
AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa

DOTTORATO DI RICERCA
in

Automatica e Ricerca Operativa

Ciclo XXIII°

Settore scientifico-disciplinare di afferenza: ING-INF04

Soft Tissue Modeling for Virtual Reality Surgery

Simulator with Haptic Feedback

Presentata da: Dott. Ing. Gianluca De Novi

Coordinatore Dottorato Relatore

 Prof. Paolo Toth Prof. Claudio Melchiorri

Esame finale anno 2011

Author’s Web Page: http://phd.deis.unibo.it/?phd=gianluca.denovi@unibo.it

Author’s e-mail: gianluca.denovi@unibo.it

Author’s address:

DEIS – Dipartimento di Elettronica Informatica e Sistemistica

Alma Mater Studiorum – Università di Bologna

Viale Risorgimento 2

40 136 Bologna

Italia

tel. +39 051 2093001

fax. +39 051 2093073

web: http://www.deis.unibo.it

Dedicated to the little boy

who believes that sometimes

dreams can become reality

Contents

 Introduction 1

1 – Soft Tissue Models for Surgery Simulation

 1.1 – The spring damper mass model 5

 1.2 – 3D meshes 8

 1.3 – Collision detection 11

 1.4 – Cuttings and factures simulation 15

2 – Metaballs and Implicit Surfaces

2.1 – Metaballs 19

2.2 – Volume approximation using sphere trees 23

2.3 – Surface extraction 25

2.4 – Performances evaluation 28

3 – Fluid and Rigid Bodies Simulation

3.1 – Particles approximation 33

3.2 – Particles collision detection model 35

3.3 – Rigid body simulation 38

4 – Soft Tissue Model

4.1 – 3D mesh generation 41

4.2 – 3D mesh parameters assignment 47

4.3 – Blobby meshes vs FEM 51

5 – Local Interaction Model

5.1 – Local deformation model 53

5.2 – Local interaction model 56

5.3 – Multi-body interaction 59

5.4 – Multilayered surfaces 62

5.5 – Haptic textures 63

6 – Cuttings and Fractures Simulation

6.1 – Fractures simulation 67

6.2 – Cuttings simulation 70

6.3 – Cuttings optimization 75

7 – Conclusions and Final Remarks

7.1 – Developed Software 78

7.2 – Some results 83

7.3 – Conclusions and future works 85

List of Figures 87

Bibliography 91

Acknowledgements 93

Introduction

During the last thirty years, minimal invasive surgery (MIS) became an important

milestone in the surgery scenario, improving in a consistent way the patient’s safety

and reducing the time of permanence within hospitals. The MIS approach to surgery

allows the surgeon to perform a classic operation (open surgery) avoiding opening

the patient body, but just using few small holes where he/she can introduce particular

surgical tools and, in some cases, a camera too. There are many different MIS

surgical practices but the principal two categories are the laparoscopy (thorax and

abdomen) and catheter-based procedures. The first typology of operations requires

the use of a camera in order to see the surgical operation field and to control the

surgical tools. The use of MIS tools requires very strong manual skills. As a result,

surgeons need to spend a significant amount of time improving their skills surgical

through the use of trainers. Usually, surgeons need to use trainers for new surgical

procedures or for new surgical tools. There are different kind of trainers used to

improve the surgeons skills:

• Cadavers.

• Animals.

• Trainer boxes.

• Virtual reality simulation systems.

Introduction

- 2 -

The use of cadavers and animals raise ethical issues and are allowed in only a few

countries. Often, their use requires special permissions. One issue with this method

is represented by the fact that the animal should be alive because the behavior of the

in-vivo tissues is completely different from the dead tissues. The trainer box

represents an acceptable solution. It requires the use of a box in order to simulate the

abdomen or the thorax of the patient and it includes the use of latex/silicon organ

models. The trainer box results in an expensive educational tool because, after few

simulations, the silicon models need to be replaced and the behavior of those models

is not realistic.

Virtual reality simulators (VRS) represent an alternative training system provided

with very interesting features. A computer usually produces the VRS’s. Surgical

tools are interfaced with the computer and simulation software able to create, in

computer graphics (CG), a realistic surgical scene. With simulation software, it is

possible to simulate (in an approximate way) the aspect and the behavior of real

tissues. The VRS method presents interesting features like the replicability
1
, the

traceability
2
, and the simulation of critical events. Moreover, through the use of

haptic devices
3
 it is possible to interact with the virtual scene. This is expressed

through feeling all contact forces and consequently increasing the realism of the

experience. It is evident that the quality of the soft tissue model and the interaction

model used for the simulation are paramount in order to achieve a superior realism

for the simulation. This thesis presents a novel approach based on metaballs (a

particle used as field generator) and iso-surfaces for modeling soft/rigid tissues. With

this approach, the most efficient models can be obtained. Additionally, the

performances of surgery simulators may be increased when the high complexity of

the scene and of the surgical tasks is very demanding in terms of computational

requirements. Moreover, the new model improves collision detection performances

and adds the possibility to render multi-layer surfaces of different compliance, such

as soft tissues and bones. The following approach represents an excellent choice

1
 Possibility to simulate a particular situation multiple times.

2
 Possibility to track the user’s performance.

3
 The haptic tool is a particular kind of robot able to apply to the end-effector (handle held by the

user) a force (with a proper orientation and module) in order to re-create the sensation of the touch

of a virtual object.

Introduction

- 3 -

when the complexity of the scene models is more important than the accuracy of the

tissue behavior.

(a) Isocontour 2D (b) Isosurface 3D (c) Stomach model with 15

metaballs

Fig. 1. Implicit Model.

Haptic devices and virtual reality environments are tools more and are more

frequently and successfully used in training systems for surgical applications. In this

context, in order to simulate a realistic surgical scene, it is necessary to represent a

large number of entities, each of them often with very complex geometries. As

shown in [1], in real-time simulation environments there are two main approaches for

tissue representation: the first one consists of the spring-particle model; the second

depiction is represented by the implicit model [2], [3]. The spring-particle (or spring-

mass) model is more accurate than the implicit model, but it is quite expensive in

terms of computational requirements and cannot be used in simulations where there

are very complex geometries. On the other hand, the implicit model describes very

complex geometries with a little number of particles, but does not allow local

deformations of the surfaces if only few metaballs are used [4]. In this thesis we

present an extension of the implicit model that creates virtual environments for

surgical simulation with geometrically complex scenes, multi-body interactions, and

haptic feedback. The basic idea is to simplify the overall dynamic model of the

simulated entities by using the spring-particle model for the global deformations, and

an extended implicit model for the local deformations. In surgery, the organs’

geometry generally presents a rounded aspect, and in only a very few cases do they

have sharp edges/flat planes. One of the most convenient approaches presented in the

literature to create organic shapes is represented by the metaballs primitive (Blobby

Introduction

- 4 -

Modeling) [5], [6]. Using Blobby Modeling, the organs can be represented with a set

of few particles used as field generators and extracting an implicit surface (or iso-

surface) by setting a proper field threshold value τ (see Fig. 1[a], 1[b], and 1[c]). One

of the interesting features of the implicit approach is that it is possible to convert the

geometry in a sum of factors (particle fields) and then it is possible to achieve a fast

collision detection between different organs and between the organs and virtual

surgical tools. By adding dynamic properties to the implicit model, it is possible to

create geometrically complex scenes, with few particles (Fig. 1[c]) and with low

interaction costs. This thesis is organized as follows.

The first chapter presents a quick look at the soft tissue model typically used in the

surgical simulations through describing the principal features and limitations of

them. In the second chapter, the metaballs approach and how to use this technique to

approximate volumes in order to create very complex geometries for surgery

simulations is introduced. The third chapter presents how to use the metaballs in

order to simulate rigid bodies and fluids while the fourth chapter explains how

extend the metaballs approach in order to simulate soft tissue and how to reduce the

complexity of the geometry used for the simulation. In the fifth chapter, the

interaction model used for the proposed approach and how to extend it, simulating

multilayered surfaces using haptic textures is presented. The sixth chapter discusses

the simulation of cuttings and fractures of the tissue. Finally, the seventh chapter

shows the conclusions and the final remarks for the proposed approach.

Chapter 1

Soft Tissue Models for Surgery Simulation

This chapter briefly introduces the classic approach commonly used to develop

virtual reality surgery simulations, trying to show the principal advantages and

limitations of it.

1.1 - The Spring Damper Mass Model

The common approach used for commercial and academic simulations of soft tissues

for surgery is based on the spring-damper-mass model (SDM). The SDM approach

approximates volume using a 3D network of particles (points in �� �) connected by

visco-elastic links (Fig 1.1). Using the SDM model, it is possible to assign the

material properties the right value for the set of scalar variables m (mass), k (stiffness

or elasticity constant) and h (damping or viscosity constant). As initial conditions in

for the solution of the equations of the model, it is necessary to set the initial length

of the visco-elastic link l. It is possible also to use functions (Hyper-Elastic material)

instead of a constant value for k and h (k(x) and h(v), where x is the module of the

Soft Tissue Models for Surgery Simulation

- 6 -

deformation and v is the module of the velocity), but usually, it is used a linear

behavior in order to minimize the computational cost (reducing the accuracy).

Another improvement for the model is achieved by defining two-threshold values ��

as link deformation limit and �� as breaking limit.

Figure 1.1 – Visco-elastic Link model

At this point it is possible to define two data structures used to implement the SDM

model.

Particle

�	
		

		
	�
�
�� � �������� � ����� � ������
� ��������
� �� �
������
���� � ������
� �������
� � �!���� � ������
� "�������
� "� � ����#$ % �
$ �

� Link

�		

		�
���!!���� & '�������$ � ��!���
���� ����� ��(��
&��# ����� �� ���#�� �1 ������2 �����

�

It is possible to see that the data structures require some extra fields used to

implement the simulation algorithm in the right way. Considering only the basic

model with the first three parameters and considering k and h as constants, it is

possible to define the elastic component using the Hook law as:

"� + ,&- (1.1)

Where Fe represent the elastic force and x the deformation of the link.

Soft Tissue Models for Surgery Simulation

- 7 -

- + .�/′ , �0′ . 1 23�/′ , �0′ 3 , |�/ , �0|5. (1.2)

Where �/ and �0 are the initial positions of two particles and �/′ and �0′ the

positions of the same particles after the deformation.

For the viscose component, the viscose force can be defined as

"' + ,��. (1.3)

It is necessary to separate the forces, speed, and acceleration in two different

contributes (internal and external) because it is necessary to apply the dumping only

on internal forces and not, for instance, on the external forces. For example, if we

apply the link damping on the external forces the movements of the body under the

gravity effect, it is conditioned by the link damping and is not a realistic behavior. By

keeping the two contributes separate, the integration scheme become the following:

��2�5 + 9"�� ��
��2�5 + 9"�� ��

�2�5 + 9��2�5 �� : 9��2�5 ��.
Considering a deformation at the instant t, the link deformation can be expressed by

the following relations

�2�<5 + |�/2�<5 , �02�<5|; �2�05 + |�/2�05 , �02�05|;
Δd2�05 + �2�05 , �2�<5.

Therefore, using the (1.2) it becomes

-2�05 + ?�/2�05 , �02�05? · Δd2�05. (1.4)

This represents the direction of the elastic force. The forces on the two particles

connected at the two ends of the link at the generic instant t will be:

"�2�5 + ,&-2A5; "'2�5 + ,�-B 2�5.

Soft Tissue Models for Surgery Simulation

- 8 -

"0C/2�5 + "�2�5 : "'2�5.
"/C02�5 + ,"0C/2�5.

These forces will be attractive if Δ� D 0 and will be repulsive if Δ� F 0 (figure 1.2).

It is also important to study the behavior for the SDM model and the influences of

the integration method used on it, considering a discrete time scale, but it is not

relevant for this thesis focused on the optimization of the computational costs.

Figure 1.2 – Link deformation

1.2 - 3D Meshes

After the definition of the SDM model, it is important to define how to use it to

simulate a volume of soft tissue. The typical approach is to approximate the volume

as a network of particles and links (3D dynamic mesh). The connections scheme for

the geometry usually is the tetrahedron, so the entire volume is tessellate, using as

finite element a tetrahedron, as shown in the figure 1.3.

Soft Tissue Models for Surgery Simulation

- 9 -

Figure 1.3 – Tetrahedron and 3D mesh based on tetrahedron

Using this approach, it is possible to approximate the behavior/deformations of the

volume. The accuracy of the approximation depends from some parameters:

• Link’s properties (k, h, etc.).

• Masses distribution.

• The tessellation resolution.

It is easy to understand that, through the use of a high mesh resolution, it is possible

to obtain a more realistic behavior. Unfortunately, the computational cost for the

simulation depends on the mesh complexity, so it is necessary to find a precise

tradeoff between a good resolution and the desired performances of the simulation.

The mesh resolution also can be constant or variable. It is possible to use different

sizes of a tetrahedron; for example, one can increase the resolution close to the

edges, where it is important to have a higher accuracy, and reduce the rest of the

volume. For the surgery simulation, the typical approach is to use a constant mesh

resolution, because it is easier to tune all mesh parameters and it make the cut

simulation easier. When using a 3D mesh starting from a solid volume model for

TAC, CTScans, and so on, it is possible to use the marching tetrahedron algorithm

(derived from the marching cube [7] and extended to create volumetric meshes

instead of surfaces). The marching tetrahedron algorithm is able to create a regular

and uniform mesh that represents an excellent mesh for real-time simulations.

Soft Tissue Models for Surgery Simulation

- 10 -

Another important task performed by the marching tetrahedron algorithm is to create

the external surface for the model. This is necessary to draw the model as a normal

polygonal surface. The 3D mesh generation is a task that needs to be performed just

one time (off-line) and not during the simulation. All the mesh data is usually stored

in the following data structures:

• Particles array

• Links array

• Polygons array

Using the mentioned data structures, the simulation pipeline is organized as shown in

figure 1.4.

Figure 1.4 – Physic simulation loop

The first block of the pipeline computes the deformation of each link and, as a final

result, the forces to apply to each particle. The second block added to the visco-

elastic forces is the contribution of other kinds of forces: gravitational and magnetic,

for instance. The third stadium is performed by the integration of all model equations

using a proper integration method and selecting an appropriate value for the Δ�. A

right Δ� value is important for the simulation stability.

Soft Tissue Models for Surgery Simulation

- 11 -

Figure 1.5 – Graphics-Physics Synchronization scheme

After the integration, it is possible to determine the position of each particle. As a

result, it is possible to check if any particle violates the predetermined constraints

conditions. If so, an appropriate algorithm will recover the correct position for the

particle.

The physics loop must be interfaced with the graphics loop. Usually, these loops are

located on different threads and the physics thread runs faster than the graphics

thread. The synchronization of both threads work as shown in figure 1.5. The

synchronization block is required because the physics thread is faster than the

graphics thread and the geometry could change during the drawing task. Taking this

into consideration, it is possible to create a backup copy of the geometry for a

specific instant.

1.3 - Collision Detection

The collision detection task is very expensive to perform. In a surgery simulation, the

collision detection task needs to be performed between the surgical tools and the

anatomic tissues. In some cases, it is necessary to perform the collision detection

between multiple organs. This is known as a multi-body simulation. There are many

Soft Tissue Models for Surgery Simulation

- 12 -

different approaches to try in order to reduce the complexity of this task, but the

common approach is to use a space partitioning optimization. The space partitioning

algorithm reduces the number of tests that need to be performed between the surgical

tool geometry and the anatomic model geometry (polygon by polygon). Usually, the

surgical tool is approximated using a set of a few spheres. Consequently, the

collision test needs to be performed between each sphere of the set and each polygon

of the anatomic model.

Figure 1.6 – Octree space partitioning

Using space partitioning, it is possible to reduce the number of polygons on which

the test is performed. The classic space partitioning used for this task is the octree [8]

that creates space partitioning as shown in figure 1.6. Using an octree, the first test

performed is between the surgical tool and the first level bounding box; if the tool is

inside that box, the test is recursively performed between it and the eight sub-boxes

contained at the second level. If the tool is inside one of these, the test is performed

again until the last level. In the event of the last box of the last level containing any

polygons, the collision detection is performed between those polygons and the

surgical tool. If a collision is recognized, a proper algorithm for the collision

handling applies the appropriate reaction for the simulation. It is important to say that

the surgical tool can be present in more than one box at the last level, so the

resolution of the octree must be tuned on the right size in order to obtain the best

results. In case the simulator provides haptic feedback, it is indispensible implement

also contact forces between the tissue surface and the haptic tool. Assuming the

Soft Tissue Models for Surgery Simulation

- 13 -

surface is a triangular mesh, the contact force "G in a generic contact point p(x,y,z) is

represented as:

"H + �I · |JK̂ : MN̂ : O&|P

with

�I + QK̂ : RN̂ : S&T

and

UJMOV + WX0Y X0Z X0[X/Y X/Z X/[X�Y X�Z X�[\ U
]0]/]�V

 UQRSV + U�0Y �0Z �0[�/Y �/Z �/[��Y ��Z ��[V U
]0]/]�V.

Where �I is the normal on the triangle at the contact point p, �I0, �I/, �I� are the normal

vectors on the triangle vertices, "0, "/, "� (see figure 1.7) are the resultant forces on

the triangle vertices (particles), and]0,]�,]� are defined as

]0 + _2X : `5 , a2% : b5c2% : b5 , _2d : e5 ;
]/ + c2X : `5 , a2d : e5c2d : e5 , _2% : b5 ;

]� + 1 ,]0 ,]/;
with

c + �0Y , ��Y; _ + �/Y , ��Y; a + ��Y , �Y;
d + �0Z , ��Z; % + �/Z , ��Z; X + ��Z , �Z;
e + �0[, ��[; b + �/[, ��[; ` + ��[, �[;

�0,�/,��, are the three vertices of the triangular face.

Soft Tissue Models for Surgery Simulation

- 14 -

Figure 1.7 – Triangle normal and forces

After the definition of the tissue model and a basic interaction model, the physic

simulation layer is almost complete. In order to be comprehensive, the simulation

layer must be completed through adopting a proxy object algorithm (or God Object)

[9]. The proxy algorithm is important in that it eliminates incorrect behavior in the

haptic response (see figure 1.8).

a) Without the proxy object b) With the proxy

object

Figure 1.8 – Proxy object and soft tissue

In the figure 1.8a, without the proxy object, the surgical tool crosses the tissue

section and the tissue deformation becomes inconsistent with reality. By adding the

proxy object (figure 1.8b), however, the deformation results are coherent with reality

and the feedback force.

Soft Tissue Models for Surgery Simulation

- 15 -

1.4 - Cuttings and Fractures Simulation

The real-time cuts simulation represents an important issue today because it is very

difficult to find a strategy that retain the low complexity of 3D dynamic mesh.

Different approaches to this issue have advantages and disadvantages. The cut

simulation typically adds complexity to the dynamic mesh, but the collision detection

and the physics performances are influenced as well. There are two typical

approaches used today in the commercial simulation systems:

• Tetrahedrons Split (TS) [10][11].

• Tetrahedrons Removing (TR) [12].

The first approach is based on the real geometric tetrahedron cut during the collision

between the surgical tool and the dynamic mesh, as shown in figure 1.9a.

a) Tetrahedron Split b) Tetrahedron Removing

Figure 1.9 – Cut simulation

The TS represents a very accurate method but it is very expensive in terms of

computational cost and it presents a very dangerous mesh complexity increment

problem. Through subdividing each tetrahedron when the cutter touches the volume,

the complexity of the mesh grows very quickly. A size threshold that subdivides the

tetrahedron only if it is bigger than a specific size represents a possible solution; in

case it is smaller, the tetrahedron can be deleted like in the TR. The TR approach

decreases the complexity of the mesh by removing tetrahedron from the mesh. It is

Soft Tissue Models for Surgery Simulation

- 16 -

easy to implement and it is also a fast solution. A possible problem, however, is to

implement an algorithm able to recognize whether the cutter is touching an internal

or an external face before to remove the tetrahedron. Another limitation for the TR is

the fact that the mesh resolution should be very high in order to have a realistic cut.

If the resolution is low, and in real time simulations the resolution is typically low,

the incision looks serrate and not as smooth as a real cut (figure 1.10).

Figure 1.10 – Tetrahedron removing cut surface problem

A possible improvement of the TR approach could be to change the mesh resolution

locally to the cut in order to minimize the effect artifact (figure 1.11).

Figure 1.11 – TR improvement

Soft Tissue Models for Surgery Simulation

- 17 -

After increasing the mesh resolution in proximity to the cut, the global mesh

complexity grows. Assuming that the increase is acceptable when working on only a

small part of the scene, the algorithm results are faster because each tetrahedron

could be replaced by a specific template (figure 1.12), without calculate the right tool

tissue intersection as in the TS.

Figure 1.12 – Decomposition of tetrahedron by edge split

For the fracture simulation, the typical approach is to work on each link. The first test

is performed in order to evaluate if the link deformation is between �� (deformation

threshold) and �� (breaking threshold) in order to evaluate if the link is going to be

deformed or broken. In case of deformation, the algorithm updates the link with a

new length. This is usually a stretched length percentage. If the deformation is over �� , the link is deleted from the data structure along with all the tetrahedron

containing that link. This adds new triangles on the surface (figure 1.13).

Soft Tissue Models for Surgery Simulation

- 18 -

Figure 1.13 – Link breaking

For the fracture simulation, it is possible to have a incorrect behavior (ghost

connection) on the links level when the only connection between two pieces of

tissue is for example only a link, because drawing the polygonal surface there is not a

connection between the two pieces (Figure 1.14).

Figure 1.14 – Ghost connection

A solution to avoid a ghost connection is to check periodically the dynamic mesh in

proximity to the broken links in order to remove eventual ghost links. Typically in

the surgical simulation, the ghost connection issue is neglected.

Chapter 2

Metaballs and Implicit Surfaces

This chapter introduces the metaball concept, how to use it to approximate

volumes, and how to extract the external surface in order to draw it. After the

metaballs introduction, the chapter ends with an evaluation of the volume

approximation task and a short analysis of all advantages that could be obtained

using the presented model.

2.1 - Metaballs

After the discussion about the typical approach used for the soft tissue and organs

modeling in the surgical simulation in the previous chapter, this chapter introduces

an alternative approach, its advantages (in terms of computational cost, scene

complexity and so on), and its limitations. The proposed approach works using the

metaball [13] primitive in order to model the surgical scene. Before describing the

general approach, it is indispensible to define the metaball and how it works.

Metaballs and implicit surfaces

- 20 -

A metaball can be considered as a field generator. Therefore, in order to define the

metaball, we need the following information (assuming to work in a tridimensional

space):

• The source position �� � ��.

• The field Intensity I.

• The field function �: �� 	 � or �:� 	 � .

Then we can say that the field intensity in a generic point � � �� respect to the

source �� could be expressed as:

�
�� � �

, �, �� � �

 �
��� �
� � ���� �
� � ����
��

 �
�� � ��� .
2.1�
Where � is the distance between the point � and the source ��. In general, it is

possible to use a power greater than two, so the field function becomes:

�
�� � �

, �, �� � �
��

 �
��� �
� � ���� �
� � �������

��
 �
�� � ��� .
2.2�

where m represents the desired power. Considering the generic field function �

, �, ��, and setting a proper threshold value �, the metaball is obtained as an iso-

energetic surface for this field. There are different kinds of field functions with

different properties (figure 2.1 – table 2.1):

Metaballs and implicit surfaces

- 21 -

Quadratic

�
�� � 1��

Blobby

Molecules

�
�� � !"#$%

a, related to the height

b, related to the

standard deviation.

Meta-Balls

�
�� � &
1 � 4�(9*(� 17�,9*, � 22��9*� �0 .

a, scaling factor

b, is the maximum

distance a control

primitive contributes to

the field.

Soft Object

�
�� �
/01
02
1 � 3��*� � 0 4 � 4 */33 2
1 � �*�� */3 4 � 4 *0 * 4 �

.

a, scales the function

b, each control primitive

has no influence after a

distance b.

Table 2.1 – Field function examples

Figure 2.1 – Metaballs Field functions (see table 2.1)

Metaballs and implicit surfaces

- 22 -

The behavior of two metaballs at different distances is shown in figure 2.2.

Figure 2.2 – Interaction of metaballs

Finally, the desired 3D model can be obtained with n metaballs as the volume

defined by:

6 � 7 �

, �, �� 89:; <; < = �>

, �, �� ? �@
>A� B
2.3�

The iso-surface will be

6C � 7 �

, �, �� 89:; <; < = �>

, �, �� � �@
>A� B

At this point, it is possible to create different surfaces after collecting several

metaballs (figure 2.3).

Figure 2.3 – Metaballs modeling

Metaballs and implicit surfaces

- 23 -

It is also possible to use field generators (metaballs) with negative field intensity, so

the interaction between two metaballs with different signs look like in figure 2.4

Figure 2.4 – Two metaballs with different sign

2.2 - Volume approximation using sphere trees

As discussed above, in our approach the 3D organ model must be created using

metaballs. Then, the first step for the representation of an organ in a virtual

environment is to obtain satisfactory 3D models optimized for this approach. The

modeling task can be performed either manually, drawing the organ models and then

tuning all the particle fields and setting proper threshold value, or by an automatic

procedure for all these steps.

a) Polygonal model b) First approximation c) Accurate

Figure 2.5 – Approximated 3D model [14]

The procedural approach requires an initial 3D model (polygonal or volumetric)

generated by CAD programs or acquired by a 3D scanner (or a MRI/CTS device).

The use of a sphere tree structure, as shown in Figure 2, can approximate the initial

Metaballs and implicit surfaces

- 24 -

geometry. Different techniques have been proposed for generating the sphere tree

[15] [16] [8]; in our case, however, we need to use an algorithm able to generate a

solid sphere model (and not a cave model) that minimizes the overall number of

spheres. A recursive octree structure [8] can be used to generate a solid sphere tree,

but in this case the obtained tree makes use only of spheres with a fixed diameter for

each level of detail (LOD), (figure 2.6) and therefore, the number of the spheres used

for the volume representation is not optimized.

Figure 2.6 – Octree sphere tree for different levels of detail

The number of spheres can be minimized by means of the algorithm presented by

[15], able to generate an optimized and solid sphere tree, in terms of number of

spheres, the model fitting, and the spheres overlapping (figure 2.5). This tree can be

used to generate the organ surface and also to detect collisions. At this point, it is

necessary to convert the obtained sphere tree in a blobby model. This is achieved by

converting each sphere, contained in the preferred level of the sphere tree, in a field

generator (a metaball). Since the tree is made by spheres with different radius �>, and

since their surfaces are described by the same value �, then a different field intensity

�> must be used in (2.2) for each metaball.

�>
D� � �>�>� 	 �> � ��>�

In this way, each sphere of the octree is approximated with a spherical iso-surface

with the same radius �>. Since, according to figure 2.3, all the metaballs contribute to

the global field, locally the distance of the iso-surface from its center :> is normally

Metaballs and implicit surfaces

- 25 -

larger than ri, and therefore an adjunctive tuning of the final value of τ may be

necessary. For a proper value of τ, the resultant iso-surface appears as shown in

figure 2.7.

a) Original model b) Sphere tree c) Blobby model

Figure 2.7 – Conversion steps from a sphere tree to a metaballs model

Once we obtained the conversion from sphere tree to metaballs model for the 3D

model visualization, the resulting iso-surface, which approximated the original model

surface, can be easily converted into a polygonal mesh by adopting the marching

cube algorithm [7], or a derived algorithm optimized for real-time segmentation. It is

important to observe that with few metaballs it is very easy to create very complex

organ shapes. Experimental results have shown that the use of a power greater than

two (2.2) allows better results in surface approximation. In our case, we used the

(2.2) with m = 6. Obviously, the obtained blobby model is just an approximation of

the real one and the quality depends on the LOD used in the sphere tree.

2.3 - Surface Extraction

As shown in figure 2.7, there is a possibility to create an automatic algorithm able to

convert an initial organ model into a blobby model. It is important to note that this

process needs to be done just one time, and during the simulation the only part that

needs to be done is the surface extraction (figure 2.8). The surface extraction task is

usually performed by the marching cube algorithm (MC) [7]. The MC subdivides the

model bounding box in a tridimensional grid and performs a test for each sub-cube

inside the grid in order to recognize if it is empty or not. If the sub-cube is full, the

Metaballs and implicit surfaces

MC performs a test on each vertex in order to determine if there are vertices inside

and outside the volume; if so, the MC places a polygonal pattern (excluding the

combinations of completely full and empty cubes) (figure 2.9a).

Figure 2.8

Considering that there are eight vertices for the cube, there are 254 (256

combinations. In order to improve the performance of the algorithm, it is possible to

subdivide all combinations in 15 groups (figure 2.9b) through counting the number

of vertices inside the volume and adding a pattern orientation.

a) 2D Example b)

Metaballs and implicit surfaces

- 26 -

MC performs a test on each vertex in order to determine if there are vertices inside

and outside the volume; if so, the MC places a polygonal pattern (excluding the

binations of completely full and empty cubes) (figure 2.9a).

Figure 2.8 – Model synthesis/simulation workflow

Considering that there are eight vertices for the cube, there are 254 (256

combinations. In order to improve the performance of the algorithm, it is possible to

subdivide all combinations in 15 groups (figure 2.9b) through counting the number

s inside the volume and adding a pattern orientation.

2D Example b) Pattern groups

Figure 2.9 – Marching cube

MC performs a test on each vertex in order to determine if there are vertices inside

and outside the volume; if so, the MC places a polygonal pattern (excluding the

Considering that there are eight vertices for the cube, there are 254 (256-2)

combinations. In order to improve the performance of the algorithm, it is possible to

subdivide all combinations in 15 groups (figure 2.9b) through counting the number

Pattern groups

Metaballs and implicit surfaces

- 27 -

Using a fixed pattern of polygons, the result of the polygonization process is not very

accurate and the results are not as smooth as the expected result (figure 2.10a). It is

necessary, then, to refine the polygonal pattern in order to fit the iso-surface in a

better way using a surface-smoothing filter (figure 2.10b). Another problem for the

obtained model could be the high resolution of the obtained polygonal mesh; it is

possible to reduce it in order to work with a less complex geometry (figure 2.10c).

There are many optimizations for the MC algorithm and it can extract very complex

meshes starting from blobby models and volumetric data. Usually, it is used in

medical imaging in order to extract surfaces from the DICOM files. DICOM files

are the standard file format for the volumetric data acquired in CT-Scans, MRI-Scans

and so on. Through extracting multiple surface layers (different gray levels

processing the volumetric data), it is possible to obtain 3D models as shown in figure

2.11.

a) Marching cube surface b) Surface smoothing c) Polygon reduction surface

Figure 2.10 – Surface refinement

Metaballs and implicit surfaces

- 28 -

Figure 2.11 – Examples of marching cube application in medical imaging for tissue

segmentation (Image by the Institute of Mathematics and Computer Science in Medicine

University of Hamburg.)

2.4 - Performances Evaluation

As stated previously, the blobby model generation process needs to be performed just

one time before the simulated operation. It is also important, however, to evaluate the

performance for this task. A first evaluation may focus on the best approach used for

the sphere tree generation. There are many sphere tree algorithms. This section will

examine the performances of those algorithms when attempting to approximate a

pattern of 3D models (Table 2.2).

Metaballs and implicit surfaces

- 29 -

Original Model Level 2 Level 3

Table 2.2 – 3D model pattern for test and the approximation using the [14] at level 2

and 3

As we use the sphere trees for real-time interactive simulations, we are most

interested in the worst-case error for each level of the sphere tree. This occurs in an

upper bound on the gap that will exist between two objects that are thought to be in

contact. A number of additional algorithms are also included. The Hybrid algorithm

is a post-processed version of the Grid algorithm; each sphere in the sphere tree has

been replaced with one that covers the same region of the object but has minimum

error rather than minimum volume. The Optimised algorithm is the Combined

algorithm (both based on [15]) with a simplex based optimization that further

Metaballs and implicit surfaces

- 30 -

improves the fit of the sphere prior to its inclusion in the sphere tree. The "Opt 0%"

and "Opt 5%" are also optimized versions of the "Combined" algorithm except that

the algorithm is allowed to throw away spheres as long as the worst error is less than

100% or 105% of its original value.

 Level 2 Level 3

B
u

n
n

y

D
ra

g
o

n

B
lo

c
k

Table 2.3 – Sphere tree approximation algorithm benchmark1

1
 The Benchmark is by G.Bradshaw on the website http://isg.cs.tcd.ie/spheretree/

Metaballs and implicit surfaces

- 31 -

After investigating the table, it is easy to understand that the best result is obtained

with the Optimised algorithm that is based on the medial axis approximation

algorithm [15]. Another test has been performed between the octree and the Medial

Axis Approximation (MAA) in order to show the the sphere mumber reduction and

also the quality of the obtained mesh after the polygonization process [17].

 Sphere Tree Blobby Model Settings

S
to

m
a

c
h

Sphere =412

LOD =4

m = 6

algorithm=octree

L
iv

e
r

Sphere =707

LOD =4

m = 6

algorithm=octree

S
to

m
a
c
h

Sphere =48

LOD =3

m = 6

algorithm=MAA

L
iv

e
r

Sphere =366

LOD =3

m = 6

algorithm=MAA

Table 2.4 – Octree vs MAA comparation in terms of number of sphere and shape

quality.

Metaballs and implicit surfaces

- 32 -

Looking at table 2.4, it is also easy to recognize that the MAA offers best results in

terms of number of spheres and in terms of surface approximation. It creates a

smooth surface that fits the original surface in the best way.

Chapter 3

Fluids and Rigid Bodies Simulation

After the description of the blobby model generation, it is also interesting to

understand how to use metaballs in order to simulate fluids and rigid bodies. In

surgical simulations, the use of rigid body simulation is not as important as the

soft tissue. It needs to be considered, however, because in the body there are

also bones. The fluid simulation is important as well in order to simulate blood

and other kinds of physiological fluids.

3.1 – Particles Based Fluid Model

A reason to use metaballs for surgery simulations is born of the fact that metaballs

are commonly used for the fluid simulation (figure 3.1). Moreover, during the

operations, blood and other kinds of physiological fluids are often present, so it is

very important to have a fluid model. If the fluid model is similar to the tissue model,

it is an advantage in terms of complexity reduction for the simulation. As told in the

chapter two, the metaballs are points (or particles) in the space with a scalar field

associated; therefore, the fluids can be simulated using the metaballs and the implicit

Fluids and Rigid Bodies Simulation

- 34 -

surfaces. Before using metaballs, a new value for each particle, the ray r, must be

added.

Figure 3.1 – Fluid simulation using metaballs.

It is important to note that the ray r is not equivalent to the threshold value τ. At this

point, it is possible to define a data structure for each particle:

All data present in the structure are required for the physic simulation, but the ray is

important for the collision detection between the fluid particles. Usually, the ray is

the same for all the particles. For this reason, it is defined a single general structure

for the fluid and another for each particle, storing all particles inside an array.

After the physical simulation for each particle, it is possible to use the marching cube

algorithm in order to draw the fluid mesh. Using a real-time reflection and refraction,

a variety of fluids can be simulated in a very realistic way (figure 3.2).

Fluids and Rigid Bodies Simulation

- 35 -

Figure 3.2 – Realistic fluid simulation (www.maiani.eu)

3.2 - Particles Collision Detection Model

The theoretical fluid model is an incompressible fluid and the real fluids are quasi-

incompressible; in order to obtain a quasi-incompressible behavior from our model, a

collision model between all fluid particles must be defined.

a) No collision handling b) Soft collision c) Quasi

- hard Collision

Figure 3.3 – Fluid approximation using particles under the gravity effect

If a collision-handling algorithm is not used, a realistic behavior will not be obtained

because the particles could be overlapped (Figure 3.1a). It is possible to define the

collision model as an elastic collision, in order to allow a proper particle overlapping.

Additionally, it can be used in order to simulate a realistic behavior (figure 3.1b) and

it can create a stiff elastic constant a quasi-incompressible fluid (figure 3.1.c). The

Fluids and Rigid Bodies Simulation

- 36 -

contact force module between two particles i, in collision with the particle j in the

collision model should as follows.

Figure 3.4 – Fluid particles contact model

�� � ���� � �	
 � �
� �
�� � 0
��� � �	
 � �
� �
�� � ����� � �	
 � �
� �
����

That force will be distributed on the two particles using their masses:

���	:�� � �
� �
�
 ���	 ��� · ��; ����:	� � �
� �
�
 �	�	 ��� · ��;

considering the same mass value

���	:�� � �
� �
�
 · ��
2 ; ����:	� � �
� �
�
 · ��

2 ;
then

���	:�� � � ����:	�
It is easy to observe how the simulation pipeline is similar to the soft tissue pipeline,

but here the particle collision is handled inside the constraint application block

(figure 3.4).

Fluids and Rigid Bodies Simulation

- 37 -

Figure 3.5 – Fluid simulation block

Regarding the fluid, it is possible to simulate also other properties of the fluid

(density, adhesion, cohesion and so on). It is evident that collision detection

represents a possible problem in terms of computational performances, because a

collision test should be performed between each particle. A possible solution for this

problem is represented by the use of an octree space partitioning, in order to perform

the test just between few particles per time. There is also a cohesion force �!"

between the fluid particles, so if the distance is shorter than a specific distance

threshold #$, there is an adjunctive elastic forces that keep the fluid particles close.

Figure 3.6 – Cohesion force between particles

�!"��:�� � �
� �
�� · %& ' �2� � #$� �(���&) �2� � #$� 0 �
where

(� #$ � �& � 2��
�#$ � 2��

and

& � �
� �
��.

Fluids and Rigid Bodies Simulation

- 38 -

Through the interaction model, complex fluid properties are easily simulated. The

same model used for the fluid simulation is also used for the smoke simulation (In

MIS, a particular kind of surgical tool is utilizes to burn the tissues; often this

releases smoke or steam.).

Figure 3.7 – Smoke simulation using particles and a quadratic blur effect.

3.3 – Rigid body simulation

Using metaballs, it is possible to simulate rigid body, and the approach is the

standard used for polygonal meshes, but calculating collision between spheres

instead of polygons. For the rigid body simulation, the definition of a data structure

is required in order to keep all dynamic and structural data (source 3.1)

typedef struct

{

 //constants

 float Mass; // total mass

 Matrix_3x3 Ibs; // Inertial matrix

 Matrix_3x3 InvIbs; // Inverse Inertial matrix

Fluids and Rigid Bodies Simulation

- 39 -

 //Status variables

 Vector Position; // the body position in the 3D space

 Vector CM; // center of mass

 Matrix_3x3 Rotation; // rotation matrix

 Vector P; // Linear momentum

 Vector L; // angular momentum

 // auxiliar variables

 Vector Vl; // linear speed

 Vector Va; // angular speed

 //Q.tà calcolate

 Vector Force; // Force

 Vector Torque; // Momentum

}Body;

Source 3.1 – Rigid body data structure

After the data definition, there is the simulation flow that is structured as a loop (in a

thread) where several operations are performed (figure 3.5). The collision detection

task is exactly the same used for the fluid simulation and, when a collision occurs on

a generic point
 on the rigid body, the resultant force is applied on the entire body

as shown in the source 3.2.

void AddForce(Body * body,Point3D v,Vector F)

{

 float d;

 Vector b,u;

 b = (v - body->CM);

 body->Torque+=F^b;

 u = b;

 d = b.Module();

 u.Scale((b*F)/(d*d));

 body->Force+=u;

}

Source 3.2 – Rigid body collision handling

Fluids and Rigid Bodies Simulation

- 40 -

After the definition of collision handling, the last step is equation integration. Rigid

bodies are usually not used in the surgical simulation field; the focus is on an

accurate way to simulate soft tissues. The rigid bodies are usually treated using

classic approaches, are less interesting from a simulation point of view, and are easy

to simulate with good results; for those reasons, rigid bodies are not a goal for this

current thesis.

Chapter 4

Soft Tissue Model

After an introduction regarding the use of the metaballs for the fluid simulation

and a quick introduction to the rigid body simulation, this chapter will explain how

to extend the metaballs model in order to simulate soft tissues.

4.1 – 3D mesh generation

As shown in the chapter one, in order to simulate a dense soft tissue organ, it is

indispensible to create a tridimensional mesh of particles and visco-elastic links.

Using the metaballs approach, the creation of the tridimensional mesh can be

difficult when the resolution of the sphere tree is low. The first topic that needs to be

discussed is the strategy used for an automatic network creation starting from the

sphere tree. As we know, the behavior of a soft tissue model can be strongly

influenced by the connection topology used for the tridimensional mesh. In some

cases, a wrong connection topology could create an odd behavior that does not match

with the desired (real) one.

Soft Tissue Model

- 42 -

a) b) c)

Figure 4.1-Cloth model

If in an elastic cloth simulation, we use a mesh model as shown in figure 4.1a, we

will obtain two wrong behavior (non-elastic deformations) that do not match with the

behavior of a real elastic cloth. In figure 4.1.b, the elastic cloth collapses in a single

segment without deforming any link (the deformation is stable); in the figure 4.1c,

the elastic cloth can be deformed also without an elastic deformation. Adopting a

connection scheme, as shown in figure 4.2a using cross-links (green and violet links)

and an optimized version in 4.2b, is a possible solution to the non-elastic

deformations for the elastic cloth simulation.

a) b)

Figure 4.2 – Full Elastic deformable cloth model

For tridimensional meshes, the topology connection requires a complex building

process. In our case, after the conversion from volumetric model (or polygonal

model) to a sphere tree, we obtain only a set of spheres. A first approach to create a

tridimensional mesh on the sphere tree could be to connect, with visco-elastic links,

all the overlapped spheres (neighbor connection strategy - figure 4.3a).

Soft Tissue Model

- 43 -

a) b)

Figure 4.3 –Neighbor connection strategy

The neighbor connection strategy works well and is easy to implement, but it is not

able to avoid non-elastic deformation (figure 4.3b). Usually, the non-elastic

deformation is obtained for all spheres connected with less than three links (not

aligned). It is possible to setup a proper algorithm able to recognize if a specific

sphere is connected in the right way with the neighboring spheres, and to connect it

with the closest sphere in case there are less than three connection links. In general,

this approach needs to be integrated with a manual procedure, because it still

presents some problems, such as the ghost links as shown in figure 4.4a. During the

creation of the mesh and the creation of the correct minimal number of connections

for each particle, through choosing the closest particles, it is possible to create ghost

links, connecting a specific particle with another one that is outside the local body

surface.

a) b)

Figure 4.4 – Ghost link problem

Soft Tissue Model

- 44 -

As discussed in chapter one, the avoidance of the ghost link is an expensive task for

the fracture simulation; however, in this case, we need to perform the mesh

generation task only one time, before to start the simulation. As a result, it is

possible to implement a proper algorithm able to recognize and fix ghost links

through creating a new proper connection scheme. During mesh generation, there are

also other situations where the neighbor approach does not produce the best

connection topology. For a right connection scheme, all the links (the first three) for

each particle should be connected with other three non-coplanar particles, creating a

tetrahedron (figure 4.5a). If the three closest particles are coplanar with the first one,

the connection topology does not work well because the tridimensional deformations

cannot have the same elastic behavior on a direction normal to the particles plane.

All forces applied in that direction will not be correctly balanced by the mesh (figure

4.5b).

a) b)

Figure 4.5 – Local topological connections

Nevertheless, the opportunity to create tetrahedral connections is not always

possible. In some specific cases, a coplanar connection is the only possible scheme.

If we consider, for example, a minimal blobby model (using a minimal sphere set)

for the intestines, the only possibility is to use a segment of spheres. In this last case

all spheres present two connections, except the first and the last sphere (figure 4.3b);

the chain connection scheme does not work because it allows non-elastic

deformation. In this case, the neighbor strategy produced a satisfactory result,

introducing cross-links (figure 4.5).

Soft Tissue Model

- 45 -

Figure 4.6 – Intestine simulation model using cross-links [18]

Through the use of cross-links in a chain, it is possible to avoid the non-elastic

deformation. This occurs because when trying to bend a short section of the chain,

the cross-links create a resistance force to balance the bending force.

Figure 4.7 – Mesh resolution growth on the edges

An interesting property of the sphere tree approximation using the [14] is that the

resolution of the sphere tree grows close the edges, increasing the number of spheres

and reducing the ray in order to fit the original model in the best way. As told in

chapter two, the blobby approach works well for the surgical simulations, because,

by having rounded organ models, the number of spheres tends to be low. The high

sphere tree resolution on the edges allows the simulation to indirectly describe all

parts of the models where it is easier to have a deformation (more deformable areas),

providing a better accuracy (figure 4.7). In some cases in the educational surgery

simulations, the main goal is not the accuracy of the model but the simulation of a

realistic behavior. In those cases, the neighbor connection strategy extended with the

Soft Tissue Model

- 46 -

non-elastic deformation avoidance is not the best approach, because it is not able to

assure a correct elastic behavior. Consider a semi-rigid chain of metaballs: using the

neighbor strategy it is not possible to achieve realistic elastic behavior, because the

chain is not able to react to the orthogonal forces and the result is the bending of the

chain. A possible solution is represented by the possibility to use a Bounding

Connection Set that is an external set of links connected between each particle and

the edge of the model-bounding box (figure 4.8).

Figure 4.8 – Bounding Connection Set

Using the Bounding Connection Set, it is possible to keep a reasonable stiffness for

shapes thin and long. During the simulation flow, the bounding box vertices will not

be considered as particles; this means that all the link force will load on the

connected particle. Also, the bounding box vertices will not be considered for

collision detection. Instead, they will be considered as “ghost particles”. The

bounding box does not have mass. There are different types of connection strategies

and, as mentioned at the beginning of this section, the results in terms of

computational performances and in terms of behavior depends from the right choice

of the kind of model and when considering the required dynamics. By setting all

tissue parameters inside the mesh and deciding on the best connection strategy, the

final behavior during the simulation should be able to satisfy the initial requirements

creating bubble deformation objects (figure 4.9).

Soft Tissue Model

- 47 -

Figure 4.9 – Sphere tree deformation using neighbor connection strategy

4.2 – 3D mesh parameters assignment

After the tridimensional mesh generation, in order to simulate the tissue in the

accurate way, it is indispensible to assign to the dynamic structure the right

parameters (m, k, h, etc). The first step before starting the soft tissue properties

assignment is to estimate the visco-elastic properties of different kinds of tissues

through the use of apposite devices. There are different possible methods to

characterize a specific tissue:

• In vitro rheology.

• In vivo rheology.

• Elastometry.

• Solving inverse problems.

The in vitro rheology is performed on an in vitro tissue sample using a punch load

that deforms the tissue and using a load cell to recognize the tissue response (figure

4.10a). The technology to perform this kind of test is mature and it can be performed

in a laboratory, but the results are not very realistic for soft tissues (perfusion of the

tissues).

Soft Tissue Model

- 48 -

a) In vitro rheology. b) In vivo rheology (CIMIT).

Figure 4.10 – Tissue characterization by rheology

The in vivo rheology is performed on living tissues can provide stress/strain

relationship at several locations, but the results are influenced by the boundary

conditions and are not well understood (figure 4.10b). The elastometry (MR,

Ultrasound) measure property inside any organ in not invasive, but is valid today

only for linear elastic materials. An elastometry require a complicate registration

task between the ultrasound and the MRI datasets before the dataset merging. The

inverse problem approach is well suited for surgery simulation (computational

approach), but requires the geometry before and after the deformation in order to

estimate all mechanical properties of the tissue (figure 4.11).

Figure 4.11 - Inverse problem approach for the soft tissue parameters estimation

(INRIA)

Soft Tissue Model

- 49 -

After the tissue characterization process, a methodology to place the real data into

the simulated model in the correct way needs to be identified. A good example for

this procedure is the creation of the simulated model, starting from a volumetric

dataset, acquired with a CTScan and/or a MRI device (figure 4.12a).

a) CTScan Slice b) Liver-metaballs

overlapping

c) visco-elastic paths

evaluation

Figure 4.12 – Material properties extraction from a volumetric dataset

Assuming that we have a tridimensional dataset with all mechanical properties

encoded in each voxel, we can start overlapping the sphere model to the dataset,

grabbing all the mechanical/structural properties. For the masses for example, we can

estimate the mass of the tissue contained in a single sphere:

��� �
4
3��

	
�

Where
� represents the estimated mass of a single voxel. In this case, a possible

error is represented by the sphere intersection, because the shared volume is

considered multiple times; in order to reduce this last error, the sphere mass ���
could be estimated as

��� �
������

where
�� is the volume for the sphere i normalized by the entire model volume
���

�� �

�

��� ;

��� ��
4
3���

	�

�
.

Soft Tissue Model

- 50 -

���� is the entire model mass (obtained summing the weight of each voxel). As

mentioned earlier, assuming that all mechanical properties are encoded in each voxel,

it is possible to estimate the mechanical properties for the visco-elastic link between

two spheres. For example, consider estimating average properties of a set of links

connected between two parallel planes orthogonal to the spheres connection link

(figure 4.12b, 4.12c). Taking into account only a single link inside the set, it is

possible to assign the link elastic property as a sum of each voxel contribute.

Figure 4.13 – Link properties estimation using voxels

Assuming a linear elastic behavior (constant elastic coefficients) and a set of m

voxels using a j index, the entire link elasticity ��� can be expressed by

��� �
∏ ������
∑ ������

.

The breaking threshold ��� (and for the deformation threshold ��) could be used for

the lower or the average

��� � min#���, … , ���& '� ��� �
∑ �������
� .

��� � min#���, … , ���& '� ��� �
∑ �������
� .

For the viscosity constant (is using the average value too.

Soft Tissue Model

- 51 -

Today, the parameter assignment task for a volume of non-linear and anisotropic

tissue is still an open issue. For a normal trainer (not for surgical planning), usually

the tissue model is approximated with a linear and isotropic behavior. In the case of

surgical planning applications, the approach considers more realistic behavior but

still uses strong approximations and the tissue model remains the FEM, because it

can provide more accurate results due the mesh regularity.

4.3 – Blobby meshes versus FEM

As shown before, using metaballs and the described procedure, it is possible to

generate a tridimensional model able to simulate a soft tissue volume. In regards to

the FEM (finite element Model), there are some differences. A first difference is that

in the FEM (for example meshes of tetrahedrons), the finite element is a tetrahedron;

each tetrahedron can be deformed by simply deforming its links. Using the blobby

meshes, the “finite element” is just a sphere that cannot be deformed, and the model

deformation is solely performed on the mesh links. This last feature means that there

is a limit for the model deformation, and over this limit it is not possible to deform

the body, introducing a behavior not coherent with the reality. The normal FEM

model, under a large force, can collapse to a zero thickness model, allowing another

non-realistic situation.

Figure 4.14 – FEM vs Blobby mesh compression

Soft Tissue Model

- 52 -

Another important limitation of the blobby meshes is that by using a MAA sphere

tree, the resultant model does not allow some types of deformations (i.e. local

deformations) due the low resolution of the dynamic mesh (figure 4.15a, 4.15b).

a) Octree blobby mesh. b) MAA blobby mesh.

Figure 4.15 – Local deformation on mesh reduction

From a different point of view, the reduction of the mesh resolution determines a

growth of the computing performances, and it could be an important feature for all

simulation applications where accuracy is not the most important feature.

Chapter 5

Local Interaction Model

In the previous chapters, the metaballs approach for the soft tissue modeling was

introduced, showing its advantages and limitations. This chapter will explain

techniques able to improve that approach, adding very important features for the

surgery simulation development, and also providing haptic feedback.

5.1 – Local Deformation Model

As explained in the previous chapter, the metaballs approach to the soft tissue

presents some limitations using the MAA for the creation of the sphere tree. Through

obtaining a low resolution mesh, it is possible to keep a global behavior, but it is not

possible to obtain local deformations. During a surgery simulation, the global model

behavior is very important, but the local deformations are important too: they

increase the realism of the interaction and, in some cases, it is indispensible for

particular kinds of surgical tools. The local deformations, however, are usually

hidden behind the surgical tool and it is possible to recognize them just in proximity

to the surgical tool. The fact that the local deformations are usually hidden means

Local Interaction Model

- 54 -

their accuracy can be unimportant in terms of visual perception. Starting from this

last consideration, we can expect to introduce a new approximation about the body

deformations that is not coherent with reality but is acceptable in terms of

computational cost reduction for the simulation. The introduced assumption is to

consider the body deformations as a contribute of two different kinds of deformation

 (Figure 5.1):

• Local deformation.

• Global deformation.

By expecting to split the deformations in two different contributes, it is possible to

keep the global deformation provided by the low resolution mesh and it is possible to

simulate “fake” local deformations using a trick.

Figure 5.1 – Tissue deformation as sum of a local and a global body deformation

As mentioned in the chapter two, when working with metaballs it is possible to use

metaballs with different signs, and the effect on the iso-surface is a local deformation

(using a metaball of a proper ray). The local deformation is exactly what we need in

order to simulate the interaction with a surgical tool (figure 5.2). Assuming the use of

positive field generators for the organ model, the only actions needed is to associate a

negative metaball to the surgical tool. When the surgical tool touches the iso-surface

it will look deformed, simulating a local deformation with an acceptable realism.

Local Interaction Model

- 55 -

Figure 5.2 – Simulation of a local deformation using metaballs

Considering a single point tool model, the local surface deformation that we can

obtain has a concave profile, completely different from the real deformation that we

should obtain in a real case (Figure 5.3a and 5.3b).

a) Real local deformation b) Fake local deformation

Figure 5.3 – Real single point deformation vs. fake local deformation

Adopting a multipoint tool model, the local deformation shape can be improved; in

fact, the local deformation will copy the exact shape of the surgical tool (Figure 5.4).

Figure 5.4 – Multipoint local deformation

Local Interaction Model

- 56 -

The proposed local deformation technique can simulate local deformations only from

a visual point of view. In order to work in an accurate way, it needs to be supported

by a physic point of view with the intention of generating feedback forces. By using

the proposed approach, switching the tool’s particle signs, and modeling the surgical

tool with a proper particle set, it is possible to simulate very complicated local

deformations, to improve the realism of the simulation, and to keep the simulation

operating at optimal speed.

5.2 – Local Interaction Model

After we improved the local deformation between the surgical tool and the organ

model, it is indispensible to define a collision detection model optimized for the

metaballs approach and able to exploit all features discussed in the past chapters. In

general, a blobby model is just a way to generate a potential field and an iso-surface

with a desired shape. Inside the iso-surface, the field intensity will be higher than

outside, defining a scalar collision detection function implicitly able to evaluate if a

collision occurs in a generic point � � �� is inside as:

���� � 	 1, Φ���
 � ������0, Φ��� � � �� ��� ��������1, Φ��� � ������� !
where Φ��� is the field function able to describe the field intensity in a generic point �

Φ��� �"�#���$
#%&

�#��� is the field function for the metaball i in the point p. In this manner, it is

possible to understand if the generic point p is inside (���� � 1) or outside (���� ��1) the volume, or if it is on the iso-surface (���� � 0). Moreover, it is also

possible to approximate the minimal distance '� between the point p with (�)� � *
and the iso-surface calculating.

Local Interaction Model

- 57 -

'��*� + |�-.�*� � �-.���| � / 0��* � ���1 /

considering as Ic the intensity of the closest field generator. The approximation

introduces an error on the minimal distance computation, but by using a high value

for m, it can be neglected. This last value could be used, in case of haptic rendering,

for the interaction force modulation, approximating the surgical tool such as a point.

In case a collision occurs, i.e. ��)� � 1, it is possible to define a local reaction force

vector ��, with amplitude given by the Hook Law as:

 2�3�)�2 � 4'5�*�
where k is related to the local stiffness of the object, and direction as

�63��� � ∑ 8) � �#|) � �#|9$#%&
:∑ 8) � �#|) � �#|9$#%& : �5.1�

that follows the field anti-gradient �=(��� direction. This force can be used for

haptic rendering purposes, e.g. for the god object method, [9]. In terms of collision

response, it is possible to use the same approach discussed in the section 3.2,

modeling the collision as a soft collision, distributing the contact forces to the

surgical tool and on the soft tissue.

/* Selective field function for the metaball I

 in the point p */

float GetFieldValue(int i, point p)

{

 return metaball[i].Ic/((p - metaball[i].c).Module);

}

Local Interaction Model

- 58 -

// Global field function for the entire organ model

float GetFieldIntensity(point p)

{

 float field=0;

 /* Sum of the contributes of each metaball

 In the variable field */

 for(int i=0; i<metaballs; i++)

 {

 field += GetFieldValue(i, p);

 }

 return field;

}

/* Collision detection function evaluate the field in a

 specific point in the space */

int CheckCollision(point p)

{

 float f;

 f = GetFieldIntensity(p);

 if(f < SurfaceThreshold) return -1; //Outside

 if(f > SurfaceThreshold) return 1; //Inside

 if(f == SurfaceThreshold) return 0;

 /* On the iso-surface */

}

…

//somewhere inside the code

if(CheckCollision(p) >= 0)

{

 // collision response algorithm

}

…

Source 5.1 – Collision detection and handling

Local Interaction Model

- 59 -

Moreover, the surface friction can also be modeled on the iso-surface by means of

classic formulations, considering �5 and �$, the tangential and normal component to

the surface of the force vector �3. For example, a static condition is obtained if

 | �5 | > ?@ | �$|,

while a viscous force friction can be computed as

 | �A| � �?A | �$| BC5 ,

where ?@; ?@ are the static and dynamic friction coefficients, and BC5 the direction of

the tangential velocity. From the algorithm point of view, the collision detection can

be written as in the source 5.1. When looking at the source code, it is evident that by

using the metaballs approach, the collision detection is very fast because it does not

need to perform complicated polygons intersections; the collision detection requires

only the evaluation of a field function in a specific point of the space, with a linear

complexity. From a computational point of view, this last result is very important,

because using the classic approach (meshes of FEM), the collision detection was

very expensive and tricky to implement. At this point, the principal advantages

achieved using the metaballs approach can be represented by the possibility of

reducing the mesh complexity, keeping the local deformation and a very fast

collision detection; these are two important results that save a considerable amount

of time that can be spent on the execution of other tasks such as improving the speed

and the complexity of the simulation. The source code 5.1 does not implement any

optimization, but in the case of complex geometries, with a big number of metaballs

(i.e. n > 50k), a spatial subdivision could be implemented in order to improve the

computational performances. It is necessary to remark that with more than 50k

metaballs it is possible to create very complex geometries.

Local Interaction Model

- 60 -

5.3 – Multi-Body Interaction

There are several advantages obtained through the use of the metaballs approach; it is

possible to save a great deal of computational power that could be spent improving

the realism of the surgical scene. A first important feature that can be implemented is

the multi-body simulation, allowing the simulation to manage multiple soft/hard

bodies. The multi-body extension is based on the same technique used for the local

interaction: using different signs for the local deformation and a soft particle

collision response. The first difference, however, is that by having more than two

bodies, the use of two signs is not a possible solution, so the multi-body extension

requires the use of a body ID for each metaball. This is necessary to determine if a

specific metaball belongs to a specific body. By using the body ID, it is possible to

sum the contribute of all metaballs with the same ID and to subtract the contribute

for the others.

…

// Global field function for the entire organ model

float GetFieldIntensity(int BodyID, point p)

{

 float field=0;

 /* Sum of the contributes of each metaball

 In the variable field */

 for(int i=0; i<metaballs; i++)

 {

 if(BodyID == metaball[i].ID)

 field += GetFieldValue(i, p);

 else

 field -= GetFieldValue(i, p);

 }

 return field;

}

Local Interaction Model

- 61 -

/* Collision detection function */

int CheckCollision(int BodyID, point p)

{

 float f;

 f = GetFieldIntensity(BodyID, p);

 if(f < SurfaceThreshold) return -1; //Outside

 if(f > SurfaceThreshold) return 1; //Inside

 if(f == SurfaceThreshold) return 0;

 /* On the iso-surface */

}

…

//somewhere inside the code

if(CheckCollision(Body[i].ID, p) >= 0)

{ /* collision response algorithm */ }

…

Source 5.2 – Multi-body Collision detection and handling

Through extending the simulation with the multi-body feature, the field function and

the collision detection changes as shown in the source 5.2 (all modifications are in

red). The last modification for the collision detection slightly increase the complexity

when a single body was just linearly dependant to n (number of metaballs) to � EF

where m is the number of bodies inside the simulation.

Figure 5.5 – Multi-body contact

Local Interaction Model

- 62 -

When using two metaballs with different ID’s, the contact should looks like in Figure

5.5. Another important modification is for the drawing task. This needs to be

modified because in the multi-body case, each body should be drawn separately,

spending more time extracting each body surface separately. In order to improve the

multi-body collision detection and response in a scene with a large number of

metaballs, the octree space partitioning represents a good solution. A single metaball

as field generator generates an infinite field from the source position; knowing this,

before using an octree, it is indispensible to define a cutoff threshold in order to

identify where the field should be approximate to zero. In this way, it is possible to

say that each metaball field has effect on a specific distance and over that distance

the field effect can be ignored.

5.4 – Multilayered Surfaces

Another possible improvement that could easily achieved for the interaction model is

the multilayered model. The human body is made of organs (e.g. muscles)

overlapped with bones or other tissues with different visco-elastic properties. In the

multilayer case, the local interaction force �3 needs to be calculated considering all

the contributions of the different layers. With the metaballs approach, the multi-layer

extension can be easily obtained by considering more threshold values (or using

particular rules in the field generation algorithm, but in this thesis we only consider

the multi-threshold case for simplicity). If we consider n iso-surfaces, we can define

the local interaction force as obtained by n springs, each of them with different

properties, connected in series, see figure. 5.6.

Figure 5.6 – Multilayered local contact model

Local Interaction Model

- 63 -

As an example, consider two surfaces G. and GH, respectively with thickness I.; IH,

and stiffness constants 4.; 4H (in this case, linear spring are used for simplicity, but

more complex functions could be considered as well). If a deformation JK is applied

on the external organ surface, the deformation on each spring can be computed from:

∆K. � 4H4. M 4H ∆K, ∆KH � 4.4. M 4H ∆K.

Considering the equivalent stiffness 4NO

4NO � 4.4H4. M 4H

the amplitude of the resultant elastic force is

 |�3| � 4NO∆K � 4NO�∆K. M ∆KH�.

Figure 5.7 – Global-local interaction

while its direction is the same as �63��� for the haptic tool, see (5.1). The computed

force is projected also on the closer particles and then to their visco-elastic links,

resulting in a deformation of the global model, figure 5.7. The global deformation

can be obtained only through a local interaction and deformation; the feedback force

provided to the haptic tool will be the sum of two contributes: a local interaction

Local Interaction Model

- 64 -

force and a global deformation force that will be computed as the resultant force

applied by the tridimensional mesh on the touched particles.

5.5 – Haptic Textures

The last improvement proposed, using metaballs, is the use of haptic textures. When

using a haptic tool, what we can perceive is usually only the shape of the object; on

good haptic simulations, friction can be perceived as well. The haptic textures are a

technique able to improve the realism of touch through the addition of the perception

of the surface texture (roughness, regularity, and so on). There are different ways to

simulate the surface texture:

• Procedural textures.

• Lookup texture.

The procedural textures are computed at runtime, using usually the model surface

coordinate system (a bi-dimensional coordinate system), adopting a function of two

coordinates able to perturb the surface geometry, stiffness and friction, adding an

offset.

�5: � H Q � .
A lookup texture is a bi-dimensional matrix (like a bitmap), mapped on the model

surface and is similar to a common graphic texture (figure 5.8).

Figure 5.8 – Lookup Textures

Local Interaction Model

- 65 -

The lookup textures require a mapping function too. As anticipated, this is a haptic

texture.

In case the haptic texture is used as a displacement map, adding an offset on the

surface geometry (we should perceive that also from the graphic rendering using a

bump-map
2
), for the metaballs approach perturbs the field function before the surface

extraction, then the local field function becomes:

���, R, S� � ��T ο5�R, S�.
Where ο5�R , S � is the texture value at the coordinate R, S (respect to the center of

each metaball, or to the center of the object, or using a iso-surface parameterization).

In this case, the computation of the elastic force is more complex because the

contribution of the texture is calculated for all the metaballs close to the haptic tool.

Considering the use of two stiffness haptic textures (for two overlapped iso-surfaces)

on the surfaces, it is possible to express k1, k2 as a sum of two contributions

 4. � 4@. M 45.�R , S �; 4H � 4@H M 45H�R, S �;
where 4@., 4@H, are the constant stiffness values of the tissues, and 45.�R , S �, 45H�R , S �, are the haptic texture values, at the coordinates R, S (again

respect to the center of each metaball, or to the center of the object, or using a iso-

surface parameterization).

Finally, considering the texture for the friction case, the friction constants (only the

external surface can be considered) should be modeled in the following way.

 ?V � ?A M ?5A�R , S �; ?W � ?@ M ?5A�R, S �;

2
 In computer graphics, the bump-map or normal-map is a particular kind of texture able to simulate

the roughness of a polygon perturbing the surface normal and adding a local shading effect.

Local Interaction Model

- 66 -

where ?A, ?@ are the respectively the dynamic and static friction constants values,

and ?5A�R , S �, ?5@�R , S �, are the respectively the dynamic and static friction

texture values, at the coordinates R, S.

Chapter 6

Cuttings and Fractures Simulation

Fractures and cuttings are the last two issues discussed in this thesis. This

chapter will close all requirements for a surgical simulation. How the metaballs

approach can improve the development of a surgery simulation, allowing an easy

cut and fracture simulation, will be examined. Other tasks required for surgical

operations, such as the suture task, are exactly the same used for alternative

approaches so they will be not discussed inside this thesis, which is focused on

the identification of a general methodology for the soft tissue simulation in the

surgical field.

6.1 – Fracture Simulation

Fractures simulation is a task that is not often performed during operations, because

the usual way to remove pieces of tissue is using cutting tools in order to avoid tissue

damages. Fracture simulations are performed, however, where it is not possible to cut

directly the tissue. For the metaballs approach, the adopted fracture model can be

exactly the same used for the classic FEM meshes, working directly on the

connection links. As mentioned in the chapter four, each link has a breaking

threshold that is used in order to recognize if the link should be broken during the

Cuttings and Fracture Simulation

- 68 -

deformation. With respect to the FEM model, in the fracture simulation, using the

breaking threshold works better because when the links are broken and the volume is

subdivided; it is not necessary to rebuild the fracture internal surface, because the

surface will automatically generated during the iso-surface extraction with the

marching cube (figure 6.1a, 6.1b).

a) Fracture simulation on the sphere tree

b) Fracture simulation from the iso-surface point of view

Figure 6.1 – Fracture simulation using the breaking threshold

It is possible to perform the fracture simulation saving precious time that can be

spent on improving other elements. Unfortunately, when using the same technique

for the fracture simulation, it is not possible to avoid ghost links (figure 6.2). If the

model geometry is not extremely complex, it is possible to implement a proper

algorithm for ghost link avoidance. A possible limitation for the fracture simulation

using metaballs is the extremely rounded aspect of the fractures; this does not match

Cuttings and Fracture Simulation

- 69 -

with reality that usually is not rounded and looks more similar to the FEM fracture

simulation.

Figure 6.2 – Ghost links problem on metaballs

This fact happens because if the broken link connects two big metaballs, the fracture

will have as profile, the metaball profile, and will look rounded. In the case of FEM

fractures, the fracture follows the tetrahedral mesh and the fracture assumes an

irregular aspect and severs with very clear edges. Usually, the fractures in surgery are

applied on small pieces of tissues, then under this last hypothesis the rounded aspect

could be acceptable, considering the other advantages achieved using this method. In

terms of algorithm complexity, the fracture simulation could be implemented as

shown in the source 6.1 (C++ code snippet for the link computation block, see figure

1.4).

TMetaball * Metaballs; // metaballs pipeline

TLink * link; // link pipeline

unsigned int Linknum; // number of links in the pipeline

/*Remove the link[index] from the model pipeline*/

int RemoveLinkfromPipeline(int index);

/*Compute the link[index] deformation and the forces for the

 metaballs p1 and p2 connected to the link */

void ComputeDeformationForce(int index);

Cuttings and Fracture Simulation

- 70 -

…

// link forces computation block, inside the simulation loop

void ComputeLinkDeformation(…)

{

 float Stress; // measure the normalized link stress

 // links computation loop

 for(int i=0;i<Linknum;i++)

 {

 …

 // calculating the stress factor

 Stress =((link[i].p2-link[i].p1).Module())/link[i].len;

 /* if the stress factor is greater than tb the link

 Will be broken*/

 if(Stress>=link[i].tb)

 {

 RemoveLinkfromPipeline(i);

 }

 else // else the deformation force will be computed.

 {

 ComputeDeformationForce(i);

 }

 …

 }

}

…

Source 6.1 – Fracture simulation

6.2 – Cuttings Simulation

The cutting simulation is still an open issue today in the surgery simulation field

because is a very expensive and complex task. In the first chapter, there is a brief

discussion about this topic and an introduction on the related problems. Usually,

using the classic approaches, it was possible to perform cuts only on small portions

Cuttings and Fracture Simulation

- 71 -

of the scene, in order to reduce the complexity and the computational costs. Using

the metaballs approach, the complexity of the cuttings simulation is strongly reduced,

offering the possibility to perform cuts everywhere inside the surgical scene.

The first difference between the metaballs approach and FEM is that, in FEM, the cut

is performed on the mesh element (tetrahedron or different one), but in the metaballs

case, it is performed on the sphere, just because in this case the sphere is the minimal

volume element. The cut on the sphere is performed by recursively splitting the

sphere into a pattern of sub-spheres (reducing the sphere size). In case the spheres are

of a specific smaller size, the sphere is simply removed. As an example, using a 2D

version of this algorithm, we can assume to have a circles pattern (2D version of the

spheres pattern) like the pattern in figure 6.3.

a) 4 circles. b) 4 Circles. c) 8 circles.

Figure 6.3 – Circles pattern

When a circle that is greater than a specific size is touched by a surgical tool, the

circle is replaced recursively by a circles pattern with a proper size (the pattern will

be contained inside the starting sphere, figure 6.4a, 6.4b, 6.4c, 6.4d); if the circle is

smaller than the minimum size, the sphere is deleted (figure 6.4e).

a b c d e

Figure 6.4 – Circle splitting simulating the cut

Cuttings and Fracture Simulation

- 72 -

Applying the splitting technique on a more complex soft tissue model, under the

gravity effect, the cut can be performed as shown in figure 6.5.

Figure 6.5 – Model-cutting simulation using metaballs splitting

Extending the model to the tridimensional case the spheres pattern could be as in

figure 6.6.

Figure 6.6 – Splitting spheres pattern

The metaball split is not enough for the cutting simulation, because the replaced

metaball was connected with visco-elastic links to other metaballs (see figure 6.5).

After the split, it is necessary to connect the new spheres pattern to the existing

metaballs mesh. The new spheres pattern will come already connected internally and

each sub-sphere will be connected with the external spheres previously connected

with the replaced one (figure 6.7).

Cuttings and Fracture Simulation

- 73 -

Figure 6.7 – Spheres pattern internal and external connections

Remarking in few words the cutting algorithm can be expressed in few rules:

i. Each sphere touched by the cutting tool will be replaced by a specific pattern

internally connected in a specific way.

ii. Each sphere of the pattern will be connected with all external spheres

previously connected with the replaced sphere and the elasticity constant will

be subdivided for each new link.

iii. The mass of a replaced sphere will be subdivided between all new spheres.

iv. The recursive splitting will be stopped on a minimum sphere size (minimum

ray); after that, each sphere and its link will be removed.

In terms of implementation, the C++ snippet shows the very low complexity of the

described algorithm.

// minimum sphere ray

#define SPHERE_MIN_RAY 0.25f

Point3D CutterPos; // Cutter position

/* Split a metaball, remove the old metaball

 and add the new pattern at the end of the metaballs

 array creating the metaballs connections*/

void SplitMetaball(int index){…}

Cuttings and Fracture Simulation

- 74 -

// Remove a metaball from the array

void RemoveMetaball(int index){…}

/* Routine for the Cutting simulation using a metaballs

 splitting approach */

void CutModelSim()

{

 for(int i=0; i<metaballsnum; i++)

 {

 if((CutterPos - metaball[i].c).Module<metaball[i].ray)

 {

 if(metaball[i].ray >= SPHERE_MIN_RAY)

 {

 SplitMetaball(i); /* New metaballs will be

 added at the end of the

 metaballs array */

 i--; /*because the sphere set will be

 shifted by 1 to the left*/

 metaballsnum+=5; /* 6 spheres in the

 pattern minus the old one*/

 }

 else

 {

 RemoveMetaball(i);

 metaballsnum--;

 i--; /*because the sphere array will be

 shifted by 1 to the left*/

 }

 }

 }

}

Source 6.2 – Cutting simulation using metaballs splitting

Cuttings and Fracture Simulation

- 75 -

From the source code analysis, it is easy to understand that the algorithm

implementation is not difficult, because the cut simulation is working on the sphere

collision, not on complex polygon intersections, and can be implemented in a

without issue.

6.3 – Cuttings Optimization

The metaballs cutting, such as the FEM mesh cutting (using the tetrahedron

splitting), increases the mesh complexity for each metaball split. A first difference is

that a single metaball split increases the mesh complexity faster than the tetrahedron

split. For example, in the metaball split, using a six sphere set, the metaball number

is increased by five and the internal links number increases by fifteen plus five times

the number of external links (table 6.1).

Split Before the Split After the Split Total

Metaballs 1 6 + 6

Internal Links 0 15 +15

External Links 5 30 +35

Table 6.1 – Single metaball split complexity

Considering that when we split a metaball to simulate a cut, the old sphere is

removed and at least one sphere of the set is removed; the table for the cut become

such as the table 6.2.

Cut Before the Cut After the Cut Total

Metaballs 1 6-1 + 4

Internal Links 0 15-5 +10

External Links 5 30-5 +20

Table 6.2 – Single metaball cut complexity

Cuttings and Fracture Simulation

- 76 -

Finally, the result is that for a single metaball connected with five external links a

single cut increase the metaballs by five and the links by thirty. At the second level

of cutting, each single sphere will be connected with four old internal links plus five

old external links, and then the complexity will grow quickly. A possible solution for

the proposed approach is to connect each external link after the sphere replacement,

not with all the new metaballs, but just with the closest one.

Figure 6.8 – Closest link optimization

Adopting the proposed optimization, it is possible to reduce the complexity growth,

but this solution does not assure the non-elastic deformations avoidance. Another

possible solution could be to connect sequentially each external link with the closest

unconnected metaball. Even so, considering that the number of metaballs is very low,

thanks to the MAA, the complexity growth represents an unimportant problem

(usually < 10k for a complex surgical scene).

Usually after a cut, inside the mesh there may be residual metaballs, very small and

completely contained in other greater spheres connected with them; if so, it is

possible to remove those spheres. In order to understand if a sphere is contained

inside another one, a test must be performed considering the maximum link

extension before the breaking threshold (figure 6.9). If a sphere is contained inside

another one at the maximum link extension, that sphere will be removed from the

mesh, reducing the mesh complexity. This last test will be performed at runtime, on

only the new spheres introduced by the pattern used for the replacement; this is

inexpensive.

Cuttings and Fracture Simulation

- 77 -

Figure 6.9 – Sphere bounding test

After this last discussion, it is easy to understand that the metaballs approach for the

soft tissue simulation can create a lot of advantages for surgery simulation

development, allowing the implementation of very sophisticated simulations,

keeping a low complexity and requiring a less expensive computational load.

Chapter 7

Conclusions and Final Remarks

Fractures and cuttings are the last two issues studied during this research, which

will close all requirements for a surgical simulation. This chapter will discuss

about the achieved results (showing quickly the developed software) and about

the future development for the metaballs approach.

7.1 – Developed Software

During the study about the proposed approach for soft tissue modeling, some

software was developed in order to measure the achieved performances and in order

to improve the general model finding specific optimization. The first system

developed was an upgrade to existing software (developed for the master degree) and

was a surgery simulator based on mesh of tetrahedrons. The development of this first

simulation software was motivated by the need to investigate all the limitations for

the FEM model for real-time application. The name of the first simulation system

was LapLab (figure 7.1).

Conclusions and Final Remarks

- 79 -

Figure 7.1 – LapLab laparoscopic surgery simulator

The LapLab simulator was able to provide haptic feedback using two phantoms

Omni (by SensAble) connected to two real laparoscopic surgical devices (figure 7.2).

Figure 7.2 – Haptic tools interface

The implementation of a first simulation system based on FEM evidenced all

problems and limitations due the complexity of the collision detection algorithm and

response. The only way to work in real time was to create a surgical scene not

Conclusions and Final Remarks

- 80 -

completely active where it was possible to perform specific tasks only on specific

regions and the rest of the scene was simply a static mesh. Again, during the studies,

other programs were developed in order to evaluate advantages and disadvantages

for the metaballs and FEM approaches (figure 7.3).

Figure 7.3 – Extra software for the FEM and metaballs performances testing

For the metaballs approach, a simulation system was developed also for the

DaVinci’s robot (by Intuitive Surgical), where it was possible to interact with the

whole surgical scene, keeping good computational performances (figure 7.4).

Conclusions and Final Remarks

- 81 -

Figure 7.4 – DaVinci’s robot simulation using metaballs

For the conversion process between polygonal to blobby model, an existing software

“SphereTree” was downloaded from the MAA author’s website (figure 7.5).

Figure 7.5 – Sphere tree conversion tool

For the volumetric dataset manipulation, a real-time viewer was developed (figure

7.6).

Conclusions and Final Remarks

- 82 -

Figure 7.6 – Real-time volumetric dataset viewer

The generated sphere tree is an ASCII file containing all spheres information for the

organ model and is encoded as shown in the list 7.1.

LOD=2 SOHERES=338

X Y Z RAY

-0.245934 0.238859 0.002782 0.162877

0.717871 0.980993 0.040382 0.604956

0.999624 0.933256 0.149999 0.605926

0.696139 0.839686 0.441099 0.676269

0.801164 0.744722 0.643430 0.640624

1.076958 0.848909 0.375355 0.631199

1.117090 0.756500 0.601770 0.604258

0.437312 0.744141 0.635375 0.681932

1.014425 0.435329 1.025270 0.462862

0.687898 0.201090 1.219617 0.349213

0.857836 0.685575 0.740987 0.659986

0.654323 0.482980 0.981736 0.580711

0.853320 0.367978 1.045842 0.421638

0.429632 0.532271 0.921596 0.635001

1.153475 0.493751 0.966038 0.487104

1.540440 0.347572 1.065334 0.365552

Conclusions and Final Remarks

- 83 -

1.121983 0.273116 1.157629 0.388830

1.660789 0.700315 0.629767 0.560564

1.382047 0.763577 0.543778 0.606373

1.405957 1.055469 0.355325 0.355389

1.302149 0.559545 0.892073 0.549431

1.316268 0.673130 0.737208 0.565536

…

List 7.1 – Sphere object file

All blobby models are encoded in spheres files; at the simulation startup, all

metaballs data are generated before starting the simulation loop.

7.2 – Results

Thinking about the basic requirements for a surgery simulator, the metaballs

approach for soft tissue modeling was developed. The principal result of this research

is that the proposed approach is able to satisfy all requirements. In terms of

computational performances, some tests were performed, using a liver and a stomach

model and modeling the surgical tool with one and two particles.

Conclusions and Final Remarks

- 84 -

Figure 7.7 – Blobby models used for the benchmark

The tests were performed in order to evaluate the computational load when

increasing the number of metaballs on the model side and on the tool side.

Performing the test using a slow computer and without an implementation on GPU,

the results are very positive, showing that the proposed approach really increases the

potential for the development of a surgery simulation system (see table 7.1).

Model Type Total Mtbls Contact Points Dynamic Graphic

Stomach 48 1 ~1000Hz ~68Hz

Stomach 48 2 ~996Hz ~68Hz

Liver 366 1 ~893Hz ~66Hz

Liver 366 2 ~888Hz ~65Hz

Mitral Valve 421* 8 ~714Hz ~49Hz

* Performed merging together a metaballs model and a little FEM model.

Table 7.1 – Metaballs performances benchmark

The hardware platform used for the test was equipped with a 1.8 Ghz 32bit CPU,

4Gb RAM, GPU nVIDIA GeForce 7950GTX, bus PCI-Express. The developed

software is based on OpenGL graphic library, and runs on Windows XP

Professional. From the data reported in table 7.1, it is possible to see that the

performances of the dynamic model are not strongly influenced by the number of

metaballs used for the organ model, but are more affected by the number of particles

used for surgical tool representation. The reasons for these results are reported in the

following subsections.

A. Local interaction model performances

The local interaction model can be influenced by the number of metaballs used for

the tool representation and by the number of tissue layers. In particular, the

performances obtained simulating multi-layer bodies depended linearly on the

number of layers. The multi-point contact feature’s performance depended on the

product between the number of particles in the tool and the number of particles of the

organ. The local deformation of the iso-surface obtained by the interaction between

Conclusions and Final Remarks

- 85 -

the surgical tool and the organ model’s performance was linearly dependant on the

sum of particles used for the organ model and surgical tool representation.

B. Global interaction model performances

For the global interaction model, the number of links used for interconnecting

metaballs drastically influenced the performances. The number of metaballs used in

the surgical tool, in this case, is not relevant because the forces exchanged between

the tool and the global model are generated by the local interaction model. The multi-

body interactions can be managed using the sphere tree used for the model

generation, introducing a logarithmic dependence from the number of particles used

for each body.

C. Graphic rendering performances

The graphics performances are influenced by a sum of factors. The first one is the

marching cube algorithm that scanned a fixed volume in order to extract the external

iso-surface. The cost of this algorithm is typically a constant for each frame (for non-

optimized implementations). The second contribute to the performances’ degradation

is represented by the number of polygons used for the surface representation. Other

factors contributed as well: the number of textures, the number of lights, and the

complexity of shaders (if used) for procedural texturing. From the data reported in

Table II, the obtained frame rate is sufficient for a fluid graphic representation of the

scene.

7.3 – Conclusions and Future Works

The metaballs approach results are quite interesting because it is easy to implement

and allows for satisfactory performances in surgical simulations. The proposed

approach reduces the complexity of the 3D models, a fact that can be translated on

the other hand in a reduction of accuracy for local/global deformations. The loss of

accuracy, however, can be acceptable for some kinds of simulations, considering that

it allows an easy handling of multi-body interactions, multilayer tissues, and multi-

point contacts and deformations. The techniques described in this thesis have been

Conclusions and Final Remarks

- 86 -

used for the development of a platform for training minimally invasive surgery

operations [19]. The main components of this system are the Virtual Reality

simulator and two haptic interfaces for force rendering to the operator. An important

future work will be new implementation using the CUDA
6
 technology in order to

improve the algorithm performance. Another important future work will be the study

of an automatic procedure for the blobby mesh parameters tuning, grabbing all mesh

parameters directly from a volumetric dataset, but with a better accuracy. For

simulations of local deformations, it is also possible to increase the accuracy through

dynamically splitting the metaballs close to the interaction point. This new idea

needs to be investigated as well because it may increase the accuracy of the

simulated model.

6
 CUDA is a technology developed by the nVIDIA Inc. that uses GPUs for high performance general

purpose parallel computing.

- 87 -

List of Figures

1 Implicit Model 3

1.1 Visco-elastic Link model 6

1.2 Link deformation 8

1.3 Tetrahedron and 3D mesh based on tetrahedron 9

1.4 Physic simulation loop 10

1.5 Graphics-Physics Synchronization scheme 11

1.6 Octree space partitioning 12

1.7 Triangle normal and forces 14

1.8 Proxy object and soft tissue 14

1.9 Cut simulation 15

1.10 Tetrahedron removing cut surface problem 16

1.11 TR improvement 16

1.12 Decomposition of tetrahedron by edge split 17

1.13 Link breaking 18

List of Figures

- 88 -

1.14 Ghost connection 18

2.1 Metaballs Field functions 21

2.2 Interaction of metaballs 22

2.3 Metaballs modeling 22

2.4 Two metaballs with different sign 23

2.5 Approximated 3D model 23

2.6 Octree sphere tree for different levels of detail 24

2.7 Conversion steps from a sphere tree to a metaballs model 25

2.8 Model synthesis/simulation workflow 26

2.9 Marching cube 26

2.10 Surface refinement 27

2.11
Examples of marching cube application in medical imaging for tissue

Segmentation
28

3.1 Fluid simulation using metaballs 34

3.2 Realistic fluid simulation 35

3.3 Fluid approximation using particles under the gravity effect 35

3.4 Fluid particles contact model 36

3.5 Fluid simulation block 37

3.6 Cohesion force between particles 37

3.7 Smoke simulation using particles and a quadratic blur effect 38

4.1 Cloth model 42

4.2 Full Elastic deformable cloth model 42

4.3 Neighbor connection strategy 43

4.4 Ghost link problem 43

4.5 Local topological connections 44

4.6 Intestine simulation model using cross-links 45

4.7 Mesh resolution growth on the edges 45

4.8 Bounding Connection Set 46

4.9 Sphere tree deformation using neighbor connection strategy 47

List of Figures

- 89 -

4.10 Tissue characterization by rheology 48

4.11 Inverse problem approach for the soft tissue parameters estimation 48

4.12 Material properties extraction from a volumetric dataset 49

4.13 Link properties estimation using voxels 50

4.14 FEM vs Blobby mesh compression 51

4.15 Local deformation on mesh reduction 52

5.1
Tissue deformation as sum of a local and a global body

deformation
54

5.2 Simulation of a local deformation using metaballs 55

5.3 Real single point deformation vs fake local deformation 55

5.4 Multipoint local deformation 55

5.5 Multi-body contact 61

5.6 Multilayered local contact model 62

5.7 Global-local interaction 63

5.8 Lookup Textures 64

6.1 Fracture simulation using the breaking threshold 68

6.2 Ghost links problem on metaballs 69

6.3 Circles pattern 71

6.4 Circle splitting simulating the cut 71

6.5 Model cutting simulation using metaballs splitting 72

6.6 Splitting spheres pattern 72

6.7 Spheres pattern internal and external connections 73

6.8 Closest link optimization 76

6.9 Sphere bounding test 77

7.1 LapLab laparoscopic surgery simulator 79

7.2 Haptic tools interface 79

7.3 Extra software for the FEM and metaballs performances testing 80

7.4 DaVinci’s robot simulation using metaballs 81

7.5 Sphere tree conversion tool 81

List of Figures

- 90 -

7.6 Real-time volumetric dataset viewer 82

7.7 Blobby models used for the benchmark 83

- 91 -

Bibliography

[1] H. Delingette, ”Toward Realistic Soft-Tissue Modeling in Medical

Simulation”. Proc. of the IEEE; vol.86, no 3, march 1998.

[2] M. Cani-Gascuel, M. Desbrun, ”Animation of Deformable Models Using

Implicit Surfaces”, IEEE Trans. on Visualization and Computer Graphics;
vol. 3,no. 1,march 1997.

[3] T. Nishita, E. Eihachiro, ”A Method for Displaying Metaballs by using Bezier

Clipping”, Computer Graphics Forum, Vol.13, No.3, pp.271-280, 1994-9.

[4] Blinn, FA. James, ”Generalization of Algebraic Surface Drawing”, ACM

Trans. on Graphics 1(3); July 1982, pp. 235-256.

[5] R. Ott, D. Thalmann, F. Vexo, ”Organic Shape Modeling through Haptic

Devices”, Computer-Aided Design Applications; Vol. 3.

[6] J. Shen, D. Thalmann, ”Interactive shape design using metaballs and

splines”, Proc. Implicit Surfaces ‘95, Grenoble, France, 1995.

[7] WE. Lorensen, HE. Cline, ”Marching cubes: A High Resolution 3D Surface

Construction Algorithm”. Computer Graphics, (Proc. SIGGRAPH87)
21(4);(July), 1987, 163-169.

[8] H. Sammet, R. Webber, ”Hierarchical Data Structures and Algorithms for

Computer Graphics”, IEEE Comp. Graphics and Applications, Vol.8 No. 3
48-68.

Bibliography

- 92 -

[9] CB. Zilles, JK. Salisbury, ”A constraint-based god-object method for haptic

display”, Intelligent Robots and Systems 95, apos; Human Robot
Interaction and Cooperative Robotsapos; Proc. 1995 IEEE/RSJ
International Conf., Volume 3, Issue , 5-9 Aug 1995 Page(s):146 -151
vol.3.

[10] Daniel Bielser , Pascal Glardon , Matthias Teschner , Markus Gross,

“A state machine for real-time cutting of tetrahedral meshes”, Journal of
Graphic Models – Special Issue on pacific graphics 2003 – volume 66
issue 6, November 2004.

[11] H.W. Nienhuys and A. F. van der Stappen. “Supporting cuts and finite

element deformation in interactive surgery simulation”, In W. Niessen and
M. Viergever, editors, Procs. Of the Fourth International Conference on
Medical Image Computing and Computer-Assisted Intervention
(MICCAI’01).

[12] C. Forest H. Delingette N. Ayache, “Removing Tetrahedra from a Manifold

Mesh”, In Computer Animation (CA'02).

[13] J. Shen, D. Thalmann, ”Interactive shape design using metaballs and

splines”, Proc. Implicit Surfaces ‘95, Grenoble, France, 1995.

[14] G. Bradshaw, C. O’Sullivan, ”Sphere-Tree Construction using Dynamic

Medial Axis Approximation”. Image Synthesis Group, Dept. of Computer
Science, Trinity College, Dublin, Ireland.

[15] G. Bradshaw, ”Bounding Volume Hierarchies for Level-of-Detail Collision

Handling”, PhD thesis, Trinity College Dublin, Ireland.

[16] S. Quinlan, ”Efficient distance computation between nonconvex objects”,

Proc. International Conf. on Robotics and Automation 3324-3329.

[17] Gianluca De Novi and Claudio Melchiorri, “Surgery Simulations and

Haptic Feedback: a new Approach for Local Interaction Using Implicit

Surfaces”, International Conference on Applied Bionics and
Biomechanics, Venice, October 2010.

[18] L. France, A. Angelidis, P. Meseure, M. Cani, J. Lenoir, F. Faure, C.

Chaillou, ”Implicit Representation of the human Intestines for Surgery

Simulations”, ESAIM: Proc. November 2002, vol.12, 42-47.

[19] M. Lima, C. Melchiorri, G. Ruggeri, G. De Novi, T. Gargano, M.

Mogiatti, G. Mazzero, ”A New Robotic Platform for Endoscopic Skill

Training”, International Cong. on Endoscopic Surgery, June 2009.

