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Chapter 1

Introduction

In this thesis we investigate decidable and computational properties of Cellular Au-
tomata. This investigation is intended to be a contribute to the study of the more

general theory of Complex Systems.

A central interest in the sciences of complex systems is to understand the laws
by which a global complex behavior can emerge for the collective interaction of
simple components. Computation Theory and Dynamical System Theory provide a
general framework for understanding and describing the behavior of such systems.
Since Cellular Automata offer a very large and diverse dynamical behavior as well
as a wide variety of possible computational models, they represent an ideal subject

to investigate the possible relations between dynamics and computation.

In this chapter we provide an overview of the current approaches on this subject

and next an overview of our results.



2 1.1. WOLFRAM'S CLASSIFICATION

1.1  Wolfram’s classification

Wolfram proposed two different approaches to investigate Cellular Automata. The

following two sentences are quoted from [60].

In the first approach, Cellular Automata are viewed as discrete dynami-
cal systems, or discrete idealizations of partial differential equations. The
set of possible (infinite) configurations of a cellular automaton forms a
Cantor set; cellular automaton evolution may be viewed as a continuous
mapping on this Cantor set. (Quantities such as entropies, dimensions

and Lyapunov exponents may then be considered for Cellular Automata.

In the second approach, Cellular Automata are instead considered as
information-processing systems, or parallel-processing computers of sim-
ple construction. Information represented by the initial configuration is
processed by the evolution of the cellular automaton. The results of this
information processing may then be characterized in terms of the types
of formal languages generated. (Note that the mechanisms for infor-
mation processing in natural system appear to be much closer to those
in Cellular Automata than in conventional serial-processing computers:
Cellular Automata may, therefore, provide efficient media for practical

simulations of many natural systems.)

Adopting this approach, in [61] Wolfram proposed an heuristic classification of
Cellular Automata based on the qualitative observed behavior of Cellular Automata
by performing computer simulations of the evolution starting from random config-
urations. According to his observations every cellular automaton falls in one of the

following classes:

1. Evolution leads to a homogeneous state (i.e. a fixed point for the shift map);
2. Evolution leads to a set of separated simple stable or periodic structures;

3. Evolution leads to a chaotic pattern;
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4. Evolution leads to complex localized structures, sometimes long-lived.

Wolfram suggested that the different behavior of automata in his classes seems to be
related to the presence of different types of attractors. For instance, the first class
seems to be related to the presence of fixed point attractors, the second class to the
presence of periodic attractors while the third class of chaotic attractors. Moreover
he conjectured that Cellular Automata in class 4 must be capable of universal com-
putation. There have been several attempts to formalize Wolfram’s classification
using concepts both from dynamical systems theory [30, 24] and from formal lan-
guage theory [37, 11|. In all these classifications it is not clear how the dynamical
properties are related to the computational properties of Cellular Automata except

for the connection with Wolfram’s empirical classes.

1.2 Computation at the edge of chaos

In [41] Langton tried to make a quantitaive analysis of Wolfram’s classification by
introducing the A\ parameter, a statistical value computable from the local rule of
Cellular Automata. Langton studied the average dynamics by performing Monte
Carlo samples of two-dimensional Cellular Automata in an attempt to characterize
such average behavior as a function of A. According to his observation, as the value
A increases starting from 0, the average behavior of the automaton passes through

the four different classes of behavior:

fixed point — periodic — complex — chaotic.

This four classes roughly correspond to Wolfram’s classes 1, 2, 4, 3 respectively. Lang-
ton observes that as A value increases there is a phase transition between highly
ordered and highly disordered dynamics. Class 4 (complex) behavior seems to be
related to a phase transition between such ordered and chaotic behavior and seems
to be associated to a critical A. value. Langton hypothesizes that Cellular Automata

computational capability are related to the average behavior which is in turn related
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to the A values. Thus, Cellular Automata capable of perform nontrivial computa-
tion, in particular universal computation, are most likely to be found near A\, values.
This is the orgin of the notion of computation at the edge of chaos.

Both Wolfram’s and Langton’s studies deal with a generic or average behavior
and they don’t provide any kind of qualitative measure of the computational capa-
bility of Cellular Automata. This question was partially adressed by Packard in [49]
which used genetic algorithm to evolve Cellular Automata to perform some specific

computational task. His experiment was meant to test two hypothesis:

1. Cellular Automata able to perform complex computations are most likely to

be found near A, values.

2. When Cellular Automata are evolved to perform a complex computation, the

evolution will tend to select rule near A, values.

The results of Packard investigation seem support Langton’s thesis. However, while
trying to replicate Packard’s results, Mitchell and colleagues found results which

contradict those of Packard [45].

1.3 Computation with dynamical systems

What lacks in two previous approaches is a meaningful notion of computation for
dynamical system. In particular, there’s no general agreement on the concept of uni-
versality for Cellular Automata. The universality of a cellular automaton is generally
proved by showing that such automaton can simulate a universal Turing Machine
(see, for example, [52]) or some other system which is know to be computationally
universal (see, for example, [14]).

While it is generally accepted to interpret the evolution of a dynamical system as
a process of computation, it is much more less clear how to interpret the input and
the output of the computation in the evolution of the system. A possible approach
is to see the process of computation in a dynamical system as a flow toward an

attractor. The attractor is considered the halting state of the computation. One
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such approach has been taken in [8] to develop a complexity theory for the set of
continuous time dynamical systems defined by differential equations. A more general
approach has been taken recently in [16]. The authors rephrase the halting problem
as the problem to decide if there exists at least one configuration from some #nitial
set whose orbit reaches some halting set. Initial and halting sets are intended to be
clopen (closed and open) sets of a Cantor space so that they can be described by
means of finite information. It is easy to see how these two approaches are related:
in a compact metric space the orbit of some configuration converges to an attractor
if and only if it enters into all clopen invariant sets whose omega limits coincide with
such attractor. The authors of [16] propose a definition of universality which applies
to general discrete symbolic (i.e. defined on a Cantor space) dynamical systems and
they provide necessary conditions for the universality. According to their model, a
universal symbolic dynamical system is not minimal, not equicontinuos and does not
satisty the shadowing property. Moreover they conjecture that a universal dynamical

system must have an infinite number of subsystems.

1.4 Overview of the dissertation

In Chapter 2, we review briefly computation theory, formal language theory and
symbolic dynamics theory which are necessary frameworks for our investigation.
Chapter 3 provides a detailed overview of Cellular Automata, mostly in the contest
of dynamical systems. In Chapter 4, we investigate the class of regular Cellular
Automata. We are mostly interested in decidable properties of regular Cellular
Automata. We show that regularity is an undecidable property, i.e. there is no
algorithm which can decide if some cellular automaton is regular. Despite this nega-
tive result, the dynamics of regular Cellular Automata is, in some sense, predictable.
A fact which supports this argument is that some of the topological properties which
are in general undecidable for general Cellular Automata are decidable if we restrict
only to the class of regular Cellular Automata. This suggests that regularity is a

property which cannot be related to computational universality. In Chapter 5, we
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introduce a measure of computational complezity for Cellular Automata. We follow
an approach very close to the one reviewed in Section 1.3. We consider the process
of computation in Cellular Automata as a a flow toward a subshift attractor. The
basins of attraction of subshift attractors are dense open sets. We characterize such
basins of attraction by using formal language theory and we show that deciding
whether some Turing machine halts on some input word is equivalent to decide if
some basin of attraction contains some open set. We can then have arbitrarly high
basin languages complexity. We introduce a classification of Cellular Automata re-
lated to such basin languages complexity. In our classification the computational
power of Cellular Automata is explicitly related to a topological property. We can
then explore the intersection classes between our classification and other topological
classification of Cellular Automata. From the emptiness of some intersection classes
we can easily derive some necessary dynamical conditions for the universality. In
particular we show that, according to our model, regular Cellular Automata cannot

be universal.



Chapter 2

Theoretical frameworks

Here we provide a very brief introduction on the subject of computation theory,
formal languages and symbolic dynamics. The main motivation of this chapter is
to introduce notations and basic results rather than open problems and research
directions on the subjects. For an introduction on Computation Theory and Formal

Language refer to [29]and refer to [42| for and introduction on Symbolic Dynamics.

2.1 Computation Theory and Formal Languages

The theory of computation is the branch of computer science whose central question
is addressing the limits of computing devices by understanding the class of problems
which can be solved on a computer. In order to perform a rigorous study, computer
scientists work with mathematical abstractions of computers called models of com-
putation. There are several formulations in use, but the most commonly examined
is the Turing Machine. A Turing machine is an idealization of a computer with
an infinite memory capacity. Even given arbitrarily vast computational resources,
it is possible to show clear limits to the ability of computers to solve even simple
problems. The goal of Computation Theory is to answer the question whether it is
possible to define a formal sense in which we can understand how hard it’s to solve
a particular problem on a computer. To explore these areas, computer scientists

usually address the ability of a computer to answer the question: given a formal
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language, and a word, is the word a member of that language?

Formally a language is a collection of finite length words on a finite alphabet. Let
A be a finite alphabet. For n > 0, A™ = {a;...a,, | a; € A,1 < i < n} is the set of
blocks on A of length n while A° = {¢} is the set containing just the empty word
e. The set of finite words on A is defined as A* = U,50A" and AT = A%\ {e}. A
language L on finite alphabet A is defined as a subset of A* i.e. £L C A*.

In order to begin to answer the central question of computability theory, it is nec-
essary to define in a formal way what a computer is. There are a number of useful
models of computation. In the following sections we formally define some models of

computation and the languages they accept.

2.1.1 Recursively Enumerable languages and Turing machines

A Turing machine is an hypothetical machine defined in 1935 by Alan Turing [55]. Tt
consists of an infinitely long tape with symbols (chosen from some finite set) written
at regular intervals. A pointer marks the current position and the machine is in
one of a finite set of internal states. At each step the machine reads the symbol at
the current position on the tape. For each combination of current state and symbol
read, a program specifies the new state and either a symbol to write to the tape or

a direction to move the pointer (left or right) or to halt.

Definition 2.1. A Turing machine M is a T-tuple (Q, A, b, 1,0, qo, F') where

Q 1s a finite set of states;

A is a finite set of the tape alphabet/symbols;

b is the blank symbol (the only symbol allowed to occur on the tape infinitely

often at any step during the computation);

I = A\ {b} is the set of input symbols;
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e 0 :QxA— QxAx{L, R} is a partial function called the transition function,
where L is left shift, R is right shift;

e ¢y € (Q is the initial state;
e ' C ( s the set of final or accepting states.

The halting problem is one of the most famous problems in computer science,
because it has deep implications on the theory of computability and in how we use
computers in everyday practice. The problem can be phrased as follows. Given a
description of a Turing machine and its initial input, determine whether the pro-
gram, when executed on this input, ever halts (completes). The alternative is that
it runs forever without halting. That is, the only general way to know for sure if a
given program will halt on a particular input in all cases is simply to run it and see if
it halts. If it does halt, then you know it halts. If it doesn’t halt, however, you may
never know if it will eventually halt. The historical importance of the halting prob-

lem lies in the fact that it was one of the first problems to be proved undecidable [55].

The language recognized by a Turing machine generally can be only enumerated,
then the class of languages accepted by a Turing machine is called recursively enu-

merable.

Definition 2.2. The language Ly accepted by M = (Q, A, b, 1,6, qo, F') is defined

as
Ly ={w e I*| M on input w halts in an accepting state q € F'}.

It is possible to construct languages which are not even recursively enumerable,
however. For instance the complement L = A* \ L of a strictly recursively enumer-
able language L C A* cannot be recursively enumerable. It is not so difficult to
see that if both L and L are recursively enumerable it is possible to build a Turing
machine M which works in parallel to check if some word w € A* is in L or L.

Then the Turing machine M halts on every word w € L thus L cannot be strictly
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recursively enumerable.

The language accepted by a Turing machine which halts on every input is called

TeCUrsIve.

Definition 2.3. A language L C A* is recursive if there is a Turing machine M

such that L = Ly; and such that M halts on every word w € A*.

This type of language was not defined in the Chomsky hierarchy [12]. Examples
of recursive languages are contex-sensitive languages which coincide with the class
of languages which can be recognized by a Turing machine which works only on a
portion of the tape whose length is exactly the length of the input word. Since the
portion of the tape is bounded, there is always an upper bound on the number of
steps the machine must do before to in a loop. Thus it is always possible to decide

if a word is accepted or not.

2.1.2 Regular languages and Finite State Automata

A Finite State Automaton, or finite state machine, is a simpler and less powerful

model of computation than Turing machines.

Definition 2.4. A Finite State Automaton (FA) is a graph determined by a 5-tuple
(Qa A7 57 qo0, F) where

e () is a finite set of states;

A is a finite alphabet;

d:Q xA— P(Q) is a partial transition function to the set P(Q) of subsets
of Q;

Qo € Q is the initial state;

F C Q s the set of accepting states.
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The automaton is deterministic (DFA) if the transition function is of the form
0:Q xA— Q, i.e. for every state in q € () and every symbol a € A there is at
most one state (possibly none) ¢ = §(q, a).

We can represent a FA M = (A,Q, 9, qo, ) as a graph with a vertex for every
state in ). There is an edge labeled a € A between vertices p,q € @ if and only if
d(p,a) = q. We use the notation p = ¢ to denote the existence of a path in starting
at state p € () and terminating at state ¢ € () such that the labels of the edges in
the path generate the word w € A*.

The language accepted or recognized by a FA is the set of words identified by
paths starting from the initial vertex and ending in the terminal vertex. Such class

of languages is called reqular.

Definition 2.5. The language accepted by a finite state automaton M = (A, Q, 9, qo, F')
15 defined as

Ly ={we A |3q€F,q g}

Example 2.6. In Figure 2.1 is represented the smallest DFA recognizing the lan-
guage £ = {w € {0,1}* | 0 C w,Vk > 1,01%*0 [Z w}, i.e. the language of blocks
on {0, 1} which contain at least one 0 and which do not contain any even sequences
of 1s between two consecutive Os. The initial state is the state qo. The accepting

states are are signed with a double circle.

o

Figure 2.1: Example of smallest Deterministc Finite State Automaton

Regular languages have been widely studied in literature. The class of regular
languages recognized bu FA coincides with the class of regular languages recog-

nized by DFA. In particular, for every regular language exists a unique minimal (in
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the number of states) finite state automaton up to graph isomorphism and state

renaming which recognizes it.

2.2 Symbolic Dynamics Theory

Symbolic dynamics originated as a method to study general dynamical systems. A
dynamical system can be modelled as a space consisting of infinite sequences of
symbols where each symbol corresponds to a state of the system. The dynamics
of the systems is represented by shifting the sequences of symbols. Here we define
symbolic spaces, the shift operator on a symbolic spaces and introduce some class of

symbolic dynamical systems.

Let A denote a finite set with the discrete topology. For n > 0, A" is the set
of blocks on A of length n and A = {¢} is the set containing just the empty word
e. The set of finite words on A is defined as A* = U,~0A™ and AT = A*\ {¢}. For
a € A we denote with a® the biinfinite sequence ...aaaa.... The concatenation of
words u,v € A* is denoted with uv. We say that u € A* is a subsword of v € A* if
there exist a,b € A* such v = aub. We use the shortcut u C v to denote that u is a
subword of v.

By symbolic space we mean the product space A% with the product topology.

An element of A% is a doubly infinite sequence of symbols in A:
r = .2 12071 = (2;)iez Where z; € A, Vi € Z.

The space A% is compact, metrizable and a metric compatible with the topology is

defined by
d(x,y) = 27" where n = min{|i| | i € Z,x; # y; }.

By distance d, two sequences are close if they coincide on a large interval around
the zero coordinate. If [¢, j] C Z is an interval and 2 € A% we denote with xj; ; the

word x;z;41...x; € A*. Given a finite word u € AT, the set
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[uli = {z € A% | @jj -y = u}

is called cylinder set. The cylinder sets are clopen (closed and open) sets and they

are a basis for the product topology on AZ.

The shift map o : A2 — A% is the homeomorphism defined by o(x); = z;,,. The
symbolic dynamical system (AZ, o) is called the full shift. A subshift S C AZ is a
closed and o-invariant (i.e. o(S) = S), subset of a full shift. Sometimes we will
consider also the one-sided full shift AN and one-sided subshifts S C AY. Note that

the shift map o on AN is not biiective.

A subshift S is mizing, if for any x,y € S and any € > 0 there exists m > 0 such
that for every k > m there exists z € S such that d(z, z) < € and d(y, o%(2)) < e.

Let 51,95 be two different subshifts. A factor map ¢ : Sx — Sp is a contin-
uous onto map such that po = gp. If the factor map is also injective it is called
conjugacy. Factor maps between shift spaces can be characterized in a very concrete
way as the class of continuous mappings induced by block maps (Curtis-Lyndon-
Hedlund Theorem). A block code ¢ : Sa — Sp between shift spaces S4 C AZ and
S C B” is a continuous o-commuting function induced by some block mapping

f:AF S B r>0:
Vo € Sy, F(l’)l = f(l'i—la ...,:L‘i+r).

Theorem 2.7. (Curtis-Lyndon-Hedlund [26]) Every continuous o-commuting map

between shift spaces is a block code.

Example 2.8. The shift map o : A* — A? itself is a block map induced by the
2-block mapping f : A> — A defined by f(ai,as) = as,Vay,as € A.

A shift space S can be conveniently recoded according a factor map of the form
¢ : S — S*¥ such that p(r); = Tivk—1)- The shift space S* is called the higher
k-block presentation of S and it is topologically conjugated to S.
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A subshift S C A% can be characterized by the language of words which occur

in its sequences.

Definition 2.9. Let S C A% be a subshift. The set of words of length k > 0 of S is

denoted as
Ck(S) = {w e A* | dr € S,l’[uﬂ = w}.

The language of S is defined as

L(S) = UrsoLk(S).

The language of a subshift S is:
e factorial: Yu € L(S) and Yv C u,v € L(S).
o cxtendable: Yu € L(S), vy, vy € L(S) such that vjuvy € L(S).

A susbhift S is univocally determined by its language £(.S) [5].

The exponential growth rate of words in a subshift S is a topological invariant

of S. This quantity is called topological entropy.

Definition 2.10. The topological entropy of a subshift S is defined as

1
H(S) = lim 28 1En(5)]
n—oo n
Example 2.11. Consider the full shift (A% o) on N = |A| symbols. For every
k>0, L,(A%) = A% and L(AZ) = A*. The topological entropy of (AZ,0) is

1 AZ loc N™
H(A?) = Jim 081D Toe Ny

n—oo n n—oo n
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There are several classes of subshifts. Here we are interested essentially in shifts
of finite type (SFT) and sofic shifts. Shifts of finite type were introduced by Parry
[50]. The class of sofic shifts was introduced by Weiss [56] as the smallest class
which is closed under factors and which contains shifts of finite type. A sofic shift
can defined as the image of a shift of finite type under a factor map. The topological

entropy of sofic shift is always computable (see, for example, [42]).

Since a subshift S C AZ is a closed subset of a full shift A%, its complement AZ\ S
is open and it is thus a countable union of cylinder sets. A cylinder set is univocally
identified by some word in A*. Then any subshift may be defined by forbidding
a countable collection of words. If a subshift can be defined by forbidding a finite

collection of words then it is a shift of finite type.

Definition 2.12. A subshift Sp C A? is a shift of finite type iff there exists a finite
collection of words F C A*,|F| < oo such that Sp = {x € A? | Vi < j, a5 ¢ F'}.

Example 2.13. Consider the 2-full shift ({0, 1}Z, o) and the set of forbidden blocks
F = {11}. The shift of finite type Sy = {o € {0,1}* | Vi € Z,x};,44) # 11} is

known as golden mean shift. The language of the golden mean shift is
L(Sq1y) = {€,0,1,00,01, 10,000,001, 010, 100, 101, 0000, ... }.

Definition 2.14. A subshift S is a sofic shift if and only if exist a shift of finite
type T and a factor map ¢ : T — S.

Equivalently, a subshift is sofic if and only if it can be represented by means of a
labeled graph. A labeled graph is a finite state automaton such that every vertex is
initial and such that every state is accepting. The language of a sofic shift is always
regular. We review the representation of a sofic shift as the shift space defined by

the labeling of vertex shift of a labeled graph.

Definition 2.15. A graph G is a pair Vg, Eg) where Vg is a finite set of vertices
and Eg 1s a finite set of edges. Fvery edge e € &g identifies a starting vertex

s(e) € Vg and a terminal vertex t(e) € Vg.
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For notational convenience, when it is clear from the context, we denote vertex

and edge set of graph G simply as V and &, respectively.
Definition 2.16. Let G = (V, &) be a graph. The vertex shift 3 of G is defined as
Y ={v=(v)iez €EVE|VieZ, Te €& s(e)=uv,t(e)=uvi1}
The vertex shift of a graph is always of finite type.

Definition 2.17. A labeled graph G is a pair (G, (), where G is a graph equipped
with a labeling function ¢ : Vg — A which maps vertices into a finite alphabet A.

Every sofic shift can be presented by labeling of vertices of a graph.

Definition 2.18. Let G = (G, () be a labeled graph with ( -V — A. The sofic shift
S presented by G is defined by

S ={a=(ai)iez € A% | I = (vi)icz € By, {(v;) = a;, Vi € Z}.
Note that a labeled graph (G, () identifies a 1-block mapping ¢ : ¥ — S.

Example 2.19. Consider the golden mean shift of Example 2.13. The (strictly)
sofic shift obtained by the 2-block mapping f(0,0) = 0, f(0,1) = f(1,0) = 1 is
called even shift. In figure 2.2 we can see a labeled graph presenting the 2-block
presentation of the golden mean as a vertex shift and the even shift presented by

the labeling of the vertices.

Figure 2.2: Golden mean and Even shift.



Chapter 3

Cellular Automata

Cellular automata (CA) were introduced by Von Neumann in the fifties [48| as a
simple mathematical model capable of universal computation and self-reproduction

like in biological systems.

According to the original definition, a cellular automaton consists of an infinite,
regular grid of cells. The grid can be in any finite number of dimensions (Von
Neumann’s cellular automaton is bidimensional). Each cell can be in one of a finite
number of possible states. Time is also discrete, and the state of a cell at time ¢ is
a function of the states of a finite number of cells (called its neighborhood) at time

t — 1. Every cell has the same rule for updating.

The best well known example of cellular automaton is the Conway’s Game of
Life which made its first public appearance in the October 1970 issue of Scientific
American [23|. The mathematician John Conway was interested in simplifying Von
Neumann’s model (his original cellular automaton consists of 29 states per cell)
and succeed to find a simple example of cellular automaton (with just two state
per cell) capable of universal computation. Since its publication, Game of Life has
attracted much interest because of the surprising ways the patterns can evolve. It
is an example of emergence and self-organization. It is interesting for physicists,
biologists, economists, mathematicians, philosophers and others to observe the way

that complex patterns can emerge from very simple rules.

At Conway time there was no high availability of fast and cheap computers so
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the earliest results in the Game of Life were obtained without the use of computers.
With the increase of processors speed and availability of cheap computers, Cellular
Automata found many applications in the field of simulation of natural processes.
Since here we are not interested in Cellular Automata as simulation models, we cite
just two of the most remarkable examples of use of Cellular Automata for modeling.
Among the most famous application there is the HPP lattice gas model [28]. The
HPP dynamics was initially planned as a theoretical model to study the fundamental
statistical properties of a gas of interacting particles and next it found some practi-
cal applications. A case of industrial application of HPP is the simulation of water
percolation process occurring in a porous medium: ground and toasted coffee [10].
This work has been developed within the cellular automata for percolation processes
(CAPPs) transfer technology project [4]. Traffic control is another application area
that involves CA models and systems. An overview of the main results in this area
can be found in [51]. The main applications concern both urban and extra-urban
traffic, and the CA approach allows the knowledge of the traffic state to be explic-

itly represented in the model in order to simulate crucial situations (i.e. traffic jams).

The computational capabilities of Cellular Automata have been studied extensively
since the beginning and it was well known since than that Cellular Automata
have the same computational capabilities of Turing Machines (see, for example,
[54, 13, 2, 9]). There’s no general agreement on the concept of universality for
Cellular Automata. The universality of a cellular automaton is generally proved
by showing that such automaton can simulate a universal Turing Machine or some
other system which is known to be computationally universal. For example, the
Game of Life was proved to be computationally universal by using some special
patterns in Life (known as gliders and guns) to implement logical gates [3]. In
[52], the author shows that any Turing machine with m symbols and n states can
be simulated by a one-dimensional cellular automaton with m + 2n states. More
recently, in [14] the author proves that a very simple one-dimensional cellular au-

tomaton with just two states is universal by showing it is possible to use the rule to
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emulate another computational model, the cyclic tag system, which is also universal.

Mathematical theory of Cellular Automata was developed by Hedlund [26] about
two decades later Von Neumann’s work. Hedlund studied Cellular Automata in the
context of symbolic dynamics as homomorphisms of the full shift. Hedlund’s work is
not related directly to Cellular Automata but with the current problems in symbolic
dynamics. However, despite the differences of objectives, symbolic dynamics theory
provides many useful tools even for the investigation of computational properties of
Cellular Automata. This is actually the theoretical framework in which we study

Cellular Automata.

Most of the research on Cellular Automata from the dynamical systems point of
view was instead stimulated in the eighties by Wolfram’s studies on dynamical and
computational aspects of Cellular Automata [57, 58, 59|. In [61]|, Wolfram proposed
an heuristic classification of Cellular Automata based on the qualitative observed
behavior of a meaningful class of Cellular Automata by performing computer simula-
tions of the evolution of the automata starting from random configurations. Wolfram
suggested that the different behavior of automata in his classes seems to be related
to the presence of different types of attractors. There have been several attempts
to formalize Wolfram’s classification using concepts both from dynamical systems
theory [30, 24] and from formal language theory [37, 11|. The most well known are

Equicontinuity, Attractors and Languages classifications (see ?7).

The rest of the chapter is organized as follows. In Section 3.1, we provide a for-
mal definition of Cellular Automata while in Section 3.2, we provide a detailed
introduction of Cellular Automata in the context of Dynamical System theory. In
particular, in Sections 3.2.2, 3.2.3 and 3.2.4 we review respectively Equicontinuity,

Attractors and Languages classifications.
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3.1 Definition

We consider only the class of one-dimensional Cellular Automata defined as endo-

morphisms of full shits.

Definition 3.1. Let A be a finite alphabet. A couple (AZ, F) is a cellular automaton
if there exists two positive integers m > 0 (memory ) a > 0 (anticipation) and a local

rule f: AmTett — A such that
Vx € AZ,\V% S Z, F(ZL‘)Z = f(ZL‘Z‘_m, ...,I'H_a).

The value r = max{m, a} is called radius of the automaton.

According to Curtis-Hedlund-Lyndon theorem [26], (AZ, F) is a cellular automa-

ton if and only if F' is a continuous and o-commuting function.

Definition 3.2. A cellular automaton is one-sided if the local rule has memory
m =0 (equivalently if it has anticipation a = 0). A one-sided cellular automaton is

generally denoted as (AN, F).

Example 3.3. The shift map o : AZ — AZ is a cellular automaton. It is also

one-sided because the local rule f : A2 — A is defined as f(a,b) = b.

3.2 Cellular Automata as Dynamical Systems

Cellular Automata can be considered as symbolic discrete dynamical system. As

dynamical system they have a very rich and diverse behavior.

In this section we review known results about the dynamical properties of Cellular
Automata. We don’t provide a complete introduction on the subject but we focus
our attention only on the aspects that will be relevant for our investigation. We are
essentially interested in those properties of Cellular Automata which can provide
measures of complexity of the dynamics and on decidability questions related to

such properties.
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3.2.1 Limit Set and Topological Entropy

A measure of the complexity of a cellular automaton is given by its limit set. It was
introduced by Wolfram for studying the long-term behavior of Cellular Automata
[59] and consists of all the configurations that can occur after arbitrarily many

iterations.
Definition 3.4. The limit set of (AZ, F) is defined as A(F) = NijenAZ.

Definition 3.5. A cellular automaton (A%, F) is called stable if there exist n € N
such that A(F) = F"(AZ). It is called unstable otherwise.

Example 3.6. (Stable limit set) The cellular automaton (AZ, F') defined by Vz €
A% F(x) = 0 where 0 € A is stable since F(A%) = F?(AZ) = {0>}.

The great attention the limit set of Cellular Automat has received in literature
was stimulated by the question 13 posed by Wolfram in [58]: what limit sets can
cellular automata produce?

This question was first addressed in [31, 32| where the author studies the com-
plexity of limit sets by using formal language theory showing that the language
complexity of a limit set can be arbitrary high. It’s not difficult to see that limit set
of stable Cellular Automata are always mixing sofic shifts (then of regular language
complexity). In [43]|, Maass attempts to characterize the class of sofic shifts which
can be limit sets of Cellular Automata. A shift of finite type cannot be the limit
set of an unstable cellular automaton [33] and also of a larger class of sofic systems
[43]. There are also non-sofic systems which cannot be at all limit sets of Cellular
Automata [44]. Kari [35] shows that all non trivial properties of limit sets of Cellu-
lar Automata are not decidable. In general, it is not possible to decide even when
the limit set of a cellular automaton consists only of a single configuration. Such

Cellular Automata are called nilpotent.
Definition 3.7. A cellular automaton (A%, F) is nilpotent if |A(F)| = 1.

Example 3.8. The stable cellular automaton (A% F') of Example 3.6 is nilpotent
since A(F) = F(AZ) = {0>°}.
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Nilpotent Cellular Automata are stable. The following result, due to Kari, is

used extensively to prove that other topological properties are undecidable.
Theorem 3.9. [3/] It is undecidable whether a cellular automaton is nilpotent.

The topological entropy of a cellular automaton (A%, F') is also a measure of the
complexity of the mapping F'. It was introduced for general dynamical systems in
[1]. For Cellular Automata it has a simpler definition and it can be computed from

the entropy of column factors.

Definition 3.10. The column factor of width k > 0 of (AZ, F) is the set of one-sided
infinite sequences ¥y = {y € (AF)N | Jo € A% Vn > 0, F™(2) x5 = Yn}-

If the automaton is one sided, i.e. the local rule has memory zero, the column
factor Y., is denoted simply with ¥ and is called canonical factor. Since the
column factors are symbolic factors of the automaton, the topological entropy of

every column factor is a lower bound to the topological entropy of the automaton.

Definition 3.11. The topological entropy of (AZ, F) is defined as

H(F) = lim H(Zy).

k—o0

Example 3.12. The nilpotent cellular automaton of Example 3.8 has H(F) = 0
since for all k > 0, &), = {z € (AF)N | 2y € A* and z; = 0F,i > 0} and H(Z;) = 0.

More generally the topological entropy of nilpotent Cellular Automata is always
zero. In general, it is not possible to decide if a cellular automaton has strictly

positive topological entropy. This leads to the following result.

Theorem 3.13. [27] The topological entropy of Cellular Automata is not com-
putable.

For one-sided Cellular Automata the topological entropy has a nicer characteri-

zation since it coincides with the entropy of the canonical factor.

Theorem 3.14. [6] Let (AN, F) be a one-sided CA. Then H(F) = H(X).
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It is an open question whether Theorem 3.14 can be extended to general Cellular

Automata.
Question 3.2.1. [19] For every cellular automaton (A%, F) is there a (computable)

number k& > 0 such that H(F) = H(Xy)?

3.2.2 Equicontinuity classification

We review some topological properties of Cellular Automata based on the concept of
equicontinuity point. These topological properties can be formulated for arbitrary

dynamical systems.

A point z € AZ is an equicontinuity point for (AZ, F) if the orbit of every point in

every neighborhood of x stay forever close to the orbit of x.
Definition 3.15. A point x € A% is an equicontinuity point for (AZ, F) if
Ve > 0,30 > 0,Vy € B(z),Vn > 0,d(F"(x), F"(y)) < €

A cellular automaton is equicontinuous if all of its points are equicontinuity

points.
Definition 3.16. (Equicontinuity) (A%, F) is equicontinuous if
Vo € AZ Ve > 0,36 > 0,y € B.(z),Vn > 0,d(F™(z), F"(y)) < ¢
The following theorem characterizes equicontinuous Cellular Automata.

Theorem 3.17. [37] For a cellular automaton (A%, F) the following conditions are

equivalent:
1. (A% F) is equicontinuous;

2. there exist m > 0, n > 0 such that for every x € A%, and for every i > m we

have F'"(z) = F'(x).
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From Theorem 3.17 follows that every equicontinuous cellular automaton is also

stable.

Example 3.18. The identity cellular automaton (AZ, Id) defined by Id(z) = z is

equicontinuous since for every x € A% and for every k > 0, F/([z[_xx]) = [k x)-
Example 3.19. The nilpotent cellular automaton of Example 3.8 is equicontinuous.

A cellular automaton is almost equicontinuous if it has at least one equicontinuity

point.
Definition 3.20. (Almost Equicontinuity) (A%, F) is almost equicontinuous if
Jr € A% Ve > 0,36 > 0,Vy € B.(z),Vn > 0,d(F"(x), F"(y)) < €

By definition, every equicontinuous cellular automaton is also almost equicontin-
uous. Almost equicontinuous Cellular Automata are characterized by the presence

of blocking words.

Definition 3.21. A word u € A" with |u| > k > 0 is k-blocking for (A%, F) if there
exists p € [0, |u| — s] such that

Va,y € [U]O,Vn >0, F”(x)@7p+s_1} = F"(y)[p,p+5_1].

Theorem 3.22. [36] For a cellular automaton (A%, F) the following conditions are

equivalent:
1. (AZ F) is almost equicontinuous;
2. (AZ,F) has a blocking word.

Example 3.23. Let (A% F) with A = {0,1} be the product cellular automaton
defined by F(z); = x;_1x;x;41 is almost equicontinuous because the word 0 is 1-

blocking.

A cellular automaton is sensitive when for every point z, in every neighborhood

of x there exists a point y whose orbit separate from the orbit of z.



3.2. CELLULAR AUTOMATA AS DYNAMICAL SYSTEMS 25

Definition 3.24. (Sensitivity) (A% F) is sensitive if
Je > 0,Vx € AZ,¥§ > 0,3y € B(z),In > 0,d(F"(z), F"(y)) > €.

While this does not hold for general dynamical systems, for Cellular Automata

sensitivity implies not almost equicontinuity.

Theorem 3.25. [36] For a cellular automaton (A%, F) the following conditions are

equivalent:
1. (AZ F) is sensitive;
2. (AZ,F) does not have a blocking word.
Example 3.26. The shift cellular automaton (AZ, o) is sensitive.

Positively expansiveness is a stronger form of sensitivity. A cellular automaton
is positively expansive if the orbits of every two distinct points eventually separate

under the evolution.
Definition 3.27. (Positively expansiveness) (AZ, F) is positively expansive if
de > 0,Vx,Vy # x,3In > 0,d(F™(x), F"(y)) > €.
There is an interesting class of positively expansive Cellular Automata.
Definition 3.28. Let (A%, F) be defined by the local rule f : A™tatl — A,
o (AZ F) is left permutive if Vu € A™T1 vh € A, 3la € A s.t. flau) =10
o (A% F) is right permutive if Vu € A™*"1 Vb e A, Jla € A s.t. f(ua)=10b
o (AZ F) is bipermutive if it is left and right permutive.

The following proposition shows that permutive Cellular Automata are positively

expansive.

Proposition 3.29. Let (A%, F) be a cellular automaton with memory m and antic-

wpation a, m < 0 < a.
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o If (AZ F) is bipermutive then (AZ F) is conjugated to the |A|™"-full shift
(Eera,O')-

o If (AL F) is right permutive then (AN, F) is conjugated to the |A|*-full shift

(34, 0) (the case left permutive is symmetric).

Proof. Let z be a sequence of the one-sided |A|™*2-full shift. Since (A%, F) is biper-

mutive there exists exactly one sequence y € A% s.t. Vi € N, F'(y)jo,m+a—1] = Zi-
Equivalently, let = be a sequence of the one-sided | A|*full shift, since (A%, F) is

right permutive, there exists exactly one y € AY s.t. Vi € N, Fi(y)j 01y = 2;. O

Example 3.30. Let (AZ F) be defined by F(x); = [(x;_1 + zs41) mod |A|] Then

(AZ F) is bipermutive with —m = a = 1 and X, is the 4-full shift.

There exists also positively expansive cellular automata which are not permutive.
The characterization of Proposition 3.29 holds for arbitrary positively expansive

Cellular Automata.

Theorem 3.31. /37, 47| Let (A% F) be a positively expansive cellular automaton
of radius r. Then (A%, F) is conjugated to the shift of finite type (Xa,11,0).

Since every positively expansive Cellular Automata is conjugated to g, it is
easy to see that there exists a o-commuting conjugacy ¢ : Yo.11 — 29,41 such that
the two dynamical systems (AZ ) and (3,41, ¢) are conjugated.

The following classification of Cellular Automata is Kurka’s modification [36]
of Gilman’s Equicontinuity classification [24]. Gilman’s classification is based on

measure-theoretic concepts, while Kiirka’s one uses only topological concepts.

Corollary 3.32. [36] Every (AZ, F) falls exactly in one of the following classes:
E1 (AZ F) is equicontinuous;
E2 (AZ F) is almost equicontinuous but not equicontinuous;
E3 (AZ F) is sensitive but not positively expansive;

E4 (AZ F) is positively expansive.
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Since positively expansive Cellular Automata do not exist in any dimension
greather than 1 (see [53|), Equicontinuity classification can be formulated only for

one-dimensional Cellular Automata.

It is easy to see that equicontinuity is not a decidable property. Assume it is.
Then, since equicontinuous Cellular Automata are stable it would be possible to
compute the limit set and then the nilpotency wuold be decidable contradicting
Theorem 3.9. More generally, it undecidable if a Cellular Automaton is almost

equicontinuous which implies that sensitivity is also undecidable.
Theorem 3.33. [15] It is undecidable if a cellular automaton has a blocking word.
It is actually unknown if positively expansiveness is a decidable property.

Question 3.2.2. Is positively expansiveness a decidable property?

3.2.3 Attractors classification

In dynamical systems, an attractor is a set toward which the system evolves after a
long enough time. For the set to be an attractor, trajectories that get close enough to
the attractor must remain close even if slightly perturbed. To define mathematically

the concept of attractor of (A%, F) we need to define the w-limit of a set.
Definition 3.34. The w-limit of a set U C A% is w(U) = NMpsoUmsn F(U).

Definition 3.35. A nonempty set Z C A% is an attractor if there exists an F-
invariant clopen set U C A% such that w(U) = Z. A nonempty set is a quasi-
attractor if it s the countable intersection of attractors. An attractor is minimal if

it doesn’t contain any proper subset which is also an attractor.
Every (A% F) has at least the maximal attractor A(F) = w(A?).
Definition 3.36. The basin of attraction of an attractor Z is defined as the set

B(Z)={z € AZ |w(z) C Z}.
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The basin of attraction is always an open F-invariant set.
This following classification is Kurka’s refinement of Hurley’s Attractor classification
for Cellular Automata [30].

Corollary 3.37. [36] Every (A%, F) falls exactly in one of the following classes.
A1 There exist two disjoint attractors.
A2 There exists a unique minimal quasi-attractor.
A3 There exists a unique minimal attractor different from w(AZ).

A4 There exists a unique minimal attractor w(AZ) # AZ.

A5 There exists a unique minimal attractor w(A%) = AZ.

We list some examples to show that Attractor classes are not empty.

Example 3.38. The identity cellular automaton of Example 3.18 has two disjoint
attractors w([0]p) and w([1]y) then it belongs to class A1l.

Example 3.39. The Hurley cellular automaton ({0,1}%, F) defined by F(x); =
7,741 has unique minimal quasi-attractor {0} = Mw([0¥]) (see [30] or [37]) and

it belongs to class A2.

Example 3.40. The cellular automaton of Example 3.23 has just two attractors
w(A?) = {x € AZ | 1071 Z x} and {0>°} # w(AZ). Obviously {0} is a minimal

attractor.

Every nilpotent cellular automaton is in class A4 while every positively expan-
sive one is in class A5 (see [37]).
We don’t know if it is decidable the membership in some of the Attractor classes.

Question 3.2.3. Is the membership in Attractor classes decidable?
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An interesting class of attractors for Cellular Automata is the class of subshift

attractors.
Definition 3.41. A subshift attractor is a o-invariant attractor.

Subshift attractors have been considered in [39] and [22]. They are generated by

clopen invariant sets which are also spreading.

Definition 3.42. A clopen F-invariant set U C A% is spreading if F*(U) C
o (U)NUNa(U) for some k > 0.

The following proposition characterizes clopen sets whose omega limits are sub-

shift attractors.

Proposition 3.43. [22] Let (A2 F) be a cellular automaton and U C AZ a clopen
F-invariant set. Then w(U) is a subshift attractor if and only if U is spreading.

Every cellular automaton (AZ, F') has at least one subshift attractor w(AZ) but
it can have also an infinite number of subshift attractors [22|. For instance, Kurka
[39] shows that, for surjective cellular automata, the full space is the unique subshift
attractor. In general a cellular automaton can have an infinite number of attractors

and just one subshift attractor.

Example 3.44. The Hurley cellular automaton of Example 3.39 has unique minimal
quasi-attractor 0% and unique subshift attractor w(A%) = {x € AZ | 10"1 £ x} (see
[22]).

The cellular automaton of example 3.39 is unstable and it has just one subshift
attractor while the one in Example 3.40 has two distinct subshift attractors and it is
also unstable. The cellular automaton with an infinite number of subshift attractors
of Example 6 in [22] is also unstable. We are not aware of the existence of stable
Cellular Automata with an infinite number of subshift attractors or simply with two

distinct subshift attractors.

Question 3.2.4. Is there a stable cellular automaton with an infinite number of

subshift attractors?
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3.2.4 Languages classification

The complexity of the languages of the column factors is a measure of the complexity
of Cellular Automata. This measure was introduced by Kiirka for general dynamical
systems ([38]). Given some column factor 3, of a cellular automaton, the language
L(X) is always context sensitive, since it is always possible to decide in a bounded
amount of time if a block w € (A%)* is also in £(X) (see [25]). There are Cellular

Automata whose column factors languages are strictly context sensitive.

Example 3.45. [25| For the cellular automaton ({0, 1}, F) where F(x); = ;41242
the language of the column factor ¥; is context sensitive since 1"0™1 € £(¥;) if and

only if m > n.
Other classes of complexities arise naturally.

Definition 3.46. A cellular automaton (A%, F') is bounded periodic if Yk > 0,3Im >
0,3n > 0 such that Vx € 3y, Vi > m, o'(z) = o' (z).

The class of bounded period Cellular Automata coincides with the class of

equicontinuous Cellular Automata.
Theorem 3.47. [37] A cellular automaton is bounded periodic iff is equicontinuous.

A dynamical system is regular when all of its factor subshifts are sofic [38]. This

definition simplifies for Cellular Automata to have sofic column factors.
Definition 3.48. A cellular automaton is regular if Vk > 0, Xy is a sofic shift.

Example 3.49. The product cellular automaton of Example 3.23 is regular. Note
that for all k > 0, for every z € %, of(x) = (0F)N.

Regular Cellular Automata are in some sense approximable systems.

Definition 3.50. An e-chain of (A%, F) from xy € A% to x,, € A% is a sequence of
configurations x; € A% such that d(f(x;), ;1) <€ for 0 <i < n.
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An e-chain is an approximation of an orbit. While such approximation works in
general for a short number of steps, there are dynamical systems whose orbits can

be approximated for a large number of steps.

Definition 3.51. A point x € A% e-shadows in (AZ, F) a sequence xy, ..., x, € AL
if d(F'(x),x;) <€ for 0 <i<n.

Definition 3.52. A cellular automaton (A%, F) has the shadowing property if for

every € > 0 there exists a 0 > 0 such that every e-chain is 0-shadowed by some point.
The orbits of a dynamical system with the shadowing property are approximable.

Proposition 3.53. [37] Every cellular automaton with the shadowing property is

reqular.

The converse of Proposition 3.53 is in general not true (see Example 5.78 in [36]).

The following classification is Kiirka’s Language classification of Celular Automata

according to the language complexity of column factors.

Corollary 3.54. [36] Every (AZ, F) falls exactly in one of the following classes:
L1 (AZ F) is bounded periodic.
L2 (AZ, F) is reqular not bounded periodic.
L3 (AZ, F) is not reqular.

Since bounded periodic Cellular Automata coincide with equicontinuous Cellu-
lar Automata, it follows that the membership in L1 is undecidable. In Section 4.3
we will show that regularity is also an undecidable property which implies that the

membership in all Languages classes is undecidable.

The intersections classes between the tree classifications are shown in figures 3.1,

3.2 and 3.3.
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Figure 3.1: Equicontinuity and Attractors classifications.
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Figure 3.2: Languages and Attractors classifications.
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Figure 3.3: Languages and Equicontinuity classifications.



Chapter 4

Regular Cellular Automata

In this chapter we investigate regular Cellular Automata (see Definition 3.48).

We show that regularity is an undecidable property. Moreover, we show that if
we know that a cellular automaton is regular then we can decide if it is nilpotent or
equicontinuous or positively expansive and, if the automaton is also one-sided, we

can compute its topological entropy.

In Section 4.1 we show some examples of regular Cellular Automata. In particular
we show that additive Cellular Automata are regular. In Section 4.2 we investigate
a subclass of regular Cellular Automata: the class of one-sided Cellular Automata
whose canonical factors are shifts of finite type. We show that in general it is not
possible to decide if the canonical factor of a one-sided cellular automaton is a shift
of finite type (results of this section are collected in [17]). From this result doesn’t
follow the undecidability of the regularity property which is investigated in Section

4.3 (results of this section are collected in [18]).

4.1 Examples of regular Cellular Automata

In Section 3.2.4 we saw that the class of regular Cellular Automata is large. In

particular, equicontinuous and positively expansive Cellular Automata are regular.
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Here we investigate the regularity for the class of additive Cellular Automata.

Definition 4.1. Let denote with X, = {1,2,...,n}% the set of biinfinite sequences
on alphabet {1,...,n}, n > 0.

Definition 4.2. An additive cellular automaton is a an automaton (X,, F) such

that the local rule f:{1,..,n}* 1 — {1,....,n} is of the form

fle_p, .yzy) = [XI__ a;x; mod n| fora_,,..,a, € N.

1=—T

It is easy to check if a cellular automaton is additive. Moreover, almost all prop-
erties which are in general undecidable are decidable for additive Cellular Automata

(see [46]).We show that additive Cellular Automata are regular.

The following theorems provide respectively an useful property of additive Cellu-

lar Automata and a strong characterization of additive sensitive Cellular Automata
Definition 4.3. Let denote F,, = F' mod n.

Theorem 4.4. [21] Let (X,,, F') be an additive cellular automaton with ged(p, q) =
1. Then (X,q, F') is conjugated to the additive cellular automaton (X, x X,, F, X Fy).

Theorem 4.5. [/6] Let (X,,, F) be an additive cellular automaton with local rule
flr_p, .x.) = [X__ a;x; mod n]. Then (X,, F) is sensitive if and only if there

i=—T

exrists a prime p such that

plnandpl/gcdla_,,...,a_1,a1,...,a,).

The following lemma shows that for every additive sensitive CA (X, F') with p
prime, there exists a h > 0 such that the local rule of the additive CA (X, F") is

permutive in its rightmost and leftmost variable.

Lemma 4.6. [21] Let (X, F) be an additive CA with p prime and local rule
fa_p, xy) = [(apz_y + ... + a;z,) mod p¥]. Suppose (X, F) is sensitive and
let a; such that ged(a;, p) = 1. Moreover let

L =min{j : ged(a;,p) = 1}, R = max{j : gcd(a;,p) = 1}.
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Then there exists h > 1 such that the local rule fh associated to F" has the form
Sy o) = (S0 bie; mod p*] with ged(bar, p) = ged(bur, p) = 1.

By Proposition 3.29, a bi-permutive cellular automaton is regular. Then, by
Lemma 4.6, we can conclude that any sensitive additive cellular automaton (X, F)

with p prime is regular.

Theorem 4.7. Additive Cellular Automata are reqular.

Proof. By Theorem 4.4, any additive cellular automaton can be decomposed in the

product of a finite number of additive Cellular Automata
(Xp’fl X ... X Xka’Fp’fl X ... X Fka)

with p; # ... # p, prime numbers. An additive cellular automaton can be either
equicontinuous or sensitive [46]. In both cases (X, Fn:) is regular forall 1 < i < k.
Then their product must be regular. O

To conclude, it could be interesting to know what is the class of one-sided sofic
shifts which rise from column factors of Cellular Automata. So we raise the following

question.

Question 4.1.1. Is every one-sided sofic shift conjugated to some column factor of

some cellular automaton?
We can provide only a partial answer.

Proposition 4.8. FEvery one-sided shift of finite type is conjugated to the canonical

factor of some one-sided cellular automaton.

Proof. Let X be a one-sided SFT of order K > 0 and let Y = X% be the higher
K-block presentation of X. We describe a procedure to define a CA (A%, F) with
radius r = 1 such that ¥ =3 (A%, F) =Y. Let A= L;(Y) and let f: A? — A be
the local rule of (A%, F') defined by

b ifabe EQ(Y)

¢ otherwise, for some ac € Lo(Y)

f(a7 b) =
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By definition, £5(X) = L£5(Y) then ¥ C Y. Conversely, let 2 € Y and let y € AZ
such that yjo,.) = 2. By definition, Vi > 0, Fi(z)g=z;thenz e X and Y CX. O

Example 4.9. Let X be the a SFT on alphabet A = {0,1,2,3} defined by the
following list of allowed blocks {01,12,21,23,33}. In figure 4.1 it is possible to see
the graph representation of X and the block map defined by the procedure described
in Proposition 4.8. Note that blocks 20 and 22 can be mapped indifferently to either
1 or 3 without changing the symbolic factor of width 1.

00 |01 |02 (03 |10 (11 |12 |13 [20 |21 (22 |23 |30 (31 |32 |33

1 1 1 1 2 2 2 2 (13| 1 (13| 3 3 3 3 3

Figure 4.1: Cellular automaton with shift of finite type canonical factor.

4.2 One-sided Cellular Automata with SFT canon-

ical factors

In this section we provide a characterization for one-sided Cellular Automata whose
canonical factors are shifts of finite type (Lemma 4.20). From such characterization
we can easily derive the property that given a CA (AN, F') and k > 0, it is possible
to decide if ¥ is a SFT of order k (Theorem 4.21).

The immediate consequences of Theorem 4.21 are that the topological entropy

is computable for any one-sided CA (AN, F) whose canonical factor ¥ is a shift of
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finite type (Proposition 4.22) and that it is in general undecidable if ¥ is a SFT
(Proposition 4.23).

Definition 4.10. The SFT k-approximation (or simply k-approximation) of a one-
sided subshift X is the one-sided SFT X (k) such that x € X(k) if and only if
Tiivk-1) € Le(X), Vi € N.

If ¥ isa SFT of order K > 0, it happens that for any &k > K, (k) = X. However,
in general, if ¥(k) = X(k+1) = ... = X(k+1) for some k,i > 0, we cannot conclude
that 3 has order k. The following example shows that, in general, if a finite number
of increasing and successive SE'T approximations of ¥ coincide with the same SE'T

X, we cannot conclude that ¥ = X.

Example 4.11. For any n > 0, let X,, = {a,b, ¢y, ...,c,} be an alphabet and let
(XN F},) be the one-sided CA whose local rule f, : X2 — X, is represented in figure
4.2. For any n > 0, the sequence of SF'T approximations of ¥ starting from order 2
up to order n coincide with the SE'T of order 2 defined by the set of allowed blocks
{aa, ab, ba, c1co, Cacs, ..., Cr_9Cp_1, Cn_1Cn, cyb}. This shift of finite type is represented
as edge shift in figure 4.2. Tt is easy to verify that a...a = ™' ¢ £(3) which implies
that ¥ is not an SFT of order n.

We show that there’s an effective algorithmic way to decide if X(k) = X for some

k > 0. In order to see this, we need to introduce some preliminary properties.

Definition 4.12. Let (AN, F) be a CA and let b € L(Xy), t,k > 0. We can see b
either as a sequence of blocks V)...b, where b|,...,b; € A* or as a sequence of blocks

bi...b}, where by, .., b} € A'. Let
AL Lo(Bk) — (AR) and Afy 2 Lo(Be) — (ADF
denote the 1-to-1 onto mappings such that

A g(b) =bi..by € A¥ and Af(b) = bY..by € A",
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aa ab ac, ac b-X, [cy X, |[c X Cho X, | Char’

Figure 4.2: One-sided CA whose canonical factor is not a SF'T of order n

Definition 4.13. Let (AN, F) be a one-sided cellular automaton.

1. Let t > 0, k > 1 and let z,y € Li(Xk). Suppose that Xj,(z) = z1..x; and
)\f’k(y) = Y1...Yr where ro =Yy, ...,Tx = Yr_1. Lhen we say that x,y are horizontally
compatible blocks and we denote their horizontal overlapping concatenation with
x ®y where /\fk(x OY) = T1...TLYk-

2. Let t > 1, k > 0 and let x,y € L(Xx). Suppose that N\, (r) = 21..2; and
)\i’k(y) = Y1...4Yy where xo = yy,...,xy = y_1. Then we say that x,y are vertically
compatible blocks and we denote their vertical overlapping concatenation with x ®y

where \j . (x @ y) = T1...0Y;.

00
Example 4.14. For the cellular automaton ({0,1}% 0?), a = € L5(3;) and
01
01 : : : :
b= € Ly5(3%,) are both horizontally and vertically compatible blocks. For instance

10
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00
001

a®b= and a ©®b =101 .
010

10

In general, if zy,...,xs € L£,(X)) is a sequence of blocks such that z;, z;,; are
horizontally (resp. vertically) compatible for 1 < i < s we say that zy,...,x, are
horizontally (resp. vertically) compatible and we denote with x; ® ... ©® x5 (resp.

1 @ ... ® x4) their horizontal (resp. vertical) overlapping concatenation.

Definition 4.15. Let (AN, F) be a CA with radius r. Fort,k >0, let
Ok Ak—i—r(t—l) N Et(zk)

be the onto mapping defined in the following way: Ya € AFt=1 "o, ,(a) = b €
Ly(3x) if and only if Fx € AV such that zjgpire—1)) = a and F'(x)jpr = b,
0 <i <t where \j;(b) = by...by.

Remark 4.2.1. Let (AN, F) be a CA with radius r and let k,¢ > 0. Note that, the
block b € Ly(Xx) is completely determined by the set of blocks g, (b). This means
that if by, by € £,(3k) and by # by then g, (b1) N o, (b2) = 0.

Moreover, the set of blocks L£;(Xyy,.) completely determines the set of blocks
Lis1(Sx). That is, 075, (Li(Zkir)) = 0531 4 (Lor1 (Zn))-

The following lemma shows a very useful property.

Lemma 4.16. Let (AN F) be a CA with radius r. Let x1,..,x, € Li(X,11) be
horizontally compatible blocks, t > 0,k > 1. Then x1 ® ... ©® xp € Li(Xr1k)-

Proof. Let Aj i (x;) = af..a}, 1 <i < k. Let b€ g, (xx) and let a € A" be
such that af; ;) = i, 1 <i<kand a,rt+k) = b. Then, it is easy to check that
Otrik(a) =1 © ... © x;, which implies that z; © ... © ), € L4(Z,1x). O

Note that Lemma 4.16 doesn’t work if we consider z,y € £;(3;) where k < r. In
this case, as the following example shows, even if z, y are two horizontally compatible

blocks, we cannot assure that x ©® y is a legal block of £;(X41).
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001
Example 4.17. For the cellular automaton ({0, 1}%, 0%) of Example 4.14, a®b =

010
is not a legal block of L£5(33).

A one-sided CA isregular if and only if £(X) is a regular language [7]. We provide

an equivalent and useful characterization for the case in which X is supposed to be

a SFT.

Proposition 4.18. Let (AN, F) be a CA with radius r. The following conditions

are equivalent:
1.3t >r, X =5(K)
2. ¥ =3%(K)
3.Vt >r, ¥ = 3(K)

Proof. (1 = 2) Let t > 0 and suppose 3, is a SFT of order K. Let z,y € Lk(X)
be two vertically compatible blocks. We have to show that x @y € Lk 1(2). Let
' € Li(X;) such that 2’ = 2 © ... ©® z,_, where z{,..,z}_, € Lg(X) and z}_, = .
Equivalently, let v/ € Lx(X;) such that ¢’ =y, © ... ®y,_, where y(,..,y;_, € Lx(2)
and y;_, = y. Moreover, let A ,(z') = a1..ax and A% ,(y') = by..bg. Since (AY, F)
is (right) one-sided, we can choose ' such that b; = as. Then, by definition, 2’ and
y" are vertically compatible blocks which implies that z @y € Lx1(2).

(2 = 3) Suppose X is a SFT of order K > 0. Let t > 0 and let z,y € L (%)
be two vertically compatible blocks. We have to show that x &y € Lx1(X;). Let
TOy ooy Tty Y0y s Yt—r € Li(X) such that r =20 © ... O 2y, and y = yo © ... © Yy
By hypothesis, z =z, ® 1 € Lxk11(X). Let Ag () = ar..ak, b € Q}ﬁrl,r(z) and
let ¢ € A" be such that cp g = ar and cpy1417k) = bpt1,r40k]- Then, it is easy to
verify that px1+(c) = 2 @ y which implies that * @y € Lx1(2).

(3 = 1) Trivial. O

Definition 4.19. Let A be a finite alphabet. Let t > 1 and let [i,j] C [1,t] be an
integer interval. Let

Py g 0 (AN — (AT
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denote the projection map induced by the one-block factor map
@[i,j] . At N Aj*i‘i’l

defined by ¢ j(ar...a) = @;a;41...a5,Varas...a, € A"
Remark 4.2.2. Let (AN, F') be a CA. Since F' is o-commuting, Vk > 0 and 1 <
it < k + 1, the projection obtained by restricting ®(; i1z to Xopy1 is Ygq1. That is,
Vi >0,1<i<k+1, ®pipn(Sonr1) = Skpa.

The following lemma shows a strong property > must have in order to be a shift
of finite type of order K. For instance, the canonical factor X of a one-sided cellular

automaton is a shift of finite type of order K if and only if the K-approximation of

Yor11 18 invariant under projections.

Lemma 4.20. Let (AN, F) be a CA with radius r. Let K > 0 and let Yo, 1(K) be
the SFT K-approrimation of ¥a,.1. Moreover, let

Xl = (I)[l,r—i—l](ZQrJrl(K))a '“7Xr+1 = (I)[r+1,2r+1}(22r+1(K))

be the projections of o, 11(K) obtained by restricting @ iy to Xopy1(K). Then
Y=X(K)if andonlyif X; = .. = X,41.

Proof. Suppose ¥ = Y(K). Then, by Proposition 4.18, it follows that 9,1 =
Yorr1(K) and 3,1 = X, (K) which implies that 3,.; = X; = ... = X,.44.
Conversely, suppose X; = ... = X,.;1. By Proposition 4.18, it is sufficient to show
that Yo, 11 = Yo, 41 (K). Trivially 3o,41 C 39,41 (K), then we prove by induction on
t > 0 that £;(Z011(K))C Li(Xr41).

1. (Base Case) By hypothesis, Vit < K, Li(X0,11(K)) C L4(Zor41)-

2. (Inductive Case) Let t > K and suppose L;(32,11(K)) = L4(X2,41). We have
to show that £t+1(227’+1(K)) g ‘Ct+1(227"+1)'

First of all, observe that, since L£;(3g,41(K)) = Li(39,41), it follows that
Li1(X1) = .. = Li11(Xo41) = Li11(X,41). This is a consequence of the
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fact that Q,;erﬂ([,t(Zng)) = Q;rll’rH(EtH(ZrH)). Let bl ® ... br+1 €
£t+1(22r+1(K>> where b1 € £t+1(X1), ceey br+1 € £t+1(Xr+1)- Then, bl, ...,br+1
S Ct-l—l(ET‘-i-l) and, by Lemma 416, it follows that bl ®... ®b7-+1 S £t+1(227’+1)'

U

Now we are ready to show that given a CA (AN, F') and k > 0 it is possible to
decide if ¥ = ¥(k). Note that this implies that the set of Cellular Automata whose
canonical factor is a SFT is recursively enumerable. The proof relies essentially on

the fact that the condition imposed by Lemma 4.20 is algorithmically checkable.

Theorem 4.21. Let consider a one-sided cellular automaton (AN, F) and let k > 0.
Then, it is decidable whether 3 = X (k).

Proof. Let r be the radius of the CA. It is easy to see that it is always possible to com-
pute a FSA recognizing £(X) where X = 3,,1(k). Moreover, given a FSA recogniz-
ing £(X), it is easy to build 741 FSAs recognizing L(®(1 ,41)(X)), ..., L(Ppr41,2041)(X)).
Then, since a subshift is completely determined by its language, by Lemma
4.20, the decidability of whether ¥ equals (k) comes from the decidability of the
equivalence between finite state automata. O
From Theorem 4.21 follows that there exists an algorithm which, given a CA,
computes a graph representation of ¥ provided X is a SFT, otherwise works forever.
Thus, as immediate consequence of Theorem 4.21, the topological entropy is com-
putable for the class of one-sided CAs whose canonical factors are SE'Ts. In contrast,

it comes also out that it is undecidable if a CA is in this class.

Proposition 4.22. Let (AN, F) be a reqular CA and suppose ¥ is a SFT. Then
H(F) is computable.

Proof. Since the topological entropy of a sofic shift is computable, the proof follows
from Proposition 3.14 and Theorem 4.21. O

A natural question is to ask if we can extend Proposition 4.22 to the whole class
of one-sided regular Cellular Automata. In the next section we provide a positive

answer to this question.
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Proposition 4.23. Let (AN, F) be a CA. It is undecidable whether ¥ is a SFT.

Proof. The proof is a reduction from the nilpotency problem: if it is possible to
decide if ¥ is a SFT then it is possible to decide if (AN, F) is nilpotent.

By definition, (AY, F) is nilpotent if 3z € AY o(z) = x and AN > 0 such that
Vn > N, F"(AY) = z. If (AN, F) is nilpotent then X is a SFT. In particular, (AN, F)
is nilpotent if and only if 3 is a one-sided subshift such that ¥n > N,o"(3) = .
Given a labeled graph representation of X, this last condition is algorithmically
checkable.

Suppose it is decidable if ¥ is a SFT. If it is not a SFT then (AN, F) is not
nilpotent otherwise, by Theorem 4.21, 3 is computable then it is possible to check
if there exists N > 0 and a € A" such that Vn > N, o"(X) = a. O

4.3 Undecidability of regularity

In this section we study general regular Cellular Automata. In the previous section
(Section 4.2) we saw that it is undecidable whether a one-sided cellular automaton
has as a shift of finite type as a canonical factor. Here we show that regularity is
an undecidable property (Corollary 4.39). Moreover, we show that if we know that
a cellular automaton is regular then we can decide a lot of useful properties which
are undecidable for general Cellular Automata. For instance, we show that if we
restrict to regular Cellular Automata we can decide nilpotency, equicontinuity and
positively expansiveness (Proposition 4.38) and, as we anticipated in the previous
section, we show that the topological entropy is computable for the whole class of
one-sided regular Cellular Automata (Proposition 4.37). The undecidability of reg-

ularity is a negative consequence of these decidability results.

Most of our effort here will be devoted to show that if S C (AN is a sofic
shift and (A%, F') is a CA with radius r, it is possible to decide whether S = ¥y, 4
(Theorem 4.35). This strong result has a lot of consequences. The most relevant

one is that for regular CA it is possible to compute column subshifts of every given
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width (Theorem 4.36). All our decidability results for regular Cellular Automata

easily follows from this property.

In order to show our fundamental decidability result (Theorem 4.35) we need to
define the cellular automaton extension of a sofic shift and to show some basic prop-

erties.

Definition 4.24. Let (A% F) be a CA with radiusr. Let G = (V, E, () be a labeled
graph with ¢ : V. — A¥ %1 Fort > 0, let the (F,t)-extension of G be the labeled
graph Gryy = (Vi, By, &), with ¢ = V; — A¥ ™ defined in the following way (see
figure 4.3):

e vertex set:

Vi=A{(v1,..,v) € V' | Ja € A ((v;) = Aiorry 1 <1<t}
e edge set:
By ={(e1,..e)) € B' | v, 0" € Vi, i(ey) = vy, te;) = vj, f(C(v5)) = C(v)r1}
e labeling function:

Vo = (v1,...,v) € Vi, G(v) = a where aj 9,44 = ((v3),1 < i <t

Definition 4.25. Let x,y € ¥ such that x = x,..2,y = y1...yx where x;,1y; € AN
and vy = y;, 1 < i < k. We say that x,y are compatible sequences and, abusing
the notation of Definition 4.13, we denote with x ® y = x1...x,yx their overlapping

concatenation.
We can extend Lemma 4.16 to infinite sequences.

Lemma 4.26. Let (AZ,F) be a CA with radius r. Let S C (A* ™) be a sofic
shift and let G be a labeled graph presentation of S. Let x,y € Sg, ,, be compatible
sequences. Then x ©y € Sg, -
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Civ) =ay..ag 4

fay...an,. ) =a' Vie[1,1]

Figure 4.3: A legal edge v — v’ of an (F,t)-extended graph G p.

Proof. Since, by hypothesis, = (;)ien, ¥ = (¥i)ien € Sg; ,, there exist two paths
u; — uy — ... and vy — vy — ... in G such that ((u;) = x; and ((v;) = v,
i € N. Then, (u1,v1) — (u2,v2) — ... is a legal path in Gy 2y which implies that
TOY € S, O

The following proposition shows that the sofic shift presented by the (F|t)-
extension Ggy) of a labeled graph G doesn’t depend on G but only on the sofic
shift presented by G.

Proposition 4.27. Let (A%, F) be a CA with radius r and let G, G’ be two distinct
labeled graph presentations of the same sofic shift S = Sg = Sgr C (A +1H)N. Then,

for any t > 0, Sg(p,t) = ngF,t).

Proof. We show that Sg ., C SgEF o The proof for the converse inclusion can be
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obtained by exchanging G with G'.
First of all, note that, by definition of (F)1)-extension, Sg . ,, = SgéF’l). Let
r € Sg ., and let xq,..., 24 € S such that v = 21 © ... © 2. Then, @y, ...,2; € SgEF \
and, by Lemma 4.26, it follows that x € SgEF e O
Thanks to Proposition 4.27 we can refer directly to the extension of a sofic shift

S rather than to the extension of a labeled graph presentation of S.

Definition 4.28. Let (A% F) be a CA with radius r. Let S C (A* )N be a sofic
shift and let G be a labeled graph presentation of S. For t > 0, let denote with
S(rt) = Sg,,, the (F.t)-extension of the sofic shift S.

We now show some useful properties of the (Ft)-extensions of sofic shifts.

Lemma 4.29. Let (AZ, F) be a CA with radius r. Let S C (A2 )N be a sofic shift.
Then ¥t > 0,

a. if Yo,y C S then Yoy C Siry),

b. if Xorp1 =S then Yoy = Siry),

C. if Yopy1 DS then Yooy D Siry-
Proof.

a. Let x € X9,y such that z = 1 © .. © 2y where x; € ¥9,.1, 1 <7 < t. Then,
r; € Sp1y, 1 <4 <t and, by Lemma 4.26, 2, © .. © 2y € S(py).

b. By point a, Yoy € S(py), thus we just have to show that Sir,) C a4 or,
equivalently, that £(S(gy) € L(Xor4¢). Let k> 0 and let a € L(S(py)). Let
ai,...,a; € Lx(S) be such that a; ©® ... ® a; = a. By hypothesis, a;,...,a; €
Lr(X9-11) then, by Lemma 4.16, it follows that a; ® ... ® a; € L(Xoy44)-

c. Since Yo7 D S, applying the same argument of point b, it is possible to
conclude that Yo,y 2 S(ry). We have just to show that the inclusion is strict.
Since Yg,41 D S, there exists a block by € £(3,41) such that b; ¢ L£(S). Then,
let b € L(3g,4¢) such that b = by © by ® ... ® by for some by, ..., by € L(Xg,41).
Trivially, b ¢ L(S(ry)). O
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The following theorem easily follows from Lemma 4.29 and provides a strong
characterization for regular CA. It is a two-sided extension of a theorem proved by

Blanchard and Maass for one-sided CA [7].

Theorem 4.30. Let (AZ, F) be a CA with radius r. Then (A%, F) is regular if and
only if Yo,11 1S a sofic shift.

Proof. The necessary implication is trivial. Then, suppose X, is a sofic shift. For
every d < 2r+1, ¥, is a factor of Yo, then it is a sofic shift. For every d > 2r+1,
by Lemma 4.29 point b, ¥; can be represented by a labeled graph then it is a sofic
shift. O

In general, if ¥, is a sofic shift for d < 2r + 1 it is not possible to conclude that
the CA is regular (see [40]).

In Section 4.2 we saw that for one-sided Cellular Automata ¥ is a shift of finite
type of order k if and only if the k-approximation of ¥, is invariant under pro-
jections. Here the scenario is a bit more complicated. To decide if some sofic shift
S = Yo,.11 we build some (F)t)-extension of S and we check if the extended sofic

shift S(gy) respects two trivial necessary conditions:

e S(py is invariant under projections

o Li(Stry) = Lix(Xor4e) for some sufficiently large k& > 0.

Remark 4.3.1. Let (A% F) be a CA with radius r and let G(py be the (F),t)-
extension of G. Then for every i € [1,t], CIDWTH](SQ(F’”) C Sg where ®p; 0,14 :
(AP TN — (A2 )N s the projection map of Definition 4.19.

We say that a sofic shift S is F-extendible, if every (F|t)-extension of S is

invariant under projections.
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Definition 4.31. Let (A%, F) be a CA with radius r and let S C (AZ )N be a sofic
shift. S is F-extendible if

S = (I)[Z"27»+Z‘](S(F7t)),vt > O,VZ € [1,t]

Note that for a sofic shift to be F-extendible is a necessary condition in order to

be equal to ¥y, 1. The property of being F-extendible is decidable.

Proposition 4.32. Let (A2, F) be a CA with radius v and let S C (A* )N be a
sofic shift. Then, S is F-extendible iff S = @1 .9r411(S(r2)) = Pr2,2r121(S(r,2))-

Proof. The necessary implication is trivial. Let S = ®p 9,41)(S(p2)) = Pp2,2r4+2](S(r2))-
Note that this implies S = S(z,1). Let ¢ > 2, we have to show that S = ®; 0,45 (S(r))
for 1 <i <t Let z € S and let k € [1,¢]. To reach the proof it is sufficient to
show that z € @ 0044)(S(ry)). Since S = Py o 111(S(F2)) = Pp2,2r42/(S(r2)), there
exists x1,.., 41 € S(pg) such that ®pg o, 19)(2;) = Piory1)(2i41), 1 <4<t —1and
P 2r12](Th—1) = Ppr2r41)(2x) = 2. Then, xy, .., 2, are compatible and by Lemma,
4.26, it follows that z; ® ... ® 1,1 € S(ry) and Pp o) (T1 © ... O T4—1) = 2. O
If a sofic shift S C (A% +1)N is F-extedible then it mut be contained in Yy, ;.

Proposition 4.33. Let (A2 F) be a CA with radius v and let S C (A T)N be a
sofic shift. Suppose S is F-extendible then S C Yo, 1.

P'I"OOf. Since S is F—extendible, S = @[1727,_’_1](5(}7"27»_’_1)) =..= @[27»_’_1747,4_1](5(}7"27"4_1)).
We prove by induction on k£ > 0 that £;(S) C Li(3a,41)-

1. (Base Case) By definition, £1(S) C £1(Xg41) = A1,

2. (Inductive Case) Suppose Ly (S) C L(Xo-11) for £ > 0. We have to show that
Li+1(5) C Lit1(Xor11)-

Since the radius of the CA is r, the set of blocks Ly 1(39,41) is completely
determined by the set of blocks L£i(X441) and Lyy1(Ppry1,3041(S(p2r41))) 18
completely determined by the set of blocks L£i(S(p2-+1y). Thus, showing that
Li(Sr2r+1)) € Li(X441) we can reach the conclusion Li41(S) C Liyy1(Lar41).
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Let v € L(S(p2r+1))- Since S is F-extendible, there exist 1, .., To41 € Li(S5)
such that x = 21®...0x,11. By inductive hypothesis, x1, ..., To,11 € L (3o,11)
then, by Lemma 4.16, © € Li(X4r41)- O

Proposition 4.34. Let (A% F) be a CA with radius r and let S C (A* )N be an F-
extendible sofic shift. Let n be the number of states of the smallest DFA recognizing
L(S) and let N = (n - |[APP" )21 Assume that Ln(B4r41) = Ln(S(rari1)). Then
Yory1 = S.

Proof. Let M = (A**1.Q,0,q0,T) be the smallest DFA recognizing £(S). Let
consider the graph G = (V, E) obtained from M in the following way: the set of
vertices V is the set of couples (¢,a) € Q x A* ™! such that §(q,a) € Q and there
is an edge between vertices (q,a),(¢’,a’) if and only if 6(q,a) = ¢’. A labeling
C:V — A for G is (((q,a)) = a.

We show by induction on k£ > 0 that Li(X4r41) = Lr(S(r2r41))-

a. (Base Case) By hypothesis, Ly (34r41) = Ln(S(r2r4+1)). Moreover, since the
language of a subshift is factorial, Li(Yar 1) = Li(S(p2r4+1)), VE < N.

b. (Inductive Case) Suppose Lx(X4r41) = Lx(Sp2ri1)), K > N. We have to
show that Lxi1(Bar1) = Lrx11(Sr2r+1))-
Leta € Lx1(Z4r41) and let al, ..., a* ™ € L, 1(39-41) the unique blocks such
that « = o' © ... ® a® . By inductive hypothesis, Lx(X441) = Lk (S(rart1))
and the set of blocks Lx(X4-11) determines the set of blocks L i1(Xa11).
Then it follows that Lx1(Zor41) = Lx41(5) and that a', ..., a* ™ € L, 1(S).
By definition of G, for every such a there is in G a unique legal path

(QOaaé) - (q%’a’%) e (Q}(va}()

(g0, ag ™) = (i ai™) — o= (g, a3l ).

We show that there exists x € S(par41) such that zp g = a. Let y € S(port1)
such that yjo, x—1) = ao...ax 1. One such y exists since, by inductive hypothesis,

Lk (X4r+1) = Lx(S(r2r+1))- Then there exists an unique path in Gpo,41)



50 4.3. UNDECIDABILITY OF REGULARITY

Vg — U1 — Uy — ...

such that Vo = ((QO> a(l))v 0y (QO, a(2)r+i))7 o VK—1 = ((Q}(—lﬂ a}(fl)a oy (qgj—{’ a%i_i))

and ((v;) = y;. Since K > N there exist 0 < i < j < K such that v; = v;.
Then, let consider the legal paths in G:

(q0,a0) = - = (@, ;) = (¢j41, @541) = - = (i, a)

( 2r+1

qo, a5 ") — ... — (q?r+17a?r+1) — (g2t aF 241 2ri)

Qi1 5 Q54 ) = o= (g ag
and the related labeling

=1 _ 1 1.1 1
a — ao---aia/j+1-¢-a/K

—2r+1 __ 2r+1 2r+1 2r+41 2r+1
a = Qy -y G+l ...CLK .

Since S is F-extendible, by Proposition 4.33, @',...,a* "' € L(Xy,,1). Then,
by Lemma 4.16, a = a' © ... @ @* ' € L(X441) and, by inductive hypothesis,
a € L(Srar+1)). Then there exists ¥ € S(rar41) such that Yz = @ and a

unique path in Gipor41):
EQ—>51 —>@2—>

such that Ty = vy, .., U; = v;, U;41 = v; and ((7;) = y;. Then there exists also

the path in G(gor41):

EQ — ... @i — Vi1 — oo 7 Vj—1 — @i-l-l — @H_Q — ...

Thus the sequence x = ¥y..Y;Yit1---Yj—1Yi11--- € S(F2r+1) and ) g = a. O

Now we are ready to state our main result and next to show the most immediate

consequences.

Theorem 4.35. Let (A%, F) be a CA with radius v and let S C (A* )N be a sofic
shift. Then it is decidable whether S = g, 1.



4.3. UNDECIDABILITY OF REGULARITY 51

Proof. By Proposition 4.32, it is decidable if S is F-extendible. Then, the proof
follows from the decidability of the condition of Proposition 4.34. O
We now explore some important consequences of Theorem 4.35 related to regular

Cellular Automata.

Theorem 4.36. Let (AZ, F) be regular. Then ¥t > 0, ¥, is computable.

Proof. Let r be the radius of the CA. By Theorem 4.35, given a sofic shift S C
(A?+1)N it is possible to decide if S = Y, ;1. We can enumerate all labeled graph
representing all sofic shifts contained in A?"*!. Then there exists an algorithm that
iteratively generates graphs in the enumeration and checks if the shift represented is
Yori1. Since (AZ) F) is regular, ¥y, .1 will be eventually generated and recognized.
This proves that, if (A% F) is regular, ¥, is computable.

In general, if t < 2r + 1, we can compute Y; by simply taking the projection
Py (Bar41) otherwise, if ¢ > 2r 41, by Lemma 4.29 point b, we can compute X; by
computing the (F,t — 2r)-extension of ¥, . O

The following proposition extends Proposition 4.22.

Proposition 4.37. The topological entropy of one-sided regular CA is computable.

Proof. Since the entropy of sofic shifts is computable, the conclusion follows from
Theorem 3.14 and Theorem 4.36. ]
The general question whether the topological entropy is computable for the class

of regular Cellular Automata remains open (see [19]).

Question 4.3.2. Is the topological entropy computable for regular Cellular Au-

tomata?

The following following shows that if we restrict to the class of regular CA, it is

possible to provide answers to questions which are undecidable in the general case.

Proposition 4.38. Let (A% F) be a regqular CA. Then the following topological

properties are decidable.

1. Nilpotency
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2. FEquicontinuity
3. Positively Frpansiveness
Proof. By Theorem 4.36, given (A%, F), it is possible to compute Xy, 1.

1. Tt is easy to see that (A% F) is nilpotent if and only if there exists a € A* !
and N > 0 such that Yn > N,Vz € Y544, 0"(z) = a. Given a labeled
graph representation of Y., 1, this last condition is trivially algorithmically

checkable.

2. Tt is easy to see that (AZ F) is equicontinuous if and only if £(X,,1) is a
bounded periodic language and that, given a labeled graph representation of

Yort1, it is algorithmically checkable if £(X9,, 1) is bounded periodic.

3. Every positively expansive CA is conjugated to (Xg.41,0). If we can com-

pute Yo, we can also check if there is some k-block automorphism between

D1 20117 (X2r42) and Py g1 (Xar42). 0

Nilpotency and equicontinuity are in general undecidable properties. It is actu-
ally unknown if positively expansiveness is a decidable property for general Cellular
Automata. Since nilpotency is undecidable, from Proposition 4.38 follows the un-

decidability of regularity.
Corollary 4.39. Regularity is an undecidable property.

To conclude, we remark that, as a consequence of Corollary 4.39, the membership

in class L3 of Kurka’s Language classification is undecidable.
Corollary 4.40. The membership in Kirka’s Languages classes is undecidable.

Question 4.3.3. Is sensitivity a decidable property for regular Cellular Automata?



Chapter 5

Computational Complexity of Cellular

Automata

In this chapter we study the intersection between computational and dynamical

properties of Cellular Automata (the results in this chapter are collected in [20]).

We interpret the process of computation in Cellular Automata as a flow toward
a subshift attractor. We show that it is possible to restate the halting problem as
the problem to decide if the omega limit of some clopen set converges to an halting
subshift attractor (that is, as the problem to decide if the orbits of all sequences
contained in some clopen set converge to some attractor eliged as halting set). We
say that the computational complexity of a cellular automaton (A%, ') with respect
to the halting subshift attractor Z is defined as the complexity of clopen sets con-
tained in the basin of attraction of Z. Since a basin of attraction is the countable
union of cylinder (clopen) sets and a cylinder set can be univocally described by a
word in A*, we can characterize the complexity of a basin of attraction by using for-
mal language theory. We propose a classification of Cellular Automata according to
the complexity of basin languages (Section 5.1). A cellular automaton with highest
computational complexity has at least one subshift attractor whose basin language
is strictly recursively enumerable.

Since our classification is based on purely topological concepts, it is easy to

explore the intersection classes with other well known topological classifications of
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Cellular Automata such as Attractors, Equicontinuity and Languages classifications
(Section 5.2). From the intersection classes we can provide necessary conditions for

a cellular automaton to be universal (Section 5.3).

5.1 Basin Language classification

In this section we are interested in the basins of attraction of subshift attractors.

We study the complezity of such basins by using formal language theory.

First, we show that the basin of attraction of a subshift attractor is always a dense

open set.

Proposition 5.1. The basin of every subshift attractor is a dense open set.

Proof. Let Z be a subshift attractor of (A% F). Then B(Z) is open so we just
need to show that every x € A” belongs to the closure of B(Z). Let consider
a clopen set V' C B(Z) and let € > 0. Since A% is mixing, there exists n > 0
such that § # o0™(%.(x)) NV C 0"(AB.(x)) N B(Z). Since Z is a subshift, for
all n € Z,o7™(V) C B(Z) and ) # B(z) N o ™(V) C B(x) N B(Z). Then
x € d(B(Z)). O
A qualitative characterization of basins of attraction is provided by formal lan-
guage theory. By Proposition 5.1, the basin B(Z) of a subshift attractor Z is defined
by the countable union of cylinder sets. A cylinder set can be (univocally) identified
by some word in A*. Considering basins of subshift attractors offers some advan-
tages respect to basins of general attractors. Since the basin of a subshift attractor
is o-invariant, we don’t need to take care of the coordinate of the cylinder in the
space AZ. This means that if a cylinder [u); is contained in the basin of some subshift
attractor Z, then for every j € Z, [u]; is contained in B(Z) (this implies that the

orbit of every configuration which contains the word u will converge to 7).
Definition 5.2. Let denote with

Lz={uec A |[u] CB(Z)} = A"\ LA\ B(Z))
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the basin language of the subshift attractor Z of (A%, F).

Note that, since B(Z) is open and o-invariant, A%\ B(Z) is either a subshift or it
is empty. The language complexity of Lz is a qualitative measure of the complezity
of B(Z). We show that the language £, can be at most recursively enumerable.

Next we show that £ can be strictly recursively enumerable.

Lemma 5.3. Let (AZ, F) be a cellular automaton. Let V. C A% be a clopen F-
invariant spreading set and let U C AZ be a clopen set such that w(U) C V. Then
dn € N such that F*(U) C V.

Proof. Since V is clopen, V = A%\ V is clopen and compact. For n € N, let define
X, ={r €U | F*z) ¢ V} CUNV. Since U is clopen, every X, is clopen.
Moreover, since V is F-invariant, Vn € N, X,,.; C X,,. Assume for absurd that,
Vn € N, X,, # 0. Then, by compactness, X = N,enX,, € U NV is not empty and
w(X) NV # 0 which is a contradiction. 0O

Proposition 5.4. Let Z be a subshift attractor of (A2, F). Then Lz is r.e.

Proof. Let U C A% be a clopen F-invariant spreading set such that w(U) = Z.
By Lemma 5.3, for every u € A*, [u] € B(Z) if and only if In € N such that
F™([u]) € U. Since U is a finite union of cylinder sets, given some v € A* and
k € N, the property F*([v]) C U is decidable. This implies that [u] C B(Z) is a
semidecidable question. Then Ly is at most recursively enumerable. O

The following proposition shows that every r.e. language recognition problem is
Turing-reducible to the basin language recognition problem for some cellular au-
tomaton. In particular we show that the halting problem for Turing Machines can
be rephrased in terms of reachability of a subshift attractor for Cellular Automata.

For instance, we show that the question:
does the Turing Machine M halt on input u € B*?
can be restated as

is w([p(u)]) € 27
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where ¢ : B* — A* is an injective computable mapping and Z is a subshift attractor

of some cellular automaton (A%, F).

Proposition 5.5. Let L C B* be a r.e. language. Then there is a cellular automaton
(AZ F) with a subshift attractor Z and an injective computable mapping ¢ : B* —
A* such that w € L if and only if p(u) € L.

Proof. Let M = (B,Q,0,qo, F') be a Turing machine recognizing language L. Let
define (AZ, F) where A = BUQ U {S, L, R}. The particle S is a spreading state.
The particle L moves to left one step at time and erases everything on its path
except when it encounters S and/or R: in that case generates a S particle. The
R particle behaves exactly like L but it moves on the right. The other particles
simulate the computation of the Turing machine M (the tape alphabet symbols
are always quiescent). When some erroneous step occurs (unknown transition, two
states collide, ..) then it is generated a particle S. If a final state is reached, then it
is generated a particle S. Note that S° is a subshift attractor.

Let define the computable mapping ¢ : B* — A* by ¢(uy...u,) = Lgouy...u, R.
It is easy to see that if a € B is some tape symbol of the Turing Machine then
w(...aaaLqouy...u, Raaa...) = S if and only if u = u;...u,, € L. Then u is accepted
by M if and only if w([LgouR]) = S*. O

We can classify Cellular Automata according to basin languages complexity.
Corollary 5.6. Every (A%, F) falls exactly in one of the following classes:
B1 37, £, = A*
B2 VZ, L, # A* is recursive

B3 37, Ly is strictly r.e.

According to the above Basin Language classification, Cellular Automata capable
of universal computation are in class B3. By the existence of intermediate Turing
degrees we cannot affirm that all Cellular Automata in class B3 are universal so if
we can provide some characterization for class B3 we just have necessary conditions

for the universality. Several natural questions easily arise.
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Question 5.1.1. Is the membership in Basin Language classes decidable?

Is it possible to characterize classes B1,B2,B3 in terms of the cardinality of
subshift attractors? For instance, every cellular automaton in B1 has just one

subshift attractor.

Question 5.1.2. Is there some cellular automaton with an infinite number of sub-

shift attractors in B2?

Question 5.1.3. Is there some cellular automaton with a finite number of subshift

attractors in B3?

5.2 Classes comparison

In this section we compare Basin Language classification with Attractors (Section
3.2.3), Equicontinuity (Section 3.2.2) and Language (Section 3.2.4) classifications.
First we show two techniques to build Cellular Automata with nice properties. These

two constructions will be useful to investigate the intersection classes.

The first construction is the product cellular automaton.

Definition 5.7. The product cellular automaton (A% x BZ, F x G) of (A%, F) with
(B*,@) is defined by V(v,y) € A* x B, (F x G)(z,y) = (F(x), G(y)).

The proof of the following lemmas are trivial.

Lemma 5.8. Let (AZx BZ F xG) be a product cellular automaton. Then (Z',Z") C
AZ x BZ is a (subshift) attractor of (AZ x BZ F x G) if and only if Z' and Z" are
(subshift) attractors of (A%, F) and (B%,G), respectively.

Lemma 5.9. Let (AZ,F) € Ai and let (B%,G) € Aj for 1 < i,j < 5. Then
(A x BEF x G) € Ak, k = Min{i,j}.

Lemma 5.10. Let (A%, F) € E3. Then (A% x BZ F x G) € E3 for every cellular
automaton (BZ, Q).
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Lemma 5.11. Let (A% F) € L3. Then (A% x BZ F x G) € L3 for every cellular
automaton (BZ, Q).

Lemma 5.12. Let (A2, F) € Bi and let (BZ,G) € Bj for 1 < i,j < 3. Then
(AZ x B2 F x G) € Bk, k = Max{i, j}.

Proof. By Lemma 5.8, the language £ of the subshift attractor Z = (2, Z") of
(AZ x BE F x G)is Lz = Lz x Lzn. Then, since Lz can be at most recursively
enumerable, the language complexity of Lz is trivially the highest between the
complexities of languages Lz and L. O
The second construction consists in adding a spreading state to a cellular au-

tomaton.

Definition 5.13. Let (A% F) be a CA and let s ¢ A, A, = AU {s}. Then, let
(AZ F,) denote the CA whose local rule f,: A>Tt — A, is defined by

fo(x_pyoyxy) = s if Jx; = s and fo(x_p,...;x.) = f(x_p, ..., x,) otherwise.

Lemma 5.14. Let (AZ, F) be a cellular automaton and let s ¢ A. Let consider
(AZ)Fy). Then (A% F,) € E2N A3 N (B2UB3). Moreover, (AZ F,) € B2 if and
only if (A2, F) € B1UB2.

Proof. By definition, s is a blocking word. Moreover, Z, = {s*} # w(A%) is a fixed
point attractor. Then (AZ F,) € E2N A3 and (AZ F,) ¢ B1. We now show that
adding a spreading state doesn’t affect the complexity of the basin languages of
(AZ F). The basin of attraction of Z, consists of the set of all biinfinite sequences
which contain at least one occurrence of s, that is B(Z,) = {x € AZ | Ji € Z,x; = s}.
Then, the basin language £, = {w € A% | 3i,w; = s} is recursive. It is easy to
see that Z is a subshift attractor of (AZ, F,) if and only if Z = w(U U [s]) where
U C A% is a clopen F-invariant spreading set for (A%, F). Let Z' = w(U) C AZ ba a
subshift attractor of (A%, F). Then Lz = Lz ULy, and Lz NLz = () which implies
that L is strictly recursively enumerable if and only if Ly is strictly recursively

enumerable. O
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5.2.1 Comparison with Language classification

By Theorem 3.47, the class L1 of bounded periodic Cellular Automata coincides with
the class E1 of equicontinuous Cellular Automata. We show that every equicontin-

uous cellular automaton has exactly one subshift attractor.

Proposition 5.15. Every equicontinuous cellular automaton has a unique subshift

attractor which is a mixing shift of finite type.

Proof. Since (A% F) is stable, then Z = w(A%) = F"(AZ%) for some n € N. Then
Z is a mixing sofic shift. We show that Z is actually a SFT. Since (AZ, F) is
equicontinuous, there exists p > 0 such that Vo € Z,Vi € N, F?(z) = z. (see
[36]). Let r be the radius of (A%, F') and let consider the shift of finite type defined
by Z@t) = {x € AL | Vi € Z,x4ompri € Lopr1(Z)}, ice. the shift of finite
type identified by the set of legal (2rp + 1)-blocks of Z. Obviously, Z C Z®rp+1),
Moreover, FP is the identity on Z(*?+D  then Z*r+h) C 7.
Now, assume for absurd that there exists a subshift attractor Z’ C Z. Let U be a
clopen spreading set such that w(U) = Z'. Since U # Z, UNZ # () and Z is mixing,
there exists y € Z and m € Z such that y € U and ¢™(y) ¢ U. Then, for every
i € N, F'P(c™(x)) = 0™(z) ¢ U contradicting the fact that U is spreading. O
More generally, the basins of attraction of regular Cellular Automata give rise

only to recursive basin languages.

Proposition 5.16. If (AZ F) is regular then VZ, Lz is recursive.

Proof. We show that for every u € A* the question [u] C B(Z) is decidable.

Let U C A% be a clopen F-invariant spreading set such that w(U) = Z. Let
k = max{|u| | [u] C U} and let v € A*. Since (A% F) is regular, by Theorem 4.36,
it is possible to compute a labeled graph representation G of its column factor Xy
where N = max{k, |v|}. Then w([u]) € Z if and only if there exists in G an infinite
path ¢; = g2 =3 ¢s... such that u C w; and [w;] € U,Vi € N. Given a labeled graph
G this property is easily decidable. O

Corollary 5.17. L1 c B1, L2NB1 # 0, L3 N B1 # (.
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Proof. Since every surjective cellular automaton is in B1, the proof follows from the
nonemptiness of the intersection classes Li N A5 # (), 1 < i < 3 (see [37]) and from
L1 = E1 C B1 (see Theorem 3.47 and Proposition 5.15). O

Corollary 5.18. L2 C B1UB2

Proof. The automaton of Example 3.49 has two subshift attractors and it is regular.

Then L2 N B2 # (). The conclusion follows from Proposition 5.16. O

Corollary 5.19. L3N B2 # (), B3 C L3.

Proof. Let (A% F) € L3N B1 and let (B% G) € L2 N B2. Then, by Lemma 5.11
and Lemma 5.12, (AZ x BZ F x ) € L3 N B2. The inclusion B3 C L3 follows

from Corollary 5.18. U
L1 L2 L3
| X | X | X
B2
B3

Figure 5.1: Basin Language and Languages classifications.

5.2.2 Comparison with Equicontinuity classification

Corollary 5.20. E1 C B1, E2NnB1 # (), E3NB1 # (), E4 C B1.

Proof. By Proposition 5.15, E1 C B1. Moreover E4 C A5 C B1. For the other two
cases, the proof follows from the nonemptiness of the intersection classes E: N A5 #

0,2 <i <4 (see [37]). O

Corollary 5.21. E2N B2 # (), E2N B3 # 0.
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Proof. Let (A2, F) € Bi,2 <i < 3,andlet s ¢ A. Then, by Lemma 5.14, (A2 F,) €
E2 N Bxe. ]

Corollary 5.22. E3NB2 # 0, E3N B3 # (.
Proof. Let (AZ F) € E3NB1 and let (B% G) € E2N Bi,2 < i < 3. Then, by
Lemma 5.10 and Lemma 5.12, (AZ x BZ, F x ) € E3 N Bi. O

E1 E2 E3 E4

| X | X | X | X

B2

B3

Figure 5.2: Basin Language and Equicontinuity classifications.

5.2.3 Comparison with Attractor classification

Corollary 5.23. A1NB1#0, A1NB2#(, A1NB3 # 0.

Proof. The identity cellular automaton ({0, 1}%, I') has disjoint attractors w([0]),w([1])
and, since it is surjective its unique subshift attractor is the full space. Then
A1NB1 # (. Let (B%,G) € Bi,1 < i < 3. Then, by Lemma 5.9 and Lemma
512, (A2 x B2 I x G) € A1 N Bi. O

Corollary 5.24. A2NB1 # 0, A2NB2 # (), A2N B3 # 0.

Proof. Let (A2, F) € A2 N B1 be the Hurley cellular automaton of Example 3.39.
Let (B%,G) € Bi,2 <i < 3 and let s ¢ B. By Lemma 5.14, (B%Z,G,) € A3 N Bi.
Then, by Lemma 5.9 and Lemma 5.12, (A% x BZ F x G,) € A2N Bi. O

Corollary 5.25. A3SNB1 =0, A3NB2# (), A3NB3 # 0.
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Proof. If (A% F) € A3 then it has at least two subshift attractors: the minimal

attractor and the maximal attractor. Then A3 N B1 = (). Let (A% F) € Bi,2 <

i <3 and s ¢ A. Then, by Lemma 5.14, (A%, F,) € A3 N Bi # (). O
To conclude, since a cellular automaton in A4 U A5 has only one attractor, we

can easily derive the intersection classes for A4 and AS5.

Corollary 5.26. A4 U A5 C B1.

A1 A2 A3 A4 A5
| X | X X | X
B2
B3

Figure 5.3: Basin Language and Attractors classifications

5.3 Necessary conditions for universality

In Section 5.1, we classified Cellular Automata according to the complexity of the
languages rising from the basins of attraction of subshift attractors (see Corollary
5.6). According to our classification, Cellular Automata capable of universal com-
putation are in our highest complexity class. In Section 5.2, we investigated the
intersection classes between our classification and Languages, Equicontinuity and
Attractors classifications (see figure 5.4). By exploring intersection classes we can
provide necessary conditions for Cellular Automata to be universal. Like in [16],
according to our model, a universal cellular automaton is not regular (then it is
not equicontinuous, not positively expansive and does not satisfy the shadowing
property) and is not minimal (minimal Cellular Automata cannot have two distinct
subshift attractors so they belong to our lowest complexity class). Several questions

remain open:
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. Is there some stable cellular automaton with an infinite number of subshift

attractors?
. Is the membership in our classes decidable?

. Is there some cellular automaton with an infinite number of subshift attractors

in class B2?

. Is there some cellular automaton with a finite number of subshift attractors

in class B3?

A1 A2 A3 A4 A5 E1 E2 E3 E4 L1 L2 L3
| X | X X | XX X | X
B2
B3

Figure 5.4: Classes comparison.
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