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Introduction

Visual tracking is the problem of estimating some variablesrelated to a

target given a video sequence depicting the target. In its simplest form,

it consists of estimating the position of the target while itwanders in

the scene,i.e. its trajectory in the image plane. Depending on the final

application and the tracker complexity, additional targetvariables can

be estimated, such as scale, orientation, joint angles between its parts,

velocity, etc. These variables form the targetstate, i.e. the set of hidden

variables that the tracker tries to recover from noisy observations of it,

i.e. the video frames.

Visual tracking is a fundamental feature for the automationof many

tasks, such as visual surveillance, robot or vehicle autonomous naviga-

tion, automatic video indexing in multimedia databases, etc. . . It is also a

basic enabling factor for making machines able to interprethuman mo-

tion and deliver a whole new branch of services and applications, such

as natural human-computer interfaces, smart homes, offices or urban en-

vironments and computer-aided diagnosis or rehabilitation.

Visual tracking is difficult because of the classical nuisances that

computer vision faces, such as scene illumination changes,loss of infor-

mation due to perspective projection, sensor noise, etc..., and because of

peculiar difficulties, such as complex motion patterns of the target, non-

rigid or appearance-changing targets, partial and full target occlusions.

Despite many years of research, long term tracking in real world

scenarios for generic targets is still unaccomplished. Themain contribu-

tion of this thesis is the definition of effective algorithms that can bring

visual tracking closer to a solution by letting the tracker adapt to mutat-
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Introduction

ing working conditions. In particular, we propose to adapt two crucial

components of visual trackers: the transition model and theappearance

model. The adaptation is performed on-line,i.e. frame-by-frame while

the tracker runs. To better contextualize our contributions, we first in-

troduce the standard formulation of the tracking problem and the tools

typically used to solve it.

As noted in [17], two major components can be distinguished in a

typical visual tracker:Filtering and Data Associationis mostly a top-

down process dealing with the dynamics of the tracked objectand eval-

uation of different hypotheses;Target Representation and Localization

is mostly a bottom-up process which has to cope with changes in the ap-

pearance of the target and has to provide an effective description of it in

presence of similar objects (distractors). The way the two components

are combined and weighted is application dependent and plays a deci-

sive role in the robustness and efficiency of the tracker. Nevertheless, for

a general tracker both components are key to tracker success.

As far as the Filtering and Data Association component is concerned,

to deal with all the nuisances and to take into account the uncertainty

onto the final estimation they introduce, one widespread approach is to

formulate tracking as a probabilistic inference problem onthe space of

all possible states. The probabilistic formulation and therequirement for

the updating of state estimation on receipt of new measurements natu-

rally lead to the Bayesian approach. It provides a rigorous general frame-

work for dynamic state estimation.

In the Bayesian approach the output is theposteriorprobability den-

sity function (PDF) of the state, based on all available information,i.e.

the sequence of previous states and received measurements.Since the

posterior PDF encompasses all available statistical information, an opti-

mal estimation of the state with respect to any criterion maybe obtained

from it.

In this thesis we deal only with causal trackers,i.e. we do not take

into account visual trackers using future frames and statesto estimate

the state at a given time. In a causal tracker an estimate of the state

2
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Figure 1: The first order Markov chain structure assumed for the target
state.

is computed every time a measurement is received,i.e. a new frame is

available in the frame buffer, using only past states and measures. A

recursive filter is the natural solution in this case. Hence,Recursive

Bayesian Estimation (RBE) [3, 79] is the standard tool to tackle the state

estimation in causal visual trackers.

RBE is solved, at least from a theoretical point of view, under the

standard assumption that the system can be modeled as a first order

Markov model (Fig. 1),i.e.

• the state at timek, xk ∈ R
N, depends only on the previous state

xk−1 ;

• the measure at timek, zk ∈ R
M, depends only onxk.

In the case of visual tracking, the measurezk typically coincides with

the current frameIk, hence the two terms and symbols will be used in-

terchangeably.

From the first order Markovian assumption it follows that thesystem

is completely specified by:

• a law of evolution of the state,

xk = fk(xk−1, νk) (1)

3



Introduction

whereνk is an i.i.d. process noise sequence andfk is a possibly

non-linear function relating the state at timek with the previous

one;

• a measurement process,

zk = hk(xk, ηk) (2)

whereηk is an i.i.d. measurement noise sequence andhk is a pos-

sibly non-linear function relating the measurement at timek with

the current state;

• an initial statex0.

Process noise takes into account any modeling errors or unforeseen dis-

turbances in the state evolution model

In a Bayesian probabilistic approach, given the noise affecting the

low of evolution of the state and the measurement process, the entities

comprising the system are defined by PDFs,i.e.

• the transition model,

p(xk | xk−1) (3)

defined by (1) and the statistics ofνk;

• the observation likelihood,

p(zk | xk) (4)

defined by (2) and the statistics ofηk;

• the initial target PDFp(x0).

These PDFs are generally assumed to be known a priori and never

updated.

Given this characterization of the target, a general but conceptual

solution can be obtained in two steps: prediction and update. In the pre-

diction stage, the Chapman-Kolmogorov equation is used to propagate

4
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the belief on the state at timek− 1 to timek

p(xk | z1:k−1) =
∫

p(xk | xk−1)p(xk−1 | z1:k−1) dxk−1. (5)

wherez1:k−1 is the set of all measurements up to framek−1, {z1, . . . , zk−1}

This usually corresponds to a spreading of the belief on the state, due to

the increasing distance in time from the last measurement. In the update

stage, the PDF is sharpened again by using the current measure zk and

the Bayes rule

p(xk | z1:k) ∝ p(zk | xk)p(xk | z1:k−1). (6)

This conceptual solution is analytically solvable only in few cases.

A notable one is when the law of evolution of the state and the measure-

ment equations are linear and the noises are Gaussian. In this situation,

the optimal solution is provided by the Kalman filter [42]. The RBE

framework for this case becomes:

xk = fk(xk−1, νk) ⇒ xk = Fkxk−1 + νk, E
[
νkν

T
k

]
= Qk (7)

zk = hk(xk, ηk) ⇒ zk = Hkxk + ηk, E
[
ηkη

T
k

]
= Rk. (8)

and the mean and covariance matrix of the Gaussian posteriorcan be

optimally estimated using the Kalman filter equations:

• prediction,

x−k = Fkxk−1 (9)

P−k = FkPk−1FT
k +Qk (10)

wherexk−1 andPk−1 are the previous estimates of, respectively, the

mean vector and the covariance matrix andx−k andP−k are, follow-

ing the typical Kalman notation, the estimates of, respectively, the

mean vector and the covariance matrix for the current framebefore

a new measure is available;
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• update,

Sk = HkP−k ∗ HT
k + Rk (11)

K k = P−k HkS−k 1 (12)

xk = x−k − K k
(
zk − Hkz−k

)
(13)

Pk = (I − K kHk) P−k (14)

wherexk and Pk are the optimal estimates of, respectively, the

mean vector and the covariance matrix.

When the assumptions made by the Kalman filter do not hold, a sub-

optimal solution to the RBE problem can be obtained with particle filters

[79]. Particle filters performs sequential Monte Carlo estimation. Given

the posterior,p(xk | z1:k) we want to obtain an estimate of the state from

it:

x̂k =

∫

Rn

f (xk)p(xk | z1:k) dxk . (15)

The Monte Carlo solution is a numerical evaluation of the integral,

that requires to sampleL samplesxi
k from the posterior and then compute

the estimate as the sample mean

x̂k =
1
L

L∑

i=1

f (xi
k) . (16)

Unfortunately, it is impossible to sample from the posterior in the

general, non Gaussian/ non linear case, since it has a non standard form

and it is usually known only up to a proportionality constant. However,

if it is possible to generate samples from a densityq(xk) that is similar

to the posterior (i.e., it is not 0 when the posterior is not 0), then we can

still use the Monte Carlo method to approximate the integralin (15) by

drawing sample fromq(xk) and weighting them accordingly,

x̂k =
1
L

L∑

i=1

f (xi
k)w(xi

k) with w(xi
k) =

p(xi
k | z1:k)

q(xi
k)

. (17)
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Introduction

This technique is known as importance sampling and the PDFq is re-

ferred to as the importance or proposal density.

Particle filter are based onsequentialimportance sampling. The key

idea is to represent the posterior by a set of random samples with associ-

ated weights, theparticles. The posterior PDF can then be approximated

as

p(xk | z1:k) =
L∑

i=1

w(xi
k)δ(xk − xi

k) (18)

where samples are obtained at each time step from the proposal density

q(xk | xk−1, zk), weights are updated at each time step as [79]

w(xi
k) ∝

p(xk | z1:k)
q(xk | x1:k−1, z1:k)

∝ w(xi
k−1)

p(zk | xi
k)p(xi

k | x
i
k−1)

q(xi
k | x

i
k−1, zk)

(19)

and then normalized to sum to one. It can be shown that asN → ∞ the

approximation in (18) converges to the true posterior density.

The main problem with sequential importance sampling is repre-

sented by particle degeneracy. In particular, the varianceof the parti-

cles weights can only increase with sequential importance sampling. In

practice, this means that after a certain number of recursive steps, all but

one particle will have negligible weights. To counteract this effect re-

sampling algorithms are introduced, leading to so called sequential im-

portance resampling algorithms. Resampling eliminates samples with

low weights and multiplies samples with high importance weights. This

corresponds to computing a less accurate approximation of the posterior

that concentrates on salient regions of the state space and avoids to waste

computational power by propagating particles that carry onnegligible

contributions to the posterior approximation. The new set of particles is

generated by resampling with replacementL times from the cumulative

sum of normalized weights of the particles [79].

Within the RBE framework, our major contribution, described in

Chapter 1, is an algorithm to effectively and efficiently estimate the tran-

sition modelp(xk | xk−1) on-line from the tracker output in the Gaussian

and linear case. This reduces the number of parameters to be set by

7
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the user, in particular the process noise covariance which are typically

hard to estimate but play a significant role for the filter performance.

Our algorithm also allows for obtaining a time-variant estimation of the

transition model, and therefore results in a more adaptive filter.

As far as Target Representation and Localization is concerned, two

main ingredients constitute it, namely the choice of the features space

and the target appearance model.

The regions of the current frameIk analyzed by the recursive Bayesian

filter are generally projected in some feature space. For instance, in a

standard approach for tracking with particle filters [78], the samples of

the state generated by the importance density are then represented as

color histograms [17].

The feature representation usually is:

• more compact than the corresponding region ofIk;

• invariant to some (geometric or photometric) variations.

A variety of features has been used to describe the target,e.g.motion

vectors, change detection, object classification, low-level features such

as pixel colors or gradients, or mid-level features such as edges and in-

terest points (see [104] for a survey). A main discriminant characteristic

among features is their spatial extent:

• Part-wise features. Features are extracted from small patches or

even single pixels (e.g. 5 × 5 HoGs [20]). It is relatively easy to

deal with partial occlusions but these features are hard to match if

the target undergoes deformation or rigid transformationssuch as

rotations and scalings.

• Target-wise features. The feature represents the whole target

appearance (e.g.color histograms [17]). This kind of features can

typically tolerate target deformations and rigid transformations.

Correct handling of occlusions represents the most seriouslimi-

tation of these representations.

8
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The link between the Filtering and the Representation stageof a

tracker is represented by the observation likelihoodp(zk | xi
k) defined

in (4). To evaluate it, in oder to update a particle weight, the appear-

ance model of the target, that we indicate withA, is compared with the

features extracted from the state candidatexi
k. The target model lives, of

course, in the same feature space used to describe the current candidates.

The target model is usually learned once, either offline from training data

or online from the first frame(s), and then used throughout the sequence.

The use of a fixed model for locating the target makes it difficult to

cope with illumination changes and deformable targets. Hence, recently,

the idea of appearance model update has been proposed by several re-

searchers to aim at successful long-term tracking despite these difficul-

ties. By letting the model evolve across frames to include and adapt

to the potential geometric and photometric changes of the target, these

methods are inherently able to cope with target deformations and light-

ening variations. On the other hand, they expose the trackerto the risk

of drift, i.e. the inclusion of background appearance in the appearance

model that can eventually lead to loss of track.

In chapter 2, we analyze the recent advances in target model update

and present our proposal, which is based on the deployment ofthe Re-

cursive Bayesian Estimation framework to tackle target model update,

too. This allows for exploiting the robustness of this framework also

in the crucial step of target model update and introduces a probabilistic

treatment as an interesting solution for this open problem.

Chapter 3 deals with adaptive tracking with a static camera.Our

contribution in this context concerns both Target Representation and Fil-

tering. As for the former, we introduce a novel, efficient change detec-

tion algorithm, robust to sudden illumination changes, based on the joint

histogram of background and foreground intensities and on Bayesian

inference. As for the latter, we propose a sound way to obtainan adap-

tive observation likelihood from the output of the change detection and a

method to obtain a proper prior for the change detection fromthe predic-

tion step of the recursive Bayesian filter employed as tracker. The two

9
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flows of information realize a full adaptive Bayesian loop encompassing

tracking and change detection.

Finally, in Chapter 4 we present our work on the detection of cat-

egories in 3D data. In a real automatic deployment a visual tracker is

usually initialized with the output of a detector for the category of in-

terest (e.g.humans, cars, faces). While detection in images has reached

a high level of maturity [20, 50, 100], data coming from 3D sensors

have not been fully exploited yet. Moreover, we have recently seen an

increasing interest on the automatic analysis of such data due to the re-

lease of cheap modern sensors such as theKinect device by Microsoft,

that lets foresee an ubiquitous presence of 3D data for humancomputer

interaction. In our work we adapt the well-known Implicit Shape Models

[50], proposed for images, to the detection of categories in3D data. This

extension is based on our novel descriptor for 3D data, dubbed SHOT,

that obtains state of the art performance in various experiments of shape

matching, also presented in the chapter. Finally, the extension of SHOT

for the description of textured 3D data like those provided by the Kinect

sensor is described and compared with another texture-aware descriptor

[106].

All the tracking results for the first three chapters are available as

videos at the author website1.

1 www.vision.deis.unibo.it/ssalti

10
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Chapter 1

Adaptive Transition Model

Recursive Bayesian Estimation (RBE) is a widespread solution for vi-

sual tracking as well as for applications in other domains where a hid-

den state is estimated recursively from noisy measurements. Although

theoretically sound and unquestionably powerful, from a practical point

of view RBE suffers from the assumption of complete a priori knowl-

edge of the transition model, that is typically unknown. Theuse of a

wrong a priori transition model may lead to large estimationerrors or

even to divergence. We propose to prevent these problems, incase of

fully observable systems, learning the transition model on-line via Sup-

port Vector Regression [86]. An application of this generalframework

is proposed in the context of linear/Gaussian systems, where we dub it

Support Vector Kalman (SVK), and shown to be superior to a standard,

non adaptive solution.

1.1 Motivation

The difficulty of identifying a proper transition model for a specificap-

plication typically leads to empirical and suboptimal tuning of the es-

timator parameters. The most widespread solutions to specify a transi-

tion model for tracking are to empirically select it among a restricted

set of standard ones ( such as constant position,i.e. Brownian motion,

11
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Figure 1.1: The effect of the use of a wrong transition model: the Kalman
estimation diverges from the true velocity.

[1, 4, 16] or constant velocity [17, 32, 34, 38]) or learn it off-line from

representative training data [78]. Besides the availability of these train-

ing sequences, which depends on the particular application, the major

shortcoming of these solutions is that they do not allow to change the

transition model trough time, although this can be beneficial and neither

the conceptual solution nor the solving algorithms requireit to be fixed.

Approximate tuning of a recursive Bayesian filter may seriously de-

grade its performances, that could be optimal (e.g., when the assump-

tions of a Kalman filter are met) or sub-optimal (e.g., in all the other

cases where a particle filter is used) in case of correct system identifica-

tion. In Fig. 1.1 we present a simple experiment to highlightthe strong,

detrimental impact of a wrong transition model on an otherwise optimal

and correctly tuned recursive Bayesian filter. In this simulation a point is

moving along a line with constant acceleration and we try to estimate its

position and velocity by a Kalman filter from measurements corrupted

with Gaussian noise, whose constant covariance matrix is known and

12



1.2 Previous work

used as the measurement noise covariance matrix of the filter, Rk. Hence,

we are using the optimal estimator for the experimental setup. The only

parameter that is wrongly tuned is the transition model, in particular we

are using a constant velocity matrixFk instead of a constant acceleration

one. The process covariance matrix,Qk, was set very high, in order to

compensate for the wrong transition matrix. Despite this, the estimation

and the true value of the velocity diverge. In other words, the estimation

of an otherwise optimal estimator like the Kalman filter can be arbitrarily

wrong when an incorrect transition model is assumed. This isthe main

motivation behind our work.

1.2 Previous work

Closely related to our work are the efforts devoted to the derivation of

adaptive Kalman filters, that have been studied since the introduction

of this filtering technique. In fact, our proposal can be seenas a new

approach to build an adaptive Kalman filter. The main idea behind adap-

tive filtering schemes is that the basic source of uncertainty is due to

the unknown noise covariances, and the proposed solution isto estimate

them on-line from observed data. One of the most comprehensive con-

tributions is given by Mehra [58]. He reviews proposed approaches and

classify them according to four categories:

1. Bayesian Estimation (BE)

2. Maximum Likelihood Estimation (MLE)

3. Correlation Methods (CM)

4. Covariance-Matching Techniques (CMT).

Methods in the first category imply integration over a large dimensional

space and can be solved only with special assumptions on the PDF of

the noise parameters. MLE requires the solution of a non-linear equa-

tion that, in turns, is solvable only under the assumptions that the system

13



Chapter 1. Adaptive Transition Model

is time invariant and completely observable and the filter has reached a

steady state. Under these assumptions, however, only a timeinvariant

estimation of the parameters of the noise PDF can be obtained. Cor-

relation Methods, too, are applicable only to time invariant and com-

pletely observable systems. Finally, Covariance-Matching Techniques

can estimate either process or measurement noise parameters and turn

out to provide good and time-varying approximations for themeasure-

ment noise when the process noise is known.

In the work of Oussalah and De Schutter [70], an improved correla-

tion method is proposed, but the requirement on the stationarity of the

system is not dropped. In the context of visual tracking, Weng et al.

[101] present the application of an adaptive Kalman filter. The process

and measurement errors are modified in every frame taking into account

the degree of occlusion of the target: greater occlusion corresponds to

greater value of measurement noise and vice versa. The two noises al-

ways sum up to one. In the extreme case of total occlusion, measurement

noise is set to infinity and process noise to 0. Zhang et al. [109] use the

term Adaptive to refer to an adaptive forgetting factor, that is used to

trade off the contribution to the covariance estimate for the currenttime

step of the covariance estimate for the previous time step and the process

noise. This is done in order to improve the responsiveness ofthe filter in

case of abrupt state changes.

Compared to all these proposals, our method makes less assumptions

on the system, the only one being its complete observability. This allows

it to be more generally applicable and, in particular, to fit better the usual

working conditions of visual trackers. Moreover, unlike BE, MLE and

CM techniques our proposal provides a time-varying noise statistics es-

timation. This is extremely important to allow the filter to dynamically

weight the prediction on the state and the noisy measurementit has to

fuse at each frame,e.g. to cope with occlusions when the measurement

can be totally wrong and the prediction on the state is the only reliable

source of information to keep on tracking the target. Unlikethe work of

Weng et al. [101], our proposal is not specifically conceivedfor visual

14



1.3 On-line adaptation of the transition model

tracking and, hence, generally applicable. Finally, it is worth pointing

out that, unlike all reviewed approaches, our proposal is adaptive in a

broader sense, for it identifies on-line not only the processnoise covari-

ance matrix but also the transition matrix.

1.3 On-line adaptation of the transition model

We propose to overcome the difficulties and the shortcomings due to the

empirical tuning of the transition model by adapting iton-line . If the

state is completely observable, as it is the case in most practical appli-

cations,i.e. the hk function just adds measurement noise on the state,

the transition model is directly related to the dynamics exhibited by the

measurements. Hence, it is possible to exploit their temporal evolution

in order tolearnthe functionfk, and, implicitly, the PDFp(xk|xk−1). That

is, we can avoid to definep(xk|xk−1), and instead use in its place a learned

PDF p̃z1:k−1(xk|xk−1), derived from a learned̃fz1:k−1. Here, p̃z1:k−1 formally

indicates that the PDF is learned using as training data the relationships

between all the consecutive measures from 1 tok− 1.

Furthermore, we propose to learn the motion model using Support

Vector Machine [99] inǫ-regression mode (SVR) [86]. SVMs are well

known and effective tools in pattern recognition based on the statis-

tical learning theory developed by Vapnik and Chervonenkis. Their

widespread use is due to their solid theoretical bases whichguarantee

their ability to generalize from training data minimizing the over-fitting

problem. Their use as regressors is probably less popular but even in this

field they provide excellent performances [86]. In the case of linear and

Gaussian systems, there is another important reason to use SVR in com-

bination with Kalman filters (the optimal RBE filter in such a case). The

noise model assumed by an SVR is Gaussian, with mean and covariance

being random variables whose distributions depend on two ofits param-

eters,C andǫ, as discussed in the very interesting work of Pontil et al.

[76]. The mean, in particular, is uniformly distributed between−ǫ and

ǫ. Therefore, the SVR noise model is a superset of that assumedby the
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Chapter 1. Adaptive Transition Model

Kalman filter, i.e. a zero-mean Gaussian. In other words, the SVR is

a theoretically sound regressor to apply in all the situations where the

Kalman is the optimal filter.

1.3.1 SVMs inǫ-regression mode

To introduce SVMs as regressors, and in particular inǫ-regression mode,

let us have a quick look at the regression of a linear model given a series

of data (xi, yi). In ǫ-regression mode the SVR tries to estimate a function

of x that is far from training datayi at mostǫ and is at the same time

as flat as possible. The requirement of flatness comes from thetheory

of complexity developed by Vapnik [99] and ensures that we will get

a solution with minimal complexity (hence, with better generalization

abilities). In the linear case, the model we fit on the data is

f (x) = 〈w, x〉 + b (1.1)

and the solution with minimal complexity is given by the one and only

solution of the following convex optimization problem

min1
2||w| |

2
+C

∑l
i=1(ξi + ξ

∗
i )


yi − 〈w, xi〉 − b ≤ ǫ + ξi

yi − 〈w, xi〉 − b ≥ −ǫ − ξ∗i

(1.2)

The constantC is an algorithm parameter and weights the deviations

from the model greater thanǫ. The problem is then usually solved using

its dual form, that is easier to solve and to extend to estimate also non-

linear functions ([99]).

1.3.2 SVRs for transition model estimation

In the context of RBE, given the first order Markovian assumption, one

is left with two options to regressfk:
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1.3 On-line adaptation of the transition model

1. to learn it from measures, that is to provide to the SVR as training

data at timek the tuples

〈x̂1, z2〉, . . . , 〈x̂k−2, zk−1〉 (1.3)

wherex̂k is the state vector estimate obtained from the recursive

Bayesian filter at timek;

2. to learn if from states, that is to provide to the SVR as training data

at timek the tuples

〈x̂1, x̂2〉, . . . , 〈x̂k−2, x̂k−1〉. (1.4)

Generally speaking, to learn the transition model from the relation

between consecutive filtered states may cause the filter to repeatedly

confirm itself,i.e. to regress the transition model that the filter itself is

imposing on the training data. While this effect may guarantee a certain

level of smoothness of the output, if this loop degenerates the filter trusts

too much the learned model and diverges from the real state ofthe sys-

tem by ignoring subsequent measures. On the other hand, learning form

measures avoids this risk and results in a more responsive filter; yet, for

the same reasons, it produces a filter more sensitive to noise, whose ef-

fects on the output of the filter or on the quality of the learned transition

model cannot easily be mitigated. Therefore, we advocate the use of the

learning from states strategy and will introduce a specific mechanism to

avoid the degeneracy of the learning loop.

Since the SVR can only regress functionsf : Rn → R, if the state

vector has dimensionn, n SVRs are used, and each one is fed with tu-

ples of the form〈x̂k−2, x̂i
k−1〉, where the superscripti indicates thei-th

component of a vector.

Another important design choice is the nature and length of the tem-

poral window used to select states (or measures) for training. It does

not make sense to use all the state transitions since the beginning of ob-

servations to learn the transition model for the current time slot, or, at
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Chapter 1. Adaptive Transition Model

least, it does not make sense during regression to equally weight their

contributions. A solution that may be used to address this problem is dy-

namic SVR for time series regression, introduced by Cao and Gu [11].

While we believe that this may be beneficial, and can be an interesting

investigation to carry on in the future, so far we have reliedon a simpler

solution, namely a sliding window of fixed length, to preventtoo old

samples from polluting the current estimate.

Finally, the influence of the time variable must be considered during

regression. To understand this, consider the circular motion on the unit

circle depicted in the leftmost chart of Fig.1.2. Assuming for clarity of

the graphical explanation the state vector to be composed only by the x

position of the point, some of the samples from which the SVR has to

regress the transition model of this point are depicted in the second chart.

As can be seen, without taking into account the evolution of the state

through time, even with a perfect regression (represented by the dotted

line in the second chart), it is impossible to have a correct prediction of

the state at timet, given the state at timet−1: for example, at timet = 4

andt = 6 the previous state,xt−1, is equal for the two positions, but the

output of the regression should be different, namelyx4 = −1 andx6 = 0.

This situation can be disambiguated adding time as an input variable to

the function to be regressed, as shown by the last chart.

To summarize,n SVRs are used, wheren is the dimension of the

state vectorxk. Thei-th SVR is trained at framek by using the following

training set

{〈k− 2−W, x̂k−1−W, x̂i
k−2−W〉, ..., 〈k− 1, x̂k−2, x̂i

k−1〉} (1.5)

where W is the length of the sliding window. We always useW = 10 in

our experiments.

In the following section we address in detail the linear-Gaussian case,

when the Kalman filter is the optimal solution, and show how our frame-

work can be instantiated to successfully and advantageously adapt the

transition matrix and the associated noise covariance matrix on-line.
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1.4 Support Vector Kalman

Figure 1.2: An example showing the importance of the inclusion of the
temporal variable among those used for regression.

1.4 Support Vector Kalman

In the case of linear process and measurement functions, of Gaussian

zero-mean noise and of Gaussian PDF for the initial state, all the subse-

quent PDFs of the state are (multivariate) Gaussians as well. Therefore,

they are completely specified by their mean vector, that is usually con-

sidered also the estimation of the state, and their covariance matrix. The

Kalman filter is the optimal estimator for this case.

Since between the hypotheses of the Kalman filter there is thelinear-

ity of fk, two consequences immediately arise:

1. we must use a linear kernel,i.e. the SVR formulation introduced

in 1.3.1;

2. we must modify it in order to regress a linear function.

In fact, the standard function learned by an SVR is (1.1),i.e. an affine

mapping. As discussed by Poggio et al. [75], a linear mappingcan be

learned without harming the general theory underneath SVM algorithms,

since the linear kernel is a positive definite kernel. Moreover, a solving

algorithm for the linear mapping was also proposed in the paper of Platt

[74] that introduced the standard and widespread solution for the affine

case,i.e. the Sequential Minimal Optimization (SMO) algorithm.

Using this flavor of SVRs, it is possible, given the training data in the

considered temporal window, to obtain an estimate ofFk. Each vector
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Chapter 1. Adaptive Transition Model

of weightswi
k regressed by thei-th SVR at timek can be almost directly

used as thei-th row of the estimated transition matrix̂Fk. The last but

not least issue to be solved in order to deploy the SVR weightsas rows

of the Kalman transition matrix is the problem of normalization.

Typical implementations of SVMs require the input and output to be

normalized within the range [0, 1] or [−1,+1]. While this normaliza-

tion is a neutral preprocessing as far as the SVR output is concerned, it

has subtle consequences when the weight vectors of the SVR are used

within our proposal. To illustrate this, let us consider a simple example

where a mapping from a scalarx to y is regressed, and the variables are

normalized to the range [−1,+1]. Then

x̃ =
2x− xmax− xmin

xmax− xmin
, ỹ =

2y− ymax− ymin

ymax− ymin
, (1.6)

where the superscript ˜ denotes the normalized variables and xmax, xmin

are the maximum and minimum value of the variable within the consid-

ered temporal window. Hence, the function ofx that gives the unnor-

malizedy is

ỹ = wx̃ ⇒ y = ax+ b, a =
2(ymax− ymin)w

xmax− xmin

b = ymax+ ymin −
(ymax− ymin)(xmax+ xmin)w

xmax− xmin
(1.7)

i.e., again an affine mapping. Therefore, using the unnormalized coeffi-

cienta as an entry of the transition matrix̂Fk results in poor prediction,

since the constant term is not taken into account. In order toobtain a

linear mapping, that fits directly into the transition matrix of a Kalman

filter, a two steps normalization must be carried out. Given asequence

of training data, a first normalization is applied,

x̄ = x−
xmax+ xmin

2
, ȳ = y−

ymax+ ymin

2
. (1.8)

These are the data on which the Kalman filter has to work. In other

words, at every time step, the output of the previous time step must be
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1.4 Support Vector Kalman

renormalized if its value changes the minimum or maximum within the

temporal window. This is equivalent to a translation of the origin of the

state space and does not affect the Kalman filter itself. No normalization

is required for the covariance matrix. After this normalization, the data

can be scaled in the range [−1,+1], as required by the SVR, according

to

x̃ =
2

x̄max− x̄min
x̄ , ỹ =

2
ȳmax− ȳmin

ȳ (1.9)

where the subscripts have the same meaning as in (1.6). Usingthis two

steps normalization, the unnormalized function of the Kalman data is

ỹ = wx̃ ⇒ ŷ =
(ȳmax− ȳmin)
(x̄max− x̄min)

wx̄, (1.10)

i.e. the required linear mapping.

1.4.1 Adaptive process noise model

As discussed in Sec. 1.2, the classical definition of an adaptive Kalman

filter is more concerned with dynamic adjustment ofQk than with the

adaptation of the transition model [70, 109]. Our proposal makes it easy

to learn on-line the value ofFk, but provides also an effective and ef-

ficient way to dynamically adjust the value of the process noise. The

value ofQk, in fact, is crucial for the performances of the Kalman filter.

In particular, the ratio between the uncertainties on the transition model

and on the measurements tunes the filter to be either more responsive but

more sensitive to noise or smoother but with a greater latency in reacting

to sharp changes in the dynamics of the observed system.

Within our framework, a probabilistic interpretation of the output

of the SVR allows to dynamically quantify the degree of belief on the

regressed transition model, and, consequently, the value of Qk. Some

works have already addressed the probabilistic interpretation of the out-

put of a SVR [13, 28, 51]. All of them estimate error bars on thepredic-

tion, i.e. the variance of the prediction. Therefore they are all suitable
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Chapter 1. Adaptive Transition Model

for estimating the Gaussian covariance matrix of the regression output.

We choose to use [51] since it is the simplest method and turned out also

the most effective in the comparison proposed in [51].

Given a training set, this method performsk-fold cross validation

on it and considers the histogram of the residuals,i.e. the difference

between the known function value atxi and the value of the function

regressed using only the training data not in thexi fold. Then it fits a

Gaussian or a Laplace PDF to the histogram, using a robust statistical test

to select between the two PDFs. In our implementation, in accordance

with the hypothesis of the Kalman filter, we avoid the test andalways fit a

Gaussian,i.e. we estimate the covariance as the mean squared residual.

We also keepQk diagonal for simplicity. Hence, every SVR provides

only the value of the diagonal entry of its row ofQk. As discussed before,

however, learning from states is prone to degeneration of the learning

loop into a filter unaffected by measurements. To avoid this, we prevent

the covariance of every SVR to fall down a predetermined percentage

of the corresponding entry ofR (10% in our implementation). This has

experimentally proved to be effective enough to avoid the coalescence

of the filter while at the same time preserving its ability to dynamically

adapt the values ofQ.

Finally, this method of estimation of the process noise covariance

matrix allows for an intuitive interpretation of theC parameter of the

SVRs. SinceC weights the deviations from the regressed function greater

thanǫ, it is directly related with the smoothness of the Support Vector

Kalman output. In fact, ifC is high, errors will be highly penalized,

and the regressed function will tend to overfit the data, leading to greater

residuals during the cross validation and to a bigger uncertainty on the

transition model. This will result in a more noisy but more responsive

output of the Kalman estimation. If, instead,C is low, the SVR output

will be smoother and the residuals during the cross validation will be

smaller. The resulting tighter covariances will guide the Kalman filter

towards smoother estimates of the state.
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Figure 1.3: Charts showing the evolution of the filters against ground
truth data in case of linear motion: the top one compares SVK to Kalman
filters tuned for smoothness, the bottom one to Kalman filterstuned for
responsiveness.

1.5 Experimental results

We provide first two simulations concerning a simple 1D estimation

problem (i.e., a point moving along a line). In the first experiment, the

motion is kept within the assumptions required by the Kalmanfilter, in

particular there is a linear relationship between consecutive states. In

the second one, a case of non-linear motion is considered. Finally, we

provide experimental results concerning tracking of the 3Dposition and
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Chapter 1. Adaptive Transition Model

orientation of a moving camera for real-time video augmentation and of

tracking of various targets in the image plane.

1.5.1 Simulation of linear motion

In both simulations, comparisons have been carried out versus three

Kalman filters adopting different motion models: drift (Kalman DR),

constant velocity (Kalman CV) and constant acceleration (Kalman CA).

Their model matrices are as follows:

FDR = [1] , FCV =


1 ∆t

0 1

 , FCA =



1 ∆t
∆t2

2
0 1 ∆t

0 0 1


. (1.11)

Two different tunings were considered for each Kalman filter: a more

responsive one, whenQ has been set equal to 10−2R; and a smoother

one, withQ = 10−4R. As far as SVK is concerned, it was fed with

noisy measures of the position and the velocity of the point,therefore

regressing a 2×2 model matrix. The only rough tuning regardsC, which

is set equal to 2−10 in this simulation and to 2 in the non-linear case:

intuitively, an easier sequence allows for using a smootherfilter.

During the linear motion sequence, motion is switched every160

samples between a constant acceleration, a constant position and a con-

stant velocity law. Therefore, each Kalman filter has a time frame wherein

the real motion of the point is exactly that described by its transition ma-

trix. Results on the whole sequence are reported in Fig.1.3 and Tab.1.1.

As for simulation parameters,R has been kept constant in time and equal

to 100∗ I , with I denoting the identity matrix; constant acceleration was

30.0 m/s2, constant velocity was 1000m/s and∆t was 0.5. Gaussian

noise with covariance matrixR was added to the data to produce noisy

measurements for the filters.

As shown by the first column of Tab.1.1, our proposal achievesthe

best Root Mean Squared Error (RMSE) on the whole sequence. This
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Figure 1.4: The charts report absolute errors for, respectively, the con-
stant acceleration, the constant velocity and the constantposition inter-
vals.
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Figure 1.5: The chart shows the covariances on state variables provided
by SVK throughout the whole sequence.

shows the benefits that on-line adaptation of the transitionmodel can

produce on the state estimate. This is also shown by the two charts in

Fig.1.3. At the scale of the charts, the estimation of our filter is in-

distinguishable from the real state of the system, whereas the delay of

Kalman DR and the overshots/undershots of Kalman CA and Kalman

CV in presence of sharp changes of motion are clearly visible.

Going into more details, we separately analyze each of the three dif-

ferent parts of motion (Fig. 1.4). Here, we discuss not only the perfor-

mance on the whole interval associated with each motion law,but, also,

those achieved in the final part of each interval (i.e., the last 80 samples).

In fact, final samples allow to evaluate the accuracy of the steady state

of the estimators, filtering out the impact of the delays due to the filter

degree of responsiveness.

During the constant acceleration interval, Kalman CA performs best,

both with the responsive and the smooth tuning. This is reasonable, since

theoretically it is the optimal filter for this specific part of motion. Our

filter, however, performs slightly worse than Kalman CA, butdefinitely

better than Kalman CV and Kalman DR (2-nd column of tab.1.1).This

is also demonstrated by the first chart of Fig. 1.3, which, forbetter visu-
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Filter Whole CA CV Drift CA* CV* Drift*
SVK 2x2 Model 22.41 9.79 38.02 35.41 8.91 9.63 1.67

Kalman CAQ = 10−2R 76.62 4.83 51.3 125.87 4.59 4.55 6.06
Kalman CAQ = 10−4R 357.45 4.26 242.19 581.52 3.72 4.04 7.87
Kalman CVQ = 10−2R 227.38 100.12 155.13 355.71 104.84 3.74 5.31
Kalman CVQ = 10−4R 1680.37 1213.78 1160.73 2439.37 1416.30 49.82 109.30
Kalman DRQ = 10−2R 4498.51 6015.22 4536.67 1793.30 8056.45 4757.75 2.77
Kalman DRQ = 10−4R 29698.38 25771.38 31583.97 29279.53 35763.45 37809.42 16743.08

Table 1.1: Comparison of RMSE on linear motion: first column reports
the RMSEs on the whole sequence; then, partial RMSEs on each piece
of motion are given as well as RMSEs concerning only the final part
of each interval (marked with *), when the filter may have reached the
steady state.

alization, displays only absolute errors less than 50. Onlyour filter stays

in the visualized range, apart from the optimal one. When considering

only the steady state part (5-th column of tab.1.1) the analysis does not

change, partly because this interval is the very first one and, hence, there

are no delays to recover, and partly because the Kalman CV andDR

do not have the proper transition matrix for this part and, thus, cannot

recover from errors.

During the constant velocity part, SVK has the best overall RMSE

(3-rd column of tab.1.1). This is due to the delay accumulated by Kalman

CV, theoretically the optimal filter, during the previous intervals. There-

fore, we can highlight one of the major advantages brought inby SKV:

in case of sharp changes of the motion law, dynamical update of param-

eters renders SVK even more accurate than the optimal filter due to its

higher responsiveness. This is confirmed by Fig. 1.5, showing the posi-

tion and the velocity variances estimated by SVK. It can be seen that, im-

mediately after the change of motion from constant positionto constant

velocity at sample 320, both variances significantly increase, somehow

”detecting” such a change, thanks to the adaptive process noise modeling

embodied into our filter. The resulting lower confidence in the predic-

tions automatically turns the filter from smoothness to responsiveness,

preventing the overshots/undershots exhibited by standard Kalman fil-

ters. After few samples the covariance on the velocity decreases again,
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Chapter 1. Adaptive Transition Model

proving that SVK has confidently learned the new model. Considering

only the steady state (6-th column of tab.1.1) Kalman CV is, as expected,

the best one. Unlike the CA interval, however, only the responsive tun-

ing performs well since the smoother Kalman CV has accumulated too

much delay to recover. This difference is due to the intrinsically higher

smoothness of the CV model with respect to the CA one. Kalman CA,

with both tunings, is the second best and this is also predictable since

a constant velocity motion may be seen as a special case of a constant

acceleration one. Again, SVK is by far closer to the optimal filters than

to those adopting a wrong motion model and, visualizing onlyerrors less

than 50, it is the only one visible in the corresponding chartof Fig. 1.4,

apart from the optimal ones.

Finally, due to the delay accumulated by the other filters, SVK turns

out the best estimator also in the constant position interval (4-th column

of Tab.1.1). As far as the steady state is concerned, all the filters exhibit a

good RMSE apart from the very smooth ones, namely CV and DR tuned

towards smoothness, since they do not recover from delays even after

80 samples. Unlike the other motion intervals, SVK keeps on being the

best, even when the steady state only is considered. A reasonfor this

is provided again by the chart of covariances (Fig. 1.5). During the

constant position part, the SVR is able to regress a very goodtransition

matrix and both the uncertainties are kept really low compared to the

values inR. Therefore, the filter is highly smooth, as can be seen in the

chart of absolute errors, and this keeps the RMSE low also in the last

part.

Our proposal is robust to higher measurement noise, too. We report

in Tab.1.2 the RMSEs for the same simulation, but withR = 1000I .

Even in this case SVK turns out to be the overall best thanks toits adap-

tive behavior. Considerations similar to previous ones apply to the three

different parts of motion.

To summarize, simulations with linear motion laws show thatthe

proposed SVR-based approach to on-line adaptation of the transition

model is an effective solution for the tracking problem when the assump-
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Filter Whole Drift CV CA Drift* CV* CA*
SVK 2x2 Model R=1000 43.36 36.36 67.93 31.35 5.23 30.56 28.29
Kalman CAQ = 10−2R 79.65 130.17 52.94 15.36 19.17 14.3 14.52
Kalman CAQ = 10−4R 357.69 581.70 242.46 13.33 17.28 10.94 11.75
Kalman CVQ = 10−2R 228.08 356.26 156.61 100.97 16.81 11.71 106.77
Kalman CVQ = 10−4R 1681.04 2439.48 1162.36 1214.90 106.66 49.56 1418.82
Kalman DRQ = 10−2R 4500.00 1793.01 4539.23 6016.82 8.78 4761.46 8059.09
Kalman DRQ = 10−4R 29699.11 29279.76 31584.70 25772.48 16742.06 37810.78 35764.94

Table 1.2: Comparison of RMSE between different filters in case of
higher measurement noise.

R = 100 Whole R=1000 Whole
SVK 2x2 Model 20.61 SVK 2x2 Model 47.98
Kalman CA resp. 61.92 Kalman CA resp. 62.32

Kalman CA smooth 308.32 Kalman CA smooth 308.66
Kalman CV resp. 72.69 Kalman CV resp. 72.95

Kalman CV smooth 248.30 Kalman CV smooth 248.46
Kalman DR resp. 143.63 Kalman DR resp. 144.87

Kalman DR smooth 434.83 Kalman DR smooth 435.20

Table 1.3: Comparison of RMSE on non-linear motion.

tion of stationary transition matrix cannot hold due to the tracked system

undergoing significant changes in its motion traits.

1.5.2 Simulation of non-linear motion

Given its ability to dynamically adapt the transition matrix, we expect

SVK to be superior to a standard Kalman filter also in the case of non-

linear motion. In such a case, in fact, a time-varying linearfunction can

approximate better than a fixed linear function the real non-linear mo-

tion. Hence, to assess its merits we have run simulations with a motion

compound of two different sinusoidal parts linked by a constant position

interval. The motion law of the two sinusoidal parts is as follows:

x1(t) = 300t + 300 sin(2πt) + 300 cos(2πt), (1.12)

x2(t) = 300t − 300 sin(2πt) − 300 cos(2πt). (1.13)

Aggregate results are shown in Fig. 1.6, Fig. 1.7 and Tab.1.3for the same

levels of measurement noise as in 1.5.1. Our filter proves again to be the

overall best.
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Figure 1.6: Simulation dealing with non-linear motion withR = 100I .
Chart on top compares SVK to Kalman filters tuned for smoothness, the
bottom one to Kalman filters tuned for responsiveness. At this scale, the
estimation of our filter is almost indistinguishable from the ground truth.

1.5.3 3D camera tracking

In this experiment, we track the 3D position of a moving camera in or-

der to augment the video content, taking as measurement the output of a

standard pose estimation algorithm [81] fed with point correspondences

established matching invariant local features, in particular SURF fea-

tures [6]. Some snapshots are reported in Fig. 1.8. The snapshots show

side-by-side the augmentation resulting from the use of Kalman CA and
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Figure 1.7: Simulation dealing with non-linear motion withR = 1000I .
Chart on top compares SVK to Kalman filters tuned for smoothness, the
bottom one to Kalman filters tuned for responsiveness.

our SVK. Both filters have been tuned to be as responsive as in 1.5.2 and

measurement noise covariances has been adjusted to match the range

of the input data. The sequence shows a fast change of motion of the

camera, the purpose of filters being to keep the virtual object spatially

aligned with the reference position, denoted for easier interpretation of

results by a white sheet of paper. We can see that both filters exhibit a

delay following the sharp motion change at frame 19, but SVK is subject

to a smaller translation error (e.g.frame 23), recovers much faster (SVK
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is again on the target by frame 27, Kalman CA only by frame 40) and,

unlike Kalman CA, without any overshot (which Kalman CA exhibits

from frames 27 to 40).

1.5.4 Mean-shift tracking through occlusions

In the last experiment, we compare our SVK to standard, non adaptive

solutions for estimating an object trajectory in the image plane based on

the mean-shift tracker introduced by Comaniciu et al. [17].We compare

the original mean-shift (MS) tracker and the non-adaptive Kalman filter

(Kalman-MS tracker) to the SVK. Both KalmanMS and SVK use theMS

tracker as the measurements source . The MS tracker and the Kalman-

MS tracker have been proposed in the original work by Comaniciu et al.

[17].

The MS tracker implicitly assumes a constant position motion model

by letting the tracker start its search for the best positionin each new

exactly where the object was found in the previous frame. TheKalman-

MS tracker in our experiment uses a constant velocity motionmodel.

Some snapshots of the test sequence are depicted in Fig. 1.9.The

mean-shift technique is generally speaking not robust to total occlusions,

like that shown in the third snapshot (Frame # 067), because the MS

tracker can be attracted by the background structure (e.g. the road in

our experiment) if this is more similar to the target than theoccluder.

For this reason the MS Tracker is unwilling to follow the object while

it passes below the advertisement panel and stays in the lastposition

where it could locate the target (frame # 067 of Fig. 1.9). TheKalman-

MS tracker follows the previous dynamic of the target, thanks to the

smoothness brought in by the Kalman filter transition model (frame #

067 of Fig. 1.9). Nevertheless, since the way it weights the contribu-

tion of the measure and the prediction on the state is fixed, itis finally

caught back by the measures (the MS tracker) continuously claiming the

presence of the target in the old location, before the occluder. Only the

SVK is able to correctly guess the trajectory of the target while the lat-
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(a) 17 (b) 20

(c) 21 (d) 22

(e) 23 (f) 24

(g) 25 (h) 26

(i) 27 (j) 28

(k) 34 (l) 40

Figure 1.8: Some of the most significant frames from the experiment on
3D camera tracking.
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Figure 1.9: Some of the most significant frames from the experiment on
object tracking in the image plane. In cyan the SVK tracker, red the MS
tracker, blue the KalmanMS tracker.

ter is occluded (frame # 067 of Fig. 1.9) and continues to track it after

the occlusion (frame # 083 and subsequent frames of Fig. 1.9). This is

due to the ability of the SVK to dynamically adjust the process noise

covariance matrix, increasing its confidence on the motion of the object

(i.e. to decrease the variance) while the object keeps moving withan ap-

proximatively constant motion law on the image plane (first part of the

sequence, first two snapshots, from frame # 001 to frame # 050 of Fig.

1.9). Thanks to the high confidence gained on the motion model, the fil-

ter is able to reject the wrong measurements coming from the MS tracker

during the occlusion. This happens again during the second occlusions

at frame # 200 of Fig. 1.9.
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Chapter 2

Adaptive Appearance Model

Every visual tracker uses an internal representation of theappearance of

the target, that it compares with the current frameIk in order to locate the

target. We refer to this internal representation asappearance modelor

target model, A, and we denote the instance used by the tracker at time

k asAk. This model is usually learned once, either offline from training

data or online from the first frame(s).

In the works on tracking up to the last decade this model was usu-

ally fixed throughout the sequence [15, 17, 32, 37, 38, 78]. The main

efforts of these works were devoted to develop robust ways to usethe

fixed model for locating the target in the current frame, despite all the

nuisances that realistic video sequences may contain, suchas clutter and

distractors, illumination changes and deformable targets.

More recently, the idea of appearance model update has been pro-

posed by several researchers to aim at successful long-termtracking de-

spite these difficulties. By letting the model evolve across frames to

include and adapt to the potential geometric and photometric changes of

the target, these methods are inherently able to cope with target defor-

mations and lightening variations. On the other hand, they expose the

tracker to the risk ofdrift, i.e. the inclusion of background appearance

in the appearance model that can eventually lead to loss of track.

In our work on adaptive appearance modeling we define the general
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structure of an adaptive modeling tracker and identify and discuss the

main alternatives that have been proposed for each main building block

of such systems. Recently, adaptive modeling trackers havebeen ex-

tended also to the multi-target case [8, 88, 103]. Our review, however,

focuses on the single target case, that has reached a higher level of ma-

turity. The multiple target trackers are covered by this review only as far

as the part of their proposal covering single target tracking is concerned.

Then, we formulate our proposal for target model adaptation, based

on the idea that tracking and target model update are similarin spirit and

in practice: they both try to estimate the state of a system from noisy

measures, under the assumption that the system state exhibits temporal

consistency in consecutive frames. The state for target model update

is the target appearance instead of the cinematic characteristics of the

target, but the conceptual problems are highly similar. Therefore, we cast

the problem of model update as a recursive Bayesian problem,and try

to utilize the same tools, in particular the particle filter,to accomplish it.

The work presented in this chapter has been carried out whilethe author

was visiting Prof. Andrea Cavallaro’s group within the Multimedia and

Vision Group of the Queen Mary University of London.

2.1 Additional definitions

We presented the classical framework for visual tracking inthe Intro-

duction. Here, we add two notions that are used in the contextof target

model update, namely the confidence map and the division in generative

and discriminative trackers.

2.1.1 Confidence map

Typically the tracker evaluates several state candidatesx̂i
k to select the

current statexk. The candidates are sampled according to a variety of

strategies, but they typically belong to a neighborhood of the previous

state. This enforces temporal smoothness, upon which tracking is based.
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(a)

(b)

Figure 2.1: Generative versus discriminative trackers. A state candidate
x̃k from the current frameIk is projected in the feature spaceF and its
likelihood of being the target is computed. The likelihood is a function
of a distance or similarity measure between the current model Ak and the
candidate features in a generative tracker, a function of the confidence
value of a classifierhk in a discriminative tracker.

The evaluation results in the assignment of a scoreCi
k to each candidate,

(e.g. the weight of the corresponding particle in a particlefilter [78],

the feature similarity in a Mean-Shift tracker [17], the confidence of a

classifier in a tracking-by-detection approach [4], ... ). We refer to the

set of pairs
〈
x̂i

k,C
i
k

〉
as the confidence mapCk.

2.1.2 Generative vs. Discriminative Trackers

An important classification of visual trackers, as far as target model up-

date is concerned, is the division between generative and discriminative

trackers (Fig. 2.1).
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Generative Trackers

The tracker [107] [46] [57] [80] [40] [49] is guided by a generative ob-

servation likelihood, i.e. “the state estimation boils down to the problem

of finding the state which has the most similar object appearance to the

model in a maximum-likelihood or maximum-a-posterior formulation”

[93]. Generative models of the foreground try to represent the object

appearance without considering its discriminative power with respect to

the background or other targets appearance. In these methods the obser-

vation likelihood is based on a similarity function defined on the feature

spaceF, that compares the current modelAk with the current candidate

statex̃k features providing a similarity score or likelihood of the candi-

date state (Fig. 2.1a). A model is explicitly given and the similarity to

it assigns a likelihood value to every point of the feature space,i.e. to

every possible state candidate.

Discriminative Trackers

The tracker [16] [4] [5] [29] [30] [89] [93] is guided by a discrimina-

tive observation likelihood, i.e. a classifier trained to learn “a decision

boundary that can best separate the object and the background” [93] .

Classifiers able to produce a confidence value for the predicted label can

be used in this framework. In these proposals the appearancemodelAk

is not explicitly given, it is implicitly defined by the subset of the set

of all possible appearancesF that is positively labeled by the classifier

(Fig. 2.1b). In these methods the observation likelihood isthe confidence

value of the classifier on the classification as foreground ofthe current

candidate statẽxk, and it is 0 if the candidate is classified as background.

Hybrid Trackers

Some methods have proposed hybrid solutions such as: switching be-

tween discriminative and generative observation models according to

the targets proximity in a multi-target scenario [88]; using co-training

[7] between a long-term generative observation model and a short-term
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2.2 Elements of Adaptive Modeling in Visual Tracking

Figure 2.2: The general structure of the target model updateflow in an
adaptive tracker,k ≥ 1.

discriminative one [105]; using several generative modelsbut discrim-

inatively learn in each frame the weights to combine them in order to

maximize the distance with the neighboring regions [103]; store and

update two generative non parametric models of foreground and back-

ground appearances and use them to train in every frame a discriminative

tracker [55].

2.2 Elements of Adaptive Modeling in Visual

Tracking

The general structure of an adaptive model tracker is sketched in Fig.

2.2.

1. Given the output of the trackerxk and the confidence mapCk on

the evaluated candidates, a set of samplessi of the new target ap-

pearance are extracted from the current frame. If the tracker is a
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Sampling and Labeling Feature Processing Model Estimation Model Update
Template Update [57] Current State Pivot Blended in Direct Use of Features Last model
IVT [80] Current State None Direct Use of Features Subspace
AdaptiveManifold [49] Current State None Direct Use of Features Manifold
WSL [40] Current State None Direct Use of Features Blending
Unified Bayesian [107] Current State Pivot Blended in Direct Use of Features Last model
Visual Tracking Decomposition [46] Current State Pivot Added Direct Use of Features Sliding Window
Ensemble Tracking [4] Current State Label Switch New Classifier Training Sliding Window
Non-Parametric Tracker [55] Adaptive Classifier Redundant and Outliers filtering Direct Use of Features Ranking
SVMs Co-Tracking - Tracker 1 [93] Co-Training None Classifier Update Sliding Window
SVMs Co-Tracking - Tracker 2 Co-Training None Classifier Update Sliding Window
Co-Training - Generative [105] Co-Training None Direct Use of Features Manifold
Co-Training - Discriminative None Classifier Update Sliding Window
Adaptive Weights [103] Current State Pivot Blended in Direct Use of Features Blending
Discriminative Features Selection [16] Current State Pivot Blended in Direct Use of Features Last model
OnlineBoost [29] Current State None New Classifier Training Ranking
SemiBoost [30] Fixed Classifier. None New Classifier Training Ranking
BeyondSemiBoost [89] Fixed and Adaptive Classifier. None New Classifier Training Ranking
MILTracker [5] Current-State-Centered None New Classifier Training Ranking

Table 2.1: Reviewed Methods.

discriminative tracker, a set of samples are extracted alsofrom the

background. Samples are hard or soft labeled as target or back-

ground samples yielding a labeled sample set{sl
i, l ∈ [0, 1]}.

2. Sample extracted from the current frame are projected into the

feature space used for tracking, generating a set of labeledfeatures

{f l
i , l ∈ [0, 1]}.

3. Feature can be filtered and/or selected.

(a) Filtering: the set of features may be pruned to remove out-

liers or augmented with reliable features from trusted target

appearances. Labels may be switched or modified, too.

(b) Selection: if multiple cues are used as features (such ascolor,

edges, shape, motion vectors, etc. . . ) feature selection may

be performed to select the most effective features for the cur-

rent frame.

These steps aim at providing a more representative and effective

feature set{f̃ l
i , l̃ ∈ [0, 1]}.

4. Given the selected labeled features the modelak+1 of the target in

the current frame is estimated.

5. The model for the current frameak+1 is merged with the previous
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2.2 Elements of Adaptive Modeling in Visual Tracking

overall modelAk, yielding the modelAk+1 used in the next frame

for state estimation.

This section describes the alternatives to implement each of these

main building blocks.

To limit the chances of drift, an adaptive model tracker has to try to

solve the following sub-problems:

• Robust integration of new target model samples.The inclusion

of new information from the current frame in the target modelhas

to be designed to be robust to the presence of outliers from the

background due to non perfect alignment of the tracker bounding

box with the actual target position.

• On-line Evaluation of tracker output. The output of the tracker

must be evaluated on-line in absence of ground truth to decide

whether or not to use it in model update. This is particularlyim-

portant to avoid occluders appearance if the target undergoes oc-

clusions.

• Stability /Plasticity Dilemma [31]. The simultaneous require-

ment for rapid learning and stable memory. This is a common

problem of all on-line adaptive systems.

Each of the above mentioned building blocks deals with one ormore of

these sub-problems.

2.2.1 Sampling and Labeling

Given the output statexk of the tracker in the current frameIk and the

confidence mapCk, this step selects the regions of the current frame that

are then used to update the model and, in a discriminative tracker, assign

them either to the target or the background class.

The different proposals are presented according to the degree of reli-

ability they assign to the tracker.
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(a) Current State Sampling (b) Current-State-Centered Sampling

(c) External Classifier

(d) Co-Training

Figure 2.3: Sampling and labeling strategies. In (a), (b) and (c) the
thicker hatch represents the current state estimate, the wider hatch the
sampling region for foreground labeled samples and the wider dotted
rectangle defines the region for background samples. Note that in (c) the
last two regions coincide. In (d), the images represent the confidence
maps of two trackers: blue low likelihood, red high likelihood.
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• Current State (Fig. 2.3a). The region defined byxk is the only

one used to update the target model. In case of discriminative

trackers, samples from a region surrounding the current state are

used as background appearance sample. This method assumes that

the tracker is always correct and leaves to the subsequent stages

the task of attenuating the effects of misaligned current states.

• Current-State-Centered Sampling. (Fig. 2.3b). Introduced in

MILBoost [5]. Samples are extracted in the region defined byxk

plus its neighborhood. Samples extracted in the proximity of xk

are grouped in bags of samples and at least one sample of each

bag is assumed to be a target sample whereas samples from the

outer sampling region are used as samples for the background. It

is up to the subsequent stages of the algorithm to disambiguate

the uncertainty left in the target samples, for example by using

Multiple Instance Learning as done in [5]. This method assumes

that the tracker can by slightly off the target, but is always close to

it.

• Co-Training Sampling. Introduced in Co-Tracking [93]. Two

subtrackers that use independent features make up the tracker. The

outputxk is given by the combination of their output, but the sam-

pling and labeling for model update of each tracker is carried on

independently, within the framework of co-training [7]. Each sub-

tracker provides the training samples for the other. Targetsamples

come from the global maxima of the other subtracker confidence

maps whereas background samples are taken from the local max-

ima not overlapping with the global maximum. In this way, each

subtracker is trained to be able to discriminate the cases that are

difficult for the other tracker. This method assumes that in a given

frame at least one of the two features alone is able to correctly

track the target.

• External Classifier (Fig. 2.3c. Samples are extracted in the re-
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gion defined byxk plus its neighborhood but are not labeled ac-

cording to their position with respect toxk. Instead, labeling is

performed by means of an external classifier. Samples are soft la-

beled as samples of the target or the background according tothe

confidence of the classifier. Although this option makes sense for

both generative and discriminative trackers, it has been used only

by discriminative or hybrid approaches.

Generally speaking, the use of a classifier to guide the tracker

updates is an interesting solution to break the self learning loop.

Nevertheless it leads to a chicken-and-egg problem: if an external

algorithm, like this classifier, can reliably tell if a patchselected

from the output of the tracker belongs to the object of interest in

spite of all the changes in appearance the target underwent,such a

powerful algorithm could be successfully used as the observation

model for the tracker and there would be no need to update the

target model. Of course this is not the case: if the detector has to

cope with all the possible changes it has to be updated as well, and

this introduces the problem of drift for it, too.

By considering how the proposed solutions cope with the issue

of classifier adaptability, this category can be further specified as

follows:

– Fixed Classifier. Introduced in [30]. The classifier in this

case may be an object detector or a similarity function with a

fixed pivotal appearance model. It is created off-line or in the

first frame and never updated. These methods assume that

the classifier is able to cope with all the variations the target

will undergoes in a sequence or, alternatively, that there will

be no more variations of the target appearance than those

that the classifier is invariant to. Therefore, this choice limits

the degree of adaptability of the tracker. On the other hand,

it does not make any assumption on the correctness of the

current state, besides the proximity with the target.
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– Adaptive Classifier. Introduced in [55]. The classifier is a

similarity function with respect to the previous model. This

method does not assume any reliability of the current state

but it requires the absence of sudden changes in the target or

background appearance evolution. Moreover, the degree of

adaptability,i.e. the maximum variation in appearance be-

tween consecutive frames, is dictated by hard thresholds that

may be difficult to set. Finally, by using the previous model

to label the current samples, this method is prone to the drift

introduced by self learning, although, unlike the other pro-

posals, this loop is based on models rather than on states.

– Fixed and Adaptive Classifiers. Introduced in [89]. Two

classifiers are used. One is fixed and its trained on the first

frame. Another one is adaptive, and it is the one used to label

the samples. This method tries to obtain the benefits of not

assuming any correctness of the current state, introduced by

using a classifier for samples labeling, without limiting the

adaptability of the tracker, by letting the classifier adaptto

target or background changes. This rises the problem of drift

for the adaptive classifier. The proposed solution is to update

the classifier only when the tracker and the fixed classifier

are in agreement. Although this may limit the chances of

drift for the adaptive classifier, it results in similar limits on

the degree of adaptability introduced by the fixed classfier

solution.

2.2.2 Feature Extraction

Features are extracted for each samplesl
i of Ik, producing a set of labeled

feature vectors{ f l}.

With reference to Tab. 2.2, we categorize features used by the adap-

tive modeling trackers according to the spatial extension of the features

extracted from each sample. This has a direct impact on the ability of
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the tracker to correctly adapt in presence of partial occlusions:

• Part-wise features. Feature vectors are extracted from small

patches or even single pixels . This makes it possible to reason

explicitly about occlusions and to avoid to use features from the

occluding object to update the target model. It also helps todeal

with the approximation inherent to the modeling of the target as

a rectangular object, since every feature can be classified either

as foreground or background, even those laying inside the target

bounding box.

• Target-wise features. Feature vectors represent the whole target

appearance (e.g. color histograms [17]). As noted in the Intro-

duction, this kind of features can typically tolerate target deforma-

tions and rigid transformations such as rotations and scaling even

without model update. On the other hand, being a global represen-

tation of the target, it is difficult to correctly update it in presence

of partial occlusions.

2.2.3 Feature Set Refinement

Given the features{ f l} extracted and labeled from the current frame, this

step processes the features and the labels in order to obtaina modified

set { f̃ l̃} that is more effective for model update. To this purpose, two

main strategies have been followed, that can be deployed alternatively

or sequentially: feature processing and feature selection.

Feature Processing

As fas as feature processing is concerned a tracker can perform:

• Sample checking. The idea behind the following filtering steps is

that it is possible to decide a priori which samples are not suitable

to perform model update given the current model. In particular

some adaptive trackers perform:
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Template Update [57] x
IVT [80] x
AdaptiveManifold [49] x
WSL [40] x

M
ix

tu
re

Ensable Tracking [4] x x
Non-Parametric Tracker [55] x x
Detector Confidence [8] x x x x
SVMs Co-Tracking - Tracker 1 [93] x
SVMs Co-Tracking - Tracker 2 x
Co-Training - Generative [105] x
Co-Training - Discriminative x
Unified Bayesian [107] x x
Adaptive Weights** [103] x x x x

S
el

ec
tio

n

Discriminative Features Selection [16] x
OnlineBoost [29] x
SemiBoost [30] x
BeyondSemiBoost [89] x x x
MILTracker [5] x
Visual Tracking Decomposition* [46] x x

Table 2.2: Features. The single asterisk indicates use of multiple track-
ers, hence not all the features listed might be used in the same tracker.
The double asterisk indicates the use of the Adaptive Multiple Features
Blending strategy for the feature set composition (see Sec.2.2.4).

– Redundant Sample Removal. Introduced in [55]. Feature

vectors that are too similar to the current model are discarded

as redundant.

– Outliers filtering. As far as outliers are concerned, two

different strategies have been deployed:

∗ Outliers Removal. Introduced in [55]. Feature vec-

tors that are too different from the current model are dis-

carded as outliers.

∗ Positive Label Switch. Introduced in [4]. In case the

confidence on a target-labeled feature vector is not high

enough, the label is switched to background. This is

done mainly to counteract the approximation inherent in

the use of a rectangular box as target shape.

• Pivot. The initial appearance is used as apivot, under the as-

sumptions that the bounding box in the first frame was correctand
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that the target and the background appearance remains similar to

the initial one in the feature space. In the proposals adopting this

strategy, first frame data receive a special treatment: it isreason-

able because usually first frame detection is assumed to be reliable,

for example in a tag-and-track application for visual surveillance,

where a human operator provides the first bounding box. For a

full automatic deployment of tracking the first bounding boxcan-

not be assumed to be particularly more accurate than the nextones.

Another important issue with the use of the pivot for samplesre-

finement is that it may not allow to adapt to sudden appearance

changes nor to gradual changes in appearance that in the longrun

lead to great changes in target appearance compared to the first

frame. This, depending on the application, may be a limitation

that prevent the adoption of this filtering step. If general automatic

visual tracking is the aim of an algorithm, then this filtering step

should not be used, although it can greatly improve performances

in more specific contexts. Use of features from the pivot to refine

the current sample set has been proposed in two flavors:

– Pivot added. Features from samples of the pivot are added

to the feature set with the proper label. With this strategy,

subsequent stages of the algorithm can decide to ignore the

added features and exploit only the features from the current

frame for the update.

– Pivot blended in. Feature vectors are blended with the pivot

features. With this choice the influence of the pivot cannot be

discarded afterwards. On the other hand, the model update

is guaranteed to keep the model in a neighborhood of the

initial appearance, hence this solution trades off adaptability

for robustness.
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2.2.4 Feature selection

This is a key component of a generation of recently proposed family of

discriminative tracking algorithms [5, 29, 30, 89] that perform model

update by continuously updating the set of used features, selecting them

according to their discriminative ability in distinguishing the target from

the background. Beside these methods, that heavily base their efficacy

on feature selection, feature selection is a fundamental step for all adap-

tive and even non-adaptive trackers, since different cues, such as edge

patterns, color histograms or appearance patterns, may have a different

ability to track a target in different parts of the sequence. Nevertheless,

no standard way has emerged to tackle this fundamental problem. One

of the main difficulties in performing on-line selection is given by the

fact that different cues may have different score dynamics and ranges,

which makes it hard to compare their effectiveness directly by compar-

ing their scores. They can be compared by evaluatinga posterioritheir

effects on the tracker accuracy, for example selecting the features to use

at framek by ranking them according to their effectiveness in locating

the target in the previous framek−1, under the assumption that the posi-

tion estimated by the tracker at framek−1 is correct. According to their

treatment of this stage, trackers can be categorized in three classes (see

also the vertical left-most column of Table 2.2):

• Single Feature. Only one kind of feature is used,e.g. one color

histogram. No selection is carried out.

• Mixture of (Independent) Features. A fixed set of features is

used. The composition of the set is never updated. Usually a cer-

tain degree of independence between the features is required (or

assumed) for their simultaneous use to be effective. This is for ex-

ample the case of trackers working in the co-training framework,

that implicitly perform feature selection by weighting thecontri-

bution to the final estimation of classifiers using independent fea-

tures.
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• On-line Feature Selection. A fixed set of features is used. The

composition of the subset used in each frame is updated according

to the features effectiveness in the previous frame(s) [16].

– Online Boosting Feature Selection is performed by apply-

ing on-line boosting [72] to weak classifiers that act as fea-

ture selectors [29].

• Adaptive Multiple Features Weighting. A fixed set of features

is used. The weights of the features in the likelihood composition

are updated in every frame based on the features effectiveness in

the previous frame(s).

2.2.5 Model Estimation

Given the filtered feature set and the labels, a new partial modelak+1 that

describe the target appearance in the current frame is built. This has no

particular influence on the adaptation abilities of the tracker nor on its

risk to drift. The main alternatives are:

• Non parametric use of features. The model estimated for the

current frame is the non parametric ensemble of the feature ex-

tracted from the target or the background.

• New Classifier Training. The current samples are used to train

a classifier that best separates the target and the background in the

current frame.

• Old Classifier(s) Update. The current samples are used to update

a previously trained classifier.

2.2.6 Model Update

Given the new model for the current frameak+1, it has to be merged

with the overall model used so far,Ak, to obtainAk+1. This step directly

addresses the Stability/Plasticity Dilemma presented above. Solutions

50



2.2 Elements of Adaptive Modeling in Visual Tracking

are presented in order of Plasticity,i.e. starting from the most adaptive

ones:

• Last model only. The result of the last frame is used as the model

for the next frame.

• Sliding Window. A fixed amount of samples/classifiers is kept

after every frame is processed. The newest is added and the oldest

is discarded.

• Ranking. Up to a maximum fixed amount of samples/classifiers,

the most effective ones are kept after every frame is processed, the

new one is always added. This raises the problem of assessing

their effectiveness, similar to the problem of evaluating features

selection on-line. And again, the most widespread solutionis to

evaluate the models efficacy on the previous frame(s).

• Blending. Sample or classifier parameters estimated from the

current frame are blended with their previous values. This in prin-

ciple is more stable than the previous alternatives, since all the

history up to the current frame has an influence on the new model.

On the other hand, it is more prone to drift, since the inclusion

of wrong samples for the target model cannot be fixed afterwards,

only the inclusion of correct samples will eventually render the

influence of the outlier negligible.

• Subspace/Manifold. A subspace or a set of subspaces (an ap-

proximation for a manifold in the feature space) is updated with

the new sample from the current frame. It potentially retains the

history of all the target appearances with a fixed amount of mem-

ory, hence it is the most stable solution. On the other hand, it

is difficult to accommodate for sudden target appearance changes

with such a model. Sometimes a forgetting factor is used to di-

minish through time the effect of the oldest samples on the sub-

space/manifold shape.
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Figure 2.4: The patch based appearance model in our proposal.

2.3 Adaptive modeling with Particle Filtering

At the basis of our proposal lays the intuition that we can substitute some

of the fundamental stages of the target model update algorithm described

so far with equivalent steps performed by a particle filter estimating the

target appearance.

Hence, in our proposal two RBE trackers are used. One tracks the

target state, the other the target model. Since inference onhigh dimen-

sionality spaces is hard and inefficient, we actually use an approximation

of the particle filter when tracking appearance. Hence, although our for-

mulation is deeply inspired by this filter and can easily be interpreted

and implemented following its usual patterns, the appearance tracker is

not strictly speaking a Bayesian filter. In particular, it isour definition of

the observation likelihood that is not conformant, as detailed in the next

sections.

The appearance model in our proposal is a part-based, Generalized

Hough Transform-like model ([50], [1], [45]). It has been inspired also

by the bag of patches non-parametric model of [55]. It offers several

advantages over a global representation: it captures a coarse geomet-

ric structure of the target instead of global properties only; it naturally

allows for dealing with partial occlusions; it can be used toobtained a
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2.3 Adaptive modeling with Particle Filtering

segmentation of the target [50]. We model both the foreground and the

background, in the spirit of recent discriminative trackers. Hence, our

model is compound by a model for each class

Ak = {AFk ,A
B
k } (2.1)

where the models are a set of graylevel square patchesT of fixed side

r with their geometric displacementsv with respect to the object center

(Fig. 2.4)

AF (B)
k = {(si

k}
M
i=1 = {(T

i
k, v

i
k)}

M
i=1 T i

k ∈ [0, 255]r
2
, vi

k ∈ R
2 (2.2)

The particle filter tracking the state of the target has the bounding

box center coordinates as state variable and the current frame as mea-

sure. The tracker of the appearance, instead, has a patch andits dis-

placement as state variable and the pair formed by the current frame and

the current state estimation as measure. In fact, it is the output of the

tracker estimating the bounding box that provides a new measure of the

target appearance for the model update and, symmetrically,the tracker

estimating the appearance provides a new model to update thestate in

the next frame. In other words, let

zk = Ik (2.3)

yk = (xk, Ik) (2.4)

denote the measure for the state tracker and the appearance,respectively.

Then, the particle filter estimating the state computes the standard recur-

sion:

p(xk | z1:k) ∝ p(Ik | xk)
∫

p(xk | xk−1)p(xk−1 | z1:k−1) dxk−1 (2.5)

and then the particle filter estimating the appearance solves:
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p(sk+1 | y1:k) ∝ p(yk | sk+1)
∫

p(sk+1 | sk)p(sk | y1:k−1) dyk−1 (2.6)

Given this formalization of model update as appearance tracking, in

our proposal we replace (compare Fig. 2.5 with Fig. 2.2):

• the standard sampling and labeling step with the propagation of

the appearance particles to the next frame,i.e. by sampling from

the proposal on appearanceq(sk+1 | sk, yk+1).

• the sample refinement, in particular the sample processing,with

the update step of the appearance particle filter, which dynami-

cally weights samples according to the likelihood on appearance

p(yk|sk+1) (in principle the update step can carry on also the on-line

feature selection but is not done in our proposal yet);

• the model estimation for the current frame with the resampling

step of the appearance tracker, which probabilistically discards

down-weighted samples from the previous step and effectively

produces the model that best explain the current frame, given the

observations up to the current frame.

In the following we define the basic components of the particle filters

we use to estimate the state and the appearance.

Appearance Proposal Density

q(sk+1 | sk, yk) = q(sk+1 | Tk, sk, Ik, xk) (2.7)

To sample from it, we sample a new displacement with Gaussian

Brownian motion relative to the displacement of this patch in the

previous frame,vk, and then extract a patch fromIk centered in the

position given by the new displacement applied toxk. This gives a

new particle to approximate the new posterior PDF on appearance.
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2.3 Adaptive modeling with Particle Filtering

Figure 2.5: The structure of the target model update flow in our adaptive
tracker,k ≥ 1.
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ŝk+1 = (T̂k+1, v̂k+1) ∼ q(sk+1 | sk, Ik, xk)⇔ (2.8)

v̂k+1 ∼ N(µ = vk,Σ = Σv), T̂k+1 = Ik

∣∣∣
xk,vk+1

where, to indicate the extraction from a frameIk of a patch defined

by a displacementv with respect to a bounding boxx with It

∣∣∣
x,v

.

Our proposal density is a full definition of a proposal for particle

filtering since it depends on both the previous statesk and the cur-

rent measureyk, whereas the classical proposal used in a particle

filter discards the dependency on the current measure. In particu-

lar, we exploit the current measure to sample the new appearance

of the patch, since to generate it according to a generative model of

illumination changes and object deformations requires these mod-

els, which are difficult to obtain for a general purpose tracker, and

it also requires to explore a high dimensionality space (i.e., given

the side of the patchesr, the dimensionality of the space isr2 and

we user ∼ 20), which in turn requires a huge number of particles

to obtain an acceptable approximation of the posterior. By letting

the current measure guide the exploration of the state spacewe

avoid these problems and obtain an efficient algorithm. Finally,

the proposal density in our method accounts also for deformable

objects by letting a patch move inside the object.

Appearance Observation Likelihood

p(yk | sk+1) = p(It, xk | Tk+1, vk+1) (2.9)

The likelihood of the measure under the hypothesis that the patch

sk+1 belongs to the appearance model is where our proposal dif-

fers with respect to a standard particle filter. In particular, having

exploited the current measure to guide the state space exploration

and to sample the new patch appearance forsk+1, we cannot define
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2.3 Adaptive modeling with Particle Filtering

the likelihood in terms of it, sincesk+1 depends onyk . There-

fore, we define the likelihood ofsk+1 in terms of the particles of

the distribution of the other class,i.e. we use the particles of the

background class to assess the likelihood of the foregroundpar-

ticles and vice versa. Note that this way to evaluatep(yk | sk+1)

implicitly takes still into account the measureyk, since the patches

from both classes come fromyk through the proposal density.

We base our likelihood on the Zero-mean Normalized Cross Cor-

relation (ZNCC). When applied to graylevel patches, this measure

computes the similarity of the patches and is invariant to affine

changes of the illumination. Therefore, the likelihood in our algo-

rithm accounts for the robustness towards photometric changes of

the target. The ZNCC of two vectorsa, b is defines as

ZNCC(a, b) =
(a− µ(a)1)(b − µ(b)1)
|a− µ(a)1| |b − µ(b)1|

(2.10)

where1 is the vector of 1s of the same dimension ofa andb, µ(x)

is the mean of the components of the vectorx and|x| its norm. Let

j̄ = arg max
j=1,...,M

ZNCC
(
Tk+1, T̄

j
k+1

)
(2.11)

whereT̄ j
k+1 stand for thej-th particle of the other class with respect

to the class ofTk+1. Then we compute the likelihood as

p(Ik, xk | Tk+1, vk+1) ∝ exp(
1− ZNCC(Tk+1, T̄

j̄
k+1)

2
) . (2.12)

Our definition of the likelihood is discriminative: the weight of

each particle of the appearance model is higher the more discrim-

inative with respect to the other class the particle is. Thismeans

that the resampling stage will be able to discard the particles not

useful to track the target when estimating the model for the current

frame. In other words, the weights computation performed with
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our likelihood realizes the Feature Processing stage of thescheme

for model update presented before. If besides graylevel patches

other features are used, their weighting and the subsequentresam-

pling would effectively perform also probabilistic feature selec-

tion. The main difficulty to successfully carry out feature selection

in this way is represented, as discuss in the previous section, by the

different scales and dynamic responses of the similarity functions

used to compare the features (e.g. the Bhattacharyya distance for

histograms versus the ZNCC for patches ), that makes it difficult

to obtain comparable likelihood values.

State Proposal DensityWe employ a standard Gaussian proposal with

a fixed, diagonal covariance matrixΣx.

p(xk | xk−1, Ik) = N(xk, µ = xk−1,Σ = Σx) (2.13)

State Observation Likelihood

p(Ik | xk) (2.14)

Given the model estimated on the previous frameAk = {AFk ,A
B
k }

let

j̄ i = arg max
j=1,...,M

ZNCC
(
Ik

∣∣∣
xk,vi

k
,T j

k+1

)
∀ si

k ∈ AFk (2.15)

i.e. for each foreground particle the index points to the patch in

the background model that is the most similar to the current frame

in the location given by the foreground particle displacement. In

other words, it indicates the particle of the background that best

explains the foreground appearance, given that the target is really
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at xk. Then, we compute the state likelihood as

p(Ik | xk) ∝ exp


1
M

M∑

i=1

max(0,ZNCC(T i
k, Ik

∣∣∣
xk,vi

k
)−

ZNCC(T j̄i
k , Ik

∣∣∣
xk,vi

k
)
)

(2.16)

i.e. as the mean likelihood obtained by the candidatexk over all

the particles of the foreground model, where the likelihoodof a

candidate with respect to a particle of the foreground is given by

the similarity with the foreground patch and the dissimilarity from

the best background patch of the patch at the location identified

by the foreground particle displacement. This definition ofthe

likelihood naturally deals with partial occlusions. To overcome

also total occlusions we have to increase the stability of our al-

gorithm by using one of the strategies introduced in Sec. 2.2.6.

We deployed the sliding window strategy since it is the simplest,

most efficient one and the overall probabilistic inference structure

of our proposal already provides robustness against outliers, such

as those included in the target model during occlusions. To in-

clude the sliding window strategy in our proposal the appearance

tracker particles are no more patches with displacements, but slid-

ing windows of patches and displacements. The proposal density

is identical, whereas both likelihood values are computed as the

average over the sliding window of the likelihoods for a single

patch, presented above.

2.4 Experimental Results

2.4.1 Methodology

Trackers are initialized with the first bounding box available in the ground

truth. Probabilistic trackers have been run 10 times and themean of

these runs is used for comparison with other trackers but theerror bars
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for these trackers are plotted in the charts as well. Comparable or even

better mean scores are not enough to assess that a probabilistic tracker is

to be preferred: if the variance is higher the tracker is lessreliable and,

hence, less useful in a real deployment.

Two charts are used for each sequence. One reports the dice overlap

with the ground truth in each frame of the sequence.i.e. the mean value

of the ratio between 2 times the area of the intersection of the ground

truth bounding box with the estimated bounding box and the sum of

their areas:

dk =
2
∣∣∣xk ∩ xGT

k

∣∣∣
|xk| +

∣∣∣xGT
k

∣∣∣
. (2.17)

This performance index varies in [0, 1], the higher the better. Such

index is also highly sensitive to small misalignment of the bounding

boxes, hence values above 0.7 usually correspond to satisfactory track-

ing.

The second chart shows correct track ratio versus the mean overlap

on correct frames, where we define correct frames those wherethe over-

lap is greater than a threshold and the correct track ratio isgiven by the

ratio between the correct frames and the total frame of the sequence. An

optimal tracker is represented by a line at the very top of thechart. This

chart tries to cope with the fact that for different applications different

correct track ratios (more commonly expressed as lost trackratio) may

be required. By considering the chart at a defined x coordinate, it is

possible to understand which trackers are able to provide such level of

lost track ratio, if their line intersects such vertical axis, and with which

accuracy, represented by their mean overlap.

We compare our proposal against several adaptive trackers selected

for their relevance in the recent literature as well as for the availability of

the implementations at the authors’ website: Boost Tracker[29], Semi-

Boost Tracker [30], BeyondSemiBoost Tracker [89], A-BHMC (Adaptive-

BasinHopingMC) [45], IVT (Incremental Visual Tracker) [80].
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(a) (b) (c)

Figure 2.6: From left to right: Initialization frame for theDollar se-
quence; sudden change of appearance (frame 90); a distractor pops out
(frame 130).The green rectangle represents the ground truth bounding
box.

To evaluate the importance of model adaptation in the considered

sequences as well as to rank the overall performance of adaptive solu-

tions, results from three standard non adaptive solutions are also added,

namely Frag-Track [1], a color-based particle filter [78] and Mean-shift

[17].

All the sequences are part of the dataset provided by the authors of

MILBoost [5].

2.4.2 Dollar sequence

This is a simple sequence, but it allows for some interestingconsid-

erations. There is no clutter. The target (Fig. 2.6a) suddenly changes

appearance (Fig. 2.6b). After a while a distractor equal to the original

appearance of the target pops out close to the target (Fig. 2.6c) and then

moves next to it. It is useful to understand the robustness todistractors

and the degree of adaptiveness of the algorithms in a very controlled and

predictable situation.

SemiBoost uses a fixed external classifier. This allows for very good

performances up to the sudden change. After that, the targetis believed

to have exited the scene by this tracker because nothing matches well

with such prior model. When the distractor appears, this tracker believes

the object is back in the scene, and follows it.
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BeyondSemiBoost uses an adaptive slowly evolving prior in combi-

nation with a fixed one from the first frame. This allows the tracker to

overcome the sudden appearance change. Nevertheless, whenthe dis-

tractor appears, the fixed prior misleads the tracker.

The behavior of Boost is slightly unexpected. Since it is notbinded

to the initial appearance by a prior, it should have been ableto avoid the

distractor, as well as the sudden change. It does indeed overcome the

change in appearance but it many runs it jumps on the distractor as soon

as it appears, much like BeyondSemiBoost. This explains thehigher

variance compared to the other trackers. The behaviour of A-BHMC is

interesting. Since it is designed to cope with appearance changes steam-

ing from geometric changes, it allows its patches to move independently

from each other, similarly to our proposal, but not to vary much in ap-

pearance, since patches are matched across frames using a tracker as-

suming brightness constancy. This results in a greater instability than the

other trackers. This also leads to two outcomes that limit its performace

in this sequence: the lower part of the target is excluded from the model

when it changes and some patches are attracted by the distractor when it

appears close to the target. Therefore, the ouput of the tracker stretches

between the target and the distractor. Our proposal, which updates also

the particle appearance, does not suffer from these problems.

As for non adaptive solutions, the use of global statistics allows

Mean Shift to overcome the nuisances of this scene, because the new

appearance of the target is similar to the previous one as fasas the color

histogram is concerned and the use of temporal consistency prevents it to

jump completely onto the distractor. Nevertheless its performance after

the appearance of the distractor is not satisfactory. FragTrack, using spa-

tially localized histograms, is instead affected by the change and drifts to

the distractor. The Particle Filter exhibits a large variance in its results,

given by the fact that in the trials of the algorithms it was sometimes af-

fected by the distractor and sometimes not: this indicates that the ability

of the particle filter to avoid the distractor in this sequence is just a ran-

dom event due to the random approximation of the posterior produced
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by the filter.

The best performer are IVT and our proposal. IVT deploy a parti-

cle filtering for state tracking as our tracker. Its target model is instead

composed by global features, in particular the target graylevel template.

A subspace of templates is constructed on-line and the distance from it

constitutes the base for the definition of the observation likelihood. This

is a very stable solution and has problems in adapting to sudden changes

of appearance. Moreover the graylevel template has problems in dealing

with deformable targets. None of these critics condition ismet in this

sequence, where from the object sudden change to the appearance of the

distractor more then 40 frames elapses while the object is still and the

majority of the target does not deform. Therefore, the tracker obtains

a performance equivalent to ours both in terms of mean overlap and of

variance. Both trackers are able to learn the new appearanceof the target

and do not confound it with the distractor in all the runs.

2.4.3 Faceocc2 sequence

This is a moderately difficult scene, targeting face tracking (Fig. 2.8).

The main nuisances in these scenes are frequent and rather large occlu-

sions. Beside, a permanent target appearance change happens about the

middle of the sequence, followed by a last occlusion. Hence,the main

ability a tracker has to show in this sequence is a high discriminative

power between occlusions,i.e. spurious changes of the target appear-

ance, and permanent changes of the target.

Results are reported in Fig. 2.9. Our proposal turns out the best again,

as shown by the correct track ratio chart. Thanks to its formulation, our

filter is able to discriminate between partial occlusions and changes of

the target. In fact, when the book starts to occlude the face,its appear-

ance has been already captured by the particle of our appearance model

that are modeling the background. Hence, when performing weights

update and resampling, the patches extracted on the book to perform tar-

get model update will receive a low score and will be likely discarded,
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Figure 2.7:Dollar sequence
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(a) 8 (b) 93 (c) 163 (d) 268

(e) 498 (f) 573 (g) 718 (h) 808

Figure 2.8: From left to right, top to bottom: Initialization frame for
theFaceocc2sequence; first mild occlusion (frame 93); a larger occlu-
sions (frame 163); third occlusions (frame 268); target rotation and large
occlusions (frame 498); target appearance change (frame 573); large oc-
clusion (frame 718); final appearance of the target (frame 808). The blue
rectangle represents the ground truth bounding box.

therefore not corrupting the target model. On the other hand, the hat is

fully included in the target bounding box, and therefore itspatches are

inserted in the target model.

IVT, deploying global features, suffers more than our proposal both

the large occlusion around frame 500 and the target appearance defor-

mation around frame 350 (head turning). Mean-shift deploying global

features ,as well, and being not adaptive cannot cope with the challenges

of this sequence. FragTrack, although non adaptive, too, isbased on

part-wise features. Since the target appearance does not change up to

frame 550, the non adaptiveness of the tracker is compensated by the

ability to correctly match the target in presence of occlusions, and the

tracker is the second best in the correct track ratio chart. Nevertheless,

the tracker suffers the target deformation around frame 350 and the ap-

pearance change after the last occlusion. This indicate theneed to allow

for target deformation when deploying part-wise features and the need

to update the part-based representation to obtain better overlaps in this
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sequence.

Trackers deploying external classifiers for the sample and labeling

stage (SemiBoost, BeyondSemiBoost) show good performances up to

the large target deformation of frame 300. Again, the use of strong pri-

ors on the target appearance, assumed by using a detector to label new

samples for appearance model update, limits their adaptability. On the

other hand, a continuously adapting tracker like Boost suffer the same

nuisances, and in particular occlusions, because of its lack of stability.

2.4.4 Coke sequence

A can of Coke is tracked in front of a uniform background. The can

is moved behind a plant, causing partial and total occlusions. The can

is also rotated, causing appearance changes. Finally, an artificial light

stands very close to the target causing reflections and illumination changes.

The target is also small and relatively untextured. Overall, a challenging

sequence from many points of view.

Results are reported in Fig. 2.11. Basically, all trackers fail. The

not adaptive solutions loose the target immediately since the can starts

to rotate from the first frame. Appearance changes handling is of course

fundamental in this sequence. The use of priors in SemiBoostand Be-

yondSemiBoost does not allow them to cope with a sequence with so

many sudden changes of appearance. Also the prior cannot be really

informative since the object is relatively untextured, very small and sim-

ilar to the background. The use of salient regions by A-BHMC makes it

loose the target as soon as an untextured side of the can is shown to the

camera.

Even IVT looses the target in the first frame because it does not have

the time to create an effective subspace representation for the can appear-

ance in the first frames, where the can keeps on changing its appearance.

Moreover, subspaces and manifolds do not seem the appropriate tools to

cope with this sequence.

The only partially successful solutions are those that allows for con-

66



2.4 Experimental Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100  200  300  400  500  600  700

D
ic

e 
O

ve
rla

p

Frame

Boost
FragTrack
MeanShift

SemiBoost
IVT

BeyondSemiBoost

ParticleFilter
Proposed
A_BHMC

(a) Dice Overlap

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

M
ea

n 
D

ic
e 

O
ve

rla
p

Correct Track Ratio

Boost
FragTrack
MeanShift

SemiBoost
IVT

BeyondSemiBoost

ParticleFilter
Proposed
A_BHMC

(b) Correct Track Ratio

Figure 2.9:Faceocc2sequence
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(a) 0 (b) 10 (c) 65 (d) 185

Figure 2.10: From left to right: Initialization frame for the Cokese-
quence; after ten frames the appearance of the can is alreadychanged
and the target undergoes a partial occlusion; then the can wanders around
undergoing changes in appearance and illumination as in frame 65 and
occlusions as in frame 185. The green rectangle represents the ground
truth bounding box.

tinuous update, without priors, and with a part based model,namely

Boost and our filter. We mainly impute the failure of our filterin this se-

quence to the lack of texture of the back of the object that is not correctly

handled by our observation likelihood based on the ZNCC. We believe

that with a proper mechanism to perform on-line feature selection and

the inclusion of edge features our performance will likely improve.
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Chapter 3

Synergistic Change Detection

and Tracking

In this chapter we investigate adaptive visual tracking with static cam-

eras. The usual approach [15, 32, 34, 38, 88, 90, 104] in such acase

is to ground tracking onchange detection: a process that labels every

pixel as changed (i.e. a target pixel) or unchanged (i.e. a background

pixel) with respect to a static background. Although in these propos-

als change detection is key for tracking, little attention has been paid to

sound modeling of the interaction between the change detector and the

tracker. This negatively affects the quality of the information flowing

between the two computational modules, as well as the soundness of the

proposals. Moreover, the interaction can be highly influenced by heuris-

tically tuned parameters, such as change detection thresholds, that limit

the deployment of these solutions in real world applications.

Our work aims at sound modeling of the analysis of the output of the

change detection that produces a new measure for the tracker. We also

wish to have a limited number of parameters and that they can be easily

interpreted and tuned. As we have seen, Recursive Bayesian Estimation

(RBE) casts visual tracking as a Bayesian inference problemin state

space given noisy observation of the hidden state. Bayesianreasoning

has been recently used also to solve the problem of change detection in
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image sequences [47].

We introduce a novel Bayesian change detection approach aimed at

efficiency and robustness to common sources of disturbance suchas il-

lumination changes, camera gain and exposure variations, noise. At

each new frame, a binary Bayesian classifier is trained and then used

to discriminate between pixels sensing a scene change and pixels sens-

ing a spurious intensity variation due to disturbs. After efficient non-

parametricestimation of likelihood distributions for both classes, the

posterior probability of sensing a scene change at each pixel is obtained.

Given this Bayesian change detector and a generic recursiveBayesian

filter as tracker, we develop a principled framework wherebyboth algo-

rithms can virtuously influence each other according to a Bayesian loop.

In particular:

• the output of the change detection is used to provide a fully speci-

fied observation likelihood to the RBE tracker;

• the RBE tracker provides a feedback to the Bayesian change de-

tector by defining an informative prior for it;

• both PDFs are modeled and realized as marginalizations of the

joint PDF on tracker state and change detector output.

The derivation of a measure for the tracker from the change detec-

tion output is a fundamental part of a every tracker based on change

detection. The idea of letting the tracker provide a feedback to change

detection is inspired by the emergence of cognitive feedback in Com-

puter Vision [96]. The idea of cognitive feedback is to let not only low-

level vision modules feed high-level ones, but also the latter influence

the former. This creates a closure loop, reminiscent of effects found in

psychophysics. This concept has not been deployed for the problem of

visual tracking yet. Nevertheless, it fits surprisingly well in the case

of Bayesian change detection, where priors can well model the stimuli

coming from the tracker.
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By exploiting the synergy between the two flows of information our

system creates a full and synergistic Bayesian loop betweenthe tracker

and the change detection, whose benefits are presented in theExperi-

mental Results section (Sec. 3.6), where the Kalman Filter is used as

RBE tracker and the algorithm introduced in Sec. 3.4 as change detec-

tion. However, our proposal is general and in principle can be used with

any RBE tracker and Bayesian change detection, such as e.g.,respec-

tively, particle filters and [47].

3.1 Related Works

Classical works on blob tracking based on change detection areW4

[32] and the system developed at the Video Surveillance and Monitor-

ing (VSAM) group of CMU [15]. In these systems the output of the

change detector is thresholded and a connected component analysis is

carried out to identify moving regions (blobs). A first or second order

dynamical model of every tracked object is used to predict its position in

the current frame from the previous ones. Positions are thenrefined by

matching the predictions to the output of the change detection. In VSAM

[15] any blob whose centroid falls within a neighborhood of the target

predicted position is considered for matching. Matching isperformed as

correlation of an appearance template of the target to the changed pixels,

and the position corresponding to the best correlation is selected as the

new position for the object. InW4 [32] the new position is that cor-

responding to the maximum of the binary edge correlation between the

current and previous silhouette edge profiles. However, theinteraction

between tracking and change detection is limited, trackingis not formal-

ized in the context of RBE, change detection depends on hard thresholds,

no probabilistic reasoning is carried out to derive a new measure from the

change detection output or to update the object position, (i.e. a bunch of

heuristics are used to solve the case of not connected blobs for the same

object).
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Chapter 3. Synergistic Change Detection and Tracking

[90] and [34] are examples of blob trackers based on change detec-

tion where the RBE framework is used in the form of the Kalman filter.

Yet, the use of this powerful framework is impoverished by the absence

of a truly probabilistic treatment of the change detection output. In prac-

tice, covariance matrices defining measurement and processuncertain-

ties are constant, and the filter evolves toward its steady-state regardless

of the quality of the measures obtained from change detection. A pos-

teriori covariance matrices are sometimes deterministically increased by

the algorithms, but this is mainly a shortcut to implement track manage-

ment: if there is no match for the track in the current frame uncertainties

are increased and if a posteriori uncertainties on state gets too high, the

track is discarded.

[38] is one of the most famous attempt to integrate RBE in the form

of a particle filter with a statistical treatment of background (and fore-

ground) models. It proposes a multi-blob likelihood function that, given

the frame and the background model, allows the system to reason prob-

abilistically on the number of people present in the scene aswell as on

their positions. The main limitations are the use of a calibrated camera

with reference to the ground plane and the use of a foregroundmodel

learned off-line. While the former can be reasonable, although cumber-

some, the use of foreground models is always troublesome in practice,

given the high intra-class variability of target appearances. Moreover, no

cognitive feedback is provided from the Particle Filter to influence the

change detection.

Sorts of cognitive feedbacks from tracking to change detection have

been used so far only to deal with background maintenance andadap-

tive background modeling issues. For example, [95] proposes a method

based on approximate inference on a dynamic Bayesian Network that

simultaneously solves tracking and background model updating for ev-

ery frame. Nevertheless, as discussed by the authors, this proposal do

not take advantage of models of foreground motion as our algorithm

does, although this would allow for better estimation of both the back-

ground model and the background/foreground labels, because it will also
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severely complicate inference. Another example of background mainte-

nance is [33], where positive and negative feedbacks from high-level

modules ( a stereo-based people detector and tracker, a detector of rapid

changes in global illumination, camera gain, and camera position) are

used to update the parameters of the Gaussian distributionsin the Gaus-

sian Mixture Model used as background. These feedbacks comein the

form of pixel-wise positive or negative real number maps that are gen-

erated as sum of the contributions of the high-level modulesand are

thresholded in order to decide if a pixel should be used to update the

background. Contributions from the high-level modules areheuristically

determined.

3.2 Models and assumptions

We first present assumptions and notations used to model RBE and Bayesian

change detection separately, then we introduce the common framework

that allows us to define probabilistically the bidirectional interaction be-

tween the two modules,i.e. the observation likelihood for the tracker

defined on the change map and the prior for the change detection that

implements the Cognitive Feedback.

3.2.1 RBE model

We assume a rectangular model for the tracked object, as donein many

proposals such asi.e. [17]. Hence, the state of the RBE tracker,xk,

comprises at least four variables

xk =
{
ibk, j

b
k,wk, hk, . . .

}
(3.1)

where (ibk, j
b
k) are the coordinates of the barycenter of the rectangle and

wk andhk its dimensions. These variables define the position and size

at framek of the tracked object. Of course, the state internally used

by the tracker can beneficially include other cinematic variables (veloc-
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ity,acceleration,. . . ). Yet, change detection can only provide a measure

and benefit from a prior on the position and size of the object.Hence,

other variables are not used in the reminder of the presentation of the

algorithm, though they can be used internally by the RBE filter, and are

indeed used in our implementation (Sec. 3.6).

We can also represent the bonding box by defining new variables iL,

jT , iR, jB as

A =


1 −1

2

1 1
2

 ,


iL

iR

 = A


ibk
wk

 ,


jT
jB

 = A


jbk
hk

 . (3.2)

We assume the variablesiL, jT , iR, jB to be independent, since this

is reasonable in our context and also simplifies the derivation of the in-

formation flows of our loop. This implies that the variablesibk, j
b
k,wk, hk

defining the alternative representation are not independent, but this is not

a problem since RBE can handle dependent variables (e.g. the Kalman

filter does not require diagonal covariance matrices).

3.2.2 Bayesian change detection model

In Bayesian change detection each pixel of the image is modeled as a

categorical Bernoulli-distributed random variable,ci j , with the two pos-

sible realizationsci j = C andci j = U indicating the event of pixel (i, j)

being changed or unchanged, respectively.

In the following we refer to the matrixc=
[
ci j

]
of all these random

variables as thechange maskand to the matrixp=
[
p(ci j =C)

]
of prob-

abilities defining the Bernoulli distribution of these variables aschange

map. The change mask and the change map assume values, respectively,

in the (w× h)-dimensional spacesΘ= {C,U}w×h andΩ= [0, 1]w×h, with

w andh denoting image width and height, respectively. The output of a

Bayesian change detector is the posterior change map given the current

frame fk and background modelbk, i.e. the value of the Bernoulli dis-

tribution parameter for every pixel in the image given the frame and the
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Figure 3.1: Model for the change map given a bounding box.

background:

p(ci j = C | fk, bk) =
p( fk, bk | ci j = C)p(ci j = C)

p( fk, bk)
(3.3)

Clearly, either anon-informativeprior is used, such as a uniform prior,

or this information has to be provided by an external module.We as-

sume that the categorical random variablesci j comprising the posterior

change mask are independent,i.e. they are conditionally independent

given fk, bk.

3.2.3 Bayesian loop models

All the information that can flow from the RBE filter to the Bayesian

change detection and vice versa is in principle representedin every frame

by the joint probability density functionp(xk, c) of the state vector and

the change mask. Both information flows can be formalized andrealized

as its marginalization:

p(ci j ) =
&

R4

∑

ci j ∈Θi j

p
(
xk, ci j , ci j

)
dxk (3.4)

p(xk) =
∑

c∈Θ

p (xk, c) (3.5)
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Figure 3.2: Overall system description. In every frame the RBE tracker
provides a predictionp (xk | z1:k−1) from the previous state that is used
by our framework to generate a set of priorsp

(
ci j

)
, each one of them

assessing the probability that a particular pixels is changed. This infor-
mative prior is used by a Bayesian change detection algorithm together
with the current framefk and a model of the backgroundbk to produce
a change mapp

(
ci j | fk, bk

)
. The change map is not thresholded but a

probabilistic analysis is carried out in order to provide a new measure
for the trackerp (zk | xk), that is merged with the prediction in the update
state of RBE. The blue and red histogram around respectivelythe pre-
diction and the measure represent the variance associated with the four
variables defining a bounding box, which are assumed to follow a Gaus-
sian distribution in the specific example. Generally speaking, they are
placed there to remind to the reader that completely specified probabili-
ties are flowing from and into the RBE tracker thanks to our proposal.
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whereci j denotes the change mask without the (i, j)-th element, taking

values inside the spaceΘi j = {C,U}w×h−1.

The PDF computed with (3.4) defines an informative prior for the

Bayesian change detection algorithm, and the estimation ofthe state ob-

tained with (3.5) can then be used as the PDF of a new measure bythe

RBE tracker,i.e. asp(zk | xk). We detail in Sec. 3.3 and Sec. 3.5 the so-

lutions for (3.4) and (3.5). With reference to Fig. 3.2, it isworth notice

that in our framework only fully defined probabilities flow among the

modules, not just expectations or deterministic measures.

As we shall see in next sections, to use the above equations weneed a

statistical model that links the two random vectorsxk andc. In agreement

with our rectangular model of the tracked object, as shown inFig. 3.1 we

assume

p
(
ci j = C | xk

)
=


K1 if ( i, j) ∈ R(xk)

K2 otherwise
(3.6)

whereR(xk) is the rectangular region delimited by the bounding box

defined by the statexk and 0≤K2≤K1≤ 1 are two constant parameters

specifying the probability that a pixel is changed inside and outside the

bounding box, respectively. Moreover, we assume that the random vari-

ablesci j are conditionally independent given a bounding box,i.e.

p (c | xk) =
∏

i j

p
(
ci j | xk

)
(3.7)

3.3 Cognitive Feedback

Given the assumptions in Sec. 3.2, we can obtain an exact solution for

(3.4), i.e., given the PDF of the state vectorp(xk), we can compute a

prior p(ci j ) for each pixel of the frame that can then be used as prior in

the Bayesian change detection algorithm. Starting from (3.4), we can
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rewrite it as

p
(
ci j

)
=

&

R4

∑

ci j∈Θi j

p
(
xk, ci j , ci j

)
dxk

=

&

R4

p
(
xk, ci j

)
dxk

=

&

R4

p
(
ci j | xk

)
p (xk) dxk (3.8)

In the final marginalization we can recognize our model of thechange

map given a bounding box defined in (3.6) and the PDF of the state.

Therefore, this equation provides a way to let the current estimation

of the state computed by the RBE module influence the prior forthe

Bayesian change detection algorithm, thereby realizing the Cognitive

Feedback. In particular, as discussed above, we will use thepredic-

tion computed for the current frame using the motion model,i.e. p(xk |

Z1:k−1).

To solve (3.8) we have to span the spaceR4 of all possible bounding

boxesxk. We partitionR4 into the two complementary sub-spacesBi j

andB̄i j = R
4 \ Bi j of bounding boxes that contain or not the considered

pixel (i, j), respectively. Given the assumed model (3.6), we obtain

p(ci j = C) =
&

R4

p(ci j | xk)p(xk) dxk

= K1

&

Bi j

p(xk) dxk + K2

&

B̄i j

p(xk) dxk

= K1

&

xk∈Bi j

p(xk) dxk + K2

&

xk∈R
4

p(xk) dxk

− K2

&

xk∈Bi j

p(xk) dxk

= K2 + (K1 − K2)I i j , I i j =

&

Bi j

p (xk) dxk . (3.9)
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SinceI i j varies in [0, 1], it follows thatp(ci j = C) varies in [K2,K1]: if no

bounding box with non-zero probability contains the pixel,we expect a

probability that the pixel is changed equal toK2; if all the bounding

boxes contain the pixel the probability isK1; it is a weighted average

otherwise.

By using the alternative representation for the bounding box defined

in (3.2) and recalling that we assumeiL, jT, iR, jB to be independent, the

integral becomes

I i j =

&

iL≤i≤iR

jT≤ j≤ jB


Bi j

p (iL) p (iR) p ( jT) p ( jB) diLdiRd jTd jB

=

i∫

−∞

p (iL) diL

+∞∫

i

p (iR) diR

j∫

−∞

p ( jT) d jT

+∞∫

j

p ( jB) d jB

= FiL (i)
(
1− FiR (i)

)
F jT ( j)

(
1− F jB ( j)

)
(3.10)

whereFx stands for the CDF of the random variablex.

This reasoning holds for any distributionp(xk) we might have on

the state vector. If, for instance, we use a particle filter asRBE tracker,

we can compute an approximation of the CDF from the approximation

of the PDF provided by the weighted particles, after having propagated

them according to the motion model and having marginalized them ac-

cordingly. In the case of the Kalman Filter all the PDFs are Gaussians,

hence we can define all the factors of the product in (3.10) in terms of

the standard Gaussian CDF,Φ(·)

I i j = Φ

(
i − µiL

σiL

)
Φ

(
µiR − i

σiR

)
Φ

(
j − µ jT

σ jT

)
Φ

(
µ jB − j

σ jB

)
(3.11)

whereµx andσx stand for the mean and the standard deviation of the

random variablex. The factors of the product in (3.11) can be computed

efficiently with only 4 searches in a pre-computed Look-Up Tableof the

standardΦ(·) values.
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3.4 Bayesian change detection

The main difficulty with change detection consists in discerning changes

of the monitored scene in presence of spurious intensity variations yielded

by nuisances such as noise, gradual or sudden illumination changes,

dynamic adjustments of camera parameters (e.g. auto-exposure, auto-

gain). Many different algorithms for dealing with these issues have been

proposed (see [24] for a recent survey).

A first class of popular algorithms based on statistical per-pixel back-

ground models, such as e.g. Mixture of Gaussians [90] or kernel-based

non-parametric models [23], are effective in case of noise and gradual

illumination changes (e.g. due to the time of the day). Unfortunately,

though, they cannot deal with those disturbs causing suddenintensity

changes (e.g. a light switch), yielding in such cases lots offalse posi-

tives.

A second class of algorithms relies on a priori modeling the pos-

sible spurious intensity changes over small image patches yielded by

disturbs. Following this idea, a pixel from the current frame is classified

as changedif the intensity transformation between its local neighbor-

hood and the corresponding neighborhood in the background can not be

explained by the chosen a priori model. As a result, gradual as well

as sudden photometric distortions do not yield false positives provided

that they are explained by the model. Thus, the main issue concerns

the choice of the a priori model: generally speaking, the more restric-

tive such a model, the higher is the ability to detect changes(sensitiv-

ity) but the lower is robustness to disturbs (specificity). Some proposals

assume disturbs to yield linear intensity transformations[53, 68]. Nev-

ertheless, as discussed in [102], many non-linearities mayarise in the

image formation process, so that a less constrained model isoften re-

quired to achieve adequate robustness. Hence, other algorithms adopt

order-preserving models, i.e. assume monotonic non-decreasing inten-

sity transformations [48, 64, 102]

We propose a change detection approach that, instead of assum-
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Figure 3.3: Notations adopted for the background (on the left) and the
current frame (on the right) neighborhood intensities.

ing a-priori the model of intensity changes caused by disturbs, learns

it on-line together with the model of intensity changes yielded by fore-

ground objects. In particular, at each new frame a binary Bayesian clas-

sifier is trained and then used to discriminate between pixels sensing a

scene change due to foreground objects and pixels sensing a spurious in-

tensity variation due to disturbs. On-line learning of the models holds the

potential for deploying on a frame-by-frame basis models asrestrictive

as needed to discriminate between the two classes, so that the algorithm

can exhibit a high sensitivity without a significant loss of specificity.

Moreover, the fully Bayesian formulation for the change detection prob-

lem allows for seamlessly incorporating in a sound way a prior proba-

bility to strengthen the change detection output. In our framework this

prior is provided by the tracker via the cognitive feedback defined above.

3.4.1 On-line learning for change detection

By taking pixels in lexicographical order, let us denote thebackground

and the current frame intensities, respectively, as

B = (x1, . . . , xN) and F = (y1, . . . , yN) (3.12)

wherexi , yi ∈ [0, 255] ⊂ N, i = 1, . . . ,N andN is the total number of

pixels in the images. The goal of change detection is to compute the

binary change mask

M = (c1, . . . , cN) (3.13)

i.e. to classify each pixeli into one of the two classes:
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ci = C : the pixel is sensing a scene change;

ci = U : the pixel is not sensing a scene change.

The idea at the basis of our proposal consists in training at each new

frame a binary Bayesian classifier using as feature vector the background-

frame pair of intensities (x, y) observed at a pixel, and then computing

the change map by letting each pixel take the a-posteriori value of the

probability of being changed:

p(c=C | x, y)=
p(c=C)p(x, y | c=C)

p(x, y)
. (3.14)

The priorp(c=C) is obtained via the Bayesian loop from the tracker.

In order to train the classifier we have to estimate the likelihoodp(x, y |

c=C) and the evidencep(x, y). We can avoid to estimate the evidence by

the usual manipulation of (3.14) as

p (c = C | x, y) =
p (c = C) p (x, y | c = C)

p (x, y)

=
p (c = C) p (x, y | c = C)

p (c = C) p (x, y | c = C) + p (c = U) p (x, y | c = U)

=
1

1+
p (c = U) p (x, y | c = U)

p (c = C) p (x, y | c = C)

. (3.15)

To estimatep(x, y | c=C) and p(x, y | c=U), we carry out a pre-

liminary classification of pixels by means of a very simple and efficient

neighborhood-based change detection algorithm. For a generic pixel i,

let the intensities of a surrounding 3× 3 neighborhood be denoted as

in Fig. 3.3, let the intensity differences between thej-th and the central

pixel of the neighborhood in the background and in the current frame be,

respectively,

d(x)
i, j = xi, j − xi and d(y)

i, j = yi, j − yi (3.16)
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and let the pixel in the neighborhood yielding the maximum absolute

value of the background intensity difference be

j̄ i = arg max
j=1,...,8

∣∣∣∣d(x)
i, j

∣∣∣∣ (3.17)

A preliminary change mask̃M = (c̃1, . . . , c̃N) is computed by classifying

each pixel as changed if the sign of the intensity differencesdx
i, j̄i

anddy
i, j̄i

is the same, unchanged otherwise:

c̃i = c

d(x)
i, j̄i
· d(y)

i, j̄i
⋚ 0

c̃i = u

(3.18)

This algorithm is a simplified version of that proposed in [102] and ex-

hibits O(N) complexity. In fact, since the background model is not up-

dated, the computation of̄j i for each pixel by (3.17) can be performed

off-line after background initialization. Furthermore, the algorithm is

threshold-free.

The preliminary change mask is thus used to label each pixel to cre-

ate a training set out of the current frame. The two likelihood distribu-

tions p(x, y | c=C) andp(x, y | c=U) are estimated on this training set

as follows:

p(x,y | c=C)=
hC(x,y)

NC
(3.19)

p(x,y | c=U)=
hU(x,y)

NU
(3.20)

whereNC is the number of pixels labeled as changed,hC(x, y) andhU(x, y)

are the 2-D joint histograms of background versus frame intensity com-

puted by considering, respectively, the pixels labeled as changed and

those labeled as unchanged. Before being used in (3.15), both the his-

togramshC(x, y) andhU(x, y) are smoothed by averaging over a moving

window of fixed size. The smoothing allow for correcting errors intro-

duced by wrong labeled training data in the preliminary rough labeling
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as well as for introducing a small amount of spatial consistency among

labels, under the hypothesis that pixels close to each otherin the image

space show similar intensity values both in the foreground and in the

background.

3.5 Reasoning probabilistically on change maps

Given the change mapp =
[
p(ci j =C)

]
obtained by the Bayesian change

detection algorithm, we aim at computing the probability density func-

tion p(xk) of the current state of the RBE filter, to use it as the observation

likelihood p(zk | xk). To this purpose, from the marginalization in (3.5)

we obtain:

p(xk) =
∑

c∈Θ

p(xk, c)

=
∑

c∈Θ

p(xk | c)p(c)

=
∑

c∈Θ

p(xk | c)
∏

i j

p(ci j ) (3.21)

where the last equality follows from the assumption of independence

among the categorical random variablesci j comprising the posterior change

map computed by the Bayesian change detection.

To use (3.21), we need an expression for the conditional probability

p(xk | c) of the state given a change mask, based on the assumed model

(3.6), (3.7) for the conditional probabilityp(c | xk) of the change mask

given a state. Informally speaking, we need to find the inverse of the

model (3.6), (3.7).

By Bayes rule, eq. (3.7) and independence of the variablesci j :

p(xk | c) = p∗(xk)
p(c | xk)

p∗(c)
= p∗(xk)

∏

i, j

p(ci j | xk)

p∗(ci j )
. (3.22)

We have used the notationp∗(xk) and p∗(ci j ) in (3.22) since here these

probabilities must be interpreted differently than in (3.21): in (3.21)
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3.5 Reasoning probabilistically on change maps

p(xk) andp(ci j ) represent, respectively, the measurement and the change

map of the current frame, whilst in (3.22) both must be interpreted as

priors that form part of our model forp(xk | c), which is independent

of the current frame. Furthermore, using as prior on the state p∗(xk) the

prediction of the RBE filter, as done in the Cognitive Feedback section,

would have created a strong coupling between the output of the sensor

and the previous state of the filter, that does not fit the RBE framework,

where measures depend only on the current state, and could easily lead

the loop to diverge. Hence, we assume a uniform non-informative prior

p∗(xk) = 1
α

for the state.

The analysis conducted for the Cognitive Feedback is usefulto ex-

pand eachp∗(ci j ) in (3.22). Since we are assuming a uniform prior on an

infinite domain for the state variables,i.e.a symmetric PDF with respect

to x = 0, it turns out that its CDF is constant and equals to1
2:

CDF(x) =
1
α

x+
1
2
α→+∞
−−−−−→

1
2

(3.23)

Hence, everyp∗(ci j ) in (3.22) can be expressed using (3.9) and (3.10) as:

p∗(ci j = C) = K2 + (K1 − K2)

(
1
2

)4

= KC. (3.24)

By plugging (3.22) in (3.21) and definingKU = p∗(ci j = U) = 1− KC:

αp(xk) =
∏

i, j

(
p(C | xk)p(C)

KC
+

p(U | xk)p(U)
KU

)
(3.25)

where, for simplicity of notation, we useC andU for ci j =C andci j =U,

respectively. Since we know thatp(U)= 1−p(C) andp(U | xk)=1−p(C |

xk), we obtain:

p (xk)
β
=

∏

i, j

(p (C) (p(C | xk) − KC) + KC (1− p (C | xk))) (3.26)

with β=1/α(KC(1−KC))w×h. By substituting the model (3.6) forp(C |
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xk) and taking the logarithm of both sides to improve the numeric stabil-

ity, after some manipulations we get:

γ + ln p(xk) = h(xk, p) =
∑

(i, j)∈R(xk)

ln
p(C)K3 + K4

p(C)K5 + K6
(3.27)

whereγ= − ln β −
∑

ln
(
p(C)K5+K6

)
andh(·) is a known function of

the state vector valuexk for which we want to calculate the probability

density, of the change mapp provided by the Bayesian change detection

algorithm, and of the constants

K3 = K1 − KCK4 = KC (1− K1) (3.28)

K5 = K2 − KCK6 = KC (1− K2)

Hence, by lettingxk vary over the space of all possible bounding boxes,

(3.27) allows us to compute, up to the additive constantγ, a non-parametric

estimationh(·) of the log-PDF of the current state vector of the RBE

tracker. This holds independently of the PDF of the state.

In the case of the Kalman Filter, the PDF of the state vector (ib, jb,w, h)

is Gaussian. In such a case, the variables (iL, jT, iR, jB) are a linear com-

bination of Gaussian Random Variables. Moreover, we are assuming

that variables (iL, jT, iR, jB) are independent. Therefore, the variables

(iL, jT, iR, jB) are jointly Gaussian and the meanµ and the covariance

matrix Σ of the state variables are fully defined by the four meansµL,

µR, µT , µB and the four variancesσ2
L, σ2

R, σ2
T , σ2

B of (iL, jT , iR, jB).

To estimate these eight parameters, let us substitute the expression of

the Gaussian PDF forp(xk) in the left-hand side of (3.27), thus obtaining:

δ−ln(σLσRσTσB)−
(iL−µL)2

2σ2
L

−
(iR−µR)2

2σ2
R

−
( jT−µT)2

2σ2
T

−
( jB−µB)2

2σ2
B

= h(xk, p)

(3.29)

whereδ = γ−2 ln(2π). The eight parameters of the PDF and the additive

constantδ might be estimated by imposing (3.29) for a numberN> 9

of different bounding boxes and then solving numerically the obtained
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3.5 Reasoning probabilistically on change maps

over-determined system ofN non-linear equations in 9 unknowns.

To avoid such a challenging problem, we propose an approximate

procedure. First of all, an estimatêµ of the mean of the state vector

µ= (µL, µR, µT , µB) can be obtained by observing that, due to increasing

monotonicity of logarithm, the mode of the computed log-PDFcoincides

with the mode of the PDF, and that, due to the Gaussianity assumption,

the mode of the PDF coincides with its mean. Hence, we obtain an

estimatêµ of µ by searching for the bounding box maximizingh(·).

µ̂ = arg max
x

h(x, p) (3.30)

Then, we impose that (3.29) is satisfied at the estimated meanpointµ̂

and that all the variances are equal,i.e.σ2
L =σ

2
R=σ

2
T =σ

2
B=σ

2, thus ob-

taining a functional relationship between the two remaining parameters

δ andσ2:

δ = 2 lnσ2+ h(̂µ, p) (3.31)

By substituting in (3.29) the above expression forδ and the estimated̂µ

for µ, we can compute an estimatêσ2(x) of the varianceσ2 by imposing

(3.29) for whatever bounding boxx , µ̂. In particular, we obtain:

σ̂2(x) =
1
2

∥∥∥µ̂ − x
∥∥∥2

2

h(̂µ, p) − h(x, p)
(3.32)

To achieve a more robust estimate, we averageσ̂2(x) over a neighborhood

of the estimated mean bounding boxµ̂. Finally, to obtain the means and

covariance of the measurements for the Kalman Filter, we exploit the

property of linear combinations of Gaussian variables:

µ =


A−1 0

0 A−1

 µ̂ Σ = σ̂2


A−1 0

0 A−1




A−1 0

0 A−1


T

(3.33)
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Chapter 3. Synergistic Change Detection and Tracking

3.6 Experimental Results

We have tested the proposed Bayesian loop on publicly available datasets

with ground truth data,i.e. some videos from the CAVIAR1 and ISSIA

Soccer datasets [22]. The former comprises videos from typical video-

surveillance scenarios, whereas the latter deals with a football match.

We have used a Kalman Filter with constant velocity motion model

as RBE tracker and the algorithm introduced in Sec. 3.4 as Bayesian

change detection. The detection to initialize the tracker was done man-

ually from the ground truth (although change detection holds the poten-

tial to solve the detection problem in the same conceptual framework,

an advantage over tracking systems based on other approaches such as

e.g. color histograms). We have selected videos with a single person or

where the tracked person was well separated from the others2.

In particular, the complete system has been used to track people

wondering in a shopping mall using three sequences from the CAVIAR

dataset (referred to as CAVIAR1, CAVIAR2, CAVIAR3, respectively)

and two players during a match in the sixth sequence of the ISSIA dataset

(ISSIA GK and ISSIAP). Tracking results for these videos are available

at the companion website.

As for the CAVIAR dataset, the main difficulties are changes in ap-

pearance of the target due to light changes inside and outside the shop,

shadows, camouflage, small size of the target and, for sequence 2, dra-

matic changes in target size onto the image plane (he walks inside the

shop until barely disappears). The ISSIA Soccer dataset is less challeng-

ing as far as color, lightening and size variations are concerned, and the

players cast practically no shadow. Yet, it provides longersequences and

more dynamic targets. We used our system to track the goalkeeper and

a player: the goalkeeper allows to test our system on a sequence 2500

1 Data coming from the EC Funded CAVIAR project/IST 2001 37540, found at
URL: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

2How to combine our system with proper data association algorithms and to take
into account in the probabilistic analysis of the change mapthe multiple target scenario
is an interesting subject for future work.
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3.6 Experimental Results

frames long; the player shows rapid motion changes and unpredictable

poses (he even falls to the ground kicking the ball in the middle of the

sequence).

Our system does not require to set a threshold to classify theoutput

of the change detection, only the model forp(ci j = C | xk) must be set.

To account for the differences between the reasoning of the cognitive

feedback and the analysis of the change map, two different models must

be defined,i.e. two different pairs of values forK1 andK2 must be tuned.

We refer to them asKCF
1 ,KCF

2 andKPA
1 , KPA

2 respectively. We coarsely

tuned these parameters on a sequence of the CAVIAR dataset not used

for testing. The best values turned out to be

KCF
1 = 0.5, KCF

2 = 0.0, KPA
1 = 0.5, KPA

2 = 0.2 . (3.34)

We expect these values to be generally applicable: we use them with

success also on the ISSIA videos. They basically state:

• that the model for both analyses must allow for unchanged pixels

into the bounding box (KCF
1 = KPA

1 = 0.5), due to the approxima-

tion inherent to the rectangular model in presence of non rectan-

gular and deformable targets;

• that a good prior for the change detection dictates the absence of

unchanged pixels outside he bounding box (KCF
2 = 0.0);

• that, even with a such a strong prior, we must allow for a small

number of errors of the Bayesian change detection out of the bound-

ing box and left them out of the estimation we provide when ana-

lyzing the change map (KPA
2 = 0.2).

These considerations hold regardless of the sequence at hand, the illumi-

nation condition and the characteristic of the target. Hence, we see our

system as a step toward easily deployable solutions for visual tracking.

We also coarsely tuned the values for the Kalman filter state covari-

ance matrix using the same sequence. We use a constant velocity motion
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Chapter 3. Synergistic Change Detection and Tracking

model, thereby adding the velocity of the target along thei and j axes to

the state vector. The best values turned out to be:

F =



1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(3.35)

Q =



1 0 0 0 0 0

0 10 0 0 0 0

0 0 1 0 0 0

0 0 0 10 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(3.36)

H =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.37)

with the state vectorxk given by

xk =

[
ibk

dibk
dk jbk

d jbk
dk wk hk

]T

. (3.38)

To quantitatively evaluate the performance we use the mean dice

overlapdk over a sequence, introduced in the previous chapter (Sec. 2.4.1

:

dk =
2
∣∣∣xk ∩ xGT

k

∣∣∣
|xk| +

∣∣∣xGT
k

∣∣∣
. (3.39)

Quantitative evaluation is reported in Table 3.1. Our system, whose

results are reported in the first column, successfully tracks all the tar-
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3.6 Experimental Results

Table 3.1: Performance scores.(∗) indicates loss of target.

Seq. Full Loop Constant R Kalm+MS FragTrack
CAVIAR 1 0.74 0.64 0.29(∗) 0.55
CAVIAR 2 0.66 0.66 0.01(∗) 0.01(∗)

CAVIAR 3 0.70 0.64 0.012(∗) 0.01(∗)

ISSIA GK 0.70 0.65 0.74 0.02(∗)

ISSIA P 0.61 0.56 0.64 0.02(∗)

gets. The main source of misalignment between the bounding box and

the ground truth in the CAVIAR dataset are shadows (first column of

Fig. 3.5 and 3.6): because of the position of the artificial lights, cast

shadows on the floor fit with our rectangular model and the analysis of

the change map tends to include them, elongating the bounding box (e.g.

the frames # 368 707 and 1046 of sequence CAVIAR 2, depicted in

Fig. 3.5). Although many proposals for shadow removal exist[77] and

could be used in a real deployment of our system, we present results

without such post processing step to better characterize our proposal and

show its robustness to disturbance factors.

On the ISSIA videos, too, our tracker was able to successfully track

both targets throughout the whole sequence, as shown in Fig.3.7. The

main limitation of our algorithm in this case is due to the assumed rect-

angular model: in many frames, the players are running or performing

extreme movements and their limbs cover a wider area than when a per-

son ise.g. walking. Hence, the actual changed area inside the ground

truth bounding box differs from a rectangular shape and the measures

of our system are always too conservative in size with respect to the

ground truth (e.g. frames # 656 and 768 of the player sequence in Fig.

3.7). Nevertheless, it is remarkable that our tracker is able to adapt to ex-

treme situations, such as the player falling on the ground (second frame

in the same sequence). It is also important that it succeededin tracking

the goalkeeper, although this sequence is easier than that of the player,

because this is a long sequence, and it shows that the proposed loop does
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Chapter 3. Synergistic Change Detection and Tracking

not incur in positive feedbacks and divergence.

To highlight the importance of the full Bayesian loop, we have per-

formed the same experiments without considering the full PDF estimated

during the change map analysis, but just the mean and a constant mea-

surement covariance matrixR equal to

R =



100 0 0 0

0 100 0 0

0 0 100 0

0 0 0 100


. (3.40)

Results for this configuration are reported in the second column of Tab.

3.1: our proposal performs consistently better throughoutall the se-

quences (only for one sequence, results are identical). Going into more

details, the superior performance is given by the ability ofour full loop

to be closer to the ground truth bounding box even when the rectan-

gular shape assumption is violated (e.g. compare frames # 720 in the

CAVIAR1 experiment reported in Fig. 3.4 and # 487 in CAVIAR3 ex-

periment reported in Fig. 3.6, where the feet and the head layoutside

of the bounding box estimated by the partial loop). This is inturn due

to the dynamic estimation of the measurement covariance matrix: in all

the frames where the rectangular model is not adequate, the probabilistic

analysis of the change map is able to detect such mismatch by obtaining

a higher uncertainty on its bounding box estimation (that for such frames

tends to concentrate on the target trunk) and this allows theKalman fil-

ter to trust less the measure and, hence, to be more accurate.The same

observation explains the difference in performance in the ISSIA dataset.

We also compare the performance of our tracker against two stan-

dard solution for visual tracking: Mean Shift tracker used in conjunction

with a Kalman Filter (KalmanMS) [17] and FragTrack [1]. Theyare

based, respectively, on the color histogram of the whole target (i.e. this

tracker ignores spatial distribution of the colors on the target) and on the

graylevel histogram of each cell of two grids superimposed on the target.
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Results for these trackers are reported in the third and fourth column of

Tab. 3.1, respectively.

The first sequence we consider from the CAVIAR dataset is the eas-

iest one in our tests. There are no scale changes, no motion low changes

(the person walks with practically constant velocity from right to left),

and moderate changes in appearance, due to the not uniform light inten-

sity in the corridor of the mall. Nevertheless this sequenceturns out to

be too difficult for the KalmanMS tracker and tough to handle for Frag-

Track. This is due to two factors: the moderate changes in appearance

of the target and the hypothesis of a rectangular target, assumed also by

these trackers. These two factors cause the KalmanMS tracker to pro-

vide poor tracking in the beginning of the sequence, not being able to

adapt to the deformations of the target (i.e. to include in the bounding

box the wide open legs in frame # 736 of Fig. 3.4) since the trunk alone

fits better with the initial model; and then, to drift to the background and

loose the target, since, due to the appearance change of the target, the

best matching parts of the initial histogram are those of thebackground,

that were included in the initial model, even if it was initialized from the

ground truth, due to the approximate rectangular model. FragTrack per-

forms definitely better, although it is less precise on the estimation of the

bounding box than our system,e.g. it cuts the feet and the head of the

target in the third and fourth frame of the sequence reportedin Fig. 3.4.

Similarly to KalmanMS, though, it can not handle appearancechanges:

at the end of the sequence it looses the target (last two frames in Fig. 3.4)

by considering the background more similar to the initial appearance of

the target.

The other two CAVIAR sequences are too difficult for a tracker based

on color or graylevel histograms. Both the KalmanMS trackerand the

FragTrack loose the target at the beginning of the sequence.The most

likely cause for this is that they are also very sensitive to the initializa-

tion condition: in contrast with the previous sequence, where in the first

frame it was possible to reasonably approximate the target with a rectan-

gular bounding box, this is not possible in the first frames ofthese two
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sequences (compare the first row of Fig. 3.4 with those of Fig.3.5 and

3.6). Because of this, a lot of background is included in the initial model,

and this makes the tracker stick to the initial position and loose the tar-

get. Such sensitivity is less important for bigger targets.Therefore, we

can conclude that our solution, which is unaffected by this initializa-

tion problem, is more suitable than the considered alternatives for visual

surveillance scenarios, where targets are usually small and untextured.

On the ISSIA sequences, KalmanMS obtains slightly better perfor-

mances than our proposal. Of course, color is an important cue to suc-

cessfully track the players in such scenes. This is strengthen by the fact

that, for the particular colors in these scenes, the compression to gray

levels is particularly lossy: for example, yellow parts of the tracked play-

ers get really similar to the green background. This is confirmed by the

poor performances of FragTrack, which uses graylevel images like our

system. Despite this, the difference in performance between our solu-

tion and KalmanMS is encouraging, given the gap in the quality of the

analyzed cues. We expect a sensible gain in performance by deploying

color-based Bayesian change detection. This represents aninteresting

future direction of research to continue and extend this work.

96



3.6 Experimental Results

#688

#704

#720

#736

#752

#768

#784

#800

#816

#832

Figure 3.4: Samples equally spaced along the time axis from
the CAVIAR1 experiment (sequence ”OneStopEnter2front” from the
CAVIAR dataset). From left to right column: our method (fullloop;
our method with constant measurement covariance matrix(constant R);
KalmanMS; FragTrack.
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#0255

#0368

#0481

#0594

#0707

#0820

#0933

#1046

#1159

#1272

Figure 3.5: Samples equally spaced along the time axis from the
CAVIAR2 experiment (sequence ”OneStopMoveEnter2front” from the
CAVIAR dataset). From left to right column: our method (fullloop);
our method with constant measurement covariance matrix (constant R);
KalmanMS; FragTrack.
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#280

#349

#418

#487

#556

#625

#694

#763

#832

#901

Figure 3.6: Samples equally spaced along the time axis from the
CAVIAR3 experiment (sequence ”OneStopMoveNoEnter1front” from
the CAVIAR dataset). From left to right column: our method (full loop);
our method with constant measurement covariance matrix (constant R);
KalmanMS; FragTrack.
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#0420 #432

#1064 #544

#1708 #656

#2352 #768

#2996 #880

Figure 3.7: Exemplar frames equally spaced along the time axis from the
ISSIA Soccer dataset: left column, the goalkeeper trackingexperiment
(ISSIA GK); right column, the player tracking experiment (ISSIAP).

100



Chapter 4

3D Surface Matching and

Object Categorization

Automatic recognition of shapes in 3D data, also referred toasshape

matching, is attracting a growing interest in the research community,

with applications found in areas such as shape retrieval, shape registra-

tion, object recognition, manipulation and grasping, robot localization

and navigation. An important enabling factor for the development of

this technology is represented by the increasing availability of cheaper

and more effective 3D sensors. Many of these sensors are able to ac-

quire not only the 3D shape of the scene, but also its texture:this is the

case, e.g. of stereo sensors, structure-from-motion systems, certain laser

scanners as well as the recently proposedKinectdevice by Microsoft.

Surface matching can be tackled by either a global or a local ap-

proach. According to the former, a surface is described entirely by

means of global features, whereas the latter relies on localkeypoints

and regional feature descriptions to determine point-to-point correspon-

dences between surfaces. Borrowing a denomination typicalof the face

recognition community [110] we refer here to these two approaches as,

respectively,holistic and feature-based. While the holistic approach is

popular in the context of 3Dobject retrieval[39, 71, 87], feature-based

methods are inherently more effective for 3Dobject recognitionin pres-
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Figure 4.1: Example of matching local descriptors in a 3D object recog-
nition scenario. Green lines identify correct matches, whereas red ones
represent wrong correspondences.

ence of cluttered backgrounds and occlusions.

Feature-based methods rely on 3D keypoints that are extracted from

a 3D surface. This task is accomplished by 3D detectors, whose aim is to

determine points which are distinctive, to allow for effective description

and matching, and repeatable with respect to point-of-viewvariations

and noise [12, 60, 111]. Sometimes, a characteristic scale is also as-

sociated to each keypoint, so as to provide a local neighborhood to the

following description stage [2, 60, 66, 98, 106]. Then, a description of

the local neighborhood of each keypoint is computed by meansof a 3D

descriptor [12, 14, 27, 41, 60, 66, 106, 111] in order to obtain a com-

pact local representation of the input data invariant up to apredefined

level of transformation (rotation, scaling, affine warp, . . . ). Descriptors

are finally matched across different views to attain point-to-point corre-

spondences (e.g.as in Fig. 4.1). This approach has become the standard

paradigm in case of 2D data [6, 10, 43, 54, 56, 61, 62] for tackling clas-

sical computer vision problems such as object recognition,automatic

registration, image indexing, etc...

Object categorization is among the most stimulating, yet challeng-

ing, computer vision tasks. It consists of automatically assigning a cat-

egory to a particular object given its representation (an image, a point
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cloud, ..) and a predefined taxonomy. This is different from object recog-

nition, which consists of recognizing a particular instance of a particular

class (i.e. an object recognition algorithm is trained to recognize a spe-

cific car whereas an object category recognition algorithm is trained to

recognize all cars as members of the same class) and more challenging.

We develop a novel object category recognition algorithm bysolving

the surface matching problem based on local features. The main contri-

butions are as follows:

• a novel comprehensive proposal for surface representation, dubbed

SHOT, which encompasses a new unique and repeatable local ref-

erence frame as well as a new 3D descriptor;

• the modification of this proposal to exploit texture, provided by

the output of modern 3D sensors;

• the extension of the Implicit Shape Model [50] approach to the cat-

egorization of 3D data described by means of the SHOT method.

4.1 SHOT descriptor

This section deals with our proposal for local 3D description. First,

we categorize existing methods into two classes:SignaturesandHis-

tograms. Then, by discussion and experiments alike, we point out the

key issues of uniqueness and repeatability of the local reference frame.

Based on these observations, we formulate a novel comprehensive pro-

posal for surface representation, which encompasses a new unique and

repeatable local reference frame as well as a new 3D descriptor. The

latter lays at the intersection between Signatures and Histograms, so as

to possibly achieve a better balance between descriptiveness and robust-

ness. Experiments on publicly available datasets as well ason range

scans obtained withSpacetime Stereoprovide a thorough validation of

our proposal, which is shown to outperform clearly three well-known

state of the art methods.
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4.1.1 Analysis of Previous Work

In Table 4.1 we propose a categorization of the main proposals in the

field. As shown in the second column, we divide proposals for 3D de-

scriptors into two main categories, namelySignatureand Histogram.

The first category, that includes earliest works on the subject, describes

the 3D surface neighborhood of a given point (hereinaftersupport) by

defining an invariant local Reference Frame (RF) and encoding, accord-

ing to the local coordinates, one or more geometric measurements com-

puted individually on each point of a subset of the support. On the other

hand, Histogram-based methods describe the support by accumulating

local geometrical or topological measurements (e.g. pointcounts, mesh

triangle areas) into histograms according to a specific quantized domain

(e.g. point coordinates, curvatures) which requires the definition of ei-

ther a Reference Axis (RA) or a local RF. In broad terms, signatures

are potentially highly descriptive thanks to the use of spatially well lo-

calized information, whereas histograms trade-off descriptive power for

robustness by compressing geometric structure into bins.

As far as Signature-based methods are concerned, one of the first

proposals isStructural Indexing[91], which builds up a representation

based on either a3D curveor aSplashdepending on the characteristics

of the 3D support. The former encodes the angles between consecu-

tive segments of the polygonal approximation of edges (corresponding

to depth or orientation discontinuities) on the surface. The latter en-

codes as a 3D curve the local distribution of surface orientations along a

geodesic circle centered on the point. InPoint Signatures[14] the signa-

ture is given by the signed height of the 3D curve obtained by intersect-

ing a sphere centered in the point with the surface.3D Point Fingerprint

[92] encodes the normal angle variations and the contour radius vari-

ations along different geodesic circles projected on the tangent plane.

Recently,Exponential Mapping[66] proposed a descriptor that encodes

the components of the normals within the support by deploying a 2D

parametrization of the local surface.
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Table 4.1: Taxonomy of 3D descriptors.

Method Category
Local RF

Unique Unambig.
StInd [91] Signature No Yes
PS [14] Signature No Yes

3DPF [92] Signature No Yes
EM [66] Signature Yes No
SI [41] Histogram RA

LSP [12] Histogram RA
3DSC [27] Histogram No Yes
ISS [111] Histogram Yes No

Tensor [59] Histogram No Yes
MeshHoG [106] Both Yes Yes

SHOT Both Yes Yes

As for Histogram-based methods, those relying on the definition of

just a RA are typically based on the feature point normal. Forexam-

ple, Spin Images[41], arguably the most popular method for 3D mesh

description, computes 2D histograms of points falling within a cylindri-

cal volume by means of a plane that ”spins” around the normal.Within

the same subclass,Local Surface Patches[12] computes histograms of

normals andshape indexes[44] of the points belonging to the support.

As for methods relying on the definition of a full local RF,3D Shape

Context[27] modifies the basic idea of Spin Images by accumulating 3D

histograms of points within a sphere centered at the featurepoint. In-

trinsic Shape Signatures[111] proposed an improvement of [27] based

on a different partitioning of the 3D local volume as well as on a differ-

ent definition of the local RF. Finally, Mian et al. [59] accumulate 3D

histograms (Tensors) of mesh triangle areas within a cubic support.

Two observations steam from the taxonomy proposed in Tab. 4.1.

First, all proposals rely on the definition of a local RF or, atleast, a

repeatable RA. However, we believe that the importance of the choice

of the local reference for a 3D descriptor is underrated in literature, with

efforts mainly focused on the development of discriminative descriptors.
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As a consequence, approaches for the choice of the local reference are

ambiguous, or not unique, or too sensitive to noise and also lack specific

experimental validation. Instead, as we will show in the remainder of

the chapter, the repeatability of the local RF (or, analogously, of the RA)

is mandatory to achieve effective local surface description.

Therefore, one of the contributions of our work is a specific study

upon local RFs. We carry out an analysis of repeatability androbust-

ness on proposed local RFs, and provide experiments that demonstrate

the strong impact of the choice of the RF on the performance ofa 3D

descriptor (Sec. 4.1.2). Given the impact of such a choice, we introduce

a robust local RF that, unlike all other proposals, is uniqueand unam-

biguous(Sec. 4.1.3).

Secondly, based on the nature of existing approaches highlighted by

the proposed categorization, it is our belief that an effective and robust

solution to the problem of 3D shape description can be found as a proper

combination ofSignaturesandHistograms. Hence, we propose a novel

3D descriptor aware of the proposed categorization (Sec. 4.1.4). Its

design, inspired by the analysis of the successful choices performed in

the related field of 2D descriptors [54], has been explicitlyconceived to

achieve computational efficiency, descriptive power and robustness. Re-

cently, MeshHoG [106] another approach for 3D data description that

can be seen as an attempt to combine the benefits of Signaturesand His-

tograms, was proposed. We will show in the experimental results that

our proposal consistenly outperforms it.

4.1.2 On the traits and importance of the local RF

The definition of a local RF, invariant to translations and rotations and

robust to noise and clutter, has been the preferred option toendow a 3D

descriptor with invariance to the same sources of variations, similarly to

the way rotation and/or scale invariance is injected into 2D descriptors.

On the other hand, the definition of such an invariant frame ischalleng-

ing. Furthermore, although almost every new proposal for local shape
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description is equipped with its own local RF, experimentalvalidation

has always been focused on the results obtained by the joint used of an

RF and a descriptor, whilst the impact of the selected local RF on the

descriptor performance has not been investigated in literature.
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Figure 4.2: Impact of the local RF on a descriptor performance. The
optimal point is located at the top left side of the chart.

In Table 4.1 we have reported for each proposal the properties of

uniqueness and unambiguity of their local RF. As highlighted in the

third column, the majority of proposals are based on RFs thatare not

unique[91] [14] [92] [27] [59], i.e. to obtain an invariant description

they require multiple descriptors to be computed at each feature point.

This is usually handled by describing a ”model” point using multiple de-

scriptors, each based on a different local RFs, and a ”scene” point with

just one of them. This approach causes additional ambiguityto the cor-

respondence problem since it shifts the intrinsic non-uniqueness of the

local RF to the matching stage, thus increasing potential mismatches,

computational requirements and sometimes also memory footprint. An-

other disadvantage brought in by the use of multiple local RFs is that the

proposed matching stage is so tailored on the descriptor that it prevents

the use of off-the-shelf efficient solutions for matching and indexing,

that in principle could be advantageously performed orthogonally with
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respect to the description. This may result in a severe loss of computa-

tional efficiency.

In addition to multiple RFs, another limit of current proposals con-

sists in the intrinsic ambiguity of the sign of the local RF axes. For ex-

ample, in [66] and [111], normals and principal curvature directions are

used. The main problem with this choice is that principal directions are

not vectors, i.e. their sign is not defined. From a practical point of view,

principal directions are computed using Singular Value Decomposition

(SVD) or Eigenvalue Decomposition (EVD) of the covariance matrix of

the point coordinates within the support1. Of course, the output of the

algorithm is a vector with a sign. Nevertheless, this sign issimply a nu-

merical accident and, thus, is not repeatable on different (e.g. rotated)

instances of the same mesh, even though the same SVD/EVD algorithm

is used, as clearly discussed in [9]. Therefore, such an approach to the

definition of the local RF is inherently ambiguous and thus not repeat-

able. [111] resorts to multiple RFs to overcome this limitation, while

[66] does not deal with it explicitly.

To highlight the impact of the local RF on a descriptor performance,

we show in Fig. 4.2 the performance of the EM descriptor [66] with

different local RFs. Results are reported asRecall vs 1-Precisioncurves

(see Sec. 4.1.5 for a discussion about this choice and for thesettings used

in all our experiments). The ambiguous RF used in [66] leads to unsat-

isfactory performances (black curve). Using exactly the same settings

and exactly the same descriptor, we can boost performances simply by

deploying the Sign Disambiguation technique recently proposed in [9]

(green curve). Furthermore, using the more robust and more repeatable

local RF that we propose in next section we can obtain anothersignifi-

cant improvement (e.g. at recall 0.7 precision raises from 0.308 to 0.994)

without changing the descriptive power of the descriptor (blue curve). It

is also worth pointing out here that our local RF does not match per-

fectly the EM descriptor, for none of its axes provides an approximation

of the local normal that is instead assumed by the theory underneath the

1 From personal communication with the authors of [66] and as reported in [111].
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EM descriptor. Nevertheless, performances with our local RF are better

than those obtained with the original proposal, showing theoverwhelm-

ing importance of a robust, repeatable local RF. The importance of a

robust RF is confirmed by the use of the EM descriptors with theonly

other unique and unambiguous local RF, part of the MeshHoG algorithm

[106]. Such local RF is based on curvatures, which are highlysensitive

to noise. This results in a poorly repeatable RF, which negatively influ-

ence the descriptor performances (red line).

4.1.3 Disambiguated EVD for a repeatable RF

As shown by Table 4.1, none of current local RF proposals but that of

MeshHoG is at the same time unique and unambiguous. The localRF

defined by the MeshHoG descriptor is highly sensitive to noise, as shown

in the previous section. Hence, there is a lack of a robust, unique and un-

ambiguous RF. To fill this gap we have designed and extensively tested

a variety of novel unique and unambiguous local RFs. We present here

the method that turned out to be the most robust in our thorough experi-

mental evaluation. It builds on a well known technique presented in [35]

and [63], where the problem of normal estimation in presenceof noise

is specifically addressed. A Total Least Squares (TLS) estimation of the

normal direction is obtained in [35] and [63] by EVD of the covariance

matrixM of thek−nearest neighborspi of the point, defined by

M =
1
k

k∑

i=0

(pi − p̂)(pi − p̂)T , p̂ =
1
k

k∑

i=0

pi . (4.1)

In particular, the TLS estimation of the normal direction isgiven by

the eigenvector corresponding to the smallest eigenvalue of M. Finally,

they perform the sign disambiguation of the normalsglobally by means

of sign consistency, i.e. propagating the sign from a seed chosen heuris-

tically.

While this has proven to be a robust and effective technique for sur-

face reconstruction of a single object, it cannot work for local surface de-
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scription since in the latter case signs must be repeatable across any pos-

sible object pose as well as in scenes with multiple objects,so that alocal

rather than global sign disambiguation method is mandatory. Moreover,

Hoppe’s sign disambiguation concerns the normal only, hence it leaves

ambiguous the signs of the remaining two axes.

In our proposal, we start by modifying (4.1) so as to assign distant

points smaller weights, in order to increase repeatabilityin presence of

clutter. Then, to improve robustness, all points laying within the spher-

ical support (of radiusR) which are used to compute the descriptor are

used also to calculateM . For the sake of efficiency, we also neglect the

centroid computation, replacing it with the feature pointp. Therefore,

we compute M as a weighted linear combination,

M =
1∑

i:di≤R

(R−di )

∑

i:di≤R

(R− di)(pi − p)(pi − p)T (4.2)

wheredi = ‖pi − p‖2. Our experimental evaluation indicates that the

eigenvectors ofM define repeatable, orthogonal directions in presence

of noise and clutter. It is worth pointing out that, comparedto [35] and

[63], in our proposal the third eigenvector no longer represents the TLS

estimation of the normal direction and sometimes it notablydiffers from

it. However, this does not affect performance, since in the case of local

surface description what matters is a highly repeatable androbust triplet

of orthogonal directions, and not its geometrical or topological meaning.

Hence, eigenvectors of (4.2) represent a good starting point, but they

need to be disambiguated to yield a repeatable local RF. The problem of

sign disambiguation for EVD and SVD has been recently addressed in

[9]. Their proposal basically reorients the sign of each singular or eigen-

vector so that its sign is coherent with the majority of the vectors it is

representing. We determine the sign on the localx andz axes according

to this principle. In the following we refer to the three eigenvectors in

decreasing eigenvalue order as thex+, y+ andz+ axis, respectively. With

x−, y− andz−, we denote instead the opposite vectors. Hence, the final
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disambiguatedx axis is defined as

S+x =̇
{
i : di ≤ R ∧ (pi − p) · x+ ≥ 0

}
(4.3)

S−x =̇
{
i : di ≤ R ∧ (pi − p) · x− > 0

}
(4.4)

x =


x+, |S+x | ≥ |S

−
x |

x−, otherwise
(4.5)

The same procedure is used to disambiguate thez axis. Finally, they

axis is obtained asz× x.

We compare the repeatability of our proposal against three represen-

tative RFs: that of MeshHoG, that of PS and that of EM, respectively a

not-robust solution, a not-unique solution and an ambiguous one. To pre-

vent the shortcomings of not uniqueness and ambiguity from invalidat-

ing the comparison we consider only the global maximum of theheight

[14] for PS and we add the sign disambiguation of [9] to EM (EM+SD),

thereby obtaining two unique and unambiguous RFs. We also consider

the original EM approach to show the effectiveness of sign disambigua-

tion. Using again the settings detailed in Sec. 4.1.5, in Fig. 4.3 we plot,

for 5 increasing noise levels, the mean cosine between corresponding

axes of the local RFs computed on two instances of the same mesh, i.e.

the original one and a rotated and noisy instance. On one hand, ambigu-

ity is clearly the most serious nuisance, as the low performances of the

original EM proposal demonstrate. On the other hand, the useof a higher

number of points to compute the local RF ( i.e. the whole surface con-

tained in the spherical support, as done by EM, instead of the3D curve

resulting by the intersection of the spherical support withthe surface, as

done by PS) yields better robustness, as shown by the relative drop of

EM with respect to PS when noise increases. Nevertheless, the steepest

drop of performance is provided by MeshHoG, which confirms the need

to ground local RF computation on more robust features than second

order differential entities like curvatures.The disambiguation introduced

in EM+SD dramatically enhances repeatability. However, both EM and

EM+SD subordinate computation of the directions on the tangentplane
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to the normal estimation (i.e. , the repeatable directions they compute

are then projected onto the tangent plane to create an orthogonal basis).

This choice sums noise on the normal to the noise inevitably affecting

the other directions, thereby leading to increased sensitivity of the esti-

mation of the axes on the tangent plane and finally to poor repeatability.

Our proposal, instead, estimates all axes simultaneously and turns out to

be the most effective, thanks to the combination of its noise and clutter-

aware definition, the effectiveness of the proposed disambiguation and

the inherent uniqueness deriving from its theoretical formulation.
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Figure 4.3: Comparison between local RFs.

4.1.4 Description by Signatures of Histograms

In Sec. 4.1.1 we have classified 3D descriptors as based on either his-

tograms or signatures. We have designed our proposal following this in-

tuition and aiming at a local representation that is efficient, descriptive,

robust to noise and clutter as well as to point density variation. The point

density issue is specific to the 3D scenario, where the same 3Dvolume

of the real world may be represented with different amounts of vertexes

in its mesh approximation, e.g. due to the use of different 3D sensors

(stereo, Time-of-Flight cameras, LIDARs, etc...) or different acquisition

distances.

112



4.1 SHOT descriptor

Figure 4.4: Signature structure for
SHOT.

Besides our taxonomy, an-

other source of inspiration has

been the related field of 2D

feature descriptors, which has

reached a remarkable maturity

during the last years. By an-

alyzing SIFT [54], arguably the

most successful and widespread

proposal among 2D descriptors,

we have singled out what we be-

lieve are among the major rea-

sons behind its effectiveness. First

of all, the use of histograms is

spread throughout the algorithm,

from the definition of the local

orientation to the descriptor itself, this accounting for its robustness.

The low descriptive power of a global histogram computed on the whole

patch is balanced by the introduction of coarse geometric information:

the descriptor is, in fact, a concatenation of histograms, each computed

on a precise location in a regular grid superimposed on the patch. The

use of this coarse geometric information creates what we identify as a

signature-like structure.

Moreover, the elements of these local histograms are based on first

order derivatives describing the signal of interest, i.e. intensity gradients.

Although it has been argued that building a descriptor basedon differen-

tial entities may result in poor robustness to noise [14], they hold high

descriptive power, as the effectiveness of SIFT clearly demonstrates.

Therefore, we believe they can provide a more effective solution for a

descriptor than point coordinates [41] [27]. Yet, to achieve robustness to

noise, differential entities have to be filtered, and not deployed directly,

e.g. as done in [66].

Finally, an important part of the SIFT algorithm deals with the def-

inition of a local invariant 2D reference frame (i.e. the characteristic
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orientation). The author states that in case of ambiguity indetermining

the local RF, a great benefit to the stability of matches is provided by the

use of multiple orientations. This highlights the importance of a unique,

unambiguous local RF for the effectiveness of a descriptor.

Based on these considerations, we propose a 3D descriptor that en-

codes histograms of basic first-order differential entities (i.e. the normals

of the points within the support), which are more representative of the

local structure of the surface compared to plain 3D coordinates. The use

of histograms brings in the filtering effect required to achieve robustness

to noise. Having defined an unique and robust 3D local RF (see Sec.

4.1.3), it is possible to enhance the discriminative power of the descrip-

tor by introducing geometric information concerning the location of the

points within the support, thereby mimicking a signature. This is done

by first computing a set of local histograms over the 3D volumes defined

by a 3D grid superimposed on the support and then grouping together

all local histograms to form the actual descriptor. Hence, our descriptor

lays at the intersection between Histograms and Signatures: we dub it

Signature of Histograms of OrienTations (SHOT).

For each of the local histograms, we accumulate point countsinto

bins according to a function of the angle,θi, between the normal at each

point within the corresponding part of the grid,nvi , and the normal at the

feature point,nu. This function iscosθi, the reason being twofold: it can

be computed fast, sincecosθi = nu · nvi ; an equally spaced binning on

cosθi is equivalent to a spatially varying binning onθi, whereby a coarser

binning is created for directions close to the reference normal direction

and a finer one for orthogonal directions. In this way, small differences

in orthogonal directions to the normal, i.e. presumably themost infor-

mative ones, cause a point to be accumulated in different bins leading to

different histograms. Moreover, in presence of quasi-planar regions (i.e.

not very descriptive ones) this choice limits histogram differences due to

noise by concentrating counts in a fewer number of bins.

As for the structure of the signature, we use an isotropic spherical

grid that encompasses partitions along the radial, azimuthand elevation
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axes, as sketched in Fig. 4.4. Since each volume of the grid encodes

a very descriptive entity represented by the local histogram, we can use

a coarse partitioning of the spatial grid and hence a small cardinality

of the descriptor. In particular, our experimentations indicate that 32

is a proper number of spatial bins, resulting from 8 azimuth divisions,

2 elevation divisions and 2 radial divisions (though, for clarity, only 4

azimuth divisions are shown in Fig. 4.4). Combined with the fact that the

tuning we present in sec. 4.1.5 indicates a proper number of bins for the

internal histograms to be around 10, we obtain a total descriptor length

of 320, a good improvement over the 1980 proposed for 3DSC [27] or

the 595 for ISS [111], that allows for faster indexing and matching.

Since our descriptor is based upon local histograms, it is important

to avoid boundary effects, as pointed out e.g. in [41] [54]. Furthermore,

due to the spatial subdivision of the support, boundary effects might arise

also in presence of perturbations of the local RF. Therefore, for each

point being accumulated into a specific local histogram bin,we perform

quadrilinear interpolation with its neighbors, i.e. the neighboring bins in

the local histogram and the bins having the same index in the local his-

tograms corresponding to the neighboring volumes of the grid. In par-

ticular, each count is multiplied by a weight of 1−d for each dimension.

As for the local histogram,d is the distance of the current entry from the

central value of the bin. As for elevation and azimuth,d is the angular

distance of the entry from the central value of the volume. Along the ra-

dial dimension,d is the Euclidean distance of the entry from the central

value of the volume. Along each dimension,d is measured in units of the

histogram or grid spacing, i.e. it is normalized by the distance between

two neighbor bins or volumes.

To achieve robustness to variations of the point density, wenormal-

ize the whole descriptor to sum up to 1. This is preferable to the solution

proposed in [27], i.e. normalizing each bin with the inverseof the point

density and bin volume. In fact, while [27] implicitly assumes that the

sampling density may vary independently in every bin, and thus dis-

cards as not informative the differences in point density among bins, we
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Figure 4.5: Exp. 1: Precision-Recall curves on Stanford dataset and a
scene at the 3 noise levels.

Figure 4.6: Exp. 2: Precision-Recall curves on subsampled dataset and
a detail from one scene.

assume global (or at least regional) variations of the density and keep the

local differences as a source of discriminative information.
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Figure 4.7: Exp. 3: Results on Spacetime Stereo dataset and two models
(middle) and scenes (right).

Time (s) Radius (mr) Length

SHOT 4.8 15 320

SI 5.6 30 100

EM 52.6 10 2700

PS 248.8 10 90

Figure 4.8: Charts: ms/correspondence vs. support radius (in the smaller
chart the time axis is zoomed in for better comparison between SI and
SHOT). Table: measured execution times (in Experiment 1) and tuned
parameter values. Radius values are reported in mesh resolution units.
As for SI, the support radius is the product of the bin size by the number
of bins in each side of the spin image.

4.1.5 Experimental results

Surface Matching

In this section we provide experimental validation of our proposals, i.e.

the unique local RF together with the SHOT descriptor. To this pur-

pose, we carry out a quantitative comparison against three state-of-the-

art approaches in a typical surface matching scenario, where correspon-

dences have to be established between a set of features extracted from
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a scene and those extracted from a number of models. The consid-

ered approaches are:Spin Images(SI), as representative of Histogram-

based methods due to its vast popularity in the addressed scenario; Ex-

ponential Mapping(EM) andPoint Signatures(PS) as representatives

of Signature-based methods, the former since it is a very recent ap-

proach, the latter given its importance in literature. All methods were

implemented in C++ and are made publicly available together with the

datasets (www.vision.deis.unibo.it/SHOT ).

For a fair comparison, we use the same feature detector for all algo-

rithms: in particular, we randomly extract a set of feature points from

each model, then we extract their corresponding points fromthe scene,

so that performance of the descriptors is not affected by errors of the de-

tector. Analogously, for what concerns the matching stage,we adopt the

same matching measure for all algorithms,i.e., as proposed in [41], the

Euclidean distance. We could also have evaluated the synergistic effect

of description and matching for those methods that explicitly include a

proposal for the latter, e.g. the tolerance band for PS. In turn, we did

experiments on the whole dataset with the original EM and PS match-

ing schemes, obtaining slightly worse performance for both. This, and

the attempt to be as fair as possible, leaned us to use the samematching

measure for all algorithms. However, we did not discard the characteris-

tics of the descriptors that required a specific treatment during matching:

in particular, since EM is a sparse descriptor, we compute the Euclidean

distance only on the overlapping subset of EM descriptor pairs, as pro-

posed by the authors; as for PS, we use the matching scheme proposed

by the authors to disambiguate its not-unique local RF [14].For each

scene and model, we match each scene feature against all model features

and we compute the ratio between the nearest neighbor and thesecond

best (as in [54]): if the ratio is below a threshold a correspondence is

established between the scene feature and its closest modelfeature.

According to the methodology for evaluation of 2D descriptors rec-

ommended in [61], we provide results in terms ofRecall versusPre-

cision curves. This choice is preferable compared to ROC curves (i.e.
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True Positive RateversusFalse Positive rate) when comparing descrip-

tors due to the ambiguity in calculating theFalse Positive Rate[43]. We

present three different experiments. Experiment 1 deals with 6 models

(”Armadillo”, ”Asian Dragon”, ”Thai Statue”, ”Bunny”, ”Happy Bud-

dha”, ”Dragon”) taken from theStanford 3D Scanning Repository2. We

build up 45 scenes by randomly rotating and translating different sub-

sets of the model set so to create clutter3; then, similarly to [98], we

add Gaussian random noise with increasing standard deviation, namely

σ1, σ2 andσ3 at respectively 10%, 20% and 30% of the average mesh

resolution (computed on all models). In Experiment 2 we consider the

same models and scenes as in Experiment 1, add noise (i.e. σ1) and

resample the 3D meshes down to 1/8 of their original point density by

using MeshLab4 Quadratic Mesh Collapse Decimation filter. For a fair

comparison in this experiment, our implementation of SI -used through-

out all the evaluation- normalizes each descriptor to the unit vector to

make it more robust to density variations [18]. Finally, in Experiment 3

the dataset consists of scenes and models acquired in our labby means

of a 3D sensing technique known asSpacetime Stereo[21], [108]. In

particular, we compare 8 object models against 15 scenes characterized

by clutter and occlusions, each scene containing two models. Fig. 4.7

shows two scenes together with the models appearing in them.In each

of the three experiments, 1000 feature points were extracted from each

model. As for the scenes, in Exp. 1 and 2 we extractn ∗ 1000 features

per scene (n being the number of models in the scene) whereas in Exp.

3 we extract 3000 features per scene.

Throughout all the three experiments we used the same valuesfor

the parameters of the considered methods. In particular, wetuned the

two parameters of each descriptor (support radiusandlength of the de-

scriptor) based on a tuning scene corrupted with noise levelσ1 and built

rotating and translating three Stanford models (”Bunny”, ”Happy Bud-

2http://graphics.stanford.edu/data/3Dscanrep
33 sets of 15 scenes each, containing respectively 3, 4 and 5 models
4http://meshlab.sourceforge.net/
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dha”, ”Dragon”). The values resulting from the tuning process are re-

ported in the last two columns of the Table in Fig. 4.8. It is worth noting

that our tuning yielded comparable values of the support radius among

the various methods, and that, for SI and PS, the resulting parameter

values are coherent, as far as the order of magnitude is concerned, with

those originally proposed by their authors (no indication about EM pa-

rameters is given in [66]). Yet, we used the finely tuned values instead

of those originally proposed by the authors since the formeryield higher

performance in these experiments.

Results for the three Experiments are reported in Figure 4.5, 4.6 and

4.7, respectively. Experiment 1 focuses on robustness to noise. Given

the reported results, it is clear that SHOT performs better than the other

methods at all different noise levels on the Stanford dataset. We can ob-

serve that, comparing the two Signature methods, PS exhibits a higher

robustness than EM. We address this mainly to the higher robustness of

its local RF, as shown in Fig. 4.3. This, together with the good perfor-

mance of SHOT, highlights the importance of deploying a robust local

RF. As for SI, it appears to be highly susceptible to noise, its perfor-

mance notably deteriorating as the noise level increases. This is due

to the fact that this descriptor is highly sensitive to smallvariations in

the normal estimation (i.e. SI Reference Axis), that here wecompute as

proposed in [41]. This is also consistent with the results reported in [27].

As for Experiment 2, it is clear that the point density variation is the

most challenging nuisance among those accounted for in our experimen-

tal validation, causing a severe performance loss of all methods, even

those specifically addressing it as EM. SHOT, PS and SI obtaincom-

parable performance, nevertheless for high values of precision, that are

typical working points for real applications, SHOT obtainsthe highest

levels of Recall.

Experiment 3 shows that under real working conditions SHOT out-

performs the other methods. It is worth noting that this experiment is

especially focused on the descriptiveness of evaluated approaches, since

the smoother shapes of the objects surfaces compared to those of the
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4.1 SHOT descriptor

Stanford models make the former harder to discriminate. Hence, results

demonstrate the higher descriptiveness embedded in SHOT with respect

to the other proposals.

In addition, we have compared the methods in terms of their com-

putational efficiency and memory requirements. Since, as discussed in

Sec. 4.1.2, descriptors based on multiple RFs, like PS, can not deploy

efficient indexing to speed-up the matching stage, we use a full search

strategy for all methods. Results are reported in Fig. 4.8. The two charts

in the figure, showing the number of milliseconds per correspondence

needed by the various methods using different support sizes, demon-

strate the notable differences in computational efficiency between the al-

gorithms. In particular, SI and SHOT run one order of magnitude faster

than EM and almost two orders of magnitude faster than PS, with SI

turning out consistently slightly faster than SHOT at each support size.

As for EM, efficiency is mainly affected by the re-parametrization of the

support needed to describe each feature point and to the large memory

footprint (see next). With regards to PS, as discussed in Sec. (4.1.2) the

use of multiple local RFs dramatically slows down the matching stage.

These results are confirmed by the Table in the figure (first column),

which reports the measured times required to match the sceneto the

models in Experiment 1 (i.e. 3000 scene features and 3000 models fea-

tures) using the tuned parameter values. Here, the larger support needed

by SI allows SHOT to run slightly faster. As for memory requirements,

the reported descriptor length (third column) highlights the much higher

memory footprint required by EM compared to other methods.

3D registration

As a practical application in a challenging and active research area, we

demonstrate the use of SHOT correspondences to perform fully auto-

matic 3D Reconstruction from Spacetime Stereo data. We merge 18

views covering a 360◦ field of view of one of the smooth objects used in

Experiment 3 and 29 views of an object not use in the previous experi-
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(a) (b) (c) (d)

Figure 4.9: 3D Reconstruction from Spacetime Stereo views:(a) initial
set of views (b) coarse registration (c) global registration frontal view (d)
global registration rear view.

ments. We follow a 2 steps procedure:

1. we obtain a coarse registration by estimating the 3D transforma-

tions between every pair of views and retaining only those maxi-

mizing the global area of overlap;

2. we use the coarse registration as initial guess for a final global

registration carried out using a standard external tool (Scanalyze).

In the first step, correspondences among views are established by

computing and matching SHOT descriptors on 1000 randomly selected

feature points. 3D transformations are estimated by applying a well

known Absolute Orientation algorithm [36] on such correspondences

and filtering outliers by RANSAC. Maximization of the area ofoverlap

is achieved through the Maximum Spanning Tree approach described in

[66]. As shown in Fig. 4.9 and Fig. 4.10, without any assumptions about

the initial poses, SHOT correspondences allows for attaining a coarse

alignment which is an accurate enough initial guess to successfully re-

construct the 3D shape of the object without any manual intervention.

To the best of our knowledge, fully automatic 3D reconstruction from

multiple Spacetime Stereo views has not been demonstrated yet.
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(a) (b) (c) (d)

Figure 4.10: 3D Reconstruction from Spacetime Stereo views: (a) initial
set of views (b) coarse registration (c) global registration frontal view (d)
global registration rear view.

4.2 Color SHOT

In this section we show that the design of the SHOT descriptorcan nat-

urally and successfully be generalized to incorporate texture (Sec. 4.2.1)

and that such an extension allows for improved performanceson publicly

available datasets (Sec. 4.2.2). This results in a particularly interesting

approach for carrying out surface matching tasks based on the output of

modern 3D sensors capable of delivering both shape and texture.

The majority of the proposals introduced in Sec 4.1.1 detectand de-

scribe a feature point by using shape data only. Recently, [106] has

proposed the MeshDoG/HoG approach, which is the only 3D descriptor

where texture information are taken into account. We will compare the

performance of the generalized SHOT descriptor against this method.

4.2.1 A combined texture-shape 3D descriptor

To generalize the design of the SHOT descriptor so as to include multi-

ple cues, we denote here asS HG, f (P) the generic signature of histograms

computed over the spherical support around feature pointP. This signa-

ture of histograms relies upon two different entities:G, a vector-valued

point-wise property of a vertex, andf , the metric used to compare two

of such point-wise properties. To compute a histogram of thesignature,

f is applied over all pairs (GP,GQ), with Q representing a generic vertex
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ShapeShape StepStep (S(SS)S) ColorColor StepStep (S(SCC))

Shape description Texture description

CSHOT

… …

Figure 4.11: The proposed descriptor merges together a signature of
histograms of normal orientations and of texture-based measurements.

belonging to the spherical support around feature pointP. In the original

SHOT formulation,G is the surface normal estimation,N, while f (·) is

the dot product, denoted asp(·):

f
(
GP,GQ

)
= p

(
NP,NQ

)
= NP · NQ (4.6)

In the proposed generalization,msignatures of histograms relative to

different(property, metric)pairs are computed on the spherical support

and chained together in order to build the descriptorD(P) for feature

point P:

D(P) =
m⋃

i=1

S Hi
(G, f ) (P) (4.7)

Although the formulation in (4.7) is general, we will hereinafter

refer to the specific case ofm = 2, so as to combine a signature of

histograms of shape-related measurements together with a signature of

texture-related measurements (Fig. 4.11). As for the former, we use the

formulation of the original SHOT descriptor,i.e. vector HP is repre-
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sented by the surface normal estimation inP, NP, while the operatorf ()

is the dot product,p(), as in (4.6). As for the latter, since we want here

to embed texture information into the descriptor, we have todefine a

proper vector representing a point-wise property of the texture at each

vertex and a suitable metric to compare two such texture-related proper-

ties. The overall descriptor, based on two signatures of histograms, will

be dubbed hereinafter as Color-SHOT (CSHOT).

The most intuitive choice for a texture-basedG vector is the RGB

triplet of intensities associated to each vertex, referredto here asR. To

properly compare RGB triplets, one option is to deploy the same metric

as in SHOT, i.e. to use the dot productp(RP,RQ). Alternatively, we

have tested another possible metric based on theLp norm between two

triplets. In particular, we have implemented the operator based on the

L1 norm, referred to asl(·), which consists in the sum of the absolute

differences between the triplets:

l
(
RP,RQ

)
=

3∑

i=1

∣∣∣RP(i) − RQ(i)
∣∣∣ (4.8)

Moreover, we have investigated the possibility of using different color

spaces rather than RGB. We have chosen theCIELab space given its

well-known property of being more perceptually uniform than the RGB

space[25]. Hence, as a different solution, vectorG is represented by

color triplets computed in this space, which will be referred to asC.

Comparison betweenC triplets can be done using the metrics used forR

triplets, i.e. the dot productp(·) or theL1 norml(·), leading to signatures

of histograms relying, respectively, onp
(
CP,CQ

)
andl

(
CP,CQ

)
.

In addition, we have investigated on the use of more specific met-

rics defined for theCIELabcolor space. In particular, we have deployed

two metrics, known asCIE94 andCIE2000, that were defined by the

CIE Commission respectively in 1994 and 2000: for their definitions

the reader is referred to [25]. These two metrics lead to two versions

of operator f (·) which will be referred to, respectively, asc94(·) and
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c00(·) . Hence, two additional signatures of histograms can be defined

based on these two measures, denoted respectively asc94
(
CP,CQ

)
and

c00
(
CP,CQ

)
.

The CSHOT descriptor inherits SHOT parameters, i.e. the radius of

the support and the number of bins in each histogram). However, given

the different nature of the two signatures of histograms embedded in

CSHOT, it is useful to allow for a different number of bins in the two

histogram types. Thus, the CSHOT descriptor will have an additional

parameter with respect to SHOT, indicating the number of bins in each

texture histogram and referred to as Color Step (SC, see Fig. 4.11).

4.2.2 Experimental Results

The 6 different versions defined in Section 4.2.1 for the novel CSHOT

descriptor are now evaluated in a typical 3D object recognition scenario

where one or more objects have to be found in a scene with clutter and

occlusions. The experimental evaluation is aimed at determining which

version performs best in terms of both accuracy and efficiency. Further-

more, the best versions will be compared against the original SHOT de-

scriptor as well as the MeshHoG descriptor, so as to evaluatethe benefits

brought in by the proposed approach.

In all experiments, features points are first extracted froma scene and

an object, then they are described and matched based on the Euclidean

distance between descriptors. As for the feature extraction stage, we rely

on the same approach as in Sec. 4.1.5,i.e. features are first randomly

extracted from the object, then the corresponding featuresare extracted

from the scene by means of available ground-truth information together

with a set of additional features randomly extracted from clutter. All

algorithms have been tested by keeping constant their parameters. In

particular, all parameters that CSHOT shares with SHOT havebeen set

the values introduced in Sec. 4.1.4. Such values have been also used

here for the tests concerning the SHOT descriptor. As for theadditional

parameter used by CSHOT (SC), it has been tuned for each CSHOT
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Figure 4.12: Comparison in terms of accuracy (big chart) andefficiency
(small chart) between CSHOTs with different measures in theRGB(left
chart) andCIELab (right chart) color spaces onDataset 1. SHOT and
two variants of MeshHoG are also reported.

version on a subset, made out of 3 scenes, of theSpacetime Stereodataset

introduced in Sec. 4.1.5. This subset has been used to tune also the radius

and number of bins of the orientation histograms of MeshHoG,with the

other parameters of the method kept as originally proposed in [106].

Comparison between color spaces and metrics

A first experimental evaluation has been carried out to identify the best

CSHOT combinations for, respectively, theRGBand theCIELabcolor

spaces. Results have been computed on a dataset composed of the 12

scenes not used for tuning of theSpacetime Stereodataset. This sub-

set, hereinafter referred to asDataset 1, includes scenes with clutter and

occlusions of the objects to be recognized.

Figure 4.12 shows the comparison between the evaluated measures

respectively in the RGB (left chart) and CIELab (right chart) color spaces.

As for the former, the two(property, metric)pairs being compared are:

(R, p) and (R, l). As for the latter, four pairs are compared, i.e. : (C, p),

(C, l), (C, c94), (C, c00). Each comparison is carried out in terms of accu-

racy (big chart) and efficiency (small chart). As for the former, results

are provided in terms ofPrecision vs. Recallcurves computed on the

output of the descriptor matching process carried out between the fea-
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Figure 4.13: Left: Two models and four scenes ofDataset 2. Right:
Comparison in terms of accuracy (big chart) and efficiency (small chart)
between the 2 best versions of CSHOT, SHOT and two variants ofMesh-
HoG onDataset 2.

tures extracted from the objects and those extracted from the scenes.

Each object-scene pair of the dataset is then averaged to give out the fi-

nal charts shown in the figure. As for efficiency, results are provided as

the average amount of time (ms) needed to compute one correspondence

between the scene and the object.

As for theRGBspace, (R, l) proves to be more accurate than (R, p),

and only slightly less efficient. As for theCIELabspace, (C, l), (C, c94)

and (C, c00) notably outperform (C, p), with (C, l) being slightly more ac-

curate and more efficient than (C, c94), and with (C, c00) being by far the

least efficient one. Hence, the two CSHOT versions that turn out more

favorable in terms of the accuracy-efficiency trade-off are, respectively,

(R, l) for theRGBspace, and (C, l) for theCIELabspace.

Comparison with SHOT and MeshHoG

We will now comment on the comparison between the two best CSHOT

versions and the SHOT and MeshHoG descriptors, so as to assess the

benefits brought in by the combined deployment of texture andshape

in the proposed extension as well as to compare its overall performance

with respect to state-of-the-art methods. We tested two versions of Mesh-

HoG: one using only shape, as done by SHOT, and one deploying shape
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and texture. For shape-only MeshHoG, we used the mean curvature as

feature. As reported in the experimental results section of[106] (Sec

6.1), the use of both shape and texture can be achieved by juxtaposing

two MeshHoG descriptors, computed respectively using as feature the

mean curvature and the color. Conversely to what reported in[106], on

our dataset the shape-and-texture version of MeshHoG provides slightly

better performance than the texture-only version: thus, itis the one in-

cluded in our comparison.

The two charts in Fig. 4.12 include the results yielded onDataset

1 by SHOT and the two considered variants of MeshHoG . In addition,

Fig. 4.13 reports a further comparison carried out between the same pro-

posals on another dataset. This dataset, referred to here asDataset 2,

comprises 8 models and 16 scenes(2 models and 4 scenes of thisdataset

are shown on the left side of the Figure).Dataset 2differs fromDataset

1 because the former includes objects having very similar shapes but

different textures (i.e. different types of cans). Hence, it helps highlight-

ing the importance of relying also on texture for the goal of 3D object

recognition in cluttered scenes. Similarly to the previousexperiment, re-

sults are given both in terms of accuracy (big chart) and efficiency (small

chart).

Several observations can be made on these charts. First of all, on both

dataset, the two best versions of CSHOT, i.e. (R, l) and (C, l) , notably

outperform SHOT and the shape-only version of MeshHoG in terms of

accuracy, with the gap in performance being more evident onDataset

2, where the algorithms that rely only on shape fail since theydo not

hold enough discriminative power to cope with the traits of the dataset.

The results on both datasets confirm the benefits of includingtexture

information in the descriptor. Secondly, on both datasets the CSHOT

descriptor based on (C, l) proves to be more effective than that relying

on (R, l) as well as than the shape and texture version of MeshHoG, thus

allowing for state-of-the-art performance on the considered datasets. Fi-

nally, as for efficiency, the CSHOT descriptor based on (C, l) is approx-

imately twice as slow as SHOT and one order of magnitude faster than
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MeshHoG.

4.3 Object Category Recognition with 3D ISM

In the last decade the main effort on recognition of object categories

has been devoted to categorizing classes of objects from images [73],

one of the most prominent approaches being the application to image

features of the Bag-of-Words paradigm, previously used fortext catego-

rization and document analysis. In particular, this approach, typically

referred to asBag-of-Features(BoF) or Bag-of-Visual-Words(BoVW),

represents image categories as histograms (”bags”) of feature descriptors

[19, 82, 84]. To account for efficiency, histograms are not built on de-

scriptors themselves but on an alphabet of descriptors, typically termed

”codebook”, obtained via clustering or vector quantization [73].

BoF methods turned out to be particularly effective even though, un-

like some more recent proposals, they discard geometrical relationships

between object parts. Among those leveraging geometric structure, one

of the most successful proposals is Implicit Shape Model (ISM) [50],

that encodes spatial relationships by means of a probabilistic General-

ized Hough Transform in a 3-dimensional space representingscale and

translation. Moreover, the use of geometrically well-localized informa-

tion allows these methods to be deployed also as detectors ofspecific

object categories in presence of clutter, occlusion and multiple object

instances. Typical object categories of interest have beenpedestrians,

faces, humans, cars [50].

The increasing availability of large databases of 3D modelshas fos-

tered a growing interest towards computer vision and machine learning

techniques capable of processing 3D point clouds and meshes. One of

the most investigated tasks so far has been shape retrieval (see [39, 94]

for surveys) which aims at finding the most similar 3D models in the

database to a given query model inputted by the user. Anotherwell

investigated topic concerns 3D object recognition [27, 41]. Only very

recently the first methods aimed at 3D object categorizationhave been
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proposed in literature. They mainly extend the BoF paradigmto the 3D

scenario by representing categories as histograms of codewords obtained

from local shape descriptions of 3D features [52, 67, 97].

In this last part of our work on 3D data we investigate on how to

deploy Implicit Shape Modeling for the categorization of meshes. Al-

though in the reminder of this paper we will focus only on categoriza-

tion, it is worth noting that this approach holds the potential to solve

within the same framework the problem of simultaneous localization and

classification of objects in cluttered scenes, even in presence of multiple

instances,i.e. to be uses as a category detector able to initialize a tracker.

4.3.1 3D Implicit Shape Model

The basic idea idea underlying Implicit Shape Models is to perform

object category recognition and instances localization based on a non-

parametric probability mass function of the position of theobject center.

These probability functions come from a probabilistic interpretation of

the voting space of a Generalized Hough Transform algorithm. Votes

are casted by local features that are matched against a codebook learned,

together with votes, from a set of training examples. When applied to

3D data, we identify the general form of an algorithm training a 3D ISM

as follows (Fig. 4.14 ):

CLUSTERING
PoV-invariant

Shape Models

Training

Features

C
1

C
2

C
3

ACTIVATED

CODEWORDS

Codebook

CATi

C
2

C
2

C
1

C
1

C
3 C

1
C
2

C
3C

2

C
2

C
1

C
1

C
3

LOCAL RFs

Figure 4.14: Overview of the training stage of 3D ISM.

• local features are detected and described from the 3D training data.

• for each categoryCi
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– all features belonging toCi are clustered to create the code-

book ofCi

– for each training featuref Ci
j of categoryCi

∗ f Ci
j is matched against the codebook ofCi according to

a codeword activation strategy.

∗ each activated codeword adds to the ISM ofCi the po-

sition of f Ci
j with respect to the object center. Each fea-

ture f Ci
j needs to incorporate a repeatable local Refer-

ence Frame (RF), and votes are expressed with respect

to such local RF off Ci
j .

Then, a generical 3D ISM recognition procedure may be decom-

posed in the following steps (Fig. 4.15):

• local features are extracted and described from the 3D inputdata.

• for each featuref j and each categoryCi

– f j is matched against the codebook ofCi according to acode-

word activation strategy.

– each activated codeword casts its set of votes for the Hough

Space ofCi in its ISM.

– votes are rotated and translated so as to be expressed in the

local RF of the input features before voting, thus obtaining

Point-of-View (PoV) independent votes. The magnitude of

the vote is set according to avote weighting strategy.

• in case of categorization of 3D database entries, the category yield-

ing the global maximum among all the Hough spaces is selectedas

output; in case of detection in a cluttered scene, local maxima of

each category above a threshold are selected as category instance

hypotheses for a further verification stage and/or pose estimation.

This scheme exhibits two main differences with respect to the use of

ISM for detection of object categories in 2D images. First ofall, since
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Figure 4.15: Overview of 3D ISM for Categorization and Detection.

the sensor produces metric data, there is no need for scale invariance: in

the 2D case, when casting votes for the object center, the object scale

is treated as a third dimension in the voting space. With 3D data we

can cast votes for object hypotheses directly in the coordinates space,

which is again a 3D dimensional space. The second difference regards

the use of PoV-independent votes, that leads to a PoV-independent de-

tector. In the original ISM proposal, objects of the same category under

different point of views are regarded as instances of different, unrelated

categories. It is worth pointing out that the use of PoV-independent votes

is not just a nice extension that allows for more flexibility of the final

method, it is indeed mandatory when using 3D ISM to categorizes 3D

database entries, for these cannot be assumed to be expressed within the

same global RF.

As noted before most of the proposals in the field of 3D local features

do not include a fully defined local RF. Once more this demonstrates the

importance that our SHOT descriptor defines a full 3D, unambiguous

local reference frame. We thus use SHOT features as the base of our

3D ISM. This is also another test of the quality of the proposed features,

which demonstrate good performance even in 3D object categorization,

an experiment that was not proposed in Sec. 4.1.5.
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In the previous overview of the method we have highlighted the main

design decisions that need to be taken to define a 3D ISM, i.e. the code-

word activation strategy and the vote weighting strategy. In the following

we address, by discussion and experiments, the possible alternatives for

these design choices together with other major issues related to code-

book size and composition. It is worth noting that, althoughwe have

conducted experiments using 3D data only, all our reasoningis indepen-

dent from data dimensionality. Therefore, we expect the observations

drawn from our analysis to be beneficial also for the case of standard 2D

ISMs.

4.3.2 Codebook

Codebook size

Codebooks are widely used for 2D and 3D object categorization (e.g.

[85] [97] [52]). The reason behind their use is efficiency, both in terms

of memory occupancy of the codebook and computational time for code-

word activation. They are not expected to have any positive impact on

the generalization abilities of the algorithms. They are usually built by

applying some standard clustering algorithms, likek-means, on the fea-

tures extracted from the training data. Little attention, however, has been

paid to the loss in discriminative power of the codebook after size reduc-

tion. Furthermore, research in the field of Approximate Nearest Neigh-

bor provides efficient methods to solve the codeword activation problem

even in high dimensional spaces and with large databases [65]. Finally,

the cost of storing a set of descriptors for each training model of the cur-

rently publicly available 3D datasets is nowadays definitely affordable

by off-the-shelf machines. Based on the above considerations, weinves-

tigated on the actual importance of building a codebook to successfully

perform object category recognition in 3D data.

The chart in Fig. 4.16 shows the outcome of an experiment carried

out on the Aim@Shape Watertight dataset (see Sec. 4.3.5 for more de-

tails about the dataset and the experimental methodology ).We used
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Figure 4.16: Impact of codebook size on mean recognition rate and mean
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half dataset for training and half for testing, i.e. ten models for training

and ten for testing for each category. 200 mesh vertexes wererandomly

selected on each training model obtaining 2000 features as training set

for each category. We then performedk-means on this set, varyingk

logarithmically from 10 to 2000. We used such codebooks to categorize

the test set. The best mean recognition rate is obtained with2000 code-

words, i.e. using the plain training data without any clustering. Loss in

efficiency is minimal, for instance using 100 codewords the meantime

to categorize one test model is about 42 ms, whereas using theplain

training set as codebook it slightly increases to about 52 ms. Memory

occupancy, of course, scales linearly with codebook size and, for the

considered dataset, when using no clustering is less than 57MB. There-

fore, based on the indication of this and other similar experiments, in

the following we use as ”codebook” the whole training data, without

carrying out any clustering on them.

Sharing codewords among categories

In the original ISM proposal, the case of simultaneous recognition of

multiple categories is solved by running a detector for eachcategory, en-

dowed with its own codebook built from training data belonging to its

category. We refer to this configuration as ISM withseparated code-
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books: codebooks of different categories are independently built and

used. In the context of categorization of DB entries, we haveinvesti-

gated on another possible configuration, that we refer to here as ISM

with global codebook: a codebook is created from the training data be-

longing to all categories and then used by all ISMs. The ShapeModel

of each category is still built during the training stage by considering

only the training data belonging to that category. However,denoting

with S Mi the Shape Model of categoryCi, not only those originated by

the training data ofCi, but all the codewords in the codebook, regard-

less of the categories of the features that generated them, can participate

to S Mi, provided that they are similar - according to the codeword ac-

tivation strategy - to any of the training features ofCi. Therefore, this

scheme endows the ISM paradigm with a broader capability of gener-

alization: whilst the separated codebooks configuration isable to gen-

eralize at an intra-class level, by letting features observed in different

training instances of the same class collaborate to the detection of an

instance during testing, the global codebook configurationlets ISM gen-

eralize also at aninter-classlevel. It allows features observed in training

examples of different categories to reinforce the hypothesis that an in-

stance of categoryCi is present. In other words, it builds a ”universal”

codebook of all the likely features given the training data,and then asso-

ciates a spatial location for a specific category to all thosethat are ”sim-

ilar” to the training features of such category, regardlessof the labels of

the training data that originated that codeword.

It is worth highlighting that memory requirements of both configura-

tions are equal: although a global codebook requiresC times more space

than a separated codebook, withC the number of categories, only one

instance of it has to be stored in memory since it can be sharedamong

all theC 3D ISM required by our proposal. Query time scales logarith-

mically with the size of the codebook: since codewords in theglobal

codebook areC times those of the separated codebooks, query time is

increased by logC, a limited amount for typical number of categories in

publicly available 3D databases (i.e. less than 30).
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4.3.3 Codeword Activation Strategy

The codeword activation strategy proposed for the deployment of ISM

in the case of 2D data [50] is thecutoff threshold: codewords are acti-

vated, and, thus, cast their votes, if their distance from the test feature is

below a threshold. An alternative approach is represented by thek-NN

activation strategy: the closestk codewords to the test feature are acti-

vated, regardless of their distance. We consider the latterstrategy more

suitable to the task of categorization, the reason being twofold. First of

all, in those parts of the feature space characterised by a high codeword

density,k-NN activates generally less features than the cutoff strategy,

only thek most similar ones. By increasing the number of votes casted

by each test feature in the Hough space we may expect to sharpen the

peak corresponding to a true instance of the class, but also to generate

spurious peaks in the voting space, by randomly accumulating wrong

votes in the same bin. In such parts of the feature space, thek-NN strat-

egy acts as a filter that aims at reducing the probability of adding noise

into the Hough space, while it hopefully retains the abilityto let the cor-

rect hypothesis emerge, by selecting only the most similar codewords.

Secondly, in those parts of the feature space with a low density or even

absence of codewords,k-NN still activatesk codewords, whereas the

cutoff strategy cast very few votes, if any. Indeed, being the threshold

generally chosen as small as to prevent generation of false peaks, the cut-

off strategy generally tends not to activate any codeword in lowdensity

regions of the feature space. Obviously, the codewords activated by the

k-NN strategy can be really different from the test data. Still, given the

training set, they are the most similar at hand: if we have to generalize

from the training examples to attempt to classify the current input, they

appear a reasonable choice. The same reasoning does not holdwhen

using 3D ISM to detect instances in cluttered scenes: in sucha case, a

high distance from any codeword is likely to indicate that the test feature

comes from clutter and hence should not cast votes, such behavior being

correctly modeled by the cutoff strategy. Yet, when reasoning in absence
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of clutter, as it is the case of categorization of entries of a3D database,

thek-NN strategy offers an adaptive behavior with respect to the training

data that seems more suitable to the task.

4.3.4 Votes Weighting Strategy

In [50], the vote weight for each pair (test feature, vector in the shape

model) is given by the product of a match weight and an occurrence

weight

w = p (on, x|Ci , l) ∗ p
(
C∗i | fk

)
=

1
|M|
∗

1
|Occ[i]|

(4.9)

with M being the set of codewords activated by the test featurefk and

Occ[i] being the set of vectors in the Shape Model associated with code-

word i.

The rationale behind this choice is tightly coupled with theuse of

the original ISM for detection in cluttered scenes. In presence of clut-

ter, there is an obvious trade off between increasing the number of true

detections and limiting the number of false detections. Thechoice of

the vote weighting strategy operated in [50] goes in this direction. If

a feature activates more codewords than another feature and/or if such

codewords can be observed in more feasible positions with respect to the

object center than other codewords, then this feature will be regarded as

less distinctive since it likely generates more spurious votes in the Hough

Space. By keeping low the weight, i.e. the confidence, on the position of

the object center for the votes of such features, the original ISM tries to

choose a good working point to optimize the above mentioned trade-off,

by keeping below the detection threshold such spurious local maxima of

the voting space. We refer to this vote weighting strategy asLocalization

Weights (LW).

Again, in absence of clutter the scenario is different. Recall from

Sec. 4.3.1 that we propose to select as output the category yielding the

global maximum among all the Hough spaces. Therefore, in this case the

emphasis for each 3D ISM should be on supporting as much as possible
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its best hypothesis. This means that spurious local maxima are not rele-

vant for categorization, as long as they do not hide the true global maxi-

mum. Since we can reasonably expect that the geometrically consistent

bin will likely provide the strongest peak in the voting space, there is no

reason to try to weaken local maxima by acting on the vote weight. On

the other hand, using the original ISM vote weighting strategy may use-

lessly reduce the strength of the global maximum only because features

that casted vote for it have also casted votes for wrong locations, and this

can lead to a wrong selection of the correct category in the final compe-

tition among each global maximum of all categories. Hence, in the case

of categorization, we have investigated on the use of the same constant

weight for all features and codewords. Hereinafter, we willdenote this

vote weighting strategy asCategorization Weights (CW).

4.3.5 Experimental Results

We have tested our proposals on the Aim@Shape Watertight (ASW)

dataset, previously used for the evaluation of 3D object categorization

algorithms such as [97], and on the Princeton Shape Benchmark (PSB)

[83], already used for 3D categorization in [52]. Since meshes in the

PSB dataset exhibit a high variance in metric dimensions, even within

the same class, to define a Hough Space suitable for all meshes, we nor-

malize models before using them for testing or training. Specifically, we

translate the model barycenter into the origin, compute theEigenvalue

Decomposition (EVD) of the scatter matrix of each model to find its

principal axes, we scale the model down or up by a scale factorgiven by

1/Xmax− Xmin, with Xmax,Xmin the maximum and minimum coordinates

of the mesh along the first principal axis, and finally rotate the model to

align it with its principal axes. It is important to note that, due to the sign

ambiguity inherent to the EVD [9], we still need PoV-independent votes

to achieve correct categorization. This normalization allows also for an

important simplification: we can define the Hough Space just around the

barycenter,i.e. the origin: any hypothesis for the object center laying
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far away from the barycenter will clearly be a spurious peak in the vot-

ing space. This improves the effectiveness of our method, by discarding

peaks in the a priori wrong regions of the voting space, and the its effi-

ciency, since it reduces the memory footprint needed to store the Hough

Space. In particular, we used a Hough Space consisting of onesquared

bin, centered in the origin and with a side of 0.2. In all the experiments

with both datasets we randomly extract 200 feature points from each

training model and 1000 feature points from each testing model, and we

describe them using SHOT with 16 spatial sectors (8 on the tangent plane

and 2 concentric spheres) and 10 bins for the normal histograms. We di-

minish the number of spatial divisions, and therefore the dimensionality

of the descriptor with respect to that used in the previous experimental

results because clustering operates better in lower dimensionality spaces.

We do not perform any multi scale description, we use just a single sup-

port radius, equal to 0.25 and 0.45 for the AWS and the PSB dataset,

respectively. As discussed in section 4.3.2, we use a plain codebook

composed by all training descriptors.

The Aim@Shape Watertight dataset contains 20 categories, each in-

cluding 20 models. We tested our performance on this datasetaccording

to two methodologies. First, we divided the dataset in a training and

a testing set by taking the first 10 models of each category as training

set and the rest as testing set. With this configuration we studied the

influence of the previously discussed design issues. Then, we also per-

formed Leave-One-Out cross validation as done in [97], to beable to

compare our results with such related work. Of course, the first test is

more challenging, since significantly less training data isavailable to

learn category shapes.

Results for the first series of experiments are reported in Fig. 4.18.

We compared the performance of all the combinations of the proposed

design decisions, i.e. global codebook (GC) vs. separated codebooks

(SC), LW vs. CW andk-NN vs. cutoff with different values. The best

recognition rate for this dataset is 79% and is obtained using 1-NN as

Codeword Activation Strategy and a global codebook. In suchconfigu-
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Figure 4.17: Confusion Matrix for Aim@Shape Watertight, 1-NN Code-
word Activation Strategy and CW Votes Weighting Strategy. The rows
represent the test categories of the input model, the columns the output
of the 3D ISM.

ration LW is the same as CW, since each codeword has zero or onevote.

Fig. 4.17 reports the confusion matrix for such case.

In the case of the Leave-One-Out cross validation, [97] reports a

mean recognition rate of 87.25%. Using 2-NN as Codeword Activa-

tion Strategy, a global codebook and CW as Votes Weighting Strategy,

we have obtained100%.

The PSB dataset comes with a hierarchical categorization and a pre-

defined division in training and testing sets. We use such categoriza-

tion and such division. To compare our results against thosein [52] we

use the categorization level named Coarse 2, although it defines quite

abstract meta-categories, such as ”Household”, which includes electric

guitars, guns as well as stairs, or ”-1”, that stands for ”allother models

in the dataset”. Clearly this dataset is more challenging than ASW, the

intra-class and the inter-class variability being definitely higher.
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Figure 4.18: Mean recognition rate as a function of varying cutoff and
k-NN values on Aim@Shape Watertight.

Results are reported in Fig. 4.19. We compared the same combi-

nations as in the previous experiment. The best recognitionrate for

this dataset is 50.2% and is obtained using 2-NN as Codeword Acti-

vation Strategy, a global codebook and the CW Votes Weighting Strat-

egy. [52] reports a mean recognition rate of 55%. It is worth noting

that, in addition to the previously mentioned difficulties, the PSB dataset

presents also a highly variable point density among the models. As it

has been noted in the experimental comparison on the SHOT descriptor

(Sec. 4.1.5), point density variation is not well toleratedby current 3D

descriptors. This was explicitly accounted for in [52], where all PSB
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Figure 4.19: Mean recognition rate as a function of varying cutoff and
k-NN values on the PSB coarse 2 dataset.

meshes were resampled to a constant number of vertexes, uniformly dis-

tributed in the meshes. We have not implemented such resampling yet,

that could likely improve our performance.

4.3.6 Discussion

The most evident outcome of our investigation is definitely the fact that

the Codeword Activation Strategy and codebook compositionplay a sig-

nificant role on the performance of 3D ISM for categorization. In both

datasetsk-NN with global codebook consistently outperforms the cutoff
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threshold with both kinds of codebook composition, regardless of the

choice ofk. This confirms two intuitions:

• that the intrinsic adaptation to codewords density in the feature

space provided byk-NN is more suitable for database entries cat-

egorization, i.e. in absence of clutter, since it enhances ISM gen-

eralization ability;

• that the global codebook, when compatible with the application

constraints on memory occupancy and computation time, endows

ISM with higher, inter-class generalization power.

Experiments also reveal a tight coupling between the use ofk-NN

and the global codebook:k-NN with separated codebooks exhibits un-

satisfactory performance, even with respect to the cutoff strategy. With

the global codebook thek nearest neighbor codewords for a test feature

are the same for each tested category, i.e. they represent the overallk

most similar features throughout those belonging to all categories seen

in the training stage, what then differs for the different categories is how

these codewords vote in the different ISMs. In particular, it is worth

pointing out that, differently from the case of separated codebooks, it

happens that some of the codewords have no associated votes in the ISM

of a specific category. This happens when a codeword is not similar to

any training data of that category. Therefore, many of thek activated

codewords will likely vote only for a subset of the categories, so that

votes accumulation in the Hough Space has more chances to letthe true

category emerge, being required to filter out a limited amount of wrong

votes. In other words, this configuration balances the impact of code-

book (i.e. of features similarity) and shape model (i.e. of geometrical

structure) and results in good recognition rates. With separated code-

books, instead, thek nearest neighbors are different in different code-

books, so that in several of them the activated codewords maybe very

dissimilar to the test feature. Moreover, since there are nocodewords

without votes in this configuration, all the activated codewords will cast
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votes in their shape models. This configuration, therefore,tends to di-

minish the importance of feature similarity and relies almost completely

on shape models being able to select the correct category. This increases

the probability of generating wrong, spurious peaks in the voting space.

The vote weighting strategy does not play a role as importantas the

other two design decisions. Nevertheless, as far as thek-NN codeword

activation strategy is concerned, the Categorization Voting obtains con-

sistently slightly better performance in both datasets andwith both kind

of codebooks. This provides experimental evidence to the reasoning of

Sec. 4.3.4.

As for the experiments on the cutoff threshold strategy, whilst on the

PSB dataset the global codebook is still the favorable option, and there is

little difference between the votes weighting strategies, in the case of the

ASW dataset the decisive factor for obtaining higher performance seems

to be the LW strategy whereas, unlike in thek-NN case, the codebook

options seem to have quite a minor impact. We ascribe the latter to the

cutoff strategy intrisecally balancing feature similarity and geometrical

structure, for dissimilar codewords, given the cutoff threshold, cannot

cast votes at recognition time also when the separated codebook is used.

On the other hand, it is quite more difficult to explain the higher per-

formance of LW on this dataset. The higher performance of LW seems

to suggest that in the ASW dataset wrong categories are supported in

the voting space by less distinctive codewords, whose vote weights are

indeed diminished by using LW.

The Confusion Matrix in Fig. 4.17 evidences how, beside gross er-

rors that must be ascribed to the difficulty of the task, several errors

are somehow reasonable for an algorithm that tries to categorize objects

based only on 3D shape only. For instance, the category ”Octopus”,

for which our proposal fails to recognize the majority of test models, is

confused with ”Hand”, ”Armadillo” and ”Fourleg”, i.e. withcategories

that present sort of ”limbs” in configurations similar to those assumed

by the models in the ”Octopus” category. The 40% of ”Fourleg”test

models are wrongly categorized as ”Armadillo”, which, again, in some
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training models appears in a Fourleg-like pose. All the wrongly assigned

test models of ”Bearing” are labeled as ”Table” or ”Plier”, which have

parts (the legs, the handles) that are shaped as bearings. Provided that

this dataset can be successfully categorized by using only shape when

enough training data can be deployed, as our 100% result in the Leave-

One-Out test demonstrates, the mostly reasonable errors inthe Confu-

sion Matrix show that our proposal is able to learn a plausible, although

less specific, model for the category shape in presence of less training

data.
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This dissertation has presented the research activity concerning adap-

tive visual tracking carried out during the Ph.D. course. Inparticu-

lar, three main contributions related to adaptive trackinghave been pre-

sented: adaptive transition models, adaptive appearance models and an

adaptive Bayesian loop for tracking based on change detection in case

of static cameras. Moreover, our work on category detectionin 3D data

has been presented.

As far as adaptive transition models are concerned, a new approach

to build an adaptive recursive Bayesian estimation framework has been

introduced, both from a theoretical point of view and in terms of its

instantiation in the case of linear transition and measurement models and

Gaussian noise. The proposed SVK filter has been shown to outperform

a standard Kalman solution, requiring less parameters to bearbitrarily

(and possibly wrongly) tuned. In the linear and Gaussian scenario, an

interesting future investigation concerns the evaluationof the proposed

approach against comparable solutions for adaptive Kalmanfiltering (i.e.

Covariance Matching Techniques and [109]).

We also see this work, as all the contributions of this thesis, as a step

toward a general and parameters free tracking system. Endowing this

vision, another interesting future work will be directed tothe insertion

of algorithms for automatic on-line selection of SVR parameters. Fi-

nally, the instantiation of our proposal also in the case of non linear and

non Gaussian tracking, in particular by modifying it in order to be ben-

eficially used also with particle filters, would be a great contribution to

foster its applicability and adoption.
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As far as adaptive appearance models are concerned, our contribu-

tion has been twofold: we presented a critical review and classifica-

tion of the most significant, recently proposed algorithms that deal with

model adaptation; we casted the problem of model update as a Recursive

Bayesian Estimation problem. Preliminary experimental results, where

our proposal was compared on challenging sequences againstmany state

of the art trackers, both adaptive and non adaptive, are encouraging. The

main extension for our proposal would be to define a proper method to

compare different features, in order to use the particle filter framework

to perform also on-line probabilistic feature selection. Moreover, the

proposed importance density and observation likelihoods are just one

possible instantiation of this novel framework. They can bemodified

and extended in several ways: to make them more robust to tracker mis-

alignments, by exploiting the full posterior PDF on the state instead of

the current estimation only; to make them more robust to occlusions

by deploying more stable schemes than the sliding window andconse-

quently modifying the PDFs evaluation; to make them fully compliant

with the particle filtering framework, by not fully relying on the current

frame during the proposal density sampling and, hence, allowing for a

proper observation likelihood to be defined.

An adaptive Bayesian loop for tracking based on change detection

in case of static cameras has been proposed. On-line training of a bi-

nary Bayesian classifier based on background-frame pairs ofintensi-

ties has been proposed to perform change detection robustlyand effi-

ciently in presence of common sources of disturbance such asillumi-

nation changes, camera gain and exposure variations. The ability of

such algorithm to learn a model of admissible intensity variations frame

by frame allows it to obtain high sensitivity without sacrificing speci-

ficity. Importantly, this promising trade-off is yielded without penaliz-

ing efficiency. Based on this novel change detection algorithm, a prin-

cipled framework to model the interaction between Bayesianchange

detection and tracking have been presented. By modeling theinterac-

tion as marginalization of the joint probability of the tracker state and
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the change mask, it is possible to obtain analytical expressions for the

PDFs of the tracker observation likelihood and the change detector prior.

Benefits of such interaction have been discussed with experiments on

publicly available datasets targeting visual surveillance and automatic

analysis of sport events, where the proposed method outperformed two

standard solutions for visual tracking. Several interesting extensions are

possible: adapt the probabilistic reasoning on change mapsto the case

of particle filters; extend the proposed Bayesian algorithmto color-based

change detection; take into account in the loop the number and the posi-

tion of multiple targets and also their appearance, in the spirit of BraM-

BLe [38] but without requiring a foreground model; experiment with

multiple sources of measurements, such as color histograms, providing

for them, too, a fully specified observation likelihood.

As for the categorization of 3D data, our proposal encompasses the

deployment of Implicit Shape Models in combination with a novel pro-

posal for 3D description, dubbed SHOT. We have devised the general

structure of a 3D ISM and identified and discussed three design decisions

that could improve the performance of the method when used for cate-

gorization. Experimental results on two well known and large datasets

demonstrate that the combination of thek-NN codeword activation strat-

egy and the use of a global codebook built from the training data of all

categories is more effective for categorization than the standard ISM ap-

proach. Votes weighting strategy, on the other hand, does not seem to

play such an important role for overall performance. The proposed opti-

mal configuration compares favorably with the state of the art in 3D data

categorization, obtaining similar results in one case and outperforming

current proposals on the other dataset.

We have tested also the SHOT descriptor on its own. The results val-

idate the intuition that the synergy between the design of a repeatable

local RF and the embedding of an hybrid signature/histogram nature

into a descriptor allows for achieving at the same time state-of-the-art

robustness and descriptiveness. Remarkably, our proposaldelivers such

notable performances with high computational efficiency.
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Starting from SHOT, we have presented a general formulationfor

multi-cue description of 3D data by signatures of histograms. We have

then proposed a specific implementation of this formulation, CSHOT,

that realizes a joint texture-shape 3D feature descriptor.CSHOT has

been shown to improve the accuracy of SHOT and to obtain state-of-the-

art performance on data comprising both shape and texture. By means

of experimental evaluation, different combinations of metrics and color

spaces have been tested: theL1 norm in theCIELab color space turns

out to be the most effective choices.

As for future work, the obvious next step is to deploy 3D ISM to

detect category instances in 3D data and initialize a tracker. 3D ISM may

be used also to continuously guide a tracker in a tracking-by-detection

approach. As for the SHOT descriptor, we plan to investigateon how to

improve robustness to point density variations. Comparingour proposal

with other relevant methods and on larger datasets is another important

prosecution for this work.

150



Bibliography

[1] Adam, A., E. Rivlin, and I. Shimshoni (2006). Robust Fragments-
based Tracking using the Integral Histogram. InProc. of the Com-
puter Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR) - Volume 1, pp. 798–805. IEEE Computer Society Wash-
ington, DC, USA.

[2] Akagunduz, E. and I. Ulusoy (2007). 3D object representation us-
ing transform and scale invariant 3D features. InProc. of the In-
ternational Conference on Computer Vision (ICCV), pp. 1–8. IEEE
Computer Society, Washington, DC, USA.

[3] Arulampalam, S., S. Maskell, N. Gordon, and T. Clapp (2001).
A tutorial on Particle Filters for On-line Non-linear/Non-Gaussian
Bayesian Tracking.IEEE Transactions on Signal Processing 50, 174–
188.

[4] Avidan, S. (2005). Ensemble tracking. InInternational Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 494–501.

[5] Babenko, B., M.-H. Yang, and S. Belongie (2009). Visual tracking
with online multiple instance learning. InProc. of the International
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
983–990. IEEE Computer Society Washington, DC, USA.

[6] Bay, H., A. Ess, T. Tuytelaars, and L. J. V. Gool (2008). Speeded-Up
Robust Features (SURF).Computer Vision and Image Understand-
ing 110(3), 346–359.

[7] Blum, A. and T. Mitchell (1998). Combining labeled and unlabeled
data with co-training. InProc. of the eleventh annual conference
on Computational learning theory (COLT), pp. 92–100. ACM New
York, NY, USA.

151



Bibliography

[8] Breitenstein, M. D., F. Reichlin, B. Leibe, E. Koller-Meier, and
L. van Gool (2009). Robust tracking-by-detection using a detector
confidence particle filter. InProc. of the International Conference on
Computer Vision (ICCV), pp. 1515–1522. IEEE Computer Society
Washington, DC, USA.

[9] Bro, R., E. Acar, and T. Kolda (2008). Resolving the sign ambiguity
in the singular value decomposition.Journal of Chemometrics 22,
135–140.

[10] Calonder, M., V. Lepetit, C. Strecha, and P. Fua (2010).Brief:
Binary robust independent elementary features. InProc. of the Euro-
pean Conference on Computer Vision (ECCV) - Part IV, Heraklion,
Greece, pp. 778–792. Springer-Verlag, Berlin, Heidelberg.

[11] Cao, L. and Q. Gu (2002). Dynamic Support Vector Machines for
non-stationary time series forecasting.Intelligent Data Analysis 6,
67–83.

[12] Chen, H. and B. Bhanu (2007). 3d free-form object recognition
in range images using local surface patches.International Journal of
Pattern Recognition and Artificial Intelligence 28(10), 1252–1262.

[13] Chu, W., S. Keerthi, and C. J. Ong (2004, Jan.). BayesianSupport
Vector Regression using a unified loss function.IEEE Transactions
on Neural Networks 15(1), 29–44.

[14] Chua, C. S. and R. Jarvis (1997). Point signatures: A newrepresen-
tation for 3d object recognition.International Journal of Computer
Vision (IJCV) 25(1), 63–85.

[15] Collins, R. T., A. J. Lipton, and T. Kanade (1999). A system for
video surveillance and monitoring. Technical report, Robotics Insti-
tute at Carnegie Mellon University.

[16] Collins, R. T., Y. Liu, and M. Leordeanu (2005, oct). Online selec-
tion of discriminative tracking features.IEEE transactions on pattern
analysis and machine intelligence 27(10), 1631–43.

[17] Comaniciu, D., V. Ramesh, and P. Meer (2003). Kernel-based ob-
ject tracking.IEEE Transactions Pattern Analysis and Machine Intel-
ligence (PAMI) 25(5), 564–575.

152



Bibliography

[18] Conde, C., L. Rodrı́guez-Aragón, and E. Cabello (2006). Auto-
matic 3d face feature points extraction with spin images.Interna-
tional Conference on Image Analysis and Recognition (ICIAR) 4142,
317–328.

[19] Csurka, G., C. Bray, C. R. Dance, and L. Fan (2004). Visual cate-
gorization with bags of keypoints. InProc. of. European Conference
of Computer Vision - Workshop on Statistical Learning in Computer
Vision (ECCV), Lecture Notes In Computer Science (LNCS), pp. 1–
22. Springer-Verlag, London.

[20] Dalal, N. and B. Triggs (2005). Histograms of oriented gradients
for human detection. InProc. of the Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 886–893.
IEEE Computer Society Washington, DC, USA.

[21] Davis, J., D. Nehab, R. Ramamoothi, and S. Rusinkiewicz(2005).
Spacetime stereo : A unifying framework for depth from triangula-
tion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI) 27(2), 1615–1630.

[22] D’Orazio, T., M. Leo, N. Mosca, P. Spagnolo, and P. L. Mazzeo
(2009). A semi-automatic system for ground truth generation of soc-
cer video sequences. InProc. of Sixth International Conference on
Advanced Video and Signal Based Surveillance (AVSS), pp. 559–564.
IEEE Computer Society Washington, DC, USA.

[23] Elgammal, A., D. Harwood, and L. Davis (1999). Non-parametric
model for background subtraction. InProc. of the International Con-
ference on Computer Vision (ICCV), pp. 751–767. IEEE Computer
Society, Washington, DC, USA.

[24] Elhabian, S. Y., K. M. El-Sayed, and S. H. Ahmed (2008). Moving
object detection in spatial domain using background removal tech-
niques - state-of-art.Recent Patents on Computer Sciences 1, 32–54.

[25] Fairchild, M. (2005). Color Appearance Models. John Wiley &
Sons Ltd.

[26] Freeman, W. T. and E. H. Adelson (1991, September). The design
and use of steerable filters.IEEE transactions on pattern analysis and
machine intelligence 13(10), 891–906.

153



Bibliography

[27] Frome, A., D. Huber, R. Kolluri, T. Bülow, and J. Malik (2004).
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