
Alma Mater Studiorum - University of Bologna

Advanced Research Center on Electronic Systems for Information and Communication

Technologies E. De Castro

Ph.D. in Information Technology

Cycle XXIII

ING-INF/05

HETEROGENEOUS MULTICORE SYSTEMS FOR
SIGNAL PROCESSING

Ph.D. Thesis by:
Florian Ries

Ph.D. Coordinator:
Chiar.mo Prof. Ing. Claudio Fiegna

Ph.D. Tutors:
Chiar.mo Prof. Ing. Roberto Guerrieri

Chiar.ma Prof.ssa Ing. Eleonora Franchi

Submission date: 15.03.2011

Hereby I testify that I did this Ph.D. Thesis independently and without accessing unauthorized
help. Apart from the ones mentioned in this document, no further resources have been used.

Bologna, 15.02.2011

Florian Ries

 Abstract

Abstract
This thesis explores the capabilities of heterogeneous multi-core systems, based on multiple
Graphics Processing Units (GPUs) in a standard desktop framework. Multi-GPU accelerated
desk side computers are an appealing alternative to other high performance computing (HPC)
systems: being composed of commodity hardware components fabricated in large quantities,
their price-performance ratio is unparalleled in the world of high performance computing.
Essentially bringing “supercomputing to the masses”, this opens up new possibilities for
application fields where investing in HPC resources had been considered unfeasible before.
One of these is the field of bioelectrical imaging, a class of medical imaging technologies that
occupy a low-cost niche next to million-dollar systems like functional Magnetic Resonance
Imaging (fMRI). In the scope of this work, several computational challenges encountered in
bioelectrical imaging are tackled with this new kind of computing resource, striving to help
these methods approach their true potential.

Specifically, the following main contributions were made: Firstly, a novel dual-GPU
implementation of parallel triangular matrix inversion (TMI) is presented, addressing an
crucial kernel in computation of multi-mesh head models of encephalographic (EEG) source
localization. This includes not only a highly efficient implementation of the routine itself
achieving excellent speedups versus an optimized CPU implementation, but also a novel
GPU-friendly compressed storage scheme for triangular matrices.

Secondly, a scalable multi-GPU solver for non-hermitian linear systems was implemented. It
is integrated into a simulation environment for electrical impedance tomography (EIT) that
requires frequent solution of complex systems with millions of unknowns, a task that this
solution can perform within seconds. In terms of computational throughput, it outperforms not
only an highly optimized multi-CPU reference, but related GPU-based work as well.

Finally, a GPU-accelerated graphical EEG real-time source localization software was
implemented. Thanks to acceleration, it can meet real-time requirements in unpreceeded
anatomical detail running more complex localization algorithms. Additionally, a novel
implementation to extract anatomical priors from static Magnetic Resonance (MR) scansions
has been included.

 i

 Acknowledgements

Acknowledgements
It is a pleasure to thank those who made this thesis possible; most of all, I am heartily
thankful to my supervisor, Professor Roberto Guerrieri, who always had an open door to
provide guidance and advice. I am also grateful to my parents and my girlfriend for their
continuous support, and last not least I would like to thank Antonio Deledda, without whom I
would probably never have gone to Bologna in the first place.

 ii

 Contents

Contents
Abstract ... i
Acknowledgements .. ii
Contents...iii
List of Figures .. v
List of Tables... ix
1 Introduction .. 1
2 Heterogeneous multicore systems.. 4

2.1 The Multicore Revolution .. 4
2.2 Parallel computing.. 5
2.3 The heterogeneous approach.. 9
2.4 The Graphics Processing Unit.. 12

2.4.1 History.. 12
2.4.2 GPU in scientific applications.. 15
2.4.3 Architectural overview... 16

2.5 Multi-CPU/multi-GPU systems ... 20
2.5.1 GPU interfacing.. 20
2.5.2 System infrastructure.. 21
2.5.3 CPUs... 23
2.5.4 Power and cooling.. 24
2.5.5 Desktop supercomputer “cuba”.. 25

2.6 Programming environment... 25
2.6.1 Software architecture.. 26
2.6.2 OpenMP ... 26
2.6.3 CUDA... 27

3 Target application: bioelectrical imaging... 35
3.1 Electroencephalography ... 35
3.2 EEG source imaging... 36

3.2.1 Applications ... 37
3.2.2 Forward and inverse problem... 37
3.2.3 Head models... 39
3.2.4 Retrieving anatomical information... 40
3.2.5 Linear estimators for the inverse problem.. 41

3.3 Electrical Impedance Tomography .. 42
3.4 Selecting computational problems ... 43

4 Dual-GPU accelerated Triangular Matrix Inversion.. 45
4.1 Motivation and background ... 45
4.2 Parallel Triangular Matrix Inversion algorithm ... 46
4.3 Implementation... 48

4.3.1 GPU Kernels .. 48
4.3.2 Memory optimization... 51
4.3.3 Address generation... 52

 iii

 Contents

4.3.4 Allocation flow... 55
4.4 Limitations and generalizations ... 56
4.5 Benchmarking .. 57
4.6 Discussion .. 60

5 Multi-GPU accelerated complex Bi-Conjugate Gradient solver...................................... 62
5.1 Motivation and background ... 62
5.2 Related work .. 64
5.3 The complex bi-conjugate gradient method... 64
5.4 Implementation... 65

5.4.1 Computational kernels.. 65
5.4.2 Domain distribution.. 68
5.4.3 Maximizing bandwidth and instruction throughput ... 69

5.5 Benchmarking .. 70
5.5.1 Single-GPU performance ... 71
5.5.2 Multi-GPU performance .. 71
5.5.3 Arithmetic throughput .. 72
5.5.4 Comparison to other work.. 73
5.5.5 Comparison to CUBLAS/CUSP .. 73
5.5.6 Profiling.. 73
5.5.7 Convergence behavior.. 74

5.6 Discussion .. 75
6 cudaEEG: real-time 3D source localization software .. 79

6.1 sLORETA inverse estimator .. 79
6.2 Graphical user interface ... 81
6.3 Shrinking standardized LORETA-FOCUSS.. 82

6.3.1 Implementation... 83
6.3.2 Performance ... 84

6.4 Deriving neuron orientation from MRI.. 84
6.4.1 Derivation from MRI luminosity gradient ... 85
6.4.2 Derivation from pial surface mesh ... 86
6.4.3 “Fuzzy” orientation priors.. 87

7 General discussion.. 90
7.1 Summary of the contributions and results.. 90
7.2 On performance analysis.. 91
7.3 Limiting factors .. 93
7.4 Perspectives.. 95

8 Conclusion.. 97
Appendix A: References .. 98
Appendix B: Abbreviations.. 107

 iv

 List of Figures

List of Figures
Figure 1: Transistor count per chip, for common microprocessors over time (source:

Wikicommons). .. 4
Figure 2: Amdahl's law of parallel computing (source: Wikicommons). 6
Figure 3: Parallel computer memory architectures. ... 6
Figure 4: Flynn's Taxonomy of computer architectures with one or more Processing Units

(PU) (source: Wikicommons). .. 8
Figure 5: Task parallelism in a MIMD machine. ... 8
Figure 6: Parallel execution of a SIMD program... 9
Figure 7: Heterogeneous system with accelerators, controlled by a main processor............... 10
Figure 8: The IBM Cell Broadband Engine with eight Synergistic Processing Elements (SPE),

controlled by a single Power Processor Element (PPE)... 11
Figure 9: FPGA accelerator with dedicated local memory. The device is connected to the host

system via a configuration and a data interface. .. 11
Figure 10: GPU in a standard PC environment.. 12
Figure 11: A description of the scene is passed to the graphics card in form of a graphics

Application Programming Interface (API). The screen image is rendered by the GPU and
stored in the local on-board frame buffer, from which the display is updated. 13

Figure 12: Legacy GPU with programmable vertex and fragment (pixel) processor arrays. .. 14
Figure 13: Evolution of Intel CPUs and NVIDIA GPUs in terms of computational throughput.

Source: NVIDIA. ... 15
Figure 14: GPU general architecture.. 17
Figure 15: Texture Processing Cluster (TPC) variants of the NVIDIA GeForce series 8 and 9

(left) and the NVIDIA GeForce series 200 (right). .. 18
Figure 16: General architecture of the NVIDIA series 400 (Fermi) GPU. 19
Figure 17: GPU in classic PC architecture. MB = Memory Bus, FSB = Front Side Bus, ATA

= Advanced Technology Attachment... 20
Figure 18: Conventional PCI and PCI express interconnect principles. 21
Figure 19: General system architecture of a heterogeneous multi-CPU/multiGPU system. ... 22
Figure 20: Data exchange between two GPUs... 22
Figure 21: Humorous allegory of the CPU's role in a heterogeneous CPU-GPU system

(source: intelsinsides.com). .. 24
Figure 22: GTX 480 graphics card with cooling element. ... 24
Figure 23: System overview of “cuba” .. 25
Figure 24: Software hierarchy and interaction with hardware. Both the CUDA driver interface

and the multithreading depend on the operating system. ... 26
Figure 25: Parallel processing with OpenMP. ... 27
Figure 26: Heterogeneous programming of a CPU/GPU bundle using CUDA....................... 28
Figure 27: GPU thread clustering and dispatch. .. 29

 v

 List of Figures

Figure 28 CUDA warp scheduling. In series 8, 9 and 200 GPUs, each of the eight Stream
Processor (SP) processes four arithmetic instructions in streaming. In the Fermi
architecture (series 400), 32 SPs process the warp completely in parallel. 30

Figure 29: CUDA memory model. Local memory is actually part of global memory, but
dedicated to a single thread. ... 31

Figure 30: Shared memory access patterns. ... 32
Figure 31: Example code in CUDA C defining and launching a simple vector addition kernel.

.. 33
Figure 32: CUDA compile chain. MC = machine code... 34
Figure 33: EEG traces .. 35
Figure 34: EEG scalp montage according to the common 10/20 system from a side-faced (A)

and a top-down view (B). (source: [6]).. 36
Figure 35: Triangulated surface meshes of brain, skull and scalp (source : [21]). 39
Figure 36: Fine-grained regular FVM-based discretization of the head conductor space 40
Figure 37: Segmentation of MRI voxel space into tissue compartments, as produced by the

BrainSuite software [29]. ... 40
Figure 38: Application of current patterns through the target body and measurement of

resulting surface potentials (source: [10]).. 43
Figure 39: Basic work steps in dense non-symmetric matrix inversion. 45
Figure 40: Fractal segmentation of a lower triangular matrix employing a segmentation depth

of k = 3. The same procedure is followed for an upper triangular matrix. 47
Figure 41: Recursive inversion of triangular matrices. .. 47
Figure 42: Computation order for recursive triangular matrix inversion, for both lower and

upper triangular matrix inversion, keeping k = 3. .. 47
Figure 43: Block tiling and block indices in a lower triangular matrix for parameters m = 32

and k = 3. Regions highlighted in gray have already been inverted. 49
Figure 44: GPU kernels for recursive lower triangular matrix inversion, showing one of 2k-i

identical sub-blocks. In this example, the sub-block dimensions (sbdim) are 128, sbrow
and sbcol denote the block row and column within this sub-block. 50

Figure 45: GPU kernels for recursive upper triangular matrix inversion, analogous to the
example shown in Figure 44. ... 50

Figure 46: Block row packed storage of the L matrix.. 51
Figure 47: Block row packed storage of the U-matrix, analogous to L-matrix storage but

starting with the longest block row. ... 52
Figure 48: Sub-matrices A, B and C of two sub-blocks both in a L and U matrix. Addresses

indicate the offset of the corresponding block row in block-packed storage. In this
example, sub-block dimensions (sbdim) are 32, matrix dimensions (dim) are 128. 53

Figure 49: Application data and work flow. Red and blue are the L and U-mtatrices while
green and yellow represent their inverted counterparts. .. 56

Figure 50: Insertion of data padding to increase the matrix dimensions up to a size eligible for
the inversion routine. I refers to the unity matrix... 57

 vi

 List of Figures

Figure 51: Size reduction to decrease the matrix dimensions down to a size eligible for the
matrix inversion routine. This refers to a shared LU array. The Z sub-block is also a
shared array of this type. .. 57

Figure 52: Execution times of this application and the LAPACK based dual-CPU reference in
milliseconds (double precision). .. 59

Figure 53: Computational throughput of our application in GFLOPS (double precision). 59
Figure 54: Memory requirements per GPU device of the TMI routine using memory of block-

packed storage (this version) and naively aligned storage (old version [9]) in megabytes.
Red line indicates the memory capacity of the NVIDIA GTX295 (896 MB per GPU). . 60

Figure 55: Mapping of potentials after current injection, as produced by the EIT forward
problem simulation framework. The color map refers to a logarithmic scale. 63

Figure 56: Outline of the computation flow of our complex BiCG solver in a CPU/GPU
system. Dark grey kernels (left) run on CPU, light grey kernels (right) run on GPU.
Arrows between left and right indicate memory transfers between RAM and GPU device
memories. ... 66

Figure 57: Node with its 6 neighbors in a regular grid, also called a 7-point stencil............... 66
Figure 58: Diagonal format for sparse banded matrices. ... 67
Figure 59: Processing a 3D grid using a sliding horizontal plane of parallel threads

(highlighted in grey) , tiled into blocks of bsx × bsy elements. .. 67
Figure 60: Data-swapping via page-locked shared host memory. Yellow sections in GPU

memory indicate redundant layers. .. 69
Figure 61: Single-GPU and dual-CPU solver throughput in terms of Mnodes/s. Analysis was

done on cubic grids derived from common MRI resolutions... 71
Figure 62: Performance scaling with number of GPUs, for both single and double precision

and for different problem sizes... 72
Figure 63: Performance scaling with the number of OpenMP threads of the dual-CPU

reference application. ... 72
Figure 64: Time share of each GPU kernel on the total execution time, for different problem

sizes and both single and double precision. ... 74
Figure 65: Convergence behavior for solution of a real-world mid-sized problem (4.8 million

nodes), using both single (SP) and double precision (DP)... 75
Figure 66: Minimum one-way transfer times (milliseconds) to or from host buffer, for

different cube sizes and up to eight GPUs (single precision) .. 77
Figure 67: Approximate computation time in ms of that can be overlapped with GPU data

download to host buffer (single precision)... 77
Figure 68: sLORETA work flow for computation of the inverse estimator. The blue parts

(left) are processed on the CPU while the yellow parts (right) are handled by the GPU. 80
Figure 69: Data padding... 80
Figure 70: 128-bit alignment of Tij and Vj data elements. ... 81
Figure 71: cudaEEG software dependencies and data movements.. 81
Figure 72: cudaEEG graphical user interface output. .. 82
Figure 73: Heterogeneous implementation of the SSLOFO algorithm. Blue steps are

processed on the CPU; yellow tasks are handled by GPU. .. 83

 vii

 List of Figures

Figure 74: Computation time in milliseconds per SSLOFO iteration...................................... 84
Figure 75: Deriving anatomical priors from MRI.. 85
Figure 76: Luminosity gradient in cortical grey matter regions of MRI.................................. 86
Figure 77: 3×3×3 Frei-Chen operators for 3D gradient averaging. ... 86
Figure 78: Deriving voxel orientations from pial mesh surface... 87
Figure 79: Impact of fixed and fuzzy orientation priors compared to unknown orientations.

The penalization factor in this example is 70%. .. 88
Figure 80: Performance of three configurations of the same kernel, on the same architecture

with four Stream Multiprocessors. Block size is 256 in both cases. 94

 viii

 List of Tables

List of Tables
Table 1: Parameters of GPU models used in this work.. 19
Table 2: Interface speeds in standard PC architectures.. 21
Table 3: Selection of applications claiming very high speedups through GPU acceleration. . 91
Table 4: Non-computational overheads in relation to actual computation time. Asterisks

indicate that the operation is usually only performed once throughout the application. . 94

 ix

Chapter 1: Introduction

1 Introduction
No one will argue that multicore processing is the future of computing. But the inevitable
paradigm shift also brought new challenges, both to hardware designers and application
programmers. Parallel applications have very different needs towards the processing system.
When designing the architecture around a particular target problem, excellent results can be
obtained, but the ability to efficiently process different types of problems should be the
foremost objective in designing a computing system. However, so far no “one size fits all”
architecture has been found, and many are convinced that there will never be any.

In the mainstream, the quest for a universal parallel computer lead to multicore CPUs, which
preserve the highest versatility. They devote a lot of silicon space on non-arithmetic logic, and
excel at control-intensive tasks. On the other hand, they perform poorly on tasks that require a
lot of arithmetic, but little or no flow control. Of course, just scaling up the number of these
devices does work to improve performance, and is a common approach in traditional
supercomputing. However, the control capabilities are wasted on many compute-intensive
parallel problems and with them money and energy: often a more adequate architecture, like a
streaming vector processor, could have achieved the same performance using substantially
less silicon space.

This dilemma has led to increasing popularity of heterogeneous approaches. Heterogeneity in
parallel processing allows exploiting the raw computational power of massively parallel
vector processors while maintaining the flow control and random access capabilities of
general purpose processors by combining architectures of both types. Although more
challenging to program, heterogeneous systems usually beat homogeneous alternatives in
terms of price/performance ratio, as well as in terms of relative energy consumption.

Of this class of systems, the multicore desktop machine accelerated by one or multiple
Graphics Processing Units (GPUs) is a particularly promising base architecture, and has
received a lot of attention in the last years. Originally designed purely as accelerators for
graphics applications, GPUs quickly evolved into high-performance parallel coprocessors that
can greatly speed up all kinds of applications, while the cost of the hardware upgrade remains
modest. Recent developments show a trend to pack increasing numbers of GPUs into the
same system, essentially creating small-scale supercomputers in the frame of a desktop
machine. This thesis explores the capabilities and limitations of these systems, on the basis of
their performance on selected real-world problems.

As a target application, this thesis focuses on computational challenges that limit the
capabilities of bioelectrical technologies in medical imaging. These methods rely on electrical
sensors to gather information about characteristics or activity of the body part under
examination by measuring differences in electrical quantities between these electrodes. This
work concentrates on two particular technologies: electroencephalography (EEG), which
measures potentials on the scalp to detect electrical activity in the brain and the electro
impedance tomography (EIT), which actively injects small currents between pairs of
electrodes to gather information from the measured impedances. As opposed to other imaging

 1

Chapter 1: Introduction

methods like functional magnet resonance imaging (fMRI) or positron emission tomography
(PET), these bioelectrical methods have a distinct benefit: the equipment is very inexpensive
by comparison. Work in this field therefore promises to improve medical standards
worldwide including rather ill-developed regions, rather than just in a few high-tech hospitals.
Unfortunately, bioelectrical methods are still outperformed by competing technologies,
because they produce data that does not allow a similarly straightforward interpretation. Aside
from the challenges of electrode design, retrieving meaningful information from bioelectrical
measurements is first and foremost a computational problem. Starting from discrete
measurements on the scalp, the propagation of the electrical quantities needs to be traced back
to the regions of interest, which are often remote from the measurement points. Given the
complexity of live tissue as a volume conductor, this requires an elevated amount of data
elaboration.

Constrained by computing resources, contemporary solutions often use oversimplified
models, and the lack of anatomical detail limits the capabilities of bioelectrical technologies.
It is the ambition of this thesis to push these limits, but without thwarting the economical
benefits by introducing specialized supercomputers. Instead, the architectures used in this
work promise to be much more affordable, but still powerful enough to pave the way to new
levels of quality in bioelectrical imaging.

This work is structured as follows: Chapter 2 covers the heterogeneous multicore systems
employed in this work, starting with a short introduction on multicore, parallel computing and
the heterogeneous approach. After describing these basics, the concept of heterogeneous
CPU/GPU systems is described in detail, comprising system setup, GPU architectures,
software hierarchy and the GPU programming model.

Chapter 3 provides a brief outline of the field of bioelectrical imaging as far as it concerns
this work, with emphasis on the EEG and EIT technologies, the principles of brain functional
localization and the relation of forward and inverse problem. This chapter is meant to
introduce the background of the applications that will be described in the ensuing chapters,
highlighting prominent computational problems in this field, where application of the
previously described architectures promises significant advantages.

The ensuing three chapters then cover the major contributions of this work, addressing
computational challenges in bioelectrical imaging that where highlighted in the previous
chapter. Chapters 4 and 5 treat very general operations as produced by (but not restricted to)
the EEG and EIT forward problems, while Chapter 6 is more specific to real-time EEG
source imaging, comprising solution of the inverse problem.

More precisely, Chapter 4 presents a dual-GPU accelerated parallel triangular matrix
inversion routine, addressing a predominant computational bottleneck in the EEG forward
problem, while Chapter 5 presents a multi-GPU accelerated solver for non-hermitian linear
system forming an integral part in an EIT simulation environment. Finally, Chapter 6
introduces cudaEEG, a GPU-accelerated EEG source localization software. This
implementation explores not only different algorithms to solve the inverse problem, but also
several methods to extract anatomical priors from MRI. Moreover, it uses the GPU both for

 2

Chapter 1: Introduction

computation and in-place graphics rendering of the results, greatly alleviating traffic on the
system infrastructure.

The results obtained in this work are discussed in Chapter 7, while Chapter 8 concludes this
work.

 3

Chapter 2: Heterogeneous multicore systems

2 Heterogeneous multicore systems
The scope of this chapter is to provide a clear outline of the hardware architecture and
software framework on which this work is based on, starting with an general introduction to
parallel and heterogeneous processing. From there, the focus will be put on important details
of the particular class of systems concerned in this work, namely multi-GPU accelerated
desktop machines.

2.1 The Multicore Revolution
Starting with invention of the integrated circuit in 1958 and shortly thereafter of the first
microprocessor in 1968 [46], computing has been a rapidly evolving field. A central factor of
this development has been the progress in system integration density, i.e. miniaturizing
transistors to put more on them on a smaller area, while maintaining or even reducing
manufacturing costs. So far, the historic trend in integration density has confirmed Gordon
Moore’s famous prediction from 1965, saying that this number would double every two years
 [47]. The law holds for over half a century now and is expected to end not before 2015 [48].
The historic trend with extrapolation to the close future is depicted in Figure 1.

Figure 1: Transistor count per chip, for common microprocessors over time (source: Wikicommons).

There is a close correlation between integration density and computing power, since smaller
feature sizes allow faster clock rates, which in turn are linearly connected to instruction
throughput. For many years, frequency scaling has been the predominant way of increasing
performance [49]. It was so effective that there was no motivation to abandon the traditional
serial processor approach, around which the whole software world has established itself so
conveniently. However, about ten years ago, the frequency boom started to slow down as it
was facing increasingly rigid physical constraints. The predominant obstacle is power density,
which is linearly related to frequency. With standard cooling, power density in modern chips
is already dangerously close to what silicon can withstand. Pushing the limit further would
require more powerful cooling techniques, which are economically impracticable, or switch to
new materials, which are currently not within sight.

 4

Chapter 2: Heterogeneous multicore systems

At the same time, processor manufacturers strived to augment performance by other means
which depended on increasing the transistor count alone, while conceding the inflation of
clock rate and even taking a small step backwards. The result were elaborate pipelines, huge
hardware controlled caches and complex logic for instruction-level parallelism [56] [55]. But
not only does it prove increasingly difficult to get additional performance gain from these
techniques, they also greatly increase the chip’s die size. At a certain point, the gain no longer
justifies the increase development cost and rejects in manufacturing.

In the end, chip manufacturers accepted that the only room left to grow is multi-core
parallelism. To date, roadmaps from all major vendors actively embrace this paradigm shift,
and there is throughout consensus that multi-core is the future of computing [59]. Present
general purpose processors typically integrate two to eight cores [53] [57], while projections
suggest that future technologies will allow single-chip integration of many more cores, up to
hundreds or thousands [54].

2.2 Parallel computing
Meanwhile, the mainstream software world, used to decades of serial computing, has been a
bit slower in catching up with the new trend. Rather than to the real limits of parallel
computing, this is owed to a certain amount of inertia: parallel programs are more difficult to
write, and programmers tend to have less experience in this field. But in fact, many
applications do offer a lot of concurrency. What is more, the real world itself is massively
parallel. For that reason, parallel computing has always been way more advanced in scientific
applications than in other fields [61].

The theoretical argument for parallelism is very compelling: multiply the number of
processors and you multiply performance. Practically, however, this promise is almost
impossible to fulfill, as parallel processing is subject to several inherent limiting factors. The
first is hardware independent and directly connected to the application itself: according to
Amdahl’s law, the maximal speedup from parallel execution is inherently limited by the
fraction of the program that is parallelizable, following the formula

 S = 1 / ((1 – P) + P / N)

where S is the speedup, P the fraction of parallelizable code and N the number of processing
elements [58]. The speedup scaling with the number of processors according to Amdahl’s law
is visualized in Figure 2.

 5

Chapter 2: Heterogeneous multicore systems

Figure 2: Amdahl's law of parallel computing (source: Wikicommons).

Note that this assumes that the parallel sections offer at least as many independent instruction
streams as there are arithmetic units. Few application offer optimal performance scaling with
the number of processors; this usually implies that the instruction streams are very
independent and require very little or no interaction. Applications that meet these conditions
are commonly referred to as “embarrassingly parallel”.

However, most applications do require at least a minimum of communication between the
processing elements, which leads to the second limiting factor in parallel computing. Data
traffic and synchronization between processing nodes can be quite expensive, depending on
the underlying system and especially the memory architecture. Parallel computer memory
architectures are generally differentiated between shared and distributed memory. The two
models can also be combined into hybrid solutions, as shown in Figure 3.

PU PU

PU PU

Memory

PU Memory

PU Memory

PU Memory

PU Memory

bu
s i

nt
er

co
nn

ec
t

Shared Distributed

PU PU PU PU

Memory Memory

bus interconnect

Hybrid

PU PU

PU PU

Memory

PU Memory

PU Memory

PU Memory

PU Memory

bu
s i

nt
er

co
nn

ec
t

Shared Distributed

PU PU PU PU

Memory Memory

bus interconnect

Hybrid
Figure 3: Parallel computer memory architectures.

Both models have their advantages and disadvantages. Shared memory provides the quickest
communication between processing units, and multiple processing streams might share one
instance of the same base data. On the downside, shared memory does not scale well with the
number of processing units attached to it, as data traffic and competition for resources can
scale up geometrically with this number. It also raises the need to make shared memory
larger. Larger shared memory is harder to put close to the processing units, which results in

 6

Chapter 2: Heterogeneous multicore systems

either higher design and production cost or slower memory access; both put severe limits on
the feasibility of increasing the number of processors.

In the distributed memory model, each processor has its own local memory, which is
connected to other instances via some communication infrastructure. This ensures fast local
memory access and stable design and production costs in scaling, but all communication has
to pass through the interconnect network, which will become quickly the bottleneck for most
applications. What is more, when processors are working on the same base data, each of them
needs to be supplied with its own copy, unnecessarily increasing memory consumption and
I/O. Which solution performs better is highly application-specific, for that reason the most
successful parallel computers employ a hybrid mix of shared and distributed memory
architectures.

The considerations about memory architecture already indicate that there is no “one size fits
all” solution. Applications can display different forms of parallelizability, and accordingly
they have different demands towards the processing system. This also applies to design of the
arithmetic processing arrays. According to Flynn’s Taxonomy [63], computer architectures
can be classified into four sub-groups:

 Single Instruction Single Data (SISD)

 Multiple Instruction Single Data (MISD)

 Single Instruction Multiple Data (SIMD)

 Multiple Instruction Multiple Data (MIMD)

The general principles of all four are displayed in Figure 4:

 7

Chapter 2: Heterogeneous multicore systems

PU

Instruction Pool

D
at

a
Po

ol
PU

Instruction Pool

D
at

a
Po

ol

PU

SISD MISD

PU

Instruction Pool

D
at

a
Po

ol

PU

Instruction Pool

D
at

a
Po

ol

PU

SIMD MIMD

PU

PU

PU

PUPU

PU

Instruction Pool

D
at

a
Po

ol
PU

Instruction Pool

D
at

a
Po

ol

PU

SISD MISD

PU

Instruction Pool

D
at

a
Po

ol

PU

Instruction Pool

D
at

a
Po

ol

PU

SIMD MIMD

PU

PU

PU

PUPU

Figure 4: Flynn's Taxonomy of computer architectures with one or more Processing Units (PU)

(source: Wikicommons).

SISD describes the legacy serial processor and MISD is a very rare case with few actual
example architectures. The classes of interest in parallel programming are SIMD and MIMD.
Multi-core general purpose processors, for example, fall into the MIMD category. They are
especially appealing if one wants to perform parallel execution on a task level, i.e. by having
the cores concurrently process independent serial sub-programs (s. Figure 5).

PU4

PU3

PU2

PU1

time

Task 1

Task 2 Task 3

Task 4

Task 5 Task 6
PU4

PU3

PU2

PU1

time

Task 1

Task 2 Task 3

Task 4

Task 5 Task 6

Figure 5: Task parallelism in a MIMD machine.

Each processing unit follows its own execution path, which might perform be very different
operations. Classical challenges in task-parallel programming include prioritizing access to
resources and finding optimal, load-balanced schedules for parallel execution.

 8

Chapter 2: Heterogeneous multicore systems

Task-parallel processing on MIMD architectures is a very useful approach to control
different, if possible independent parts of a system, like running office application in a
desktop PC or handling different peripheral devices. The number of concurrent processes in
the aforementioned applications rarely exceeds a few dozens, so there is usually no point in
having more than a couple of execution units. However, when the goal is data intensive
processing, more often than not the problem can be spit into a large number of concurrent
instruction streams which perform the same basic operations on different data sets (s. Figure
6). Applications of this type comprise graphics processing, linear algebra and many
simulation environments.

PU4PU3PU2PU1

a[0]+=b[0] a[1]+=b[0] a[2]+=b[0] a[3]+=b[0]

a[0]+=b[1] a[1]+=b[1] a[2]+=b[1] a[3]+=b[1]

a[0]+=b[2] a[1]+=b[2] a[2]+=b[2] a[3]+=b[2]

tim
e

PU4PU3PU2PU1

a[0]+=b[0] a[1]+=b[0] a[2]+=b[0] a[3]+=b[0]

a[0]+=b[1] a[1]+=b[1] a[2]+=b[1] a[3]+=b[1]

a[0]+=b[2] a[1]+=b[2] a[2]+=b[2] a[3]+=b[2]

tim
e

Figure 6: Parallel execution of a SIMD program.

The capabilities of general purpose multicore processors to handle multiple execution paths
are basically wasted on such applications; on the other hand, there are often thousands of
parallel streams with little or no divergence. This obvious mismatch led to the development of
SIMD-type architectures which often operate in streaming [64], both in the form of massively
parallel vector processors [65] and SIMD instruction set extensions for CPUs [66]. These
architectures are not limited by instruction rate issues like conventional processors, and can
efficiently pipeline operations on large streams of data. Note that MIMD architectures still
can process SIMD code, although not as efficiently as could be, while streaming SIMD
architectures are restricted to a small subset of problems. For that reason, pure SIMD
processors are often designed as application specific co-processors.

2.3 The heterogeneous approach
Due to the high application dependency of parallel performance, no universal multicore
solution has been found so far, and many are convinced that there will never be any. One
might consider the closest thing to this being modern multi-core CPUs as they offer the
highest versatility. But exactly this versatility constraints their design to dedicate the major
part of their transistors on non-computational parts like logic and cache, leaving little
resources to actual number-crunching. In many modern supercomputers, where neither money
nor energy are on a very strict budget, high performance is obtained by simply scaling up the
number of these chips to the hundreds and thousands and clustering them together using a
high-speed interconnect.

In most environments, however, price-performance and/or power-performance ratios are of
primary concern. Of course, if it is exactly known what the application looks like, the
architecture can be built around it with excellent results. However, the ability to process

 9

Chapter 2: Heterogeneous multicore systems

different applications should be considered the primary purpose of computer architecture
design. For that reason, heterogeneous architectures that combine traditional general-purpose
processors with application-specific accelerator cores have become a popular alternative.
Accelerators are designed to maximize throughput for a specific compute-intensive task (e.g.
a large-scale SIMD operation), given a certain transistor and power budget. All control logic
not immediately necessary for this task is cut down. This makes them incapable of exerting
any control of their own. The controlling processor provides input data and instructions, and
then collects the results from the accelerators output. Figure 7 shows the general design of a
system employing multiple accelerators, controlled by a versatile main processor.

Memory

Main
Processor

Accelerator

Accelerator

Accelerator

Accelerator

In
fr

a-
st

ru
ct

ur
e

Memory

Main
Processor

Accelerator

Accelerator

Accelerator

Accelerator

In
fr

a-
st

ru
ct

ur
e

Figure 7: Heterogeneous system with accelerators, controlled by a main processor.

Recent trends show that accelerators are becoming extremely successful in parallel
computing. Some designs, like modern cell-phone processors, take the heterogeneous
approach very far by integrating a highly specific accelerator for all major operations within
the chips functionality scope [68]. But by far the most common approach is to combine one
(or very few) general purpose processors with a large, uniform, often massively parallel array
of programmable throughput-oriented co-processors [51]. Accelerators may be on-chip like in
the IBM Cell Broadband Engine (BE) [69] and many System-on-Chips (SoC), or off-chip,
like Field Programmable Gate Arrays (FPGA) and Graphics Processing Units (GPU). As an
first example of typical heterogeneous design architecture, Figure 8 presents a simplified
architectural overview over the Cell BE.

 10

Chapter 2: Heterogeneous multicore systems

SPE

Element Interconnect Bus

PPEL1
Cache

L2
Cache

SPE SPE SPE SPE SPE SPE SPE

Local
Store

Local
Store

Local
Store

Local
Store

Local
Store

Local
Store

Local
Store

Local
Store

Memory
Interface

Bus
Interface

IBM Cell Broadband Engine

SPE

Element Interconnect Bus

PPEL1
Cache

L2
Cache

SPE SPE SPE SPE SPE SPE SPE

Local
Store

Local
Store

Local
Store

Local
Store

Local
Store

Local
Store

Local
Store

Local
Store

Memory
Interface

Bus
Interface

IBM Cell Broadband Engine

Figure 8: The IBM Cell Broadband Engine with eight Synergistic Processing Elements (SPE), controlled

by a single Power Processor Element (PPE).

 The Cell BE is used in many multimedia applications [70]. It received attention as central
processor of the PlayStation 3 video game console [71] and as a basic building block in the
IBM Roadrunner supercomputer [72].

FPGAs are just an example for reconfigurable devices being used as computational
accelerators [74] [75], but it is the only accelerator of that type that has a significant market
share. FPGAs are arrays of logic gates that can be hardware-programmed to resemble any
logic circuit. In this way, they can be configured to devise one or more highly specific
accelerator units, which might be very efficient for these tasks. A system using a FPGA as
accelerator is depicted in Figure 9.

core core

core core

Local Memory

FPGA

System
RAM

CPU

conf.

data

core core

core core

Local Memory

FPGA

System
RAM

CPU

conf.

data

Figure 9: FPGA accelerator with dedicated local memory. The device is connected to the host system via a

configuration and a data interface.

FPGAs are very versatile but hard to program, which is usually done using hardware
description languages. They are rarely used for heavy floating point arithmetic, but excellent
results have been reported for pattern matching [77], encryption [76] and signal processing
applications [78]. Leading vendors of FPGA accelerator boards are Nallatech, DRC and Pico,
while Xilinx and Altera are leaders in FPGA design.

However, the success stories of the Cell BE and FPGA pale compared to that of the GPU,
which some call the “king of accelerators”. GPUs are massively parallel coprocessors that

 11

Chapter 2: Heterogeneous multicore systems

excel at heavy, SIMD-like floating point arithmetic. They are integrated on a graphics card
with their own memory. The graphics card is connected to the host system, traditionally a
standard PC main board, via a high-speed peripheral interconnect port. Figure 10 shows the
general architecture of a GPU-accelerated PC system.

core core

core core
System RAM

CPU

GPU Memory

GPU

core core

core core

core core

core core
System RAM

CPU

GPU Memory

GPU

Figure 10: GPU in a standard PC environment.

Presently, there are only two relevant GPU vendors: ATI (now part of AMD) and NVIDIA. In
this work, only GPUs from NVIDIA were used, which currently lead the market of
computational accelerators [80].

In High Performance Computing (HPC), heterogeneous systems with accelerators are
beginning to displace traditional supercomputers, and many think that accelerators will pave
the road to exascale computing [79]. Particularly GPUs are enjoying resounding success in
this development: at the time of writing, three of the five strongest supercomputers on earth
were using these devices.

The remarkable floating point capabilities of GPUs paired with their affordable price make
GPUs the perfect choice for our target application field (s. Chapter 3): all implementations
presented in this thesis are based on desktop machines accelerated by one or more GPUs. The
following Chapter 2.4 will provide a detailed overview over the GPU, its history, its
employment in scientific applications and its general architecture. The Chapters 2.5 and 2.6
will discuss the challenge of multi-GPU integration and the programming framework of
heterogeneous multi-CPU/multi-GPU systems.

2.4 The Graphics Processing Unit
The GPU as computational accelerator is of central importance in this thesis. Therefore, this
additional chapter is devoted to discuss the history, applications and architectural details of
these devices.

2.4.1 History
The GPU was originally devised in the 1990s as a hardware accelerator for 3D applications.
Graphics rendering, e.g. computing the color values of all pixels on the screen from a 3D

 12

Chapter 2: Heterogeneous multicore systems

scene description, involves a lot of compute intensive, massively parallel low precision
floating point operations, with very moderate need for data caching and flow control. This is
quite the opposite of what a traditional CPU is good at. When graphics on desktop machines
started to become of economic interest, particularly in the form of video games, these
graphics accelerators were introduced to satisfy the market’s demands for better, fancier
visuals.

As input, the graphics card receives only a description of the 3D scene, and then uses the
GPU to render it and store the result in a frame buffer, from which the screen content is being
updated. The principle is outlined in Figure 11.

3D data and instructions
formatted in Graphics API

Rendered frame
from local buffer

Host System Graphics Card Display

3D data and instructions
formatted in Graphics API

Rendered frame
from local buffer

Host System Graphics Card Display

Figure 11: A description of the scene is passed to the graphics card in form of a graphics Application

Programming Interface (API). The screen image is rendered by the GPU and stored in the local on-board
frame buffer, from which the display is updated.

Graphics rendering consists of a straight sequence of few well-defined steps commonly
referred to as the rendering pipeline:

1. Vertex processing: 3D coordinates (called vertices) from the scene description are
translated into 2D coordinates on the screen. These vertices define triangulated
surfaces which assemble to polygons (three-dimensional objects).

2. Rasterization: The triangles are scan-converted to fragments of the physical pixel grid
of the screen

3. Fragment processing: The color value of all pixels in all fragments is computed taking
into account lighting, texture etc.

4. Composition: The fragments are assembled together to the final image.

Soon, the boom of the video game industry piled economic pressure on GPU development,
leading to an unparalleled evolution of these devices. Initially, GPUs were little more than
hardwired ASICs (Application Specific Integrated Circuits) implementing the rendering
pipeline. Around the year 2000, parts of the pipeline were replaced by programmable
processor arrays (s. Figure 12). Now small programs (called “shaders”) could be executed to
modify vertex and pixel data, allowing more spectacular graphics effects.

 13

Chapter 2: Heterogeneous multicore systems

3D Application
or Game

3D API:
OpenGL or
Direct3D

Programmable
Vertex

Processor

Primitive
Assembly

Rasterization &
Interpolation

3D API
Commands

Transformed
Vertices

Assembled
Polygons,
Lines, and

Points

GPU Command
& Data Stream

Programmable
Fragment
Processor

Rasterized
Pre-transformed

Fragments

Transformed
Fragments

Raster
Operations Framebuffer

Pixel
UpdatesGPU

Front
End

Pre-transformed
Vertices

Vertex Index
Stream

Pixel
Location
Stream

CPU – GPU Boundary

3D Application
or Game

3D API:
OpenGL or
Direct3D

Programmable
Vertex

Processor

Primitive
Assembly

Rasterization &
Interpolation

3D API
Commands

Transformed
Vertices

Assembled
Polygons,
Lines, and

Points

GPU Command
& Data Stream

Programmable
Fragment
Processor

Rasterized
Pre-transformed

Fragments

Transformed
Fragments

Raster
Operations Framebuffer

Pixel
UpdatesGPU

Front
End

Pre-transformed
Vertices

Vertex Index
Stream

Pixel
Location
Stream

CPU – GPU Boundary

Figure 12: Legacy GPU with programmable vertex and fragment (pixel) processor arrays.

As of 2006, the processor arrays for vertices and pixels were merged into a unified shader
model, abolishing the rigid rendering pipeline of earlier generations. The motivation behind
this was to avoid bottlenecks through display of very vertex or very pixel intensive scenes,
and to once again broaden the range of graphics effects than can be generated. However, this
design decision had consequences reaching far beyond of the original scope. It basically
turned the GPU into a high-throughput programmable many-core processing unit, and
suddenly multiplied the devices capabilities for non-graphics applications as well.

With increasing programmability of GPU arithmetic, more and more people tried to program
them to do other things than graphics (s Chapter 2.4.2); this is when the buzzword GPGPU
(General Purpose GPU) was coined. Although the trend was started by independent tinkerers,
GPU vendors soon embraced the new concept seeing a chance to broaden the target audience
of their products. This led not only to the release of GPGPU-friendly application
programming interfaces like ATI’s CTM (Close to Metal, now called “Stream”) [86] and
NVIDIA’s CUDA (Compute Unified Device Architecture) [87]. It also motivated inclusion
of hardware features that do not make any sense for graphics rendering. These include, in
chronological order:

 Faster read-back from GPU memory

 Double precision support

 Fully IEEE-compliant floating point arithmetic

 ECC error correction

 Hardware-controlled caching

Today, GPUs are ubiquitous, cheap and powerful. In terms of raw floating point operations
per second (FLOPs), they have long left serial computers behind, with newer devices entering

 14

Chapter 2: Heterogeneous multicore systems

the teraflop range; the evolution of both architectures in terms of GFLOP/s (billion floating
point operation per second) is shown in Figure 13.

Figure 13: Evolution of Intel CPUs and NVIDIA GPUs in terms of computational throughput. Source:

NVIDIA.

Given the present state of the art in graphics hardware, it almost seems out of place to longer
speak of graphics accelerators that can be also used for computation. Rather, these devices are
computational accelerators that can also be used for graphics, with capabilities far exceeding
their original purpose. This goes so far that there are graphics cards that do not even have a
graphics output, like the NVIDIA Tesla series [85].

2.4.2 GPU in scientific applications
First attempts to use GPUs for non-graphics applications were made even before introduction
of the unified shader model [90]. By casting both input data and computational instructions in
the format of a graphics API, the fragment processors of early GPUs could be “tricked” into
performing simple parallel algorithms like simulation of cloud or fluid dynamics [81] [84],
band system solvers [82] and basic linear algebra operators [83] [89].

While these implementations already produced encouraging results, the programming was too
cumbersome to allow widespread application of GPGPU, and the graphics-tuned architecture
of these GPUs severely limited performance for most applications. However, the introduction
of unified shaders and computation-oriented software design kits initiated a downright “gold
rush” in the GPGPU field, with many new applications reporting speedups over CPUs in the
order of tens to hundred times. Basically, any application involving highly parallel arithmetic-
intensive floating point computations can greatly benefit from GPU acceleration. Examples
thereof cover

 Dense linear algebra [93] [94] [95]

 Sparse linear system solvers [96] [97] [98] [99] [100]

 15

Chapter 2: Heterogeneous multicore systems

 Computational fluid and molecular dynamics [103] [104] [105] [106]

 Bioinformatics [107] [108] [109] [110]

 Image processing [111] [112] [113]

 Signal processing [114] [115] [116]

just to name a few. Recently, considerable effort has also been made to include GPU
acceleration in popular scientific software tools like Matlab (AccelerEyes Jacket [119] and
GPU support for the Parallel Computing Toolbox [120]), Mathematica [121] and “R” [122].

Concerning related work to the contributions of this thesis, particular attention should be paid
to the state of the art in GPU-accelerated dense linear algebra and sparse linear system
solvers. What regards the dense triangular matrix inversion routine presented in Chapter 4,
related work on factorization methods exists [166] [167], but my contribution was the first to
solve the inversion problem with GPU acceleration.

The non-hermitian system solver presented in Chapter 5 belongs to the category of GPU-
accelerated sparse linear system solvers. The central relevance of this discipline in the field of
HPC has led to a plethora of related implementations, making analysis of - and comparison to
- the state of the art much a more extensive issue. In-depth discussion of related work will be
provided in Chapter 5.2, while comparative analysis in Chapters 5.5.4 and 5.5.5 will
demonstrate superiority over existing solutions.

Chapter 6 presents a very application-specific implementation containing parts from image
and signal processing, but to the best of my knowledge no other GPU-accelerated
implementation is similar enough to be considered as related work.

2.4.3 Architectural overview
The GPU is a massively parallel computational unit designed for maximum throughput, as
required by graphics rendering. Compared to general purpose processors, most of the logic is
devoted to arithmetic units rather than caching and flow control. All GPUs used in this work
are based on the unified shader model (s. Chapter 2.4.1). A large part of the architecture
consists of SIMD-type arrays of stream processors (Stream Multiprocessors, SMs), which are
packed together in Texture Processing Clusters (TPCs). The chip has access to the host
system’s north bridge via a high-speed PCI express interface, as well as to a dedicated off-
chip DRAM memory on the graphics board (s. Chapter 2.5.1). There is some control logic to
distribute the work load of vertex and pixel shader programs to the TPCs, in case the GPU is
actually used for graphics rendering. Computational applications are handled by an additional
work distribution scheduler. The general GPU architecture of the NVIDIA Series 8, 9 and 200
is displayed in Figure 14.

 16

Chapter 2: Heterogeneous multicore systems

NVIDIA GPU Device Architecture

TPC 1

Compute Work
Distribution

TPC 2 TPC 3 TPC 4 TPC n

Viewport

Pixel Work
Distribution

Vertex Work
Distrbution

Input Assembler

Host Interface

Interconnect Network

DRAM

To Northbridge chip via PCI express

NVIDIA GPU Device Architecture

TPC 1

Compute Work
Distribution

TPC 2 TPC 3 TPC 4 TPC n

Viewport

Pixel Work
Distribution

Vertex Work
Distrbution

Input Assembler

Host Interface

Interconnect Network

DRAM

To Northbridge chip via PCI express

Figure 14: GPU general architecture.

The interface to the off-chip DRAM is an obvious bottleneck, so considerable resources are
devoted to maximize bandwidth. Depending on the GPU model, 256-512 parallel lanes go out
to the memory banks. Memory itself is based on the Graphics Double Data Rate (GDDR)
design, which is tailored to GPUs requirements.

Number and architecture of the TPCs depend on the individual GPU model: in GeForce series
8 and 9 GPUs, each TPC integrates two stream multiprocessors, each of which contains eight
32-bit floating point stream processors (SP) and two Special Function Units (SFU). Next to a
small instruction and constant cache, each SM shares 16kB of fast shared memory. SPs are
optimized for single precision floating point arithmetic; integer and logic operations are
possible but may take more clock cycles. Additional control logic includes a Texture Unit
(TU) and “Multi-Thread Instruction Fetch & Issue” logic (MTIFI). In the series 200, there are
three per TPC, and each SM is additionally equipped with one double precision unit (DP).
Each cluster has a shared Geometry Control (GC) and Stream Multiprocessor Control (SMC)
 [85]. Both TPC variants are shown in Figure 14.

 17

Chapter 2: Heterogeneous multicore systems

SP SP

SP SP

SP SP

SP SP

C. Cache
I. Cache

MTIFI

Shared
Memory

TU

GC

SP SP

SP SP

SP SP

SP SP

C. Cache
I. Cache

MTIFI

Shared
Memory

TU

SMC

SM SM

SFU SFU SFU SFU

SP SP

SP SP

SP SP

SP SP

C. Cache
I. Cache

MTIFI

Shared
Memory

TU

GC

SMC

SM SM SM

DP

SFU SFU

SP SP

SP SP

SP SP

SP SP

C. Cache
I. Cache

MTIFI

Shared
Memory

TU

DP

SFU SFU

SP SP

SP SP

SP SP

SP SP

C. Cache
I. Cache

MTIFI

Shared
Memory

TU

DP

SFU SFU

SP SP

SP SP

SP SP

SP SP

C. Cache
I. Cache

MTIFI

Shared
Memory

TU

GC

SP SP

SP SP

SP SP

SP SP

C. Cache
I. Cache

MTIFI

Shared
Memory

TU

SMC

SM SM

SFU SFU SFU SFU

SP SP

SP SP

SP SP

SP SP

C. Cache
I. Cache

MTIFI

Shared
Memory

TU

GC

SMC

SM SM SM

DP

SFU SFU

SP SP

SP SP

SP SP

SP SP

C. Cache
I. Cache

MTIFI

Shared
Memory

TU

DP

SFU SFU

SP SP

SP SP

SP SP

SP SP

C. Cache
I. Cache

MTIFI

Shared
Memory

TU

DP

SFU SFU

Figure 15: Texture Processing Cluster (TPC) variants of the NVIDIA GeForce series 8 and 9 (left) and the

NVIDIA GeForce series 200 (right).

This general architecture applies to most of the devices used in this work. The latest
generation of NVIDIA GPUs, however, employs a completely revised GPU design. The
architecture of the GeForce 400 series (codename: Fermi) is straightforwardly focused on
computation rather than graphics rendering. The TPC clustering is abandoned; instead the
chip is covered by a uniform array of much larger Stream Multiprocessors. A Fermi SM
contains 32 Stream Processors and four Special Function Units. The SPs are different too:
they perform fully IEEE-compliant floating point arithmetic and can issue one integer
operation per cycle. There are no double precision units, rather are joint pairs of two SPs used
to perform double precision. This raises the double precision throughput considerably. The
shared memory is much larger with 64kB, and has hardware controlled caching. One might
also note the lack of texture units and other hardwired graphics-legacy logic, a clear statement
of the intended primary use of these devices. Work load distribution is now handled by a
single uniform scheduler called “GigaThreads” [124]. An overview of the Fermi architecture
is displayed in Figure 16. Further details remain undisclosed by NVIDIA.

 18

Chapter 2: Heterogeneous multicore systems

NVIDIA Fermi Device Architecture

L2 Cache

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

H
os

t I
nt

er
fa

ce
G

ig
aT

hr
ea

ds
D

R
A

M

SM
1

SM
2

SM
3

SM
4

SM
5

SM
6

SM
7

SM
8

SM
9

SM
10

SM
11

SM
12

SM
13

SM
14

SM
15

SM
16

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SFU

SFU

SFU

SFU

Register File

I. Cache

Warp Schedulder
Dispatch Unit

Warp Schedulder
Dispatch Unit

Shared Memory
/ L1 Cache

Uniform Cache

Lo
ad

/S
to

re
 (1

6x
)

NVIDIA Fermi Device Architecture

L2 Cache

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

H
os

t I
nt

er
fa

ce
G

ig
aT

hr
ea

ds
D

R
A

M

SM
1

SM
2

SM
3

SM
4

SM
5

SM
6

SM
7

SM
8

SM
9

SM
10

SM
11

SM
12

SM
13

SM
14

SM
15

SM
16

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SFU

SFU

SFU

SFU

Register File

I. Cache

Warp Schedulder
Dispatch Unit

Warp Schedulder
Dispatch Unit

Shared Memory
/ L1 Cache

Uniform Cache

Lo
ad

/S
to

re
 (1

6x
)

L2 Cache

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

H
os

t I
nt

er
fa

ce
G

ig
aT

hr
ea

ds
D

R
A

M

SM
1

SM
2

SM
3

SM
4

SM
5

SM
6

SM
7

SM
8

SM
9

SM
10

SM
11

SM
12

SM
13

SM
14

SM
15

SM
16

L2 Cache

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

H
os

t I
nt

er
fa

ce
G

ig
aT

hr
ea

ds
D

R
A

M

SM
1

SM
2

SM
3

SM
4

SM
5

SM
6

SM
7

SM
8

SM
9

SM
10

SM
11

SM
12

SM
13

SM
14

SM
15

SM
16

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SFU

SFU

SFU

SFU

Register File

I. Cache

Warp Schedulder
Dispatch Unit

Warp Schedulder
Dispatch Unit

Shared Memory
/ L1 Cache

Uniform Cache

Lo
ad

/S
to

re
 (1

6x
)

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SFU

SFU

SFU

SFU

Register File

I. Cache

Warp Schedulder
Dispatch Unit

Warp Schedulder
Dispatch Unit

Shared Memory
/ L1 Cache

Uniform Cache

Lo
ad

/S
to

re
 (1

6x
)

Figure 16: General architecture of the NVIDIA series 400 (Fermi) GPU.

Configurations of the GPUs used in this work are listed in Table 1. SP and DP stand for single
and double precision, respectively. The GTX 295 has two identical GPUs integrated on the
same graphics board, each with its own DRAM but sharing the same PCI express port to the
host.

GPU
Model

TPCs

SMs

DRAM
(MB)

SP throughput

(GFLOP/s)
DP throughput
(GFLOP/s)

Bandwidth

(GB/s)
TDP
(watts)

8800 GTS 6 12 384 346 - 63 143

8800 GT 7 14 512 504 - 58 105

GTX 280 10 30 1024 933 78 142 236

GTX 295 2×10 2×30 2×896 2×894 2×75 2×113 237

GTX 480 - 15 1536 1345 672 177 250

Table 1: Parameters of GPU models used in this work.

Throughput is measured in billion floating point instructions per second. The values indicate
the theoretical maximum of the device, calculated by pretending that all computational units
of the corresponding level of precision are continuously busy with fused multiply-add
operations. TDP is a common acronym for “thermal design power”, and represents the
maximum thermal power that the processor’s cooling system is required to dissipate. All
GPUs used in this work can survive by air cooling despite the discrepancies in computing
power: TDP is heavily influenced by which manufacturing process is used. We see Moore’s
law at work here.

 19

Chapter 2: Heterogeneous multicore systems

2.5 Multi-CPU/multi-GPU systems
In recent development of GPGPU applications, a trend to pack multiple GPUs into the same
system can be observed [128]. This is not part of the GPU’s original design concept, so
assembly of a multi-GPU system introduces additional challenges, which are discussed in the
following.

2.5.1 GPU interfacing
Bandwidth can be considered the “gravity” of modern computer systems: handling of data
traffic between key components ultimately dictates system performance. This is especially
true for parallel systems. For this reason, we begin this chapter with an introduction to the
GPU interfaces before moving on to the general system architecture.

When GPUs entered the mass market and started to grow in power, it soon became apparent
that the traditional Peripheral Component Interconnect (PCI) [125] was way too slow to feed
the graphics card’s hunger for input data. In 1997 a new interface type, the Accelerated
Graphics Port (AGP), was introduced und soon included in almost all successive main boards.
AGP was connected directly to the main board’s north bridge and provided a dedicated
pathway between the slot and the processor, as well as prioritized access to system RAM.
Integration of the GPU in this classic PC architecture is shown in Figure 17.

North
Bridge

South
Bridge

CPU

Graphics Card

FSBMB

ATA Hard
Drive

RAM

PCI

A
G

P

GPU

DRAM

Other
Peripheral
Devices

North
Bridge

South
Bridge

CPU

Graphics Card

FSBMB

ATA Hard
Drive

RAM

PCI

A
G

P

GPU

DRAM

Other
Peripheral
Devices

Figure 17: GPU in classic PC architecture. MB = Memory Bus, FSB = Front Side Bus, ATA = Advanced

Technology Attachment.

Apart from the lack of bus contention that would occur on the PCI bus, the direct connection
also allowed higher clock speeds [126]. AGP achieved speeds of up to 2 GB/s in upload, but
only 256 MB/s in read-back, which strongly limited early GPGPU applications.

Starting from 2004, AGP was gradually replaced by the new PCI express interface, which
abandons the arbitrated bus structure of conventional PCI in favor of a switched point-to-
point connection between devices. Each participant has a direct link to the switch, which
consist of 1-16 parallel lanes. Depending on the configuration one speaks of 1x, 2x, 4x, 8x or

 20

Chapter 2: Heterogeneous multicore systems

16x PCIe. Each lane is 2-bit wide, allowing simultaneous transfer in both directions. The
PCIe principle in contrast to PCI bus sharing is visualized in Figure 18.

Host
(root)

Device A Device B Device C

Shared Bus (PCI)

Device A

Device B

Device C

Switch

Shared Switch (PCIe)

To Processor

Host
(root)
Host
(root)

Device A Device B Device C

Shared Bus (PCI)

Device A

Device B

Device C

SwitchSwitch

Shared Switch (PCIe)

To Processor

Figure 18: Conventional PCI and PCI express interconnect principles.

The PCI express technology has recently advanced to the third generation. However, few
main boards and peripherals are PCIe 3.0 compliant yet. At the time of writing, 16x PCIe 2.0
is the standard interface for modern graphics cards, which will also apply for at least the
upcoming generation of GPUs. Table 2 shows a comparison of interface “speeds and feeds”
for past and present GPU-host interfaces.

Interface Upstream (MB/s) Downstream (MB/s) 2-way?

PCI 32-bit 133 133 no

PCI 64-bit 512 256 no

AGP 266 256 no

AGP x2 533 256 no

AGP x4 1066 256 no

AGP x8 2133 256 no

PCIe 1.0 x16 4096 4096 yes

PCIe 2.0 x16 8192 8192 yes

Table 2: Interface speeds in standard PC architectures.

We see that the upstream bandwidth roughly doubles with every generation, an evolution that
is in tune with the increase in GPU computing power (s. Figure 13). We can also observe that
read-back speed was stagnant until the paradigm shift of PCIe [127].

2.5.2 System infrastructure
When setting up a multi-GPU system, the primary concern must be data feeding of the
computational units. This means that the full 16x PCI express bandwidth must be available to
all graphics cards. Unfortunately, in the traditional role of the GPU, there was little need to
handle more than one graphics card at the same time. After all, the user had rarely use for
more than one display. Hence, most conventional main board featured only one high-speed

 21

Chapter 2: Heterogeneous multicore systems

interface like AGP or 16x PCIe. However, the revolution of GPGPU made it appealing to
distribute work load on multiple GPUs packed in the same system [128]. Main boards
providing full speed for two PCIe slots are becoming increasingly common, with high end
solutions supporting up to four.

Advancing the traditional PC architecture from Figure 17, we end up with the general system
architecture for a desktop machine integrating multiple GPUs on a shared PCI express
interconnect, which is displayed in Figure 19.

Core
Logic

Chipset
FSBMB

A
TA

Hard
Drive

RAM
Multi-Core

CPU

GPU1

DRAM

GPU2

DRAM

GPUn

DRAM

PC
Ie

PC
Ie

PC
Ie

PC
Ie

Core
Logic

Chipset
FSBMB

A
TA

Hard
Drive

RAM
Multi-Core

CPU

GPU1

DRAM

GPU2

DRAM

GPUn

DRAM

PC
Ie

PC
Ie

PC
Ie

PC
Ie

Figure 19: General system architecture of a heterogeneous multi-CPU/multiGPU system.

Fast host-device interfacing is even more important as inter-GPU communication is not as
efficient as it could be. At the present state of the art, no direct point-to-point connections can
be established for data transfers between graphics cards. Instead, data must be downloaded
from the device memory of the first GPU to host RAM, and then uploaded from host RAM to
the device memory of the second GPU. The path of data movement is shown in Figure 20.

Main Board

FS
B

M
B

RAM

GPU1

DRAM

GPU2

DRAM

PC
Ie

PC
Ie

CPU

Main Board

FS
B

M
B

RAM

GPU1

DRAM

GPU2

DRAM

PC
Ie

PC
Ie

CPU

Main Board

FS
B

M
B

RAM

GPU1

DRAM

GPU2

DRAM

PC
Ie

PC
Ie

CPU
Figure 20: Data exchange between two GPUs.

This problem persists for quite some time now and was not addressed yet by GPU vendors
despite remarkable advancements in other aspects. Probably the graphics legacy handling of

 22

Chapter 2: Heterogeneous multicore systems

the GPU-host interface makes very hard to synchronize two devices efficiently enough to
enable a fast direct transfer.

In the context of multi-GPU communication, one should also mention the efforts both primary
GPU vendors made in distributing the work load of graphics rendering over multiple GPUs:
NVIDIA’s Scalable Link Interface (SLI) [128] and ATI/AMD’s Crossfire [130]. These
special interfaces fuse 2-4 GPUs on a low driver level: depending on the variant, the GPUs
render different interlaced frames or parts of the screen. The interfaces initially required an
additional physical connector between graphics cards; only recently, the technologies could
be extended to also work across the PCIe bus. Unfortunately, neither SLI nor Crossfire is
supported by current GPGPU drivers and software design kits.

There are also graphics cards like the NVIDIA GTX 295 that integrate two GPUs on the same
board, along with one dedicated DRAM per GPU. This has the advantage that more GPUs
can be packed on a single main board; however, the GPU pairs are competing for the same
PCI express interface. Moreover, no additional advantage can be drawn from the physical
proximity of the GPUs on the same graphics board: swapping data between the device
memories still requires buffering on the host RAM, an absurd inefficiency that is owed to the
original intention that the two GPUs should be used for graphics in SLI mode.

2.5.3 CPUs
The CPUs primary use is handling and control of the GPUs, which is done via continuous
synchronization loops between both processing units. From this results the most important
constraint concerning the CPU part: there should be at least one dedicated CPU core per GPU
to avoid conflicts and unnecessary delays. Most contemporary CPUs have two or four cores;
at the moment only high-end models have more. But it is usually much cheaper to just put two
quad-core CPUs on the main board.

The gross of computational load will usually be left to the GPUs so the throughput of the
CPUs is of secondary concern. Admittedly, some applications have reported relevant
performance gains from using the CPU in parallel to the GPU, like factorization methods
where the performance gap between both architectures is not so large [93]. In most cases,
however, the CPU’s role will rather be reduced to that of the “steering” of the heterogeneous
system, as humorously allegorized in Figure 21.

 23

Chapter 2: Heterogeneous multicore systems

Figure 21: Humorous allegory of the CPU's role in a heterogeneous CPU-GPU system (source:

intelsinsides.com).

While slightly exaggerating, the parody does not omit the fact that the CPU is still of primary
importance in the system, although not for heavy-duty computational work. Furthermore, it is
also plausible that faster CPUs reduce the overhead of CPU-GPU synchronization, although I
am not aware of any study quantifying this effect.

2.5.4 Power and cooling
GPUs are power hungry and have long left the range where the graphics card could be
supplied via the bus interface. A high-end graphics card typically requires external power
supply in the range of 110-270 watt [131]. When multiple graphics cards are packed on the
same main board, the power requirements soon rise to the order of kilowatts. Desktop power
supplies that powerful are available as commodity hardware, although they are more
expensive than the weaker run-off-the-mill products.

Another issue comes from the fact that all that power ultimately translates into heat: we
introduced values of typical TDPs in Table 1. GPUs are equipped with large heat sinks and
strong fans (s. Figure 22), but the physical proximity of multiple devices might raise concerns
about heat dissipation. However, experience shows that air cooling elements suffice even in a
multi-GPU system, provided that the case allows enough circulation.

PCIe interface

Video
output

SLI interface External power supply

PCIe interface

Video
output

SLI interface External power supply

Figure 22: GTX 480 graphics card with cooling element.

 24

Chapter 2: Heterogeneous multicore systems

2.5.5 Desktop supercomputer “cuba”
As an example setup for a heterogeneous multi-CPU/multi-GPU system, this chapter presents
the current configuration of our experimental platform, the desktop supercomputer “cuba”. It
was used as target platform for the implementation presented in Chapter 5. An overview of
the system architecture is shown in Figure 23.

FS
B

M
B

Intel Xeon
E5520

PC
Ie

RAM

Main Board

A
TA

Hard
Drive

FS
B

PC
Ie

PC
Ie

NVIDIA
GTX 295

PC
Ie

Intel Xeon
E5520

NVIDIA
GTX 295

NVIDIA
GTX 480

NVIDIA
GTX 480

FS
B

M
B

Intel Xeon
E5520

PC
Ie

RAM

Main Board

A
TA

Hard
Drive

FS
B

PC
Ie

PC
Ie

NVIDIA
GTX 295

PC
Ie

Intel Xeon
E5520

NVIDIA
GTX 295

NVIDIA
GTX 480

NVIDIA
GTX 480

Figure 23: System overview of “cuba”

The system configuration is as follows:

 Two Intel Xeon E5520 CPUs @ 2.27 GHz

 Two NVIDIA GTX 295 graphics cards

 Two NVIDIA GTX 480 graphics cards

 24 GB RAM

 4 kW power supply

In total, the system comprises eight CPU cores and a total of six GPUs of two different
architectures (s. Chapter 2.4.3). Summarizing the theoretical throughput of the GPUs alone,
the system is capable of

 6266 GFLOP/s in single precision

 1644 GFLOP/s in double precision

The overall system cost is around 10K€, which is remarkably affordable considering the
computational throughput.

2.6 Programming environment
A system like the one presented in Chapter 2.5.5 has remarkable computational power for it’s
cost and energy budget, put exploiting these resources is not a trivial task. GPUs have very
specific aptitudes, and the programming model was created assuming single-GPU usage. This
chapter will outline the software architecture for programming a heterogeneous Multi-
CPU/Multi-GPU system.

 25

Chapter 2: Heterogeneous multicore systems

2.6.1 Software architecture
To fully exploit the potential of a Multi-GPU system, only two additional library
dependencies are required: The CUDA run-time and driver libraries [87] and OpenMP [132].
CUDA provides the application programming interface to the GPU, while OpenMP handles
CPU multithreading. Both will be further described in Chapters 2.6.2 and 2.6.3. The Software
hierarchy is shown in Figure 24.

Hardware

Software

Application (C-code)

CUDA run-time

CUDA Drivers

OpenMP

OS Multithreading

GPUs CPUs

Hardware

Software

Application (C-code)

CUDA run-time

CUDA Drivers

OpenMP

OS Multithreading

GPUs CPUs

Figure 24: Software hierarchy and interaction with hardware. Both the CUDA driver interface and the

multithreading depend on the operating system.

As mentioned in Chapter 2.5.3, each GPU needs to be tied to a dedicated CPU core for
handling and control. This is why CPU multithreading is required in the first place. Other
solutions exist, but OpenMP is lightweight, convenient and portable, thus perfectly fitting our
needs. It will be shortly described in Chapter 2.6.2.

A typical multi-GPU application flow proceeds as follows. The application starts as a single
master thread. Then, one CPU thread per GPU is spawned; given enough resources each
thread will run on a different CPU core. Within each thread, a CUDA context for each of the
GPUs is created. This is like creating a handle to the GPU: it sets up the synchronization loop
and initializes the runtime library. In the following, all CUDA API calls will refer to the
selected GPU: memory pointers will point to the GPU’s own device memory and kernels will
be executed on the corresponding GPU. Host RAM is shared among CPU threads and with
them also the CUDA contexts; it can (and in fact must, s. Chapter 2.5.2) be used as a buffer to
exchange data between GPUs.

2.6.2 OpenMP
OpenMP is a multithreading standard based on a shared memory principle. In the code,
parallel regions are defined via preprocessor directives, upon arrival on which execution is
forked into multiple threads. These process the region on different cores (as far as those are
available). At the end of the region, threads are joined again with the master thread. A simple
example is shown in Figure 25.

 26

Chapter 2: Heterogeneous multicore systems

“fork”

“join”

float a[4],b[4],c[4];
int i;
#pragma omp parallel (private i)
{

i = omp_get_thread_num();
c[i] = a[i] + b [i];

}
printf(“c = %f %f %f %f\n”,

c[0],c[1],c[2],c[3]);

“fork”

“join”

float a[4],b[4],c[4];
int i;
#pragma omp parallel (private i)
{

i = omp_get_thread_num();
c[i] = a[i] + b [i];

}
printf(“c = %f %f %f %f\n”,

c[0],c[1],c[2],c[3]);

Figure 25: Parallel processing with OpenMP.

The best way to synchronize GPUs is to join OpenMP threads. It would also be possible to
synchronize via semaphores, but my experiments have shown that this creates significantly
more overhead. Note however that this is only possible because OpenMP threads are not
actually destroyed when joining; this would also destroy the CUDA context. Instead, they
become dormant and are reactivated during the next forking.

The OpenMP standard actually provides a lot more features than indicated in Figure 25,
however no more than the most basic directives is requires for our purposes [132]. It is,
however, restricted to shared memory systems. For distributed system like multi-GPU
clusters, a multithreading API that supports network communication is required. For these
frameworks, the Message Passing Interface (MPI) is a popular solution [133].

2.6.3 CUDA
The term CUDA (Compute Unified Device Architecture) refers to the engine in NVIDIA
GPUs that handles computing work load instead of graphics, as well as to the corresponding
GPGPU programming interface. It was introduced by NVIDIA in November 2006 and allows
direct programming of the GPU in a C-based environment. At the time of writing, the latest
CUDA version was 3.2 [87].

2.6.3.1 GPU programming model
The GPU is still a passive co-processor; all control is exerted by the CPU side. A typical
application flow proceeds as follows: the CPU uploads input data to GPU memory. The
parallel GPU kernel code is then transferred and launched on the device. The code executes
asynchronously; to verify completion the status needs to be polled. After completion, the CPU
downloads the processed data sets to host memory for output or further usage. The principle is
shown in Figure 26.

 27

Chapter 2: Heterogeneous multicore systems

CPU GPU

Serial C-code

upload data

launch kernel Parallel kernel code

synchronize

download
data

report status

(storing data)

(fetching data)

CPU GPU

Serial C-code

upload data

launch kernel Parallel kernel code

synchronize

download
data

report status

(storing data)

(fetching data)

Figure 26: Heterogeneous programming of a CPU/GPU bundle using CUDA.

The GPU is programmed in a so-called Single Instruction Multiple Thread (SIMT) style. This
means that while there is a single instruction stream followed by all computational units, it is
not entirely restricted to global processing of the same arithmetic, as opposed to SIMD. Some
divergence is possible without implications on performance; to which extent will be described
in the following.

As shown in Chapter 2.4.3, the GPU architecture is organized in two levels of parallelism: a
parallel array of stream multiprocessors, which in turn are parallel processing units. The same
two-level structure reflects also in the programming model. The parallel thread pool needs to
be evenly divided into a one- or two-dimensional grid of thread blocks. These blocks can be
up to three-dimensional, which can make address generation more convenient in some
applications.

During the work distribution phase, i.e. after kernel launch and before actual execution, the
thread blocks are equally distributed to the stream multiprocessors (s. Figure 27).

 28

Chapter 2: Heterogeneous multicore systems

SM 0 SM 1 SM 2 … SM n

shmem shmem shmem shmem

DRAM (off-chip, on GPU board)

SIMT Application

SM 0 SM 1 SM 2 … SM n

shmem shmem shmem shmem

DRAM (off-chip, on GPU board)

SIMT Application

Figure 27: GPU thread clustering and dispatch.

Blocks are then processed by the stream multiprocessors as isolated, distributed sub-
problems. This proceeds until all blocks are finished, which also concludes kernel execution.
Until this, no interaction or synchronization is possible between blocks. This applies even if
they are assigned to the same stream multiprocessor, over which the application programmer
has no control. Threads inside a block, on the other hand, can easily communicate via the on-
chip shared memory of the stream multiprocessor and can synchronize using a low-overhead
barrier.

The CUDA programming model is highly scalable in that it hides all work load distribution
and scheduling from the application programmer. Understanding the process, however, is still
important in order to produce efficient GPU kernel code. On a stream multiprocessor, threads
are divided in groups of 32 identical instructions called warps. Only these warps are strictly
SIMD; if threads inside a warp diverge, the execution paths are serialized. This effectively
divides instruction throughput by the number of diverging paths. However, if two full warps
diverge but are in themselves consistent, no performance is lost at all.

All warps on a stream multiprocessor, which might be part of different thread blocks, are
executed on the arithmetic units following a prioritized schedule as outlined in Figure 28.

 29

Chapter 2: Heterogeneous multicore systems

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

time

warp 3 instruction 96

Multithreaded
Warp Scheduler

SP SP SP SP SPSP SP SP

Stream Multiprocessor

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

time

warp 3 instruction 96

Multithreaded
Warp Scheduler

SP SP SP SP SPSP SP SP

Stream Multiprocessor
Figure 28 CUDA warp scheduling. In series 8, 9 and 200 GPUs, each of the eight Stream Processor (SP)

processes four arithmetic instructions in streaming. In the Fermi architecture (series 400), 32 SPs process
the warp completely in parallel.

The warp scheduler tries to line up as many warps from mutually independent instructions
stream as possible in order to hide memory access latencies. A maximum of 24 warps can be
scheduled at once, while at least 13 are required to fully hide these latencies. Latency-induced
stalls are to be expected if there are too few active threads to reach this number. This can
happen if blocks require too many resources, limiting the number of active blocks on the
multiprocessor. It can also happen if blocks are too small: they should contain at least 32
threads to fill up a warp, but in addition there is a maximum of eight blocks per thread, which
calls for at least 96 threads per block to maximize the number of active warps. And naturally,
block size should always be a multiple of the warp size for best occupancy. There can be no
more than 512 threads per block; 1024 for the latest GPU generation [87].

2.6.3.2 Memory model
Understanding the CUDA memory hierarchy is of crucial importance as nearly all GPU
applications are inherently bandwidth limited. Since most of the chip is devoted to arithmetic
units, there is only a small amount of fast on-chip memory (s. Chapter 2.4.3). Local data
reusage is made even more difficult through the fact that there is no hardware-controlled
cache hierarchy comparable to the designs that can be found in CPUs, with the exception of
Fermi which has introduced a similar feature. The GPU device memory (GDDR3 or GDDR5
RAM, off-chip) has high theoretical bandwidth, but requires accesses to be very structured to
be efficient – another legacy from the device’s graphics processing history.

Next to shared memory, a file of 16k registers is shared among threads active on a
multiprocessor. Each thread has exclusive access to local memory, which might be contained
in the register file as long as enough registers are available. After that, local memory is

 30

Chapter 2: Heterogeneous multicore systems

swapped out to the much slower off-chip memory. Local memory, wherever resident, is freed
as soon as the thread finishes.

The next layer is shared memory. It is consistently shared among threads of the same block;
resources allocated in shared memory are freed once the block is completely finished. This
implies that all data in shared memory become inconsistent after the kernel finishes; they
cannot be reused in a successive kernel.

All threads in a grid have full access to global memory. Only data in global memory remain
consistent for the lifetime of the CUDA context, and thus is shared between kernels. The
hierarchy is shown in Figure 29.

Thread

Local memory

Grid 0

. . .
Global

MemoryGrid 1

Block

Shared
Memory

. . .

Consistent
for the

lifetime of
the thread

Consistent
for the

lifetime of
the block

Consistent
for the

lifetime of
the CUDA

context

Registers

ThreadThread

Local memory

Grid 0

. . .
Global

MemoryGrid 1

Block

Shared
Memory

. . .

Consistent
for the

lifetime of
the thread

Consistent
for the

lifetime of
the block

Consistent
for the

lifetime of
the CUDA

context

Registers

Figure 29: CUDA memory model. Local memory is actually part of global memory, but dedicated to a

single thread.

Registers can be accessed in two clock cycles. The same is true for shared memory, provided
that no access conflicts occur: to increase bandwidth, shared memory is divided into equally
sized modules called banks. In the GeForce 8, 9 and 200 series, each 64 byte segment is
accessed via 16 parallel banks. Hence, full parallel access is possible if threads from a half-
warp access data with a 32-bit stride. Violation of this rule results into bank conflicts, where
conflicting accesses are serialized. A special case is if all threads of a half warp access the
same bank; then data is scattered in a single turn. Examples of each case are shown in Figure
30. For the series 400 GPUs, the rules slightly change in that there are 32 banks and accesses
are assigned in full warps.

 31

Chapter 2: Heterogeneous multicore systems

Half-Warp Shared Memory
Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9
Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
Bank 11
Bank 12
Bank 13
Bank 14
Bank 16

Half-Warp Shared Memory
Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
Bank 11
Bank 12
Bank 13
Bank 14
Bank 16

Half-Warp
Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
Bank 11
Bank 12
Bank 13
Bank 14
Bank 16

Shared Memory

No bank conflicts 2-way bank conflicts Scatter, no bank conflicts

Half-Warp Shared Memory
Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9
Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9
Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
Bank 11
Bank 12
Bank 13
Bank 14
Bank 16

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
Bank 11
Bank 12
Bank 13
Bank 14
Bank 16

Half-Warp Shared Memory
Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
Bank 11
Bank 12
Bank 13
Bank 14
Bank 16

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
Bank 11
Bank 12
Bank 13
Bank 14
Bank 16

Half-Warp
Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
Bank 11
Bank 12
Bank 13
Bank 14
Bank 16

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
Bank 11
Bank 12
Bank 13
Bank 14
Bank 16

Shared Memory

No bank conflicts 2-way bank conflicts Scatter, no bank conflicts
Figure 30: Shared memory access patterns.

Global memory has a latency of 400-600 cycles, which can usually be hidden by warp
scheduling (s. Chapter 2.6.3.1). In addition, accessing patterns to global memory must be
structured in a particular way to allow coalescing of the access, which means that data
requested by a half-warp are transferred in a single transaction. Failing to coalesce accesses is
penalized with performance drops of up to 90% [93], so this matter has a high priority.

The conditions for coalescing vary depending on the GPU generation, while older
architectures are stricter concerning the access patterns. In series 8 and 9 GPUs, all accesses
from a half-warp must target the same 128-byte segment and be ordered congruently to the
thread index. Otherwise, all transfers are serialized. In the series 200 and newer, the ordering
can be arbitrary, and there is always only one transfer per data segment that is accessed. And
like for shared memory accesses, the series 400 effects one transaction per warp, not half-
warp.

Finally, a small part of the global memory is reserved to constants and texture data, and is
cached by the constant and texture caches. A constant cache is integrated into each stream
multiprocessor, while there is a shared texture cache for each Texture Processing Cluster.
Both caches are read-only.

2.6.3.3 Application Programming Interface
A GPU kernel is defined in a C function, which describes the arithmetic executed by all
parallel streams, not unlike the parallel regions of OpenMP (s. Chapter 2.6.2). The grid and
block configuration is appended as launching parameters to the argument list when calling the
kernel function. The C standard is extended by a minimal set of additional keywords such as
to identify functions as GPU kernels or to define a pointer as pointing to GPU memory. Inside
GPU kernels, built-in variables can be accessed to identify the thread’s position in the block
and grid configuration. A set of API functions is provided to control GPU configuration,
memory management and transfers between device and host. An example of kernel and host
code is shown in Figure 31.

 32

Chapter 2: Heterogeneous multicore systems

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{

int i = blockDim.x*blockId.x + threadIdx.x;
C[i] = A[i] + B[i];

}

// Main program
int main()
{

...
// Calculate kernel configuration, block size is 32
int Npad = 32*(N/32 + (N%32)?1:0);
dim3 block_size(32,1,1);
dim3 grid_size(Npad/32,1,1);

// Allocate memory on device board
cudaMalloc(A,Npad*sizeof(float));
cudaMalloc(B,Npad*sizeof(float));
cudaMalloc(C,Npad*sizeof(float));

// Upload input
cudaMemcpy(A,A_host,N*sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(A,A_host,N*sizeof(float),cudaMemcpyHostToDevice);

// Kernel invocation with Npad threads
VecAdd<<<grid_size,block_size>>>(A, B, C);

// Wait until kernel is finished
cudaThreadSynchronize();

// Download output
cudaMemcpy(C_host,C,N*sizeof(float),cudaMemcpyDeviceToHost);
...

}
Figure 31: Example code in CUDA C defining and launching a simple vector addition kernel.

This is a simple implementation of GPU-accelerated vector addition, following the typical
flow mentioned in Chapter 2.6.3.1. Note that the kernel can be scaled to any one-dimensional
grid and block configuration. The example also indicates that there is often a need to
artificially increase problem size to fit into the grid segmentation, especially since block size
should be a multiple of warp size. Idem, allocated GPU memory must be adapted to this new
problem size using a technique called “padding”. Conveniently, this often automatically
produces the alignment conditions for coalesced memory accesses, at least for the majority of
structured problems.

2.6.3.4 Compiler chain
Source code containing CUDA keywords, API calls or kernels must be compiled with
NVIDIA’s NVCC compiler driver [161]. Its basic work flow consists in separating CPU and
kernel code and compiling the latter into PTX code (a kind of assembly form [160]) or
directly into a cubin object (binary format).

Note that PTX (Parallel Thread eXecution) is a virtual Instruction Set Architecture (ISA)
providing a layer of abstraction for the various CUDA GPU architectures. On a physical level,
PTX code is then translated to real device machine code for these targets. The GPU machine
code is merged again with the remaining host code, which is then compiled by invoking a C
compiler like gcc [159].

 33

Chapter 2: Heterogeneous multicore systems

The compiled host code can also be linked with objects produced by other compilers. This is
necessary to include code written in C++ or FORTRAN, as to include libraries providing
interfaces in these formats. Prominent examples thereof are OpenMP [132], MPI [123] or
LAPACK [139]. A flow chart of the CUDA compile chain is shown in Figure 32.

NVCC compile chain

.cu.cu

.cubin.cubin

.c.c

.cpp.cpp

.c.c

.gpu.gpu

Host code

Device code

.ptx.ptx

PTX code Machine code for
different targets

.fatbin
.c

.fatbin
.c

Embed MC in
source code

.cu.c.cu.c
merge

split

C
compiler

C
compiler

Objects

C++
compiler
C++

compiler

.o.o

.a.a

Libraries
linkerlinker

Executable

NVCC compile chain

.cu.cu

.cubin.cubin

.c.c

.cpp.cpp

.c.c

.gpu.gpu

Host code

Device code

.ptx.ptx

PTX code Machine code for
different targets

.fatbin
.c

.fatbin
.c

Embed MC in
source code

.cu.c.cu.c
merge

split

C
compiler

C
compiler

Objects

C++
compiler
C++

compiler

.o.o

.a.a

Libraries
linkerlinker

Executable

Figure 32: CUDA compile chain. MC = machine code.

The chart is slightly simplified in that some intermediate stages are left out. A description of
the full, detailed procedure can be found in [161].

 34

Chapter 3: Target application: bioelectrical imaging

3 Target application: bioelectrical imaging
Since the main contributions of this thesis are motivated by applications in bioelectrical
imaging, this chapter was included to give a quick overview over the field as far as it concerns
the subsequently presented implementations. However, the focus of this work is on parallel
processing on heterogeneous multi-core systems, so this chapter is condensed to a short and
selective review. For a more comprehensive introduction to the field as a whole I recommend
 [183] for further reading. More detailed information about electroencephalography can be
found in [5], while the concept of source imaging is exhaustedly treated by [13], [14] and
 [17]. What concerns Electrical Impedance Tomography, a good and recent review can be
found in [9].

3.1 Electroencephalography
Electroencephalography uses an array of passive electrodes to record potential differences on
the scalp. These originate from the firing of neurons in the cerebral cortex, the part of the
brain regarded to be responsible for a wide array of higher level brain functions like
awareness, memory, perception, though, language and conscientiousness.

Neurons are the basic building blocks that process and transmit signal inside the cortex. This
is done by an alternating chain of chemical and electrical signals. Ion pumps on the neuron’s
cell membrane create an unequal potential distribution. A signal is represented by a temporal
depolarization that travels along the neuron. This entails compensatory currents to flow the
outside of the neuron, which create an electric field throughout the head, which in turn
ultimately creates potential differences on the scalp. There are limits to the type of activity
that can be detected by EEG, though. Single neurons are far too weak to create a notable
signal, the electrodes are large and remote by comparison and the skullcap in between creates
a powerful shielding effect. Detectable currents are created only by patches of pyramidal cells
aligned perpendicularly to the cortical surface that are simultaneously active. Even then the
measured potential differences are quite small, in the order of microvolts (µV) [7]. Figure 33
shows a detail of typical EEG recordings: four channels over approximately five seconds.

Figure 33: EEG traces

An EEG cap typically consists of 19 to 256 electrodes. In clinical diagnostics there are some
standardized montages that define different sets of channels with their precise positions on the
scalp. An example for a common montage scheme is given in Figure 34.

 35

Chapter 3: Target application: bioelectrical imaging

Figure 34: EEG scalp montage according to the common 10/20 system from a side-faced (A) and a top-

down view (B). (source: [6])

Compared to other imaging methods, EEG has a high temporal resolution. Most EEG systems
sample at a rate of around 240 Hz. In standard clinical studies, the main frequencies of
interest range up to approximately 30 Hz. The spectral composition of the signals can convey
additional information. In classical EEG analysis, rhythmic activity is considered to be
divided into the following bands:

 Delta rhythm: 1-4 Hz

 Theta rhythm: 4-7 Hz

 Alpha rhythm: 8-12 Hz

 Beta rhythm: 12-30 Hz

Frequency components above these bands are usually considered to be artifactual, i.e. from an
unwanted source not related to neuronal activity, like noise and muscle movements.

Routine EEG has a wide range of applications. A major one is to aid diagnosis of epilepsy,
where abnormal patterns such as sharp waves and spikes can be seen; other clinical
applications include diagnosis of coma and brain disorders. In research, EEG plays an
important role in cognitive sciences and psychophysiology. Certain parts of the cortex can
roughly be mapped to certain brain functions, like the visual cortex and the motor cortex, so
signals picked up from an EEG channel close to these regions can give insight into the brain’s
principal activity or indicate a focal brain disorder [5].

EEG alone however does not allow precise anatomical localization of activity; this requires
further signal processing in the framework of a neural source localization method, the
principles of which will be outlined in Chapter 3.2.

3.2 EEG source imaging
In traditional EEG diagnostics, the raw recordings are visually inspected by the doctor
looking for anomalies in the waveforms. This gives at best a very crude estimate in localizing
the regions of activity. However, within certain limits, the scalp potential measurements from

 36

Chapter 3: Target application: bioelectrical imaging

EEG can also be used to trace back the electric field distribution in the head and localize the
neuronal sources thereof in the cortex.

3.2.1 Applications
EEG source imaging has been used in pre-surgical analysis before being gradually replaced
by anatomical imaging methods like fMRI. However, as opposed to these alternatives, EEG
source imaging provides the only direct measurements of source activity, combined with an
excellent temporal resolution. It is therefore of particular interest in understanding the
generation and propagation of this activity [156]. These capabilities are often exploited for
more precise localization of epileptic discharges, where visual interpretation can at best
provide an estimate of which cortical lobe is affected [171].

A newer application is neurofeedback, which gives the user insight into his own brain activity
mapping while the underlying sensor data is being recorded. This enables a direct feedback
loop, where the user can actively try to influence his activity patterns. Some therapies are
based on training the user in recognizing and suppressing certain patterns related to their
neuropathological condition. Examples thereof include treatment of Attention Deficit
Hyperactivity Disorder (ADHD) [171], substance abuse [172], depression and anxiety [173],
and more. Though still at an experimental stage, first results of neurofeedback based therapy
are promising.

Rather than for direct visualization, the output of EEG source imaging can also be forwarded
to automatic interpretation. The results thereof can then be used to drive control of a computer
of machine interface. Being under research for 40 years now, these Brain Computer Interfaces
(BCI) and Brain Machine Interfaces (BMI) have already reached some maturity [174], with
first commercial products entering the market [175].

3.2.2 Forward and inverse problem
The topic of source localization can be classified into two parts, the forward and the inverse
problem, which will both be introduced in the following two sub-chapters. The scope of the
forward problem is to construct an electrical model of the head, containing a distribution of
current sources in the parts of the brain that are able to produce electrical activity (i.e. the grey
matter, s. Chapter 3.1). The forward problem is solved when the impact of each current
source on each electrode is known. It needs to be solved once per subject and electrode cap
 [14].

The result is a highly underdetermined system of forward equations. Obtaining an
anatomically reasonable resolution of this system is called the inverse problem. It needs to be
solved for each sample vector of sensor measurements; the result is an instantaneous
distribution of source activity in the brain, i.e. the amplitudes of the current sources in the
electrical model [17]. The electrical model should be as anatomically precise as possible as its
quality also constraints the quality of the source localization.

 37

Chapter 3: Target application: bioelectrical imaging

3.2.2.1 Forward problem
To localize the neural current source generators of EEG, the first question that needs to be
asked is: how would a single given current source in the brain affect the potential distribution
on the scalp? This is called the forward problem of EEG source imaging. Starting from the
quasi-static Maxwell equations, this basically breaks down to solving the equation

(1) ∇ · (σ ∇φ) = ∇ · j

Where σ is the conductivity tensor, φ is the potential distribution and j is the current density
vector field in the medium, in this case the head. Quasi-stationarity is a fair assumption
considering the low frequency range of EEG generators (s. Chapter 3.1).

There is only a limited amount of potential measurements, so we can transfer φ into a discrete
vector Φ of length NE containing all instantaneous sensor measurements, with NE being the
number of electrodes. For technical feasibility, also the current sources must be discretized.
Picking individual neurons for this is unfeasible, instead, a macroscopic current dipole model
is commonly chosen to segment the cortical grey matter into an uniform array of discrete
current sources, called “voxels”. The result is a vector J = (J1, J2, J3, … JNv), with Ji being the
3-dimensional current density vector at voxel i and NV being the number of voxels.

All in all, the solution to the (discretized) forward problem is a linear map K: RNV×R3 → RNE,
mapping current densities to scalp potentials such that

 (2) J = K·Φ + c1

K is commonly referred to as the electric lead field. The summand c1 is added due to the fact
the electric potential is defined only up to an arbitrary constant; c is a scalar and 1 denotes a
vector of ones. The linearity holds due to the superposition principle.

Solution of the forward problem (i.e. obtaining the coefficients of K) strongly depends on the
volumetric conductivity model of the head (s. Chapter 3.2.3) and can be very challenging if
the conductivity model contains some anatomical detail [14].

3.2.2.2 Inverse problem
The lead field maps brain activity patterns to sensor waveforms, but what we actually want in
source imaging is a reverse of this operation: given a vector of scalp measurements Φ in a
system with parameters K, how can we obtain the underlying brain activity patterns J? This is
referred to as the inverse problem. It is highly underdetermined since there are far more
unknowns than information (3·NV >> NE), so the solution will always be an estimate.

There are manifold ways to tackle underdetermined problems [15], but due to the linearity of
the forward equations, it is appealing to address the EEG inverse problem with linear
estimators. In fact, many solutions are based on the least squares of errors, such that

 ║Φ - K·J║2

is minimized. In the simplest form this yields the Moore-Penrose pseudoinverse [19]:

 (3) T = KT·(K·KT)-1

 38

Chapter 3: Target application: bioelectrical imaging

where T: RNE → RNV×R3 denotes the resulting linear estimator, called the transition matrix.
This approach however suffers from several limitations like instability, bias and low spatial
resolution. More advanced methods add various techniques to improve this, some of which
will be introduced in Chapter 3.2.5. Furthermore, one can try to limit the degrees of freedom
by inferring additional anatomical information, as it will be outlined in Chapter 3.2.4. There
are also approaches that are not based on linear estimators, but discussing those would go
beyond the scope of this work [17].

3.2.3 Head models
As mentioned in Chapter 3.2.2.1, solving the forward problem for anatomically correct head
models poses a great challenge: from an electrical point of view, the head is a highly
inhomogeneous and anisotropic medium. As a result, head models in practical use are
strongly simplified. This is very limiting, as the inverse solution is always just as good as the
model it is based on [16].

First head models were based on concentric spherical shells to define up to four internally
homogeneous compartments of scalp, skull, cerebrospinal fluid (CSF) and brain [22].
Spherical models can be calculated analytically, however, the head does not come in these
convenient shapes, so anatomical correctness is rather poor [20].

While, some forming can be applied to morph the spherical model more into the shape of a
head, spherical models were soon replaced by multi-shell models with more accurate
compartment boundaries based on triangulated surface meshes. An example is shown in
Figure 35.

Figure 35: Triangulated surface meshes of brain, skull and scalp (source : [21]).

Inside the compartments, the volume conductor is still assumed to be homogeneous and
isotropic. The forward problem for a surface mesh model needs to be computed by numerical
methods, where the Boundary Element Method (BEM) is particularly appealing [21]. Surface
mesh models still define the state of the art for practical implementations, with many
commercial solutions relying on it [23] [43]. The BEM solution to the forward problem
required inversion of a large matrix, whose rank depends on the resolution of these meshes.
Contemporarily, the cubic complexity of this operation restricts this approach to rather poor
anatomical detail.

In experimental setups, more detailed head models are currently subject of study. These
include for example segmentations based on the Finite Element Method (FEM), the Finite
Difference Method (FDM) [26] and the Finite Volume Method (FVM) [27]. All have the
advantage that they allow inclusion of tissue anisotropy, along with a much finer level of

 39

Chapter 3: Target application: bioelectrical imaging

inhomogeneity [24]. Discretization can be either adaptive or regular, like the example given
in Figure 37.

Y3031 Y3132 Y3233 Y3334 Y33035

Y4041 Y4142 Y4243 Y4344 Y4445

Y2021 Y2122 Y2223 Y2324 Y2425

Y1011 Y1112 Y1213 Y1314 Y1415

Y
11

01

Y
12

02

Y
13

03

Y
14

04

Y
11

21

Y
12

22

Y
13

23

Y
14

24

Y
31

21

Y
32

22

Y
33

23

Y
34

24

Y
31

41

Y
32

42

Y
33

43

Y
34

44

Y
51

41

Y
52

42

Y
53

43

Y
54

44

Y3031 Y3132 Y3233 Y3334 Y33035

Y4041 Y4142 Y4243 Y4344 Y4445

Y2021 Y2122 Y2223 Y2324 Y2425

Y1011 Y1112 Y1213 Y1314 Y1415

Y
11

01

Y
12

02

Y
13

03

Y
14

04

Y
11

21

Y
12

22

Y
13

23

Y
14

24

Y
31

21

Y
32

22

Y
33

23

Y
34

24

Y
31

41

Y
32

42

Y
33

43

Y
34

44

Y
51

41

Y
52

42

Y
53

43

Y
54

44

Y3031 Y3132 Y3233 Y3334 Y33035

Y4041 Y4142 Y4243 Y4344 Y4445

Y2021 Y2122 Y2223 Y2324 Y2425

Y1011 Y1112 Y1213 Y1314 Y1415

Y
11

01

Y
12

02

Y
13

03

Y
14

04

Y
11

21

Y
12

22

Y
13

23

Y
14

24

Y
31

21

Y
32

22

Y
33

23

Y
34

24

Y
31

41

Y
32

42

Y
33

43

Y
34

44

Y
51

41

Y
52

42

Y
53

43

Y
54

44

Figure 36: Fine-grained regular FVM-based discretization of the head conductor space

These models lead to very large sparse linear systems that need to be solved in order to obtain
the EEG forward equations. They are usually addressed by iterative sparse system solvers
 [14]. However, the sheer magnitude of these systems (a MRI-based FVM discretization
results in a network of up to several million nodes) make computation of these models very
time consuming, impeding their application in contemporary practice.

3.2.4 Retrieving anatomical information
Anatomical correctness of head models limited not only by computational feasibility, but by
the level of trustworthiness of the anatomical information itself. The same applies to
anatomical priors in the inverse problem. The primary sources of information are head
scansion from static Magnetic Resonance Imaging (MRI), typically a 3D black-and-white
image of ~1 mm resolution. On this raw image, various image processing techniques can be
applied to retrieve meshes of the brain, skull and scalp surfaces [29], segment the image into
different neuro-anatomical structures [31] and label different tissue types [30] (s. Figure 37).

skin

outer skull

gray matter

white matter

fluid

inner skull

skin

outer skull

gray matter

white matter

fluid

inner skull

Figure 37: Segmentation of MRI voxel space into tissue compartments, as produced by the BrainSuite

software [29].

Concerning the electrical properties of said tissue types, a plethora of experimental
measurement data are available, both in vivo and in vitro [32] [34] [35]. Together, this
information is all that is needed to formulate the forward problem.

Also the inverse problem can benefit from these data. Knowing what parts of the brain can be
considered possible generators of source activity helps constraining the solution space, and

 40

Chapter 3: Target application: bioelectrical imaging

thus allows better estimates. Inferring other anatomical priors like cortical orientation has also
been proposed [36].

3.2.5 Linear estimators for the inverse problem
As mentioned in Chapter 3.2.2.2, most solutions to the inverse problem are based on squared
error minimization. However, numerous improvements have be made to cope with the
disadvantages of the naïve pseudoinverse [40], some of which will be introduced in the
following.

First of all, the error minimization problem could be ill-posed or singular, leading to a large
number of possible solutions. This can be remedied by adding a regularization term to give
some solutions prevalence over other, for example by preferring the solution with the lowest
total energy. In this case, the minimization term becomes

 ║Φ - K·J║2 + α·║J║2

where α is called the regularization parameter. The resulting estimator

 (4) T = KT·(K·KT+α·I)-1

is called the Minimum Norm Estimate (MNE) [37]. MNE approaches are a special case the
Tikhonov regularization [38]. The regularization parameter α controls how strongly the total
energy will be minimized in respect to the error. Picking an optimal value is a difficult
problem itself to which several approaches exist, like the L-curve method [39].

The estimated current density vectors, given by

 Jest = T· Φ

with Jest being the vector of estimated currents of size RNV×R3 (s. Chapter 3.2.2).

Source localization of the MNE can be improved by applying a standardization procedure on
estimated current density vectors. This requires an estimate of the solution’s variance, which
according to [43] can be derived as

 S = T· K

This coincides with the resolution matrix [44] and is not invertible, hence the standardization
is performed voxel per voxel to retrieve the standardized current density powers:

 jl,std = jl,est
T[Sll]-1jl,est

where jl,est contains the three components of is the l-th element of Jest and Sll is the l-th
diagonal sub-block of S. This technique is applied in the Standardized low resolution brain
electromagnetic tomography (sLORETA) method [43], which is able to localize single
sources in noise-free environments with 100% accuracy.

Still, these methods suffer from poor spatial resolution. This problem is already inherent in
EEG, and the MNE tends to make things worse. Several efforts have been made to cope with
this limitation. For example, the focal underdetermined system solver (FOCUSS) tries to give
some focal resolution on distributed source models by iteratively applying a weight to the
columns of the lead field:

 41

Chapter 3: Target application: bioelectrical imaging

 (5) Ti = Wi· Wi
T·KT·(K· Wi· Wi

T·KT+α·I)-1

where Wi is a diagonal matrix based on the solution retrieved during the last iteration,
normalized by the norm of the columns of K:

 Wi = diag(Jest,i-1) · diag(KT·K)-1 with Jest,i-1 = Ti-1· Ф

If continued long enough, FOCUSS converges to a set of concentrated sources equal to
number to the number of electrodes [41].

Another way to use the previous solution for iterative refinement is shrinking the solution
space: if a part of the cortex is found to contain relatively low activity (below a certain
threshold), the corresponding columns of K are temporarily removed and the inverse
estimator is re-calculated. Solutions found in a smaller solution space tend to exhibit better
spatial resolution [42]. Advanced linear solvers typically use a combination of the above
mentioned methods, like the Shrinking Standardized LORETA-FOCUSS (SSLOFO) [45].
While these methods are much harder to handle computationally when compared to simpler
solutions, the source reconstruction is often of better quality.

Contemporary practice is limited to simple algorithms like WMN and sLORETA, with very
low voxel resolutions of a few thousand discrete points. More advanced methods and higher
voxel resolutions produce work loads where processing on normal workstations is still
unfeasible.

3.3 Electrical Impedance Tomography
Electrical Impedance Tomography (EIT) is a relatively new bioelectrical method. Although it
yields great potential to be a valuable addition to clinical diagnosis, the technical and
computational difficulties of this technology have so far prevented it from being included in
clinical routine.

Like EEG, EIT works with non-invasive measurements from skin-mounted electrodes, but
instead of passively recording potential differences, currents are actively injected into the
body, usually in patterns of several electrode pairs and at different frequencies. Meanwhile,
the resulting potentials differences are measured (s. Figure 38). Based on these data, an
impedance map of the target body can be estimated to get insight into internal tissue
properties [12], e.g. to localize anatomical abnormalities.

 42

Chapter 3: Target application: bioelectrical imaging

Figure 38: Application of current patterns through the target body and measurement of resulting surface

potentials (source: [10]).

EIT has a wide range of applications including monitoring of pulmonary ventilation, breast
tumor detection and the reconstruction of brain activity, all of which are still at an
experimental stage. However, the first commercial clinical solutions for pulmonary
ventilation monitoring are approaching market maturity. EIT-based brain analysis and
monitoring currently subject to study, particularly to localize well defined regions of the brain
like epileptic foci, local ischemia and lesions [8] [9].

EIT might even be combined with EEG, considering that both technologies use different
sources of information. It is also plausible to use conductivity measurement from EIT to
refine volume conductor models in EEG source localization [11]. Given an intelligent
electrode design, both might even share the same sensor montage.

3.4 Selecting computational problems
Bioelectrical imaging is a wide field of study, and this chapter could barely scratch the
surface. However, this short introduction already demonstrates that there is a plethora of
computational challenges with very different characteristics. Primarily, problems encountered
in this field can classified into the following categories:

 Dense linear algebra

 Sparse systems

 Image processing

 Signal processing

 Data visualization

Each of these classes has different demands towards the computing platform, so focusing on a
single, isolated problem would not suffice to evaluate the benefits that the heterogeneous
CPU/GPU systems described in Chapter 2 can contribute to this field as a whole. Instead, this
thesis presents a selection of applications covering all of the aforementioned categories.
Furthermore, very different scales of CPU/GPU systems are employed, ranging from low-end
single-GPU setups that might also fit into mobile systems, over average dual-GPU desktop
systems, up to small-scale supercomputers featuring several CPUs and graphics cards.

 43

Chapter 3: Target application: bioelectrical imaging

In the next three chapters, the following computational problems are addressed. Chapter 4
presents an example of heavy, dense linear algebra with a large triangular matrix inversion
problem emerging from EEG volume conductor modeling (s. Chapter 3.2.3, meshed head
models). Chapter 5 addresses solution of large sparse, non-hermitian systems as part of an
EIT simulation environment (s. Chapter 3.2.3, FVM-based head models and Chapter 3.3).
Lastly, Chapter 6 covers problems encountered in the EEG inverse problem comprising real-
time signal processing (s. Chapter 3.2.5), image processing of MRI scansions (s. Chapter
 3.2.4) and graphical 3D visualization of large data sets.

Given the wide range of both applications and target systems treated in this work, conclusions
can finally be drawn with sufficient validity. The results of the general evaluation will be
discussed in Chapter 7.

 44

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

4 Dual-GPU accelerated Triangular Matrix Inversion
This is the first in a series of three chapters presenting the major contributes of this thesis.
They all address very different computational problems that where highlighted in Chapter 3,
using different scales and configurations of the platforms described in Chapter 2. This part
revolves around an example of dense linear algebra, addressed by a mid-sized dual-GPU
platform.

The scope of this Chapter is to present an efficient implementation of Triangular Matrix
Inversion on Graphics Processing Units. While TMI can be applied in several contexts, we
will focus on its role in the inversion of dense matrices using the algorithmic steps shown in
Figure 39.

L

U

L-1

U-1

A=L·U U-1·L-1=A-1

Factorization TMI Multiplication

L

U

L-1

U-1

A=L·U U-1·L-1=A-1

L

U

L-1

U-1

A=L·U U-1·L-1=A-1

Factorization TMI Multiplication
Figure 39: Basic work steps in dense non-symmetric matrix inversion.

The matrix is factorized using LU decomposition and the upper and lower triangular factors
are stored in a shared array, then TMI is applied to the resulting triangular matrices. After this
step, the inverse of the full matrix is obtained by the multiplication of the inverted triangular
matrices.

Implementation of matrix factorization routines on GPUs has been examined in several
contributions, most notably [93] [94] [166] and [167], and matrix multiplication is a standard
operation. But in spite of being the heaviest part in the inversion work flow, TMI was
neglected by prior work. This is mainly because the mere solution of a single linear system is
rarely computed via the inverse of the matrix: matrix inversion has a cubic complexity,
producing huge work load for larger problem sizes. However, there are several applications
where the full matrix inversion is beneficial or inevitable. Apart from the bioelectrical
problem that motivated this implementation (s. Chapter 4.1), typical applications for full
matrix inversion include preliminary steps for optimization [168] and network coding [169].
This implementation fills the gap with a GPU-accelerated TMI routine, based on a recursive
divide-and-conquer approach to exploit maximal parallelism. This application assumes a
shared array LU matrix as it is commonly produced by matrix factorization methods as a
starting point, and both upper and lower triangular matrix inversion has been implemented.
The original implementation has been published in [1], on which later substantial
improvements have been made like better multi-GPU performance and efficient memory
usage. The final version has been accepted in [2].

4.1 Motivation and background
This implementation was motivated by a severe computational bottleneck in solving the EEG
forward problem using a three-layer mesh model of the head (s. Chapters 3.2.2.1 and 3.2.3).

 45

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

This problem was addressed using the methodology described in [21], which introduces an
advanced approach based on the Boundary Element Method (BEM).

Most steps of this algorithm require negligible effort, so let us skip right forward to the
aforementioned bottleneck. In the last step, the method produces the following equation
defining the electric lead field K:

 (6) K = D·(I – C)-1·G

In this equation, C is a NT×NT matrix whose elements are determined by geometry of the
meshes and the conductivities of the compartments, where NT is the total number of triangles
in all three meshes. Matrix G: RNV×R3 → RNT is some kind of preliminary lead field mapping
the current density vectors from all NV voxels to the centroids of all NT triangles, pretending a
homogeneous infinite conductor. Its elements can easily be computed analytically [14].
Matrix D: RNT → RNE can be considered to be the opposite interface. It is a sparse matrix
mapping potential from centroids of the outer mesh triangles to potentials at electrode
positions, which can be done either by clinging to the nearest centroid or by interpolating
between the nearest neighbors.

It is obvious that once the inverse (I – C)-1 in (6) has been computed and stored, the model
can easily be adapted to arbitrary voxel and electrode configurations. This however turns out
to be a considerable computational challenge: the meshes used in this scope as produced by
the “freesurfer” software (a free software that allows extraction of surface meshes from MRI,
among other features) have a detail level of over 3000 triangles each [163] [164]. All three
layers combined, we end up with a problem size of NT ≈ 10000.

Even when using an optimized multithreaded implementation, inverting a matrix of this
dimension takes several minutes on a typical workstation, making GPU acceleration
appealing. With this implementation, the computation time can be reduced to a few seconds.

4.2 Parallel Triangular Matrix Inversion algorithm
Triangular matrix inversion can offer substantial parallelism with the following divide-and-
conquer approach. The triangular matrix (size dim) is partitioned into two triangular matrices
and one square matrix, all three of half the size. Then, the resulting triangular sub-matrices
can be partitioned in the same way. This is done recursively k times, until we are left with 2k
triangles of size m = dim/2k lined up along the diagonal. The result is a fractal segmentation
of the triangular matrix. In what follows, k will be referred to as the segmentation depth. An
example for a segmentation with k = 3 is shown in Figure 40.

 46

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

2k = 8

m2·m

2k-1·m

dim = 2k·m

2k = 8

m2·m

2k-1·m

dim = 2k·m

Figure 40: Fractal segmentation of a lower triangular matrix employing a segmentation depth of k = 3.

The same procedure is followed for an upper triangular matrix.

Given that all triangles for a certain segmentation depth are already inverted, the inversion of
the triangles of the next lower segmentation step can be completed by applying the operations
shown in Figure 41 to calculate the square matrix wedged in between the inverted triangles:

0 0

0 0

A
L =

-B-1AC-1
L-1 =

A
U =

-B-1AC-1

U-1 =

B-1B

C C-1

C

B

C-1

B-1

0 0

0 0

A
L =

-B-1AC-1
L-1 =

A
U =

-B-1AC-1

U-1 =

B-1B

C C-1

C

B

C-1

B-1

Figure 41: Recursive inversion of triangular matrices.

So starting from initial inversion of the 2k diagonal triangular matrices of size m (referred to
as “step 0”), the full matrix can be inverted in k steps. The computation order is visualized in
Figure 42.

1

1

3

2

1

1
2 1

1
3

2

1

1
2

1

1

3

2

1

1
2 1

1
3

2

1

1
2

Figure 42: Computation order for recursive triangular matrix inversion, for both lower and upper

triangular matrix inversion, keeping k = 3.

 47

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

Each step i of the computation offers a parallelism of 2k-i·(m·2i-1)2 = m2·2k+i-2 independent
scalar streams, which is the number of square matrices (sub-blocks) to be calculated in step i,
multiplied by the number of elements per sub-block.

This algorithm is called recursive triangular matrix inversion (RTMI). The method was
adapted from [134], where RTMI was optimized for MIMD computers. A method that
recursively partitions a triangular matrix was originally proposed in [135] and [136], while
 [137] was the first to use a divide-and-conquer method on partitioned matrices for matrix-
matrix multiplication, from which a recursive method for full matrix inversion could be
derived [138].

RTMI is optimal, which means that it requires no more arithmetic operations than the best
known serial algorithm. Performing the complete inversion of a triangular matrix has a
computational complexity of

dim3/3 + dim2/2 + O(dim)

which includes the above mentioned “step 0”. When we consider only the recursive part of
the algorithm, we end up with a computational complexity of

dim3/3 + dim2·(1–1/2k+1) + O(dim)

for a recursive computation over k steps [134].

4.3 Implementation

4.3.1 GPU Kernels
RTMI is processed in k steps, where step i = 1..k consists of the computation of 2k-i square
sub-blocks of size m·2i-1. Each sub-block j = 1..2k-i is computed according to Figure 41 by
performing two square-per-triangular matrix multiplications:

X j = Bi, j · Ai,j

Ai,j = X j · Ci,j

These can be implemented in efficient parallel GPU kernels. The parallelism is fully
exploited, so m2·2k+i-2 threads are launched in each step i. The kernels are slightly different for
L and U inversion, so four different kernels are implemented. The precise structure is
discussed in what follows. As stated in Chapter 2.6.3, we must segment the 2k-i×m·2i-1×m·2i-1

parallel instruction streams into a grid of thread blocks. A thread block size of 16×16 is
chosen for several reasons. The most important issue is bandwidth maximization: the GPU
performs all global memory accesses in half-warps, i.e. 16 threads with consecutive indices,
where the first thread index is a multiple of 16. Having only 8-byte elements, data sections
accessed in this way always cover a 128 byte segment. Furthermore, since all GPU memory is
covered by 16×16 blocks, the segments are always aligned to multiples of 128 byte. This
fulfills the conditions described in Chapter 2.6.3.2 for coalesced memory accesses, for which
bandwidth to and from global memory is maximized. Still, the application would be greatly
bandwidth limited without data re-usage. Instead of operating directly on global memory, data

 48

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

operands are fetched in 16×16 blocks and processed on-chip, which greatly reduces off-chip
accesses. Registers are used to accumulate data. This setup allows for up to three blocks to be
active on one SMP, which corresponds to up to 24 independent warps (three blocks of 16×16
threads, divided by the GPU warp size 32), more than enough to hide most global memory
access latencies through intelligent scheduling (s. Chapter 2.6.3.1). The grid of 16×16 block
tiles must cover all 2k-i square sub-blocks. Since grids in CUDA can have only two
dimensions, we consider the first ld(2k-i) bits of the block column index as sub-block index
(sbIdx). An example of block tiling is shown in Figure 43.

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

0,4

0,5

1,4

1,5

0,6

0,7

1,6

1,7

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

3,0

3,1

3,2

3,3

1,4

1,5

1,6

1,7

2,4

2,5

2,6

2,7

3,4

3,5

3,6

3,7

0,0

0,1

0,2

0,3

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

3,0

3,1

3,2

3,3

0,4

0,5

0,6

0,7

1,4

1,5

1,6

1,7

2,4

2,5

2,6

2,7

3,4

3,5

3,6

3,7

4,0

4,1

4,2

4,3

5,0

5,1

5,2

5,3

6,0

6,1

6,2

6,3

7,0

7,1

7,2

7,3

4,4

4,5

4,6

4,7

5,4

5,5

5,6

5,7

6,4

6,5

6,6

6,7

7,4

7,5

7,6

7,7

Step 1 of 3

4·(m/16)2

blocks

Step 2 of 3

2·(2·m/16)2

blocks

Step 3 of 3

1·(4·m/16)2

blocks

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

0,4

0,5

1,4

1,5

0,6

0,7

1,6

1,7

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

3,0

3,1

3,2

3,3

1,4

1,5

1,6

1,7

2,4

2,5

2,6

2,7

3,4

3,5

3,6

3,7

0,0

0,1

0,2

0,3

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

3,0

3,1

3,2

3,3

0,4

0,5

0,6

0,7

1,4

1,5

1,6

1,7

2,4

2,5

2,6

2,7

3,4

3,5

3,6

3,7

4,0

4,1

4,2

4,3

5,0

5,1

5,2

5,3

6,0

6,1

6,2

6,3

7,0

7,1

7,2

7,3

4,4

4,5

4,6

4,7

5,4

5,5

5,6

5,7

6,4

6,5

6,6

6,7

7,4

7,5

7,6

7,7

Step 1 of 3

4·(m/16)2

blocks

Step 2 of 3

2·(2·m/16)2

blocks

Step 3 of 3

1·(4·m/16)2

blocks

Figure 43: Block tiling and block indices in a lower triangular matrix for parameters m = 32 and k = 3.

Regions highlighted in gray have already been inverted.

 In summary, the launching parameters for both kernels of step i = 1..2k are:

 block_size = (16,16,1)

 grid_size = ((m/16)·2i-1, dim/32, 1)

The kernels themselves implement the two sequential square-per-triangular blocked matrix
products mentioned earlier, whereas all sub-blocks of the actual step are processed
concurrently. Figure 44 and Figure 45 illustrate the kernels involved in L- and U-inversion,
describing the processing of one isolated sub-block, in which one exemplary thread block is
highlighted. Dashed arrows indicate the order in which operand blocks are fetched from
global memory. The last 16×16 block is modified in shared memory by zeroing all trans-
diagonal elements and, in cases of L-inversion, setting the diagonal elements to one.

 49

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

Kernel 1:
Xj = Bi,j·Ai,j

Kernel 2:
Ai,j = Xj·Ci,j

16 sbdim =
m*2i-1

Ai,j Ai,j

Ci,j Ci,j

Bi,jBi,j

Xj Xj

temporary
buffer

zeroed

16*sbrow

16*sbcol

zeroedKernel 1:
Xj = Bi,j·Ai,j

Kernel 2:
Ai,j = Xj·Ci,j

16 sbdim =
m*2i-1

Ai,j Ai,j

Ci,j Ci,j

Bi,jBi,j

Xj Xj

temporary
buffer

zeroed

16*sbrow

16*sbcol

zeroed

Figure 44: GPU kernels for recursive lower triangular matrix inversion, showing one of 2k-i identical sub-
blocks. In this example, the sub-block dimensions (sbdim) are 128, sbrow and sbcol denote the block row

and column within this sub-block.

16 sbdim =
m*2i-1

Xj Xj

temporary
buffer

Bi,j Ai,j

Ci,j

Ai,j

Ci,j

Bi,j

Kernel 1:
Xj = Bi,j·Ai,j

Kernel 2:
Ai,j = Xj·Ci,j

zeroed

16*sbrow
16*sbcol

zeroed

16 sbdim =
m*2i-1

Xj Xj

temporary
buffer

Bi,j Ai,j

Ci,j

Ai,j

Ci,j

Bi,j

Kernel 1:
Xj = Bi,j·Ai,j

Kernel 2:
Ai,j = Xj·Ci,j

zeroed

16*sbrow
16*sbcol

zeroed

Figure 45: GPU kernels for recursive upper triangular matrix inversion, analogous to the example shown

in Figure 44.

It is obvious from the figures that some blocks will take longer to finish than others; the
number of loop iterations is dependent on the position of the 16×16 block inside the square
sub-block. With the given grid layout, each SMP gets assigned a random mix of blocks with
different execution length, but it is inevitable that some SMPs will finish their work load
sooner than others, which results in idle processing resources towards the end of kernel
execution. The impact of this is keener for kernels with fewer blocks, hence for smaller
problem sizes. Another slow-down factor results from the bank alignment of shared memory,
which is optimized for single-precision (4 byte) data elements. Accessing vectors of double
precision (8 byte) elements always results in 2-way bank conflicts (s. Chapter 2.6.3.2).

 50

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

4.3.2 Memory optimization
The maximum problem size that can be processed by the routine is restricted by the total
amount of GPU device memory. With normal 2-dimensional data alignment, a single
triangular matrix occupies twice as much memory as there are data elements. A densely
packed data format, as used by many CPU-optimized libraries, is not applicable, as this would
thwart the memory alignments and disrupt coalesced memory accesses.

However, since data are only accessed in blocks of 16×16 elements, a block-packed data
format can preserve the coalesced memory accesses while providing nearly the same storage
optimization. Data are uploaded in rectangular strips of 16 rows in height, which are stored
next to each other in GPU memory. This block-row packed format is preferable to a block-
column packed format for various reasons, among others to minimize the number of host-
device and device-host transfers.

A small additional overhead is introduced because a dedicated memory transfer has to be
issued for up- and downloading each block row, so the total transfer time is increased by
dim/16 times the transfer initialization time of 11 μs [93].

The distributions of L- and U-matrix data in host and GPU memory are shown in Figure 46
and Figure 47.

16

aligned L-matrix in shared LU-array
(host memory)

block-row packed L-matrix
(GPU memory)

di
m

16 rows

&0

&16·dim

&32·dim

&48·dim

&64·dim

&(dim-16)
·dim

U

L

16 columns 2·16 colums

&0 &162 &(1+2)·162

16

&(1+2+3)·162

3·16 colums

dim

16

aligned L-matrix in shared LU-array
(host memory)

block-row packed L-matrix
(GPU memory)

di
m

16 rows

&0

&16·dim

&32·dim

&48·dim

&64·dim

&(dim-16)
·dim

U

L

16 columns 2·16 colums

&0 &162 &(1+2)·162

16

&(1+2+3)·162

3·16 colums

dim

Figure 46: Block row packed storage of the L matrix.

 51

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

block-row packed U-matrix
(GPU memory)

16

aligned U-matrix in shared LU-array
(host memory)

&16·dim+16

&32·dim+32

&48·dim+48

&64·dim+64

&(dim-16)
·dim
+dim-16

&0 16

dim

U

L

16 rows

dim columns

&0 &dim·162

dim-16 columns

…..
…..
…..
…..
…..
…..

…..
…..
…..
…..
…..
…..

&(dim+(dim-16))·162

block-row packed U-matrix
(GPU memory)

16

aligned U-matrix in shared LU-array
(host memory)

&16·dim+16

&32·dim+32

&48·dim+48

&64·dim+64

&(dim-16)
·dim
+dim-16

&0 16

dim

U

L

16 rows

dim columns

&0 &dim·162

dim-16 columns

…..
…..
…..
…..
…..
…..

…..
…..
…..
…..
…..
…..

&(dim+(dim-16))·162

Figure 47: Block row packed storage of the U-matrix, analogous to L-matrix storage but starting with the

longest block row.

We can derive that the total storage requirements on the GPU memory therefore amount to
(dim+16)·dim/2 elements. The block-packed data still contains some elements from across the
diagonal, in total a number of 7·dim elements.

Note that there is also the need for a buffer in GPU memory which temporarily holds data to
prevent racing conditions. The buffer occupies up to dim2/4 elements, an additional ~50% of
storage occupation on the GPU.

4.3.3 Address generation
Since data are no longer aligned with the matrix dimensions, accessing a particular element in
packed data storage involves an increased effort in address generation. Precisely the following
parameters require more complex computation compared to aligned storage:

1. offset of the block row is now following a non-linear function based on block row
index

2. pitch inside block row is no longer constant but linearly connected to block row index

Both compute differently for L and U matrices.

Inside the GPU kernels, every sub-block needs to access three sub-matrices to perform the
operations described in Chapter 4.2: the square block A and the prior inverted triangles B and
C. These blocks usually cover several block rows as shown in Figure 48:

 52

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

A0 B0

C0

A1 B1

C1

sub-block 0
(sbIdx = 0)

sub-block 1
(sbIdx = 1)in-line shift

B1

C1

A0B0

C0

aligment
shift

dim

sbdim = sbbw·16

16

&0
&162

&(1+2)·162

&(1+2+3)·162

&(dim/2)
·(dim-16)

&0

&16·dim

&32·dim--162

&48·dim-(1+2)·162

&dim
·(dim+16)/2
-162

&64·dim-(1+2+3)·162

A1

A0 B0

C0

A1 B1

C1

sub-block 0
(sbIdx = 0)

sub-block 1
(sbIdx = 1)in-line shift

B1

C1

A0B0

C0

aligment
shift

dim

sbdim = sbbw·16

16

&0
&162

&(1+2)·162

&(1+2+3)·162

&(dim/2)
·(dim-16)

&0

&16·dim

&32·dim--162

&48·dim-(1+2)·162

&dim
·(dim+16)/2
-162

&64·dim-(1+2+3)·162

A1

Figure 48: Sub-matrices A, B and C of two sub-blocks both in a L and U matrix. Addresses indicate the
offset of the corresponding block row in block-packed storage. In this example, sub-block dimensions

(sbdim) are 32, matrix dimensions (dim) are 128.

As for the block row offsets, the following formulas can be derived:

 row_offsetL = 162·(1+2+3+…+r) = 162·(r+1)·r/2 elements

 row_offsetU = 162·((dim/16+(dim/16-1)+…+1) – (1+2+3+…+(dim/16-r)))
= 162·((dim/16+1)·(dim/16)/2 - (dim/16-r+1)·(dim/16-r)/2) elements

where r denotes the index of the block row. The pitch inside a block row linearly depends on
the block row index:

 pitchL = 16·(r+1)

 pitchU = dim – (16·r)

Given this, we can easily access any 16×16 block with block-coordinates (r,c) in packed
storage:

 local_block_r_c[y][x] = packed_storage[row_offset + y·pitch + c·16 + x]

where y and x are the row and column coordinates of the elements inside the block.

So, to access the sub-matrices A, B and C, the rows inside those sub-blocks (sbrA, sbrB and
sbr

B

C) need first to be mapped onto the global block rows (rA, rBB and rC). This calculation is
based on the index (sbIdx, s. Figure 48) and block-width of the sub-block (sbbw). The
dimensions of all sub-matrices A, B and C in step i are:

 sbdim = m·2i-1

Conclusively, sbbw amounts to the sub-block dimensions divided by the block width 16:

 sbbw = m·2i-1/16

These variables allow a quite succinct formulation of how to calculate the global block rows
rA, rB and rB C :

 L-matrix:

o rA = sbrA + (1+sbIdx)·sbbw

 53

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

o rB = sbrB BB + sbIdx·sbbw

o rC = sbrC + sbIdx·sbbw

 U-matrix:

o rA = sbrA + sbIdx·sbbw

o rB = sbrB BB + sbIdx·sbbw

o rC = sbrC + (1+sbIdx)·sbbw

These allow us to calculate the aforementioned block row offset, but an additional in-line shift
(s. Chapter 4.3.3) needs to be inserted to reach the correct block position. For the L-matrix,
these are:

 shiftA = 16·2·sbIdx·sbbw

 shiftB = 16·2·sbIdx·sbbw B

 shiftC = 16·2·sbIdx·sbbw.

For the U-matrix, the B and C matrices are lined up at the beginning of block rows, so no in-
line shift is necessary. However, a negative alignment shift is included to account for the “cut-
out” pieces in the triangular sub-matrices:

 shiftA = 16·(2·(1+sbIdx)·sbbw) - 16·sbrA

 shiftB = - 16·sbrB BB

 shiftC = - 16·sbrC

The shift basically maps the sub-block column sbc to the global block column c.

 c = sbc + shift/16

In summary, we obtain the base address of the beginning of the block row in any A, B or C
sub-matrix by adding the shift to the global block row offset:

1. addr_offset = row_offset + shift

Note that both addr_offset and pitch depend only on the sub-block index sbIdx and the sub-
block row sbr. Now we can obtain any 16×16 block in sub-block row sbr and sub-block
column sbc using the pre-calculated addr_offset and pitch:

2. local_block_sbr_sbc[y][x] = packed_storage[addr_offset + y·pitch +sbc·16 + x]

Running through the whole addressing procedure whenever an element in device memory is
accessed would produce an unacceptable overhead, particularly as the GPU has only limited
capabilities when performing integer operations [85]. This is avoided by storing as much pre-
calculated information in the GPU constant memory as possible. Threads can retrieve data
from the constant memory at both high bandwidth and low latency, especially when all
threads in a warp are accessing the same piece of data.

 54

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

For each computation step i, we prepare and upload three look-up tables (LUT) containing the
address offset (addr_offset) and address pitch (pitch) for every sub-block row of A, B and C in
every sub-block.

Given the offset and pitch from the LUT, only a minor effort is required to complete the
address generation of any element with the individual addressing inside the block row. This
reduces the run-time address generation overhead to a level comparable to that usually
produced when using a non-packed format.

4.3.4 Allocation flow
The input data are prepared in the form of a shared LU array in a shared buffer in host
memory. This buffer can be allocated in page-locked memory, which greatly increases
transfer speed to and from GPU memory from ~1.0 GB/s to ~3.3 GB/s over a 16x PCIe 2.0
port. However, the amount of memory that can be allocated that way is limited by the kernel’s
memory region. In our system, we have to switch to pageable buffers for matrix dimensions
greater than 8192. With matrix dimensions that large, the host-device transfers constitute a
relatively small amount of the total execution time (<7%), so the resulting decline in
performance is acceptable.

Once the input buffer is prepared and the CUDA runtime is initialized for both GPUs, two
CPU threads are forked. One processes the lower and one the upper triangular matrix, which
comprises the following work steps:

1. Invert the diagonal sub-blocks of the lower/upper triangular matrix in host memory.

2. Create a buffer of size (dim+16)·dim/2 + dim2/4 in GPU device memory to store the
triangular matrix and temporary working data. Also create a page-locked write
combining buffer in host memory to prepare the address LUTs in for upload to the
GPU constant memory.

3. Upload the lower/upper triangular matrix to the buffer in block-packed format, as
described in Chapter 4.3.2

4. Until the end of recursion is reached, calculate the address LUTs according to Chapter
 4.3.3, upload them to GPU constant cache, and run the L-/U- RTMI kernels described
in Chapter 4.3.1.

5. Download the now fully inverted lower/upper triangular matrix from block-packed
format to the shared array buffer.

6. Free GPU resources and LUT buffer and join threads.

The data and work flow of this procedure are visualized in Figure 49.

 55

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

GPU 1 GPU 2

RTMI(U)RTMI(L)

CPU 1 CPU 2

invert lower
diagonal sub-

blocks

invert upper
diagonal sub-

blocks

Allocate GPU buffers

Upload to block-row
packed format

Download to shared
array

Free GPU buffers

Upload address LUTs
and run kernels until
recursion is finished

GPU 1 GPU 2

RTMI(U)RTMI(L)

CPU 1 CPU 2

invert lower
diagonal sub-

blocks

invert upper
diagonal sub-

blocks

Allocate GPU buffers

Upload to block-row
packed format

Download to shared
array

Free GPU buffers

Upload address LUTs
and run kernels until
recursion is finished

Figure 49: Application data and work flow. Red and blue are the L and U-mtatrices while green and

yellow represent their inverted counterparts.

4.4 Limitations and generalizations
Due to the restrictions introduced by both the algorithm and the implementation, the inversion
routine is directly applicable only to matrices of dimensions dim = m·2k, where k and m are
positive integers and m is additionally a multiple of 16. If, for example, we require a k ≥ 5, our
applicable matrix dimensions are bound to be a multiple of 512. Some dimensions allow
higher values of k, and the highest applicable value should be applied for best performance.

The maximal value of dim is restricted by the on-board memory size of the graphics card. The
GTX 295 has a total of 1.792GB, divided evenly over both GPUs. With the temporary data
buffer, the maximum matrix dimensions on both boards amount to 11776.

To adapt any non-aligned matrix so as to be processed by the routine, the matrix needs to be
“padded” to artificially increase the dimensions to an eligible value. The dimensions of a
square matrix can be inflated by appending the unity matrix of size dimpad - dim in the lower
right or upper left corner (where dimpad is an eligible matrix size) and filling up the rest with
zeros. The inverted padded matrix then contains the inverse of the initial matrix, as depicted
in Figure 50.

 56

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

A

0 I

0 A-1

0 I

0Ã = Ã-1 =

dim dim with padding

A

0 I

0 A-1

0 I

0Ã = Ã-1 =

dim dim with padding
Figure 50: Insertion of data padding to increase the matrix dimensions up to a size eligible for the

inversion routine. I refers to the unity matrix.

Data padding is the method of choice when the matrix size is only short of a few elements.
The overhead grows polynomially with the number of padding rows and columns, according
to the numerical complexity of the TMI.

When the actual matrix dimension is only slightly above an eligible size, it may be more
efficient to “cut out” a smaller matrix of the relevant size and apply the routine to it, as shown
in Figure 51. Using the same rules described as in Chapter 4.2, the remaining rows and/or
columns are updated on the host side using the CPU.

Lr\Ur

X ZL\ZU

Y
L\U =

reduced dim

Lr
-1\Ur

-1

-ZL
-1·X·Lr

-1 ZL
-1\ZU

-1

-Ur
-1·Y·ZU

-1

L-1\U-1 =

dim

Lr\Ur

X ZL\ZU

Y
L\U =

reduced dim

Lr
-1\Ur

-1

-ZL
-1·X·Lr

-1 ZL
-1\ZU

-1

-Ur
-1·Y·ZU

-1

L-1\U-1 =

dim
Figure 51: Size reduction to decrease the matrix dimensions down to a size eligible for the matrix

inversion routine. This refers to a shared LU array. The Z sub-block is also a shared array of this type.

This turns out only to perform better than the padding method for a minority of configurations
where the size simply needs to be reduced by a relatively small amount of rows and columns.
Otherwise, data padding is preferred.

4.5 Benchmarking
We benchmarked our application on a contemporary PC desktop system, equipped with a
commercial dual-GPU NVIDIA graphics card. The configuration of the benchmarking
platform is as follows:

 Intel Core2 6300 CPU @ 1.86 GHz

 NVIDIA GTX 295 graphics card

 4 GB RAM

 57

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

The performance results were compared its performance to that of a CPU-only reference. This
reference application is based on the free FORTRAN library of LAPACK, which offers
highly optimized serial implementations of common linear algebra algorithms [139]. To
further exploit the capabilities of modern CPUs, we use the LAPACK routines in concert with
OpenMP so as simultaneously to invert the lower and upper triangular matrix. The reference
application was run on an Intel Core2 quad Q6600, clocked at 2.4 GHz, in a system with 4
GB of RAM; a much faster model than in the GPU benchmarking platform.

We start by comparing the raw execution times of both our application and the reference. The
measurements include all set-up and clean-up times save runtime initialization. To be precise,
the application benchmarks include the following operations:

 Thread forking

 Memory allocation

 Data upload

 Pre-calculation of the diagonal sub-blocks

 Address LUT calculation and upload

 RTMI kernels

 Data download

 Memory release

 Thread joining

We present benchmarks for all problem sizes that comply with a minimal segmentation depth
of k = 5, higher values of k being applied where possible.

The scaling of execution times is visualized in Figure 52.

 58

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

10

100

1000

10000

100000

1000000

51
2

15
36

25
60

35
84

46
08

56
32

66
56

76
80

87
04

97
28

10
75

2
11

77
6

matrix dimensions

m
s

GPU-TMI LAPACK

Figure 52: Execution times of this application and the LAPACK based dual-CPU reference in milliseconds
(double precision).

We obtain a speedup of up to 57x compared to the LAPACK based dual-CPU reference
application.

Rather than the raw execution times, the throughput in terms of floating point operations per
second is often considered a more expressive measure for the quality of dense linear algebra
implementations as it gives insight in how well the hardware is utilized. We calculate this
from the minimum amount of floating point operations required to process the given problem
size, divided by the total execution time. The scaling of the throughput is visualized in Figure
53.

0

10

20

30

40

50

60

70

80

90

100

51
2

10
24

15
36

20
48

25
60

30
72

35
84

40
96

46
08

51
20

56
32

61
44

66
56

71
68

76
80

81
92

87
04

92
16

97
28

10
24

0

10
75

2

11
26

4

11
77

6

dim

G
FL

O
P

Figure 53: Computational throughput of our application in GFLOPS (double precision).

 59

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

As can be seen, a problem size of dim = 5120 or greater is required for the application to
reach its full potential of over 80 GFLOPS, whereas a peak performance of up to 92 GFLOPS
is achieved. Furthermore, it can be observed that problem sizes that allow a higher
segmentation depth (parameter k) are generally processed slightly more efficiently. This
accounts for the “bumpy” shape of Figure 53 in the saturation region.

The memory requirements per GPU device memory for any given problem size of both the
new version using block-packed storage and the old version using naively aligned storage are
displayed in Figure 54.

0

200

400

600

800

1000

1200

1400

1600

1800

51
2

15
36

25
60

35
84

46
08

56
32

66
56

76
80

87
04

97
28

10
75

2
11

77
6

12
80

0

matrix dimensions

M
B

block-packed storage aligned storage GTX 295 capacity

Figure 54: Memory requirements per GPU device of the TMI routine using memory of block-packed
storage (this version) and naively aligned storage (old version [9]) in megabytes. Red line indicates the

memory capacity of the NVIDIA GTX295 (896 MB per GPU).

We see that the memory savings due to block-packed storage are around 40% for all problem
sizes.

4.6 Discussion
When measuring the performance of our application, we exclusively focused on double
precision computations, which are usually required by scientific applications. To put the
results from our benchmarks into perspective, it is important to note that double precision
support was introduced in the GeForce 200 series GPU as an add-on, with the bulk of the
arithmetic still focused on single precision calculations (s. Chapter 2.4.3). However, we
resisted the temptation to present a single precision benchmark for an application that
typically requires double precision, especially for the relatively large problem sizes discussed
in this work.

To evaluate the quality of our implementation, a comparison with the theoretical peak
throughput of the hardware is helpful. The two GPUs of the GTX 295 add their theoretical
peak throughput up to 149 GFLOPS. A peak performance of 92 GFLOPS is obtained by our

 60

Chapter 4: Dual-GPU accelerated Triangular Matrix Inversion

application, though as stated in Chapter 4.5, this number is based on execution times that
include all kind of overhead from various sources. On top of this, part of the computation,
namely the initial “step 0”, is performed on the much weaker CPU. When we only consider
kernel execution times and the work load of the recursive part of the algorithm, we can gauge
the throughput of the isolated GPU kernels as being up to 70% of the theoretical peak, a
satisfying result considering the inevitable slow-down factors described in Chapter 4.3.1.

The TMI implementation is subject to a few limitations, introduced from both the RTMI
algorithm and the hardware, that need to be addressed for the routine to be of any practical
value. Only input data that constitute a problem size aligned to 2k·m, with k being positive and
m being a positive multiple of 16, can be processed without prior modification. Otherwise, the
input array has to be altered according to Chapter 4.4. Not only does the “padding” data
reorganization create some minor offset of its own (≤ 1% of total computation time), it also
inflates the problem size by up to hundreds of elements. Moreover, the higher the desired
segmentation depth, the more the problem size needs to be artificially increased. The
complexity grows according to the 3rd order polynomial mentioned in Chapter 4.2. While
higher segmentation depth increases the share of computation processed on the GPU and
therefore also overall performance, cutting back on this parameter decreases the intervals
between aligned problem sizes, and potentially the amount of necessary padding. In the
benchmarks presented in Chapter 4.5 we took a minimum segmentation depth of k ≥ 5, so
over 96% of the triangular matrices are inverted on the GPUs, at the cost of having intervals
as large as 512 elements between eligible problem sizes. For these intervals, the worst case
increment in computation time amounts to up to ~15% for large problem sizes (dim ≈ 11000),
up to ~23% for medium problem sizes (dim ≈ 7200), but up to ~60% for small problem sizes
(dim ≈ 3100), where the 512 interval makes a large fraction of the problem size. There is
always a tradeoff between the benefits of higher segmentation depth and the overhead due to
padding. In general, the artificial increase in problem size should be kept to a small
percentage of the actual problem size by reducing the segmentation depth accordingly.

 61

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

5 Multi-GPU accelerated complex Bi-Conjugate Gradient
solver

This chapter documents the second of the three major contributions of this thesis: a numerical
solver for large non-hermitian linear systems, accelerated by multiple GPUs. In contrast to
Chapter 4, it addresses a typical problem from sparse linear algebra. It is implemented on the
desktop supercomputer described in Chapter 2.5.5. Both the GTX 295 and the GTX 480 were
used.

In scientific computing, physical scenarios are often described in the form of partial
differential equations (PDEs), analytical solution of which is rarely feasible. Such problems
are commonly reformulated by discretization of the domain using a finite element, finite
difference or finite volume approach, which produces a sparse linear system to be solved.

The resulting system can be very large which inflates complexity of a direct solution, making
iterative methods appealing. Among these methods, Krylov subspace methods account for
some of the most prominent solvers. Recently, tapping the capabilities of cheap graphics
hardware to accelerate linear solvers has become increasingly popular; in particular, notable
effort has been devoted to the Conjugate Gradient method (CG) [98] [140] [141]. CG is
widely used to solve positive-definite symmetric systems, as produced by elliptic PDE
problems.

In complex number space, the linear system needs to be hermitian for CG to work.
Unfortunately, real-world problems still tend to produce symmetric (hence non-hermitian)
systems, so a complex CG solver has little practical value. Hence, the complex Bi-Conjugate
Gradient (BiCG) method [28] is appealing, in that it does not incur such limitations. Among
the methods we tested, it showed the fastest convergence behavior for our specific problem,
which emerges from the field of medical imaging.

In this chapter, I present a linear solver for structured non-hermitian systems, based on the Bi-
Conjugate Gradient method and implemented on a multi-GPU system. This implementation
combines several established optimization techniques, but also exploits the specific structure
of the algorithm in new ways to further push the limits and outperform more straightforward
implementations. I present benchmarking results of both our multi-GPU accelerated solver
and an equally optimized reference relying solely on multi-core CPUs. Where possible, I also
try to relate our results to similar work from the literature. Finally, an analytical model to
predict the limits of multi-GPU scalability is included.

5.1 Motivation and background
This implementation was created as part of a software framework for EIT forward problem
simulation [4]. This framework includes a complete flow to simulate injected current flows
through the head tissue and electrode contacts, respecting as much anatomical detail as
possible. Not only does it use a very high resolution (~1 mm3), it also includes tissue
anisotropy and uses a realistic electrode model [162]. An example of what is produced by
such a simulation is shown in Figure 55.

 62

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

+

-

scalp

skull

fluid

grey
matter

white
matter

+

-

scalp

skull

fluid

grey
matter

white
matter

Figure 55: Mapping of potentials after current injection, as produced by the EIT forward problem

simulation framework. The color map refers to a logarithmic scale.

The core of the simulation framework is based on a high-resolution anisotropic head model (s.
Chapter 3.2.3). The basic concept of this model is a representation of the subject’s head and
electrode cap as a large regular impedance network, which is obtained by discretizing the
Poisson equation

 (7) (ε· φ) = 0

with Neumann boundary condition ε· φ·n = jk under electrode k and ε· φ·n = 0 elsewhere
on the scalp (s . Chapter 3.2.2.1) . Discretization of (7) is done using the Finite Volume
approach described in [27]. But unlike other bio-electrical imaging methods, EIT gathers
information from measurements at different frequencies, so the permittivity ε is complex and
likewise the solution to the Poisson equation [33].

The main source of individual anatomical information is a Magnetic Resonance Image (MRI)
of the subject. A MRI image consists in a 3D image volume of several million voxels, which
forms the base of our regular FVM grid. Based on associated dielectric parameters from
additional segmentation software and measurement tables, a regular impedance network is
built, aligned to the MRI voxels [27].

For a typical MRI, the network contains several million nodes. Similar to nodal circuit
analysis, the volume conductor model can be described as a linear system

 (8) A · φ = i

where A Є Cn×n is the admittance matrix, φ Є Cn is the potentials at each node and i Є Cn is
the corresponding currents derived from the boundary conditions.

Simulating current flows in the head model implies repeated solution of said linear system on
large sets of input data. For problem sizes with millions of nodes, solution of such systems
can take several minutes on conventional desktop systems. The following chapters will show
that with multi-GPU acceleration, this process can be sped up substantially, making
simulation at this level of detail feasible in the first place [3].

 63

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

5.2 Related work
Some contributions are available that discuss the general problem of solving non-hermitian
systems using parallel architectures, notably [142] and [143], but without presenting GPU-
accelerated implementations. On the other hand, there is other work concerning the GPU
implementation of sparse linear solvers [140] [141] and even the Bi-Conjugate Gradient
method [144], but none of these implementation supports complex coefficients.

Only recently, the inclusion of GPU-acceleration into the PETSc framework has been
initiated, which indeed features a BiCG solver supporting complex numbers. The
implementation however is still at a preliminary stage [145] and no performance analysis has
been published yet.

Articles discussing multi-GPU distribution of linear solvers are also still sparse. The most
relevant one is [147] which treats domain distribution of a regular grid, however it lacks an
analytical discussion of multi-GPU scalability like it is presented in our work.

Leaving the field of complete solver implementations, one might argue that BiCG is
composed mostly of basic subroutines, of which there are optimized GPU-implementations
available, like the NVIDIA-supported CUBLAS library [148]. Furthermore, free routines are
available for sparse matrix-vector products, including banded matrices [146]. I will discuss
the limits of a straightforward subroutine-based implementation in Chapter 5.5.5.

5.3 The complex bi-conjugate gradient method
The following chapter will introduce the algorithm applied to solve the non-hermitian linear
systems produced by the EIT forward problem environment (s. Chapter 5.1), namely the
complex bi-conjugate gradient method [28].

Consider a linear system of the form

 (9) A·x = b

where A is the sparse coefficient matrix, x is the vector of unknowns and b is the right hand
side vector. Provided that A is positive definite, the linear system (9) can be solved by BiCG
via the following steps:

Choose x0 (usually 0 if no better initial guess is available)

r0 = b - A·x0

Choose r’0 = r0

while (|ri| > ε·|r0|)

zi = M·ri-1

z’i = M*·r’i-1

ρi = zi
*·r’i-1

pi = zi + (ρi/ρi-1)·pi-1 // p1 = z1 on first iteration

p’i = z’i + (ρi/ρi-1)*·p’i-1 // p’1 = z’1

 64

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

qi = A·pi

q’i = A*·p’i

αi = ρi / p’*
i·qi

xi = xi-1 + αi·pi

ri = ri-1 - αi·qi

r’i = r’i-1 - αi
*·q’i

where i indicates the iteration index. M is the preconditioner which is not necessarily
implemented as a matrix-vector multiplication, it can also constitute a two-phase solution of
incomplete triangular factors. Preconditioning actually substitutes the linear system (9) with

M·A·x = M·b.

Provided that M·A has a smaller spectral radius than A, introduction of the preconditioner
reduces the number of iterations to convergence. However, the preconditioning step
introduces an additional work load at each iteration, so it must be light enough not to undo the
advantage gained from quicker convergence. In this work, only simple Jacobi preconditioning
was used: the linear systems produced by the target application are very well-conditioned,
thus it outperformed more complex procedures like [147] for our specific application while
still converging to acceptably precise solutions (s. Chapter 5.5.7).

5.4 Implementation

5.4.1 Computational kernels
As described in Chapter 2.6, implementation was done using the CUDA drivers and software
design kit for NVIDIA GPUs [85]. CPU multithreading was controlled using the free Linux
library of OpenMP [132]. A dedicated CPU thread is spawned using OpenMP to handle each
GPU. Synchronization between the data streams is necessary on several occasions to ensure
data consistency. Also, some minor parts of the algorithm are best left to the CPU. Within
these constraints we strive to split computation into as few GPU kernels as possible. This
saves kernel launching overhead and helps maximize GPU occupancy and data locality.
Mapping of the algorithm from Chapter 5.3 into computational kernels on both CPU and
GPU, along with corresponding data I/O, is outlined in Figure 56.

 65

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

Preconditioner
+ partial scalar products

Update p,p’

Stencil operations
+ partial scalar products

Update x; r,r’

Partial norm ||r||

Compute
ρi = <z’,r>
ß = ρi /ρi-1

Compute
α = ρ/<p‘,q>

r,r’

z,z’

p,p’

q,q’

r

α

ß

Σ

Σ

ΣCompute
||r||

||r|| < ε·||r0||? Continue or download x

A

A

Upload A, x0, initialize r’0 = r0 = b - A·x

p,p’

Sync & exchange cross domain data as necessary

Preconditioner
+ partial scalar products

Update p,p’

Stencil operations
+ partial scalar products

Update x; r,r’

Partial norm ||r||

Compute
ρi = <z’,r>
ß = ρi /ρi-1

Compute
α = ρ/<p‘,q>

r,r’

z,z’

p,p’

q,q’

r

α

ß

Σ

Σ

ΣCompute
||r||

||r|| < ε·||r0||? Continue or download x

A

A

Upload A, x0, initialize r’0 = r0 = b - A·x

p,p’

Sync & exchange cross domain data as necessary

Figure 56: Outline of the computation flow of our complex BiCG solver in a CPU/GPU system. Dark grey
kernels (left) run on CPU, light grey kernels (right) run on GPU. Arrows between left and right indicate

memory transfers between RAM and GPU device memories.

Details about these kernels are described in what follows.

5.4.1.1 Stencil operations
The term “stencil operation” refers to a linear mapping that sums data from both a local node
and its defined neighbors, covered by the so-called “stencil” (s. Figure 57).

0 12

6

5

4

3

0 12

6

5

4

3

0 12

6

5

4

3

Figure 57: Node with its 6 neighbors in a regular grid, also called a 7-point stencil.

This can be described as a sparse matrix-vector product (spMV), and in the case of a BiCG it
is requested by the operations

qi = A·pi

q’i = A*·p’i

Sparse matrices are usually stored in a compressed format to reduce memory usage by
skipping as many zero elements as possible. Efficiency of this storage depends on the

 66

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

regularity patterns of the matrix, and not all formats are equally fit for GPU processing [146].
For regular grids however, we can apply the GPU-friendly diagonal format, which is
visualized in Figure 58.

A = ADIA = A = A = ADIA =

Figure 58: Diagonal format for sparse banded matrices.

Address offsets between neighboring nodes are pre-calculated and stored in the GPU constant
cache to save the effort of calculating them at run-time.

The regularity of our grid permits us furthermore to apply the techniques proposed in [149],
where data are processed in parallel inside a horizontal plane which is moving downwards
along the z-axis, as visualized in Figure 59.

dimx

dimy

dimz bsx

bsy

dimx

dimy

dimz bsx

bsy

Figure 59: Processing a 3D grid using a sliding horizontal plane of parallel threads (highlighted in grey) ,

tiled into blocks of bsx × bsy elements.

The plane is composed of a grid of square thread block tiles, where tiling into bsx×bsy =
16×16 blocks was found to offer the highest throughput. This approach enables efficient use
of caching, as each thread block experiences a large amount of data redundancy.

5.4.1.2 Preconditioning
The preconditioning step comprises the operations

zi = M·ri-1

z’i = M*·r’i-1

For the simple Jacobi preconditioning used in this work, the coefficients of M are defined as:

 mij = 1/aij if i==j, 0 otherwise

The operations are again processed using the technique presented in Figure 59.

 67

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

5.4.1.3 Scalar products and residual norm
Due to their communication intensive nature and their high data-to-arithmetic ratio, scalar
products are potential bottlenecks in this algorithm. For both the preconditioning and the
stencil operations, a part of the ensuing scalar product is merged into the same kernel, reusing
the operands (z*·r’ for the preconditioning step, p’*·q for the stencil operation) while still in
on-chip memory. The partial scalar products cover the bsx×bsy×dimz elements of the same
thread block. These sub-products are written back to vector Σ of length (dimx/bsx)×(dimy/bsy),
which is downloaded to host memory and reduced to the final value on CPU. This
heterogeneous approach leaves only the massively parallel part to the GPU and reduces
communication between nodes to the part inside the same thread block, where it is cheap
thanks to the on-chip shared memory. Furthermore it saves additional kernel calls and
comprised off-chip memory accesses.

The global norm of the residual is computed analogously, but need not to be computed at
every iteration; overshooting the instant of convergence by a few iterations is usually well
worth the reduction in computation cost. It is processed in the same way as the scalar
products.

5.4.1.4 Update functions
All update functions are naively parallel vector operations. The updates for solution and
residual

xi = xi-1 + αi·pi; ri = ri-1 - αi·qi; r’i = r’i-1 - αi
*·q’i

are unified into a single kernel to improve occupancy of the GPU. Likewise are the functions

pi = zi + (ρi/ρi-1)·pi-1; p’i = z’i + (ρi/ρi-1)*·p’i-1

5.4.2 Domain distribution
Multi-GPU accelerated desktop systems are based on a complex hierarchy of distributed and
shared memory, which makes it challenging to fully utilize the available processing power. In
general, applications that are load-unbalanced, bandwidth bound or communication-intensive
tend to perform poorly on such systems. Hence, load balancing and data traffic optimization
are imperative for good performance.

The grid is segmented into equal compartments which are divided among the GPU boards.
The solver is then run simultaneously on all GPUs for the corresponding fraction of the
problem size. For best performance, data should be decomposed in such a way that the
compartments cover coherent memory sections. In a regular grid, this corresponds to
horizontal slabs similar to the approach chosen by [147]. Apart from this being easier to set
up, data on “seam planes” are also coherent in memory and can be swapped between GPUs in
two high-speed memory transfers: a single download from device 1 to host followed by a
single upload from host to device 2 (currently, direct device-to-device transfers are not
supported). Additional transfers as required by other decompositions would be penalized by
the transfer initialization overhead [93].

 68

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

This data-swapping is required during stencil operations, as part of the input operands lie
beyond the domain assigned to the respective GPU. Thus a redundant layer has to be added to
each GPU domain in order to hold the said cross-domain elements. Data exchange between
the different memory domains is visualized in Figure 60.

GPU 2 device memory

GPU 3 device memory

Page-locked shared host memory

GPU 1 device memory

GPU 4 device memory

GPU 2 device memory

GPU 3 device memory

Page-locked shared host memory

GPU 1 device memory

GPU 4 device memory

Figure 60: Data-swapping via page-locked shared host memory. Yellow sections in GPU memory indicate

redundant layers.

The constant data exchange between GPU memory domains implies the risk of severely
impeding performance. Fortunately, all the transfers indicated in Figure 60 can be overlapped
with computation, so stalling can be avoided. This is done by segmenting some of the kernels
in such a way that first the elements that need to be transferred are calculated; then the
remaining vector is processed while the transfer is under way. On the receiving end, the
procedure is inverted: elements not needing cross data are processed first while cross-domain
data are being updated from the host-side exchange buffer. With the problem sizes treated in
this work, latencies through data swapping can in this way be almost completely hidden (s.
Chapter 2.6.3.2).

5.4.3 Maximizing bandwidth and instruction throughput
BiCG basically introduces a “mirror image” to all the vectors and vector-to-vector operations
in CG; these are independent from each other and could be performed concurrently,
essentially doubling the parallelism exposed by the method compared to CG. However, BiCG
for the problem sizes treated by our application already offer millions of independent streams,

 69

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

more than enough to utilize a multi-GPU system to full capacity. Instead, we use the
particular structure of BiCG to increase the amount of local data reusage.

The traditional CG is inherently bandwidth limited as the total count of arithmetic is rather
light for sparse systems. For complex BiCG, however, the arithmetic load per node and
iteration is about 8 times higher at only 4 times the I/O. With the bandwidth optimizations
described earlier, we actually reach the point where data feeding is no longer the only limiting
factor and instruction throughput optimization gains higher importance.

The GPU’s arithmetic units reach the highest instruction throughput when performing floating
point multiply-add instructions, so the arithmetic flow should be cast as much as possible in
this kind of operation. The typical operation

 a = a + b·c

a’ = a’ + b*·c’

is processed by the following routine:

BIMAC(ab ,b, cb)

{

ax += bx · cx

ax += -by · cy

ay += bx · cy

ay += by · cx

az += by · cw

az += bx · cz

aw += bx · cw

aw += -by · cz

}

where ab, b, cb are coupled elements cast to GPU built-in vector data types:

 ab = {ax,ay,ay,aw} = { Re(a), Im(a), Re(a’), Im(a’) }

 b = {bx,by } = { Re(b), Im(b) }

 cb = {cx,cy,cy,cw} = { Re(c), Im(c), Re(c’), Im(c’) }

This function only contains multiply-add instructions and two sign changes. It also increase
data re-useage as b need only be loaded once.

5.5 Benchmarking
All performance analysis for the proposed solution is based on experimental measurements of
execution times. This is the usual approach for GPU-based applications where the complexity
and limited public documentation of the hardware make analytical elaboration extremely

 70

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

difficult. Again following custom and practice, we compare the GPU-accelerated solution to a
reference implementation on a contemporary desktop machine.

To make this comparison as fair as possible, the reference implementation must be reasonably
optimized. Ours is based on lightweight OpenMP multithreading [132]. It is run on the same
system as introduced in Chapter 2.5.5 using two quad-core CPUs with Streaming SIMD
Extensions (SSE).

5.5.1 Single-GPU performance
This benchmark focuses on computing performance, so we exclude most problem-related
factors by comparing processing throughput in terms of million nodes per second
(Mnodes/s). We compare several problem sizes emerging from typical MRI resolutions, up to
1923 nodes in the single precision and up to 1283 nodes in the double precision benchmark.
Unfortunately, larger setups exceed the memory capabilities of a single GPU. Comparative
benchmarks for the single and double precision dual-CPU reference and single-GPU
implementation are shown in Figure 61.

Throughput Single Precision

1

10

100

1000

64̂ 3 128̂ 3 192̂ 3

Problem Size

M
no

de
s/

GTX 295 GTX 480 OpenMP

Throughput Double Precision

1

10

100

1000

64̂ 3 128̂ 3

Problem Size

M
no

de
s/

GTX 295 GTX 480 OpenMP

Throughput Single Precision

1

10

100

1000

64̂ 3 128̂ 3 192̂ 3

Problem Size

M
no

de
s/

GTX 295 GTX 480 OpenMP

Throughput Double Precision

1

10

100

1000

64̂ 3 128̂ 3

Problem Size

M
no

de
s/

GTX 295 GTX 480 OpenMP

Figure 61: Single-GPU and dual-CPU solver throughput in terms of Mnodes/s. Analysis was done on cubic

grids derived from common MRI resolutions.

For the benchmarks shown in Figure 61, the solver was accelerated using a single GPU of the
GTX 296 and the GTX 480 type. For problem sizes in the order of millions of nodes, the GPU
is “saturated”, so thread launching overheads and load misbalancing between SMs no longer
have any significant impact. For the larger problems that we tested, the GTX 295 outperforms
the dual-CPU reference by a factor of up to 8x in single precision and by a factor of up to 1.7x
in double precision. A single GTX 480 even achieves over 14x in single precision and up to
7.5x in double precision. In general, for larger problems, better GPU performance could be
observed.

5.5.2 Multi-GPU performance
Next, we examine performance scaling with multi-GPU parallelism. Figure 62 shows the
performance scaling for the addition of up to four GPUs.

 71

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

Single Precision

0

200

400

600

800

1000

1200

1 GPU 2 GPUs 3 GPUs 4 GPUs

M
no

de
s/ 128̂ 3

192̂ 3
256̂ 3

Double Precision

0

20

40

60

80

100

120

140

160

1 GPU 2 GPUs 3 GPUs 4 GPUs

M
no

de
s/

128̂ 3
192̂ 3

Single Precision

0

200

400

600

800

1000

1200

1 GPU 2 GPUs 3 GPUs 4 GPUs

M
no

de
s/ 128̂ 3

192̂ 3
256̂ 3

Double Precision

0

20

40

60

80

100

120

140

160

1 GPU 2 GPUs 3 GPUs 4 GPUs

M
no

de
s/

128̂ 3
192̂ 3

Figure 62: Performance scaling with number of GPUs, for both single and double precision and for

different problem sizes.

The restructuring techniques described in Chapter 5.4.2 provide near loss-less multi-GPU
scaling for almost all set-ups, with an overhead of just around 5% per added GPU for the
largest tested problem size. Using all four GTX 295 GPUs we achieve total speedups vs. the
dual-CPU reference of up to 31x in single precision and up to 7x in double precision. Using
both GTX 480 GPUs, the speedup is 28x in single precision and 15x in double procision.

When speaking about performance scaling with parallelism, it might also be of interest how
the CPU reference scales. A corresponding graph is shown in Figure 63 where the average
throughput is measured in respect to OpenMP thread parallelism.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

Number of OpenMP threads

M
no

de
s

Figure 63: Performance scaling with the number of OpenMP threads of the dual-CPU reference

application.

We see that on the way up from one to eight CPU cores, about 12% performance loss is
observed compared to ideal scaling, more than what was lost in parallel multi-GPU execution.

5.5.3 Arithmetic throughput
For the reasons invoked in Chapter 5.5.1, we decided to measure performance of our solver in
terms of million nodes per second. However, in linear algebra, especially for dense problems,
it is also very common to measure the throughput of arithmetic operations in terms of billion
floating point operations per second (GFLOP/s).

Fortunately, the structure of the algorithm allows a pretty straightforward conversion between
both units: each iteration, 156 flops are required to process one node. Therefore, the

 72

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

arithmetic throughput of a single GTX 295 amounts to around 42 GFLOP/s, while up to 167
GFLOP/s can be achieved using all four GPUs. A single GTX 480 achieves over 62
GFLOP/s, and up to 125 GFLOP/s can be observed when using both GPUs. Single-GPU
double precision throughputs amount to 5.8 and 21.7 GFLOP/s per GPU, scaling up
accordingly to 22.8 GFLOP/s on four GTX 295, and 43.3 GFLOP/s on two GTX 480.

5.5.4 Comparison to other work
While no exact counterpart exists in literature, comparison to similar applications can at least
give an idea of the efficiency of the implementation. For example, for the concurrent number
cruncher [140], a speedup of only 6x is reported compared to one CPU, though they were
using an 8800 GTX graphics card, with a GPU roughly half as powerful as ours. The multi-
algorithm solver from [144] claims to outperform a mono-core CPU reference by 20-25x,
also using a 8800 GTX GPU. Note that our reference fully uses two CPUs, four cores each.

Rather than speedups versus CPU, the arithmetic throughput (s. Chapter 5.5.3) can be
considered more unbiased for comparison. The CGS and BiCGStab solvers from [150]
achieve peak throughputs of 16 and 18 GFLOP/s, the banded sparse matrix product from
 [146] achieved up to 36 GFLOP/s with caching, both using a slightly more powerful GPU
model (a GTX 280) than ours. The benchmarks of [141] speak of 11.6 GFLOP/s on a single
8800 GTS, a device roughly 40% as powerful as our GTX 295, so putting this into
perspective one might expect at most 30 GFLOP/s on a comparable GPU.

Looking at the performance reports of these solutions and taking into account the hardware
they were using, we can summarize that our solver runs significantly more efficiently than
related implementations.

5.5.5 Comparison to CUBLAS/CUSP
As mentioned in Chapter 5.2, there are optimized library routines for basic linear algebra
operations, most notably the vendor-supported CUBLAS library that comes with the CUDA
software design kit [87]. Moreover, there are optimized implementations for banded matrix-
vector products [146], made public in the open-source CUSP (for “CUDA Sparse”) library. A
simple single-GPU BiCG solver can be implemented depending only on these libraries.
However, just putting together optimized subroutines does not yet result in an optimized
program. Complex BiCG offers many ways to save overhead and data traffic by fusing
computation on a low level (s. Chapters 5.4 and 5.4.3), and a considerable performance boost
can be obtained by doing so. In fact, we observed a speedup of around 40% when comparing
our solver to a simple CUBLAS/CUSP reference implementation. The gap was slightly
stronger for smaller problem sizes than for larger ones, since the impact of having
unnecessary launch overheads and synchronization decreases with problem size.

5.5.6 Profiling
As mentioned earlier in Chapter 5.4.1, some parts of the algorithm perform more efficiently
than others. I used the vendor-supplied profiling tool, the NVIDIA Visual profiler, to gain

 73

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

insight into the bottlenecks of this implementation. Figure 64 shows an analysis of the time
share of each GPU kernel on the total execution time, kernel launching overhead comprised.

Single Precision

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

64̂ 3 128̂ 3 192̂ 3

cube size

tim
e

sh
ar

e
(%

Inorm_kernel

Jacobi_prod_kernel

updatep_kernel

updatexr_kernel

spMV_prod_kernel

Double Precision

0%

20%

40%

60%

80%

100%

64̂ 3 128̂ 3

cube size

tim
e

sh
ar

e
(%

Inorm_kernel

Jacobi_prod_kernel

updatep_kernel

updatexr_kernel

spMV_prod_kernel

Single Precision

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

64̂ 3 128̂ 3 192̂ 3

cube size

tim
e

sh
ar

e
(%

Inorm_kernel

Jacobi_prod_kernel

updatep_kernel

updatexr_kernel

spMV_prod_kernel

Double Precision

0%

20%

40%

60%

80%

100%

64̂ 3 128̂ 3

cube size

tim
e

sh
ar

e
(%

Inorm_kernel

Jacobi_prod_kernel

updatep_kernel

updatexr_kernel

spMV_prod_kernel

Figure 64: Time share of each GPU kernel on the total execution time, for different problem sizes and

both single and double precision.

Unsurprisingly, the kernel covering the sparse matrix-vector multiplications and ensuing
partial scalar product (spMV_prod_kernel, Chapters 5.4.1.1 and 5.4.1.3) takes the largest
time share of all kernels, especially in double precision: after all, it covers the largest part of
the arithmetic. What is notable, however, is the relatively large time share of the update
functions (Chapter 5.4.1.4), considering that they are both computationally low-cost and
naïvely parallel. One reason for this is that they are too light to run efficiently on the GPU,
causing kernel launching overhead and off-chip memory latencies to take a disproportionate
share of the total execution time. Also, these kernels are strongly I/O limited. Details will be
discussed in Chapter 5.6.

The kernel covering preconditioner and ensuing partial scalar product (Jabobi_prod_kernel,
Chapter 5.4.1.2) has only a minor impact with a mere 10% approx. of the total execution
time. This can also serve as an estimate of the overall impact scalar products have in this
implementation, as the kernel does little else than this.

5.5.7 Convergence behavior
As expected, single precision performance is way higher on the GTX 295 than double
precision performance. However, in the view of the well-known draw-backs of single
precision in scientific applications [151], this benchmark would not be complete without
analysis of convergence behavior for both implementations. Figure 65 traces the development
of the residual and the error over iteration count, for a real-world problem emerging from the
application field introduced in Chapter 5.1.

||b-A·xi|| is the l2 norm of the residual and ||xi-xr|| is the l2 norm of the deviation of the found
solution x to the (in this experiment known) correct solution xr , at the time of iteration i.

 74

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

1,00E-09

1,00E-08

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E+01

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

iteration

l2
-n

or
m

SP ||x-xr||
SP ||b-Ax||
DP ||x-xr||
DP ||b-Ax||

Figure 65: Convergence behavior for solution of a real-world mid-sized problem (4.8 million nodes), using

both single (SP) and double precision (DP).

The convergence rate is nearly identical down to a certain level, where single precision is no
longer able to approach the right solution. Our single precision implementation was able to
find solutions for a tolerance ε = ||ri|| / ||r0|| as low as 10-5, which should be enough for most
applications. The double precision implementation, on the other hand, managed to approach
the right solution down to an ε as low as 10-8.

There is a simple explanation for the stagnation in single precision: cancellation. As the
algorithm approaches the right solution, the addend to x in the update kernel becomes so small
that the mantissas no longer overlap; hence nothing is added at all.

Note that the GTX 295 GPUs used in this work have an approximately 6x higher throughput
in single precision than in double precision, owed to the fact that there are eight times more
single precision units than double precision units (s. Chapter 2.4.3). If lower tolerances are
required, it is worthwhile computing an intermediate solution for ε = 10-5, followed by a
refinement step in double precision. For the example in question, a tolerance of ε = 10-8 can be
matched with this mixed approach by performing 330 iterations in single precision, followed
by 240 iterations in double precision. This saves ~40% computation time compared to the
direct approach performing all 470 iterations in full double precision.

5.6 Discussion
The results presented in this work give rise to several questions that will be addressed in what
follows. First, let us discuss the bottlenecks in this application. In single precision, the
theoretical maximum throughput of both GPU models is very high compared to the off-chip
memory bandwidth. For example, to fully load all single precision units of a GTX 295, it
would take a ratio of 16 operations per word of DRAM I/O. With the small on-chip storage, it
is almost impossible to become compute-limited with any realistic linear algebra application,
as opposed to double precision where the ratio is around 5.4. For the GTX 480, the ratio is

 75

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

about 15 for both precisions. These values can be calculated from the bandwidth and
throughput of the devices [93].

Wherever possible, I merged the operations of BiCG to optimize on-chip data reusage. As a
weak spot in the flow there remain the update kernels (Chapter 5.4.1.4), scaled vector
additions that do not leave room for such optimizations and thus are highly bandwidth limited
(~0.75 operations per word of DRAM I/O). In fact, in Chapter 5.5.6 we found that they
accounted for a disproportionate amount of the total execution time. The share is lower in
double precision where bandwidth limitation is generally less of an issue.

Another important aspect is multi-GPU scaling, which is directly related to the investment
payoffs of hardware upgrades. Ideally, performance should grow proportionally with the
number of GPUs. From one to two GPUs, the speedup was near ideal with >1.98x. We were
using up to four GPUs and experienced speedups from 3.12x to 3.90x depending on the
problem size, with larger problems gaining greater benefits from using more GPUs.

There are two limiting factors to performance scaling with parallelism. The first is the
application itself. For the largest part of the algorithm, the problem sizes treated in this work
offer enough parallelism to easily fill the capacities of several GPUs but there are also serial
parts and scalar products, which according to Amdahl’s law inhibit ideal performance scaling
(s. Chapter 2.2).

The second limiting factor is hardware. Stencil operations require communication between
adjacent nodes. Such data exchange is cheap inside the same thread block: threads running on
the same stream multiprocessor can take advantage of the on-chip shared memory.
Communication between blocks enforces passing data through off-chip DRAM which entails
long access delays (~400-600 clock cycles), and launching a new kernel is the only mean of
inter-block synchronization.

Communication between different GPUs, however, is much more expensive. Data need to be
downloaded via the PCIe 2.0 interface to host RAM, and then uploaded to the other device.
No direct GPU-to-GPU communication is available at the moment. The domain distribution
presented in Chapter 5.4.2 aims to optimize this bottleneck, though the host RAM still needs
to serially buffer

(NGPU·2-2)·dimx·dimy

data elements every iteration. Host-device transfer speeds are partially dependent on the main
board chipset; in our system, the PCIe 2.0 interface can transfer at a maximum rate of ~3.3
GB/s via page-locked memory, as revealed by the bandwidth test sample application [87].
This allows us to calculate the minimum time to upload or download all cross-GPU data to
the host buffer for various problem sizes, with respect to the number of GPUs, which is
shown in Figure 66.

 76

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7 8

#GPUs

m
s

128 3̂

192 3̂

256 3̂

Figure 66: Minimum one-way transfer times (milliseconds) to or from host buffer, for different cube sizes

and up to eight GPUs (single precision)

As described in Chapter 5.4.2, we segment the surrounding kernels to allow overlapping of
these transfers with GPU computation. The ensuing kernels overlapping with upload are fairly
large; however, the computation part which can be run concurrently with data download
accounts for only approximately 15% of the total GPU computation time, so let us focus on
this part as the limiting factor for multi-GPU scaling. These computation times are outlined in
Figure 67.

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7 8

#GPUs

m
s

128 3̂

192 3̂

256 3̂

Figure 67: Approximate computation time in ms of that can be overlapped with GPU data download to

host buffer (single precision)

Comparing both graphs, we notice that for the problem sizes and numbers of GPUs tested in
this work the computation times are always long enough to cover the transfer times, with the
exception of 1283 nodes on 4 GPUs where the margin gets dangerously small. And indeed it
appears from Figure 62 that we get a degraded speedup for this particular configuration. Note
that this analysis assumes ideal conditions and ignores run-time and driver overheads, so
having a safety margin of a few hundred microseconds (which is the order of these overheads)
is advisable.

Let us extended this analysis to up to eight GPUs to explore the limits of multi-GPU scaling.
According to this extrapolation, near-lossless scaling would still be feasible for six GPUs
processing large problems (≥ 2563 nodes). For smaller problems or more GPUs, some amount
stalling is inevitable. If it were possible to transfer data directly from GPU to GPU without
passing the host RAM, transfer times would no longer grow linearly with the number of
GPUs, allowing efficient multi-GPU parallelism on a much larger scale.

 77

Chapter 5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver

Note also that for double precision, the transfer time doubles but the computation time of the
corresponding kernel increases by over 4.5x. Taking these factors into account, efficient
scaling should be possible for up to eight GPUs, if the problem spans at least 2563 nodes.

Another strong field for improvement is preconditioning. Modern iterative solvers are rarely
used without a preconditioner, which can greatly reduce the time to convergence as well as
the numerical stability. The most prominent examples are based on incomplete factorization
and solution of the sparse triangular systems. However, while very effective on serial
computers, efficient implementation of these preconditioners on GPUs has proven extremely
difficult. GPU-based iterative solvers are usually based on very simple solvers with high data
locality, but at the time of writing, no solution was found to bring significant improvement in
net computation time over the Jacobi preconditioner, probably because our base problem is
not ill-conditioned enough for more complex solutions to pay off.

 78

Chapter 6: cudaEEG: real-time 3D source localization software

6 cudaEEG: real-time 3D source localization software
This chapter describes the third major contribute of this thesis, the cudaEEG software. In
contrast to the solutions presented in Chapters 4 and 5, this implementation targets the EEG
inverse problem, which was introduced in Chapter 3.2.2.2. In a nutshell, cudaEEG allows
real-time localization and 3D-visualization of neuronal sources from EEG data, using the
GPU for both data elaboration and in-place graphics rendering of the results. It is targeted at
weaker GPUs, like older models in lower-end workstations or the GPUs in mobile computers.

6.1 sLORETA inverse estimator
The cudaEEG software is based on the sLORETA linear estimator (4) for EEG source
imaging [43]; the algorithm is described in Chapter 3.2.2.2. Implementation is done in two
parts:

1. Construction of the inverse estimator, i.e. the transition matrix T and the
standardization matrix V. This needs to be done once per target subject and electrode
configuration.

2. Using the estimator to map electrode recordings to estimated source distributions in
the brain (Ĵ Φ). This needs to be performed for every time instant. Hence, it is only
this step that underlies real-time constraints.

Part one is relatively light rarely taking more than a minute. GPU acceleration is still
worthwhile in respect to future frameworks where the lead field is adjusted dynamically and
because the basic building blocks can be reused for other linear estimators. The following
operations need to be implemented:

 T = KT·(K·KT+α·I)-1

and

 V = diagonal concatenation of all [Sll]-1,

where Sll are the NV diagonal 3×3 sub-blocks of S = T·K.

The GPU implementation has two bottlenecks. One is the matrix-matrix product K·KT. It
suffers from the fact that the matrix K is “long and thin” spanning 3·NV×NE elements where
NV >> NE: there are at most a few hundred electrodes, but there can be hundred thousands of
voxels. Hence, the product consists of few but very long scalar products. Naïve
implementation thereof offers only NE

2 parallel streams of length 3·NV; however, this ratio can
be improved by introducing a two-stage parallel reduction to the scalar products. The other
bottleneck is the matrix inversion. With NE×NE elements, the matrix is much too small to
make GPU-accelerated inversion profitable. For these small magnitudes, the fastest solution
was found to outsource the operation to the CPU. The work flow of the implementation is
displayed in Figure 68.

 79

Chapter 6: cudaEEG: real-time 3D source localization software

M = K·KT + α·IL = Cholesky(M)
M

M-1

T = KT·M-1

Compute
V K,T

Load and upload K

Download and save T and V

T

T,V

K

L-1 = inv(L)

L

M-1 = L-T ·L-1

L -1

αM = K·KT + α·IL = Cholesky(M)
M

M-1

T = KT·M-1

Compute
V K,T

Load and upload K

Download and save T and V

T

T,V

K

L-1 = inv(L)

L

M-1 = L-T ·L-1

L -1

α

Figure 68: sLORETA work flow for computation of the inverse estimator. The blue parts (left) are

processed on the CPU while the yellow parts (right) are handled by the GPU.

What regards the real-time part, the sensor array measurement φ(t) of each time frame needs
to be mapped to the estimated current densities Jest(t) by

 Jest(t) = T·Φ(t)

and then standardized to the current density powers Ĵ(t) by

jl,std (t) = jl,est(t)T·Vl·jl,est(t)

for all j = 1...NV. This is the result that is later mapped to the output.

Being based on matrix-vector products, this part is rather straightforward to implement.
However, data reusage is limited and the arithmetic-to-data ratio is not high enough to
overcome the bandwidth limitation to which GPU applications are extremely prone to. Hence,
data are cast into a format that allows optimal bandwidth utilization according to Chapter
 2.6.3.2: firstly, the matrix rows are “padded” to align the length of each row to a multiple of
the warp size of 32, as shown in Figure 69.

T_GPU

NV

ceil(NV/32)*32

NE rows

V_GPU

NE rows
T_GPU

NV

ceil(NV/32)*32
“padding”“padding”

standardstandard V_GPU
Figure 69: Data padding.

Secondly, the 3-element vectors are cast to 128-bit aligned data structures: not only are 128-
bit transfers slightly faster than 32-bit transfers [93]. In combination with the padding
technique, this also ensures that the memory accesses of each half-warp always aligned to
128-byte data segment. Ignoring this rule can result in a drop in memory access speed of up to
90%, so the benefits more than make up for the 25% increase in data size [93]. The alignment
of the Tij and Vj elements is shown in Figure 70.

 80

Chapter 6: cudaEEG: real-time 3D source localization software

X Y Z X Y Z W

XX XY XZ XX XY XZ XW
YX YY YZ YX YY YZ YW
ZX ZY ZZ ZX ZY ZZ ZW

T_GPU(i,j)

V_GPU(j)

X Y Z X Y Z W

XX XY XZ XX XY XZ XW
YX YY YZ YX YY YZ YW
ZX ZY ZZ ZX ZY ZZ ZW

T_GPU(i,j)

V_GPU(j)

Figure 70: 128-bit alignment of Tij and Vj data elements.

The application is embarrassingly parallel (s. Chapter 2.2), so performance scales roughly
linearly with the product of NE and NV. But even with very high voxel resolutions, real-time
requirements were easily matched. Our heaviest configuration with 59 electrodes and 195391
voxels (discretization of grey matter at a resolution of ~1.4 mm) still performed at over 200
time frames per second on an 8800 GTS GPU – including 3D visualization. The speedup
versus a 1.86 GHz Intel dual-core CPU was around 15x. For fluent real-time visualization, a
frame rate of 30 is usually considered the minimum; for more than 60 the viewer hardly
observes any further improvements.

6.2 Graphical user interface
Since the source reconstruction is done in GPU memory, only the sensor array vector needs to
be uploaded every time frame. This alleviates traffic on the GPU-host interface by up to three
orders of magnitude.

For visualization, the standardized current density powers are mapped to a color scale. The
3D visualization also needs voxel positions and the originating MRI image to allow
anatomical association of source activity. Visualization is based OpenGL, an open and
portable graphics rendering API [153]. The dependencies and data movements are shown in
Figure 71.

GPU

EEG time frames

Graphics Card
Display

MRI

MRI

Voxel positions

EEG source
localization

OpenGL
renderer

GPUGPU

EEG time frames

Graphics Card
Display

MRI

MRI

Voxel positions

EEG source
localization

OpenGL
renderer

Figure 71: cudaEEG software dependencies and data movements.

The 3D visualization is based on a point-based rendering technique. This means that every
voxel is rendered as a point, as opposed to interpolating triangulated surfaces. It is very
popular in biomedical data visualization [154]. Anatomical structures are mapped on the

 81

Chapter 6: cudaEEG: real-time 3D source localization software

image by directly applying the raw MRI image as a 3D texture. This approach dynamically
adapts to any MRI and voxel discretization without any additional pre-processing.

The software opens two windows: one containing the 3D view of the source estimation
mapped on the brain model, the other providing a 2D interface to examine and navigate the
EEG recordings. When in free navigation mode, the 2D interface can be used to select the
time instant to be processed by sLORETA. The graphics output of cudaEEG is shown in
Figure 72.

Figure 72: cudaEEG graphical user interface output.

The 3D view allows rotation of the brain model and examination of single slices. The 2D
view supports zooming and panning through the EEG recordings. Slow-motion animation is
also possible. A pop-up menu allows easy configuration.

6.3 Shrinking standardized LORETA-FOCUSS
The sLORETA linear estimator is an established solution in EEG source imaging because it
produces decent results at a moderate computational cost. It has its weak points, though:
sLORETA is often criticized for producing blurred images that make it hard to distinguish
close focal points. This issue is inherent in l2-norm based estimators. As described in Chapter
 3.2.5, some iterative refinement methods have been developed to remedy these drawbacks
without falling back to another form of error-term minimization. However, this requires the
estimator to be recomputed at run time, which multiplies the computational cost. With
sLORETA running much faster on the GPU than actually required for real-time visualization,
the feasibility of a more complex linear estimator was explored, namely the shrinking
standardized LORETA-FOCUSS (SSLOFO) [45] which was also introduced in Chapter
 3.2.5.

SSLOFO iteratively updates a weighting matrix based on the solution found in the previous
iteration:

 82

Chapter 6: cudaEEG: real-time 3D source localization software

Wi = diag(Jest,i-1)·P with Jest,i-1 = Ti-1· Ф(t) and P = diag(KT·K)-1

A sLORETA solution is used as initialization. Using this weighting matrix, the transition
matrix is recomputed using a Weighted Minimum Norm (WMN) approach and applied to
obtain an updated solution. This solution is smoothed to avoid trapping in local minima; in the
same turn voxels showing low activity under a certain threshold are removed from the
solution space and will no longer be considered in construction of the next estimator. This
loop is repeated until an arbitrary stopping criteria is matched, which [45] suggests to be

1. no change to the previous iteration

2. solution is less sparse than in the previous iteration

3. any focal point exceeds a user-defined threshold

None of these are feasible under real-time constraints, as the duration of processing one time
frame would be undetermined. Instead, a fixed iteration count was used in the
implementation.

6.3.1 Implementation
What regards the implementation, the subroutines from Chapter 6.1 could be reused with
small modifications. Smoothing is applied via a simple median filter, and the shrinking is
done by setting the corresponding weight of the excluded voxel to zero. This efficiently
removes the point from solution space without introducing any divergence in the parallel data
flow. As threshold, 5% of the global peak was chosen. The heterogeneous implementation of
the algorithm is displayed in Figure 73.

Mi = K·Wi·Wi·KT + α·I

Ti = Wi·Wi·KT·Mi
-1

Jest,i = Ti·Φ(t)

Ti

Wi

L = Cholesky(Mi)
Mi

Mi
-1

L-1 = inv(L)

L

Mi
-1 = L-1·L-T

L -1

i = i+1
Wi Jest,i-1,K

Jest,0

Jest,0 = TsLORETA·φ(t)
Φ(t)

break?

Jest,i

Jest,i

smooth(Jest,i)
shrink(W,i)

Vi K,Ti
Ĵ(t) Jest,i,Vi

Ĵ(t)

yes no

Upload Φ(t)

Download
or

visualize

Mi = K·Wi·Wi·KT + α·I

Ti = Wi·Wi·KT·Mi
-1

Jest,i = Ti·Φ(t)

Ti

Wi

L = Cholesky(Mi)
Mi

Mi
-1

L-1 = inv(L)

L

Mi
-1 = L-1·L-T

L -1

L = Cholesky(Mi)
Mi

Mi
-1

L-1 = inv(L)

L

Mi
-1 = L-1·L-T

L -1

i = i+1
Wi Jest,i-1,K

Jest,0

Jest,0 = TsLORETA·φ(t)
Φ(t)

break?

Jest,i

Jest,i

smooth(Jest,i)
shrink(W,i)

Vi K,Ti
Ĵ(t) Jest,i,Vi

Ĵ(t)

yes no

Upload Φ(t)

Download
or

visualize
Figure 73: Heterogeneous implementation of the SSLOFO algorithm. Blue steps are processed on the

CPU; yellow tasks are handled by GPU.

 83

Chapter 6: cudaEEG: real-time 3D source localization software

Note that the initialization phase where K is uploaded and the constant P is computed is not
included in this diagram.

6.3.2 Performance
SSLOFO is much heavier than sLORETA, so a closer performance evaluation is necessary to
see under which conditions real-time processing is still feasible. The implementation was
benchmarked on a system using a NVIDIA 8800 GT graphics card and an Intel Core2 6300
CPU. Configurations using voxel resolutions between ~4000 to ~32000 were measured, in
combination with electrode caps of 32, 64 and 128 electrodes. Computation times for these
configurations per SSLOFO iteration are shown in Figure 74.

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

3939 6430 8068 12980 15860 32032

#voxels (NV)

m
s

NE = 32 NE = 64 NE = 128

Figure 74: Computation time in milliseconds per SSLOFO iteration.

Assuming that at least two iterations are required to substantially increase sparsity of the
solution, we see that only the 32 electrode configuration is fast enough to provide a frame rate
suitable for real-time visualization. For 64 electrodes, only very low voxel resolutions can be
processed barely fast enough on this GPU. For 128 electrodes the solver is way to slow even
for low resolutions. Profiling of the application has revealed that the CPU-based inversion
part quickly becomes a bottleneck with increasing electrode count, as its complexity grows
cubic while the complexity of the GPU-parts only grow quadratic with this number. For 64
electrodes, the inversion already accounts for 55% of the total computation time, and it
becomes even more dominant for higher values.

Compared to a serial CPU-only implementation, the observed speedup was around 20x for
most configurations and up to 30x in the best case, while larger problem sizes also yielded
higher speedups. Still, SSLOFO is not fast enough to process the high resolutions used in
cudaEEG and is at the moment not integrated in the software.

6.4 Deriving neuron orientation from MRI
The low spatial resolution of EEG source imaging is owed to the fact that the inverse problem
is extremely underdetermined: a low number of signals is used to compute a spatial source
distribution of thousands of discreet points. Increasing electrode count slightly alleviates the

 84

Chapter 6: cudaEEG: real-time 3D source localization software

problem, but also increases system cost and the effort of applying the electrode cap. There are
also physical limits on how many electrodes can be mounted on the head; when more than
70% of the scalp surface is covered, the interference starts making the measurements
increasingly defective. The state-of-the-art maximum is about 300 electrodes, still a drop in a
bucket considering the many degrees of freedom in the inverse problem [155].

To improve quality of the inverse solution, it is therefore crucial to infer as much anatomical a
priori information as possible. As outlined in Chapter 3.2.4, some of these can be obtained
from the subject’s MRI image. We already use the MRI to constraint the solution space to the
cortical grey matter, which alone is capable of generating electrical source activity.

If also the orientation of each voxel were known, the degrees of freedom could be instantly
reduced by 2/3, leading to a great improvement in spatial resolution. The problem is getting a
reliable estimate for said orientations. However, while neurons can be cross-wired
unpredictably within the brain, the sources that can be detected by EEG are exclusively
pyramidal cells directed orthogonally to the cortical surface, which according to [157]
accounts for ~85% off all neuron in the cortical grey matter. It is therefore feasible to derive
the voxel orientation from the orientation of the cortical surface around it. This too can be
obtained from MRI in a successive processing step as displayed in Figure 75.

MRI Volume
(3D image)

Dipole
Locations

Dipole
Orientations

MRI Volume
(3D image)

Dipole
Locations

Dipole
Orientations

Figure 75: Deriving anatomical priors from MRI.

There are two alternative methods to obtain these data from MRI, which will be described in
the following.

6.4.1 Derivation from MRI luminosity gradient
One method is to directly retrieve these orientations from the luminosity gradient at the point
of the voxel inside MRI, as suggested by [36]. This approach is based on the observation that
the layers of grey matter have slightly different luminosity levels in MRI, and there is an even
greater gradient at the transition to other tissue types. Provided good resolution and low noise,
the gradient can be used to form voxel orientations perpendicular to the cortical surface as
shown in Figure 76:

 85

Chapter 6: cudaEEG: real-time 3D source localization software

Figure 76: Luminosity gradient in cortical grey matter regions of MRI.

However, even a small amount of noise can have a devastating impact if only the gradients
between two pixels are considered. This is a common problem in image processing where
computation of resilient gradient maps is integral part of edge detection algorithms. It is often
addressed by gradient averaging operators like the Frei-Chen operator [158]. Extending the
principle to three dimension yields the following 3×3×3 operators for retrieval of averaged
gradients in the x-, y, and z-direction (s. Figure 77).

-1

-√2

-1

0

0

0

1

√2

1

-1/√2

-1

-1/√2

0

0

0

1/√2

1

1/√2

-1/√2

-1

-1/√2

0

0

0

1/√2

1

1/√2

1

-1

0

1

-1-√2

√2

0

1

0

-1

00

1

0

-1

0

1/√2 1/√2

-1/√2 -1/√2

1/√2 1/√2

-1/√2 -1/√2

00

0

0

0

0

00

0

1

1

1

1-1

-1

-1

-1

-1/√2 -1/√2

-1/√2 -1/√2

1/√2 1/√2

1/√2 1/√2

00-√2 √2

X-direction

Y-direction

Z-direction

-1

-√2

-1

0

0

0

1

√2

1

-1/√2

-1

-1/√2

0

0

0

1/√2

1

1/√2

-1/√2

-1

-1/√2

0

0

0

1/√2

1

1/√2

1

-1

0

1

-1-√2

√2

0

1

0

-1

00

1

0

-1

0

1/√2 1/√2

-1/√2 -1/√2

1/√2 1/√2

-1/√2 -1/√2

00

0

0

0

0

00

0

1

1

1

1-1

-1

-1

-1

-1/√2 -1/√2

-1/√2 -1/√2

1/√2 1/√2

1/√2 1/√2

00-√2 √2

X-direction

Y-direction

Z-direction
Figure 77: 3×3×3 Frei-Chen operators for 3D gradient averaging.

These operators are applied in each voxel position to retrieve the 3-element orientation vector,
which is then rescaled to unity length. Being an image processing method, this procedure
maps intuitively on the GPU; the processing time is in the range of a fraction of a second.

The image gradient method requires a certain quality of the MRI image. In low-resolution
images, it can happen that some characteristics are only one or two pixels wide. In that case,
the method fares poorly, producing a large number of erroneous priors. To cope with these
limitations, an alternative method was devised, which is described in Chapter 6.4.2.

6.4.2 Derivation from pial surface mesh
One of the solutions to the EEG forward problem that were discussed in Chapter 3.2.3
involved deriving triangulated mesh models of scalp, skull and brain, from which a multi-

 86

Chapter 6: cudaEEG: real-time 3D source localization software

layered head model was constructed. As mentioned earlier, meshes were obtained from MRI
using a third-party software called freesurfer [163] [164].

The innermost of those three meshes, the brain mesh, describes the surface of the pia mater.
Precisely enclosing the voxel space, this mesh can be reused for deriving the voxel
orientations. This is done in the following way: each voxel scans through the surface triangles
to find the triangle closest to itself. This triangle’s normal vector is applied as the voxels
orientation. The principle is shown in Figure 78.

voxels

Pial
surface
mesh

voxels

Pial
surface
mesh

Figure 78: Deriving voxel orientations from pial mesh surface.

The result is a very smooth orientation map for all voxels. Again, the procedure is
embarrassingly parallel, containing simple geometric operations. The GPU implementation
runs just as fast as the image gradient variant.

To the best of my knowledge, no other solution exists that uses exactly this approach.
However, [165] use an approach where they directly retrieve the voxels from the centroids of
each surface mesh triangle, along with the normal vector as its orientation. This solution has
the disadvantage that it does not result in a uniform discretization of grey matter as solution
space.

6.4.3 “Fuzzy” orientation priors
Knowing the orientations has a great effect on constraining the solution space; however, there
is also a drawback. The orientation of a current dipole has a strong effect on which electrodes
are significantly influenced through the lead field. Thus, even small deviations from the
correct orientation result in large errors in the model.

Given the sensitivity of the model to these parameters, it would be risky to apply them as
strong priors, i.e. removing other orientations altogether from the solution space. A much
better approach is to apply them as weak priors, where solutions defying the estimated
orientation are derated, but still incorporated in the solution space.

This implementation proposes an approach where parts of the solution not complying to the
orientation priors are attenuated, but not left out, thus putting “fuzzy” constraints on the
solution space. This is done by calculating the transition matrix as a weighted minimum norm
like in FOCUSS (s. Chapter 3.2.5).

 (10) Tfuzzy = W· WT·KT·(K· W· WT·KT+α·I)-1

 87

Chapter 6: cudaEEG: real-time 3D source localization software

such that W penalizes deviating orientations by a large percentage. Note that in this case, W is
not a diagonal matrix like in FOCUSS and SSLOFO, but a matrix of 3×3 diagonal sub-blocks:

 W = diagonal concatenation of all Wll, with l = 1..NV

The NV sub-blocks are calculated by

 Wll = (rl, al, bl)T

where r = (rl,x, rl,y, rl,z) is the orientation vector of voxel l. The other two rows of each of 3×3
diagonal sub-blocks are defined as

 al = (al,x, al,y, al,z) = γ · (rl,x, 0, -rl,x
2/ rl,z)

 bl = (bl,x, bl,y, bl,z) = γ · (rl,y ·al,z, rl,z ·al,x - rl,x ·al,z, -al,x·rl,y)

The scalar γ denotes the attenuation factor for deviating solutions. Note that after this
transformation, the 3-element vectors of each voxel are no longer aligned to the common
Cartesian grid. Anyway, those vectors are standardized to current density powers in the end,
so this alignment change does not affect the final solution.

Again, application of the weighting is embarrassingly parallel on a per-voxel basis, so the
computational effort hardly increases in respect to normal sLORETA. The transition matrix
needs only be computed once, so for the real-time part, this enhancement is even for free.

Compared to the default solution with unknown orientation, introduction of these priors leads
to a spatially much sparser and “sharper” solution. Forcing orientations however also makes
the solution very prone to errors. A comparison between results for unknown, forced and
fuzzy orientation priors is shown in Figure 79.

Unknown
Orientations

blurry error-prone

Forced
Orientations

Fuzzy
Orientations

Unknown
Orientations

Forced
Orientations

Fuzzy
Orientations

blurry error-prone
Figure 79: Impact of fixed and fuzzy orientation priors compared to unknown orientations. The

penalization factor in this example is 70%.

All three images display source estimations for the same input vector. The first is blurred but
at least localizes the center of activity correctly. The second is very sparse, but the example
also betrays the error sensitivity of strong priors: the small dark patch on the right hemisphere
is actually a part of the skull that was erroneously included into the solution space during
preprocessing (s. Chapter 3.2.4). Still the center of activity is localized inside this artifact,
debunking the solution as clearly wrong. In contrast, allowing some fuzziness in the priors

 88

Chapter 6: cudaEEG: real-time 3D source localization software

preserves much of the spatial resolution, but proves to be much more resilient in the face of
this error.

A related method is presented in [165], where loose orientation constraints are introduced in
l2 and l1 minimum norm solutions. Comparison of the methods is however difficult as they do
not compute spatial distributions but map source activity on cortical surface patches.

 89

Chapter 7: General discussion

7 General discussion
The scope of this thesis was to explore the capabilities – and limitations – of heterogeneous
multicore systems, in the application framework of bioelectrical imaging. It quickly turned
out that the PC architecture with one or multiple GPU accelerators yield the most fitting
characteristic as a target computing platform: Composed of commodity hardware
components, GPU-accelerated desktop machines are cheap, ubiquitous, highly configurable
and easy to upgrade. Affordability is of primary concern for application in bioelectrical
imaging, which pitches itself as a low-cost alternative to expensive anatomical imaging
systems like fMRI. The other side of the deal is whether these systems can service the needs
of the target application. GPUs excel at structured problems based on heavy floating point
arithmetic, which to a large extent applies to all computational challenges encountered in this
thesis. Given these characteristic, excellent results could be expected from GPU acceleration
in bioelectrical imaging. The following discussion will now address the questions to which
extent these expectations could be matched, what the limiting factors are and how these limits
could be further pushed in future system designs and implementations.

7.1 Summary of the contributions and results
The main contributions of this thesis can be summarized in three principal parts, which
address selected computational challenges that occur in bioelectrical imaging. Based on the
individual demands of the task, different scales of CPU/GPU systems have been employed.
The set-ups range from low-end systems with a single, weaker GPU that might as well fit into
an average mobile system, over dual-GPU desktop workstations, up to desktop
supercomputers with multiple CPUs and several high-end graphics cards.

Chapter 4 presented a dual-GPU based triangular matrix inversion routine, motivated by a
rank 10000 matrix inversion problem encountered in EEG volume conductor modeling using
a mesh-based multilayer head model. A double-precision throughput of 92 GFLOP/s is
achieved using a GTX 295 dual-GPU graphics card, which is a high percentage of the
device’s theoretical peak. It outperformed a multithreaded LAPACK reference by a factor of
57x and uses an efficient novel data storage scheme for triangular matrix formats on GPUs.

Chapter 5 presented a multi-GPU accelerated solver for large non-hermitian linear systems. It
is integral part of an EIT forward simulation environment, which requires repeated solution of
banded systems of millions of complex variables as produced by high-resolution
discretization of an anisotropic, frequency-sensitive head model. The complex BiCG based
solver yielded single precision throughput of 42 and 62 GFLOP/s on a single GTX 295 and
GTX 480 GPU respectively, and near-optimal performance scaling could be extrapolated for
up to six GPUs. In double precision, single-GPU throughputs were 5.8 and 21.7 GFLOP/s per
GPU, where analysis suggests that near lossless performance scaling should be possible for up
to eight GPUs. Even a single GPU outperformed an optimized reference running on two
quad-core CPUs, and speedups of over 30x could be observed in benchmarks using four
GPUs.

 90

Chapter 7: General discussion

Finally, Chapter 6 presented a 3D EEG source imaging software. This part revolves around
the EEG inverse problem and comprises GPU-accelerated calculation and real-time
application of EEG source estimators. The implementation is special in that it uses the GPU
for both local computation and immediate 3D visualization of the results, greatly alleviating
traffic on the system infrastructure. Both the lightweight sLORETA and the heavy SSLOFO
estimators have been implemented, yielding speedups of 15x and up to 30x versus a
corresponding CPU reference. In addition, a GPU based routine for derivation of neuron
orientation priors has been developed, deriving these orientations alternatively from MRI
luminosity gradients or pial surface meshes. For introduction of these priors into the inverse
estimator, a method has been suggested that places “fuzzy” constraints on the solution space,
which proved much more error resilient than fixed orientations.

7.2 On performance analysis
Looking at the results, one can safely state that the expectations put into the heterogeneous
processing approach with GPUs have not been disappointed. Still, there are some common
caveats that must not be ignored in this discussion.

Most importantly, one might want to point out the pitfalls of performance analysis. Some
implementations report sensational speedups through GPU-acceleration, as a look in the
“CUDA community showcase” reveals [181]. Table 3 shows a selection of implementations
claiming speedups of ~500x and greater.

Application Speedup Reference

GPU Accelerated Likelihoods for Stereo-Based Articulated Tracking 600x [176]

Parallel Algorithm for Solving Kepler's Equation on Graphics Processing
Units: Application to Analysis of Doppler Exoplanet Searches 600x [177]

 [178]Massively Parallel Population-Based Monte Carlo Methods 500x

Accelerating numerical solution of Stochastic Differential Equations with
CUDA 650x [179]

Rapid Aerodynamic Performance Prediction on a Cluster of Graphics
Processing Units 496x [180]

Table 3: Selection of applications claiming very high speedups through GPU acceleration.

How can these applications achieve over 500x speedup over CPUs, considering that the raw
computational power of comparable generations of CPUs and GPUs does not diverge by more
than one order of magnitude? Unfortunately, performance analysis is a weak spot in many
examples of GPU-related work; often fine-tuned multi-GPU implementations are compared to
un-optimized, serial reference code. This has become so common that some studies are
exclusively devoted on “debunking the 100x GPU vs. CPU myth” [91] [92].

A comparative performance analysis should hold strong in face of the following questions:

1. Are the capabilities of the CPU reasonably exploited? All modern CPUs have at least
two cores, with high-end models integrating up to six, so straight-forward serial code
rarely makes a fair comparison. Of course, code that is multithreaded or even uses the

 91

Chapter 7: General discussion

CPU’s SIMD extensions is harder to write, which directly leads to the second
question:

2. Is the programming effort put into the reference implementation remotely comparable
to that put into the GPU-accelerated version? This is particularly interesting in the
context of commercial software development, where development times ultimately
determine whether the project is worthwhile or not.

3. Is the scale and cost of the reference system comparable to that of the GPU-
accelerated system? This is a bit tricky: each GPU needs at least one CPU-core for
control, so introducing GPU acceleration will always increase system cost. However,
upgrading a system with a high-end graphics card is generally cheaper than replacing
the CPU with a high end substitute.

Many authors’ reluctance to put too much effort into the reference application, which might
be used just for this one benchmark, is understandable. An elegant way to get rid of this
burden is using third-party optimized library routines, if available. However, even if the above
mentioned terms are followed exemplary, there remains the notion of comparing apples and
oranges when relating GPU-applications over speedup values. If the application is based
solely on floating point arithmetic, it is therefore popular to measure the throughput in
GFLOP/s: at least this expresses performance on a fixed scale. This is not perfect, though: on
the one hand, the number is hardware dependent; to get a real idea of implementation quality,
one needs to take into account the benchmarking device’s capabilities, which might differ
considerably (s. Table 1). On the other hand, whether these FLOPs are put to good use
depends on the algorithm. Some parallel algorithms buy parallelizability through increase of
total work load. Parallel prefix algorithms are a good example of this, but also iterative
solvers where the choice of the preconditioner influences both convergence rate and parallel
performance.

In this thesis, I tried to make performance evaluation as fair as possible. The TMI routine is
benchmarked against a multithreaded LAPACK reference, a highly optimized collection of
linear algebra routines. Application performance on one dual-GPU graphics card is compared
to that on a dual-core CPU, so the scales are comparable. All pre-processing and address
generation is included in the computation times, whereas the algorithm itself is optimal,
meaning all computed FLOPs are actually required to solve the problem. Still, performance
analysis yielded high speedup and throughput, which indicates that the GPU implementation
is in fact highly efficient.

For the non-hermitian linear system solver, a fine-tuned multithreaded reference application
using both OpenMP and streaming SIMD extensions was created. Just like the GPU
implementation, it exploits the special structure of complex BiCG to improve data locality,
and was found to outperform a competing alternative based on library subroutines (not
included in the benchmarks). Hence, it is safe to say that the optimization effort is
comparable. The reference runs on eight CPU cores, which is more than appropriate for
comparison with one to four GPUs. The only remaining caveat might be that only Jacobi
preconditioning was used, and that more advanced preconditioners tend to perform much

 92

Chapter 7: General discussion

better on CPUs than on GPUs. The problem at hand was relatively well-conditioned, so more
complex preconditioners did not pay off. However, it should be noted that incomplete
factorization methods, which define the state-of-the-art in CPU-based preconditioners, are
known to yield net speedups of up to 60% in solution of some problems. Yet, even when
assuming the aforementioned conditions, a preconditioner does not reach the speedup
obtained by even just a single GPU.

The case of cudaEEG is particular in that it does not implement an isolated computational
routine. The effect from moving the signal processing from the CPU to the GPU was
measured, but in fact both implementations use the GPU for graphics rendering. Being a
graphics application, performance was measured in frame rates rather than GFLOP/s, which
would be less meaningful in such a context. What concerns the derivation of neuron
orientation priors, the focus is on functionality; the corresponding GPU kernels are very light
and would also be feasible on a modern CPU, but the procedure is data-intensive, and having
the complete flow on the GPU alleviates resource usage and traffic on the host system.

7.3 Limiting factors
GPU vendors advertise their products with high numbers of peak throughput; even low-end
models are alleged to achieve several hundred GFLOP/s of computing power (s. Table 1). The
numbers are obtained by pretending that all arithmetic units are perpetually busy with fused
multiply-add operation (which count as two FLOPs, but require only one operation on GPUs).
Of course, these assumptions are far from realistic and real applications, which even if
reasonably optimized usually perform way below these levels.

GPU-accelerated implementations are subject to several limiting factor that are responsible
for the large gap between actual application performance and the theoretical capabilities of the
hardware. Some are inherent to parallel computing, as outlined in Chapter 2.2 (Amdahl’s
law): whenever an algorithm contains steps that cannot be fully parallelized, speedup versus
serial processing stagnates at a certain level and can not be further improved by parallel
scaling. This applies to the non-hermitian system solver in that it contains inner vector
products and other scalar operations, but also to cudaEEG in that the graphics API setup is
handled by serial code.

One might also want to extend Amdahl’s law to the whole application, beyond the
computational part. On a heterogeneous platform, programs typically start in a serial thread
on the controlling processor. This thread handles data and memory setup and prepares work
dispatch to the accelerators. After processing, results need to be moved back to the output. For
a heterogeneous multi-CPU/multi-GPU application, non-computational overheads are listed
in Table 4. Durations are very variable; the values indicate what is typically experienced on
an average desktop machine.

Operation Parallelism Duration
OpenMP thread handling 1 ~10 μs
Initialize GPUs (*) 1 - 8 ~200 μs
Upload data to GPUs (*) 1 - 8 up to 300 ms

 93

Chapter 7: General discussion

Kernel setup and sync 1 - 8 ~12 μs
Kernel execution 103 - 108 50 μs - 5 s
Download results from GPUs (*) 1 - 8 up to 300 ms

Table 4: Non-computational overheads in relation to actual computation time. Asterisks indicate that the
operation is usually only performed once throughout the application.

Taking these factors in consideration, even embarrassingly parallel applications are subject to
the scaling limitations described by Amdahl’s law. The overhead is negligible for large data
sets, but can be compromising for small problems. For that reason, performance analysis
usually measures different problem sizes. Expectedly, all implementations presented in this
work yield better speedups for larger data sets.

A related limitation is introduced by the scalable programming model. A GPU kernel remains
active until all blocks are finished, but the number of blocks is rarely aligned with the number
of Stream Multiprocessors. More often than not, the array of SMs is only half occupied with
the last row of blocks, which creates some overhead through processor idling. Three examples
are shown in Figure 80. Keep in mind that most GPUs have more than four SMs (12 - 30 for
the architectures used in this work), making the case in Problem 2 even more unlikely.

SM SM SM SM SM SM SM SM

Problem 1
1792 Threads in 7 blocks

Duration: 16 warps
Overhead: 14 %

Problem 3
2304 Threads in 9 blocks

Duration: 24 warps
Overhead: 33 %

SM SM SM SM

Problem 2
2048 Threads in 8 blocks

Duration: 16 warps
Overhead: 0 %

SMSM SMSM SMSM SMSM SMSM SMSM SMSM SMSM

Problem 1
1792 Threads in 7 blocks

Duration: 16 warps
Overhead: 14 %

Problem 3
2304 Threads in 9 blocks

Duration: 24 warps
Overhead: 33 %

SMSM SMSM SMSM SMSM

Problem 2
2048 Threads in 8 blocks

Duration: 16 warps
Overhead: 0 %

Figure 80: Performance of three configurations of the same kernel, on the same architecture with four
Stream Multiprocessors. Block size is 256 in both cases.

Although Problem 3 is only 12.5% larger than Problem 2, it takes 50% more computation
time because the blocks are less favorably aligned with the number of SMs. This can create
considerable overhead, especially in the range of small problem sizes. The effect accounts for
the “bumpy” trend lines when measuring GFLOP/s for different problem size, as in Figure 53
of the TMI performance analysis.

The issues discussed so far are owed to the heterogeneous platform and are still independent
from what the actual computation looks like. But of course, arithmetic throughput and data
feeding ultimately dictate application performance. As long as warps are held strictly in SIMT
style, arithmetic throughput is usually of minor concern. Full 32-bit integer multiplication is

 94

Chapter 7: General discussion

split in multiple operations on GPUs up to series 200, which primarily results in elevated
address generation overhead compared to CPUs [87]. For the implementations in this work,
address generation overhead is alleviated as much as possible through pre-calculation on the
CPU and upload of ready-made LUTs to the GPU constant cache. This is of particular benefit
in case of the TMI, where the complex addressing patterns to compressed storage would
promise significant overhead. Using the heterogeneous address generation approach outlined
in Chapter 4.3.3, this overhead could be reduced to an amount comparable to what would be
experienced accessing normal aligned storage. What concerns computational arithmetic, the
instructions usually fit very well in fused multiply-add calculations, which promise the
highest throughput on GPUs. In this work, only the arithmetic of the complex BiCG had to be
restructured to optimize instruction streams. However, only the TMI implementation has been
found to be compute limited, a rare case among GPU implementations. This is due to the fact
that the algorithm is structured, dense, allows a large amount of data reusage, and is run in
double precision on a device that is still focused on single precision arithmetic. Consequently,
the computational throughput is a high percentage of the theoretical peak, where the
difference to said peak is owed to the aforementioned overheads.

For the vast majority of applications, however, data feeding is the predominant overhead. The
way from host RAM to the GPU registers is long, and passes several levels and interfaces.
Starting from the top, there is the shared on-chip memory, which grants almost immediate
access of the addressing stride falls into different banks without conflicts. It also makes
communication and synchronization inside a block very cheap. Further down is off-chip
GDDR memory on the graphics board, which is shared among blocks. It potentially offers a
very high bandwidth, as long as the access patterns are in tune with the requirements of the
memory controller. But even then, it is usually unable to perpetually feed all the
computational resources: in most GPUs, every data word that passes the interface must be
reused over ten times to avoid the memory wall, rarely achievable considering that the small
size of on-chip memory strongly limits data reusage. On top of all, there is a large latency
when accessing off-chip memory, which, even when concealed by overlapping computation,
strikes at least once at the beginning.

The worst bottleneck is the PCIe interface between host RAM and GPU memory. It is the
only memory shared between multiple GPUs, making communication among different
devices extremely expensive. During computation, transfers over this interface can sometimes
be overlapped with GPU kernels, if the latter is large enough. However, traffic through host
memory increases with the number of GPUs, which ultimately limits performance scaling
with GPU parallelism. The effect was analyzed in Chapter 5.6 for the non-hermitian system
solver, which does require constant data exchange between devices.

7.4 Perspectives
In the last years, there has been an outright boom in the already rapidly evolving field of GPU
accelerators. The period of this thesis alone covers three major generations of NVIDIA GPUs,
each introducing new features that are of interest for computing applications. While the first
CUDA compatible devices required very structured addressing patterns and were restricted to

 95

Chapter 7: General discussion

single precision, ensuing generations not only relaxed restrictions on memory access, but also
introduced increasingly better double precision support, error correction and caching. Op top
of that, each generation was about twice as powerful as the last.

Evolution of GPU-accelerated applications goes hand in hand with that of GPU hardware.
The TMI routine presented in this work was rendered possible only with introduction of
double precision support, while the non-hermitian system solver greatly benefits from the
capabilities of the Fermi architecture. Consequently, future applications are also directed by
the capabilities of upcoming GPU generations.

The next series of NVIDIA GPUs, the series 500, will still be a modified variant of the series
400; it promises to offer better performance at a stable price, but the new features are rather
directed to graphics processing. It would be more interesting how the next large evolutionary
step looks like, but little is disclosed to the public so far. The only safe assumption is that
there will be again more performance for less money, and less power. As for new features,
one might hope for improved communication between GPUs, i.e. by allowing point-to-point
communication between GPU interfaces without passing host RAM. The PCIe standard
allows this (s. Chapter 2.5.1), so the problem must be in the present model of CPU-GPU
coupling. Perhaps future CUDA drivers will be more multithreaded, and allow inherently
synchronized interaction with multiple devices. An alternative would be to fuse GPU memory
spaces and computing arrays on a low level, making multiple devices visible to the
application programmer as a single large entity.

Generally, attention should be paid to the evolution of software design kits. In this work, a
combination of OpenMP and CUDA was used to program heterogeneous multi-CPU/multi-
GPU systems. However, there are also efforts towards a unified programming environment
for heterogeneous multicore systems. The most notable example is the OpenCL standard
 [182], which is managed by the non-profit consortium Khronos Group. OpenCL started out as
GPGPU interface and shares much functionality with CUDA, but it aims to incorporate other
architectures as well, like the Cell BE. At the time of writing, OpenCL did not offer any
benefits over the setup used in this work, but its wider range of target platforms gives it the
potential to develop into a more capable alternative.

For heterogeneous multicore systems in bioelectrical imaging, more computational
capabilities (at stable expenses) open the door for more capable software. For example,
modeling the bioelectrical properties of life tissue is a field that can almost infinitely be
refined to be more realistic anatomically. But also data fusion from different technologies or
even run-time refinement of anatomical models from instantaneous measurement data could
be rendered feasible with sufficient computational power available.

 96

Chapter 8: Conclusion

8 Conclusion
The contributions of this thesis are very practical. They address well-defined computational
challenges encountered in biomedical imaging and use affordable hardware upgrades to
substantially reduce computation time spent on these problems. In their bioelectrical imaging
environment they allow modeling and simulation in levels of anatomical detail that were
considered unfeasible before (s. Chapters 4.1 and 5.1), and real-time EEG signal processing
at very high resolution (s. Chapter 6).

Note that the cudaEEG software is the only part of this work that is specific to the field of
bioelectrical imaging. The TMI and complex BiCG implementations on the other hand are in
no way restricted to this. Both address common linear algebra problems with a wide range of
possible applications. The TMI routine fills in an important gap completely left out by
previous work on GPU acceleration, and the non-hermitian system solver targets a previously
neglected class of problems while outperforming related implementations.

In summary it can be concluded that both the field of bioelectrical imaging and the field of
general GPU-accelerated linear algebra benefit from this work.

 97

 Appendix A: References

Appendix A: References
[1] F. Ries, T. De Marco, M. Zivieri, R. Guerrieri, "Triangular matrix inversion on Graphics Processing

Unit", Proceedings of the Conference on High Performance Computing Networking, Storage and
Analysis (SC '09), pp.1-10, 2009.

[2] F. Ries, T. De Marco, R. Guerrieri, "Triangular Matrix inversion on Heterogeneous Multicore Systems",
In PrePrints, to appear in IEEE Transactions on Parallel and Distributed Systems (TPDS).

[3] F. Ries, T. De Marco, R. Guerrieri, "Solving Large Non-Hermitian Linear Systems on Multi-GPU
Accelerated Workstations", submitted to IEEE Transactions on Parallel and Distributed Systems (TPDS).

[4] T. De Marco, F. Ries, M. Guermandi, R. Guerrieri, "EIT Forward Problem Parallel Simulation
Environment with Anisotropic Tissue and Realistic Electrode Models", submitted to IEEE Transactions
on Biomedical Engineering (TBME).

[5] E. Niedermeyer and F.L. da Silva, “Electroencephalography: Basic Principles, Clinical Applications, and
Related Fields,” Lippincot Williams & Wilkins, 2004.

[6] J. Malmivuo and R. Plonsey, “Bioelectromagnetism - Principles and Applications of Bioelectric and
Biomagnetic Fields”, Oxford University Press, New York, chapter 13.3, 1995.

[7] P.L. Nunez PL, R. Srinivasan, “Electric fields of the brain: The neurophysics of EEG”, Oxford
University Press, 1981.

[8] M. Cheney, D. Isaacson, and J. Newell, “Electrical impedance tomography,” SIAM review, vol. 41, no. 1,
pp. 85–101, 1999.

[9] R. H. Bayford, “Bioimpedence tomography (Electrical Impedence Tomographyerr),” Annu. Rev. Biomed.
Eng., vol.8, pp. 63-91,2006.

[10] J. Malmivuo and R. Plonsey, “Bioelectromagnetism - Principles and Applications of Bioelectric and
Biomagnetic Fields”, Oxford University Press, New York, 1995.

[11] T. Ferree, K. Eriksen, and D. Tucker, “Regional head tissue conductivity estimation for improved EEG
analysis,” Biomedical Engineering, IEEE Transactions on, vol. 47, no. 12, pp. 1584–1592, 2002.

[12] S. Goncalves, J. de Munck, J. Verbunt, F. Bijma, R. Heethaar, and F. Lopes da Silva, “In vivo
measurement of the brain and skull resistivities using an EIT-based method and realistic models for the
head,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 6, pp. 754–767, 2003.

[13] K. Wendel, O. Väisänen, J. Malmivuo, et al., “EEG/MEG Source Imaging: Methods, Challenges, and
Open Issues,” Computational Intelligence and Neuroscience, vol. 2009, Article ID 656092, 12 pages,
2009.

[14] H. Hallez, B. Vanrumste, R. Grech, J. Muscat, W. De Clercq, A. Vergult, Y. D'Asseler, K.P. Camilleri,
S.G. Fabri, S. Van Huffel, and I. Lemahieu, “Review on solving the forward problem in EEG source
analysis”, J Neuroeng Rehabil. 4: 46, 2007.

[15] A. Tarantola, “Inverse Problem Theory and Methods for Model Parameter Estimation”, SIAM, 2004.

[16] C. Ramon, P.H. Schimpf and J. Haueisen, ”Influence of head models on EEG simulations and inverse
source localizations”, Biomed Eng Online, 5: 10, 2006.

[17] R. Grech, T. Cassar, J. Muscat, K.P. Camilleri, S.G. Fabri, M. Zervakis, P. Xanthopoulos, V. Sakkalis
and B. Vanrumste, “Review on solving the inverse problem in EEG source analysis”, J Neuroeng
Rehabil., 5: 25, 2008.

[18] C. Chen, M. Ju, Y. Sun and C.K. Lin, "Model analyses of visual biofeedback training for EEG-based
brain-computer interface", Journal of Computational Neuroscience, Vol. 27, no. 3, pp. 357-368, 2009.

[19] R. Penrose, "A generalized inverse for matrices", Proceedings of the Cambridge Philosophical Society,
51, pp. 406–413, 1955.

[20] F. Vatta, F. Meneghini, F. Esposito, S. Mininel, and F. Di Salle, “Realistic and Spherical Head Modeling
for EEG Forward Problem Solution: A Comparative Cortex-Based Analysis”, Computational Intelligence
and Neuroscience, 2010.

[21] M. Fuchs, R. Drenckhahn, H.-A. Wischmann, and M. Wagner, “An improved boundary element method
for realistic volume-conductor modeling,” IEEE Transactions on Biomedical Engineering, vol. 45, no. 8,
pp. 980–997, 1998.

 98

 Appendix A: References

[22] P. Berg, M. Scherg, “A fast method for forward computation of multiple-shell spherical head models,”
Electroencephalography and Clinical Neurophysiology, Volume 90, Issue 1, Pages 58-64, ISSN 0013-
4694, Jan. 1994.

[23] W. Jiang "FieldTrip – the MATLAB toolbox for EEG/MEG analysis", Stone Studio, posted February 21,
2010.

[24] C. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. Koch, and R. MacLeod, “Influence of tissue
conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a
simulation and visualization study using high-resolution finite element modeling,” NeuroImage, vol. 30,
no. 3, pp. 813–826, 2006.

[25] D. Shattuck and R. Leahy, “BrainSuite: an automated cortical surface identification tool,” in Medical
Image Computing and Computer-Assisted Intervention–MICCAI, Springer, 2000.

[26] J. Li, D. Yan, "Solving the EEG Forward Problem by FDM and FEM," Proceedings of the 2nd
International Conference on Biomedical Engineering and Informatics, 2009.

[27] M. Cook and Z. Koles, “A high-resolution anisotropic finite-volume head model for eeg source analysis,”
in Engineering in Medicine and Biology Society, 2006. EMBS ’06. 28th Annual International Conference
of the IEEE, pp. 4536 –4539, Aug. 2006.

[28] R. Barrett, M. Berry, T.F. Chan, et al., “Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods”, SIAM, Philadelphia, pp. 19-20, 1994.

[29] D.W. Shattuck and R.M. Leahy, “BrainSuite: An Automated Cortical Surface Identification Tool,”
Medical Image Analysis, 8(2):129-142, 2002.

[30] B. Fischl, D.H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D.
Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, A.M. Dale, “Whole brain segmentation:
automated labeling of neuroanatomical structures in the human brain,” Neuron 33, 341-355, 2002.

[31] B. Fischl, D.H. Salat, A.J.W. van der Kouwe, N. Makris, F. Ségonne and A.M. Dale, “Sequence-
Independent Segmentation of Magnetic Resonance Images,” NeuroImage 23:S69-S84, 2004.

[32] T. Ferree, K. Eriksen, and D. Tucker, “Regional head tissue conductivity estimation for improved EEG
analysis,” Biomedical Engineering, IEEE Transactions on, vol. 47, no. 12, pp. 1584–1592, 2002.

[33] G. Dong, J. Zou, R. Bayford, X. Ma, S. Gao, W. Yan, and M. Ge, “The comparison between FVM and
FEM for EIT forward problem,” IEEE Transactions on Magnetics, vol. 41, no. 5, 2005.

[34] S. Goncalves, J. de Munck, J. Verbunt, F. Bijma, R. Heethaar, and F. Lopes da Silva, “In vivo
measurement of the brain and skull resistivities using an EIT-based method and realistic models for the
head,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 6, pp. 754–767, 2003.

[35] R. Sadleir and A. Argibay, “Modeling skull electrical properties,” Annals of Biomedical engineering, vol.
35, no. 10, pp. 1699–1712, 2007.

[36] C. Phillips, M. D. Rugg, K.J. Friston, “Anatomically Informed Basis Functions for EEG Source
Localization: Combining Functional and Anatomical Constraints,” NeuroImage, Volume 16, Issue 3, Part
1, Pages 678-695, July 2002.

[37] N.G. Gençer and S.J. Williamson, “Characterization of Neural Sources with Bimodal Truncated SVD
Pseudo-Inverse for EEG and MEG Measurements,” IEEE Transactions on Biomedical Engineering,
45(7):827-838, 1998.

[38] A.Tikhonov , “Solution of incorrectly formulated problems and the regularization method,” Soviet Math
Dokl, pp. 1035–1038, 1963.

[39] N. Subramaniyam, O. Väisänen, K. Wendel and J. Malmivuo. “ Cortical potential imaging using L-curve
and GCV method to choose the regularisation parameter“, Nonlinear Biomed Phys, 4 (Suppl 1): S4, 2010.

[40] R. Grech, T. Cassar, J. Muscat, K.P. Camilleri, S.G. Fabri, M. Zervakis, P. Xanthopoulus, V. Sakkalis
and B. Vanrumste, “Review on solving inverse problem in EEG source analysis,” Journal of
Neuroengineering and Rehabilitation, 5:25, 2008.

[41] I.F. Gorodnitsky and B.D. Rao, “Sparse Signal Reconstruction from Limited Data Using FOCUSS: A Re-
weighted Minimum Norm Algorithm”, IEEE Transactions on Signal Processing, 45(3):600-615, 1997

[42] G. Xin, M. Xinshanand X. Yaoqin, “A new algorithm for EEG source reconstruction based on LORETA
by contracting the source region,” Progress in Natural Science, 12(11):859-862, 2002.

 99

 Appendix A: References

[43] R.D. Pascual-Marqui, “Standardized low resolution brain electromagnetic tomography (sLORETA):
technical details,” Methods & Findings in Experimental & Clinical Pharmacology, 24D: 5-12, 2002.

[44] G. Backus G and F. Gilbert, “The resolving power of gross earth data,” Geophys. J. R. Astr. Soc., 16, pp.
169-205, 1968.

[45] H. Liu, P.H. Schimpf, G. Dong, X. Gao, F. Yang, S. Gao, “Standardized Shrinking LORETA-FOCUSS
(SSLOFO): A New Algorithm for Spatio-Temporal EEG Source Reconstruction,” IEEE Transactions on
Biomedical Engineering, 52(10), pp.1681-1691, 2005.

[46] W. Aspray, "The Intel 4004 microprocessor: What constituted invention?," Hist. Comput. 19(3), pp. 4–15,
1997.

[47] G.E. Moore, "Cramming More Components onto Integrated Circuits," Electronics, vol. 38, no. 8, pp.
114–117, 1965.

[48] M. Kanellos, "New life for Moore's Law," CNET News.com, 2005.

[49] ITRS (International Technology Roadmap for Semiconductors), 2005 ed., http://public.itrs.net, 2005.

[50] S. Borkar, “Microarchitecture and Design Challenges for Gigascale Integration,” Proc. Int’l Symp.
Microarchitecture (MICRO), Dec.2004.

[51] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik and O. O. Storaasli, “State-of-the-Art in
Heterogeneous Computing,“ Scientific Programming, 18(1), pp. 1—33, 2010.

[52] S. Cho and R.G. Melhem, "On the Interplay of Parallelization, Program Performance and Energy
Consumption," IEEE Transactions on Parallel and Distributed Systems (TPDS), 21(3):342~353, Mar
2010.

[53] Intel, “A New Era of Architectural Innovation Arrives with Intel Dual-Core Processors,”
Technology@Intel Magazine, pp. 1-11, May 2005.

[54] K. Asanovi, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson, W.L.
Plishker, J. Shalf, S.W. Williams, and K.A. Yelick, “The Landscape of Parallel Computing Research: A
View from Berkeley,” Technical Report UCB/EECS-2006-183, Univ. of California, Berkeley, Dec. 2006.

[55] S. Cotofana, S. Vassiliadis, "On the Design Complexity of the Issue Logic of Superscalar Machines",
EUROMICRO 1998, pp. 10277-10284, 1998.

[56] R. van der Pas, "Memory Hierarchy in Cache-Based Systems", Sun Microsystems, Santa Clara,
California, Nov. 2002.

[57] S. Rusu, S.Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada, M. Ratta, S. Kottapalli and S.
Vora, "A 45 nm 8-Core Enterprise Xeon¯ Processor," IEEE Journal of Solid-State Circuits, 45(1), pp. 7 -
14, Jan 2009.

[58] M.D. Hill, M.R. Marty, "Amdahl's Law in the Multicore Era," Computer, 41:7, pp. 33-38, Jul, 2008.

[59] D. Geer, "Industry Trends: Chip Makers Turn to Multicore Processors," Computer, 38(5), pp. 11-13,
May, 2005

[60] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W.
Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A.
Snavely, T. Sterling, R. Williams and K. Yelick, “Exascale computing study: Technology challenges in
achieving exascale systems, “ Technical report, DARPA IPTO, 2008.

[61] M. Herlihy and V. Luchangco, "Distributed computing and the multicore revolution,", SIGACT News 39,
1, pp. 62-72, Mar 2008.

[62] N. Aggarwal, P. Ranganathan, N.P. Jouppi and J.E. Smith, "Isolation in Commodity Multicore
Processors", Computer, vol. 40, no. 6, pp. 49-59, June 2007.

[63] M. Flynn, "Some Computer Organizations and Their Effectiveness," IEEE Trans. Comput. C-21: 948,
1972.

[64] U.J. Kapasi, S. Rixner, W.J. Dally, B. Khailany, J.H. Ahn, P. Mattson and J.D. Owens, "Programmable
stream processors," IEEE Computer, Aug 2003.

[65] J. Dongarra, H. Meuer, H. Simon and E. Strohmaier, "Recent trends in high performance computing," The
Birth of Numerical Analysis, World Scientific, pp. 93-107, 2009.

[66] M. Hassaballah, S. Omran, and Y. Mahdy,"A Review of SIMD Multimedia Extensions and their Usage in
Scientific and Engineering Applications," Computer Journal, vol.51, 6, pp. 630-649, Jan 2007.

 100

 Appendix A: References

[67] S. Murugesan, “Harnessing Green IT: Principles and Practices,” IEEE IT Professional, pp 24-33, Jan–Feb
2008.

[68] E. Miki, "Cell Phone Technology for Super 3G and Beyond", Microprocessor Forum, San Jose, CA, May
22, 2007.

[69] J.A. Kahl, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer, and D. Shippy, “Introduction to the Cell
Multiprocessor,” IBM Journal of Research and Development, 49(4), 2005.

[70] S.K. Moore, "Winner: Multimedia Monster", IEEE Spectrum, Jan 2006.

[71] M. Linklater, "Optimizing Cell Core", Game Developer Magazine, pp. 15–18, Apr 2007.

[72] A. White, “Roadrunner: Science, Cell and a Petaflops/s”, Fall Creek Falls Conference, Los Alamos
National Laboratory, Sep 2008.

[73] M. Herbordt, Y. Gu, T. VanCourt, J. Model, B. Sukhwani and M. Chiu, "Computing Models for FPGA-
Based Accelerators", Computing in Science and Engineering, 10(6), Nov/Dec 2008.

[74] M. Kühnle, M. Hübner, J. Becker, A. Deledda, C. Mucci, F. Ries, A. M. Coppola, L. Pieralisi, R.
Locatelli, G. Maruccia, T. De Marco, and F. Campi, "An Interconnect Strategy for a Heterogeneous,
Reconfigurable SoC", Design&Test, vol. 5, 25, pp. 442-451, Sep 2008.

[75] A. Deledda, C. Mucci, A. Vitkovski, P. Bonnot, A. Grasset, P. Millet, M. Kuehnle, F. Ries, M. Huebner,
J. Becker, M. Coppola, L. Pieralisi, R. Locatelli, G. Maruccia, F. Campi and T. DeMarco, "Design of a
HW/SW communication infrastructure for a heterogeneous reconfigurable processor", Conference on
Design, Automation and Test in Europe (Munich, Germany), pp. 1352-1357, Mar 2008.

[76] C. Shu, S. Kwon and K. Gaj, "FPGA accelerated tate pairing based cryptosystems over binary fields",
IEEE International Conference on Field Programmable Technology, pp.173-180, Dec. 2006.

[77] C. R. Clark, D. E. Schimmel, "Scalable Pattern Matching for High Speed Networks," 12th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM'04), pp. 249-257, 2004.

[78] S.C. Chrepta, "FPGA-based Implementation of Signal Processing Systems (Woods, R. et al: 2008) [Book
review]", Signal Processing Magazine, IEEE , vol.26, no.6, pp.206-207, Nov. 2009.

[79] A. Bland, “Towards Exascale”, HPC projects, Feb/Mar 2010.

[80] R. Weber, A. Gothandaraman, R.J. Hinde, G.D. Peterson, "Comparing Hardware Accelerators in
Scientific Applications: A Case Study", IEEE Transactions on Parallel and Distributed Systems, vol. 99,
PrePrints, 2010.

[81] M.J. Harris , W.V. Baxter , T. Scheuermann , A. Lastra, “Simulation of cloud dynamics on graphics
hardware”, Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
San Diego, California, July 26-27, 2003.

[82] J. Bolz, I. Farmer, E. Grinspun and P. Schröder. "Sparse Matrix Solvers on the GPU: Conjugate Gradients
and Multigrid", Proceedings of SIGGRAPH 2003, 2003.

[83] J. Krüger and R. Westermann, “Linear algebra operators for GPU implementation of numerical
algorithms”, ACM Transactions on Graphics (TOG), vol .22, no .3, July 2003.

[84] W. Li, X. Wei and A. Kaufman, "Implementing lattice Boltzmann computation on graphics hardware ",
The Visual Computer, Vol. 19, No. 7-8, pp. 444-456, 2004.

[85] E. Lindholm, J. Nickolls, S. Oberman. and J. Montrym, "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro, vol. 28, no. 2, pp. 39-55, 2008.

[86] AMD Corporation, “Close to Metal Technology Unleashes the Power of Stream Computing", AMD Press
Release, Nov. 14, 2006.

[87] NVIDIA Corporation, “NVIDIA CUDA compute unified device architecture programming guide”, ver.
3.2, Oct. 2010.

[88] M. Fatica, P. LeGresley, I. Buck, J. Stone, J. Phillips, S. Morton, and P. Micikevicius, “High Performance
Computing with CUDA”, SC08, 2008.

[89] A. Moravánszky, “Dense matrix algebra on the GPU. In ShaderX2: Shader Programming Tips and Tricks
with DirectX 9.0”, Wordware Publishing, pp. 352—380, 2002.

[90] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn, T.J. Purcell, "A Survey of
General-Purpose Computation on Graphics Hardware", In Eurographics 2005, State of the Art Reports,
pp. 21-51, Aug 2005.

 101

 Appendix A: References

[91] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A.D. Nguyen, N. Satish, M. Smelyanskiy,
SChennupaty, P. Hammarlund, R. Singhal and P. Dubey, “Debunking the 100X GPU vs. CPU myth: an
evaluation of throughput computing on CPU and GPU”, SIGARCH Comput. Archit. News 38, 3, 451-460,
Jun 2010.

[92] R. Bordawekar, U. Bondhugula and R. Rao: “Believe It or Not! Multi-core CPUs Can Match GPU
Performance for FLOP-intensive Application!”, Technical Report RC24982, IBM Thomas J. Watson
Research Center, Apr. 2010.

[93] V. Volkov and J. W. Demmel; "Benchmarking GPUs to tune dense linear algebra", Proceedings of the
2008 ACM/IEEE conference on Supercomputing, Piscataway, NJ, USA: IEEE Press, pp. 1-11, 2008.

[94] S. Barrachina, M. Castillo, F.D. Igual, R. Mayo and E.S. Quintana-Ortí, “Solving Dense Linear Systems
on Graphics Processors”, Proceedings of the 14th international Euro-Par Conference on Parallel
Processing - Lecture Notes In Computer Science, vol. 5168, Springer-Verlag, Berlin, Heidelberg, pp.
739-748, 2008.

[95] S. Tomov, J. Dongarra, M. Baboulin, “Towards dense linear algebra for hybrid GPU accelerated
manycore systems”, Parallel Computing, vol. 36, 5-6, Parallel Matrix Algorithms and Applications, pp.
232-240, June 2010.

[96] L. Buatois, G. Caumon, and B. Levy, “Concurrent number cruncher: a GPU implementation of a general
sparse linear solver”, Int. J. Parallel Emerg. Distrib. Syst. 24, 3, pp. 205-223, Jun 2009.

[97] A. Gaikwad, I. Muni Toke,” Parallel Iterative Linear Solvers on GPU: A Financial Engineering Case”,
Proceedings of the 18th International Conference on Parallel, Distributed and Network-Based Computing
- PDP2010, IEEE CPS, 2010.

[98] M. Ament, G. Knittel, D. Weiskopf, W. Strasser, “A Parallel Preconditioned Conjugate Gradient Solver
for the Poisson Problem“, to appear at the 18th Euromicro International Conference on Parallel,
Distributed and Network-Based Computing (PDP2010), 2010.

[99] A. Cevahir, A. Nukada, and S. Matsuoka, “Fast Conjugate Gradients with Multiple GPUs”, In
Proceedings of the 9th International Conference on Computational Science: Part I, 2009.

[100] T. Jost, S. Contassot-Vivier, and S. Vialle, “An efficient multi-algorithms sparse linear solver for GPUs”,
In ParCo2009, France Lyon, 2009.

[101] M. Mehri Dehnavi, D. Fernandez and D. Giannacopoulos: “Finite element sparse matrix vector
multiplication on GPUs”. IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 2982-2985, Aug 2010.

[102] N. Bell and M. Garland, “Implementing Sparse Matrix-Vector Multiplication on Throughput-Oriented
Processors“. in Proc. Supercomputing ’09, Aug 2009.

[103] M. Geveler, D. Ribbrock, D. Göddeke and S. Turek, “Lattice-Boltzmann Simulation of the Shallow-
Water Equations with Fluid-Structure Interaction on Multi- and Manycore Processors”, Accepted in:
Facing the Multicore Challenge, Heidelberg, Germany, Mar. 2010.

[104] J. A. Anderson, Chris D. Lorenz, A. Travesset, “General purpose molecular dynamics simulations fully
implemented on graphics processing units”, Journal of Computational Physics, Vol. 227, No. 10, 1, pp.
5342-5359, ISSN 0021-9991, May 2008.

[105] S. Hampton, P.K. Agarwal, S.R. Alam, P.S. Crozier, "Towards microsecond biological molecular
dynamics simulations on hybrid processors", 2010 International Conference on High Performance
Computing, pp. 98-107, Jun 2010.

[106] T. Nagatake and T. Kunugi, "Application of GPU to computational multiphase fluid dynamics",IOP
Conf. Ser.: Mater. Sci. Eng., 10, 012024, 2010.

[107] L. Weiguo, B. Schmidt, G. Voss and W.Müller-Wittig, "Streaming Algorithms for Biological Sequence
Alignment on GPUs", IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 9, pp. 1270-
1281, 2007.

[108] C. Trapnell, M.C. Schatz, “ Optimizing data intensive GPGPU computations for DNA sequence
alignment”, Parallel Computing, 2009.

[109] L. Ligowski and W. Rudnicki, "An efficient implementation of Smith-Waterman algorithm on GPU using
CUDA, for massively parallel scanning of sequence databases", In IEEE International Workshop on High
Performance Computational Biology (HiCOMB 2009), 2009.

[110] M.C. Schatz, C. Trapnell, “Optimizing data intensive GPGPU computations for DNA sequence alignment
Parallel Computing”, vol 35, pp. 429-440, 2009.

 102

 Appendix A: References

[111] J. Setoain, M. Prieto, C. Tenllado and F. Tirado, “GPU for Parallel On-Board Hyperspectral Image
Processing”, International Journal of High Performance Computing Applications, vol. 22, no. 4, pp. 424-
437, 2008.

[112] Y. Su and Z. Xu. “ Parallel implementation of wavelet-based image denoising on programmable PC-
grade graphics hardware”, Signal Process. 90, 8, pp. 2396-2411, Aug 2010.

[113] N. Cornelis, L. Van Gool, "Fast Scale Invariant Feature Detection and Matching on Programmable
Graphics Hardware", CVPR 2008 Workshop (June 27th), 2008.

[114] S.P. Mohanty, "GPU-CPU multi-core for real-time signal processing", International Conference on
Computers in Education, 2009 Digest of Technical Papers International Conference on Consumer
Electronics, pp. 1-2, 2009.

[115] O. Roy, I. Jovanovic, A. Hormati, R. Parhizkarand and M. Vetterli, “Sound speed estimation using wave-
based ultrasound tomography: Theory and GPU implementation”, in Proc. SPIE Medical Imaging, 2010.

[116] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel and F. Tirado, "Parallel Implementation of the 2D Discrete
Wavelet Transform on Graphics Processing Units: Filter Bank versus Lifting", IEEE Transactions on
Parallel and Distributed Systems, vol. 19, no. 3, pp. 299-310, 2008.

[117] B. Block, P. Virnau and T. Preis: “Multi-GPU accelerated multi-spin Monte Carlo simulations of the 2D
Ising model”, Computer Physics Communications, 181:9, 1549-1556, Sep. 2010.

[118] Q. Fang and D.A. Boas, “Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated
by Graphics Processing Units”, Opt. Express, vol. 17, issue 22, pp. 20178-20190, 2009.

[119] AccelerEyes, “MATLAB GPU Computing”, 2010.

[120] MatWorks Inc., “MATLAB GPU Computing with NVIDIA CUDA-Enabled GPUs”, 2010.

[121] A. Sims,"Mathematica and NVIDIA in Action: See Your GPU in a Whole Different Light", Wolfram
Blog, Wolfram Research, Sep 14. 2010.

[122] J. Bruckner, “Enabling GPU Computing in the R statistical Environment”,

[123] V. Minden, B. Smith, and Matthew G. Knepley, “Preliminary Implementation of PETSc Using GPUs”, to
appear in Proceedings of the 2010 International Workshop of GPU Solutions to Multiscale Problems in
Science and Engineering, Springer, 2010.

[124] P.N. Glaskowsky, “NVIDIA’s Fermi: The first Complete GPU Computing Architecture”, NVIDIA
Corporation, White Paper, Sep 2009.

[125] Intel Corporation, “Periferal Component Interconnect Specification”, Revision 3.0, 2002.

[126] Intel Corporation, “Accelerated Graphics Port Interface Specification”, Revision 3.0, 2002.

[127] Jon Stokes, “PCI Express: An Overview”, arstechnica, Jul. 2004.

[128] D. Schaa and D. Kaeli, "Exploring the multiple-GPU design space", IEEE International Symposium on
Parallel&Distributed Processing, pp. 1-12, 2009.

[129] T. Kreiss, B. Töpelt, D. Schuhmann, "Performance Comparison Between Single Configurations And SLI
Setups", Tom's Hardware, Dec 2005.

[130] B. Töpelt, "Benchmark Analysis - 65% More Performance Through Hybrid-Crossfire", Tom's Hardware,
Mar 2008.

[131] T. Kreiss, “How Much Power does your Graphics Car Need?”, Tom’s Hardware, 21 Jan 2009.

[132] L. Dagum, and R. Menon, "OpenMP: an industry standard API for shared-memory programming",
Computational Science & Engineering, IEEE , vol. 5, no. 1, pp. 46-55, 1998.

[133] W. Gropp, E. Lusk, Ewing and A. Skjellum, “Using MPI: portable parallel programming with the
message-passing interface”, Scientific And Engineering Computation Series, MIT Press, Cambridge, MA,
USA, 1994.

[134] W. Nasri Z. and Mahjoub, “Optimal parallelization of a recursive algorithm for triangular matrix
inversion on MIMD computers”, Parallel Computing, vol. 27, no. 13, pp. 1767-1782, 2001.

[135] D. Heller, “A survey of parallel algorithms in numerical linear algebra”, SIAM Review, vol. 20, pp. 740-
777, 1978.

[136] Y. Robert, “The Impact of Vector and Parallel Architectures on the Gaussian Elimination”, Halstead
Press, New York, 1990.

 103

 Appendix A: References

[137] V. Strassen, “Gaussian elimination is not optimal”, Numerical Mathematics, vol. 13, pp. 354-356, 1969.

[138] S.M. Balle, P.C. Hansen and N. Higham, “A Strassen-type matrix inversion algorithm”, Advances in
Parallel Algorithms, IOS Press, pp. 22-30, 1994.

[139] E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, S. Hammarling, A.
Greenbaum, A. McKenney and D. Sorensen, "LAPACK Users' Guide, Third Edition”, Society for
Industrial and Applied Mathematics, 1999.

[140] L. Buatois, G. Caumon, and B. Levy, “Concurrent number cruncher: a GPU implementation of a general
sparse linear solver”, Int. J. Parallel Emerg. Distrib. Syst. 24, 3, pp. 205-223, Jun 2009.

[141] A. Cevahir, A. Nukada, and S. Matsuoka, “Fast Conjugate Gradients with Multiple GPUs”, In
Proceedings of the 9th International Conference on Computational Science: Part I, 2009.

[142] P.Y. Aquilanti, S. Petiton, H. Calandra, “Parallel Auto-tuned GMRES Method to Solve Complex Non-
Hermitian Linear Systems”, iWAPT: Fifth international Workshop on Automatic Performance Tuning,
VECPAR’10, 2010.

[143] B. Carpentieri, Y.-F. Jing, T.-Z. Huang, Y. Duan, “A class of linear solvers built on the Biconjugate A-
Orthonormalization Procedure for solving unsymmetric linear systems”, arXiv (United States), 2010

[144] T. Jost, S. Contassot-Vivier, and S. Vialle, “An efficient multi-algorithms sparse linear solver for GPUs”,
In ParCo2009, France Lyon, 2009.

[145] V. Minden, B. Smith, and Matthew G. Knepley, “Preliminary Implementation of PETSc Using GPUs”, to
appear in Proceedings of the 2010 International Workshop of GPU Solutions to Multiscale Problems in
Science and Engineering, Springer, 2010.

[146] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multiplication on CUDA", NVIDIA Technical
Report NVR-2008-004, Dec 2008.

[147] M. Ament, G. Knittel, D. Weiskopf, W. Strasser, “A Parallel Preconditioned Conjugate Gradient Solver
for the Poisson Problem“, to appear at the 18th Euromicro International Conference on Parallel,
Distributed and Network-Based Computing (PDP2010), 2010.

[148] NVIDIA Corporation, “CUBLAS Library”, NVIDIA, ver. 2.2, 2008.

[149] P. Micikevicius, “3D finite difference computation on GPUs using CUDA”, Proceedings of 2nd
Workshop on General Purpose Processing on Graphics Processing Units (Washington, D.C., March 08 -
08, 2009). GPGPU-2, vol. 383. ACM, New York, NY, pp. 79-84, 2009.

[150] A. Gaikwad, I. Muni Toke,” Parallel Iterative Linear Solvers on GPU: A Financial Engineering Case”,
Proceedings of the 18th International Conference on Parallel, Distributed and Network-Based
Computing - PDP2010, IEEE CPS, 2010.

[151] D. Goddeke, R. Strzodka, "Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed Precision
Multigrid", IEEE Transactions on Parallel and Distributed Systems, vol. 99, no. PrePrints, 2010.

[152] M. Harris, “Optimizing Parallel Reduction in CUDA”, NVIDIA Developer Technology, NVIDIA
Corporation, 2008.

[153] D. Shreiner, M. Woo, J. Neider, T. Davis, "OpenGL® Programming Guide: The Official Guide to
Learning OpenGL®”, ver. 2.1, 6th ed., Addison-Wesley Professional, 2007.

[154] M. Sainz , R. Pajarola, "Point-based rendering techniques", Computers & Graphics, 2004.

[155] J.O. Ollikainen, M. Vauhkonen, P.A. Karjalainen, J.P Kaipio, "Effects of electrode properties on EEG
measurements and a related inverse problem", Med. Eng. Phys., 22(8), pp.535-45, Oct. 2000.

[156] S. Baillet, L. Garnero, "A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG
inverse problem", IEEE Transaction on Biomedical Engineering, Vol. 44, 5, pp. 374-285, May 1997.

[157] R. Srinivasan, “Anatomical constraints on source models for high-resolution EEG and MEG derived from
MRI”, Technol. Cancer Res. Treat., 5(4), pp. 389-399, Aug 2006.

[158] A.C. Bovik, "Handbook of image and video processing", Academic Press - Computers, p. 542, 2005.

[159] R.M. Stallman, “Using and porting the GNU compiler collection”, Free Software Foundation, Jun. 2001.

[160] NVIDIA Corporation, “PTX: Parallel Thread Execution ISA”, Ver 2.1, Apr. 2010.

[161] NVIDIA Corporation, “The CUDA compiler driver NVCC”, Ver, 3.2, Aug. 2010.

 104

 Appendix A: References

[162] G. Boverman, B. Kim, D. Isaacson, and J. Newell, “The complete electrode model for imaging and
electrode contact compensation in electrical impedance tomography,” in 29th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3462–3465, 2007.

[163] A.M. Dale, B. Fischl abd M.I. Sereno,"Cortical Surface-Based Analysis I: Segmentation and Surface
Reconstruction", NeuroImage 9(2), pp. 179-194, 1999.

[164] B. Fischl, A. Liu and A.M. Dale, "Automated Manifold Surgery: Constructing Geometrically Accurate
and Topologically Correct Models of the Human Cerebral Cortex", IEEE Transactions on Medical
Imaging, 20(1), pp. 70-80, 2001.

[165] F-H. Lin, J.W. Belliveau, A.M. Dale and M.S. Hämäläinen, “Distributed Current Estimates Using
Cortical Orientation Constraints”, Human Brain Mapping, 27, pp. 1-13, 2006.

[166] N. Galoppo, N.K. Govindaraju, M. Henson and D.. Manocha, “LU-GPU: Efficient Algorithms for
Solving Dense Linear Systems on Graphics Hardware”, In Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, Conference on High Performance Networking and Computing. IEEE
Computer Society, Washington, DC, p.3, 2005.

[167] V. Volkov and J. W. Demmel, “LU, QR and Cholesky Factorizations using Vector Capabilities of
GPUs”, EECS Department University of California, Berkeley Technical Report No. UCB/EECS-2008-49
May 13, 2008.

[168] M.S. Bazaraa, H.D. Sherali and C.M. Shetty, “Nonlinear Programming – Theory and Algorithms”, New
York: Wiley, 3rd ed., 2006.

[169] N. Harvey, D. Lun and P. Maymounkov, “Methods for Efficient Network Coding”. In 44th Allerton
Annual Conference, 2006.

[170] M. Nuwer, "Brain Mapping and Quantitative EEG", Encyclopedia of the Neurological Sciences,
Academic Press, NY, pp. 447-452, 2003.

[171] S. Butnik, "Neurofeedback in adolescents and adults with attention deficit hyperactivity disorder",
Journal of Clinical Psychology, Vol. 61, 5, pp. 621-625, May 2005.

[172] D. Trudeau, "EEG Biofeedback for Addictive Disorders -- The State of the Art in 2004." Journal of Adult
Development, Vol 12, Nos. 2/3, Aug. 2005.

[173] C. Hammond, "Neurofeedback Treatment of Depression and Anxiety." Journal of Adult Development,
Vol 12, Nos. 2/3, Aug. 2005.

[174] E.C. Leuthardt, G. Schalk, J. Roland, A.Rouse, D.W Moran, "Evolution of brain-computer interfaces:
going beyond classic motor physiology", Neurosurg Focus, 27:1E4, 2009.

[175] A. Luo and T.J. Sullivan, "A user-friendly SSVEP-based brain–computer interface using a time-domain
classifier", J. Neural Eng. 7 026010, 2010.

[176] R.M Friborg, S. Hauberg and K. Erleben, "GPU Accelerated Likelihoods for Stereo-Based Articulated
Tracking", At the CVGPU workshop at European Conference on Computer Vision (ECCV) 2010.

[177] E.B. Ford, "Parallel algorithm for solving Kepler’s equation on Graphics Processing Units: Application to
analysis of Doppler exoplanet searches ", New Astronomy, Vol. 14, 4, pp. 406-412, May 2009.

[178] A. Lee, C. Yau, M. Giles, A. Doucet and C. Holmes, "On the utility of graphics cards to perform
massively parallel simulation with advanced Monte Carlo methods", To appear in: Journal of
Computational & Graphical Statistics.

[179] M. Januszewski and M. Kostur, "Accelerating numerical solution of Stochastic Differential Equations
with CUDA", Computer Physics Communications, Vol. 181, 1, pp. 183-188, Jan. 2010.

[180] E.H. Phillips, Y. Zhang, R.L Davis, J.D. Owens, "Rapid Aerodynamic Performance Prediction on a
Cluster of Graphics Processing Units", Proceedings of the 47th AIAA Aerospace Sciences Meeting, Jan
2009.

[181] NVIDIA Corporation (2010), “CUDA Zone – CUDA Community Showcase”, retrieved 30 Jan. 2011.

[182] J.E. Stone, D. Gohara and G. Shi, "OpenCL: A Parallel Programming Standard for Heterogeneous
Computing Systems", IEEE Design & Test, Vol. 12, 3, pp. 66-73, May 2010.

[183] B. He, “Modeling & Imaging of Bioelectrical Activity: Principles and Applications (Bioelectrical
Engineering)”, Springer, 1. ed., Apr. 2004.

 105

 Appendix A: References

 106

 Appendix B: Abbreviations

Appendix B: Abbreviations
ADHD Attention Deficit Hyperactivity Disorder
AGP Accelerated Graphics Port
AMD Advanced Micro Devices
API Application Programming Interface
ASIC Application Specific Integrated Circuit
ATA Advanced Technology Attachment
ATI Array Technologies Incorporated
BCI Brain Computer Interface
BE Broadband Engine
BEM Boundary Element Method
BiCG Bi-Conjugate Gradient
BiCGStab Bi-Conjugate Gradient Stabilized
BMI Brain Machine Interface
CG Conjugate Gradient
CGS Conjugate Gradient Sqared
CPU Central Processing Unit
CSF Cerebrospinal Fuid
CTM Close To Metal
CUDA Compute Unified Device Architcture
DP Double Precision
DRAM Dynamic random access memory
EEG Electroencephalygraphy
EIT Electrical Impedance Tomography
FDM Finite Difference Method
FEM Finite Element Method
FLOP Floating Point Operation
fMRI functional Magnetic Resonance Imaging
FOCUSS Focal Underdetermined System Solver
FPGA Field Programmable Gate Array
FSB Front Side Bus
FVM Finite Volume method
GC Geometry Control
GCC GNU Compiler Collection
GDDR Graphics Double Data Rate
GFLOP/s Billion Floating Point Operations per second
GPGPU General Purpose Graphics Processing Unit
GPU Graphics Processing Unit
HPC High Performance Computing
I/O Input/Output
IBM International Business Machines
IEEE Institute of Electrical and Electronics Engineers
ITRS International Technology Roadmap for Semiconductors
LORETA Low Resolution Brain Electromagnetic Tomography

 107

 Appendix B: Abbreviations

LUT Look-Up Table
MB Memory Bus
MC Machine Code
MIMD Multiple Instruction Multiple Data
MIPS Million Instructions Per Second
MISD Multiple Instruction Single Data
MNE Minimum Norm Estimate
MPI Message Passing Interface
MRI Magnetic Resonance Imaging
MTIFI Multi-Thread Instruction Fetch & Issue
OS Operating System
PC Personal Computer
PCI Periferal Component Interconnect
PCIe Periferal Component Interconnect express
PET Positron Emission Tomography
PPE Power Processor Element
PTX Parallel Thread eXecution
PU Processing Unit
RAM Random Access Memory
RTMI Recursive Triangular Matrix Inversion
SDK Software Design Kit
SFU Special Function Unit
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SISD Single Instruction Single Data
SLI Scalable Link Interface
sLORETA standardized Low Resolution Brain Electromagnetic Tomography
SM Stream Multiprocessor
SMC Stream Multiprocessor Control
SoC System-on-Chip
SP Stream Processor; Single Precision
SPE Synergistic Processing Element
spMV sparse Matrix-Vector product
SSLOFO Shrinking Standardized LORETA-FOCUSS
TDP Thermal Design Power
TMI Triangular Matrix Inversion
TPC Texture Processing Cluster
TU Texture Unit
WMN Weighted Minimum Norm

 108

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Heterogeneous multicore systems
	2.1 The Multicore Revolution
	2.2 Parallel computing
	2.3 The heterogeneous approach
	2.4 The Graphics Processing Unit
	2.4.1 History
	2.4.2 GPU in scientific applications
	2.4.3 Architectural overview

	2.5 Multi-CPU/multi-GPU systems
	2.5.1 GPU interfacing
	2.5.2 System infrastructure
	2.5.3 CPUs
	2.5.4 Power and cooling
	2.5.5 Desktop supercomputer “cuba”

	2.6 Programming environment
	2.6.1 Software architecture
	2.6.2 OpenMP
	2.6.3 CUDA
	2.6.3.1 GPU programming model
	2.6.3.2 Memory model
	2.6.3.3 Application Programming Interface
	2.6.3.4 Compiler chain

	3 Target application: bioelectrical imaging
	3.1 Electroencephalography
	3.2 EEG source imaging
	3.2.1 Applications
	3.2.2 Forward and inverse problem
	3.2.2.1 Forward problem
	3.2.2.2 Inverse problem

	3.2.3 Head models
	3.2.4 Retrieving anatomical information
	3.2.5 Linear estimators for the inverse problem

	3.3 Electrical Impedance Tomography
	3.4 Selecting computational problems

	4 Dual-GPU accelerated Triangular Matrix Inversion
	4.1 Motivation and background
	4.2 Parallel Triangular Matrix Inversion algorithm
	4.3 Implementation
	4.3.1 GPU Kernels
	4.3.2 Memory optimization
	4.3.3 Address generation
	4.3.4 Allocation flow

	4.4 Limitations and generalizations
	4.5 Benchmarking
	4.6 Discussion

	5 Multi-GPU accelerated complex Bi-Conjugate Gradient solver
	5.1 Motivation and background
	5.2 Related work
	5.3 The complex bi-conjugate gradient method
	5.4 Implementation
	5.4.1 Computational kernels
	5.4.1.1 Stencil operations
	5.4.1.2 Preconditioning
	5.4.1.3 Scalar products and residual norm
	5.4.1.4 Update functions

	5.4.2 Domain distribution
	5.4.3 Maximizing bandwidth and instruction throughput

	5.5 Benchmarking
	5.5.1 Single-GPU performance
	5.5.2 Multi-GPU performance
	5.5.3 Arithmetic throughput
	5.5.4 Comparison to other work
	5.5.5 Comparison to CUBLAS/CUSP
	5.5.6 Profiling
	5.5.7 Convergence behavior

	5.6 Discussion

	6 cudaEEG: real-time 3D source localization software
	6.1 sLORETA inverse estimator
	6.2 Graphical user interface
	6.3 Shrinking standardized LORETA-FOCUSS
	6.3.1 Implementation
	6.3.2 Performance

	6.4 Deriving neuron orientation from MRI
	6.4.1 Derivation from MRI luminosity gradient
	6.4.2 Derivation from pial surface mesh
	6.4.3 “Fuzzy” orientation priors

	7 General discussion
	7.1 Summary of the contributions and results
	7.2 On performance analysis
	7.3 Limiting factors
	7.4 Perspectives

	8 Conclusion

