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  Abstract 

Abstract 
This thesis explores the capabilities of heterogeneous multi-core systems, based on multiple 
Graphics Processing Units (GPUs) in a standard desktop framework. Multi-GPU accelerated 
desk side computers are an appealing alternative to other high performance computing (HPC) 
systems: being composed of commodity hardware components fabricated in large quantities, 
their price-performance ratio is unparalleled in the world of high performance computing. 
Essentially bringing “supercomputing to the masses”, this opens up new possibilities for 
application fields where investing in HPC resources had been considered unfeasible before. 
One of these is the field of bioelectrical imaging, a class of medical imaging technologies that 
occupy a low-cost niche next to million-dollar systems like functional Magnetic Resonance 
Imaging (fMRI). In the scope of this work, several computational challenges encountered in 
bioelectrical imaging are tackled with this new kind of computing resource, striving to help 
these methods approach their true potential. 

Specifically, the following main contributions were made: Firstly, a novel dual-GPU 
implementation of parallel triangular matrix inversion (TMI) is presented, addressing an 
crucial kernel in computation of multi-mesh head models of encephalographic (EEG) source 
localization. This includes not only a highly efficient implementation of the routine itself 
achieving excellent speedups versus an optimized CPU implementation, but also a novel 
GPU-friendly compressed storage scheme for triangular matrices. 

Secondly, a scalable multi-GPU solver for non-hermitian linear systems was implemented. It 
is integrated into a simulation environment for electrical impedance tomography (EIT) that 
requires frequent solution of complex systems with millions of unknowns, a task that this 
solution can perform within seconds. In terms of computational throughput, it outperforms not 
only an highly optimized multi-CPU reference, but related GPU-based work as well. 

Finally, a GPU-accelerated graphical EEG real-time source localization software was 
implemented. Thanks to acceleration, it can meet real-time requirements in unpreceeded 
anatomical detail running more complex localization algorithms. Additionally, a novel 
implementation to extract anatomical priors from static Magnetic Resonance (MR) scansions 
has been included. 
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Chapter  1: Introduction 

1 Introduction 
No one will argue that multicore processing is the future of computing. But the inevitable 
paradigm shift also brought new challenges, both to hardware designers and application 
programmers. Parallel applications have very different needs towards the processing system. 
When designing the architecture around a particular target problem, excellent results can be 
obtained, but the ability to efficiently process different types of problems should be the 
foremost objective in designing a computing system. However, so far no “one size fits all” 
architecture has been found, and many are convinced that there will never be any.  

In the mainstream, the quest for a universal parallel computer lead to multicore CPUs, which 
preserve the highest versatility. They devote a lot of silicon space on non-arithmetic logic, and 
excel at control-intensive tasks. On the other hand, they perform poorly on tasks that require a 
lot of arithmetic, but little or no flow control. Of course, just scaling up the number of these 
devices does work to improve performance, and is a common approach in traditional 
supercomputing. However, the control capabilities are wasted on many compute-intensive 
parallel problems and with them money and energy: often a more adequate architecture, like a 
streaming vector processor, could have achieved the same performance using substantially 
less silicon space. 

This dilemma has led to increasing popularity of heterogeneous approaches. Heterogeneity in 
parallel processing allows exploiting the raw computational power of massively parallel 
vector processors while maintaining the flow control and random access capabilities of 
general purpose processors by combining architectures of both types. Although more 
challenging to program, heterogeneous systems usually beat homogeneous alternatives in 
terms of price/performance ratio, as well as in terms of relative energy consumption. 

Of this class of systems, the multicore desktop machine accelerated by one or multiple 
Graphics Processing Units (GPUs) is a particularly promising base architecture, and has 
received a lot of attention in the last years. Originally designed purely as accelerators for 
graphics applications, GPUs quickly evolved into high-performance parallel coprocessors that 
can greatly speed up all kinds of applications, while the cost of the hardware upgrade remains 
modest. Recent developments show a trend to pack increasing numbers of GPUs into the 
same system, essentially creating small-scale supercomputers in the frame of a desktop 
machine. This thesis explores the capabilities and limitations of these systems, on the basis of 
their performance on selected real-world problems. 

As a target application, this thesis focuses on computational challenges that limit the 
capabilities of bioelectrical technologies in medical imaging. These methods rely on electrical 
sensors to gather information about characteristics or activity of the body part under 
examination by measuring differences in electrical quantities between these electrodes. This 
work concentrates on two particular technologies: electroencephalography (EEG), which 
measures potentials on the scalp to detect electrical activity in the brain and the electro 
impedance tomography (EIT), which actively injects small currents between pairs of 
electrodes to gather information from the measured impedances. As opposed to other imaging 
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methods like functional magnet resonance imaging (fMRI) or positron emission tomography 
(PET), these bioelectrical methods have a distinct benefit: the equipment is very inexpensive 
by comparison. Work in this field therefore promises to improve medical standards 
worldwide including rather ill-developed regions, rather than just in a few high-tech hospitals.  
Unfortunately, bioelectrical methods are still outperformed by competing technologies, 
because they produce data that does not allow a similarly straightforward interpretation. Aside 
from the challenges of electrode design, retrieving meaningful information from bioelectrical 
measurements is first and foremost a computational problem. Starting from discrete 
measurements on the scalp, the propagation of the electrical quantities needs to be traced back 
to the regions of interest, which are often remote from the measurement points. Given the 
complexity of live tissue as a volume conductor, this requires an elevated amount of data 
elaboration.  

Constrained by computing resources, contemporary solutions often use oversimplified 
models, and the lack of anatomical detail limits the capabilities of bioelectrical technologies. 
It is the ambition of this thesis to push these limits, but without thwarting the economical 
benefits by introducing specialized supercomputers. Instead, the architectures used in this 
work promise to be much more affordable, but still powerful enough to pave the way to new 
levels of quality in bioelectrical imaging.  

This work is structured as follows: Chapter  2 covers the heterogeneous multicore systems 
employed in this work, starting with a short introduction on multicore, parallel computing and 
the heterogeneous approach. After describing these basics, the concept of heterogeneous 
CPU/GPU systems is described in detail, comprising system setup, GPU architectures, 
software hierarchy and the GPU programming model.  

Chapter  3 provides a brief outline of the field of bioelectrical imaging as far as it concerns 
this work, with emphasis on the EEG and EIT technologies, the principles of brain functional 
localization and the relation of forward and inverse problem. This chapter is meant to 
introduce the background of the applications that will be described in the ensuing chapters, 
highlighting prominent computational problems in this field, where application of the 
previously described architectures promises significant advantages. 

The ensuing three chapters then cover the major contributions of this work, addressing 
computational challenges in bioelectrical imaging that where highlighted in the previous 
chapter. Chapters  4 and  5 treat very general operations as produced by (but not restricted to) 
the EEG and EIT forward problems, while Chapter  6 is more specific to real-time EEG 
source imaging, comprising solution of the inverse problem. 

More precisely, Chapter  4 presents a dual-GPU accelerated parallel triangular matrix 
inversion routine, addressing a predominant computational bottleneck in the EEG forward 
problem, while Chapter  5 presents a multi-GPU accelerated solver for non-hermitian linear 
system forming an integral part in an EIT simulation environment. Finally, Chapter  6 
introduces cudaEEG, a GPU-accelerated EEG source localization software. This 
implementation explores not only different algorithms to solve the inverse problem, but also 
several methods to extract anatomical priors from MRI. Moreover, it uses the GPU both for 
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computation and in-place graphics rendering of the results, greatly alleviating traffic on the 
system infrastructure. 

The results obtained in this work are discussed in Chapter  7, while Chapter  8 concludes this 
work.  
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2 Heterogeneous multicore systems 
The scope of this chapter is to provide a clear outline of the hardware architecture and 
software framework on which this work is based on, starting with an general introduction to 
parallel and heterogeneous processing. From there, the focus will be put on important details 
of the particular class of systems concerned in this work, namely multi-GPU accelerated 
desktop machines. 

2.1 The Multicore Revolution 
Starting with invention of the integrated circuit in 1958 and shortly thereafter of the first 
microprocessor in 1968  [46], computing has been a rapidly evolving field. A central factor of 
this development has been the progress in system integration density, i.e. miniaturizing 
transistors to put more on them on a smaller area, while maintaining or even reducing 
manufacturing costs. So far, the historic trend in integration density has confirmed Gordon 
Moore’s famous prediction from 1965, saying that this number would double every two years 
 [47]. The law holds for over half a century now and is expected to end not before 2015  [48]. 
The historic trend with extrapolation to the close future is depicted in Figure 1. 

 
Figure 1: Transistor count per chip, for common microprocessors over time (source: Wikicommons). 

There is a close correlation between integration density and computing power, since smaller 
feature sizes allow faster clock rates, which in turn are linearly connected to instruction 
throughput. For many years, frequency scaling has been the predominant way of increasing 
performance  [49]. It was so effective that there was no motivation to abandon the traditional 
serial processor approach, around which the whole software world has established itself so 
conveniently. However, about ten years ago, the frequency boom started to slow down as it 
was facing increasingly rigid physical constraints. The predominant obstacle is power density, 
which is linearly related to frequency. With standard cooling, power density in modern chips 
is already dangerously close to what silicon can withstand. Pushing the limit further would 
require more powerful cooling techniques, which are economically impracticable, or switch to 
new materials, which are currently not within sight. 
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At the same time, processor manufacturers strived to augment performance by other means 
which depended on increasing the transistor count alone, while conceding the inflation of 
clock rate and even taking a small step backwards. The result were elaborate pipelines, huge 
hardware controlled caches and complex logic for instruction-level parallelism  [56] [55].  But 
not only does it prove increasingly difficult to get additional performance gain from these 
techniques, they also greatly increase the chip’s die size. At a certain point, the gain no longer 
justifies the increase development cost and rejects in manufacturing. 

In the end, chip manufacturers accepted that the only room left to grow is multi-core 
parallelism. To date, roadmaps from all major vendors actively embrace this paradigm shift, 
and there is throughout consensus that multi-core is the future of computing  [59]. Present 
general purpose processors typically integrate two to eight cores  [53] [57], while projections 
suggest that future technologies will allow single-chip integration of many more cores, up to 
hundreds or thousands  [54]. 

2.2 Parallel computing 
Meanwhile, the mainstream software world, used to decades of serial computing, has been a 
bit slower in catching up with the new trend. Rather than to the real limits of parallel 
computing, this is owed to a certain amount of inertia: parallel programs are more difficult to 
write, and programmers tend to have less experience in this field. But in fact, many 
applications do offer a lot of concurrency. What is more, the real world itself is massively 
parallel. For that reason, parallel computing has always been way more advanced in scientific 
applications than in other fields  [61]. 

The theoretical argument for parallelism is very compelling: multiply the number of 
processors and you multiply performance. Practically, however, this promise is almost 
impossible to fulfill, as parallel processing is subject to several inherent limiting factors. The 
first is hardware independent and directly connected to the application itself: according to 
Amdahl’s law, the maximal speedup from parallel execution is inherently limited by the 
fraction of the program that is parallelizable, following the formula 

    S  = 1 / ((1 – P) + P / N) 

where S is the speedup, P the fraction of parallelizable code and N the number of processing 
elements  [58]. The speedup scaling with the number of processors according to Amdahl’s law 
is visualized in Figure 2. 
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Figure 2: Amdahl's law of parallel computing (source: Wikicommons). 

Note that this assumes that the parallel sections offer at least as many independent instruction 
streams as there are arithmetic units. Few application offer optimal performance scaling with 
the number of processors; this usually implies that the instruction streams are very 
independent and require very little or no interaction. Applications that meet these conditions 
are commonly referred to as “embarrassingly parallel”. 

However, most applications do require at least a minimum of communication between the 
processing elements, which leads to the second limiting factor in parallel computing. Data 
traffic and synchronization between processing nodes can be quite expensive, depending on 
the underlying system and especially the memory architecture. Parallel computer memory 
architectures are generally differentiated between shared and distributed memory. The two 
models can also be combined into hybrid solutions, as shown in Figure 3. 
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Figure 3: Parallel computer memory architectures. 

Both models have their advantages and disadvantages. Shared memory provides the quickest 
communication between processing units, and multiple processing streams might share one 
instance of the same base data. On the downside, shared memory does not scale well with the 
number of processing units attached to it, as data traffic and competition for resources can 
scale up geometrically with this number. It also raises the need to make shared memory 
larger. Larger shared memory is harder to put close to the processing units, which results in 
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either higher design and production cost or slower memory access; both put severe limits on 
the feasibility of increasing the number of processors. 

In the distributed memory model, each processor has its own local memory, which is 
connected to other instances via some communication infrastructure. This ensures fast local 
memory access and stable design and production costs in scaling, but all communication has 
to pass through the interconnect network, which will become quickly the bottleneck for most 
applications. What is more, when processors are working on the same base data, each of them 
needs to be supplied with its own copy, unnecessarily increasing memory consumption and 
I/O. Which solution performs better is highly application-specific, for that reason the most 
successful parallel computers employ a hybrid mix of shared and distributed memory 
architectures.  

The considerations about memory architecture already indicate that there is no “one size fits 
all” solution. Applications can display different forms of parallelizability, and accordingly 
they have different demands towards the processing system. This also applies to design of the 
arithmetic processing arrays. According to Flynn’s Taxonomy  [63], computer architectures 
can be classified into four sub-groups:  

 Single Instruction Single Data (SISD) 

 Multiple Instruction Single Data (MISD) 

 Single Instruction Multiple Data (SIMD) 

 Multiple Instruction Multiple Data (MIMD) 

The general principles of all four are displayed in Figure 4: 
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Figure 4: Flynn's Taxonomy of computer architectures with one or more Processing Units (PU)  

(source: Wikicommons).  

SISD describes the legacy serial processor and MISD is a very rare case with few actual 
example architectures. The classes of interest in parallel programming are SIMD and MIMD. 
Multi-core general purpose processors, for example, fall into the MIMD category. They are 
especially appealing if one wants to perform parallel execution on a task level, i.e. by having 
the cores concurrently process independent serial sub-programs (s. Figure 5).   
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time
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PU4
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Figure 5: Task parallelism in a MIMD machine. 

Each processing unit follows its own execution path, which might perform be very different 
operations. Classical challenges in task-parallel programming include prioritizing access to 
resources and finding optimal, load-balanced schedules for parallel execution.  
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Task-parallel processing on MIMD architectures is a very useful approach to control 
different, if possible independent parts of a system, like running office application in a 
desktop PC or handling different peripheral devices. The number of concurrent processes in 
the aforementioned applications rarely exceeds a few dozens, so there is usually no point in 
having more than a couple of execution units. However, when the goal is data intensive 
processing, more often than not the problem can be spit into a large number of concurrent 
instruction streams which perform the same basic operations on different data sets (s. Figure 
6). Applications of this type comprise graphics processing, linear algebra and many 
simulation environments. 
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Figure 6: Parallel execution of a SIMD program. 

The capabilities of general purpose multicore processors to handle multiple execution paths 
are basically wasted on such applications; on the other hand, there are often thousands of 
parallel streams with little or no divergence. This obvious mismatch led to the development of 
SIMD-type architectures which often operate in streaming  [64], both in the form of massively 
parallel vector processors  [65] and SIMD instruction set extensions for CPUs  [66]. These 
architectures are not limited by instruction rate issues like conventional processors, and can 
efficiently pipeline operations on large streams of data. Note that MIMD architectures still 
can process SIMD code, although not as efficiently as could be, while streaming SIMD 
architectures are restricted to a small subset of problems. For that reason, pure SIMD 
processors are often designed as application specific co-processors. 

2.3 The heterogeneous approach 
Due to the high application dependency of parallel performance, no universal multicore 
solution has been found so far, and many are convinced that there will never be any. One 
might consider the closest thing to this being modern multi-core CPUs as they offer the 
highest versatility. But exactly this versatility constraints their design to dedicate the major 
part of their transistors on non-computational parts like logic and cache, leaving little 
resources to actual number-crunching. In many modern supercomputers, where neither money 
nor energy are on a very strict budget, high performance is obtained by simply scaling up the 
number of these chips to the hundreds and thousands and clustering them together using a 
high-speed interconnect. 

In most environments, however, price-performance and/or power-performance ratios are of 
primary concern. Of course, if it is exactly known what the application looks like, the 
architecture can be built around it with excellent results. However, the ability to process 
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different applications should be considered the primary purpose of computer architecture 
design. For that reason, heterogeneous architectures that combine traditional general-purpose 
processors with application-specific accelerator cores have become a popular alternative. 
Accelerators are designed to maximize throughput for a specific compute-intensive task (e.g. 
a large-scale SIMD operation), given a certain transistor and power budget. All control logic 
not immediately necessary for this task is cut down. This makes them incapable of exerting 
any control of their own. The controlling processor provides input data and instructions, and 
then collects the results from the accelerators output. Figure 7 shows the general design of a 
system employing multiple accelerators, controlled by a versatile main processor.  
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Figure 7: Heterogeneous system with accelerators, controlled by a main processor. 

Recent trends show that accelerators are becoming extremely successful in parallel 
computing. Some designs, like modern cell-phone processors, take the heterogeneous 
approach very far by integrating a highly specific accelerator for all major operations within 
the chips functionality scope  [68]. But by far the most common approach is to combine one 
(or very few) general purpose processors with a large, uniform, often massively parallel array 
of programmable throughput-oriented co-processors  [51]. Accelerators may be on-chip like in 
the IBM Cell Broadband Engine (BE)  [69] and many System-on-Chips (SoC), or off-chip, 
like Field Programmable Gate Arrays (FPGA) and Graphics Processing Units (GPU). As an 
first example of typical heterogeneous design architecture, Figure 8 presents a simplified 
architectural overview over the Cell BE. 
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Figure 8: The IBM Cell Broadband Engine with eight Synergistic Processing Elements (SPE), controlled 

by a single Power Processor Element (PPE). 

 The Cell BE is used in many multimedia applications  [70]. It received attention as central 
processor of the PlayStation 3 video game console  [71] and as a basic building block in the 
IBM Roadrunner supercomputer  [72]. 

FPGAs are just an example for reconfigurable devices being used as computational 
accelerators  [74] [75], but it is the only accelerator of that type that has a significant market 
share. FPGAs are arrays of logic gates that can be hardware-programmed to resemble any 
logic circuit. In this way, they can be configured to devise one or more highly specific 
accelerator units, which might be very efficient for these tasks. A system using a FPGA as 
accelerator is depicted in Figure 9. 

core core

core core

Local Memory

FPGA 

System 
RAM

CPU 

conf.

data 

core core

core core

Local Memory

FPGA 

System 
RAM

CPU 

conf.

data 

 
Figure 9: FPGA accelerator with dedicated local memory. The device is connected to the host system via a 

configuration and a data interface. 

FPGAs are very versatile but hard to program, which is usually done using hardware 
description languages. They are rarely used for heavy floating point arithmetic, but excellent 
results have been reported for pattern matching  [77], encryption  [76] and signal processing 
applications  [78]. Leading vendors of FPGA accelerator boards are Nallatech, DRC and Pico, 
while Xilinx and Altera are leaders in FPGA design.  

However, the success stories of the Cell BE and FPGA pale compared to that of the GPU, 
which some call the “king of accelerators”. GPUs are massively parallel coprocessors that 
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excel at heavy, SIMD-like floating point arithmetic. They are integrated on a graphics card 
with their own memory. The graphics card is connected to the host system, traditionally a 
standard PC main board, via a high-speed peripheral interconnect port. Figure 10 shows the 
general architecture of a GPU-accelerated PC system. 
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Figure 10: GPU in a standard PC environment. 

Presently, there are only two relevant GPU vendors: ATI (now part of AMD) and NVIDIA. In 
this work, only GPUs from NVIDIA were used, which currently lead the market of 
computational accelerators  [80]. 

In High Performance Computing (HPC), heterogeneous systems with accelerators are 
beginning to displace traditional supercomputers, and many think that accelerators will pave 
the road to exascale computing  [79].  Particularly GPUs are enjoying resounding success in 
this development: at the time of writing, three of the five strongest supercomputers on earth 
were using these devices. 

The remarkable floating point capabilities of GPUs paired with their affordable price make 
GPUs the perfect choice for our target application field (s. Chapter  3):  all implementations 
presented in this thesis are based on desktop machines accelerated by one or more GPUs. The 
following Chapter  2.4 will provide a detailed overview over the GPU, its history, its 
employment in scientific applications and its general architecture. The Chapters  2.5 and  2.6 
will discuss the challenge of multi-GPU integration and the programming framework of 
heterogeneous multi-CPU/multi-GPU systems.  

2.4 The Graphics Processing Unit 
The GPU as computational accelerator is of central importance in this thesis. Therefore, this 
additional chapter is devoted to discuss the history, applications and architectural details of 
these devices. 

2.4.1 History 
The GPU was originally devised in the 1990s as a hardware accelerator for 3D applications. 
Graphics rendering, e.g. computing the color values of all pixels on the screen from a 3D 
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scene description, involves a lot of compute intensive, massively parallel low precision 
floating point operations, with very moderate need for data caching and flow control. This is 
quite the opposite of what a traditional CPU is good at. When graphics on desktop machines 
started to become of economic interest, particularly in the form of video games, these 
graphics accelerators were introduced to satisfy the market’s demands for better, fancier 
visuals.  

As input, the graphics card receives only a description of the 3D scene, and then uses the 
GPU to render it and store the result in a frame buffer, from which the screen content is being 
updated. The principle is outlined in Figure 11. 

3D data and instructions 
formatted in Graphics API

Rendered frame 
from local buffer 

Host System Graphics Card Display 

3D data and instructions 
formatted in Graphics API

Rendered frame 
from local buffer 

Host System Graphics Card Display 

 
Figure 11: A description of the scene is passed to the graphics card in form of a graphics Application 

Programming Interface (API). The screen image is rendered by the GPU and stored in the local on-board 
frame buffer, from which the display is updated. 

Graphics rendering consists of a straight sequence of few well-defined steps commonly 
referred to as the rendering pipeline:  

1. Vertex processing: 3D coordinates (called vertices) from the scene description are 
translated into 2D coordinates on the screen. These vertices define triangulated 
surfaces which assemble to polygons (three-dimensional objects). 

2. Rasterization: The triangles are scan-converted to fragments of the physical pixel grid 
of the screen 

3. Fragment processing: The color value of all pixels in all fragments is computed taking 
into account lighting, texture etc. 

4. Composition: The fragments are assembled together to the final image. 

Soon, the boom of the video game industry piled economic pressure on GPU development, 
leading to an unparalleled evolution of these devices. Initially, GPUs were little more than 
hardwired ASICs (Application Specific Integrated Circuits) implementing the rendering 
pipeline. Around the year 2000, parts of the pipeline were replaced by programmable 
processor arrays (s. Figure 12). Now small programs (called “shaders”) could be executed to 
modify vertex and pixel data, allowing more spectacular graphics effects.  
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Figure 12: Legacy GPU with programmable vertex and fragment (pixel) processor arrays. 

As of 2006, the processor arrays for vertices and pixels were merged into a unified shader 
model, abolishing the rigid rendering pipeline of earlier generations. The motivation behind 
this was to avoid bottlenecks through display of very vertex or very pixel intensive scenes, 
and to once again broaden the range of graphics effects than can be generated. However, this 
design decision had consequences reaching far beyond of the original scope. It basically 
turned the GPU into a high-throughput programmable many-core processing unit, and 
suddenly multiplied the devices capabilities for non-graphics applications as well.  

With increasing programmability of GPU arithmetic, more and more people tried to program 
them to do other things than graphics (s Chapter  2.4.2); this is when the buzzword GPGPU 
(General Purpose GPU) was coined. Although the trend was started by independent tinkerers, 
GPU vendors soon embraced the new concept seeing a chance to broaden the target audience 
of their products. This led not only to the release of GPGPU-friendly application 
programming interfaces like ATI’s CTM (Close to Metal, now called “Stream”)  [86] and 
NVIDIA’s CUDA (Compute Unified Device Architecture)  [87].  It also motivated inclusion 
of hardware features that do not make any sense for graphics rendering. These include, in 
chronological order: 

 Faster read-back from GPU memory 

 Double precision support 

 Fully IEEE-compliant floating point arithmetic 

 ECC error correction 

 Hardware-controlled caching 

Today, GPUs are ubiquitous, cheap and powerful. In terms of raw floating point operations 
per second (FLOPs), they have long left serial computers behind, with newer devices entering 
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the teraflop range; the evolution of both architectures in terms of GFLOP/s (billion floating 
point operation per second) is shown in Figure 13. 

 
Figure 13: Evolution of Intel CPUs and NVIDIA GPUs in terms of computational throughput. Source: 

NVIDIA. 

Given the present state of the art in graphics hardware, it almost seems out of place to longer 
speak of graphics accelerators that can be also used for computation. Rather, these devices are 
computational accelerators that can also be used for graphics, with capabilities far exceeding 
their original purpose. This goes so far that there are graphics cards that do not even have a 
graphics output, like the NVIDIA Tesla series  [85]. 

2.4.2 GPU in scientific applications 
First attempts to use GPUs for non-graphics applications were made even before introduction 
of the unified shader model  [90]. By casting both input data and computational instructions in 
the format of a graphics API, the fragment processors of early GPUs could be “tricked” into 
performing simple parallel algorithms like simulation of cloud or fluid dynamics  [81] [84], 
band system solvers  [82] and basic linear algebra operators  [83] [89]. 

While these implementations already produced encouraging results, the programming was too 
cumbersome to allow widespread application of GPGPU, and the graphics-tuned architecture 
of these GPUs severely limited performance for most applications. However, the introduction 
of unified shaders and computation-oriented software design kits initiated a downright “gold 
rush” in the GPGPU field, with many new applications reporting speedups over CPUs in the 
order of tens to hundred times. Basically, any application involving highly parallel arithmetic-
intensive floating point computations can greatly benefit from GPU acceleration. Examples 
thereof cover  

 Dense linear algebra  [93] [94] [95] 

 Sparse linear system solvers  [96] [97] [98] [99] [100] 
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 Computational fluid and molecular dynamics  [103] [104] [105] [106] 

 Bioinformatics  [107] [108] [109] [110] 

 Image processing  [111] [112] [113]  

 Signal processing  [114] [115] [116]  

just to name a few. Recently, considerable effort has also been made to include GPU 
acceleration in popular scientific software tools like Matlab (AccelerEyes Jacket  [119] and 
GPU support for the Parallel Computing Toolbox  [120]), Mathematica  [121] and “R”  [122]. 

Concerning related work to the contributions of this thesis, particular attention should be paid 
to the state of the art in GPU-accelerated dense linear algebra and sparse linear system 
solvers. What regards the dense triangular matrix inversion routine presented in Chapter  4, 
related work on factorization methods exists  [166] [167], but my contribution was the first to 
solve the inversion problem with GPU acceleration.  

The non-hermitian system solver presented in Chapter  5 belongs to the category of GPU-
accelerated sparse linear system solvers. The central relevance of this discipline in the field of 
HPC has led to a plethora of related implementations, making analysis of - and comparison to 
- the state of the art much a more extensive issue. In-depth discussion of related work will be 
provided in Chapter  5.2, while comparative analysis in Chapters  5.5.4 and 5.5.5 will 
demonstrate superiority over existing solutions. 

Chapter  6 presents a very application-specific implementation containing parts from image 
and signal processing, but to the best of my knowledge no other GPU-accelerated 
implementation is similar enough to be considered as related work.     

2.4.3 Architectural overview 
The GPU is a massively parallel computational unit designed for maximum throughput, as 
required by graphics rendering. Compared to general purpose processors, most of the logic is 
devoted to arithmetic units rather than caching and flow control. All GPUs used in this work 
are based on the unified shader model (s. Chapter  2.4.1). A large part of the architecture 
consists of SIMD-type arrays of stream processors (Stream Multiprocessors, SMs), which are 
packed together in Texture Processing Clusters (TPCs). The chip has access to the host 
system’s north bridge via a high-speed PCI express interface, as well as to a dedicated off-
chip DRAM memory on the graphics board (s. Chapter  2.5.1). There is some control logic to 
distribute the work load of vertex and pixel shader programs to the TPCs, in case the GPU is 
actually used for graphics rendering. Computational applications are handled by an additional 
work distribution scheduler. The general GPU architecture of the NVIDIA Series 8, 9 and 200 
is displayed in Figure 14. 
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Figure 14: GPU general architecture. 

The interface to the off-chip DRAM is an obvious bottleneck, so considerable resources are 
devoted to maximize bandwidth. Depending on the GPU model, 256-512 parallel lanes go out 
to the memory banks. Memory itself is based on the Graphics Double Data Rate (GDDR) 
design, which is tailored to GPUs requirements.  

Number and architecture of the TPCs depend on the individual GPU model: in GeForce series 
8 and 9 GPUs, each TPC integrates two stream multiprocessors, each of which contains eight 
32-bit floating point stream processors (SP) and two Special Function Units (SFU). Next to a 
small instruction and constant cache, each SM shares 16kB of fast shared memory. SPs are 
optimized for single precision floating point arithmetic; integer and logic operations are 
possible but may take more clock cycles. Additional control logic includes a Texture Unit 
(TU) and “Multi-Thread Instruction Fetch & Issue” logic (MTIFI). In the series 200, there are 
three per TPC, and each SM is additionally equipped with one double precision unit (DP). 
Each cluster has a shared Geometry Control (GC) and Stream Multiprocessor Control (SMC) 
 [85]. Both TPC variants are shown in Figure 14. 
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Figure 15: Texture Processing Cluster (TPC) variants of the NVIDIA GeForce series 8 and 9 (left) and the 

NVIDIA GeForce series 200 (right). 

This general architecture applies to most of the devices used in this work. The latest 
generation of NVIDIA GPUs, however, employs a completely revised GPU design. The 
architecture of the GeForce 400 series (codename: Fermi) is straightforwardly focused on 
computation rather than graphics rendering. The TPC clustering is abandoned; instead the 
chip is covered by a uniform array of much larger Stream Multiprocessors. A Fermi SM 
contains 32 Stream Processors and four Special Function Units. The SPs are different too: 
they perform fully IEEE-compliant floating point arithmetic and can issue one integer 
operation per cycle. There are no double precision units, rather are joint pairs of two SPs used 
to perform double precision. This raises the double precision throughput considerably. The 
shared memory is much larger with 64kB, and has hardware controlled caching. One might 
also note the lack of texture units and other hardwired graphics-legacy logic, a clear statement 
of the intended primary use of these devices. Work load distribution is now handled by a 
single uniform scheduler called “GigaThreads”  [124]. An overview of the Fermi architecture 
is displayed in Figure 16. Further details remain undisclosed by NVIDIA.  
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NVIDIA Fermi Device Architecture
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Figure 16: General architecture of the NVIDIA series 400 (Fermi) GPU. 

 
Configurations of the GPUs used in this work are listed in Table 1. SP and DP stand for single 
and double precision, respectively. The GTX 295 has two identical GPUs integrated on the 
same graphics board, each with its own DRAM but sharing the same PCI express port to the 
host. 

GPU 
Model 

# TPCs 

 

# SMs 

 
DRAM 
(MB) 

SP throughput 

(GFLOP/s) 
DP throughput 
(GFLOP/s) 

Bandwidth 

(GB/s) 
TDP 
(watts) 

8800 GTS 6 12 384  346 - 63  143  

8800 GT 7 14 512  504 - 58  105  

GTX 280 10 30 1024  933 78  142  236  

GTX 295 2×10 2×30 2×896  2×894  2×75  2×113  237   

GTX 480 - 15 1536  1345 672  177 250  

Table 1: Parameters of GPU models used in this work. 

Throughput is measured in billion floating point instructions per second. The values indicate 
the theoretical maximum of the device, calculated by pretending that all computational units 
of the corresponding level of precision are continuously busy with fused multiply-add 
operations. TDP is a common acronym for “thermal design power”, and represents the 
maximum thermal power that the processor’s cooling system is required to dissipate. All 
GPUs used in this work can survive by air cooling despite the discrepancies in computing 
power: TDP is heavily influenced by which manufacturing process is used. We see Moore’s 
law at work here. 

  19 



Chapter  2: Heterogeneous multicore systems 

2.5 Multi-CPU/multi-GPU systems 
In recent development of GPGPU applications, a trend to pack multiple GPUs into the same 
system can be observed  [128]. This is not part of the GPU’s original design concept, so 
assembly of a multi-GPU system introduces additional challenges, which are discussed in the 
following. 

2.5.1 GPU interfacing 
Bandwidth can be considered the “gravity” of modern computer systems: handling of data 
traffic between key components ultimately dictates system performance. This is especially 
true for parallel systems. For this reason, we begin this chapter with an introduction to the 
GPU interfaces before moving on to the general system architecture. 

When GPUs entered the mass market and started to grow in power, it soon became apparent 
that the traditional Peripheral Component Interconnect (PCI)  [125] was way too slow to feed 
the graphics card’s hunger for input data. In 1997 a new interface type, the Accelerated 
Graphics Port (AGP), was introduced und soon included in almost all successive main boards. 
AGP was connected directly to the main board’s north bridge and provided a dedicated 
pathway between the slot and the processor, as well as prioritized access to system RAM. 
Integration of the GPU in this classic PC architecture is shown in Figure 17. 
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Figure 17: GPU in classic PC architecture. MB = Memory Bus, FSB = Front Side Bus, ATA = Advanced 

Technology Attachment. 

Apart from the lack of bus contention that would occur on the PCI bus, the direct connection 
also allowed higher clock speeds  [126]. AGP achieved speeds of up to 2 GB/s in upload, but 
only 256 MB/s in read-back, which strongly limited early GPGPU applications. 

Starting from 2004, AGP was gradually replaced by the new PCI express interface, which 
abandons the arbitrated bus structure of conventional PCI in favor of a switched point-to-
point connection between devices. Each participant has a direct link to the switch, which 
consist of 1-16 parallel lanes. Depending on the configuration one speaks of 1x, 2x, 4x, 8x or 
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16x PCIe. Each lane is 2-bit wide, allowing simultaneous transfer in both directions. The 
PCIe principle in contrast to PCI bus sharing is visualized in Figure 18. 
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Figure 18: Conventional PCI and PCI express interconnect principles. 

The PCI express technology has recently advanced to the third generation. However, few 
main boards and peripherals are PCIe 3.0 compliant yet. At the time of writing, 16x PCIe 2.0 
is the standard interface for modern graphics cards, which will also apply for at least the 
upcoming generation of GPUs. Table 2 shows a comparison of interface “speeds and feeds” 
for past and present GPU-host interfaces.  

Interface Upstream (MB/s) Downstream (MB/s) 2-way? 

PCI 32-bit 133 133 no 

PCI 64-bit 512 256 no 

AGP 266 256 no 

AGP x2 533 256 no 

AGP x4 1066 256 no 

AGP x8 2133 256 no 

PCIe 1.0 x16 4096 4096 yes 

PCIe 2.0 x16 8192 8192 yes 

Table 2: Interface speeds in standard PC architectures. 

We see that the upstream bandwidth roughly doubles with every generation, an evolution that 
is in tune with the increase in GPU computing power (s. Figure 13). We can also observe that 
read-back speed was stagnant until the paradigm shift of PCIe  [127].   

2.5.2 System infrastructure 
When setting up a multi-GPU system, the primary concern must be data feeding of the 
computational units. This means that the full 16x PCI express bandwidth must be available to 
all graphics cards. Unfortunately, in the traditional role of the GPU, there was little need to 
handle more than one graphics card at the same time. After all, the user had rarely use for 
more than one display. Hence, most conventional main board featured only one high-speed 
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interface like AGP or 16x PCIe. However, the revolution of GPGPU made it appealing to 
distribute work load on multiple GPUs packed in the same system  [128]. Main boards 
providing full speed for two PCIe slots are becoming increasingly common, with high end 
solutions supporting up to four. 

Advancing the traditional PC architecture from Figure 17, we end up with the general system 
architecture for a desktop machine integrating multiple GPUs on a shared PCI express 
interconnect, which is displayed in Figure 19. 
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Figure 19: General system architecture of a heterogeneous multi-CPU/multiGPU system. 

Fast host-device interfacing is even more important as inter-GPU communication is not as 
efficient as it could be. At the present state of the art, no direct point-to-point connections can 
be established for data transfers between graphics cards. Instead, data must be downloaded 
from the device memory of the first GPU to host RAM, and then uploaded from host RAM to 
the device memory of the second GPU. The path of data movement is shown in Figure 20. 
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Figure 20: Data exchange between two GPUs. 

This problem persists for quite some time now and was not addressed yet by GPU vendors 
despite remarkable advancements in other aspects. Probably the graphics legacy handling of 
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the GPU-host interface makes very hard to synchronize two devices efficiently enough to 
enable a fast direct transfer. 

In the context of multi-GPU communication, one should also mention the efforts both primary 
GPU vendors made in distributing the work load of graphics rendering over multiple GPUs: 
NVIDIA’s Scalable Link Interface (SLI)  [128] and ATI/AMD’s Crossfire  [130]. These 
special interfaces fuse 2-4 GPUs on a low driver level: depending on the variant, the GPUs 
render different interlaced frames or parts of the screen. The interfaces initially required an 
additional physical connector between graphics cards; only recently, the technologies could 
be extended to also work across the PCIe bus. Unfortunately, neither SLI nor Crossfire is 
supported by current GPGPU drivers and software design kits. 

There are also graphics cards like the NVIDIA GTX 295 that integrate two GPUs on the same 
board, along with one dedicated DRAM per GPU. This has the advantage that more GPUs 
can be packed on a single main board; however, the GPU pairs are competing for the same 
PCI express interface. Moreover, no additional advantage can be drawn from the physical 
proximity of the GPUs on the same graphics board: swapping data between the device 
memories still requires buffering on the host RAM, an absurd inefficiency that is owed to the 
original intention that the two GPUs should be used for graphics in SLI mode. 

2.5.3 CPUs 
The CPUs primary use is handling and control of the GPUs, which is done via continuous 
synchronization loops between both processing units. From this results the most important 
constraint concerning the CPU part: there should be at least one dedicated CPU core per GPU 
to avoid conflicts and unnecessary delays. Most contemporary CPUs have two or four cores; 
at the moment only high-end models have more. But it is usually much cheaper to just put two 
quad-core CPUs on the main board. 

The gross of computational load will usually be left to the GPUs so the throughput of the 
CPUs is of secondary concern. Admittedly, some applications have reported relevant 
performance gains from using the CPU in parallel to the GPU, like factorization methods 
where the performance gap between both architectures is not so large  [93]. In most cases, 
however, the CPU’s role will rather be reduced to that of the “steering” of the heterogeneous 
system, as humorously allegorized in Figure 21. 
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Figure 21: Humorous allegory of the CPU's role in a heterogeneous CPU-GPU system (source: 

intelsinsides.com). 

While slightly exaggerating, the parody does not omit the fact that the CPU is still of primary 
importance in the system, although not for heavy-duty computational work. Furthermore, it is 
also plausible that faster CPUs reduce the overhead of CPU-GPU synchronization, although I 
am not aware of any study quantifying this effect. 

2.5.4 Power and cooling 
GPUs are power hungry and have long left the range where the graphics card could be 
supplied via the bus interface. A high-end graphics card typically requires external power 
supply in the range of 110-270 watt  [131]. When multiple graphics cards are packed on the 
same main board, the power requirements soon rise to the order of kilowatts. Desktop power 
supplies that powerful are available as commodity hardware, although they are more 
expensive than the weaker run-off-the-mill products. 

Another issue comes from the fact that all that power ultimately translates into heat: we 
introduced values of typical TDPs in Table 1. GPUs are equipped with large heat sinks and 
strong fans (s. Figure 22), but the physical proximity of multiple devices might raise concerns 
about heat dissipation. However, experience shows that air cooling elements suffice even in a 
multi-GPU system, provided that the case allows enough circulation. 
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Figure 22: GTX 480 graphics card with cooling element. 
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2.5.5 Desktop supercomputer “cuba” 
As an example setup for a heterogeneous multi-CPU/multi-GPU system, this chapter presents 
the current configuration of our experimental platform, the desktop supercomputer “cuba”. It 
was used as target platform for the implementation presented in Chapter  5. An overview of 
the system architecture is shown in Figure 23. 
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Figure 23: System overview of “cuba” 

The system configuration is as follows: 

 Two Intel Xeon E5520 CPUs @ 2.27 GHz 

 Two NVIDIA GTX 295 graphics cards 

 Two NVIDIA GTX 480 graphics cards 

 24 GB RAM 

 4 kW power supply 

In total, the system comprises eight CPU cores and a total of six GPUs of two different 
architectures (s. Chapter  2.4.3). Summarizing the theoretical throughput of the GPUs alone, 
the system is capable of 

 6266 GFLOP/s in single precision 

 1644 GFLOP/s in double precision 

The overall system cost is around 10K€, which is remarkably affordable considering the 
computational throughput. 

2.6 Programming environment 
A system like the one presented in Chapter  2.5.5 has remarkable computational power for it’s 
cost and energy budget, put exploiting these resources is not a trivial task. GPUs have very 
specific aptitudes, and the programming model was created assuming single-GPU usage. This 
chapter will outline the software architecture for programming a heterogeneous Multi-
CPU/Multi-GPU system. 
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2.6.1 Software architecture 
To fully exploit the potential of a Multi-GPU system, only two additional library 
dependencies are required: The CUDA run-time and driver libraries  [87] and OpenMP  [132]. 
CUDA provides the application programming interface to the GPU, while OpenMP handles 
CPU multithreading. Both will be further described in Chapters  2.6.2 and  2.6.3. The Software 
hierarchy is shown in Figure 24. 
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Figure 24: Software hierarchy and interaction with hardware. Both the CUDA driver interface and the 

multithreading depend on the operating system. 

As mentioned in Chapter  2.5.3, each GPU needs to be tied to a dedicated CPU core for 
handling and control. This is why CPU multithreading is required in the first place. Other 
solutions exist, but OpenMP is lightweight, convenient and portable, thus perfectly fitting our 
needs. It will be shortly described in Chapter  2.6.2. 

A typical multi-GPU application flow proceeds as follows. The application starts as a single 
master thread. Then, one CPU thread per GPU is spawned; given enough resources each 
thread will run on a different CPU core. Within each thread, a CUDA context for each of the 
GPUs is created. This is like creating a handle to the GPU: it sets up the synchronization loop 
and initializes the runtime library. In the following, all CUDA API calls will refer to the 
selected GPU: memory pointers will point to the GPU’s own device memory and kernels will 
be executed on the corresponding GPU. Host RAM is shared among CPU threads and with 
them also the CUDA contexts; it can (and in fact must, s. Chapter  2.5.2) be used as a buffer to 
exchange data between GPUs. 

2.6.2 OpenMP 
OpenMP is a multithreading standard based on a shared memory principle. In the code, 
parallel regions are defined via preprocessor directives, upon arrival on which execution is 
forked into multiple threads. These process the region on different cores (as far as those are 
available). At the end of the region, threads are joined again with the master thread. A simple 
example is shown in Figure 25. 
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“fork”

“join”

float a[4],b[4],c[4];
int i;
#pragma omp parallel (private i)
{

i = omp_get_thread_num();
c[i] = a[i] + b [i];

}
printf(“c = %f %f %f %f\n”,

c[0],c[1],c[2],c[3]);

“fork”

“join”

float a[4],b[4],c[4];
int i;
#pragma omp parallel (private i)
{

i = omp_get_thread_num();
c[i] = a[i] + b [i];

}
printf(“c = %f %f %f %f\n”,

c[0],c[1],c[2],c[3]);
 

Figure 25: Parallel processing with OpenMP. 

The best way to synchronize GPUs is to join OpenMP threads. It would also be possible to 
synchronize via semaphores, but my experiments have shown that this creates significantly 
more overhead. Note however that this is only possible because OpenMP threads are not 
actually destroyed when joining; this would also destroy the CUDA context. Instead, they 
become dormant and are reactivated during the next forking. 

The OpenMP standard actually provides a lot more features than indicated in Figure 25, 
however no more than the most basic directives is requires for our purposes  [132]. It is, 
however, restricted to shared memory systems. For distributed system like multi-GPU 
clusters, a multithreading API that supports network communication is required. For these 
frameworks, the Message Passing Interface (MPI) is a popular solution  [133]. 

2.6.3 CUDA 
The term CUDA (Compute Unified Device Architecture) refers to the engine in NVIDIA 
GPUs that handles computing work load instead of graphics, as well as to the corresponding 
GPGPU programming interface. It was introduced by NVIDIA in November 2006 and allows 
direct programming of the GPU in a C-based environment. At the time of writing, the latest 
CUDA version was 3.2  [87]. 

2.6.3.1 GPU programming model 
The GPU is still a passive co-processor; all control is exerted by the CPU side. A typical 
application flow proceeds as follows: the CPU uploads input data to GPU memory. The 
parallel GPU kernel code is then transferred and launched on the device. The code executes 
asynchronously; to verify completion the status needs to be polled. After completion, the CPU 
downloads the processed data sets to host memory for output or further usage. The principle is 
shown in Figure 26. 
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Figure 26: Heterogeneous programming of a CPU/GPU bundle using CUDA. 

The GPU is programmed in a so-called Single Instruction Multiple Thread (SIMT) style. This 
means that while there is a single instruction stream followed by all computational units, it is 
not entirely restricted to global processing of the same arithmetic, as opposed to SIMD. Some 
divergence is possible without implications on performance; to which extent will be described 
in the following. 

As shown in Chapter  2.4.3, the GPU architecture is organized in two levels of parallelism: a 
parallel array of stream multiprocessors, which in turn are parallel processing units. The same 
two-level structure reflects also in the programming model. The parallel thread pool needs to 
be evenly divided into a one- or two-dimensional grid of thread blocks. These blocks can be 
up to three-dimensional, which can make address generation more convenient in some 
applications. 

During the work distribution phase, i.e. after kernel launch and before actual execution, the 
thread blocks are equally distributed to the stream multiprocessors (s. Figure 27). 
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Figure 27: GPU thread clustering and dispatch. 

Blocks are then processed by the stream multiprocessors as isolated, distributed sub-
problems. This proceeds until all blocks are finished, which also concludes kernel execution. 
Until this, no interaction or synchronization is possible between blocks. This applies even if 
they are assigned to the same stream multiprocessor, over which the application programmer 
has no control. Threads inside a block, on the other hand, can easily communicate via the on-
chip shared memory of the stream multiprocessor and can synchronize using a low-overhead 
barrier.  

The CUDA programming model is highly scalable in that it hides all work load distribution 
and scheduling from the application programmer. Understanding the process, however, is still 
important in order to produce efficient GPU kernel code. On a stream multiprocessor, threads 
are divided in groups of 32 identical instructions called warps. Only these warps are strictly 
SIMD; if threads inside a warp diverge, the execution paths are serialized. This effectively 
divides instruction throughput by the number of diverging paths. However, if two full warps 
diverge but are in themselves consistent, no performance is lost at all.  

All warps on a stream multiprocessor, which might be part of different thread blocks, are 
executed on the arithmetic units following a prioritized schedule as outlined in Figure 28. 
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Figure 28 CUDA warp scheduling. In series 8, 9 and 200 GPUs, each of the eight Stream Processor (SP) 

processes four arithmetic instructions in streaming. In the Fermi architecture (series 400), 32 SPs process 
the warp completely in parallel. 

The warp scheduler tries to line up as many warps from mutually independent instructions 
stream as possible in order to hide memory access latencies. A maximum of 24 warps can be 
scheduled at once, while at least 13 are required to fully hide these latencies. Latency-induced 
stalls are to be expected if there are too few active threads to reach this number. This can 
happen if blocks require too many resources, limiting the number of active blocks on the 
multiprocessor. It can also happen if blocks are too small: they should contain at least 32 
threads to fill up a warp, but in addition there is a maximum of eight blocks per thread, which 
calls for at least 96 threads per block to maximize the number of active warps. And naturally, 
block size should always be a multiple of the warp size for best occupancy. There can be no 
more than 512 threads per block; 1024 for the latest GPU generation  [87].  

2.6.3.2 Memory model 
Understanding the CUDA memory hierarchy is of crucial importance as nearly all GPU 
applications are inherently bandwidth limited. Since most of the chip is devoted to arithmetic 
units, there is only a small amount of fast on-chip memory (s. Chapter  2.4.3). Local data 
reusage is made even more difficult through the fact that there is no hardware-controlled 
cache hierarchy comparable to the designs that can be found in CPUs, with the exception of 
Fermi which has introduced a similar feature. The GPU device memory (GDDR3 or GDDR5 
RAM, off-chip) has high theoretical bandwidth, but requires accesses to be very structured to 
be efficient – another legacy from the device’s graphics processing history. 

Next to shared memory, a file of 16k registers is shared among threads active on a 
multiprocessor. Each thread has exclusive access to local memory, which might be contained 
in the register file as long as enough registers are available. After that, local memory is 
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swapped out to the much slower off-chip memory. Local memory, wherever resident, is freed 
as soon as the thread finishes. 

The next layer is shared memory. It is consistently shared among threads of the same block; 
resources allocated in shared memory are freed once the block is completely finished. This 
implies that all data in shared memory become inconsistent after the kernel finishes; they 
cannot be reused in a successive kernel. 

All threads in a grid have full access to global memory. Only data in global memory remain 
consistent for the lifetime of the CUDA context, and thus is shared between kernels. The 
hierarchy is shown in Figure 29. 
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Figure 29: CUDA memory model. Local memory is actually part of global memory, but dedicated to a 

single thread. 

Registers can be accessed in two clock cycles. The same is true for shared memory, provided 
that no access conflicts occur: to increase bandwidth, shared memory is divided into equally 
sized modules called banks. In the GeForce 8, 9 and 200 series, each 64 byte segment is 
accessed via 16 parallel banks.  Hence, full parallel access is possible if threads from a half-
warp access data with a 32-bit stride. Violation of this rule results into bank conflicts, where 
conflicting accesses are serialized. A special case is if all threads of a half warp access the 
same bank; then data is scattered in a single turn. Examples of each case are shown in Figure 
30. For the series 400 GPUs, the rules slightly change in that there are 32 banks and accesses 
are assigned in full warps.  
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Figure 30: Shared memory access patterns. 

Global memory has a latency of 400-600 cycles, which can usually be hidden by warp 
scheduling (s. Chapter  2.6.3.1). In addition, accessing patterns to global memory must be 
structured in a particular way to allow coalescing of the access, which means that data 
requested by a half-warp are transferred in a single transaction. Failing to coalesce accesses is 
penalized with performance drops of up to 90%  [93], so this matter has a high priority. 

The conditions for coalescing vary depending on the GPU generation, while older 
architectures are stricter concerning the access patterns. In series 8 and 9 GPUs, all accesses 
from a half-warp must target the same 128-byte segment and be ordered congruently to the 
thread index. Otherwise, all transfers are serialized. In the series 200 and newer, the ordering 
can be arbitrary, and there is always only one transfer per data segment that is accessed. And 
like for shared memory accesses, the series 400 effects one transaction per warp, not half-
warp. 

Finally, a small part of the global memory is reserved to constants and texture data, and is 
cached by the constant and texture caches. A constant cache is integrated into each stream 
multiprocessor, while there is a shared texture cache for each Texture Processing Cluster. 
Both caches are read-only.  

2.6.3.3 Application Programming Interface 
A GPU kernel is defined in a C function, which describes the arithmetic executed by all 
parallel streams, not unlike the parallel regions of OpenMP (s. Chapter  2.6.2). The grid and 
block configuration is appended as launching parameters to the argument list when calling the 
kernel function. The C standard is extended by a minimal set of additional keywords such as 
to identify functions as GPU kernels or to define a pointer as pointing to GPU memory. Inside 
GPU kernels, built-in variables can be accessed to identify the thread’s position in the block 
and grid configuration. A set of API functions is provided to control GPU configuration, 
memory management and transfers between device and host. An example of kernel and host 
code is shown in Figure 31. 
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// Kernel definition 
__global__ void VecAdd(float* A, float* B, float* C) 
{ 

int i = blockDim.x*blockId.x + threadIdx.x; 
C[i] = A[i] + B[i]; 

} 

// Main program
int main() 
{ 

...
// Calculate kernel configuration, block size is 32 
int Npad = 32*(N/32 + (N%32)?1:0);
dim3 block_size(32,1,1);
dim3 grid_size(Npad/32,1,1);

// Allocate memory on device board 
cudaMalloc(A,Npad*sizeof(float)); 
cudaMalloc(B,Npad*sizeof(float));
cudaMalloc(C,Npad*sizeof(float));

// Upload input
cudaMemcpy(A,A_host,N*sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(A,A_host,N*sizeof(float),cudaMemcpyHostToDevice);

// Kernel invocation with Npad threads 
VecAdd<<<grid_size,block_size>>>(A, B, C); 

// Wait until kernel is finished 
cudaThreadSynchronize();

// Download output
cudaMemcpy(C_host,C,N*sizeof(float),cudaMemcpyDeviceToHost);
...

}  
Figure 31: Example code in CUDA C defining and launching a simple vector addition kernel. 

This is a simple implementation of GPU-accelerated vector addition, following the typical 
flow mentioned in Chapter  2.6.3.1. Note that the kernel can be scaled to any one-dimensional 
grid and block configuration. The example also indicates that there is often a need to 
artificially increase problem size to fit into the grid segmentation, especially since block size 
should be a multiple of warp size. Idem, allocated GPU memory must be adapted to this new 
problem size using a technique called “padding”. Conveniently, this often automatically 
produces the alignment conditions for coalesced memory accesses, at least for the majority of 
structured problems. 

2.6.3.4 Compiler chain 
Source code containing CUDA keywords, API calls or kernels must be compiled with 
NVIDIA’s NVCC compiler driver  [161]. Its basic work flow consists in separating CPU and 
kernel code and compiling the latter into PTX code (a kind of assembly form  [160]) or 
directly into a cubin object (binary format).  

Note that PTX (Parallel Thread eXecution) is a virtual Instruction Set Architecture (ISA) 
providing a layer of abstraction for the various CUDA GPU architectures. On a physical level, 
PTX code is then translated to real device machine code for these targets. The GPU machine 
code is merged again with the remaining host code, which is then compiled by invoking a C 
compiler like gcc  [159]. 
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The compiled host code can also be linked with objects produced by other compilers. This is 
necessary to include code written in C++ or FORTRAN, as to include libraries providing 
interfaces in these formats. Prominent examples thereof are OpenMP  [132], MPI  [123] or 
LAPACK  [139]. A flow chart of the CUDA compile chain is shown in Figure 32. 
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Figure 32: CUDA compile chain. MC = machine code. 

The chart is slightly simplified in that some intermediate stages are left out. A description of 
the full, detailed procedure can be found in  [161]. 
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3 Target application: bioelectrical imaging 
Since the main contributions of this thesis are motivated by applications in bioelectrical 
imaging, this chapter was included to give a quick overview over the field as far as it concerns 
the subsequently presented implementations. However, the focus of this work is on parallel 
processing on heterogeneous multi-core systems, so this chapter is condensed to a short and 
selective review. For a more comprehensive introduction to the field as a whole I recommend 
 [183] for further reading. More detailed information about electroencephalography can be 
found in  [5], while the concept of source imaging is exhaustedly treated by  [13],  [14] and 
 [17]. What concerns Electrical Impedance Tomography, a good and recent review can be 
found in  [9]. 

3.1 Electroencephalography 
Electroencephalography uses an array of passive electrodes to record potential differences on 
the scalp. These originate from the firing of neurons in the cerebral cortex, the part of the 
brain regarded to be responsible for a wide array of higher level brain functions like 
awareness, memory, perception, though, language and conscientiousness. 

Neurons are the basic building blocks that process and transmit signal inside the cortex. This 
is done by an alternating chain of chemical and electrical signals. Ion pumps on the neuron’s 
cell membrane create an unequal potential distribution. A signal is represented by a temporal 
depolarization that travels along the neuron. This entails compensatory currents to flow the 
outside of the neuron, which create an electric field throughout the head, which in turn 
ultimately creates potential differences on the scalp. There are limits to the type of activity 
that can be detected by EEG, though. Single neurons are far too weak to create a notable 
signal, the electrodes are large and remote by comparison and the skullcap in between creates 
a powerful shielding effect. Detectable currents are created only by patches of pyramidal cells 
aligned perpendicularly to the cortical surface that are simultaneously active. Even then the 
measured potential differences are quite small, in the order of microvolts (µV)  [7]. Figure 33 
shows a detail of typical EEG recordings: four channels over approximately five seconds. 

 
Figure 33: EEG traces 

An EEG cap typically consists of 19 to 256 electrodes. In clinical diagnostics there are some 
standardized montages that define different sets of channels with their precise positions on the 
scalp. An example for a common montage scheme is given in Figure 34. 

  35 



Chapter  3: Target application: bioelectrical imaging 

 
Figure 34: EEG scalp montage according to the common 10/20 system from a side-faced (A) and a top-

down view (B). (source:  [6]) 

Compared to other imaging methods, EEG has a high temporal resolution. Most EEG systems 
sample at a rate of around 240 Hz. In standard clinical studies, the main frequencies of 
interest range up to approximately 30 Hz. The spectral composition of the signals can convey 
additional information. In classical EEG analysis, rhythmic activity is considered to be 
divided into the following bands: 

 Delta rhythm: 1-4 Hz 

 Theta rhythm: 4-7 Hz 

 Alpha rhythm: 8-12 Hz 

 Beta rhythm: 12-30 Hz 

Frequency components above these bands are usually considered to be artifactual, i.e. from an 
unwanted source not related to neuronal activity, like noise and muscle movements. 

Routine EEG has a wide range of applications. A major one is to aid diagnosis of epilepsy, 
where abnormal patterns such as sharp waves and spikes can be seen; other clinical 
applications include diagnosis of coma and brain disorders. In research, EEG plays an 
important role in cognitive sciences and psychophysiology. Certain parts of the cortex can 
roughly be mapped to certain brain functions, like the visual cortex and the motor cortex, so 
signals picked up from an EEG channel close to these regions can give insight into the brain’s 
principal activity or indicate a focal brain disorder  [5].  

EEG alone however does not allow precise anatomical localization of activity; this requires 
further signal processing in the framework of a neural source localization method, the 
principles of which will be outlined in Chapter  3.2. 

3.2 EEG source imaging 
In traditional EEG diagnostics, the raw recordings are visually inspected by the doctor 
looking for anomalies in the waveforms. This gives at best a very crude estimate in localizing 
the regions of activity. However, within certain limits, the scalp potential measurements from 
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EEG can also be used to trace back the electric field distribution in the head and localize the 
neuronal sources thereof in the cortex.  

3.2.1 Applications 
EEG source imaging has been used in pre-surgical analysis before being gradually replaced 
by anatomical imaging methods like fMRI. However, as opposed to these alternatives, EEG 
source imaging provides the only direct measurements of source activity, combined with an 
excellent temporal resolution. It is therefore of particular interest in understanding the 
generation and propagation of this activity  [156]. These capabilities are often exploited for 
more precise localization of epileptic discharges, where visual interpretation can at best 
provide an estimate of which cortical lobe is affected  [171]. 

A newer application is neurofeedback, which gives the user insight into his own brain activity   
mapping while the underlying sensor data is being recorded. This enables a direct feedback 
loop, where the user can actively try to influence his activity patterns. Some therapies are 
based on training the user in recognizing and suppressing certain patterns related to their 
neuropathological condition. Examples thereof include treatment of Attention Deficit 
Hyperactivity Disorder (ADHD)  [171], substance abuse  [172], depression and anxiety  [173], 
and more. Though still at an experimental stage, first results of neurofeedback based therapy 
are promising. 

Rather than for direct visualization, the output of EEG source imaging can also be forwarded 
to automatic interpretation. The results thereof can then be used to drive control of a computer 
of machine interface. Being under research for 40 years now, these Brain Computer Interfaces 
(BCI) and Brain Machine Interfaces (BMI) have already reached some maturity  [174], with 
first commercial products entering the market  [175].  

3.2.2 Forward and inverse problem 
The topic of source localization can be classified into two parts, the forward and the inverse 
problem, which will both be introduced in the following two sub-chapters. The scope of the 
forward problem is to construct an electrical model of the head, containing a distribution of 
current sources in the parts of the brain that are able to produce electrical activity (i.e. the grey 
matter, s. Chapter  3.1). The forward problem is solved when the impact of each current 
source on each electrode is known. It needs to be solved once per subject and electrode cap 
 [14]. 

The result is a highly underdetermined system of forward equations. Obtaining an 
anatomically reasonable resolution of this system is called the inverse problem. It needs to be 
solved for each sample vector of sensor measurements; the result is an instantaneous 
distribution of source activity in the brain, i.e. the amplitudes of the current sources in the 
electrical model  [17]. The electrical model should be as anatomically precise as possible as its 
quality also constraints the quality of the source localization. 
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3.2.2.1 Forward problem 
To localize the neural current source generators of EEG, the first question that needs to be 
asked is: how would a single given current source in the brain affect the potential distribution 
on the scalp? This is called the forward problem of EEG source imaging. Starting from the 
quasi-static Maxwell equations, this basically breaks down to solving the equation 

(1)  ∇ · ( σ ∇φ ) = ∇ · j 

Where σ is the conductivity tensor, φ is the potential distribution and j is the current density 
vector field in the medium, in this case the head. Quasi-stationarity is a fair assumption 
considering the low frequency range of EEG generators (s. Chapter  3.1). 

There is only a limited amount of potential measurements, so we can transfer φ into a discrete 
vector Φ of length NE containing all instantaneous sensor measurements, with NE being the 
number of electrodes. For technical feasibility, also the current sources must be discretized. 
Picking individual neurons for this is unfeasible, instead, a macroscopic current dipole model 
is commonly chosen to segment the cortical grey matter into an uniform array of discrete 
current sources, called “voxels”. The result is a vector J = (J1, J2, J3, … JNv), with Ji being the 
3-dimensional current density vector at voxel i and NV being the number of voxels.  

All in all, the solution to the (discretized) forward problem is a linear map K: RNV×R3 → RNE, 
mapping current densities to scalp potentials such that 

 (2)  J = K·Φ + c1 

K is commonly referred to as the electric lead field. The summand c1 is added due to the fact 
the electric potential is defined only up to an arbitrary constant; c is a scalar and 1 denotes a 
vector of ones. The linearity holds due to the superposition principle. 

Solution of the forward problem (i.e. obtaining the coefficients of K) strongly depends on the 
volumetric conductivity model of the head (s. Chapter  3.2.3) and can be very challenging if 
the conductivity model contains some anatomical detail  [14]. 

3.2.2.2 Inverse problem 
The lead field maps brain activity patterns to sensor waveforms, but what we actually want in 
source imaging is a reverse of this operation: given a vector of scalp measurements Φ in a 
system with parameters K, how can we obtain the underlying brain activity patterns J? This is 
referred to as the inverse problem. It is highly underdetermined since there are far more 
unknowns than information (3·NV >> NE), so the solution will always be an estimate. 

There are manifold ways to tackle underdetermined problems  [15], but due to the linearity of 
the forward equations, it is appealing to address the EEG inverse problem with linear 
estimators. In fact, many solutions are based on the least squares of errors, such that  

   ║Φ - K·J║2

is minimized. In the simplest form this yields the Moore-Penrose pseudoinverse  [19]: 

  (3)  T = KT·(K·KT)-1
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where T: RNE → RNV×R3 denotes the resulting linear estimator, called the transition matrix. 
This approach however suffers from several limitations like instability, bias and low spatial 
resolution. More advanced methods add various techniques to improve this, some of which 
will be introduced in Chapter  3.2.5. Furthermore, one can try to limit the degrees of freedom 
by inferring additional anatomical information, as it will be outlined in Chapter  3.2.4. There 
are also approaches that are not based on linear estimators, but discussing those would go 
beyond the scope of this work  [17]. 

3.2.3 Head models 
As mentioned in Chapter  3.2.2.1, solving the forward problem for anatomically correct head 
models poses a great challenge: from an electrical point of view, the head is a highly 
inhomogeneous and anisotropic medium. As a result, head models in practical use are 
strongly simplified. This is very limiting, as the inverse solution is always just as good as the 
model it is based on  [16]. 

First head models were based on concentric spherical shells to define up to four internally 
homogeneous compartments of scalp, skull, cerebrospinal fluid (CSF) and brain  [22]. 
Spherical models can be calculated analytically, however, the head does not come in these 
convenient shapes, so anatomical correctness is rather poor  [20].  

While, some forming can be applied to morph the spherical model more into the shape of a 
head, spherical models were soon replaced by multi-shell models with more accurate 
compartment boundaries based on triangulated surface meshes. An example is shown in 
Figure 35. 

 
Figure 35: Triangulated surface meshes of brain, skull and scalp (source :  [21]). 

Inside the compartments, the volume conductor is still assumed to be homogeneous and 
isotropic. The forward problem for a surface mesh model needs to be computed by numerical 
methods, where the Boundary Element Method (BEM) is particularly appealing  [21]. Surface 
mesh models still define the state of the art for practical implementations, with many 
commercial solutions relying on it  [23] [43]. The BEM solution to the forward problem 
required inversion of a large matrix, whose rank depends on the resolution of these meshes. 
Contemporarily, the cubic complexity of this operation restricts this approach to rather poor 
anatomical detail. 

In experimental setups, more detailed head models are currently subject of study. These 
include for example segmentations based on the Finite Element Method (FEM), the Finite 
Difference Method (FDM)  [26] and the Finite Volume Method (FVM)  [27]. All have the 
advantage that they allow inclusion of tissue anisotropy, along with a much finer level of 

  39 



Chapter  3: Target application: bioelectrical imaging 

inhomogeneity  [24]. Discretization can be either adaptive or regular, like the example given 
in Figure 37. 
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Figure 36: Fine-grained regular FVM-based discretization of the head conductor space  

These models lead to very large sparse linear systems that need to be solved in order to obtain 
the EEG forward equations. They are usually addressed by iterative sparse system solvers 
 [14]. However, the sheer magnitude of these systems (a MRI-based FVM discretization 
results in a network of up to several million nodes) make computation of these models very 
time consuming, impeding their application in contemporary practice. 

3.2.4 Retrieving anatomical information 
Anatomical correctness of head models limited not only by computational feasibility, but by 
the level of trustworthiness of the anatomical information itself. The same applies to 
anatomical priors in the inverse problem. The primary sources of information are head 
scansion from static Magnetic Resonance Imaging (MRI), typically a 3D black-and-white 
image of ~1 mm resolution. On this raw image, various image processing techniques can be 
applied to retrieve meshes of the brain, skull and scalp surfaces  [29], segment the image into 
different neuro-anatomical structures  [31] and label different tissue types  [30] (s. Figure 37).  
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Figure 37: Segmentation of MRI voxel space into tissue compartments, as produced by the BrainSuite 

software  [29]. 

Concerning the electrical properties of said tissue types, a plethora of experimental 
measurement data are available, both in vivo and in vitro  [32] [34] [35]. Together, this 
information is all that is needed to formulate the forward problem.  

Also the inverse problem can benefit from these data. Knowing what parts of the brain can be 
considered possible generators of source activity helps constraining the solution space, and 
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thus allows better estimates. Inferring other anatomical priors like cortical orientation has also 
been proposed  [36]. 

3.2.5 Linear estimators for the inverse problem 
As mentioned in Chapter  3.2.2.2, most solutions to the inverse problem are based on squared 
error minimization. However, numerous improvements have be made to cope with the 
disadvantages of the naïve pseudoinverse  [40], some of which will be introduced in the 
following. 

First of all, the error minimization problem could be ill-posed or singular, leading to a large 
number of possible solutions. This can be remedied by adding a regularization term to give 
some solutions prevalence over other, for example by preferring the solution with the lowest 
total energy. In this case, the minimization term becomes 

   ║Φ - K·J║2 + α·║J║2

where α is called the regularization parameter. The resulting estimator 

 (4)  T = KT·(K·KT+α·I)-1

is called the Minimum Norm Estimate (MNE)  [37]. MNE approaches are a special case the 
Tikhonov regularization  [38]. The regularization parameter α controls how strongly the total 
energy will be minimized in respect to the error. Picking an optimal value is a difficult 
problem itself to which several approaches exist, like the L-curve method  [39].  

The estimated current density vectors, given by 

    Jest = T· Φ 

with Jest being the vector of estimated currents of size RNV×R3 (s. Chapter  3.2.2).  

Source localization of the MNE can be improved by applying a standardization procedure on 
estimated current density vectors. This requires an estimate of the solution’s variance, which 
according to  [43] can be derived as 

    S = T· K 

This coincides with the resolution matrix  [44] and is not invertible, hence the standardization 
is performed voxel per voxel to retrieve the standardized current density powers: 

   jl,std = jl,est
T[Sll]-1jl,est

where jl,est contains the three components of is the l-th element of Jest and Sll is the l-th 
diagonal sub-block of S. This technique is applied in the Standardized low resolution brain 
electromagnetic tomography (sLORETA) method  [43], which is able to localize single 
sources in noise-free environments with 100% accuracy. 

Still, these methods suffer from poor spatial resolution. This problem is already inherent in 
EEG, and the MNE tends to make things worse. Several efforts have been made to cope with 
this limitation. For example, the focal underdetermined system solver (FOCUSS) tries to give 
some focal resolution on distributed source models by iteratively applying a weight to the 
columns of the lead field: 
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 (5)  Ti = Wi· Wi
T·KT·( K· Wi· Wi

T·KT+α·I)-1

where Wi is a diagonal matrix based on the solution retrieved during the last iteration, 
normalized by the norm of the columns of K: 

    Wi = diag(Jest,i-1) · diag(KT·K)-1 with Jest,i-1 = Ti-1· Ф 

If continued long enough, FOCUSS converges to a set of concentrated sources equal to 
number to the number of electrodes  [41].  

Another way to use the previous solution for iterative refinement is shrinking the solution 
space: if a part of the cortex is found to contain relatively low activity (below a certain 
threshold), the corresponding columns of K are temporarily removed and the inverse 
estimator is re-calculated. Solutions found in a smaller solution space tend to exhibit better 
spatial resolution  [42]. Advanced linear solvers typically use a combination of the above 
mentioned methods, like the Shrinking Standardized LORETA-FOCUSS (SSLOFO)  [45]. 
While these methods are much harder to handle computationally when compared to simpler 
solutions, the source reconstruction is often of better quality. 

Contemporary practice is limited to simple algorithms like WMN and sLORETA, with very 
low voxel resolutions of a few thousand discrete points. More advanced methods and higher 
voxel resolutions produce work loads where processing on normal workstations is still 
unfeasible. 

3.3 Electrical Impedance Tomography 
Electrical Impedance Tomography (EIT) is a relatively new bioelectrical method. Although it 
yields great potential to be a valuable addition to clinical diagnosis, the technical and 
computational difficulties of this technology have so far prevented it from being included in 
clinical routine. 

Like EEG, EIT works with non-invasive measurements from skin-mounted electrodes, but 
instead of passively recording potential differences, currents are actively injected into the 
body, usually in patterns of several electrode pairs and at different frequencies. Meanwhile, 
the resulting potentials differences are measured (s. Figure 38). Based on these data, an 
impedance map of the target body can be estimated to get insight into internal tissue 
properties  [12], e.g. to localize anatomical abnormalities. 

  42 



Chapter  3: Target application: bioelectrical imaging 

 
Figure 38: Application of current patterns through the target body and measurement of resulting surface 

potentials (source:  [10]). 

EIT has a wide range of applications including monitoring of pulmonary ventilation, breast 
tumor detection and the reconstruction of brain activity, all of which are still at an 
experimental stage. However, the first commercial clinical solutions for pulmonary 
ventilation monitoring are approaching market maturity. EIT-based brain analysis and 
monitoring currently subject to study, particularly to localize well defined regions of the brain 
like epileptic foci, local ischemia and lesions  [8] [9]. 

EIT might even be combined with EEG, considering that both technologies use different 
sources of information. It is also plausible to use conductivity measurement from EIT to 
refine volume conductor models in EEG source localization  [11]. Given an intelligent 
electrode design, both might even share the same sensor montage.  

3.4 Selecting computational problems 
Bioelectrical imaging is a wide field of study, and this chapter could barely scratch the 
surface. However, this short introduction already demonstrates that there is a plethora of 
computational challenges with very different characteristics. Primarily, problems encountered 
in this field can classified into the following categories: 

 Dense linear algebra 

 Sparse systems 

 Image processing 

 Signal processing 

 Data visualization 

Each of these classes has different demands towards the computing platform, so focusing on a 
single, isolated problem would not suffice to evaluate the benefits that the heterogeneous 
CPU/GPU systems described in Chapter  2 can contribute to this field as a whole. Instead, this 
thesis presents a selection of applications covering all of the aforementioned categories. 
Furthermore, very different scales of CPU/GPU systems are employed, ranging from low-end 
single-GPU setups that might also fit into mobile systems, over average dual-GPU desktop 
systems, up to small-scale supercomputers featuring several CPUs and graphics cards.  
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In the next three chapters, the following computational problems are addressed. Chapter  4 
presents an example of heavy, dense linear algebra with a large triangular matrix inversion 
problem emerging from EEG volume conductor modeling (s. Chapter  3.2.3, meshed head 
models). Chapter  5 addresses solution of large sparse, non-hermitian systems as part of an 
EIT simulation environment (s. Chapter  3.2.3, FVM-based head models and Chapter  3.3). 
Lastly, Chapter  6 covers problems encountered in the EEG inverse problem comprising real-
time signal processing (s. Chapter  3.2.5), image processing of MRI scansions (s. Chapter 
 3.2.4) and graphical 3D visualization of large data sets. 

Given the wide range of both applications and target systems treated in this work, conclusions 
can finally be drawn with sufficient validity. The results of the general evaluation will be 
discussed in Chapter  7. 
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4 Dual-GPU accelerated Triangular Matrix Inversion 
This is the first in a series of three chapters presenting the major contributes of this thesis. 
They all address very different computational problems that where highlighted in Chapter  3, 
using different scales and configurations of the platforms described in Chapter  2. This part 
revolves around an example of dense linear algebra, addressed by a mid-sized dual-GPU 
platform. 

The scope of this Chapter is to present an efficient implementation of Triangular Matrix 
Inversion on Graphics Processing Units. While TMI can be applied in several contexts, we 
will focus on its role in the inversion of dense matrices using the algorithmic steps shown in 
Figure 39. 
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U-1
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Factorization TMI Multiplication

L

U

L-1

U-1

A=L·U U-1·L-1=A-1

L

U

L-1

U-1

A=L·U U-1·L-1=A-1

Factorization TMI Multiplication  
Figure 39: Basic work steps in dense non-symmetric matrix inversion. 

The matrix is factorized using LU decomposition and the upper and lower triangular factors 
are stored in a shared array, then TMI is applied to the resulting triangular matrices. After this 
step, the inverse of the full matrix is obtained by the multiplication of the inverted triangular 
matrices. 

Implementation of matrix factorization routines on GPUs has been examined in several 
contributions, most notably  [93] [94] [166] and  [167], and matrix multiplication is a standard 
operation. But in spite of being the heaviest part in the inversion work flow, TMI was 
neglected by prior work. This is mainly because the mere solution of a single linear system is 
rarely computed via the inverse of the matrix: matrix inversion has a cubic complexity, 
producing huge work load for larger problem sizes. However, there are several applications 
where the full matrix inversion is beneficial or inevitable. Apart from the bioelectrical 
problem that motivated this implementation (s. Chapter  4.1), typical applications for full 
matrix inversion include preliminary steps for optimization  [168] and network coding  [169]. 
This implementation fills the gap with a GPU-accelerated TMI routine, based on a recursive 
divide-and-conquer approach to exploit maximal parallelism. This application assumes a 
shared array LU matrix as it is commonly produced by matrix factorization methods as a 
starting point, and both upper and lower triangular matrix inversion has been implemented. 
The original implementation has been published in  [1], on which later substantial 
improvements have been made like better multi-GPU performance and efficient memory 
usage. The final version has been accepted in  [2]. 

4.1 Motivation and background 
This implementation was motivated by a severe computational bottleneck in solving the EEG 
forward problem using a three-layer mesh model of the head (s. Chapters  3.2.2.1 and  3.2.3). 
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This problem was addressed using the methodology described in  [21], which introduces an 
advanced approach based on the Boundary Element Method (BEM). 

Most steps of this algorithm require negligible effort, so let us skip right forward to the 
aforementioned bottleneck. In the last step, the method produces the following equation 
defining the electric lead field K: 

   (6)   K = D·(I – C)-1·G   

In this equation, C is a NT×NT matrix whose elements are determined by geometry of the 
meshes and the conductivities of the compartments, where NT is the total number of triangles 
in all three meshes. Matrix G: RNV×R3 → RNT is some kind of preliminary lead field mapping 
the current density vectors from all NV voxels to the centroids of all NT triangles, pretending a 
homogeneous infinite conductor. Its elements can easily be computed analytically  [14]. 
Matrix D: RNT → RNE can be considered to be the opposite interface. It is a sparse matrix 
mapping potential from centroids of the outer mesh triangles to potentials at electrode 
positions, which can be done either by clinging to the nearest centroid or by interpolating 
between the nearest neighbors. 

It is obvious that once the inverse (I – C)-1 in (6) has been computed and stored, the model 
can easily be adapted to arbitrary voxel and electrode configurations. This however turns out 
to be a considerable computational challenge: the meshes used in this scope as produced by 
the “freesurfer” software (a free software that allows extraction of surface meshes from MRI, 
among other features) have a detail level of over 3000 triangles each  [163] [164]. All three 
layers combined, we end up with a problem size of NT  ≈ 10000. 

Even when using an optimized multithreaded implementation, inverting a matrix of this 
dimension takes several minutes on a typical workstation, making GPU acceleration 
appealing. With this implementation, the computation time can be reduced to a few seconds.  

4.2 Parallel Triangular Matrix Inversion algorithm 
Triangular matrix inversion can offer substantial parallelism with the following divide-and-
conquer approach. The triangular matrix (size dim) is partitioned into two triangular matrices 
and one square matrix, all three of half the size. Then, the resulting triangular sub-matrices 
can be partitioned in the same way. This is done recursively k times, until we are left with 2k 
triangles of size m = dim/2k lined up along the diagonal. The result is a fractal segmentation 
of the triangular matrix. In what follows, k will be referred to as the segmentation depth. An 
example for a segmentation with k = 3 is shown in Figure 40. 
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2k = 8

m2·m

2k-1·m

dim = 2k·m

2k = 8

m2·m

2k-1·m

dim = 2k·m

 
Figure 40: Fractal segmentation of a lower triangular matrix employing a segmentation depth of k = 3. 

The same procedure is followed for an upper triangular matrix. 

Given that all triangles for a certain segmentation depth are already inverted, the inversion of 
the triangles of the next lower segmentation step can be completed by applying the operations 
shown in Figure 41 to calculate the square matrix wedged in between the inverted triangles: 
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Figure 41: Recursive inversion of triangular matrices. 

So starting from initial inversion of the 2k diagonal triangular matrices of size m (referred to 
as “step 0”), the full matrix can be inverted in k steps. The computation order is visualized in 
Figure 42. 
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Figure 42: Computation order for recursive triangular matrix inversion, for both lower and upper 

triangular matrix inversion, keeping k = 3. 
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Each step i of the computation offers a parallelism of 2k-i·(m·2i-1)2 = m2·2k+i-2 independent 
scalar streams, which is the number of square matrices (sub-blocks) to be calculated in step i, 
multiplied by the number of elements per sub-block.  

This algorithm is called recursive triangular matrix inversion (RTMI). The method was 
adapted from  [134], where RTMI was optimized for MIMD computers. A method that 
recursively partitions a triangular matrix was originally proposed in  [135] and  [136], while 
 [137] was the first to use a divide-and-conquer method on partitioned matrices for matrix-
matrix multiplication, from which a recursive method for full matrix inversion could be 
derived  [138]. 

RTMI is optimal, which means that it requires no more arithmetic operations than the best 
known serial algorithm. Performing the complete inversion of a triangular matrix has a 
computational complexity of 

dim3/3 + dim2/2 + O(dim) 

which includes the above mentioned “step 0”. When we consider only the recursive part of 
the algorithm, we end up with a computational complexity of 

dim3/3 + dim2·(1–1/2k+1) + O(dim) 

for a recursive computation over k steps  [134].  

4.3 Implementation 

4.3.1 GPU Kernels 
RTMI is processed in k steps, where step i = 1..k consists of the computation of 2k-i square 
sub-blocks of size m·2i-1. Each sub-block j = 1..2k-i is computed according to Figure 41 by 
performing two square-per-triangular matrix multiplications: 

X j = Bi, j · Ai,j

Ai,j = X j · Ci,j 

These can be implemented in efficient parallel GPU kernels. The parallelism is fully 
exploited, so m2·2k+i-2 threads are launched in each step i. The kernels are slightly different for 
L and U inversion, so four different kernels are implemented. The precise structure is 
discussed in what follows. As stated in Chapter  2.6.3, we must segment the 2k-i×m·2i-1×m·2i-1 

parallel instruction streams into a grid of thread blocks. A thread block size of 16×16 is 
chosen for several reasons. The most important issue is bandwidth maximization: the GPU 
performs all global memory accesses in half-warps, i.e. 16 threads with consecutive indices, 
where the first thread index is a multiple of 16. Having only 8-byte elements, data sections 
accessed in this way always cover a 128 byte segment. Furthermore, since all GPU memory is 
covered by 16×16 blocks, the segments are always aligned to multiples of 128 byte. This 
fulfills the conditions described in Chapter  2.6.3.2 for coalesced memory accesses, for which 
bandwidth to and from global memory is maximized. Still, the application would be greatly 
bandwidth limited without data re-usage. Instead of operating directly on global memory, data 
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operands are fetched in 16×16 blocks and processed on-chip, which greatly reduces off-chip 
accesses. Registers are used to accumulate data. This setup allows for up to three blocks to be 
active on one SMP, which corresponds to up to 24 independent warps (three blocks of 16×16 
threads, divided by the GPU warp size 32), more than enough to hide most global memory 
access latencies through intelligent scheduling (s. Chapter  2.6.3.1). The grid of 16×16 block 
tiles must cover all 2k-i square sub-blocks. Since grids in CUDA can have only two 
dimensions, we consider the first ld(2k-i) bits of the block column index as sub-block index 
(sbIdx). An example of block tiling is shown in Figure 43. 
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Figure 43: Block tiling and block indices in a lower triangular matrix for parameters m = 32 and k = 3. 

Regions highlighted in gray have already been inverted. 

 In summary, the launching parameters for both kernels of step i = 1..2k are: 

 block_size = (16,16,1)  

 grid_size = ((m/16)·2i-1, dim/32, 1) 

The kernels themselves implement the two sequential square-per-triangular blocked matrix 
products mentioned earlier, whereas all sub-blocks of the actual step are processed 
concurrently. Figure 44 and Figure 45 illustrate the kernels involved in L- and U-inversion, 
describing the processing of one isolated sub-block, in which one exemplary thread block is 
highlighted. Dashed arrows indicate the order in which operand blocks are fetched from 
global memory. The last 16×16 block is modified in shared memory by zeroing all trans-
diagonal elements and, in cases of L-inversion, setting the diagonal elements to one. 
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Figure 44: GPU kernels for recursive lower triangular matrix inversion, showing one of 2k-i identical sub-
blocks. In this example, the sub-block dimensions (sbdim) are 128, sbrow and sbcol denote the block row 

and column within this sub-block. 
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Figure 45: GPU kernels for recursive upper triangular matrix inversion, analogous to the example shown 

in Figure 44. 

It is obvious from the figures that some blocks will take longer to finish than others; the 
number of loop iterations is dependent on the position of the 16×16 block inside the square 
sub-block. With the given grid layout, each SMP gets assigned a random mix of blocks with 
different execution length, but it is inevitable that some SMPs will finish their work load 
sooner than others, which results in idle processing resources towards the end of kernel 
execution. The impact of this is keener for kernels with fewer blocks, hence for smaller 
problem sizes. Another slow-down factor results from the bank alignment of shared memory, 
which is optimized for single-precision (4 byte) data elements. Accessing vectors of double 
precision (8 byte) elements always results in 2-way bank conflicts (s. Chapter  2.6.3.2).  
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4.3.2 Memory optimization 
The maximum problem size that can be processed by the routine is restricted by the total 
amount of GPU device memory. With normal 2-dimensional data alignment, a single 
triangular matrix occupies twice as much memory as there are data elements. A densely 
packed data format, as used by many CPU-optimized libraries, is not applicable, as this would 
thwart the memory alignments and disrupt coalesced memory accesses. 

However, since data are only accessed in blocks of 16×16 elements, a block-packed data 
format can preserve the coalesced memory accesses while providing nearly the same storage 
optimization. Data are uploaded in rectangular strips of 16 rows in height, which are stored 
next to each other in GPU memory. This block-row packed format is preferable to a block-
column packed format for various reasons, among others to minimize the number of host-
device and device-host transfers.  

A small additional overhead is introduced because a dedicated memory transfer has to be 
issued for up- and downloading each block row, so the total transfer time is increased by 
dim/16 times the transfer initialization time of 11 μs  [93]. 

The distributions of L- and U-matrix data in host and GPU memory are shown in Figure 46 
and Figure 47. 
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Figure 46: Block row packed storage of the L matrix. 
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Figure 47: Block row packed storage of the U-matrix, analogous to L-matrix storage but starting with the 

longest block row. 

We can derive that the total storage requirements on the GPU memory therefore amount to 
(dim+16)·dim/2 elements. The block-packed data still contains some elements from across the 
diagonal, in total a number of 7·dim elements.  

Note that there is also the need for a buffer in GPU memory which temporarily holds data to 
prevent racing conditions. The buffer occupies up to dim2/4 elements, an additional ~50% of 
storage occupation on the GPU. 

4.3.3 Address generation 
Since data are no longer aligned with the matrix dimensions, accessing a particular element in 
packed data storage involves an increased effort in address generation. Precisely the following 
parameters require more complex computation compared to aligned storage: 

1. offset of the block row is now following a non-linear function based on block row 
index 

2. pitch inside block row is no longer constant but linearly connected to block row index  

Both compute differently for L and U matrices. 

Inside the GPU kernels, every sub-block needs to access three sub-matrices to perform the 
operations described in Chapter  4.2: the square block A and the prior inverted triangles B and 
C. These blocks usually cover several block rows as shown in Figure 48: 
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Figure 48: Sub-matrices A, B and C of two sub-blocks both in a L and U matrix. Addresses indicate the 
offset of the corresponding block row in block-packed storage. In this example, sub-block dimensions 

(sbdim) are 32, matrix dimensions (dim) are 128. 

As for the block row offsets, the following formulas can be derived: 

 row_offsetL =  162·(1+2+3+…+r) = 162·(r+1)·r/2 elements 

 row_offsetU = 162·((dim/16+(dim/16-1)+…+1) – (1+2+3+…+(dim/16-r))) 
= 162·((dim/16+1)·(dim/16)/2 - (dim/16-r+1)·(dim/16-r)/2) elements 

where r denotes the index of the block row. The pitch inside a block row linearly depends on 
the block row index:  

 pitchL = 16·(r+1) 

 pitchU = dim – (16·r) 

Given this, we can easily access any 16×16 block with block-coordinates (r,c) in packed 
storage: 

 local_block_r_c[y][x] = packed_storage[row_offset + y·pitch + c·16 + x] 

where y and x are the row and column coordinates of the elements inside the block. 

So, to access the sub-matrices A, B and C, the rows inside those sub-blocks (sbrA, sbrB and 
sbr

B

C) need first to be mapped onto the global block rows (rA, rBB and rC). This calculation is 
based on the index (sbIdx, s. Figure 48) and block-width of the sub-block (sbbw). The 
dimensions of all sub-matrices A, B and C  in step i are: 

 sbdim = m·2i-1  

Conclusively, sbbw amounts to the sub-block dimensions divided by the block width 16: 

 sbbw = m·2i-1/16 

These variables allow a quite succinct formulation of how to calculate the global block rows 
rA, rB and rB C :  

 L-matrix:  

o rA = sbrA + (1+sbIdx)·sbbw 
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o rB = sbrB BB +  sbIdx·sbbw 

o rC = sbrC +  sbIdx·sbbw 

 U-matrix:  

o rA = sbrA + sbIdx·sbbw 

o rB = sbrB BB +  sbIdx·sbbw 

o rC = sbrC +  (1+sbIdx)·sbbw 

These allow us to calculate the aforementioned block row offset, but an additional in-line shift 
(s. Chapter  4.3.3) needs to be inserted to reach the correct block position. For the L-matrix, 
these are: 

 shiftA  = 16·2·sbIdx·sbbw 

 shiftB  = 16·2·sbIdx·sbbw B

 shiftC  = 16·2·sbIdx·sbbw. 

For the U-matrix, the B and C matrices are lined up at the beginning of block rows, so no in-
line shift is necessary. However, a negative alignment shift is included to account for the “cut-
out” pieces in the triangular sub-matrices: 

 shiftA  = 16·(2·(1+sbIdx)·sbbw) - 16·sbrA 

 shiftB = - 16·sbrB BB 

 shiftC  = - 16·sbrC 

The shift basically maps the sub-block column sbc to the global block column c.  

 c = sbc + shift/16 

In summary, we obtain the base address of the beginning of the block row in any A, B or C 
sub-matrix by adding the shift to the global block row offset: 

1. addr_offset = row_offset + shift 

Note that both addr_offset  and pitch depend only on the sub-block index sbIdx and the sub-
block row sbr. Now we can obtain any 16×16 block in sub-block row sbr and sub-block 
column sbc using the pre-calculated addr_offset and pitch: 

2. local_block_sbr_sbc[y][x] = packed_storage[addr_offset + y·pitch +sbc·16 + x] 

Running through the whole addressing procedure whenever an element in device memory is 
accessed would produce an unacceptable overhead, particularly as the GPU has only limited 
capabilities when performing integer operations  [85]. This is avoided by storing as much pre-
calculated information in the GPU constant memory as possible. Threads can retrieve data 
from the constant memory at both high bandwidth and low latency, especially when all 
threads in a warp are accessing the same piece of data. 
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For each computation step i, we prepare and upload three look-up tables (LUT) containing the 
address offset (addr_offset) and address pitch (pitch) for every sub-block row of A, B and C in 
every sub-block.  

Given the offset and pitch from the LUT, only a minor effort is required to complete the 
address generation of any element with the individual addressing inside the block row. This 
reduces the run-time address generation overhead to a level comparable to that usually 
produced when using a non-packed format. 

4.3.4 Allocation flow 
The input data are prepared in the form of a shared LU array in a shared buffer in host 
memory.  This buffer can be allocated in page-locked memory, which greatly increases 
transfer speed to and from GPU memory from ~1.0 GB/s to ~3.3 GB/s over a 16x PCIe 2.0 
port. However, the amount of memory that can be allocated that way is limited by the kernel’s 
memory region. In our system, we have to switch to pageable buffers for matrix dimensions 
greater than 8192. With matrix dimensions that large, the host-device transfers constitute a 
relatively small amount of the total execution time (<7%), so the resulting decline in 
performance is acceptable. 

Once the input buffer is prepared and the CUDA runtime is initialized for both GPUs, two 
CPU threads are forked. One processes the lower and one the upper triangular matrix, which 
comprises the following work steps: 

1. Invert the diagonal sub-blocks of the lower/upper triangular matrix in host memory. 

2. Create a buffer of size (dim+16)·dim/2 + dim2/4 in GPU device memory to store the 
triangular matrix and temporary working data. Also create a page-locked write 
combining buffer in host memory to prepare the address LUTs in for upload to the 
GPU constant memory. 

3. Upload the lower/upper triangular matrix to the buffer in block-packed format, as 
described in Chapter  4.3.2 

4. Until the end of recursion is reached, calculate the address LUTs according to Chapter 
 4.3.3, upload them to GPU constant cache, and run the L-/U- RTMI kernels described 
in Chapter  4.3.1. 

5. Download the now fully inverted lower/upper triangular matrix from block-packed 
format to the shared array buffer. 

6. Free GPU resources and LUT buffer and join threads. 

The data and work flow of this procedure are visualized in Figure 49. 
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Figure 49: Application data and work flow. Red and blue are the L and U-mtatrices while green and 

yellow represent their inverted counterparts. 

4.4 Limitations and generalizations 
Due to the restrictions introduced by both the algorithm and the implementation, the inversion 
routine is directly applicable only to matrices of dimensions dim = m·2k, where k and m are 
positive integers and m is additionally a multiple of 16. If, for example, we require a k ≥ 5, our 
applicable matrix dimensions are bound to be a multiple of 512. Some dimensions allow 
higher values of k, and the highest applicable value should be applied for best performance.  

The maximal value of dim is restricted by the on-board memory size of the graphics card. The 
GTX 295 has a total of 1.792GB, divided evenly over both GPUs. With the temporary data 
buffer, the maximum matrix dimensions on both boards amount to 11776. 

To adapt any non-aligned matrix so as to be processed by the routine, the matrix needs to be 
“padded” to artificially increase the dimensions to an eligible value. The dimensions of a 
square matrix can be inflated by appending the unity matrix of size dimpad - dim in the lower 
right or upper left corner (where dimpad is an eligible matrix size) and filling up the rest with 
zeros. The inverted padded matrix then contains the inverse of the initial matrix, as depicted 
in Figure 50. 
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Figure 50: Insertion of data padding to increase the matrix dimensions up to a size eligible for the 

inversion routine. I refers to the unity matrix. 

Data padding is the method of choice when the matrix size is only short of a few elements. 
The overhead grows polynomially with the number of padding rows and columns, according 
to the numerical complexity of the TMI. 

When the actual matrix dimension is only slightly above an eligible size, it may be more 
efficient to “cut out” a smaller matrix of the relevant size and apply the routine to it, as shown 
in Figure 51. Using the same rules described as in Chapter  4.2, the remaining rows and/or 
columns are updated on the host side using the CPU.  
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Figure 51: Size reduction to decrease the matrix dimensions down to a size eligible for the matrix 

inversion routine. This refers to a shared LU array. The Z sub-block is also a shared array of this type. 

This turns out only to perform better than the padding method for a minority of configurations 
where the size simply needs to be reduced by a relatively small amount of rows and columns. 
Otherwise, data padding is preferred.  

 

4.5 Benchmarking 
We benchmarked our application on a contemporary PC desktop system, equipped with a 
commercial dual-GPU NVIDIA graphics card. The configuration of the benchmarking 
platform is as follows: 

 Intel Core2 6300 CPU @ 1.86 GHz 

 NVIDIA GTX 295 graphics card 

  4 GB RAM 
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The performance results were compared its performance to that of a CPU-only reference. This 
reference application is based on the free FORTRAN library of LAPACK, which offers 
highly optimized serial implementations of common linear algebra algorithms  [139]. To 
further exploit the capabilities of modern CPUs, we use the LAPACK routines in concert with 
OpenMP so as simultaneously to invert the lower and upper triangular matrix. The reference 
application was run on an Intel Core2 quad Q6600, clocked at 2.4 GHz, in a system with 4 
GB of RAM; a much faster model than in the GPU benchmarking platform. 

We start by comparing the raw execution times of both our application and the reference. The 
measurements include all set-up and clean-up times save runtime initialization. To be precise, 
the application benchmarks include the following operations: 

 Thread forking 

 Memory allocation 

 Data upload 

 Pre-calculation of the diagonal sub-blocks 

 Address LUT calculation and upload 

 RTMI kernels 

 Data download 

 Memory release 

 Thread joining 

We present benchmarks for all problem sizes that comply with a minimal segmentation depth 
of k = 5, higher values of k being applied where possible. 

The scaling of execution times is visualized in Figure 52. 
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Figure 52: Execution times of this application and the LAPACK based dual-CPU reference in milliseconds 
(double precision). 

We obtain a speedup of up to 57x compared to the LAPACK based dual-CPU reference 
application.  

Rather than the raw execution times, the throughput in terms of floating point operations per 
second is often considered a more expressive measure for the quality of dense linear algebra 
implementations as it gives insight in how well the hardware is utilized. We calculate this 
from the minimum amount of floating point operations required to process the given problem 
size, divided by the total execution time. The scaling of the throughput is visualized in Figure 
53. 

0

10

20

30

40

50

60

70

80

90

100

51
2

10
24

15
36

20
48

25
60

30
72

35
84

40
96

46
08

51
20

56
32

61
44

66
56

71
68

76
80

81
92

87
04

92
16

97
28

10
24

0

10
75

2

11
26

4

11
77

6

dim

G
FL

O
P

 
Figure 53: Computational throughput of our application in GFLOPS (double precision). 
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As can be seen, a problem size of dim = 5120 or greater is required for the application to 
reach its full potential of over 80 GFLOPS, whereas a peak performance of up to 92 GFLOPS 
is achieved. Furthermore, it can be observed that problem sizes that allow a higher 
segmentation depth (parameter k) are generally processed slightly more efficiently. This 
accounts for the “bumpy” shape of Figure 53 in the saturation region. 

The memory requirements per GPU device memory for any given problem size of both the 
new version using block-packed storage and the old version using naively aligned storage are 
displayed in Figure 54. 
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Figure 54: Memory requirements per GPU device of the TMI routine using memory of block-packed 
storage (this version) and naively aligned storage (old version  [9]) in megabytes. Red line indicates the 

memory capacity of the NVIDIA GTX295 (896 MB per GPU). 

We see that the memory savings due to block-packed storage are around 40% for all problem 
sizes. 

4.6 Discussion 
When measuring the performance of our application, we exclusively focused on double 
precision computations, which are usually required by scientific applications. To put the 
results from our benchmarks into perspective, it is important to note that double precision 
support was introduced in the GeForce 200 series GPU as an add-on, with the bulk of the 
arithmetic still focused on single precision calculations (s. Chapter  2.4.3). However, we 
resisted the temptation to present a single precision benchmark for an application that 
typically requires double precision, especially for the relatively large problem sizes discussed 
in this work. 

To evaluate the quality of our implementation, a comparison with the theoretical peak 
throughput of the hardware is helpful. The two GPUs of the GTX 295 add their theoretical 
peak throughput up to 149 GFLOPS. A peak performance of 92 GFLOPS is obtained by our 
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application, though as stated in Chapter  4.5, this number is based on execution times that 
include all kind of overhead from various sources. On top of this, part of the computation, 
namely the initial “step 0”, is performed on the much weaker CPU. When we only consider 
kernel execution times and the work load of the recursive part of the algorithm, we can gauge 
the throughput of the isolated GPU kernels as being up to 70% of the theoretical peak, a 
satisfying result considering the inevitable slow-down factors described in Chapter  4.3.1. 

The TMI implementation is subject to a few limitations, introduced from both the RTMI 
algorithm and the hardware, that need to be addressed for the routine to be of any practical 
value. Only input data that constitute a problem size aligned to 2k·m, with k being positive and 
m being a positive multiple of 16, can be processed without prior modification. Otherwise, the 
input array has to be altered according to Chapter  4.4. Not only does the “padding” data 
reorganization create some minor offset of its own (≤ 1% of total computation time), it also 
inflates the problem size by up to hundreds of elements. Moreover, the higher the desired 
segmentation depth, the more the problem size needs to be artificially increased. The 
complexity grows according to the 3rd order polynomial mentioned in Chapter  4.2. While 
higher segmentation depth increases the share of computation processed on the GPU and 
therefore also overall performance, cutting back on this parameter decreases the intervals 
between aligned problem sizes, and potentially the amount of necessary padding. In the 
benchmarks presented in Chapter  4.5 we took a minimum segmentation depth of k ≥ 5, so 
over 96% of the triangular matrices are inverted on the GPUs, at the cost of having intervals 
as large as 512 elements between eligible problem sizes. For these intervals, the worst case 
increment in computation time amounts to up to ~15% for large problem sizes (dim ≈ 11000), 
up to ~23% for medium problem sizes (dim ≈ 7200), but up to ~60% for small problem sizes 
(dim ≈ 3100), where the 512 interval makes a large fraction of the problem size. There is 
always a tradeoff between the benefits of higher segmentation depth and the overhead due to 
padding. In general, the artificial increase in problem size should be kept to a small 
percentage of the actual problem size by reducing the segmentation depth accordingly. 
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5 Multi-GPU accelerated complex Bi-Conjugate Gradient 
solver 

This chapter documents the second of the three major contributions of this thesis: a numerical 
solver for large non-hermitian linear systems, accelerated by multiple GPUs. In contrast to 
Chapter  4, it addresses a typical problem from sparse linear algebra. It is implemented on the 
desktop supercomputer described in Chapter  2.5.5. Both the GTX 295 and the GTX 480 were 
used.  

In scientific computing, physical scenarios are often described in the form of partial 
differential equations (PDEs), analytical solution of which is rarely feasible. Such problems 
are commonly reformulated by discretization of the domain using a finite element, finite 
difference or finite volume approach, which produces a sparse linear system to be solved. 

The resulting system can be very large which inflates complexity of a direct solution, making 
iterative methods appealing. Among these methods, Krylov subspace methods account for 
some of the most prominent solvers. Recently, tapping the capabilities of cheap graphics 
hardware to accelerate linear solvers has become increasingly popular; in particular, notable 
effort has been devoted to the Conjugate Gradient method (CG)  [98] [140] [141]. CG is 
widely used to solve positive-definite symmetric systems, as produced by elliptic PDE 
problems. 

In complex number space, the linear system needs to be hermitian for CG to work. 
Unfortunately, real-world problems still tend to produce symmetric (hence non-hermitian) 
systems, so a complex CG solver has little practical value. Hence, the complex Bi-Conjugate 
Gradient (BiCG) method   [28] is appealing, in that it does not incur such limitations. Among 
the methods we tested, it showed the fastest convergence behavior for our specific problem, 
which emerges from the field of medical imaging. 

In this chapter, I present a linear solver for structured non-hermitian systems, based on the Bi-
Conjugate Gradient method and implemented on a multi-GPU system. This implementation 
combines several established optimization techniques, but also exploits the specific structure 
of the algorithm in new ways to further push the limits and outperform more straightforward 
implementations. I present benchmarking results of both our multi-GPU accelerated solver 
and an equally optimized reference relying solely on multi-core CPUs. Where possible, I also 
try to relate our results to similar work from the literature. Finally, an analytical model to 
predict the limits of multi-GPU scalability is included. 

5.1 Motivation and background 
This implementation was created as part of a software framework for EIT forward problem 
simulation  [4]. This framework includes a complete flow to simulate injected current flows 
through the head tissue and electrode contacts, respecting as much anatomical detail as 
possible. Not only does it use a very high resolution (~1 mm3), it also includes tissue 
anisotropy and uses a realistic electrode model  [162]. An example of what is produced by 
such a simulation is shown in Figure 55.   
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Figure 55: Mapping of potentials after current injection, as produced by the EIT forward problem 

simulation framework. The color map refers to a logarithmic scale. 

The core of the simulation framework is based on a high-resolution anisotropic head model (s. 
Chapter  3.2.3). The basic concept of this model is a representation of the subject’s head and 
electrode cap as a large regular impedance network, which is obtained by discretizing the 
Poisson equation 

  (7)  (ε· φ) = 0 

with Neumann boundary condition ε· φ·n = jk under electrode k and ε· φ·n = 0 elsewhere 
on the scalp (s . Chapter  3.2.2.1) . Discretization of (7) is done using the Finite Volume 
approach described in  [27]. But unlike other bio-electrical imaging methods, EIT gathers 
information from measurements at different frequencies, so the permittivity ε is complex and 
likewise the solution to the Poisson equation  [33]. 

The main source of individual anatomical information is a Magnetic Resonance Image (MRI) 
of the subject. A MRI image consists in a 3D image volume of several million voxels, which 
forms the base of our regular FVM grid. Based on associated dielectric parameters from 
additional segmentation software and measurement tables, a regular impedance network is 
built, aligned to the MRI voxels  [27]. 

For a typical MRI, the network contains several million nodes. Similar to nodal circuit 
analysis, the volume conductor model can be described as a linear system 

   (8)  A · φ = i 

where A Є Cn×n is the admittance matrix, φ Є Cn is the potentials at each node and i Є Cn is 
the corresponding currents derived from the boundary conditions.  

Simulating current flows in the head model implies repeated solution of said linear system on 
large sets of input data. For problem sizes with millions of nodes, solution of such systems 
can take several minutes on conventional desktop systems. The following chapters will show 
that with multi-GPU acceleration, this process can be sped up substantially, making 
simulation at this level of detail feasible in the first place  [3]. 
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5.2 Related work 
Some contributions are available that discuss the general problem of solving non-hermitian 
systems using parallel architectures, notably  [142] and  [143], but without presenting GPU-
accelerated implementations. On the other hand, there is other work concerning the GPU 
implementation of sparse linear solvers  [140] [141] and even the Bi-Conjugate Gradient 
method  [144], but none of these implementation supports complex coefficients. 

Only recently, the inclusion of GPU-acceleration into the PETSc framework has been 
initiated, which indeed features a BiCG solver supporting complex numbers. The 
implementation however is still at a preliminary stage  [145] and no performance analysis has 
been published yet. 

Articles discussing multi-GPU distribution of linear solvers are also still sparse. The most 
relevant one is  [147] which treats domain distribution of a regular grid, however it lacks an 
analytical discussion of multi-GPU scalability like it is presented in our work. 

Leaving the field of complete solver implementations, one might argue that BiCG is 
composed mostly of basic subroutines, of which there are optimized GPU-implementations 
available, like the NVIDIA-supported CUBLAS library  [148]. Furthermore, free routines are 
available for sparse matrix-vector products, including banded matrices  [146]. I will discuss 
the limits of a straightforward subroutine-based implementation in Chapter  5.5.5. 

5.3 The complex bi-conjugate gradient method 
The following chapter will introduce the algorithm applied to solve the non-hermitian linear 
systems produced by the EIT forward problem environment (s. Chapter  5.1), namely the 
complex bi-conjugate gradient method   [28]. 

Consider a linear system of the form 

 (9)   A·x = b      

where A is the sparse coefficient matrix, x is the vector of unknowns and b is the right hand 
side vector. Provided that A is positive definite, the linear system (9) can be solved by BiCG 
via the following steps: 

Choose x0 (usually 0 if no better initial guess is available) 

r0 = b - A·x0  

Choose r’0 = r0

while (|ri| > ε·|r0|) 

zi = M·ri-1 

z’i = M*·r’i-1 

ρi = zi
*·r’i-1

pi = zi + (ρi/ρi-1)·pi-1   // p1 = z1 on first iteration 

p’i = z’i + (ρi/ρi-1)*·p’i-1 // p’1 = z’1
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qi = A·pi 

q’i = A*·p’i

αi = ρi / p’*
i·qi

xi = xi-1 + αi·pi

ri = ri-1 - αi·qi 

r’i = r’i-1 - αi
*·q’i

where i indicates the iteration index. M is the preconditioner which is not necessarily 
implemented as a matrix-vector multiplication, it can also constitute a two-phase solution of 
incomplete triangular factors. Preconditioning actually substitutes the linear system (9) with 

M·A·x = M·b. 

Provided that M·A has a smaller spectral radius than A, introduction of the preconditioner 
reduces the number of iterations to convergence. However, the preconditioning step 
introduces an additional work load at each iteration, so it must be light enough not to undo the 
advantage gained from quicker convergence. In this work, only simple Jacobi preconditioning 
was used: the linear systems produced by the target application are very well-conditioned, 
thus it outperformed more complex procedures like  [147] for our specific application while 
still converging to acceptably precise solutions (s. Chapter  5.5.7). 

5.4 Implementation 

5.4.1 Computational kernels 
As described in Chapter  2.6, implementation was done using the CUDA drivers and software 
design kit for NVIDIA GPUs  [85]. CPU multithreading was controlled using the free Linux 
library of OpenMP  [132]. A dedicated CPU thread is spawned using OpenMP to handle each 
GPU. Synchronization between the data streams is necessary on several occasions to ensure 
data consistency. Also, some minor parts of the algorithm are best left to the CPU. Within 
these constraints we strive to split computation into as few GPU kernels as possible. This 
saves kernel launching overhead and helps maximize GPU occupancy and data locality. 
Mapping of the algorithm from Chapter  5.3 into computational kernels on both CPU and 
GPU, along with corresponding data I/O, is outlined in Figure 56. 
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Figure 56: Outline of the computation flow of our complex BiCG solver in a CPU/GPU system. Dark grey 
kernels (left) run on CPU, light grey kernels (right) run on GPU. Arrows between left and right indicate 

memory transfers between RAM and GPU device memories. 

Details about these kernels are described in what follows. 

5.4.1.1 Stencil operations 
The term “stencil operation” refers to a linear mapping that sums data from both a local node 
and its defined neighbors, covered by the so-called “stencil” (s. Figure 57).  
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Figure 57: Node with its 6 neighbors in a regular grid, also called a 7-point stencil. 

This can be described as a sparse matrix-vector product (spMV), and in the case of a BiCG it 
is requested by the operations 

qi = A·pi 

q’i = A*·p’i

Sparse matrices are usually stored in a compressed format to reduce memory usage by 
skipping as many zero elements as possible. Efficiency of this storage depends on the 
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regularity patterns of the matrix, and not all formats are equally fit for GPU processing  [146]. 
For regular grids however, we can apply the GPU-friendly diagonal format, which is 
visualized in Figure 58. 

 

A = ADIA = A = A = ADIA = 

 
Figure 58: Diagonal format for sparse banded matrices. 

Address offsets between neighboring nodes are pre-calculated and stored in the GPU constant 
cache to save the effort of calculating them at run-time. 

The regularity of our grid permits us furthermore to apply the techniques proposed in  [149], 
where data are processed in parallel inside a horizontal plane which is moving downwards 
along the z-axis, as visualized in Figure 59. 
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Figure 59: Processing a 3D grid using a sliding horizontal plane of parallel threads (highlighted in grey) , 

tiled into blocks of bsx × bsy elements. 

The plane is composed of a grid of square thread block tiles, where tiling into bsx×bsy = 
16×16 blocks was found to offer the highest throughput. This approach enables efficient use 
of caching, as each thread block experiences a large amount of data redundancy. 

5.4.1.2 Preconditioning 
The preconditioning step comprises the operations 

zi = M·ri-1 

z’i = M*·r’i-1 

For the simple Jacobi preconditioning used in this work, the coefficients of M are defined as:  

    mij = 1/aij if i==j, 0 otherwise 

The operations are again processed using the technique presented in Figure 59. 
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5.4.1.3 Scalar products and residual norm 
Due to their communication intensive nature and their high data-to-arithmetic ratio, scalar 
products are potential bottlenecks in this algorithm. For both the preconditioning and the 
stencil operations, a part of the ensuing scalar product is merged into the same kernel, reusing 
the operands (z*·r’ for the preconditioning step, p’*·q for the stencil operation) while still in 
on-chip memory. The partial scalar products cover the bsx×bsy×dimz elements of the same 
thread block. These sub-products are written back to vector Σ of length (dimx/bsx)×(dimy/bsy), 
which is downloaded to host memory and reduced to the final value on CPU. This 
heterogeneous approach leaves only the massively parallel part to the GPU and reduces 
communication between nodes to the part inside the same thread block, where it is cheap 
thanks to the on-chip shared memory. Furthermore it saves additional kernel calls and 
comprised off-chip memory accesses. 

The global norm of the residual is computed analogously, but need not to be computed at 
every iteration; overshooting the instant of convergence by a few iterations is usually well 
worth the reduction in computation cost. It is processed in the same way as the scalar 
products. 

5.4.1.4 Update functions 
All update functions are naively parallel vector operations. The updates for solution and 
residual 

xi = xi-1 + αi·pi;   ri = ri-1 - αi·qi;   r’i = r’i-1 - αi
*·q’i

are unified into a single kernel to improve occupancy of the GPU. Likewise are the functions 

pi = zi + (ρi/ρi-1)·pi-1;   p’i = z’i + (ρi/ρi-1)*·p’i-1    

5.4.2 Domain distribution 
Multi-GPU accelerated desktop systems are based on a complex hierarchy of distributed and 
shared memory, which makes it challenging to fully utilize the available processing power. In 
general, applications that are load-unbalanced, bandwidth bound or communication-intensive 
tend to perform poorly on such systems. Hence, load balancing and data traffic optimization 
are imperative for good performance. 

The grid is segmented into equal compartments which are divided among the GPU boards. 
The solver is then run simultaneously on all GPUs for the corresponding fraction of the 
problem size. For best performance, data should be decomposed in such a way that the 
compartments cover coherent memory sections. In a regular grid, this corresponds to 
horizontal slabs similar to the approach chosen by  [147]. Apart from this being easier to set 
up, data on “seam planes” are also coherent in memory and can be swapped between GPUs in 
two high-speed memory transfers: a single download from device 1 to host followed by a 
single upload from host to device 2 (currently, direct device-to-device transfers are not 
supported). Additional transfers as required by other decompositions would be penalized by 
the transfer initialization overhead  [93]. 
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This data-swapping is required during stencil operations, as part of the input operands lie 
beyond the domain assigned to the respective GPU. Thus a redundant layer has to be added to 
each GPU domain in order to hold the said cross-domain elements. Data exchange between 
the different memory domains is visualized in Figure 60. 

GPU 2 device memory

GPU 3 device memory

Page-locked shared host memory

GPU 1 device memory

GPU 4 device memory

GPU 2 device memory

GPU 3 device memory

Page-locked shared host memory

GPU 1 device memory

GPU 4 device memory

 
Figure 60: Data-swapping via page-locked shared host memory. Yellow sections in GPU memory indicate 

redundant layers. 

The constant data exchange between GPU memory domains implies the risk of severely 
impeding performance. Fortunately, all the transfers indicated in Figure 60 can be overlapped 
with computation, so stalling can be avoided. This is done by segmenting some of the kernels 
in such a way that first the elements that need to be transferred are calculated; then the 
remaining vector is processed while the transfer is under way. On the receiving end, the 
procedure is inverted: elements not needing cross data are processed first while cross-domain 
data are being updated from the host-side exchange buffer. With the problem sizes treated in 
this work, latencies through data swapping can in this way be almost completely hidden (s. 
Chapter  2.6.3.2). 

5.4.3 Maximizing bandwidth and instruction throughput 
BiCG basically introduces a “mirror image” to all the vectors and vector-to-vector operations 
in CG; these are independent from each other and could be performed concurrently, 
essentially doubling the parallelism exposed by the method compared to CG. However, BiCG 
for the problem sizes treated by our application already offer millions of independent streams, 
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more than enough to utilize a multi-GPU system to full capacity. Instead, we use the 
particular structure of BiCG to increase the amount of local data reusage.  

The traditional CG is inherently bandwidth limited as the total count of arithmetic is rather 
light for sparse systems. For complex BiCG, however, the arithmetic load per node and 
iteration is about 8 times higher at only 4 times the I/O. With the bandwidth optimizations 
described earlier, we actually reach the point where data feeding is no longer the only limiting 
factor and instruction throughput optimization gains higher importance. 

The GPU’s arithmetic units reach the highest instruction throughput when performing floating 
point multiply-add instructions, so the arithmetic flow should be cast as much as possible in 
this kind of operation. The typical operation 

    a = a + b·c 

a’ = a’ + b*·c’ 

is processed by the following routine: 

BIMAC(ab ,b, cb) 

{ 

ax += bx · cx 

ax += -by · cy 

ay += bx · cy 

ay += by · cx 

az += by · cw 

az += bx · cz 

aw += bx · cw 

aw += -by · cz 

} 

where ab, b, cb are coupled elements cast to GPU built-in vector data types: 

 ab = {ax,ay,ay,aw} = { Re(a), Im(a), Re(a’), Im(a’) } 

 b = {bx,by } = { Re(b), Im(b) } 

 cb = {cx,cy,cy,cw} = { Re(c), Im(c), Re(c’), Im(c’) } 

This function only contains multiply-add instructions and two sign changes. It also increase 
data re-useage as b need only be loaded once.  

5.5 Benchmarking 
All performance analysis for the proposed solution is based on experimental measurements of 
execution times. This is the usual approach for GPU-based applications where the complexity 
and limited public documentation of the hardware make analytical elaboration extremely 
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difficult. Again following custom and practice, we compare the GPU-accelerated solution to a 
reference implementation on a contemporary desktop machine.  

To make this comparison as fair as possible, the reference implementation must be reasonably 
optimized. Ours is based on lightweight OpenMP multithreading  [132]. It is run on the same 
system as introduced in Chapter  2.5.5 using two quad-core CPUs with Streaming SIMD 
Extensions (SSE). 

5.5.1 Single-GPU performance 
This benchmark focuses on computing performance, so we exclude most problem-related 
factors by comparing processing throughput in terms of  million nodes per second 
(Mnodes/s). We compare several problem sizes emerging from typical MRI resolutions, up to 
1923 nodes in the single precision and up to 1283 nodes in the double precision benchmark. 
Unfortunately, larger setups exceed the memory capabilities of a single GPU. Comparative 
benchmarks for the single and double precision dual-CPU reference and single-GPU 
implementation are shown in Figure 61. 
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Figure 61: Single-GPU and dual-CPU solver throughput in terms of Mnodes/s. Analysis was done on cubic 

grids derived from common MRI resolutions. 

For the benchmarks shown in Figure 61, the solver was accelerated using a single GPU of the 
GTX 296 and the GTX 480 type. For problem sizes in the order of millions of nodes, the GPU 
is “saturated”, so thread launching overheads and load misbalancing between SMs no longer 
have any significant impact. For the larger problems that we tested, the GTX 295 outperforms 
the dual-CPU reference by a factor of up to 8x in single precision and by a factor of up to 1.7x 
in double precision. A single GTX 480 even achieves over 14x in single precision and up to 
7.5x in double precision. In general, for larger problems, better GPU performance could be 
observed.  

5.5.2 Multi-GPU performance 
Next, we examine performance scaling with multi-GPU parallelism. Figure 62 shows the 
performance scaling for the addition of up to four GPUs. 
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Figure 62: Performance scaling with number of GPUs, for both single and double precision and for 

different problem sizes. 

The restructuring techniques described in Chapter  5.4.2 provide near loss-less multi-GPU 
scaling for almost all set-ups, with an overhead of just around 5% per added GPU for the 
largest tested problem size.  Using all four GTX 295 GPUs we achieve total speedups vs. the 
dual-CPU reference of up to 31x in single precision and up to 7x in double precision. Using 
both GTX 480 GPUs, the speedup is 28x in single precision and 15x in double procision. 

When speaking about performance scaling with parallelism, it might also be of interest how 
the CPU reference scales. A corresponding graph is shown in Figure 63 where the average 
throughput is measured in respect to OpenMP thread parallelism. 
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Figure 63: Performance scaling with the number of OpenMP threads of the dual-CPU reference 

application. 

We see that on the way up from one to eight CPU cores, about 12% performance loss is 
observed compared to ideal scaling, more than what was lost in parallel multi-GPU execution. 

5.5.3 Arithmetic throughput 
For the reasons invoked in Chapter  5.5.1, we decided to measure performance of our solver in 
terms of million nodes per second. However, in linear algebra, especially for dense problems, 
it is also very common to measure the throughput of arithmetic operations in terms of billion 
floating point operations per second (GFLOP/s).  

Fortunately, the structure of the algorithm allows a pretty straightforward conversion between 
both units: each iteration, 156 flops are required to process one node. Therefore, the 
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arithmetic throughput of a single GTX 295 amounts to around 42 GFLOP/s, while up to 167 
GFLOP/s can be achieved using all four GPUs. A single GTX 480 achieves over 62 
GFLOP/s, and up to 125 GFLOP/s can be observed when using both GPUs. Single-GPU 
double precision throughputs amount to 5.8 and 21.7 GFLOP/s per GPU, scaling up 
accordingly to 22.8 GFLOP/s on four GTX 295, and 43.3 GFLOP/s on two GTX 480. 

5.5.4 Comparison to other work 
While no exact counterpart exists in literature, comparison to similar applications can at least 
give an idea of the efficiency of the implementation. For example, for the concurrent number 
cruncher  [140], a speedup of only 6x is reported compared to one CPU, though they were 
using an 8800 GTX graphics card, with a GPU roughly half as powerful as ours. The multi-
algorithm solver from  [144] claims to outperform a mono-core CPU reference by 20-25x, 
also using a 8800 GTX GPU. Note that our reference fully uses two CPUs, four cores each. 

Rather than speedups versus CPU, the arithmetic throughput (s. Chapter  5.5.3) can be 
considered more unbiased for comparison. The CGS and BiCGStab solvers from  [150] 
achieve peak throughputs of 16 and 18 GFLOP/s, the banded sparse matrix product from 
 [146] achieved up to 36 GFLOP/s with caching, both using a slightly more powerful GPU 
model (a GTX 280) than ours. The benchmarks of  [141] speak of 11.6 GFLOP/s on a single 
8800 GTS, a device roughly 40% as powerful as our GTX 295, so putting this into 
perspective one might expect at most 30 GFLOP/s on a comparable GPU. 

Looking at the performance reports of these solutions and taking into account the hardware 
they were using, we can summarize that our solver runs significantly more efficiently than 
related implementations. 

5.5.5 Comparison to CUBLAS/CUSP 
As mentioned in Chapter  5.2, there are optimized library routines for basic linear algebra 
operations, most notably the vendor-supported CUBLAS library that comes with the CUDA 
software design kit  [87]. Moreover, there are optimized implementations for banded matrix-
vector products  [146], made public in the open-source CUSP (for “CUDA Sparse”) library. A 
simple single-GPU BiCG solver can be implemented depending only on these libraries. 
However, just putting together optimized subroutines does not yet result in an optimized 
program. Complex BiCG offers many ways to save overhead and data traffic by fusing 
computation on a low level (s. Chapters  5.4 and  5.4.3), and a considerable performance boost 
can be obtained by doing so. In fact, we observed a speedup of around 40% when comparing 
our solver to a simple CUBLAS/CUSP reference implementation. The gap was slightly 
stronger for smaller problem sizes than for larger ones, since the impact of having 
unnecessary launch overheads and synchronization decreases with problem size. 

5.5.6 Profiling 
As mentioned earlier in Chapter  5.4.1, some parts of the algorithm perform more efficiently 
than others. I used the vendor-supplied profiling tool, the NVIDIA Visual profiler, to gain 

  73 



Chapter  5: Multi-GPU accelerated complex Bi-Conjugate Gradient solver 

insight into the bottlenecks of this implementation. Figure 64 shows an analysis of the time 
share of each GPU kernel on the total execution time, kernel launching overhead comprised. 
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Figure 64: Time share of each GPU kernel on the total execution time, for different problem sizes and 

both single and double precision. 

Unsurprisingly, the kernel covering the sparse matrix-vector multiplications and ensuing 
partial scalar product (spMV_prod_kernel,  Chapters  5.4.1.1 and  5.4.1.3) takes the largest 
time share of all kernels, especially in double precision: after all, it covers the largest part of 
the arithmetic. What is notable, however, is the relatively large time share of the update 
functions (Chapter  5.4.1.4), considering that they are both computationally low-cost and 
naïvely parallel. One reason for this is that they are too light to run efficiently on the GPU, 
causing kernel launching overhead and off-chip memory latencies to take a disproportionate 
share of the total execution time. Also, these kernels are strongly I/O limited. Details will be 
discussed in Chapter  5.6. 

The kernel covering preconditioner and ensuing partial scalar product (Jabobi_prod_kernel, 
Chapter  5.4.1.2) has only a minor impact with a mere 10% approx. of the total execution 
time. This can also serve as an estimate of the overall impact scalar products have in this 
implementation, as the kernel does little else than this. 

5.5.7 Convergence behavior 
As expected, single precision performance is way higher on the GTX 295 than double 
precision performance. However, in the view of the well-known draw-backs of single 
precision in scientific applications  [151], this benchmark would not be complete without 
analysis of convergence behavior for both implementations. Figure 65 traces the development 
of the residual and the error over iteration count, for a real-world problem emerging from the 
application field introduced in Chapter  5.1.  

||b-A·xi|| is the l2 norm of the residual and ||xi-xr|| is the l2 norm of the deviation of the found 
solution x to the (in this experiment known) correct solution xr , at the time of iteration i. 
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Figure 65: Convergence behavior for solution of a real-world mid-sized problem (4.8 million nodes), using 

both single (SP) and double precision (DP). 

The convergence rate is nearly identical down to a certain level, where single precision is no 
longer able to approach the right solution. Our single precision implementation was able to 
find solutions for a tolerance ε = ||ri|| / ||r0|| as low as 10-5, which should be enough for most 
applications. The double precision implementation, on the other hand, managed to approach 
the right solution down to an ε as low as 10-8. 

There is a simple explanation for the stagnation in single precision: cancellation. As the 
algorithm approaches the right solution, the addend to x in the update kernel becomes so small 
that the mantissas no longer overlap; hence nothing is added at all.  

Note that the GTX 295 GPUs used in this work have an approximately 6x higher throughput 
in single precision than in double precision, owed to the fact that there are eight times more 
single precision units than double precision units (s. Chapter  2.4.3). If lower tolerances are 
required, it is worthwhile computing an intermediate solution for ε = 10-5, followed by a 
refinement step in double precision. For the example in question, a tolerance of ε = 10-8 can be 
matched with this mixed approach by performing 330 iterations in single precision, followed 
by 240 iterations in double precision. This saves ~40% computation time compared to the 
direct approach performing all 470 iterations in full double precision. 

5.6 Discussion 
The results presented in this work give rise to several questions that will be addressed in what 
follows. First, let us discuss the bottlenecks in this application. In single precision, the 
theoretical maximum throughput of both GPU models is very high compared to the off-chip 
memory bandwidth. For example, to fully load all single precision units of a GTX 295, it 
would take a ratio of 16 operations per word of DRAM I/O. With the small on-chip storage, it 
is almost impossible to become compute-limited with any realistic linear algebra application, 
as opposed to double precision where the ratio is around 5.4. For the GTX 480, the ratio is 
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about 15 for both precisions. These values can be calculated from the bandwidth and 
throughput of the devices  [93]. 

Wherever possible, I merged the operations of BiCG to optimize on-chip data reusage. As a 
weak spot in the flow there remain the update kernels (Chapter  5.4.1.4), scaled vector 
additions that do not leave room for such optimizations and thus are highly bandwidth limited 
(~0.75 operations per word of DRAM I/O). In fact, in Chapter  5.5.6 we found that they 
accounted for a disproportionate amount of the total execution time. The share is lower in 
double precision where bandwidth limitation is generally less of an issue. 

Another important aspect is multi-GPU scaling, which is directly related to the investment 
payoffs of hardware upgrades. Ideally, performance should grow proportionally with the 
number of GPUs. From one to two GPUs, the speedup was near ideal with >1.98x. We were 
using up to four GPUs and experienced speedups from 3.12x to 3.90x depending on the 
problem size, with larger problems gaining greater benefits from using more GPUs.  

There are two limiting factors to performance scaling with parallelism. The first is the 
application itself. For the largest part of the algorithm, the problem sizes treated in this work 
offer enough parallelism to easily fill the capacities of several GPUs but there are also serial 
parts and scalar products, which according to Amdahl’s law inhibit ideal performance scaling 
(s. Chapter  2.2).  

The second limiting factor is hardware. Stencil operations require communication between 
adjacent nodes. Such data exchange is cheap inside the same thread block: threads running on 
the same stream multiprocessor can take advantage of the on-chip shared memory. 
Communication between blocks enforces passing data through off-chip DRAM which entails 
long access delays (~400-600 clock cycles), and launching a new kernel is the only mean of 
inter-block synchronization.  

Communication between different GPUs, however, is much more expensive. Data need to be 
downloaded via the PCIe 2.0 interface to host RAM, and then uploaded to the other device. 
No direct GPU-to-GPU communication is available at the moment. The domain distribution 
presented in Chapter  5.4.2 aims to optimize this bottleneck, though the host RAM still needs 
to serially buffer  

(NGPU·2-2)·dimx·dimy

data elements every iteration. Host-device transfer speeds are partially dependent on the main 
board chipset; in our system, the PCIe 2.0 interface can transfer at a maximum rate of ~3.3 
GB/s via page-locked memory, as revealed by the bandwidth test sample application  [87]. 
This allows us to calculate the minimum time to upload or download all cross-GPU data to 
the host buffer for various problem sizes, with respect to the number of GPUs, which is 
shown in Figure 66. 
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Figure 66: Minimum one-way transfer times (milliseconds) to or from host buffer, for different cube sizes 

and up to eight GPUs (single precision) 

As described in Chapter  5.4.2, we segment the surrounding kernels to allow overlapping of 
these transfers with GPU computation. The ensuing kernels overlapping with upload are fairly 
large; however, the computation part which can be run concurrently with data download 
accounts for only approximately 15% of the total GPU computation time, so let us focus on 
this part as the limiting factor for multi-GPU scaling. These computation times are outlined in 
Figure 67. 
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Figure 67: Approximate computation time in ms of that can be overlapped with GPU data download to 

host buffer (single precision) 

Comparing both graphs, we notice that for the problem sizes and numbers of GPUs tested in 
this work the computation times are always long enough to cover the transfer times, with the 
exception of 1283 nodes on 4 GPUs where the margin gets dangerously small. And indeed it 
appears from Figure 62 that we get a degraded speedup for this particular configuration. Note 
that this analysis assumes ideal conditions and ignores run-time and driver overheads, so 
having a safety margin of a few hundred microseconds (which is the order of these overheads) 
is advisable. 

Let us extended this analysis to up to eight GPUs to explore the limits of multi-GPU scaling. 
According to this extrapolation, near-lossless scaling would still be feasible for six GPUs 
processing large problems (≥ 2563 nodes). For smaller problems or more GPUs, some amount 
stalling is inevitable. If it were possible to transfer data directly from GPU to GPU without 
passing the host RAM, transfer times would no longer grow linearly with the number of 
GPUs, allowing efficient multi-GPU parallelism on a much larger scale. 
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Note also that for double precision, the transfer time doubles but the computation time of the 
corresponding kernel increases by over 4.5x. Taking these factors into account, efficient 
scaling should be possible for up to eight GPUs, if the problem spans at least 2563 nodes. 

Another strong field for improvement is preconditioning. Modern iterative solvers are rarely 
used without a preconditioner, which can greatly reduce the time to convergence as well as 
the numerical stability. The most prominent examples are based on incomplete factorization 
and solution of the sparse triangular systems. However, while very effective on serial 
computers, efficient implementation of these preconditioners on GPUs has proven extremely 
difficult. GPU-based iterative solvers are usually based on very simple solvers with high data 
locality, but at the time of writing, no solution was found to bring significant improvement in 
net computation time over the Jacobi preconditioner, probably because our base problem is 
not ill-conditioned enough for more complex solutions to pay off. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  78 



Chapter  6: cudaEEG: real-time 3D source localization software 

6 cudaEEG: real-time 3D source localization software 
This chapter describes the third major contribute of this thesis, the cudaEEG software. In 
contrast to the solutions presented in Chapters  4 and  5, this implementation targets the EEG 
inverse problem, which was introduced in Chapter  3.2.2.2. In a nutshell, cudaEEG allows 
real-time localization and 3D-visualization of neuronal sources from EEG data, using the 
GPU for both data elaboration and in-place graphics rendering of the results. It is targeted at 
weaker GPUs, like older models in lower-end workstations or the GPUs in mobile computers. 

6.1 sLORETA inverse estimator 
The cudaEEG software is based on the sLORETA linear estimator (4) for EEG source 
imaging  [43]; the algorithm is described in Chapter  3.2.2.2. Implementation is done in two 
parts: 

1. Construction of the inverse estimator, i.e. the transition matrix T and the 
standardization matrix V. This needs to be done once per target subject and electrode 
configuration. 

2. Using the estimator to map electrode recordings to estimated source distributions in 
the brain (Ĵ  Φ). This needs to be performed for every time instant. Hence, it is only 
this step that underlies real-time constraints. 

Part one is relatively light rarely taking more than a minute. GPU acceleration is still 
worthwhile in respect to future frameworks where the lead field is adjusted dynamically and 
because the basic building blocks can be reused for other linear estimators. The following 
operations need to be implemented: 

   T = KT·(K·KT+α·I)-1

and 

    V = diagonal concatenation of all [Sll]-1,  

where Sll are the NV diagonal 3×3 sub-blocks of S = T·K. 

The GPU implementation has two bottlenecks. One is the matrix-matrix product K·KT. It 
suffers from the fact that the matrix K is “long and thin” spanning 3·NV×NE elements where 
NV >> NE: there are at most a few hundred electrodes, but there can be hundred thousands of 
voxels. Hence, the product consists of few but very long scalar products. Naïve 
implementation thereof offers only NE

2 parallel streams of length 3·NV; however, this ratio can 
be improved by introducing a two-stage parallel reduction to the scalar products. The other 
bottleneck is the matrix inversion. With NE×NE elements, the matrix is much too small to 
make GPU-accelerated inversion profitable. For these small magnitudes, the fastest solution 
was found to outsource the operation to the CPU. The work flow of the implementation is 
displayed in Figure 68. 
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Figure 68: sLORETA work flow for computation of the inverse estimator. The blue parts (left) are 

processed on the CPU while the yellow parts (right) are handled by the GPU.  

What regards the real-time part, the sensor array measurement φ(t) of each time frame needs 
to be mapped to the estimated current densities Jest(t) by 

   Jest(t) = T·Φ(t) 

and then standardized to the current density powers Ĵ(t) by 

jl,std (t) = jl,est(t)T·Vl·jl,est(t) 

for all j = 1...NV. This is the result that is later mapped to the output.  

Being based on matrix-vector products, this part is rather straightforward to implement. 
However, data reusage is limited and the arithmetic-to-data ratio is not high enough to 
overcome the bandwidth limitation to which GPU applications are extremely prone to. Hence, 
data are cast into a format that allows optimal bandwidth utilization according to Chapter 
 2.6.3.2: firstly, the matrix rows are “padded” to align the length of each row to a multiple of 
the warp size of 32, as shown in Figure 69. 

T_GPU

NV

ceil(NV/32)*32

NE rows

V_GPU

NE rows
T_GPU

NV

ceil(NV/32)*32
“padding”“padding”

standardstandard V_GPU  
Figure 69: Data padding. 

Secondly, the 3-element vectors are cast to 128-bit aligned data structures: not only are 128-
bit transfers slightly faster than 32-bit transfers  [93]. In combination with the padding 
technique, this also ensures that the memory accesses of each half-warp always aligned to 
128-byte data segment. Ignoring this rule can result in a drop in memory access speed of up to 
90%, so the benefits more than make up for the 25% increase in data size  [93]. The alignment 
of the Tij and Vj elements is shown in Figure 70. 
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Figure 70: 128-bit alignment of Tij and Vj data elements. 

The application is embarrassingly parallel (s. Chapter  2.2), so performance scales roughly 
linearly with the product of NE and NV. But even with very high voxel resolutions, real-time 
requirements were easily matched. Our heaviest configuration with 59 electrodes and 195391 
voxels (discretization of grey matter at a resolution of ~1.4 mm) still performed at over 200 
time frames per second on an 8800 GTS GPU – including 3D visualization. The speedup 
versus a 1.86 GHz Intel dual-core CPU was around 15x. For fluent real-time visualization, a 
frame rate of 30 is usually considered the minimum; for more than 60 the viewer hardly 
observes any further improvements. 

6.2 Graphical user interface 
Since the source reconstruction is done in GPU memory, only the sensor array vector needs to 
be uploaded every time frame. This alleviates traffic on the GPU-host interface by up to three 
orders of magnitude. 

For visualization, the standardized current density powers are mapped to a color scale. The 
3D visualization also needs voxel positions and the originating MRI image to allow 
anatomical association of source activity. Visualization is based OpenGL, an open and 
portable graphics rendering API  [153]. The dependencies and data movements are shown in 
Figure 71. 
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Figure 71: cudaEEG software dependencies and data movements. 

The 3D visualization is based on a point-based rendering technique. This means that every 
voxel is rendered as a point, as opposed to interpolating triangulated surfaces. It is very 
popular in biomedical data visualization  [154]. Anatomical structures are mapped on the 
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image by directly applying the raw MRI image as a 3D texture. This approach dynamically 
adapts to any MRI and voxel discretization without any additional pre-processing.  

The software opens two windows: one containing the 3D view of the source estimation 
mapped on the brain model, the other providing a 2D interface to examine and navigate the 
EEG recordings. When in free navigation mode, the 2D interface can be used to select the 
time instant to be processed by sLORETA. The graphics output of cudaEEG is shown in 
Figure 72. 

 
Figure 72: cudaEEG graphical user interface output. 

The 3D view allows rotation of the brain model and examination of single slices. The 2D 
view supports zooming and panning through the EEG recordings. Slow-motion animation is 
also possible. A pop-up menu allows easy configuration.  

6.3 Shrinking standardized LORETA-FOCUSS 
The sLORETA linear estimator is an established solution in EEG source imaging because it 
produces decent results at a moderate computational cost. It has its weak points, though: 
sLORETA is often criticized for producing blurred images that make it hard to distinguish 
close focal points. This issue is inherent in l2-norm based estimators. As described in Chapter 
 3.2.5, some iterative refinement methods have been developed to remedy these drawbacks 
without falling back to another form of error-term minimization. However, this requires the 
estimator to be recomputed at run time, which multiplies the computational cost. With 
sLORETA running much faster on the GPU than actually required for real-time visualization, 
the feasibility of a more complex linear estimator was explored, namely the shrinking 
standardized LORETA-FOCUSS (SSLOFO)  [45] which was also introduced in Chapter 
 3.2.5. 

SSLOFO iteratively updates a weighting matrix based on the solution found in the previous 
iteration: 
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Wi = diag(Jest,i-1)·P with Jest,i-1 = Ti-1· Ф(t) and P = diag(KT·K)-1

A sLORETA solution is used as initialization. Using this weighting matrix, the transition 
matrix is recomputed using a Weighted Minimum Norm (WMN) approach and applied to 
obtain an updated solution. This solution is smoothed to avoid trapping in local minima; in the 
same turn voxels showing low activity under a certain threshold are removed from the 
solution space and will no longer be considered in construction of the next estimator. This 
loop is repeated until an arbitrary stopping criteria is matched, which  [45] suggests to be    

1. no change to the previous iteration 

2. solution is less sparse than in the previous iteration 

3. any focal point exceeds a user-defined threshold 

None of these are feasible under real-time constraints, as the duration of processing one time 
frame would be undetermined. Instead, a fixed iteration count was used in the 
implementation. 

6.3.1 Implementation 
What regards the implementation, the subroutines from Chapter  6.1 could be reused with 
small modifications. Smoothing is applied via a simple median filter, and the shrinking is 
done by setting the corresponding weight of the excluded voxel to zero. This efficiently 
removes the point from solution space without introducing any divergence in the parallel data 
flow. As threshold, 5% of the global peak was chosen. The heterogeneous implementation of 
the algorithm is displayed in Figure 73.  
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Figure 73: Heterogeneous implementation of the SSLOFO algorithm. Blue steps are processed on the 

CPU; yellow tasks are handled by GPU. 
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Note that the initialization phase where K is uploaded and the constant P is computed is not 
included in this diagram. 

6.3.2 Performance 
SSLOFO is much heavier than sLORETA, so a closer performance evaluation is necessary to 
see under which conditions real-time processing is still feasible. The implementation was 
benchmarked on a system using a NVIDIA 8800 GT graphics card and an Intel Core2 6300 
CPU. Configurations using voxel resolutions between ~4000 to ~32000 were measured, in 
combination with electrode caps of 32, 64 and 128 electrodes. Computation times for these 
configurations per SSLOFO iteration are shown in Figure 74. 
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Figure 74: Computation time in milliseconds per SSLOFO iteration. 

Assuming that at least two iterations are required to substantially increase sparsity of the 
solution, we see that only the 32 electrode configuration is fast enough to provide a frame rate 
suitable for real-time visualization. For 64 electrodes, only very low voxel resolutions can be 
processed barely fast enough on this GPU. For 128 electrodes the solver is way to slow even 
for low resolutions. Profiling of the application has revealed that the CPU-based inversion 
part quickly becomes a bottleneck with increasing electrode count, as its complexity grows 
cubic while the complexity of the GPU-parts only grow quadratic with this number. For 64 
electrodes, the inversion already accounts for 55% of the total computation time, and it 
becomes even more dominant for higher values.  

Compared to a serial CPU-only implementation, the observed speedup was around 20x for 
most configurations and up to 30x in the best case, while larger problem sizes also yielded 
higher speedups. Still, SSLOFO is not fast enough to process the high resolutions used in 
cudaEEG and is at the moment not integrated in the software. 

6.4 Deriving neuron orientation from MRI 
The low spatial resolution of EEG source imaging is owed to the fact that the inverse problem 
is extremely underdetermined: a low number of signals is used to compute a spatial source 
distribution of thousands of discreet points. Increasing electrode count slightly alleviates the 
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problem, but also increases system cost and the effort of applying the electrode cap. There are 
also physical limits on how many electrodes can be mounted on the head; when more than 
70% of the scalp surface is covered, the interference starts making the measurements 
increasingly defective. The state-of-the-art maximum is about 300 electrodes, still a drop in a 
bucket considering the many degrees of freedom in the inverse problem  [155]. 

To improve quality of the inverse solution, it is therefore crucial to infer as much anatomical a 
priori information as possible. As outlined in Chapter  3.2.4, some of these can be obtained 
from the subject’s MRI image. We already use the MRI to constraint the solution space to the 
cortical grey matter, which alone is capable of generating electrical source activity. 

If also the orientation of each voxel were known, the degrees of freedom could be instantly 
reduced by 2/3, leading to a great improvement in spatial resolution. The problem is getting a 
reliable estimate for said orientations. However, while neurons can be cross-wired 
unpredictably within the brain, the sources that can be detected by EEG are exclusively 
pyramidal cells directed orthogonally to the cortical surface, which according to  [157] 
accounts for ~85% off all neuron in the cortical grey matter. It is therefore feasible to derive 
the voxel orientation from the orientation of the cortical surface around it. This too can be 
obtained from MRI in a successive processing step as displayed in Figure 75. 
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(3D image)
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Orientations

MRI Volume
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Figure 75: Deriving anatomical priors from MRI. 

There are two alternative methods to obtain these data from MRI, which will be described in 
the following. 

6.4.1 Derivation from MRI luminosity gradient 
One method is to directly retrieve these orientations from the luminosity gradient at the point 
of the voxel inside MRI, as suggested by  [36]. This approach is based on the observation that 
the layers of grey matter have slightly different luminosity levels in MRI, and there is an even 
greater gradient at the transition to other tissue types. Provided good resolution and low noise, 
the gradient can be used to form voxel orientations perpendicular to the cortical surface as 
shown in Figure 76: 
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Figure 76: Luminosity gradient in cortical grey matter regions of MRI. 

However, even a small amount of noise can have a devastating impact if only the gradients 
between two pixels are considered. This is a common problem in image processing where 
computation of resilient gradient maps is integral part of edge detection algorithms. It is often 
addressed by gradient averaging operators like the Frei-Chen operator  [158]. Extending the 
principle to three dimension yields the following 3×3×3 operators for retrieval of averaged 
gradients in the x-, y, and z-direction (s. Figure 77). 
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Figure 77: 3×3×3 Frei-Chen operators for 3D gradient averaging. 

These operators are applied in each voxel position to retrieve the 3-element orientation vector, 
which is then rescaled to unity length. Being an image processing method, this procedure 
maps intuitively on the GPU; the processing time is in the range of a fraction of a second. 

The image gradient method requires a certain quality of the MRI image. In low-resolution 
images, it can happen that some characteristics are only one or two pixels wide. In that case, 
the method fares poorly, producing a large number of erroneous priors. To cope with these 
limitations, an alternative method was devised, which is described in Chapter  6.4.2. 

6.4.2 Derivation from pial surface mesh 
One of the solutions to the EEG forward problem that were discussed in Chapter  3.2.3 
involved deriving triangulated mesh models of scalp, skull and brain, from which a multi-
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layered head model was constructed. As mentioned earlier, meshes were obtained from MRI 
using a third-party software called freesurfer  [163] [164]. 

The innermost of those three meshes, the brain mesh, describes the surface of the pia mater. 
Precisely enclosing the voxel space, this mesh can be reused for deriving the voxel 
orientations. This is done in the following way: each voxel scans through the surface triangles 
to find the triangle closest to itself. This triangle’s normal vector is applied as the voxels 
orientation. The principle is shown in Figure 78. 
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Figure 78: Deriving voxel orientations from pial mesh surface. 

The result is a very smooth orientation map for all voxels. Again, the procedure is 
embarrassingly parallel, containing simple geometric operations. The GPU implementation 
runs just as fast as the image gradient variant. 

To the best of my knowledge, no other solution exists that uses exactly this approach. 
However,  [165] use an approach where they directly retrieve the voxels from the centroids of  
each surface mesh triangle, along with the normal vector as its orientation. This solution has 
the disadvantage that it does not result in a uniform discretization of grey matter as solution 
space. 

6.4.3 “Fuzzy” orientation priors 
Knowing the orientations has a great effect on constraining the solution space; however, there 
is also a drawback. The orientation of a current dipole has a strong effect on which electrodes 
are significantly influenced through the lead field. Thus, even small deviations from the 
correct orientation result in large errors in the model. 

Given the sensitivity of the model to these parameters, it would be risky to apply them as 
strong priors, i.e. removing other orientations altogether from the solution space. A much 
better approach is to apply them as weak priors, where solutions defying the estimated 
orientation are derated, but still incorporated in the solution space.  

This implementation proposes an approach where parts of the solution not complying to the 
orientation priors are attenuated, but not left out, thus putting “fuzzy” constraints on the 
solution space. This is done by calculating the transition matrix as a weighted minimum norm 
like in FOCUSS (s. Chapter  3.2.5). 

 (10)  Tfuzzy = W· WT·KT·( K· W· WT·KT+α·I)-1
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such that W penalizes deviating orientations by a large percentage. Note that in this case, W is 
not a diagonal matrix like in FOCUSS and SSLOFO, but a matrix of 3×3 diagonal sub-blocks:  

   W = diagonal concatenation of all Wll, with l = 1..NV

The NV sub-blocks are calculated by 

   Wll = (rl, al, bl)T   

where  r = (rl,x, rl,y, rl,z) is the orientation vector of voxel l. The other two rows of each of 3×3 
diagonal sub-blocks are defined as 

   al = (al,x, al,y, al,z) = γ · (rl,x,  0, -rl,x
2/ rl,z) 

   bl = (bl,x, bl,y, bl,z) = γ · (rl,y ·al,z, rl,z ·al,x - rl,x ·al,z, -al,x·rl,y) 

The scalar γ denotes the attenuation factor for deviating solutions. Note that after this 
transformation, the 3-element vectors of each voxel are no longer aligned to the common 
Cartesian grid. Anyway, those vectors are standardized to current density powers in the end, 
so this alignment change does not affect the final solution. 

Again, application of the weighting is embarrassingly parallel on a per-voxel basis, so the 
computational effort hardly increases in respect to normal sLORETA. The transition matrix 
needs only be computed once, so for the real-time part, this enhancement is even for free. 

Compared to the default solution with unknown orientation, introduction of these priors leads 
to a spatially much sparser and “sharper” solution. Forcing orientations however also makes 
the solution very prone to errors. A comparison between results for unknown, forced and 
fuzzy orientation priors is shown in Figure 79.  
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Figure 79: Impact of fixed and fuzzy orientation priors compared to unknown orientations. The 

penalization factor in this example is 70%. 

All three images display source estimations for the same input vector. The first is blurred but 
at least localizes the center of activity correctly. The second is very sparse, but the example 
also betrays the error sensitivity of strong priors: the small dark patch on the right hemisphere 
is actually a part of the skull that was erroneously included into the solution space during 
preprocessing (s. Chapter  3.2.4). Still the center of activity is localized inside this artifact, 
debunking the solution as clearly wrong. In contrast, allowing some fuzziness in the priors 
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preserves much of the spatial resolution, but proves to be much more resilient in the face of 
this error.  

A related method is presented in  [165], where loose orientation constraints are introduced in 
l2 and l1 minimum norm solutions. Comparison of the methods is however difficult as they do 
not compute spatial distributions but map source activity on cortical surface patches. 
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7 General discussion 
The scope of this thesis was to explore the capabilities – and limitations – of heterogeneous 
multicore systems, in the application framework of bioelectrical imaging. It quickly turned 
out that the PC architecture with one or multiple GPU accelerators yield the most fitting 
characteristic as a target computing platform: Composed of commodity hardware 
components, GPU-accelerated desktop machines are cheap, ubiquitous, highly configurable 
and easy to upgrade. Affordability is of primary concern for application in bioelectrical 
imaging, which pitches itself as a low-cost alternative to expensive anatomical imaging 
systems like fMRI. The other side of the deal is whether these systems can service the needs 
of the target application. GPUs excel at structured problems based on heavy floating point 
arithmetic, which to a large extent applies to all computational challenges encountered in this 
thesis. Given these characteristic, excellent results could be expected from GPU acceleration 
in bioelectrical imaging. The following discussion will now address the questions to which 
extent these expectations could be matched, what the limiting factors are and how these limits 
could be further pushed in future system designs and implementations. 

7.1 Summary of the contributions and results 
The main contributions of this thesis can be summarized in three principal parts, which 
address selected computational challenges that occur in bioelectrical imaging. Based on the 
individual demands of the task, different scales of CPU/GPU systems have been employed. 
The set-ups range from low-end systems with a single, weaker GPU that might as well fit into 
an average mobile system, over dual-GPU desktop workstations, up to desktop 
supercomputers with multiple CPUs and several high-end graphics cards.  

Chapter  4 presented a dual-GPU based triangular matrix inversion routine, motivated by a 
rank 10000 matrix inversion problem encountered in EEG volume conductor modeling using 
a mesh-based multilayer head model. A double-precision throughput of 92 GFLOP/s is 
achieved using a GTX 295 dual-GPU graphics card, which is a high percentage of the 
device’s theoretical peak. It outperformed a multithreaded LAPACK reference by a factor of 
57x and uses an efficient novel data storage scheme for triangular matrix formats on GPUs. 

Chapter  5 presented a multi-GPU accelerated solver for large non-hermitian linear systems. It 
is integral part of an EIT forward simulation environment, which requires repeated solution of 
banded systems of millions of complex variables as produced by high-resolution 
discretization of an anisotropic, frequency-sensitive head model. The complex BiCG based 
solver yielded single precision throughput of 42 and 62 GFLOP/s on a single GTX 295 and 
GTX 480 GPU respectively, and near-optimal performance scaling could be extrapolated for 
up to six GPUs. In double precision, single-GPU throughputs were 5.8 and 21.7 GFLOP/s per 
GPU, where analysis suggests that near lossless performance scaling should be possible for up 
to eight GPUs. Even a single GPU outperformed an optimized reference running on two 
quad-core CPUs, and speedups of over 30x could be observed in benchmarks using four 
GPUs.  
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Finally, Chapter  6 presented a 3D EEG source imaging software. This part revolves around 
the EEG inverse problem and comprises GPU-accelerated calculation and real-time 
application of EEG source estimators. The implementation is special in that it uses the GPU 
for both local computation and immediate 3D visualization of the results, greatly alleviating 
traffic on the system infrastructure. Both the lightweight sLORETA and the heavy SSLOFO 
estimators have been implemented, yielding speedups of 15x and up to 30x versus a 
corresponding CPU reference. In addition, a GPU based routine for derivation of neuron 
orientation priors has been developed, deriving these orientations alternatively from MRI 
luminosity gradients or pial surface meshes. For introduction of these priors into the inverse 
estimator, a method has been suggested that places “fuzzy” constraints on the solution space, 
which proved much more error resilient than fixed orientations. 

7.2 On performance analysis  
Looking at the results, one can safely state that the expectations put into the heterogeneous 
processing approach with GPUs have not been disappointed. Still, there are some common 
caveats that must not be ignored in this discussion.  

Most importantly, one might want to point out the pitfalls of performance analysis. Some 
implementations report sensational speedups through GPU-acceleration, as a look in the 
“CUDA community showcase” reveals  [181]. Table 3 shows a selection of implementations 
claiming speedups of ~500x and greater. 

Application Speedup Reference 

GPU Accelerated Likelihoods for Stereo-Based Articulated Tracking 600x  [176]

Parallel Algorithm for Solving Kepler's Equation on Graphics Processing 
Units: Application to Analysis of Doppler Exoplanet Searches 600x  [177]

 [178]Massively Parallel Population-Based Monte Carlo Methods 500x 

Accelerating numerical solution of Stochastic Differential Equations with 
CUDA 650x  [179]

Rapid Aerodynamic Performance Prediction on a Cluster of Graphics 
Processing Units 496x  [180]

Table 3: Selection of applications claiming very high speedups through GPU acceleration. 

How can these applications achieve over 500x speedup over CPUs, considering that the raw 
computational power of comparable generations of CPUs and GPUs does not diverge by more 
than one order of magnitude? Unfortunately, performance analysis is a weak spot in many 
examples of GPU-related work; often fine-tuned multi-GPU implementations are compared to 
un-optimized, serial reference code. This has become so common that some studies are 
exclusively devoted on “debunking the 100x GPU vs. CPU myth”  [91] [92].  

A comparative performance analysis should hold strong in face of the following questions:  

1. Are the capabilities of the CPU reasonably exploited? All modern CPUs have at least 
two cores, with high-end models integrating up to six, so straight-forward serial code 
rarely makes a fair comparison. Of course, code that is multithreaded or even uses the 
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CPU’s SIMD extensions is harder to write, which directly leads to the second 
question:  

2. Is the programming effort put into the reference implementation remotely comparable 
to that put into the GPU-accelerated version? This is particularly interesting in the 
context of commercial software development, where development times ultimately 
determine whether the project is worthwhile or not.  

3. Is the scale and cost of the reference system comparable to that of the GPU-
accelerated system? This is a bit tricky: each GPU needs at least one CPU-core for 
control, so introducing GPU acceleration will always increase system cost. However, 
upgrading a system with a high-end graphics card is generally cheaper than replacing 
the CPU with a high end substitute.  

Many authors’ reluctance to put too much effort into the reference application, which might 
be used just for this one benchmark, is understandable. An elegant way to get rid of this 
burden is using third-party optimized library routines, if available. However, even if the above 
mentioned terms are followed exemplary, there remains the notion of comparing apples and 
oranges when relating GPU-applications over speedup values. If the application is based 
solely on floating point arithmetic, it is therefore popular to measure the throughput in 
GFLOP/s: at least this expresses performance on a fixed scale. This is not perfect, though: on 
the one hand, the number is hardware dependent; to get a real idea of implementation quality, 
one needs to take into account the benchmarking device’s capabilities, which might differ 
considerably (s. Table 1). On the other hand, whether these FLOPs are put to good use 
depends on the algorithm. Some parallel algorithms buy parallelizability through increase of 
total work load. Parallel prefix algorithms are a good example of this, but also iterative 
solvers where the choice of the preconditioner influences both convergence rate and parallel 
performance. 

In this thesis, I tried to make performance evaluation as fair as possible. The TMI routine is 
benchmarked against a multithreaded LAPACK reference, a highly optimized collection of 
linear algebra routines. Application performance on one dual-GPU graphics card is compared 
to that on a dual-core CPU, so the scales are comparable. All pre-processing and address 
generation is included in the computation times, whereas the algorithm itself is optimal, 
meaning all computed FLOPs are actually required to solve the problem. Still, performance 
analysis yielded high speedup and throughput, which indicates that the GPU implementation 
is in fact highly efficient. 

For the non-hermitian linear system solver, a fine-tuned multithreaded reference application 
using both OpenMP and streaming SIMD extensions was created. Just like the GPU 
implementation, it exploits the special structure of complex BiCG to improve data locality, 
and was found to outperform a competing alternative based on library subroutines (not 
included in the benchmarks). Hence, it is safe to say that the optimization effort is 
comparable. The reference runs on eight CPU cores, which is more than appropriate for 
comparison with one to four GPUs. The only remaining caveat might be that only Jacobi 
preconditioning was used, and that more advanced preconditioners tend to perform much 
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better on CPUs than on GPUs. The problem at hand was relatively well-conditioned, so more 
complex preconditioners did not pay off. However, it should be noted that incomplete 
factorization methods, which define the state-of-the-art in CPU-based preconditioners, are 
known to yield net speedups of up to 60% in solution of some problems. Yet, even when 
assuming the aforementioned conditions, a preconditioner does not reach the speedup 
obtained by even just a single GPU. 

The case of cudaEEG is particular in that it does not implement an isolated computational 
routine. The effect from moving the signal processing from the CPU to the GPU was 
measured, but in fact both implementations use the GPU for graphics rendering. Being a 
graphics application, performance was measured in frame rates rather than GFLOP/s, which 
would be less meaningful in such a context. What concerns the derivation of neuron 
orientation priors, the focus is on functionality; the corresponding GPU kernels are very light 
and would also be feasible on a modern CPU, but the procedure is data-intensive, and having 
the complete flow on the GPU alleviates resource usage and traffic on the host system. 

7.3 Limiting factors 
GPU vendors advertise their products with high numbers of peak throughput; even low-end 
models are alleged to achieve several hundred GFLOP/s of computing power (s. Table 1). The 
numbers are obtained by pretending that all arithmetic units are perpetually busy with fused 
multiply-add operation (which count as two FLOPs, but require only one operation on GPUs).  
Of course, these assumptions are far from realistic and real applications, which even if 
reasonably optimized usually perform way below these levels. 

GPU-accelerated implementations are subject to several limiting factor that are responsible 
for the large gap between actual application performance and the theoretical capabilities of the 
hardware. Some are inherent to parallel computing, as outlined in Chapter  2.2 (Amdahl’s 
law): whenever an algorithm contains steps that cannot be fully parallelized, speedup versus 
serial processing stagnates at a certain level and can not be further improved by parallel 
scaling. This applies to the non-hermitian system solver in that it contains inner vector 
products and other scalar operations, but also to cudaEEG in that the graphics API setup is 
handled by serial code. 

One might also want to extend Amdahl’s law to the whole application, beyond the 
computational part. On a heterogeneous platform, programs typically start in a serial thread 
on the controlling processor. This thread handles data and memory setup and prepares work 
dispatch to the accelerators. After processing, results need to be moved back to the output. For 
a heterogeneous multi-CPU/multi-GPU application, non-computational overheads are listed 
in Table 4. Durations are very variable; the values indicate what is typically experienced on 
an average desktop machine. 

Operation Parallelism Duration 
OpenMP thread handling 1 ~10 μs 
Initialize GPUs (*) 1 - 8 ~200 μs 
Upload data to GPUs (*) 1 - 8 up to 300 ms 
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Kernel setup and sync 1 - 8 ~12 μs 
Kernel execution 103 - 108 50 μs - 5 s 
Download results from GPUs (*) 1 - 8 up to 300 ms 

Table 4: Non-computational overheads in relation to actual computation time. Asterisks indicate that the 
operation is usually only performed once throughout the application. 

Taking these factors in consideration, even embarrassingly parallel applications are subject to 
the scaling limitations described by Amdahl’s law. The overhead is negligible for large data 
sets, but can be compromising for small problems. For that reason, performance analysis 
usually measures different problem sizes. Expectedly, all implementations presented in this 
work yield better speedups for larger data sets. 

A related limitation is introduced by the scalable programming model. A GPU kernel remains 
active until all blocks are finished, but the number of blocks is rarely aligned with the number 
of Stream Multiprocessors. More often than not, the array of SMs is only half occupied with 
the last row of blocks, which creates some overhead through processor idling. Three examples 
are shown in Figure 80. Keep in mind that most GPUs have more than four SMs (12 - 30 for 
the architectures used in this work), making the case in Problem 2 even more unlikely. 

SM SM SM SM SM SM SM SM

Problem 1
1792 Threads in 7 blocks

Duration: 16 warps
Overhead: 14 %

Problem 3
2304 Threads in 9 blocks

Duration: 24 warps
Overhead: 33 %

SM SM SM SM

Problem 2
2048 Threads in 8 blocks

Duration: 16 warps
Overhead: 0 %

SMSM SMSM SMSM SMSM SMSM SMSM SMSM SMSM

Problem 1
1792 Threads in 7 blocks

Duration: 16 warps
Overhead: 14 %

Problem 3
2304 Threads in 9 blocks

Duration: 24 warps
Overhead: 33 %

SMSM SMSM SMSM SMSM

Problem 2
2048 Threads in 8 blocks

Duration: 16 warps
Overhead: 0 %  

Figure 80: Performance of three configurations of the same kernel, on the same architecture with four 
Stream Multiprocessors. Block size is 256 in both cases.  

Although Problem 3 is only 12.5% larger than Problem 2, it takes 50% more computation 
time because the blocks are less favorably aligned with the number of SMs. This can create 
considerable overhead, especially in the range of small problem sizes. The effect accounts for 
the “bumpy” trend lines when measuring GFLOP/s for different problem size, as in Figure 53 
of the TMI performance analysis. 

The issues discussed so far are owed to the heterogeneous platform and are still independent 
from what the actual computation looks like. But of course, arithmetic throughput and data 
feeding ultimately dictate application performance. As long as warps are held strictly in SIMT 
style, arithmetic throughput is usually of minor concern. Full 32-bit integer multiplication is 
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split in multiple operations on GPUs up to series 200, which primarily results in elevated 
address generation overhead compared to CPUs  [87]. For the implementations in this work, 
address generation overhead is alleviated as much as possible through pre-calculation on the 
CPU and upload of ready-made LUTs to the GPU constant cache. This is of particular benefit 
in case of the TMI, where the complex addressing patterns to compressed storage would 
promise significant overhead. Using the heterogeneous address generation approach outlined 
in Chapter  4.3.3, this overhead could be reduced to an amount comparable to what would be 
experienced accessing normal aligned storage. What concerns computational arithmetic, the 
instructions usually fit very well in fused multiply-add calculations, which promise the 
highest throughput on GPUs. In this work, only the arithmetic of the complex BiCG had to be 
restructured to optimize instruction streams. However, only the TMI implementation has been 
found to be compute limited, a rare case among GPU implementations. This is due to the fact 
that the algorithm is structured, dense, allows a large amount of data reusage, and is run in 
double precision on a device that is still focused on single precision arithmetic. Consequently, 
the computational throughput is a high percentage of the theoretical peak, where the 
difference to said peak is owed to the aforementioned overheads.  

For the vast majority of applications, however, data feeding is the predominant overhead. The 
way from host RAM to the GPU registers is long, and passes several levels and interfaces. 
Starting from the top, there is the shared on-chip memory, which grants almost immediate 
access of the addressing stride falls into different banks without conflicts. It also makes 
communication and synchronization inside a block very cheap. Further down is off-chip 
GDDR memory on the graphics board, which is shared among blocks. It potentially offers a 
very high bandwidth, as long as the access patterns are in tune with the requirements of the 
memory controller. But even then, it is usually unable to perpetually feed all the 
computational resources: in most GPUs, every data word that passes the interface must be 
reused over ten times to avoid the memory wall, rarely achievable considering that the small 
size of on-chip memory strongly limits data reusage. On top of all, there is a large latency 
when accessing off-chip memory, which, even when concealed by overlapping computation, 
strikes at least once at the beginning. 

The worst bottleneck is the PCIe interface between host RAM and GPU memory. It is the 
only memory shared between multiple GPUs, making communication among different 
devices extremely expensive. During computation, transfers over this interface can sometimes 
be overlapped with GPU kernels, if the latter is large enough. However, traffic through host 
memory increases with the number of GPUs, which ultimately limits performance scaling 
with GPU parallelism. The effect was analyzed in Chapter  5.6 for the non-hermitian system 
solver, which does require constant data exchange between devices. 

7.4 Perspectives 
In the last years, there has been an outright boom in the already rapidly evolving field of GPU 
accelerators. The period of this thesis alone covers three major generations of NVIDIA GPUs, 
each introducing new features that are of interest for computing applications. While the first 
CUDA compatible devices required very structured addressing patterns and were restricted to 
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single precision, ensuing generations not only relaxed restrictions on memory access, but also 
introduced increasingly better double precision support, error correction and caching. Op top 
of that, each generation was about twice as powerful as the last. 

Evolution of GPU-accelerated applications goes hand in hand with that of GPU hardware. 
The TMI routine presented in this work was rendered possible only with introduction of 
double precision support, while the non-hermitian system solver greatly benefits from the 
capabilities of the Fermi architecture. Consequently, future applications are also directed by 
the capabilities of upcoming GPU generations. 

The next series of NVIDIA GPUs, the series 500, will still be a modified variant of the series 
400; it promises to offer better performance at a stable price, but the new features are rather 
directed to graphics processing. It would be more interesting how the next large evolutionary 
step looks like, but little is disclosed to the public so far. The only safe assumption is that 
there will be again more performance for less money, and less power. As for new features, 
one might hope for improved communication between GPUs, i.e. by allowing point-to-point 
communication between GPU interfaces without passing host RAM. The PCIe standard 
allows this (s. Chapter  2.5.1), so the problem must be in the present model of CPU-GPU 
coupling. Perhaps future CUDA drivers will be more multithreaded, and allow inherently 
synchronized interaction with multiple devices. An alternative would be to fuse GPU memory 
spaces and computing arrays on a low level, making multiple devices visible to the 
application programmer as a single large entity. 

Generally, attention should be paid to the evolution of software design kits. In this work, a 
combination of OpenMP and CUDA was used to program heterogeneous multi-CPU/multi-
GPU systems. However, there are also efforts towards a unified programming environment 
for heterogeneous multicore systems. The most notable example is the OpenCL standard 
 [182], which is managed by the non-profit consortium Khronos Group. OpenCL started out as 
GPGPU interface and shares much functionality with CUDA, but it aims to incorporate other 
architectures as well, like the Cell BE. At the time of writing, OpenCL did not offer any 
benefits over the setup used in this work, but its wider range of target platforms gives it the 
potential to develop into a more capable alternative. 

For heterogeneous multicore systems in bioelectrical imaging, more computational 
capabilities (at stable expenses) open the door for more capable software. For example, 
modeling the bioelectrical properties of life tissue is a field that can almost infinitely be 
refined to be more realistic anatomically. But also data fusion from different technologies or 
even run-time refinement of anatomical models from instantaneous measurement data could 
be rendered feasible with sufficient computational power available. 
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8 Conclusion 
The contributions of this thesis are very practical. They address well-defined computational 
challenges encountered in biomedical imaging and use affordable hardware upgrades to 
substantially reduce computation time spent on these problems. In their bioelectrical imaging 
environment they allow modeling and simulation in levels of anatomical detail that were 
considered unfeasible before (s. Chapters  4.1 and  5.1), and real-time EEG signal processing 
at very high resolution (s. Chapter  6).  

Note that the cudaEEG software is the only part of this work that is specific to the field of 
bioelectrical imaging. The TMI and complex BiCG implementations on the other hand are in 
no way restricted to this. Both address common linear algebra problems with a wide range of 
possible applications. The TMI routine fills in an important gap completely left out by 
previous work on GPU acceleration, and the non-hermitian system solver targets a previously 
neglected class of problems while outperforming related implementations. 

In summary it can be concluded that both the field of bioelectrical imaging and the field of 
general GPU-accelerated linear algebra benefit from this work. 
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ADHD Attention Deficit Hyperactivity Disorder 
AGP Accelerated Graphics Port 
AMD Advanced Micro Devices 
API Application Programming Interface 
ASIC Application Specific Integrated Circuit 
ATA Advanced Technology Attachment 
ATI Array Technologies Incorporated 
BCI Brain Computer Interface 
BE Broadband Engine 
BEM Boundary Element Method 
BiCG Bi-Conjugate Gradient 
BiCGStab Bi-Conjugate Gradient Stabilized 
BMI Brain Machine Interface 
CG Conjugate Gradient 
CGS Conjugate Gradient Sqared 
CPU Central Processing Unit 
CSF Cerebrospinal Fuid  
CTM Close To Metal 
CUDA Compute Unified Device Architcture 
DP Double Precision 
DRAM Dynamic random access memory 
EEG Electroencephalygraphy 
EIT Electrical Impedance Tomography 
FDM Finite Difference Method 
FEM Finite Element Method 
FLOP Floating Point Operation 
fMRI functional Magnetic Resonance Imaging 
FOCUSS Focal Underdetermined System Solver  
FPGA Field Programmable Gate Array 
FSB Front Side Bus 
FVM Finite Volume method 
GC Geometry Control 
GCC GNU Compiler Collection 
GDDR Graphics Double Data Rate 
GFLOP/s Billion Floating Point Operations per second 
GPGPU General Purpose Graphics Processing Unit 
GPU Graphics Processing Unit 
HPC High Performance Computing 
I/O Input/Output 
IBM International Business Machines 
IEEE Institute of Electrical and Electronics Engineers 
ITRS International Technology Roadmap for Semiconductors 
LORETA Low Resolution Brain Electromagnetic Tomography 
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LUT Look-Up Table 
MB Memory Bus 
MC Machine Code 
MIMD Multiple Instruction Multiple Data 
MIPS Million Instructions Per Second 
MISD Multiple Instruction Single Data 
MNE Minimum Norm Estimate  
MPI Message Passing Interface 
MRI Magnetic Resonance Imaging 
MTIFI Multi-Thread Instruction Fetch & Issue 
OS Operating System 
PC Personal Computer 
PCI Periferal Component Interconnect 
PCIe Periferal Component Interconnect express 
PET Positron Emission Tomography 
PPE Power Processor Element 
PTX Parallel Thread eXecution 
PU Processing Unit 
RAM Random Access Memory 
RTMI Recursive Triangular Matrix Inversion 
SDK Software Design Kit 
SFU Special Function Unit 
SIMD Single Instruction Multiple Data 
SIMT Single Instruction Multiple Thread 
SISD Single Instruction Single Data 
SLI Scalable Link Interface  
sLORETA standardized Low Resolution Brain Electromagnetic Tomography 
SM Stream Multiprocessor 
SMC Stream Multiprocessor Control 
SoC System-on-Chip 
SP Stream Processor; Single Precision 
SPE Synergistic Processing Element 
spMV sparse Matrix-Vector product 
SSLOFO Shrinking Standardized LORETA-FOCUSS  
TDP Thermal Design Power 
TMI Triangular Matrix Inversion 
TPC Texture Processing Cluster 
TU Texture Unit 
WMN Weighted Minimum Norm 
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