
Dottorato di Ricerca in Informatica
Università di Bologna, Padova

INF/01 INFORMATICA

Pattern-based Segmentation of Digital
Documents: Model and Implementation

Angelo Di Iorio

March 2007

Coordinatore: Tutore:

Prof. Özalp Babaoğlu Prof. Paolo Ciancarini

Abstract

This thesis proposes a new document model, according to which any document

can be segmented in some independent components and transformed in a pattern-

based projection, that only uses a very small set of objects and composition rules.

The point is that such a normalized document expresses the same fundamental

information of the original one, in a simple, clear and unambiguous way.

The central part of my work consists of discussing that model, investigating

how a digital document can be segmented, and how a segmented version can

be used to implement advanced tools of conversion. I present seven patterns

which are versatile enough to capture the most relevant documents’ structures,

and whose minimality and rigour make that implementation possible.

The abstract model is then instantiated into an actual markup language, called

IML. IML is a general and extensible language, which basically adopts an XHTML

syntax, able to capture a posteriori the only content of a digital document. It is

compared with other languages and proposals, in order to clarify its role and

objectives.

Finally, I present some systems built upon these ideas. These applications

are evaluated in terms of users’ advantages, workflow improvements and impact

over the overall quality of the output. In particular, they cover heterogeneous

content management processes: from web editing to collaboration (IsaWiki and

WikiFactory), from e-learning (IsaLearning) to professional printing (IsaPress).

iii

Acknowledgements

This work has benefited greatly from the input and support of many people over

the past years.

To begin, I am extremely grateful to Prof. Fabio Vitali. Without his constant

inspiration, support, motivation and useful suggestions, this thesis would never

have taken its present shape. Thank you very much, Fabio, for the uncountable

opportunities you gave me in the past years.

I wish to thank my tutor Prof. Paolo Ciancarini for his support and availabil-

ity, and my whole research group. I will never forget the hours spent together in

our underground office, the nights working for a deadline, the working meetings

and social events. A special thank to Antonio Feliziani and Luca Furini. Thanks,

guys, this thesis is also yours.

Thanks to David Durand and Allen Renear for their review of this work. Their

advices and comments are greatly appreciated.

An infinite thank to my parents Franco and Rosa. All that I have achieved

today is a result of the innumerable silent sacrifices they have made over the past

decades. A special dedication to my sister Mariacristina, for her unmistakable

smiles, talks, and love.

Words cannot describe the love, support, and encouragement that I have re-

ceived from my future wife Mena. I thank her for her boundless patience during

the course of this work.

iv

Contents

Abstract iii

Acknowledgements iv

List of Figures ix

1 Introduction 1

2 Document Engineering 8

2.1 Modeling documents . 8

2.1.1 Different objectives, different mark-up languages 9

2.1.2 Format and content: should (and can) they be separated? . . 14

2.1.3 Plain or hierarchical? or what else? 20

2.2 Analyzing documents . 26

2.2.1 Structural analysis of paper-based documents 27

2.2.2 Structural analysis of web pages 29

3 Document Segmentation 35

3.1 What is text, really? . 36

3.1.1 Segmenting a manuscript . 36

3.1.2 Heterogeneous scenarios, a common denominator 44

3.1.3 Content, structure and presentation: are they enough? . . . 48

v

3.2 A document segmentation model: Pentaformat 52

3.3 The need of segmentation . 55

3.3.1 What matters for authors: structured content 58

4 Pattern-based Segmentation of Structured Content 62

4.1 A descriptive perspective: too many structures? 63

4.2 Why (XML) patterns and what for 74

4.3 Patterns for documents substructures 79

4.3.1 Markers . 79

4.3.2 Atoms . 80

4.3.3 Blocks and Inline Elements 81

4.3.4 Records . 82

4.3.5 Tables . 85

4.3.6 Containers . 86

4.3.7 Additive and Subtractive Contexts 87

4.4 From descriptive to constructional 89

4.4.1 Syntactical Minimality . 89

4.4.2 Semantic expressiveness . 96

4.4.3 Evaluating the Pattern-based approach 100

5 A Pattern-based Minimal Language: IML 102

5.1 From abstract patterns to IML . 102

5.1.1 Extreme IML . 105

5.1.2 IML: a (not so surprisingly) simple DTD 107

5.2 Merits and limits of IML . 111

5.2.1 A meaningful language? . 112

5.2.2 A comparison with micro-formats 113

5.2.3 A comparison with TEI and DocBook 117

5.3 ISA*: A flexible architecture based on Pentaformat and IML 119

vi

5.3.1 Content extraction . 120

5.3.2 High-quality post-production 123

6 An open publishing system: IsaWiki 126

6.1 Re-opening the ’web authoring’ case 126

6.1.1 Writable Web . 127

6.1.2 Global Editability . 129

6.2 Taking ideas to implementation: IsaWiki 133

6.2.1 The role of IML . 134

6.2.2 Writable Web with IsaWiki 135

6.2.3 Global Editability with IsaWiki 139

6.2.4 Still a long way to go . 143

7 Simplified authoring systems: IsaPress and IsaLearning 145

7.1 ISA* for professional printing: IsaPress 145

7.1.1 Issues in traditional professional publishing 146

7.1.2 A revised workflow with IsaPress 147

7.1.3 A magnifying glass on IsaPress 149

7.1.4 Real-life use of IsaPress . 153

7.2 ISA* for e-learning: IsaLearning . 153

7.2.1 Issues in producing high-quality learning objects 153

7.2.2 A revised workflow with IsaLearning 155

7.2.3 A magnifying glass on IsaLearning 157

7.2.4 Real-life use of IsaLearning 160

8 Interoperability and interchangeability among wikis 161

8.1 WikiFactory: from ontological descriptions to (semantic) wikis . . . 161

8.2 A pattern-based segmentation of wiki content 163

8.2.1 WIF: Wiki Interchange Format 164

vii

9 Conclusions 168

References 171

viii

List of Figures

3.1 A fragment of the treatment ”Of Colors” by Isaac Newton 37

3.2 Segmenting a film poster . 45

3.3 Segmenting a magazine cover . 47

3.4 Segmenting a newspaper page . 48

3.5 Segmenting a web portal home-page 49

3.6 The Pentaformat Model . 53

3.7 Editing a wiki page . 59

3.8 Commenting a segmented paper . 60

3.9 Customizing a segmented web-site 61

3.10 Content-based diff-ing on a scientific paper 61

5.1 The ISA* architecture . 120

6.1 The IML-based conversion model of IsaWiki 135

6.2 The IsaWiki editor for Safari . 136

6.3 A WYSIWYG editing session on IsaWiki 137

6.4 A PDF document re-flowed into an HTML page by IsaWiki 138

6.5 The multi-format diff of IsaWiki . 139

6.6 Customizing a web page with IsaWiki 142

7.1 The interface of IsaPress . 147

7.2 Two different PDFs from the same source Word document 148

ix

7.3 The interface of IsaLearning . 155

7.4 A MS Word file converted into an accessible LO 157

x

Chapter 1

Introduction

This work is positioned over two related research areas: markup languages and

document engineering. Moving off an analysis of models of documents, their

representation and division into constituents, the thesis proposes a new model

based on segmentation and patterns. The basic idea is that any document can be

segmented in some independent components and normalized into a pattern-based

projection, that only uses a very small set of objects and composition rules.

The thesis also proposes an actual markup language, IML, that captures the

insights of the model. Later, it considers some publishing systems based on the

model and IML, that have been implemented for e-learning, web publishing, col-

laboration, and professional printing. The point is that a radical simplification of

markup practice facilitates the creation of a wide range of document tools that

are inherently hard and highly useful.

The separation between content and formatting, as well as the need of seg-

menting document into subcomponents, is one of the most accepted (and flaunted)

principles among document engineers and markup experts. It is not my goal to

assess the importance of such an approach, whose advantages are undeniable

and widely accepted. What I want to do is extending in a radical way that princi-

ple, and presenting some systems designed and implemented upon these ideas

2 Chapter 1. Introduction

of extreme segmentation and normalization.

Then, the first part of my research addresses theories and techniques to model

documents. The analysis and classification of markup languages deserves great

attention, in particular the distinction between prescriptive and descriptive lan-

guages, and further subclasses of descriptive ones. Prescriptive languages are

meant to prescribe rules that all documents must follow and are primarily used

to label new documents, while descriptive ones are meant to describe structures

that already exist and are primarily used to encode legacy material. Large space

is devoted to clarify such distinction and to make clear where a generic approach

is valid, and where more exhaustive, fine-grained and complex specifications are

needed.

The point is understanding which are the most important features of a well-

engineered document, which of them should (and can) be extracted, which can be

neglected and under which circumstances. Then, I investigate the most discussed

and thorny issues in that field: the separation between content and presenta-

tion (reporting also some opposite opinions), the conflict between hierarchical

and plain documents and the importance of nested and unambiguous structures.

Such a theoretical discussion comes alongside a description of tools and tech-

niques to actually extract those relevant information (with particular attention to

the WWW context) and reflow them in different documents.

I then propose a model, called Pentaformat, that refines the classical con-

tent/presentation distinction by identifying five dimensions of a document, able

to capture and separate all its sub-components. What is usually denoted as con-

tent is further divided in content and structure, in order to indicate the plain text

(and images) and the logical structures built on such a bare level. Those dimen-

sions are clearly distinguished and discussed as two sides of the same medal,

since they have different goals and roots. The (inter)connection between structure

and presentation is further discussed and refined. Presentation is not ”useless”

but a powerful means to make more understandable and appealing for humans

an information that already exists, i.e. the structured content.

Chapter 1. Introduction 3

Two more dimensions complete the model: metadata and behaviour. Metadata

are all those information about a document that allow authors, managers and

readers to make sense of its content in relation to other documents of the same

kind, other documents related to this one, other versions or variants, other ex-

ternal resources. The ”behaviour” dimension describes all the dynamical actions

and events in a document. The increasing importance of interactivity and dy-

namic content is testified, for instance, by the last trend of the World Wide Web,

where javascript applications, advanced toolbars, DHTML pages are being more

and more successful. Actually metadata and behaviour are briefly investigated

in this work, as an essential piece of the global vision of the team I belong to, but

they are out of the scope of my thesis.

In fact, my focus is primarily on structured content and logical organization

of a document. The problem I see is that a strong separation between content,

structure and presentation is not enough to produce well-engineered and man-

ageable documents. The risk is overdesigning structures and providing authors

too many constructs and composition rules, although they are devoted to de-

scribe only raw information, without any presentation. The paradigm of separa-

tion between content and presentation is universally accepted in the community,

and many markup languages have been proposed according to that rule (descrip-

tive languages such as TEI, DocBook, XHTML, etc.). However, looking at their

specifications some complexity is still evident and, in some cases, a sort of re-

dundancy exists. It is quite common to find very complex documents, whose

structures are difficult to be read and extracted. Yet, many times that complexity

is intrinsic in documents’ nature, or in their subject, but it is as much common to

find documents that could have been written in a simpler and clearer way.

In my mind an adequate solution can be describing ”best practices”, or bet-

ter identifying the most common and useful ”patterns” that authors really need

in their documents. Then, in the central part of this work I discuss some exam-

ples of overdesigned elements definitions, transformed into pattern-based defi-

nitions through an incremental process of simplification. Those examples lead

4 Chapter 1. Introduction

us in discovering the seven patterns discussed here: marker (an empty element,

whose meaning is strictly dependent on its position), atom (a unit of unstructured

information), block and inline (a block of text mixed with unordered and repeat-

able inline elements that, in turn, have the same content model), record (a set of

optional, heterogeneous and non-repeatable elements), container (a sequence of

heterogeneous, unordered, optional and repeatable elements), table (a sequence

of homogeneous elements) and additive and subtractive contexts (descendant ele-

ments added or prohibited in a content model, in any position).

My work steps a bit forward: rather than limiting to identify and investigate

some useful patterns for descriptive documents, I suggest to only use exclusively

them. My conclusion is that any document can be projected into a strict compo-

sition of a (very) limited set of objects, according to a (very) limited set of rules.

The key aspect is that such normalized document expresses the same fundamen-

tal information of the original one, in a simple, clear and unambiguous way.

I foresee two possible applications of this approach: as a constructive model

adopted by designers who want to create new and well-engineered resources

from scratch, or as a segmentation model adopted by designers who need to extract

information from legacy documents (and build applications that manage that in-

formation).

Adopting the minimalist paradigm embodied by patterns, I propose an actual

markup language, called IML. The acronym IML mirrors both the role and the

origin of that language: IML stands for ”IsaWiki Markup Language” to remind

the first system where it was studied and applied, but also stands for ”Interme-

diate Markup Language” to indicate its capability of intermediate language for

multi-channel publishing. It has a twofold goal: separating the actual content

and the presentational aspects of a document, and expressing that content in a

clear, unambiguous and well-engineered way. The idea, in fact, is that any docu-

ment can be normalized into IML, regardless of its actual layout and formatting.

A full chapter describes this language, by clarifying its origin and applicability,

in particular by comparing it with the existing markup languages.

Chapter 1. Introduction 5

IML has been successfully used as internal format for many applications, that

will be described with this thesis. The core of my work, in fact, is that a radi-

cal simplification of markup practice facilitates the creation of a wide range of

document tools that are inherently hard and highly useful. Actually these tools

are the result of collaboration among different people and different development

teams, but a central role has been played by the language (and, in general, by the

pattern-based approach) proposed here. Some of them will be presented in the

last chapters: IsaWiki, IsaLearning, IsaPress and, briefly, WikiFactory.

IsaWiki is a distributed publishing environment, aiming at realizing the Writable

Web and the Global Editability paradigms. The term writable web indicates the pos-

sibility of transforming the World Wide Web into a platform where users can

write pages, with the same skills and tools used to read them; moreover, global

editability means that users can modify any web document, regardless of its lo-

cation, access permission and data format. IsaWiki achieves (at least, partially)

both these goals, without revolutionizing the architecture and protocols of the

current WWW: it is a distributed architecture composed by a server that supplies

services for registered users, and allows them to store customized versions of

any web document, and a client-side editor/sidebar that monitors users’ naviga-

tion and allows them to edit pages directly within a browser (through a WYSI-

WYG interface). The system stresses on content and layout separation: the idea

is that authors are primarily interested in changing (and customizing) raw struc-

tured content, instead of whole pages. So, whenever an user asks to edit a web

page editing facilities are activated only on that plain content. The document can

be then converted and displayed in many other data formats. It can be again

downloaded, modified and again uploaded onto the system, to be further con-

verted. Such a complete independence of reading and writing from the actual

documents’ data formats is possible thanks to the IML normalization.

A similar approach has been adopted for the design and implementation of

IsaLearning and IsaPress, two authoring systems respectively used for e-learning

and professional printing. Although characterized in different ways, both these

6 Chapter 1. Introduction

scenarios suffer a common problem: the high-quality of the final product very

often implies a very high complexity in the authoring process, and requires the

(manual) intervention of expert users. In both cases, what commonly happens

is that authors write plain text and some experts transform it into products that

respect all the domain-specific requirements. In case of e-learning they are ex-

perts of LCMSs (learning content management systems) that package content into

reusable learning objects, while in case of printing they are make-up experts that

paginate documents, fixing imperfections and variations.

A different solution consists of allowing authors to use their preferred produc-

tivity tools and extracting the relevant information they provide. IML is a natural

candidate to address such issue. What IML does is representing in a structured

and simplified way, an information that authors have previously written accord-

ing to their preferences, (good and bad) habits, time resources and so on. By

exploiting IML normalization, it is possible to completely automate the produc-

tion of final high-quality results, from original sources. Then, authors can keep

on working on those files and produce very good output, without having to learn

new technologies and tools.

IsaLearning and IsaPress have been both designed on such a model: IsaLearn-

ing has been used as internal conversion tool for the project A3 (in Italian, ”Am-

biente Accessibile di Apprendimento”), an open-source platform used to supply

e-learning content and services at the University of Bologna. IsaPress is a con-

version engine used by an Italian publishing house, called ”Il Mulino”, to auto-

matically produce high-quality books from raw files. A paper version of the A3

material has been created by using IsaPress as well. As I said, other software

components are involved in the production process of IsaPress and IsaLearning

(and many people participated to their implementation): what is relevant for this

thesis, however, is the normalization of the input files in IML and the automatic

extraction of structured content.

Finally, it is worth spending some words about one project I have been re-

cently working on: WikiFactory. The rationale behind the project is the possibility

Chapter 1. Introduction 7

of mixing advantages of free editing embodied by wikis, with advantages of se-

mantic web technologies. Then, we designed an application that takes in input an

ontological description of a domain, and automatically delivers a semantic wiki

for that domain. Rather than on ontological aspects, I am working on the possibil-

ity of delivering the same content on different wiki platforms. That is possible by

using a common language that captures all relevant information of a wiki page,

and specialized conversion engines that instantiate that information for specific

wiki clones. I am a co-author of that language, called WIF (Wiki Interchange

Format), which as expected follows all the patterns discussed here.

The rest of the thesis is structured as follows. Chapter 2 discusses related

works and main issues in document engineering and markup languages. Chap-

ter 3 introduces my segmentation model, moving off some case studies. Chap-

ter 4 focuses on design patterns for digital documents and presents a segmenta-

tion/constructional approach based on those patterns. Chapter 5 introduces IML,

and a flexible architecture based on it. Chapter 6 presents IsaWiki, while chap-

ter 7 presents IsaLearning and IsaPress. Chapter 8 briefly describes WikiFactory.

Final remarks and ideas for future work are in chapter 9.

Chapter 2

Document Engineering

Technical, social and economic aspects have raised interest among researchers

and professionals in the field of digital documents. Two research areas are partic-

ularly related to this thesis: document engineering and markup languages. Document

engineering investigates principles, tools and processes that improve our ability

to create, manage, and maintain documents. Markup languages define objects,

properties and rules to express information about raw text (actually, no content

could exist without markup) and study different issues and approaches for text

encoding.

In this chapter I discuss the most thorny and relevant issues in these areas,

trying to outline which are the most important aspects of digital documents au-

thors (and designers) have to deal with. In particular, I divided such analysis

in two sections: first, I focus on documents modeling, whose goal is understanding

how a document can be represented in digital form, and second on document anal-

ysis, whose goal is understanding how that representation can be automatically

extracted from legacy resources.

2.1 Modeling documents

Although implicitly, authors address a lot of fundamental questions, while writ-

ing a document: ”Which logical structures do I need? How to divide document

Chapter 2. Document Engineering 9

subcomponents? How to highlight details and specific features? How to repre-

sent complex data?”, and so on. When they write a digital document new issues

need to be solved: ”Which is the most suitable format? Which editor can I use?

Which constructs fit my requirements?”, and in particular ”Which markup lan-

guage do I need?”.

2.1.1 Different objectives, different mark-up languages

The first step to understand the nature of a digital document is understanding

the nature of the language it is written in, the objectives it was designed for, and

the basic principles underpinning it. In the literature, many classifications were

proposed, each useful to capture some specific features.

Coombs, DeRose, et al.[CRD87] classified markup in six categories still uni-

versally accepted nowadays: punctuational, presentational, procedural, descrip-

tive, referential and meta markup. Punctuational markup consists of using a set

of conventional marks to highlight basic syntactical information about a written

text. Periods at the end of sentences, commas to organize text, white spaces are all

example of this kind of markup which, how remarked by authors, existed before

the advent of electronic documents. The same can be said about presentational

markup, which consists of all those graphical information useful to make clear

high-level features of a text: spaces between paragraphs, pagination, enumera-

tion of lists or blocks, vertical spaces among elements and so on. Text-processing

systems introduced new kinds of markup, exploited by applications to render

content or perfom more advanced operations. Procedural markup consists of a

sequence of commands that indicate procedures a specific application should fol-

low, such as ’skip a line’, ’draw a letter’, ’collapse words’, ’display a table’ and so

on. Such a markup is obviously device-dependent and strictly related to a spe-

cific layout and formatter. A more advanced solution is the descriptive markup,

which consists of identifying the role and type of each text token. While pro-

cedural markup indicates how a text fragment has to be treated, a descriptive

10 Chapter 2. Document Engineering

approach indicates what a text fragment is, and which class it belongs to. Advan-

tages of such approach are evident: flexibility, easy creation, separation between

content and presentation, portability, modularity and integrability in other sys-

tems. The authors completed their taxonomy by mentioning referential markup,

which consists of declaring entities externally to the document and substituting

those entities during the actual processing, and metamarkup which allows authors

and designers to control the interpretation of declarative languages and to extend

their vocabularies.

Descriptive markup became more and more popular with the advent of SGML

and, later, XML. Goldfarb[Gol81] outlined benefits of that approach stressing on

the two main properties of a descriptive language: generalization and rigorous-

ness. Generalization means that a such a language does not restrict documents

to a single application, a single formatting or a single publishing process; a do-

cument is marked-up once, in order to describe its structure and attributes, and

all future processing can be implemented over that representation. Rigorousness

means that content and structure are expressed in a rigorous and unambiguous

way, so that advanced and reliable applications can be actually built. A huge

amount of papers, books and discussions about SGML and XML have outlined

the power, flexibility and applicability of descriptive languages. I do not want to

discuss them in detail, though I cannot omit citing the ”canonical” references to

Goldfarb’s SGML Handbook[Gol90], Sperberg-McQueen and Burnard Introduc-

tions to SGML[SMB97], and XML[SMB00].

Descriptive languages have been referred as ”generic” or ”declarative”, to em-

phasize the fact they state something about a document, rather than indicating

how to process it. In this work, I call them ”declarative” in stead of ”descriptive”.

The reason is that the term ”descriptive” can be used for a more fine-grained

and specific classification, between ”descriptive” languages and ”prescriptive”

ones. Such a distinction has been often made with regard to document models.

Quin[Qui96] investigated descriptive and prescriptive DTDs: a prescriptive DTD

prescribes a set of rules which all matching documents must follow and may be

Chapter 2. Document Engineering 11

primarily designed to create new material; a descriptive one describes structures

that exist, rather than to force any particular structure, and may be primarily

used to create an electronic version of material that already exists (of course, a

descriptive model may also be used to create new documents).

Extending this dichotomy to markup, descriptive can be used to refer to markup

that simply states some quality about each text fragment, without trying to im-

pose any rule on how and where it should appear, while prescriptive markup,

besides simply providing names for the labels to use in the markup, also imposes

constraints and structural rules on the use and positioning of labels. The meaning

of the term ’descriptive’ for this thesis will be deeply discussed in section 4.1.

Piez[Pie01] introduced a new category of markup, the ”exploratory/mimetic”

one. This markup details those features of the text that are relevant to the en-

coder, without requiring to adapt the content structure to the schema language,

nor having the schema language completely predict the document evolution. The

key aspect is the relation between an instance of document and its model: a text is

marked up primary and the model is an ex post facto expression of something that

the markup ”discovered” about that text. Explorative/mimetic languages are not

meant to impose constraints or dictate rules about the structures of a document,

but to simply describe document instances. In a sense, an explorative/mimetic

document model does not exist, but it is derived from instances afterwards. For

this reason, Piez used the adjectives ”mimetic” to indicate that a marked-up do-

cument aims at imitating its source, and ”exploratory” because it is adaptable

to that source. On the other hand, as the same author admitted, a pure ex-

ploratory/mimetic language is difficult to be justified and used in practice and

the author himself recognized as ”eploratory/mimetic” a fictional language he

called ProfML, composed by a set of conventions that could be used in an ex-

ploratory way.

Renear[Ren01] described two dimensions in markup languages, domain and

mood, by proposing an interesting parallelism with terms from linguistics and

speech-act theory. The mood indicates the ’tone’ of a language and it can be

12 Chapter 2. Document Engineering

classified as ”indicative” (when the language describes something) or ”impera-

tive” (when the language impose something). The domain indicates whether a

markup refers to logical structures of a document or presentational aspects, and it

can be classified as either ”logical” or ”renditional”. Either a language designed

to describe the actual content of manuscripts or its final formatting could be im-

perative or indicative (although, as Renear remarked, a ”indicative renditional”

language seems to make little sense). Restricting to the logical domain, for exam-

ple, an indicative element says that the tagged text fragment is a specific ”object”,

intrinsically and independently from its mark-up; an imperative one says that the

same fragment has to be modeled as that object. In a renditional domain, an im-

perative declaration says that an element has to be rendered in some way, while

an indicative one says that it is intrinsically rendered in that way (as expected,

no language can be placed in this category since the presentation is something

added or forced on logical information).

Discussing Renear’s position Piez provided a clear example of indicative and

imperative moods, with a comparison between the TEI DTDs and the DTD used

by the W3C to markup drafts and recommendation. While TEI mainly aims at

faithfully represent legacy texts already printed and published, W3C specs de-

scribe something that still need to be created and maintained in that form. Al-

though they are both declarative, or descriptive, TEI elements correspond to

something already characterized in a specific way (for instance, an epigraph is

an epigraph before being marked up with the tei:epigraph element), while

W3C specs characterize content fragments fitting them in contructs provided by

the schema.

Piez[Pie01] also made explicit a classification based on time processing, i.e.,

whether a markup looks backward (restrospective languages) or forward (prospec-

tive languages): a retrospective markup language is one that seeks to represent

something that already exists, while a ”prospective” language seeks to identify

the documents constituent parts as a preliminary step to further processing. Ren-

ear’s and Piez’s classifications partially overlap, so that, as Piez himself noted, the

Chapter 2. Document Engineering 13

’prospective’ property corresponds to Renear’s imperative mood, and ’retrospec-

tive’ to indicative. Note that both looking-forward and looking-backward lan-

guages are declarative. What changes is their perspective and objectives: while

a retrospective languages declares document’s content with respect to a legacy

model, a prospective one declares document’s content with respect to a new log-

ical model, amenable for particular kinds of processing. ”Prospective”, indeed,

does not mean ”procedural”. In a virtual spectrum based on time-processing Piez

placed from the retrospective edge to the prospective first ProfML, very far TEI,

then Docbook, up to SVG and XSL-FO.

Piez completed his analysis with a philosophical/rhetorical classification: the

distinction between proleptic and metaleptic markup languages. In rhetoric, a pro-

leptic is a trope in which an expression or figure of speech takes its meaning from

something that it will appear later. A proleptic markup is any markup where the

meaning of the tagging is intimately connected with the expectations for process-

ing it. Note that such meaning is connected with the estimates for processing,

rather than the processing itself. SVG and XSL-FO, for instance, cannot be con-

sidered proleptic, but prospective since they already carry a specific rendering

and processing for each object. On the contrary, W3C specs are proleptic because

they indicate how an object has to be treated, without knowing the actual effects

of that treatment. A typical example of proleptic approach is using titles in the

creation of new documents: in that case, authors are simply saying to the fur-

ther process ”name that object as a title, and whatever you do on titles, do it on

that object as well”; they are not suggesting how to process a title (as XSL-FO

does by specifying formatting properties of a text block). The difference between

XHTML (Strict) and DHTML further explains hte distinction between proleptic

and prospective markup: while XHTML (Strict) states which is the role of each

object (though related to its future processing), DHTML anticipates some features

of that object by using scripts or browser-specific capabilities.

On the contrary, a metalepsis is a trope in which the meaning of an expres-

sion is related to something already happened in the past. Then, a metaleptic

14 Chapter 2. Document Engineering

markup works by saying something about the past, but in order to create new

meaning out of it. The most evident example of that approach is TEI: on the one

hand, features of legacy material are registered and structured according to their

legacy model, on the other hand such information can be used to built new and

advanced applications. For this reason, Piez defined metaleptic a ”retrospective

tagging for prospective purposes”.

A complete different (and admittedly simpler) classification has been pro-

posed by Wilmott[Wil02]. Wilmott identified two main categories of markup

languages, whether they have to be interpreted by humans or automatically pro-

cessed by machines, human-based and machine-based languages, and emphasizes

their similarities and differences. The author stressed on the different ways hu-

mans and computers read and understand information, and derived principles

to design or adopt either one kind of language: computers most easily recog-

nize data and markup when examining data byte-by-byte, by removing extra-

neous fillers, in ”binary” encoding; on the other hand, humans are helped by

contextual information, whitespaces and clear text. The author concluded that

both classes of languages are useful: any markup language should indeed be

designed bearing in mind what it will be really used for, with a clear division

between computer-use and human-use requirements.

2.1.2 Format and content: should (and can) they be separated?

One of the most accepted principles in designing markup languages is the dis-

tinction between format and content. Such a principle is so embedded and well-

accepted within the community, that providing a complete list of citations is prac-

tically impossible. We could say that any decent book about SGML, XML and

markup encoding has to discuss, and actually discusses, that paradigm. How-

ever such a debate is very much older than markup languages and reflects the

classical controversy between ”form and matter”, ”what and how”, ”in and out”

discussed among philosophers, artists, aesthetes, semiologists and so on.

Chapter 2. Document Engineering 15

In the markup community, the seminal paper by Coombs et al.[CRD87](beside

proposing a classification of languages) outlined benefits of descriptive markup

in terms of maintainability, portability, cognitive demand and authoring enhancement.

Properly tagged source files, authors wrote, never require modifications or, better,

they require really few changes: editing is simpler, files are protected from cor-

ruption and few experts can format a huge amount of data, since presentation is

applied automatically and in a second phase. Moreover, well-tagged documents

can be ported over different platforms since the actual meaning of a document

is captured by descriptive tags and specific conversion can be performed by triv-

ial programs: different typesetters, different devices, different applications can

display the same content simply by converting it on-the-fly. The markup process

itself is simplified, since authors need only to select appropriate labels for content

elements and they can do that with little more than the normal linguistic process-

ing. What authors called ”descriptive markup” can be strightfowardly read as

separation between content and formatting: what really counts is the actual role

of text objects, rather than their final rendering or processing.

In their introductions to SGML[SMB97], and XML[SMB00], Sperberg-McQueen

and Burnard highlighted advantages of content/format separation. Authors fo-

cused on the fact that ”the same document can readily be processed by many

different pieces of software, each of which can apply different processing instruc-

tions to those parts of it which are considered relevant”. A content analysis pro-

gram might read and extract footnotes, while a formatting program might collect

them at the end of each chapter, and so on. Similarly an annotated text with

names of places and persons, might be used to create an electronic index, or a pa-

per print, or a source for data miners and so on. The summarization of the same

authors might be the best explanation: ”XML focuses on the meaning of data, not

its presentation”.

These theories have been consolidated with the development of XML tech-

nologies, and with the same standards proposed by the W3C. The massive use

of CSS or XSLT recommended by the consortium (as well by all XML experts),

16 Chapter 2. Document Engineering

the proliferation of books, articles, interviews about such paradigm, the increas-

ing importance of accessibility and multi-devices issues, the diffusion of applica-

tions and softwares that properly embody that philosophy have made the con-

cept of ”content/formatting separation” almost indissoluble from the concept of

advanced publishing. No one can now deny benefits and diffusion of that ap-

proach, and thousands of final statements about XML content/format separation

can be found in the literature: ”XML focuses on the meaning of data, not its pre-

sentation” by Sperberg-McQueen and Burnard[SMB00], ”the ability of XML is

its ability to separate the user interface from the data” by Pardi[Par99], ”XML

markup describes a document’s structure and meaning. It does not describe the

formatting of elements of the page” by Harold[Har99], or ”XML helps us turn

what is otherwise a stream of information into structured, manageable and mean-

ingful data” by Laurent[Lau98] and a much more longer (practically infinite) list

of similar citations.

Some ”odd” but interesting parallelisms are also worth being cited. A very

complete, and admittedly complex (at least for me, as a computer scientist) dis-

cussion was written by Liu[Liu04]. The author compared the separation of con-

tent and format in markup languages with some philosophical theories, and stated

that data floods from transcendental sources toward actual documents, where

their essence is presented in a human- or machine-readable format. Those tran-

scendental sources are blind spots that might have even been called the Sublime,

the God: users are compared to prayers who ”query” the God, where the term

”query” means they actually perform an SQL query or an XSLT statement to col-

lect and re-organize data. Piez[Pie01] proposed an historical parallelism by com-

paring our XML era with the postindustrialism of the first 19th century. The logic

of separating content from presentation reflects the principle of division of labor

joined with the principle of making the component parts to be interchangeable,

which made possible the ”American System of Manufacture”. When the indi-

vidual components of a manufactured item were submitted to quality control

mechanisms higher-order economies could be realized, and manufacture could

Chapter 2. Document Engineering 17

be improved and speed up. Similarly the logical separation provided by XML

and related technologies has bring users many advantages in terms of scalabily,

portability and flexibility of digital documents.

Instead of further expatiating upon positive opinions, I prefer to investigate

some ”opposite” positions that contradict a so accepted and basic principle, but

might help me to clarify the applicability of my approach. The same Piez[Pie05]

expressed a very interesting poinf of view, though perfectly compressed in the

title of the paper. Piez noticed a gap between what markup designers promised to

achieve about separating content and format, and what they actually achieve. In

particular, he argued that any schema based on that approach cannot be enough

to model all scenarios and needs markup practitioners have to deal with: as far as

complex and complete, a schema cannot forecast all its applications, so that there

would ever be something that cannot be correctly modeled. For instance, he cited

the markup used in the scientific conferences’ proceedings, where authors do not

have native constructs to markup poetry or verse, or markup for automatically

generated indexes, where the actual relation among title subcomponents (and

their inner structure) is very often hidden or masked. According to Piez, the

problem does not rely on the incompleteness of those languages (that could be

continuously enriched), rather on the practical impossibility of forecasting every

feature and detail readers are interested in a text. The consequence is that also the

descriptive schemas (such as TEI and DocBook) may trend to be ”attracted” into

applications semantics and the tagging process risks to be more oriented towards

a particular outcome, rather than towards a pure descriptive tagging of text.

Piez claimed that some text carries something (almost) indescribable, which is

very hard to be markup up. He resumed philosophical concepts of ’noumenon’

and ’phenomaenon’ (’noumenon’ is ’the thing itself’, the basic reality underlying

a ’phenomenon’, which is an observable event) to clarify his point: descriptive

markup moves toward a noumenal dimension but never escapes a phenomenal

one. I found really meaningful an example provided by the author about po-

etry encoding: while it is quite simple to format ”transparently” a poem into an

18 Chapter 2. Document Engineering

HTML page, it is very hard to design a markup language that could markup

up everything users might be interested in (that could also be strictly related to

’format’). Author’s conclusion was that ”there is no reason to fear or disdain

presentation-oriented design. We need only to discriminate when we want and

need an isolated layer for our information capture, and when we want to work

more directly with the ’hot lead’ ”. Upon those ideas, Piez proposed a markup

language called WGLL (Web Graphics Layout Language) openly based on pre-

sentational aspects but used to mainly label textual documents. WGLL can be

intermixed with SVG, reduces the effort in producing SVG files lightening the

burden of tagging and encoding, and was (philosophically and practically) re-

ally close to SVG. What is relevant here, more than syntactical and applicative

aspects of the actual language, is the interpenetration between content and format

discussed by Piez, and the predominant role he gave to format.

Hillesund[Hil02] wrote another, though quite different, invective against the

separation between content and format. He argued that the doctrine of ”one in-

put - many outputs” so flaunted within the XML community is basically wrong.

On the contrary, being impossible to reflow a single content into different layouts,

for different purposes and different media, the only possible paradigm is ”many

inputs - many outputs”. His theories can be summarized in two points: con-

tent/format interleaving and impossible reuse. According to Hillesund, the separa-

tion between content and presentation is getting confused and misleading when

applied to books or other publications. In particular, despite what all XML expert

say, there is no way of separating those components but they are strictly interre-

lated and mutually dependent. Rather than being an extra layer built upon the

content, presentation is an irreplaceable part of a document that expresses a kind

of ”semantic” information and affects the way users perceive and comprehend a

text. Structures like titles, abstracts introductions, chapters are considered either

semantic and typographic structures, since authors actually use typographical el-

ements, when defining the logical structure of a document. The author observed

that such a behaviour is rooted in the history of typography and have not changed

Chapter 2. Document Engineering 19

since the birth of the paper printing itself. His conclusion is that XML technolo-

gies cannot expect to segment elements that are intrinsically intermixed and have

always been living together.

The second point of Hillesund is the impossibility of reusing content frag-

ments and merging them from different sources into a (good) composite one. In

that case, the logical order of elements is distorted and the original information

is scattered over a document probably unclear, incomplete or too complex. The

metaphor used by the author is really explicative: reusing content can be com-

pared to take a pair of scissors, deface a tapestry and rearrange pieces of cloth, in

order to obtain a new and appealing tapestry where everything is well-connected

and harmonious. The conclusion is that there is no easy way to manipulate frag-

ments as users need and prefer: without actually re-editing content, author said,

publishers cannot take single chapters of a paper book and transform them into

on-line pages, cannot directly transfer legacy material into learning objects, can-

not automatically deliver content on mobile devices from printed material, and

so on. However, the focus here is clearly on the editorial interventions needed

to adapt a text for re-purposing, rather than on the technical feasibility of that

approach.

Walsh[Wal02] published a point-to-point response to Hillesund, in the same

journal. Basically the author said that content/format separation is possible ei-

ther from a logical or practical perspective and held DocBook as example of the

success of such distinction. In particular, he focused on the feasibility of re-

purposing content on different media, with different layout and different format-

ting. I found the position of Walsh very interesting since he stated that ”a perfect

separation of content and presentation is not always possible, but it is often possi-

ble to come very close”; in particular, he explained that it depends on how much

the content is suitable to be extracted and reflowed. I completely agree with the

author, when says those problems are mostly editorial in nature and cannot be

solved by technical solutions. Stating a priori that separating content from pre-

sentation is impossible in practice, as Hillesund did, is very different from stating

20 Chapter 2. Document Engineering

that a bad (intended as ’not designed for that purpose’) text cannot be extracted,

manipulated and re-formatted with perfect results.

2.1.3 Plain or hierarchical? or what else?

Separating content and format is only a partial step for creating well engineered

documents. Another important point is deciding the overall structure of a docu-

ment, in particular by choosing between a plain sequence of objects or a hierar-

chical structures of containers. Although the second solution seems to be better

than the first one, many applications and users still produce documents with a

non-hierarchical internal structure.

The discussion about hierarchical structures is rooted in the first years of markup

languages development. An analytic and philosophical approach, the OCHO

model, was discussed in the early 1980s by Coombs et al.[DDMR87]. According

to OCHO a text is ’an ordered hierarchy of content objects’. A document is ’hi-

erarchical’ because elements nest inside one another like chinese boxes (a book

contains chapters, which contain sections, which contain subsections, then para-

graphs, then in-lines, down to the raw text); it is ’ordered’ because there is a linear

relationship among objects (for any two objects within a book one comes before

the other), and it is made of plain units of information (content). Authors divided

advantages of an OCHO-based approach in three main categories: composition

assistance, production assistance and facilitation of alternate use of data. First of

all, OCHO helps authors since they can deal with a document at an appropriate

level of abstraction and, rather than concentrating on its formatting, can work

on its logical structure and relations among elements. Writing, collaboration and

composition are all simplified since conceptual models are directly mapped into

documents structures, relative relations are made explicit and different views of

the same content can be easily created and updated. Moreover OCHO helps users

in manipulating and understanding documents, that can be treated as databases

of text elements: since relations and dependencies are explicit advanced retrieval

Chapter 2. Document Engineering 21

functions can be implemented, as well as functions of content fragments compo-

sition and reflowing.

OCHO raised a great interest within the community and many commentaries

and rensponses were published. Particularly interesting was the objection of

Dicks[Dic97], related with the controversy between format and presentation. Ba-

sically Dicks said that OCHO had a low support for images and formatting prop-

erties, and downplayed the renditional aspects of a document. On the contrary,

he believed that text and presentation are both integral and irreplaceable part

of a document identity. DeRose[DeR97] answered saying that OCHO did not

consider presentational features ’unimportant’ rather derivative. ’Derivative’ be-

cause they depend on the level of abstraction at issue: presentation actually ef-

fects the reader’s recognition of content objects but it derives from the medium

used to access content. While Dicks basically agreed with the OCHO hierarchical

model, Bringsjord[Bri96] proposed a completely different organization according

to which a document is a collection of unadorned chuncks of information (jot-

tings) and some procedures useful to manage and display them. Bringsjord’s po-

sition can be defined ’bottom-up’: instead of being pre-defined and hierarchicual

structures, which map existing conceptual organizations, documents derive from

the assembly of ’pure’ jottings, moved and merged according to the user’s need

and preferences.

Actually few counterproposals to OCHO were done (and they had a very low

success), and OCHO suddenly became the most adopted model for designing

markup languages. However, the OCHO philosophical approach had been pre-

ceded by the same SGML (its ancestor GML). In the following years SGML would

be followed by XML, as further evidence of the flexibility and power of a hi-

erarchical model. Although SGML and XML community has widely discussed

benefits of a hierarchical organization, many non-hierarchical documents can be

found today, many software produce plain content and, above all, many authors

use to write documents without an explicit hierarchical organization of subcom-

ponents. The example of XHTML is meaningful. XHTML headings (h1,..., h6)

22 Chapter 2. Document Engineering

are meant to implicitly indicate the logical organization of a page, although they

are in sequence. The following fragment shows an example of a page with three

levels of headings, written in XHTML 1.0 and XHTML 2.0. The latter introduces

tags h and section to make explicit the nesting relations between elements. The

introduction of those tags shows how much the importance (and need) of hierar-

chies and structured content is shared by markup researchers.

<body>
<h1>Title 1</h1>
<h2>Title 1.1</h2>
<h1>Title 2</h1>
<h1>Title 3</h1>
<h2>Title 3.1</h2>
<h3>Title 3.1.1</h3>

</body>

<body>
<section>
<h>Title 1</h>

<section>
<h>Title 1.1</h>
</section>

</section>
<section>
<h>Title 2</h>
</section>
<section>
<h>Title 3</h>

<section>
<h>Title 3.1</h>

<section>
<h>Title 3.1.1</h>
</section>

</section>
</section>

</body>

A plain document is certainly simpler to be created (actually it is what most

word processors produce), less verbose and matches the visual structure of the

Chapter 2. Document Engineering 23

document itself. On the other hand, deriving its actual structure requires further

operations, since both humans and applications have to count objects and recol-

lect them on-the-fly. Despite the model it adopts, a document like the example is

intrinsically organized in nested containers and, at the end, paragraphs. Only a

methodical use of hierarchies allows users to express those logical relations and

to avoid ambiguity in their interpretation.

For this reason, tree structures have raised great interest in the database com-

munity as well. Glushko and McGrath[GM02] discussed how wrappers and

containers make clear the functional dependencies among elements. He noticed

that documents are traditionally studied from two perspectives: document-centric

analysis, which considers them as artifacts that are perceived as a rendition (com-

bination) of presentation and format; and data-centric analysis, which considers

them as artifacts more regular in their structures, with a minimal presentation

and more consumable by applications than by humans. The author argued that

these approaches have a lot of unexpected common aspects and can be managed

together in order to obtain well-engineered documents.

Particularly interesting is the parallelism between the process of database nor-

malization and the use of (sub-)structures in the documents to express depen-

dencies and nesting. Date[Dat81] stated that ”recognizing functional dependen-

cies is an essential part of understanding the meaning or semantics of the data”.

Glushko said (and I completely agree) that relational databases use normalized

tables to express hierarchies, as well as wrappers and containers give structure

and depth to the documents. Well-structured information in fact allows users to

minimize redundancy, localize dependencies and ensure that information reflects

the features and constraints of the application domain.

Salminin and Tompa[ST01] described documents as assemblies of structures

and components based on a required business context. The ”document assem-

bly” is the process of constructing a new document instance from those basic

units. Such process is simplified and empowered when documents adopt con-

tainers. They play a role similar to the database normalization: as normalization

24 Chapter 2. Document Engineering

increases efficiency and prevents anomaly operations, as wrappers facilitates do-

cuments’ updates and transformations. The point is that relations among sub-

trees and branches are clearly expressed and easily (and reliably) modifiable in a

tree-based document.

But modeling documents as trees is not enough. Very often users need to

markup structures that do not not nest neatly into others, and cannot be repre-

sented as a hierarchical structure with a single root. A classical example is a text

with a quotation starting in the middle of one paragraph and ending in the mid-

dle of the next: by only adopting an OCHO model, it is impossible to markup

either paragraphs and citations in that scenario. Different techniques have been

proposed by researchers to handle multiple and overlapped hierarchies.

An initial recognition of the problem, although it did not define an analysis

and processing model in sufficient detail, was the SGML CONCUR. It is an op-

tional feature of SGML usable to annotate concurrent hierarchical structures in

a single document. Basically, CONCUR allows authors to use different DTDs in

the same schema, by assigning elements to the DTD they belong to by preced-

ing them with the corresponding document type (surrounded by round brack-

ets). Compatible with SGML, CONCUR cannot be used for XML documents and

proved to be very complex and inefficient in handling self-overlap and relations

among DTDs.

The same authors of OCHO revised their theories to accomodate overlap-

ping, by proposing OCHO-2. Renear et al.[RDM96] says that different hierar-

chies of content objects can be found in the same text, depending on different

analytical perspectives, but they are never applied simultaneously. For instance,

prosodic objects (stanzas, lines, half lines) do not overlap with each other, nor

do the linguistic objects (sentences, phrases), nor do the dramatic objects (acts,

scenes, casts). Although different hierarchies actually exist on the same docu-

ment, they do not interfere with the most common encoding practices. Practical

counterexamples brought the same authors to propose OCHO-3, according to

which each analytical perspective can be further divided in sub-perspectives and

Chapter 2. Document Engineering 25

for each of them simultaneous hierachies can be identified. A sub-perspective is

a discipline or any other unified part of an analytical perspective: authors pro-

posed the example of’literary’ studies, which can be divided in ’literary history’,

’literary criticism’ and ’textual criticism’, which in turn can be splitted in ’tran-

scription’, ’recension’ and ’emendation’. At that level, multiple hierarchies are

distinguished and they overlap moving up to the higher levels of abstraction.

Sperberg-McQueen and Burnard [SMB02] introduced a different method based

on segmentation, consisting of marking up the original document as smaller frag-

ments that do not overlap and compound them into multiple hierarchies. Al-

though very powerful, such method makes difficult managing complex units

of content (and re-building implicit structures) and have had a low acceptance

within the community. ”Join” techniques were also proposed in the same guide-

lines to augment the power and the applicability of such segmentation approach.

Durusau and O’Donnell[DO02] proposed JITT, a solution which does not use

XML syntax (even if it is very close) but provides users a powerful framework

to handle overlapping elements. Basically, it relies on specialized ”filters” that

count only some tags of a document, ignoring others. The key aspect is that

JITTs markup is recognized at processing-time rather than encoding-time: docu-

ments can be bad-formed when edited and saved, but can be transformed into

processable XML while parsing them. In a sense, JITTs allows users to express

different coexisting views on the same document, and to select them on-the-fly

whenever (and by whoever) those documents are accessed. A similar proposal in

non-XML syntax is LMNL(Layered Markup and Annotation Language) by Tenni-

son and Piez[TP02]. LMNL is a markup notation that reflects an abstract model,

where documents are strings over which span a number of named ranges and

metaranges, and can be easily translated into a single view of source data, for in-

stance an XML tree. DeRose[DeR04] proposed CLIX (Canonical LML in XML), an

XML syntax for LMNL: any LMNL document is normalized into a CLIX one that

can be processed and validated by XML tools. CLIX development is not finished

yet: for instance Bauman[Bau05] recently proposed some refinements.

26 Chapter 2. Document Engineering

Sperberg-McQueen and Burnard[SMB02] proposed a quite different solution

named ”Milestones”: replacing nested troublesome elements with empty ele-

ments that indicate the start-point and the end-point of the fragment which over-

laps. Attributes and crossing references can be then used to express relations and

dependencies between those anchors. Milestones are quite difficult to be handled

(since hierachies are hidden and sometimes hard to be extracted) but they can be

processed by XML tools and have a very low inteference with the original text.

However, the less invasive technique to handle overlapping hierarchies is the

so-called ”stand-off” markup. It consists of expressing markup in a different lo-

cation from the content it applies to, and later applying it through a process of

”internalization”. Standoff markup is really powerful and flexible, but very dif-

ficult to be handled since conflicts, changes, moves of fragments influence (and

can break) addressing mechanisms. Different W3C standards can be exploited to

implement external markup: XPointer[GMMW03] to express complex locations,

ranges and addresses within an XML document, XLink[DMD01] to create com-

plex links including external ones (which can be used to state something about a

text fragment retrieved with an XPointer) or XInclude[MO04] to describe content

fragments and their inclusions and reuses.

2.2 Analyzing documents

Authors of new digital documents take (or at least should take) into account all

the principles discussed so far, in order to produce documents that can be easily

stored, maintained, retrieved and transmitted. However, it is very common to

have paper documents, whose digital sources are unavailable or corrupted, that

users need to transform into electronic and more structured resources. Moreover,

in the field of World Wide Web automatic extraction of structural information is

increasingly becoming more and more important. For this reason, a lot of tools

can be found in the literature about a posteriori analyses and re-structuring of

both paper-based documents and web pages. An exhaustively discussion is not

Chapter 2. Document Engineering 27

in order here, but an overview of those techniques and, in particular, a discussion

about the models of documents they adopt can be really useful for the purpose

of this work.

2.2.1 Structural analysis of paper-based documents

A lot of techniques and systems were proposed by researchers and profession-

als in order to automatically convert paper-based documents into electronic ones

(Song Mao et al.[SMRK03] presented a very interesting survey). Basically, they

all try to rebuild two electronic representations of a document: the physical lay-

out and, then, to map it into a logical structure of content. They can be divided

in two main categories: bottom-up and top-down. Top-down algorithms start with

the whole document and iteratively segment it into subcomponents, consider-

ing completed each segmentation step when a set of predefined properties are

met. Nagy et al.[NSV92] adopted that approach: the system Gobbledoc performs

a syntactical analysis to divide a document into labeled rectangular segments.

Then, it performs a string-based research over their content and allows users to

search, navigate and display those fragments. Two complementary views of the

same document are provided to the users: a set of images that report the origi-

nal graphical information, and a set of text segments that report the informative

content of the original source. Bottom-up solutions start with single pixels and

cluster them into letters, then into words and paragraphs, then into graphical

areas up to rebuild the whole document. Anil et al.[JY98] presented an itera-

tive approach for region identification, that exploits the connectivity and con-

tiguity of graphical elements in order to extract text fragments, tables, images

and drawings. Although, such approach primarily addressed technical journals,

authors used and evaluated similar techniques with other documents too. Sim-

ilarly O’Gorman[O’G93] introduced a method to extract layout information on

the basis of nearest-neighbor relations. In particular, the system evaluates spaces

between elements, text orientation, skews and areas borders and derives a logical

representation of documents, as sequences of text blocks and lines. The system is

28 Chapter 2. Document Engineering

highly configurable and proved to be reliable over different kinds of paper docu-

ments.

A transversal classification is very common in this field: rule-based versus

grammar-based systems. Rule-based systems exploit transformation rules to ex-

tract logical structures from layout information, while grammar-based systems

model the relations and nesting among document’s elements with formal gram-

mar production rules.

Niyogi and Srihari[NS95] presented Delos, a rule-based control system based

on a multi-level knowledge base. The system implements an hybrid approach:

text blocks are built with a bottom-up approach and then classified by analyz-

ing their location and features. Later, three set of rules (basic knowledge, control

and strategy rules) stored in a shared knowledge-base are applied to derive the

logical tree structure of the original documents. Some years before Fisher[Fis91]

had presented a similar approach that produced a logical representation of a do-

cument, in a format called MIF (Maker Interchange Format), by applying three

set of extraction rules: location clues (about the position of graphical elements),

format clues (about the presentation of content blocks) and textual clues (about

the actual content of each block). More recently, Lee et al.[LCC03] presented a

geometric approach able to extract the logical organization of hierarchical docu-

ments and express it in a SGML/XML syntax. In particular, a knowledge base

of geometrical characteristics and spatial relations is used as basis for automatic

splitting and grouping of regions into layout subcomponents.

Grammar-based methods are widely used as well. Brugger et al.[BZI97] used

a statistical document model to describe relations among layout entities, based on

n-grams. In particular, the system models the most relevant patterns that exist in

trees representing the logical structure of documents, and labels the input docu-

ment with probabilities for each of them. By applying statistical inferences and in-

cremental learning algorithms over the abstract model, the system automatically

extracts the logical tree that maximizes those probabilities and minimizes recog-

nition errors. Krishnamoorthy et al.[KNSV93] proposed a two-phases algorithm

Chapter 2. Document Engineering 29

to extract logical structures from technical documents. The algorithm separately

applies grammatical inference to study the horizontal and vertical projections of

the input document. Each of them is segmented by a bottom-up approach which

clusters lines in text blocks, text blocks in areas, and areas in super-areas (actually

authors uses a parallelism with atoms and molecules). Finally, those two views

are merged into a linearized tree, and further processed to obtain the final result.

Analysis systems can be also classified for the scope and generalization of

their approach. Most of them, in fact, apply heuristics and assumptions suit-

able for specific domains but less powerful on different kinds of documents: for

instance, Tsujimoto and Asada[TA90] proposed a system to handle multi-article

documents such as newspaper, or Srihari et al.[SYG99] proposed a tool to inter-

pret (unordered or incomplete) postal addresses, or Kim et al.[KLT03] an applica-

tion to extract bibliographic records from a medicine databases, and many more

examples could be cited, each used by a specific community in a specific con-

text. On the other hand, many general-purpose systems have been proposed as

well. Klink et al.[KDK00] proposed a rule-based system where rules are clearly

distinguished in two classes: generic rules suitable for each domain, and spe-

cific ones that users can customize and detail for their own purposes. Aiello et

al.[AMTW02] presented a more complete system to analyze a wide range of do-

cuments. The system is a monolithic application where different techniques are

mixed together: statistical decision trees, geometrical information, annotations

by users, coniguity and elements order, spatial relations are all used to derive

both the layout and and the logical structure of the input document.

2.2.2 Structural analysis of web pages

The automatic analysis and segmentation of documents has increasingly been

gaining importance in the field of WWW, as well. Although, the HTML language

was born to provide a simple and easy-to-learn markup language for physicists to

write their papers and publish them on the Internet, very soon its success spread

30 Chapter 2. Document Engineering

over individuals, companies and oganizations. And needs and specifications be-

came more and more complex.

By means of HTML tricks, tag exploitation, and creative use of graphics, page

designers have managed to make a boring structural markup language become

the means for incredibly complex and sophisticated interactive events available

through web browsers. Of course, the drawback of this evolution was that most

professionally created web pages started to include large markup sections aimed

at decorative and layout purposes, and that these are often intermingled with the

actual content of the page: although human readers can in most cases easily tell

apart content and presentation, machine interpretation of the content is seriously

hindered.

Applications that require to identify and classify subparts of web pages are

high, and their aims are as wide and numerous as the applications themselves.

The techniques they implement vary considerably. Kovacevi et al.[KMMV02]

used a hierarchical representation of the screen coordinates of each page ele-

ment in order to determine the most common areas in the page, such as header,

side menu (either left or right), main content area, and footer. This analysis ex-

ploits the expected structural similarities between professionally designed pages

as suggested by usability manuals and implemented by competitors.

Mukherjee et al.[MYTR03], Nanno et al.[NSO03] and Yang and Zhang[YZ01]

all propose a semantic analysis of the structure of the HTML page, aiming at

the discovery of visual similarities in the contained objects in analogous pages.

The fundamental observation is that the standardization in the generation tools

of web pages has created consistencies in the style of headings, records and text

blocks of the same category. Unfortunately, there are many ways in HTML to

obtain the same effect in terms of font, color and style (tag names, order of tag, use

of inline, internal or external CSS styles, etc.). So clearly similarities in the final

effect may well correspond to differences in the underlying code, which adds a

further layer of complexity in the process. Also Chen et al.[CZS+01] propose a

method for classification of elements in a web page based on their presentation,

Chapter 2. Document Engineering 31

nature and richness in style information.

Chung et al.[CGS02] proposes a restructuring approach to derive properly

nested XML documents from HTML pages, by exploiting information about how

HTML is typically used to render information, and how such visual markup is

related with the logical structure of a document. In particular, authors consider a

document as a hierarchical structure of block level objects (in terms of headings,

paragraphs, lists, tables) and in-line level objects (bolds, italics, spans, etc.), where

objects of higher level of abstraction are described by objects of finer level of ab-

straction. The meaning of a node is not directly associated with the object itself

but it is embedded in the content and context of that node. Then, they propose

a three-steps and bottom-up process to restructure a DOM tree: analyzing text in

order to identify atomic units of content, grouping those units in more complex

structures and polishing those structures by removing non-relevant or temporary

information.

An automatic mapping between visual and logical information of HTML pages

has recently been proposed by Burget[Bur05]. Rather than working directly on

the HTML code of a page, the author propose an abstract model to describe vi-

sual appearance of a page. The interpretation of some features in that visual

model, produce a description of the logical structure. Basically, a page layout is

modeled as a graph of areas (edges between two areas means they are nested or

contiguous) and weighted strings elements for attributes and text. A logical tree

is extracted from the nesting of elements and the weight of their subcomponent.

Then, specific information are gathered and expressed in XML, by identifying

subtree and paths and by inferring tag names with a content-based analysis.

The automatic analysis of web pages has been widely studied in the field of

web wrappers too. Wrappers are applications that extract specific information, ele-

ments and subparts of a page and present that information in a clear, unambigu-

ous and processable way. They are primarily used to automate navigation, to im-

prove efficiency, to deliver content on diverse devices or to re-organize structured

data. Two main approaches exist for wrappers extraction: grammatical inference

32 Chapter 2. Document Engineering

and inductive learning. Hong and Clark[HC01] uses an inference alghorithm to

derive a grammar that describes the logical structure of a document, in terms of

production rules, from a set of examples. Such grammar is later exploited by

a wrapper that automatically extracts information from other related and simi-

lar pages, and uses them as input for data querying and mining. Crescenzi and

Mecca[CM04] proposed an abstract model to capture the most relevant structures

used in HTML and express them in a formal language, called prefix mark-up lan-

guage, upon which information can be inferred without errors. Authors provided

a theoretical discussion of such properties of validity and correctness and pre-

sented their grammar-based inference alghorithm.

Examples of inductive learning approaches are alike common in the litera-

ture: Freitag[Fre98] presented SRV, a general framework for content extraction

based on a training phase when the system acquires lexical and linguistic infor-

mation, and an actual analysis phase when those information are used to extract

informative content. While SRV is mainly focused on free-text many solutions

have been proposed to analyze semi-structured data: for instance, Knoblock et

al.[KLMM03] introduced a wrapper algorithm that learns extraction rules from

data inserted by users, through a graphical interface. Users initially mark-up

page fragments indicating their semantic role; the algorithm subsequently ex-

ploits those indications to process more pages and extract relevant information.

Within those applications, a very important role is played by NLP (Natural Lan-

guage Processing) techniques, as proposed by Deriviere et al.[DHN06]. Those

techniques share common objectives with my thesis: extracting logical informa-

tion from plain text. On the other hand, they apply a bottom-up approach and

try to build new structures from unstructured content; my focus is primarily on

translating and normalizing structures already (and explicitly) created by the au-

thors.

A different application of web content analysis is the repurposing of content

for PDA or small devices. Chen et al.[CMZ03] obtained such reflowing by deter-

mining the criteria for identify the elements of the page that constitute a content

Chapter 2. Document Engineering 33

unit. The process is iterative, starting from a single block as wide as the whole

page, and then progressively determining sub-areas within the areas already de-

termined. Gupta et al.[GKDG03] performed the reformatting of the web content

for smaller PDA screens through the filtering of specific nodes of the DOM tree

and leaving only relevant nodes. In particular, authors proposed two set of fil-

ters: basic removers, which quickly remove some selectable tags and attributes,

and advanced filters, which change or re-organize page objects such as adver-

tisements, link lists, empty tables and so on. A simple graphical user interface

can be used by the system administrators, to active and deactivate those filters

in a proxy-based Java application. Penn et al.[PHLM01] proposed a different set

of heuristics to extract tabular data and link from news web sites, and presented

their prototype and experimental results.

Buyukkokten et al.[BKGM+02] proposed a very interesting ”accordion” model

for web pages, exploited to automatically extract and reflow information. A do-

cument is considered as a hierarchy of individual content units called Semantic

Textual Units (STUs). Those units are built upon syntactic features of HTML

documents, then organized according to the role of each of them. The relevant

aspect is that hierarchies do not reflect the structural tree organization of a page,

but the level of importance of each STU (for instance, H1 and B elements have the

same relevance, higher than a normal P). Moreover summarization is performed

over each single unit and readers can select which (and which version of each)

unit they want to display in their PDAs. Such approach can be then considered

a sort of re-structuring of web content and implicitly relies on a strong segmen-

tation model, as the one presented with this work. Kaasinen et al.[KAK+00] pre-

sented a very similar approach, which considers a web page as divided into units

compared to ”cards in a deck”. The system splits content into small units pre-

sented once a time to the users, who can select only one of them. The tree-based

structure of an HTML document is then flatted into a sequence of cards, each

with a specific level of relevance used to decide their initial surfing order.

Many more systems could have been listed in this section. A complete overview

34 Chapter 2. Document Engineering

is out of the scope of this work, which indeed shares several aspects with these

applications: first of all, the automatic and a posteriori interpretation and recon-

struction of (sometimes bad-structured) content.

Chapter 3

Document Segmentation

In this chapter I propose a new model to segment documents, called Pentaformat,

able to identify their most relevant constituents in order to process, recombine,

and repurpose them for different domains and applications.

Defining what a document really is and what it is used for, is a complex issue

widely discussed among different communities, over the years. Heterogeneous

objectives as well as heteregeneous skills, interests and backgrounds lead schol-

ars to stress on some aspects more than others: for instance, semiologists focus on

languages and signs, computer scientists on automatic analysis and transforma-

tions, communication experts on message passing and immediacy, antropologists

on users’ reaction and so on.

A basic concept relies behind all these interpretations: a document is the re-

sult of a writing process, intended to store and communicate information. It’s

no accident that the word roots of the term ”document” (derived from the Latin

’docere’, that means ’teaching’) focuses on such aspect: documents are means for

constructing, progressing and disseminating ideas and data. Then documents

cannot be conceived as indivisible units but they are the result of a complex pro-

cess, where different and heterogeneous interventions work together to obtain

the final output: layered artifacts, where each layer is built by specific roles, in a

specific time and for specific goals. The Pentaformat model stresses on such idea

of documents segmented into distinguished but connected constituents.

36 Chapter 3. Document Segmentation

3.1 What is text, really?

Although a vision centered on reusable components is increasingly gaining rel-

evance for digital publishing, it is not a prerogative of the only last generation

documents. The same basic constituents can be identified in any kind of docu-

ment: either in old manuscripts or modern e-books, as well as in advertisements

or recipes books and so on. What change are the actual elements in each cathe-

gory, their properties, their final rendering but the logical segmentation keeps

beeing valid.

3.1.1 Segmenting a manuscript

Consider, for example, the manuscript shown in figure 3.1. This is the origi-

nal copy of the treatment ”Of Colors”, about optics, written by Isaac Newton

and included in his most complete laboratory notebook (the whole notebook is

found today in the Cambridge University Library, as a bound volume of over one

hundred-seventy folios). Actually, only the first paragraphs are displayed from

the original folio.

Newton had organized the text by following rules and stylistic conventions.

He chose the most suitable constructs for expressing and structuring what he

had in mind: so he divided the content in paragraphs, numbered them and high-

ligthed some fragments. The writing and organising of a text, in fact, is done ac-

cording to more or less predefined conventional patterns or genre norms which

have been developed to fulfil specific communicative objective, as observed by

Halliday and Hasan[HH89]. Djik[Dji80] divided these norms in three levels: at

macro level, they define the overall structure of a text and generic elements like

sections, subsections, images, notes and so on; at middle level, they define spe-

cific elements needed to write a poem instead of a book, to dramatize instead of

telling a joke and so on; at micro-level they define all those rules, specific terms,

words and features needed in a specific context. Regardless of the level we are in-

terested on, it is evident the presence (and, meanwhile, the need) of ’something’

Chapter 3. Document Segmentation 37

Figure 3.1: A fragment of the treatment ”Of Colors” by Isaac Newton

that gives a structure to the raw content and makes it readable and consistent

with the expectations of the readers.

Moreover Newton wrote those notes with his handwriting, with specific font,

colors and on a specific kind paper (or whatever else). Time after, scientists and

students would have transformed the original text (or handed on versions of it)

into different pages, probably trimmed with comments, notes and so on. In other

words, both the authors and his readers/publishers add a new layer to the struc-

tured content, a way to better show the document: the presentation.

Thousands of digital copies of this work exist today as web pages, e-books

articles, XML files, PDFs, etc. Consider, for instance, the following TEI fragment

that encodes the manuscript:

<tei>

...

<title>Of Colours</title>

<p id="3975_p1">

1. The rays reflected from Leafe Gold are yellow but those transmitted are blew, as

appeares by holding a leafe of Gold twixt your eye & a Candle.</p>

38 Chapter 3. Document Segmentation

<p id="3975_p2">

2. Lignum Nephriticum sliced & about a handfull infused in 3 or 4 pints of faire water

for a Night the liquor (looked on in a cleare violl) reflects blew rays & transmits

yellow ones. And if the liquor being too much impregnated appeares (when looked through)

of a darke red it may bee diluted with faire water till it appeare of a Golden Colour.</p>

<p id="3975_p3">

3 The flat peices of some kinds of Glase will exhibitthe same Phaenomenawith Lignum

Nephriticum. And these Phaenomena of Gold & Lignum Nephriticum are represented by the

Prisme in the 37<super>th</super> experiment as also in the 22<super>th</super> &

24<super>th</super> Experiment.</p>

...

</tei>

The encoder has divided the text into blocks corresponding to the paragraps

used by the author, with specialized elements for special blocks (as the title) or

inline fragments. Those constructs reflect the organization of plain text done by

Newton and, indirectly, the abovementioned rules and conventions in structur-

ing scientific texts. Macro-structures are evident, so that further tranformations

into HTML pages or XSL-FO files, and simple text analyses, are easy to be imple-

mented. However, the same content could be encoded in a completely different

way:

<tei>

...

<title>Of Colours</title>

<lg id="3975_p1">

<l>1. The rays reflected from Leafe Gold are yellow</l>

<l>but those transmitted are blew, as appeares by holding</l>

<l>a leafe of Gold twixt your eye & a Candle.</l>

</lg>

<lg id="3975_p2">

<l>2. Lignum Nephriticum sliced & about a handfull </l>

<l>infused in 3 or 4 pints of faire water for a Night the</l>

<l>liquor (looked on in a cleare violl) reflects blew</l>

<l>rays & transmits yellow ones. And if the liquor</l>

<l>being too much impregnated appeares (when looked through)</l>

<l>of a darke red it may bee diluted with faire water</l>

<l>till it appeare of a Golden Colour.</l>

Chapter 3. Document Segmentation 39

</lg>

<lg id="3975_p3">

<l>3 The flat peices of some kinds of Glase will </l>

<l>exhibitthe same Phaenomenawith Lignum Nephriticum.</l>

<l>And these Phaenomena of Gold & Lignum Nephriticum</l>

<l>are represented by the Prisme in the 37<super>th</super> experiment</l>

<l>as also in the 22<super>th</super> & 24<super>th</super> Experiment.</l>

</lg>

...

</tei>

The labels are used to mark lines of the manuscript: instead of emphasizing

macro structures, the encoder re-built the ’physical’ organization of the original

document in order to track minimal details of the original copy hand-written

by Newton. A point is worth being remarked: this encoding is not an artificial

and not meaningful re-reading, but a different organization of the same content

already living in the manuscript.

But, what do these TEI fragments have in common? And, how are they related

with the original document? It is evident they both share the same plain text:

removing all tags for a while, we would have a raw content we could define the

no-markup content (actually, no-markup document cannot exist as discussed by

Coombs et al.[CRD87]). Complex structures can be built over such a minimal

level, according to need and preferences of the author, the encoder or, even, the

reader (when they are added later on, after a further mark-up process). Those

structures are meant to make explicit the meaning and the logical organization of

content, that otherwise would be difficult to be interpreted and processed.

Traditionally two components are clearly identified in a document: the con-

tent and the structure. They are distinct but interconnected, since they have dif-

ferent goals and roots but they cannot live without each other. All the more so,

the structure is a vehicle used to get further operations ready, as the abovemen-

tioned analises, as the transformations in different formats and so on. Note that

they both have the same relevance, but they are two different and complemen-

tary dimensions: content expresses the units of information, while the structure

40 Chapter 3. Document Segmentation

expresses the relationship among them. An interesting example, borrowed by

DeRose et al.[DDMR87], explains better such difference: the authors showed two

fragments of the same text (by Brian Kernigan) translated in english and french,

and argued that the structure of the document was likely to remain intact, while

words and syntactic elements (the content) changed. In the same paper, the au-

thors highlighted the importance of the structure as a means to make explicit the

hierarchical order of elements and their relations (see section 2.1.3 for a deeper

discussion about the OCHO model they proposed): containers and subcontain-

ers help authors in understanding content and make simpler and more powerful

future applications.

A different perspective can be alike useful to understand the roles of content

and structure: the structure as a contact point between the producer and the con-

sumer of content. I used the generic terms ’producer’ and ’consumer’ to extend

the scope of my definition: in the case of the manuscript, Newton was the pro-

ducer while his contemporaries (and future readers) were the consumers; all the

scientists who copied the document were a producers of a new document, that

used the same structures of the original one; in the same way, the TEI encoder

who created the first fragment translated the original macro-structures into an

electronic format; on the other hand, the second encoder used different struc-

tures, addressed to different consumers. A different structure is a different angle

over the same content: on the basis of the actual information a producer wants to

transmit, its granularity and complexity, as well as its further developments and

processes, he/she chooses some structures instead of others.

Skipping presentational aspects for a while, the distinction between content

and structure does not settle the matters. Each document, in fact, is actually writ-

ten in a specific languague; in particular, electronic documents are encoded by fol-

lowing different syntaxes, tag names and grammatical rules. On the other hand,

structures are independent from specific languages and formats: they are generic

constructs used to make explicit the overall organization of a text. Consider, for

instance, the following HTML fragment, encoding the example:

Chapter 3. Document Segmentation 41

<html>

...

<h1>Of Colours</h1>

<p>

1. The rays reflected from Leafe Gold are yellow but those transmitted are blew, as

appeares by holding a leafe of Gold twixt your eye & a Candle.</p>

<p>

2. Lignum Nephriticum sliced & about a handfull infused in 3 or 4 pints of faire water

for a Night the liquor (looked on in a cleare violl) reflects blew rays & transmits

yellow ones. And if the liquor being too much impregnated appeares (when looked through)

of a darke red it may bee diluted with faire water till it appeare of a Golden Colour.</p>

<p>

3 The flat peices of some kinds of Glase will exhibitthe same Phaenomenawith Lignum

Nephriticum. And these Phaenomena of Gold & Lignum Nephriticum are represented by the

Prisme in the 37<super>th</super> experiment as also in the 22<super>th</super> &

24<super>th</super> Experiment.</p>

...

</html>

The structure is the same of the original manuscript and the first TEI text.

The overall organization in subcomponents (paragraphs) remains intact: what

changes is the syntax used to express that structure, but the abstract elements do

not change. Such simple example shows how documents can be written in dif-

ferent syntaxes and share the same internal organization of content. Similarly, an

HTML page with a different layout, a MS Word file or a PDF file for the same

work (divided in paragraphs) has the same content and structure of all the pre-

vious examples.

Those documents are evidently different for their formatting and layout too.

A third irremissible layer of a document is composed by all those information

added to make the document appealing, interesting and consistent with typo-

graphical needs and preferences: the presentation. Colors, spatial organizations,

fonts, images and whatever embellishment complete the logical structure of the

document with presentational aspects.

The relation between structure and presentation (and their separation) de-

serves a deeper analysis, that goes beyond the classical vision of ’producing do-

42 Chapter 3. Document Segmentation

cuments of pure content, without any presentational aspect’. It strongly depends

on who or what accesses a document: human beings, in fact, cannot read docu-

ments without presentation while automatic processes or agents can. We humans

need something more to perceive and read a document, something physical and

sensory, something that shows inherent and internal structures. So, the presenta-

tion is an extra layer, strongly interrelated with the structure, that adds and extra

meaning and help us in perceive and comprehend text. Kasdorf[Kas98] summa-

rized such a vision at best: ”print pages have been communicating structure for

centuries - visually”. Coming back the producer/consumer metaphor, I would

say that the presentation is the contact point between human consumers and the

structure of a document, as much as the structure is the first contact point be-

tween content and consumers.

I found a very interesting example in a Hillesund’s article[Hil02]. Actually

the author used it in defense of an opposite theory, that separating content struc-

ture and format is an illusion, since they both are necessary to fully express the

meaning of a text. On the contrary, I agree they are closely interrelated but I

see them as built on top of each other, since presentation strengthens what is al-

ready expressed by the structure. Hillesund argued that meanings in tables are

expressed by the combination of data (words and figures) and visual layout. The

cells can at the same time show data values of two different variables: this infor-

mation is ”shown” in a visual and two-dimensional way, so that users can easily

compare values within different cells. The strength of the table, according to the

author, is just such a sensory perception of users and the subsequent simplified

access to those data. But, is that information really ’visual’? Can it be really

considered presentation? What makes tables strong in displaying those data is

just their structure, their internal organization in cells and items straight accessi-

ble and comparable. The fact that we visually read a table very fast is an extra

value, dependable on our perception. Moreover a table with specific colors, fonts

or paddings makes it easier (or more difficult) the reading but it structurally re-

mains a container of data. Let us think about people with visual disabilities, that

Chapter 3. Document Segmentation 43

access an HTML table by using screen readers: they do not use visual hints, but

they exploit the logical organization of the table (that is possible only when au-

thors have correctly organized and marked it and, unfortunately, that is not so

frequent).

Sometimes presentational information seem to be indistinguishable from struc-

ture. Even in that case, what we really need is the deep and logical meaning

hidden behind that presentation, rather than the presentation itself. The format-

ting remains something more, extremely useful to make explicit the structure but

still unnecessary. Consider a different example (from Hillesund’s article[Hil02]

as well) of a norwegian fragment, enriched with some visual information.

Åseile inn i fremtiden

Livet i en seilbåt eller robåt gir folk anledning til å

gjenerobre den sakte tiden, den som i våre dager er i ferd

med åbli en mangelvare.

Forbundet KYSTEN har formulert som vesentlige

målsetninger ågi vern til kystkulturen, ta vare pådet som

var i ferd med ågåtapt, i tillegg til åstyrke vår identitet

som kystfolk.

Denne fortidsorienteringen har sine kritikere. Både blant

ekstrem-urbanistene som Erling Fossen og blant

samfunnsforskere har man sett tradisjonsorienteringen som

nostalgiske klynk etter en svunnen tid.

People who do not speak norwegian cannot translate the text, but they can

guess its overall organization, at least. It is not difficult to find the title, to see

that the first paragraph is probably an introduction or a blockquote, that other

paragraphs are normal, with a fragment in upper-case (probably a name). Yet,

all those information can be captured thanks to presentational clues provided by

the author, but those clues does not substitute and cancel the structural value of

the text. The same text can be transformed, for instance, into an HTML with a

completely different layout: the logical organization does not change, although

graphical hints are completely different. A mapping between structure and pre-

sentation always exists (no document can be displayed without a presentation),

44 Chapter 3. Document Segmentation

but they are two dimensions built on the top of each other: presentation high-

lights structure, which is anyway inherent in the content organization made by

the author.

Actually, a presentation can be further split in different subcomponents, which

describe separately the most relevant elements of layout and formatting. A very

common classification identifies two main dimensions: space organization and

skins. The space organization describes the positions of each structural object

in the final document, the distances among boxes and shapes, the dimensions of

each object and so on; a skin describes properties like colors, fonts, backgrounds,

textures and so on. A deep discussion about further segmentations of a layout is

out of the scope of this work, whose paramount goal is investigating the relation

between content, structure and presentation. However, a clarification is needed:

space organization and skins are independent from a specific language but they

express general concepts. As the structural elements can be translated into HTML

tags, TEI constructs or paragraphs in a manuscript, so presentational information

can be translated into SVG constructs, XLS-FO primitives, formatted blocks on

a piece of paper and so on. As it happens for structures, a third dimension is

needed to describe the presentation of a document: the language actually used to

instantiate abstract formatting elements like boxes, spaces, lines, images and so

on.

To summarize, I have segmented the manuscript into three clearly distin-

guished dimensions: content, structure and presentation (space disposition + skin);

sideways I placed the languages actually used to express all these dimensions.

The same segmentation model keeps being valid in other contexts too.

3.1.2 Heterogeneous scenarios, a common denominator

One of the main objections that can be raised against the classification proposed

in the previous section says that the segmentation applies only on some specific

(and simple) documents. As discussed before, some researchers argued that a

clear distinction among those components is an illusion, since components are

Chapter 3. Document Segmentation 45

interwoven and indivisible (as claimed by Hillesund[Hil02]). I believe it is always

possible, even in contexts where graphic elements are heavily intermixed with

content, and the presentation is the most evident part of a document.

The key-aspect is the nature of the segmentation process: what I want to do

is identifying elements of each segment, understanding their inherent role and

making explicit their relation and interaction. Segmentation does not aim at di-

viding a document into sub-modules that can be combined together in order to

obtain a document identical to the original one. Rather, it aims at dividing a do-

cument into sub-components that can legitimately express the same meaning, the

same organization or the same overall graphical impact. Some loss of informa-

tion is inevitable but it has to be limited and acceptable, taking into account the

context where segmentation is applied.

Let us discuss how different documents can be segmented according to the

ideas discussed so far. Consider, first, the film poster shown in figure 3.2:

Figure 3.2: Segmenting a film poster

The first goal of this kind of document is capturing the attention of the au-

46 Chapter 3. Document Segmentation

dience. For this reason, the emphasis is put on breath-taking sentences, colors,

images, space organization and so on. However, the poster carries information

about the film, as title, main actors, production and so on. A set of structured

information were put together and, then, organized into an appealing and good-

looking poster. Probably the creation process itself followed the same schema:

film data were communicated to a professional graphic designer, who organized

them according to suggestions, requests and preferences. Neglecting information

about the production (only for space limits), users could write a XML fragment

describing the film:

<FILM>

<TITLE>Kiss Kiss, Bang Bang</TITLE>

<SUBTITLE>Sex. Murder. Mistery. Welcome to the party.</SUBTITLE>

<ACTORS>

<ACTOR>Robert Downey Jr.</ACTOR>

<ACTOR>Val Kilmer</ACTOR>

</ACTORS>

</FILM>

Although the differences between these documents are evident, their intimate

structure does not change: obviously the second one cannot be used to present a

film, the first one is not adapt for data extraction and they are actually two well-

distinguished resources. However, the same information are reported by both of

them: they are united not only by the text they contain, but also by the way this

text is grouped and organized in containers, lists and sub containers. Then, they

share content and structure, while they have a manifest different presentation.

Similar considerations can be extended to a different kind of documents: the

magazines. Consider the cover of an art magazine shown in figure 3.3. Images,

colors, fonts and positions of the objects were designed to grab the readers’ at-

tention. On the other hand, such a cover hides references to the most important

articles of this issue, besides information about the magazine (price, issue num-

ber) and some advertising on the top. In other words some structured content

are highlighted by using typographical effects and clues. The central area of the

document can be translated into HTML as a sequence of P and SPAN carrying

Chapter 3. Document Segmentation 47

basic information. Presentations are very different but the segmentation process

does not change. Authors can build different documents that show the same set

of basic information, by interchanging presentations over the same content and

logical structure.

Figure 3.3: Segmenting a magazine cover

The role of the structure is describing the logical organization of a document

and the relation among objects. Consider a page of a newspaper, in figure 3.4.

The page is composed by three main areas: the central one with the main article,

the left one with some announcements and the third on the right-bottom side

with an advertisement. Such division in not merely a visual distinction but it

hides a deeper segmentation: the page is structurally composed by a title and

three containers; each containers can be divided in sub containers (the central

one with a subtitle) or contiguous paragraphs; moreover some inline elements are

highlighted. The number of columns, the color of backgrounds, the dimensions

of characters are information that do not add any logical meanings. Rather, they

are visual hints which help human readers to perceive and read information.

48 Chapter 3. Document Segmentation

Figure 3.4: Segmenting a newspaper page

3.1.3 Content, structure and presentation: are they enough?

From the previous analysis the only constituents of a document seem to be con-

tent, structure and presentation. However, such a three-layer distinction is not

new in the literature. Glushko and Mcgrath[GM02] presented an essentially sim-

ilar 3 level analysis, with slightly different terminology and definitions. Three

level analyses like this are generally well accepted in the SGML/XML literature

on documents:

• Content components: the pieces of information in the document; the ”what is

it” information, or the ”gray matter”

• Structure components: the arrangement of the content, the ”where it is” in-

formation, or the ”skeletal matter”.

• Presentation components: the formatting or rendering of both structure and

content components; the ”what does it look like” information; much of the

time it ”doesnt matter” except as it helps to identify components of the other

two types.

Chapter 3. Document Segmentation 49

It is not difficult to find examples where such a classification is not enough, in

particular considering the increasing importance of interaction and dynamic be-

havior in some contexts, like the World Wide Web. Most HTML pages go beyond

the static model of documents, and contain features that need additional model

elements. Such dynamic characteristics have often been treated as a sub-aspect of

presentation, but clearly involve a variety of special issues. Consider for instance

the portal home page shown in fig. 3.5. The structured content of that page con-

sists of all paragraphs of information, links to surf the portal, meaningful images

like those associated to each main event (in the middle of the page), while the

presentation is the spatial organization of content, the use of some colors and lo-

gos, and so on. But, what about the search engine inferace in the top area of the

page? It clearly indicates the presence of some non-static content and the need of

modeling reactions and events associated to users input.

Figure 3.5: Segmenting a web portal home-page

Many web pages contain programs with sophisticated logic and variable dis-

play functions, frequently linked to the server back end by Ajax or other tech-

niques. These examples violate any simple notion of a static marked-up docu-

ment, since both content and presentation could depend on arbitrary computa-

tion and user interaction. A new dimension is then necessary: the behavior.

50 Chapter 3. Document Segmentation

However, dynamic content is not only a prerogative of the World Wide Web.

For instance, Lumley et al.[LGR05] proposed DDF (Document Description Frame-

work), a solution that adds programmatical behaviour to the documents in order

to obtain flexible and variable data printing. A DDF document is composed of

three different sections: data, logical structure and presentation. Structure and

presentation are defined using templates, that transform respectively the data

into a structured XML format, and the structured document into a suitable pre-

sentation format. Whenever a document is evaluated, the templates are applied,

”moving” content from one section to another one. In the end, when the presen-

tation part contains the transformed data, the document can be exported into a

final version.

Active documents represent another example of applying behavior to the static

content. Bompani et al.[BCV99] proposed a flexible mechanisms to activate dif-

ferent behaviours on the same document, the displets. A displet is a special ren-

dering (even if its applicability goes beyond rendering) module that basically

performs some operation over the plain content of a document: by activating one

displet instead of another an active document may then be displayed, be printed,

perform computations, animations, and so on. Rather than being only a static

resources, such documents carry information about how to handle their content.

One more dimension is required to model (digital) documents: metadata. Meta-

data are all those information about a document that allow authors, managers

and readers to make sense of its content in relation to other documents of the

same kind, other documents related to this one, other versions or variants, other

external resources. Uses of metadata are very different: they first help users to

identify resources in wider contexts, to organize them in (sub)classes, to easily

search them (by using simple techniques like keywords, or complex data mining

algorithms), to archive and preserve them over a long period. However meta-

data exist very long before digital documents, as witnessed by the catalogs and

archives found in ancient libraries; with the advent of digital documents they are

empowered, applied to several contexts and studied as independent subject.

Chapter 3. Document Segmentation 51

One of the most widely deployed metadata standards on Internet is Dublin

Core[NIS01], a set of elements for cross-domain description of on-line resources.

It is widely used to describe digital materials such as video, sound, image, text,

and composite media like web pages. Comprising 15 categories of metadata in its

core version, this standard can be extended and customized for specific domains

(an example is the Qualified Dublin Core, which adds three levels to the current

metadata set) and has been adopted in very different projects about art, archeol-

ogy, medicine, chemistry and so on. Digital and print libraries have more com-

plex and specialized needs for bibliographic description, and often use standards

such as Marc21[MAR99] for bibliographic data, or Premis[pre04] for archives,

registers, indexes and any resource that supports bibliographic search, or IFLA-

FRBR[IFL97] which describes, among other data, events and actors involved in

managing collections of bibliographic material. Actually any application domain

suggests a set of specialized metadata, such as ID3[Nil98] for music, and many

others.

An interesting classification is about the position of metadata with respect to

the document. Metadata can be inserted as external resources, completely sepa-

rated from the original one, as it happens for DBMSs or XML/RDF/OWL infor-

mation; on the other hand, they can be located in specific sections of the document

itself, as in the case of the HTML META tag or the TEI header TEIHEADER. A

different approach is proposed by microformats[CTK+05] which directly embed

metadata within text by merging them with the actual content, and by expressing

metainformation in proper in-line tags and attributes.

This dissertation focuses on content description and analysis, rather than the

important issues around metadata standards and representations. These issues

will surface in the discussion of implemented systems, but are orthogonal to the

work discussed here.

52 Chapter 3. Document Segmentation

3.2 A document segmentation model: Pentaformat

All the abovementioned examples drive us into the first result of my thesis: a

model to segment documents into reusable assets. The innovation does not rely

on the segmentation itself, rather on its simplicity and wide applicability to a

broad range of documents.

Documents are traditionally segmented into content and presentation and,

although some opposite opinions exist as discussed in the previous section, re-

searchers and professionals agree on advantages of such approach. I propose to

refine that distinction by identifying five components that can be extracted from

any document, regardless of its actual layout and presentation. The model is

called Pentaformat:

• Content: the plain information made of text and images (I mainly focus on

these elements, and leave out audio and video only for the moment).

• Structure: the labels used to make explicit the meaning and the logical or-

ganization of the content. Structure is meant to indicate the role of text

elements and their relations, and to make a text interpretable and process-

able. Both structure and content constitute the basic information written

and organized by the author.

• Presentation: the set of visual and typographical features added to maxi-

mize the impact of the document on human readers. Presentation is built

over the structures and aims at strengthening what is inherently expressed

by structured content. It is not a ”useless” layer, rather one of the possi-

ble expressions of the original information, interpretable and appealing for

human readers.

• Behavior: the set of dynamic actions of events on a document, required

to model the increasing importance of interactivity and dynamic content

within digital documents.

Chapter 3. Document Segmentation 53

• Metadata: the set of information about the document. They allow authors,

managers and readers to make sense of documents in relation to other do-

cuments, other versions, or other external resources. They are then meant

to make resources searchable, indexable and manageable within wider con-

texts.

Figure 3.6: The Pentaformat Model

Figure 3.6 shows my segmentation model, emphasizing the role of each ab-

stract consituent. My claim is not only that any document can be considered as

the integration of those five dimensions, but that they are clearly distinguishable

from each other, and can be interchanged and reformulated. In order to better ex-

plain the nature and impact of Pentaformat, some properties of these dimensions

are discussed below:

• Logical separation: each dimension is a partial perspective on the same docu-

ment. Each dimension expresses specific information, derives from specific

competences and has a specific role for the overall meaning of the docu-

ment itself. Note that talking about logical separation does not mean these

54 Chapter 3. Document Segmentation

components are always created separately and by different users (on the

contrary it is very common to find them intermixed); rather, it means they

can be abstracted and separated a posteriori to express different kinds of in-

formation about the same source document.

• Mutual connection: these dimensions are also strongly connected. They are

built on the top of each other, and they ”work together” for the overall

meaning of the document. For instance, structure organizes the plain con-

tent, presentation adds typographical information to the structure, as well

as behavior and metadata deals with them. When examined in isolation,

none of these dimensions gives a complete picture, as they each omit criti-

cal information about a document, regardless of the ongoing disputes as to

what is essential for a document to be described.

• Context-based relevance: no hierarchy is imposed a priori over these dimen-

sions, but they are equally important from a theoretical point of view (ex-

cept for the content itself, which is essential to any use of the document).

It is the context that determines their relevance and replaceability: for in-

stance, presentation is very important for professional publishing but can

be discarded in data mining applications, as well as metadata can be ne-

glected in pagination processes, or dynamic information are useful only in

some contexts.

• Context-based interchangeability: depending on the context where a docu-

ment is actually used, these components can be substituted. Examples are

fitting structured content into a completely different presentation, or ex-

pressing a set of metadata expressed in a different vocabulary, or transfer-

ring a set of dynamic behavior onto a different platform and so on. The

point is that the obtained document does not carry the same information

of the original one, but a new information relevant for that context. When

a user needs to update the content of a page, for instance, presentational

aspects can be changed; equally, when a graphic designer wants to change

Chapter 3. Document Segmentation 55

a layout the actual content is not relevant, and so on.

• Language independence: every one of the five dimensions can be expressed

by different languages. The issue of languages and their semantics interacts

with every dimension of the document model in an actual system. From

a theoretical point of view, however, the actual instantiation into a specific

format does not influence the meaning of that information. The capabilities

of a specific language limit what can be encoded with that language. For

instance, structural elements (such as paragraphs, lists, tables, etc.) can be

translated into HTML tags, TEI constructs or any other encoding language,

as well as presentational information (box, lines, colors) can be translated

into SVG constructs, XLS-FO primitives, formatted blocks and so on. The

same considerations can be obviously extended to behavior and metadata.

In conclusion, a cross dimension is necessary to complete my model: the

language each dimension is expressed.

At this point, my claim should be more clear. I want to separate and extract all

constituents of a document so as to be able to reformulate part of them, or reuse

some of them for different contexts.

3.3 The need of segmentation

Some benefits of the Pentaformat model are evident, and shared with similar

proposals, other are more specific and need a deeper investigation:

Complexity reduction: segmenting a document also means segmenting tasks

and objectives in managing it. Users do not need to deal with many intermixed

components but they can concentrate on a single aspect. The scope of analysis,

implementation and test is then reduced in sub-problems, even if they can be

very difficult.

Role distinction: a direct consequence is the possibility of designing workflows

and systems based on a strong distinction of roles. Each actor involved in pro-

56 Chapter 3. Document Segmentation

ducing high-quality output is usually expert on some aspects but completely un-

aware of others. Consider for instance the publishing of a professional book:

authors write content, editors revise it, typesetters paginate it, and in case web

designers transform it into appealing site pages. Making all these actors work to-

gether is a richness and motive of success. Each of them can specialize on specific

aspects, so that costs (and time) of production and training are reduced, as well

as the quality of results is improved.

Reuse: segmented components can be re-used in new documents or moved

from one document to the other. Many different scenarios can be envisioned:

moving content from paper-based documents into on-line versions, re-flowing

content in small devices like PDAs, uniforming presentation of heterogeneous

web sites, removing behavior information in static contexts, enriching metadata

constituents so that the document can be correctly placed within workflow pro-

cesses; and such list can go on and on. The point is that users create subcompo-

nents once, which can be integrated in different applications with little effort.

Composition: heterogeneous as well as single sources can be combined to ob-

tain new documents. A meaningful example can be found in professional print-

ing, considering how miscellaneous books (whose chapters come from different

books and editions) are currently produced. Each chapter originally has different

formatting properties, different page numbering, different organization of foot-

notes. Editors collect those chapters, basically remove presentational aspect, re-

vise content and pass them to typsetters, who actually paginate the final book.

Such process is implicitly based on a segmentation and normalization process.

Some researchers argued that reflowing content ’as is’ is almost impossible since

the content is completely embedded in the whole context and thread of a book

(see for instance the position of Hillesund[Hil02]). I agree with that position but

here the perspective is different, since it focuses on the technical feasibility of

segmentation rather than on editorial interventions required to the authors. Un-

deniably when authors write content with dependencies between chapters, with

constrained references, or with a predefined order, miscellaneous sources are dif-

Chapter 3. Document Segmentation 57

ficult to be combined; on the contrary, when content is modular and designed

taking these ideas in mind, composition becomes an extra value.

Automation: besides extending the scope of publishing , a segmentation model

improves the production process itself. Consider, for instance, the most common

approach to generate e-learning content: first, the author produces initial mate-

rial in a source format (usually created with personal productivity tools) and then

this collection of unrefined materials is processed with ad-hoc tools by a staff of ex-

perts. These experts transform material into web pages, organize learning objects

and add metadata. Content updates (as small-time typo corrections) need to be

performed directly on the final learning object, by exclusively using the author-

ing tools included in the platforms. Even little modifications require many steps

to be performed and intermediate documents to be produced. On the contrary, a

segmentation model and an automatic composition tool allow users to save costs

and time, since final documents can be directly produced from sources files and

modifications can be performed on them.

Adaptability and portability: segmented documents are independent from spe-

cific platforms. Customizing and re-arranging subcomponents, they can be easily

ported in different formats, in order to maximize their diffusion and impact. For

instance, web pages can be displayed in small devices by removing sophisticated

presentation, metadata extracted from web pages can be exploited by search en-

gines, conversion rules can be derived from templates and applied on different

pages, embedded metadata can support data mining, and so on.

High-quality output: the final effect is an improvement of the overall quality

of the documents. Uniform, well-studied and interchangeable look&feel, for in-

stance, can be ensured over documents by working on single subcomponents and

recombining them. Obviously such quality is not a free-of-charge consequence of

document segmentation, but it requires a lot of implementation effort. What is

important is that a rigorous and flexible model makes that implementation pos-

sible and allows designers to hide complexity for final users, without sacrificing

the quality of the results.

58 Chapter 3. Document Segmentation

3.3.1 What matters for authors: structured content

The Pentaformat model is based on the notions that every segment has its own

elevance and no hierarchy can be imposed a priori. This dissertation will focus

on the dimensions of content and structure and, indirectly, presentation. These di-

mensions have been chosen as the primary ones where an author works on a

document. The goal of this investigation of when and where content and struc-

ture can be managed in isolation is to empowers authors with a well-structured

process that produces well-structured content.

The example of the wiki editing paradigm[CL01] is particularly meaningful.

Figure 3.7 shows a page from WikiPedia[SW01] during an editing session. The

fact that authors can change only the raw content of a page is one of the strenghts

of wikis, since it allows unexpert users to easily add content, to revise versions,

and to work only on the actual information of a page. Apparent limitations on

presentation, basic text objects, etc. are actually the reason of the wikis success.

Most authors are in fact more interested in editing and collaborating on simple

content, rather than mastering complex tools and technologies to manage other

features. It is no accident that the content/format separation so deeply embedded

in the community (as discussed in section 2.1.2) reflects a separation of compe-

tences and spheres of interest between content author and other roles.

In many cases authors do not know how and where their content will be ac-

tually delivered. Professional content management systems (CMSs) are exam-

ples of such approach: for instance, reporters write articles (and send them in

any format), which are later paginated and distributed. Similarly, most of the e-

learning authors write content without knowing details of the final publication

on a LCMS, as well as PMS (Portal management systems) present raw informa-

tion from different sources into new layouts. On the same line, smaller CMSs

apply templates to plain content written and pasted by the authors through spe-

cific interfaces.

The interest of authors for content purged from presentation can be observed

in another context too: web customization. The term ’customization’ indicates here

Chapter 3. Document Segmentation 59

Figure 3.7: Editing a wiki page

the possibility for users to personalize web content, regardless of access permis-

sions, and store personal variants in external databases. Whenever the same user

accesses the same page, a customization systems substitutes the original page

with the customized version. Users can then annotate, and compare different re-

sources in a more powerful and democratic environment. Chapter 6 will discuss

the importance and feasibility of web customization in detail; what is interesting

here is that content customization alone is profitable for users.

Consider, for instance, an user interested in commenting on a paper written

by someone else and published as HTML. Such a customization help him/her

to review the paper, to develop his own ideas, to emphasize connections with

different works, to share opinions with other users and so on. Whatever layout

will be finally applied to the paper, whether or not it will be converted in PDF,

whatever format it was originally written, user need to actually deal with the

only original structured content. Figure 3.8 shows an interface of the IsaWiki

systems (discussed in chapter 6) to customize such a paper, where content areas

are bordered and editing facilities are activated only on those areas. The fact that

users cannot change the layout of the page, or the title and metadata does not

60 Chapter 3. Document Segmentation

limit the power and usefulness of customization.

Figure 3.8: Commenting a segmented paper

A different application of content customization is as means to review, select

and comment on a list of products (for instance owned by a rival firm) published

on a public web site. The most relevant information are the units on sale, their

prices and their descriptions. The layout, the order of elements, the navigation

schemas are out of the scope of customization. In figure 3.9 relevant areas are

again bordered and highlighted in order to let users to customize them, without

touching logos and other presentational features.

Also the differences between documents can be calculated on the only struc-

tured content, after discarding presentational aspects. That solution is both pow-

erful and indispensable when documents are stored in different formats and lay-

outs. Figure 3.10 shows two versions of a paper I wrote about IsaWiki[DIV04]:

the left side shows the submitted version in a raw formatting, while the right one

shows the final version formatted according to the journal specifications. Which

differences might we be interested in, for instance after some years? The content

we added or removed would probably be the only relevant information in that

context. Then, performing a diff between these documents can be limited to per-

forming it on the only content extracted from both of them. In conclusion, many

Chapter 3. Document Segmentation 61

Figure 3.9: Customizing a segmented web-site

Figure 3.10: Content-based diff-ing on a scientific paper

contexts exist where structure and content actually play a leading role and lim-

iting the authoring process on those dimensions does not limit the power of the

writers.

Chapter 4

Pattern-based Segmentation of Structured

Content

According to the Pentaformat model discussed in the previous chapter a do-

cument is the result of the interleaving of some (five) distinguished but inter-

connected constituents. The Pentaformat does not impose any hierarchy among

those segments but simply states their distinction and mutual relationships. It’s

the user (and the context) who suggests a specific hierarchy among components.

From authors perspective, however, the top of the hierarchy is held by the con-

tent and structure dimensions and most operations are performed on that infor-

mation.

This thesis focuses on these two segmented dimensions. In particular, the

objective of this chapter is discussing a pattern-based approach to express and

normalize the structured content of any document. From the multitude of lan-

guages, formats and documents we daily work on, we might conclude that a

huge amount of complex and diversified structures are needed. Although that

complexity seems to be unavoidable to express a so huge variety of information,

a (very small) subset of structures/patterns is alike enough to express what most

users need. My point is that it is always possible to write simplified documents

(or to normalize existing ones into simplified versions), that use only a limited

set of structural objects and composition rules, but keep on expressing the same

basic information. A first discussion about such pattern-based approach can be

Chapter 4. Pattern-based Segmentation of Structured Content 63

found in [DIGV05]. My approach is strictly related with the Pentaformat. Pat-

terns, in fact, are meant to capture the structural elements of a document, and to

express two of the five dimensions of the Pentaformat segmentation model: con-

tent and structure. Segmentation is by definition something that happens after

the creation of a document, something descriptive. Then, a deeper analysis is first

of all needed about the distinction between descriptive and prescriptive markup

languages.

4.1 A descriptive perspective: too many structures?

Quin[Qui96] outlined some important features of prescriptive and descriptive

approaches in designing markup languages: a prescriptive DTD may be designed

to create new material or to mark up existing material, and prescribes a set of

rules which all matching documents must follow; a descriptive DTD is used to

create an electronic version of material that already exists (of course, a descriptive

model may also be used to create new documents) and describes structures that

exist, rather than to force any particular structure. In a prescriptive context, if a

document contains a structure that cannot be described by a DTD the document

must be changed to fit the DTD. If something should occur in a document that a

descriptive DTD does not permit, it is the DTD that must be modified.

The choice between these models primarily depends on the relation between

the process of actual writing a document and the process of adding markup in-

formation. In a sense prescriptive models give the most expressive power to the

document designers, and make document authors subject to the power of the

constraints, while descriptive models reflect the fact that sometimes document

authors work and have worked independently of the desires of the document

designers, and thus the latter have to accommodate variations, exceptions, differ-

ences, etc.

By adopting a descriptive model rather than a prescriptive one, the role itself

of validation changes. Piez[Pie01] distinguished two kinds of validation: strict

64 Chapter 4. Pattern-based Segmentation of Structured Content

and loose. The traditional way of conceiving validation is ”strict”, because vali-

dation is used as a ”go/non-go” gauge to verify in advance whether or not a data

set conforms to a set of requirements. The example provided by Piez explains

very well the role of such a validation: the publishing process can be likened to

an assembly line and validation is a control phase that prevents errors and makes

the whole system work. When a document fails validation, there is something

wrong with it, something that has to be changed in the document itself. Then,

validation is a pass-or-fail exam, whose output is the capability to go forward in

the publishing chain. From that perspective, strict validation is useful (and some-

times necessary) as a means to split a complex job into sub-activities, that can be

accomplished by different actors with different skills and facilities.

Even if less frequent, an opposite perspective is alike interesting: using valida-

tion to describe document and to capture a posteriori structural information about

a text. It might be important to trace those features of the text important to the

encoder, rather than those constraints essential for subsequent operations over

that text. Piez defined such a process as a loose validation. Loose validation aims

at capturing what a text is, instead of what a text should be. Then, it is meant to

be an analytic instrument: while a strict validation is a ”valid/invalid” checker,

loose validation is likened (by the same author) to a caliper that measures some

properties and qualities of a document.

In such a context, the relation between documents’ instances and schemas

changes. A schema is not something that exists before an instance, as a set of

rules to be followed; rather, it derives from instances, as a ex post facto expression

of what can be discovered from them. As a consequence, a schema for loose val-

idation is not composed by fine-grained declarations that capture variations and

exceptions, but it is composed by generic rules that capture the overall meaning

of a set of documents. Constraints are relaxed, while repeated structures and

patterns are more evident.

Both strict and loose validation are useful. What is important is designing

languages and schemas by keeping in mind their features and differences, and

Chapter 4. Pattern-based Segmentation of Structured Content 65

applying them in right contexts. A fully descriptive schema cannot be used as a

means to verify minor imperfections or to impose structures to new documents;

on the other hand, a schema for strict validation is not suitable to express com-

mon features of documents, discovered after having analyzed actual instances

and data. To create a segmentation model, loose validation is then more interest-

ing.

My approach can be further explained by discussing how to model anoma-

lous data. Birnbaum and Mundie[BM99] presented a very interesting case: in the

context of encoding an historical edition of an english dictionary in SGML, they

asked themselves how an entry that violates the structural conventions of that

dictionary could be marked up. Three main approaches were discussed: editorial

correction, escape hatches and a loose DTD. A first solution would be intervening

manually to change the text to fit the normal model; this is clearly unsatisfactory

since the original entry is not actually recorded, but becomes something com-

pletely different. A second solution would be designing parallel structures able

to model differences (for instances, in TEI the element entry is used to model

well-structured lexical entries, while the element entryfree does not impose

rules and can be used to markup up bad-formed entries). The authors, argued

that such a solution obscures the fact that an entry is actually erroneous: it con-

siders that anomaly as an appropriately unusual or unconstrained element, while

the designer of that dictionary schema would not have actually consider that en-

try as valid. A third approach would be using a loose DTD that relaxes some

constraints and makes also the bad-formed entries valid. The author did not ac-

cept that solution because it does not capture the structural validity of most of

the entries, and lose a relevant piece of information.

I am not interested here in the solution proposed by Birnbaum (he proposed

to maintain the text in a valid SGML document from which the invalid one could

be automatically derived at any time) but I find his example useful to highlight

differences between those descriptive approaches. Apart from the first one which

is clearly unacceptable, two opposite goals underpin the others: an escape hatch

66 Chapter 4. Pattern-based Segmentation of Structured Content

wants to keep all details of each entry in order to reproduce a faithful copy of

the original resource; a loose DTD wants to describe all entries without focusing

on minimal differences and variations among instances. A loose DTD allows

designers to gather all entries in a common area described by the DTD itself. My

descriptive approach roots in that collective and generic idea of validation.

On the basis of these remarks, how should a descriptive language be de-

signed? The temptation to over-design (i.e., to impose too many constraints on

document structure, as if we were in a prescriptive situation) is strong, and may

lead to situations where actual documents cannot fit the structure because they

are too different from the ”natural” candidates. On the other hand, the tempta-

tion to under-design (i.e. To give up and say ”anything goes”) is also to be fought,

because this would lead to major differences in markup of the same documents

given by the lack of absolute standards to refer to.

In practice, validation languages are too powerful and easily lead to overde-

sign. Murata et al.[MLMK05] proposed a formal framework to study the expres-

siveness of the most common schema languages, DTDs, XML Schema[TDMM01]

and RelaxNG[Mur00]. In particular, they used regular tree grammar theory to

measure and compare validation capabilities of those languages. They first de-

fined some regular tree grammars (and studied their associated validation algo-

rithms) and showed which grammar captures each language in analysis. Apart

from DTDs, expected to be less expressive than others, the surprising conclu-

sion was that XML Schema is less expressive than RelaxNG. In fact, the two lan-

guages were associated to two different grammars, respectively called ”single-

type” (XML-Schema) and ”regular”(RelaxNG), which proved to have different

expressiveness.

The point here is quite different: rather than being interested in the inherent

expressiveness of schema languages, I want to study them when used for descrip-

tive situations. The conclusion is that they are not intrinsically too complex or too

powerful, but they suffer such a complexity when used for descriptive purposes.

The following examples will discuss how, in a descriptive scenario, structures

Chapter 4. Pattern-based Segmentation of Structured Content 67

can be shrunk into a very small subset without sacrificing the expressiveness of a

document.

Alternatives

Consider a possible either/or situation: for instance, in an address, a document

designer might decide that an address either has a P.O. Box or a street address. In

a DTD like syntax, this could be rendered in a rule such as:

<!ELEMENT address (name, (pobox | street), city, ZIP, state) >

In a prescriptive document factory, this rule effectively inhibits incorrect struc-

tures to be created, and ensures homogeneity in the created documents. In a de-

scriptive environment, on the other hand, there is no homogeneity to be sought

for documents (they exist already), but rather it is important that all existing do-

cuments are marked up at best and without ambiguities.

Now two things may happen: if in the document set there is no example of a

simultaneous presence of P.O. Box and street address, then this is a constraint that

has no practical effect on reality, one additional check that was not needed. If, on

the other hand, a document exists that has both a street address and a P.O. Box,

then the rule does not allow a correct markup, and forces the document editor to

find a hack around the constraints of the DTD.

A corresponding descriptive rule would therefore be:

<!ELEMENT address (name, pobox?, street?, city, ZIP, state) >

where the alternative has been transformed into a sequence of optional el-

ements. This rule has no effect on the final markup, exposes exactly the same

meanings for documents that naturally follow the stricter rule, but allows for the

exception in case one exists.

68 Chapter 4. Pattern-based Segmentation of Structured Content

Alternatives do not capture additional semantics with respect to a sequence

of optional elements, but a priori exclude some situations to occur. Thus in a

descriptive environment they are useless in the best cases (where all occurrences

naturally follow the alternation) or a nuisance and an obstacle if an exception

happens.

Repeatable homogeneous elements

It is sometimes tempting to insert a repeatable element within a sequence of dif-

ferent elements. For instance an address may include any number of telephone

and fax numbers. One such rule could be:

<!ELEMENT address (name, ..., state, (telephone|fax)*) >

It is difficult to extract any meaning from the presence of several such ele-

ments directly within the address element. Certainly they have not the same role

and importance of name, street, zip or state elements. Should they be taken indi-

vidually or cumulatively? Does the order of appearance have an importance?

Whether the information is inherently a group, using intermediate elements

is better than relying on repetition. For instance, the previous form of rule should

be substituted with a more explicit and clear structure:

<!ELEMENT address (name, ..., state, telephones?) >
<!ELEMENT telephones (telephone|fax)+ >

The telephones element (in its plural form) already hints that there will be one

or many individual telephone elements inside, each of which should be consid-

ered as an autonomous piece of information.

Wrappers help in creating a strong structure and separation of concerns, give

more clearness and visibility to the inter-relations among elements, and simplify

the readability of the DTD. See section 4.4.2 for a deeper discussion about their

expressiveness.

Chapter 4. Pattern-based Segmentation of Structured Content 69

(Un)ordered single and multiple elements

Multiple information are very often put together in more complex structures that

impose cardinality on some elements but allow others to be unlimitedly repeated.

Moreover those superstructure do not impose rules over the order of elements.

Consider, for instance, the content-model of the head element in HTML. Tags

for metadata, scripts and styles are grouped through the entity %head.misc;,

which is then combined with a single title and an optional base element in

any order:

<!ENTITY % head.misc "(script|style|meta|link|object)*">

<!ELEMENT head (%head.misc;,
((title, %head.misc;, (base, %head.misc;)?) |
(base, %head.misc;, (title, %head.misc;))))>

Such a declaration is complex and difficult to be read. On the other hand, a

descriptive context does not require such rigidness: once again, the goal is not

pre-defining respective positions among elements, but capturing the structural

and basic information captured by those elements.

In a descriptive context, designers are not interested in prescribing a priori

where elements can appear; rather, in collecting a set of related information. Us-

ing a SGML syntax they might have declared the head records as follows:

<!ENTITY % head.misc "(script|style|meta|link|object)*">

<!ELEMENT head (title? & base? & %head.misc;)>

RelaxNG[Mur00] allows users to write a similar declaration for XML docu-

ments, by using the interleave pattern. On the contrary, XML DTDs lack that

operator and child elements are not allowed to occur in any order. In a descrip-

tive mode, such XML DTD declaration deserves special attention: the order of

the elements is not meant to be an imposition to make some documents invalid,

70 Chapter 4. Pattern-based Segmentation of Structured Content

but a non-meaningful order from a semantic point of view. The real descriptive

goal would be to gather a set of related information without any specific order,

but the XML DTDs do not make it possible.

The previous declaration raises another issue, about the co-existence of re-

peatable elements and single ones. Where such a difference is not so relevant for

the authors, it is good to group together all those repeatable elements. The re-

sulting schema is more verbose (and apparently unnatural) but such a distinction

makes further applications simpler and faster. In fact, the two classes of objects

are conceptually distinguished and they can be managed with different policies

and rules:

<!ENTITY % head.misc "(script|style|meta|link|object)*">

<!ELEMENT head (title? & base? & info?)>
<!ELEMENT info %head.misc;>

Conditional elements

Conditional declarations are not directly possible in DTD syntax. Although they

can be easily declared with RelaxNG, or explicit solutions proposed for co-constraints

like SchemaPath[SCMV04] or Schematron[Jel05], some workarounds are very

commonly used to solve that issue with plain XML DTDs. Consider, for instance,

the following fragment of the DocBook DTD, where bibliography is defined

as a container for heterogeneous information, among which a title, a subtitle and

an abbreviated one:

<!ELEMENT bibliography (bibliographyinfo?,
(title, subtitle?, titleabbrev?)?,
(%list.class; | %synop.class; | ... | %para.class;)*,
(bibliodiv+ | (biblioentry|bibliomixed)+))>

The twisted declaration of titles has a specific objective: preventing subtitles

to appear without a title. Such a constraint is legitimate in a prescriptive envi-

ronment but it makes less sense in a descriptive one. There, we do not need to

Chapter 4. Pattern-based Segmentation of Structured Content 71

make explicit all the relations among elements (and rules on their respective pres-

ence), but to describe which information can be provided about a given bibliogra-

phy. Relaxing that constraint, users would have a simpler and more manageable

schema, which validates documents that carry the same basic information:

<!ELEMENT bibliography (bibliographyinfo?,
title?, subtitle?, titleabbrev?,
(%list.class; | %synop.class; | ... | %para.class;)*,
(bibliodiv+ | (biblioentry|bibliomixed)+))>

The previous declaration is complex and quite overdesigned as well. The first

problem regards the sequence of unordered and repeatable elements following

the titles (paragraphs, lists, synopsis, etc.), which are conceptually (but not ex-

plicitly) wrapped in a virtual container. Wrappers should be used to make that

relation more explicit, clear and usable. On the other hand a conceptual simplifi-

cation is equally viable: do users really need a so complex structure for the entries

of a bibliography? In a process of normalization, what users need to express is the

list of entries and, for each of them, structured sub-information. Then, an alterna-

tive and ’radical’ declaration for the bibliography element would be equally

valid:

<!ELEMENT bibliography (bibliographyinfo?,title?,
subtitle?, titleabbrev?, bibliocontents?, biblioentries?)>
<!ELEMENT biblioentries (biblioentry)+>
<!ELEMENT bibliocontents (%list.class; | %synop.class;
| ... | %para.class;)*>

Mixed content models

Mixed content models are by definition used when describing semi-structured

text flows that are part of larger contexts. Very common examples are paragraphs

72 Chapter 4. Pattern-based Segmentation of Structured Content

that have meaningful subparts inside. Each individual subelement of a para-

graph specifies some special meaning or style on the wrapped text. In a descrip-

tive scenario, it seems just natural to assume that all text within a sub-element of

a paragraph is also part of the paragraph.

Many counter-examples to such claim seem to exist, for instance footnotes.

Usually footnotes appear in paragraphs, paragraphs appear in footnotes, but

footnotes should not contain footnotes in any normal document. The problem

here is that a footnote element in a paragraph should not contain the whole body

of the footnote but only a reference to a more complex structure. The text frag-

ment wrapped by, say, a footnote element is a landmark to indicate where the

reference to the note will be displayed. The footnote itself is something else,

which does not belong to the paragraph (indeed it is displayed in a different

location).

Subelements should not be allowed to contain as elements data that is not

part of the paragraph text flow, since this could be difficult to identify without

precise advance knowledge of the meaning of the subelement itself and its further

subparts. Thus the only allowable forms of mixed content models should be:

<!ENTITY % inline "(#PCDATA | a | b | ... | z)*">
<!ELEMENT para %inline; >
<!ELEMENT a %inline; >
<!ELEMENT b %inline; >
...
<!ELEMENT z %inline; >

This is meant to specify that the content model of all elements of a mixed

content are mixed content themselves (or simple text in the simplest cases), and

that a block element is the only mixed content element whose content model list

does not include itself (i.e., there is no para inside the inline entity).

Such declaration does not impose further contraints over the in-line elements.

For instance, it validates combinations like text or embedded

links (a element). Once again, that is justified by the descriptive nature of the

Chapter 4. Pattern-based Segmentation of Structured Content 73

schema, which is not meant to prevent non-meaningul document instances but

to describe structural elements.

Flow text

It is very common to find DTD declarations that allows text to appear in differ-

ent positions of a document. Consider, for instance, the following valid HTML,

where sequences of characters are included within the elements body and div:

<body>
A first text fragment.
<div>
A subsection containing some paragraphs and
a further subsection:

<div>
A subsubsection with two paragraphs
<p>Text in a paragraph</p>
</div>

</div>
</body>

Even if not explicitly bounded by a paragraph, those sequences can be nat-

urally considered as text blocks distinguished from the following ones; on the

other hand, div and body are used as macro-containers to organize content in

nested sections, rather than low-level containers for text and inlines. The same

document is better represented by an alternative structure:

<body>
<p>A first text fragment.</p>
<div>
<p>A subsection containing some paragraphs and
a further subsection:</p>

<div>
<p>A subsubsection with two paragraphs</p>
<p>Text in a paragraph</p>

</div>
</div>

</body>

74 Chapter 4. Pattern-based Segmentation of Structured Content

Any text has been wrapped in a block, while containers are used only to ex-

press structures and substructure. Note that I do not argue against using the div

element as generic a block for HTML. I am rather suggesting to only use specific

objects for specific purposes, and to strictly separate structural divisions of text

blocks and text blocks themselves.

In conclusion, my point is that designers of descriptive documents do not

really need all the structures provided by schema languages. In particular, the

structural content can be expressed by using only a few set of patterns, that ”de-

scribe” the basic information of the document.

4.2 Why (XML) patterns and what for

Patterns are widely accepted solutions to handle problems which recur over and

over. Their inventor Alexander defined a pattern as ”a three part rule, which ex-

presses a relation between a certain context, a problem, and a solution”[Ale79].

The basic idea is then to capitalize previous experiences, in order to re-propose so-

lutions for similar contexts. Alexander was an architect and proposed repeatable

solutions to build gardens, streets, buildings, etc. Soon researchers and profes-

sionals understood how advantages of patterns in terms of reusability, flexibility,

easiness of creation and modification could be extended in other fields too.

In particular the community of software engineers and object-oriented pro-

gramming experts looked at pattern languages with great interests. First, Beck

and Cunningham[BC87] proposed five patterns to design and code window-

based user interfaces: these patterns allow programmers to organize interface

in windows, to divide each window in panes (one for each sub-task) , to classify

them, and to decide which actions can be performed in each sub-window. That

pattern language was minimal, and the same authors announced they were ex-

tending it to include about 150 patterns. The definitive acceptance arrived when

Gamma et al.[GHJV94] provided a methodical and complete description of pat-

terns for software development. Patterns were then accepted by the whole com-

Chapter 4. Pattern-based Segmentation of Structured Content 75

munity as a means to ensure re-usability, maintainability and reliability, and that

book became a must-to-read resource for any software engineer.

The XML community has not been indifferent to the patterns, and many solu-

tions were proposed to use them for well-structured and meaningful XML docu-

ments. Arciniegas[Arc00] divided XML patterns in three categories: patterns for

Program Design, patterns for DTD design, and patterns for DTD Implementation.

The first class includes all those solutions that can be applied when designing

applications that handle XML content. They usually are traditional patterns re-

fined to manage XML-based information, that exploit either the generality of tra-

ditional approaches or the specificity of XML data. The second class focuses on

recurring problems in the overall structures of schemas (the term DTD is here

used to indicate any document used to validate) and directly deal with XML

structures. Arciniegas discussed two examples: the ’Choice Reducing Container’

which allows users to reducing the number of choices an author has to make

at any point in the DTD, by introducing intermediate wrappers, and the ’Cross-

Cutting Metadata’ which allows users to identify and encapsulate common sets

of metadata, in order to make clearer schemas. Patterns for DTD Implementation

are the most widely used, and cover recurring definition of content-models. Two

examples were discussed again: the ’RunningText’, already proposed by Graham

and Quin[GQ98], and the ’Marker Attribute’. The first one is used for general

textual content that may contain markup at the phrase, word or symbol level but

not at the block level; it allows to logically unify the same set of basic elements,

so that it is allowed everywhere text is allowed. A ’Marker Attribute’ is used

when certain elements need to be marked with attribute so they can be processed

in a different way by a style sheet/program; it allows to differentiate the behav-

iors of elements, without being invasive and changing the overall structure of the

element itself.

As I said, Graham and Quin[GQ98] proposed some more patterns for XML

documents. They discussed the ’Generated Text’ pattern, to be applied when text

fragments are not explicitly present in the document source but can be produced

76 Chapter 4. Pattern-based Segmentation of Structured Content

and rendered on-the-fly (such as a title or a list-item number), or the ’Footnote-

Body’ to be used when a stream of text contains a reference to an external anno-

tation or comment that will be displayed in a different flow, and the ’Text Block’

to be used for contexts that stand alone (like paragraphs, headings and lists) and

to ensure a clear break before and after these content objects. The authors did

not claim that their classification was exhaustive, but stressed the importance of

a repository of patterns where users could easily found solutions already tested

and adopted by others.

While pattern languages usually propose low-level solutions which indicate

how to create well-structured content models, Downey[Dow03] discussed some

XML patterns to organize the overall document and some architectural choices

to make that document flexible and clear. In particular, Downey suggested to

use ’marshallers’, that are dynamic objects able to move recursively through pro-

gramming data structures and to generate on-the-fly XML trees (accommodating

changes in the object internal structure); moreover he recommended to use exist-

ing tag names more than creating new ones, to include human-readable informa-

tion directly within documents and to make documents’ splitting into different

files a simple and reliable operation.

Besides these general proposals, many researchers focused on XML Schema,

suggesting specific patterns for that language. Kawaguchi[Kaw01] provided a list

of things that XML schema designers should or should not do. Basically, he pro-

posed to radically reduce the set of available features: for instance, he suggested

to avoid complex types, attribute declarations or local declarations. The point

is avoiding pitfalls by only using those constructs that prevent misunderstand-

ings. Obasanjo[Oba02] answered Kawaguchi by altering his proposal (basically

he restored complex types and attribute declarations), and by adding some more

guidelines. He concluded saying that XML Schema is complex because was de-

signed to handle complex problems and, although it can be simplified by only us-

ing simplest features, that means a loss of power and flexibility. Provost[Pro02]

proposed some more patterns for XML Schema types: the ’Composite’, to col-

Chapter 4. Pattern-based Segmentation of Structured Content 77

lect children (parts of a document) and express variations on each of them, the

’Instance Specialization’ , to differentiate abstract models from actual instances

(when restricting a type), and the ’Peer Specialization’ , to constrain the part

or referenced instances to some corresponding subtypes (after deriving a type).

Another very interesting and useful resource is the ’XML Design Patterns’ web

site[Lai00]. Seven categories of patterns are presented for a total of 28 different

solutions applicable in different contexts: ’Document Roots’ are patterns useful

to decide what the root element(s) should be, ’Metadata’ to include metainfor-

mation in documents, ’Abstraction’ for containers and collections, ’Organization’

about the overall logical structure of a document, ’Flexibility’ to add generaliza-

tion, and so on. A deep analysis of all those patterns is out of the scope of my

thesis, but that resource is definitely worth being looked at.

Rather than analyzing more patterns, it is worth remarking advantages of a

pattern-based approach. I list some positive aspects below:

• Re-use: the most evident benefit does not need much more explanation; pat-

terns are meant to be re-used in different contexts in order to exploit legacy

competences and material, to save time and resources, and to ensure quality

of the final result.

• Reliability: patterns proved to obtain good results in specific scenarios, since

they derive from the internalization of concepts, problems and solutions.

The discussion about a pattern, the analysis of previous applications and the

acceptance by the community make it a reliable solution. It is not enough

to call a solution ’pattern’ to ensure reliability. Many anti-patterns or bad

habits can be found in the design of XML documents. On the other hand,

solutions well documented and shared by experts are worth being adopted.

• Organization: patterns help users in thinking about problems; since they

internalize and organize concepts, further discussions and thoughts about

problems and solutions are simplified. Users do not risk to deal with an un-

ordered magma of information, but work on a well-structured organization

78 Chapter 4. Pattern-based Segmentation of Structured Content

of data.

• Easy authoring: patterns transform and simplify the authoring process; au-

thors do not need to reinvent the wheel whenever they create new docu-

ments, but they can exploit solutions that already proved to be correct.

Moreover choices are minimized, since each pattern fits a specific need.

What an author has to do is simply picturing the problem he/she needs

to solve, consulting the catalogue of patterns and applying it to that specific

context. In the beginning it will be quite difficult but, with some experience,

common problems will be solved with very little effort.

• Easy learning: patterns can be learned with little effort, since they iden-

tify and solve specific problems, and usually have a good documentation

that describes possible applications, limitations and examples. Users do

not have to handle complex problems together, but they can segment prob-

lems in sub-units. Indeed many patterns aim at separating documents into

more manageable fragments, and at applying recursively pattern-based so-

lutions.

• Easy composition: patterns are designed to be composed into complex struc-

tures; it does not make much sense mixing well-engineered local structures,

with ambiguous and bad ones. Then, patterns designers usually provide set

of solutions that can be combined together toward high-quality documents.

The composition of patterns is then either simple or expressive.

• Easy transmission: pattern languages ’standardize’ a way to describe both

problems and solutions; then transmitting experience and know-how is

simpler, since a pre-defined and well-known schema can be exploited.

Chapter 4. Pattern-based Segmentation of Structured Content 79

4.3 Patterns for documents substructures

The core of my work is presenting a set of patterns able to express the most used

and meaningful structures of digital documents. In order to explain this specific

pattern-based approach, it is useful to remark which is the (strict) relation be-

tween those patterns and the Pentaformat segmentation model. The patterns I

am proposing do not aim at describing all the dimensions of a document (presen-

tation, metadata and behavior are neglected) nor at capturing minor differences

and anomalous data. On the contrary, the objective is normalizing the existing

structures into new ones that express the same logical organization and basic con-

tent. Only two of the five dimensions discussed so far are covered. That is why

a very small set of objects and composition rules is enough, though composed by

the only seven patterns discussed below.

Considering the simplicity and diffusion of the patterns I propose, I describe

them in a narrative style (as Alexander did with his patterns about architecture).

It is not difficult to picture a methodical description based, for instance, on the

dimensions used by Gamma et al.[GHJV94].

4.3.1 Markers

A marker is an empty element, in case enriched with attributes. Two kinds of

markers can be identified: milestones, whose meaning is strictly connected with

their position within the context, or equipped markers, whose meaning is expressed

by their attributes (and position). A milestone is not meant to provide character-

ization of the text content, but to identify special rules for a given position of the

text. Milestones are widely used to express destinations for fine-grained linking,

as for the A element in HTML. They can be also used to separate (sometimes vi-

sually) what comes before a marker from what follows, as the element BR or HR

do in HTML. An equipped marker is characterized by its attributes and proper-

ties, besides position. The most common example is the element IMG in HTML,

whose actual information is carried by the attribute @src.

80 Chapter 4. Pattern-based Segmentation of Structured Content

<!ELEMENT hr (EMPTY) >

<!ELEMENT anchor (EMPTY) >
<!ATTLIST anchor name %URL; #REQUIRED>

<!ELEMENT img (EMPTY) >
<!ATTLIST img src %URL; #REQUIRED>

A quite different use of markers is very common: mapping tabular data from

a relational database into a set of empty markers enriched with attributes. In

that case, the location of a marker indicates which table that entry belongs, while

attributes indicate values in the original database. In the following example the

elements row are markers collected by using the pattern table, I discuss later on:

<table>
<row Name="Alice" Tel="01-54321"/>
<row Name="Bob" Tel="01-12345"/>

</table>

4.3.2 Atoms

While markers are characterized by an empty content-model, users need a con-

struct to mark-up units of information, unstructured and not further divisible. I

refer this pattern as atom, to highlight the fact that only raw text can be included

in its content model. An atom contains a sequence of characters, which express a

basic content such as a date, a string or a number.

<!ELEMENT name (#PCDATA) >
<!ELEMENT place (#PCDATA) >

Atoms are mainly used in two scenarios: (i) within a text stream in order to

capture the role of a fragment, for information retrieving, indexing and searching

or (ii) as units of information collected in a more complex structure. Examples

Chapter 4. Pattern-based Segmentation of Structured Content 81

of the second approach are the elements name, capital, population in the

following record:

<state>
<name>Italy</name>
<capital>Rome</capital>
<population>56.000.000</population>

</state>

The relation between markers and atoms deserves a deeper explanation. From

a syntactical point of view, a marker could be considered an atom without text.

However, these two patterns are meant to play two different roles: the mean-

ing of a marker relies on its location, while the meaning of an atom relies on its

textual content. Schema designers should keep this distinction in mind and use

each pattern for its straightforward purpose. Yet, some data (for instance, those

extracted from a relational database) can be expressed as a record of empty mark-

ers with attributes, or as a record of atoms. Both of these solutions can be adopted

(even if I admittedly prefer the second one): what is important is that they both

are used consistently in the whole document, in order to increase readability and

disambiguity of the document itself.

4.3.3 Blocks and Inline Elements

A mixed content model cannot be neglected discussing document patterns. Un-

doubtedly, the most common structure authors use are blocks containing text

stream and unordered and repeated nested elements. The pattern block is used

to capture paragraphs, titles, lines, verses, blockquotes and so on: whenever an

author needs to combine text in a meaningful and, in a way, independent unit

they need to use a block.

Note that patterns do not allow text to appear wherever in a document, but

only wrapped by a block container. Even if a text fragment is apparently out

of a paragraph (as allowed by HTML), it is conceptually wrapped and bounded

82 Chapter 4. Pattern-based Segmentation of Structured Content

by some structure. By making that structure explicit, and then by reducing the

possibility of exceptions and variations, simpler and faster applications can be

designed.

The concept of ”block” is actually inseparable from the concept of ”inlines”,

i.e. the elements it contains, repeatable, in any order and mixed with the text.

What makes a block different from an atom is just the presence of those elements.

Even more, it is important the fact that no rules are imposed over their position

within a block. It is the natural flow of the text, that determine the position of

each inline structure. Furthermore it often happens that inline structure nest arbi-

trarily (as is the case of bold and italic elements). This means that in a descriptive

environment it is hopeless and erroneous to try to impose any constraint on block

elements except the complete identification of the allowable inline elements, that

can nest arbitrarily.

Block elements and inline elements, thus, share the same content model, which

is mixed and contains the list of the inline elements. Block elements are distin-

guishable because they use the same content model, but are not listed in the al-

lowed elements. A simple way to express this is to employ a parameter entity

used by both block and inline elements and not containing the block elements:

<!ENTITY % inline "(#PCDATA | cite | span | ... | b)*">
<!ELEMENT para %inline; >
<!ELEMENT blockquote %inline; >

<!ELEMENT cite %inline; >
<!ELEMENT span %inline; >
...
<!ELEMENT b %inline; >

4.3.4 Records

Positions, unstructured information and free text are not enough to cover all the

possible situations. Designers need some more patterns to deal with structured

Chapter 4. Pattern-based Segmentation of Structured Content 83

information and to make explicit the relations among elements, dependencies

and repetitions.

The pattern record has been introduced to model all those circumstances where

a limited set of elements need to be gathered under the same name or super-

structure. More precisely, I refer to a record as a container of heterogeneous in-

formation, organized in a set of optional elements, non repeatable. Apart from

non-repeatability, few rules are imposed over each element: a record cannot con-

tain raw text, inlines elements or empty content-model, but any other pattern is

allowed.

Note that a marker with multiple attributes can substitute for an entire record,

as long as elements of the record can be represented fully by strings without

markup. Two points are relevant to clarify their differences: that a marker is

first of all characterized by its position, and that a record is also meant to model

more complex structures and substructures (as fields with marked-up content).

Records can be first used to group simple units of information in more com-

plex structures. In that scenario, each element is a pair name-value indicating a

small piece of information about the whole object described by that record. The

record state in the example describes a nation by reporting its name, capital

and number of inhabitants.

<state>
<name>Italy</name>
<capital>Rome</capital>
<population>56.000.000</population>

</state>

Furthermore, records are useful to organize data in hierarchical subsets. Each

of these subsets can be arbitrarily complex or composed by arbitrary sub-structures

(that, once again, follow patterns). In the example the element book is a record

containing an atom (title), a record (bookinfo) and some elements named

toc and bookcontents. In turn, the elements bookinfo is a record of an atom

84 Chapter 4. Pattern-based Segmentation of Structured Content

(isbn), a block(legalnotice) and keywordset which is a container of homo-

geneous elements keyword.

<!ELEMENT book (title, bookinfo?, toc?, bookcontents?)>
<!ELEMENT bookinfo (isbn?, legalnotice?, keywordset?)>
...

<book>
<title>Prey</title>
<bookinfo>

<isbn>89312793-3213-afdsa-1<isbn>
<legalnotice>Do not copy<legalnotice>
<keywordset>

<keyword>prey</keyword>
<keyword>nanoparticles</keyword>

<keywordset>
</bookinfo>

...
</book>

A very important point is about the ”order” of the elements in a record. A

record is a set of information, whose order is not relevant from a descriptive per-

spective. Designers are not interested in prescribing a priori where elements can

appear; rather, in collecting a set of related information.

In the previous example I used the ’,’ operator to indicate a set of elements,

since the fragment has been extracted from the XML DocBook specifications. A

more descriptive declaration would be:

<!ELEMENT book (title & bookinfo? & toc? & bookcontents?)>
<!ELEMENT bookinfo (isbn? & legalnotice? & keywordset?)>

This declaration works for SGML documents. Similarly RelaxNG[Mur00] al-

lows users to write a similar declaration for XML(the same DocBook specifica-

tions have recently moved to RelaxNG). XML DTDs lack the ’&’ operator and

child elements are not allowed to occur in any order. The record pattern for

descriptive XML DTDs deserves special attention: the order of the elements is

Chapter 4. Pattern-based Segmentation of Structured Content 85

not meant to be an imposition to make some documents invalid, but a non-

meaningful order from a semantic point of view. The pattern in fact is meant

to gather a set of related information without any specific order, but the XML

DTDs do not make it directly possible. Note that the patterns discussed in this

thesis are abstract guidelines, independent from specific schema languages.

Another factor characterizing a record is the non-repeatability of its elements.

I haven’t imposed a so strong limitation because repeatable elements are useless;

on the contrary, I want to clearly distinguish repeatability by using a specific pat-

tern for that (table). I was looking for a way to group repeatable elements into

special containers, able to make explicit and unambiguous the functional relation

among them. Consider, for instance, a book composed by a title and a list of

chapters. I might have made the pattern record a bit more complex, by allowing

repeatable elements too, in order to accept declarations as follows:

<!ELEMENT book (title, chapter*)>
<!ELEMENT chapter (para*)>

To maintain certainty and simplicity of patterns I have preferred to prevent

those declarations and move the concept of repeatability in a different pattern.

4.3.5 Tables

A table is an ordered list of homogeneous elements. Tables can be used to group

homogeneous objects into the same structure and, also, to represent repeating

tabular data. In the following example persons is a table of records person,

while phones is a table of atoms phone.

<persons>
<person>

<name>Alice</name>
<phones>

<phone>02-2910830</phone>
<phone>02-8390211</phone>

86 Chapter 4. Pattern-based Segmentation of Structured Content

</phones>
</person>
<person>

<name>Bob</name>
<phones>

<phone>03-3271891</phone>
<phone>08-281038</phone>

</phones>
</person>

<persons>

Within tables users can expect to find atoms, blocks or records, but never in-

lines or markers. Inlines are not allowed because they are meant to appear only

within a block; markers are not allowed because their position would be irrele-

vant in a superstructure where all elements are markers. A good way to empha-

size its role as ”set of homogeneous elements” is to name the table with the plural

form of the name of the contained element.

...
<!ELEMENT persons (person)+ >
<!ELEMENT phones (phone)+ >
...

Tables are the main way for expressing repetitions. These repetitions are not

expressed raw, as a subgroup, within a more complex content model, but pro-

tected by a plural-form wrapper that acts as a member of a more fundamental

record. That is why I have distinguished tables and records, making both of them

more restrictive and rigorous.

4.3.6 Containers

It is very common to have objects that need to be either repeated or collected

under the same superstructure. In that case, records cannot be used because they

are not supposed to model repeatability; on the other hand, tables are not suitable

because of the required homogeneity of their content model.

Chapter 4. Pattern-based Segmentation of Structured Content 87

Examples of such need can be found in many markup languages. The ele-

ment body in HTML is a sequence of repeatable elements; the declaration of the

element div in TEI; equally the element bookinfo in docbook and so on:

<!ENTITY % body.content "(%heading | %text | %block | ADDRESS)*">
<!ELEMENT BODY O O %body.content>

I have then introduced a new pattern, called container, to cover all those sit-

uations. A container is an unordered sequence of repeatable and heterogeneous

elements. The name emphasizes the genericity of this pattern, used to model all

those circumstances where diversified objects are repeated and collected together.

As expected, the content-model of a container includes markers, atoms, blocks,

records, tables and containers themselves. Only raw text and inlines (besides the

empty content-model) are excluded, because they have to be wrapped within a

block. It is no accident that recors and containers share the set of elements in

their content-model. What changes is only the repeteability of those elements,

since the order is not relevant in both cases.

Containers are clearly related with tables too, because of their repeatability.

The only difference is that items of a containers are heterogeneous, while those

within a table are homogeneous. From that perspective, a table could be consid-

ered a special class of container. However, I have preferred to distinguish them, to

emphasize the difference between homogeneous and heterogeneous structures.

4.3.7 Additive and Subtractive Contexts

Not all situations designers find in descriptive markup can be covered by the

previous patterns. Exceptions and special cases abound that can be dealt with

difficulty with traditional validation languages, and easily with patterns.

For instance, one may consider allowing in an element other elements already

used in other parts of a document, only with a few more elements not found

88 Chapter 4. Pattern-based Segmentation of Structured Content

elsewhere. One example is immediate: the FORM element of HTML allows all

elements in the &flow; entity, plus the special form elements such as INPUT,

TEXTAREA, etc. In a word, FORM provides a context for these elements. A con-

text where a few elements are added in depth to existing elements is an additive

context.

A different example regards re-using a content model already used in other

parts of a document, only excluding some elements. Yet again, an example from

HTML can be easy: A elements cannot contain other A elements. Similarly, users

could define a footnote as a regular paragraph, except that no footnotes can be

defined. Here again the A element and the footnote element describe a context

where some elements that would normally be allowed make no sense and should

be signaled. That is a subtractive context.

<!ELEMENT contract %flow; +(signature)>
<!ELEMENT signature EMPTY>

The additive context and subtractive context patterns allow designers to ex-

plicitly express these relationships. Unfortunately, with traditional XML schema

languages (DTDs and XML-Schema), it is very difficult to describe either ad-

ditive or subtractive contexts: special elements can occur (or be excluded) not

only directly within the container, but also within other elements inside it. On

the contrary, RelaxNG, SGML’s DTDs and languages for coconstraints such as

Schematron[Jel05], SchemaPath[SCMV04] can adequately describe such situa-

tions.

These patterns add a lot of power and flexibility, as well as complexity, to the

schemas and documents created by designers. For the purposes of my thesis,

however, they can be set aside. My objective is designing a simple language able

to capture a posteriori the structured content of any document, so I am not so much

interested in the conditional presence of some elements (and actually it is difficult

to decide whether or not we are looking at an additive/subtractive context or a

simple content model) as on the only presence of them.

Chapter 4. Pattern-based Segmentation of Structured Content 89

4.4 From descriptive to constructional

Traditional pattern-based approaches consist of identifying the most useful solu-

tions in a given context, and reuse them. My thesis takes a different perspective:

rather than limiting to identify and investigate those patterns, I suggest to only

use exclusively them to write (and to segment) digital documents.

The basic idea is that any document can be projected into a strict composition

of a limited set of objects (patterns), which express the same fundamental infor-

mation of the original document in a simple, clear and unambiguous way. Once

again, ’the same fundamental information’ means ’the same structured content’

according to the Pentaformat model and the premises of chapter 3. A document

identical to the original one cannot be obtained by only using those patterns; but

the content structures of that document can be captured without losing generality

and applicability. Two orthogonal dimensions characterize such approach:

• syntactical minimality: the number of syntactical choices available for de-

signers is extremely reduced. Note that minimality does not mean produc-

ing smaller schemas or documents, rather using a smaller set of syntactical

choices.

• semantic expressiveness: pattern-based documents make explicit the seman-

tics of structures, relations and dependencies.

4.4.1 Syntactical Minimality

Few objects and composition rules are available to express all the structures of

a document. The property of syntactical minimality is justified from the descrip-

tive nature of the schemas and documents we are dealing with. The examples

of alternatives (which represent a relevant structure only to enforce a choice),

repeatable subgroups (which should be surrounded by wrappers) or flow text

(which should be wrapped by blocks) discussed in section 4.1 have shown how

90 Chapter 4. Pattern-based Segmentation of Structured Content

validation languages offer much more choices of structures than necessary in a

descriptive environment.

In that context designers do not need to extend the set of available structures,

in order to accommodate the plurality of situations. On the contrary, they can

handle those situations by reducing structures to a limited set of constructs.

Pattern DTD syntax

Marker <!ELEMENT X EMPTY>

Atom <!ELEMENT X (#PCDATA)>

Block <!ELEMENT X (#PCDATA | E1 | ... | En | M1 | ... | Mn | Ax)*>

Inline <!ELEMENT E1 (#PCDATA | E1 | ... | En | M1 | ... | Mn | Ax)*>

...

Record <!ELEMENT X (E1?, E2?, ... , En?)>

Container < !ELEMENT X (E1 | E2 | ... | En)*>

Table < !ELEMENT X (E)*>

Table 4.1: Patterns and Content-models

Table 4.4.1 summarizes the patterns discussed so far, highlighting which is the

content model of each of them, in DTD syntax. What is evident from that table

is the orthogonality of the patterns: each of them has a specific role and covers a

specific situations, and no content model is repeated. Since a direct mapping ex-

ists between the most common needs of designers and these patterns, whenever

a designer has to create a new schema he/she has to picture the current scenario

and to select the only possible pattern that fits it. For instance, text fragments can

appear only within blocks (inlines) or atoms, unstructured information can be

carried only by atoms, homogeneous repeatable elements can be modeled only

by tables, as well as containers serve whenever heterogeneous and repeatable

elements are required, and so on.

Another important aspect of such pattern-based theory is that specific rules

are imposed about which objects are allowed within which one. Table 4.4.1 shows

Chapter 4. Pattern-based Segmentation of Structured Content 91

these constraints, summarizing what I said about each single pattern (each row

indicates elements allowed in the content model of each pattern).

EMPTY Text Marker Atom Block Inline Record Container Table

Marker X

Atom X

Block X X X X

Inline X X X X

Record X X X X X X

Container X X X X X X

Table X X X X X X

Table 4.2: Composition rules over patterns

Although it seems a limitation, such strictness contributes to widen the ex-

pressiveness and the applicability of patterns. By limiting the possible choices,

in fact, the role played by each pattern is highly specialized and it is possible to

associate a single pattern to the users’ needs. For instance, preventing records

within blocks we prevent an uncontrolled mixing of structured and unstructured

content, or preventing inlines out of blocks we prevent incorrect locations for text

fragments, or preventing tables within blocks we ensure the distinction between

block texts and complex data structures, or allowing tables within records (and

vice versa) we make possible the interaction of heterogeneous and homogeneous

set of data, and so on.

While the limitations of atoms and markers are quite expected, it is worth

spending some words about blocks and inlines. Blocks, in fact, cannot contain

further blocks or more complex structures, contrary to what many markup lan-

guages say (for instance, DocBook allows para to contain table, address,

itemizedlist, etc.). In my mind blocks are unified chunks of text, that can-

not be further divided in sub-parts. Two cases are very common contrary to my

position: embedded paragraphs and tables in paragraphs. Apart from this kind

of tables which is not difficult to criticize as an example of bad-design, embedded

paragraphs are very often used by authors, and allowed by specifications. I do

not think a paragraph containing a paragraph is a structure that actually mod-

92 Chapter 4. Pattern-based Segmentation of Structured Content

els the logical meaning of that fragment. On the contrary, I would model it by

using either in-line (if the content follows the stream of text and belongs to the

same speech) or by splitting it in three continuous paragraphs (if they are logi-

cally independent blocks). Whatever presentation is associated to that embedded

fragment, what really matters is the relation between that element and the block

it is contained in.

Blocks play a central role, being the only place where text (mixed to in-lines)

can appear. While atoms are used for unstructured information, blocks model

all those situations where free text is written by authors. Note that patterns do

not allow text to be directly used within containers (or tables, records and so on),

but always wrapped by blocks. The rationale is a clear distinction between objects

that express relations among elements, and objects that express the actual content

(intended here as ultimate sequences of characters) of the authors. Once again,

such strictness aims at making clear and unambiguous the role of patterns and

their composition. Consider as example the following HTML fragment (remind

that HTML allows users to insert text as a child of td, li or div) normalized to

be patterns-compliant.

<p>Paragraph in item 1</p>
<p>Paragraph in item 1</p>

<p>Paragraph in item 1, followed by a table</p>
<table>
<tr>
<td><p>A</p></td>
<td><p>B</p></td>

</tr>
<tr>
<td><p>C</p></td>
<td><p>D</p></td>

</tr>
</table>

Chapter 4. Pattern-based Segmentation of Structured Content 93

The tables table and ul provide the macro-organization of content; contain-

ers li and td wrap each item of the same cluster; elements p wrap the actual

information. Then, patterns sacrifice the compactness of documents but gain

readability and disambiguity.

Table 4.4.1 remarks the similarity between records, tables and containers. They

are all meant to describe the logical organization of document’s fragments, and to

express hierarchies within the document. For this reason, they can contain further

patterns except text and in-lines, which always need to be wrapped by a block.

What changes is only the repeatability and optionality of their content elements.

A clarification is needed about tables: since they are meant to gather homoge-

neous elements, it does not make much sense a table containing a sequence of

milestones, markers whose information is the position in the document, while

equipped markers are allowed (see section 4.3.1 for details about their distinc-

tion).

Then a strictly pattern-based schema (or a DTD) contains only seven patterns,

enriched with some attributes, and composed according to these rules. The whole

schema is very simple and easy to be read. The question is rather whether or

not all the possible structures of digital documents can be covered by a so small

set of objects. Two considerations answer that question. First of all, a reminder

about the nature of the schemas (documents) we are looking for: patterns do not

allow to write any schema, but to write any descriptive schema for structured content.

The fact remains that they are good practices for designing well-structured, clear

and reusable documents too. The second point is about the role played by the

wrappers. Most of the existing schemas are not natively consistent with patterns,

and rely on declarations where alternatives, repeatable elements and optional

ones are mixed together. Those declarations can be normalized by introducing

some wrappers, which actually make syntactical minimality possible.

Basically wrappers ”spread” the meta-information over the depth of the docu-

ment in order to decrease the need for complex constructs. Consider, for instance,

the element section in the DocBook DTD. From a descriptive point of view, that

94 Chapter 4. Pattern-based Segmentation of Structured Content

declarations suffers two main issues: first, it expresses some constraints that can

be omitted in an a posteriori analysis (it prevents to have subtitles without titles,

it prevents to have refentry followed by paragraphs, it imposes that a bibli-

ography, if exist, is located at the beginning or at the end of the section, and so

on); second, it assumes but hides the existence of conceptual containers for sim-

ilar objects (for instance, the equipments toc, index, glossary, as well as the

block-level elements like beginpage, para, etc.). Even visually that declaration

is quite complex and difficult to be interpreted.

section ::=
(sectioninfo?,
(title,subtitle?,titleabbrev?),
(toc|lot|index|glossary|bibliography)*,
(((calloutlist| ... |para|simpara| ...

address|blockquote|graphic|graphicco|mediaobject| ...
informaltable|equation|example|figure|table| ... |beginpage)+,
((refentry)*|
(section)*|
simplesect*))|

(refentry)+|
(section)+|
simplesect+),
(toc|lot|index|glossary|bibliography)*)

The following fragment shows a radical and pattern-based simplification of

that declaration, based on a methodical use of wrappers:

section ::= (sectioninfo?, wr:titles?, wr:equipments?,
wr:contents?, wr:subsections?, wr:equipments?)

wr:titles ::= (title?,subtitle?,titleabbrev?)
wr:equipments ::= (toc|lot|index|glossary|bibliography)*
wr:contents ::= (calloutlist| ... | ... |beginpage)+
wr:subsections ::= (refentry | section | simplesect)*

Titles are collected under a wrapper wr:titles (allow me to use different

namespaces in a DTD, as proposed by Amorosi et al. with DTD++[AGV03]),

Chapter 4. Pattern-based Segmentation of Structured Content 95

which is a record of specific titles. Once again, the fact that subtitles are al-

lowed without a title is not relevant here. Equipments are collected in a wrap-

per/container wr:equipments that makes explicit their belonging to the same

category, as the element wr:contents does for the text blocks like paragraphs,

quotations and so on.

Particularly meaningful are the transformations about refentry, section

and simplesect. The DocBook DTD prescribes these elements, if exist, are lo-

cated after text blocks; moreover only one of them can actually be present. Since

the information they provide is somehow unifiable, I have added a wrapper

wr:subsections which acts as a general container for them. The constraints

about their mutual exclusion has been relaxed, assuming we are in a pure de-

scriptive environment.

Actually such a declaration loses another relevant information: the homo-

geneity of repeated refentry, section and simplesect. A different pattern-

based solution consists of creating one wrapper for each of them, in particular a

table in plural form, and explicitly inserting these new wrappers in the content-

model of the record section. Although it apparently imposes an order among

elements, this solution does allow users to write documents which express the

same structured information of the original ones:

section ::= (sectioninfo?, wr:titles?, wr:equipments?,
wr:contents?, wr:refentries?, wr:sections?,
wr:simplesects?, wr:equipments?)

wr:refentries ::= (refentry)*
wr:sections ::= (section)*
wr:simplesects ::= (simplesect)*

The point is that these pattern-based declarations do not have the same role

of the original one, and do not want to express the same constraints. What they

want to do is describing from an higher perspective the whole set of documents

validated by the original definition.

96 Chapter 4. Pattern-based Segmentation of Structured Content

An evident drawback of using wrappers is the verbosity of the schemas. Such

verbosity is balanced by the clearness and disambiguity of the resulting schemas.

The property of syntactical minimality in fact does not imply the minimality of

the schemas’ dimension or documents complexity, rather the reduction of the

number of choices available for designers.

Some interesting works in the literature anticipated and discussed the need of

minimality: Usdin[Usd02] claims that designers are interested in flexible seman-

tics and not in flexible syntax, observing that, if different people might produce

different, but correct, documents to express the same meaning, the risk of mis-

interpretation is increasing. Patterns severely limit the choices in structures and

composition of elements, while maintaining full descriptive in the definition of

elements and attributes. Thus my approach agrees with Usdin’s point about lim-

iting the flexibility of syntax. What patterns propose is not ’syntactic sugar’, but

rather a limited, well-defined and understandable set of meaningful choices: er-

rors and misunderstandings are then minimized by minimizing the choices.

4.4.2 Semantic expressiveness

The strength of a pattern-based approach is that syntactical minimality does not

imply loss of expressiveness, but it is a vehicle to create well-structured, unam-

biguous and manageable schemas. In particular, two properties of patterns are

very important:

• Strictness: each pattern has a specific goal and fits a specific context. The

orthogonality between content models make possible to associate one single

pattern to each of the most common situations in document design. Then,

whenever a designer has a particular need he/she has to only select the

corresponding pattern and to apply it.

• Assembly: each pattern has a specific content-model and can be used only in

some locations. The composition rules of patterns ensure a strong separa-

Chapter 4. Pattern-based Segmentation of Structured Content 97

tion between objects that capture the logical organization of the document,

and objects that actually carry the ultimate content.

These two properties make a pattern-based language a good solution to high-

light functional dependencies and semantics of document components. In par-

ticular, patterns make explicit the semantics of structures, relations and depen-

dencies by using wrappers. The role of wrappers has already been discussed in

the previous pages, as means for syntactical minimality: by introducing wrappers,

in fact, any structured content can be normalized as a combination of very few

objects according to a very small set of rules. Here the focus is about the expres-

siveness of wrappers and their application to disambiguate information.

Consider for instance the following declaration, clearly contrary to the pat-

terns discussed above:

<!ELEMENT T1 (K, (B|C)*)>

The content model of T1 suggests a tacit relation between the element K and

the element B and C, or better a relation between K and repeatable alternatives

of B and C. Probably K is a unique information, that identifies something in the

schema (imagine a key in a database). That information is hidden in the schema,

but can be explicited by adding a wrapper WR.

<!ELEMENT T1 (K, WR)>
<!ELEMENT WR (B|C)*)>

Repeatable sequence of elements are very common in document design, but

they are another example of declarations that can be improved by patterns.

<!ELEMENT T1 (B,C)*>

98 Chapter 4. Pattern-based Segmentation of Structured Content

The most natural reason to write such content model is the need of imposing

a predefined order between pairs of elements B and C (for instance pairs ques-

tion/answer) and not allowing them to appear in isolation. That logical connec-

tion can be expressed again by adding a wrapper WR.

<!ELEMENT T1 WR*>
<!ELEMENT WR (B,C)>

Wrappers are useful to clearly define the scope of some elements, as well.

Consider for instance the following XML fragment:

<title>Example Title</title>
<para>Lorem Ipsum. Lorem Ipsum. Lorem Ipsum.</para>
<para>Lorem Ipsum. Lorem Ipsum. Lorem Ipsum.</para>
<para>Lorem Ipsum. Lorem Ipsum. Lorem Ipsum.</para>
<title>Example Title</title>
<para>Lorem Ipsum. Lorem Ipsum. Lorem Ipsum.</para>
<para>Lorem Ipsum. Lorem Ipsum. Lorem Ipsum.</para>

Without wrappers readers cannot say whether or not the first title is the ti-

tle of the whole document or the first section; moreover they cannot say whether

the second one is at the same level or is a subsection title. Yet, attributes can be

used but they require an explicit computation to rebuild on-the-fly the actual log-

ical structure of the document. By introducing some wrappers that disambiguity

disappears (I show only an example but it is simple to imagine how the document

looks like, with different organizations):

<title>Example Title</title>
<content>
<para>Lorem Ipsum. Lorem Ipsum. Lorem Ipsum.</para>
<para>Lorem Ipsum. Lorem Ipsum. Lorem Ipsum.</para>
<para>Lorem Ipsum. Lorem Ipsum. Lorem Ipsum.</para>
<section>
<title>Example Title</title>
<content>

Chapter 4. Pattern-based Segmentation of Structured Content 99

<para>Lorem Ipsum. Lorem Ipsum. Lorem Ipsum.</para>
<para>Lorem Ipsum. Lorem Ipsum. Lorem Ipsum.</para>

</content>
</section>

</content>

The three simple examples I provided, and those discussed in the previous

section, show how wrappers can be used to express the semantics of documents,

in order to make information interpretable either by humans and by machines.

The semantics of metamarkup languages such as SGML and XML has been widely

studied in the literature. Usdin[Usd02] raised a fundamental question: can the

users infer something that authors had not implied? What a document says is

always what the author really would say? Raymond et al.[RTW96] and Sperberg-

McQueen et al.[SMHR00] remark that an XML document (but this also applies to

SGML) need some extra information to be interpreted by humans, in particular

names carefully selected by domain experts. Thus, of itself, XML is only partially

suitable to interchange information among machines: while humans have a com-

mon ontology (the word ’title’ indicates something that is a ’title’), machines do

need a common and unambiguous semantics of the same tags. More recently,

Renear et al.[RDSM02] discussed the importance of such a clear semantics de-

scribing the BECHAMEL Markup Semantics Project, a system for expressing se-

mantic rules and meanings for markup languages based on PROLOG inferences

and deductions[DMHR03]. The relation between BECHAMEL and the Semantic

Web [BLHL01] is evident (both of them want to transform information in some-

thing completely interpretable by machines): but while the latter looks at these

issues from a more general perspective, BECHAMEL focuses the attention on a

specific domain.

While BECHAMEL and related works build a metastructure that can infer

rules and semantics from the language, my patterns have a different goal: propos-

ing a restricted set of structures and substructures that already have intrinsic and

unambiguous semantics. Yet, patterns are not concerned with the semantics of

100 Chapter 4. Pattern-based Segmentation of Structured Content

names and objects, but rather with the semantics of structures and the relations

and dependencies among the elements.

4.4.3 Evaluating the Pattern-based approach

To conclude, it is interesting to compare my pattern-based approach with some

positions discussed in chapter 2. First of all, my approach is in line with prior re-

search on markup about trees (see 2.1.3 for details), which said they actually cap-

ture relations and dependencies between document parts. I totally agree hierar-

chies allow users to minimize redundancy, localize dependencies and increase ex-

pressiveness since they allow authors to identify functional dependencies among

data, regardless of the nature of those data. For this reason, patterns basically add

”depth” to the documents, accepting some extra verbosity.

Classifying a pattern-based markup language according to the taxonomies

analyzed in 2.1.1 is another point of interest. First, note that my model is not

a specific XML dialect, but a metalanguage: it is not a single block in the tax-

onomies proposed by Piez, Renear and Wilmott, but an area covering differ-

ent blocks which address different domains. All the languages in that area are

based on the same design principles. I would label my approach (or, better, any

language derived from it) as retrospective and metaleptic: retrospective because a

pattern-based schema models existing data from a general perspective without

imposing strong constraints; metaleptic because the simplified usage of patterns

makes efficient and reliable the future management of the same data. Taking

into account similarities and partial overlap between Piez’s and Renear’s classi-

fications, pattern-based languages have an indicative mood in a logical domain. It

also worth to investigate whether or not patterns generate exploratory/mimetic lan-

guages: more than ’exploratory’ as Piez meant (patterns are not adaptable to the

exceptions and irregularities as required), patterns can be defined ’mimetic’ be-

cause they allow users to create schemas and instances that can be almost blurred

each other. That is possible because of their non-ambiguity and strictness.

Chapter 4. Pattern-based Segmentation of Structured Content 101

Again, according to Wilmott’s classification (markup languages for humans

or machines), a pattern-based approach cannot be placed at the extreme of the

spectrum: it is human-based because of the idea of noise minimization, readability,

minimization of constructs that may appeal to human readers, but also machine-

based because of its ease of processing by future applications.

The path along this chapter should have made clear the nature and objectives

of markup languages based on the patterns discussed so far. Patterns are ’de-

scriptive’ and strictly connected with the Pentaformat model presented in 3.2.

They are meant to express the structured content of any document, in a clear and

unambiguous way. A first application is then for a segmentation model adopted by

designers who need to extract information from legacy documents, and build ap-

plications that manage that information. Moreover, the reliability and re-usability

of patterns (see section 4.2 for details) joined with their semantic expressiveness

and syntactical minimality (see section 4.4) make them a good solution to create

new documents. They can also be used for a constructive model adopted by de-

signers who want to create well-structured, clear and reusable documents from

scratch.

Chapter 5

A Pattern-based Minimal Language: IML

The patterns presented in the previous chapter encode two kinds of informa-

tion: some classes of elements widely used and enough powerful to capture the

most natural structures of a document and some rules to put them together in

a straightforward and unambiguous manner. No information is provided about

the actual instances in each class, no name is imposed, no set of attributes sug-

gested. They are ”composition rules” and best-practices that should be followed

in order to create simple, unambiguous and modular documents. By applying

those patterns we can then design different markup languages for different do-

mains.

In particular, they are meant to be used for the design of an abstract language

which expresses the structured content of any segmented document, according

to the Pentaformat model. In this chapter I present that language, called IML,

discussing its relation with the models and patterns proposed so far.

5.1 From abstract patterns to IML

Assuming that patterns discussed so far are versatile enough to cover the most

common situations, the process itself of designing a markup language is heavily

simplified. What designers have to do is simply deciding which are the elements

Chapter 5. A Pattern-based Minimal Language: IML 103

in each category (pattern) and which are their properties. The content model of

most of them will be automatically derived from their classification.

In a context where choices are reduced by the presence of patterns, under-

standing what and how many elements belong to each category is a step to be

alike weighted. Choosing between a verbose and detailed language, or a small

and general one has a great impact on future applications. Two main philoso-

phies support that decision:

• an exhaustive approach: which uses specialized elements, with specific names

and roles. The meaning of each object is captured by its name, based on an

a priori classification of the constructs. Examples are the specifications of

TEI[Con87], DocBook[Wal99].

• a minimalist approach: which uses a very small set of constructs and char-

acterizes objects by using attributes and properties. The meaning of each

object is captured by the category it belongs to and the value of some at-

tributes.

Consider, for instance, an XML fragment to model a book, divided in chapters,

each composed by paragraphs and quotations. Block elements contain footnotes,

italic fragments and in-line elements to mark-up places. The following fragment

adopts an exhaustive approach.

<document>
<introduction>

<para>Lorem Ipsum. Lorem Ipsum. Lorem Ipsum. Lorem Ipsum.
Lorem Ipsum. <footnote>Footnote</footnote> Lorem Ipsum. </para>

<blockquote>Citation. Citation. <place>Place</place>
Citation. Citation. Citation. Citation. </bockquote>

</introduction>
</document>

104 Chapter 5. A Pattern-based Minimal Language: IML

The same document can be modeled in a minimalist way, as follows:

<div class=’document’>
<div class=’introduction’>

<p>Lorem Ipsum. Lorem Ipsum. Lorem Ipsum. Lorem Ipsum.
Lorem Ipsum. Footnote
Lorem Ipsum. </p>

<p class=’blockquote’>Citation. Citation. Citation.
Citation. Place
Citation. Citation. Citation. Citation. </p>

</div>
</div>

No approach is absolutely better than the other, but designers can (and actu-

ally do) choose one of them (or hybrid solutions) according to their needs and

preferences. However a minimalist approach is the right choice for a language ex-

pressing segmented content. Once again, the point is that we are not looking for a

language able to express constraints, to restrict elements’ occurrences, to prevent

errors and to prescribe specific rules but a general description of the structured

content. A minimalistic approach would be more difficult to be mastered in pre-

scriptive schemas: the validation of element occurrences based on their attribute

values, in fact, is not possible in many schema languages (for instance, XML-

Schema and DTD do not handle co-constraints while RelaxNG and SchemaPath

do). On the other hand, many reasons make such approach a good solution for a

descriptive language. First of all, because that language should be able to capture

the meaning of any document, regardless of its format and subject. It cannot use

specific tag names and attributes, but a set of flexible and customizable objects.

Second, because that language does not express a priori constraints over content

and defines specific content-models, but rather identifies a posteriori basic objects

and their roles. A third motivation is related to the purpose of this work, which

aims at supporting automatic conversion: such conversion can be generalized

and implemented with less effort if the input language is minimal and rigorous.

Chapter 5. A Pattern-based Minimal Language: IML 105

Pattern Elements Content Model

Markers span EMPTY

Atoms span #PCDATA

Blocks p (#PCDATA | %Inlines;)*

Inlines span (#PCDATA | %Inlines;)*

Records div (div)*

Containers div (div | %Tables; | %Blocks;)*

Tables div (div)*

Table 5.1: Extreme IML

For that matter, a minimalist approach derives directly from the pattern-based

solution proposed in the previous chapter. Assuming that few patterns are enough

to express any content, a language based on those patterns has nothing to do but

say which pattern each object respects (e.g., whether the object is a block text, a

container, a table or an inline) and which specific class it belongs to (which kind

of blocks it is, which level of nesting it has, and so on).

5.1.1 Extreme IML

Extreme IML is an experimental language to examine the nature of IML and its re-

lationships with the theory of patterns discussed so far. From section 4.4, we can

derive a simple method to summarize pattern-based schemas (or DTDs): simply

by indicating in a table the names of the objects belonging to each class (pattern).

Since each pattern has a rigorous content-model, we can easily derive the content

model of each element. Few more information are needed to specify properties

and attributes, but the overall organization of the document is clear.

Table 5.1.1 adopts that method and shows ExtremeIML, an actual language,

where only one single element belongs to each category. Three elements, ex-

pressed for instance in XHTML syntax, are enough to map all patterns: generic

element P for text blocks, a generic element SPAN for all kind of objects possible

106 Chapter 5. A Pattern-based Minimal Language: IML

in a block (so inlines, markers and atoms), and a generic element DIV for contain-

ers and tables. Note that a record is expressed as a sequence of DIV diversified by

attributes. What is further needed is a way to characterize instances, for example

to differentiate a paragraph of normal text from a title or a list from a table, and

so on. The attribute @class is a natural candidate to do that. The ExtremeIML

DTD is very simple; I would even say ’embarrassing’:

<!ENTITY inlines "(#PCDATA | span)*">
<!ENTITY attrs "class CDATA IMPLIED">
<!ELEMENT div (div | p)*>
<!ATTLIST div
%attrs;
>
<!ELEMENT p %inlines;>
<!ATTLIST p
%attrs;
>
<!ELEMENT span %inlines;>
<!ATTLIST span
%attrs;
>

A so simple schema is ideally enough to model (the content of) any document,

i.e to encode a document normalized to the patterns. The following fragment, for

instance, shows a representation of a document with a list, a table, some para-

graphs and some fragments in italic and bold. Although a bit ’naive’, such rep-

resentation captures the same meaning of an exhaustive one, that uses tags like

table, ul, or italic.

<body>
<p class=’title’>Title</p>
<p class=’normal’>Normal paragraph</p>
<p>Normal paragraph with italic

and bold inlines</p>
<div class=’list’>
<div class=’list-item’><p>Text in item 1.</p></div>

<div class=’list-item’><p>Text in item 2.</p></div>

Chapter 5. A Pattern-based Minimal Language: IML 107

</div>
<p class=’text’>Normal paragraph</p>

</body>

Another important point is the syntax. The choice of XHTML is completely

arbitrary and whatever set of names would be equivalent, since the relevant in-

formation are patterns, rather than actual tag names. I have chosen such a syntax

because it is well-known, clear and directly representable in a browser (adding

few CSS rules, the example can be rendered with actual tables and lists).

The strength of Extreme IML (and then IML) is its generalization. The innova-

tion does not rely on names and attributes (which are really ordinary) rather on

the fact that a so small set of objects, and pattern-based composition rules, models

any document, and makes possible the implementation of advanced conversions.

Extreme IML and IML are in fact characterized by two properties:

• minimality: the language is comprised by a very small set of elements, sup-

plemented by some meaningful attributes.

• rigour: each element follows a specific pattern, and elements are nested each

other according to a restricted set of composition rules.

5.1.2 IML: a (not so surprisingly) simple DTD

IML can be seen as a ’reasonable extension of Extreme IML’. Some specialized ele-

ments are added for each category (pattern), in order to express the most common

objects of digital documents, and to make their management more direct, simple

and clear. IML is then a simple markup language composed by a very small set

of tags with pattern-based content models, supplemented by some @class at-

tributes. Table 5.1.2 shows these elements. I prefer such visualization to highlight

the strict relation between patterns and IML, and its simplicity. It is not difficult

to picture a more familiar DTD or Schema.

As patterns capture the most used structures in digital documents, IML trans-

lates those abstract structures into an actual markup language. IML documents

108 Chapter 5. A Pattern-based Minimal Language: IML

Pattern Elements Content Model

Markers img EMPTY

Atoms span #PCDATA

Blocks p, h1, h2, h3, h4, h5, h6 (#PCDATA | %Inlines;)*

Inlines a, span, sub, sup, i, b (#PCDATA | %Inlines;)*

Records* table (tr)*

Containers body (div | %Tables; | %Blocks;)*

div (div | %Tables; | %Blocks;)*

li (div | %Tables; | %Blocks;)*

td (div | %Tables; | %Blocks;)*

th (div | %Tables; | %Blocks;)*

tr (th | td)*

Tables ul (li)*

table (tr)*

Table 5.2: IML Core

are simply a sequence of content objects that simply specify which pattern each

object respects (e.g., whether the object is a block text, a container, a table or an

inline) and which specific class it belongs to (which kind of blocks it is, which

level of nesting it has, and so on) through the attribute @class and few more

attributes for specific needs.

Consider for instance an ”important” paragraph. Each format has a different

way to express that information, but it is clear that a paragraph when style is ”im-

portant” in MS Word, a fragment <p class=’important’> An important

paragraph </p> in HTML, and the fragment <important> An important

paragraph </important> in XML are all conceptually equivalent. Similarly

a text fragment rendered in italic because of its structural and semantic meaning

is wrapped into an i element in IML, but it ends to be an italic inline info a PDF,

an element emph for DocBook, an element i or em in HTML, a command textit{}

Chapter 5. A Pattern-based Minimal Language: IML 109

in LATEX, and so on. In both cases (but many others could have been cited) IML

expresses that semantic meaning in a simil-XHTML syntax.

IML is indeed characterized by syntactical equivalences. Consider again the i

element: it actually represents an italic fragment regardless of its syntax. Many

syntaxes are then considered equivalent: Italic

, Italic (in italian),

Italic , and so on. Similarly a paragraph without any specific role can

be expressed as <p> normal paragraph </p>, or <p class=’normal’>

normal paragraph </p>, or <p class=’MsoNormal’> normal </p> (in

MS Word), or as <p class=’BodyText’> normal paragraph </p>, and

so on. All these equivalences are encoded within IML-based converters (dis-

cussed in the next chapters), so that authors can label content as they prefer, and

that content is normalized into a clear and processable IML representation.

IML is then very simple. The most important feature is the methodical use

of the attribute @class to guarantee generalization and applicability to different

domains. As I said, the innovation does not rely on tag names and attributes,

rather on their minimality and rigour which made possible the implementation of

automatic conversion between heterogeneous data formats. The following frag-

ment shows an example of IML document:

<iml>
<head> ... </head>
<body>
<h1>Main title</h1>
<p class=’blockquote’>Citation.</p>
<p>Normal paragraph</p>
<p class=’important’>Important paragraph with some
names and <i>italic fragments</i>.
</p>
<table>
<tr>
<td><p class=’normal’>Para in a table.</p></td>
<td>

<p>Para in a list, in a table.</p>

110 Chapter 5. A Pattern-based Minimal Language: IML

<p>Para in a list, in a table with a meaningful
inline</p>

</td>
</tr>

</table>
<p class=’caption’>Table caption</p>
</body>

</iml>

The three main features of IML are evident from the example: first, IML de-

scribes only structured content and neglects presentation, behavior and metadata

(the element head is temporary included in the documents, but still need to be

deeply studied and used); second, IML strictly adopts the patterns (note for in-

stance the mandatory presence of paragraphs around text, as well as the rigorous

nesting of paragraphs and containers, and so on); third, IML makes intensive use

of the attribute @class to express the semantic role of content fragments.

What further characterizes IML is the presence of specific elements like b, h1,

ul, etc. The choice of these elements is completely arbitrary and it depends on

the fact that they are very common among authors and designers. Note that

some elements are actually redundant and could have been omitted. IML keeps

them because their wide use and support in documents’ applications. Consider,

for instance, the numbered headers Hn: they are probably not needed when div

structures are nested correctly, but they are still included in IML because they can

be very often found in digital documents. IML in fact can be used to model both

plain and hierarchical documents.

The meaning and use of each element does not require further explanations:

element IMG for images (equipped markers), P and Hn for paragraphs (blocks),

A for links, SUP and SUB for superscripts and subscript, UL and LI for lists, and

so on. The only element that requires a deeper discussion is the element TABLE

used for records: since records model structured information, usually expressed

as pairs name-value, IML represents that structures with a table of two columns,

which indicate the two fields of the record.

Chapter 5. A Pattern-based Minimal Language: IML 111

<person>
<name>Angelo</name>
<surname>Di Iorio</surname>
<telnumber>0009-00219091</telnumber>

<person>

<table class=’person’ IMLtype=’record’>
<tr>
<th><p>Name</p></th>
<td><p>Angelo</p></td>
<tr>
<tr>
<th><p>Surname</p></th>
<td><p>Di Iorio</p></td>
<tr>
<tr>
<th><p>Telnumber</p></th>
<td><p>0009-00219091</p></td>
<tr>

</table>

Even if such reduction seems to be a bit convoluted, it allows users to express

the relation between names and values of a record entry and, above all, to model

any kind of record without requiring specific tag names or constructs. Note that

records can be nested arbitrarily, since td is a generic container, whose content-

model permits new records.

5.2 Merits and limits of IML

I expect at least two questions about the set of tags I propose: (i) why these tags,

instead of others? (ii) how can users express objects which are not present in this

list? To answer these questions, I propose a drawn-in-the-round evaluation of

IML and a comparison with some well-known markup languages.

112 Chapter 5. A Pattern-based Minimal Language: IML

5.2.1 A meaningful language?

My claim is not only that arbitrarily complex documents can be written in IML,

but even that existing ones can be normalized into simplified versions which use

only such a limited set of structural objects, and still express the same content.

The two abovementioned questions can be then paraphrased as follows: ’Is the

minimality of IML enough to express everything’? The answer is that IML is not

meant to be the ultimate language that directly models everything, but a core lan-

guage that can be customized for specific domains. I have chosen those tags

because they are very common, and my personal experience has shown they are

enough versatile to capture most of the documents. There is no reason to pre-

vent for instance acronym, dd (or any other element) to be included in IML.

Nonetheless remind that they can be expressed with an element span, enriched

with attributes. Similarly, generic constructs like p and div (more @class) can

be used to markup any kind of content. What is important, however, is the strict

adherence to patterns.

Yet, some scenarios cannot be directly modeled with a so simple schema such

as mathematical formulas, or graphical fragments, of forms, or fragments written

in domain-specific syntaxes and so on. IML does not directly address them but

can be easily extended. Adding some attributes and tags the whole structure of

the document does not change, and the basic pattern-based constructs remain un-

changed. What change are only some local names and components. Once again,

the key-aspect of IML is not its syntax or names’ semantics, rather the minimality

and rigour behind the language.

A second relevant point is that IML is a natural consequence of Pentaformat

and patterns, and it makes little sense without those premises. Let us think back

to the path of the last three chapters: chapter 3 proved that a digital document can

be divided in some segments, and highlighted differences and relations among

those dimensions; then, chapter 4 explained how descriptive structures can be

shrunk to a small set of objects, and how those objects capture the most relevant

content (note once again the relation with the Pentaformat model) of any docu-

Chapter 5. A Pattern-based Minimal Language: IML 113

ment; finally, IML instantiated abstract patterns into an actual markup language,

readable and processable either by humans or machines. Section 4.2 described

advantages of a pattern-based approach in terms of re-usability, flexibility and

reliability. The same considerations are obviously extended to IML, that simply

translates abstract patterns into tangible objects of a markup language.

The fact that both humans and machines can easily interpret IML is another

essential feature. Wilmott[Wil02] discussed requirements for these classes of lan-

guages. From both sides, some benefits can be found in IML too: (i) clear dis-

tinction between data and markup derived from the XML syntax of the language, as

well as (ii) convenience for transmission, (iii) minimization of noise and normalization,

derived from the strict adoption of patterns and their expressiveness, (iv) limited

support meaningless variations, derived from the descriptive nature and strictness

of patterns, and (v) high variability and flexibility, derived from the use of @class

and the generalization of constructs.

Another feature that is worth being remarked is the XHTML syntax of IML,

that makes it directly readable by a browser. IML is then very close to the users,

for two reasons: first, because an IML document represents the most common

structures used by authors; second, because that document can be easily read

and converted in other formats. Although some training/learning is required, in

fact, IML is not difficult to be mastered by users.

5.2.2 A comparison with micro-formats

A very close solution to IML’s approach are microformats, which embed seman-

tic information within ordinary XHTML, by using few tags and attributes. The

official microformats’ web site describes them as ”a set of simple, open data for-

mats built upon existing and widely adopted standards”[CTK+05], and focuses

on the fact they aim at solving simpler problems rather than creating a huge and

complex semantic structure.

Microformats are not completely new. The SGML community have already

proposed similar ideas many years ago, with the architectural forms of HyTime.

114 Chapter 5. A Pattern-based Minimal Language: IML

For instance, DeRose and Durand[DD94] discussed the features of HyTime, a

markup language introduced in the late 80s, which defines a set of hypertext-

oriented element types that, in effect, allow SGML document authors to build

hypertext and multimedia presentations. Basically, HyTime is a general hyper-

linking and location addressing architecture based on a strong distinction be-

tween identifying typed objects, and using those identifications to express re-

lations among them.

Microformats basically consist of a clever and rigorous application of some

XHTML features, including the powerful class attribute, in order to describe

places, people, events and so on, and their relative relationships. This is a first

interesting point of contact with IML, whose goal is expressing meaningful infor-

mation embedded within a text by using very common objects. A relevant differ-

ence is about the names of those objects: unlike micro-formats, which use spe-

cialized tags for a specific context and have a pre-defined and rich set of names,

however, IML adopts a flexible mechanism which can be used to model any con-

tent. In a sense, IML can be seen as a meta-microformat, that is a general schema

from which specific microformat can be easily derived.

The management of semantic information is another perspective to compare

IML and microformats. Microformats have been defined as a ”lower-case seman-

tic web”, since they do not offer the rigor and soundness of standards like RDF

and OWL, but they provide a bottom-up approach to add semantic information

to the documents. That bottom-up approach has been one of the most important

reasons of their success, joined with their easiness and specific applicability. Yet,

the (uppercase) Semantic Web[BLHL01] is a complete framework which makes

information fully processable by machines but it requires many effort to guaran-

tee consistency, automatic reasoning and so on. I agree with the supporters of

microformats, that consider them as an intermediate solution which can actually

’reduce the gap between users and semantics’. IML aims at describing seman-

tics of document as well: while microformats are primarily concerned with the

semantics of names and objects, however, IML primarily concerns with the se-

Chapter 5. A Pattern-based Minimal Language: IML 115

mantics of structures and the relations/dependencies among elements.

Khare[Kha06] took a very interesting look at microformats, highlighting gen-

eral principles behind them and discussing the phenomena of communities grow-

ing around these simple specifications. He outlined some benefits of microfor-

mat’s approach, arguing against people who consider them only an h* effect (mak-

ing fun of the ’h’ prefix of most microformats). The same benefits can be found in

IML, with some minor differences:

• reduce: microformats focus on specific problems and favor the simplest so-

lution. IML adopts the simplest and most common solution to express what

an objects is and how it is related with others. While minimality for micro-

formats means a reduction of possible tags and names to handle a specific

issue, for IML it means a reduction of constructs to handle different issues.

• reuse: microformats use existing standards and do no reinvent the wheel.

IML does the same expressing the patterns behind the language in a very

common and widely supported syntax.

• recycle: microformats allows users to recycle the same fragment in blog

posts, Atom, RSS feeds and so on. IML fragments use an XHTML syntax

and can be then easily moved from a format to another, from an application

to another.

• presentable and parsable: microformats carry information visible and embed-

ded within documents. An IML document can be interpreted by a browser,

rendered with few CSS rules, processed by any HTML application as well.

While Khare expressed a totally positive opinion, Quin[Qui06] concluded that

microformats are either ’good ingredients’ or ’contaminants’ for documents. Ba-

sically, he argued that they have a positive effect because they add a bit of seman-

tic of a language mostly designed for presentation:web authors can deal with

something more and web agents (machines) can work on a more structured and

processable information. On the other hand, Quin considered microformats as

116 Chapter 5. A Pattern-based Minimal Language: IML

contaminants since they force semantics to be expressed by something which is

not meant to do that (actually he used the term ’subversive semantics’); microfor-

mats paradoxically help users to avoid using XML, but even HTML in its original

acceptation. The discussion of Quin about advantages and disadvantages of mi-

croformats is helpful to further compare them to IML. Some points are relevant:

• microformats are decentralised, simple and displayed by browser: the fact that IML

is a subset of XHTML makes it easy to create and render an IML document.

Then, authors can directly write them or extract them from legacy resources.

The minimality and simplicity of microformats apply to IML as well.

• microformats generate name conflicts: since microformats do not have global

identifiers or something equivalent to namespaces, soon or later issues about

conflicting and scalability (of an hypothetical server) will be arisen. IML

does not aim at becoming a standard used for specific contexts, but an in-

ternal language for automatic analysis and conversion; the presence of con-

flicts it is not relevant from that perspective.

• microformats generate documents hard to validate: the fact that microformats

use the attribute @class makes validation more difficult (unless using spe-

cific languages for co-constraints). IML is a descriptive language, not meant

to avoid errors and prevent invalid schemas. Thus, difficulties of validation

are less important now.

The conclusion of Quin’s paper is a list of questions about the relationship

between XML, HTML, the Web and the Semantic Web. Similarly the semantic

role of IML (intended here as microformats do) still need to be clarified. Future

works on the Pentaformat model, and investigations about the relation between

IML, metadata and behavior will move such discussion forward.

Chapter 5. A Pattern-based Minimal Language: IML 117

5.2.3 A comparison with TEI and DocBook

The minimality of IML seems to contradict what most markup languages say,

and to consider them too much complex and convoluted. IML does not aim at

discrediting existing markup languages, but at abstracting and describing their

structures. A comparison between IML and some common languages (TEI[Con87]

and DocBook[Wal99]) is then useful to better understand my proposal. TEI is a

standard that enables libraries, publishers, and scholars to represent a variety of

literary and linguistic texts for online research, teaching, and preservation. Char-

acterized by a huge amount of elements and tags (that can be further customized

or extended), it allows encoders to work on any kind of text and to mark-up con-

tent with great precision. DocBook is a standard initially developed to encode

scientific books and papers and then used to mark-up different texts. Based on a

hierarchical model, it provides users a lot of constructs to model text, equipments,

metadata and it has been widely used for documentation, books and personal en-

codings. The most relevant points of divergence between TEI (I will refer to TEI

but similar considerations can be applied to DocBook as well) and IML are listed

below:

• prescriptiveness: many aspects make TEI a prescriptive language, while IML

is primarily descriptive. Section 2.1.1 defined a prescriptive language as

a language that imposes rules over the structures of a document, and pre-

vents forbidden encoding. Although it is meant to describe legacy resources

a posteriori, TEI expresses many complex rules over structures and has many

declarations which indicate content-models with fine-grained precision and

variation. IML is a more general schema aiming at abstracting logical struc-

tures and relations.

• descriptiveness: dealing with the descriptive aspects of TEI, it is evident that

TEI describes many aspects different from IML. It aims at describing each

(small) detail of the original document in order to faithfully reproduce it.

118 Chapter 5. A Pattern-based Minimal Language: IML

IML aims at extracting the most relevant structures and at normalizing them

in processable objects.

• naming and generalization: TEI uses specific names and attributes, to create a

digital copy of a non-digital resource, while IML uses a general schema, to

capture (and, later, to characterize them) structures. As discussed at the be-

ginning of this chapter, they respectively implement an exhaustive approach

against a minimal one. The same dimensions of their DTDs explain such

substantial difference.

• scope: TEI is a complete language designed to directly encode all relevant

information, even if it can be customized for specific needs. IML is a core

language (in a sense, a metalanguage) that can be adapted and modeled on

specific domains.

• multiple structures support: TEI needs to deal with multiple structures, and

proposes many solutions for overlapping markup (see section 2.1.3 for de-

tails), while IML describes the basic structures of a text (see section 3.1 for a

deeper discussion about the content/structure relationship).

• patterns adoption: IML strictly follows few patterns, while TEI does not. I

am not saying that TEI is a bad-engineered or pattern-unaware language.

Rather, that my patterns are not enough for what TEI needs to express. As I

said, it is a descriptive/prescriptive language aiming at capturing and forc-

ing details, while IML is a descriptive/general solution.

The point is that TEI and IML have two different objectives, and were con-

sequently designed on different principles. Renear et al.[RDM96] explained that

’the a text as seen by the SGML community is not the same as the text seen by the

TEI community – that is, the accounts that they would offer of a text’s structure

are significantly different’. Although he mentioned SGML, similar considerations

can be extended to IML, which indeed is nothing else that a (pattern-based) sub-

set of HTML.

Chapter 5. A Pattern-based Minimal Language: IML 119

5.3 ISA*: A flexible architecture based on Pentafor-

mat and IML

The Pentaformat model and IML can be combined to build a simple and flexible

architecture, ISA*, which generalizes the ideas developed in the ISA project[Vit03].

ISA is a web application developed at the University of Bologna and designed to

simplify and speed up the creation of web sites. ISA* has been applied to a vari-

ety of scenarios like web editing, collaboration, e-learning and professional book

printing. In the development of the system, IML, and the pattern based approach

described in this thesis have played a central role. Now on I will then use the first

person plural to indicate the research group I belong to.

ISA allows users to easily produce and publish web content. Authors write

content in MS Word (and specify the role of each text block by styles) and the

system automatically converts such content into graphically advanced pages, by

exploiting associations between the layout area names and the content styles, pre-

viously created by a graphic designer. ISA transforms such information into an

XSLT that, in turn, will apply the selected formatting to the original Word content.

ISA* applies a similar approach to heterogeneous domains and data formats.

This architecture (shown in fig. 5.1) separates all components of a document,

then works separately on each of them, then recombines them again for the final

output. The whole system consists of bi-directional converters from and to any

existing data format we want to support. Our basic idea is that any application of

digital publishing can be chiefly considered as a smart conversion from a source

format to a destination format, with a little bit of application logic in between.

Diaz et al.[DWB02] proposed different models to perform conversions be-

tween data formats: direct model based on bidirectional transformations from a

data format to another one, intermediate format model based on a new generic for-

mat used as an intermediate representation of any format to be converted and

finally ring model in which data formats are virtually ordered in a circular struc-

ture and the transformation happens jumping from a format to the following one

120 Chapter 5. A Pattern-based Minimal Language: IML

Figure 5.1: The ISA* architecture

toward a pre-defined direction. The second model, a.k.a. superior standard model,

proved to have a number of benefits in terms of efficiency, quality and imple-

mentation facilities, as confirmed by Milo and Zohar[MZ98] (whose intermedi-

ate model exploits similarities between documents’ schemas) and Abiteboul et

al.[ACM02] (whose intermediate model integrates heterogenous databased ap-

plications).

IML is therefore used as the intermediate data format that captures only rele-

vant information of the input documents and ensures high-quality output by del-

egating the rendering to external tools. Currently, the formats we manage include

HTML, MS Word, MS PowerPoint, InDesign, Open Document Format, DocBook,

PDF, LATEX, plain text, wiki-oriented formats, as well as arbitrary XML. All docu-

ment workflows using this approach follow the same general steps as shown in

the picture: content extraction (on the left) and high-quality post-production.

5.3.1 Content extraction

The first step consists of extracting all the constituents of a document and nor-

malizing content in IML, in order to be completely independent from the input

Chapter 5. A Pattern-based Minimal Language: IML 121

format. That segmentation process can be further divided in pre-parsing, post-

parsing, and content-analysis.

Pre-parsing

Since our architecture is intrinsically based on XML, our fundamental tools are

converters from one XML format to another. While some of these converters

work already on XML, others (such as MS Word or PDF, for instance), require a

further step. Then, the first possible action we take is making conversion into

XML, before any further content accommodation takes place. This operation,

called pre-parsing (as it happens before we can actually have a chance to parse

the resulting document as XML), is heavily dependent on the actual syntax being

employed by the data format being converted and it is heavily different among

data formats.

For instance, in PDF we first convert the binary PDF into exactly looking SVG,

and then proceed to parse the document. With MS Word, we either fix the well-

formedness of the HTML that MS Word automatically creates, or use directly

(when possible) the WordML XML format. Further approaches (such as reading

the RTF or the .doc format, or firing up the Word application to save the document

in the required format) are being considered.

Post-parsing

After the pre-parsing step we read the resulting XML file and clean up the con-

tent and remove parts that surely will not be needed for the smart component

separation. These operations, cumulatively known as post-parsing, are also differ-

ent across data formats, but for semantic rather than syntactical reasons. These

include re-joining lines into paragraphs for PDF files, or removing alternative

variants of the same image in MS Word documents. Although these operations

are still dependent on the quirks and peculiarities of each data format, they are

done on an XML source, and therefore they can be and are usually done via a

transformation XSLT style-sheet.

122 Chapter 5. A Pattern-based Minimal Language: IML

Content analysis

Pre-analyzed content is then scanned to identify individual features and denom-

inate the constituents. The output of this phase is the same XML document that

was provided in input, with additional attributes specifying whether an element

is content, presentation, behavior or metadata. That is the central part of the in-

put system, which actually separates the constituents of a document, and allows

downstream applications to selects only those constituents that they need to deal

with, and ignore the rest. The current engine is completely generic and paramet-

ric, and it is based on XSLT technologies. Additional features in the conversion,

or additional source formats to convert from, require only an update to the set of

XSLT stylesheets. The output is a document where the generic parts can be easily

converted into an IML document, and where everything that is not part of the

IML file is either presentation or behavior.

The key point here is that any document can be passed to the engine, without

imposing constraints on its internal structures and styles. The approach follows a

”Garbage In, Garbage Out” paradigm: Isa*can extract content and reflow it from

any source into any layout and no input file is rejected, but the better structured

is the source, the finer will be the final output.

Different possibilities exist to ease this information extraction. One extreme is

to impose strict rules onto the authors, possibly enforced with macros that verify

if they are following them. In this case, editing is not free of hassle, but the con-

version is perfect, simple and straightforward. The opposite extreme is to have

the system accept just any document and do its best to extract the actual content;

in this case, the complete freedom in writing has heavy impact on the sophistica-

tion/complexity of the converted result. An intermediate solution, that we have

tested in the e-learning context described in [DIFM+05][DIFM+06], consists in

giving the users a set of guidelines about how to use styles and input macro, and

then in implementing the appropriate transformations with flexibility. Therefore,

all documents can be processed by the system but, the more compliant they are

to the guidelines, the better will be the final result and the correct reformatting.

Chapter 5. A Pattern-based Minimal Language: IML 123

Whenever no guarantee of correct input is available, ISA* applies a set of

heuristics and analysis techniques that allows users to provide even unformat-

ted documents to produce well-formatted output[DIVCV04]. These heuristics,

expressed as conversion rules in an XSLT metastylesheet, can be adapted and

polished so as to make this approach both flexible for different scenarios, and

powerful for different levels of output complexity.

5.3.2 High-quality post-production

In the second part of our architecture the perspective changes radically: what

is an abstract description of content, have to become an actual file, in a specific

format, with specific formatting and layout. That process involves two clearly

distinguished sub-processes: application logic and high-quality rendering.

Application logic

Once separated, the specific application can act on the constituents indepen-

dently. Operations can vary considerably, from simple to more complex ones,

depending on the purpose of the application itself:

• Simply repackaging it in a different format in order to convert a document

from one format to another

• Substituting the presentation constituent with a new one in order to refor-

mat a document, regardless of its source, with a completely different layout

and final aspect

• Substituting the content constituent with a new one in order to reuse the

presentation to create a new document looking similarly to the original one.

• Analyzing the structure constituent looking for specific types of content in

order to filter it out (e.g., removing advertisement from a web page)

124 Chapter 5. A Pattern-based Minimal Language: IML

• Adding specific ontology-driven elements to the metadata constituents so

that the document can be correctly placed within a workflow process re-

gardless of its source format.

The list can obviously go on and on. What is important is the fact that all those

operations are independent either from the input format or from the final one,

since the files we work on are IML fragments, or abstract data about behavior,

presentation and metadata.

High-quality rendering

Finally, all ISA* tools take care of re-generating a final document ready to be deliv-

ered to the final application. These processes follow a sequence absolutely sym-

metrical to the initial one: the new IML document is enriched with data format-

specific information, and then converted via XSLT stylesheets into an XML format

which can either be the final format, , or the input to a converter to some kind of

binary format, assuming we have the correct converter from XML to binary.

Particularly important in this stage is the quality of the final conversion. The

final rendering step takes in input both the converted document and configu-

ration parameters that express the quality requirements to be met. By applying

adaptive models, the renderer transforms the IML content into a ready-to-publish

output, for instance a reusable and accessible learning object based on SCORM,

or a sophisticated XSL-FO file.

Our model suggests then using external and format-dependent applications

that are smart enough to take sophisticated decisions in order to generate high-

quality results. The complexity inherent in such high-quality results depends

also on the sophistication of the formatter that actually produces the final artifact.

The more powerful and reliable is the renderer, the lesser is the effort required to

produce high-quality products. Theoretically, the author can be left completely

unaware of all the technical difficulties, allowed to directly generate high-quality

material with one click.

Chapter 5. A Pattern-based Minimal Language: IML 125

However, in many cases the results that can be obtained with existing tools

are not sufficiently sophisticated for professional use. For this reason, we often

need to improve or re-implement renderers, in order to obtain the required so-

phistication.

Chapter 6

An open publishing system: IsaWiki

The ISA* architecture introduced in the previous chapter is completely indepen-

dent from specific data formats and from specific domains. In order to assess

such architecture, as well as the wide applicability of the Pentaformat and IML,

we have implemented different applications based on that model. The applica-

tions currently work on e-learning, professional printing, web editing and col-

laboration. More than the actual domains we selected, the key aspect is that

a pattern-based segmentation model makes possible the implementation of ad-

vanced conversion tools, able to empower and simplify authoring processes. The

first field of application was the World Wide Web. In this chapter I will present

IsaWiki, a system which exploits the flexibility and multi-format facilities of ISA*

and IML in order to ’re-open the web-authoring’ case. IsaWiki is a very com-

plex system that could be a dissertation in itself. A detailed discussion is out of

the scope of this thesis but a brief description is useful to explain our vision and

application of a multi-format publishing model.

6.1 Re-opening the ’web authoring’ case

IsaWiki implements a new model for web authoring that not only helps bridging

the overlap between the reading and writing processes of web documents, but

takes a step towards the full integration of reading and collaborating too. The

Chapter 6. An open publishing system: IsaWiki 127

proposed model of editing passes primarily through two different and comple-

mentary steps: on the one hand, the simplification of the publishing process in

order to ease the creation of web documents, that we have called writable web;

on the other hand, the improvement of the collaboration towards a new environ-

ment where all web users can easy collaborate on all web resources, that we have

called global editability (or web-wide collaboration).

6.1.1 Writable Web

The publishing model of the World Wide Web is still asymmetric: apart from

some exceptions each role (reader, writer, graphic designer) is different and inde-

pendent from the other ones, it requires different skills/tools and it acts within

a different step of the authoring process: the writer prepares in advance content,

the designer prepares in advance layouts and finally an automatic (or manual)

process merges them into the final document to be published. Afterward the

reader can access (but not modify) the published content. Clearly this complexity

makes publishing content on the web a voluntary and laborious act, and not one

of the daily actions or a side effect of our daily intellectual life. In few words:

most of our tools allow us to write for the web, not on the web.

Something is changing with the last trend of the World Wide Web. Recent

evolutions allow users to publish for themselves many kinds of data. Users can

create their own pages by exploiting WYSIWYG editors (like FCKeditor[Kna03]),

or wholly client-side publishing environments based on Ajax technologies (like

LesserWiki[Yat06]), and so on. The distinction between producers and consumers

is finally starting to be erased. Moving towards a really writable web just means

following that direction, and allowing any user to write and manage web content

with the same facilities used to read them.

The first issue to be addressed is the selection of the user interface. Two ap-

proaches can be considered: the browser-based and the word-processor-based author-

ing paradigm. In the first case, the editing process happens completely within

the browser: the whole page is displayed in the browser window, so that the

128 Chapter 6. An open publishing system: IsaWiki

user can modify the actual content of the page or the whole document, though a

WYSIWYG editor (see for instance Amaya [W3C01], or Ajax solutions, integrated

in most applications, among which the same wikis). A WP-based approach is

equally interesting and powerful, in particular when users want to re-use and

publish legacy material. It consists of letting users to edit content with their pre-

ferred tools (for instance MS Word) and letting the system import and convert

the original document into a however different data format and layout, through

a powerful templating engine, as implemented by our application ISA[Vit03].

Other examples are systems (like JotSpot[KS04]) that include importers and al-

low authors to directly upload their content on the repository.

The second issue to be addressed, in fact, concerns the actual steps required

to publish a web page. FTP connections and direct logins onto a web server

are not simple enough: a user should be able to edit a page and publish it onto

the web server directly from the browser or the editor, without separate tools,

interfaces and processes. Wikis already adopt such solution but they are limited

in the final graphical effects (and in the writing syntax), while weblogs are not

flexible in the content creation. A possible solution could be WebDAV[GWF+99],

an extension of HTTP that provides users methods to write and manage files

directly on remote web servers; however it still requires expertise to be installed

and configured. The best solution to this issue is just allowing users to edit pages

within the browser and saving changes directly onto a web server.

One of the key aspects of such a writable system is a strong separation be-

tween content and presentation, in particular by providing support for a fine-

grained storage of assets of content and for a systematic reliance on templat-

ing mechanisms for re-flowing any content in any layout. It is evident how the

Pentaformat model fits directly such approach since any segmented constituent

can be processed and re-flowed indipendently. Through such a system authors

simply prepare content paying no attention to presentational aspects and using

their preferred browser/editors, while graphic designers prepare layouts with a

drawing application, possibly without any direct intervention in the underlying

Chapter 6. An open publishing system: IsaWiki 129

HTML coding. The system would then take the whole templating process upon

itself. According to the time the templating engine acts, two different templating

models can be identified:

• Pre-templating: the designer prepares in advance a layout, directly displayed

in the browser window while the writer is creating content. Thus, the areas

to be filled with content are activated and the writer looks at the final effect

of the page during the whole authoring process. For instance, this approach

is used by the WYSIWIG browser/editor mentioned before.

• Post-templating: the author prepares in advance content and saves them into

an appropriate position on the server, and the graphic designer prepares in

advance a layout. Before publishing the page onto a web server or directly

whenever the page is requested, the system merges the two components

into the final document. This approach is widely used by common con-

tent management systems (Boiko[Boi01] published a very interesting re-

view about CMSs) or by tools supporting stand-alone content pages, like

ISA[Vit03].

A point is very important: even if an unskilled user can easily create web con-

tent with such system, no limits exist for the productiveness and expressiveness

of an expert one. The writable web model aims to decrease (up to the point of

effacing it) the set of skills and knowledge required to write web content, but it

would let skilled users produce the same advanced and structured pages which

can be found today surfing the web.

6.1.2 Global Editability

Unlike web authoring, in whose field many interesting results have already been

achieved and good groundwork exists today for a writable web, collaboration

over the WWW is still quite difficult. The goal of IsaWiki is providing users an

editing environment the current WWW to support a really web-wide collabora-

tion, called global editability[DIV05a]. The global editability is a place where any

130 Chapter 6. An open publishing system: IsaWiki

user can share and collaborate on any content, regardless of locations, formats

and access rights.

The need of customizing and collaborating over other peoples material as

well as the belief that external and free modifications can improve this mate-

rial is grounded in the very roots of the World Wide Web: the ancestor of the

Web, Xanadu [Nel87] by Ted Nelson, was meant to be a global publishing en-

vironment where all users could access, read, re-use, modify and comment any

material of any user, tailoring it to their own purposes. Many other systems de-

veloped by the Open Hypermedia community in the first 90s (when the web

was in its infancy) allowed users to add external links, annotations and other

complex structures on the top of any document, like MicroCosm [DHH+92] or

Hyper-G [AKM95]. Some of them were extended to work on the Web, (for in-

stance DLS[CDRHH95] or Webwise [GBS97]), new ones were developed in their

wake, such as Arakne [Bou99], and the same Nelson proposed a way to integrate

Xanadu with the (at the time) current web standards and languages, called ”New

Xanadu for the Web”.

Nevertheless the World Wide Web has later gone on a different track ignoring

some of the most relevant features of a really global and democratic collabora-

tion platform[BVA+97]. Today the Web is an irreplaceable platform to read in-

formation, provide services, and connect remote people and resources but it still

has not completely developed its potential as collaborative environment. Unex-

pected and unpredictable interactions can spontaneously result if any web user is

allowed to edit and collaborate on any web page. Such approach can be likened

to the open-source philosophy[Ray99], according to which several revisers and

developers contribute towards the same task and everyone share skill and knowl-

edge with the others. Open-source movement is increasingly gaining more im-

portance, up to be considered by several researchers and professional as a new

form of organizing knowledge work and making business. While the process

of the production of software requires an engineered and methodical approach, a

more dynamic and unpredictable collaboration can be equally useful and suitable

Chapter 6. An open publishing system: IsaWiki 131

in the case of multi-authored text documents. Similarly, the huge pool of users in-

volved in the World Wide Web, can be transformed into an (almost) infinite pool

of collaborators.

A partial step towards such an evolution is certainly the external collabora-

tion, i.e. the possibility for any web user to add external comments, notes and

links to any web page. In this case, the original document remains unmod-

ified on the origin server, while the contributions are stored in external link-

and data- bases and added to the document on request. Two standards were

primarily proposed by the W3C to support such collaboration, XLink[DMD01]

and Annotea[KKPS01], and a lot of systems based on them can be cited like

Goate[MA02], XLinkProxy[CFRV02] and XLinkZilla[DIMV05]. Yet, external an-

notations and links meet only some of the desired functionalities of a sharable

editing environment, since users can only add a single extra layer of annotations

onto the original documents, rather than freely collaborate on the document pro-

duction.

A different form of collaboration, that we called indirect collaboration, can be

obtained through the creation of personal anthologies: a web user surfs the web

and freely collects data and references to the accessed content, in order to merge

them into personal anthologies. The benefits are clear: the whole web becomes a

global knowledge base from which everyone can draw content and ideas and any

web author is an implicit collaborator of every other one. The qualifier indirect

just means the fact that the collaborators do not necessarily know their materi-

als have been included in other documents. Thus everyone can determine one’s

own navigation path, collect real anthologies of existing content or create new

pages composed by personal contributions and other peoples’ material as fore-

seen by Vannevar Bush [Bus45] and, more recently, HunterGatherer [SZM+02]

and SMR[MBCKH03]. Obviously such a content sharing and aggregation has

to be realized in a controlled and safe way, that is keeping traces to the original

content and authors: for instance, if all the connections between the original ma-

terials and their copies in the anthologies are kept in the anthologies themselves,

132 Chapter 6. An open publishing system: IsaWiki

everyone can trace who is the original author of the imported fragment, where

the original document is stored and what any document is composed of.

Both external and indirect collaborations allow a single document to be en-

riched with ideas and content belonging to any web user: different knowledge,

different opinions and ideas, different cultures and educations come together into

the same resource. However, such external contributions are of course strongly

distinct from the original content, but they are simply added or imported as an

extra layer: there is no actual intervention on the content of the page, no deletion,

no change in the overall structure and so on. Yet, within an open collaborative

system all users should be allowed to freely customize and reuse content without

limits of size, authorship and access rights. Customizations and collaboration, in

fact, cannot be limited to an extra layer of data integrated into the original page,

but they have to be considered as complex and unpredictable interventions that

can occur without particular constraints.

In this sense, the final goal is the global editability, the creation of shared cus-

tomized versions of web documents, where different contributions from differ-

ent sources and different authors come together, regardless of write rights, skills

and data formats. A simple scenario of this idea shows a reader that, while nor-

mally surfing the web, finds a document needing some comment or change and

customizes the page (even better if the editing is performed directly within the

browser), creating a new version of the resource. If the user is one of the authors

of the page, a new official version is created, which is immediately made avail-

able to any other web surfer; otherwise a new personal variant of the resource is

stored on a different server and is not made part of the official tree of versions.

Any web user can, in turn, customize the new variant and create additional dif-

ferent personal variants, and so on. Finally, according to the decisions of all the

authors involved, these personal contributions can be merged with the original

content, thereby becoming official, public versions of the documents.

The design and implementation of global editability is a very complex task

since tricky technical and non-technical issues exist and need to be deeply in-

Chapter 6. An open publishing system: IsaWiki 133

vestigated, issues related to scalability, versioning, coexistence with the current

WWW, management of digital rights and so on. They are out of the scope of

this thesis (details can be found in [DIV05a]). What is relevant here is the fact

that a global editability model presupposes an advanced and fine-grained man-

agement of the documents’ fragments: each document should be divisible into a

set of assets storable, manageable and reusable in independent ways. Moreover

such segmentation must be independent from the format and layout of that do-

cument. The Pentaformat model and IML can be then exploited to handle such

heterogeneity.

We can use IML as intermediate generic data format with features from both

source and destination formats, and we can implement conversion of each format

to and from this one. Any document can be normalized into IML and any further

process can be performed only on that normalized content. Indeed conversion

must extract the structured content and all the details about the layout and the

style, and other dimensions of the Pentaformat model.

6.2 Taking ideas to implementation: IsaWiki

IsaWiki[DIV05a][DIV04] is a publishing environment that allows any user to cre-

ate content for the web, to edit them directly within the browser, to customize

any web page. It is a client/server system where some client-side modules (in-

stallable into the common web browsers) and multi-service servers (installable

onto any web server supporting PHP) take part in providing services for regis-

tered users. The system naturally coexists with the architecture, the protocols, the

languages and the tools of the current Web. All the possible interactions among

the IsaWiki modules and the web clients and servers are summarized below:

• An IsaWiki server, firstly, is a plain web server delivering contents to any

web client; on the other hand, it provides advanced services for publishing,

customization and collaboration to the subscribed users only. The IsaWiki

134 Chapter 6. An open publishing system: IsaWiki

server consists of a set of PHP scripts (running on PHP > 4.0) and some

XSLTs to perform conversions.

• An IsaWiki client surfs and downloads web resources; in parallel it commu-

nicates with an IsaWiki server and allows user to create and edit web pages

within the browser. The IsaWiki client is developed for Internet Explorer

6.0 under Windows and for Mozilla and Firefox 1.0.3 for Windows, Linux

and Mac OsX, and recently for Safari on Mac OsX.

A user interested in IsaWiki would simply install the plug-in and register him-

self onto an IsaWiki server. From then on, all the editing and surfing activities

would be supported by the system.

6.2.1 The role of IML

The whole IsaWiki system relies on the methodological and systematic segmen-

tation of content, structure and presentation of the Pentaformat model, and the

ISA* architecture: any conversion is expressed as a normalization into IML and

then a transformation in the destination format. Remind that transformations of

IML are not ”literal translations” of the content, layout and graphics (as it hap-

pens in case of a printer driver) but a smart re-flow of the mere content of the

document into a different format and layout. The role of IML within IsaWiki is

summarized in figure 6.1.

IsaWiki implements both browser-based and word-processor-based authoring mod-

els (see section 6.1.1 for details). When a page is edited through the WYSIWYG

editor the identification of the actual content areas (to activate editing facilities

only on them) is performed by elISA[DIVCV04], a web pages’ structural analysis

tool, able to identify the real content of a page, by studying structures, patterns

and regularities in the HTML code. It is actually implemented as a rule-based

transformation engine that, once applied to HTML pages, adds appropriate at-

tributes and other markup to the original document to indicate the role of each

fragment. Actually elISA is able to gather the role of other page elements, but

Chapter 6. An open publishing system: IsaWiki 135

Web

page

content

IML

elISA

IsaWiki client

IsaWiki server

Conversion

layout

OUTPUT

Templating

IML

content

layout

content

layout

IML

Figure 6.1: The IML-based conversion model of IsaWiki

in IsaWiki it is simply used to determine the content areas, the only areas which

can be modified. Thus, it is in charge of performing the content-analysis phase of

ISA*, and extracting IML. When authors upload documents directly on the server,

a server-side converter performs tasks similar to the elISA’s analysis and extracts

an IML representation from any document, if stored in one of the supported data

formats. The client- and server-side analyses are temporary separated but we are

working on a complete integration and sharing of extraction rules.

The post-production phase of ISA* depends on the output format, and it is im-

plemented by different sub-converters, one for each supported format, which

take in input IML. The most used in IsaWiki is the HTML engine, and it is di-

rectly imported from ISA [Vit03], the project which gave the name to the whole

ISA* architecture. The same name of IsaWiki clearly indicates an integration be-

tween ISA and wikis.

6.2.2 Writable Web with IsaWiki

The first step towards a writable web is inevitably the provision of a simple and

usable interface for surfing and editing. Figure 6.2 shows the IsaWiki client on

136 Chapter 6. An open publishing system: IsaWiki

Figure 6.2: The IsaWiki editor for Safari

Safari. Creating and publishing a new web page with that interface is simple

and fast: by clicking on the relevant button, a list of available layouts appears

and, once the user selects a template, an empty document is displayed in the

main browser window. These documents are directly retrieved from the server

on which the surfer is subscribed, by the sidebar that works behind the scenes.

A set of predefined layouts is stored on any IsaWiki server after the first installa-

tion, but new ones can be easily added. Once returned to the browser, the empty

document shows empty areas to be filled with content and bordered in red. Only

these areas (content areas of the Pentaformat model) can be modified by the user,

while the other areas remain visible in the browser window for contextualization

and orientation. Buttons and forms to insert and update content elements are

shown in a WYSIWYG editor integrated in the sidebar. Figure 6.3 shows an edit-

ing session with the IsaWiki editor for Internet Explorer. Note that the text editor

has few buttons, corresponding to the few objects of IML. The menu to assign a

role to paragraphs and in-lines, deserves attention since it corresponds to one of

the core aspects of IML, the usage of the @class attribute.

Within the editable regions (that contain the normalized IML content) any

content and structure can be freely modified, deleted or added by the user and

Chapter 6. An open publishing system: IsaWiki 137

Figure 6.3: A WYSIWYG editing session on IsaWiki

the DOM is consequently and immediately updated according to these modifi-

cations. After the editing session and the input of some metadata the user has

to simply click on a save button. Once again transparently, the sidebar post

data to the IsaWiki server and the page is immediately published and available

to the other web surfers. The editing facilities can involve subsequent changes

too, since the system allows users to modify any subsequent version of the page,

by using the same WYSIWYG editor. Any intermediate state of the document is

recorded and any intermediate version can be requested and edited, so that the

whole history of a document can be managed directly within the browser.

Any version of any document in any format can be accessed through a specific

URL. For instance, by asking for http://serveriw/index.doc 12.1 users

can display versions 12.1 of index.html in .doc format and the version 12.2

in XML can be requested by http://serveriw/index.xml 12.2. Actually

IsaWiki supports bi-directional conversions to and from MS Word, Wiki, HTML,

TeX, XML and (partially) PDF files. All these conversions are performed through

an intermediate IML segmentation and representation.

In figure 6.4, a PDF document is shown in its original form and converted

into HTML via the intermediary IML reduction. The original document has been

138 Chapter 6. An open publishing system: IsaWiki

Figure 6.4: A PDF document re-flowed into an HTML page by IsaWiki

segmented according to the Pentaformat model, and the only (IML) content has

been re-flowed in a different presentation.

HTML pages obviously play a relevant role, since IsaWiki is first of all a nor-

mal wiki, whose pages can be retrieved by any HTTP client. If properly config-

ured, in fact, the IsaWiki server adds some links to any page useful to display a

complete list of the documents on that server, a list of recent-changes, a list of the

users and a search-engine. As expected, all these functionalities for the organi-

zation, searching and management of the local documents are independent from

the format of documents (since they are performed directly on the filesystem or

on the converted IML document).

IsaWiki users can write documents and upload them directly on the server

via FTP or direct access (WP-based authoring model). An uploaded resource lives

within the system as it had been created through the WYSIWYG editor and in

particular it can be versioned and converted in any data formats. Whenever a

resource is uploaded, since any intermediary revision contains metadata about

the revision number, format and authors, a server-side daemon positions the new

revision within the server file-system. Many different scenarios can occur: a user,

for instance, can create a MS Word document and manually save it on the server,

after which any other entitled user can edit the same document in HTML (though

the IsaWiki client) and, in turn, another one can re-edit the same page in .DOC or

Chapter 6. An open publishing system: IsaWiki 139

LATEX, and so on. All in all, IsaWiki allows users to view and modify documents

with their preferred tools, according to their preferences and needs.

To complete the multi-format vision, IsaWiki provides differencing and ver-

sioning engines, independent from the formats of documents. Regardless of the

format a document was originally stored, two versions are first converted into

IML and then the diff is taken. Finally a template is applied to the delta, so that

a readable and clear document containing differences is returned to the browser.

Fig. 6.5 shows a diff between two versions of the same document: although the

output is an HTML page the first version had been uploaded as MS Word file,

while the second had been modified through the WYSIWYG editor. Similarly,

users can display differences between a wiki page and a LATEX file, re-flowed into

a simple HTML page.

Figure 6.5: The multi-format diff of IsaWiki

6.2.3 Global Editability with IsaWiki

Besides being a platform for writable web, IsaWiki aims to be a collaborative edit-

ing environment based on a web-wide collaboration model. However, this side

of development is still at its early stages, though the whole design is complete

140 Chapter 6. An open publishing system: IsaWiki

and claims to be strong and reliable: today IsaWiki implements a restricted and

distributed collaboration model and provides customization of web pages. We are

still developing the system to allow users to share such customized content and

merge them into new multi-source and multi-authored documents.

IsaWiki is a distributed architecture based on HTTP, composed by common

web servers (which coexist with the current web architecture) and client-side

modules which communicate with these servers. A partial result is that the sub-

web composed by these servers can be considered as a global environment for

collaborative editing: the users registered on the IsaWiki servers can collaborate

on the resources of these servers, directly using their browsers.

Whenever a user asks to edit the page in the browser window, in fact, the

same page is shown with the same layout and presentation, but with red bor-

ders around the content areas (according to the Pentaformat segmentation). As

expected, these regions contain the segmented IML content of that page and are

identified by elISA, the structural analysis tool introduced in section 6.2.1; obvi-

ously, the elISA analysis is trivial on the local pages, since the content areas have

already been identified by the templating mechanisms on the server, but it plays

a key role with the external web pages (as I discuss later, IsaWiki allows users to

customize any web page, regardless of its origin-server, or better the content of

any web page).

As for the creation of new pages, the WYSIWYG editor integrated in the side-

bar allows user to wholly modify the content areas of a page directly within the

browser and save new versions on the proper IsaWiki server. No direct access to

the server file-system, no FTP connection and no technical skill is required, but

the user has plainly to know how to use a WYSIWYG editor: whoever can use a

browser and a simple word-processor, can collaboratively edit content. For any

IsaWiki page the owner can define a set of users (or groups) entitled to create

new official versions of the same page: not only the revisions made by the owner

of the page but also any intervention of entitled collaborators will belong to the

official history of the page.

Chapter 6. An open publishing system: IsaWiki 141

If the author does not belong to the list of the official authors, IsaWiki sup-

ports customization. After any editing session, whatever the author is or not an

official author, a new official version or a personal variant is created. The cus-

tomization does not interfere with the normal navigation of uninterested users:

when a registered IsaWiki user surfs a page, if a customized variant has been pre-

viously created, it is displayed, instead of the original page; that page remains

unmodified on the origin server, available to the rest of web surfers.

Technically speaking, customization is possible thanks to the sidebar. For any

accessed page, the sidebar catches the event and verifies (through a HTTP request

to the IsaWiki server) if a personal variant of that exists. The communications be-

tween the sidebar and the IsaWiki server and between the browser and the origin

server are performed in parallel and transparently to the user: this parallelism

saves both time and user’s patience with respect to a proxy architecture, as dis-

cussed in [DIMV05]. The content of the document from the origin-server is then

modified according to the data received from the IsaWiki server (javascript and

C++ functions are used to read and write the browser internal data in Internet Ex-

plorer, while Mozilla and Firefox use XUL[GHHW01] and javascript, and Safari

exploits Object C). The end result is then displayed in the browser.

The most important aspect is that customization is not limited to the sub-

web composed by the IsaWiki servers but can be extended to the whole WWW.

Any page can be edited and any variant can be stored externally on an IsaWiki

server, on condition that elISA can gather the content regions within the same

page. All the documents that can be parsed by elISA (and so can be translated into

an IML document), compose the documentary source of the IsaWiki collaborative

editing system: in the future we plan to extend this documentary source to the

whole WWW, but the core of the system will remain unchanged. Extending this

source, in fact, requires only to strengthen elISA and to polish its capabilities

in extracting IML. The Pentaformat model is powerful enough to segment (and

extract content from) any document: what we need to do is implementing more

powerful converters based on that model.

142 Chapter 6. An open publishing system: IsaWiki

Once elISA has analyzed a page, whether it is a local or an external one, it can

be edited through the WYSIWYG editor and saved. Server-side, IsaWiki imple-

ments a session-based versioning mechanism and external anchoring system. In

particular, the content repository has a customization area, where each registered

user has a personal space. In this space, for each personalized page, there exists

a subdirectory (in case, within further subdirectories mirroring the original web

site) which contains the whole tree of variants. Thus, any web page can be edited

through the browser and any customized variant for any user can be added to

the file system.

Figure 6.6 shows the home page of the European Journal of Information Sys-

tems and a customized version created with IsaWiki.

Figure 6.6: Customizing a web page with IsaWiki

The key-aspect of customization is the ability to trace changes and distinguish

personal interventions from original content. That is possible because customized

variants are stored in external servers, so that any user can customize any page

keeping credits of original authors and sources. The IsaWiki diff engine is able

to calculate the differences between any version and the previous one, or better

between their IML content, so that any contribution is clearly identifiable.

Chapter 6. An open publishing system: IsaWiki 143

6.2.4 Still a long way to go

The implementation of IsaWiki is not yet complete. Customized variants, in fact,

involve a single document (whose history can be fully and freely managed) but

mechanisms to merge different resources into the same documents need to be

still implemented, as well as many other functionalities which are currently sup-

ported only partially or still on our to-do list.

First of all we need to improve the main components of the system, in or-

der to provide a more powerful support for the Pentaformat model. In particu-

lar, we plan to work on ElISA to really make any web page processable. ElISA

can be seen as the ’entry point’ for the system: the more that component is

reliable and accurate, the more documents can be segmented (and the content

can be extracted), the more the scope of editability can be extended over the

WWW. In parallel, we plan to work on server-side analysis engines, both an-

alyzers and formatters, in order to make automatic conversion more accurate

and meaningful. The diff engine is another important point of development: our

goal is computing differences between multiple versions and re-building docu-

ments where different contributions from different versions of different authors

are displayed together. Similar solutions were already investigated in our pre-

vious project XanaWord[DIV03], a distributed editing environment which allows

users to browse and edit pages by using common tools like MS Word and MS

Internet Explorer.

Upon a solid implementation of the current features, we plan to implement

advanced ones, to complete the vision discussed so far. A first step towards

global editability is the implementation of mechanisms for verification, proposal

and integration of private content into public ones: the user can freely create per-

sonal variants, later propose them to the official authors and, in case, integrate

the personal interventions with the official ones.

The next step will be the support for a fine-grained management of assets of

content. In the current implementation the atomic unit is a version or variant:

versions are clearly distinguished, can be compared and converted from and to

144 Chapter 6. An open publishing system: IsaWiki

any format, but cannot be further segmented into reusable assets of content. Note

that the segmentation into assets is different from the Pentaformat segmentation:

it is a further step applied to one single dimension, the structured content, in

order to identify and work on smaller pieces of atomic information.

We in fact plan to study IsaWiki as a global infrastructure based on IML

fragments’ management. Primarily we will integrate within the system a merg-

ing/import engine which allows authors to put together fragments from differ-

ent sources into the same document, keeping information about each single frag-

ment. This integration will allow users to create multi-sources documents (draw-

ing content and ideas for all the accessed pages) or multi-authored documents

(written in collaboration by many ”emergent collaborators”). Finally, once this

step is completed, a framework to handle intellectual property and copyright

could be investigated as well.

In conclusion, there is still a long way to go and IsaWiki will probably stay

with us for a long period. However, this early experience has already shown us

how the authoring model of the World Wide Web can be actually improved by

IML and ISA*, and how issues about web authoring, which seem to be relegated

only to the ancient origins of the WWW, are still open today[DIV05b].

Chapter 7

Simplified authoring systems: IsaPress and

IsaLearning

One of the most important advantages of the Pentaformat and ISA* is the strong

separation between input sources and output ones. That distinction allows au-

thors to produce very good output, without having to learn new technologies and

tools. It is in fact the system that extracts the original content (regardless of its ac-

tual layout and formatting), and automatically convert it into a ready-to-publish

and high-quality output. Such approach has been applied to professional print-

ing and e-learning, in order to implement respectively IsaPress and IsaLearning,

the two systems presented in this chapter.

7.1 ISA* for professional printing: IsaPress

Assuring uniformity and high-quality of their final products is not an easy and

cost-effective task for publishing houses. Many manual interventions are still

required to uniform source documents and make them ready to be ”digested”

by a conversion process, being it completely automatic or hybrid. No matter

if the final output is a book or a web-site, or a resource for a mobile device or

anything else; what is desirable is that the process does not require, or at least

that it minimizes, users’ manual interventions and, above all, that the final results

is still of high quality and can be directly published.

146 Chapter 7. Simplified authoring systems: IsaPress and IsaLearning

7.1.1 Issues in traditional professional publishing

The most widespread process to produce books cannot be still characterized as

fully automatic, rather as a chain of semi-automatic transformations, that in-

volves different actors with different skills: authors, who actually write a content

(ignoring the final formatting, and having few technical skills about that), pub-

lishers, who decide the look&feel of the final product (coded into the publishing

system by technical experts), pagination experts, who the content provided by au-

thors into a format ready to be processed and printed (with professional tools

like InDesign[Ado99]), and typographers who actually produce the final books.

Note that I have omitted from the previous list roles like proofreaders, review-

ers, editors and so on. The focus is not meant to be on the whole workflow of

a publishing house, but rather on the semi-automatic process of converting and

publishing documents.

A leading role is still played by the pagination experts who are actually in

charge of importing raw content in the system and verifying that they can be

really transformed into a well-formatted book. According to the complexity of

the final output, as well as the number of constraints to be fulfilled, such experts

have even to manual intervene on the content and, when need, fix errors. Fact is,

software formatters are still limited and do not solve automatically the most com-

plex issues, publishing houses require complex properties to be satisfied, content

is very often unforeseeable and full of exceptions, but without the (sometimes

hard) work of pagination experts many books would not be published.

After the first pagination, the typesetter is the only person allowed to work

on the book artifact, and becomes the pivot of the publishing process until the

final delivery: copy editors, proof-checkers, indexers, etc. basically provide low

tech outputs of their work (most often hand-scribbled paper versions of the first

pagination of the book) to the typesetter who have to insert them manually in the

typesetting applications.

Chapter 7. Simplified authoring systems: IsaPress and IsaLearning 147

7.1.2 A revised workflow with IsaPress

The abovementioned limitations of a traditional workflow can be addressed by

implementing an automatic conversion system, that takes in input plain and un-

formatted text and automatically produces high-quality books. It is evident how

such application is a direct customization of the ISA* architecture (see section

5.3 for details), where input files are produced by common word-processors, and

output ones are high-quality PDFs or documents in other format for digital pub-

lishing, like DocBook. We called that application IsaPress. Fig. 7.1 shows the

interface of the system:

Figure 7.1: The interface of IsaPress

The current implementation is a stand-alone Java application but we are work-

ing to include it into a web application and to integrate it in legacy content man-

agement systems too. As expected, the core of the application is the internal

conversion engine, while the interface is simply a help for users to invoke the

process and can be easily changed or customized.

The whole process is performed automatically, thanks to the smartness and

capabilities of the IML analyzer and the final formatter (which I briefly discuss

later on) that actually produces high-quality material. Authors’ effort is mini-

148 Chapter 7. Simplified authoring systems: IsaPress and IsaLearning

mized, since they have to simply upload a MS Word file onto the system, and run

the application. MS Word is undoubtedly the most widespread text editor, in par-

ticular among non-technical users, and several publishing houses use to receive

MS Word files from their authors. By automating processes of conversion and

tuning, publishing is simplified and sped up, and authors can import and re-use

existing material with little effort. Yet, content verification and polishing could

be required in order to make content ready for a book or a different output, but

they are out of the scope of this work, being them purely editorial interventions.

Figure 7.2 shows an example of conversion performed by IsaPress: a MS Word

file has been transformed into two very different PDF files, both ready to be

printed.

Figure 7.2: Two different PDFs from the same source Word document

The opposition between the simplicity of the input file, and the sophistica-

tion of the final ones is evident. One more point is worth being remarked, about

the source file: it is basically composed by a sequence of classified paragraphs

(though MS Word styles) and some basic objects like tables, lists and images, ac-

cording to the IML model. IsaPress follows a GIGO (”Garbage In, Garbage Out”)

approach, described in 5.3.1: all documents can be processed by the system but,

the more compliant they are to the guidelines (the more they use styles properly),

the better will be the final result and the correct reformatting. The final results

Chapter 7. Simplified authoring systems: IsaPress and IsaLearning 149

can be very different from each other, as shown in the example. IsaPress, in fact,

takes in input a detailed description of the typographical features of the output,

in terms of number of columns, dimensions, fonts, etc. Consider an example of

a publishing house that produces series and essays: changing the typographical

features of a series or the series where a specific content is published can be easily

handled, by modifying those input data.

The main conversion of IsaPress goes from MS Word documents into PDF

files. It has been the main focus of our research for a long period (and the ground

where we obtained the best results), as well as one of the most useful applica-

tions. However, other formats are particular interesting in the field of profes-

sional digital publishing like DocBook[Wal99] or, among input formats, the XML

exportable with InDesign[Ado99], a desktop publishing application widely used

among professionals. We have generalized the original process of IsaPress in or-

der to manage these formats too.

7.1.3 A magnifying glass on IsaPress

The internal architecture of IsaPress is modeled on the general ISA* framework.

It is composed by independent and separately modifiable modules. Each module

is characterized by a well-defined interface and communicates with the others

by exchanging format-specific documents. As expected, two main phases can be

identified:

• Content extraction: The document is processed by a java/XSLT engine which

produces an IML file taking in input a MS Word or InDesign file. No par-

ticular plug-in is installed and no limitation is imposed over the features of

the authoring tools.

• High-quality post-production: the intermediate IML document is then trans-

formed into an XSL-FO file (including some layout extensions), according

to an XSL-FO template given in input. At the end, the XSL-FO interme-

diate file is transformed into PDF, by exploiting a modified version of the

150 Chapter 7. Simplified authoring systems: IsaPress and IsaLearning

FOP formatter. The conversion in DocBook is directly performed by a single

XSLT.

Content extraction: from InDesign and MS Word to IML

The source parser is a java abstract interface, instantiated by specific parsers able

to extract IML content from MS Word and InDesign. The following example

shows the code of a (quite simple) input file for the MS Word parser.

<div class=’Section1’>
<div style=’mso-element:para-border-div;background: silver;
border:solid window-text 1.0pt; padding:1.0pt 0cm 1.0pt 4.0pt;
mso-border-alt:solid windowtext .5pt;’>
<h1 style=’background:silver; border:none; padding:0cm;
mso-border-alt:solid windowtext .5pt;
mso-padding-alt:1.0pt 0cm 1.0pt 4.0pt’>
Conferences.
<o:p/>

</h1>
</div>
<p class=MsoNormal>
<span lang=EN-GB style=’font-family:"Century Gothic";
mso-ansi-language:EN-GB’><o:p> </o:p>
</p>
<ul style=’margin-top:0cm’ type=disc>
<li class=MsoNormal style=’mso-list:l1
level1 lfo3;tab-stops:list 36.0pt’>
<b style=’mso-bidi-font-weight:normal’>
<span lang=EN-GB style=’font-family:"Century Gothic";
mso-ansi-language:EN-GB’>DocEng ’06
<o:p></o:p>

The file contains a title and a list of conference names (with a single item) for-

matted according to the authors’ preferences. Actually it is a temporary .htm

version of the original .doc file (where .htm is the extension of the HTML pages

produced by MS Office applications), so that XSLT technologies can be exploited

Chapter 7. Simplified authoring systems: IsaPress and IsaLearning 151

later on. The file is far from being raw content: apart from being bad-formed in

XML, it is ”polluted” by style information, MS Word-specific tags and attributes,

irrelevant formatting data and so on. Different versions of MS Word, for differ-

ent operating systems and languages, even produce very different source code

for pages that look identical in the WYSIWYG interface. Moreover, the source

could be much more complex in presence of crossing references, backtracking,

drawings and so on.

The parser cleans up the document and performs the two steps depicted in

section 5.3.1: (i) reduces the source file into a processable XML, and (ii) removes

presentational aspects (besides behavior and metadata), in order to extract the

actual content. The final IML result is the following:

<h1>Conferences</h1>

<p>DocEng ’06</p>
<p>WWW ’06</p>

Some filters perform a similar normalization exist, like WordCleaner[All04]

or some plug-ins for MS Office, but we do not use them in order to let authors

use MS Word, without any plug-in or external application. The main principle

behind the system, in fact, is accepting any MS Word document without imposing

rules to the authors. Moreover, they do not produce a completely pattern-based

fragment, as IML does, so that implementing further conversion would be more

complex and error-prone.

The parser for InDesign performs a similar task. The last releases of InDesign

allows users to export XML files. Since this format still keeps a lot of limitations

on the internal representation of styles, tables, footnotes and boxes, we had to

implement a pre-processor fixing those errors and making content digestible by

IsaPress. That module could not be directly integrated in IsaPress since it has

to modify InDesign internal structures at run-time. That is why we have imple-

mented a plug-in, in charge of filtering and export content. Once filtered, content

152 Chapter 7. Simplified authoring systems: IsaPress and IsaLearning

is passed to IsaPress which translates it into IML. The following example shows

a XML fragment produced by the pre-processor, corresponding to the previous

MS Word code. Note that it is not still normalized into IML and, for instance, lists

are still represented as a sequence of classified paragraphs, and tag names follow

a given (and not relevant here) prefix numbering.

<I_title>Conferences</I_title>
<II_unordered_list_item>
<VI_bold>DocEng ’06</VI_bold>

</II_unordered_list_item>
<II_unordered_list_item>WWW ’06</II_unordered_list_item>

High-quality post-production: from IML to PDF and DocBook

In the ISA* architecture a relevant role is played by the final renderer, which is

in charge of actually producing a high-quality output (post-production phase).

This step is particularly complex with IsaPress, since the production of PDF files

requires a further step of conversion from XSL-FO to PDF, performed by stand-

alone formatters. Although the XSL-FO standard is (quite) complete, the support

provided by existing formatters is not yet completely satisfactory. Then, we have

implemented a customized version of FOP[Apa01], that meets high-quality re-

quirements, called IsaFlex. Actually IsaFlex is a wrapper around our previous

application[DIFV06]. IsaFlex is out of the scope my thesis but few words are use-

ful to remark its irreplaceable role in IsaPress.

IsaFlex automatically paginates content ensuring high-quality, by exploiting

users’ suggestions and implementing customized line-breaking and page-breaking

algorithms. The main idea is that the document itself contains additional infor-

mation about the typographical characteristics that the application is allowed to

modify in order to fill the pages without violating any keep constraint. We pro-

posed in fact a customization of XSL-FO which allows users to express adjust-

ments that will be later implemented by IsaFlex.

Chapter 7. Simplified authoring systems: IsaPress and IsaLearning 153

While generating a PDF file requires a two-phases process, the production of

DocBook files is performed by a simple XSLT which (i) transforms plain struc-

tures into hierarchical ones, and (ii) maps IML objects into DocBook constructs.

Those conversion rules can be configured, so that slightly differences in input and

output can be handled with little effort.

7.1.4 Real-life use of IsaPress

IsaPress is not a prototype, but a working system used by an important Ital-

ian academic publishing house, called ”Il Mulino”, in order to officially publish

books. The MS Word files produced by the authors are continuously revised, cor-

rected and updated; after each change, an updated PDF version is automatically

obtained and integrated in the overall workflow of the publishing house. They

are actually used for reissues or publications in different book series.

Recently ”Il Mulino” have been working on the digitalization of some legacy

books and journals. DocBook resources are generated with IsaPress, and up-

loaded into a shared repository. Those files will be soon processed with our en-

gines, and published as HTML and PDFs (of different series).

7.2 ISA* for e-learning: IsaLearning

E-learning is another scenario, which is increasingly gaining importance, and

where the ISA* architecture has been applied. The problem is basically the same

of professional publishing: high complexity in the creation of high-quality ma-

terial, which still requires specific skills and tools to be generated. On the other

hand, that complexity is quite different from pagination issues discussed so far.

7.2.1 Issues in producing high-quality learning objects

E-learning authoring is characterized by high technical complexity due to the

parallel efforts of creating effective e-learning content and referring to all rele-

154 Chapter 7. Simplified authoring systems: IsaPress and IsaLearning

vant standards. Such complexity is very often underestimated, and it is easy to

mistake e-learning material and high-quality e-learning material. A set of slides on a

web repository, a set of inter-linked HTML pages, even a well-organized pool of

resources on a web server do not constitute high quality.

The simple creation of an LO, correctly accompanied by metadata (both em-

bedded and in the manifest file, as required for instance by SCORM[Lea04]), al-

ready requires that many constraints are respected. If, furthermore, the content

has to be available according to universality and usability guidelines, a larger

set of rules apply. A higher level of complexity is required when accessibility

must be considered (to meet for instance the requirements of the Web Accessibil-

ity Initiative, WAI[HB05], and the Web content accessibility, WCAG[CVJ99]). The

harsh consequence is that really few authoring teams can produce by themselves

learning objects that can meet all these requirements. Most times some such re-

quirements will be neglected (to the detriment of final quality) or delegated to

external experts before the final publications of the material.

The traditional approach to generate e-learning content is, in fact, based on a

two-phase workflow: first, the author produces initial material in a source format

(usually created with personal productivity tools) and then this collection of un-

refined materials is processed with ad-hoc tools by a staff of experts. Due to their

complexity, several activities have to be performed by the editorial staff.

Several difficulties can be identified in such a workflow, all ascribable to the

same problem: the great misalignment between what the author edits and what is

actually delivered on the final platform. First, tools do not usually support au-

thors in the provision of all the required information in SCORM metadata, alter-

native descriptions or table summaries for XHTML compliance and accessibility

support; someone else has to insert such data, possibly disconnected and de-

synchronized with the original authors. Second, the author could design courses

that follows an educational model unsupported or only partially supported by

the delivery platform; in that cases, unsolved features need to be amended by ask-

ing authors to change and adapt content to the limitations of the system. Third,

Chapter 7. Simplified authoring systems: IsaPress and IsaLearning 155

and more important, content updates (as small-time typo corrections) need to be

performed directly on the final LO, by exclusively using the authoring tools in-

cluded in the platform; otherwise the editorial staff must repeat the conversion

process again. Even little modifications require many steps to be performed and

intermediate documents to be produced, so that the overall content maintenance

is very difficult, error-prone and time-consuming.

7.2.2 A revised workflow with IsaLearning

The limitations of the traditional approach can be rather addressed by imple-

menting an automatic conversion system, that takes in input plain and unformat-

ted text and automatically produces high-quality learning objects. It is evident

how such application is a direct customization of the ISA* architecture (see sec-

tion 5.3 for details), where input files are produced by common word-processors,

and output ones are high-quality SCORM packages, containing web pages com-

pliant to standards and guidelines. We implemented such application and called

it IsaLearning. Figure 7.3 shows the interface(s) of the system.

Figure 7.3: The interface of IsaLearning

Actually IsaLearning is the first module of a more complex system, called

ISA-BeL[DIFM+05][DIFM+06], that completely automates the production of us-

able, universal and accessible e-learning material. IsaLearning (whose interface

156 Chapter 7. Simplified authoring systems: IsaPress and IsaLearning

is shown on the left) is in charge of extracting IML from input files, and packag-

ing intermediate XML documents for delivery by a module called WebLob. As

expected, the core of the application is the conversion engine, while the inter-

face is only meant to simplify users’ interaction and can be easily customized or

changed. The system currently in use was implemented in PHP, but a completely

equivalent version in Java has already been coded and tested.

IsaLearning takes in input a MS Word file. The author simply has to cre-

ate content, indicate the role of each content fragment (using predefined styles)

and supply additional information such as alternative descriptions, acronyms,

glossary terms, etc. Every authors action is performed through MS Word. The

source file is then passed to the web application, that produces a specific XML

file, through an intermediate IML representation.

Besides the format taken in input and the use of IML, there are many con-

tact points between IsaLearning and IsaPress. First of all, the GIGO (”Garbage

In, Garbage Out”) approach (see sections 5.3.1 and 7.1.2): the more the input is

well-structured and the text fragments are correctly marked-up, the more XML

file is meaningful and easy to be transformed into a good output. However any

file can be normalized into XML content, cleaned from presentational aspects.

The second point is about the impact over the traditional workflow. Since the

conversion is automatic (apart from some operations done by an editorial staff,

once and for all) all changes on the sources are directly mirrored in the final out-

put. Authors and editors do not need to learn new technologies and tools, but

they only need to modify the source files over and over time, up to produce valid

ones. High-quality and sophistication will be obtained by the following process,

whose technical details they are not aware of. Thus odd jobs such as proof read-

ing, last minute changes, major updates, special purpose customizations and sim-

ilar small and big changes of content can be performed on the original documents

and transferred into the output, without requiring complex passages among edi-

torial staff.

Figure 7.4 shows a page created with MS Word and the same content how it

Chapter 7. Simplified authoring systems: IsaPress and IsaLearning 157

appears uploaded on the ATutor e-learning platform[Gay01]. It is evident how

the simplicity and minimality of the source document counters with the sophis-

tication, uniformity and usability of the final output.

Figure 7.4: A MS Word file converted into an accessible LO

IsaLearning users receive an author-kit which contains a toolbar to assign a

style (a role) to any text fragment, a toolbar to validate content (validation can be

further performed with the web interface shown before) and one to insert meta-

data. Note that toolbars are not mandatory for making the system function, but

they are only meant to be an help for authors. What is important is only that the

input file correctly expresses fragments’ styles and document’s properties.

7.2.3 A magnifying glass on IsaLearning

As discussed so far, the internal architecture of IsaLearning is modeled on the

general ISA* framework and it is quite similar to IsaPress. It is then composed by

independent and separately modifiable modules, characterized by well-defined

interfaces and format-specific exchanging documents. Two main phases can be

then identified:

• Content extraction: The document is processed by a PHP engine which pro-

duces an IML file taking in input a MS Word. The author-kit helps authors

in meeting high-quality requirements.

158 Chapter 7. Simplified authoring systems: IsaPress and IsaLearning

• High-quality post-production: any intermediate IML document is transformed

into an HTML page, and all pages are collected into a learning object, by the

WebLOB module.

Content extraction: from MS Word to IML

The source parser is a PHP engine able to extract IML content from input files.

As expected we have transferred the same heuristics and methods of IsaPress to

IsaLearning, since they both process MS Word files. What changes is the PHP

wrapper, but the actual logic remains the same, being it implemented via XSLT

transformations (see section 7.1.3 for details).

Actually the fact that we provided authors alternative methods to express ex-

tra information (like acronyms, descriptions, summaries, etc.) had a strong im-

pact on internal conversion, since the XSLT is in charge of rebuilding structures

and data by collecting them from the original source. The following example

shows a fragment of MS Word (once again I show a .htm file, obtained saving a

.doc file as HTML page, to later exploit XSLT technologies), used to indicate the

URL of an image to be included in the final LO, and a short and long description:

<div style=’mso-element:para-border-div;
border:solid lime 1.0pt;mso-border-alt:
solid lime .5pt;padding:3.0pt 3.0pt 3.0pt 3.0pt;
margin-left:155.95pt;margin-right:155.95pt’>
<p class=imgURL style=’margin-top:6.0pt;
margin-right:0cm;margin-bottom:0cm;
margin-left:0cm;margin-bottom:.0001pt’>Image.jpg</p>
</div>

<p class=descbreve>Relazione di precedenza o diagramma
reticolare.</p>

<p class=desclunga>La figura mostra un grafo orientato
con otto nodi numerati che rappresentano le attivit
per sviluppare tre moduli; la prima attivit, di
<b style=’mso-bidi-font-weight:normal’>
preanalisi,
precede tre coppie che possono essere svolte in parallelo;

Chapter 7. Simplified authoring systems: IsaPress and IsaLearning 159

segue una attivit di
<b style=’mso-bidi-font-weight:normal’>test.</p>

Presentational aspects are removed by the parser, as well MS Word-specific

features. Moreover, from the sequence of classified paragraphs (note that the role

of each of them is expressed by the class attribute) the parser extracts informa-

tion about the image. The input fragment is then transformed in:

<img src=’Image.jpg’ alt=’Relazione di precedenza o
diagramma reticolare.’>La figura...
attivit, di preanalisi, precede tre coppie
... attivit di test.

Similar extractions are performed for acronyms (whose expansion is expressed

by using footnotes), for table summaries (written in the first paragraph after a ta-

ble), for glossary terms (explained in footnotes as well), and so on. Note that

these features depend on the high-quality and complex requirements of the out-

put: for instance, if users were not interested in accessibility we could omit a lot

of complexity and analysis.

High-quality post-production: from IML to SCORM learning objects

The post-production process is performed by WebLOB. I do not want to add de-

tails about WebLOB (which is actually produced by another research group) but

few words are useful to give a global vision of the system. It is a Java stand-

alone application that performs a two-phases process of composition and templat-

ing. First of all XML files are transformed into XHTML valid pages and all the

external resources are collected and put together, internal and cross-references

are resolved and complex data structures (glossaries or exercises) are built. They

all are packaged into a learning object. It also integrates into the LO multimedia

recorded accessible video lectures, if required. The final operation is the configu-

ration and application of templates previously created by professional designers.

WebLob connects and merges them with the original IML content.

160 Chapter 7. Simplified authoring systems: IsaPress and IsaLearning

7.2.4 Real-life use of IsaLearning

IsaLearning is not a prototype: it is a production system, used for more than two

years within and outside the University of Bologna. The initial sponsor and orig-

inator of the tool has been the A3 Project (Accessible Learning Environment, ”Am-

biente Accessibile dApprendimento” in Italian, http://a3.unibo.it/) which was carried

out at Department of Computer Science of the University of Bologna to gener-

ate Learning Objects for the teaching of basic Information Technology skills. The

original provision of 20 courses on IT, which are still being delivered to more

than 2500 UniBo students every year, is now accompanied by several dozens of

courses on all subjects, from Business to Biology, from Foreign Languages to Psy-

chology, and a total of more than 350 LOs have been generated both for the Uni-

versity of Bologna and for a major Italian inter-University association. More than

70 content authors have received and have used the author kit.

The experiences of IsaLearning and IsaPress showed us the flexibility and

power of a radically simplified approach in designing markup languages. ISA*

and IML techniques have allowed the creation of two industrial strength produc-

tion systems targeting Web course material and high-quality commercial print-

ing (as well as a research system allowing collaborative web editing and modi-

fication, IsaWiki). Even if based on a very simple data model (IML) these tools

proved to be powerful and useful, and the same patterns proved to be versatile

enough to express (and capture a posteriori) high-quality content.

Chapter 8

Interoperability and interchangeability

among wikis

The applicability of the segmentation model proposed in this work is not limited

to the ISA* architecture, but holds whenever authors/designers need to translate

content between heterogeneous data sources. Wikis are a very interesting field

of application, due to their plainness: they in fact rely on a strong distinction

between content and presentation, and on a limited set of constructs available to

users. In this chapter I will discuss a solution to adopt patterns in the context of

wikis, introducing the WikiFactory project, and a mark-up language called WIF.

WIF is a language able to describe any wiki content, and interconvertible with

IML, based on the same pattern analysis.

8.1 WikiFactory: from ontological descriptions to (se-

mantic) wikis

Wikis[CL01] are collaborative tools used for fast and easy writing and sharing of

content on the Web. They provide a simple, quick, informal way to create web

sites, web applications, shared environment for discussion and document collec-

tions, tools for distributed cooperative writing, and so on. The strength of wikis

is their free notion of web editing, empowered by some careful technical choices

162 Chapter 8. Interoperability and interchangeability among wikis

(versioning, direct editing in the browser, minimality); but they are still limited to

maintain large web-site with domain-specific and recurring structures and data.

Spontaneous contributions and open editing still need to be fully integrated with

aided generation and management of content.

The creation of structured and domain-oriented publishing environments can

be supported by the emerging Semantic Web technologies. In particular, semantic

wikis have increasingly been gaining importance as means to integrate benefits of

both free editing and semantics annotation. A semantic wiki is a wiki enhanced

in order to encode more knowledge than just structured text and hyperlinks, and

to make that knowledge readable by machines too. Several examples of semantic

wikis can be cited: Rhizome[Sou05] allows users to create content with explicit se-

mantics, with little effort, SemperWiki[Ore05] aims at integrating searching and

indexing functionalities with a personal space for each user, SweetWiki[BG06]

integrates a WYSIWYG editor, extended to support semantic annotation and as

a fine-grained navigation interface. Volkel et al.[VKV+06] proposed an imple-

mentation to make content of Wikipedia understandable and processable by ma-

chines, by intorducing typed links among pages.

We figured out a different point of contact between wikis and semantics: us-

ing semantic information in order to generate wikis, apart from annotating them.

WikiFactory[DIPV06b] is a framework designed for the automatic generation of

wikis from ontological descriptions. The application takes in input an OWL de-

scription of the domain where the wiki will be used, written by different users

with different skills, and translates such description into actual wiki pages. More-

over it adds a plug-in to the wiki, in charge of monitoring users’ activities and

keeping consistency between the ontological description within the engine and

the wiki instance. The first prototype of WikiFactory[DIPV06a] was a Java ap-

plication aiming at demonstrating the feasibility and the potential of the Wiki-

Factory’s model. It worked on MediaWiki[Man02] and generated pages for that

specific clone only. Then, we have implemented a more complex and stable ver-

sion (that will be soon released under GPL), once again in Java, able to produce

Chapter 8. Interoperability and interchangeability among wikis 163

content for different wiki clones and to provide APIs for the actual monitoring of

users activities.

What is relevant for my thesis is a particular feature of WikiFactory (actually I

have also investigated ontology consistency and constrained editing models[DIZ06],

not relevant here): the independence from the delivery platform. WikiFactory, in

fact, aims at delivering the same content on different wiki-clones, by exploiting a

cross-wiki segmentation of wiki pages.

8.2 A pattern-based segmentation of wiki content

The segmentation model discussed in chapter 3 is valid for wikis as well, since

they are common HTML pages, when displayed in a browser. The same plainness

of wikis and their editing (and templating) paradigms fit directly in the model I

discussed. Two features are relevant:

• strong separation between content and presentation: when editing a wiki page,

the only content of that page is shown in the textarea (or the WYSIWYG ed-

itor is activated only on the actual content), and authors work only that seg-

mented component. Presentation is added later, through server-side tem-

plates.

• syntax minimality: few basic objects can be used when editing a wiki page.

Moreover, although each wiki clone proposes its own syntax, a common set

of objects can be easily identified, like paragraphs, lists, tables, in-lines and

so on.

It is quite natural to think about a common language able to express whatever

(any content, without presentation) can be written in a wiki markup language.

In the literature some efforts toward interoperability among wikis can be found.

The most important is WikiCreole[SSJC06], a common wiki markup language

currently under development to be used across different Wikis. It’s not replacing

existing markup but instead enabling wiki users to transfer content seamlessly

164 Chapter 8. Interoperability and interchangeability among wikis

across wikis, and for novice users to contribute more easily. WikiCreole is meant

to come alongside existing wiki syntaxes, and was designed to avoid conflicts. In

particular, it uses a text syntax which spaces, asterisks, underscores symbols to

indicate the role of each fragment. It is not based on XML, and it intentionally

covers a subset of shared features among the most used wiki clones.

WikiFactory needs a more complex language, able to also express semantic

relations among elements (mapping what the input ontology says). We decided

to adopt WIF (Wiki Interchange Format)[DIV06] and I became a co-author of the

language, with Max Voekel. The idea is developing WikiFactory and WIF simul-

taneously, in order to share issues and results between these two research efforts.

8.2.1 WIF: Wiki Interchange Format

WIF existed before WikiFactory, and was proposed for different purposes By

Oren and Volkel[OV06]. The main motivation behind the language was find-

ing a way to automatically migrate content from one wiki to another, and re-use

existing material. In particular they focused on interoperability among semantic

wikis. Four principles supported the design of WIF: (i) extensibility (the initial set

of tags should be easily extended with new ones, for specific needs and require-

ments, like semantic features), (ii) easy transformation (a WIF document should be

easily translated into existing wiki syntaxes), (iii) easy creation (a WIF document

should be easily extracted from existing wiki pages), (iv) easy rendering (a WIF

document should be easily and properly displayed in a browser). Then, authors

proposed a meaningful subset of XHTML as core of WIF, and a predefined set of

rules to package multiple pages into zip files, loadable onto any WIF-compliant

wiki. The innovation of WIF does not rely on new tags and names, rather on

expressing the shared features and objects of m(any) wiki clones.

The initial description of the language was quite informal, since authors wanted

only to foster discussion among the community. We then produced a first DTD

of WIF and set up a wiki for that language[DIV06]. WIF 1.0 integrates previous

experiences on semantic wikis and WIF, with the pattern-based model proposed

Chapter 8. Interoperability and interchangeability among wikis 165

in this thesis. Basically, it is pattern-based revision of the initial proposal, where

each element follows one of the patterns discussed in chapter 4. Moreover, the set

of elements and attributes included in WIF was influenced by the IML analysis.

The following table shows WIF 1.0. Once again, I have used a tabular visualiza-

tion to highlight the strict relation between patterns and WIF. It is not difficult to

picture a more familiar DTD or Schema.

Pattern Elements Content Model

Markers img, hr EMPTY

Atoms span #PCDATA

Blocks p, pre, h1, h2, h3, h4, h5, h6 (#PCDATA | %Inlines;)*

Inlines a, span, sub, sup, tt, i, b (#PCDATA | %Inlines;)*

Records* table (tr)*

Containers body (%Tables; | %Blocks;)*

li (%Tables; | %Blocks;)*

td (%Tables; | %Blocks;)*

th (%Tables; | %Blocks;)*

tr (th | td)*

Tables ul (li)*

ol (li)*

table (tr)*

Table 8.1: WIF Core

Understanding the role of each tag is immediate, as well as foreseeing a pos-

sible fragment of WIF. Actually there are some more specific features, like the

internal structure of the head and meta elements for metadata, or script for

behavior, and style for presentation. I have not mentioned them since they are

less important for my purposes (as I said, I primarily focus on two out of five

dimensions of the Pentaformat model).

However it is worth discussing briefly some elements and attributes dealing

166 Chapter 8. Interoperability and interchangeability among wikis

with semantics. WIF, in fact, is meant to be a standard language for semantic

wikis as well, and needs constructs to express relations among elements, classes,

instances, and so on. Then, in WIF 1.1 we proposed an extension for properties

and relations, that exploits RDFa[AB06]. Consider, for instance, an in-line frag-

ment indicating an e-mail. Semantic wikis mark that fragment, to search and

re-use that semantic information. The example shows that fragment encoded in

Semantic MediaWiki[VKV+06] and in WIF. The meta declaration is used to ex-

press the same information in WIF, hidden in the final page.

...contact me at [[email: diiorio@cs.unibo.it]]...

...contact me at diiorio@cs.unibo.it...

<meta property=’email’ content=’diiorio@cs.unibo.it’/>

Semantic relations embedded in the document content can be expressed as

well. The following examples show in-line fragments to indicate which is the

license associated to a given document, according to the Semantic MediaWiki

syntax and the WIF syntax:

this document is licensed under a
[[has_license::http://creativecommons.org/licenses/by-nc/2.5/]
[Creative Commons Non-Commercial License]]

... this document is licensed under a
<a type=’relation’ rel=’has_license’
href=’http://creativecommons.org/licenses/by-nc/2.5/’>
Creative Commons Non-Commercial License ...

More than the actual details of WIF elements and attributes, it is important to

remark their semantic expressivity. WIF is then a two-sided language: on the one

hand, it is completely consistent with patterns (and provide users all advantages

discussed about patterns and IML); on the other hand, it captures semantic infor-

mation written by users as in-line fragments. Note that extensibility is one of the

Chapter 8. Interoperability and interchangeability among wikis 167

main principles behind the language: the set of tags proposed so far is meant to

be extended, in order to meet specific requirements of specialized wikis.

Thus, contact points with IML are evident: IML relies on in-lined informa-

tion and on a methodical use of the @class attributes, IML is modeled on few

patterns and objects, IML is a core language extensible for specific needs and do-

mains. WIF can be seen as a different instantiation of IML, characterized by some

extra attributed and tags to express semantics. What is important, once again, is

the overall pattern-based structure of documents, as well as the idea of embed-

ding semantics within the text.

Chapter 9

Conclusions

The keyword to synthesize this thesis is ’minimality’. ’Minimality’ because a

small set of patterns is claimed to be enough to describe the actual content of

any digital document. ’Minimality’ because pattern-based objects have specific

and constrained content models, and cannot be composed arbitrarily. ’Minima-

lity’ because few generic names and attributes were used in designing the core

language of our applications, IML. The same acronym IML, which initially stood

for ’IsaWiki Markup Language’ because of the first system we worked on, and

then became ’Intermediate Markup Language’ to emphasize its role of superior

standard format for automatic conversions, could be expanded as ’Intermediate

Minimal Language’.

More than that minimality, the point is the opposition between the little of IML

and the much of the applications based on that language. The principle behind

the whole work can be reformulated in ’doing more with less’: we actually used

a limited set of constructs to build advanced and cross-domain applications. This

’tension’ is also evident in the structure of the thesis, which is clearly divided

in two parts. In the first five chapters I have described some design principles

for descriptive documents, moving off the most discussed issues among markup

and document-engineering communities. These principles resulted in a segmen-

tation model based called ’Pentaformat’, and some patterns able to express the

actual structured content of any digital document. IML instantiates those ab-

Chapter 9. Conclusions 169

stract patterns into an actual markup language, readable and processable either

by humans or machines. In the last three chapters I have presented some appli-

cations based on IML, which proved to be advantageous in heterogeneous sce-

narios: IsaWiki is a distributed editing environment where users can edit and

customize documents regardless of data-format and access permissions, IsaPress

is a tool for professional publishing which generates high-quality PDFs from raw

sources, IsaLearning is a chain of tools to create high-quality learning objects from

content written with ordinary word-processors, and WikiFactory is a stand-alone

application which transforms an ontological description of a domain into a set of

wiki pages for that domain, loadable on multiple wiki clones.

Besides internal and technical aspects, all these applications share motiva-

tions and goals: empowering authoring processes in order to let users achieve

results which otherwise would be difficult or impossible. Reducing the burden of

manual pagination for typesetters, skipping the manual intervention of editorial

staff for e-leaning, automating the delivery of wiki content, and letting authors

to re-use and publish their legacy material with little effort are all facets of an

enhanced, in a sense democratic, vision of digital publishing.

In the last years, we have been witnessing at an increasingly presence of users

in the World Wide Web, and in general in digital publishing. An increase and

sophistication in the technologies and tools helped average users bring their own

ideas, comments and opinions to the public and all other users. Weblogs, wikis,

WYSIWYG editors, community spaces made possible informal, unconstrained

and open contribution of texts and content by the inexpert users as well. This

thesis followed the same path, and presented a pattern-based approach to imple-

ment applications that make users write and publish high-quality content with-

out particular skills and tools.

I see a return to the roots of WWW and early publishing systems, a sort of

’ideal bridge’ between what pioneers like Bush, Engelbart and Nelson foresaw

many years ago, and what is common and quite natural today. The next step will

be the Semantic Web, a powerful evolution aiming at making the WWW readable

170 Chapter 9. Conclusions

and interpretable by machines. Yet, that evolution is fascinating and interesting

but there is still room to work on a publishing platform primarily addressed to

humans. On the other hand, a Semantic Web still requires human interventions

to insert data: those data will be later processed by machines, but at some point

they have to be added by humans. It is worth spending time and resources in

improving authoring processes and environments, in order to make possible cre-

ate high-quality documents from any user’s input. I mentioned the World Wide

Web, since it is undoubtedly the most used platforms for digital publishing, but

similar considerations can be extended to any other publishing scenario.

The key point is a real integration among different data formats and, in par-

ticular, the display of existing material in an integrated way with on-purpose

content. This means allowing users to upload any resource as it is (produced

by using well-known productivity tools), and then converting it into an internal

format, so that it can be further converted into an high-quality output. That auto-

matic conversion requires analysis of input files, and tools to extract and separate

content and presentation. What my thesis did was extending in a radical way the

principle of content/format separation, in order to propose a flexible and pow-

erful pattern-based segmentation model, on which advanced applications of digital

publishing can be designed and implemented.

References

[AB06] B. Adida and M. Birbeck. RDFa Primer 1.0 Embedding RDF

in XHTML - W3C Wrding Draft. http://www.w3.org/TR/

xhtml-rdfa-primer/, 2006.

[ACM02] S. Abiteboul, S. Cluet, and T. Milo. Correspondence and translation

for heterogeneous data. Theor. Comput. Sci., 275(1-2):179–213, 2002.

[Ado99] Adobe. Adobe indesign. http://www.adobe.com/products/indesign/,

1999.

[AGV03] N. Amorosi, N. Gessa, and F. Vitali. Datatype- and namespace-

aware DTDs. A minimal extension. In Proceedings of the Extreme

Markup Conference, Montreal, Canada, 2003.

[AKM95] K. Andrews, F. Kappe, and H. Maurer. Serving information to the

web with hyper-g. In Proceedings of the Third International World-

Wide Web conference on Technology, tools and applications, pages 919–

926, New York, NY, USA, 1995. Elsevier North-Holland, Inc.

[Ale79] C. Alexander. The Timeless Way of Building. Oxford University Press,

1979.

[All04] D. Allen. Word HTML Cleaner. http://www.textism.com/

wordcleaner/, 2004.

http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.textism.com/wordcleaner/
http://www.textism.com/wordcleaner/

172 References

[AMTW02] M. Aiello, C. Monz, L. Todoran, and M. Worring. Document un-

derstanding for a broad class of documents. International Journal on

Document Analysis and Recognition., 5:1–16, 2002.

[Apa01] Software Foundation Apache. Apache FOP. http://

xmlgraphics.apache.org/fop/, 2001.

[Arc00] A. F. Arciniegas. Design patterns in xml applications: Part ii. http:

//www.xml.com/pub/a/2000/02/16/feature/index.html,

2000.

[Bau05] S. Bauman. TEI HORSEing Around. In Proceedings of Extreme

Markup Conference, Montreal, Canada, 2005.

[BC87] K. Beck and W. Cunningham. Using Pattern Languages for Object-

Oriented Programs. In Proceedings of OOPSLA-87 - Workshop on the

Specification and Design for Object-Oriented Programming., 1987.

[BCV99] L. Bompani, P. Ciancarini, and F. Vitali. Active documents in xml.

SIGWEB Newsl., 8(1):27–31, 1999.

[BG06] M. Buffa and F. Gandon. Sweetwiki: semantic web enabled tech-

nologies in wiki. In WikiSym ’06: Proceedings of the 2006 international

symposium on Wikis, pages 69–78, New York, NY, USA, 2006. ACM

Press.

[BKGM+02] O. Buyukkokten, O. Kaljuvee, H. Garcia-Molina, A. Paepcke, and

T. Winograd. Efficient web browsing on handheld devices using

page and form summarization. ACM Trans. Inf. Syst., 20(1):82–115,

2002.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scien-

tific American, 2001.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://www.xml.com/pub/a/2000/02/16/feature/index.html
http://www.xml.com/pub/a/2000/02/16/feature/index.html

References 173

[BM99] D. J. Birnbaum and D. A. Mundie. The problem of anomalous data:

a transformational approach. Markup Lang., 1(4):1–19, 1999.

[Boi01] B. Boiko. Content management Bible. John Wiley & Sons Inc., 2001.

[Bou99] N. O. Bouvin. Unifying strategies for web augmentation. In HY-

PERTEXT ’99: Proceedings of the tenth ACM Conference on Hypertext

and hypermedia : returning to our diverse roots, pages 91–100, New

York, NY, USA, 1999. ACM Press.

[Bri96] S. Bringsjord. Text is jottings plus procedure (jopp). http://www.

rpi.edu/˜brings/SELPAP/monistel1/monistel1.html,

1996.

[Bur05] R. Burget. Visual html document modeling for information extrac-

tion. In First International Workshop on Representation and Analysis of

Web Space, pages 17–24. Faculty of Electrical Engineering and Com-

puter Science, VSB-TU Ostrava, 2005.

[Bus45] V. Bush. As we may think. Atlantic Monthly, 1945.

[BVA+97] M. Bieber, F. Vitali, H. Ashman, V. Balasubramanian, and H. Oinas-

Kukkonen. Fourth Generation Hypertext: Some Missing Links for

the World Wide Web. International Journal of Human-Computer Stud-

ies, 47:31–265, 1997.

[BZI97] R. Brugger, A. Zramdini, and R. Ingold. Modeling documents for

structure recognition using generalized n-grams. icdar, 00:56, 1997.

[CDRHH95] L. A. Carr, D. C. De Roure, W. Hall, and G. J. Hill. The Distributed

Link Service: A Tool for Publishers, Authors and Readers. The Web

Journal, 1(1):647–656, 1995.

http://www.rpi.edu/~brings/SELPAP/monistel1/monistel1.html
http://www.rpi.edu/~brings/SELPAP/monistel1/monistel1.html

174 References

[CFRV02] P. Ciancarini, F. Folli, D. Rossi, and F. Vitali. XLinkProxy: Exter-

nal Linkbases with XLink. In Proceedings of the ACM symposium on

Document Engineering, pages 57–65, 2002.

[CGS02] C. Y. Chung, M. Gertz, and N. Sundaresan. Reverse engineering for

web data: From visual to semantic structures. In ICDE ’02: Proceed-

ings of the 18th International Conference on Data Engineering, page 53,

Washington, DC, USA, 2002. IEEE Computer Society.

[CL01] W. Cunningham and B. Leuf. The Wiki way. Addison-Wesley, New

York, 2001.

[CM04] V. Crescenzi and G. Mecca. Automatic information extraction from

large websites. Journal of ACM, 51(5):731–779, 2004.

[CMZ03] Y. Chen, W. Ma, and H. Zhang. Detecting web page structure for

adaptive viewing on small form factor devices. In WWW ’03: Pro-

ceedings of the 12th international conference on World Wide Web, pages

225–233, New York, NY, USA, 2003. ACM Press.

[Con87] TEI Consortium. The Text Encoding Initiative. http://http://

www.tei-c.org/, 1987.

[CRD87] J. H. Coombs, A. H. Renear, and S. J. DeRose. Markup systems and

the future of scholarly text processing. Commun. ACM, 30(11):933–

947, 1987.

[CTK+05] D. Cederholm, . Tantek, R. Khare, R. King, and K. Marks. Microfor-

mats. http://microformats.org/, 2005.

[CVJ99] W. Chisholm, G. Vanderheiden, and I. Jacobs. Web Con-

tent Accessibility Guidelines - W3C Recommendation.

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/,

1999.

http://http://www.tei-c.org/
http://http://www.tei-c.org/
http://microformats.org/

References 175

[CZS+01] J. Chen, B. Zhou, J. Shi, H. Zhang, and Q. Fengwu. Function-based

object model towards website adaptation. In WWW ’01: Proceedings

of the 10th international conference on World Wide Web, pages 587–596,

New York, NY, USA, 2001. ACM Press.

[Dat81] C.J. Date. An Introduction to Database Systems. Addison-Wesley, New

York, 1981.

[DD94] S. J. DeRose and D. Durand. Making Hypermedia Work: A User’s Guide

to HyTime. Kluwer Academic Publishers, Norwell, MA, USA, 1994.

[DDMR87] S. J. DeRose, D. Durand, E. Mylonas, and A. H. Renear. What is Text,

Really? Journal of Computing in Higher Education, 1:3–26, February

1987.

[DeR97] S. J. DeRose. Further context for what is text, really?. SIGDOC As-

terisk J. Comput. Doc., 21(3):40–44, 1997.

[DeR04] S. J. DeRose. Markup Overlap: A Review and a Horse. In Proceedings

of Extreme Markup Conference, Montreal, Canada, 2004.

[DHH+92] H. Davis, W. Hall, I. Heath, G. Hill, and R. Wilkins. Towards an in-

tegrated information environment with open hypermedia systems.

In ECHT ’92: Proceedings of the ACM conference on Hypertext, pages

181–190, New York, NY, USA, 1992. ACM Press.

[DHN06] J. Deriviere, T. Hamon, and A. Nazarenko. A scalable and dis-

tributed nlp architecture for web document annotation. In Advances

in Natural Language Processing, volume 4139 of Lecture Notes in Com-

puter Science, pages 56–67. Springer Verlag, 2006.

[Dic97] R.S. Dicks. Third commentary on ”what is text really?”. SIGDOC

Asterisk J. Comput. Doc., 21(3):36–39, 1997.

176 References

[DIFM+05] A. Di Iorio, A.A. Feliziani, S. Mirri, P. Salomoni, and F. Vitali. Simply

Creating Accessible Learning Object. In Proceedings of the Workshop

on eLearning and Human-Computer Interaction in the 10th IFIP Interna-

tional Conference on HCI, Roma, Italy, 2005.

[DIFM+06] A. Di Iorio, A.A. Feliziani, S. Mirri, P. Salomoni, and F. Vitali. Auto-

matically Generating Accessible Learning Objects. Journal on Educa-

tional and Technology, 2006.

[DIFV06] A. Di Iorio, L. Furini, and F. Vitali. A Total-Fit Page-Breaking Algo-

rithm with User-Defined Adjustment Strategies. In Proceedings of the

IST/SPIE Annual Symposyum on Electronic Imaging, 2006.

[DIGV05] A. Di Iorio, D. Gubellini, and F. Vitali. Design Patterns for Descrip-

tive Document Substructures. In Proceedings of the Extreme Markup

Conference, Montreal, Canada, 2005.

[DIMV05] A. Di Iorio, G. Montemari, and F. Vitali. Beyond Proxies: Xlink Sup-

port in the Browser. In Proceedings of the First International Conference

on Internet Technologies and Applications, Wrexham, Wales, 2005.

[DIPV06a] A. Di Iorio, V. Presutti, and F. Vitali. Automatic Deployment of Se-

mantic Wikis: a Prototype. In Proceedings of the First Workshop on

Semantic Wikis, 2006.

[DIPV06b] A. Di Iorio, V. Presutti, and F. Vitali. WikiFactory: an ontology-

based application to deploy domain-oriented wikis. In Proceedings

of the European Semantic Web Conference, 2006.

[DIV03] A. Di Iorio and F. Vitali. A Xanalogical Collaborative Editing Envi-

ronment. In Proceedings of the Second International Workshop on Web

Document Analysis, 2003.

[DIV04] A. Di Iorio and F. Vitali. Writing the Web. Journal of Digital Informa-

tion, 5, may 2004.

References 177

[DIV05a] A. Di Iorio and F. Vitali. From the writable web to global editability.

In HYPERTEXT ’05: Proceedings of the sixteenth ACM conference on

Hypertext and hypermedia, pages 35–45, New York, NY, USA, 2005.

ACM Press.

[DIV05b] A. Di Iorio and F. Vitali. Web Authoring: a Closed Case. In Pro-

ceedings of the 38th Hawaii International Conference on System Sciences,

2005.

[DIV06] A. Di Iorio and M. Voekel. Wif: Wiki interchage format.

http://www.wikisym.org/wiki/index.php/WSR 3, 2006.

[DIVCV04] A. Di Iorio, E. Ventura Campori, and F. Vitali. Rule-based Structural

Analysis of Web Pages. In Simone Marinai and Andreas Dengel

Eds., editors, Document Analysis VI, volume 3163 of Lecture Notes in

Computer Science, pages 425–437. Springer Verlag, 2004.

[DIZ06] A. Di Iorio and S. Zacchiroli. Constrained Wiki: an Oxymoron? In

ACM Symposyum on Wikis, 2006.

[Dji80] T. A. V. Djik. Macrostructures: An Interdisciplinary Study of Global

Structures in Discourse, Interaction, and Cognition. L. Erlbaum Asso-

ciates, Hillsdale, NJ, 1980.

[DMD01] S. J. DeRose, E. Maler, and Orchard D. Xml linking lan-

guage (xlink) version 1.0. http://www.w3.org/TR/2001/

REC-xlink-20010627, 2001.

[DMHR03] D. Dubin, Sperberg-McQueen C. M., C. Huitfeldt, and A. H. Renear.

A logic programming environment for document semantics and in-

ference. Literary and Linguistic Computing, 2(18):215–234, 2003.

[DO02] P. Durusau and M.B. O’Donnell. Coming down from the trees: Next

step in the evolution of markup? In Late Breaking at Extreme Markup

Conference, Montreal, Canada, 2002.

http://www.w3.org/TR/2001/REC-xlink-20010627
http://www.w3.org/TR/2001/REC-xlink-20010627

178 References

[Dow03] K. Downey. Architectural design patterns for xml documents.

http://www.xml.com/pub/a/2003/03/26/patterns.html,

2003.

[DWB02] L. M. Diaz, E. Wistner, and P. Buxmann. Inter-organizational docu-

ment exchange: facing the conversion problem with xml. In SAC ’02:

Proceedings of the 2002 ACM symposium on Applied computing, pages

1043–1047, New York, NY, USA, 2002. ACM Press.

[Fis91] J. L. Fisher. Logical structure descriptions of segmented document

images. In Proceedings of the Sixth International Conference on Docu-

ment Analysis and Recognition, pages 302–310, Saint-Malo, France,

1991.

[Fre98] D. Freitag. Toward general-purpose learning for information ex-

traction. In Proceedings of the 17th international conference on Compu-

tational linguistics, pages 404–408, Morristown, NJ, USA, 1998. Asso-

ciation for Computational Linguistics.

[Gay01] G. Gay. ATutor - Learning Content Management System.

http://www.atutor.ca/, 2001.

[GBS97] K. Gronbek, N. O. Bouvin, and L. Sloth. Designing dexter-based

hypermedia services for the world wide web. In HYPERTEXT ’97:

Proceedings of the eighth ACM conference on Hypertext, pages 146–156,

New York, NY, USA, 1997. ACM Press.

[GHHW01] B. Goodger, I. Hickson, D. Hyatt, and C. Waterson. Xml user inter-

face language (xul). http://www.mozilla.org/projects/xul/, 2001.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, New York,

1994.

http://www.xml.com/pub/a/2003/03/26/patterns.html

References 179

[GKDG03] S. Gupta, G. Kaiser, Neistadt D., and P. Grimm. Dom-based content

extraction of html documents. In WWW ’03: Proceedings of the 12th

international conference on World Wide Web, pages 207–214, New York,

NY, USA, 2003. ACM Press.

[GM02] R. J. Glushko and T. McGrath. Document Engineering for e-

Business. In Proceedings of the ACM symposium on Document Engi-

neering, pages 42–48, McLean, Virginia, USA, 2002.

[GMMW03] P. Grosso, E. Maler, J. Marsh, and N. Walsh. XPointer element()

Scheme. http://www.w3.org/TR/xptr-element/, 2003.

[Gol81] C. F. Goldfarb. A generalized approach to document markup. In

Proceedings of the ACM SIGPLAN SIGOA symposium on Text manipu-

lation, pages 68–73, New York, NY, USA, 1981. ACM Press.

[Gol90] C. F. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1990.

[GQ98] I. Graham and L. Quin. Introduction to XML Design

Patterns. http://www.utoronto.ca/ian/books/xmlbook/

patterns.html, 1998.

[GWF+99] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. Http ex-

tensions for distributed authoring - webdav. http://www.ietf.

org/rfc/rfc2518.txt, 1999.

[Har99] E. Harold. XML Bible. IDG Books Worldwide, Foster City, CA, 1999.

[HB05] S. L. Henry and J. Brewe. Web Accessibility Initiative.

http://www.w3.org/WAI/about.html, 2005.

[HC01] T. W. Hong and K. L. Clark. Using grammatical inference to auto-

mate information extraction from the web. In PKDD ’01: Proceedings

of the 5th European Conference on Principles of Data Mining and Knowl-

edge Discovery, pages 216–227, London, UK, 2001. Springer-Verlag.

http://www.w3.org/TR/xptr-element/
http://www.utoronto.ca/ian/books/xmlbook/patterns.html
http://www.utoronto.ca/ian/books/xmlbook/patterns.html
http://www.ietf.org/rfc/rfc2518.txt
http://www.ietf.org/rfc/rfc2518.txt

180 References

[HH89] M. A. K. Halliday and R. Hasan. Language, Context, and Text: Aspects

of Language in a Social-semiotic Perspective. Oxford University Press,

Oxford, 1989.

[Hil02] T. Hillesund. Many Outputs Many Inputs: XML for Publishers and

E-book Designers. Journal of Digital Information, 3, January 2002.

[IFL97] Study Group IFLA. Functional Requirements for Bibliographic

Records. http://www.ifla.org/VII/s13/frbr/frbr.pdf,

1997.

[Jel05] R. Jelliffe. Schematron 1.5. http://xml.ascc.net/

schematron/, 2005.

[JY98] A. K. Jain and B. Yu. Document representation and its applica-

tion to page decomposition. IEEE Trans. Pattern Anal. Mach. Intell.,

20(3):294–308, 1998.

[KAK+00] E. Kaasinen, M. Aaltonen, J. Kolari, S. Melakoski, and T. Laakko.

Two approaches to bringing internet services to wap devices. In

Proceedings of the 9th international World Wide Web conference on Com-

puter networks : the international journal of computer and telecommu-

nications netowrking, pages 231–246, Amsterdam, The Netherlands,

The Netherlands, 2000. North-Holland Publishing Co.

[Kas98] B. Kasdorf. SGML and PDF – Why We Need Both. The Journal of

Electronic Publishing, 3, June 1998.

[Kaw01] K. Kawaguchi. W3c xml schema made simple. http://www.xml.

com/pub/a/2001/06/06/schemasimple.html, 2001.

[KDK00] S. Klink, A. Dengel, and T. Kieninger. Document structure analysis

based on layout and textual features. In Proceedings of the 4th IAPR

International Workshop on Document Analysis Systems, Brazil, 2000.

http://www.ifla.org/VII/s13/frbr/frbr.pdf
http://xml.ascc.net/schematron/
http://xml.ascc.net/schematron/
http://www.xml.com/pub/a/2001/06/06/schemasimple.html
http://www.xml.com/pub/a/2001/06/06/schemasimple.html

References 181

[Kha06] R. Khare. Microformats: The Next (Small) Thing on the Semantic

Web? Internet Computing, IEEE, 10(1):68–75, 2006.

[KKPS01] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea:

An Open RDF Infrastructure for Shared Web Annotations. In Pro-

ceedings of the Internation World Wide Web Conference, Hong Kong,

2001.

[KLMM03] C. A. Knoblock, K. Lerman, S. Minton, and I. Muslea. Accurately

and reliably extracting data from the web: a machine learning ap-

proach. Intelligent exploration of the web, pages 275–287, 2003.

[KLT03] J. Kim, D. Le, and G. Thoma. Automated labeling algorithms for

biomedical document images. In Proc. 7th World Multiconference on

Systemics, Cybernetics and Informatics, pages 352–357, Orlando, FL,

USA, 2003.

[KMMV02] M. Kovacevi, Diligenti M., Gori M., and Milutinovic V. Recognition

of common areas in a web page using visual information: a possible

application in a page classification. In ICDM ’02: Proceedings of the

2002 IEEE International Conference on Data Mining (ICDM’02), page

250, Washington, DC, USA, 2002. IEEE Computer Society.

[Kna03] F. C. Knabben. TCKEditor: the editor for Internet. http://www.

fckeditor.net/, 2003.

[KNSV93] M. Krishnamoorthy, G. Nagy, S. Seth, and M. Viswanathan. Syn-

tactic segmentation and labeling of digitized pages from technical

journals. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 15(7):737–747, 1993.

[KS04] J. Kraus and G. Spencer. Jotspot: the application wiki.

http://www.jotspot.com/, 2004.

http://www.fckeditor.net/
http://www.fckeditor.net/

182 References

[Lai00] T. Lainevool. XML Design Patterns. http://www.xmlpatterns.

com/, 2000.

[Lau98] S. S. Laurent. XML: A Primer. IDG Books Worldwide / MIS Press,

Foster City, CA, 1998.

[LCC03] K. Lee, Y. Choy, and S. Cho. Logical structure analysis and genera-

tion for structured documents: A syntactic approach. IEEE Transac-

tions on Knowledge and Data Engineering, 15(5):1277–1294, 2003.

[Lea04] Advanced Distributed Learning. SCORM: Sharable Content Object

Reference Model. http://www.adlnet.gov/scorm/index.cfm, 2004.

[LGR05] J. Lumley, R. Gimson, and O. Rees. A framework for structure, lay-

out & function in documents. In DocEng ’05: Proceedings of the 2005

ACM symposium on Document engineering, pages 32–41, New York,

NY, USA, 2005. ACM Press.

[Liu04] A. Liu. Transcendental Data: Toward a Cultural History and Aes-

thetics of the New Encoded Discourse. Critical Inquiry, 1(31):49–84,

2004.

[MA02] D. Martin and H. Ashman. Goate: Xlink and beyond. In HYPER-

TEXT ’02: Proceedings of the thirteenth ACM conference on Hypertext

and hypermedia, pages 142–143, New York, NY, USA, 2002. ACM

Press.

[Man02] M. Manske. Mediawiki. http://wikipedia.sourceforge.net/, 2002.

[MAR99] MARC. Marc Standards. http://www.loc.gov/marc/, 1999.

[MBCKH03] T. Miles-Board, L. Carr, S. Kampa, and W. Hall. Supporting manage-

ment reporting: a writable web case study. In WWW ’03: Proceedings

of the 12th international conference on World Wide Web, pages 234–243,

New York, NY, USA, 2003. ACM Press.

http://www.xmlpatterns.com/
http://www.xmlpatterns.com/
http://www.loc.gov/marc/

References 183

[MLMK05] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of xml

schema languages using formal language theory. ACM Trans. Inter.

Tech., 5(4):660–704, 2005.

[MO04] J. Marsh and D. Orchard. Xml inclusions (xinclude) version 1.0.

http://www.w3.org/TR/xinclude/, 2004.

[Mur00] M. Murata. Relax (REgular LAnguage description for Xml).

http://www.xml.gr.jp/relax/, 2000.

[MYTR03] S. Mukherjee, G. Yang, W. Tan, and I. V. Ramakrishnan. Automatic

discovery of semantic structures in html documents. In ICDAR ’03:

Proceedings of the Seventh International Conference on Document Anal-

ysis and Recognition, page 245, Washington, DC, USA, 2003. IEEE

Computer Society.

[MZ98] T. Milo and S. Zohar. Using schema matching to simplify hetero-

geneous data translation. In VLDB ’98: Proceedings of the 24rd In-

ternational Conference on Very Large Data Bases, pages 122–133, San

Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[Nel87] T. H. Nelson. Literary Machines. Mindful Press, Sausalito, 1987.

[Nil98] M. Nilsson. ID3: The audience is informed. http://www.id3.

org/, 1998.

[NIS01] NISO. The Dublin Core Metadata Initiative. http://www.niso.

org/standards/resources/Z39-85.pdf, 2001.

[NS95] D. Niyogi and S. N. Srihari. Knowledge-based derivation of docu-

ment logical structure. icdar, 01:472, 1995.

[NSO03] T. Nanno, S. Saito, and M. Okumura. Structuring Web pages based

on Repetition of Element. In Proceedings of the Second International

Workshop on Web Document Analysis, 2003.

http://www.w3.org/TR/xinclude/
http://www.id3.org/
http://www.id3.org/
http://www.niso.org/standards/resources/Z39-85.pdf
http://www.niso.org/standards/resources/Z39-85.pdf

184 References

[NSV92] G. Nagy, S. Seth, and M. Viswanathan. A prototype document image

analysis system for technical journals. Computer, 25(7):10–22, 1992.

[Oba02] D. Obasanjo. W3c xml schema design patterns: Avoiding complex-

ity. http://www.xml.com/pub/a/2002/11/20/schemas.

html, 2002.

[O’G93] L. O’Gorman. The document spectrum for page layout analy-

sis. IEEE Transactions on Pattern Analysis and Machine Intelligence,

15(11):1162–1173, 1993.

[Ore05] E. Oren. Semperwiki: a semantic personal wiki. In Proc. of 1st Work-

shop on The Semantic Desktop - Next Generation Personal Information

Management and Collaboration Infrastructure, Galway, Ireland, 2005.

[OV06] E. Oren and M. Voekel. Towards a wiki interchange format (wif). In

Proceedings of the First Workshop on Semantic Wikis, 2006.

[Par99] W. J. Pardi. XML in Action. Microsoft Press, Redmond, WA, 1999.

[PHLM01] G. Penn, J. Hu, H. Luo, and R. McDonald. Flexible web document

analysis for delivery to narrow-bandwidth devices. In ICDAR ’01:

Proceedings of the Sixth International Conference on Document Analysis

and Recognition, page 1074, Washington, DC, USA, 2001. IEEE Com-

puter Society.

[Pie01] W. Piez. Beyond the ’descriptive vs. procedural’ distinction. In Pro-

ceedings of the Extreme Markup Conference, Montreal, Canada, 2001.

[Pie05] W. Piez. Format and Content: Should they be separated? Can they

be?: With a counter-example.. In Proceedings of the Extreme Markup

Conference, Montreal, Canada, 2005.

[pre04] PREMIS: PREservation Metatada Implementation Strategies. http:

//www.oclc.org/research/projects/pmwg/, 2004.

http://www.xml.com/pub/a/2002/11/20/schemas.html
http://www.xml.com/pub/a/2002/11/20/schemas.html
http://www.oclc.org/research/projects/pmwg/
http://www.oclc.org/research/projects/pmwg/

References 185

[Pro02] W. Provost. Structural patterns in xml. http://www.xml.com/

pub/a/2002/09/04/strucpatterns.html, 2002.

[Qui96] L. Quin. Suggestive Markup: Explicit Relationships in Descriptive

and Prescriptive DTDs. In Proceedings of the SGML 96 Conference,

pages 119–126, Boston, MA, USA, 1996.

[Qui06] L. Quin. Microformats: Contaminants or Ingredients? Introducing

MDL and Asking Questions. In Proceedings of the Extreme Markup

Conference, Montreal, Canada, 2006.

[Ray99] E. S. Raymond. The Cathedral & the Bazaar (Hardback) Musings on

Linux and Open Source by an Accidental Revolutionary. O’Reilly Edi-

tions, 1999.

[RDM96] A. H. Renear, D. Durand, and E. Mylonas. Refining our Notion of

What Text Really is: The Problem of Overlapping Hierarchies. Re-

search in Humanities Computing, 1996.

[RDSM02] A. H. Renear, D. Dubin, and C. M. Sperberg-McQueen. Towards a

Semantics for XML Markup. In Proceedings of the ACM symposium on

Document Engineering, pages 119–126, 2002.

[Ren01] A. H. Renear. The Descriptive/Procedural Distinction is Flawed.

Markup Languages: Theory and Practice, 4(2):411–420, 2001.

[RTW96] D. R. Raymond, F. W. Tompa, and D. Wood. From data representa-

tion to data model Meta-semantic issues in the evolution of SGML.

Computer Standards and Interfaces, 1(18):2536, 1996.

[SCMV04] C. Sacerdoti Coen, P. Marinelli, and F. Vitali. Schemapath, a mini-

mal extension to xml schema for conditional constraints. In WWW

’04: Proceedings of the 13th international conference on World Wide Web,

pages 164–174, New York, NY, USA, 2004. ACM Press.

http://www.xml.com/pub/a/2002/09/04/strucpatterns.html
http://www.xml.com/pub/a/2002/09/04/strucpatterns.html

186 References

[SMB97] C. M. Sperberg-McQueen and L. Burnard. A Gentle Introduction

to SGML. In Guidelines for Electronic Text Encoding and Interchange,

pages 13–36, 1997.

[SMB00] C. M. Sperberg-McQueen and L. Burnard. A Gentle Introduction to

XML. In Guidelines for Electronic Text Encoding and Interchange, 2000.

[SMB02] C. M. Sperberg-McQueen and L. Burnard. TEI Guidelines for Elec-

tronic Text Encoding and Interchange. University of Oxford Press, Ox-

ford, MA, 2002.

[SMHR00] C. M. Sperberg-McQueen, C. Huitfeldt, and A. H. Renear. Meaning

and interpretation of markup. Markup Languages: Theory and Prac-

tice, 3(2):215–234, 2000.

[SMRK03] A. Song Mao, A. Rosenfeld, and T. Kanungob. Document Struc-

ture Analysis Algorithms: A Literature Survey. In Proceedings of the

IST/SPIE Annual Symposyum on Electronic Imaging, 2003.

[Sou05] A. Souzis. Building a semantic wiki. IEEE Intelligent Systems,

20(5):87–91, 2005.

[SSJC06] C. Sauer, C. Smith, J. Jalkanen, and W. Cunningham. Wiki creole.

http://www.wikicreole.org/, 2006.

[ST01] A. Salminin and F. Tompa. Requirements for XML document

database systems. In Proceedings of the ACM symposium on Document

Engineering, pages 85–94, 2001.

[SW01] L. Sanger and J. Wales. WikipediA, The Free Encyclopedia. http:

//www.wikipedia.org/, 2001.

[SYG99] S. N. Srihari, W. Yang, and V. Govindaraju. Information theoretic

analysis of postal address fields for automatic address interpreta-

tion. In ICDAR ’99: Proceedings of the Fifth International Conference on

http://www.wikipedia.org/
http://www.wikipedia.org/

References 187

Document Analysis and Recognition, page 309, Washington, DC, USA,

1999. IEEE Computer Society.

[SZM+02] M. C. Schraefel, Y. Zhu, D. Modjeska, D. Wigdor, and S. Zhao.

Hunter Gatherer: Interaction Support for the Creation and Manage-

ment of Within-web-page Collections. In Proceedings of the Interna-

tion World Wide Web Conference, pages 172–181, Honolulu, Hawaii,

USA, 2002.

[TA90] S. Tsujimoto and H. Asada. Understanding multi-articled docu-

ments. In Proceedings of the 10 th International Conference on Pattern

Recognition, pages 16–21, Atlantic City, NJ, 1990. IEEE Computer So-

ciety.

[TDMM01] H. S. Thompson, Beech D., M. Maloney, and N. Mendelsohn.

XML Schema Part 1: Structures. http://www.w3.org/TR/

xmlschema-1/, 2001.

[TP02] J. Tennison and W. Piez. The Layered Markup and Annotation Lan-

guage (LMNL). In Late Breaking at Extreme Markup Conference, Mon-

treal, Canada, 2002.

[Usd02] B. T. Usdin. When ’it doesn’t matter’ Means ’it matters’. In Proceed-

ings of the Extreme Markup Conference, Montreal, Canada, 2002.

[Vit03] F. Vitali. Creating Sophisticated Web Sites using Well-known Inter-

faces. In Proceedings of the HCI International 2003 Conference, Crete,

Greece, 2003.

[VKV+06] M. Volkel, M. Krotzsch, D. Vrandecic, H. Haller, and R. Studer. Se-

mantic wikipedia. In Proceedings of the 15th international conference on

World Wide Web, WWW 2006, Edinburgh, Scotland, May 23-26, 2006,

MAY 2006.

[W3C01] W3C. Amaya. http://www.w3.org/Amaya/, 2001.

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/Amaya/

188 References

[Wal99] N. Walsh. DocBook: The Definitive Guide. http://www.

docbook.org/, 1999.

[Wal02] N. Walsh. XML: One Input Many Outputs: a response to Hillesund.

Journal of Digital Information, 3, January 2002.

[Wil02] S. Wilmott. The Dichotomy of Markup Languages. In Proceedings of

the Extreme Markup Conference, Montreal, Canada, 2002.

[Yat06] M. Yatsu. LesserWiki: an ajax notebook. http://lesserwiki.

org/, 2006.

[YZ01] Y. Yang and H. Zhang. Html page analysis based on visual clues.

In ICDAR ’01: Proceedings of the Sixth International Conference on Do-

cument Analysis and Recognition, page 859, Washington, DC, USA,

2001. IEEE Computer Society.

http://www.docbook.org/
http://www.docbook.org/
http://lesserwiki.org/
http://lesserwiki.org/

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Document Engineering
	Modeling documents
	Different objectives, different mark-up languages
	Format and content: should (and can) they be separated?
	Plain or hierarchical? or what else?

	Analyzing documents
	Structural analysis of paper-based documents
	Structural analysis of web pages

	Document Segmentation
	What is text, really?
	Segmenting a manuscript
	Heterogeneous scenarios, a common denominator
	Content, structure and presentation: are they enough?

	A document segmentation model: Pentaformat
	The need of segmentation
	What matters for authors: structured content

	Pattern-based Segmentation of Structured Content
	A descriptive perspective: too many structures?
	Why (XML) patterns and what for
	Patterns for documents substructures
	Markers
	Atoms
	Blocks and Inline Elements
	Records
	Tables
	Containers
	Additive and Subtractive Contexts

	From descriptive to constructional
	Syntactical Minimality
	Semantic expressiveness
	Evaluating the Pattern-based approach

	A Pattern-based Minimal Language: IML
	From abstract patterns to IML
	Extreme IML
	IML: a (not so surprisingly) simple DTD

	Merits and limits of IML
	A meaningful language?
	A comparison with micro-formats
	A comparison with TEI and DocBook

	ISA*: A flexible architecture based on Pentaformat and IML
	Content extraction
	High-quality post-production

	An open publishing system: IsaWiki
	Re-opening the 'web authoring' case
	Writable Web
	Global Editability

	Taking ideas to implementation: IsaWiki
	The role of IML
	Writable Web with IsaWiki
	Global Editability with IsaWiki
	Still a long way to go

	Simplified authoring systems: IsaPress and IsaLearning
	ISA* for professional printing: IsaPress
	Issues in traditional professional publishing
	A revised workflow with IsaPress
	A magnifying glass on IsaPress
	Real-life use of IsaPress

	ISA* for e-learning: IsaLearning
	Issues in producing high-quality learning objects
	A revised workflow with IsaLearning
	A magnifying glass on IsaLearning
	Real-life use of IsaLearning

	Interoperability and interchangeability among wikis
	WikiFactory: from ontological descriptions to (semantic) wikis
	A pattern-based segmentation of wiki content
	WIF: Wiki Interchange Format

	Conclusions
	References

