact proofs (for a total of 350 lines). Still, the

statement that strong typing rules capture the informal intuition of a type system

is controversial: this issue will be further discussed in section ??.

Figure 5.6 describes the rules for well-formedness and subtyping of universal

types, as formalized in the locally nameless encoding.

Γ ` T

for all X :

 X /∈ dom(Γ) ∧X /∈ FV(U)⇒

Γ, X <: T ` U{X/#0}


Γ ` ∀T .U

(WFT-All)

Γ ` T1 <: S1

for all X :

 X /∈ dom(Γ)⇒

Γ, X <: T1 ` S2{X/#0} <: T2{X/#0}


Γ ` ∀S1 .S2 <: ∀T1 .T2

(SA-All)

Figure 5.6: Some rules of the locally nameless formalization of F<:.

Our last formalization uses the named variables approach. Ideally, the formaliza-

tion of the type system should be very close to the informal presentation of Fig. 5.2.

However, at some point, α-conversion must be taken into account, otherwise we will

never be able to prove a subtyping relation between two universal types binding

different variables.

There are basically two ways to deal with α-conversion:

• α-conversion can be formalized separately from the subtyping judgment (either
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algorithmically or as an inductive predicate); then an additional rule for the

subtyping judgment will be provided:

Γ ` S <: T S =α S
′ T =α T

′

Γ ` S ′ <: T ′
(SA-Alpha)

• the rules WFT-All and SA-All can be rephrased in such a way that the

subtyping judgment is directly derivable even if their bound variables are dif-

ferent:

Γ ` T

for all Y /∈ dom(Γ):

 (Y ∈ FV(U)⇒ Y = X)⇒
Γ, Y <: T ` (Y X) · U


Γ ` ∀XT .U

(WFT-Forall)

Γ ` T1 <: S1

for all Z /∈ dom(Γ):


(Z ∈ FV(S2)⇒ Z = X)⇒
(Z ∈ FV(T2)⇒ Z = Y )⇒
Γ, Z <: T1 ` (Z X) · S2 <: (Z Y ) · T2


Γ ` ∀XS1 .S2 <: ∀YT1 .T2

(SA-All)

where (X Y ) ·− is the name swapping operator, replacing every occurrence of

X with Y and vice-versa, not caring for binders.

We will avoid the first solution, since rules like SA-Alpha make the subtyping

judgment less algorithmic, which would contrast with the spirit of the POPLmark

challenge. However the second solution can seem a little puzzling at first. The swap-

based statement of α-conversion was originally due to Gabbay and Pitts [20] and is

very well-suited to formalization, since it simplifies the handling of name-capture.

For what concerns quantification over free variables, again we follow the schema of

universal quantification over all acceptable names Z. Z is acceptable if:

• it’s not in the domain of Γ;
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• it does not cause variable capture inside S2 or T2: for this condition to hold,

one must verify that if Z ∈ FV(S2), then Z = X, and that if Z ∈ FV(T2),

then Z = Y .

5.3.2 Proof principles

Most proofs given in the specification of the POPLmark challenge are by structural

induction on some type. However it is often the case, particularly in the locally-

nameless representation, that structural induction on types does not yield a strong

enough induction hypothesis to reason on sub-typing in the case of bounded quan-

tification: for example, to prove ∀S.T , we obtain an induction hypothesis on T ,

whereas we now need an induction hypothesis on T{X/#0} for all X.

Instead of using induction on types, a very natural proof technique consists in

doing structural induction on (proof trees for) the well-formedness type judgment.

For instance, induction over a proof of Γ ` T yields exactly the four cases of a proof

by induction over T (i.e. T = Top, T = X, T = T1 → T2 and T = ∀T1 .T2); the

second induction hypothesis in the last case is the strong one we usually need, i.e.

that the binary property P (on pairs typing context-type) we are proving holds for

Γ, X <: T1 and T2{X/#0} for any type variable X free in both Γ and T2.

In our opinion, and as already noticed by others (like [52]) proofs by structural

induction on the well-formedness judgment are more than a technical trick due to

an unnatural representation: they are the natural way to reason on types (and

terms) of a language. Indeed, note that structural induction on types and structural

induction on well-formedness type judgments yield exactly the same hypotheses

when types are considered up to α-equivalence. Thus we may think of the proofs in

the specification of the POPLmark challenge as proofs by structural induction on

well-formedness judgments.

Once decided that informal proofs by structural induction on types are to be

formalized with structural induction on the well-formedness judgment for types, the

informal proof still presents a suspicious proof step. In [7], Lemma A.3 (transitivity

and narrowing), the proof is done “by induction on the structure of Q. . . . We proceed
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by an inner induction on the structure of Γ ` S <: Q, with a case analysis on the

final rule of this derivation and of Γ ` Q <: T . . . . by the inner induction hypothesis

. . . ”. The question is how to formalize an “inner induction on the structure, with a

case analysis on the final rule”. As we argued in the previous chapter, in the Calculus

of (Co)Inductive Constructions structural induction does not allow to perform at

once case analysis on the final rule, unless we give up on using the “inner induction

hypotheses”. The proof may probably still be understood as a proof by induction on

the size of the derivation, followed by case analysis on the last rule used. However,

such a proof is more involved and more difficult to carry out in systems that favour

structural induction (such as Coq and Matita). Although this proof principle has

been “implicitly” exploited in several solutions in Coq to the POPLmark challenge,

none of them make it explicit, resulting in an obfuscated proof whose key point is

unclear and which is difficult to port to variations of the calculus. Instead, we have

employed Matita’s induction/inversion facility to automatically derive a principle

informal notion of “inner induction on the structure, with a case analysis on the

final rule”.

Induction/inversion principles

We show the induction/inversion principle for the sub-typing judgment of Fig. 5.6

where we choose S = {Γ, T} (i.e. the typing context and the second type). The

choice is driven by the Trans rule where Γ and T are locally constant parameters,

whereas the second argument is not (being U in the premise, and X in the conclu-

sion). Indeed, note that we get an almost-standard inversion principle were we have

traded hypotheses on L with the induction hypothesis in the Trans case.

Theorem 5.1 ({Γ, T}-Induction/inversion for Γ ` S <: T ) Let P be a ternary

predicate over triples (∆, L,R). For all ∆, L,R we have ∆ ` L <: R implies

P (∆, L,R) provided that

Top ∀Γ, S. Γ ` � ⇒ Γ ` S ⇒ (∆ = Γ)⇒ (R = Top)⇒ P (Γ, S, Top)

Refl ∀Γ, X. Γ ` � ⇒ X ∈ domΓ⇒ (∆ = Γ)⇒ (R = X)⇒ P (Γ, X,X)
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Trans ∀Γ, X, U, T, X <: U ∈ Γ ⇒ Γ ` U <: T ⇒ P (Γ, U, T ) ⇒ (∆ = Γ) ⇒ (R =

T )⇒ P (Γ, X, T )

Arrow ∀Γ, S1, S2, T1, T2. Γ ` T1 <: S1 ⇒ Γ ` S2 <: T2 ⇒ (∆ = Γ) ⇒ (R = T1 →
T2)⇒ P (Γ, S1 → S2, T1 → T2)

All ∀Γ, S1, S2, T1, T2. Γ ` T1 <: S1 ⇒ (∀X,X 6∈ dom(Γ) ⇒ Γ, X <: T1 `
S2{X/#0} <: T2{X/#0})⇒ (∆ = Γ)⇒ (R = ∀T1 .T2)⇒ P (Γ,∀S1 .S2, ∀T1 .T2)

It is clear that this induction/inversion lemma is exactly what we need to justify

the informal proof, since it allows to use the “inner hypothesis” (in the Trans case),

but also to (partially) perform “case analysis on the final rule of the derivation”.

What is surprising at first is that such a proof principle, that seems quite ad-hoc in

the informal proof, is actually a general proof principle. Indeed, we want to note that

these induction/inversion rules can be automatically generated from the derivation

rules of the judgment and, as well as the standard induction and inversion rules, are

fully determined once the judgment is inductively defined.

5.3.3 Proofs

In this section we will discuss briefly the main proofs of the solutions to POPL-

mark part 1a that we have formalized in Matita, based on the proof techniques of

Section 5.3.2. We will begin with the locally nameless solution, which we believe

has a more basic presentation than the other two.

Locally nameless

The first property we must show is the reflexivity of subtyping.

Theorem 5.2 (reflexivity (locally nameless encoding)) Let Γ be a typing en-

vironment, and T a type; if Γ is well-formed and T is well-formed in Γ, then

Γ ` T <: T .
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Proof: Once it has been proved that, for all Γ and T , Γ ` T implies FV(T ) ⊆
dom(Γ), the proof is trivial by induction on the derivation of Γ ` T . Matita is able

to prove almost every case of the induction by means of standard automation. 2

The following theorem asserts a stronger weakening property than the one de-

scribed in the specifications: here weakening on well formed environments is defined

as set inclusion, instead of concatenation of two disjoint environments. In this way

we are exempted from proving the less tractable lemma on permutations.

Theorem 5.3 (weakening (locally nameless encoding))

1. Let Γ be a typing environment, T a type. If Γ ` T , then for all environments

∆ such that Γ ⊆ ∆, we get ∆ ` T .

2. Let Γ be a typing environment, T, U types. If Γ ` T <: U , for all well-formed

environments ∆ such that Γ ⊆ ∆, we get ∆ ` T <: U .

Proof: The first point follows easily from a straightforward induction on the deriva-

tion of Γ ` T . The second point follows from an induction on the derivation of

Γ ` T <: U (the proposition proved in part (i) is used in the Top case). Once again

standard automation turns out to be very useful. 2

Unlike the specifications, we decided to prove narrowing and transitivity sep-

arately. Our statements are also slightly stronger than the ones provided in the

specifications. This is ultimately due to the locally nameless encoding: in fact, since

the encoding of the All rule is not fully structural with respect to the types men-

tioned in it, the induction on the structure of a type, used in the informal proof,

is not sufficient to prove narrowing and transitivity in our setting. Instead, we will

use an induction on the derivation of some judgments.

Theorem 5.4 (narrowing (locally nameless encoding)) For all typing envi-

ronments Γ,Γ′, for all types U, P,M, N and for all variables X, if

1. Γ′ ` P <: U

2. Γ `M <: N
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3. for all Γ′′, T if Γ′,Γ′′ ` U <: T then Γ′,Γ′′ ` P <: T

then forall ∆ s.t. Γ = Γ′, X <: U,∆, the judgment Γ′, X <: P,∆ `M <: N holds.

Proof: We proceed by induction on the derivation of Γ `M <: N . The interesting

case is SA-Trans-TVar: in this case, M = Y , where Y is a type variable. If

X = Y , we prove the statement by means of rule SA-Trans-TVar. Since X <:

P ∈ (Γ′, X <: P,∆) (trivially), we only need to prove Γ′, X <: P,∆ ` P <: N : this

is obtained by means of hypothesis 3 (Γ′, X <: P,∆ ` U <: N holds by induction

hypothesis). If X 6= Y , the goal is obtained trivially by induction hypothesis. 2

Last, we turn to proving the main property, i.e. transitivity of subtyping. Again,

we use a slightly different statement from the specifications, but the proof follows

closely the suggested structure.

Theorem 5.5 (transitivity (locally nameless encoding)) Let T a type, Γ′ a

typing environment such that Γ′ ` T . For any typing environment Γ such that

dom(Γ′) ⊆ dom(Γ), and for all types R,U , if Γ ` R <: T and Γ ` T <: U then

Γ ` R <: U .

Proof: We proceed by induction on the derivation of Γ′ ` T , followed by {Γ, T}-
induction/inversion on Γ ` R <: T . The interesting case is WFT-All: in this case,

T = ∀T ′ .T ′′ and, by applying the unifier provided by the principle, only two cases

are possible:

• R = X (where X is a type variable) and X <: V ∈ Γ (for some type V ).

The thesis follows from the induction/inversion hypothesis, by means of rule

Trans.

• R = ∀R′ .R′′. In this case, by inversion on Γ ` ∀T ′ .T ′′ <: U we show U is either

Top or ∀U ′ .U ′′. In the first case, showing that Γ ` ∀R′ .R′′ <: Top is trivial. In

the second case, the difficult part is to show that, for all X /∈ dom(Γ), Γ, X <:

U ′ ` R′′{X/#0} <: U ′′{X/#0}. By the induction hypothesis, we only need

to prove Γ, X <: U ′ ` R′′{X/#0} <: T ′′{X/#0} and Γ, X <: U ′ ` T ′′{X/#0} <:
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U ′′{X/#0}: these follow from the induction/inversion hypothesis, together with

narrowing. Please notice that the hypothesis dom(Γ′) ⊆ dom(Γ), here, is

essential, since otherwise the typing environments in the induction hypothesis

and in the goal would not match.

2

When proving reflexivity and transitivity, our formalization of the All rule

requires to prove that some judgment holds for any fresh variable X. As we pointed

out in section 5.3, since the subtyping judgment is equivariant, it is sufficient that it

hold for one fresh X: following this intuition, Leroy, in his solution to the challenge,

decided to prove this alternate “for one” rule. Apparently, this should have simplified

the proofs of reflexivity and transitivity, thus in a previous version of our solution we

decided to follow closely his approach; however, proving the “for one” rule required

a great effort (approximately 500 lines of code out of 1500). Moreover, proofs can

be completed quite easily even without the “for one” rule. The most difficult case

is probably in the reflexivity: we must prove that Γ ` ∀T .U <: ∀T .U , knowing (by

hypothesis) that ∀T .U is well-formed in Γ, and (by induction hypothesis) that for

any X /∈ dom(Γ)∪FV(U), Γ, X <: T ` U{X/#0} <: U{X/#0} holds; now if we apply

the “for one” version of the rule, it’s sufficient to prove that for some Y /∈ dom(Γ),

the judgment Γ, Y <: T ` U{Y/#0} <: U{Y/#0} holds – then we choose Y to be fresh

both in Γ and T , and the thesis follows trivially from the induction hypothesis; using

the original All rule is only apparently more difficult: we need to prove the same

judgment for any Y /∈ dom(Γ) but, since ∀T.U is well-formed in Γ, one can easily

prove that no variables outside Γ can be free in U , thus the induction hypothesis is

sufficient even in this case.

De Bruijn nameless encoding

While the concern about readability of terms containing nameless dummies, which is

also brought against locally nameless solutions, is debatable, the fact that de Bruijn

open terms must be explicitly lifted when the environment is changed, is a serious

matter. The statement of theorems must be carefully tuned and while we do not
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feel that the readability of the proofs is compromised, the ease of formalization is

impaired to some extent. Still, formalization of the properties of dangling dummies

has some interest per se, and theorem provers provide all the tools to carry out their

proofs.

The proof of reflexivity in the de Bruijn encoding is even easier than in the

locally nameless encoding (exactly 3 proof steps in Matita); weakening, however, is

the typical example of a theorem whose statement must be somewhat reworked in

the de Bruijn encoding. The relation Γ ⊆ ∆ we had used in the locally nameless

version, denoting that Γ is extended by ∆, possibly with some entries permuted, is

not meaningful for de Bruijn environments: while the entries of a locally nameless

environment can be permuted consistently without updating the free names, in a de

Bruijn environment the dangling dummies must be also permuted explicitly.

We are tempted to state weakening by means of environment concatenation and

lifting:

For all environments Γ,Γ′ and types S, T , if Γ ` S <: T and Γ,Γ′ ` �,
then Γ,Γ′ ` S ↑ |Γ′| <: T ↑ |Γ′|.

The statement is correct but its proof (as noted in the POPLmark specifications [7])

requires a permutation lemma which is precisely what we wanted to avoid in the

first place.

The best we can do is to prove a strong version of weakening, implying the

permutation lemma, just like we did in the locally nameless formalization. However,

the notion of environment inclusion needs to be significantly refined. On the other

hand, lifting is not sufficient to deal with permutations, and a generalization is

needed.

Definition 5.1 The map application of a function f : N → N on F<: types is



Chapter 5. Some concrete encodings of binding structures 109

defined as follows:

f · T =


f ·#n = #f(n)

f · Top = Top

f · (T → U) = f · T → f · U
f · (∀T .U) = ∀f ·T .(f̂ · U)

where f̂ is defined as:

f̂(x) =

 0 if x = 0

f(y) + 1 if x = y + 1

Definition 5.2 A function f : N→ N is an environment extension map from Γ to

∆ (notation: Γ ⊆f ∆) if and only if it is injective and for all n < |Γ|, f(n) < |∆|
and f · (Γ(n) ↑ n+ 1) = ∆(f(n)) ↑ f(n) + 1.

In simple terms, an environment extension map is a more explicit version of

the ⊆ relation used in the locally nameless formalization. Its definition can be

paraphrased by saying that for every n, the n-th entry of Γ, relocated at the top

level (by lifting) and then mapped to the environment ∆ (by means of f) must be

equal to the f(n)-th entry of ∆, relocated to the top level (again by lifting).

We can then prove weakening in the following form.

Theorem 5.6 (weakening (de Bruijn encoding)) For all environments Γ,∆, if

for some f , Γ ⊆f ∆, Γ ` S <: T and ∆ ` �, then ∆ ` f · S <: f · T .

While the proof of the above statement is similar to its locally nameless counterpart,

automation turns out to be a bit less effective.

It can be noted that lifting and environment extension maps have an interesting

relation. Let ⇑mk : N→ N be the family functions defined as follows:

⇑mk (n) =

 m+ n if k ≤ n

n else
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We show that for all types T , T ↑k m =⇑mk ·T . As a corollary, for all environ-

ments Γ,∆, Γ ⊆⇑|∆|0
Γ,∆: therefore the version of weakening involving environment

extension maps also implies the previous statement with concatenation of environ-

ments and lifting.

Narrowing and transitivity are then proved separately, following the same strat-

egy, if not the letter, of the locally nameless proofs.

Theorem 5.7 (narrowing (de Bruijn encoding)) For all typing environments

Γ,Γ′ and for all types U, P,M,N , if

1. Γ′ ` P <: U

2. Γ `M <: N

3. for all Γ′′, S, T , if Γ′,Γ′′ ` S <: (U ↑ |Γ′′|) and Γ′,Γ′′ ` (U ↑ |Γ′′|) <: T imply

Γ′,Γ′′ ` S <: T

then for all ∆ s.t. Γ = Γ′, • <: U,∆, the judgment Γ′, • <: P,∆ `M <: N holds.

Theorem 5.8 (transitivity (de Bruijn encoding)) Let S, T, U be types, Γ a

typing environment, f a function from naturals to naturals. If Γ ` S <: f · T
and Γ ` f · T <: U , then Γ ` S <: U .

Somewhat surprisingly, the above statement of transitivity does not require f to be

an environment extension map: it is sufficient for f to be a function from naturals

to naturals. The particular statement of the theorem is needed in order to get

an induction hypothesis which is sufficiently strong to imply the weak transitivity

requirement of the previous narrowing theorem. The proof also exploits the {Γ, T}-
induction/inversion principle, similarly to the corresponding proof in the locally

nameless encoding.

The usual statements of transitivity and narrowing are then obtained as corol-

laries.
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Named representation

Our solution using the named representation follows a radically different approach

from the other two: instead of proving the transitivity of subtyping directly on types

with named variables, we decided to provide a translation of types with named

variables to locally nameless types. This induces a translation of environments and,

consequently, a translation of whole subtyping judgments: if we can prove that the

subtyping judgment on types with named variables is adequate and faithful with

respect to the corresponding judgment on locally nameless types, we can obtain the

transitivity on types with named variables as a corollary, from the transitivity on

locally nameless types.

This kind of formalization, similar to transformations performed by actual com-

pilers, has an interest in itself and hides some difficulties: therefore it seemed to be

a good companion to the problems of the POPLmark challenge.

First, we need to define an algorithm providing the intended encoding of types

with named variables into locally nameless types.

VTW` =



VTopW` = Top

VXW` = #n if n = posn(X, `)

VXW` = X if X /∈ `

VT ′ → T ′′W` = VT ′W` → VT ′′W`
V∀XT ′ .T

′′W` = ∀VT ′W`
.VT ′′WX,`

VΓW =


V∅W = ∅

VΓ′, x : TW = VΓ′W, x : VTW

VΓ′, X <: TW = VΓ′W, X <: VTW

where ` is a list of names used to trace non-locally bound variables. We will use the

notation |`| to indicate the length of list `.

The encoding of a type is obtained beginning with ` being empty and it is denoted

by V·W; the list is updated with a new variable whenever we enter the scope of a

quantifier; the encoding VXW` is X when X /∈ ` (meaning X is a free variable); if

X ∈ `, the encoding VXW` is #n, where n is the position of X in ` (meaning X
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is a bound variable, and the “distance” of its binder is n); the encoding of a type

commutes with all other constructs. The encoding of an environment is the same

environment where every (sub)typing bound has been replaced by its encoding.

We can also show that this translation is surjective: for every locally closed

type T in the locally nameless representation, there exists a type T ′ in the named

variables representation, such that VT ′W = T .

The key lemmata we need to prove adequacy are the following:

Theorem 5.9 For all types T and lists of variables `1,`2, if for all variables X,

X ∈ `1 ⇐⇒ X ∈ `2 and X ∈ `1 =⇒ posn(X, `1) = posn(X, `2), then VTW`1 =

VTW`2.

Proof: By structural induction on T . 2

Theorem 5.10 For all types T and variables X, Y , if X ∈ ` and if Y ∈ FV(T )

implies Y ∈ `, then VTW` = V(X Y ) · TW(X Y )·`.

Proof: By structural induction on T . 2

Theorem 5.11 For all types T , lists of variables ` and natural numbers n, if |`| ≤ n

then VTW`{U/#n} = VTW`.

Proof: By structural induction on T . 2

Theorem 5.12 For all types T , variables X and lists of variables `, VTW` =

VTW`,X{X/#|`|}.

Proof: By structural induction on T . 2

Theorem 5.13 For all variables X,Y and types T , if X ∈ FV (T )⇒ X = Y , then

V(X Y ) · TW = VTWY {X/#0}.

Proof: Actually, the theorem is obtained as a corollary from a stronger statement:
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Given a list of variables `, if X and Y are not in ` and X ∈ FV(T ) ⇒
X = Y , then V(X Y ) · TW` = VTW`,Y {X/#|`|}.

Our proof is by induction on the weight of T , then by case analysis again on T .

The weight of T is defined as follows:

‖T‖ =


‖X‖ = 0

‖Top‖ = 0

‖U → V ‖ = max(‖U‖, ‖V ‖) + 1

‖∀X <: U.V ‖ = max(‖U‖, ‖V ‖) + 1

If T = Z for some variable Z, consider the cases

• X = Z: by hypothesis we also know X = Y . Then we must prove:

VXW` = VXW`,X{X/#|`|}

Since X /∈ `, this is equivalent to

X = #|`|{X/#|`|}

which is trivial.

• X 6= Z, Y = Z. We must prove:

V(X Y ) · Y W` = VY W`,Y {X/#|`|}

Since X /∈ ` and Y /∈ `, this is equivalent to

X = #|`|{X/#|`|}

which is trivial.

• X 6= Z and Y 6= Z. Then we must prove:

VZW` = VZW`,Y {X/#|`|}

Considering the cases Z ∈ ` or Z /∈ `, we can conclude that the two sides are

identical.
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If T = ∀ZU .V , we must prove

∀V(X Y )·UW`
.V(X Y ) · V W(X Y )·Z,` = ∀VUW`,Y {X/#|`|}.VV WZ,`,Y {X/#|`|+1}

Since the sources are equal by induction hypothesis, its sufficient to prove that the

targets are the same:

V(X Y ) · V W(X Y )·Z,` = VV WZ,`,Y {X/#|`|+1}

We consider the following cases:

• Y = Z: we must prove

V(X Y ) · V W(X Y )·Y,` = VV WY,`,Y {X/#|`|+1}

or equivalently

V(X Y ) · V W(X Y )·(Y,`) = VV WY,`,Y {X/#|`|+1}

By theorem 5.9, we rewrite the right-hand side as VV WY,`{#|`|+1/X}, and by

theorem 5.11 as VV WY,`. Therefore, we only need to show that

V(X Y ) · V W(X Y )·(Y,`) = VV WY,`,Y

which is obtained by theorem 5.10.

• Y 6= Z and X = Z: we must prove

V(X Y ) · V W(X Y )·X,` = VV WX,`,Y {X/#|`|+1}

or equivalently

V(X Y ) · V W(X Y )·(X,`) = VV WX,`,Y {X/#|`|+1}

We rewrite the right-hand side by theorem 5.10, yielding the equation

V(X Y ) · V W(X Y )·(X,`) = V(X Y ) · V W(X Y )·(X,`),X{X/#|`|+1}

This is obtained by lemma 5.12.
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• Y 6= Z and X 6= Z: we must prove

V(X Y ) · V WZ,` = VV WZ,`,Y {X/#|`|+1}

This is proved by induction hypothesis.

2

We are now able to prove the adequacy theorem.

Theorem 5.14 (adequacy and faithfulness)

1. Let Γ be a typing environment, T, U types in the named presentation. If Γ `
T <: U , then VΓW ` VTW <: VUW.

2. Let Γ be a typing environment, T, U types in the locally nameless encoding.

Let Γ′, T ′, U ′ such that Γ = VΓ′W, T = VT ′W and U = VU ′W. If Γ ` T <: U ,

then Γ′ ` T ′ <: U ′.

Proof: Adequacy is proved by a straightforward induction on the derivation of

Γ ` T <: U . Almost all the cases are easy (and are proved automatically by

Matita), except for the “for all” case, requiring us to prove that

VΓW ` ∀VS1W.VS2WX <: ∀VT1W.VT2WY

under the following induction hypotheses

IH 1 : VΓW ` VT1W <: VS1W

IH 2 : for all Z /∈ FV(Γ):

(Z ∈ FV(S2)⇒ Z = X)⇒
(Z ∈ FV(T2)⇒ Z = Y )⇒
VΓW, Z <: VT1W ` V(Z X) · S2W <: V(Z Y ) · T2W

By SA-All and IH 1, we reduce to the problem of proving

for all W /∈ FV(Γ): VΓW,W <: VT1W ` VS2WX{W/#0} <: VT2WY {W/#0}

This follows easily from IH 2 by means of theorem 5.13.

The proof of faithfulness basically mirrors that of adequacy and is performed by

providing an algorithm to compute the backwards encoding of a locally closed type.

2
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5.4 Adequacy of strong typing rules

While the strong formulation of typing rules we used in the locally nameless and in

the named formalization is intuitively sound, we should be aware that such rules con-

struct, basically, infinitely wide proof trees (where an occurrence of a rule containing

a universally quantified premise can be intended as having a different premise for

each possible choice of names). This kind of infinitary structure cannot be regarded

as real syntax, so we still want to provide evidence of its adequacy.

In this section we prove (by the standard means of equivariance lemmata) that a

weak formulation of the named typing rules (using existentially quantified premises)

is equivalent to the strong one we used in the formalization. By Theorem 5.14

we subsume the property that the strong typing rules used in the locally nameless

formalization are also adequate.

The weak type system is obtained replacing the WFT-Forall and SA-All

rules by the following ones:

Y /∈ dom(Γ) Y ∈ FV(U)⇒ Y = X

Γ ` T Γ, Y <: T ` (Y X) · U

Γ ` ∀XT .U
(WFT-Forall-W)

Z ∈ FV(S2)⇒ Z = X Z ∈ FV(T2)⇒ Z = Y

Γ ` T1 <: S1 Γ, Z <: T1 ` (Z X) · S2 <: (Z Y ) · T2

Γ ` ∀XS1 .S2 <: ∀YT1 .T2

(SA-All-W)

In the rest of the section we will use the symbols `w and `s to distinguish weak and

strong judgments. We will also abuse notation a little, using (X Y ) · Γ to denote

the context resulting from the application of the (X Y ) swap to both the domain

and the codomain of Γ.

Lemma 5.15

1. Γ ` � ⇒ (X Y ) · Γ ` �

2. Γ `s T ⇒ (X Y ) · Γ `s (X Y ) · T
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3. Γ `s T <: U ⇒ (X Y ) · Γ `s (X Y ) · T <: (X Y ) · U

Proof: All the proofs are by structural induction on the given judgment. While we

are mostly interested in proving equivariance for the subtyping judgment, this proof

exploits equivariance of well-formedness of contexts and types in cases SA-Top and

SA-Refl-TVar. Here we only show the proof of most complicate case of part 3,

involving rule SA-All.

We want to prove

(X Y ) · Γ `s (X Y ) · (∀X ′S1
.S2) <: ∀(X Y ) · (∀Y ′T1

.T2)

or equivalently, by the definition of swaps

(X Y ) · Γ `s ∀(X Y ) ·X ′(X Y )·S1
.(X Y ) · S2 <: ∀(X Y ) · Y ′(X Y )·T1

.(X Y ) · T2

By induction hypotheses we know that

IH 1 : (X Y ) · Γ `s (X Y ) · T1 <: (X Y ) · S1

IH 2 : for all Z ′ /∈ dom(Γ):

(Z ′ ∈ FV(S2)⇒ Z ′ = X)⇒
(Z ′ ∈ FV(T2)⇒ Z ′ = Y )⇒
(X Y ) · (Γ, Z ′ <: T1) `s (X Y ) · (Z ′ X ′) · S2 <: (X Y ) · (Z ′ Y ′) · T2

After applying rule SA-All to the thesis and using hypothesis IH 1, we are left with

the goal

(X Y ) · Γ, Z <: (X Y ) · T1 `s
(Z (X Y ) ·X ′) · (X Y ) · S2 <: (Z (X Y ) · Y ′) · (X Y ) · T2

for some Z such that Z /∈ dom((X Y ) · Γ), Z ∈ FV((X Y ) · S2)⇒ Z = (X Y ) ·X ′

and Z ∈ FV((X Y )·T2)⇒ Z = (X Y )·Y ′. Then, by the properties of permutations,

we rewrite IH 2 as:

for all Z ′ /∈ dom(Γ):

(Z ′ ∈ FV(S2)⇒ Z ′ = X ′)⇒
(Z ′ ∈ FV(T2)⇒ Z ′ = Y ′)⇒
(X Y ) · Γ, (X Y ) · Z ′ <: (X Y ) · T1 `s

((X Y ) · Z ′ (X Y ) ·X ′) · (X Y ) · S2 <: ((X Y ) · Z ′ (X Y ) · Y ′) · (X Y ) · T2
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By taking Z ′ = (X Y ) ·Z and remembering that (X Y ) ·(X Y ) ·Z = Z, we prove the

goal simply applying IH 2: in fact, we can prove easily that the freshness conditions

on Z also imply the side conditions of IH 2 (instantiated on (XY ) · Z):

(X Y ) · Z /∈ dom(Γ)

(X Y ) · Z ∈ FV(S2)⇒ (X Y ) · Z = X ′

(X Y ) · Z ∈ FV(T2)⇒ (X Y ) · Z = Y ′

2

Theorem 5.16

1. Γ `w T ⇐⇒ Γ `s T

2. Γ `w T <: U ⇐⇒ Γ `s T <: U

Proof: The proofs are by structural induction on the derivation of the given judg-

ment. Here we only discuss the “for all” case of subtyping judgments.

⇐=: The premises of the weak typing judgment are a particular case of those of

the strong typing judgment, making this direction trivial.

=⇒: Given Z such that Z /∈ dom(Γ), Z ∈ FV(S2) =⇒ Z = X and Z ∈
FV (T2) =⇒ Z = Y , we know by induction hypothesis that

IH 1 : Γ `s T1 <: S1

IH 2 : Γ, Z <: T1 `s (Z X) · S2 <: (Z Y ) · T2

We want to prove that

Γ `s ∀XS1 .S2 <: ∀YT1 .T2

By rule SA-All, also using hypothesis IH 1, we only have to prove that

for all Z ′ /∈ dom(Γ):


(Z ′ ∈ FV(S2)⇒ Z ′ = X)⇒
(Z ′ ∈ FV(T2)⇒ Z ′ = Y )⇒
Γ, Z ′ <: T1 ` (Z ′ X) · S2 <: (Z ′ Y ) · T2
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We assume such a Z ′ and then choose a variable W /∈ dom(Γ): by equivariance,

IH 2 implies

IH ′2 : (W Z) · (Γ, Z <: T1) `s (W Z) · (Z X) · S2 <: (W Z) · (Z Y ) · T2

Furthermore, also by equivariance, the thesis is equivalent to:

(W Z ′) · (Γ, Z ′ <: T1) `s (W Z ′) · (Z ′ X) · S2 <: (W Z) · (Z ′ Y ) · T2

Knowing Z,Z ′,W are all disjoint from dom(Γ) (therefore Z,Z ′,W /∈ FV(T2), too),

we prove

(W Z) · (Γ, Z <: T1) = (W Z ′) · (Γ, Z ′ <: T1) = Γ,W <: T1

By the freshness properties of Z and Z ′, we can also prove that

(W Z) · (Z X) · S2 = (W Z ′) · (Z ′ X) · S2 = (W X) · S2

(W Z) · (Z Y ) · T2 = (W Z ′) · (Z ′ Y ) · T2 = (W Y ) · S2

Thus, rewriting appropriately, we prove the thesis by IH ′2. 2

5.5 Conclusions

The POPLmark challenge proved to be a valuable test-bench for the Matita theorem

prover. Remarkably, it allowed us to identify a new proof principle that we called

induction/inversion and that we implemented in Matita. The principle seems to

have been implicitly adopted in several solutions (see for example [12, 29]) but

never made explicit before. We believe that our proof where it is explicit is not only

easier to understand, but also more faithful to the informal proof of the POPLmark

specification.

Our de Bruijn solution bears some similarities with Maggesi and Hirschowitz’s

solution based on nested datatypes [29]: in particular our notion of environment

extension map is comparable to their “relative well-formedness” predicate. Still, the

structures used by the two solutions are very different (nested abstract syntax uses
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dependently typed structures and formalizes contexts as functions, while we went

for a more standard approach). As concerns size, our de Bruijn solution has not

been tuned for compactness and is still relatively lengthy (with a size comparable to

that of the second locally nameless solution): in general, de Bruijn formalizations

have proved to be more synthetic than locally nameless ones, and we believe that

automation might help reducing its size significantly.

While the solutions using the de Bruijn or the locally nameless encoding are

compact (576 and 350 lines respectively), the solution using named variable requires

1270 lines. However, it is not really comparable to the other ones, since it is based

on a completely different proof strategy.

As for the encoding issue, as already pointed out by other authors, we agree

that the locally nameless approach leads to proofs which are more readable (in

comparison with de Bruijn’s representation): this is due to the fact that we do not

have to deal with free indices. We also believe that while it may be possible to obtain

a smaller solution using a pure de Bruijn approach, the proofs tend to become much

less linear, making the locally nameless approach still preferable.

The biggest drawback with the locally nameless approach is that typing rules

which deal with binders are required (reasoning backwards) to make indices disap-

pear, in such a way that they are not fully structural on the types. This means that

where the paper proof would use a straight induction on a type, we are required to

use an induction on its well-formedness derivation. For the same reasons, the cases

with binders are also the most difficult to deal with in the adequacy proof of the

named variables encoding with respect to the locally nameless encoding.



Chapter 6

Canonical locally named encoding
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In the previous chapter we have seen three representations of binding: among

them, the locally nameless approach has the notable feature of making a syntactical

distinction between global and local variables, which is a simple but effective strategy

to avoid variable capture when substituting in a term. Because of this feature, we

say that the locally nameless approach is a local representation of binding.

Local representations of binding can be traced back to Frege: in [19], he showed

how to formulate the syntax of a logical language with binders using two distinct

sets of names for global variables (represented by Latin letters) and local variables

(represented by German letters). This approach, which we could call locally named,

was studied in the context of machine formalization of type theory by McKinna and

Pollack ([41, 42]). Needless to say, using names instead of indices allows one to build

infinitely many α-equivalent (but not syntactically equal) formulations of any term

containing binders, unless we can make some stronger assumption on the way terms

are built: we say that this representation is not canonical.

The present chapter describes a refinement of the locally named approach, in-

troduced in [61, 62] by Sato and Pollack, where α-equivalent terms must also be

syntactically equal, while retaining good algebraic properties. This approach was

motivated by earlier works by Sato studying the semantics of binding structures

([57, 58, 59, 56, 60]).

The contents of this chapter are based on a paper we wrote with Pollack and

Sato ([51]), with added emphasis on our contribution (the extension of the Sato

representation to languages allowing multiple binding and simultaneous substitu-

tions and its use in a concrete formalization of the multivariate λ-calculus). This

is preceded by an introduction to the Sato representation described in the simpler

context of pure λ-calculus.

6.1 Symbolic expressions

In this section we recall the basis for defining the syntax of the λ-calculus in the Sato

encoding. We start with two distinct, denumerably infinite sets of atoms: the set
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X of global variables (or parameters), whose elements will be denoted X, Y, Z, . . .,

and the set V of local variables, denoted x, y, z, . . .. Even though this is not strictly

needed for the Sato encoding, we will identify local variables with natural numbers

(V = N); for global variables, instead, it will be sufficient to assume that they have

a decidable equality. X and V will represent the sets of lists of global and local

variables, respectively. When we are not interested in the order of items in a list,

or in the multiplicity of the items, but only in membership, we will refer to them as

(finite) sets and abuse the notation, employing set operators to manipulate them.

The set of symbolic expressions for the λ-calculus, denoted S, is the set of ex-

pressions generated by the following rules:

X : S x : S

M : S N : S
(M N) : S

M : S
[x]M : S

where we regard (M N) as the application of M to N , and [x]M as the abstraction

binding the local variable x in the symbolic expression M . Informally, we consider

the occurrences of some local variable to be bound by the nearest abstraction binding

the same name; however, notice that there is no actual binding explicit in this

free construction: in particular, we still regard expressions like [x]x and [y] y as

syntactically different, if x 6= y, even though they are, in a sense, α-convertible.

We define two operations collecting the sets of local and global variables used in

a symbolic expression

LV(X) , ∅
LV(x) , {x}

LV(M N) , LV(M) ∪ LV(N)

LV([x]M) , LV(M) \ {x}

GV(X) , {X}
GV(x) , ∅

GV(M N) , GV(M) ∪ GV(N)

GV([x]M) , GV(M)
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We will borrow the notation X #M1, . . . ,Mn from nominal logic to mean that X /∈
GV(M1) ∪ . . . ∪ GV(Mn).

The two distinct notions of variables prompt us to also define two substitution

operations, one for substituting parameters, the other for substituting local vari-

ables.

Definition 6.1 The substitution of a symbolic expression N for a global variable X

in a symbolic expression M , denoted M{N/X} is defined as follows

Y {N/X} ,

 N if X = Y

Y if X 6= Y

x{N/X} , x

(M P ){N/X} , (M{N/X} P{N/X})
([x]M){N/X} , [x] (M{N/X})

Definition 6.2 The substitution of a symbolic expression N for a local variable x

in a symbolic expression M , denoted M{N/x} is defined as follows

X{N/x} , X

y{N/x} ,

 N if x = y

y if x 6= y

(M P ){N/x} , (M{N/x} P{N/x})

([y]M){N/x} ,

 [y]M if x = y

[y] (M{N/x}) if x 6= y

Finally, given a symbolic expression M and a global variable X, we define an

operation collecting all the local variables that are bound on the path between the

root of M and any occurrence of X in M . We will use this operation to state some

properties of the theory of the Sato encoding of binding.
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vclosed X
vclosed M vclosed N

vclosed (M N)
vclosed M

vclosed ([x] (M{x/X}))

Table 6.1: vclosed predicate for the λ-calculus (Sato)

Definition 6.3 The function E : X→ S→ V is defined as follows:

EX(Y ) , ∅
EX(x) , ∅

EX(M N) , EX(M) ∪ EX(N)

EX([x]M) ,

 ∅ if X #M

{x} ∪ EX(M) else

6.2 Well-formed lambda terms

As the reader should have already noticed, symbolic expressions are not a good rep-

resentation for λ-terms: in fact, it is clear that there are more symbolic expressions

than λ-terms. For example, expressions like [x] (x y), where x 6= y, do not repre-

sent any λ-term: this is because that expression contains a dangling local variable,

i.e. a local variable that is not bound by any abstraction. This phenomenon is not

different from what happens in other local representations of binding like the locally

nameless encoding: in both the locally nameless encoding and the Sato approach,

it is necessary to identify a subset of the raw expressions that is variable closed

([41, 42]), where by “variable closed” we mean that its elements do not contain

dangling local variables. In the Sato representation, this subset can be identified by

the inductive predicate whose rules we summarize in Table 6.1.

Notice that substitution for global variables does not prevent variable capture

in the case of raw symbolic expressions; but it is, as expected, capture avoiding

when restricted to variable closed expressions – quite unsurprisingly, since there is

no dangling local variable to possibly capture. Variable closed expressions are, in

fact, an adequate representation for the λ-calculus. However they are still not com-

pletely satisfying, since they are not canonical. What we would like to have is a
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(L-Var)
X : L

M : L N : L (L-App)
(M N) : L

M : L x = FX(M)
(L-Abs)

([x] (M{x/X}))

Table 6.2: L predicate for the λ-calculus

representation of binding ensuring that α-convertible terms are really syntactically

equal. This is usually obtained, as in the locally nameless representation, by throw-

ing away local names altogether, replacing them by nameless dummies referencing

an abstraction by index rather than by name. Instead, in the Sato approach, we

choose to keep the local names; canonicity will be ensured by giving a rule for choos-

ing names to be bound: in other words, we further refine the set of variable closed

symbolic expressions by keeping one and only one representative for each class of

α-equivalent terms.

Concretely, this rule is expressed by a height function F : X → S → V: each

time it is necessary to replace a parameter X in a symbolic expression M with some

local variable (as it is the case when we must construct an abstraction in a bottom-

up fashion), that local variable will be equal to FX(M). We will call the subset of

symbolic expressions built according to this rule the set of well-formed terms, or

simply λ-terms. This set is defined by an inductive predicate − : L whose rules are

summarized in Table 6.2.

We stress the fact that rule L-Abs, intended as a constructor, takes two ar-

guments X and M and builds an abstraction whose abstracted local variable is

uniquely determined. In fact, we think that this operation, closely mimicking the

informal syntax of the λ-calculus, is particularly meaningful in itself: we will thus

provide the notation

absXM , [FX(M)] (M{FX(M)/X})

that allows us to rewrite rule L-Abs in a particularly readable form:

M : L (L-Abs)
absXM : L
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The dual operation of instantiation of an abstraction (denoted H) is defined as

[x]M HN ,M{N/x}

Of course not any function of the proper type will yield a good height, resulting in

an adequate representation of the λ-calculus. In the next section, we will concretely

define the function F and state the three key properties that guarantee the adequacy

of the Sato representation.

6.2.1 An excellent height function

While it is trivial to see that λ-expressions as we defined them are a subset of the

variable closed expressions, we still have not attained our goal of defining a set of

canonical expressions. Indeed, if we take our height function to be the following

(rather pathological) F′

F′X(M) ,

 0 if X = Y

1 else

where Y is a fixed global variable, we can easily build α-equivalent λ-terms that are

syntactically different: for example, supposing Y 6= Z, we have

[0] 0 = absY Y 6= absZZ = [1] 1

Furthermore, F′ does not prevent variable capture during the construction of an

abstraction: if Z1 and Z2 are not equal to Y , then

absZ1(absZ2(Z1 Z2)) = [1]([1](1 1))

with the occurrence of Z1 captured by the inner abstraction. This implies that the

expected equation

absXM HN = M{N/X}

does not hold for all X,M,N .



128 Chapter 6. Canonical locally named encoding

Also importantly, while we know that variable closed expressions are closed with

respect to substitution for global variables, it is not clear that the same property

holds for λ-terms. Indeed, we can prove the opposite using the following height:

F′′X(M N) = F′′X(M) + F′′X(N) + 1

F′′X(M) = 0 if M is not an application

For distinct X, Y, Z, take

M , absY (X Y ) = [1] (X 1) : L

and then consider M{(Z Z)/X} = [1] ((Z Z) 1). For this term to be well formed, we

should be able to express it as absY ′((Z Z) Y ′): however the result of this operation

is [2]((Z Z) 2) for all Y ′. This means that if we choose F′′ as our height, well-formed

terms are not closed with respect to substitution for global parameters.

In the following definition of good height functions, we will summarize a set of

properties that, together, guarantee that the Sato encoding is well behaved, exclud-

ing the bad behaviours we just mentioned. In the rest of the chapter, we will often

reference finite permutations, denoted π, π′, . . .. A finite permutation on a set S is

a bijection π : S → S such that π(s) 6= s only for finitely many s ∈ S. We will also

write π̃ for the inverse permutation of π.

Given a finite permutation π on X, we can map it to symbolic expressions as

follows:

π ·X , π(X)

π · x , x

π · (M N) , (π ·M π ·N)

π · [x]M , [x] (π ·M)

Definition 6.4 A function H : X → S → V is a good height for the λ-calculus if

the following three properties hold:

(HE) H is equivariant: for all finite permutations π, global variables X, λ-terms

M , HX(M) = Hπ(X)(π ·M);

(HF) H is fresh: for all global variables X and λ-terms M , HX(M) /∈ EX(M);
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(HP) H preserves substitution: for all global variables X, Y , λ-terms M,Q, if X 6=
Y and X #Q, then HXM = HX(M{Q/Y })

While good heights are sufficient to ensure adequacy, the notion of good height

function can be further relaxed so that its properties are not limited to λ-terms, but

extended to symbolic expressions: we call such height functions excellent.

Definition 6.5 A function H : X→ S→ V is an excellent height for the λ-calculus

if the following three properties hold:

(XHE) H is equivariant: for all finite permutations π, global variables X, symbolic

expressions M , HX(M) = Hπ(X)(π ·M);

(XHF) H is fresh: for all global variables X and symbolic expressions M , HX(M) /∈
EX(M);

(XHP) H preserves substitution: for all global variables X, Y , symbolic expressions

M,Q, if X 6= Y and X #Q, then HX(M) = HX(M{Q/Y })

We are now ready to show that excellent height functions exist by concretely

defining the F function we intend to use.

Definition 6.6 The height function F : X→ S→ V is defined as follows:

FX(Y ) ,

 1 if X = Y

0 else

FX(x) , 0

FX(M N) , max{FX(M),FX(N)}

FX([x]M) ,

 FX(M) if FX(M) = 0 or FX(M) > x

x+ 1 else

Theorem 6.1 The F function of definition 6.6 is excellent.

Proof: We will not go into the details of the proof thoroughly (similar, though

more involved, proof will be given in the next pages), but will briefly sketch the

most important issues.
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(XHE) The proof that for all finite permutations π, FX(M) = Fπ·X(π ·M) follows

easily by structural induction on M . In the case M = [x]N , where we know

by induction hypothesis that FX(N) = Fπ·X(π · N), consider two subcases,

depending on whether 0 < FX(N) = Fπ·X(π ·N) ≤ x or not.

(XHF) We actually prove a stronger property: for all local variables x ≥ FX(M),

x /∈ EX(M). This is obtained by structural induction on M . In the case M =

[y](N), we only consider the case in which X ∈ GV (N) (since, otherwise,

EX([y]N) = ∅). This implies FX(N) > 0. Then, proceed by cases, depending

on whether FX(N) ≤ y or FX(N) > y: the thesis follows easily by the induction

hypothesis.

(XHP) The proof that X 6= Y and X #Q imply FX(M) = FX(M{Q/Y }) is easy

by structural induction on M . If M = Z, consider two subcases for Z = Y

and Z 6= Y (also remember that X #Q implies FX(Q) = 0).

2

As we were saying, good or excellent heights guarantee that the Sato repre-

sentation is an adequate encoding of the λ-calculus. (XHE) implies that heights

do not depend on the specific global variables used to construct a term (thus

absY Y = absZ Z for all Y, Z); (XHF) prevents variable capture; (XHP) allows

us to prove that substitution for global variables preserves well-formedness.

We will now mention some more general properties that, assuming that we use

a good height function, we can prove for the Sato representation. The following

property mimics α-conversion.

Lemma 6.2 If M : L and Y # absXM , there exists a term N such that N : L and

absXM = absY N .

Furthermore, as we already said, substitution for global variables is well behaved:

Lemma 6.3 If M : L and N : L, then M{N/X} : L.
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Finally, instantiation also preserves well-formedness:

Lemma 6.4 If absXM : L and N : L, then absXM HN : L.

As a final remark, let us mention that good heights are sufficient to prove that

the Sato representation is adequate with respect to the nominal representation com-

monly used in Nominal Isabelle [64].

6.3 Multiple binding

The style we have just seen is suitable for representing more complicated languages

than the pure λ-calculus with minor modifications: for example, we can easily think

of rather obvious extensions of the Sato representation to typed λ-calculi with bind-

ing both at the term and at the type level; in languages involving different sorts of

variables, it is possible to use a different height for each sort. As long as the binding

structures are limited to the case of a single bound variable, we believe that the

Sato representation can be extended with very little effort.

In many languages (including most real world programming languages), how-

ever, multiple binding – i.e. the use of single syntactic constructs to abstract an

arbitrary number of variables at the same time – is the norm. Such constructs lift

the complexity of formalization one level up, therefore it is a good idea to see how

difficult is to adapt the Sato representation to this more involved case. In the rest

of the chapter, we present a formalization of one of the simplest languages involving

multi-binders.

6.3.1 The multivariate λ-calculus

If we have to think of a toy language allowing multiple variables to be bound at the

same time, probably we will come up with a variation of the pure λ-calculus, where

λ’s abstract a list of variables instead of a single variable, as shown by the following

informal grammar:

M,N ::= x | (M N) |λx.M
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As always, we write (M N1 · · ·Nk) as syntactic sugar for (· · · (M N1) · · ·Nk). Notice

that, according to this grammar, multiple abstraction and iterated abstraction are

not the same thing: the abstract syntax tree of λx, y.x is different from the one of

λx.λy.x. The two terms are not different by accident: we really mean that they

behave differently, and in fact this is the whole point of having multi-binders as a

syntactic construct. A multiple abstraction forms a redex only if it is fully applied:

for example, if M is a term and y is not free in it, iterated abstractions reduce as

follow

(λx.λy.x) M −→β λy.M

but the corresponding term built using multiple binders should be already in β-

normal form

(λx, y.x) M 6−→β

Redexes of multi-binders should have the form

(λx1, . . . , xn.M) N1 · · ·Nn −→β M{N1,...,Nn/x1,...,xn}

where the substitution is intended as a simultaneous substitution rather than iter-

ated substitution.

This language, called the multivariate λ-calculus, was originally introduced by

Pottinger in [53], and was motivated by the study of combinatory logic: it is possible

to translate combinators to terms in the multivariate λ-calculus in such a way that

reductions of combinatory logic have a one-one correspondence with reductions in

the multivariate λ-calculus (this is not possible with ordinary λ-calculus).

We will now see how the multivariate λ-calculus can be formalized using the Sato

representation.

6.3.2 Representing multi-binders

An iterative approach

The most obvious view of multiple binders is that they are not different from single

binders at all. There is absolutely nothing preventing us from interpreting (infor-
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mally) a multi-λ-abstraction as a special case of iterated single abstractions: the

symbolic expressions could therefore use a list of local variables to represent the list

of bound variables in the informal term with a one-one correspondence.

If we follow this style, it will be possible to make the Sato representation work

with only minor modifications with respect to the regular λ-calculus: we just need

to compute the height of each bound name in a bottom-up fashion. Without any

pretension of being formal, the encoding of λX1, X2, . . . , Xn.M would be represented

as the concrete symbolic expression M1, computed as follows:

xn , FXn(M)

Mn , λxn.(M{xn/Xn})
xn−1 , FXn−1(Mn)

Mn−1 , λxn−1, xn.(M
′
n{xn−1/Xn−1}) if Mn = λxn.M

′
n

. . .

x2 , FX2(M3)

M2 , λx2, . . . , xn.(M
′
3{x2/X2}) if M3 = λx3, . . . , xn.M

′
3

x1 , FX1(M2)

M1 , λx1, . . . , xn.(M
′
2{x1/X1}) if M2 = λx2, . . . , xn.M

′
2

where F is a proper height function defined on multivariate symbolic expressions.

We believe that this approach, mapping each bound variable of an informal

abstraction to a separate concrete local variable, is not advisable. In languages like

the multivariate λ-calculus, multiple binders should always be considered as atomic

operations, since they are always built in one step, and always fully instantiated in

one step. The iterated operation we just described is thus a very poor representation

of multivariate abstractions. This is not just a stylistic criticism: the pragmatics of

multiple binders is so different that this representation would also have a negative

impact on the formalization effort and on the clarity of the final result. These

considerations extend to other encodings of binding, as pointed out by other authors,

particularly in the case of the locally nameless encoding (see [13, 8]).
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A simultaneous approach

Since we have major objections against the iterative approach, we will now consider

if it is possible to encode a whole multi-binder by means of a single local variable.

To identify a specific formal parameter of a multiple abstraction encoded by means

of a single local variable x, we can use a pair 〈x, i〉, where i is a natural number

identifying the i-th element in the list of formal parameters.

Our intuition tells us that the original height function for the pure λ-calculus can

be extended to a multi-height, capable of computing the height of a list of param-

eters in a lambda term. Such a function should simply identify all the parameters

belonging to the given list.

A possible encoding of the multivariate λ-calculus in this simultaneous approach

could be

M,N ::= X|〈x, i〉 | (M N) |[x, n]M

where [x, n]M encodes an abstraction of length n binding the local variable x in

the subterm M , and 〈x, i〉 refers to the i-th argument of the nearest abstraction

identified by x.

6.3.3 Multivariate symbolic expressions

The above representation is still not completely satisfying for a reason: simultaneous

multi-binders are matched by iterated binary applications rather than single n-ary

applications. We can expect such a representation to have a bad impact in the

formalization of β-reduction, essentially because the shape of a redex would be a

function of the number of the bound variables. In this case, we think it is a good

idea to force the nested applications of informal syntax to be collapsed in a variable

arity application: in practice, we just make the syntactic sugar for n-ary applications

formal – and mandatory.

Concretely, we must distinguish a smaller class of value terms (non-applications,

denoted V,W, . . .), which can be used as the head of an application. All terms

(denoted M,N, . . .) are (n-ary) applications, with values being represented by means
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of the “empty application” injection V 7→ (V []). This is reflected in two different,

mutually defined types of symbolic expressions: Stm(for applications) and Sval(for

values); we will also denote the type of lists of (term) symbolic expressions as Stm .

X : Sval 〈x, i〉 : Sval

V : Sval N : Stm

(V N) : Stm

M : Stm

[x, n]M : Sval

In abstractions [x, n] M , we consider all occurrences of x inside M to be bound,

regardless of the associated index. Should the index of x exceed the arity n of the

local variable, it cannot not be captured by an outer abstraction. In a symbolic

expression

[x,m] ([x, n] 〈x, i〉)

where n ≤ i < m, 〈x, i〉 does not refer to the outer abstraction: instead we regard it

as meaningless, and the whole expression as ill-formed. We say that such occurrences

of local variables are locally dangling, because they identify a certain multi-binder,

but no specific position inside it; this is opposed to the more common notion of

(globally) dangling local variables, whose name is not bound anywhere.

Occasionally, we will use values where a term is expected, keeping the empty

application coercion implicit, writing V instead of (V []). Sometimes it is not nec-

essary to distinguish between term and value symbolic expressions: we will denote

generic symbolic expressions as S, T, . . . and their type as S. We will also speak

of structural induction on a symbolic expression, meaning mutual induction on the

types Stm and Sval .

The operations computing the sets of global and unbound local variables of a

given symbolic expression are defined in the obvious way. The abstraction case of

LVval is justified by what we said earlier about locally dangling local variable, which
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are meaningless but still bound.

LVval(X) , ∅
LVval(〈x, i〉) , {x}

LVval([x, n]M) , LVtm(M) \ {x}
LVtm(V N) , LVval(V ) ∪ LVtm(N)

LVtm([N1; . . . ;Nk]) , LVtm(N1) ∪ . . . ∪ LVtm(Nk)

GVval(X) , {X}
GVval(〈x, i〉) , ∅

GVval([x, n]M) , GVtm(M)

GVtm(V N) , GVval(V ) ∪ GVtm(N)

GVtm([N1; . . . ;Nk]) , GVtm(N1) ∪ . . . ∪ GVtm(Nk)

When there is no ambiguity, we will omit the superscripts and just write LV or GV.

As always, we will use the notation X #S to say that X /∈ GV(S). With a small

abuse of notation, we will also write S1, . . . , Sm #T1, . . . , Tn to mean (GV(S1)∪ . . .∪
GV(Sm)) ∩ (GV(T1) ∪ . . . ∪ GV(Tn)) = ∅.

We now define the two simultaneous substitution operations, for local and global

variables. Notice that we must choose whether variables should be replaced by terms

or values: while the variables being substituted are values, to implement operations

like reduction we must be able to replace variables with generic terms. This also

implies that substitution in a value will return a term (e.g.: X{M/X} = M , where

M is a term).

Some small complication arises when substituting in an application: intuitively,

(V N){M/X} = (V {M/X} N{M/X}), but V {M/X} in general is not a value, therefore

it cannot appear as the head of an application. This corresponds to the case where

we must merge two nested applications, using the following mkappl operation:

mkappl((V M), N) , (V (M@N))

Substitution for global variables must replace a list of global variables with a list
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of an equal number of terms. The operation is defined as follows:

Y {Mk/Xk} ,

 Mi if Y ∈ Xk and i = posn(Y,Xk)

Y if Y /∈ Xk

〈x, i〉{Mk/Xk} , 〈x, i〉
([x, n]N){Mk/Xk} , [x, n] (N{Mk/Xk})

(V N){Mk/Xk} , mkappl(V {Mk/Xk}, N{Mk/Xk})
[N1; . . . ;Nm]{Mk/Xk} , [N1{Mk/Xk}; . . . ;Nm{Mk/Xk}]

posn(Y,Xk) is the position of Y in the list Xk and is meaningful only if Y ∈ Xk. If

Xk contains multiple occurrences of Y , posn returns the largest index i such that

Xi = Y . Also notice that while in this definition we assume that both Xk and Mk

have the same length, in the formalization the substitution is also defined for lists

of different length (in this case, the longer list is trimmed to the size of the shorter

one by dropping the last elements). In the formalization, however, the substitution

is only used when the lengths of the two lists are coherent.

Substitution for local variables is defined similarly; however in this case we will

substitute all free occurrences of a single local variable with a term from a given

list, depending on the associated index (i.e. 〈x, i〉{Mk/x} = Mi):

X{Mk/x} , X

〈y, i〉{Mk/x} ,

 Mi if x = y and i < k

〈y, i〉 else

([y, n]N){Mk/x} ,

 [y, n]N if x = y

[y, n] (N{Mk/x}) else

(V N){Mk/x} , mkappl(V {Mk/x}, N{Mk/x})
[N1; . . . ;Nm]{Mk/x} , [N1{Mk/x}; . . . ;Nm{Mk/x}]

Again, this operation is defined also for unsound arguments, corresponding to the

case 〈x, i〉{Mk/x} when i > k. Ideally, if we are replacing local variables with a list

of k terms, it means that the local variable has been abstracted by a binder of arity

k, therefore it only appears together with indices smaller than k: this is always

true in our development. Furthermore, since locally dangling local variables are still
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considered bound, the definition of abstraction cases is greatly simplified. If we were

to allow substitution of locally dangling local variables, we should define it as

([y, n]N){Mk/x} ,


[y, n]N if x = y and n ≥ k

[y, n] (N{〈x,0〉,...〈x,n−1〉,Mn,...,Mk/x}) if x = y and n < k

[y, n] (N{Mk/x}) else

with a less uniform treatment of abstractions, which is not only imore difficult to

understand, but also to carry on in the formalization.

Substitution for local variables is particularly used in the special case of variable

opening, denoted as follows:

S[x 7→ Xk] , S{Xk/x}

Its inverse, variable closing, is defined as

S[Xk 7→ x] , S{〈x,0〉,...,〈x,k−1〉/Xk}

We just state the following standard properties of substitutions (the proofs are

obtained by mutual induction on term and value symbolic expressions).

Lemma 6.5

1. If X #S, then S{M/X} = S.

2. If x /∈ LV(S), then S{M/x} = S.

Lemma 6.6 If X #Y ,N , then for all symbolic expressions S we have

S{M/X}{N/Y } = S{N/Y }{M{N/Y }/X}

Lemma 6.7 Substitution for both global and local variables is equivariant: if π is a

finite permutation of global variables, then

π · (S{M/X}) = (π · S){π·M/π·X}
π · (S{M/x}) = (π · S){π·M/x}
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6.3.4 Well-formed multivariate terms

Given the above definition of symbolic expressions, it is just natural to consider an

extended notion of height F : X → Stm → V. As usual, we will first define well-

formed terms parametrically on F, and later argue for the existence of well-behaved

heights.

The basic definition we need to express the set of well-formed terms is the ab-

straction operation

absXM , [FX(M), |X|] (M [X 7→ FX(M)])

Similarly to the case of the λ-calculus, this operation corresponds to the informal

multivariate λ-abstraction. The predicates Ltm and Lval , are then defined as shown

in Table 6.3. In rule Lval-Abs, we require that the list of global variables X being

abstracted is composed of distinct names: this is a natural assumption, because all

well-formed λ-abstractions can be expressed using distinct names, while the opposite

is not true (if a name Y occurs in X more than once, the innermost occurrence

shadows the other ones, meaning that a term can be expressed in this shape only if

the shadowed variables are not actually used in the body of the abstraction).

We will often write L for Ltm or Lval if the distinction is unimportant or is

clear from the context. We will also speak of induction on the derivation of a well-

formedness judgment, meaning mutual structural induction on the types Ltm and

Lval .

We also lift the instantiation operation to the multivariate case as follows:

[x, n]M HN ,M{N/x}

This operation will be used only when |N | = n.

6.3.5 Excellent multivariate heights

We now extend the excellence properties of Section 6.2.1 so as to make them mean-

ingful for the multivariate λ-calculus. This requires lifting the definition of E to
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(Lval-Var)
X : Lval

M : Ltm X are distinct (Lval-Abs)
absXM : Lval

V : Lval for all M ∈ N , M : Ltm

(Ltm-App)
(V N) : Ltm

Table 6.3: Well-formedness predicate for the multivariate λ-calculus

multivariate symbolic expressions as follows:

EX(Y ) , ∅
EX(〈x, i〉) , ∅

EX([x, n]M) ,

 ∅ if X #M

{x} ∪ EX(M) else

EX(V N) , EX(V ) ∪ (
⋃
M∈N EX(M))

Definition 6.7 A function H : X → S → V is an excellent height for the multi-

variate λ-calculus if the following three properties hold:

(MHE) H is equivariant: for all finite permutations π, lists of parameters X and

symbolic expressions S, HX(S) = Hπ·X(π · S);

(MHF) H is fresh: for all lists of parameters X and symbolic expressions S,

HX(S) /∈ EX(S);

(MHP) H preserves term substitution: for all lists of parameters X and Yk, for

all symbolic expressions S and for all lists of term symbolic expressions Nk, if

X #Yk, Nk, then HX(S) = HX(S{Nk/Yk}).

Definition 6.8 The function F is defined as follows

FX(Y ) ,

 1 if Y ∈ X
0 else

FX(〈x, i〉) , 0

FX([x, n]M) ,

 FX(M) if FX(M) = 0 or FX(M) > x

x+ 1 otherwise

FX(V [N1; . . . ;Nk]) , max(FX(V ),FX(N1), . . . ,FX(Nk))
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Lemma 6.8 For all S and X, FX(S) = 0 if and only if X #S.

Proof: Easy induction on the structure of S. 2

Theorem 6.9 The function F of Definition 6.8 is excellent.

Proof: We prove the three properties separately.

(MHE) By structural induction on S:

• case S = Y : Y is either in X or not; if it is, then π ·Y ∈ π ·X too, which implies

FX(Y ) = Fπ·X(π · Y ) = 1; if on the contrary Y /∈ X, then π · Y /∈ π ·X (π is a

permutation, therefore it is injective), implying FX(Y ) = Fπ·X(π · Y ) = 0;

• case S = x: FX(x) = Fπ·X(π · x) = Fπ·X(x) = 0 holds trivially;

• case S = [x, n]M : define

y , FX(M)

by induction hypothesis, we know that y = Fπ·X(π ·M); there are two cases:

if 0 < y ≤ x, then FX([x;n]M) = Fπ·X(π · ([x, n]M)) = x + 1; if y = 0 or

y > x, then FX([x, n]M) = Fπ·X(π · ([x, n]M)) = y;

• case S = (V Nn): we must prove that

max{FX(V ),FX(N0), . . . ,FX(Nn−1)} = max{Fπ·X(π·V ),Fπ·X(N0), . . . ,F′π·X(π·Nn−1)}

the equation is satisfied, since the arguments of the two max functions are

pairwise equal by induction hypothesis;

(MHF) We obtain the property as a corollary of the stronger statement

for all x, x ≥ FX(S) =⇒ x /∈ EX(S)

By structural induction on S:
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• cases S = Y or S = y: in both cases, EX(S) = ∅, thus the thesis follows

trivially;

• case S = [y, n]M : define

z , FX(M)

z′ , FX([y, n]M)

by induction hypothesis, we know that

for all x′, x′ ≥ FX(M) =⇒ x′ /∈ EX(M)

notice in particular that the property holds for x′ = z or greater, since z

satisfies the required inequality; then consider two subcases:

– if X # [y, n]M then EX([y, n]M) = ∅, thus the thesis follows trivially;

– if X ∩GV ([y, n]M) 6= ∅, we must prove that

z′ /∈ {y} ∪ EX(M)

we know by lemma 6.8 that z 6= 0, therefore either 0 < z ≤ y, implying

z′ = y + 1 (thus also z′ > z), or z > y, implying z′ = z: in both cases,

the property follows by induction hypotheses.

• case S = (V N1 · · ·Nn): we must prove that

∀x ≥ max{FX(V ),FX(N1), . . . ,FX(Nn)} : x /∈ EX(V )∪EX(N1)∪ . . .∪EX(Nn)

the property is satisfied, since each we can prove by induction hypothesis that

x is not in any of the sublists EX(V ),EX(N1), . . . ,EX(Nn);

(MHP) By structural induction on S:

• case S = Z: Z is either in Yk or not; if it is, then Z /∈ X and Z{Nk/Yk} = Ni

for some i = 1, . . . , k: this implies FX(Z) = 0 = FX(Ni) by lemma 6.8, since

X #Nk by hypothesis; if Z /∈ Yk, then Z{Nk/Yk} = Z and the thesis follows

trivially;
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• case S = x: x{Nk/Yk} = x, thus the thesis follows trivially;

• case S = [x, n]M : define

y , FX(M)

by induction hypothesis, we know that FX(M) = F′X(M{Nk/Yk}); this also

implies that

y = FX(M{Nk/Yk})

there are two cases: if 0 < y ≤ x, then FX([x, n]M) = FX([x, n] (M{Nk/Yk})) =

x+1; if y = 0 or y > x, then FX([x, n]M) = FX([x;σ1, . . . , σn] (M{Nk/Yk})) =

y;

• case S = (V M1 · · ·Mn): we must prove that

max{FX(V ),FX(M1), . . . ,FX(Mn)} =

max{FX(V {Nk/Yk}),FX(M1{Nk/Yk}), . . . ,F′X(Mn{Nk/Yk})}

the equation is satisfied, since the arguments of the two max functions are

pairwise equal by induction hypothesis;

2

To be precise, the above definitions are actually formalized using specialized

mutually recursive functions Etm , Eval , Ftm and Fval : however, in this discussion, we

prefer to be slightly less formal in order to avoid the notational burden required by

mutual definitions.

In general, we are able to carry on formalizations using the Sato representation

without relying on the concrete definition of a height, as long as we know that it is

excellent. This is what we do: in the rest of the discussion, we will assume that the

F function referenced by Ltm , Lval and abs is excellent, but will otherwise treat it

as an opaque definition.

Lemma 6.10 If π is a finite permutation, then π · absXM = absπ·X(π ·M).

Proof: Using property (MHE) of excellent heights. 2
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Lemma 6.11 For all symbolic expressions S, S : L =⇒ π · S : L

Proof: By structural induction on the derivation of S : L. 2

Lemma 6.12 If X #Y@N , then (absXM){N/Y } = absX(M{N/Y }).

Proof: Unfolding the definition of abs, we see that we must prove

([x, n] (M [X 7→ x])){N/Y } = [y, n] (M{N/Y }[X 7→ y])

where x = FX(M), y = FX(M{N/Y }) and n = |X|. Then by (MHP) x = y, and

we only need to prove

M [X 7→ x]{N/Y } = M{N/Y }[X 7→ x]

To prove this equality, it is sufficient to unfold the definition of variable closing and

then use Lemma 6.6. 2

Lemma 6.13 If X and Y are lists of distinct global variables having equal length,

such that X #Y and Y # absXM , then absXM = absY (π ·M), where π = (X Y ).

Proof: Under the given hypotheses, Y = π·X. Then absY (π ·M) = absπ·X(π ·M) =

π · absXM (using Lemma 6.10). However, both X and Y are fresh in absXM , there-

fore the permutation is ineffective, yielding the thesis. 2

Corollary 6.14 (“α-conversion” for abs) For all terms M , if M : L, X and Y

are lists of distinct global variables having equal length and Y # absXM , there exists

a term N such that N : L and absXM = absYN .

Proof: Let Z be a list of global variables such that Z #X,Y , absXM and |Z| = |X|.
Let π = (Z Y ) ◦ (X Y ) and choose N = π ·M . By Lemma 6.11, N : L. Also notice

that by a double application of Lemma 6.13, absXM = absYN , as needed. 2

Lemma 6.15 Given S : L, for all lists of global variables X and lists of terms N ,

if for all M ∈ N , M : L, then S{N/X} : L.
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Proof: By induction on the derivation of S : L. In the case Lval-Abs, where

S = absYM
′, we must prove that

(absYM
′){N/X} : L

knowing by induction hypothesis that for all X ′ and N ′, M ′{N ′/X′} : L. Choose a

list of distinct global variables Z such that Z #X,Y ,N, absXM and let π = (X Z).

By Lemma 6.13

absXM
′ = absZ(π ·M ′)

then, by Lemma 6.12, we must prove

absZ((π ·M ′){N/X}) : L

or equivalently

(π ·M ′){N/X} : L

By properties of permutations, this is equivalent to

(π ·M){π·π̃·N/π·π̃·X} : L

By Lemma 6.7 and 6.11, we must prove

M{π̃·N/π̃·X} : L

that is obtained by the induction hypothesis with N ′ = π̃ ·N and X ′ = π̃ ·X. 2

We now show two important adequacy properties: first, well-formed expressions

do not contain unbound local variables; second, well-formed abstractions do not

contain locally dangling local variables.

Lemma 6.16 If S : L, then LV(S) = ∅.

Proof: Standard proof by induction on the derivation of S : L. 2

To show well-formed abstractions do not contain locally dangling local variables,

we define the “next index” operator, taking a symbolic expression S and a local
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variable x and returning the successor of the maximum index i such that 〈x, i〉
occurs unbound in S:

ni(X, x) , 0

ni(〈x, i〉, x) , i+ 1

ni(〈y, i〉, x) , 0 when x 6= y

ni([x, n]M,x) , 0

ni([y, n]M,x) , ni(M,x) when x 6= y

ni(V N, x) , max{ni(V ), ni(N, x)}
ni([N1; . . . ;Nk], x) , max{ni(N1, x), . . . , ni(Nk, x)}

Lemma 6.17 If [x, n] M : L, then ni(M,x) ≤ n (hence x is not locally dangling

in [x, n]M).

Proof: Since [x, n]M : L, it must be equal to absXn
M ′ for some Xn and M ′ such

that M ′ : L. Therefore we have

M = M ′[Xn 7→ x] = M ′{〈x,0〉,...,〈x,n−1〉/Xn}

Since M ′ : L, x /∈ LV(M ′), therefore ni(M ′, x) = 0, thus ni(M ′{〈x,0〉,...,〈x,n−1〉/Xn}
cannot be greater than n (since the only unbound occurrences of x will be the ones

that are being substituted, whose maximum index is n− 1). 2

Lemma 6.18 If |X| = |M |, x /∈ LV(S) and x /∈ EX(S), then S[X 7→ x]{M/x} =

S{M/X}.

Proof: By structural induction on S. In the case S = [y, n]N , we have x /∈
EX([y, n]N), implying that either X #N and EX([y, n]N) = ∅, or EX([y, n]N) =

{y} ∪ EX(N) and there exists some Y ∈ X such that Y ∈ GV(N).

• In the first case, ([y, n]N)[X 7→ x]{M/x} = ([y, n]N){M/X} can be rewritten

to ([y, n]N){X/x} = [y, n]N : the two sides of the equation are equal since

by hypothesis x /∈ LV([y, n]N).
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• In the second case, we can prove x 6= y: then the goal becomes

[y, n] (N [X 7→ x]{M/x}) = [y, n] (N{M/X})

This follows by the induction hypothesis on N , since x /∈ EX(N) and x /∈
LV(N).

2

Lemma 6.19 Suppose that absXM : L, |X| = |N | and for all N ′ ∈ N , N ′ : L.

Then

absXM HN : L.

Proof: Let x = FX(M) and n = |X|: then we must prove

M [X 7→ x]{N/x} : L

Using Lemma 6.16 and property (MHF), we prove that x /∈ LV(M) and x /∈ EX(M).

Then by Lemma 6.18, the goal becomes

M{N/X} : L

that is a trivial consequence of Lemma 6.15. 2

6.3.6 β-reduction

We formalize β-reduction as an inductive judgment: the definition employs three

mutually defined judgment forms for values, terms and lists of terms (in the case of

lists of terms, the intended meaning is that reduction happens in exactly one term

in the list, leaving the other ones untouched). The rules we formalized are shown in

Table 6.4.

The reduction step is defined by rule BRed. Recall that application of an

abstraction to a list of terms that is too short does not contract; if the list of terms,

instead, is longer than needed, the application does contract, with some arguments

left over. BRed expresses this behaviour saying that in order for the an application
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X is a duplicate-free list |X| = |N |
M : L for all N ′′ ∈ N@N ′, N ′′ : L

((absXM) (N@N ′)) −→β mkappl(absXM HN,N ′)
(BRed)

V −→β W

for all M ′ ∈M , M ′ : L

(V M) −→β (W M)
(BApp1)

M −→β N

V : L

(V M) −→β (V N)
(BApp2)

M −→β N X is a duplicate-free list

absXM −→β absXN
(BXi)

M −→β M
′ for all N ∈ N ′, N : L

N ′,M −→β N ′,M
′

(BTml1)

M : L N −→β N ′

N,M −→β N ′,M
(BTml2)

Table 6.4: β-reduction rules for the multivariate λ-calculus

to contract, the head must be an abstraction of some length n, and it must be

possible to split the list of arguments in two sublists N and N ′, with N of length

n. The result of the contraction is obtained by instantiating the abstraction with N

and applying the result of the instantiation to the leftover arguments N ′: since the

result of an instantiation is a term (and not a value), this uses the mkappl operation.

Notice that the rules (in particular rules BRed and BXi) use a forward pre-

sentation, which as we argued is closer to the informal syntax. The use of abs in

BXi hides the fact that the concrete representation of absXM and absXN might

use different local names for the bound variables, because FX(M) is not necessarily

equal to FX(N).

The theory of the Sato representation we developed in the previous sections is

sufficient to prove that this definition of β-reduction is well-behaved.

Theorem 6.20 If S −→β T , then

1. S : L and T : L

2. for all finite permutations π, π · S −→β π · T



Chapter 6. Canonical locally named encoding 149

3. GV(T ) ⊆ GV(S).

Proof: By induction on the derivation of S −→β T . When proving property 1, for

the subcase BRed, the proof uses Lemma 6.19. 2
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Simple formalisms, including sufficiently compact variants of the λ-calculus, simi-

lar to the examples of F<: and the multivariate λ-calculus we presented in Chapters 5

and 6, are particularly popular case studies for all representations of binding, since

they allow people experimenting with encodings of syntax to focus on the key issues

of formal proofs, without the need to deal with overly intricate structures. There is

howevere a possibility that important matters only arising in some larger languages

might be overlooked.

This is more of a worry in the case of a recently developed representation, like the

Sato representation we presented in the previous chapter. Out of this concern, we

decided to test it against a more serious language. Our attention fell on some recent

logical frameworks where only canonical forms are well typed expressions. Such sys-

tems employ a particularly stratified syntax, together with hereditary substitution,

to keep the terms in normal form.

The reason for the study of such systems lies in the correspondence between ob-

jects in the framework and entities in the object theory, that in non-canonical sys-

tems is typically a bijection only up to βη-conversion. Canonical logical frameworks

include a subsystem of ELF known simply as the Canonical Logical Framework ([27,

35]), the Type Framework ([2, 3]), the Concurrent Logical Framework ([66]), De-

pendent Contextual Modal Type Theory ([45]), and Gordon Plotkin’s DMBEL ([49,

50]). This last system, albeit limited to a (canonical) second order fragment of ELF,

shows many of the issues of the other canonical formalisms we cited (most notably,

dependent types and a form of hereditary substitution).

This chapter discusses a formalization of DMBEL in the Matita interactive theo-

rem prover. In the first section we recall the definition of DMBEL. Section 2 begins

the discussion of the formalized syntax, introducing the notion of symbolic expres-

sions. Section 3 is about well formed expressions and the related notion of excellent

height. Section 4 describes the formalization of hereditary substitution and related

issues. In Section 5 we formalize the type system. In the last section, we draw final

conclusions on the Sato representation.
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7.1 Informal syntax

We now present the syntax of the DMBEL logical framework, whose grammar is

summarized in Table 7.1. Expressions in DMBEL fall in one of three syntactic

categories:

• terms (notation: t, t1, t2, . . . , u, . . .) used to express the entities of the object

theory;

• types (notation: σ, τ, . . .) that the type system assigns to terms;

• abstraction terms (notation: a, a1, a2, . . . , b, . . .) taking as input a list of terms

and returning a term.

These three categories are mutually defined, yet clearly distinct: this stratification

allows DMBEL to enforce the canonicity of its expressions, roughly meaning that

the only well formed expressions are those in β-normal, η-long1 form. Since all the

expressions must be in canonical form, the system does not have a computation rule.

Terms can contain two kinds of variables: term variables (notation: x, x1, x2, . . . ,

y, . . .) serving as a placeholder for other terms, and abstraction variables (notation:

ϕ, ϕ1, ϕ2, . . . , ψ, . . . which can be instantiated with abstraction terms. Since the

syntax enforces terms to be in canonical form, abstraction variables are always fully

applied to a number of terms matching their ariety.

Terms can also contain functional constants (notation: f, f1, . . . , g, . . .). Func-

tional constants, much like abstraction variables, are always fully applied but, con-

trarily to abstraction variables, they are applied to abstraction terms rather than

regular terms.

DMBEL has dependent types: a type constant (notation: S, T, . . .) must always

be applied to a number of abstraction terms matching its ariety. Finally, abstraction

terms are used to bind an arbitrary number of term variables of a chosen type inside

a term, and are thus similar to multiple λ-abstractions. We write (x1 : σ, x2 : τ) t

1Here we are borrowing Robin Adams’s terminology from [2, p. 63]: roughly speaking, an

expression is said to be in η-long form if η-expanding any of its sub-expressions yields a redex
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to mean the abstraction term binding the variables x1 of type σ and x2 of type τ in

the term t. Since we have dependent types, in this example x1 is bound not only in

t, but also in τ . Unsurprisingly, we assume that abstraction terms are identified up

to α-conversion.

There is no binder for abstraction variables, which always appear free in DMBEL

expressions.

Abstraction types, i.e. the types of abstraction terms, do not appear in terms,

types or abstraction terms, but are used for typechecking purposes. Similarly to

abstraction terms, we write (Γ) τ to mean the abstraction type binding the context

Γ in the type τ .

Three more structures appear in typing judgments: contexts Γ,∆, . . . associate

to every free term variable its type; abstraction contexts Φ,Ψ, . . . do the same, map-

ping abstraction variables to abstraction types; the operations dom and cod return

respectively the list of the names declared in a context (or abstraction context) and

the list of the associated types (or abstraction types). A signature Σ declares func-

tional and type constants, parametrized on an abstraction context. A declaration

S(Φ) means that the type constant S must be applied to a list of abstraction terms

whose (dependent) type is expressed by the abstraction context Φ; similarly, a dec-

laration f(Φ) : σ means that the functional constant f must be applied to a list of

abstraction terms whose type is expressed by Φ, and will return a term of type σ,

where the variables declared in Φ can appear in σ.

As an example, in the following signature2

Σ , prop, proof(ϕ : prop), Imp(ϕ : prop, ψ : prop) : prop,

ImpI(ϕ1 : prop, ϕ2 : prop, ϕ3 : (proof(ϕ1)) proof(ϕ2)) : proof(Imp(ϕ1, ϕ2))

we declare

• the 0-ary type prop of propositions

• the type proof(P ) of the proofs of P , where P is a proposition

2Syntactic sugar has been used to hide empty abstractions and applications where they are

needed by the syntax of DMBEL.
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• the operation Imp constructing a proposition Imp(P,Q) from propositions P

and Q

• the operation ImpI that turns a procedure taking a proof of P and returning

a proof of Q into a proof of Imp(P,Q) (think of the implication introduction

rule in natural deduction).

Following the presence of two kinds of variables in our syntax, we also define two

different kinds of substitution, whose definition is shown in Table 7.2. Substitution of

term variables is the usual notion of simultaneous substitution, replacing a vector of

different variables with a vector of terms of equal length. It is defined by structural

induction on terms, types, abstraction terms and abstraction types, and commutes

with all the syntactic forms (in the case of abstractions, a condition on the bound

variables prevents variable capture). This operation preserves the syntactical well-

formedness of DMBEL expressions and therefore does not create any redex.

Substitution of abstraction variables, instead, is a form of hereditary substitution.

Its aim is, morally, to replace a vector of different abstraction variables with a vector

of abstraction terms of equal length. However we really know that this cannot be

the case: abstraction variables only appear fully applied to their arguments, while

abstraction terms are never applied to anything, in order to guarantee that all

expressions be in canonical form.

Informally, a näıve substitution of an abstraction term for an abstraction variable

would create a β-redex, i.e. a term that is not in normal form. The result of the

operation, instead, should be the canonical term corresponding to the näıve notion

of substitution. This means that, when substituting an abstraction variable, we

should also perform some “reduction” steps (i.e. more substitutions, this time on

term variables) in order to finally compute a canonical expression.

Hereditary substitution of abstraction variables is defined by structural induc-

tion and commutes with most syntactic constructions, with the notable exception

of applied abstraction variables: if we want to replace the variable ϕ with (Γ)u

in ϕ(t1, . . . , tn), we first compute a recursive call on the arguments of the ap-
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σ, τ ::= S(a) types

α, β ::= (Γ)σ abstraction types

terms:

t, u ::= x term variables

| f(a) applied functional constants

| ϕ(t) applied functional variables

a, b ::= (Γ)t abstraction terms

contexts:

Γ,∆ ::= ∅ empty context

| Γ, x : σ context entry

abstraction contexts:

Φ,Ψ ::= ∅ empty abs. context

| Φ, ϕ : α abs. context entry

signatures:

Σ ::= ∅ empty signature

| Σ, S(Φ) type constant declaration

| Σ, f(Φ) : σ functional constant declaration

Table 7.1: Syntax of DMBEL
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Substitution of term variables:

y{t/x} ,

 ti if y = xi

y if y#x1, . . . , xn

f(an){t/x} , f(a0{t/x}, . . . , an−1{t/x})
ϕ(un){t/x} , ϕ(u0{t/x}, . . . , un−1{t/x})
S(an){t/x} , S(a0{t/x}, . . . , an−1{t/x})

((yn : σn)u){t/x} , (y0 : σ0{t/x}, . . . , yn−1 : σn−1{t/x})(u{t/x}) if yn #x, t

((yn : σn) τ){t/x} , (y0 : σ0{t/x}, . . . , yn−1 : σn−1{t/x})(τ{t/x}) if yn #x, t

Hereditary substitution of functional variables:

x{am/ϕm} , x

f(bn){am/ϕm} , f(b0{am/ϕm}, . . . , bn−1{am/ϕm})

ψ(tn){am/ϕm} ,

 u{t0{am/ϕm},...,tn−1{am/ϕm}/dom(Γ)} if ψ = ϕi and ai = (Γ)u

ψ(t0{am/ϕm}, . . . , tn−1{am/ϕm}) if ψ#ϕm

S(bn){am/ϕm} , S(b0{am/ϕm}, . . . , bn−1{am/ϕm})
((yn : σn)u){am/ϕm} , (y0 : σ0{am/ϕm}, . . . , yn−1 : σn−1{am/ϕm})(u{am/ϕm}) if yn # am

((yn : σn) τ){am/ϕm} , (y0 : σ0{am/ϕm}, . . . , yn−1 : σn−1{am/ϕm})(τ{am/ϕm}) if yn # am

Table 7.2: Substitutions in DMBEL

plication t1{(Γ)u/ϕ}, . . . , tn{(Γ)u/ϕ} = t′1, . . . , t
′
n, then return the term substitution

u{t′1,...,t′n/dom(Γ)}. Hereditary substitution is always terminating, thus well defined,

since every case is obtained by means of recursive calls on smaller terms, possibly

combining them with other terminating operations.

7.1.1 Type system

The type system of DMBEL comprises nine different judgment forms, whose deduc-

tion rules are mutually defined. In a sense, the most basic judgment form is the

signature well-formedness, denoted ` Σ, ensuring that the types of the constants

declared in Σ are well defined. Two more judgment forms are used to state the
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well-formedness of abstraction contexts (notation: `Σ Φ) and contexts (notation:

Φ `Σ Γ).

There are two formation judgments for types (notation: Φ; Γ `Σ σ) and abstrac-

tion types (Φ; Γ `Σ α), essentially stating that all the free variables occurring in σ

or α are contained in Γ or Φ, and that the type constant involved in the judgment

is applied to well typed arguments, whose type matches that of the type constant.

The remaining four judgments are for the typing of terms (and abstraction terms)

or records of terms (or of abstraction terms):

• Φ; Γ `Σ t =⇒ σ states that t is a well typed term and has type σ

• Φ; Γ `Σ a =⇒ α, states that a is a well typed abstraction term, whose type is

α

• Φ; Γ `Σ t⇐= ∆ means that the record t is well typed against the context ∆

• Φ; Γ `Σ a⇐= Ψ means that the abstraction record a is well typed against the

abstraction context Ψ.

In the last two judgments, ∆ and Ψ are contexts used to express the dependent type

of a record.

Table 7.3 shows the type system of DMBEL. Even though we are not interested

in discussing all the rules, we think it is advisable to make a remark about the

typing rules. The distinction between ⇐= and =⇒ is intentional and concerns

the algorithmic interpretation of the type system: the dependent type of records

is not unique, therefore, when typing a compound expression – e.g. a functional

constant f applied to an abstraction record a – we cannot expect an algorithm

to infer for a a type exactly matching the expected type for the arguments of f .

In the style of bidirectional typechecking, we distinguish type inference judgments

Φ; Γ `Σ e =⇒ E for single expressions, where the typechecker takes in input a

signature Σ, the contexts Φ and Γ, and an expression (term or abstraction term) e,

and finally returns the type E of e (if e is well typed); and type checking judgments

Φ; Γ `Σ e ⇐= E for records, whose input also includes the expected type E of
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Signatures:

(SO-Empty)
` []

`Σ Φ
(SO-Tp)

` Σ, S(Φ)

Φ; [] `Σ σ
(SO-Tm)

` Σ, f(Φ) : σ

Abstraction contexts:

` Σ (ACO-Empty)
`Σ []

Φ; [] `Σ α
(ACO-Cons)`Σ Φ, ϕ : α

Contexts:

`Σ Φ
(CO-Empty)

Φ `Σ []

Φ; Γ `Σ σ (CO-Cons)
Φ `Σ Γ, x : σ

Type and abstraction type formation:

S(Ψ) ∈ Σ

Φ; Γ `Σ a⇐= Ψ
(TO-Intro)

Φ; Γ `Σ S(a)

Φ; Γ,∆ `Σ σ (ATO-Intro)
Φ; Γ `Σ (∆)σ

Term and abstraction term typing:

x : σ ∈ Γ
Φ `Σ Γ

(TI-Var)
Φ; Γ `Σ x =⇒ σ

f(Ψ) : σ ∈ Σ

Φ; Γ `Σ a⇐= Ψ
(TI-Appcon)

Φ; Γ `Σ f(a) =⇒ σ{a/dom(Ψ)}
ϕ : (∆) τ ∈ Φ

Φ; Γ `Σ t⇐= ∆
(TI-Appvar)

Φ; Γ `Σ ϕ(t) =⇒ τ{t/dom(∆)}

Φ; Γ,∆ `Σ t =⇒ σ
(ATI-Intro)

Φ; Γ `Σ (∆) t =⇒ (∆)σ

Record typing:

Φ `Σ Γ
(TC-Empty)

Φ; Γ `Σ []⇐= []

Φ; Γ `Σ t =⇒ σ Φ; Γ `Σ u⇐= ∆{t/x}
(TC-Cons)

Φ; Γ `Σ t, u⇐= x : σ,∆

Abstraction record typing:

Φ `Σ Γ
(ATC-Empty)

Φ; Γ `Σ []⇐= []

Φ; Γ `Σ a =⇒ α Φ; Γ `Σ b⇐= Ψ{a/ϕ}
(ATC-Cons)

Φ; Γ `Σ a, b⇐= ϕ : α,Ψ

Table 7.3: Typing rules of DMBEL
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the record; the output of the typechecker would therefore be a boolean asserting

whether the record e can be typed with type E or not.

7.1.2 Summary of DMBEL

The syntax of DMBEL poses an interesting case for a formalization in an interactive

theorem prover. We here review some of its most challenging features:

• the syntax and the typing rules rely heavily on mutually inductive definitions,

leading to verbose and complicated induction principles;

• multiple binding, which we addressed in the previous chapter, is here combined

with dependent types: this detail can be expected to have a major impact on

the formalization;

• hereditary substitution combines substitution and controlled reduction of terms;

even though recently this operation has been investigated in the small setting

of a formalization concerning the simply typed λ-calculus ([32]), its treatment

in more involved languages is still challenging, as we will see in the following

pages.

In the next section, we will propose a formal syntax of DMBEL based on the

Sato representation.

7.2 Symbolic expressions in DMBEL

We now present the concrete syntax used in our formalization of DMBEL, following

the simultaneous approach we have discussed in the previous chapter. We define the

terms, types, abstraction terms and abstraction types as four CIC inductive types,

here denoted as Stm , Stp , Satm and Satp . It is also natural to consider symbolic

expressions (noted as S) as the disjoint union of these four syntactic categories. We

will also use the notation Stm , Stp , Satm to refer to lists of symbolic expressions of
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the proper class. Sometimes we will use letters E,F, . . . to refer to generic symbolic

expressions. The rules defining DMBEL symbolic expressions are the following:

X : Stm 〈x, i〉 : Stm

a : Satm

f(a) : Stm
t : Stm

ϕ(t) : Stm

σ : Stp t : Stm

[x;σ] t : Satm
σ : Stp τ : Stp

[x;σ] τ : Satp

a : Satm

S(a) : Stp

The most important changes in the formalized syntax are in terms and abstrac-

tion terms. In terms, according to the simultaneous approach to multiple binding,

it is necessary to split the informal term variables into (global) term parameters

(taken from the infinite set X and denoted, as always, with capital X, Y, . . .) and

term local variables : the latter will be represented with pairs 〈x, i〉, where x is a local

name (belonging to a distinguished set of local names V) and i a natural number.

There is no need to do the same for abstraction variables, since DMBEL does not

have binders for abstraction variables: all abstraction variables are parameters. In

the formalization, abstraction variables will be taken from the same X set used for

term parameters, since the syntax is sufficient to discriminate the two cases. In this

presentation of the formalization, however, we will note abstraction variables by the

greek letters ϕ, ψ, . . . for clarity purposes.

Concrete abstraction terms bind a single local name x in a list of types σn and

in a term t and are denoted [x;σn] t. An occurrence of 〈x, i〉 inside t refers to the

(i + 1)-th entry of the multibinder, reading the list of abstracted types leftwards

(i.e., it refers to the type σn−i−1). x is also bound in all types σj: if 〈x, i〉 occurs in

σj, then it must be associated to the (i + 1)-th entry leftwards from σj (i.e, to the

type σj−i−1).

As we did in the formalization of the multivariate λ-calculus, we regard the

case where the index of a local variable is too big for the associated binder as an ill-
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formedness condition: more precisely, we say that if 〈x, i〉 occurs unbound in t (resp.

σj) and n ≤ i (resp. j ≤ i), then that occurrence is locally dangling in [x, σn] t.

As we explained in the previous chapter, our treatment of locally dangling variables

allows a more elegant definition of substitution for local variables and thus much

easier reasoning and formalization.

Similar considerations hold for abstraction types, binding a single local name x

in a list of types σ and in a type τ , which are denoted [x;σ] τ . The other syntactic

constructions are very close to the informal syntax.

We will now define the preliminary operations we need in order to formalize

DMBEL.

Definition 7.1 If π is a finite permutation on X, the operation π ·E permuting all

term global variables in a symbolic expression E is defined as follows:

π ·X , π(X)

π · 〈x, i〉) , 〈x, i〉
π · f(a1, . . . , ak) , f(π · a1, . . . , π · ak)
π · ϕ(t1, . . . , tk) , ϕ(π · t1, . . . , π · tk)
π · S(a1, . . . , ak) , S(π · a1, . . . , π · ak)

π · [x;σ1, . . . , σk] t , [x; π · σ1, . . . , π · σk] (π · t)
π · [x;σ1, . . . , σk] τ , [x; π · σ1, . . . , π · σk] (π · τ)

We also define the permutation of a context Γ as follows:

π · Γ ,

 [] if Γ = []

π · Γ′, π(X) : π · σ if Γ = Γ′, X : σ

Definition 7.2 The list of the global term variables of a DMBEL symbolic expres-
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sion, noted GV(−), is defined as follows:

GV(X) , {X}
GV(〈x, i〉) , ∅

GV(f(a1, . . . , ak)) ,
⋃

1≤i≤k GV(ai)

GV(ϕ(t1, . . . , tk)) ,
⋃

1≤i≤k GV(ti)

GV(S(a1, . . . , ak)) ,
⋃

1≤i≤k GV(ai)

GV([x;σ1, . . . , σk] t) , (
⋃

1≤i≤k GV(σi)) ∪ GV(t)

GV([x;σ1, . . . , σk] τ) , (
⋃

1≤i≤k GV(σi)) ∪ GV(τ)

Notice that this operation does not collect abstraction variables, because they are

not needed our formalization.

Definition 7.3 The list of the local names of a DMBEL symbolic expression, noted

LV(−), is defined as follows:

LV(X) , ∅
LV(〈x, i〉) , {x}

LV(f(a1, . . . , ak)) ,
⋃

1≤i≤k LV(ai)

LV(ϕ(t1, . . . , tk)) ,
⋃

1≤i≤k LV(ti)

LV(S(a1, . . . , ak)) ,
⋃

1≤i≤k LV(ai)

LV([x;σ1, . . . , σk] t) , ((
⋃

1≤i≤k LV(σi)) ∪ LV(t)) \ {x}
LV([x;σ1, . . . , σk] τ) , ((

⋃
1≤i≤k LV(σi)) ∪ LV(τ)) \ {x}

Definition 7.4 The simultaneous substitution replacing a list of parameters Xn

with a list of terms un in a DMBEL symbolic expression, denoted −{un/Xn} is defined
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as follows

Y {un/Xn} ,

 ui if Y ∈ Xn and i = posn(Y,Xn)

Y if Y /∈ Xn

〈x, i〉{un/Xn} , 〈x, i〉
f(a1, . . . , ak){un/Xn} , f(a1{un/Xn}, . . . , ak{un/Xn})
ϕ(t1, . . . , tk){un/Xn} , ϕ(t1{un/Xn}, . . . , tk{un/Xm})
S(a1, . . . , ak){un/Xn} , S(a1{un/Xn}, . . . , ak{un/Xn})

([x;σ1, . . . , σk] t){un/Xn} , [x;σ1{un/Xn}, . . . σk{un/Xn}] (t{un/Xn})
([x;σ1, . . . , σk] τ){un/Xn} , [x;σ1{un/Xn}, . . . σk{un/Xn}] (τ{un/Xn})

We also define a notation for mapping this notion of substitution to a context:

Γ{un/Xn} ,

 [] if Γ = []

Γ′{un/Xn}, Y : σ{un/Xn} if Γ = Γ′, Y : σ

Notice that in this algorithmic definition, we do not require the two input lists to

have the same length: however, in the formalization, this property will always be

satisfied. With a small notational abuse, in the rest of the chapter we will write

Γ{t/X} for the operation replacing X with t in the codomain of Γ. Also notice that

posn(Y,Xn), as always, returns the largest index i such that Xi = Y .

We also give a substitution replacing local variables with terms. Since many local

variables can be associated to the same local name (differing only by their index),

this operation replaces all the local variables sharing a certain local name, with a

list of terms; the index of the local variable is used to choose one of the terms inside

the list.

Definition 7.5 The substitution replacing all the occurrences of a local name x with

a list of terms un in a DMBEL symbolic expression, denoted −{un/x} is defined as
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follows

X{un/x} , X

〈y, i〉{un/x} ,

 ui if x = y and i < n

〈y, i〉 else

f(ak){un/x} , f(a0{un/x}, . . . , ak−1{un/x})
ϕ(tk){un/x} , ϕ(t0{un/x}, . . . , tk−1{un/x})
S(ak){un/x} , S(a0{un/x}, . . . , ak−1{un/x})

([y;σk] t){un/x} ,

 [y;σk] t if x = y

[y;σ0{un/x}, . . . σk−1{un/x}] (t{un/x}) else

([y;σk] τ){un/x} ,

 [y;σk] τ if x = y

[y;σ0{un/x}, . . . σk−1{un/x}] (τ{un/x}) else

Definition 7.6 The variable opening operation, substituting a list of parameters

Xn for a local name x in a symbolic expression E, denoted E[x 7→ Xn] is defined as

E[x 7→ Xn] , E{Xn/x}

Analogously, we define the variable opening operation turning a list of types into a

context as follows

(σn)[x 7→ Xn] ,

 [] if σn = []

(σn−1)[x 7→ Xn−1], Xn : (σn[x 7→ Xn−1]) else

Variable opening is used when opening an abstraction, to replace dangling lo-

cal variables with fresh parameters. The converse operation to variable opening is

variable closure, used when constructing an abstraction.

Definition 7.7 The variable closure operation, substituting local variables 〈x, 0〉, . . . , 〈x, n−
1〉 for a list of parameters Xn in a symbolic expression E, denoted E[Xn 7→ x] is

defined as follows:

E[Xn 7→ x] , E{〈x,0〉,...,〈x,n−1〉/Xn}
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Analogously, we define the variable closure operation turning a context Γ into a list

of types as follows

[Γ 7→ x] ,

 [] if Γ = []

[Γ′ 7→ x], σ[dom(Γ′) 7→ x] if Γ = Γ′, X : σ

Following the example of the multivariate λ-calculus formalization, we formu-

late the following extended properties (proved in the formalization by induction on

symbolic expressions).

Lemma 7.1

1. If X #E, then E{t/X} = E.

2. If x /∈ LV(E), then E{M/x} = E.

Lemma 7.2 If X #Y@u, then for all symbolic expressions E we have

E{t/X}{u/Y } = E{u/Y }{t{u/Y }/X}

Lemma 7.3 Substitution for global variables is equivariant: if π is a finite permu-

tation of global variables, then

π · (E{t/X}) = (π · E){π·t/π·X}
π · (E{t/x}) = (π · E){π·t/x}

Corollary 7.4

1. Closure of symbolic expressions is equivariant:

π · (E[X 7→ x]) = (π · E)[π ·X 7→ x]

2. Closure of contexts is equivariant:

π · [Γ 7→ x] = [π · Γ 7→ x]

Proof: Follows from Lemma 7.3 after unfolding the definition of closure. Part 2

requires induction on Γ. 2
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7.3 Well formed expressions

Similarly to the Abs operation for the λ-calculus, we also want to provide a defined

notation for building abstraction terms and types in a way that is closer to the

informal notion of abstraction. As always, these operation will be parametric of a

height function F, which in the case of DMBEL must have type list (X× tp) →
S → V, where list (X× tp) is the type of contexts. We will use contexts to

compute heights, because they encode all the nested scopes defined by a dependent

multi-binder.

We now define the operations to build canonical abstractions, which we will

call “build operations”, and for which we will use the same notation of informal

abstractions.

Definition 7.8 (“build” operations) The function build atm : list (X× tp)→
tm→ atm, is defined, parametrically on a height F, as follows

build atm Γ t , [FΓ(t); [Γ 7→ FΓ(t)]] t[dom(Γ) 7→ FΓ(t)]

Similarly, the function build atp : list (X× tp) → tp → atp, is defined, para-

metrically on a height F, as follows

build atp Γ τ , [FΓ(τ); [Γ 7→ FΓ(τ)]] τ [dom(Γ) 7→ FΓ(τ)]

We will write (Γ) t and (Γ) τ as a compact notation respectively for build atm Γ t

and for build atm Γ τ .

Definition 7.9 (instantiation) The instantiation operation is defined on abstrac-

tion terms and abstraction types as follows:

[x;σn] tHun , t{un/x}

[x;σn] τ Hun , τ{un/x}

Before giving the rules defining well formed terms, we still need a notion that

identifies a more tractable form of contexts.
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Definition 7.10 (regular context) A context Γ is said to be regular if and only

if

• all the names of its domain are distinct

• if Γ = Γ′, X : σ,Γ′′, then X # cod(Γ′); in other words, a parameter can occur

in the codomain of the context only after its declaration.

Regular contexts are a natural definition, because they are the contexts involved in

typing judgments. They are also much nicer to work with than generic contexts,

since many natural properties only hold for regular contexts.

Lemma 7.5 If Γ is a regular context, t is a term and σ is a type, then dom(Γ) # (Γ) t

and dom(Γ) # (Γ) σ.

Table 7.4 shows the rules defining the well-formedness judgment for DMBEL

expressions formalized in our encoding. These judgments and their rules are for-

malized in Matita as the four mutual inductive predicates Ltm, Ltp, Latm and Latp,

one for each kind of symbolic expression. Also notice that the rules, being defined

on top of the build operations, are parametric on some height function F.

Parameters are canonical, and so are applications whose components are all

canonical. Local variables are only created in the rules involving abstractions using

the build operations, ensuring, as a consequence, that they correspond to the correct

heights. Rules involving abstractions also require that the contexts involved in

the proof of canonicity be regular. We believe that reasoning on regular contexts

(essentially enforcing the property known as “Barendregt’s convention” [9, page 26])

is considerably easier.

We now argue that well-formed symbolic expressions are an adequate represen-

tation of informal DMBEL expressions: in fact they are variable closed and do not

contain locally dangling local variables.

Lemma 7.6 If E : L, then LV(E) = ∅.
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(Ltm-Var)
X : L

for all b ∈ a, b : L
(Ltm-Appcon)

f(a) : L

for all u ∈ t, u : L
(Ltm-Appvar)

ϕ(t) : L

t : L
Γ is regular

for all σ ∈ cod(Γ), σ : L
(Latm-Mk-Atm)

(Γ) t : L

for all b ∈ a, b : L
(Ltm-Mk-Tp)

S(a) : L

τ : L
Γ is regular

for all σ ∈ cod(Γ), σ : L
(Latp-Mk-Atp)

(Γ) τ : L

Table 7.4: Canonical DMBEL expressions

Proof: Standard proof by induction on the derivation of E : L. 2

To show that abstractions do not contain locally dangling local variables, we

proceed similarly to the corresponding proof in the multivariate λ-calculus, using a

“next index” operator on symbolic expressions:

ni(X, x) , 0

ni(〈x, i〉, x) , i+ 1

ni(〈y, i〉, x) , 0 when x 6= y

ni(f(a), x) , ni(a, x)

ni(S(a), x) , ni(a, x)

ni(ϕ(t), x) , ni(t, x)

ni([x, σn] t, x) , 0

ni([y, σn] t, x) , max{ni(σn, x), ni(t, x)} when x 6= y

ni([x, σn] τ, x) , 0

ni([y, σn] τ, x) , max{ni(σn, x), ni(τ, x)} when x 6= y

ni([E1; . . . ;Ek], x) , max{ni(E1, x), . . . , ni(Ek, x)}

Lemma 7.7

1. If [x, σn] t : L, then ni(t, x) ≤ n and for all i = 0, . . . , n − 1, ni(σi, x) ≤ i:

hence x is not locally dangling in [x, σn] t.
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2. If [x, σn] τ : L, then ni(τ, x) ≤ n and for all i = 0, . . . , n − 1, ni(σi, x) ≤ i:

hence x is not locally dangling in [x, σn] τ .

Proof: The proof is similar to the one presented in Lemma 6.17, with an added

induction on the list of abstracted types. 2

7.3.1 An excellent height for DMBEL

As always, to state the properties of height functions, we define an auxiliary function

E. Its definition, however, is complicated by the fact that we must deal with multi-

binders defining nested scopes, rather than regular binders with single scopes.

E′X(Y ) , ∅
E′X(〈x, i〉) , ∅
E′X(f(an)) , E′X(a0) ∪ . . . ∪ E′X(an−1)

E′X(ϕ(tn)) , E′X(t0) ∪ . . . ∪ E′X(tn−1)

E′X(S(an)) , E′X(a0) ∪ . . . ∪ E′X(an−1)

E′X([x;σn] t) ,

 ∅ if X # [x;σn] t

{x} ∪ E′X(t) ∪
(⋃

0≤i<n E′X(σi)
)

else

E′X([x;σn] τ) ,

 ∅ if X # [x;σn] τ

{x} ∪ E′X(τ) ∪
(⋃

0≤i<n E′X(σi)
)

else

EΓ(E) ,

 ∅ if Γ = ∅
E′dom(Γ)(E) ∪ EΓ′(σ) if Γ = Γ′, X : σ

The definition actually uses an auxiliary function E′X(E), to compute the list of

those local variables occurring in binding position on a path between the root of a

symbolic expression E and any occurrence of a parameter belonging to the list X.

The function EΓ(E) iterates E′ taking into account the multiple scopes defined by

the context Γ. For example, in the case of a context Γ = X1 : σ1, X2 : σ2, X3 : σ3,

EΓ(E) will produce the set E′X1,X2,X3(E) ∪ E′X1,X2(σ3) ∪ E′X1(σ2).

Lemma 7.8 If |X| = |t|, x /∈ LV(E) and x /∈ E′X(E), then E[X 7→ x]{t/x} =

E{t/X}.
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Proof: The proof, by structural induction, follows the spirit of Lemma 6.18. 2

We are now ready to look for a well-behaved – we will say, like in chapter 6,

excellent – height function in the context of DMBEL. First, we will define what we

mean by “well-behaved”, then we will propose a candidate height function; finally,

we will prove that the proposed function is really well-behaved.

Definition 7.11 A function H : list (X× tp)→ S→ V is an excellent height for

DMBEL if the following three properties hold:

(DHE) H is equivariant: for all finite permutations π, contexts Γ, symbolic expres-

sions E, HΓ(E) = Hπ·Γ(π · E);

(DHF) H is fresh: for all contexts Γ and symbolic expressions E, HΓ(E) /∈ EΓ(E);

(DHP) H preserves term substitution: for all contexts Γ, symbolic expressions E,

lists of parameters X and lists of terms t, if X and t have the same length,

and dom(Γ) #X, t, then HΓ(E) = HΓ{t/X}(E{t/X}).

Definition 7.12 The height function F : list (X × tp) → S → V is defined as

follows:

F′X(Y ) ,

 1 if Y ∈ X
0 else

F′X(f(an)) , max{F′X(a0), . . . ,F′X(an−1)}
F′X(ϕ(tn)) , max{F′X(t0), . . . ,F′X(tn−1)}
F′X(S(an)) , max{F′X(a0), . . . ,F′X(an−1)}

F′X([x;σn] t) ,


max{F′X(σ0), . . . ,F′X(σn−1),F′X(t)}

if max{F′X(σ0), . . . ,F′X(σn−1),F′X(t)} = 0 or > x

x+ 1 else

F′X([x;σn] τ) ,


max{F′X(σ0), . . . ,F′X(σn−1),F′X(τ)}

if max{F′X(σ0), . . . ,F′X(σn−1),F′X(τ)} = 0 or > x

x+ 1 else

F∅(E) , 0

FΓ,X:σ(E) , max{FΓ(σ),F′dom(Γ),X(E)}
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Lemma 7.9 For all symbolic expressions E and lists of global variables X, F′X(E) =

0 if and only if X #E.

Sketch of Proof: Follows trivially by structural induction on E. 2

To prove the excellence property for F, it is convenient to state similar properties

for the auxiliary function F′ ; the proof that F is excellent will then be subsumed as

an easy corollary. Thus, we define the following auxiliary properties:

(DHE’) for all symbolic expressions E, lists of global variables X and finite per-

mutations π, F′X(E) = F′π·X(π · E);

(DHF’) for all symbolic expressions E, lists of global variables X, local variables

x, if x ≥ F′X(E), then x /∈ E′X(E);

(DHP’) for all lists of global variables X and Y , lists of terms t and symbolic

expressions E, if Y and t have the same length, and if X #Y , t, then F′X(E) =

F′X(E{t/Y }).

Theorem 7.10 The three properties (DHE’), (DHF’) and (DHP’) hold.

Proof: We prove the three properties separately.

(DHE’) By structural induction on E:

• case E = Y : Y is either in X or not; if it is, then π·Y ∈ π·X too, which implies

F′X(Y ) = F′π·X(π · Y ) = 1; if on the contrary Y /∈ X, then π · Y /∈ π ·X (π is

a permutation, therefore it is injective), implying F′X(Y ) = F′π·X(π · Y ) = 0;

• case E = 〈x, i〉: F′X(〈x, i〉) = F′π·X(π · 〈x, i〉) = F′π·X(〈x, i〉) = 0 holds trivially;

• case E = [x;σ1, . . . , σn] t: define

y , max{F′X(σ1), . . . ,F′X(σn),F′X(t)}
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by induction hypothesis, we know that F′X(t) = F′π·X(π · t) and that, for all

σ ∈ σ1, . . . , σn, F′X(σ) = F′π·X(π · σ); this also implies that

y = max{F′π·X(π · σ1), . . . ,F′π·X(π · σn),F′π·X(π · t)}

there are two cases: if 0 < y ≤ x, then F′X([x;σ1, . . . , σn] t) = F′π·X(π ·
([x;σ1, . . . , σn] t)) = x + 1; if y = 0 or y > x, then F′X([x;σ1, . . . , σn] t) =

F′π·X(π · ([x;σ1, . . . , σn] t)) = y;

• case E = [x;σ] τ is proved similarly to the previous case;

• case E = f(a1, . . . , an): we must prove that

max{F′X(a1), . . . ,F′X(an)} = max{F′π·X(π · a1), . . . ,F′π·X(π · an)}

the equation is satisfied, since the arguments of the two max functions are

pairwise equal by induction hypothesis;

• cases E = ϕ(t) and E = S(a) are proved similarly to the previous case.

(DHF’) By structural induction on E:

• cases E = Y or E = y: in both cases, E′X(E) = ∅, thus the thesis follows

trivially;

• case E = [y;σ1, . . . , σn] t: define

z , max{F′X(σ1), . . . ,F′X(σn),F′X(t)}
z′ , F′X([y;σ1, . . . , σn] t)

by induction hypothesis, we know that

∀x′ ≥ F′X(t) : x′ /∈ E′X(t)

∀σ ∈ σ1, . . . , σn;∀x′ ≥ F′X(σ) : x′ /∈ E′X(σ)

notice in particular that both properties hold for x′ = z or greater, since z

satisfies the required inequation; then consider two subcases:
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– if X # [y;σ1, . . . , σn] t, then E′X([y;σ1, . . . , σn] t) = ∅, thus the thesis

follows trivially;

– if X ∩GV ([y;σ1, . . . , σn] t) 6= ∅, we must prove that

z′ /∈ y,E′X(σ1) ∪ . . . ∪ E′X(σn) ∪ E′X(t)

we know by lemma 7.9 that z 6= 0, therefore either 0 < z ≤ y, implying

z′ = y + 1 (thus also z′ > z), or z > y (implying z′ = z): in both cases,

the property follows by induction hypotheses.

• case E = [x;σ] τ is proved similarly to the previous case;

• case E = f(a1, . . . , an): we must prove that

∀x ≥ max{F′X(a1), . . . ,F′X(an)} : x /∈ E′X(a1) ∪ . . . ∪ E′X(an)

the property is satisfied, since we can prove by induction hypothesis that x is

not in any of the subsets E′X(a1), . . . ,E′X(an);

• cases E = ϕ(t) and E = S(a) are proved similarly to the previous case.

(DHP’) By structural induction on E:

• case E = Z: Y is either in Y or not; if it is, then Z /∈ X and Z{t/Y } = ti for

some ti ∈ t: this implies F′X(Z) = 0 = F′X(ti) by lemma 7.9, since X # t by

hypothesis; if Z /∈ Y , then Z{t/Y } = Z and the thesis follows trivially;

• case E = x: x{t/Y } = x, thus the thesis follows trivially;

• case E = [x;σ1, . . . , σn]u: define

y , max{F′X(σ1), . . . ,F′X(σn),F′X(u)}

by induction hypothesis, we know that F′X(u) = F′X(u{t/Y }) and that, for all

σ ∈ σ1, . . . , σn, F′X(σ) = F′X(σ{t/Y }); this also implies that

y = max{F′π·X(π · σ1), . . . ,F′π·X(π · σn),F′π·X(π · t)}



Chapter 7. A formalization of an algebraic logical framework 175

there are two cases: if 0 < y ≤ x, then F′X([x;σ1, . . . , σn] t) = F′X(([x;σ1, . . . , σn] t){t/Y }) =

x+1; if y = 0 or y > x, then F′X([x;σ1, . . . , σn] t) = F′X(([x;σ1, . . . , σn] t){t/Y }) =

y;

• case E = [x;σ1] τ is proved similarly to the previous case;

• case E = f(a1, . . . , an): we must prove that

max{F′X(a1), . . . ,F′X(an)} = max{F′X(a1{t/Y }), . . . ,F′X(an{t/Y })}

the equation is satisfied, since the arguments of the two max functions are

pairwise equal by induction hypothesis;

• cases E = ϕ(t) and E = S(a) are proved similarly to the previous case.

2

Corollary 7.11 The function F of definition 7.12 is excellent

Proof: Let Γ = X1 : σ1, . . . , Xn : σn. Then

y = FΓ(E) = max{F′X1(σ2), . . . ,F′X1,...,Xn−1(σn),F′X1,...,Xn(E)}

We prove separately the three properties:

(DHE) by (DHE’) we prove

y = max{F′π·X1(π · σ2), . . . ,F′π·X1,...,π·Xn−1(π · σn),F′π·X1,...,π·Xn(π · E)}

thus, by the definition of F, we get

FΓ(E) = y = Fπ·Γ(π · E)

as expected;
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(DHF) we easily prove that

y ≥ F′X1(σ2)
...

y ≥ F′X1,...,Xn−1(σn)

y ≥ F′X1,...,Xn(E)

therefore, by (DHF’), we get:

y /∈ E′X1(σ2)
...

y /∈ E′X1,...,Xn−1(σn)

y /∈ E′X1,...,Xn(E)

since by definition we have

EΓ(E) = E′X1(σ2) ∪ . . . ∪ E′X1,...,Xn−1(σn) ∪ E′X1,...,Xn(E)

we get

y /∈ EΓ(E)

as expected;

(DHP) By hypothesis, the domain of Γ (i.e. X1, . . . , Xn) is apart from Y , t. This

also means that every subset of X1, . . . , Xn also enjoys the same property: we can

therefore use property (DHP’) and prove that

y = max{F′X1(σ2{t/Y }), . . . ,F′X1,...,Xn−1(σn{t/Y }),F′X1,...,Xn(E{t/Y })}

that by the definition of F is equivalent to

y = FΓ{t/Y }(E{t/Y })

as we wished to prove. 2

Knowing that F is excellent, we can prove all the expected adequacy properties

for our encoding of DMBEL. We state the most important ones.
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Lemma 7.12 build atm is equivariant, i.e. for all finite permutations π the fol-

lowing equations hold:

π · ((Γ) t) = (π · Γ) π · t
π · ((Γ) τ) = (π · Γ) π · τ

Sketch of Proof: After unfolding the definitions of build atm and build atp, use

property (DHE) and Corollary 7.4. 2

Lemma 7.13 If Γ is a regular context, then:

1. for all finite permutations π, π · Γ is regular;

2. if X is a list of global variables and u is a list of terms such that |X| = |u|
and dom(Γ) #u, Γ{u/X} is a regular context.

Sketch of Proof: Both properties are easy by induction on Γ, only needing basic

properties of permutations and substitutions. 2

Lemma 7.14 For all finite permutations π and symbolic expressions E, if E : L,

then π · E : L.

Sketch of Proof: Easy induction on the derivation of E : L. In the case of

abstractions, use Lemma 7.12 and part 1 of Lemma 7.13. 2

Lemma 7.15 If (Γ) t : L, for all lists of global variables Y such that Y # (Γ) t,

where the length of Y and the length of Γ are equal, we have

(Γ) t = ((dom(Γ) Y ) · Γ) ((dom(Γ) Y ) · t)

Similarly, if (Γ) τ : L, then for all lists of global variables Y such that Y # (Γ) τ ,

where the length of Y and the length of Γ are equal, then

(Γ) τ = ((dom(Γ) Y ) · Γ) ((dom(Γ) Y ) · τ)
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Proof: By Lemma 7.12, choosing π = (dom(Γ) Y ), we know that:

((dom(Γ) Y ) · Γ) ((dom(Γ) Y ) · t) = (dom(Γ) Y ) · (Γ) t

but since (Γ) t : L, we also know that Γ is regular, therefore dom(Γ) # (Γ) t; further-

more, Y # (Γ) t by hypothesis. Since permutations of fresh names are ineffective,

we also have

(dom(Γ) Y ) · (Γ) t = (Γ) t

If we assume that Y is a distinct list disjoint from the domain of Γ, we easily prove

that the domain of the permuted term is equal to Y .

The proof in the case of abstraction types follows the same technique. 2

The above property is useful to get the equivalent of the informal notion of α-

conversion, since it allows us to replace the global names used to build an abstraction

with arbitrary sufficiently fresh names.

Lemma 7.16 If dom(Γ) #X,GV(u) then

((Γ) t){u/X} = (Γ{u/X}) (t{u/X})

Proof: After unfolding the definition of build atm, we must prove

([x; [Γ 7→ x]] (t[dom(Γ) 7→ x])){u/X} = [y; [Γ{u/X} 7→ y]] (t[dom(Γ{u/X}) 7→ y])

where x = FΓ(t) and y = FΓ{u/X}(t{u/X}). Clearly (DHP) implies x = y; fur-

thermore, dom(Γ) = dom(Γ{u/X}) (easily provable by induction on Γ). Rewriting

accordingly, after a computation step, we must prove

1. [Γ 7→ x]{u/X} = [Γ{u/X} 7→ x]

2. t[dom(Γ) 7→ x]{u/X} = (t{u/X})[dom(Γ) 7→ x]

The second point is proved using Lemma 7.2. The first point is proved by induction

on Γ, also employing Lemma 7.2 when needed. 2



Chapter 7. A formalization of an algebraic logical framework 179

Lemma 7.17 For all symbolic expressions E, for all lists of parameters X and lists

of terms u having the same length, if E : L and for all t ∈ u, t : L, then

E{t/X} : L

Proof: The proof is by induction on the derivation of E : L. The interesting case

is E = (Γ)u, where we know that Γ is regular, σ : L for all σ ∈ cod(Γ) and t : L.

By lemma 7.15, we rewrite the goal as

((dom(Γ) Y ) · Γ) ((dom(Γ) Y ) · u){t/X} = ((∆) v){t/X}

where Y # dom(Γ), X, (Γ)u, t has length equal to that of Γ. We prove easily that

dom(∆) = Y . Under these assumptions, Lemma 7.16 implies

((∆) v){t/X} = (∆{t/X}) (v{t/X})

Then we must prove

(∆{t/X}) (v{t/X}) : L

Lemma 7.13 (both parts) implies that ∆{t/X} is a regular context. Furthermore,

we can show that v{t/X} : L and that for all σ ∈ cod(∆{t/X}), σ : L (this is

obtained recalling the definition of ∆ and v, combining the induction hypotheses

and exploiting the equivariance of the L judgment (Lemma 7.14)). Thus we can

prove the thesis using rule Latm-Mk-Atm. 2

Lemma 7.18 1. If [x;σ] t : L, for all u′ ∈ u u′ : L, and |σ| = |u|, then

[x;σ] tHu : L

2. If [x;σ] τ : L, for all u′ ∈ u u′ : L, and |σ| = |u|, then

[x;σ] τ Hu : L

Proof: We prove part 1: by inversion on [x;σ] t : L, there exist Γ, t′ such that

[x;σ] t = (Γ) t′

Γ is regular

∀τ ∈ cod(Γ) : τ : L

t′ : L
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By Lemma 7.15 we can find π,∆,t′′ such that

∆ = π · Γ
t′′ = π · t′

dom(∆) # t, σ, dom(Γ)

[x;σ] t = (∆) t′′

Using Lemmata 7.13 and 7.14 we prove that

∆ is regular

∀τ ∈ cod(∆) : τ : L

t′′ : L

Since [x;σ] t = (∆) t′′, unfolding the definition of build atm we can prove

x = F∆(t′′)

σ = [∆ 7→ x]

t = t′′[dom(∆) 7→ x]

After substitution and a computation step, the thesis becomes

t′′[dom(∆) 7→ F∆(t′′)]{u/F∆(t′′)} : L

Since LV(t′′) = ∅ (Lemma 7.6) and F∆(t′′) /∈ E∆(t′′) by (DHF), by Lemma 7.8 the

thesis becomes

t′′{u/dom(∆)} : L

that follows from Lemma 7.17.

Proof of part 2 is similar. 2

7.4 Hereditary substitution

It is worth noting that the definition of excellent height does not mention heredi-

tary substitution. Since the (DHP) property of F proved essential in showing that

regular substitution preserves the L predicate (Lemma 7.17), we ask ourselves if an
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excellent height is sufficient for the same property to hold also in the case of hered-

itary substitution or we should assume something more. The answer is negative.

Worse than that, we can show that all excellent DMBEL heights are not invariant

under hereditary substitution. This issue is better described using a small example.

Let H be an excellent DMBEL height, and define x , HX:σ(X), for some type

σ. Then, construct the term

t , ϕ(X, f([x;σ]X))

where f is a functional constant and ϕ an abstraction variable (clearly we can assume

f : (X : σ)σ and ϕ : (X1 : σ,X2 : σ)σ. Now, let fst be the DMBEL abstraction

term encoding the first projection of a pair on σ:

fst , (X1 : σ,X2 : σ)X1

clearly, we must define hereditary substitution so that the equation t{fst/ϕ} = X

holds, therefore

HX:σ(t{fst/ϕ}) = x

If property (DHP) could be extended to hereditary substitution, we should also

have

HX:σ(t) = x

however, we have constructed t so that

EX:σ(t) = {x}

implying x = HX:σ(t) ∈ EX:σ(t). This is impossible, since we have supposed H is

excellent.

Since the above counterexample uses ill formed terms, we could wonder whether

restricting us to good heights (heights that are well behaved only with respect to

well formed terms) can solve the problem. Again, the answer is negative: this time

we will also use the second projection of a pair:

snd , (X1 : σ,X2 : σ)X2
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Let t, u be arbitrary well formed terms, and ϕ an abstraction variable: if good

heights were stable by hereditary substitution, for all X we would have

HX(ϕ(t, u)) = HX((ϕ(t, u)){fst/ϕ} = HX(t)

HX(ϕ(t, u)) = HX((ϕ(t, u)){snd/ϕ} = HX(u)

Notice that we have not made any assumption about t or u except for their well-

formedness, meaning that heights of all global variables in all well formed terms

must be equal to a fixed local variable x. Clearly we cannot express binding using

a single local variable. In fact this is contradictory with the (HF) property: to

show this, just choose two parameters Y 6= Z; then absY :σ(Z) = [x;σ]Z for all well

formed types σ; HZ([x;σ]Z must also be equal to the same x, but unfortunately

x ∈ EZ([x;σ]), yielding the contradiction.

What is happening here? Roughly speaking, (DHP) means that excellent

heights have a very nice property allowing us to define first order substitution di-

rectly on symbolic expressions, in the most obvious way, preserving well-formedness

of expressions with no added effort. Hereditary substitution, however, puts in much

more freedom in the shape a substituted term can assume. In short, there is no

hope of finding a height with similar properties lifted to hereditary substitution.

Luckily, property (DHP) has a somewhat different (less critical) status com-

pared to (DHE) and (DHF): the latter two are necessary for avoiding variable

capture and ensuring that the representation is canonical; the former one is suffi-

cient to prove that well-formedness is stable with respect to substitution, but we can

still hope it is not necessary, if substitution is defined in a clever way. In fact, if we

recompute the correct height any time hereditary substitution crosses an abstraction,

then well-formedness of terms will be preserved, essentially, by definition.

The idea is to define substitution only in terms of well-behaved operations. Re-

calling the informal definition of hereditary substitution, the difficult step is to make

it commute with the informal notion of abstraction, as in

((Γ) t){a/ϕ} = (Γ{a/ϕ}) (t{a/ϕ}) if dom(Γ) # a
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In our case, (Γ) t represents a defined operation, not a concrete constructor: as such,

pattern matching is not allowed on it, but only against concrete abstractions in the

form [x;σ]u. What we can do in this case is to open σ and u with respect to an

arbitrary vector of distinct, sufficiently fresh global variables X:

∆ , σ[x 7→ X]

u′ , u[x 7→ X]

It is then possible to prove that ∆ is regular and its codomain is well formed, and

that u′ is well-formed. Furthermore, [x;σ]u = (∆)u′. Assuming that X is also

fresh with respect to GV(a), we can then define

([x;σ]u){a/ϕ} = (∆{a/ϕ}) (u′{a/ϕ})

Albeit somewhat unnatural, this strategy is fit to give an algoritmic definition of

hereditary substitution in the Sato representation. An annoying problem with this

definition, though, is that we want to perform recursion on arguments (∆ and u′)

that are not structurally smaller than [x;σ]u. Being unable to automatically prove

that the algorithm is total, Matita will not accept this definition. A common way

to solve this kind of problem is to add to the substitution function a parameter (in

the form of a natural number), encoding an upper bound on the number of recursive

calls needed by the substitution operation to complete.

If we used this upper bound idiom, Matita would accept the algorithmic defini-

tion of hereditary substitution. Both the upper bound and the use of variable open-

ing, however, make the complexity of reasoning on hereditary substitution somewhat

worse.

A different approach is to define hereditary substitution as an inductive predi-

cate: we lose the possibility of computing the result of a substitution directly, but we

do not have to deal with the restrictions imposed on recursive functions. Since the

definition of hereditary substitution as an inductive predicate can be much closer

to its informal counterpart than an algorithmic definition, reasoning is consider-

ably simplified, and so are adequacy concerns. Should an algorithmic definition
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be needed, we could still give it later and prove its equivalence with the inductive

predicate.

Figure 7.1 shows the definition of hereditary substitution we give in the for-

malization. The two rules S2X-Red and S2X-Tm-Appvar concern abstraction

variable applications, depending on whether the applied variable ψ is in the domain

of the substitution or not: in the former case, an auxiliary definition lookup is used

to express which abstraction term a belonging to the list b must be substituted;

an arity check is also needed to ensure that the substitution only takes place for

suitable arguments. There are also judgments for substituting in every item of a list

(including the case of the codomain of a context): S2X-Nil is used as the base case

for all such judgments.

The key rule of this definition, however, is S2X-Mk-Atm, stated in a form that

closely reminds of its informal definition (including the side condition requiring a

sufficiently fresh domain for the abstracted context). The use of a build operation on

properly substituted contexts and expressions is what actually prompts the definition

to recompute the height of the abstraction under consideration.

We can prove that hereditary substitution preserves the regularity of contexts:

however the proof is mutual with other properties about the global variables of the

expressions involved in the substitution.

Lemma 7.19 For all lists of abstraction terms b and lists of abstraction variables

ϕ, the following properties hold:

1. if t{b/ϕ} ↓ t′ then GV(t′) ⊆ GV(t) ∪ GV(b);

2. if σ{b/ϕ} ↓ σ′ then GV(σ′) ⊆ GV(σ) ∪ GV(b);

3. if a{b/ϕ} ↓ a′ then GV(a′) ⊆ GV(a) ∪ GV(b);

4. if t{b/ϕ} ↓ t′ then GV(t′) ⊆ GV(t) ∪ GV(b);

5. if a{b/ϕ} ↓ a′ then GV(a′) ⊆ GV(a) ∪ GV(b);
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lookup(ϕ, b, ψ, a) ⇐⇒


∃ϕ′, ϕ′′, b′, b′′.
ϕ = ϕ′, ψ, ϕ′′ ∧ b = b′, a, b′′∧
|ϕ′| = |b′| ∧ |ϕ′′| = |b′′|∧
ψ /∈ ϕ′′


(S2X-Tm-Var)

X{b/ϕ} ↓ X
a{b/ϕ} ↓ a′

(S2X-Tm-Appcon)
f(a){b/ϕ} ↓ f(a′)

t{b/ϕ} ↓ t′ ψ /∈ ϕ
(S2X-Tm-Appvar)

ψ(t){b/ϕ} ↓ ψ(t′)

lookup(ϕ, b, ψ, a)

arity(a) = |t|
t{b/ϕ} ↓ t′

(S2X-Red)
ψ(t){b/ϕ} ↓ aH t′

a{b/ϕ} ↓ a′
(S2X-Mk-Tp)

S(a){b/ϕ} ↓ S(a′)

Γ{b/ϕ} ↓ Γ′

dom(Γ) # b

t{b/ϕ} ↓ t′

Γ is regular
(S2X-Mk-Atm)

((Γ) t){b/ϕ} ↓ (Γ′) t′

(S2X-Nil)
[]{b/ϕ} ↓ []

t{b/ϕ} ↓ t′ t1{b/ϕ} ↓ t′1 (S2X-Tm-Cons)
t, t1{b/ϕ} ↓ t′, t′1

a{b/ϕ} ↓ a′ a1{b/ϕ} ↓ a′1 (S2X-Atm-Cons)
a, a1{b/ϕ} ↓ a′, a′1

Γ{b/ϕ} ↓ Γ′ σ{b/ϕ} ↓ σ′
(S2X-Ctx-Cons)

Γ, X : σ{b/ϕ} ↓ Γ′, X : σ′

Figure 7.1: DMBEL hereditary substitution (as formalized)
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6. if Γ{b/ϕ} ↓ Γ′ then GV(cod(Γ′)) ⊆ GV(cod(Γ))∪GV(b) and (dom(Γ) # GV(b)∧
Γ is regular =⇒ Γ′ is regular).

Proof: The proof is by mutual induction on the six different forms of substitution

judgment. It is not surprising that preservation of the regularity of contexts depends

on other properties of global variables; however the opposite is also true.

We only consider the cases for abstraction terms and for contexts, since the other

ones are easy by induction hypothesis.

In the case of abstraction terms, we must prove, under the hypotheses of judg-

ment S2X-Mk-Atm

H1 Γ{b/ϕ} ↓ Γ′

H2 t{b/ϕ} ↓ t′

H3 Γ is regular

H4 dom(Γ) # GV(b)

that the following inclusion holds:

GV((Γ′) t) ⊆ GV((Γ) t) ∪ GV(b)

We know by induction hypothesis that

IH 1 GV(t′) ⊆ GV(t) ∪ GV(b)

IH 2 GV(cod(Γ′)) ⊆ GV(cod(Γ)) ∪ GV(b)

IH 3 dom(Γ) # b ∧ Γ is regular =⇒ Γ′ is regular

To prove the inclusion, consider any X ∈ GV((Γ′) t′): then either X ∈ GV([Γ′ 7→ x])

or X ∈ GV(t′[dom(Γ′) 7→ x]), where x is a proper local variable.

• in the first case, we can show that X ∈ GV(cod(Γ′)) and X # dom(Γ′) (this

only holds since Γ′ is regular, therefore we are using the extended induction

hypothesis IH 3); we can also prove that dom(Γ) = dom(Γ′); these properties,

together with IH 2, are sufficient to show that X ∈ GV((Γ) t) ∪ GV(b)

• in the second case, we prove X ∈ GV(t) and X # dom(Γ′); since, again,

dom(Γ) = dom(Γ′), the thesis follows quite easily from IH 1.
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For the case of contexts, only consider rule S2X-Ctx-Cons (S2X-Nil is trivial).

Under the hypotheses

H1 Γ{b/ϕ} ↓ Γ′

H2 σ{b/ϕ} ↓ σ′

and induction hypotheses

IH 1 GV(σ′) ⊆ GV(σ) ∪ GV(b)

IH 2 GV(cod(Γ′)) ⊆ GV(cod(Γ)) ∪ GV(b)

IH 3 dom(Γ) # b ∧ Γ is regular =⇒ Γ′ is regular

we must prove the following two propositions:

GV(cod(Γ′, Y : σ′) ⊆ GV(cod(Γ, Y : σ)) ∪ GV(b)

Γ, Y : σ is regular ∧ dom(Γ, Y : σ) # b =⇒ Γ′, Y : σ′ is regular

• In the first case, just consider any X such that X ∈ GV(cod(Γ′, Y : σ′)): then

either X ∈ GV(cod(Γ′)) or X ∈ GV(σ′); the thesis follows using IH 1 and IH 2.

• In the second case, we can assume

H3 : Γ, Y : σ is regular

H4 : dom(Γ, Y : σ) # GVb

then Γ is also regular (since it is a subcontext of a regular context) and, by

IH 3, we can prove that Γ′ is also regular. To prove thesis, we still need to

show that

Γ′, Y : σ′ is regular

this holds if and only if Y /∈ GV(σ′) ∪ GV(cod(Γ′)). If this were not true, we

could use hypotheses H4,IH 1 and IH 2 to show that Γ, Y : σ is not regular,

reaching a contradiction.

2

The last lemma we prove about hereditary substitution states that it preserves

well-formedness. Actually, since the input of hereditary substitution is always re-

quired to be well formed (because of the way we defined the judgment), to prove

this property we only need to require that the codomain of the substitution is well-

formed.
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Lemma 7.20 For all lists of well formed abstraction terms b and lists of abstraction

variables ϕ, the following properties hold:

1. t{b/ϕ} ↓ t′ =⇒ t′ : L

2. σ{b/ϕ} ↓ σ′ =⇒ σ′ : L

3. a{b/ϕ} ↓ a′ =⇒ a′ : L

4. t{b/ϕ} ↓ t′ =⇒ ∀t′ ∈ t′ : t′ : L

5. a{b/ϕ} ↓ a′ =⇒ ∀a′ ∈ a′ : a′ : L

6. Γ{b/ϕ} ↓ Γ′ =⇒ ∀σ ∈ cod(Γ′) : σ : L

Sketch of Proof: The proof is by mutual induction on the six judgment forms of

hereditary substitution. All cases are straightforward: notice that in case S2X-Red

we must use Lemma 7.18; in case S2X-Mk-Atm, instead, we use Lemma 7.19. 2

7.5 Formalization of the type system

Table 7.5 presents the type system of DMBEL as we formalized it. We now discuss

the most important differences with respect to the informal presentation we gave

earlier.

As expected, the context well-formedness rules enforce the global variables they

declare to be distinct: in fact we will see that a well-formed context, in the for-

malization, is always regular. The other major change, compared to the informal

rules, concerns hereditary substitution. Having defined hereditary substitution as a

predicate rather than a computable function slightly modifies rules TI-Appcon and

ATC-Cons: for example, in TI-Appcon, instead of saying that the type of f(a)

is σ{a/dom(Ψ)}, we state that its type must be some type σ′ for which we can prove

σ{a/dom(Ψ)} ↓ σ′. The meaning of the rule is still very close to the usual intuition

and indeed, in our opinion, its adequacy is much clearer than what it would be if

we chose to define hereditary substitution as a computable function, using a mix
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Signatures:

(SO-Empty)
` ∅

`Σ Φ

S /∈ dom(Σ)
(SO-Tp)

` Σ, S(Φ)

Φ; ∅ `Σ σ

f /∈ dom(Σ)
(SO-Tm)

` Σ, f(Φ) : σ

Abstraction contexts:

` Σ (ACO-Empty)
`Σ ∅

Φ; ∅ `Σ α ϕ /∈ dom(Φ)
(ACO-Cons)`Σ Φ, ϕ : α

Contexts:

`Σ Φ
(CO-Empty)

Φ `Σ ∅
Φ; Γ `Σ σ x /∈ dom(Γ)

(CO-Cons)
Φ `Σ Γ, x : σ

Type and abstraction type formation:

S(Ψ) ∈ Σ

Φ; Γ `Σ (a)rev ⇐= Ψ
(TO-Intro)

Φ; Γ `Σ S(a)

Φ; Γ,∆ `Σ σ (ATO-Intro)
Φ; Γ `Σ (∆)σ

Term and abstraction term typing:

X : σ ∈ Γ
Φ `Σ Γ

(TI-Var)
Φ; Γ `Σ X =⇒ σ

f(Ψ) : σ ∈ Σ

Φ; Γ `Σ (a)rev ⇐= Ψ

σ{a/dom(Ψ)} ↓ σ′
(TI-Appcon)

Φ; Γ `Σ f(a) =⇒ σ′

ϕ : [x;σ] τ ∈ Φ

X # dom(Γ) |X| = |σ|
Φ; Γ `Σ (t)rev ⇐= σ[x 7→ X]

(TI-Appvar)
Φ; Γ `Σ ϕ(t) =⇒ [x;σ] τ H t

Φ; Γ,∆ `Σ t =⇒ σ
(ATI-Intro)

Φ; Γ `Σ (∆) t =⇒ (∆)σ

Record typing:

Φ `Σ Γ
(TC-Empty)

Φ; Γ `Σ ∅ ⇐= ∅
Φ; Γ `Σ t =⇒ σ Φ; Γ `Σ u⇐= ∆{t/X}

(TC-Cons)
Φ; Γ `Σ u, t⇐= ∆, X : σ

Abstraction record typing:

Φ `Σ Γ
(ATC-Empty)

Φ; Γ `Σ ∅ ⇐= ∅

Ψ{a/ϕ} ↓ Ψ′

Φ; Γ `Σ a =⇒ α

Φ; Γ `Σ b⇐= Ψ′
(ATC-Cons)

Φ; Γ `Σ b, a⇐= Ψ, ϕ : α

Table 7.5: Typing rules of DMBEL (as formalized)
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of variable opening and build operations to update the heights in the result of the

substitution: our definition of hereditary substitution is close to the informal syntax

and only depends on the adequacy of the build operations, as does the rest of the

formalization.

Our goal is to prove that the formalized type system only involves well formed

expressions in its judgments. Before that, however, we need to prove another im-

portant property of this system: well-typed expressions are closed in their typing

context.

First we introduce an auxiliary definition:

Definition 7.13 A context Γ is strongly regular if and only if it is regular and

∀Γ′,Γ′′, X, σ : Γ = Γ′, X : σ,Γ′′,GV(σ) ⊆ dom(Γ′)

The actual theorem is obtained by mutual induction. Since the statement is

quite verbose, we introduce the following abbreviations:

• Psig(Σ) ,

 (∀S(Φ) ∈ Σ.GV(cod(Φ)) = ∅)∧
(∀(f(Φ) : σ) ∈ Σ.GV(cod(Φ)) ∪ GV(σ) = ∅


• Pactx(Φ) , GV(cod(Φ)) = ∅

• Pctx(Γ) , Γ is strongly regular

• Ptp(Γ, σ) , GV(σ) ⊆ dom(Γ)

• Patp(Γ, α) , GV(α) ⊆ dom(Γ)

• Ptm(Γ, t) , GV(t) ⊆ dom(Γ)

• Patm(Γ, a) , GV(a) ⊆ dom(Γ)

• Ptml(Γ, t) , GV(t) ⊆ dom(Γ)

• Patml(Γ, a) , GV(a) ⊆ dom(Γ)

Theorem 7.21 The following properties hold:
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1. ` Σ implies Psig(Σ)

2. `Σ Φ implies Psig(Σ) ∧ Pactx(Φ)

3. Φ `Σ Γ implies Psig(Σ) ∧ Pactx(Φ) ∧ Pctx(Γ)

4. Φ; Γ `Σ σ implies Psig(Σ) ∧ Pactx(Φ) ∧ Pctx(Γ) ∧ Ptp(Γ, σ)

5. Φ; Γ `Σ α implies Psig(Σ) ∧ Pactx(Φ) ∧ Pctx(Γ) ∧ Patp(Γ, α)

6. Φ; Γ `Σ t =⇒ σ implies Psig(Σ) ∧ Pactx(Φ) ∧ Pctx(Γ) ∧ Ptp(Γ, σ) ∧ Ptm(Γ, t)

7. Φ; Γ `Σ a =⇒ α implies Psig(Σ) ∧ Pactx(Φ) ∧ Pctx(Γ) ∧ Patp(Γ, α) ∧ Patm(Γ, a)

8. Φ; Γ `Σ t⇐= ∆ implies Psig(Σ) ∧ Pactx(Φ) ∧ Pctx(Γ) ∧ Ptml(Γ, t)

9. Φ; Γ `Σ a⇐= Ψ implies Psig(Σ) ∧ Pactx(Φ) ∧ Pctx(Γ) ∧ Patml(Γ, a)

Sketch of Proof: The full proof, by mutual induction on 9 different judgment

forms, is long and tedious, but not particularly challenging: essentially, the proof

uses only basic properties of substitutions, including, in case TI-Tm-Appcon, part

2 of Lemma 7.19. 2

Finally, we prove that all well typed expressions are well-formed. Again for the

sake of readability, we introduce some abbreviations:

• Qsig(Σ) ,

 (∀S(Φ) ∈ Σ.∀α ∈ cod(Φ).α : L)∧
(∀(f(Φ) : σ) ∈ Σ.σ : L ∧ ∀α ∈ cod(Φ).α : L


• Qactx(Φ) , ∀α ∈ cod(Φ).α : L

• Qctx(Γ) , ∀σ ∈ cod(Γ).σ : L

• Qtp(σ) , σ : L

• Qatp(α) , α : L

• Qtm(t) , t : L

• Qatm(a) , a : L
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• Qtml(t) , ∀u ∈ t.u : L

• Qatml(a) , ∀b ∈ a.b : L

Theorem 7.22 The following properties hold:

1. ` Σ implies Qsig(Σ);

2. `Σ Φ implies Qsig(Σ) ∧Qactx(Φ)

3. Φ `Σ Γ implies Qsig(Σ) ∧Qactx(Φ) ∧Qctx(Γ)

4. Φ; Γ `Σ σ implies Qsig(Σ) ∧Qactx(Φ) ∧Qctx(Γ) ∧Qtp(σ)

5. Φ; Γ `Σ α implies Qsig(Σ) ∧Qactx(Φ) ∧Qctx(Γ) ∧Qatp(α)

6. Φ; Γ `Σ t =⇒ σ implies Qsig(Σ) ∧Qactx(Φ) ∧Qctx(Γ) ∧Qtp(σ) ∧Qtm(t)

7. Φ; Γ `Σ a =⇒ α implies Qsig(Σ) ∧Qactx(Φ) ∧Qctx(Γ) ∧Qatp(α) ∧Qatm(a)

8. Φ; Γ `Σ t⇐= ∆ implies Qsig(Σ) ∧Qactx(Φ) ∧Qctx(Γ) ∧Qtml(t)

9. Φ; Γ `Σ a⇐= Ψ implies Qsig(Σ) ∧Qactx(Φ) ∧Qctx(Γ) ∧Qatml(a)

Proof: By mutual induction on the nine judgment forms. Most cases of the proof are

straightforward: we will here discuss three cases needing a more careful treatment,

exploiting previous results.

In the case of rule TI-Appcon

f(Ψ) : σ ∈ Σ

Φ; Γ `Σ a⇐= Ψ

σ{a/dom(Ψ)} ↓ σ′
(TI-Appcon)

Φ; Γ `Σ f(a) =⇒ σ′

we must prove, among other things, that σ′ : L holds. We know by induction

hypothesis that

σ : L and ∀b ∈ a.b : L

Then the thesis holds by part 2 of Lemma 7.20.

In the case of rule TI-Appvar
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ϕ : [x;σ] τ ∈ Φ

X # dom(Γ) |X| = |σ|
Φ; Γ `Σ t⇐= σ[x 7→ X]

(TI-Appvar)
Φ; Γ `Σ ϕ(t) =⇒ [x;σ] τ H t

to prove that [x;σ] τ H t : L, we consider the induction hypotheses

[x;σ] τ : L and ∀u ∈ t.u : L

Then the thesis holds by Lemma 7.18.

In the case of rule ATI-Intro

Φ; Γ,∆ `Σ t =⇒ σ
(ATI-Intro)

Φ; Γ `Σ (∆) t =⇒ (∆)σ

to prove that (∆) t : L and (∆)σ : L we can use the induction hypotheses

t : L σ : L ∀τ ∈ cod(Γ,∆).τ : L

For the thesis to hold, we must still show that ∆ is a regular context: by part 6 of

Theorem 7.21, applied to the hypothesis Φ; Γ,∆ `Σ t =⇒ σ we know Pctx(Γ,∆), or

equivalently, that (Γ,∆) is a strongly regular context. Therefore ∆ is regular, since

it is a subcontext of a (strongly) regular context. 2

7.6 Strengthened induction

Even though we did not feel the need to use a strengthened induction principle in

this formalization3, we think we should spend a couple of words on this topic. To get

a strengthened induction principle for well-formed expressions, we can redefine the

well-formedness judgment replacing the rule for abstraction terms with the following

one

for all π.


π · Γ is regular

π · t : L

for all σ ∈ cod(π · Γ), σ : L


(Γ) t : L

3The proof of Lemma 7.17 might use a strengthened induction principle, but the ad hoc per-

mutation argument we used is still reasonably simple.



194 Chapter 7. A formalization of an algebraic logical framework

Clearly the rule concerning abstraction types can be changed in a similar way. The

induction principle associated to this formulation is strong because it provides in-

duction hypotheses for all possible permutations of the names occurring in an ab-

straction (Γ) t, and Lemma 7.15 allows us to use permutations to get an α-equivalent

representation of (Γ) t, using a context with a sufficiently fresh domain.

We can prove that both formulations of well formedness are equivalent by the

usual means, since by Lemma 7.14 and Lemma 7.13 well-formedness and regularity

are equivariant.

7.7 Conclusions

After formalizing two considerably involved languages by means of the Sato repre-

sentation, we feel obliged to spend some words on this experience.

First of all, it is worth noting that the effort necessary to formalize the basic

infrastructure concerning symbolic expressions and heights is considerable: never-

theless, the results needed to carry on the formalizations are very similar, as it is

possible to see comparing the results of this chapter to those in Chapter 6. In gen-

eral, we believe that our formalization can serve as a good reference for other people

interested in the task of formalizing a language using the Sato representation, thus

keeping the aforementioned overhead to a minimum.

In Section 7.4, we argued that some natural operations defined on well formed

expressions (like hereditary substitution) break the algebraic beauty of the Sato

approach. It is possible to deal with this problem, even though the solution is not

completely satisfying.

Finally, we note that even in large formalizations like ours, it is not necessary to

exploit the concrete definition of a specific height function to carry on the proofs:

any excellent (or possibly good) height will do the job. We believe that this abstract

approach is not only more generic, but also contributes to a clearer, “less polluted”

result.
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In this dissertation, we have presented our work on the Matita interactive theo-

rem prover, both as an implementor and as a user interested in the formalization of

the metatheory of programming languages.

The first part of the thesis discussed the part of our implementation work that

was devoted to the development of tactics for Matita, with a particular attention to

those tactics that are crucial in developments involving data structures and induc-

tively defined predicate.

Chapter 2 was mainly concerned with the presentation of Matita; in it, we dis-

cussed the new style for the implementation of tactics that we developed with the

rest of the Matita team. We believe that the new style is more flexible, and suited

to the implementation of smarter tactics. This style was implemented in the new

version of Matita, that is currently nearing its completion.

In Chapter 3, we described an implementation of first order unification for con-

structor forms (excluding the discrimination of cyclic equations). The peculiarity of

our implementation, that is otherwise similar to the one given in [39], is that it is

designed to work indifferently with equations using Leibniz equality or John Major

equality (the first case requiring deeper reasoning on dependent types). Coinciden-

tally, we gave, to our knowledge, the first formal account of telescopic rewriting for

Leibniz equality.

Chapter 4 discussed the theory and implementation of inversion principles. We

focus on the reasons that make the the intuitive combination of induction and in-

version in type theory somewhat difficult to formalize. Here our main contribution

was the identification of a generalization of inversion principles that allows, in some

cases, to mix induction and inversion more naturally.

While in our implementation of tactics we tried to incorporate some mildly novel

features, the operation was a moderate success also from a software engineering

perspective. The new implementation of the destruct tactic, albeit more complex

than the previous one (based on the simpler technique of “predecessors” and limited

to Leibniz equality), only increased the code size by 9%; in the case of inversion

principles, that were also made more flexible, the code shrinked dramatically by
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72%, also becoming much more readable.

The second part of the dissertation presented several formalizations related to the

metatheory of programming languages. In Chapter 5, we presented three different

solutions to part 1A of the Poplmark challenge. The purpose of this presentation was

twofold: on one hand, it gave us the possibilikty of showing the specificities of some

mainstream approaches to the representation of binding structures; on the other

hand, in these formalizations, we also focused on the application of the generalized

inversion principle we discussed in Chapter 4.

The last two chapters were dedicated to a novel locally named representation

of binding by Sato and Pollack, which we adapted to languages involving multiple

binding combined with dependent types.

Chapter 6 recalled the bases of the representation in the setting of pure λ-

calculus, then discussed our formalization of Pottinger’s multivariate λ-calculus.

Chapter 7 formalized, using the same representation, the DMBEL logical frame-

work. This last work highlighted an important difficulty in the use of our represen-

tation in languages employing a notion of hereditary substitution.

As for all works involving implementation, part of our future efforts will be

devoted to the continued development of Matita. Currently, we are planning a

major redesign of the user interface including a different idiom for writing scripts,

and possibly the integration of hyperlinks in proof scripts.

Another direction we are interested in is related more specifically to the formal-

ization of programming languages. Currently the only theorem prover offering a

specific infrastructure for the formalization of binding structures using a concrete

representation is Isabelle, by means of the nominal package. However, even in this

case, we feel that there is still a lot to work, especially for what concerns the au-

tomation of strengthening of induction principles.
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