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Introduction

Visual tracking is the problem of estimating some variabéated to a
target given a video sequence depicting the target. Inmgplgist form,

it consists of estimating the position of the target whilevéanders in
the scenei.e. its trajectory in the image plane. Depending on the final
application and the tracker complexity, additional targatiables can
be estimated, such as scale, orientation, joint anglesdagtws parts,
velocity, etc. These variables form the targttte i.e. the set of hidden
variables that the tracker tries to recover from noisy oketerns of it,

i.e. the video frames.

Visual tracking is a fundamental feature for the automatibmany
tasks, such as visual surveillance, robot or vehicle autaus naviga-
tion, automatic video indexing in multimedia databases,.ett is also a
basic enabling factor for making machines able to interpoebhan mo-
tion and deliver a whole new branch of services and apptinatisuch
as natural human-computer interfaces, smart hontises or urban en-
vironments and computer-aided diagnosis or rehabilitatio

Visual tracking is dificult because of the classical nuisances that
computer vision faces, such as scene illumination chahgespf infor-
mation due to perspective projection, sensor noise, emnd because of
peculiar dificulties, such as complex motion patterns of the target, non-
rigid or appearance-changing targets, partial and fujlebocclusions.

Despite many years of research, long term tracking in realdwvo
scenarios for generic targets is still unaccomplished.mam contribu-
tion of this thesis is the definition offfective algorithms that can bring
visual tracking closer to a solution by letting the trackéapt to mutat-
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Introduction

ing working conditions. In particular, we propose to adapm trucial

components of visual trackers: the transition model andafipearance
model. The adaptation is performed on-line, frame-by-frame while
the tracker runs. To better contextualize our contribigjome first in-

troduce the standard formulation of the tracking problem e tools

typically used to solve it.

As noted in [[17], two major components can be distinguisimed i
typical visual tracker:Filtering and Data Associatiols mostly a top-
down process dealing with the dynamics of the tracked olajedteval-
uation of diferent hypotheseSarget Representation and Localization
is mostly a bottom-up process which has to cope with chamgeiap-
pearance of the target and has to provideféectve description of it in
presence of similar objects (distractors). The way the tam@onents
are combined and weighted is application dependent and pladeci-
sive role in the robustness anfiieiency of the tracker. Nevertheless, for
a general tracker both components are key to tracker success

As far as the Filtering and Data Association component iseored,
to deal with all the nuisances and to take into account themaiaty
onto the final estimation they introduce, one widespreadasguh is to
formulate tracking as a probabilistic inference problentlus space of
all possible states. The probabilistic formulation andrdggiirement for
the updating of state estimation on receipt of new measuresmatu-
rally lead to the Bayesian approach. It provides a rigoraumegal frame-
work for dynamic state estimation.

In the Bayesian approach the output is plosteriorprobability den-
sity function (PDF) of the state, based on all availablenmfation,i.e.
the sequence of previous states and received measurens@nte. the
posterior PDF encompasses all available statisticalimdédion, an opti-
mal estimation of the state with respect to any criterion ipapbtained
from it.

In this thesis we deal only with causal trackears, we do not take
into account visual trackers using future frames and statestimate
the state at a given time. In a causal tracker an estimateeo$ttite
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z, z,

Figure 1: The first order Markov chain structure assumedtfertarget
state.

is computed every time a measurement is receiveda new frame is
available in the frame Hter, using only past states and measures. A
recursive filter is the natural solution in this case. HeriRecursive
Bayesian Estimation (RBE)/[3,79] is the standard tool t&l&athe state
estimation in causal visual trackers.

RBE is solved, at least from a theoretical point of view, unithe
standard assumption that the system can be modeled as arfiest o
Markov model (Fig[1l)i.e.

e the state at timé, x, € RN, depends only on the previous state

Xk-1 ;
e the measure at timig z, € RM, depends only or.

In the case of visual tracking, the measuageypically coincides with
the current frameéy, hence the two terms and symbols will be used in-
terchangeably.

From the first order Markovian assumption it follows that $lgetem
is completely specified by:

e alaw of evolution of the state,

Xk = (X1, ) 1)
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wherevyy is an i.i.d. process noise sequence dnd a possibly
non-linear function relating the state at tirkevith the previous
one;

e a measurement process,

Z = h(Xk, 7x) (2)

wherery is an i.i.d. measurement noise sequencelgns a pos-
sibly non-linear function relating the measurement at tknwath
the current state;

e an initial statex.

Process noise takes into account any modeling errors oresden dis-
turbances in the state evolution model

In a Bayesian probabilistic approach, given the noi$ecéing the
low of evolution of the state and the measurement processrlities
comprising the system are defined by PDiFes,

e the transition model,
P(Xk | Xk-1) (3)

defined by[(ll) and the statistics af

e the observation likelihood,

P(z« | %) (4)
defined by[(R) and the statistics nf
e the initial target PDRp(Xo).

These PDFs are generally assumed to be known a priori and neve
updated.

Given this characterization of the target, a general buteptual
solution can be obtained in two steps: prediction and updatie pre-
diction stage, the Chapman-Kolmogorov equation is useddpggate
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Introduction

the belief on the state at tinke- 1 to timek
P(Xk | Zik-1) = f P(Xk | Xk-1) PXk-1 | Z1:k-1) AX_1- (5)

wherez;_; is the set of all measurements up to frakael, {zy, ..., z«_1}
This usually corresponds to a spreading of the belief ontétte,sdue to
the increasing distance in time from the last measuremenhe update
stage, the PDF is sharpened again by using the current neegsamd
the Bayes rule

P(Xk | Z1x) o< P(Zk | X)) P(Xk | Z1-1)- (6)

This conceptual solution is analytically solvable only ewfcases.
A notable one is when the law of evolution of the state and tbasure-
ment equations are linear and the noises are Gaussian sisitilrtion,
the optimal solution is provided by the Kalman filter [42]. &RBE
framework for this case becomes:

Xk = fl(Xk-1, i) = X = FiXier + v, E [VkVI] = Qx (7)

zx = (X, k) = zZx =HXe+ 1k, E [Ukﬂ;] = Ry (8)

and the mean and covariance matrix of the Gaussian postaiobe
optimally estimated using the Kalman filter equations:

e prediction,

X = FiXi1 9)
Pr = FiPc 1Fg + Qg (10)

wherex,_; andPy_; are the previous estimates of, respectively, the
mean vector and the covariance matrix apandP, are, follow-

ing the typical Kalman notation, the estimates of, respebtj the
mean vector and the covariance matrix for the current friaefiere

a new measure is available;
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e update,
S = HiPy + HJ + Ry (11)
Kk = P HS 1 (12)
Xk = X — Kk (z« = Hkz) (13)
Pr = (I = KgHy) P¢ (14)

where x, and P¢ are the optimal estimates of, respectively, the
mean vector and the covariance matrix.

When the assumptions made by the Kalman filter do not holdpa su
optimal solution to the RBE problem can be obtained withipifilters
[79]. Particle filters performs sequential Monte Carlorastiion. Given
the posteriorp(xx | zyx) we want to obtain an estimate of the state from
it:

X = f f (i) P(Xk | Z1x) X - (15)
Rn

The Monte Carlo solution is a numerical evaluation of thegnal,
that requires to sampLesampIesq( from the posterior and then compute
the estimate as the sample mean

1o,
Re=T ) T04). (16)
i=1

Unfortunately, it is impossible to sample from the posteinothe
general, non Gaussigmon linear case, since it has a non standard form
and it is usually known only up to a proportionality constardbwever,
if it is possible to generate samples from a dengq() that is similar
to the posteriori(e., it is not 0 when the posterior is not 0), then we can
still use the Monte Carlo method to approximate the integrdl5) by
drawing sample frongj(xx) and weighting them accordingly,

R R : | 21
K = E;f(x:()w(x:() with  w(x) = %;k). (17)
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This technique is known as importance sampling and the §Fe-
ferred to as the importance or proposal density.

Particle filter are based wequentialmportance sampling. The key
idea is to represent the posterior by a set of random samjileassoci-
ated weights, thparticles The posterior PDF can then be approximated
as

L
PO | 21 = ) WIK)S0 — X)) (18)
i=1

where samples are obtained at each time step from the plaperssity
d(xk | Xk_1, Zx), weights are updated at each time step as [79]

p(zi | X)p(Xi | Xi_,)
axi I X,_q> Z)

P(Xk | Z1x)
A(Xk | X1k-1, Z1x)

W(X,) oc

W(Xj._y)

(19)

and then normalized to sum to one. It can be shown that as « the
approximation in[(I8) converges to the true posterior dgnsi

The main problem with sequential importance sampling ise€ep
sented by particle degeneracy. In particular, the variaidbe parti-
cles weights can only increase with sequential importaaogpéing. In
practice, this means that after a certain number of receisgps, all but
one particle will have negligible weights. To counterads téfect re-
sampling algorithms are introduced, leading to so callepisstial im-
portance resampling algorithms. Resampling eliminatespézs with
low weights and multiplies samples with high importancegis. This
corresponds to computing a less accurate approximatidreqiasterior
that concentrates on salient regions of the state spacevai$&o waste
computational power by propagating particles that carrynegligible
contributions to the posterior approximation. The new $gtaaticles is
generated by resampling with replacemknimes from the cumulative
sum of normalized weights of the particles|[79].

Within the RBE framework, our major contribution, descdbi@
Chapter 1, is an algorithm tdfectively and éiciently estimate the tran-
sition modelp(xk | X-1) on-line from the tracker output in the Gaussian
and linear case. This reduces the number of parameters teth®/ s
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Introduction

the user, in particular the process noise covariance wheehyaically
hard to estimate but play a significant role for the filter parfance.
Our algorithm also allows for obtaining a time-variant esttion of the
transition model, and therefore results in a more adapiies.fi

As far as Target Representation and Localization is comckrwo
main ingredients constitute it, namely the choice of theéuess space
and the target appearance model.

The regions of the current franhganalyzed by the recursive Bayesian
filter are generally projected in some feature space. Fdamage, in a
standard approach for tracking with particle filters [78f samples of
the state generated by the importance density are thensesyesl as
color histograms [17].

The feature representation usually is:

e more compact than the corresponding regiohpf
e invariant to some (geometric or photometric) variations.

A variety of features has been used to describe the targptnotion
vectors, change detection, object classification, lovellégatures such
as pixel colors or gradients, or mid-level features suchdage and in-
terest points (see [104] for a survey). A main discrimindraracteristic
among features is their spatial extent:

e Part-wise features. Features are extracted from small patches or

even single pixelsg.g. 5 x 5 HoGs [20]). It is relatively easy to
deal with partial occlusions but these features are hardatomif
the target undergoes deformation or rigid transformatsuth as
rotations and scalings.

e Target-wise features. The feature represents the whole target
appearanced.g.color histograms [17]). This kind of features can
typically tolerate target deformations and rigid tranefations.
Correct handling of occlusions represents the most setious
tation of these representations.
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The link between the Filtering and the Representation stdge
tracker is represented by the observation likelihqgzl | xik) defined
in (4). To evaluate it, in oder to update a particle weighg #ppear-
ance model of the target, that we indicate wkhis compared with the
features extracted from the state candid@téThe target model lives, of
course, in the same feature space used to describe thetaaneidates.
The target model is usually learned once, eitif&ire from training data
or online from the first frame(s), and then used throughaistquence.

The use of a fixed model for locating the target makesfitalilt to
cope with illumination changes and deformable targets.cderecently,
the idea of appearance model update has been proposed bgl seve
searchers to aim at successful long-term tracking dedpetsetdificul-
ties. By letting the model evolve across frames to include atapt
to the potential geometric and photometric changes of ttyetathese
methods are inherently able to cope with target deformatérd light-
ening variations. On the other hand, they expose the traoki#e risk
of drift, i.e. the inclusion of background appearance in the appearance
model that can eventually lead to loss of track.

In chapter 2, we analyze the recent advances in target mpdelel
and present our proposal, which is based on the deploymehedRe-
cursive Bayesian Estimation framework to tackle target ehaghdate,
too. This allows for exploiting the robustness of this fravoek also
in the crucial step of target model update and introduce®bailistic
treatment as an interesting solution for this open problem.

Chapter 3 deals with adaptive tracking with a static camedar
contribution in this context concerns both Target Repridem and Fil-
tering. As for the former, we introduce a noveffieent change detec-
tion algorithm, robust to sudden illumination changesghlasn the joint
histogram of background and foreground intensities and ayeBian
inference. As for the latter, we propose a sound way to olaaiadap-
tive observation likelihood from the output of the changtedgon and a
method to obtain a proper prior for the change detection tiepredic-
tion step of the recursive Bayesian filter employed as tnackbe two
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Introduction

flows of information realize a full adaptive Bayesian loog@mpassing
tracking and change detection.

Finally, in Chapter 4 we present our work on the detectionatf ¢
egories in 3D data. In a real automatic deployment a visaakar is
usually initialized with the output of a detector for the egary of in-
terest €.g.humans, cars, faces). While detection in images has reached
a high level of maturity|[20, 50, 100], data coming from 3D sas
have not been fully exploited yet. Moreover, we have regesgen an
increasing interest on the automatic analysis of such dataalthe re-
lease of cheap modern sensors such a¥thectdevice by Microsoft,
that lets foresee an ubiquitous presence of 3D data for hworaputer
interaction. In our work we adapt the well-known Implicitégie Models
[50], proposed for images, to the detection of categori@®inlata. This
extension is based on our novel descriptor for 3D data, diilgh¢OT,
that obtains state of the art performance in various exparisof shape
matching, also presented in the chapter. Finally, the sxderof SHOT
for the description of textured 3D data like those providedHz Kinect
sensor is described and compared with another texturesavesscriptor
[106)].

All the tracking results for the first three chapters are lade as
videos at the author websHe

lwww.vision.deis.unibo.it/ssalti
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Chapter 1
Adaptive Transition Model

Recursive Bayesian Estimation (RBE) is a widespread swiltr vi-
sual tracking as well as for applications in other domaingneta hid-
den state is estimated recursively from noisy measureméitisough
theoretically sound and unquestionably powerful, fromacpcal point

of view RBE sufers from the assumption of complete a priori knowl-
edge of the transition model, that is typically unknown. Tse of a
wrong a priori transition model may lead to large estimagorors or
even to divergence. We propose to prevent these problentsisi of
fully observable systems, learning the transition modelio@ via Sup-
port Vector Regression [86]. An application of this gendraimework

is proposed in the context of ling&aussian systems, where we dub it
Support Vector Kalman (SVK), and shown to be superior to adsed,
non adaptive solution.

1.1 Motivation

The dfficulty of identifying a proper transition model for a specigs-
plication typically leads to empirical and suboptimal tumiof the es-
timator parameters. The most widespread solutions to fypadransi-
tion model for tracking are to empirically select it amongeatricted
set of standard ones ( such as constant positienBrownian motion,

11
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Figure 1.1: The ffect of the use of a wrong transition model: the Kalman
estimation diverges from the true velocity.

[1,4,116] or constant velocity [17, 32,134,/38]) or learn f-bne from
representative training data [78]. Besides the availgiili these train-
ing sequences, which depends on the particular appligatienmajor
shortcoming of these solutions is that they do not allow tangje the
transition model trough time, although this can be benéfaid neither
the conceptual solution nor the solving algorithms reqtite be fixed.

Approximate tuning of a recursive Bayesian filter may sesipuale-
grade its performances, that could be optingaf( when the assump-
tions of a Kalman filter are met) or sub-optimal.g, in all the other
cases where a particle filter is used) in case of correctsystentifica-
tion. In Fig.[1.1 we present a simple experiment to highligetstrong,
detrimental impact of a wrong transition model on an othsewiptimal
and correctly tuned recursive Bayesian filter. In this satioh a pointis
moving along a line with constant acceleration and we trystorete its
position and velocity by a Kalman filter from measurementswed
with Gaussian noise, whose constant covariance matrix asvikrand

12



1.2 Previous work

used as the measurement noise covariance matrix of theRijtdence,
we are using the optimal estimator for the experimentalselhe only
parameter that is wrongly tuned is the transition model artipular we
are using a constant velocity matf instead of a constant acceleration
one. The process covariance mat, was set very high, in order to
compensate for the wrong transition matrix. Despite tlhis gstimation
and the true value of the velocity diverge. In other words,ghtimation
of an otherwise optimal estimator like the Kalman filter carabbitrarily
wrong when an incorrect transition model is assumed. Thisdsnain
motivation behind our work.

1.2 Previous work

Closely related to our work are théferts devoted to the derivation of
adaptive Kalman filters, that have been studied since thieduattion
of this filtering technique. In fact, our proposal can be sagra new
approach to build an adaptive Kalman filter. The main ideartseddap-
tive filtering schemes is that the basic source of uncestasmtiue to
the unknown noise covariances, and the proposed soluttorestimate
them on-line from observed data. One of the most compretecsn-
tributions is given by Mehra [58]. He reviews proposed apphes and
classify them according to four categories:

1. Bayesian Estimation (BE)

2. Maximum Likelihood Estimation (MLE)
3. Correlation Methods (CM)

4. Covariance-Matching Techniques (CMT).

Methods in the first category imply integration over a largaehsional
space and can be solved only with special assumptions onQRkeoP
the noise parameters. MLE requires the solution of a nagalirequa-
tion that, in turns, is solvable only under the assumptibasthe system

13



Chapter 1. Adaptive Transition Model

is time invariant and completely observable and the filter teched a
steady state. Under these assumptions, however, only artiragant

estimation of the parameters of the noise PDF can be obtaiGed

relation Methods, too, are applicable only to time invariand com-
pletely observable systems. Finally, Covariance-MaigHhiachniques
can estimate either process or measurement noise pararaatktturn
out to provide good and time-varying approximations for tineasure-
ment noise when the process noise is known.

In the work of Oussalah and De Schutter [70], an improvedeta+r
tion method is proposed, but the requirement on the statigraf the
system is not dropped. In the context of visual tracking, §venal.
[101] present the application of an adaptive Kalman filtdne process
and measurement errors are modified in every frame takingetount
the degree of occlusion of the target: greater occlusioresponds to
greater value of measurement noise and vice versa. The tisesal-
ways sum up to one. In the extreme case of total occlusionsuneaent
noise is set to infinity and process noise to 0. Zhang et af][@fe the
term Adaptive to refer to an adaptive forgetting factor,ttisaused to
trade dt the contribution to the covariance estimate for the curtiems
step of the covariance estimate for the previous time stdpranprocess
noise. This is done in order to improve the responsiveneggedilter in
case of abrupt state changes.

Compared to all these proposals, our method makes less pssom
on the system, the only one being its complete observabllits allows
it to be more generally applicable and, in particular, todittér the usual
working conditions of visual trackers. Moreover, unlike B#&LE and
CM techniques our proposal provides a time-varying noigBssics es-
timation. This is extremely important to allow the filter tgrécamically
weight the prediction on the state and the noisy measurernbas to

fuse at each frame.g.to cope with occlusions when the measurement

can be totally wrong and the prediction on the state is thg miiable
source of information to keep on tracking the target. Unthework of
Weng et al.|[101], our proposal is not specifically conceif@dvisual

14



1.3 On-line adaptation of the transition model

tracking and, hence, generally applicable. Finally, it rtlv pointing
out that, unlike all reviewed approaches, our proposal &ptde in a
broader sense, for it identifies on-line not only the processe covari-
ance matrix but also the transition matrix.

1.3 On-line adaptation of the transition model

We propose to overcome thdiiltulties and the shortcomings due to the
empirical tuning of the transition model by adaptingit-line. If the
state is completely observable, as it is the case in mostipabappli-
cations,i.e. the hy function just adds measurement noise on the state,
the transition model is directly related to the dynamicsilexéd by the
measurements. Hence, it is possible to exploit their tealpwolution

in order tolearnthe functionf,, and, implicitly, the PDRp(Xk|Xk_1). That

is, we can avoid to defing(xx|Xx_1), and instead use in its place a learned
PDF p,,, ,(XdX1), derived from a learned,,, ,. Here, s, , formally
indicates that the PDF is learned using as training dataglaéaonships
between all the consecutive measures from K +dl.

Furthermore, we propose to learn the motion model using &tpp
Vector Machinel[99] ine-regression mode (SVR) [86]. SVMs are well
known and €ective tools in pattern recognition based on the statis-
tical learning theory developed by Vapnik and ChervonenKiheir
widespread use is due to their solid theoretical bases wduetnantee
their ability to generalize from training data minimizirfggt over-fitting
problem. Their use as regressors is probably less populavbu in this
field they provide excellent performances![86]. In the caddaear and
Gaussian systems, there is another important reason toiB@®om-
bination with Kalman filters (the optimal RBE filter in suchase). The
noise model assumed by an SVR is Gaussian, with mean andamear
being random variables whose distributions depend on tvits pram-
eters,C ande, as discussed in the very interesting work of Pontil et al.
[76]. The mean, in particular, is uniformly distributed Wween—e and
€. Therefore, the SVR noise model is a superset of that assbynte
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Chapter 1. Adaptive Transition Model

Kalman filter,i.e. a zero-mean Gaussian. In other words, the SVR is
a theoretically sound regressor to apply in all the situetiovhere the
Kalman is the optimal filter.

1.3.1 SVMs ine-regression mode

To introduce SVMs as regressors, and in particulariegression mode,
let us have a quick look at the regression of a linear modergavseries

of data &, y;). In e-regression mode the SVR tries to estimate a function
of x that is far from training datg, at moste and is at the same time
as flat as possible. The requirement of flathess comes frorihdoey

of complexity developed by Vapnik [99] and ensures that wi gat

a solution with minimal complexity (hence, with better gealzation
abilities). In the linear case, the model we fit on the data is

f(x)=(w,x)+b (1.2)

and the solution with minimal complexity is given by the omalanly
solution of the following convex optimization problem

mingliwl [* + C XLy (& + &)

(1.2)
{yi—<w,xi>—b < e+§

Vi—(W,Xi)—b > —e—-¢&

The constanC is an algorithm parameter and weights the deviations
from the model greater than The problem is then usually solved using
its dual form, that is easier to solve and to extend to es@mato non-
linear functions ([99]).

1.3.2 SVRs for transition model estimation

In the context of RBE, given the first order Markovian assuarptone
is left with two options to regresk:

16



1.3 On-line adaptation of the transition model

1. to learn it from measures, that is to provide to the SVRasitrg
data at timek the tuples

<5\(l, 22>’ M <5\(k—2’ Zk—l) (1'3)

whereXy is the state vector estimate obtained from the recursive
Bayesian filter at timé;

2. tolearn if from states, that is to provide to the SVR asiirgj data
at timek the tuples

<5\(l, 5\(2>’ cee <5\(k—2’ 5\(k—l>' (1'4)

Generally speaking, to learn the transition model from tiatron
between consecutive filtered states may cause the filterpeatedly
confirm itself,i.e. to regress the transition model that the filter itself is
imposing on the training data. While thifect may guarantee a certain
level of smoothness of the output, if this loop degenerdtedilter trusts
too much the learned model and diverges from the real statedfys-
tem by ignoring subsequent measures. On the other handirgdorm
measures avoids this risk and results in a more respondie fikt, for
the same reasons, it produces a filter more sensitive to,neis®se ef-
fects on the output of the filter or on the quality of the leartransition
model cannot easily be mitigated. Therefore, we advocateske of the
learning from states strategy and will introduce a specigcihanism to
avoid the degeneracy of the learning loop.

Since the SVR can only regress functiohs R" — R, if the state
vector has dimension, n SVRs are used, and each one is fed with tu-
ples of the form<>“<k_2,>“<{(_1>, where the superscriptindicates tha-th
component of a vector.

Another important design choice is the nature and lengthetém-
poral window used to select states (or measures) for tginihdoes
not make sense to use all the state transitions since therbegiof ob-
servations to learn the transition model for the currenetstot, or, at
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Chapter 1. Adaptive Transition Model

least, it does not make sense during regression to equalghiheir
contributions. A solution that may be used to address tlublpm is dy-
namic SVR for time series regression, introduced by Cao amdll®].

While we believe that this may be beneficial, and can be amestiag
investigation to carry on in the future, so far we have retad simpler
solution, namely a sliding window of fixed length, to prevémd old

samples from polluting the current estimate.

Finally, the influence of the time variable must be consideharing
regression. To understand this, consider the circularanain the unit
circle depicted in the leftmost chart of Hig.lL.2. Assumiogdlarity of
the graphical explanation the state vector to be composkdogrthe x
position of the point, some of the samples from which the S\éR to
regress the transition model of this point are depictederstéttond chart.
As can be seen, without taking into account the evolutiorhefdtate
through time, even with a perfect regression (represenyatidodotted
line in the second chart), it is impossible to have a correetligtion of
the state at timg given the state at time- 1: for example, attimé= 4
andt = 6 the previous state_1, is equal for the two positions, but the
output of the regression should béfdrent, namely, = —1 andxg = 0.
This situation can be disambiguated adding time as an irgridive to
the function to be regressed, as shown by the last chart.

To summarizen SVRs are used, whemis the dimension of the
state vectokg. Thei-th SVR is trained at framke by using the following
training set

{<k - 2 - W 5\(k—l—W’ 5\(:(_2_W>’ eeey <k - 1, 5\(k—29 5\(Ik—]_>} (1'5)

where W is the length of the sliding window. We always Mge- 10 in
our experiments.

In the following section we address in detail the linear-&an case,
when the Kalman filter is the optimal solution, and show howfcame-
work can be instantiated to successfully and advantaggausipt the
transition matrix and the associated noise covariancexairline.
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1.4 Support Vector Kalman
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Figure 1.2: An example showing the importance of the indogf the
temporal variable among those used for regression.

1.4 Support Vector Kalman

In the case of linear process and measurement functionsao$sean
zero-mean noise and of Gaussian PDF for the initial statéhekubse-
guent PDFs of the state are (multivariate) Gaussians as Wetrefore,
they are completely specified by their mean vector, that usilys con-
sidered also the estimation of the state, and their covegiaratrix. The
Kalman filter is the optimal estimator for this case.
Since between the hypotheses of the Kalman filter there igtdar-

ity of fy, two consequences immediately arise:

1. we must use a linear kernek. the SVR formulation introduced
in[L.3.1;

2. we must modify it in order to regress a linear function.

In fact, the standard function learned by an SVRs|(1.&¢)an dfine
mapping. As discussed by Poggio et al. [75], a linear mappargbe
learned without harming the general theory underneath Sigbtighms,
since the linear kernel is a positive definite kernel. Moexpa solving
algorithm for the linear mapping was also proposed in theepapPlatt
[74] that introduced the standard and widespread solutiothie dfine
casej.e. the Sequential Minimal Optimization (SMO) algorithm.

Using this flavor of SVRs, itis possible, given the trainirsgalin the
considered temporal window, to obtain an estimat&of Each vector
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Chapter 1. Adaptive Transition Model

of weightsw regressed by thieth SVR at timek can be almost directly
used as thé&th row of the estimated transition matri. The last but

not least issue to be solved in order to deploy the SVR weight®ws

of the Kalman transition matrix is the problem of normaliaat

Typical implementations of SVMs require the input and otitpwbe
normalized within the range [@] or [-1, +1]. While this normaliza-
tion is a neutral preprocessing as far as the SVR output isezord, it
has subtle consequences when the weight vectors of the S¥RBsad
within our proposal. To illustrate this, let us consideraslie example
where a mapping from a scalato y is regressed, and the variables are
normalized to the range-[L, +1]. Then

2X — — Xmi 2y — = Vmi
% = Xmax Xmm’ §= Y — Ymax ymm’

(1.6)
Xmax — Xmin Ymax - Ymin

where the superscript ~ denotes the normalized variabl@X a8, Xmin
are the maximum and minimum value of the variable within thesid-
ered temporal window. Hence, the functionothat gives the unnor-
malizedy is

2(Ymax - Ymin)W
Xmax — Xmin
(ymax - ymin)(xmax + Xmin)W
Xmax — Xmin

y=wX > y=ax+b, a=

b= Ymax + Ymin — (1-7)
i.e., again an fiine mapping. Therefore, using the unnormalizeditoe
cienta as an entry of the transition matri results in poor prediction,
since the constant term is not taken into account. In ordebtain a
linear mapping, that fits directly into the transition matof a Kalman
filter, a two steps normalization must be carried out. Giveeguence
of training data, a first normalization is applied,
Xmax T Xmin — _ Ymax t Ymin

X=x- T2, y=y- T

. (1.8)

These are the data on which the Kalman filter has to work. leroth
words, at every time step, the output of the previous timp stast be
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1.4 Support Vector Kalman

renormalized if its value changes the minimum or maximunhinithe
temporal window. This is equivalent to a translation of thigia of the
state space and does nffeat the Kalman filter itself. No normalization
is required for the covariance matrix. After this normatiiaa, the data
can be scaled in the rangel], +1], as required by the SVR, according
to

o 2 _ . 2 _
XK= =———X, §==

— y == = 1.9
Xmax — Xmin ymax - yminy ( )

where the subscripts have the same meaning &sin (1.6). tsavo
steps normalization, the unnormalized function of the Katrdata is

~ ~ ~ (Ymax - Ymin) va
ZWX = Y= ———"WX, 1.10
y (Xmax - Xmin) ( )

i.e. the required linear mapping.

1.4.1 Adaptive process noise model

As discussed in SeC. 1.2, the classical definition of an adagalman
filter is more concerned with dynamic adjustmentf than with the
adaptation of the transition model [70, 109]. Our proposakes it easy
to learn on-line the value d¥y, but provides also anfiective and ef-
ficient way to dynamically adjust the value of the process@oiThe
value ofQy, in fact, is crucial for the performances of the Kalman filter
In particular, the ratio between the uncertainties on taedition model
and on the measurements tunes the filter to be either morensisp but
more sensitive to noise or smoother but with a greater |gteneacting
to sharp changes in the dynamics of the observed system.

Within our framework, a probabilistic interpretation ofettoutput
of the SVR allows to dynamically quantify the degree of bietie the
regressed transition model, and, consequently, the vdl(&.o Some
works have already addressed the probabilistic interfioataf the out-
put of a SVR[13, 28, 51]. All of them estimate error bars onghedic-
tion, i.e. the variance of the prediction. Therefore they are all slgta
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Chapter 1. Adaptive Transition Model

for estimating the Gaussian covariance matrix of the regpasoutput.
We choose to use [51] since it is the simplest method andduwoealso
the most &ective in the comparison proposed|in/[51].

Given a training set, this method perforrkgold cross validation
on it and considers the histogram of the residuaés, the diference
between the known function value &tand the value of the function
regressed using only the training data not in xhéold. Then it fits a
Gaussian or a Laplace PDF to the histogram, using a robtiststa test
to select between the two PDFs. In our implementation, il@znce
with the hypothesis of the Kalman filter, we avoid the testalmdys fit a
Gaussiani.e. we estimate the covariance as the mean squared residual.
We also kee®Qy diagonal for simplicity. Hence, every SVR provides
only the value of the diagonal entry of its row@f. As discussed before,
however, learning from states is prone to degeneration efdarning
loop into a filter un&ected by measurements. To avoid this, we prevent
the covariance of every SVR to fall down a predetermined gyeege
of the corresponding entry & (10% in our implementation). This has
experimentally proved to beffective enough to avoid the coalescence
of the filter while at the same time preserving its ability gmdmically
adapt the values @.

Finally, this method of estimation of the process noise denae
matrix allows for an intuitive interpretation of tHé parameter of the
SVRs. Sinc& weights the deviations from the regressed function greater
thane, it is directly related with the smoothness of the Suppoxttde
Kalman output. In fact, ifC is high, errors will be highly penalized,
and the regressed function will tend to overfit the data,ifeatb greater
residuals during the cross validation and to a bigger uac#yt on the
transition model. This will result in a more noisy but morspensive
output of the Kalman estimation. If, instead,is low, the SVR output
will be smoother and the residuals during the cross vabdawill be
smaller. The resulting tighter covariances will guide tharan filter
towards smoother estimates of the state.
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Figure 1.3: Charts showing the evolution of the filters agaground
truth data in case of linear motion: the top one compares S\Mkatman
filters tuned for smoothness, the bottom one to Kalman fitiemed for
responsiveness.

1.5 Experimental results

We provide first two simulations concerning a simple 1D eation
problem (.e,, a point moving along a line). In the first experiment, the
motion is kept within the assumptions required by the Kalrilger, in
particular there is a linear relationship between consezstates. In
the second one, a case of non-linear motion is considereallyiwe
provide experimental results concerning tracking of thep®Bition and
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Chapter 1. Adaptive Transition Model

orientation of a moving camera for real-time video augmioreand of
tracking of various targets in the image plane.

1.5.1 Simulation of linear motion

In both simulations, comparisons have been carried outusettsree
Kalman filters adopting dlierent motion models: drift (Kalman DR),
constant velocity (Kalman CV) and constant acceleraticaifian CA).
Their model matrices are as follows:

2
1 At At
1 At 2
For=[1], Fcv = 0 1 .Fea=|0 1 At | (1.11)
0 0 1

Two different tunings were considered for each Kalman filter. a more
responsive one, whe@ has been set equal to Z®; and a smoother
one, withQ = 10™@R. As far as SVK is concerned, it was fed with
noisy measures of the position and the velocity of the pahdrefore
regressing a2 model matrix. The only rough tuning regaidswhich
is set equal to 2° in this simulation and to 2 in the non-linear case:
intuitively, an easier sequence allows for using a smodiher.

During the linear motion sequence, motion is switched evd&§
samples between a constant acceleration, a constaniopaaitd a con-
stant velocity law. Therefore, each Kalman filter has a tirmene wherein
the real motion of the point is exactly that described byrassition ma-
trix. Results on the whole sequence are reported i Figrid3rad. 1.1.

As for simulation parameterR, has been kept constant in time and equal
to 100« I, with | denoting the identity matrix; constant acceleration was
30.0 m/<, constant velocity was 100®/s and At was 05. Gaussian
noise with covariance matriR was added to the data to produce noisy
measurements for the filters.

As shown by the first column of Tab.1.1, our proposal achi¢hes
best Root Mean Squared Error (RMSE) on the whole sequences. Th
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Figure 1.5: The chart shows the covariances on state vasgobvided
by SVK throughout the whole sequence.

shows the benefits that on-line adaptation of the transitimael can
produce on the state estimate. This is also shown by the tadscn
Fig[l.3. At the scale of the charts, the estimation of ouerfils in-
distinguishable from the real state of the system, whetteasiélay of
Kalman DR and the overshgtmdershots of Kalman CA and Kalman
CV in presence of sharp changes of motion are clearly visible

Going into more details, we separately analyze each of tlee tthf-
ferent parts of motion (Fid._1.4). Here, we discuss not ohéy perfor-
mance on the whole interval associated with each motionbdaty,also,
those achieved in the final part of each interval.(the last 80 samples).
In fact, final samples allow to evaluate the accuracy of teady state
of the estimators, filtering out the impact of the delays authe filter
degree of responsiveness.

During the constant acceleration interval, Kalman CA penfobest,
both with the responsive and the smooth tuning. This is re#tsle, since
theoretically it is the optimal filter for this specific paift motion. Our
filter, however, performs slightly worse than Kalman CA, Qefinitely
better than Kalman CV and Kalman DR (2-nd column oftab.1Thjis
is also demonstrated by the first chart of igl 1.3, whichpfetter visu-
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1.5 Experimental results

Filter Whole CA Ccv Drift CA* Cv* Drift*
SVK 2x2 Model 22.41 9.79 38.02 35.41 8.91 9.63 1.67
Kalman CAQ = 102R 76.62 4.83 51.3 125.87 4.59 4.55 6.06
Kalman CAQ = 10%R 357.45 4.26 242.19 581.52 3.72 4.04 7.87
Kalman CVQ = 102R 227.38 100.12 155.13 355.71 104.84 3.74 5.31

Kalman CVQ=10"R 1680.37 1213.78 1160.73 2439.37 1416.30 49.82 109.30
Kalman DRQ = 102R 449851 6015.22 4536.67 1793.30 8056.45 4757.75 2.77
Kalman DRQ = 10#R 29698.38 25771.38 31583.97 29279.53 35763.45 37809.424318F

Table 1.1: Comparison of RMSE on linear motion: first coluraparts
the RMSEs on the whole sequence; then, partial RMSEs on eacé p
of motion are given as well as RMSEs concerning only the firzat p
of each interval (marked with *), when the filter may have reatthe
steady state.

alization, displays only absolute errors less than 50. ©uhfilter stays
in the visualized range, apart from the optimal one. Whersidaning
only the steady state part (5-th column of[fali.1.1) the amyoes not
change, partly because this interval is the very first one laece, there
are no delays to recover, and partly because the Kalman C\D&hd
do not have the proper transition matrix for this part andsttcannot
recover from errors.

During the constant velocity part, SVK has the best over8ISE
(3-rd column of tap.1]1). Thisis due to the delay accumdlateKalman
CV, theoretically the optimal filter, during the previousdrvals. There-
fore, we can highlight one of the major advantages broughyiSKV:
in case of sharp changes of the motion law, dynamical updataram-
eters renders SVK even more accurate than the optimal filterta its
higher responsiveness. This is confirmed by Eig. 1.5, shpthia posi-
tion and the velocity variances estimated by SVK. It can lem $kat, im-
mediately after the change of motion from constant postioconstant
velocity at sample 320, both variances significantly inseggsomehow
"detecting” such a change, thanks to the adaptive procass nwdeling
embodied into our filter. The resulting lower confidence ie fgredic-
tions automatically turns the filter from smoothness to oaspveness,
preventing the overshgtsmdershots exhibited by standard Kalman fil-
ters. After few samples the covariance on the velocity desgs again,
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Chapter 1. Adaptive Transition Model

proving that SVK has confidently learned the new model. Gteraig
only the steady state (6-th column of fabl1.1) Kalman CVi®xpected,
the best one. Unlike the CA interval, however, only the respee tun-
ing performs well since the smoother Kalman CV has accuredlaio
much delay to recover. Thisftierence is due to the intrinsically higher
smoothness of the CV model with respect to the CA one. Kalman C
with both tunings, is the second best and this is also pra&dlietsince
a constant velocity motion may be seen as a special case ofstac
acceleration one. Again, SVK is by far closer to the optimggis than
to those adopting a wrong motion model and, visualizing entgrs less
than 50, it is the only one visible in the corresponding cbéfig.[1.4,
apart from the optimal ones.

Finally, due to the delay accumulated by the other filterdK $ns
out the best estimator also in the constant position int¢dwth column
of Tabl1.1). As far as the steady state is concerned, allltaesfexhibit a
good RMSE apart from the very smooth ones, namely CV and D&tun
towards smoothness, since they do not recover from delasts after
80 samples. Unlike the other motion intervals, SVK keeps@&ndthe
best, even when the steady state only is considered. A rdasadinis
is provided again by the chart of covariances (Fig.] 1.5). if@uthe
constant position part, the SVR is able to regress a very gaodition
matrix and both the uncertainties are kept really low coragap the
values inR. Therefore, the filter is highly smooth, as can be seen in the
chart of absolute errors, and this keeps the RMSE low alsbeanast
part.

Our proposal is robust to higher measurement noise, too.eprtr
in Tabl1.2 the RMSEs for the same simulation, but w&h= 1000.
Even in this case SVK turns out to be the overall best thanks twap-
tive behavior. Considerations similar to previous onedyafapthe three
different parts of motion.

To summarize, simulations with linear motion laws show it
proposed SVR-based approach to on-line adaptation of #mesitron
model is an &ective solution for the tracking problem when the assump-

28



1.5 Experimental results

Filter Whole Drift CcV CA Drift* Cv* CA*
SVK 2x2 Model R=1000  43.36 36.36 67.93 31.35 5.23 30.56 28.29
Kalman CAQ = 10%R 79.65 130.17 52.94 15.36 19.17 14.3 14.52

Kalman CAQ = 10“R  357.69 581.70 242.46 13.33 17.28 10.94 11.75
Kalman CVQ = 102R  228.08 356.26 156.61 100.97 16.81 11.71 106.77
KalmanCVQ=10“R  1681.04 2439.48 1162.36 1214.90 106.66 49.56 1418.82
Kalman DRQ = 102R  4500.00 1793.01 4539.23 6016.82 8.78 4761.46  8059.09
Kalman DRQ = 10“R  29699.11 29279.76 31584.70 25772.48 16742.06 37810.786435¥

Table 1.2: Comparison of RMSE betweertféient filters in case of
higher measurement noise.

R =100 Whole R=1000 Whole
SVK 2x2 Model 20.61 SVK 2x2 Model 47.98
Kalman CA resp. 61.92 Kalman CA resp. 62.32

Kalman CA smooth 308.32 Kalman CA smooth 308.66
Kalman CV resp. 72.69 Kalman CV resp. 72.95
Kalman CV smooth 248.30 Kalman CV smooth 248.46
Kalman DRresp. 143.63 Kalman DRresp.  144.87
Kalman DR smooth  434.83 Kalman DR smooth  435.20

Table 1.3: Comparison of RMSE on non-linear motion.

tion of stationary transition matrix cannot hold due to ttaeked system
undergoing significant changes in its motion traits.

1.5.2 Simulation of non-linear motion

Given its ability to dynamically adapt the transition matnive expect
SVK to be superior to a standard Kalman filter also in the cés®n-
linear motion. In such a case, in fact, a time-varying linfeaction can
approximate better than a fixed linear function the real io@ar mo-
tion. Hence, to assess its merits we have run simulatiorfsawhotion
compound of two dterent sinusoidal parts linked by a constant position
interval. The motion law of the two sinusoidal parts is asofok:

30 + 300 sin(zt) + 300 cos(zt), (1.12)
30 — 300 sin(2rt) — 300 cos(2t). (1.13)

X1 (t)
Xo(t)

Aggregate results are shown in Hig.11.6, Figl 1.7 and Takot tBe same
levels of measurement noise a§in 1.5.1. Our filter proveimagée the
overall best.
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Figure 1.6: Simulation dealing with non-linear motion wigh= 100.

Chart on top compares SVK to Kalman filters tuned for smoathnhe
bottom one to Kalman filters tuned for responsiveness. Atgbale, the
estimation of our filter is almost indistinguishable frone tiround truth.

1.5.3 3D camera tracking

In this experiment, we track the 3D position of a moving caariaror-
der to augment the video content, taking as measurementtpatof a
standard pose estimation algorithm|[81] fed with point espondences
established matching invariant local features, in padicGURF fea-
tures [6]. Some snapshots are reported in[Eid. 1.8. The botgpshow
side-by-side the augmentation resulting from the use offrtéal CA and
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Figure 1.7: Simulation dealing with non-linear motion wikh= 1000 .
Chart on top compares SVK to Kalman filters tuned for smoathnthe
bottom one to Kalman filters tuned for responsiveness.

our SVK. Both filters have been tuned to be as responsivelaS.ja dnd
measurement noise covariances has been adjusted to matcante
of the input data. The sequence shows a fast change of mdtithre o
camera, the purpose of filters being to keep the virtual ¢lgpatially
aligned with the reference position, denoted for easi@rpretation of
results by a white sheet of paper. We can see that both fikkbibiea
delay following the sharp motion change at frame 19, but S¥&ubject
to a smaller translation erroe.@.frame 23), recovers much faster (SVK

31



Chapter 1. Adaptive Transition Model

is again on the target by frame 27, Kalman CA only by frame 41), a
unlike Kalman CA, without any overshot (which Kalman CA exis
from frames 27 to 40).

1.5.4 Mean-shift tracking through occlusions

In the last experiment, we compare our SVK to standard, naptack
solutions for estimating an object trajectory in the imatpgmp based on
the mean-shift tracker introduced by Comaniciu et al. [YV§ compare
the original mean-shift (MS) tracker and the non-adaptieénkan filter
(Kalman-MS tracker) to the SVK. Both KalmanMS and SVK useliti
tracker as the measurements source . The MS tracker and limaixa
MS tracker have been proposed in the original work by Conaeical.
[17].

The MS tracker implicitly assumes a constant position nmothmdel
by letting the tracker start its search for the best positioeach new
exactly where the object was found in the previous frame. Rdenan-
MS tracker in our experiment uses a constant velocity matiodel.

Some snapshots of the test sequence are depicted ih HigTAe9.
mean-shift technique is generally speaking not robustttd taclusions,
like that shown in the third snapshot (Frame # 067), becdusevS
tracker can be attracted by the background structeng the road in
our experiment) if this is more similar to the target than tleeluder.
For this reason the MS Tracker is unwilling to follow the atijevhile
it passes below the advertisement panel and stays in th@dagion
where it could locate the target (frame # 067 of [Eigl 1.9). Kaéman-
MS tracker follows the previous dynamic of the target, thatdk the
smoothness brought in by the Kalman filter transition moétainfe #
067 of Fig.L1.9). Nevertheless, since the way it weights thtribu-
tion of the measure and the prediction on the state is fixad fihally
caught back by the measures (the MS tracker) continuousiniig the
presence of the target in the old location, before the oeclu@nly the
SVK is able to correctly guess the trajectory of the targelevine lat-
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Figure 1.8: Some of the most significant frames from the erpart on
3D camera tracking.

33



Chapter 1. Adaptive Transition Model

Figure 1.9: Some of the most significant frames from the expert on
object tracking in the image plane. In cyan the SVK tracked,the MS
tracker, blue the KalmanMS tracker.

ter is occluded (frame # 067 of Fig._1.9) and continues tdtraafter
the occlusion (frame # 083 and subsequent frames of Fig. TH8} is
due to the ability of the SVK to dynamically adjust the preesise
covariance matrix, increasing its confidence on the motfdheobject
(i.e. to decrease the variance) while the object keeps movingamitp-
proximatively constant motion law on the image plane (filst pf the
sequence, first two snapshots, from frame # 001 to frame # Db®o
[1.9). Thanks to the high confidence gained on the motion mtuefil-
ter is able to reject the wrong measurements coming from tBerktker
during the occlusion. This happens again during the secooldigions
at frame # 200 of Fid._119.
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Chapter 2
Adaptive Appearance Model

Every visual tracker uses an internal representation ofipearance of
the target, that it compares with the current fraii@ order to locate the
target. We refer to this internal representatiorappearance modeir
target modelA, and we denote the instance used by the tracker at time
k asAg. This model is usually learned once, eithétine from training
data or online from the first frame(s).

In the works on tracking up to the last decade this model was us
ally fixed throughout the sequence [15] 17, 132,137, 33, 78} iMain
efforts of these works were devoted to develop robust ways tdhese
fixed model for locating the target in the current frame, desall the
nuisances that realistic video sequences may contain asudhtter and
distractors, illumination changes and deformable targets

More recently, the idea of appearance model update has lveen p
posed by several researchers to aim at successful longii@eking de-
spite these diiculties. By letting the model evolve across frames to
include and adapt to the potential geometric and photomehtanges of
the target, these methods are inherently able to cope wijlettaefor-
mations and lightening variations. On the other hand, thegppse the
tracker to the risk ofirift, i.e. the inclusion of background appearance
in the appearance model that can eventually lead to losaK.tr

In our work on adaptive appearance modeling we define therglene
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Chapter 2. Adaptive Appearance Model

structure of an adaptive modeling tracker and identify aisguss the
main alternatives that have been proposed for each maidibgiblock
of such systems. Recently, adaptive modeling trackers haea ex-
tended also to the multi-target case|[8, 88, 103]. Our reviewever,
focuses on the single target case, that has reached a hayeéof ma-
turity. The multiple target trackers are covered by thiseevonly as far
as the part of their proposal covering single target tragksrconcerned.

Then, we formulate our proposal for target model adaptabased
on the idea that tracking and target model update are simikirit and
in practice: they both try to estimate the state of a systemm fnoisy
measures, under the assumption that the system statetexbiiporal
consistency in consecutive frames. The state for targetemapbate
is the target appearance instead of the cinematic chasttgrof the
target, but the conceptual problems are highly similar.réfuge, we cast
the problem of model update as a recursive Bayesian prolaachiry
to utilize the same tools, in particular the particle filteraccomplish it.
The work presented in this chapter has been carried out Wiglauthor
was visiting Prof. Andrea Cavallaro’s group within the Moiedia and
Vision Group of the Queen Mary University of London.

2.1 Additional definitions

We presented the classical framework for visual trackinghe Intro-
duction. Here, we add two notions that are used in the cooferget
model update, namely the confidence map and the divisiomargéve
and discriminative trackers.

2.1.1 Confidence map

Typically the tracker evaluates several state candic@tdee select the
current statex,. The candidates are sampled according to a variety of
strategies, but they typically belong to a neighborhoodhef firevious
state. This enforces temporal smoothness, upon whichitigckbased.
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/7

Figure 2.1: Generative versus discriminative trackerstafescandidate
Xk from the current framéy is projected in the feature spageand its

likelihood of being the target is computed. The likelihogdaifunction

of a distance or similarity measure between the current nddand the

candidate features in a generative tracker, a functionettnfidence
value of a classifiehy in a discriminative tracker.

The evaluation results in the assignment of a s@r® each candidate,
(e.g. the weight of the corresponding particle in a partfdter [78],
the feature similarity in a Mean-Shift tracker [17], the @dance of a
classifier in a tracking-by-detection approach [4], ... )e W&fer to the
set of pairg%, C} ) as the confidence maf.

2.1.2 Generative vs. Discriminative Trackers

An important classification of visual trackers, as far ageamodel up-
date is concerned, is the division between generative awichinative
trackers (Figl_Z1).
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Chapter 2. Adaptive Appearance Model

Generative Trackers

The tracker![107][46][57].[80].[40].149] is guided by a gena&ve ob-
servation likelihood, i.e. “the state estimation boils eow the problem
of finding the state which has the most similar object appearao the
model in a maximume-likelihood or maximum-a-posterior falation”
[93]. Generative models of the foreground try to represhatdbject
appearance without considering its discriminative powigh vespect to
the background or other targets appearance. In these nsdtimdbser-
vation likelihood is based on a similarity function definedtbe feature
spacer, that compares the current modg| with the current candidate
stateX features providing a similarity score or likelihood of thendi-
date state (Fid. 2.1a). A model is explicitly given and theikirity to
it assigns a likelihood value to every point of the featuracgpi.e. to
every possible state candidate.

Discriminative Trackers

The tracker|[16]/[4][[5] [[29] [30] [89] [93] is guided by a digmina-
tive observation likelihood, i.e. a classifier trained tarle “a decision
boundary that can best separate the object and the backtjrfagj .
Classifiers able to produce a confidence value for the peatilabel can

be used in this framework. In these proposals the appearaodel Ay

is not explicitly given, it is implicitly defined by the sulisef the set

of all possible appearancésthat is positively labeled by the classifier
(Fig.[2.1B). In these methods the observation likelihodbesconfidence
value of the classifier on the classification as foregrounthefcurrent
candidate stat®,, and it is O if the candidate is classified as background.

Hybrid Trackers

Some methods have proposed hybrid solutions such as: svgtble-
tween discriminative and generative observation modeterding to
the targets proximity in a multi-target scenario/[88]; wsito-training
[7] between a long-term generative observation model arftbe-$erm
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Figure 2.2: The general structure of the target model upitiatein an
adaptive trackelk > 1.

discriminative one [105]; using several generative modelsdiscrim-
inatively learn in each frame the weights to combine themratento
maximize the distance with the neighboring regions [108}res and
update two generative non parametric models of foregromadback-
ground appearances and use them to train in every framerawiisative
tracker [55].

2.2 Elements of Adaptive Modeling in Visual
Tracking

The general structure of an adaptive model tracker is skdtah Fig.
2.2.

1. Given the output of the trackeg and the confidence mapy on
the evaluated candidates, a set of samgle$the new target ap-
pearance are extracted from the current frame. If the traske
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Sampling and Labeling

Feature Processing

Model Estimation

Model Update

Template Update [57] Current State Pivot Blended in Direct Use of Featureg  Last model
IVT [80] Current State None Direct Use of Features Subspace
AdaptiveManifold [49] Current State None Direct Use of Features Manifold
WSL [40] Current State None Direct Use of Features Blending
Unified Bayesian [107’ Current State Pivot Blended in Direct Use of Featureg  Last model
Visual Tracking Decomposition [46 Current State Pivot Added Direct Use of Features Sliding Window
Ensemble Tracking [4] Current State Label Switch New Classifier Trainind Sliding Window
Non-Parametric Tracker [55 Adaptive Classifier Redundant and Outliers filtering Direct Use of Featureg Ranking
SVMs Co-Tracking - Tracker 1 [93! Co-Training None Classifier Update | Sliding Window
SVMs Co-Tracking - Tracker 2 Co-Training None Classifier Update | Sliding Window
Co-Training - Generative [105 Co-Training None Direct Use of Featureg Manifold
Co-Training - Discriminative None Classifier Update | Sliding Window
Adaptive Weights [103 Current State Pivot Blended in Direct Use of Features Blending
Discriminative Features Selection _ [16 Current State Pivot Blended in Direct Use of Featureg  Last model
OnlineBoost [29 Current State None New Classifier Training Ranking
SemiBoost [30 Fixed Classifier. None New Classifier Training Ranking
BeyondSemiBoost [89] Fixed and Adaptive Classifief. None New Classifier Trainingd Ranking
MILTracker [5] Current-State-Centered None New Classifier Trainind Ranking

Table 2.1: Reviewed Methods.

discriminative tracker, a set of samples are extractedfedsothe
background. Samples are hard or soft labeled as target &r bac
ground samples yielding a labeled sample{set € [0, 1]}.

Sample extracted from the current frame are projectem tim

feature space used for tracking, generating a set of labeddares

{fl,1 €0, 1]}

Feature can be filtered god selected.

(a) Filtering: the set of features may be pruned to remove out
liers or augmented with reliable features from trustedetrg
appearances. Labels may be switched or modified, too.

(b) Selection: if multiple cues are used as features (suchlag
edges, shape, motion vectors, etc...) feature selectign ma
be performed to select the mosiextive features for the cur-
rent frame.

These steps aim at providing a more representative findtiee
feature setf!, 1 € [0, 1]).

the current frame is estimated.

Given the selected labeled features the magdelof the target in

5. The model for the current franag,, is merged with the previous
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2.2 Elements of Adaptive Modeling in Visual Tracking

overall modelAy, yielding the modeA,; used in the next frame
for state estimation.

This section describes the alternatives to implement e&d¢hese
main building blocks.

To limit the chances of drift, an adaptive model tracker lwas\t to
solve the following sub-problems:

e Robust integration of new target model samplesThe inclusion
of new information from the current frame in the target mdues
to be designed to be robust to the presence of outliers fr@m th
background due to non perfect alignment of the tracker bimgnd
box with the actual target position.

e On-line Evaluation of tracker output. The output of the tracker
must be evaluated on-line in absence of ground truth to decid
whether or not to use it in model update. This is particulary
portant to avoid occluders appearance if the target unésrgo-
clusions.

e Stability/Plasticity Dilemma [31]. The simultaneous require-
ment for rapid learning and stable memory. This is a common
problem of all on-line adaptive systems.

Each of the above mentioned building blocks deals with ormeane of
these sub-problems.

2.2.1 Sampling and Labeling

Given the output statey of the tracker in the current framg and the
confidence magy, this step selects the regions of the current frame that
are then used to update the model and, in a discriminatigkdraassign
them either to the target or the background class.

The different proposals are presented according to the degree-of rel
ability they assign to the tracker.
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(Adaptive)
Classifier

h J

L /
(c) External Classifier

t

(d) Co-Training

Figure 2.3: Sampling and labeling strategies. In (a), () &) the
thicker hatch represents the current state estimate, therviatch the
sampling region for foreground labeled samples and the mdo&ed
rectangle defines the region for background samples. Natétlic) the
last two regions coincide. In (d), the images represent tmdidence
maps of two trackers: blue low likelihood, red high likeldth
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2.2 Elements of Adaptive Modeling in Visual Tracking

e Current State (Fig.[2.3a). The region defined by is the only
one used to update the target model. In case of discrimaativ
trackers, samples from a region surrounding the currete st
used as background appearance sample. This method assaines t
the tracker is always correct and leaves to the subsequeggsst
the task of attenuating theéfects of misaligned current states.

¢ Current-State-Centered Sampling. (Fig[2.3b). Introduced in
MILBoost [5]. Samples are extracted in the region definecby
plus its neighborhood. Samples extracted in the proximity,o
are grouped in bags of samples and at least one sample of each
bag is assumed to be a target sample whereas samples from the
outer sampling region are used as samples for the backgrdtund
is up to the subsequent stages of the algorithm to disami@gua
the uncertainty left in the target samples, for example bypgus
Multiple Instance Learning as done in [5]. This method asssim
that the tracker can by slightlyfftthe target, but is always close to
it.

e Co-Training Sampling. Introduced in Co-Tracking [93]. Two
subtrackers that use independent features make up thetrdtie
outputxy is given by the combination of their output, but the sam-
pling and labeling for model update of each tracker is cdrae
independently, within the framework of co-training [7]. dbesub-
tracker provides the training samples for the other. Tasgetiples
come from the global maxima of the other subtracker confidenc
maps whereas background samples are taken from the local max
ima not overlapping with the global maximum. In this way, leac
subtracker is trained to be able to discriminate the casssatle
difficult for the other tracker. This method assumes that in angive
frame at least one of the two features alone is able to cdyrect
track the target.

e External Classifier (Fig.[2.3¢. Samples are extracted in the re-
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gion defined byx, plus its neighborhood but are not labeled ac-
cording to their position with respect tq. Instead, labeling is
performed by means of an external classifier. Samples aréasof
beled as samples of the target or the background accordithg to
confidence of the classifier. Although this option makes séois
both generative and discriminative trackers, it has beed osly

by discriminative or hybrid approaches.

Generally speaking, the use of a classifier to guide the érack
updates is an interesting solution to break the self legrtonp.
Nevertheless it leads to a chicken-and-egg problem: if &ereal
algorithm, like this classifier, can reliably tell if a patsklected
from the output of the tracker belongs to the object of irdene
spite of all the changes in appearance the target undersesit,a
powerful algorithm could be successfully used as the olasienv
model for the tracker and there would be no need to update the
target model. Of course this is not the case: if the detecsrtt
cope with all the possible changes it has to be updated asamell
this introduces the problem of drift for it, too.

By considering how the proposed solutions cope with theeissu
of classifier adaptability, this category can be furthercepesl as
follows:

— Fixed Classifier. Introduced inl[30]. The classifier in this
case may be an object detector or a similarity function with a
fixed pivotal appearance model. Itis creaté@dime or in the
first frame and never updated. These methods assume that
the classifier is able to cope with all the variations thedtrg
will undergoes in a sequence or, alternatively, that thelle w
be no more variations of the target appearance than those
that the classifier is invariant to. Therefore, this choigets
the degree of adaptability of the tracker. On the other hand,
it does not make any assumption on the correctness of the
current state, besides the proximity with the target.
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— Adaptive Classifier. Introduced inl[55]. The classifier is a
similarity function with respect to the previous model. Jhi
method does not assume any reliability of the current state
but it requires the absence of sudden changes in the target or
background appearance evolution. Moreover, the degree of
adaptability,i.e. the maximum variation in appearance be-
tween consecutive frames, is dictated by hard threshoéds th
may be dificult to set. Finally, by using the previous model
to label the current samples, this method is prone to thée drif
introduced by self learning, although, unlike the other-pro
posals, this loop is based on models rather than on states.

— Fixed and Adaptive Classifiers. Introduced in|[89]. Two
classifiers are used. One is fixed and its trained on the first
frame. Another one is adaptive, and it is the one used to label
the samples. This method tries to obtain the benefits of not
assuming any correctness of the current state, introduged b
using a classifier for samples labeling, without limiting th
adaptability of the tracker, by letting the classifier adept
target or background changes. This rises the problem df drif
for the adaptive classifier. The proposed solution is to tgpda
the classifier only when the tracker and the fixed classifier
are in agreement. Although this may limit the chances of
drift for the adaptive classifier, it results in similar litgion
the degree of adaptability introduced by the fixed classfier
solution.

2.2.2 Feature Extraction

Features are extracted for each sansbhf I, producing a set of labeled
feature vector$f'}.

With reference to Talp. 2.2, we categorize features usedéogdhp-
tive modeling trackers according to the spatial extensicdhefeatures
extracted from each sample. This has a direct impact on tiiéyais
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Chapter 2. Adaptive Appearance Model

the tracker to correctly adapt in presence of partial oéohss

o Part-wise features. Feature vectors are extracted from small

patches or even single pixels . This makes it possible tworeas
explicitly about occlusions and to avoid to use featuremftbe
occluding object to update the target model. It also helptet
with the approximation inherent to the modeling of the tai@e

a rectangular object, since every feature can be classitileere
as foreground or background, even those laying inside tigeta
bounding box.

Target-wise features. Feature vectors represent the whole target
appearance €.g. color histograms [17]). As noted in the Intro-
duction, this kind of features can typically tolerate tarmgeforma-
tions and rigid transformations such as rotations andrsg&ven
without model update. On the other hand, being a global sepre
tation of the target, it is diicult to correctly update it in presence
of partial occlusions.

2.2.3 Feature Set Refinement

Given the featuregf'} extracted and labeled from the current frame, this
step processes the features and the labels in order to @btaodified
set{fT} that is more #ective for model update. To this purpose, two
main strategies have been followed, that can be deployecthatively

or sequentially: feature processing and feature selection

Feature Processing

As fas as feature processing is concerned a tracker carrperfo
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e Sample checking. The idea behind the following filtering steps is

that it is possible to decide a priori which samples are nibable
to perform model update given the current model. In paricul
some adaptive trackers perform:
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o | Template Update [57] X
2| IVT [80] X
» | AdaptiveManifold [49] X
WSL [40] X
Ensable Tracking [4]] x X
Non-Parametric Tracker [55] x X
Detector Confidence [8] X X X X
£ [ SVMs Co-Tracking - Tracker 1 [93] X
& | SVMs Co-Tracking - Tracker 2 X
= [ Co-Training - Generative [105] X
Co-Training - Discriminative X
Unified Bayesian [107 X X
Adaptive Weights** [103] X X X X
Discriminative Features Selection _ [16] X
& | OnlineBoost 29 X
g SemiBoost [30! X
o | BeyondSemiBoost [89] X X X
@ "MiLTracker [5] X
Visual Tracking Decomposition* _[46] X X

Table 2.2: Features. The single asterisk indicates use tifpteurack-
ers, hence not all the features listed might be used in the $eaoker.
The double asterisk indicates the use of the Adaptive Meltj@atures

Blending strategy for the feature set composition (seelB8&).

— Redundant Sample Removal. Introduced in|[55]. Feature
vectors that are too similar to the current model are diszhrd
as redundant.

— Outliers filtering.

* Qutliers Removal.

As far as outliers are concerned, two
different strategies have been deployed:

Introduced in|[55]. Feature vec-

tors that are too dierent from the current model are dis-
carded as outliers.

« Positive Label Switch. Introduced inl[4]. In case the
confidence on a target-labeled feature vector is not high
enough, the label is switched to background. This is
done mainly to counteract the approximation inherent in
the use of a rectangular box as target shape.

e Pivot.

The initial appearance is used apiaot, under the as-

sumptions that the bounding box in the first frame was coaedt
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that the target and the background appearance remainsustmil
the initial one in the feature space. In the proposals adgltiis
strategy, first frame data receive a special treatment:réason-
able because usually first frame detection is assumed tdihieleg

for example in a tag-and-track application for visual sulaece,
where a human operator provides the first bounding box. For a
full automatic deployment of tracking the first bounding lwa-

not be assumed to be particularly more accurate than th@nest
Another important issue with the use of the pivot for sampées
finement is that it may not allow to adapt to sudden appearance
changes nor to gradual changes in appearance that in theuong
lead to great changes in target appearance compared toghe fir
frame. This, depending on the application, may be a linutati
that prevent the adoption of this filtering step. If genetabanatic
visual tracking is the aim of an algorithm, then this filtgristep
should not be used, although it can greatly improve perfaces

in more specific contexts. Use of features from the pivot tmee

the current sample set has been proposed in two flavors:

— Pivot added. Features from samples of the pivot are added
to the feature set with the proper label. With this strategy,
subsequent stages of the algorithm can decide to ignore the
added features and exploit only the features from the ctirren
frame for the update.

— Pivot blended in. Feature vectors are blended with the pivot
features. With this choice the influence of the pivot canmot b
discarded afterwards. On the other hand, the model update
is guaranteed to keep the model in a neighborhood of the
initial appearance, hence this solution tradfsadaptability
for robustness.
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2.2.4 Feature selection

This is a key component of a generation of recently propoasdly of
discriminative tracking algorithms.[5, 20,130, 89] that foem model
update by continuously updating the set of used featurts;tsey them
according to their discriminative ability in distinguisig the target from
the background. Beside these methods, that heavily baseethieacy
on feature selection, feature selection is a fundamergplfst all adap-
tive and even non-adaptive trackers, sindgedéent cues, such as edge
patterns, color histograms or appearance patterns, mayadiferent
ability to track a target in dierent parts of the sequence. Nevertheless,
no standard way has emerged to tackle this fundamentalgarobDne

of the main dificulties in performing on-line selection is given by the
fact that diferent cues may haveftkrent score dynamics and ranges,
which makes it hard to compare theffectiveness directly by compar-
ing their scores. They can be compared by evaluaipgsterioritheir
effects on the tracker accuracy, for example selecting tharesato use
at framek by ranking them according to theiffectiveness in locating
the target in the previous franke- 1, under the assumption that the posi-
tion estimated by the tracker at frarke 1 is correct. According to their
treatment of this stage, trackers can be categorized ie tiasses (see
also the vertical left-most column of Talle P.2):

e Single Feature. Only one kind of feature is used,g. one color
histogram. No selection is carried out.

e Mixture of (Independent) Features. A fixed set of features is
used. The composition of the set is never updated. Usuaky-a c
tain degree of independence between the features is rdqoire
assumed) for their simultaneous use to fieaive. This is for ex-
ample the case of trackers working in the co-training fraoréw
that implicitly perform feature selection by weighting tbentri-
bution to the final estimation of classifiers using independea-
tures.
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e On-line Feature Selection. A fixed set of features is used. The
composition of the subset used in each frame is updateddingor
to the featuresféectiveness in the previous frame(s)/[16].

— Online Boosting Feature Selection is performed by apply-
ing on-line boosting [72] to weak classifiers that act as fea-
ture selectors [29].

e Adaptive Multiple Features Weighting. A fixed set of features
is used. The weights of the features in the likelihood corntjpos
are updated in every frame based on the featufesteseness in
the previous frame(s).

2.2.5 Model Estimation

Given the filtered feature set and the labels, a new partidehay, ; that
describe the target appearance in the current frame is bBiis has no
particular influence on the adaptation abilities of thekesaor on its
risk to drift. The main alternatives are:

e Non parametric use of features. The model estimated for the
current frame is the non parametric ensemble of the featwre e
tracted from the target or the background.

¢ New Classifier Training. The current samples are used to train
a classifier that best separates the target and the backbirothre
current frame.

¢ Old Classifier(s) Update. The current samples are used to update
a previously trained classifier.

2.2.6 Model Update

Given the new model for the current franag, 4, it has to be merged
with the overall model used so faky, to obtainAg,;. This step directly
addresses the StabiliBlasticity Dilemma presented above. Solutions
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are presented in order of Plasticitye. starting from the most adaptive
ones:

e Last model only. The result of the last frame is used as the model
for the next frame.

e Sliding Window. A fixed amount of samplgslassifiers is kept
after every frame is processed. The newest is added anddést ol
is discarded.

e Ranking. Up to a maximum fixed amount of sampleassifiers,
the most éective ones are kept after every frame is processed, the
new one is always added. This raises the problem of assessing
their dfectiveness, similar to the problem of evaluating features
selection on-line. And again, the most widespread solusdon
evaluate the modeldgiicacy on the previous frame(s).

e Blending. Sample or classifier parameters estimated from the
current frame are blended with their previous values. Thin-
ciple is more stable than the previous alternatives, sitiche
history up to the current frame has an influence on the new mode
On the other hand, it is more prone to drift, since the inclnsi
of wrong samples for the target model cannot be fixed aftetsyar
only the inclusion of correct samples will eventually rentiee
influence of the outlier negligible.

e SubspacgManifold. A subspace or a set of subspaces (an ap-
proximation for a manifold in the feature space) is updatétt w
the new sample from the current frame. It potentially resahe
history of all the target appearances with a fixed amount ahme
ory, hence it is the most stable solution. On the other hand, i
is difficult to accommodate for sudden target appearance changes
with such a model. Sometimes a forgetting factor is used-o di
minish through time thefect of the oldest samples on the sub-
spacgmanifold shape.
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Figure 2.4: The patch based appearance model in our proposal

2.3 Adaptive modeling with Particle Filtering

At the basis of our proposal lays the intuition that we cars$itute some
of the fundamental stages of the target model update ahgodescribed
so far with equivalent steps performed by a particle filtéinesting the
target appearance.

Hence, in our proposal two RBE trackers are used. One tréeks t
target state, the other the target model. Since inferendegindimen-
sionality spaces is hard and fiieient, we actually use an approximation
of the particle filter when tracking appearance. Hencepalgh our for-
mulation is deeply inspired by this filter and can easily bernpreted
and implemented following its usual patterns, the appesraracker is
not strictly speaking a Bayesian filter. In particular, ibig definition of
the observation likelihood that is not conformant, as dietiain the next
sections.

The appearance model in our proposal is a part-based, Gieadra
Hough Transform-like model@SO] [1],.[45]). It has beerspired also
by the bag of patches non-parametric model or [55]. ffexs several
advantages over a global representation: it captures aeggmomet-
ric structure of the target instead of global propertieg/pitinaturally
allows for dealing with partial occlusions; it can be usedhtained a
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segmentation of the target [50]. We model both the foregicamd the
background, in the spirit of recent discriminative trackeHence, our
model is compound by a model for each class

Aw = (A7, AY) (2.1)

where the models are a set of graylevel square pafthafsfixed side
r with their geometric displacemenisvith respect to the object center

(Fig.[Z.3)

AL = (S = (MMM Tee[0.255T e 2 (22)

The patrticle filter tracking the state of the target has thening
box center coordinates as state variable and the curranefess mea-
sure. The tracker of the appearance, instead, has a patcitsahid-
placement as state variable and the pair formed by the dureane and
the current state estimation as measure. In fact, it is thpudwf the
tracker estimating the bounding box that provides a new oreas the
target appearance for the model update and, symmetritdadiytracker
estimating the appearance provides a new model to updataatesin
the next frame. In other words, let

Z = g (23)
Yk = (X, 1) (2.4)

denote the measure for the state tracker and the appearasgectively.
Then, the particle filter estimating the state computestéredsrd recur-
sion:

P(Xk | Z1x) o< p(lk | Xx) f P(X | Xi-1) P(Xk-1 | Z1:k-1) AXp1 (2.5)

and then the particle filter estimating the appearance solve
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P(Ski1 | Y1x) o< P(Yk | Ske1) f P(Scr1 | SOP(Sk | Yik-1) dyk-1 (2.6)

Given this formalization of model update as appearancéitrggin

our proposal we replace (compare Figl 2.5 with Eigl 2.2):

¢ the standard sampling and labeling step with the propagatio

the appearance particles to the next framee,by sampling from
the proposal on appearan@@.1 | Sk, Yk:1)-

the sample refinement, in particular the sample processiitl,
the update step of the appearance particle filter, which rdymna
cally weights samples according to the likelihood on appece
p(Yklsc:1) (in principle the update step can carry on also the on-line
feature selection but is not done in our proposal yet);

the model estimation for the current frame with the resangpli
step of the appearance tracker, which probabilistical§calids
down-weighted samples from the previous step afidcavely
produces the model that best explain the current framengdhe
observations up to the current frame.

In the following we define the basic components of the pafitters

we use to estimate the state and the appearance.

Appearance Proposal Density
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A(Skr1 | S V) = A(Sert | T Ses s Xk) (2.7)

To sample from it, we sample a new displacement with Gaussian
Brownian motion relative to the displacement of this patcithie
previous framey, and then extract a patch froljppcentered in the
position given by the new displacement appliedgoThis gives a
new particle to approximate the new posterior PDF on appeara
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S = (-i:k+1,vk+l) ~ 0(Ser1 | S 1k, X)) © (2.8)
Uerr ~ N = Vi, T = %), T = Iy

Xk, Vi+1

where, to indicate the extraction from a fram®ef a patch defined
by a displacement with respect to a bounding boxwith It|xv :

Our proposal density is a full definition of a proposal fortjude
filtering since it depends on both the previous stai@nd the cur-
rent measurgy, whereas the classical proposal used in a particle
filter discards the dependency on the current measure. ticpar
lar, we exploit the current measure to sample the new appeara
of the patch, since to generate it according to a generaigehof
illumination changes and object deformations requiresdmsod-
els, which are dficult to obtain for a general purpose tracker, and
it also requires to explore a high dimensionality spaee, @iven
the side of the patches the dimensionality of the spacerisand

we user ~ 20), which in turn requires a huge number of particles
to obtain an acceptable approximation of the posterior.eBynig
the current measure guide the exploration of the state space
avoid these problems and obtain dfickent algorithm. Finally,
the proposal density in our method accounts also for defolena
objects by letting a patch move inside the object.

Appearance Observation Likelihood
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PYk | St1) = Pt Xic | Tiers Vier1) (2.9)

The likelihood of the measure under the hypothesis that &tehp
S«1 belongs to the appearance model is where our proposal dif-
fers with respect to a standard particle filter. In partigut@ving
exploited the current measure to guide the state spacerakplo

and to sample the new patch appearancgdqr we cannot define
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the likelihood in terms of it, since,; depends oryx . There-
fore, we define the likelihood o, in terms of the particles of
the distribution of the other classe. we use the particles of the
background class to assess the likelihood of the foregrqamd
ticles and vice versa. Note that this way to evalualg. | Sc:1)
implicitly takes still into account the measuyg since the patches
from both classes come froyp through the proposal density.

We base our likelihood on the Zero-mean Normalized Cross Cor
relation (ZNCC). When applied to graylevel patches, thisisuee
computes the similarity of the patches and is invariantfime
changes of the illumination. Therefore, the likelihood ur algo-
rithm accounts for the robustness towards photometricgémnf
the target. The ZNCC of two vectoasb is defines as

(a— u(@1)(b — (b))

ZNCQa,b) = la— u(@)1] b — u(b)1]

(2.10)

wherel is the vector of 1s of the same dimensioraandb, u(x)
is the mean of the components of the veatand|x| its norm. Let

j = argmaxZNCC(Ti,1. T, (2.11)
J

j=1,...M
whereT,, stand for the-th particle of the other class with respect
to the class offy,;. Then we compute the likelihood as

1- ZNCqu+1’ -Fli+l)
2

P(lks Xk | Tia1, Vies1) o €XPY ). (2.12)

Our definition of the likelihood is discriminative: the wéigof
each particle of the appearance model is higher the moreardisc
inative with respect to the other class the particle is. Thésans
that the resampling stage will be able to discard the padiobt
useful to track the target when estimating the model for threemt
frame. In other words, the weights computation performetth wi
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our likelihood realizes the Feature Processing stage afcheme
for model update presented before. If besides graylevehpat
other features are used, their weighting and the subsecgsarh-
pling would efectively perform also probabilistic feature selec-
tion. The main dficulty to successfully carry out feature selection
in this way is represented, as discuss in the previous setiythe
different scales and dynamic responses of the similarity fomsti
used to compare the featuresd. the Bhattacharyya distance for
histograms versus the ZNCC for patches ), that makedtfitudlit

to obtain comparable likelihood values.

State Proposal DensityWe employ a standard Gaussian proposal with

a fixed, diagonal covariance mat.

P(Xk | Xi-15 1) = N (X 1t = X1, Z = Zy) (2.13)

State Observation Likelihood
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P(lk | Xi) (2.14)

Given the model estimated on the previous fratpe= {A7, A%}
let

i\ = arg maxZNCC(Ik|w , Tkj+l) Ve eAl  (2.15)
i=1,...M Vi

i.e. for each foreground particle the index points to the patch in
the background model that is the most similar to the curramé
in the location given by the foreground particle displacetmén
other words, it indicates the particle of the background best
explains the foreground appearance, given that the tasgeslly
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atxx. Then, we compute the state likelihood as

1 -
pllk | X&) o< exp| — > max(QZNCAT,, ], nE
i=1
ZNCOT 1], v'k)) (2.16)

i.e. as the mean likelihood obtained by the candidatever all
the particles of the foreground model, where the likelihobc
candidate with respect to a particle of the foreground igmilry
the similarity with the foreground patch and the dissinmtiafirom
the best background patch of the patch at the location ifkohti
by the foreground particle displacement. This definitiontiod
likelihood naturally deals with partial occlusions. To ox@me
also total occlusions we have to increase the stability ofadu
gorithm by using one of the strategies introduced in $ec62.2
We deployed the sliding window strategy since it is the saspl
most dficient one and the overall probabilistic inference struetur
of our proposal already provides robustness against ogjtkeich
as those included in the target model during occlusions.nfo i
clude the sliding window strategy in our proposal the appece
tracker particles are no more patches with displacemeuts)id-
ing windows of patches and displacements. The proposaltgens
is identical, whereas both likelihood values are computetha
average over the sliding window of the likelihoods for a #ng
patch, presented above.

2.4 Experimental Results

2.4.1 Methodology

Trackers are initialized with the first bounding box avalésin the ground
truth. Probabilistic trackers have been run 10 times andribkan of
these runs is used for comparison with other trackers buetiee bars
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for these trackers are plotted in the charts as well. Conppai@ even
better mean scores are not enough to assess that a prdaizatvdicker is
to be preferred: if the variance is higher the tracker is tefable and,
hence, less useful in a real deployment.

Two charts are used for each sequence. One reports the didapv
with the ground truth in each frame of the sequene&esthe mean value
of the ratio between 2 times the area of the intersection efgtiound
truth bounding box with the estimated bounding box and the s
their areas:

2[xc N xS
K= —————. (2.17)

pad + ]

This performance index varies in,[)], the higher the better. Such
index is also highly sensitive to small misalignment of theubding
boxes, hence values abov& Qisually correspond to satisfactory track-
ing.

The second chart shows correct track ratio versus the meantapv
on correct frames, where we define correct frames those wihe@er-
lap is greater than a threshold and the correct track ragoven by the
ratio between the correct frames and the total frame of theesece. An
optimal tracker is represented by a line at the very top ottret. This
chart tries to cope with the fact that forfiirent applications éierent
correct track ratios (more commonly expressed as lost trao) may
be required. By considering the chart at a defined x cooréjnais
possible to understand which trackers are able to provide &vel of
lost track ratio, if their line intersects such verticalsxand with which
accuracy, represented by their mean overlap.

We compare our proposal against several adaptive tracklrsted
for their relevance in the recent literature as well as feratailability of
the implementations at the authors’ website: Boost TrafZ&]; Semi-
Boost Tracker [30], BeyondSemiBoost Tracker [89], A-BHNAZIaptive-
BasinHopingMC)|[45], IVT (Incremental Visual Tracker) [BO
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(@) (b) ()

Figure 2.6: From left to right: Initialization frame for tHeollar se-
guence; sudden change of appearance (frame 90); a distpags® out
(frame 130).The green rectangle represents the ground haunding
box.

To evaluate the importance of model adaptation in the censdl
sequences as well as to rank the overall performance of iadegutiu-
tions, results from three standard non adaptive solutiomsiao added,
namely Frag-Tracl«ﬂl], a color-based particle fiIQ [78flaviean-shift
71

All the sequences are part of the dataset provided by theestf
MILBoost [B].

2.4.2 Dollar sequence

This is a simple sequence, but it allows for some interestimgsid-
erations. There is no clutter. The target (Fig. 2.6a) sulydeimanges
appearance (Fig. 26b). After a while a distractor equaheodriginal
appearance of the target pops out close to the target (f6ig) @nd then
moves next to it. It is useful to understand the robustneststoactors
and the degree of adaptiveness of the algorithms in a vetyattmd and
predictable situation.

SemiBoost uses a fixed external classifier. This allows foy geod
performances up to the sudden change. After that, the terpetieved
to have exited the scene by this tracker because nothinghemteell
with such prior model. When the distractor appears, thikeabelieves
the object is back in the scene, and follows it.
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BeyondSemiBoost uses an adaptive slowly evolving priooimigi-
nation with a fixed one from the first frame. This allows theckex to
overcome the sudden appearance change. Neverthelessthveheis-
tractor appears, the fixed prior misleads the tracker.

The behavior of Boost is slightly unexpected. Since it islnatled
to the initial appearance by a prior, it should have been @éeoid the
distractor, as well as the sudden change. It does indeedmwerthe
change in appearance but it many runs it jumps on the distrastsoon
as it appears, much like BeyondSemiBoost. This explainshibleer
variance compared to the other trackers. The behaviour BHMC is
interesting. Since it is designed to cope with appearanargds steam-
ing from geometric changes, it allows its patches to movepetdently
from each other, similarly to our proposal, but not to varychmin ap-
pearance, since patches are matched across frames usauker tas-
suming brightness constancy. This results in a greateabrigy than the
other trackers. This also leads to two outcomes that lismpérformace
in this sequence: the lower part of the target is excludea fitee model
when it changes and some patches are attracted by the thstrdoen it
appears close to the target. Therefore, the ouput of thieratretches
between the target and the distractor. Our proposal, whclates also
the particle appearance, does ndfeufrom these problems.

As for non adaptive solutions, the use of global statistié®nes
Mean Shift to overcome the nuisances of this scene, bechaseeiv
appearance of the target is similar to the previous one assftse color
histogram is concerned and the use of temporal consisteaegmts it to
jump completely onto the distractor. Nevertheless itsqrertince after
the appearance of the distractor is not satisfactory. FeadT using spa-
tially localized histograms, is insteatfected by the change and drifts to
the distractor. The Particle Filter exhibits a large vac@am its results,
given by the fact that in the trials of the algorithms it wasstimes af-
fected by the distractor and sometimes not: this indicdiaissthe ability
of the particle filter to avoid the distractor in this sequeigjust a ran-
dom event due to the random approximation of the posteriadyred
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by the filter.

The best performer are IVT and our proposal. IVT deploy aipart
cle filtering for state tracking as our tracker. Its targetdelds instead
composed by global features, in particular the target gregtltemplate.
A subspace of templates is constructed on-line and thendistaom it
constitutes the base for the definition of the observatielihood. This
is a very stable solution and has problems in adapting toesuddanges
of appearance. Moreover the graylevel template has praoleadealing
with deformable targets. None of these critics conditiomet in this
sequence, where from the object sudden change to the appearfahe
distractor more then 40 frames elapses while the objectlisst the
majority of the target does not deform. Therefore, the teadbtains
a performance equivalent to ours both in terms of mean qventa of
variance. Both trackers are able to learn the new appeacditive target
and do not confound it with the distractor in all the runs.

2.4.3 Faceocc2 sequence

This is a moderately dicult scene, targeting face tracking (Fig.12.8).
The main nuisances in these scenes are frequent and ratieotclu-
sions. Beside, a permanent target appearance change batymrt the
middle of the sequence, followed by a last occlusion. Hetlezmain
ability a tracker has to show in this sequence is a high drsoative
power between occlusionse. spurious changes of the target appear-
ance, and permanent changes of the target.

Results are reported in F[g. 2.9. Our proposal turns outelsedgain,
as shown by the correct track ratio chart. Thanks to its fdatman, our
filter is able to discriminate between partial occlusiond ahanges of
the target. In fact, when the book starts to occlude the fitc@ppear-
ance has been already captured by the particle of our apmeanaodel
that are modeling the background. Hence, when performinghe
update and resampling, the patches extracted on the boekftom tar-
get model update will receive a low score and will be likelgadirded,
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Dice Overlap
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\ - . ! 7 » .
(e) 498 (f) 573 (g) 718 (h) 808

Figure 2.8: From left to right, top to bottom: Initializatidrame for
the Faceocc2sequence; first mild occlusion (frame 93); a larger occlu-
sions (frame 163); third occlusions (frame 268); targedtioh and large
occlusions (frame 498); target appearance change (fraBjelarge oc-
clusion (frame 718); final appearance of the target (fran8).80he blue
rectangle represents the ground truth bounding box.

therefore not corrupting the target model. On the other hdredhat is
fully included in the target bounding box, and thereforepidéches are
inserted in the target model.

IVT, deploying global features, fliers more than our proposal both
the large occlusion around frame 500 and the target appsadeafor-
mation around frame 350 (head turning). Mean-shift depigyglobal
features ,as well, and being not adaptive cannot cope wathhhllenges
of this sequence. FragTrack, although non adaptive, tobased on
part-wise features. Since the target appearance does aogehup to
frame 550, the non adaptiveness of the tracker is compehbgtéhe
ability to correctly match the target in presence of ocdusj and the
tracker is the second best in the correct track ratio chaeveNheless,
the tracker sfiers the target deformation around frame 350 and the ap-
pearance change after the last occlusion. This indicatedbd to allow
for target deformation when deploying part-wise featunes #tne need
to update the part-based representation to obtain betéztaps in this
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sequence.
Trackers deploying external classifiers for the sample abeling
stage (SemiBoost, BeyondSemiBoost) show good perfornsamgeo
the large target deformation of frame 300. Again, the usdrohg pri-
ors on the target appearance, assumed by using a detecatrelakew
samples for appearance model update, limits their addipyal®dn the
other hand, a continuously adapting tracker like Boofftesuhe same
nuisances, and in particular occlusions, because of iksdbstability.

2.4.4 Coke sequence

A can of Coke is tracked in front of a uniform background. Tlaa c
is moved behind a plant, causing partial and total occlissidrhe can
is also rotated, causing appearance changes. Finallytifiniarlight
stands very close to the target causing reflections andiilation changes.
The target is also small and relatively untextured. Oveaathallenging
sequence from many points of view.

Results are reported in Fig._2]11. Basically, all trackaik fThe
not adaptive solutions loose the target immediately siheecan starts
to rotate from the first frame. Appearance changes handiin§dourse
fundamental in this sequence. The use of priors in SemiBadtBe-
yondSemiBoost does not allow them to cope with a sequende swit
many sudden changes of appearance. Also the prior cannatabig r
informative since the object is relatively untextured yvemall and sim-
ilar to the background. The use of salient regions by A-BHMé&kes it
loose the target as soon as an untextured side of the canvim sbahe
camera.

Even IVT looses the target in the first frame because it doekane
the time to create artlective subspace representation for the can appeatr-
ance in the first frames, where the can keeps on changingdtsaagnce.
Moreover, subspaces and manifolds do not seem the appeiwa@s to
cope with this sequence.

The only partially successful solutions are those thataltor con-
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Figure 2.9:FaceoccXxsequence
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(@) (b) 10 | (c) 65 () 185

Figure 2.10: From left to right: Initialization frame fordlCoke se-

guence; after ten frames the appearance of the can is alobaahged
and the target undergoes a partial occlusion; then the cadevsaround
undergoing changes in appearance and illumination as mnefigs and
occlusions as in frame 185. The green rectangle repredentygound
truth bounding box.

tinuous update, without priors, and with a part based maushely
Boost and our filter. We mainly impute the failure of our filkeithis se-
guence to the lack of texture of the back of the object thabisarrectly
handled by our observation likelihood based on the ZNCC. @ebe
that with a proper mechanism to perform on-line featurecsiele and
the inclusion of edge features our performance will likehprove.
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Chapter 3

Synergistic Change Detection
and Tracking

In this chapter we investigate adaptive visual trackingheiiatic cam-
eras. The usual approach [15, 32, 34,/38,[83) 90, 104] in swasa
is to ground tracking orthange detectiana process that labels every
pixel as changed.g. a target pixel) or unchangedd. a background
pixel) with respect to a static background. Although in th@sopos-
als change detection is key for tracking, little attenti@s been paid to
sound modeling of the interaction between the change daetaod the
tracker. This negativelyfiects the quality of the information flowing
between the two computational modules, as well as the sassdif the
proposals. Moreover, the interaction can be highly infleehay heuris-
tically tuned parameters, such as change detection tHosshbat limit
the deployment of these solutions in real world application

Our work aims at sound modeling of the analysis of the outptite
change detection that produces a new measure for the tratieealso
wish to have a limited number of parameters and that they eazabily
interpreted and tuned. As we have seen, Recursive Bayestandfion
(RBE) casts visual tracking as a Bayesian inference prolaestate
space given noisy observation of the hidden state. Bayes&soning
has been recently used also to solve the problem of changetet in
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image sequences [47].

We introduce a novel Bayesian change detection approactdaét
efficiency and robustness to common sources of disturbanceasuth
lumination changes, camera gain and exposure variatianse.n At
each new frame, a binary Bayesian classifier is trained agual tised
to discriminate between pixels sensing a scene change &els$ gens-
ing a spurious intensity variation due to disturbs. Aftéicgeent non-
parametricestimation of likelihood distributions for both classelse t
posterior probability of sensing a scene change at eachipiabtained.

Given this Bayesian change detector and a generic recuBaivesian
filter as tracker, we develop a principled framework wherpbth algo-
rithms can virtuously influence each other according to aeBen loop.
In particular:

¢ the output of the change detection is used to provide a fpiis
fied observation likelihood to the RBE tracker;

¢ the RBE tracker provides a feedback to the Bayesian change de
tector by defining an informative prior for it;

e both PDFs are modeled and realized as marginalizationseof th
joint PDF on tracker state and change detector output.

The derivation of a measure for the tracker from the changecde
tion output is a fundamental part of a every tracker basedhamge
detection. The idea of letting the tracker provide a feellliacchange
detection is inspired by the emergence of cognitive feeklliacCom-
puter Vision [96]. The idea of cognitive feedback is to let ooly low-
level vision modules feed high-level ones, but also thestatifluence
the former. This creates a closure loop, reminiscentfigcés found in
psychophysics. This concept has not been deployed for titdgm of
visual tracking yet. Nevertheless, it fits surprisingly hial the case
of Bayesian change detection, where priors can well modestimuli
coming from the tracker.
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By exploiting the synergy between the two flows of informataur
system creates a full and synergistic Bayesian loop betwesetracker
and the change detection, whose benefits are presented Expiesi-
mental Results section (Séc.13.6), where the Kalman F#tersed as
RBE tracker and the algorithm introduced in Secl 3.4 as ahaletec-
tion. However, our proposal is general and in principle camsed with
any RBE tracker and Bayesian change detection, such agespec-
tively, particle filters and [47].

3.1 Related Works

Classical works on blob tracking based on change detectierifé4
[32] and the system developed at the Video Surveillance aaditdr-
ing (VSAM) group of CMU [15]. In these systems the output oé th
change detector is thresholded and a connected comporedgsians
carried out to identify moving regions (blobs). A first or sad order
dynamical model of every tracked object is used to predqidgisition in
the current frame from the previous ones. Positions are riigmed by
matching the predictions to the output of the change detectn VSAM
[15] any blob whose centroid falls within a neighborhood loé target
predicted position is considered for matching. Matchingegormed as
correlation of an appearance template of the target to taeggd pixels,
and the position corresponding to the best correlationlexctsl as the
new position for the object. 144 [32] the new position is that cor-
responding to the maximum of the binary edge correlatiowéen the
current and previous silhouette edge profiles. Howeverirntezaction
between tracking and change detection is limited, traciamgt formal-
ized in the context of RBE, change detection depends on hegdlttiolds,
no probabilistic reasoning is carried out to derive a newsusafrom the
change detection output or to update the object positioa, & bunch of
heuristics are used to solve the case of not connected olisef same
object).
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[90] and [34] are examples of blob trackers based on chanige-de
tion where the RBE framework is used in the form of the Kalm#erfi
Yet, the use of this powerful framework is impoverished by dtbsence
of a truly probabilistic treatment of the change detectiatpat. In prac-
tice, covariance matrices defining measurement and precesstain-
ties are constant, and the filter evolves toward its ste&ate-segardless
of the quality of the measures obtained from change detec#opos-
teriori covariance matrices are sometimes determiniticecreased by
the algorithms, but this is mainly a shortcut to implemeatkrmanage-
ment: if there is no match for the track in the current frameautainties
are increased and if a posteriori uncertainties on statetgethigh, the
track is discarded.

[3€] is one of the most famous attempt to integrate RBE in ¢menf
of a particle filter with a statistical treatment of backgnduand fore-
ground) models. It proposes a multi-blob likelihood fupatthat, given
the frame and the background model, allows the system tomga®b-
abilistically on the number of people present in the sceneedkas on
their positions. The main limitations are the use of a caliéal camera
with reference to the ground plane and the use of a foregrourdkel
learned &-line. While the former can be reasonable, although cumber-
some, the use of foreground models is always troublesomeaitipe,
given the high intra-class variability of target appeasmadoreover, no
cognitive feedback is provided from the Particle Filter nfluence the
change detection.

Sorts of cognitive feedbacks from tracking to change detedtave
been used so far only to deal with background maintenanceadap-
tive background modeling issues. For example, [95] propasmethod
based on approximate inference on a dynamic Bayesian Nettlvat
simultaneously solves tracking and background model upglédr ev-
ery frame. Nevertheless, as discussed by the authors, ripe$al do
not take advantage of models of foreground motion as ourrighgo
does, although this would allow for better estimation offbitite back-
ground model and the backgroufateground labels, because it will also
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severely complicate inference. Another example of baakguanainte-
nance is|[33], where positive and negative feedbacks frayh-tavel
modules ( a stereo-based people detector and tracker,@atesérapid
changes in global illumination, camera gain, and camer#iposare
used to update the parameters of the Gaussian distributidine Gaus-
sian Mixture Model used as background. These feedbacks oothe
form of pixel-wise positive or negative real number mapg Hra gen-
erated as sum of the contributions of the high-level modales are
thresholded in order to decide if a pixel should be used tatgthe
background. Contributions from the high-level modulesreaeristically
determined.

3.2 Models and assumptions

We first present assumptions and notations used to model RBBayesian
change detection separately, then we introduce the comraoretvork
that allows us to define probabilistically the bidirectibimberaction be-
tween the two modules.e. the observation likelihood for the tracker
defined on the change map and the prior for the change detdbiad
implements the Cognitive Feedback.

3.2.1 RBE model

We assume a rectangular model for the tracked object, asidanany
proposals such ase. [17]. Hence, the state of the RBE trackey,
comprises at least four variables

X = {ies i W i ... | (3.1)

where (2, jE) are the coordinates of the barycenter of the rectangle and
Wk andhy its dimensions. These variables define the position and size
at framek of the tracked object. Of course, the state internally used
by the tracker can beneficially include other cinematicalalgs (veloc-
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ity,acceleration,...). Yet, change detection can onlyjo® a measure
and benefit from a prior on the position and size of the objel@nce,

other variables are not used in the reminder of the presentaf the

algorithm, though they can be used internally by the RBErfidad are
indeed used in our implementation (Sec] 3.6).

We can also represent the bonding box by defining new vasahle

j 1iR1 JBaS
1 2 IR Wk JB |Ik

We assume the variables jr, ir, js t0 be independent, since this
is reasonable in our context and also simplifies the dedwatdf the in-
formation flows of our loop. This implies that the variabisi®, w, hy
defining the alternative representation are not indepdndetithis is not

a problem since RBE can handle dependent variaklgs the Kalman
filter does not require diagonal covariance matrices).

3.2.2 Bayesian change detection model

In Bayesian change detection each pixel of the image is reddss a
categorical Bernoulli-distributed random varialdg, with the two pos-
sible realizations;; = C andc; = U indicating the event of pixel (j)
being changed or unchanged, respectively.

In the following we refer to the matrig= [cij] of all these random
variables as thehange masknd to the matrip = [p(cij = C)] of prob-
abilities defining the Bernoulli distribution of these \abrles ashange
map The change mask and the change map assume values, resgectiv
in the v x h)-dimensional space8 = {C, U}"" andQ = [0, 1]"", with
w andh denoting image width and height, respectively. The outpat o
Bayesian change detector is the posterior change map dieezutrent
frame f, and background modéj, i.e. the value of the Bernoulli dis-
tribution parameter for every pixel in the image given thanie and the
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3.2 Models and assumptions

C U ¢ (/%)
]

Figure 3.1: Model for the change map given a bounding box.

background:

p(fk, bk | Gij = C)p(cij = C)
p(fk, bx)

p(cj =C | f. b) = (3.3)
Clearly, either anon-informativeprior is used, such as a uniform prior,
or this information has to be provided by an external modiMe as-
sume that the categorical random variatdggomprising the posterior
change mask are independein¢, they are conditionally independent
given fy, by.

3.2.3 Bayesian loop models

All the information that can flow from the RBE filter to the Bayan
change detection and vice versa s in principle represen&cery frame
by the joint probability density functiop(xy, ¢) of the state vector and
the change mask. Both information flows can be formalizedraalized
as its marginalization:

p(G;j) = ffff Z P (X Gij. 7) dx (3.4)
Y dicoi

p(X) = ) POk ©) (3.5)

ce®
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Chapter 3. Synergistic Change Detection and Tracking

k-1 k ksl

p(xk—l|zl:k—l)§ F’rejdict—,—~ Update p(xk|zkk) 4;.
T

Figure 3.2: Overall system description. In every frame tB&ERracker
provides a predictiom (X | Z;«-1) from the previous state that is used
by our framework to generate a set of priquéci,-), each one of them
assessing the probability that a particular pixels is cbdnd his infor-
mative prior is used by a Bayesian change detection algoritigether
with the current frame, and a model of the backgrour to produce

a change mann(ci,- | fi, bk). The change map is not thresholded but a
probabilistic analysis is carried out in order to provideeavimeasure
for the trackemp (z | k), that is merged with the prediction in the update
state of RBE. The blue and red histogram around respectilielypre-
diction and the measure represent the variance associ#tethe four
variables defining a bounding box, which are assumed tovicdl&Gaus-
sian distribution in the specific example. Generally spegkthey are
placed there to remind to the reader that completely spdgfiebabili-
ties are flowing from and into the RBE tracker thanks to ouppsal.
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3.3 Cognitive Feedback

wherec'! denotes the change mask without the)th element, taking
values inside the spa@ = {C, 1/},

The PDF computed with_(3.4) defines an informative prior foe t
Bayesian change detection algorithm, and the estimatitmecstate ob-
tained with [[3.5) can then be used as the PDF of a new measuhe by
RBE trackerj.e.asp(z | X¢). We detail in Sed._3]13 and Séc.3.5 the so-
lutions for (3.4) and(3]5). With reference to Hig.]3.2, itnerth notice
that in our framework only fully defined probabilities flow amg the
modules, not just expectations or deterministic measures.

As we shall see in next sections, to use the above equationseka
statistical model that links the two random vectgrandc. In agreement
with our rectangular model of the tracked object, as showgri3.1 we
assume

p(Cij =C| Xk) = {Kl 1) & R (3.6)

K, otherwise

where R(xy) is the rectangular region delimited by the bounding box
defined by the state, and 0< K, <K; <1 are two constant parameters
specifying the probability that a pixel is changed insidd antside the
bounding box, respectively. Moreover, we assume that thea vari-
ablesci; are conditionally independent given a bounding ba,

p(clx) = 1—[ p(c 1 %) (3.7)

i]

3.3 Cognitive Feedback

Given the assumptions in Séc.]3.2, we can obtain an exadteofor
B.4),i.e. given the PDF of the state vectp(xx), we can compute a
prior p(c;;) for each pixel of the frame that can then be used as prior in
the Bayesian change detection algorithm. Starting frio®)(3ve can
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Chapter 3. Synergistic Change Detection and Tracking

rewrite it as

o) [[[] 5 s

cleo!

:ffffp xk,cij dxk
= [[[] ples 1 pxo o (3.8)

In the final marginalization we can recognize our model of¢hange
map given a bounding box defined [n_(3.6) and the PDF of the.stat
Therefore, this equation provides a way to let the curretitnegion

of the state computed by the RBE module influence the priotter
Bayesian change detection algorithm, thereby realizimgGgnitive
Feedback. In particular, as discussed above, we will usebeic-
tion computed for the current frame using the motion moidel,p(xx |
Zix-1).

To solve [3.8) we have to span the sp&éef all possible bounding
boxesx,. We partitionR* into the two complementary sub-spad&s
and l§ij = R*\ Bj; of bounding boxes that contain or not the considered
pixel (i, j), respectively. Given the assumed modell(3.6), we obtain

p(cij =C) = f f f P(Cij | Xk) P(Xk) dXk
K, f f NSRS f [ P

Bjj

~Ka || f [ posgacs o [[[[ posam,

Xk€Bjj XkERA

o [[ffreom

Xk€Bjj

~Ke (K=Kl 0y = [[[[ P an. @9
Bij
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3.3 Cognitive Feedback

Sincelj; varies in [Q 1], it follows thatp(c;; = C) varies in K», K4]: if no
bounding box with non-zero probability contains the pixet, expect a
probability that the pixel is changed equal Kg; if all the bounding
boxes contain the pixel the probability k; it is a weighted average
otherwise.

By using the alternative representation for the boundingdegined
in (3.2) and recalling that we assume T, ir, js to be independent, the
integral becomes

ffff p(ic) p(ir) p(ir) p(je) diLdirdjrd e

iL<i<ir
Bjj
iT<i<is

jp(iL) dipr(iR) dinjp(jT) djr fp(js) djs
—c0 i —co ]

= Fi. () (L= Fie ) Fjr (D (1~ Fis (1)) (3.10)

whereF, stands for the CDF of the random variable

This reasoning holds for any distributige{xx) we might have on
the state vector. If, for instance, we use a particle filteRBE& tracker,
we can compute an approximation of the CDF from the approtkana
of the PDF provided by the weighted particles, after havirgppgated
them according to the motion model and having marginalibedtac-
cordingly. In the case of the Kalman Filter all the PDFs areis3@ans,
hence we can define all the factors of the produckin (3.10@im$ of
the standard Gaussian CBB{)

|ij:@("““)@(“‘R_')Q(J_“jT)m(“jB_J) (3.11)

O, Oir Tjr Ojg

whereuy, andoy stand for the mean and the standard deviation of the
random variable. The factors of the product i (3J11) can be computed

efficiently with only 4 searches in a pre-computed Look-Up Talbldne
standardb(-) values.
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Chapter 3. Synergistic Change Detection and Tracking

3.4 Bayesian change detection

The main dificulty with change detection consists in discerning changes
of the monitored scene in presence of spurious intensitgtvans yielded

by nuisances such as noise, gradual or sudden illuminatianges,
dynamic adjustments of camera parameters (e.g. auto-esgyasmuto-
gain). Many diferent algorithms for dealing with these issues have been
proposed (see [24] for a recent survey).

Afirst class of popular algorithms based on statisticalgeel back-
ground models, such as e.g. Mixture of Gaussians [90] orekdrased
non-parametric models [23], aré&ective in case of noise and gradual
illumination changes (e.g. due to the time of the day). Uniaately,
though, they cannot deal with those disturbs causing suddensity
changes (e.g. a light switch), yielding in such cases lotflgk posi-
tives.

A second class of algorithms relies on a priori modeling tbe-p
sible spurious intensity changes over small image patcledded by
disturbs. Following this idea, a pixel from the current fars classified
as changedif the intensity transformation between its local neighbor
hood and the corresponding neighborhood in the backgroamaat be
explained by the chosen a priori model. As a result, gradsaiell
as sudden photometric distortions do not yield false pestprovided
that they are explained by the model. Thus, the main issueetna
the choice of the a priori model: generally speaking, theamestric-
tive such a model, the higher is the ability to detect charfgessitiv-
ity) but the lower is robustness to disturbs (specificityynte proposals
assume disturbs to yield linear intensity transformatif®3s.68]. Nev-
ertheless, as discussed iin [102], many non-linearities ansg in the
image formation process, so that a less constrained modéieis re-
quired to achieve adequate robustness. Hence, othertalgsradopt
order-preserving models, i.e. assume monotonic non-dsiCig inten-
sity transformations [48, 64, 102]

We propose a change detection approach that, instead ahassu
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3.4 Bayesian change detection

XiaXiz2Xi3 Yii|YialYis
Xial X | Xis Yial ¥i |Yis
Xi6|%i7| X8 YielYi,7|Yis

Figure 3.3: Notations adopted for the background (on thg éefd the
current frame (on the right) neighborhood intensities.

ing a-priori the model of intensity changes caused by distutearns
it on-line together with the model of intensity changes g&sl by fore-
ground objects. In particular, at each new frame a binaryeBiay clas-
sifier is trained and then used to discriminate between pigehsing a
scene change due to foreground objects and pixels sensmugiatss in-
tensity variation due to disturbs. On-line learning of thedwmls holds the
potential for deploying on a frame-by-frame basis modeleeagictive
as needed to discriminate between the two classes, so éalgibrithm
can exhibit a high sensitivity without a significant loss pksificity.
Moreover, the fully Bayesian formulation for the changesd&bn prob-
lem allows for seamlessly incorporating in a sound way argpioba-
bility to strengthen the change detection output. In oumiavork this
prior is provided by the tracker via the cognitive feedbaekrted above.

3.4.1 On-line learning for change detection

By taking pixels in lexicographical order, let us denote llaekground
and the current frame intensities, respectively, as

B=(Xg,....,%xn) and F = (y1,...,Yn) (3.12)

wherex,y, € [0,255]c N, i =1,...,N andN is the total number of
pixels in the images. The goal of change detection is to coenthe
binary change mask

M = (Cg,...,Cn) (3.13)

i.e. to classify each pixelinto one of the two classes:

83



Chapter 3. Synergistic Change Detection and Tracking

¢ = C: the pixel is sensing a scene change;

G = U: the pixelis not sensing a scene change.

The idea at the basis of our proposal consists in trainingaaeh @ew
frame a binary Bayesian classifier using as feature veatdydlokground-
frame pair of intensitiesx(y) observed at a pixel, and then computing
the change map by letting each pixel take the a-posteriduevaf the
probability of being changed:

p(c=C)p(x.y | c=C)
p(x.y) '
The priorp(c=C) is obtained via the Bayesian loop from the tracker.
In order to train the classifier we have to estimate the liasd p(x,y |
c=C) and the evidencp(x, y). We can avoid to estimate the evidence by
the usual manipulation of (3.114) as

p(c=C| xy)= (3.14)

p(c=C)p(xylc=C)
pP(xy)
_ plc=C)pxylc=0C)
pc=C)pxylc=C)+plc=U)pkxylc=U)

= ! (3.15)

pc=Upxylc=U)
1+
pc=C)pxylc=0C)

plc=Clxy)=

To estimatep(x,y | c=C) and p(x,y | c=U), we carry out a pre-
liminary classification of pixels by means of a very simple &ficient
neighborhood-based change detection algorithm. For arigepigel i,
let the intensities of a surrounding>33 neighborhood be denoted as
in Fig.[3.3, let the intensity dierences between theth and the central
pixel of the neighborhood in the background and in the ciframe be,
respectively,

di(f? =x,;-% and di(}? = Vii—Vi (3.16)
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3.4 Bayesian change detection

and let the pixel in the neighborhood yielding the maximurscdite
value of the background intensityftérence be

ji = arg ma%d.@
i=1....8

1]

(3.17)
A preliminary change masil = (&, ..., &) is computed by classifying
each pixel as changed if the sign of the intensityaﬂéncesjfjf anddiyj—_
is the same, unchanged otherwise:

C
0 (3.18)
u

G
d® . g
i’ji isji
G

VIA )

This algorithm is a simplified version of that proposed.ing]l@nd ex-
hibits O(N) complexity. In fact, since the background model is not up-
dated, the computation ojf_i for each pixel by[(3.17) can be performed
oftf-line after background initialization. Furthermore, tHgaithm is
threshold-free.

The preliminary change mask is thus used to label each ekt
ate a training set out of the current frame. The two likelidhalastribu-
tionsp(x,y | c=C) andp(x,y | c=U) are estimated on this training set
as follows:

he(x.y)

p(xy | c=C)= NG (3.19)
p(Xy | c:ﬂ):w (3.20)
U

whereN, is the number of pixels labeled as chandgdx, y) andhq,(X, y)
are the 2-D joint histograms of background versus frameasitg com-
puted by considering, respectively, the pixels labeled resged and
those labeled as unchanged. Before being usddinl (3.15%) thethis-
togramsh(x, y) andhq,(X, y) are smoothed by averaging over a moving
window of fixed size. The smoothing allow for correcting esrantro-
duced by wrong labeled training data in the preliminary folabeling
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Chapter 3. Synergistic Change Detection and Tracking

as well as for introducing a small amount of spatial conasgeamong
labels, under the hypothesis that pixels close to each attltbe image
space show similar intensity values both in the foregroumdl ia the
background.

3.5 Reasoning probabilistically on change maps

Given the change map= | p(c; =C)| obtained by the Bayesian change
detection algorithm, we aim at computing the probabilitpsiey func-
tion p(xx) of the current state of the RBE filter, to use it as the obsema
likelihood p(z | k). To this purpose, from the marginalization [n_(3.5)
we obtain:

P = > P(Xk,C)

ce®

=" P | p(©)

ce®

=2, (kuC)ﬂ p(ci) (3.21)

ce®

where the last equality follows from the assumption of irefegence
among the categorical random varialdggomprising the posterior change
map computed by the Bayesian change detection.

To use[(3.211), we need an expression for the conditionalgiitity
p(Xk | ¢) of the state given a change mask, based on the assumed model
3.8), (3.T) for the conditional probabilitg(c | xx) of the change mask
given a state. Informally speaking, we need to find the irverfsthe

model [3.6),[(3.T7).
By Bayes rule, eq[(317) and independence of the variahles

p( | k) P(Gij | Xk)
pOXi | ©) = P (%) p'(x )1‘[ ey @2

We have used the notatiqui(x,) and p*(c;;) in (3.22) since here these
probabilities must be interpretedfidirently than in[(3.21): in[{3.21)
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3.5 Reasoning probabilistically on change maps

p(xx) andp(c;;) represent, respectively, the measurement and the change
map of the current frame, whilst if (3]22) both must be intetgd as
priors that form part of our model fgo(xx | ¢), which is independent

of the current frame. Furthermore, using as prior on thes gtqky) the
prediction of the RBE filter, as done in the Cognitive Feed#lsextion,
would have created a strong coupling between the outputeo$dimsor

and the previous state of the filter, that does not fit the RBE&work,
where measures depend only on the current state, and caily lead

the loop to diverge. Hence, we assume a uniform non-infaueatior

p*(X«) = = for the state.

The analysis conducted for the Cognitive Feedback is usefexk-
pand eacltp’(c;) in (3.22). Since we are assuming a uniform prior on an
infinite domain for the state variablésg.a symmetric PDF with respect
to x = 0, it turns out that its CDF is constant and equalé:to

1 a—+0o0 1

1
CDF(x) = —x+ 53 (3.23)
a

Hence, every’(c;) in (3.22) can be expressed using{3.9) and (3.10) as:

4
p'(cj =C) = Ko+ (Ky - Kz)(%) = Kc. (3.24)

By plugging [3.22) in[(3.21) and definifg, = p*(c; = U) = 1 - Kc:

ap(x) = D(p(c | }2(:) PC)  P(U| 'ZE) p(%l)) (3.25)

where, for simplicity of notation, we ugeand/ for ¢; = C andc; = U,
respectively. Since we know thpfZ/) = 1-p(C) andp(U | xx) = 1-p(C |
Xk), We obtain:

pgo =[TP©®ECI%) - Ke) +Ke (1-pC %) (3.26)
L

with 8= 1/a(Kc(1 - Ke))™". By substituting the model (3.6) fqu(C |
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Xx) and taking the logarithm of both sides to improve the numstiabil-
ity, after some manipulations we get:

PC)Ks + Ky

D(C)Ks + Ko (3.27)

y+Inp(x) =hxep)= > In
(i.1)eR(0)
wherey= —Ing - X In(p(C)Ks + Kg) andh(-) is a known function of
the state vector value for which we want to calculate the probability
density, of the change mapprovided by the Bayesian change detection
algorithm, and of the constants

K3 = Kl - KcK4 = KC (1 - Kl) (328)
Ks = Kz = KcKg = Ke (1 - K3)

Hence, by lettingk, vary over the space of all possible bounding boxes,
(3.27) allows us to compute, up to the additive consfaatnon-parametric

estimationh(-) of the log-PDF of the current state vector of the RBE
tracker. This holds independently of the PDF of the state.

In the case of the Kalman Filter, the PDF of the state ve&tpjX w, h)
is Gaussian. In such a case, the variablgg+, ir, jg) are a linear com-
bination of Gaussian Random Variables. Moreover, we aranaisg
that variablesi(, jt,ir, jg) are independent. Therefore, the variables
(i, j7,ir, Jg) are jointly Gaussian and the meamand the covariance
matrix X of the state variables are fully defined by the four means
Ur, pt, ug and the four variances?, o3, o2, o3 of (iL, jr1,ir, jB)-

To estimate these eight parameters, let us substitute ression of
the Gaussian PDF fq(xy) in the left-hand side of (3.27), thus obtaining:

(g _ (ir—ur)> _ (jr—ur)? _ (jg—m8)
202 202 202 202

6—|n(O'|_O'RO'TO'B)—

= h(X, p)
(3.29)
whered = y—21In(2r). The eight parameters of the PDF and the additive

constants might be estimated by imposing_(3129) for a numbker 9
of different bounding boxes and then solving numerically the nbthi
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3.5 Reasoning probabilistically on change maps

over-determined system of non-linear equations in 9 unknowns.

To avoid such a challenging problem, we propose an apprdgima
procedure. First of all, an estimageof the mean of the state vector
= (uL, ur, u1, 1) Can be obtained by observing that, due to increasing
monotonicity of logarithm, the mode of the computed log-RiDcides
with the mode of the PDF, and that, due to the Gaussianityngstson,
the mode of the PDF coincides with its mean. Hence, we obtain a
estimateu of u by searching for the bounding box maximizih@).

o = arg maxh(x, p) (3.30)

Then, we impose thdi (3.29) is satisfied at the estimated paatu
and that all the variances are equa, o2 = 03 = 02 = 03 = 0%, thus ob-
taining a functional relationship between the two remarparameters
s ando?:

§ = 2Inc? + h(m, p) (3.31)

By substituting in[(3.29) the above expressionf@nd the estimated
for u, we can compute an estimaté(x) of the variancer? by imposing
(3.29) for whatever bounding box# z. In particular, we obtain:

-l
h(il\’ p) - h(X’ p)

To achieve a more robust estimate, we avetag)e over a neighborhood
of the estimated mean bounding h@xFinally, to obtain the means and
covariance of the measurements for the Kalman Filter, wéoéxjne
property of linear combinations of Gaussian variables:

o [AT 0 ][At 0
ro== o At|l o At

T4(X) = % (3.32)

§
] (3.33)
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3.6 Experimental Results

We have tested the proposed Bayesian loop on publicly dlaitatasets
with ground truth data,e. some videos from the CAVIAH?and ISSIA
Soccer datasets [22]. The former comprises videos front&ypideo-
surveillance scenarios, whereas the latter deals withtb&tionatch.

We have used a Kalman Filter with constant velocity motiordeio
as RBE tracker and the algorithm introduced in $ec. 3.4 az8ay
change detection. The detection to initialize the trackas done man-
ually from the ground truth (although change detection &t poten-
tial to solve the detection problem in the same conceptaahémwork,
an advantage over tracking systems based on other appsosietie as
e.g. color histograms). We have selected videos with asipgison or
where the tracked person was well separated from the chers

In particular, the complete system has been used to tracglgpeo
wondering in a shopping mall using three sequences from REAR
dataset (referred to as CAVIAR1, CAVIAR2, CAVIARS, respeety)
and two players during a match in the sixth sequence of thiAI8&aset
(ISSIA_GK and ISSIAP). Tracking results for these videos are available
at the companion website.

As for the CAVIAR dataset, the mainfticulties are changes in ap-
pearance of the target due to light changes inside and euts&dshop,
shadows, camouflage, small size of the target and, for segqu&rdra-
matic changes in target size onto the image plane (he waskdarihe
shop until barely disappears). The ISSIA Soccer datasesssdhalleng-
ing as far as color, lightening and size variations are corezk and the
players cast practically no shadow. Yet, it provides lorsgeuences and
more dynamic targets. We used our system to track the gqadkemd
a player: the goalkeeper allows to test our system on a seq®500

! Data coming from the EC Funded CAVIAR projd&T 2001 37540, found at
URL: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

2How to combine our system with proper data association dhgos and to take
into account in the probabilistic analysis of the change thapnultiple target scenario
is an interesting subject for future work.
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3.6 Experimental Results

frames long; the player shows rapid motion changes and digpable
poses (he even falls to the ground kicking the ball in the heidd the
sequence).

Our system does not require to set a threshold to classifgulygut
of the change detection, only the model fifci; = C | Xx) must be set.
To account for the dierences between the reasoning of the cognitive
feedback and the analysis of the change map, tfferdint models must
be definedi.e. two different pairs of values fd{; andK, must be tuned.
We refer to them a&$F,KSF andKPA, K5 respectively. We coarsely
tuned these parameters on a sequence of the CAVIAR datasesed
for testing. The best values turned out to be

KSF =05, KSF =00, KM =05, K}A=02. (3.34)

We expect these values to be generally applicable: we use With
success also on the ISSIA videos. They basically state:

¢ that the model for both analyses must allow for unchangeelpix
into the bounding boxK{F = KA = 0.5), due to the approxima-
tion inherent to the rectangular model in presence of notanec
gular and deformable targets;

¢ that a good prior for the change detection dictates the aleseh
unchanged pixels outside he bounding bK%T = 0.0);

¢ that, even with a such a strong prior, we must allow for a small
number of errors of the Bayesian change detection out ofabady
ing box and left them out of the estimation we provide whenana
lyzing the change mag§” = 0.2).

These considerations hold regardless of the sequencedtthanllumi-
nation condition and the characteristic of the target. ldeme see our
system as a step toward easily deployable solutions foavisacking.
We also coarsely tuned the values for the Kalman filter staware
ance matrix using the same sequence. We use a constantyetation
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model, thereby adding the velocity of the target alongi ttwed ] axes to
the state vector. The best values turned out to be:

(11 0 0 0 O]
01 00O00O0
001100
F= (3.35)
0 00O0O1O00O0
0O000O010O0
10000 0 1]
(1 0 0 0 0 O]
0O 100 0 0 O
O 01 0 0O
= 3.36
Q 0O 0 0 10 0 O ( )
O 000 10
(0 0 0 0 0 1]
1 000O00O
001000
H= (3.37)
0O 0O0O0OO0T10O0
0 00O0O01
with the state vectax, given by
k=1 0p 5 Je @ Wk he| - (3.38)

To quantitatively evaluate the performance we use the méan d
overlapd, over a sequence, introduced in the previous chapter[(Sed. 2.

~ 2[xc N xS 4 30
k= d + T (3.39)

Quantitative evaluation is reported in Table]3.1. Our systehose
results are reported in the first column, successfully sakthe tar-
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Table 3.1: Performance scorés.indicates loss of target.

Seq. Full Loop | Constant Rl Kalm+MS | FragTrack
CAVIAR 1 0.74 0.64 0.29*) 0.55
CAVIAR 2 0.66 0.66 0.01%) 0.01¢*)
CAVIAR 3 0.70 0.64 0.012% 0.01¢*)
ISSIA_GK 0.70 0.65 0.74 0.02)

ISSIA_P 0.61 0.56 0.64 0.02()

gets. The main source of misalignment between the boundirgbd

the ground truth in the CAVIAR dataset are shadows (first romlwf
Fig.[3.5 and_3J6): because of the position of the artificights, cast
shadows on the floor fit with our rectangular model and theyamabf

the change map tends to include them, elongating the bogihdix e.g.

the frames # 368 707 and 1046 of sequence CAVIAR 2, depicted in
Fig.[3.5). Although many proposals for shadow removal gxig} and
could be used in a real deployment of our system, we pressultse
without such post processing step to better characterizproposal and
show its robustness to disturbance factors.

On the ISSIA videos, too, our tracker was able to succeystitaltk
both targets throughout the whole sequence, as shown ilBHig.The
main limitation of our algorithm in this case is due to thewamed rect-
angular model: in many frames, the players are running dopamg
extreme movements and their limbs cover a wider area than wiper-
son ise.g. walking. Hence, the actual changed area inside the ground
truth bounding box dfers from a rectangular shape and the measures
of our system are always too conservative in size with rdsfmethe
ground truth é.g. frames # 656 and 768 of the player sequence in Fig.
[3.7). Nevertheless, it is remarkable that our tracker is tdhadapt to ex-
treme situations, such as the player falling on the grouadaisd frame
in the same sequence). It is also important that it succeedeacking
the goalkeeper, although this sequence is easier thanfthia player,
because thisis a long sequence, and it shows that the pobloagedoes
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Chapter 3. Synergistic Change Detection and Tracking

not incur in positive feedbacks and divergence.

To highlight the importance of the full Bayesian loop, we éaer-
formed the same experiments without considering the fuf BBtimated
during the change map analysis, but just the mean and a comséa-
surement covariance matrik equal to

100 0 0 O
0 100 0 O

R = . (3.40)
0 0 100 O

0 0 0 100

Results for this configuration are reported in the secondnoolof Tab.
[B.1: our proposal performs consistently better througtauthe se-
guences (only for one sequence, results are identicalng3nto more
details, the superior performance is given by the abilitpwf full loop
to be closer to the ground truth bounding box even when themec
gular shape assumption is violatezld. compare frames # 720 in the
CAVIAR1 experiment reported in Fig._ 3.4 and # 487 in CAVIARS-e
periment reported in Fig. 3.6, where the feet and the headuldside
of the bounding box estimated by the partial loop). This isuim due
to the dynamic estimation of the measurement covariancexmat all
the frames where the rectangular model is not adequaterabealplistic
analysis of the change map is able to detect such mismatchthajnong

a higher uncertainty on its bounding box estimation (thesteh frames
tends to concentrate on the target trunk) and this allow&#tean fil-
ter to trust less the measure and, hence, to be more acclifegesame
observation explains theftierence in performance in the ISSIA dataset.

We also compare the performance of our tracker against tarmo st
dard solution for visual tracking: Mean Shift tracker usedaonjunction
with a Kalman Filter (KalmanMS)_[17] and FragTrack [1]. Thaye
based, respectively, on the color histogram of the wholgetat.e. this
tracker ignores spatial distribution of the colors on thhge) and on the
graylevel histogram of each cell of two grids superimposethe target.
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Results for these trackers are reported in the third andfa@aumn of
Tab.[3.1, respectively.

The first sequence we consider from the CAVIAR dataset isdlse e
iest one in our tests. There are no scale changes, no moticchianges
(the person walks with practically constant velocity froight to left),
and moderate changes in appearance, due to the not unifgrhirten-
sity in the corridor of the mall. Nevertheless this sequenices out to
be too dificult for the KalmanMS tracker and tough to handle for Frag-
Track. This is due to two factors: the moderate changes ieaance
of the target and the hypothesis of a rectangular targeinzess also by
these trackers. These two factors cause the KalmanMS trazkeo-
vide poor tracking in the beginning of the sequence, notdgainie to
adapt to the deformations of the targeg(to include in the bounding
box the wide open legs in frame # 736 of Hig.]3.4) since thektalane
fits better with the initial model; and then, to drift to theckground and
loose the target, since, due to the appearance change @rget, tthe
best matching parts of the initial histogram are those obmekground,
that were included in the initial model, even if it was initzed from the
ground truth, due to the approximate rectangular model Feck per-
forms definitely better, although it is less precise on thigregion of the
bounding box than our systera,g. it cuts the feet and the head of the
target in the third and fourth frame of the sequence repontédy.[3.4.
Similarly to KalmanMS, though, it can not handle appearasi@nges:
at the end of the sequence it looses the target (last two framteg.[3.4)
by considering the background more similar to the initigi@grance of
the target.

The other two CAVIAR sequences are toffidult for a tracker based
on color or graylevel histograms. Both the KalmanMS tracked the
FragTrack loose the target at the beginning of the sequeRite.most
likely cause for this is that they are also very sensitivehinitializa-
tion condition: in contrast with the previous sequence, e the first
frame it was possible to reasonably approximate the targlktawvectan-
gular bounding box, this is not possible in the first frametheke two
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sequences (compare the first row of Fig] 3.4 with those ofiEgand
[3.6). Because of this, a lot of background is included in titgl model,
and this makes the tracker stick to the initial position amusk the tar-
get. Such sensitivity is less important for bigger targ&iserefore, we
can conclude that our solution, which is tiezted by this initializa-
tion problem, is more suitable than the considered altemsfor visual
surveillance scenarios, where targets are usually smallatextured.

On the ISSIA sequences, KalmanMS obtains slightly betteiope
mances than our proposal. Of course, color is an importamt@suc-
cessfully track the players in such scenes. This is stremgbly the fact
that, for the particular colors in these scenes, the corsmedo gray
levels is particularly lossy: for example, yellow partsioé tracked play-
ers get really similar to the green background. This is cordd by the
poor performances of FragTrack, which uses graylevel im#ige our
system. Despite this, thefterence in performance between our solu-
tion and KalmanMS is encouraging, given the gap in the qualithe
analyzed cues. We expect a sensible gain in performanceiyyiieg
color-based Bayesian change detection. This represeritgearsting
future direction of research to continue and extend thikwor
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Figure 3.4: Samples equally spaced along the time axis from
the CAVIAR1 experiment (sequence "OneStopEnter2fronthfrthe
CAVIAR dataset). From left to right column: our method (fldlop;
our method with constant measurement covariance matris{aat R);

KalmanMS; FragTrack.
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Figure 3.5: Samples equally spaced along the time axis frioen t
CAVIAR2 experiment (sequence "OneStopMoveEnter2fronthf the
CAVIAR dataset). From left to right column: our method (fldlop);
our method with constant measurement covariance matrnsfaat R);
KalmanMS; FragTrack.
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Figure 3.6: Samples equally spaced along the time axis froen t
CAVIAR3 experiment (sequence "OneStopMoveNoEnterlfréram
the CAVIAR dataset). From left to right column: our methodlfoop);
our method with constant measurement covariance matrnstaat R);

KalmanMS; FragTrack.
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#2996 #880

Figure 3.7: Exemplar frames equally spaced along the tinssfiapm the
ISSIA Soccer dataset: left column, the goalkeeper trackimeriment
(ISSIA_GK); right column, the player tracking experiment (ISSH.
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Chapter 4

3D Surface Matching and
Object Categorization

Automatic recognition of shapes in 3D data, also referredstshape
matching is attracting a growing interest in the research community
with applications found in areas such as shape retrievapheshegistra-
tion, object recognition, manipulation and grasping, tolocalization

and navigation. An important enabling factor for the depetent of

this technology is represented by the increasing avaitgluf cheaper

and more #ective 3D sensors. Many of these sensors are able to ac-
quire not only the 3D shape of the scene, but also its textbreis the
case, e.g. of stereo sensors, structure-from-motionmgsteertain laser
scanners as well as the recently proposetkctdevice by Microsoft.

Surface matching can be tackled by either a global or a lggal a
proach. According to the former, a surface is describedrantby
means of global features, whereas the latter relies on kegboints
and regional feature descriptions to determine pointeioHcorrespon-
dences between surfaces. Borrowing a denomination typicak face
recognition community [110] we refer here to these two apphes as,
respectivelyholistic andfeature-based While the holistic approach is
popular in the context of 3Dbject retrieval[39,71,87], feature-based
methods are inherently moré&ective for 3Dobject recognitionn pres-

101



Chapter 4. 3D Surface Matching and Object Categorization

Figure 4.1: Example of matching local descriptors in a 3Beobjecog-
nition scenario. Green lines identify correct matches,n&ag red ones
represent wrong correspondences.

ence of cluttered backgrounds and occlusions.

Feature-based methods rely on 3D keypoints that are estt&cm
a 3D surface. Thistask is accomplished by 3D detectors, avaims is to
determine points which are distinctive, to allow fdfe=tive description
and matching, and repeatable with respect to point-of-wanations
and noisel[12, 60, 111]. Sometimes, a characteristic seahdso as-
sociated to each keypoint, so as to provide a local neigldoatto the
following description stage [2, 60, 66,98, 106]. Then, acdgsion of
the local neighborhood of each keypoint is computed by me&as3D
descriptor|[12, 14, 27, 41, 60,166, 106, 111] in order to sbtacom-
pact local representation of the input data invariant up prealefined
level of transformation (rotation, scalingfiae warp, ...). Descriptors
are finally matched acrossftérent views to attain point-to-point corre-
spondences(g.as in Fig[4.1l). This approach has become the standard
paradigm in case of 2D data [6,/10, 43, 54,56, 61, 62] for iagktlas-
sical computer vision problems such as object recognitnpmatic
registration, image indexing, etc...

Object categorization is among the most stimulating, yetlehg-
ing, computer vision tasks. It consists of automaticallyigising a cat-
egory to a particular object given its representation (aagej a point
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cloud, ..) and a predefined taxonomy. This i$etient from object recog-
nition, which consists of recognizing a particular instaot a particular
class {.e. an object recognition algorithm is trained to recognize & sp
cific car whereas an object category recognition algorithrmnained to
recognize all cars as members of the same class) and moterndhiad.

We develop a novel object category recognition algorithrsdlying
the surface matching problem based on local features. Thecuoatri-
butions are as follows:

e anovel comprehensive proposal for surface represeniatidroed
SHOT, which encompasses a new unique and repeatable local ref-
erence frame as well as a new 3D descriptor;

e the modification of this proposal to exploit texture, praddoby
the output of modern 3D sensors;

¢ the extension of the Implicit Shape Model [50] approach &odait-
egorization of 3D data described by means of the SHOT method.

4.1 SHOT descriptor

This section deals with our proposal for local 3D descriptid=irst,
we categorize existing methods into two classBgynaturesand His-
tograms Then, by discussion and experiments alike, we point out the
key issues of uniqgueness and repeatability of the locaterte frame.
Based on these observations, we formulate a novel comsizegoro-
posal for surface representation, which encompasses a meweuand
repeatable local reference frame as well as a new 3D descriphe
latter lays at the intersection between Signatures anagtiains, so as
to possibly achieve a better balance between descripsgared robust-
ness. Experiments on publicly available datasets as wabhasange
scans obtained witBpacetime Stereprovide a thorough validation of
our proposal, which is shown to outperform clearly threelakebwn
state of the art methods.
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4.1.1 Analysis of Previous Work

In Table[4.1 we propose a categorization of the main propdsatihe
field. As shown in the second column, we divide proposals @8-
scriptors into two main categories, nameéjgnatureand Histogram
The first category, that includes earliest works on the suipgeescribes
the 3D surface neighborhood of a given point (hereinaftgpor) by
defining an invariant local Reference Frame (RF) and engpdiccord-
ing to the local coordinates, one or more geometric measemencom-
puted individually on each point of a subset of the supportti other
hand, Histogram-based methods describe the support bynadating
local geometrical or topological measurements (e.g. pmonts, mesh
triangle areas) into histograms according to a specific tiggthdomain
(e.g. point coordinates, curvatures) which requires tHaidien of ei-
ther a Reference Axis (RA) or a local RF. In broad terms, digres
are potentially highly descriptive thanks to the use of isigitwell lo-
calized information, whereas histograms tradiedescriptive power for
robustness by compressing geometric structure into bins.

As far as Signature-based methods are concerned, one ofghe fi
proposals isStructural Indexind91], which builds up a representation
based on either @D curveor aSplashdepending on the characteristics
of the 3D support. The former encodes the angles betweerecons
tive segments of the polygonal approximation of edges éspwnding
to depth or orientation discontinuities) on the surface.e Tdtter en-
codes as a 3D curve the local distribution of surface ortearta along a
geodesic circle centered on the pointPweint Signature§l4] the signa-
ture is given by the signed height of the 3D curve obtainechkgrsect-
ing a sphere centered in the point with the surf&t Point Fingerprint
[92] encodes the normal angle variations and the contouusadri-
ations along dterent geodesic circles projected on the tangent plane.
Recently,Exponential Mappind66] proposed a descriptor that encodes
the components of the normals within the support by deptpwr2D
parametrization of the local surface.
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4.1 SHOT descriptor

Table 4.1: Taxonomy of 3D descriptors.

Local RF
Method Category Unique Unambig.
Stind [91] Signature| No Yes
PS [14] Signature| No Yes
3DPF [92] Signature| No Yes
EM [66] Signature| Yes No
Sl [41] Histogram RA
LSP [12] Histogram RA
3DSC [27] Histogram| No Yes
ISS [111] Histogram| Yes No
Tensor [59] | Histogram| No Yes
MeshHoG [106] Both Yes Yes
SHOT Both Yes Yes

As for Histogram-based methods, those relying on the defmaf
just a RA are typically based on the feature point normal. é&@m-
ple, Spin Image$41], arguably the most popular method for 3D mesh
description, computes 2D histograms of points falling with cylindri-
cal volume by means of a plane that "spins” around the norkvahin
the same subclaskpcal Surface Patched2] computes histograms of
normals andshape indexefl4] of the points belonging to the support.
As for methods relying on the definition of a full local RED Shape
Contex{27] modifies the basic idea of Spin Images by accumulating 3D
histograms of points within a sphere centered at the fegtona. In-
trinsic Shape Signaturgdé11] proposed an improvement of [27] based
on a diferent partitioning of the 3D local volume as well as on et
ent definition of the local RF. Finally, Mian et al. [59] acculate 3D
histogramsTensor3 of mesh triangle areas within a cubic support.

Two observations steam from the taxonomy proposed in Tab. 4.
First, all proposals rely on the definition of a local RF or,ledst, a
repeatable RA. However, we believe that the importance efctivice
of the local reference for a 3D descriptor is underrated@nditure, with
efforts mainly focused on the development of discriminativecdi@tors.
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As a consequence, approaches for the choice of the locaénefe are
ambiguous, or not unique, or too sensitive to noise and atdodpecific
experimental validation. Instead, as we will show in the aerder of
the chapter, the repeatability of the local RF (or, anals§jowf the RA)
is mandatory to achievdtective local surface description.

Therefore, one of the contributions of our work is a specificyg
upon local RFs. We carry out an analysis of repeatability redist-
ness on proposed local RFs, and provide experiments thatrdsrate
the strong impact of the choice of the RF on the performance 2D
descriptor (Sed._4.1.2). Given the impact of such a choiesimtvoduce
a robust local RF that, unlike all other proposals, is unignd unam-
biguous(Sed. 4.1.3).

Secondly, based on the nature of existing approaches gigat by
the proposed categorization, it is our belief that &eaive and robust
solution to the problem of 3D shape description can be fosral@oper
combination ofSignaturesandHistograms Hence, we propose a novel
3D descriptor aware of the proposed categorization ($et.4}. Its
design, inspired by the analysis of the successful choied®nqmed in
the related field of 2D descriptors [54], has been expli@tnceived to
achieve computationaliéciency, descriptive power and robustness. Re-
cently, MeshHoG|[106] another approach for 3D data desorighat
can be seen as an attempt to combine the benefits of Signahdésis-
tograms, was proposed. We will show in the experimentalltesioat
our proposal consistenly outperforms it.

4.1.2 On the traits and importance of the local RF

The definition of a local RF, invariant to translations anthtions and
robust to noise and clutter, has been the preferred optiendow a 3D
descriptor with invariance to the same sources of variatisimilarly to
the way rotation an@r scale invariance is injected into 2D descriptors.
On the other hand, the definition of such an invariant franmeh&leng-
ing. Furthermore, although almost every new proposal foallshape
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4.1 SHOT descriptor

description is equipped with its own local RF, experimentdidation
has always been focused on the results obtained by the je@ot of an
RF and a descriptor, whilst the impact of the selected lodabR the
descriptor performance has not been investigated infiteza
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Figure 4.2: Impact of the local RF on a descriptor perfornreanthe
optimal point is located at the top left side of the chart.

In Table[4.1 we have reported for each proposal the progeofie
uniqueness and unambiguity of their local RF. As highlighie the
third column, the majority of proposals are based on RFsdhatnot
unique[91] [14] [92] [27] [59], i.e. to obtain an invariant desctipn
they require multiple descriptors to be computed at eacturfegoint.
This is usually handled by describing a "model” point usingjtiple de-
scriptors, each based on dfdrent local RFs, and a "scene” point with
just one of them. This approach causes additional ambiguiitiye cor-
respondence problem since it shifts the intrinsic non-uangss of the
local RF to the matching stage, thus increasing potentiahratches,
computational requirements and sometimes also memorgriaatAn-
other disadvantage brought in by the use of multiple loca Rfhat the
proposed matching stage is so tailored on the descriptoittheevents
the use of @-the-shelf dicient solutions for matching and indexing,
that in principle could be advantageously performed ortimadly with
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respect to the description. This may result in a severe lbssmputa-
tional dficiency.

In addition to multiple RFs, another limit of current proptscon-
sists in the intrinsic ambiguity of the sign of the local RFeax For ex-
ample, in[66] and [111], normals and principal curvatunediions are
used. The main problem with this choice is that principa¢clions are
not vectors, i.e. their sign is not defined. From a practicahfof view,
principal directions are computed using Singular Value d»agosition
(SVD) or Eigenvalue Decomposition (EVD) of the covariancamx of
the point coordinates within the sup;ﬁerf course, the output of the
algorithm is a vector with a sign. Nevertheless, this sigsingply a nu-
merical accident and, thus, is not repeatable dfedint (e.g. rotated)
instances of the same mesh, even though the samgESXalgorithm
is used, as clearly discussed in [9]. Therefore, such amapprto the
definition of the local RF is inherently ambiguous and thusrepeat-
able. [111] resorts to multiple RFs to overcome this limitat while
[66] does not deal with it explicitly.

To highlight the impact of the local RF on a descriptor perfance,
we show in Fig.[4.2 the performance of the EM descriptor [66hw
different local RFs. Results are reportedRa&gall vs 1-Precisionurves
(see Sed._4.1].5 for a discussion about this choice and fgethiags used
in all our experiments). The ambiguous RF used in [66] leadskat-
isfactory performances (black curve). Using exactly thmeaettings
and exactly the same descriptor, we can boost performaiogsysoy
deploying the Sign Disambiguation technique recently psagl in [9]
(green curve). Furthermore, using the more robust and nepeatable
local RF that we propose in next section we can obtain anaibeifi-
cant improvement (e.g. at recalllQrecision raises from.808 to 0994)
without changing the descriptive power of the descripttudlzurve). It
is also worth pointing out here that our local RF does not magier-
fectly the EM descriptor, for none of its axes provides anrapjmation
of the local normal that is instead assumed by the theoryrmedth the

! From personal communication with the authors of [66] anceasrted in[[11/1].
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EM descriptor. Nevertheless, performances with our lodabRe better
than those obtained with the original proposal, showingothrerwhelm-
ing importance of a robust, repeatable local RF. The impodaof a
robust RF is confirmed by the use of the EM descriptors withottilg
other unique and unambiguous local RF, part of the MeshHgGridhm
[106]. Such local RF is based on curvatures, which are higéhsitive
to noise. This results in a poorly repeatable RF, which neggtinflu-
ence the descriptor performances (red line).

4.1.3 Disambiguated EVD for a repeatable RF

As shown by Tablé 411, none of current local RF proposals it ¢f
MeshHoG is at the same time unique and unambiguous. TheR€al
defined by the MeshHoG descriptor is highly sensitive to@as shown
in the previous section. Hence, there is a lack of a robugguerand un-
ambiguous RF. To fill this gap we have designed and extenysigsted
a variety of novel unique and unambiguous local RFs. We ptdsere
the method that turned out to be the most robust in our thdredgeri-
mental evaluation. It builds on a well known technique pnéseé in [35]
and [63], where the problem of normal estimation in preseria®ise
is specifically addressed. A Total Least Squares (TLS) asiom of the
normal direction is obtained in [35] and [63] by EVD of the epance
matrix M of thek—nearest neighborng of the point, defined by

1 A 1
M = E;(pi ~p)pi-P)T. p= E; pi . (4.1)

In particular, the TLS estimation of the normal directiomgigen by
the eigenvector corresponding to the smallest eigenvdlhé. d-inally,
they perform the sign disambiguation of the norngitshally by means
of sign consistency, i.e. propagating the sign from a seedanheuris-
tically.

While this has proven to be a robust arfteetive technique for sur-
face reconstruction of a single object, it cannot work fadlsurface de-
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scription since in the latter case signs must be repeatalde®any pos-
sible object pose as well as in scenes with multiple objsctihat docal
rather than global sign disambiguation method is mandaloyeover,
Hoppe’s sign disambiguation concerns the normal only, déneaves
ambiguous the signs of the remaining two axes.

In our proposal, we start by modifying (4.1) so as to assigtadit
points smaller weights, in order to increase repeatahilifgresence of
clutter. Then, to improve robustness, all points layingwatthe spher-
ical support (of radiu®) which are used to compute the descriptor are
used also to calculatd. For the sake offéiciency, we also neglect the
centroid computation, replacing it with the feature pgntTherefore,
we compute M as a weighted linear combination,

M (R-d)(pi - p)(pi—p)' (4.2)

1

Z (R-di) i:dzig:R

i:di<R
whered, = ||pi — pll. Our experimental evaluation indicates that the
eigenvectors oM define repeatable, orthogonal directions in presence
of noise and clutter. It is worth pointing out that, compatedi35] and
[63], in our proposal the third eigenvector no longer repnes the TLS
estimation of the normal direction and sometimes it notaliffers from
it. However, this does noffiiect performance, since in the case of local
surface description what matters is a highly repeatable@anadkst triplet
of orthogonal directions, and not its geometrical or togatal meaning.

Hence, eigenvectors df (4.2) represent a good starting,gmitthey
need to be disambiguated to yield a repeatable local RF. fidiegm of
sign disambiguation for EVD and SVD has been recently adeiem
[9]. Their proposal basically reorients the sign of eaclgsiar or eigen-
vector so that its sign is coherent with the majority of thetwes it is
representing. We determine the sign on the locahdz axes according
to this principle. In the following we refer to the three engectors in
decreasing eigenvalue order as xtiey* andz* axis, respectively. With
X~, Yy~ andz", we denote instead the opposite vectors. Hence, the final
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disambiguated axis is defined as

S; = {i:d<RA (p-p)-x" >0} (4.3)

S, = {i:d<RA (p—-p)-x >0} (4.4)
X*, ISk = IS5

X = (4.5)
X~, otherwise

The same procedure is used to disambiguatezttves. Finally, they
axis is obtained as x Xx.

We compare the repeatability of our proposal against trepeesen-
tative RFs: that of MeshHoG, that of PS and that of EM, respelgta
not-robust solution, a not-unique solution and an ambigwme. To pre-
vent the shortcomings of not uniqueness and ambiguity froralidat-
ing the comparison we consider only the global maximum ofisight
[14] for PS and we add the sign disambiguation of [9] to EM (EBD),
thereby obtaining two unique and unambiguous RFs. We alssider
the original EM approach to show thé&ectiveness of sign disambigua-
tion. Using again the settings detailed in Jec. 4.1.5, in[#ig we plot,
for 5 increasing noise levels, the mean cosine between smoneing
axes of the local RFs computed on two instances of the samie, mes
the original one and a rotated and noisy instance. On one hamuigu-
ity is clearly the most serious nuisance, as the low perfoces of the
original EM proposal demonstrate. On the other hand, thelsaigher
number of points to compute the local RF ( i.e. the whole serfeon-
tained in the spherical support, as done by EM, instead oc8iheurve
resulting by the intersection of the spherical support whtéhsurface, as
done by PS) yields better robustness, as shown by the elditop of
EM with respect to PS when noise increases. Neverthelessidlepest
drop of performance is provided by MeshHoG, which confirnesrteed
to ground local RF computation on more robust features tleaorsl
order diferential entities like curvatures.The disambiguatiorodticed
in EM+SD dramatically enhances repeatability. However, both BN a
EM+SD subordinate computation of the directions on the tanglamie
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to the normal estimation (i.e. , the repeatable directitvey tompute
are then projected onto the tangent plane to create an amlabbasis).
This choice sums noise on the normal to the noise inevitafiécng

the other directions, thereby leading to increased sgitgiof the esti-
mation of the axes on the tangent plane and finally to pooratepdity.
Our proposal, instead, estimates all axes simultaneouslyuans out to

be the most #ective, thanks to the combination of its noise and clutter-
aware definition, theféectiveness of the proposed disambiguation and
the inherent uniqueness deriving from its theoretical {dation.
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Figure 4.3: Comparison between local RFs.

4.1.4 Description by Signatures of Histograms

In Sec[4.1.11 we have classified 3D descriptors as based luer iis-
tograms or signatures. We have designed our proposal fiolgptlis in-
tuition and aiming at a local representation thatfisceent, descriptive,
robust to noise and clutter as well as to point density vianafT he point
density issue is specific to the 3D scenario, where the sameRne
of the real world may be represented witlffeient amounts of vertexes
in its mesh approximation, e.g. due to the use dfedent 3D sensors
(stereo, Time-of-Flight cameras, LIDARS, etc...) off@lient acquisition
distances.
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Besides our taxonomy, an-
other source of inspiration has
been the related field of 2D
feature descriptors, which has 4
reached a remarkable maturity/
during the last years. By an-
alyzing SIFT [54], arguably the
most successful and widespread\_
proposal among 2D descriptors,

we have singled out what we be-
lieve are among the major rea-
sons behind itsféectiveness. First
of all, the use of histograms isFigure 4.4: Signature structure for
spread throughout the algorithmSHOT.

from the definition of the local

orientation to the descriptor itself, this accounting fts iobustness.
The low descriptive power of a global histogram computedhenthole
patch is balanced by the introduction of coarse geometfarnmation:
the descriptor is, in fact, a concatenation of histograrasheomputed
on a precise location in a regular grid superimposed on thkehpahe
use of this coarse geometric information creates what wetifgeas a
signature-like structure.

Moreover, the elements of these local histograms are basdidso
order derivatives describing the signal of interest, heensity gradients.
Although it has been argued that building a descriptor basetiferen-
tial entities may result in poor robustness to noise [143ythold high
descriptive power, as thefectiveness of SIFT clearly demonstrates.
Therefore, we believe they can provide a mofte&ive solution for a
descriptor than point coordinates [41] [27]. Yet, to ackiesbustness to
noise, diterential entities have to be filtered, and not deployed tyrec
e.g. as done in [66].

Finally, an important part of the SIFT algorithm deals witie def-
inition of a local invariant 2D reference frameeg( the characteristic
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orientation). The author states that in case of ambiguityetermining
the local RF, a great benefit to the stability of matches igipged by the
use of multiple orientations. This highlights the impordarf a unique,
unambiguous local RF for thefectiveness of a descriptor.

Based on these considerations, we propose a 3D descriptogrh
codes histograms of basic first-ordefferential entities (i.e. the normals
of the points within the support), which are more represemaf the
local structure of the surface compared to plain 3D cootdmarlhe use
of histograms brings in the filteringtect required to achieve robustness
to noise. Having defined an unique and robust 3D local RF (see S
4.1.3), it is possible to enhance the discriminative powéhe descrip-
tor by introducing geometric information concerning thedbon of the
points within the support, thereby mimicking a signaturdisTis done
by first computing a set of local histograms over the 3D volsichefined
by a 3D grid superimposed on the support and then groupirgtheg
all local histograms to form the actual descriptor. Heneg,descriptor
lays at the intersection between Histograms and Signatwesdub it
Signature of Histograms of OrienTations (SHOT).

For each of the local histograms, we accumulate point coutds
bins according to a function of the angtg, between the normal at each
point within the corresponding part of the grid,, and the normal at the
feature pointn,. This function isco9);, the reason being twofold: it can
be computed fast, sinaw¥; = n, - n,; an equally spaced binning on
co9; is equivalent to a spatially varying binning 6nwhereby a coarser
binning is created for directions close to the referencenabdirection
and a finer one for orthogonal directions. In this way, smifedences
in orthogonal directions to the normal, i.e. presumablyrtigest infor-
mative ones, cause a point to be accumulatedftierdint bins leading to
different histograms. Moreover, in presence of quasi-plamggoms (i.e.
not very descriptive ones) this choice limits histograffiedences due to
noise by concentrating counts in a fewer number of bins.

As for the structure of the signature, we use an isotropiespal
grid that encompasses partitions along the radial, azimuothelevation
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4.1 SHOT descriptor

axes, as sketched in Fig._#%.4. Since each volume of the gdddes
a very descriptive entity represented by the local histograe can use
a coarse partitioning of the spatial grid and hence a smatlircality
of the descriptor. In particular, our experimentationsicate that 32
is a proper number of spatial bins, resulting from 8 azimutsns,
2 elevation divisions and 2 radial divisions (though, faarily, only 4
azimuth divisions are shown in Fig._4.4). Combined with et that the
tuning we present in seC. 4.1.5 indicates a proper numbenseffor the
internal histograms to be around 10, we obtain a total datseriength
of 320, a good improvement over the 1980 proposed for 3DSCdR7
the 595 for ISS|[111], that allows for faster indexing and chatg.

Since our descriptor is based upon local histograms, it pomant
to avoid boundary féects, as pointed out e.g. in [41] [54]. Furthermore,
due to the spatial subdivision of the support, boundéigogs might arise
also in presence of perturbations of the local RF. Thereffreeach
point being accumulated into a specific local histogram wmperform
quadrilinear interpolation with its neighbors, i.e. thegidoring bins in
the local histogram and the bins having the same index inode his-
tograms corresponding to the neighboring volumes of the. dn par-
ticular, each count is multiplied by a weight ofH for each dimension.
As for the local histogrand is the distance of the current entry from the
central value of the bin. As for elevation and azimuths the angular
distance of the entry from the central value of the volumenglthe ra-
dial dimensiond is the Euclidean distance of the entry from the central
value of the volume. Along each dimensians measured in units of the
histogram or grid spacing, i.e. it is normalized by the dis@between
two neighbor bins or volumes.

To achieve robustness to variations of the point densitynarenal-
ize the whole descriptor to sum up to 1. This is preferabléécsolution
proposed in/[27], i.e. normalizing each bin with the inves§éhe point
density and bin volume. In fact, while [27] implicitly assemsthat the
sampling density may vary independently in every bin, angs ttis-
cards as not informative theftkrences in point density among bins, we
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Figure 4.5: Exp. 1. Precision-Recall curves on Stanfordskttand a
scene at the 3 noise levels.
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Figure 4.6: Exp. 2. Precision-Recall curves on subsampé¢aiset and
a detail from one scene.

assume global (or at least regional) variations of the dgasid keep the
local differences as a source of discriminative information.
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4.1 SHOT descriptor

Figure 4.7: Exp. 3: Results on Spacetime Stereo datasetanmuodels
(middle) and scenes (right).
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Figure 4.8: Charts: nisorrespondence vs. support radius (in the smaller
chart the time axis is zoomed in for better comparison betvwleand
SHOQOT). Table: measured execution times (in Experiment #l)taned
parameter values. Radius values are reported in mesh tiesolunits.

As for Sl, the support radius is the product of the bin sizelgyriumber

of bins in each side of the spin image.

4.1.5 Experimental results
Surface Matching

In this section we provide experimental validation of ourgwsals, i.e.
the unique local RF together with the SHOT descriptor. Tg hr-
pose, we carry out a quantitative comparison against thate-ef-the-
art approaches in a typical surface matching scenario,emw@respon-
dences have to be established between a set of featuresteatfeom
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a scene and those extracted from a number of models. Thedeonsi
ered approaches ar8pin ImagegSl), as representative of Histogram-
based methods due to its vast popularity in the addressedrsegEx-
ponential Mapping(EM) and Point SignaturegPS) as representatives
of Signature-based methods, the former since it is a vergnteap-
proach, the latter given its importance in literature. Aktinods were
implemented in @+ and are made publicly available together with the
datasets gww.vision.deis.unibo.it/SHOT).

For a fair comparison, we use the same feature detectorlfaigat
rithms: in particular, we randomly extract a set of featuoenfs from
each model, then we extract their corresponding points tferscene,
so that performance of the descriptors is néeeted by errors of the de-
tector. Analogously, for what concerns the matching stageadopt the
same matching measure for all algorithms, as proposed in [41], the
Euclidean distance. We could also have evaluated the sgtiergfect
of description and matching for those methods that expligiclude a
proposal for the latter, e.g. the tolerance band for PS. im, twe did
experiments on the whole dataset with the original EM and R&Im
ing schemes, obtaining slightly worse performance for bathis, and
the attempt to be as fair as possible, leaned us to use thersatoking
measure for all algorithms. However, we did not discard theracteris-
tics of the descriptors that required a specific treatmenhdumatching:
in particular, since EM is a sparse descriptor, we compwéticlidean
distance only on the overlapping subset of EM descriptarspas pro-
posed by the authors; as for PS, we use the matching scheipesp
by the authors to disambiguate its not-unique local RF [Fr each
scene and model, we match each scene feature against allfewtdees
and we compute the ratio between the nearest neighbor arstoad
best (as inl[54]): if the ratio is below a threshold a corresfence is
established between the scene feature and its closest featigle.

According to the methodology for evaluation of 2D descniptec-
ommended in [61], we provide results in termsRécall versusPre-
cisioncurves. This choice is preferable compared to ROC curves (i.
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True Positive RatgersusFalse Positive ratewhen comparing descrip-
tors due to the ambiguity in calculating thalse Positive Ratf13]. We
present three ffierent experiments. Experiment 1 deals with 6 models
("Armadillo”, "Asian Dragon”, "Thai Statue”, "Bunny”, "H@py Bud-
dha”, "Dragon”) taken from th&tanford 3D Scanning RepositoryWe
build up 45 scenes by randomly rotating and translatirfent sub-
sets of the model set so to create cl&tehen, similarly to [98], we
add Gaussian random noise with increasing standard davjatamely
o1, 0 andos at respectively 10%, 20% and 30% of the average mesh
resolution (computed on all models). In Experiment 2 we wersthe
same models and scenes as in Experiment 1, add natseo(;) and
resample the 3D meshes down #B1of their original point density by
using MeshLa Quadratic Mesh Collapse Decimation filter. For a fair
comparison in this experiment, our implementation of Seelthrough-
out all the evaluation- normalizes each descriptor to the wector to
make it more robust to density variations|[18]. Finally, ixp€riment 3
the dataset consists of scenes and models acquired in ohy lalgans

of a 3D sensing technique known 8pacetime Steref21], [108]. In
particular, we compare 8 object models against 15 sceneaatbazed

by clutter and occlusions, each scene containing two modets [4.7
shows two scenes together with the models appearing in theeach

of the three experiments, 1000 feature points were extidoben each
model. As for the scenes, in Exp. 1 and 2 we extraetL000 features
per scener( being the number of models in the scene) whereas in Exp.
3 we extract 3000 features per scene.

Throughout all the three experiments we used the same vldues
the parameters of the considered methods. In particulatuned the
two parameters of each descriptsupport radiusandlength of the de-
scriptor) based on a tuning scene corrupted with noise leyelnd built
rotating and translating three Stanford models ("Bunnyiappy Bud-

“http://graphics.stanford.edu/data/3Dscanrep
33 sets of 15 scenes each, containing respectively 3, 4 andiBlmo
4http://meshlab.sourceforge.net/
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dha”, "Dragon”). The values resulting from the tuning presare re-
ported in the last two columns of the Table in Hig.]4.8. It igthianoting
that our tuning yielded comparable values of the suppoitisaamong
the various methods, and that, for SI and PS, the resultingnpeter
values are coherent, as far as the order of magnitude is weevith
those originally proposed by their authors (no indicatibowi EM pa-
rameters is given in [66]). Yet, we used the finely tuned wainstead
of those originally proposed by the authors since the foyredd higher
performance in these experiments.

Results for the three Experiments are reported in Figuiéddgeand
4.4, respectively. Experiment 1 focuses on robustnessisen@iven
the reported results, it is clear that SHOT performs beltan the other
methods at all dferent noise levels on the Stanford dataset. We can ob-
serve that, comparing the two Signature methods, PS eglaliigher
robustness than EM. We address this mainly to the higheistobas of
its local RF, as shown in Fig._4.3. This, together with thedyperfor-
mance of SHOT, highlights the importance of deploying a sblhocal
RF. As for SlI, it appears to be highly susceptible to noise pérfor-
mance notably deteriorating as the noise level increaséss i$ due
to the fact that this descriptor is highly sensitive to simvalliations in
the normal estimation (i.e. SI Reference Axis), that herewrmapute as
proposed in[41]. Thisis also consistent with the resultereed in [27].

As for Experiment 2, it is clear that the point density vaaatis the
most challenging nuisance among those accounted for inxperienen-
tal validation, causing a severe performance loss of alhodd, even
those specifically addressing it as EM. SHOT, PS and Sl olutamn-
parable performance, nevertheless for high values of giegithat are
typical working points for real applications, SHOT obtathe highest
levels of Recall.

Experiment 3 shows that under real working conditions SHOTF o
performs the other methods. It is worth noting that this expent is
especially focused on the descriptiveness of evaluateapbpes, since
the smoother shapes of the objects surfaces compared t® tiidte
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4.1 SHOT descriptor

Stanford models make the former harder to discriminate celgresults
demonstrate the higher descriptiveness embedded in SHDTegpect
to the other proposals.

In addition, we have compared the methods in terms of their-co
putational éiciency and memory requirements. Since, as discussed in
Sec.[4.1P, descriptors based on multiple RFs, like PS, oadeploy
efficient indexing to speed-up the matching stage, we use adaitch
strategy for all methods. Results are reported in[Eig. 4k tWo charts
in the figure, showing the number of milliseconds per comesigence
needed by the various methods usinffetent support sizes, demon-
strate the notable flerences in computationdfeiency between the al-
gorithms. In particular, SI and SHOT run one order of magtettaster
than EM and almost two orders of magnitude faster than P33y 8lit
turning out consistently slightly faster than SHOT at eagpp®rt size.
As for EM, dficiency is mainly &ected by the re-parametrization of the
support needed to describe each feature point and to the aegnory
footprint (see next). With regards to PS, as discussed ineL2) the
use of multiple local RFs dramatically slows down the matgtstage.
These results are confirmed by the Table in the figure (firsiron),
which reports the measured times required to match the dcetiee
models in Experiment 1 (i.e. 3000 scene features and 300@ s &eh-
tures) using the tuned parameter values. Here, the largeosineeded
by Sl allows SHOT to run slightly faster. As for memory recurents,
the reported descriptor length (third column) highliglms much higher
memory footprint required by EM compared to other methods.

3D registration

As a practical application in a challenging and active redearea, we
demonstrate the use of SHOT correspondences to perforgndutb-
matic 3D Reconstruction from Spacetime Stereo data. We ang8g
views covering a 360field of view of one of the smooth objects used in
Experiment 3 and 29 views of an object not use in the previapsre
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(@) (b) (© (d)

Figure 4.9: 3D Reconstruction from Spacetime Stereo viéajsinitial
set of views (b) coarse registration (c) global registratrontal view (d)
global registration rear view.

ments. We follow a 2 steps procedure:

1. we obtain a coarse registration by estimating the 3D toams-
tions between every pair of views and retaining only thosgima
mizing the global area of overlap;

2. we use the coarse registration as initial guess for a filuddad)
registration carried out using a standard external t8oh(alyze

In the first step, correspondences among views are estatlisp
computing and matching SHOT descriptors on 1000 randonic el
feature points. 3D transformations are estimated by applg well
known Absolute Orientation aIgorithnﬂSB] on such corragpences
and filtering outliers by RANSAC. Maximization of the areaaserlap
is achieved through the Maximum Spanning Tree approachidesdn
[@]. As shown in Figl-419 and Fig. 410, without any assuptiabout
the initial poses, SHOT correspondences allows for atigi@i coarse
alignment which is an accurate enough initial guess to ssfobly re-
construct the 3D shape of the object without any manualveteron.
To the best of our knowledge, fully automatic 3D reconsiarctrom
multiple Spacetime Stereo views has not been demonstrated y
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@ (b) (c) (d)

Figure 4.10: 3D Reconstruction from Spacetime Stereo viéajsnitial
set of views (b) coarse registration (c) global registrafrontal view (d)
global registration rear view.

4.2 Color SHOT

In this section we show that the design of the SHOT descrigdaarnat-
urally and successfully be generalized to incorporateitexiSec.4.2]1)
and that such an extension allows for improved performaocgsiblicly
available datasets (Séc. 4]2.2). This results in a paatiluinteresting
approach for carrying out surface matching tasks basedeoautput of
modern 3D sensors capable of delivering both shape and¢extu
The majority of the proposals introduced in $ec 4.1.1 detedtde-
scribe a feature point by using shape data only. Recentif][has
proposed the MeshDg@BoG approach, which is the only 3D descriptor
where texture information are taken into account. We withpare the
performance of the generalized SHOT descriptor againsntiethod.

4.2.1 A combined texture-shape 3D descriptor

To generalize the design of the SHOT descriptor so as todecatulti-
ple cues, we denote here&st; ;(P) the generic signature of histograms
computed over the spherical support around feature poiiihis signa-
ture of histograms relies upon twofiirent entitiesG, a vector-valued
point-wise property of a vertex, anfd the metric used to compare two
of such point-wise properties. To compute a histogram oktgeature,

f is applied over all pairsp, Gp), with Q representing a generic vertex
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g
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Figure 4.11: The proposed descriptor merges together atsign of
histograms of normal orientations and of texture-basedsoreanents.

belonging to the spherical support around feature @ainh the original
SHOT formulationG is the surface normal estimatioN, while f(-) is
the dot product, denoted a¢):

f (Gp,Gg) = P(Np,Ng) = Np - Ng (4.6)

In the proposed generalizatian,signatures of histograms relative to
different(property, metricyairs are computed on the spherical support
and chained together in order to build the descrii@@P) for feature
point P:

D(P) = | JSHe (P (4.7)
i=1

Although the formulation in[{4]7) is general, we will herafter
refer to the specific case oh = 2, so as to combine a signature of
histograms of shape-related measurements together wigmatsre of
texture-related measurements (fFig. 4.11). As for the forme use the
formulation of the original SHOT descriptore. vector Hp is repre-
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sented by the surface normal estimatiof®jrNp, while the operatof ()

is the dot productp(), as in [4.6). As for the latter, since we want here
to embed texture information into the descriptor, we havedbne a
proper vector representing a point-wise property of théutexat each
vertex and a suitable metric to compare two such textusge@lproper-
ties. The overall descriptor, based on two signatures eddrams, will

be dubbed hereinafter as Color-SHOT (CSHOT).

The most intuitive choice for a texture-basédvector is the RGB
triplet of intensities associated to each vertex, refetoeldere afR. To
properly compare RGB triplets, one option is to deploy theesanetric
as in SHOT, i.e. to use the dot prodyaiRe, Ry). Alternatively, we
have tested another possible metric based orgheorm between two
triplets. In particular, we have implemented the operatsed on the
L; norm, referred to a¥-), which consists in the sum of the absolute
differences between the triplets:

3

| (Re, Ro) = ) [Re(i) = Ra(i)] (4.8)

i=1

Moreover, we have investigated the possibility of usirf§edent color
spaces rather than RGB. We have chosenGHelab space given its
well-known property of being more perceptually uniformnithe RGB
space[25]. Hence, as afidirent solution, vecto6 is represented by
color triplets computed in this space, which will be refdrite asC.
Comparison betweea triplets can be done using the metrics used<or
triplets, i.e. the dot produgd(-) or theL; norml(-), leading to signatures
of histograms relying, respectively, @{Cp, Cq) andl (Cp, Cg).

In addition, we have investigated on the use of more specit m
rics defined for th€€lIELabcolor space. In particular, we have deployed
two metrics, known a£IE94 and CIE200Q that were defined by the
CIE Commission respectively in 1994 and 2000: for their defwmisi
the reader is referred to [25]. These two metrics lead to tessions
of operatorf(-) which will be referred to, respectively, as4(-) and
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coo(*) . Hence, two additional signatures of histograms can beelefi
based on these two measures, denoted respectively, @, Co) and
Coo (Cp, Co).

The CSHOT descriptor inherits SHOT parameters, i.e. theisaaf
the support and the number of bins in each histogram). Howgixen
the diferent nature of the two signatures of histograms embedded in
CSHOT, it is useful to allow for a dierent number of bins in the two
histogram types. Thus, the CSHOT descriptor will have aritehal
parameter with respect to SHOT, indicating the number of bireach
texture histogram and referred to as Color Steg 6ee Fig[ 4.11).

4.2.2 Experimental Results

The 6 diferent versions defined in Sectibn 4]2.1 for the novel CSHOT
descriptor are now evaluated in a typical 3D object recagmgcenario
where one or more objects have to be found in a scene witheclarid
occlusions. The experimental evaluation is aimed at detenghwhich
version performs best in terms of both accuracy diidiency. Further-
more, the best versions will be compared against the oli@H®OT de-
scriptor as well as the MeshHoG descriptor, so as to evalhateenefits
brought in by the proposed approach.

In all experiments, features points are first extracted facsoene and
an object, then they are described and matched based on ¢hdezn
distance between descriptors. As for the feature extrastage, we rely
on the same approach as in Sec. 4.16, features are first randomly
extracted from the object, then the corresponding feammegxtracted
from the scene by means of available ground-truth inforomatingether
with a set of additional features randomly extracted fromottek. All
algorithms have been tested by keeping constant their gdessn In
particular, all parameters that CSHOT shares with SHOT baen set
the values introduced in Sec. 4]1.4. Such values have beeruakd
here for the tests concerning the SHOT descriptor. As foatitktional
parameter used by CSHOB(), it has been tuned for each CSHOT

126



4.2 Color SHOT

Figure 4.12: Comparison in terms of accuracy (big chart)etficiency
(small chart) between CSHOTSs withfiirent measures in tHRGB(left

chart) andCIELab (right chart) color spaces dnataset 1 SHOT and
two variants of MeshHoG are also reported.

version on a subset, made out of 3 scenes, dbffacetime Steratataset
introduced in Se¢. 4.1.5. This subset has been used to smthalradius
and number of bins of the orientation histograms of MeshHuei@ the
other parameters of the method kept as originally propas¢tDio].

Comparison between color spaces and metrics

A first experimental evaluation has been carried out to ifletite best
CSHOT combinations for, respectively, tR&Band theCIELab color
spaces. Results have been computed on a dataset compobsedlaf t
scenes not used for tuning of ti¥pacetime Steredataset. This sub-
set, hereinafter referred to Bstaset 1 includes scenes with clutter and
occlusions of the objects to be recognized.

Figure[4.12 shows the comparison between the evaluatedunesas
respectively in the RGB (left chart) and CIELab (right chadlor spaces.
As for the former, the twdproperty, metricypairs being compared are:
(R, p) and R 1). As for the latter, four pairs are compared, i.eC; [§),
(C. 1), (C, cqs), (C, coo). Each comparison is carried out in terms of accu-
racy (big chart) andféciency (small chart). As for the former, results
are provided in terms dPrecision vs. Recakkurves computed on the
output of the descriptor matching process carried out betvike fea-

127



Chapter 4. 3D Surface Matching and Object Categorization

Figure 4.13: Left: Two models and four scenesDtaset 2 Right:
Comparison in terms of accuracy (big chart) afitceency (small chart)
between the 2 best versions of CSHOT, SHOT and two variafesh-
HoG onDataset 2

tures extracted from the objects and those extracted frarstienes.
Each object-scene pair of the dataset is then averagedemgithe fi-
nal charts shown in the figure. As foffieiency, results are provided as
the average amount of timm@§ needed to compute one correspondence
between the scene and the object.

As for theRGBspace, R, |) proves to be more accurate tha® ),
and only slightly lessféicient. As for theCIELabspace, C, 1), (C, Cos)
and C, cyo) notably outperform@, p), with (C, 1) being slightly more ac-
curate and moreficient than C, co4), and with C, coo) being by far the
least dficient one. Hence, the two CSHOT versions that turn out more
favorable in terms of the accuracyieiency trade-ff are, respectively,
(R I) for theRGBspace, andQ, |) for the CIELabspace.

Comparison with SHOT and MeshHoG

We will now comment on the comparison between the two best@5H
versions and the SHOT and MeshHoG descriptors, so as tosabses
benefits brought in by the combined deployment of texture srape
in the proposed extension as well as to compare its overdbipeance
with respect to state-of-the-art methods. We tested twsimes of Mesh-
HoG: one using only shape, as done by SHOT, and one deplolyapes

128



4.2 Color SHOT

and texture. For shape-only MeshHoG, we used the mean auevas
feature. As reported in the experimental results sectiojl@®] (Sec
6.1), the use of both shape and texture can be achieved @ppsing
two MeshHoG descriptors, computed respectively using asife the
mean curvature and the color. Conversely to what report¢toé], on
our dataset the shape-and-texture version of MeshHoGgesalightly
better performance than the texture-only version: thus,tite one in-
cluded in our comparison.

The two charts in Fig._4.12 include the results yieldedOataset
1 by SHOT and the two considered variants of MeshHoG . In aalaljti
Fig.[4.13 reports a further comparison carried out betwkeisame pro-
posals on another dataset. This dataset, referred to hddataset 2
comprises 8 models and 16 scenes(2 models and 4 scenesdsitsst
are shown on the left side of the Figur®ataset 2differs fromDataset
1 because the former includes objects having very similapahdut
different textures (i.e. fferent types of cans). Hence, it helps highlight-
ing the importance of relying also on texture for the goal bf @ject
recognition in cluttered scenes. Similarly to the previexigeriment, re-
sults are given both in terms of accuracy (big chart) dfidiency (small
chart).

Several observations can be made on these charts. Firktarf bBbth
dataset, the two best versions of CSHOT, iR, and C,I) , notably
outperform SHOT and the shape-only version of MeshHoG ims$enf
accuracy, with the gap in performance being more eviderDataset
2, where the algorithms that rely only on shape fail since ttieynot
hold enough discriminative power to cope with the traitshef tlataset.
The results on both datasets confirm the benefits of inclutirtyure
information in the descriptor. Secondly, on both datade¢sGSHOT
descriptor based orC(l) proves to be morefective than that relying
on (R 1) as well as than the shape and texture version of MeshHoG, thu
allowing for state-of-the-art performance on the con®detatasets. Fi-
nally, as for déiciency, the CSHOT descriptor based @l is approx-
imately twice as slow as SHOT and one order of magnituderféisés
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MeshHoG.

4.3 Object Category Recognition with 3D ISM

In the last decade the mairffert on recognition of object categories
has been devoted to categorizing classes of objects frorgesni 3],
one of the most prominent approaches being the applicatiomage
features of the Bag-of-Words paradigm, previously usedexitrcatego-
rization and document analysis. In particular, this appnodypically
referred to aBag-of-FeaturegBoF) or Bag-of-Visual-Word¢BoVW),
represents image categories as histograms ("bags”) afreedescriptors
[19,182,/84]. To account forfciency, histograms are not built on de-
scriptors themselves but on an alphabet of descriptorg&lp termed
"codebook”, obtained via clustering or vector quantizafié3)].

BoF methods turned out to be particularfjeetive even though, un-
like some more recent proposals, they discard geometetationships
between object parts. Among those leveraging geometrictsire, one
of the most successful proposals is Implicit Shape ModeWiji$b0],
that encodes spatial relationships by means of a probiadbieneral-
ized Hough Transform in a 3-dimensional space represestialg and
translation. Moreover, the use of geometrically well-lotad informa-
tion allows these methods to be deployed also as detectmeaific
object categories in presence of clutter, occlusion andiphellobject
instances. Typical object categories of interest have Ipeglestrians,
faces, humans, cars [50].

The increasing availability of large databases of 3D moHatsfos-
tered a growing interest towards computer vision and maclearning
techniques capable of processing 3D point clouds and meshes of
the most investigated tasks so far has been shape retrs@e[39| 94|
for surveys) which aims at finding the most similar 3D modelshe
database to a given query model inputted by the user. Anaotiedr
investigated topic concerns 3D object recognition [27, 4Qhly very
recently the first methods aimed at 3D object categorizdiene been

130



4.3 Object Category Recognition with 3D ISM

proposed in literature. They mainly extend the BoF paradigihe 3D
scenario by representing categories as histograms of @avdswbtained
from local shape descriptions of 3D features |52, 67, 97].

In this last part of our work on 3D data we investigate on how to
deploy Implicit Shape Modeling for the categorization ofghes. Al-
though in the reminder of this paper we will focus only on gatéza-
tion, it is worth noting that this approach holds the potantd solve
within the same framework the problem of simultaneous laatibn and
classification of objects in cluttered scenes, even in piesef multiple
instancesi.e. to be uses as a category detector able to initialize a tracker

4.3.1 3D Implicit Shape Model

The basic idea idea underlying Implicit Shape Models is tdqum
object category recognition and instances localizatisedaon a non-
parametric probability mass function of the position of tiiigect center.
These probability functions come from a probabilistic rptetation of
the voting space of a Generalized Hough Transform algoritMotes
are casted by local features that are matched against aamuklkarned,
together with votes, from a set of training examples. Whepliag to
3D data, we identify the general form of an algorithm tragén3D ISM
as follows (Fig[4.14 ):

P B 4 2\

Training PoV-invariant|
Features CLUSTERING Codebook ACTIVATED LOCAL RFs Shape Models
EE R > CODEWORDS >

%, > -

G & 4

Figure 4.14: Overview of the training stage of 3D ISM.

¢ |ocal features are detected and described from the 3Diadata.
e for each categorg;
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— all features belonging t@; are clustered to create the code-
book ofC;
— for each training featuré™ of categoryC;
* iji is matched against the codebook@faccording to
acodeword activation strategy

x each activated codeword adds to the ISMCpthe po-
sition of iji with respect to the object center. Each fea-
ture 1‘1.Ci needs to incorporate a repeatable local Refer-
ence Frame (RF), and votes are expressed with respect
to such local RF of .

Then, a generical 3D ISM recognition procedure may be decom-
posed in the following steps (Fig.4115):

¢ local features are extracted and described from the 3D nhgoiat

o for each featurd; and each categog,

— fjis matched against the codebookpficcording to @ode-
word activation strategy

— each activated codeword casts its set of votes for the Hough
Space ofC; in its ISM.

— votes are rotated and translated so as to be expressed in the
local RF of the input features before voting, thus obtaining
Point-of-View (PoV) independent vote$he magnitude of
the vote is set according tovate weighting strategy

e in case of categorization of 3D database entries, the ciatgohd-
ing the global maximum among all the Hough spaces is selested
output; in case of detection in a cluttered scene, local maof
each category above a threshold are selected as categtamydes
hypotheses for a further verification stage /anghose estimation.

This scheme exhibits two mainftirences with respect to the use of
ISM for detection of object categories in 2D images. Firsalbfsince
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Figure 4.15: Overview of 3D ISM for Categorization and Déit&t.

the sensor produces metric data, there is no need for svaléance: in
the 2D case, when casting votes for the object center, trecobgale
is treated as a third dimension in the voting space. With 3@ dee
can cast votes for object hypotheses directly in the coatdsispace,
which is again a 3D dimensional space. The secofféréince regards
the use of PoV-independent votes, that leads to a PoV-imdigpe de-
tector. In the original ISM proposal, objects of the samegaty under
different point of views are regarded as instances fééigint, unrelated
categories. Itis worth pointing out that the use of PoV-peleent votes
IS not just a nice extension that allows for more flexibilitytbe final
method, it is indeed mandatory when using 3D ISM to categer&D
database entries, for these cannot be assumed to be expnaetise the
same global RF.

As noted before most of the proposals in the field of 3D locaillfees
do notinclude a fully defined local RF. Once more this demaess the
importance that our SHOT descriptor defines a full 3D, unguoniis
local reference frame. We thus use SHOT features as the base o
3D ISM. This is also another test of the quality of the propbieatures,
which demonstrate good performance even in 3D object caagion,
an experiment that was not proposed in $ec, 4.1.5.
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Chapter 4. 3D Surface Matching and Object Categorization

In the previous overview of the method we have highlightedtiain
design decisions that need to be taken to define a 3D ISMhieecdde-
word activation strategy and the vote weighting strategyhé following
we address, by discussion and experiments, the possibteatit/es for
these design choices together with other major issuescketat code-
book size and composition. It is worth noting that, althowgh have
conducted experiments using 3D data only, all our reasasimglepen-
dent from data dimensionality. Therefore, we expect theepladions
drawn from our analysis to be beneficial also for the caseawidsrd 2D
ISMs.

4.3.2 Codebook
Codebook size

Codebooks are widely used for 2D and 3D object categorizgeag.
[85] [97] [52]). The reason behind their use iSigency, both in terms
of memory occupancy of the codebook and computational tonedde-
word activation. They are not expected to have any positiygact on
the generalization abilities of the algorithms. They areally built by
applying some standard clustering algorithms, kk@eans, on the fea-
tures extracted from the training data. Little attentiamybver, has been
paid to the loss in discriminative power of the codebookradize reduc-
tion. Furthermore, research in the field of Approximate etNeigh-
bor provides #icient methods to solve the codeword activation problem
even in high dimensional spaces and with large databasgsHtlly,
the cost of storing a set of descriptors for each trainingehotithe cur-
rently publicly available 3D datasets is nowadays defipitglordable
by off-the-shelf machines. Based on the above considerationsyes-
tigated on the actual importance of building a codebook teassfully
perform object category recognition in 3D data.

The chart in Fig[.4.16 shows the outcome of an experimeniechrr
out on the Aim@Shape Watertight dataset (see Sec.]4.3.5do# de-
tails about the dataset and the experimental methodologi/e.used
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Figure 4.16: Impact of codebook size on mean recognitienaat mean
recognition time

half dataset for training and half for testing, i.e. ten meder training
and ten for testing for each category. 200 mesh vertexesnaadomly
selected on each training model obtaining 2000 featuresaasrtg set
for each category. We then performkdneans on this set, varying
logarithmically from 10 to 2000. We used such codebooks tegmize
the test set. The best mean recognition rate is obtained2@@b code-
words, i.e. using the plain training data without any clustg Loss in
efficiency is minimal, for instance using 100 codewords the nizae
to categorize one test model is about 42 ms, whereas usinglaire
training set as codebook it slightly increases to about 52 kesmory
occupancy, of course, scales linearly with codebook sizk &or the
considered dataset, when using no clustering is less thgliB5There-
fore, based on the indication of this and other similar expents, in
the following we use as "codebook” the whole training datahaut
carrying out any clustering on them.

Sharing codewords among categories

In the original ISM proposal, the case of simultaneous rattamn of
multiple categories is solved by running a detector for eathgory, en-
dowed with its own codebook built from training data belarggto its
category. We refer to this configuration as ISM wséparated code-
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books codebooks of dierent categories are independently built and
used. In the context of categorization of DB entries, we havesti-
gated on another possible configuration, that we refer te heriISM
with global codebooka codebook is created from the training data be-
longing to all categories and then used by all ISMs. The Sihdpeel

of each category is still built during the training stage lonsidering
only the training data belonging to that category. Howedemnoting
with S M the Shape Model of catego@y, not only those originated by
the training data o€;, but all the codewords in the codebook, regard-
less of the categories of the features that generated tfeenparticipate

to S M, provided that they are similar - according to the codeward a
tivation strategy - to any of the training features@f Therefore, this
scheme endows the ISM paradigm with a broader capabilityeobg
alization: whilst the separated codebooks configuraticable to gen-
eralize at an intra-class level, by letting features ob=grn diferent
training instances of the same class collaborate to thectigteof an
instance during testing, the global codebook configurdémsiSM gen-
eralize also at amter-classlevel. It allows features observed in training
examples of dterent categories to reinforce the hypothesis that an in-
stance of categorg; is present. In other words, it builds a "universal”
codebook of all the likely features given the training dataj then asso-
ciates a spatial location for a specific category to all thtbaéare "sim-
ilar” to the training features of such category, regardt#dbe labels of
the training data that originated that codeword.

It is worth highlighting that memory requirements of botmfigura-
tions are equal: although a global codebook requréimes more space
than a separated codebook, wiEithe number of categories, only one
instance of it has to be stored in memory since it can be shareuhg
all theC 3D ISM required by our proposal. Query time scales logarith-
mically with the size of the codebook: since codewords inglubal
codebook aré€ times those of the separated codebooks, query time is
increased by lo€, a limited amount for typical number of categories in
publicly available 3D databases (i.e. less than 30).
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4.3.3 Codeword Activation Strategy

The codeword activation strategy proposed for the deployroeISM

in the case of 2D data [50] is thmutgf threshold codewords are acti-
vated, and, thus, cast their votes, if their distance froendist feature is
below a threshold. An alternative approach is represengetidk-NN
activation strategy: the closdstcodewords to the test feature are acti-
vated, regardless of their distance. We consider the Istitategy more
suitable to the task of categorization, the reason beindpidioFirst of
all, in those parts of the feature space characterised bgradudeword
density,k-NN activates generally less features than the f€\gtategy,
only thek most similar ones. By increasing the number of votes casted
by each test feature in the Hough space we may expect to shtrpe
peak corresponding to a true instance of the class, but algerterate
spurious peaks in the voting space, by randomly accumglationg
votes in the same bin. In such parts of the feature spacé;the strat-
egy acts as a filter that aims at reducing the probability diraginoise
into the Hough space, while it hopefully retains the abildyet the cor-
rect hypothesis emerge, by selecting only the most simddewords.
Secondly, in those parts of the feature space with a low tdeoskeven
absence of codeword&;NN still activatesk codewords, whereas the
cutdf strategy cast very few votes, if any. Indeed, being the tulels
generally chosen as small as to prevent generation of fakespthe cut-
off strategy generally tends not to activate any codeword indemsity
regions of the feature space. Obviously, the codewordgadet] by the
k-NN strategy can be really fierent from the test data. Still, given the
training set, they are the most similar at hand: if we haveetioegalize
from the training examples to attempt to classify the curieput, they
appear a reasonable choice. The same reasoning does nowtehd
using 3D ISM to detect instances in cluttered scenes: in autdse, a
high distance from any codeword is likely to indicate that tibst feature
comes from clutter and hence should not cast votes, suchvioeh&ing
correctly modeled by the cuficstrategy. Yet, when reasoning in absence

137
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of clutter, as it is the case of categorization of entries 8Dadatabase,
thek-NN strategy dfers an adaptive behavior with respect to the training
data that seems more suitable to the task.

4.3.4 Votes Weighting Strategy

In [50], the vote weight for each pair (test feature, vectothie shape
model) is given by the product of a match weight and an ocooge
weight

1
M| [Occf]]
with M being the set of codewords activated by the test featueand
Ocdi] being the set of vectors in the Shape Model associated widb-c
wordi.
The rationale behind this choice is tightly coupled with tiee of
the original ISM for detection in cluttered scenes. In preseof clut-

W = p(0n, XIC;, 1) * p(CIfy) = (4.9)

ter, there is an obvious trad€f®wetween increasing the number of true
detections and limiting the number of false detections. Gheice of
the vote weighting strategy operated iin![50] goes in thiedion. If
a feature activates more codewords than another featuyerahduch
codewords can be observed in more feasible positions vstrert to the
object center than other codewords, then this feature witelgarded as
less distinctive since it likely generates more spuriouss the Hough
Space. By keeping low the weight, i.e. the confidence, on diséipn of
the object center for the votes of such features, the ol tries to
choose a good working point to optimize the above mentiorastetdrt,
by keeping below the detection threshold such spurioud toeaima of
the voting space. We refer to this vote weighting stratedyoaslization
Weights (LW)

Again, in absence of clutter the scenario ifetient. Recall from
Sec.[4.311 that we propose to select as output the categelding the
global maximum among all the Hough spaces. Therefore, $ctse the
emphasis for each 3D ISM should be on supporting as much agypos
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4.3 Object Category Recognition with 3D ISM

its best hypothesis. This means that spurious local maxmnaat rele-
vant for categorization, as long as they do not hide the tholead maxi-

mum. Since we can reasonably expect that the geometricailyistent
bin will likely provide the strongest peak in the voting spathere is no
reason to try to weaken local maxima by acting on the vote kei@n

the other hand, using the original ISM vote weighting stgteay use-
lessly reduce the strength of the global maximum only bexéemstures
that casted vote for it have also casted votes for wrongilmesitand this
can lead to a wrong selection of the correct category in tts ompe-
tition among each global maximum of all categories. Hencéheé case
of categorization, we have investigated on the use of theesamstant
weight for all features and codewords. Hereinafter, we delhote this
vote weighting strategy &Sategorization Weights (C\W)

4.3.5 Experimental Results

We have tested our proposals on the Aim@Shape WatertightVjAS
dataset, previously used for the evaluation of 3D objecgm@ization
algorithms such as [97], and on the Princeton Shape Ben&h{R&B)
[83], already used for 3D categorization In[52]. Since n&ssin the
PSB dataset exhibit a high variance in metric dimensionsn evithin
the same class, to define a Hough Space suitable for all mesaemr-
malize models before using them for testing or training.c8mally, we
translate the model barycenter into the origin, computebigenvalue
Decomposition (EVD) of the scatter matrix of each model tal fits
principal axes, we scale the model down or up by a scale fgoten by
1/ Xmax — Xmin, WIth XmaxXmin the maximum and minimum coordinates
of the mesh along the first principal axis, and finally rot&te model to
align it with its principal axes. Itis important to note thdtie to the sign
ambiguity inherent to the EVD [9], we still need PoV-indedent votes
to achieve correct categorization. This normalizationved also for an
important simplification: we can define the Hough Space jumirzd the
barycenterj.e. the origin: any hypothesis for the object center laying
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far away from the barycenter will clearly be a spurious peathe vot-
ing space. This improves thé&ectiveness of our method, by discarding
peaks in the a priori wrong regions of the voting space, aedtthefi-
ciency, since it reduces the memory footprint needed t@ster Hough
Space. In particular, we used a Hough Space consisting o$qunered
bin, centered in the origin and with a side o20In all the experiments
with both datasets we randomly extract 200 feature poimts feach
training model and 1000 feature points from each testingehaehd we
describe them using SHOT with 16 spatial sectors (8 on thgetatrplane
and 2 concentric spheres) and 10 bins for the normal histegyrsve di-
minish the number of spatial divisions, and therefore timeesfisionality
of the descriptor with respect to that used in the previoymeamental
results because clustering operates better in lower dilmeal#ty spaces.
We do not perform any multi scale description, we use jushglsisup-
port radius, equal to.85 and 045 for the AWS and the PSB dataset,
respectively. As discussed in section 4.3.2, we use a plaielmook
composed by all training descriptors.

The Aim@Shape Watertight dataset contains 20 categoaeh,ia-
cluding 20 models. We tested our performance on this daséasetrding
to two methodologies. First, we divided the dataset in aningi and
a testing set by taking the first 10 models of each categoryaasrig
set and the rest as testing set. With this configuration weieduthe
influence of the previously discussed design issues. Theralso per-
formed Leave-One-Out cross validation as done_in [97], talble to
compare our results with such related work. Of course, tisetist is
more challenging, since significantly less training datavailable to
learn category shapes.

Results for the first series of experiments are reported gn£L8.
We compared the performance of all the combinations of tbpgsed
design decisions, i.e. global codebook (GC) vs. separatdébmoks
(SC), LW vs. CW andk-NN vs. cutdt with different values. The best
recognition rate for this dataset is 79% and is obtainedgusiNN as
Codeword Activation Strategy and a global codebook. In sugoifigu-
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Figure 4.17: Confusion Matrix for Aim@ Shape Watertightyl+ Code-
word Activation Strategy and CW Votes Weighting Strategiie Tows
represent the test categories of the input model, the cduheoutput
of the 3D ISM.

ration LW is the same as CW, since each codeword has zero aotee
Fig.[4.17 reports the confusion matrix for such case.

In the case of the Leave-One-Out cross validation, [97] ntspa
mean recognition rate of &5%. Using 2-NN as Codeword Activa-
tion Strategy, a global codebook and CW as Votes Weightinai&yy,
we have obtained00%.

The PSB dataset comes with a hierarchical categorizatidragme-
defined division in training and testing sets. We use suclgoaiza-
tion and such division. To compare our results against thofe?] we
use the categorization level named Coarse 2, although negefjuite
abstract meta-categories, such as "Household”, whicluded electric
guitars, guns as well as stairs, or ”-1”, that stands for ééler models
in the dataset”. Clearly this dataset is more challengiag tASW, the
intra-class and the inter-class variability being defigitegher.
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Figure 4.18: Mean recognition rate as a function of varyiotpft and
k-NN values on Aim@ Shape Watertight.

Results are reported in Fig._4]119. We compared the same eombi

nations as in the previous experiment. The best recognrata for

this dataset is 5% and is obtained using 2-NN as Codeword Acti-
vation Strategy, a global codebook and the CW Votes Weiglttnat-
egy. [52] reports a mean recognition rate of 55%. It is worbhing
that, in addition to the previously mentionedfiulties, the PSB dataset
presents also a highly variable point density among the tsodss it

has been noted in the experimental comparison on the SHQTipkes
(Sec[4.1b), point density variation is not well tolerabgdcurrent 3D
descriptors. This was explicitly accounted for in![52], whall PSB
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Figure 4.19: Mean recognition rate as a function of varyiatpit and
k-NN values on the PSB coarse 2 dataset.

meshes were resampled to a constant number of vertexestrahyifdis-
tributed in the meshes. We have not implemented such resaymyt,
that could likely improve our performance.

4.3.6 Discussion

The most evident outcome of our investigation is definitbly fact that
the Codeword Activation Strategy and codebook composiiiay a sig-
nificant role on the performance of 3D ISM for categorizatitm both
dataset&-NN with global codebook consistently outperforms the éuto

143



Chapter 4. 3D Surface Matching and Object Categorization

threshold with both kinds of codebook composition, regzssglof the
choice ofk. This confirms two intuitions:

¢ that the intrinsic adaptation to codewords density in thedue
space provided big-NN is more suitable for database entries cat-
egorization, i.e. in absence of clutter, since it enhangés ¢en-
eralization ability;

¢ that the global codebook, when compatible with the appboat
constraints on memory occupancy and computation time,vendo
ISM with higher, inter-class generalization power.

Experiments also reveal a tight coupling between the udeMif
and the global codebook-NN with separated codebooks exhibits un-
satisfactory performance, even with respect to thefEstoategy. With
the global codebook thenearest neighbor codewords for a test feature
are the same for each tested category, i.e. they represeovénallk
most similar features throughout those belonging to akgaties seen
in the training stage, what thenft#irs for the diferent categories is how
these codewords vote in thefldrent ISMs. In particular, it is worth
pointing out that, dferently from the case of separated codebooks, it
happens that some of the codewords have no associatedvtited §M
of a specific category. This happens when a codeword is nalasita
any training data of that category. Therefore, many ofkleetivated
codewords will likely vote only for a subset of the categsriso that
votes accumulation in the Hough Space has more chancesthe letie
category emerge, being required to filter out a limited anhof@imrong
votes. In other words, this configuration balances the impacode-
book (i.e. of features similarity) and shape model (i.e. edbmetrical
structure) and results in good recognition rates. With sepd code-
books, instead, thk nearest neighbors arefidirent in diferent code-
books, so that in several of them the activated codewordsbaaxery
dissimilar to the test feature. Moreover, since there areotewords
without votes in this configuration, all the activated codeds will cast
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votes in their shape models. This configuration, therefimds to di-
minish the importance of feature similarity and relies astmmmpletely
on shape models being able to select the correct categasyintneases
the probability of generating wrong, spurious peaks in thing space.

The vote weighting strategy does not play a role as impogarnhe
other two design decisions. Nevertheless, as far ak-thid codeword
activation strategy is concerned, the Categorizationngotibtains con-
sistently slightly better performance in both datasetsvaitial both kind
of codebooks. This provides experimental evidence to thsaming of
Sec[4.34.

As for the experiments on the ciifohreshold strategy, whilst on the
PSB dataset the global codebook is still the favorable aptad there is
little difference between the votes weighting strategies, in the ¢ése o
ASW dataset the decisive factor for obtaining higher penfomce seems
to be the LW strategy whereas, unlike in thké&N case, the codebook
options seem to have quite a minor impact. We ascribe ther lattthe
cutdf strategy intrisecally balancing feature similarity anagetrical
structure, for dissimilar codewords, given the dtitbreshold, cannot
cast votes at recognition time also when the separated oodedused.
On the other hand, it is quite morefiicult to explain the higher per-
formance of LW on this dataset. The higher performance of Béhss
to suggest that in the ASW dataset wrong categories are Hegpo
the voting space by less distinctive codewords, whose veighs are
indeed diminished by using LW.

The Confusion Matrix in Fig._4.17 evidences how, beside gers
rors that must be ascribed to thefiulty of the task, several errors
are somehow reasonable for an algorithm that tries to caegobjects
based only on 3D shape only. For instance, the category [Dsto
for which our proposal fails to recognize the majority ofttesdels, is
confused with "Hand”, "Armadillo” and "Fourleg”, i.e. witlbategories
that present sort of "limbs” in configurations similar to #eoassumed
by the models in the "Octopus” category. The 40% of "Fourlégst
models are wrongly categorized as "Armadillo”, which, agan some
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training models appears in a Fourleg-like pose. All the wipassigned
test models of "Bearing” are labeled as "Table” or "Plier’hah have
parts (the legs, the handles) that are shaped as bearinpgdé that
this dataset can be successfully categorized by using tralyeswhen
enough training data can be deployed, as our 100% resuleibehve-
One-Out test demonstrates, the mostly reasonable errding iGonfu-
sion Matrix show that our proposal is able to learn a plaesidlthough
less specific, model for the category shape in presence trasing
data.
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Conclusions

This dissertation has presented the research activityecoimgy adap-
tive visual tracking carried out during the Ph.D. course. particu-
lar, three main contributions related to adaptive trackiage been pre-
sented: adaptive transition models, adaptive appearandelmand an
adaptive Bayesian loop for tracking based on change detenticase
of static cameras. Moreover, our work on category detecti@D data
has been presented.

As far as adaptive transition models are concerned, a nevoagip
to build an adaptive recursive Bayesian estimation franmkuwas been
introduced, both from a theoretical point of view and in terof its
instantiation in the case of linear transition and measergmodels and
Gaussian noise. The proposed SVK filter has been shown tedoitm
a standard Kalman solution, requiring less parameters t@arliearily
(and possibly wrongly) tuned. In the linear and Gaussianade, an
interesting future investigation concerns the evaluatibthe proposed
approach against comparable solutions for adaptive Kafitanng (i.e.
Covariance Matching Techniques and [109]).

We also see this work, as all the contributions of this thess step
toward a general and parameters free tracking system. Enddiis
vision, another interesting future work will be directedthe insertion
of algorithms for automatic on-line selection of SVR partene Fi-
nally, the instantiation of our proposal also in the caseanf lnear and
non Gaussian tracking, in particular by modifying it in arde be ben-
eficially used also with particle filters, would be a greattcdution to
foster its applicability and adoption.
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As far as adaptive appearance models are concerned, ouibcent
tion has been twofold: we presented a critical review andsif@a-
tion of the most significant, recently proposed algorithiveg deal with
model adaptation; we casted the problem of model update aswa§tve
Bayesian Estimation problem. Preliminary experimentaiilts, where
our proposal was compared on challenging sequences agangtstate
of the art trackers, both adaptive and non adaptive, areueagimg. The
main extension for our proposal would be to define a propehatkto
compare dterent features, in order to use the particle filter framework
to perform also on-line probabilistic feature selection.orsbver, the
proposed importance density and observation likelihoodsjust one
possible instantiation of this novel framework. They cannbedified
and extended in several ways: to make them more robust ketrats-
alignments, by exploiting the full posterior PDF on the staistead of
the current estimation only; to make them more robust tousichs
by deploying more stable schemes than the sliding windowcange-
guently modifying the PDFs evaluation; to make them fullyngiant
with the patrticle filtering framework, by not fully relyingxahe current
frame during the proposal density sampling and, hencewadpfor a
proper observation likelihood to be defined.

An adaptive Bayesian loop for tracking based on change tietec
in case of static cameras has been proposed. On-line taifia bi-
nary Bayesian classifier based on background-frame paimstersi-
ties has been proposed to perform change detection robarsdlyefi-
ciently in presence of common sources of disturbance suckuas-
nation changes, camera gain and exposure variations. Tiliy alb
such algorithm to learn a model of admissible intensityatawns frame
by frame allows it to obtain high sensitivity without saaifig speci-
ficity. Importantly, this promising tradefbis yielded without penaliz-
ing eficiency. Based on this novel change detection algorithmijra pr
cipled framework to model the interaction between Bayesiaange
detection and tracking have been presented. By modelinghtesac-
tion as marginalization of the joint probability of the tkac state and
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the change mask, it is possible to obtain analytical expresdor the
PDFs of the tracker observation likelihood and the changgectiar prior.
Benefits of such interaction have been discussed with expets on
publicly available datasets targeting visual surveillaand automatic
analysis of sport events, where the proposed method oatpestl two
standard solutions for visual tracking. Several intergséixtensions are
possible: adapt the probabilistic reasoning on change roafhe case
of particle filters; extend the proposed Bayesian algoriihoolor-based
change detection; take into account in the loop the numlzthanposi-
tion of multiple targets and also their appearance, in tld b BraM-
BLe [38] but without requiring a foreground model; expermhevith
multiple sources of measurements, such as color histogamading
for them, too, a fully specified observation likelihood.

As for the categorization of 3D data, our proposal encongsatdse
deployment of Implicit Shape Models in combination with aselgpro-
posal for 3D description, dubbed SHOT. We have devised tnergé
structure of a 3D ISM and identified and discussed three delggisions
that could improve the performance of the method when useddie-
gorization. Experimental results on two well known and éadatasets
demonstrate that the combination of thBIN codeword activation strat-
egy and the use of a global codebook built from the training dé all
categories is morefkective for categorization than the standard ISM ap-
proach. \Votes weighting strategy, on the other hand, doese®n to
play such an important role for overall performance. Thepsed opti-
mal configuration compares favorably with the state of theée3D data
categorization, obtaining similar results in one case antgerforming
current proposals on the other dataset.

We have tested also the SHOT descriptor on its own. The sgailk
idate the intuition that the synergy between the design apeatable
local RF and the embedding of an hybrid signaftbistogram nature
into a descriptor allows for achieving at the same time svétine-art
robustness and descriptiveness. Remarkably, our propgebatrs such
notable performances with high computation@logency.
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Starting from SHOT, we have presented a general formuldton
multi-cue description of 3D data by signhatures of histoggaiVe have
then proposed a specific implementation of this formulat@8HOT,
that realizes a joint texture-shape 3D feature descrip@8HOT has
been shown to improve the accuracy of SHOT and to obtain-efettee-
art performance on data comprising both shape and textyrendans
of experimental evaluation, filerent combinations of metrics and color
spaces have been tested: thenorm in theCIELab color space turns
out to be the mostféective choices.

As for future work, the obvious next step is to deploy 3D ISM to
detect category instances in 3D data and initialize a tra@t2|SM may
be used also to continuously guide a tracker in a trackingdtgction
approach. As for the SHOT descriptor, we plan to investigatBow to
improve robustness to point density variations. Compasimgproposal
with other relevant methods and on larger datasets is anmtip@rtant
prosecution for this work.
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