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INTRODUZIONE 

 
 

Negli ultimi dieci anni, molti passi sono stati fatti verso la comprensione dei complessi 

meccanismi che regolano il funzionamento del cervello umano. I progressi tecnologici hanno messo 

a disposizione apparecchiature sempre più sensibili e sofisticate, e lo sviluppo di tecniche non 

invasive come la Risonanza Magnetica funzionale (fMRI), la Tomografia ad Emissione di Positroni 

(PET), la Magnetoencefalografia (MEG) permette oggi di costruire immagini della attività cerebrale 

a partire da sue misure emodinamiche, metaboliche o elettromagnetiche.  

Anche l’Elettroencefalografia (EEG), tecnica dai pregi incomparabili in termini di semplicità, 

accessibilità e risoluzione temporale, ha visto riaffermarsi la sua validità nel campo delle 

neuroimmagini. Questo è stato reso possibile dall’impiego di metodiche avanzate di elaborazione ed 

integrazione dei dati elettroencefalografici, che sono state sviluppate nel corso degli ultimi dieci 

anni. Tali metodiche hanno permesso di superare il tradizionale punto debole di questa tecnica, la 

scarsa risoluzione spaziale, e l’hanno resa un valido mezzo per l’analisi non invasiva dei fenomeni 

cerebrali, l’unico capace di seguirne adeguatamente le rapide variazioni nel tempo.  

Come risultato di queste sofisticate tecniche di indagine dell’attività cerebrale, è oggi possibile 

costruire delle mappe di attivazione che descrivono l’attività corticale come il rapido susseguirsi di 

attivazioni nelle diverse regioni della corteccia durante l’esecuzione di uno specifico compito 

sperimentale, dalla più semplice pianificazione ed esecuzione di un movimento ai più complessi 

compiti cognitivi e comportamentali. Tuttavia, il sistema che sottende anche la pianificazione e 

l’esecuzione del più semplice dei movimenti non può essere ridotto alla attivazione successiva di 

diverse aree corticali. Le regioni preposte allo svolgimento delle diverse funzioni, infatti, non sono 

compartimenti stagni, ma un’affiatata e ben sincronizzata squadra che collabora strettamente per 

l’esecuzione del compito prefisso. Diventa così importante passare dalla rappresentazione delle 

mappe di attivazione al tentativo di studiare il comportamento organizzato delle diverse regioni, 

basato sulla loro connessione funzionale.  

Il tema di ricerca affrontato nel corso di questi tre anni di dottorato in Bioingegneria è lo 

sviluppo di una metodica capace di fornire informazioni riguardo le connessioni funzionali esistenti 

tra le diverse aree del cervello umano durante l’esecuzione di uno specifico compito sperimentale. 

Questo concetto, che prende il nome di connettività corticale, è stato qui trattato con un approccio 

che parte da misure non invasive dell’attività cerebrale, fornite dalle registrazioni di 

elettroencefalografia ad alta risoluzione spaziale e di risonanza magnetica strutturale e funzionale. 
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La metodica adottata si fonda sull’impiego di tecniche di stima lineare inversa per la stima 

dell’attività corticale mediante modelli realistici di testa, e sull’uso di algoritmi per la stima dei 

pattern di connettività corticale. 

Nel corso di questa ricerca, gli algoritmi più avanzati di stima delle relazioni causali tra 

segnali biologici (nel tempo e in frequenza) sono stati studiati e sottoposti a test aventi lo scopo di 

valutarne la validità, l’applicabilità nello specifico contesto di interesse, le prestazioni e i limiti, e 

infine di quantificare l’effetto delle diverse condizioni operative sulle loro prestazioni. Mediante 

studi di simulazione, le diverse metodiche sono state confrontate tra loro al variare delle condizioni 

sperimentali, al fine di fornire gli strumenti per la scelta dello stimatore più appropriato nei diversi 

contesti operativi. Successivamente, le metodiche sono state applicate a dati sperimentali, ottenuti 

da registrazioni EEG e misure di risonanza magnetica funzionale e anatomica, effettuate su soggetti 

normali e con patologia.  

I dati, prelevati sullo scalpo con un elevato campionamento spaziale (68-128 elettrodi), sono 

stati sottoposti a stima lineare inversa, un procedimento capace di estrarre l’informazione relativa 

alle attivazioni a livello corticale a partire dalle registrazioni sullo scalpo. Questo procedimento 

prevede l’impiego di modelli realistici delle strutture frapposte fra la corteccia e gli elettrodi, 

ottenute dalle immagini di risonanza magnetica (MRI) di ciascun soggetto sperimentale. Il modello 

dei generatori è costituito da un alto numero di dipoli equivalenti di corrente (5000-7000) disposti 

uniformemente sulla superficie della corteccia realistica (anch’essa costruita a partire dalle 

immagini MRI) e perpendicolari alla superficie della corteccia stessa. Questo procedimento 

consente di ottenere una ricostruzione dell’attività corticale molto più accurata di quanto ottenibile 

dalle semplici registrazioni di scalpo. Per gli scopi della stima della connettività, l’insieme dei 5000 

dipoli è stato successivamente suddiviso in regioni di interesse della corteccia, ottenute a partire 

dagli atlanti anatomici di Brodmann. Ciascuna regione di interesse (Region of Interest; ROI) è stata 

quindi caratterizzata dalla sua attività elettrica media. Si è infine stimata la connettività esistente tra 

tali attività medie. I compiti sperimentali studiati sono stati di tipo motorio e cognitivo (finger 

tapping, test di Stroop, immaginazione di movimento). 

Per superare l’ipotesi di stazionarietà richiesta dai metodi convenzionali, con  questa tesi di 

Dottorato si è proposta una metodica innovativa di stima della connettività, basata sull’estensione al 

dominio tempo-frequenza dei metodi multivariati fondati sulla teoria della causalità di Granger. 

Questo nuovo approccio metodologico rende possibile stimare le connessioni funzionali anche nelle 

fasi del compito sperimentale per loro natura non stazionarie, e consente di seguire le rapide 

variazioni di connettività, non rilevabili con i metodi precedentemente a disposizione. Uno studio di 

simulazione effettuato su segnali di test ha permesso di valutare le proprietà delle metodiche 
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proposte per la stima tempo-frequenza della connettività corticale. I segnali di test sono stati 

generati in modo da verificare degli schemi di connettività noti a priori e comprendenti delle rapide 

variazioni dei legami funzionali nel tempo. Allo scopo di valutare le prestazioni in diverse 

condizioni operative, alcuni fattori di interesse, come il rapporto segnale-rumore, la durata dei 

segnali e un fattore di adattamento impiegato nella stima dei modelli adattativi multivariati 

autoregressivi AMVAR, sono fatti variare in modo sistematico nella generazione dei segnali e nella 

stima degli indici di connettività, in modo da permettere la successiva valutazione della loro 

influenza sulle prestazioni delle due metodiche.  

Dopo essere state testate mediante lo studio di simulazione, le metodiche proposte sono state 

applicate a dati reali, ottenuti da registrazioni EEG ad alta risoluzione spaziale su un gruppo di 

soggetti sani, durante un compito motorio. Ciascun soggetto sperimentale è stato sottoposto a 

Risonanza Magnetica, e le immagini risultanti hanno permesso la costruzione di modelli realistici 

delle strutture della testa, che sono stati successivamente impiegati nella stima lineare inversa. Le 

stime dell’attività corticale così ottenute, opportunamente mediate nelle diverse regioni di interesse, 

sono state sottoposte agli algoritmi di connettività nel dominio tempo-frequenza. I pattern di 

connettività risultanti, nelle diverse bande di frequenza e nei diversi istanti, sono stati infine riportati 

sul modello realistico di corteccia di ciascun soggetto e associati alle diverse aree individuate sulla 

corteccia stessa. I risultati ottenuti hanno rivelato andamenti comuni al gruppo di soggetti esaminati, 

permettendo di ricostruire le variazioni nel tempo dei legami funzionali tra le diverse aree cerebrali 

durante l’esecuzione del compito analizzato. 

L’attività di ricerca di questi tre anni di dottorato è stata svolta presso il laboratorio di EEG ad 

alta risoluzione dell’Università “La Sapienza” di Roma e presso i laboratori di Neurofisiopatologia 

dell’Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Roma, 

dove sono state eseguite molte registrazioni EEG sperimentali utilizzate nella tesi. Parte dei dati 

sperimentali impiegati nel corso della tesi sono frutto della collaborazione scientifica con il 

laboratorio di Biomedical Engineering dell’Università di Minneapolis, con l’istituto Riken di Tokio 

e con la Tsinghua University di Pechino. 

 

La tesi si articola in tre Sezioni. 

 

Nella prima si descrivono i più avanzati algoritmi per la stima della connettività funzionale ed 

effettiva su dati stazionari, si riportano i risultati degli studi di simulazione effettuati per valutarne le 

prestazioni e si forniscono i risultati della loro applicazione a dati relativi a compiti motori e 

cognitivi (finger tapping, test di Stroop, immaginazione di movimento). 
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Nella seconda sezione si introduce una nuova metodica di stima della connettività nel dominio 

tempo-frequenza, estesa a dati non stazionari e capace di rilevare rapide variazioni nei legami 

funzionali tra le diverse aree corticali durante l’esecuzione di un compito sperimentale. Tale 

metodica è stata sottoposta ad uno studio di simulazione e successivamente applicata a un set di dati 

sperimentali relativi a compiti motori in un gruppo di soggetti sani. 

 

La terza sezione contiene l’elenco completo delle pubblicazioni scientifiche prodotte nel corso 

della presente tesi, con le quali i risultati raggiunti nel corso dei tre anni di dottorato sono stati 

comunicati alla comunita’ scientifica internazionale. 
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INTRODUCTION 

The way to the understanding of the mechanisms under the functioning of the human brain has 

known great advancements in the recent years. Technological developments, providing equipment 

like the functional Magnetic Resonance Imaging (fMRI), the Positron Emission Tomography 

(PET), the Magnetoencephalography (MEG) allowed to build images of the cerebral activity 

starting from hemodynamic, metabolic or electromagnetic measures. 

Electroencephalograpy (EEG) is a technique with incomparable merits in term of simplicity, 

accessibility and temporal resolution, which has been object of a renewed interest in the latest years, 

thanks to the use of advanced methods of analysis and elaboration of its data. Such methods are able 

to improve the spatial resolution of conventional EEG, making it an effective way to address the 

analysis of the brain activity in a non-invasive way with the temporal resolution of brain 

phenomena (in the order of milliseconds). With these methodologies, known as High Resolution 

EEG, it’s now possible to build cortical activation maps describing the activity of the brain at the 

cortical level during the execution of an experimental task.  

However, simple imaging of brain regions activated during particular tasks does not convey 

the information of how these regions are functionally interconnected for the execution of the task. 

The concept of brain connectivity plays a central role in the neuroscience and different definitions 

of connectivity, functional and effective, have been adopted in literature. While the functional 

connectivity is defined as the temporal coherence between the activities of different brain areas, the 

effective connectivity is defined as the simplest brain circuit that would produce the same temporal 

relationship as observed experimentally between cortical sites. 

In this thesis advanced methods for the estimation of cortical connectivity were studied, tested 

in simulations and finally applied on human data, obtained from high resolution EEG recordings. 

The methods implemented are for both effective and functional connectivity. In particular the 

Structural Equation Modeling (SEM) was employed for the estimation of effective connectivity and 

multivariate estimators based on multivariate autoregressive models were used for the functional 

connectivity. Such estimators are the Directed Transfer Function (DTF) and the Partial Directed 

Coherence (PDC). As a novelty, the application of all these methodologies was performed by using 

the cortical signals estimated from high resolution EEG recordings, which exhibit a higher spatial 

resolution than conventional cerebral electromagnetic measures. To correctly estimate the cortical 

signals I used multi-compartment head models (scalp, skull, dura mater, cortex) constructed from 

individual MRI, a distributed source model, and a regularized linear inverse source estimates of 
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cortical current density. In the first part of the Thesis, simulation studies were performed, in which 

different main factors (signal to noise ratio, cortical activity duration, frequency band, etc) were 

systematically imposed in the generation of test signals, and the errors in the estimated connectivity 

were evaluated by the Analysis of Variance (ANOVA). The statistical analysis returned that during 

simulations, SEM, DTF and PDC estimators were able to estimate the imposed connectivity 

patterns under reasonable operative conditions. It was possible to conclude that the estimation of 

cortical connectivity can be performed not only with hemodynamic measurements, but also with 

EEG signals treated with advanced computational techniques.  

After a full description of the properties of the main connectivity estimators for the high 

resolution EEG recordings, the first part of present thesis offers the results of their application to 

human data related to different experimental tasks, like the finger tapping, the Stroop test and the 

movement imagination. 

 

In the second part of the thesis I propose a methodology for the estimation of cortical 

connectivity extended to the time-frequency domain, based on the use of adaptive multivariate 

models. Such approach allows extending the connectivity analysis to non-stationary data and 

following rapid changes in the connectivity between cortical areas during an experimental task. The 

performances of the time-varying estimators were tested by means of simulations, performed on the 

basis of a predefined connectivity scheme linking different cortical areas. Cortical connections 

between the areas were retrieved by the estimation process under different experimental conditions, 

and the results obtained for the different methods were evaluated by a statistical analysis. Finally, 

according to the results of the simulation study, an application to real data is proposed, in order to 

offer an example of the results that can be obtainable by this body of technique. For this purpose, I 

applied the time-varying techniques to the cortical activity estimated in particular regions of interest 

(ROIs) of the cortex, obtained from high resolution EEG recordings during the execution of a 

combined foot-lips movement in a group of normal subjects. 

The research developed during this PhD course was carried on at the Laboratory of High 

Resolution EEG of the University of Rome “La Sapienza” and at the laboratories of Neuroelectric 

Imaging and Brain Computer Interface of the S. Lucia Foundation, Rome, where most of the EEG 

recordings used in the thesis were performed. Part of the experimental data employed were 

provided by the Department of Biomedical Engineering, University of Minnesota, Minneapolis, 

USA, and by the Department of Psychology and Beckman Institute Biomedical Imaging Center 

University of Illinois at Urbana-Champaign, Illinois, USA, in the framework of a scientific 

cooperation with the University of Rome. 
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This thesis is divided in three sections.  

 

In the first section, the most advanced algorithms for the estimation of functional and effective 

connectivity are described and tested by means of simulation studies. The results of the application 

to human data related to motor and cognitive (finger tapping, Stroop test, movement imagination) 

data are finally reported. 

 

In the second section, the methodology for the estimation of time-frequency connectivity is 

proposed, tested by means of a simulation study and applied to human data related to motor tasks in 

a group of experimental subjects. 

 

The third Section of the thesis contains a list of the papers published during the PhD Course as 

a result of the research performed. 
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SECTION I. 

METHODS FOR THE ESTIMATION OF THE CORTICAL 

CONNECTIVITY FOR STATIONARY DATA. TESTING AND 

APPLICATION  
 

INTRODUCTION 

 
Different non-invasive brain imaging techniques are currently available to provide 

images of the human cortical activity. Such techniques are based on hemodynamic (functional 

Magnetic Resonance Imaging, fMRI), metabolic (Positron Emission Tomography, PET) or 

electromagnetic (Electroencephalography, EEG and Magnetoencephalography, MEG) 

measurements. However, the simple imaging of brain regions activated during particular tasks 

does not convey the information of how these regions communicate to each other to make the 

task execution possible. The concept of brain connectivity is viewed as central for the 

understanding of the organized behavior of cortical regions, beyond the simple mapping of 

their activity (Lee et al., 2003; Horwitz, 2003). This organization is thought to be based on the 

interaction between different and differently specialized cortical sites. Cortical connectivity 

estimation aims at describing these interactions as connectivity patterns which hold the 

direction and strength of the information flow between cortical areas. To this purpose, several 

methods have been developed and applied to data gathered from hemodynamic and 

electromagnetic techniques (Buchel et al., 1997; Urbano et al., 1998; Gevins et al., 1989a; 

Taniguchi et al., 2000; Brovelli et al. 2004). Two main definitions of brain connectivity have 

been proposed along these years: functional and effective connectivity (Friston, 1994). 

According to these definitions, functional connectivity is defined as temporal correlation 

between spatially remote neurophysiologic events; the effective connectivity is defined as the 

simplest brain circuit which would produce the same temporal relationship as observed 

experimentally between cortical sites.  
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As for the functional connectivity, the methods proposed in literature typically involve 

the estimation of some covariance properties between the different time series measured from 

the different spatial sites, during motor and cognitive tasks, by EEG and fMRI techniques 

(Urbano et al., 1998; Gevins et al., 1989a; Jancke et al., 2000; Brovelli et al. 2004).  

As for the effective connectivity, Structural Equation Modeling (SEM) is a technique 

that has been used recently to assess connectivity between cortical areas in humans from 

hemodynamic and metabolic measurements ( Bollen, 1989; McIntosh et al., 1994; Buchel et 

al., 1997; Schlosser et al., 2003;). The basic idea of SEM considers the covariance structure of 

the data (Bollen, 1989). However, the estimation of effective cortical connectivity obtained 

from fMRI data has a low temporal resolution (in the order of seconds) which is far from the 

time scale in which the brain normally operates. Hence, it becomes of interest to understand if 

the SEM technique can be applied to cortical activity obtained applying the linear inverse 

techniques to high resolution EEG data (Gevins et al., 1989a; Nunez, 1995; Babiloni et al. 

2000, 2003).  

Due to the evidence that important information in the EEG signals are coded in 

frequency rather than in time domain (reviewed in Pfurtscheller e Lopes da Silva, 1999), 

attention was focused on detecting frequency-specific interactions in EEG or MEG signals, 

for instance by means of the coherence between the activity of pairs of channels (Bressler, 

1995; Gross et al., 2001; Gross et al., 2003). However, coherence analysis has not a 

directional nature (i.e. it just examines whether a link exists between two neural structures, by 

describing instances when they are in synchronous activity) and it does not provide directly 

the direction of the information flow. In this respect, multivariate spectral techniques called 

Directed Transfer Function (DTF) or Partial Directed Coherence (PDC) were proposed 

(Kaminski and Blinowska 1991,  Baccalà and Sameshima, 2001) to determine the directional 

influences between any given pair of channels in a multivariate data set. Both DTF and PDC 

can be demonstrated (Kaminski et al., 2001; Baccalà and Sameshima, 2003) to rely on the key 

concept of Granger causality between time series (Granger, 1969), according to which an 

observed time series x(n) causes another series y(n) if the knowledge of x(n)’s past 

significantly improves prediction of y(n); this relation between time series is not reciprocal, 

i.e. x(n) may cause y(n) without y(n) necessarily causing  x(n). This lack of reciprocity allows 

the evaluation of the direction of information flow between structures.  

These estimators are able to characterize at the same time direction and spectral 

properties of the brain signals, and they require only one multivariate autoregressive (MVAR) 

model estimated from all the EEG channels. The advantages of MVAR modeling of 
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multichannel EEG signals were stressed recently (Kus et al.,2004), by demonstrating the 

advantages of multivariate methods with respect to the pairwise autoregressive approach, both 

in terms of accuracy and of computational cost.       

 

In this section of the thesis I first explored the behavior of the most advanced estimators 

of effective and functional connectivity, SEM, DTF, dDTF and PDC, in a simulation context, 

under different conditions that affect the practical use.  

 

 For the Structural Equation Modeling, which involves the definition of an a priori 

connectivity model, the simulation study was designed in order to answer to the following 

questions: 

1. What is the influence of a variable signal-to-noise ratio (SNR) level on the 

accuracy of the pattern connectivity estimation obtained by SEM? 

2. What is the amount of data necessary to get a good accuracy of the estimation of 

connectivity between cortical areas? 

3. How are the SEM performances degraded by an imprecise anatomical model 

formulation? Is it able to perform a good estimation of connectivity pattern when 

connections between the cortical areas are not correctly assumed? Which kind of 

error should be possibly avoided? 

 

For the three multivariate estimators of functional connectivity, the DTF, dDTF and 

PDC, the experimental design focused on the following questions: 

1. How are the connectivity pattern estimators DTF, PDC, and dDTF influenced by 

different factors affecting the EEG recordings, like the signal to noise ratio and 

the amount of data available?  

2. How do the estimators perform in the discrimination of direct or indirect 

causality patterns?  

3. What is the most effective method for estimating a connectivity model under the 

conditions usually encountered in standard EEG recordings? 

 

In this study these questions were addressed via simulations, using predefined 

connectivity schemes linking several cortical areas. The estimation process retrieved the 

cortical connections between the areas under different experimental conditions. The 

connectivity patterns estimated by the four techniques were compared with those imposed on 
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the simulated signals, and different error measures were computed and subjected to statistical 

multivariate analysis. 

 

Once tested by simulations, the methods SEM, DTF and PDC were applied to different 

sets of experimental data related to motor and cognitive tasks. The motor task examined was a 

fast repetitive finger tapping, while on the cognitive side data were recorded during the Stroop 

test, often employed in studies of selective attention and found to be sensitive to prefrontal 

damage. The data employed were cortical estimates obtained from high resolution EEG 

recordings, with the use of a very advanced body of techniques, which exhibit a higher spatial 

resolution than conventional cerebral electromagnetic measures. In the last chapter of this 

section, I briefly describe the high resolution EEG techniques, including the use of a large 

number of scalp electrodes, realistic models of the head derived from structural magnetic 

resonance images (MRIs), and advanced processing methodologies related to the solution of 

the linear inverse problem.  The results of the estimation of effective and functional 

connectivity from data recorded during finger tapping, Stroop and movement imagination 

close this Section of the thesis. 
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ESTIMATION OF THE EFFECTIVE CONNECTIVITY: A SIMULATION 

STUDY 

 
 
 
 
Structural Equation Modeling 
 

In Structural Equation Modeling (SEM), the parameters are estimated by minimizing the 

difference between the observed covariances and those implied by a structural or path model. 

In terms of neural systems, a measure of covariance represents the degree to which the 

activities of two or more regions are related.  

The SEM consists of a set of linear structural equations, containing observed variables 

and parameters defining causal relationships among the variables. Variables in the equation 

system can be endogenous (i.e. dependent from the other variables in the model) or 

exogenous (independent from the model itself). The structural equation model specifies the 

causal relationship among the variables, describes the causal effects and assigns the explained 

and the unexplained variance. 

Let us consider a set of variables (expressed as deviations from their means) with N 

observations. In this study, these variables represent the activity estimated in each cortical 

region of the brain, obtained with the procedures described in the following sections.  

The SEM for these variables is the following: 

y = By + Γx + ζ (1.1) 

where: 

 y is a (m x 1) vector of dependent (endogenous) variables; 

 x is a (n x 1) vector of independent (exogenous) variables; 

 ζ is a (m x 1) vector of equation errors (random disturbances); 

 B is a (m x m) matrix of coefficients of the endogenous variables; 

 Γ is a (m x n) matrix of coefficients of the exogenous variables. 

 

ζ  is assumed to be uncorrelated with the exogenous variables, and B is supposed to have 

zeros in its diagonal (i.e., an endogenous variable does not influence itself) and to satisfy the 

assumption that (I–B) is non-singular, where I is the identity matrix. 
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The covariance matrices of this model are the following: 

 Φ = E[x xT] is the (n×n) covariance matrix of the exogenous variables; 

 Ψ= E[ζ ζ T] is the (m×m) covariance matrix of the errors. 

If z is a vector containing all the p=m+n variables, exogenous and endogenous, in the 

following order: 

zT  = [x1 … xn y1 … ym] (1.2) 

the observed covariances can be expressed as: 

Σobs = (1/(N-1))⋅Z⋅ZT (1.3) 

where Z is the p×N matrix of the p observed variables for N observations. 

The covariance matrix implied by the model can be obtained as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
==

][][
][][

][mod TT

TT
T

EE
EE

E
yyyx
xyxx

zzΣ  (1.4) 

where: 

E[yyT] = E[(I-B)-1 (Γx + ζ)( Γx + ζ)T((I-B)-1)T] = (I-B)-1 (ΓΦΓ + Ψ) ((I-B)-

1)T  
(1.5) 

since the errors ζ are not correlated with the x; 

E[xxT] = Φ (1.6) 

E[xyT] = (I-B)-1 Φ (1.7) 

E[yxT] = ((I-B)-1 Φ)T (1.8) 

since Σmod is symmetric. The resulting covariance matrix, in terms of the model parameters, is 

the following: 

( )
( )( ) ( ) ( ) ( )( ) ⎥⎦

⎤
⎢
⎣

⎡

−+−−
−Φ

=
−−−

−

TT 111

1

mod BIΨΓΦΓBIΦBI
ΦBIΣ  (1.9) 

Without other constraints, the problem of the minimization of the differences between 

the observed covariances and those implied by the model is undeterdetermined, because the 

number of variables (elements of matrices B, Γ, Ψ and Φ) is greater than the number of 

equations (m+n)(m+n+1)/2. For this reason, the SEM technique is based on the a priori 
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formulation of a model, on the basis of anatomical and physiological constraints. This model 

implies the existence of just some causal relationships among variables, represented by arcs in 

a “path” diagram; all the parameters related to arcs not present in the hypothesized model are 

forced to zero. For this reason, all the parameters to be estimated are called free parameters. If 

t is the number of free parameters, it must be t<=(m+n)(m+n+1)/2. 

These parameters are estimated by minimizing a function of the observed and implied 

covariance matrices. The most widely used objective function for SEM is the maximum 

likelihood (ML) function: 

FML = log|Σmod | + tr(Σobs⋅Σmod
-1) - log|Σobs | - p (1.10) 

where tr(·) is the trace of matrix. In the context of multivariate, normally distributed variables 

the minimum of the maximum likelihood function, multiplied by (N-1), follows a χ2 

distribution with p(p + 1)/2 – t degrees of freedom, where t is the number of parameters to be 

estimated and p is the total number of observed variables (endogenous + exogenous). The χ2 

statistic test can then be used to infer statistical significance of the structural equation model 

obtained. In the present study, the publicly available software LISREL (Jöreskog and Sörbom, 

2002) was used for the implementation of the SEM technique.  

 

Simulation Study 
I adopted an experimental design that analyses the recovery of the connectivity of an 

estimated model with respect to an imposed one. This has been built under different levels of 

main factors SNR and LENGTH, as they have been imposed during the generation of a set of 

test signals, simulating cortical average activations and obtained starting from actual cortical 

data (estimated with the high resolution EEG procedures already available at the High 

Resolution EEG Laboratory at the University of Rome “La Sapienza”).  

Signal Generation 

 Different sets of test signals have been generated in order to fit an imposed 

connectivity pattern (shown in Figures 1.1a, 1.3a, 1.5a) and to respect imposed levels of 

temporal duration (LENGTH) and Signal to Noise Ratio (SNR). In the following, in order to 

use a more compact notation, signals have been represented with the z vector defined in Eq. 

(1.2), containing both the endogenous and the exogenous variables.  
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Channel z1 is a reference source waveform, estimated from a high resolution EEG 

(128 electrodes) recording in a healthy subject, during the execution of unaimed self-paced 

movements of the right finger.  

 

 

Signals z2, z3 and z4 were obtained by contribution of signals from all other channels, 

with an amplitude variation, plus zero mean uncorrelated white noise processes with 

appropriate variances, as shown in the following: 

z[k] = A*z[k]+W[k] (1.11) 

where z[k] is the [4x1] vector of signals, W[k] is the [4x1] noise vector and A is the [4x4] 

parameters matrix obtained from the Γ and Β matrices in the following way: 
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 (1.12) 

where βij stands for the generic (i,j) element of the B matrix and γi is the i-th element of the 

vector Γ. 

All procedures of signal generation were repeated under the following conditions: 

SNR factor levels = [1, 3, 5, 10, 100]; 

LENGTH factor levels = [60, 190, 310, 610] seconds. This corresponds, for instance, to [120, 

380, 620, 1220] EEG epochs, each of which is 500 ms long. 

It is worth noticing that the levels chosen for both SNR and LENGTH factors cover the 

typical range for the cortical activity estimated with high resolution EEG techniques. 

 

Parameter Estimation 

 The set of simulated signals generated as described above has been given as input to 

the program LISREL for the estimation of SEM parameters. As mentioned in the methods 

section, SEM needs a model, based on previous information on the anatomical connections, 

on which the estimate is successively performed. For this reason, its performance has been 

observed in different situations, when connections between the four cortical areas are not 

always correctly assumed. The situations analyzed are: 
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1) an identical connectivity graph between the generated and the estimated model; 

2) a different number of connectivity arcs between the generated and the estimated 

model; in particular, we analyzed the case of an arc in excess and of an arc missing 

in the estimated model with respect to the generated one; 

3) the same number of connectivity arcs between generated and estimated models, 

but with an ambiguousness on its orientation. 

 

Performance Evaluation 

 In order to evaluate the quality of the performed estimation, the following indexes 

were computed: 

1) the Frobenius norm of the matrix reporting the differences between the values of 

the estimated (via SEM) and the imposed connections (Relative Error): 

∑∑

∑∑

= =

= =

−

=
m

i

m
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ij

m

i
ij
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j
ij
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1

2

1

)(

)ˆ(

 

(1.13) 

 

2) the absolute value of the difference between the estimated parameter and the 

imposed value on a single particular arc (Single Arc Error): 

ijijgle aaE ˆsin −=
 

(1.14) 
  

Simulations were performed by repeating for 50 runs for each connectivity estimation 

obtained by SEM, in order to increase the robustness of the successive statistical analysis. 

Statistical Analysis 

 The results obtained were subjected to separate Analysis of Variance (ANOVA).  The 

main factors of the ANOVA were the SNR (with five levels: 1, 3, 5, 10, 100) and the 

LENGTH (with four levels: 60, 190, 310, 610 seconds). Separate ANOVAs were performed 

on the error indexes adopted (Relative Error, Single Arc Error). In all the evaluated 

ANOVAs, the correction of Greenhouse-Gasser for the violation of the spherical hypothesis 

was used.  The post-hoc analysis with the Duncan test at the p = 0.05 statistical significance 

level was then performed. 
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Results of the simulations  
 

The simulated signals obtained for the different levels of the two factors SNR and 

LENGTH were analyzed by means of the freeware software LISREL, performing an 

estimation of the connection strengths. Fig. 1.1a shows the connection model used in the 

signal generation and in the parameter estimation. The arrows represent the existence of a 

connection directed from the signal zi toward the signal zj, while the values on the arcs aij 

represent the connection parameters described in Eq. (1.12). The results obtained for the 

statistical analysis performed on the 50 repetition of the procedure are reported in Fig. 1.2, 

representing the plot of means of the Relative Error with respect to signal LENGTH and SNR. 

ANOVA has pointed out a rather strong statistical significance of both factors considered. 

The factors SNR and LENGTH were both highly significant (factor LENGTH F=288.60, 

p<0.0001, factor SNR F= 22.70, p<0.0001). Fig.1.2a shows the plot of means of the Relative 

Error with respect to the signal length levels, which reveals a decrease of the connectivity 

estimation error with the increase of the length of the available data. Fig 1.2b shows the plot 

of means with respect to different SNR levels employed in the simulation. Since the main 

factors were found highly statistically significant, post-hoc tests (Duncan at 5%) were then 

applied. Such tests showed statistically significant differences between all levels of the factor 

LENGTH, while there is no statistically significant difference between levels 3, 5 and 10 of 

the factor SNR. 

Correct Formulation of the Connectivity Model 

 

 
Fig. 1.1. Correct model.  A) Connectivity pattern imposed in the generation of simulated signals. z1, 
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…, z4 represent the average activities in four cortical areas. Values on the arcs represent the 
connections strength (a21=1.4; a31=1.1; a32=0.5; a42=0.7; a43=1.2).  B): Connectivity model used 
for the parameter estimation. 
 

The first situation analyzed is shown in Fig.1.1 A set of signals was generated as 

described in the previous section, in order to fit the connectivity pattern shown in Fig. 1.1a. 

Parameters were estimated on the model shown in Fig. 1.1b, which has exactly the same 

structure of Fig 1.1a. We are thus testing the goodness of the estimation of model parameters 

via SEM when no errors are made in the model assumption phase. The appropriate index for 

this analysis is the Relative Error,  
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Fig.1.2. Correct model. A) Results of ANOVA performed on the Relative Error: plot of means with 
respect to signal LENGTH as a function of time (seconds).  ANOVA shows a high statistical 
significance for factor LENGTH (F=288.60, p<0.0001). Post-hoc test (Duncan performed at 5% level 
of significance) shows statistically significant differences between all levels. B) Results of ANOVA 
performed on the Relative Error: plot of means with respect to Signal to Noise Ratio. Here, too, a high 
statistical influence of factor SNR on the error in the estimation is shown (F= 22.70, p<0.001). 
Duncan post-hoc test (performed at 5%) points out that there is no statistically significant difference 
between levels 3, 5 and 10 of factor SNR. 

as defined in the methods section (Eq. 1.13). It was computed for each of the 50 runs of 

the generation-estimation procedure performed for each level of factors SNR and signal 

A) 

B) 
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LENGTH and then subjected to ANOVA. ANOVA has pointed out a rather strong statistical 

significance of both factors employed on the performance of SEM. In fact, the factors SNR 

and LENGTH were both highly significant (p < 0.0001). Fig 1.2a shows the plot of means of 

the Relative Error with respect to the signal length levels, which reveals a decrease of the 

connectivity estimation error with the increase of the length of the available data. Fig 1.2b 

shows the plot of means with respect to different SNR levels employed in the simulation. 

Since the main factors were found highly statistically significant,  post-hoc tests (Duncan at 

5%) were then applied. Such tests showed statistically significant differences between all 

levels of the factor LENGTH, while there is no statistically significant difference between 

levels 3, 5 and 10 of the factor SNR. 

Hypothesis of a Model with an Arc in Excess or a Missing Arc 

Since a perfect formulation of the connectivity model is not always a realistic option, I 

analyzed several situations in which the connections between the four cortical areas were not 

correctly assumed in the estimated model.  

Arc in excess 

 The first one is described in Fig. 1.3. The SEM parameter estimation was performed 

on the model shown in Fig. 1.3b, containing an arc which is absent in the imposed pattern 

(Fig 1.3a). The aim was to test if the SEM procedure can reject the error made in the model 

assumption. The appropriate index for this analysis is the Single Arc Error (1.14) on arc a42, 

i.e. the one which is not present in the correct model. The ANOVA performed on the 

simulation results showed that both the main factors signal LENGTH and SNR have a 

statistical influence on the ability of SEM to reveal the modeling error. Fig 1.3c and 1.3d 

shows the plot of means with respect to the different levels of the main factors LENGTH and 

SNR. As before, they are both significant with p<0.001 as well as their interaction (SNR × 

LENGTH) with p<0.0001. Post-hoc test (performed with the Duncan procedure at 5% level of 

significance) shows not statistically significant differences between the LENGTH levels of 

190 or 310 seconds as well as between levels 3, 5, 10 and 100 of the main factor SNR. In 

order to evaluate the influence of the exceeding arc in the model on the global parameter 

estimation, the Relative Error (1.13) was also computed. Fig. 1.4a and 1.4b show the plot of 

mean of this index with respect to the two main factors, with a level of statistical significance 

lower than 0.001. 
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Fig. 1.3: Arc in excess. A) Connectivity pattern imposed in the generation of simulated signals. Values 
on the arcs represent the connections strength (a21=1.4; a31=1.1; a32=0.5; a43=1.2). B): 
Connectivity model used for the parameter estimation. Results of ANOVA performed on the error 
committed on the arc in excess a42 (Single Arc Error): C) plot of means with respect to signal 
LENGTH as a function of time (seconds). ANOVA shows a high statistical significance of factor 
LENGTH (F=97.32, p<0.0001). Post-hoc test (Duncan at 5%) shows statistically not significant 
differences between a signal length of 190 or 310 seconds (25 or 40 trials, 7.5 seconds per trial). D) 
plot of means with respect to Signal to Noise Ratio. A statistical influence of factor SNR on the error 
in the evaluation of the presence of arc a42 is shown (F= 7.75, p<0.0001). Duncan post-hoc test (5%) 
points out that there is no statistically significant difference between levels 3, 5, 10 and 100 of factor 
SNR. 
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Fig. 1.4. Arc in excess. Results of ANOVA performed on the Relative Error for the same situation of 
Fig.1.3: A) plot of means with respect to signal LENGTH as a function of time (seconds).  ANOVA 
shows a high statistical significance for factor LENGTH (F=256.33, p<0.0001). Post-hoc test 
(Duncan performed at 5% level of significance) shows statistically significant differences between all 
levels. B) Results of ANOVA performed on the Relative Error: plot of means with respect to Signal to 
Noise Ratio. Here, too, a high statistical influence of factor SNR on the error in the estimation is 
shown (F= 32.24, p<0.001). Duncan post-hoc test (performed at 5%) points out that there is no 
statistically significant difference between levels 5 and 10 of factor SNR. 
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Missing arc 

 In this case the χ2 statistic test returns no statistical significance of the estimated 

model. Hence, the corresponding error values were not computed and no statistical analysis 

was performed.  

 

Ambiguousness on an Arc Direction 

 A situation that can occur is when the existence of a connection between two 

structures is well known, and there is the need to investigate its direction. Parameters were 

estimated on a model representing this situation (Fig 1.5b). The signals had been generated 

according to the pattern of Fig. 1.5a and the Single Arc Error made on the arc representing the 

wrong direction (a24 in this example) was considered. The statistical analysis performed on 

the simulation results with the ANOVA reported no statistical significance of the main factor 

SNR, while the factor LENGTH (EEGTRIAL) is still statistically significant (with p<0.0001). 

The plot of means in function of the levels of LENGTH is reported in Fig. 1.5c. Fig.1.6a and 

1.6b show the plot of means of the Relative Error with respect to the signal LENGTH levels 

and to different SNR levels employed in the simulation. 
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Fig. 1.5. Arc direction. A) Connectivity pattern imposed in the generation of simulated signals. Values 
on the arcs represent the connections strength (a21=1.4; a31=1.1; a32=0.5; a42=0.7; a43=1.2).  B) 
Connectivity model used for the parameter estimation. No assumption has been made on the direction 
of arc a42 (both directions are present in the model). C) Results of ANOVA performed on the error 
committed on the wrong direction arc a24, not present in the imposed model (Single Arc Error): plot 
of means with respect to signal LENGTH as a function of time (seconds).  ANOVA shows a high 
statistical significance of factor LENGTH (F=85.04, p<0.0001). Post-hoc test (Duncan at 5%) shows 
statistically significant differences between all levels of length.  
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Fig. 1.6. Arc direction. Results of ANOVA performed on the Relative Error for the same situation of 
Fig.1.5: A) plot of means with respect to signal LENGTH as a function of time (seconds).  ANOVA 
shows a high statistical significance for factor LENGTH (F=248.00, p<0.0001). Post-hoc test 
(Duncan performed at 5% level of significance) shows statistically significant differences between all 
levels. B) Results of ANOVA performed on the Relative Error: plot of means with respect to Signal to 
Noise Ratio. Here, too, a high statistical influence of factor SNR on the error in the estimation is 
shown (F=27.60, p<0.001). Duncan post-hoc test (performed at 5%) points out that there is no 
statistically significant difference between levels 3, 5 and 10 of factor SNR. 
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Discussion  
 

The experimental design adopted for the simulation study aimed at analyzing the most 

common situations in which the proposed application of SEM technique to EEG data may 

take place. The levels chosen for main factor levels SNR and LENGTH, as well as the simple 

errors in the model formulation that have been examined, cover the most typical situations 

that can occur in such analysis. The results obtained has shown a significant statistical 

influence of the factors considered on SEM performances. 

On the basis of the simulations performed, we are now able to answer the questions 

raised in the Introduction section: 

1) There is statistical influence of a variable SNR level imposed on the high resolution 

EEG data on the accuracy of the connectivity pattern estimation. In particular, an SNR=3 

seems to be satisfactory in order to obtain a good accuracy, since there are not significant 

differences in the performance for higher values. 

2) The minimum amount of EEG data necessary to get a usable accuracy of the 

estimation of connectivity between cortical areas is 190 seconds of registration (equivalent, 

for instance, to 380 trials of 500 ms each). However, in this case, an increase of the length of 

the available EEG data is always related to a decrease of the connectivity estimation error.  

3) Different situations, in which the connections between the four cortical areas were 

not correctly assumed in the estimated model, were evaluated in order to analyze their 

influence on SEM performances. In the first situation, there was a deliberate error in the 

hypothesized model, consisting of the presence of an arc not corresponding to an actual 

influence between areas. The aim was to test if the SEM procedure can reject the error made 

in the model assumption and to evaluate the influence of the introduction of such modeling 

error on the goodness of parameter estimation. The analysis of the Single Arc Error on the arc 

in excess, revealed that a SNR=3 and an amount of EEG data of 190 seconds of registration 

seems to be satisfactory in order to obtain good accuracy. The effect on the global 

performance of parameter estimation can be inferred by comparing the Relative Error 

obtained in this situation to the correct one. From Fig. 1.2a and 1.2b, compared to Fig.1.4a 

and 1.4b, it can be seen that the error values remain on the same level in both cases, and the 

general performance is not decreased by this kind of error. In the second situation analyzed, 

the voluntary error in the hypothesized model consists in the lack of an arc corresponding to 

an influence between areas. The performed analysis has not reported statistical significance, 

as indicated by the χ2 to degrees of freedom ratio: χ2/df>1. This suggests that, in case of 
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results of this kind, an arc can be added to the putative model in order to decrease the χ2  to 

degrees of freedom ratio. In the third situation analyzed, the estimated model contained arcs 

in both directions between two areas, corresponding to a single arc in the model imposed in 

the signal generation. The Single Arc Error computed on the “wrong direction” arc shows that 

the error is rather smaller (less than 1.5% for all factors and levels considered) than in the case 

of an arc in excess in a single direction in the first situation analyzed. On the other hand, it is 

worth of notice that the general performance, as indicated by the Relative Error (Fig. 1.6a and 

1.6b), is significantly worse in this case than in the case of correct modeling, especially for 

low values of factor LENGTH (cfr. Fig. 1.2a and 1.2b). This means that a simple error like 

the attribution of both directions to a couple of channels causes a significant increase of the 

error made in the parameter estimation. 

In conclusion, the ANOVA results (integrated with the Duncan post-hoc tests performed 

at p< 0.05) indicated a clear influence of different levels of the main factors SNR and 

LENGTH on the efficacy of the estimation of cortical connectivity via SEM. In particular, it 

has been noted that at least a SNR equals to 3 and a LENGTH of the measured cortical data of 

190 seconds are necessary to decrease significantly the errors related to the indexes of quality 

adopted.   

 The simulation study has shown that the ability of SEM to perform a good estimate of 

connectivity pattern, when connections between the four cortical areas are not correctly 

assumed, depends on the kind of error made in the model formulation. It seems that the error 

consisting in the lack of a connection arc is the worst, with respect to the parameter estimate, 

though it can be easily detected by a χ2 statistical test. Putting in the model an arc not 

corresponding to an actual influence between areas, on the contrary, does not particularly 

influence the goodness of general parameter estimate and the exceeding arc is attributed a 

value near to zero. Putting arcs in both directions between two areas, while the influence is 

directed only from one to the other, causes larger errors in the parameter estimation, though it 

allows to discriminate the right direction with a precision which does not depend on the signal 

SNR and which is very high for most levels of signal LENGTH. 

Although the performance seems to be rather good for a correct assumption of the 

hypothesized model, it decreases when even a simple error is made, depending on the error 

type. This degradation of the performance seems to indicate the opportunity to use 

connectivity models not too detailed, in terms of cortical areas involved, as a first step of the 

network modeling. By using a coarse model of the cortical network to be fitted on the EEG 

data, there is an increase of the statistical power and a decrease of the possibility to generate 
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an error in a single arc link (Horwitz, 2003). In the human study presented in the following 

paragraphs, such observation was taken into account by selecting a coarse model for the brain 

areas subserving the task being analyzed. This simplified model does not take complete 

account all the possible regions engaged in the task, and all the possible connections between 

them. Elaborate models, permitting also cyclical connections between regions can become 

computationally unstable (MacIntosh, 1994).  

In conclusion, the results of the simulation study on SEM performed during this PhD 

course return the information that quite accurate estimation of the cortical connectivity 

patterns can be achieved by using the SEM technique. 
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ESTIMATION OF THE FUNCTIONAL CONNECTIVITY:                                                       

A SIMULATION STUDY 

 
 
 
 
 

Let Y be a set of cortical waveforms, obtained from several cortical regions of 

interest (ROI) as described in detail in the following paragraph: 

Y= [y1 (t), y2 (t), …, yN (t) ]T (1.15) 

where t refers to time and N is the number of cortical areas considered. 

Supposing that the following MVAR process is an adequate description of the data 

set Y: 

( ) ( )∑
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=−ΥΛ
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k
tEktk

0
)(                                   with Λ(0) = I (1.16) 

where  

Y(t) is the data vector in time 

E(t)=[e1(t), …, eN]T is a vector of multivariate zero-mean uncorrelated white noise 

processes 

Λ(1), Λ(2), … Λ(p) are the NxN matrices of model coefficients  

p is the model order.  

In the present study, p was chosen by means of the Akaike Information Criteria (AIC) 

for multivariate autoregressive (MVAR) processes (Akaike 1974) and was used for MVAR 

model fitting to simulations, as well as to experimental signals. It has been noted that, 

although the sensitivity of MVAR performance depends on the model order, small model 

order changes do not influence results (Franaszczuk et al, 1985; Babiloni et al, 2005). 

A modified procedure for the fitting of MVAR on multiple trials was adopted (Ding 

et al, 2000; Babiloni et al, 2005; Astolfi et al, 2005b). When many realizations of the same 

stochastic process are available, as in the case of several trials of an event-related potential 

(ERP) recording, the information from all the trials can be used to increase the reliability and 

statistical significance of the model parameters. In the present thesis, both in the simulation 

and in the application to real data, the data were in the form of several trials of the same 

length, as described in detail in the following sections. 
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Once an MVAR model is adequately estimated, it becomes the basis for subsequent 

spectral analysis. To investigate the spectral properties of the examined process, Eq. (1.16) is 

transformed to the frequency domain: 

Λ(f) Y(f) = E(f) (1.17) 

where:  
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0

2)( π  (1.18) 

and Δt is the temporal interval between two samples. 

Eq. (1.17) can be rewritten as: 

Y(f) = Λ-1(f) E(f) = H(f) E(f). 
 

(1.19)

H(f) is the transfer matrix of the system, whose element Hij represents the connection between  

the j-th input and the i-th output of the system.  

 

Directed Transfer Function  
 
 The Directed Transfer Function, representing the causal influence of the cortical 

waveform estimated in the j-th ROI on that estimated in the i-th ROI is defined (Kaminski and 

Blinoswka, 1991) in terms of elements of the transfer matrix H, is: 

( ) ( ) 22 fHf ijij =θ  
 

(1.20)

 

In order to compare the results obtained for cortical waveforms with different power spectra, a 

normalization can be performed by dividing each estimated DTF by the squared sums of all 

elements of the relevant row, thus obtaining the so-called normalized DTF (Kaminski and 

Blinoswka, 1991): 
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 γij(f) expresses the ratio of influence of the cortical waveform estimated in the j-th ROI 

on the cortical waveform estimated in the i-th ROI, with respect to the influence of all the 

estimated cortical waveforms. Normalized DTF values are in the interval [0, 1], and the 

normalization condition  
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is applied.  

From the transfer matrix, we can calculate power spectra S(f). If we denote by V the 

variance matrix of the noise E(f), the power spectrum is defined by  

)()()( * fVHfHfS =  (1.23)

where the superscript * denotes transposition and complex conjugate. 

From S(f), ordinary coherence can be computed as: 
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=  (1.24)

Coherence measures express the degree of synchrony (simultaneous activation) between areas 

i and j. 

 

Partial Directed Coherence 
 

 Partial coherence is another estimator of the relationship between a pair of signals, 

describing the interaction between areas i and j when the influence due to all N-2 time series 

is discounted. It is defined by the formula: 
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where Mij(f) is the minor obtained by removing i-th row and j-th column from the spectral 

matrix S. 

In 2001, Baccalà proposed the following factorisation: 
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where ( )fnΛ  is the n-th column of the matrix ( )fΛ . This led to the definition of Partial 

Directed Coherence (PDC, Baccalà and Sameshima, 2001): 
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 The PDC from j to i, πij(f), describes the directional flow of information from 

the activity in the ROI sj(n) to the activity in si(n), whereupon common effects produced by 



                                                                                                              SECTION I - FUNCTIONAL CONNECTIVITY 

 26

other ROIs sk(n) on the latter are subtracted, leaving only a description that is specifically 

from sj(n) to si(n). 

PDC values are in the interval [0, 1], and the normalization condition  

( )∑
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=
N

n
ni f

1

2
1π  (1.28) 

is verified. According to this condition, πij(f) represents the fraction of the time 

evolution of ROI j directed to ROI i,  compared to all of j’s interactions with other ROIs.  

 For both DTF and PDC, high values in a frequency band represent the 

existence of an influence between any given pair of areas in the data set. However, an 

important difference is that PDC does not involve the inversion of matrix Λ. This leads to 

several points. In fact, an analysis of the definition of DTF reveals that, due to this matrix 

inversion, it is a linear combination of both the direct influence from one area to the other 

and the influence mediated by other areas, along various cascade pathways (Kaminski et al., 

2001). This becomes immediately clear from an example: given a three-region model, the 

non-normalized DTF from area 1 to area 2 is: 
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From this formula it can be noted that even if the direct influence from area 1 to area 

2, ( )f21Λ , is zero, ( )f2
21θ may still be different from zero, since there is an influence from 1 

to 3 ( ( )f31Λ ) and from 3 to 2 ( ( )f23Λ ). The link between 1 and 2 will be indicated by DTF 

as a causal pathway if all the causal influences along the way are non-zero. 

PDC, due to the lack of the matrix inversion, behaves differently. It indicates only the 

existence of a direct causal influence from area 1 to area 2. If no direct influence exists, 

PDC21 is virtually zero. 

 

Direct DTF 
 

In order to distinguish between direct and cascade flows in DTF, the direct DTF 

(dDTF) was introduced (Korzeniewska et al., 2003). It is defined by multiplying the full 

frequency Directed Transfer Function (ffDTF), given by 
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by the partial coherence defined in equation 11. The dDTF from area j to area i is defined as: 
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( ) ( ) ( )fff ijijij ηχδ =  (1.31) 

This function describes only the direct relations between channels. The denominator 

of the ffDTF function (16) does not depend on frequency. 

 

The Simulation Study 
 

 The experimental design involved the following steps: 

Generation of a set of test signals simulating cortical average activations. Several sets 

of simulated data were generated in order to fit a predefined connectivity model and to 

respect imposed levels of the Signal to Noise Ratio (factor SNR) and the length of the data 

(factor LENGTH). The data were in the form of multiple trials, and the factor LENGTH 

indicates the total length of all trials. 

Estimation of the cortical connectivity pattern obtained under different conditions. 

The estimators used were the DTF, the PDC, and the dDTF. 

Computation of indices of connectivity estimation performance. These indices were 

error functions describing the error in the connectivity estimation for the whole pattern and 

for each single arc. A comparison between the value estimated for the direct and indirect arcs 

was also performed. 

Statistical analysis (ANOVA) of the results of the simulations performed to study the 

effects of the factors SNR and LENGTH on the recovery of the connectivity pattern resulting 

from the different methods. 

 

Signal Generation  

The connectivity model used in the generation of test signals is shown in Fig. 1.7. It 

involves five areas, linked by both direct and indirect pathways. For example, ROIs 1 and 2 

are linked by a direct path directed from 1 to 2. ROIs 1 and 5 are not connected by any direct 

arc but are linked by an indirect path, from 1 to 2 and from 2 to 5. ROIs 4 and 5 are not linked 

by either a direct or an indirect arc. As described above, these situations are rather different 

with respect to the estimates obtained by multivariate methods based on MVAR models. In 

particular, the model shown in Fig. 1.7 has 7 direct arcs, 2 indirect arcs, and 11 “null” arcs 

(i.e., 11 pairs of ROIs are not linked, either directly or indirectly).  

The simulated signals were obtained starting from a neural mass model of a ROI, fit to 

a real cortical estimation of the average activity in a ROI. Signal x1 was a waveform generated 
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by a model of three neural populations, arranged in parallel. Each population simulates neural 

activity in a specific frequency band: 4-12 Hz, 12-30 Hz, and 30-50 Hz. The model of each 

population is based on equations proposed by Wendling et al. (2002). The basic idea behind 

this model is that 

 
Fig. 1.7. Connectivity model imposed in the generation of simulated signals. Values on the arrows 
represent the connections strengths. 
 

oscillations derive from the interactions of pyramidal neurons with three other local neural 

subsets: excitatory interneurons, slow inhibitory interneurons, and fast inhibitory 

interneurons. Parameters of the three populations (time constants and synaptic gains) have 

been set by using an automatic best-fitting procedure, to mimic the entire power spectrum 

density of cortical activity in a ROI.   

Subsequent signals x2(t) to x5(t) were iteratively obtained according to the imposed 

connectivity scheme (Fig.1.7), by adding to signal xj contributions from the other signals, 

delayed by intervals τij and amplified by factors aij, plus uncorrelated Gaussian white noise. 

Coefficients of the connection strengths were chosen in a range of realistic values as observed 

in studies that applied  other connectivity estimation techniques, like Structural Equation 

Modeling, to several memory, motor, and sensory tasks (Buchel and Friston, 1997; Fa-Hsuan, 

2003). The values used for the connection strengths are given in the legend for Fig. 1.7. The 

data were generated using different delay schemes on the connectivity pattern imposed. The 

values used for the delay from the i-th ROI to the j-th (τij)  ranged from 1 sample up to p-2, 

where p was the order of the MVAR model used. These schemes were chosen in order to 

cover a variety of situations, to represent the effect of different delay conditions. 
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Generation of simulated data was repeated under the following combinations of 

conditions: 

SNR factor levels = [1, 3, 5, 10]; 

LENGTH factor levels = [2500, 6750, 11250, 15000, 20000] data samples, 

corresponding to a signal length of [10, 27, 45, 60, 80] seconds, in the form of several trials of 

the same length, at a sampling rate of 250 Hz.  

The levels chosen for both SNR and LENGTH factors cover a typical range for 

cortical activity estimated from ERPs with high resolution EEG techniques. 

 The MVAR model was estimated by means of the Nuttall-Strand Method, or 

multivariate Burg algorithm, which has been demonstrated to provide the most accurate 

results (Marple 1987; Kay 1988; Schlögl 2003). 

 

Evaluation of Performance 

 A statistical evaluation of the performance of the different estimators required a 

precise definition of an error function, describing the goodness of the pattern recognition. 

This was achieved by focusing on the MVAR model structure described in Eq. 1.16 and 

comparing it to the signal generation scheme. The elements of matrices Λ(k) of MVAR 

model coefficients can be related to the coefficients used in the signal generation and are 

different from zero only for k= τij, where τij is the delay chosen for each pair ij of ROIs and 

for each direction among them. In particular, for the independent reference source waveform 

x1(t), an autoregressive model of the same order of the MVAR was estimated, with 

coefficients a11(1), …, a11(p) corresponding to the elements Λ11(1), …, Λ11(p) of the MVAR 

coefficients matrix. Thus, with the estimation of the MVAR model parameters, we aimed to 

recover the original coefficients aij(k) used in signal generation. In this way, reference 

functions were computed for each of the estimators on the basis of the signal generation 

parameters. The error function was then computed as the difference between these reference 

functions and the estimated ones (both averaged in the frequency band of interest). 

 To evaluate the performance in retrieving connections between areas, we used the 

Frobenius norm of the matrix reporting the differences between the values of the estimated 

and the imposed connections (Relative Error): 
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(1.32)

where ( )21 ,ˆ ffijζ  is the mean value of the estimator function estimated in the frequency band 

(f1,f2), and ( )21 , ffijζ  is the mean value of the reference functions obtained from the 

generation model in the same frequency band. Here, ijζ  can be DTF or PDC.  

Simulations were performed by repeating each generation-estimation procedure 50 

times, in order to increase the robustness of the successive statistical analysis.  

Statistical Analysis 

 The results obtained were subjected to separate Analysis of Variance (ANOVA).  The 

first analysis was a three-way ANOVA examining the effect of SNR, LENGTH, and the 

different methods used to estimate the cortical connectivity (METHODS) on the error for the 

entire connectivity model estimated. The ‘within’ main factors of the ANOVAs were SNR 

(with four levels: 1, 3, 5, 10), LENGTH (with six levels: [2500, 6750, 11250, 15000, 20000] 

data samples, corresponding to a signals length of [10, 27, 45, 60, 80] seconds, in 3 trials of 

the same length, at a sampling rate of 250 Hz) and METHODS (with two levels: DTF and 

PDC). The dependent variable was the Relative Error defined in (18). The Greenhouse-

Geisser correction for the violation of the spherical hypothesis was used. Duncan post-hoc 

analyses at p = 0.05 significance level were then performed. 

As explained above, the presence of indirect paths in the network (i.e., a path linking a 

node to another node on the network not directly but through one or more intermediate nodes) 

is a critical situation for MVAR-based estimators of causality relations. For this reason, 

particular attention was paid to the analysis of the estimation error in such indirect 

relationships. Another ANOVA was performed, where the values estimated on the indirect 

arcs by the three methods, DTF, PDC and dDTF, were compared to the average value of the 

parameters estimated on the arcs actually present in the generation model. The dependent 

variable was the absolute level of the connectivity estimates, while the independent factors 

were METHODS, LENGTH, SNR, and PATHS.  The first three main factors had the same 

levels used before in the other ANOVAs, and the main factor PATHS had 3 levels, describing 

the value of the dependent variable for the “indirect” links moving from the area x1to the area 
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x5, that from the area x2 to the area  x4, and the average value estimated on non-zero arcs in 

the model. The Greenhouse-Geisser correction was used also in this case. 

 

Results 
 

Several sets of signals were generated as described in the previous section, in order to 

fit a predefined connectivity pattern involving five cortical areas (shown in Fig.1.7). The 

graph depicts the flow of information from area x1 toward areas x2-x5. This connectivity 

model contains  two indirect paths, where the signal is transmitted to a destination by only 

indirect relationships and with no direct link between the source area and the target one 

(from area x2 to area x4 through x3, and from area x1 to area x5 through x2 and x3, with 

several different paths: x1->x3->x5 and x1->x2->x3->x5). 

 A multivariate autoregressive model of order 10 was fitted to each set of simulated 

data, which were in the form of about 30 trials of the same length. The procedure of signal 

generation and connectivity estimation for the different methods was carried out 50 times for 

each level of the factors SNR and LENGTH, to increase the robustness of the subsequent 

statistical analysis. The index of performance, i.e. the Relative Error, Eq.(1.32), and the 

estimated value on direct / indirect arcs were computed for each generation-estimation 

procedure and then subjected to two ANOVAs.  

 In the first ANOVA, the dependent variable was the Relative Error, 

representing the average error for the entire connectivity pattern estimated. Results revealed 

a strong influence of the main factors SNR (F = 205, p<0.0001), METHODS (F=1190, 

p<0.0001), and LENGTH (F=1644, p<0.0001), as well as the SNR x METHOD interaction 

(F=56, p<0.0001), on the Relative Error. Fig. 1.8 shows the influence of the levels of the 

main factors LENGTH and SNR on the Relative Error in the entire connectivity graph for 

each estimator. The errors resulting from DTF, evaluated with respect to the theoretical 

values that represent the ideal information obtainable by this indicator, were smaller than 

those resulting from PDC for every level of SNR and LENGTH. This indicates that DTF is 

more robust with respect to noise and amount of data available for its estimation. In 

particular, Fig. 1.8 shows that for each increase in length of the recordings, there is a 

constant decrease in estimation error. The influence of the factor SNR is weaker. Post hoc 

tests revealed that there were no significant differences between levels 3, 5, and 10 of the 

SNR factor. The bar on each point represents the 95% confidence interval of the mean errors 

computed across the simulations. 
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Particular attention was paid to the ability of the different estimators to distinguish 

between direct and indirect causality flows. The values estimated for the two indirect 

pathways in the model were compared to the average value obtained for the direct arcs 

present in the connectivity model imposed. The values of the connections imposed between 

cortical areas ranged from  0.3 to 0.7.  The two indirect paths analyzed were arc 1->5 and arc 

2->4, indicated by the big arrows in Fig 1.9. As expected, DTF was not always able to 

attribute a zero value to a non-direct arc. On the other hand, PDC and dDTF correctly 

recognized the indirect path in all cases, estimating values close to 

 

 
Fig 1.8. Results of the ANOVA performed on the relative error made in the estimation of the 
connectivity flows. The diagram shows the influence of the different levels of the main factors SNR 
and LENGTH on the estimation of the correct flows in the connection graph employed for the 
simulation, for the two estimators DTF and PDC. The bar on each point represents the 95% 
confidence interval of the mean errors computed across the simulations. Duncan post-hoc test 
(performed at 5%) showed no significant difference between levels 3, 5 and 10 of factor SNR. 
zero in these instances (see Fig. 1.10). However, the results obtained by dDTF for the direct 

arcs were also very small if compared to the other methods. Post hoc tests revealed no 

differences between values obtained by dDTF on the average of direct arcs and the values 

obtained by the same method on indirect arcs. The ANOVA revealed a strong influence of the 

main factors SNR (F =20, p<0,0001), METHOD (F=2980000, p<0,0001), and LENGTH 
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(F=493, p<0,0001). Furthermore,  all possible interactions of the main factors were 

significant, with F values not below 3 and p always below 0.001.  

 
Figure 1.9. Connectivity model imposed on the simulated signals. The thick arrows represent the 
indirect pathways linking the cortical areas. 

 

Fig 1.10. Average connectivity values estimated on two indirect links (1->5 and 2->4) and for all the 
other existing arcs for the networks by the three methods DTF, PDC and dDTF during all the 
simulations.  
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Discussion 
 

The present study examined the performance of three different techniques commonly 

used to assess information flows between scalp electrodes and local field potentials (Kaminski 

et al., 2001, Baccalà and Sameshima, 2001, Korzeniewska et al., 2003) on simulated and real 

cortical waveforms obtained via the linear inverse problem solution, using the realistic head 

volume conductor models and high-density EEG recordings. The spatial resolution provided 

by the techniques presented here has been previously characterized in a series of simulation 

studies using the present ROI analysis approach (Babiloni et al., 2000, 2001, 2003, 2004). The 

simulation studies involved realistic head models, high-density EEG and MEG setups (with 

64 and 128 electrodes as well as 143 magnetic sensors), and standard levels of SNRs (1, 3, 5, 

10, 100). The returned errors are lower than 5% for the estimation of the shape (via the Cross-

Correlation measure) and energy (via the Relative Error measure) of the simulated cortical 

waveforms. These figures assure that the estimation of the cortical current density by using 

high spatial sampling and realistic head models is a reliable process that allows a precise 

reconstruction of the cortical waveforms in a variety of experimental situations.  

All the techniques investigated in the present study are based on the Granger theory and 

MVAR models. The approach using the DTF, PDC, and dDTF techniques has the advantage 

of providing connectivity links that can be interpreted in the sense of Granger causality, 

which includes a concept of directionality. Other techniques have been presented in the 

literature for the evaluation of functional connectivity of EEG/MEG data. For instance, the 

technique called Dynamic Imaging of Coherent Sources (DICS) (Gross et al., 2001, 2003), 

which uses a spatial filter and a realistic head model, has been recently introduced and 

employed to assess connectivity between cortical areas from MEG data (Gross et al., 2001, 

2003; Pollock et al., 2005a, 2005b). This technique has the advantage, when compared to the 

DTF, PDC, and dDTF methods investigated here, of a direct mathematical characterization of 

its spatial resolution of the point spread function (Gross et al., 2003). However, spectral 

coherence or DICS techniques do not return directly the direction of the flow between cortical 

areas, though in the latter case DICS is usually coupled with another technique able to 

estimate such directional flow, like the Directionality Index (Rosenblum and Pikovsky, 2001). 

A main difference between DICS and the approach presented here is in the estimation of 

cortical activity, specifically the fact that the DICS technique is a beamformer (Huang et al. 

2004). Differences in the performance of beamformers and weighted minimum norm linear 

inverse techniques depend on the particular experimental setup used. In particular, it has been 
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shown in simulation studies that EEG/MEG beamformers can reconstruct rather precisely the 

spatial location and the time series of neuronal sources when they exhibit a transient 

correlation in time (Hadjipapas et al., 2005). On the other hand, if the correlation between 

source activities exceeds 30-40% of the total duration of the period over which the 

beamformer weights are computed, effects of temporal distortion and signal cancellation will 

be observed (VanVeen et al., 1997, Gross et al., 2001, Sekihara et al., 2002). This suggests 

that, if the beamformer is obtained using covariance time windows that are long enough with 

respect to the duration of transient linear interaction between sources, it will return an 

accurate estimate of spatiotemporal source activity. However, if the covariance windows are 

sufficiently long, the portion of the stimulus will be small in comparison with the baseline 

state, and a decrease in the SNR will occur. This would ultimately result in a loss of spatial 

resolution (VanVeen et al., 1997, Gross et al., 2001).  

An interesting issue is related to the possibility of applying the connectivity 

estimators to multimodal neuroelectric and hemodynamic data (i.e, from EEG/MEG and 

fMRI measurements). Recent simulation and experimental studies (Liu et al., 1998, Dale et 

al., 2000, Babiloni et al, 2003, 2005) stated that the multimodal integration of EEG, MEG, 

and fMRI improves the quality of the cortical estimation when compared to any single 

modality alone. This was obtained by using MEG and fMRI estimation (Liu et al., 1998; 

Dale et al., 2000), EEG and fMRI (Babiloni et al, 2003, 2005), or EEG and MEG (Babiloni 

et al., 2001, 2004). It is reasonable to expect that, with the improvement of the quality of the 

cortical estimation given by multimodal integration, the estimation of connectivity could 

improve as well. However, the effect of multimodal integration in terms of connectivity is 

not yet addressed in literature, due to the lack of a precise model of electrovascular coupling.  

It is also worth noting that all the techniques (EEG, MEG, and fMRI) can detect the activity 

of a particular set of neural sources and are blind to others. For instance, the activity of 

stellate neurons in the cortex can be detected by the fMRI, because of their metabolic 

demand, but not by neuroelectromagnetic measurements, to which they are invisible due to 

the closed field they generate. On the other hand, transient (milliseconds) synchronous 

activity of a small subset of neurons can be detected by EEG and MEG but is invisible to 

fMRI (Nunez, 1995). Hence, the use of multimodal integration can provide information 

about cortical activity that moves beyond that offered by a single technique. This is an 

important point in favor of multimodal integration of EEG, MEG and fMRI, also in the 

perspective of the estimation of functional cortical connectivity. 
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I performed a series of simulations to evaluate the use of connectivity estimators on 

test signals, generated to simulate the average electrical activity of cerebral cortical regions, 

as it can be estimated from high resolution EEG recordings gathered under different 

conditions of noise and length of the recordings. The information on performances, limits of 

applicability and range of errors under different levels of the several factors that are of 

interest in normal EEG recordings were inferred from statistical analysis (ANOVA and 

Duncan post hoc tests on the Relative and the single arc Error). The values used for the 

strength coefficients in simulations are consistent with the ones estimated in previous studies 

for a large sample of subjects performing memory, motor and sensory tasks (Buchel and 

Friston, 1997; Fa-Hsuan, 2003).   

 

The simulations provided the following answers to the questions raised in the Introduction: 

1) Decreased SNR impairs the accuracy of the connectivity pattern estimation 

obtained by the DTF, PDC, and dDTF estimators.  

2) The length of the EEG recordings has a reliable effect on the accuracy of 

connectivity pattern estimations. A length corresponding to 27 s of non-consecutive 

recordings with a SNR of at least 3 ensures that connectivity patterns can be accurately 

recovered with an error below 7% for PDC and 5% for DTF. 

3) The error variance observed for the DTF estimator is lower than that for PDC or 

dDTF. However, DTF has the highest bias in the estimate of the connectivity pattern, as it 

includes values for the indirect paths that were not generated in the simulations. It has been 

noted that there is a higher bias for dDTF than for PDC, since the first estimator often 

removes from the estimated connectivity pattern some direct paths that were present in the 

original modeling. In this respect, PDC is characterized by lower bias in the estimation of 

connectivity patterns under the present conditions of SNR and LENGTH.    

In conclusion, results indicated a clear influence of different levels of SNR and 

LENGTH on the efficacy of the estimation of cortical connectivity in each of the methods. In 

particular, it has been noted that a SNR equal or greater than 3 and an overall LENGTH of 

the estimated cortical data of 6750 data samples (27 seconds at 250 Hz), even in several 

short trials, are sufficient to significantly decrease the errors on the indices of quality adopted 

in this study. These conditions are common in recordings of event-related activity in humans. 

These recordings are usually characterized by SNR ranging from 3 (movement-related 

potentials) to 10 (sensory evoked potentials) (Regan et al. 1989).  
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The present simulations allowed an evaluation of the level of error expected for 

different arcs, related to direct or indirect pathways. In addition, comparisons were done 

between the relative errors obtained on single arcs characterized by only direct connections 

and those related to multiple paths between the source and the target. The results showed that 

the error was generally greater when the signal was transmitted to a destination by more than 

one path. This result (not presented here) is in agreement with the results of the study on 

indirect paths, according to which such transmission may induce an error in the MVAR 

estimation.  

An ANOVA was also performed on the error values obtained for different delays 

schemes imposed during the signal generation, chosen in order to cover a variety of 

situations. The ANOVA results indicated that there was no significant influence of the delay 

on the performances of the methods.  

 The information obtained from the simulations was used to evaluate the applicability 

of these methods to actual event-related recordings. The ERP signals, from a Stroop task, 

showed an SNR between 3 and 5 in the five subjects examined. Therefore, according to the 

simulation results, a small amount of error in the estimation of cortical connectivity patterns 

was expected.  

All three estimators provided directional information (i.e., each of them allowed 

establishment of the direction of the information flow between two cortical areas) and 

directed information (i.e., they discriminated between direct and indirect connection paths). 

This information is not available using other techniques to assess coupling between signals, 

such as standard coherence (which lacks directionality). An evaluation of several methods for 

the computation of the functional connectivity between EEG/MEG signals was recently 

performed (David et al., 2004). It was concluded that, although nonlinear methods, such as 

mutual information, nonlinear correlation, and generalized synchronization (Roulston, 1999, 

Stam and van Dijk, 2002; Stam et al., 2003), might be preferred when studying EEG 

broadband signals that are sensitive to dynamic coupling and nonlinear interactions expressed 

over many frequencies, the linear measurements (like those presented here) afford a rapid and 

straightforward characterization of functional connectivity. 
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ESTIMATION OF CORTICAL ACTIVITY BY THE USE OF REALISTIC 

HEAD MODELING 

 
 
The problems of conventional EEG recordings  
 
Among the different non-invasive different brain imaging techniques, EEG and MEG alone 

directly reflect neuronal firing and exhibit a remarkable temporal resolution (in milliseconds) 

despite a poor spatial resolution (in the order of few square centimeters). This lack of spatial 

resolution occurs essentially in the case of EEG because of the spread of brain signals due to 

the low conductivity of the skull and the rather low signal-to-noise ratio of the data (Nunez, 

1995). These potentials originate mainly in the radially oriented cortical pyramidal neurons. 

The potential distribution arising from these sources is quite wide over the scalp surface 

because of the different conductivities of cerebrospinal fluid, meninges, skull and scalp. 

Furthermore, the distortion of the scalp potential distribution is increased by the ear and 

eyeholes, which represent shunt paths for intra-cranial currents (Nunez, 1981, 1995). As a 

result, the distribution of the scalp potential shows a low spatial resolution not allowing a 

reliable localization of the cortical generators of the event-related potentials. Moreover, the 

variations of electrical reference may enhance or attenuate the spatial components of the 

potential distribution over the scalp acting as a spatial filter of the cortical generators (Nunez, 

1981). For these reasons, the addition of more electrodes is not sufficient per se to improve 

the spatial information content of an EEG record significantly (Nunez,1995). 

 

The high-resolution EEG 
 
High-resolution EEG technologies have been developed to enhance the spatial information 

content of EEG activity (Gevins et al., 1990; Nunez, 1995). These technologies consist 

essentially of high spatial sampling (with 64–128 channels) and surface Laplacian (SL) 

(Nunez et al., 1994) or spatial de-convolution (SD) estimations (Le and Gevins, 1993). The 

estimation of the SL of the potential needs the modeling of the scalp surface, while the SD 

estimation is based on the construction of a multi-compartment head volume conductor for 

simulating cortex, dura mater, skull and scalp surfaces. Most recently, the developed 

highresolution EEG enhancement technologies use realistic MRI-constructed subject’s head 
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models (Le and Gevins, 1993; Babiloni et al., 1997). SL is computed by a spline Laplacian 

estimator, and SD by a linear inverse estimation method based on boundary-element (BEM) 

mathematics. The key-point of high-resolution EEG technologies is the availability of an 

accurate model of the head as a volume conductor to be used with advanced computational 

techniques such as SL or SD. However, appropriate techniques have to be used in order to 

register the electrode positions on the scalp model. Several authors have shown that it is 

possible to improve the spatial resolution of EEG by using sophisticated computational 

algorithms and detailed geometrical models of the head as a volume conductor with the help 

of the MRI data (Babiloni et al., 1996, 2000a, Gevins, 1989b; Gevins et al., 1990, 1991, 1994; 

Nunez, 1995).  

 

The search for the cortical sources 
 

However, the ultimate goal of any EEG or MEG recording is to supply useful 

information about the brain activity of a subject during a particular task. In order to obtain 

such information we have to start from these EEG or MEG recordings to arrive at an estimate 

of cortical activity, by using a body of mathematical techniques known as inverse procedures. 

Examples of these inverse procedures are the dipole localization, the distributed source and 

the deblurring or cortical imaging techniques (Dale and Sereno, 1993; Gevins, 1989b; Nunez, 

1995). Mathematical models for the head as a volume conductor as well as for neural sources 

are employed by linear and non-linear minimization procedures to localize putative sources of 

EEG data. Several studies have indicated the adequacy of the equivalent current dipole as a 

model for cortical sources (Nunez, 1981, 1995), while the importance of realistic geometry 

head volume conductor models for the localization of cortical activity was stressed recently 

(Gevins, 1989b; Gevins et al., 1991, 1999; Nunez, 1995). The results of previous intra-cranial 

EEG studies support the idea that high-resolution EEG techniques (including head/source 

models and proper regularization inverse procedures) might model with an acceptable 

approximation the strengths and the extension of cortical sources of surface EEG data, at least 

in certain conditions (Le and Gevins, 1993; Gevins et al., 1994; Babiloni et al., 1996; He et 

al., 1999). 

 

Head and Cortical Models 
 

 The estimation of the cortical activity from EEG scalp recordings, based on the 

solution of the linear inverse problem (showed in the next paragraph) needs the use of 
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electrical models of the structures of the head, interposed between the sensors (electrodes on 

the scalp) and the electrical sources (the neurons in the cortex). Realistic head models can be 

reconstructed from T1-weighted MRIs of each experimental subject and used to improve such 

estimation. In the data analysis performed in this Thesis, scalp, skull, and dura mater 

compartments were segmented from MRIs and tesselated with about 5000 triangles for each 

surface (see Fig. 1.11). A source model of the cortex was built using the following procedure: 

(i) the cortex compartment was segmented from MRIs and tesselated to obtain a fine mesh 

with about 100,000 triangles; (ii) a coarser mesh was obtained by resampling the fine mesh 

down to about 5,000 triangles (this was done by preserving the general features of the 

neocortical envelope, especially in correspondence of pre- and post-central gyri and frontal 

mesial area); (iii) an orthogonal unitary equivalent current dipole was placed in each node of 

the tesselated surface, with direction parallel to the vector sum of the normals to the 

surrounding triangles. Such model was used to define the dole source configuration that is the 

result of the estimation procedure. 

Fig. 1.11. Realistic models of scalp, skull, dura mater and cortex, tessellated from MRI images of the 
experimental subject. The electrode were superimposed to the model with a precision <1 mm, by 
means of a stereophotogrammetric method. 

 
 

Regions of Interest (ROI) 

 
The use of thousands of dipoles is useful to describe adequately the complex folding of the 

cortical surface from a mathematical point of view. However, particular regions of the cortex 
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present similar features in terms of the cytoarchitecture (basically, the appearance of the 

cortex under the light microscope). Then, it could be convenient to use such particular regions 

to in order to estimate the cortical activity, in order to decrease the number of the waveforms 

to be treated with the connectivity estimators described in the previous chapters. Korbinian 

Brodmann (1868–1918) was an anatomist who divided the cerebral cortex into numbered 

subdivisions on the basis of cell arrangements, types and staining properties. Brodmann 

classified brain regions based on their cytoarchitecture). In some instances there is a clear link 

between the microscopic appearance of a region and its function. For example, the 'stripe' of 

the striate cortex delineates the first main cortical area of the visual system (today this area is 

usually referred to as V1, Brodmann called it area 17). However, it is important to remember 

that Brodmann's Areas (BAs) were identified purely based on visual appearance, which is not 

necessarily related to function. Fig. 1.12 presents the original Brodmann maps. As described 

in the next pages, several BAs are important in the context of the motor and cognitive tasks.  

 

 
Figure 1.12. Brodmann’s original cytoarchitectonic maps of the human brain with a ventral view of 
the brain on the left and a medial view of the cortical areas on the medial wall of the brain on the 
right.  
  

It’s useful to estimate the cortical activity for the cortical patches that have same 

cytoarchitectonic properties, i.e. the Brodmann areas, instead to use the data from any single 

dipole.  

The functional connectivity will be then computer between the data estimated for the cortical 

region of interest (ROIs), depicted along Brodman areas (BAs) identified on individual 

cortical model. This strategy uses a priori information information according to the role of the 

BAs in the brain functions. The presented technique could also be applied by drawing the 

ROIs around the cortical estimated peaks of the power spectra activity in the different 

frequency bands with a post hoc procedure (Gross et al., 2001). In this thesis the ROIs 
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depicted on the base of the BAs were employed to allow comparison of the functional 

connectivity patterns elicited by the same experimental behavior across subjects.  

The present analysis was based on a cortical source model, namely the source space where the 

cortical activity generates was identified. Hence, it may be argued that since only cortical 

sources are modeled, if a deep source is active then the source reconstruction (and likely the 

connectivity estimates) could fail. In this context, it should be taken into account a widely 

accepted notion that the main sources for the scalp-recorded EEG signals derive from the 

cortex, while the thalamus and the basal ganglia can hardly produce appreciable contribution 

to the scalp EEG (Nunez, 1995). However, even if a subcortical neural source contributed 

markedly to scalp-recorded EEG, this deep contribution would be distributed over the source 

space lying on the cortical surface by the employed model. This phenomenon would result in 

an increase of the low spatial frequency component in the recorded EEG.  

 
 

Distributed sources estimate 
 

Accurate estimates of the cortical current density could be obtained by using adequately 

detailed geometrical reconstruction of the main compartments lying between the cortical 

generator sources and the EEG or MEG sensors. The estimate of the cortical current density 

from non-invasive EEG and/or MEG data can be obtained by solving a linear problem. In this 

problem, the cortical sources to be estimated are related to the non-invasive measurements by 

means of a transfer matrix (lead field matrix) that mimics the effects of the volume conductor 

(Pascual-Marqui, 1995; Grave de Peralta and Gonzalez-Andino, 1999). In mathematical terms 

the relationship between the modeled sources x, the lead field matrix A, the EEG/ MEG 

measurements b and the noise n can be written as  

 

Ax  = b + n (1.33) 

  

The solution of this linear system provides an estimation of the dipole source 

configuration x that generates the measured EEG potential distribution b. The system includes 

also the measurement noise n, assumed to be normally distributed. A is the lead field or the 

forward transmission matrix, whose j-th column describes the potential distribution generated 

on the scalp electrodes by the j-th unitary dipole. The current density solution vector ξ  was 

obtained as (Grave de Peralta and Gonzalez Andino, 1999): 
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where M, N are the matrices associated to the metrics of the data and of the source 

space, respectively, λ is the regularization parameter  and || x ||M represents the M norm of the 

vector x.  The solution of Eq. (1.34) is given by the inverse operator  G: 

 

Gbξ = ,    ( ) 1111 −−−− +′′= MAANANG λ  (1.35)

 

An optimal regularization of this linear system was obtained by the L-curve approach 

(Hansen, 1992a,b). As a metric in the data space we used the identity matrix, while as a norm 

in the source space we use the following metric: 

 
( ) 21 −

⋅
− = iii AN  (1.36) 

 

where (N-1)ii is the i-th element of the inverse of the diagonal matrix N and all the other 

matrix elements Nij are set to 0.  The L2 norm of the i-th column of the lead field matrix A is 

denoted by ||A.i||.   

 

Cortical Estimated Waveforms 

 
 Using the relations described above, an estimate of the signed magnitude of the dipolar 

moment for each one of the 5,000 cortical dipoles was obtained for each time point. As the 

orientation of the dipole was defined to be perpendicular to the local cortical surface in the 

head  model, the estimation process returned a scalar vector field. To obtain the cortical 

current waveforms for all the time points, we used a unique “quasi-optimal” regularization λ 

value for all the analyzed EEG potential distributions. The quasi-optimal regularization value 

was computed as an average of the several λ values obtained by solving the linear inverse 

problem for a series of EEG potential distributions. These distributions are characterized by 

an average Global Field Power (GFP) with respect to the higher and lower GFP values 

obtained from all the recorded waveforms. An example of the spatial resolution obtained by 

means of the linear inverse estimation is shown in Fig. 1.13. The instantaneous average of the 

dipole’s signed magnitude belonging to a particular ROI generates the representative time 

value of the cortical activity in that given ROI. By iterating this procedure on all the time 
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instants of the gathered ERP, the cortical ROI current density waveforms were obtained and 

they could be taken as representative of the average activity of the ROI, during the task 

performed by the experimental subjects.  

 

 

 

 
Fig. 1.13: Left: map of potential recorded on the scalp by means of 58 electrodes. Right: Estimation of 
the cortical current density obtained from the potentials on the scalp, by means of the linear inverse 
procedure with the use of realistic head models. 
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APPLICATION TO MOVEMENT RELATED POTENTIALS  

 

 

 

The estimation of connectivity patterns by using the DTF and SEM on high resolution 

EEG recordings has been applied to the analysis of a simple movement task. In particular, we 

considered the right hand finger tapping movement, externally paced by a visual stimulus. 

This task was chosen for it has been very well studied in literature with different brain 

imaging techniques like EEG or functional Magnetic Resonance Imaging (Gerloff et al., 

1988;  Gevins et al., 1989a; Janke et al, 2000).  

 
 

Subjects and Experimental Design 
 

Three right-handed healthy subjects (age 23.3 ± 0.58, 1 male and 2 females) 

participated to the study after the informed consent was obtained, according to UIC/IRB. 

Subjects were seated comfortably in an armchair with both arms relaxed and resting on 

pillows and they were requested to perform fast repetitive right finger movements cued by 

visual stimuli. 10-15 blocks of 2 Hz thumb oppositions were recorded, with each 30 second 

blocks of finger movement and rest. During motor task, subject was instructed to avoid eye 

blinks, swallowing, or any movement other than the required finger movements.  
 

 

EEG recordings  
 

 Event related potential (ERP) data were recorded with 96 electrodes; data were 

recorded with a left ear reference and submitted to the artifact removal processing. Six 

hundred ERP trials of 600 ms of duration were acquired. A/D sampling rate was 250Hz. The 

surface electromyographic (EMG) activity of the muscle was also collected. The onset of the 

EMG response served as zero time. All data were visually inspected, and trials containing 

artifacts were rejected. We use semi-automatic supervised threshold criteria for the rejection 

of trials contaminated by ocular and EMG artifacts, as described in details elsewhere (Moretti 
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et al., 2003). After the EEG recording, the electrode positions were digitized using a 3D 

localization device with respect to the anatomic landmarks of the head (nasion and two 

preauricular points). The analysis period for the potentials time-locked to the movement 

execution was set from 300 ms before to 300 ms after the EMG trigger (0 time); the ERP 

time-course was divided in two phases relative to the EMG onset; the first, labeled as “PRE” 

period, marked the 300 ms before the EMG onset and was intended as a generic preparation 

period; the second labeled as “POST”, lasted up to 300 ms after the EMG onset and was 

intended to signal the arrival of the movement somatosensory feedback. We kept the same 

PRE and POST nomenclature for the signals estimated at the cortical level. 

 

Selection of Regions of interest (ROIs) 

Several cortical regions of interest (ROIs) were drawn on the computer-based cortical 

reconstruction of the individual head models (3 subjects). In details, the ROIs representing the 

left and right primary somatosensory (S1) areas included the Brodmann areas (BA) 3, 2, 1, 

while the ROIs representing the left and right primary motor (MI) included the BA 4. The 

ROIs representing the Supplementary Motor Area (SMA) were obtained from the cortical 

voxels belonging to the BA 6. We further separate the proper and anterior SMA indicated 

with BA 6P and 6A, respectively. Furthermore, ROIs from the right and the left parietal areas 

including the BA 5, 7 and the occipital areas (BA 19) were also considered. In the frontal 

regions the BA 46, 8, 9 were also selected. A selection of the gathered ERPs related to the 

visual paced finger tapping task from one of the subjects is depicted on the left part of the Fig. 

1.14. The waveforms are relative to the signals gathered from the standard electrode leads of 

the augmented 10-20 system, represented on the realistic scalp reconstruction of the subject, 

and represent the average of the artifact-free trials. By means of the linear inverse procedure, 

the estimation of the current density waveforms in the ROIs of interest was then performed, 

according to the Eqs. (1.33)-(1.36).  

The instantaneous average of the signed magnitude of all the dipoles belonging to a 

particular ROI was used to estimate the average cortical activity in that ROI, during the entire 

interval of the experimental task. These waveforms could then be subjected to the MVAR 

modeling in order to estimate the connectivity pattern between ROIs, by taking into account 

the time-varying increase or decrease of the power spectra in the frequency bands of interest. 

The estimated current density waveforms for the same subject are represented for some 

selected ROIs in the right part of the Fig. 1.14. Relevant cortical activity was getting different 
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from baseline in the left ROIs representing parietal (BA 5), premotor (BA 6A), sensorimotor 

(BA 3, 2, 1, BA 4) and prefrontal (BA 8) cortical areas, while a similar statistical engage was 

obtained for the ROIs located in the right hemisphere in premotor (BA 6A) and prefrontal 

(BA 8) cortical areas.  

 

 

Fig. 1.14. Left: a selection of the ERPs gathered from the standard electrode leads of the augmented 
10-20 system, represented on the realistic geometry scalp reconstruction of the subject (average of the 
artifact-free trials). The onset of the electromyographic (EMG) signal for the start of the movement of 
the right finger is at the 300 ms from the beginning of the ERP trial. Right: the estimated (via the 
solution of the linear inverse problem) current density waveforms, represented for some selected ROIs 
on the realistic cortex reconstruction of the same subject. Each ROI is represented in a different color. 



                                                                                                              SECTION I – MOVEMENT RELATED POTENTIALS 

 48

 

Definition of the a priori model for the Effective Connectivity 

From the results obtained by the simulation study described in the previous chapter, the 

performances seem to be rather good for a correct assumption of the hypothesized model, but 

they  decrease when even a simple error is made, depending on the error type. This 

degradation of the performances seems to indicate the opportunity to use connectivity models 

not too detailed, in terms of cortical areas involved, as a first step of the network modeling. 

By using a coarse model of the cortical network to be fitted on the EEG data, there is an 

increase of the statistical power and a decrease of the possibility to generate an error in a 

single arc link. In the present human study, such observation was taken into account by 

selecting a coarse model for the brain areas subserving the task being analyzed. This 

simplified model does not take complete account all the possible regions engaged in the task, 

and all the possible connections between them. Elaborate models, permitting also cyclical 

connections between regions can become computationally unstable (MacIntosh, 1994).  

Our model of interactions between cortical areas is based on previous results on similar 

tasks obtained with different brain imaging methods. It is sufficient to address some key 

questions regarding the influence of the premotor and motor areas toward the prefrontal 

cortical areas during the task analyzed. The anatomical model employed is based on the 

principal cortical areas recognized as active during this simple task in these studies. Namely, 

cortical areas used in this human study included the prefrontal areas (PF), including at large 

the Brodmann areas 8, 9, and 46; the premotor areas (PM), including the Brodmann area 6, 

the sensorimotor areas (SM) including the Brodmann areas 4, 3, 2, and 1, and the parietal 

areas (P), generated by the union of the Brodmann areas 5 and 7. The model employed the a 

priori knowledge about the flow of connections between these macro-areas, as derived from 

neuroanatomy and fMRI studies. In particular, information flow were hypothesized to exist 

from the parietal (P) areas toward the sensorimotor (SM), the premotor (PM) and the 

prefrontal (PF) ones (Gerloff et al, 1998; Jancke et al, 2000; Urbano et al, 1998)  

 

Statistical evaluation of connectivity measurements by SEM and DTF 

 
As described before, the statistical significance of the connectivity pattern estimated 

with SEM technique was assured by the fact that in the context of the multivariate, normally 

distributed variables the minimum of the maximum likelihood function FML, multiplied by (N-
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1), follows a χ2 distribution with p(p + 1)/2 – t degrees of freedom, where t is the number of 

parameters to be estimated and p is the total number of observed variables 

(endogenous+exogenous).  Then, the χ2 statistic test can then be used to infer statistical 

significance of the structural equation model obtained. 

The situation is different for all concerns the statistical significance of the DTF 

measurements, since the DTF function has a highly nonlinear relation to the time series data 

from which they are derived, and the distribution of their estimators is not well established. 

This makes tests of significance difficult to perform, unless tests based on this empirical 

distribution can then be performed. A possible solution to this problem was proposed in 

Kaminski et al., (2001). It consists of the use of a surrogate data technique (Theiler et al., 

1992), in which an empirical distribution for random fluctuations of a given estimated 

quantity is generated by estimating the same quantity from several realizations of surrogate 

datasets, in which deterministic interdependency between variables were removed. In order to 

ensure that all features of each dataset are as more similar as possible to the original dataset, 

with the exception of channel coupling, the very same data are used, any time-locked 

coupling between channels is disrupted by shuffling phases of the original multivariate signal. 

Since the EEG signal had been divided into single trials, each surrogate dataset was built up 

by scrambling order of epochs, using different sequences for each channel. The set properties 

of univariate surrogate signals are not influenced by this shuffling procedure, since only the 

epoch order is varied. Moreover, since no shuffling was performed between single samples, 

the temporal correlation, and thus the spectral features, of univariate signals is the same for 

original and surrogate dataset, thus allowing to estimate different distributions of DTF 

fluctuations for each frequency band. One thousand surrogate datasets were generated as 

described above, and DTF spectra were estimated from each dataset. For each channel pair 

and for each frequency bin the 99 percentile was computed and subsequently considered as a 

significance threshold.  

 

Connectivity Pattern Representation 

 The connectivity patterns are represented by arrows pointing from one cortical area 

(“the source”) toward another one (“the target”). The arrow’s color and size code the strength 

of the functional connectivity estimated between the source and the target. The bigger and the 

lighter the arrow, the stronger the connection. Only the cortical connections statistically 
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significant at p < 0.01 are represented, according to the thresholds obtained as previously 

described. 

The connectivity patterns in the different frequency bands (Theta, 4-8 Hz; Alpha, 8-12 

Hz; Beta, 13-30 Hz; Gamma, 30-40 Hz) between the different cortical regions were 

summarized by using indices representing the total flow from and toward the selected cortical 

area. The total inflow in a particular cortical region was defined as the sum of the statistically 

significant connections from all the other cortical regions toward the selected area. The total 

inflow for each ROI is represented by a sphere centered on the cortical region, whose radius is 

linearly related to the magnitude of all the incoming statistically significant links from the 

other regions. Inflow information is also coded through a color scale. This information depicts 

each ROI as the target of functional connections from the other ROIs. The same conventions 

were used to represent the total outflow from a cortical region, generated by the sum of all the 

statistical significant links.  

 

 

Results  
 

The results of the application of the SEM method for the estimation of the connectivity 

on the event related potential recordings is depicted in Fig 1.15, which shows the statistical 

significant cortical connectivity patterns obtained for the period preceding the movement 

onset in the subject #1, in the alpha frequency band. Each pattern is represented with arrows, 

that connect one cortical area (“the source”) to another one (“the target”). The colors and sizes 

of arrows code the level of strength of the functional connectivity observed between ROIs. 

The labels indicate the names of the ROIs employed. Note that the connectivity pattern during 

the period preceding the movement in the alpha band involves mainly the parietal left ROI 

(Pl) coincident with the Brodmann areas 5 and 7, functionally connected with the left and 

right premotor cortical ROIs (PMl and PMr), the left sensorimotor area (SMl), and both the 

prefrontal ROIs (PFl and PFr). The stronger functional connections are relative to the link 

between the left parietal and the premotor areas of both cerebral hemispheres. After the 

preparation and the beginning of the finger movement, in the POST period changes in the 

connectivity pattern can be noted. In particular, the origin of the functional connectivity links 

is positioned in the sensorimotor left cortical areas (SMl). From there, functional links are 

established with prefrontal left (PFl), both the premotor areas (PMl. PMr). A functional link 

emerged in this condition connecting the right parietal area (Pr) with the right sensorimotor 
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area (SMr). The left parietal area (Pl) so active in the previous condition was instead linked 

with the left sensorimotor (SMl) and right premotor (PMr) cortical areas.  

 

Fig. 1.15. A-D: Figure shows the cortical connectivity pattern obtained for the period preceding and 
following the movement onset in the subject, in the alpha (8-12 Hz) frequency band. The realistic head 
model and cortical envelope of the subject analyzed obtained from sequential MRIs is used to display 
the connectivity pattern. Such pattern is represented with arrows, that move from one cortical area 
toward another one. The colors and sizes of arrows code the level of strengths of the functional 
connectivity observed between ROIs. The labels are relative to the name of the ROIs employed. 6A–B: 
Connectivity patterns obtained from ERP data before the onset of the right finger movement 
(electromyographic onset; EMG), from above (left) and from the left of the head (right) . 6 C–D: 
Connectivity patterns obtained after the EMG onset. 

 

Fig 1.15 shows the cortical connectivity patterns obtained for the period preceding the 

movement onset in the subject #1, in the alpha frequency band. Each pattern is represented 

with arrows, that connect one cortical area to another one. The colors and sizes of arrows code 

the level of strength of the functional connectivity observed between ROIs. The labels 

indicate the names of the ROIs employed. Note that the connectivity pattern during the period 

preceding the movement in the alpha band involves mainly the parietal left ROI (Pl) 

coincident with the Brodmann areas 5 and 7, functionally connected with the left and right 
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premotor cortical ROIs (PMl and PMr), the left sensorimotor area (SMl), and both the 

prefrontal ROIs (PFl and PFr). The stronger functional connections are relative to the link 

between the left parietal and the premotor areas of both cerebral hemispheres. After the 

preparation and the beginning of the finger movement, in the POST period changes in the 

connectivity pattern can be noted.  

 

In particular, the origin of the functional connectivity links is positioned in the 

sensorimotor left cortical areas (SMl). From there, functional links are established with 

prefrontal left (PFl), both the premotor areas (PMl. PMr). A functional link emerged in this 

condition connecting the right parietal area (Pr) with the right sensorimotor area (SMr). The 

left parietal area (Pl) so active in the previous condition was instead linked with the left 

sensorimotor (SMl) and right premotor (PMr) cortical areas.   

 

Connectivity estimations performed by DTF on the movement related potentials were 

first analyzed from a statistical point of view via the shuffling procedure above described. The 

order of the MVAR model used for each DTF estimation had to be determined for each 

subject and in each temporal interval of the cortical waveforms segmentation (PRE and POST 

interval). The Akaike Information Criterion (AIC) procedure was used and returned an 

optimal order between 6 and 7 for all the subjects, in both PRE and POST intervals. On such 

cortical waveforms, the DTF computational procedure described in the Methods section was 

applied. Fig 1.16 shows the cortical connectivity patterns obtained for the period preceding 

and following the movement onset in the subject #1 examined. Here, we present the results 

obtained for the connectivity pattern in the alpha band (8-12 Hz), since the ERP data related 

to the movement preparation and execution are particularly responsive in such frequency 

interval (for a review, see Pfurtscheller and Lopes da Silva, 1999). The task-related pattern of 

cortical connectivity was obtained by calculating the DTF between the cortical current density 

waveforms estimated in each ROI depicted on the realistic cortex model. The connectivity 

patterns between the ROIs have been represented by arrows pointing from one cortical area 

toward another one. The arrows color and size code the strength of the functional connectivity 

estimated between the source and the target ROI. Labels indicate the ROIs involved in the 

estimated connectivity pattern. Only the cortical connections statistically significant at p < 

0.01 are represented, according to the thresholds obtained by the shuffling procedure 

described above. It can be noted that the connectivity patterns during the period preceding and 

following the movement in the alpha band involves bilaterally the parietal and sensorimotor 
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ROIs, which are also functionally connected with the premotor cortical ROIs. A minor 

involvement of the prefrontal ROIs is also observed. The stronger functional connections are 

relative to the link between the premotor and prefrontal areas of both cerebral hemispheres. 

After the preparation and the beginning of the finger movement, in the POST period slight 

changes in the connectivity patterns can be noted.  

 
Fig. 1.16 Cortical connectivity patterns obtained by the DTF method, for the period preceding and 
following the movement onset, in the alpha (8-12 Hz) frequency band. The patterns are shown on the 
realistic head model and cortical envelope of the subject analyzed, obtained from sequential MRIs. 
Functional connections are represented with arrows, moving from a cortical area toward another one. 
The arrows’ colors and sizes code the strengths of the connections. A): Connectivity pattern obtained 
from ERP data before the onset of the right finger movement (electromyographic onset; EMG). B): 
Connectivity patterns obtained after the EMG onset. Same conventions as above. 
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Discussion 
 

  

In the case in which the SEM methodology was applied on the recorded high resolution 

EEG data the model of interactions between cortical areas is based on previous results on 

similar tasks obtained with different brain imaging methods. Such model is sufficient to 

address some key questions regarding the influence of the premotor and motor areas toward 

the prefrontal cortical areas during the task analyzed. The finger tapping data analyzed here 

present a high SNR and a large number of trials, resulting in an extended record of ERP data. 

Hence, the present simulation results suggest the optimal performance of the SEM method as 

applied to the human ERP potentials. The connectivity pattern estimated via SEM reveals the 

potentiality of the employed methodology including the use of high resolution EEG 

recordings, the generation of a realistic head model by using sequential MRIs, and the 

estimation of the cortical activity with the solution of linear inverse problem. With this 

methodology, it would be possible not only to detect which of the cortical areas activate 

during a particular (motor) task but also how these areas are effectively inter-connected in 

subserving that given task. In particular, the influence of the parietal area has been observed 

toward the premotor cortical areas during the task preparation, consistent with the role that the 

parietal areas have in the engagement of attentive resources as well as temporization, as 

assessed by several electrophysiological studies on primate or hemodynamical studies on 

humans (Culham et al., 2001) It is of interest the shift of the cortical areas behaving as the 

most relevant origin of functional links, occurring when the somatosensory reafferences arrive 

from the periphery to the cortex. In fact, the left sensorimotor area becomes very active with 

respect to the left parietal one, which, in turn, are used to be mainly engaged in the time 

period preceding the finger movement. Connections between the sensorimotor area and the 

premotor and left prefrontal areas are appropriate to distribute the information related to the 

movement of the finger to the higher functional regions (prefrontal and premotor). 

 

From a physiological point of view, the results obtained by estimating the connectivity 

patterns with the DTF are consistent and integrate those already present in literature on simple 

finger movements, as they have been obtained with neuroelectric measurements. A study 

employing ERP measurements from scalp electrodes and the assessment of connectivity with 

the non directional coherence methods has underlined the role of the primary sensorimotor 
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and supplementary motor areas in the processing of the movements (Gerloff et al., 1998). The 

connectivity patterns depicted in the premotor and prefrontal ROIs here analyzed, are in 

agreement with earlier hypotheses formulated in literature (Rothwell et al., 1991; Sekihara et 

al., 1996; Classen et al., 1998). The aforementioned studies have suggested as the dorsolateral 

and the ventral premotor cortices are specifically activated by movements guided by sensory 

information as opposed to movements carried out with no sensory control. The activity noted 

in the parietal areas (BA 5) in the present study, could be associated with the role that this 

area has in the somatosensory-motor integration underlying movement performing. In fact, it 

has been hypothesized that this area could be regarded as a higher-order somatosensory zone 

devoted to the analysis of proprioceptive information from joints for the appropriate motor 

control (Rizzolatti et al., 1998). 
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APPLICATION TO HIGH RESOLUTION EEG RECORDINGS IN A 

COGNITIVE TASK (STROOP TEST) 

 
 
 

Fig. 1.17. Scheme of the Stroop task. If the meaning of the word is a color, written in the color itself, 
the  condition is congruent (left). If the word means a color and it’s written in a different color, the 
condition is incongruent (center). If the meaning is not a color, the condition is neutral (right). The 
subject should pronounce the color in which the word is written (irrespective of the meaning of the 
word) in the shortest time possible. 
 
 
Subjects and Experimental Design 

 

High-density EEG recordings were performed on a group of five normal subjects. 

Here I present the connectivity results related to one representative subject, in order to 

illustrate the potential of the methods investigated. Subjects were seated in a comfortable chair 

in a quiet room connected to the adjacent equipment room by intercom. They viewed a screen 

where the name of a color (e.g., ‘red’) was printed in the same color (e.g., in red ink, 

congruent condition) or a different color (e.g., in blue ink, incongruent condition), as shown in 

Fig. 1.17. Blocks of congruent or incongruent words alternated with blocks of neutral words 

(not color names). There were 256 trials in 16 blocks (4 color congruent, 8 neutral, 4 color-

incongruent) of 16 trials, with a variable inter-trial-interval averaging 2000 ms between trial 

onsets. Within the congruent blocks, half of the words were neutral, to prevent the 

development of word reading strategies in the congruent blocks. A trial began with the 

presentation of a word for 1500 ms, followed by a fixation cross for an average of 500 ms. 

Each trial consisted of one word presented in one of four ink colors (red, yellow, green, blue), 

with each color occurring equally often with each word type (congruent, neutral, incongruent). 
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Subjects were asked to press one of four buttons that corresponded to the color of the ink the 

presented word. Data from 0 to 450 ms post-stimulus was analyzed.   

 

 

EEG recordings  
 
 

EEG was recorded using well established methods (e.g., following the recent 

guidelines of Picton et al., 2002). A custom-designed Falk Minow cap located 64 scalp 

locations for EEG and EOG recording, with the EEG electrodes spaced equidistantly, with left 

mastoid serving as the reference for all other sites. Electrode impedances were below 10K 

ohms. Amplifier bandpass was .1 to 100 Hz with digitization at 250 Hz, and the EEG data 

were successively digitally filtered at 50 Hz. Electrode positions were digitized using a Zebris 

3D localization device with respect to anatomic landmarks (nasion and two preauricular 

points). ERP data were visually inspected, and trials containing artifacts were rejected. A 

semi-automatic, supervised threshold criteria was used for the rejection of trials contaminated 

by ocular and EMG artifacts, as described in detail elsewhere (Moretti et al., 2003). After 

artifact rejection, ERP signals were baseline adjusted. 

 

 

Results  
 

 After the solution of the linear inverse problem, the estimation of the current density 

waveforms on each ROI was obtained as described in the previous paragraphs. Connectivity 

estimations were performed by DTF, PDC, and dDTF, and the statistical thresholds were 

evaluated via the shuffling procedure previously described. The order of the MVAR model 

used for each estimation was determined by means of the Akaike Information Criterion 

(AIC), which returned an optimal order of 13. Details of the electrode montage are shown on 

the realistic reconstruction of a subject’s scalp in Fig. 1.18. The different ROIs selected are 

shown in different colors on the realistic reconstruction of the subject’s left cortical 

hemisphere (regions of the cortex not of interest are shown in gray). By means of the linear 

inverse procedure, the estimation of the current density waveforms in each ROI of interest 

was then performed, according to Eqs. (33)-(36). The DTF, PDC, and dDTF estimators were 

applied to the cortical waveforms related to the ROIs of interest. 
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Fig. 1.18 Over the right emisphere, the electrode montage (59 electrodes) is shown on the realistic 
reconstruction of a subject’s scalp, obtained from structural MRIs. Over the left emisphere, the ROIs 
considered for this study are shown on the realistic reconstruction of the subject’s cortex. Each ROI is 
represented in a different color. The ROIs considered are the cingulate motor area (CMA), the 
Brodmann area 7 (A7) and 5 (A5), the primary motor area  the posterior Supplementary Motor Area 
(SMAp) and the lateral Supplementary Motor Area (A6_L). 
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Fig. 1.19 shows the cortical connectivity patterns obtained for the CONGRUENT 

stimuli during the period preceding the subject’s answer (0-450 ms after the stimulus 

presentation) in the representative subject. The results are shown for the beta band (12-29 

Hz). The DTF (left), PDC (center), and dDTF (right) methods produced similar results. In 

particular, functional connections between cortical parieto-frontal areas were present in all the 

estimations performed by the DTF, PDC, and dDTF methods. Moreover, connections 

involving the cingulate cortex are also clearly visible, as well as those involving prefrontal 

areas, mainly in the right hemisphere. Functional connections in  prefrontal and premotor 

areas tended to be right-sided, whereas the functional activity in the parietal cortices was 

generally bilateral.  

 
Fig. 1.19 Cortical connectivity patterns obtained for the period preceding the subject’s response 
during congruent trials in the beta (12-29 Hz) frequency band in a representative subject. The patterns 
are shown on the realistic head model and cortical envelope of the subject, obtained from sequential 
MRIs. The brain is seen from above, left hemisphere represented on the right side. Functional 
connections are represented with arrows, that moves from a cortical area toward another one. The 
arrows’ colors and sizes code the strengths of the connections. The lighter and the bigger the arrows, 
the stronger the connections. Three connectivity patterns are depicted, estimated in the beta frequency 
band for the same subject with the DTF (left), the PDC (middle) and the dDTF (right). Only the 
cortical connections statistically significant at p < 0.01 are reported. 

 
Fig. 1.20 shows the inflow (first row) and outflow (second row) patterns computed for 

the same subject in the beta frequency band, for the same time period shown in Fig. 1.19. The 

ROIs that are very active as source or sink (i.e., the source/target of the information flow 

to/from other ROIs) show results that are generally stable across the different estimators. 

Values in the left column are related to the inflow and outflow computations obtained with 

the DTF methods, the central column is related to the flows obtained with the PDC, and the 
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right column to the dDTF. Across methods, greater involvement of the right premotor and 

prefrontal regions is observed. 

 

Fig. 1.20 Figure shows the inflow (first row) and the outflow (second row) patterns obtained for the 
beta frequency band, from each ROI during the congruent trials. The brain is seen from above, left 
hemisphere represented on the right side. In the first row the figure summarizes in red hues the 
behavior of a ROI in terms of reception of information flow from other ROIs, by adding the values of 
the links arriving on the particular ROI from all the others. The information is coded with the size and 
the color of a sphere, centered on the particular ROI analyzed. The larger the sphere, the higher the 
value of inflow or outflow for any given ROI. In the second row the blue hues code the outflow of 
information from a single ROI towards all the others. 
 
 
 
 Discussion 
 

Although presented here only to demonstrate the capabilities of the estimation 

procedures with real data, the physiological results shown for a representative subject are 

consistent with those present in the Stroop literature. The Stroop task is often employed in 

studies of selective attention and has been found to be sensitive to prefrontal damage. For 

incongruent stimuli, PET and fMRI studies have shown activation of a network of anterior 

brain regions. Most studies report activation of the anterior cingulate cortex (ACC) and 
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frontal polar cortex, and several authors have hinted at changes in regional cerebral blood 

flow (rCFB) in posterior cingulate and other posterior regions (Carter et al., 1995, Bench et 

al., 1993, Milham, Banich, & Barad, V. 2003).  

In the present study, ACC was approximately modeled by the CMA ROI and 

dorsolateral prefrontal areas by the 9/46 ROI. Connectivity analysis indicated intense, 

bilateral ACC activity during the task. The number of directed interactions was similar across 

several frequency bands, but there were differences in the connectivity structure across the 

congruent-incongruent tasks (not shown here). These results were corroborated by the inflow-

outflow analysis that showed agreement between the methodologies used for the derivation of 

the connectivity patterns. The predominance of outflow from right premotor and prefrontal 

cortical areas is of interest, and the increased activity in the prefrontal cortical regions is in 

agreement with previous scalp observations. In an EEG Stroop study, West and Bell (1997) 

reported increased spectral power at medial (F3, F4) and lateral (F7, F8) frontal sites, as well 

as over parietal regions (P3, P4). They suggested that activation of the parietal cortex resulted 

from interaction between prefrontal and parietal regions during the suppression of the 

influence of the irrelevant word meaning. Interaction between parietal and frontal sites has 

been advocated as an explanation for the activation of posterior areas (Carter et al., 1995; 

Milham et al., 2003; West and Bell, 1997). Possibly, the minimization of the influence of 

irrelevant word information prompts directed interactions from parietal toward frontal sites.  

In a previous coherence study (Schack et al., 1999), increased coherence between 

parietal and frontal sites was observed late in the trial. This behaviour is not detectable at the 

scalp level. With the application of advanced high-resolution EEG methodologies, including 

realistic cortical modeling, solution of the linear inverse problem, and the application to the 

computed cortical signals of connectivity pattern estimators, it became observable. These data 

suggest that cognitive control is implemented by medial and lateral prefrontal cortices that 

bias processes in regions that have been implicated in high-level perceptual and motor 

processes (Egner and Hirsh, 2005). It is also striking that in all the frequency bands and for 

the five subjects analyzed the differences between the estimated connectivity patterns with the 

connectivity estimation methods were negligible (results not shown here). This result suggests 

that in practical conditions constant differences of only a few percent observed in the 

simulation studies between DTF, PDC, and dDTF estimators are not as significant as other 

factors such as SNR and recording LENGTH.  
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APPLICATION TO DATA RELATED TO THE INTENTION OF LIMB 

MOVEMENTS IN NORMAL SUBJECTS AND IN A SPINAL CORD INJURED 

PATIENT  

 

Subjects and experimental design 
 

 Three healthy subjects and a subject with a spinal cord injury (SCI) participated in the 

study. Informed consent was obtained in each subject after explanation of the study, which 

was approved by the local institutional ethics committee. The SCI was of traumatic aetiology 

and located at the cervical level (C7) and the patient had not suffered for a head or brain 

lesion associated with the trauma leading to the injury. The patient was unable to move his 

upper and lower limbs. For the EEG data acquisition, subjects were comfortably seated on a 

reclining chair, in an electrically shielded, dimly lit room. They were asked to perform a brisk 

protrusion of their lips (lip pursing) while they were performing (for the normal subjects) or 

attempting (SCI patient) a right foot movement. The task was repeated every 6-7 seconds, in a 

self-paced manner, and the 100 single trials recorded will be used for the estimate of the DTF. 

A 96-channel EEG system (BrainAmp, Brainproducts GmbH, Germany) was used to record 

electrical potentials by means of an electrode cap, accordingly to an extension of the 10-20 

international system. Structural MRIs of the subject’s head were taken with a Siemens 1.5T 

Vision Magnetom MR system (Germany). 

 

Estimated connectivity patterns  
 After the solution of the linear inverse procedure, the estimation of the current density 

waveforms in the employed ROIs were obtained as previously described. Statistical 

significance of the cortical connections was obtained by comparing the estimated cortical 

connectivities with respect to the mean values of the distribution of the random connectivity 

values between the cortical signals once the deterministic interdependency between these 

signals were removed. Fig.1.21 shows the cortical connectivity patterns during the period 

preceding the lips movement onset, and hence related to the preparation of the foot and lips 

movement in all the three normal subjects examined.  
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Here, I present the results obtained for the connectivity pattern in the gamma band. In the 

inset, the arrow color level and sizes codes the level of strength of the connection. In the 

labels, the names of the ROIs employed are indicated. Only the cortical connections 

statistically significant at p < 0.01 are represented. Note that the connectivity patterns, 

estimated in the gamma band, presents strong functional connections between the CMA and  

 

the premotor motor areas of both cerebral hemispheres. It can be appreciated the substantial 

equivalence of the connectivity patterns estimated for the three normal subjects. Hence, the 

functional directional connections during the preparation of the foot movement are generated 

in the gamma band from the cingulated areas and spread toward the supplementary motor 

 
Fig. 1.21. The cortical connectivity patterns obtained for the period preceding the lips movement in 
three normal subjects, analyzed in the gamma frequency band. Cortical functional connections are 
represented with arrows, that moves from the source cortical area toward the target one. In the inset, 
the arrows’ colors and sizes code the level of strengths of the connections. Bottom: connectivity 
patterns obtained from EEG data represented on the realistic cortical reconstruction of each 
experimental subject, obtained from sequential MRIs, seen from left and above. Top: Details of the 
connectivity patterns for the central areas. Only the cortical connections statistically significant at p < 
0.01 are represented. 
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areas. These patterns have to be compared with that estimated in the SCI patient, during the 

performance of a similar experimental task. 

 

Cortical connectivity patterns in SCI 
 

 The EEG recording and the estimation of the cortical activity and connectivity for the 

SCI patient during the task was accomplished in the same way already described for the 

normal subjects. Fig. 1.22 depicts the connectivity pattern in the gamma frequency band 

before the execution of the lip movement accompanied to the attempt to move the paralyzed 

limb. It can be noted how this pattern is similar to those generated by the normal subjects 

during the preparation to the foot movement. Also in this case the connectivity flow is 

generated from the cingulated areas and spreads to the supplementary motor areas. Same 

similarities were observed for the connectivity patterns already generated in the other 

frequency bands examined between the SCI patient and the group of three normal subjects. 

 
Fig. 1.22 Cortical connectivity patterns obtained for the period preceding the movement onset in a 
SCI patient, in the gamma frequency band. Same convention than in the previous figure. Only the 
cortical connections statistically significant at p < 0.01 are represented. 
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Conclusion 
 

 The main results here provided highlight the possible existence of a common pattern 

of cortical connectivity during the execution (normal) or the imagination (SCI patient) of a 

foot limb movement. The activity noted in the cingulated and supplementary motor areas in 

the present study is consistent with the role that such cortical areas have in the organization 

and in the performance of simple foot movements. This finding, if confirmed in a larger 

population of normal subjects as well as SCI patients, could open the way for the use of such 

feature in a clinical context, for instance in the brain computer interface area. It is worth of 

note that the presented technology can be applied to retrieve patterns of cortical connectivity 

during more complex clinically relevant tasks in patients, by using non invasive EEG 

recordings. Examples in this respect will include the use of the connectivity pattern study in 

the analysis of the brain damage generated by a stroke, as well as an analysis of the possible 

recovery of the brain motor areas during the rehabilitation paths.  
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ON THE APPLICATION OF CONNECTIVITY METHODS TO THE 

STATIONARY EEG SIGNALS 

 
Taken together, the findings of this part of the research indicate that an accurate 

estimation of the cortical connectivity patterns can be achieved by using realistic models for 

the head and cortical surfaces, high resolution EEG recordings, and effective and functional 

cortical connectivity by using the SEM, DTF, dDTF and PDC methods, respectively. The 

simulation findings suggest that in conditions largely met in the ERPs recordings, (SNR at 

least 3 and a length of the recording EEG superior to 75 seconds at 64 Hz, or to 4800 data 

samples), the computation of functional connectivity by all the methods employed can be 

performed with moderate quantitative errors. The use of high resolution EEG recordings and 

the estimation of the cortical waveforms in ROIs via the solution of linear inverse problem 

allows the evaluation of the functional cortical connectivity patterns related to the task 

performed. These computational tools (high resolution EEG, estimation of cortical activity via 

linear inverse problem, connectivity methods) can be of interest to assess functional 

connectivity patterns from non invasive EEG recordings in humans. However, the classical 

estimation of these methods requires the stationarity of the signals, and, with the estimation of 

a unique MVAR model on an entire time interval, transient pathways of information transfer 

remains hidden. This limitation could bias the physiologic interpretation of the results 

obtained with the connectivity technique employed. 

To overcome this limitation, we need to approach a time-varying estimation of cortical 

connectivity, to be performed always within the framework of the Granger causality. This is 

the aim of the following section of the thesis. 

 



                                                                                                              SECTION I – REFERENCES 

 67

SECTION I REFERENCES 

 

Akaike H. (1974) A new look at statistical model identification. IEEE Trans Automat Control 

AC-19:716-723 

Astolfi L., Cincotti F, Babiloni C., Carducci F., Basilisco A, Rossini PM, Salinari S.,. Mattia 

D., Cerutti S, Ben Dayan D , Ding L., Ni Y, He B. and Babiloni F. Estimation Of 

The Cortical Connectivity By High Resolution EEG and Structural Equation 

Modeling: Simulations and Application To Finger Tapping Data, IEEE Trans. On 

Biom. Engng., IEEE Trans Biomed Eng. 2005a May;52(5):757-68. 

Astolfi L., Cincotti F, Mattia D., Babiloni C., Carducci F., Basilisco A, Rossini PM, Salinari 

S.,. Ding L., Ni Y, He B. and Babiloni F., Assessing Cortical Functional 

Connectivity By Linear Inverse Estimation And Directed Transfer Function: 

Simulations And Application To Real Data, Clin Neurophysiol. 2005b 

Apr;116(4):920-32.   

Babiloni F, Cincotti F, Babiloni C., Carducci F., Basilisco A, Rossini PM, Mattia D., Astolfi 

L., Ding L., Ni Y, Cheng K, Christine K, Sweeney J , He B.,  Estimation of the 

cortical functional connectivity with the multimodal integration of high resolution 

EEG and fMRI data by Directed Transfer Function, Neuroimage, 2005 Jan 

1;24(1):118-31.   

Babiloni F, Babiloni C, Carducci F, Romani GL, Rossini PM, Angelone LM, Cincotti F.   

Multimodal integration of EEG and MEG data: a simulation study with variable 

signal-to-noise ratio and number of sensors. Hum Brain Mapp. 2004 May;22(1):52-

62.  

Babiloni F, Babiloni C, Carducci F, Romani GL, Rossini PM, Angelone LM, Cincotti F. 

Multimodal integration of high-resolution EEG and functional magnetic resonance 

imaging data: a simulation study. Neuroimage, May; 19(1):1-15, 2003.  

Babiloni F., Carducci F, Cincotti F, Del Gratta C, Pizzella V, Romani GL, Rossini PM, 

Tecchio F., and Babiloni C, Linear inverse source estimate of combined EEG and 

MEG data related to voluntary movements., Human Brain Mapping, 14 (3), 2001 



                                                                                                              SECTION I – REFERENCES 

 68

Babiloni F, Babiloni C, Locche L, Cincotti F, Rossini PM, Carducci F. High-resolution 

electroencephalogram: source estimates of Laplacian-transformed somatosensory-

evoked potentials using a realistic subject head model constructed from magnetic 

resonance images. Med Biol Eng Comput. 2000 Sep;38(5):512-9.  

Babiloni F, Babiloni C, Carducci F, Fattorini L, Anello C, Onorati P, Urbano A. High 

resolution EEG: a new model-dependent spatial deblurring method using a 

realistically-shaped MR-constructed subject’s head model. Electroenceph clin 

Neurophysiol 1997;102: 69–80. 

Baccalà L.A., Sameshima K, Partial Directed Coherence: a new concept in neural structure 

determination. Biol Cybern, 84: 463-474, 2001.   

Baccalà L.A., On the efficient computation of partial coherence from multivariate 

autoregressive model, in Callaos N, Rosario D, Sanches B (eds.), Proceedings of the 

5th World Conference Cybernectis Systemics and Informatics SCI 2001, Orlando, 

2001 

Bench CJ, Frith CD, Grasby PM, Friston KJ, Paulesu E, Frackowiak RSJ, Dolan RJ. 

Investigations of the functional anatomy of attention using the Stroop test. 

Neuropsychology 1993;31:907_/22.  

Bendat JS, Piersol, AG, Engineering Applications of Correlation and Spectral Analysis, 

Wiley, 1993 

Bollen, K. A. Structural Equations with latent variables New York: Wiley and sons. 1989 

Bressler SL. Large-scale cortical networks and cognition. Brain Res.Brain Res.Rev. 1995; 

20(3):p. 288-304 

Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL, Beta oscillations in a 

large-scale sensorimotor cortical network: directional influences revealed by 

Granger causality. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9849-54 

Brovelli A, Lachaux JP, Kahane P, Boussaoud D, High gamma frequency oscillatory activity 

dissociates attention from intention in the human premotor cortex. Neuroimage. 

2005 Jul 12 

Buchel C, Friston KJ, Modulation of connectivity in visual pathways by attention: cortical 

interactions evaluated with structural equation modeling and fMRI. Cereb Cortex 

1997;7(8):768-78. 



                                                                                                              SECTION I – REFERENCES 

 69

Carter CS, Mintun M, Cohen JD. Interference and facilitation effects during selective 

attention: an H215O PET study of Stroop task performance. NeuroImage 

1995;2:264 _/72. 

Clifford Carter G. Coherence and time delay estimation. Proc.I.E.E.E. 1987;75, 236– 255. 

Cover, J.A. Thomas, Elements of Information Theory, New York: Wiley, 1991 

Culham JC, Kanwisher NG. Neuroimaging of cognitive functions in human parietal cortex. 

Curr.Opin.Neurobiol. 2001; 11(2):p. 157-63 

Classen J, Gerloff C, Honda M, Hallet M. Integrative visuomotor behavior is associated with 

interregionally coherent oscillation in the human brain. J.Neurophysiol 1998; 3p. 

1567-73 

Dale, A. Liu, B. Fischl, R. Buckner, J.W. Belliveau, J. Lewine and E. Halgren, “Dynamic 

Statistical Parametric Mapping: Combining fMRI and MEG for High-Resolution 

Imaging of Cortical Activity,” Neuron, 26:55-67, 2000 

Dale AM, Sereno M. Improved localization of cortical activity by combining EEG and MEG 

with MRI cortical surface reconstruction:a linear approach. J Cogn Neurosci 

1993;5:162–76. 

David O, Cosmelli D, Friston KJ. Evaluation of different measures of functional connectivity 

using a neural mass model. NeuroImage  2004;21, 659–673. 

Ding M, Bressler SL, Yang W, Liang H. Short-window spectral analysis of cortical event 

related potentials by adaptive multivariate autoregressive modeling: data 

preprocessing, model validation and variability assessment. Biol Cybern 2000;83: 

35-45. 

Egner T. and Hirsh, J. The neural correlates and functional integration of cognitive control in 

a Stroop task. Neuroimage, 2005, 23, 539-547. 

Fa-Hsuan L. Spatio temporal brain imaging and modeling. PhD thesis, MIT press, December 

2003. 

Franaszczuk P. J., K. J. Blinowska, and M. Kowalczyk, “The application of parametric 

multichannel spectral estimates in the study of electrical brain activity,” Biol. 

Cybern., vol. 51, pp. 239–247, 1985. 

Friston, C.D. Frith, R.S.J. Frackowiak, “Time-dependent changes in effective connectivity 

measured with PET,”. Hum. Brain Mapp., 1, 69–80, 1993 



                                                                                                              SECTION I – REFERENCES 

 70

Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. 

Human Brain Mapping, 2, 56-78. 

Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M. Functional coupling and 

regional activation of human cortical motor areas during simple, internally paced 

and externally paced finger movements. Brain 1998; 121 ( Pt 8)p. 1513-31 

Gevins A, Le J, Leong H, McEvoy LK, Smith ME. Deblurring. J Clin Neurophysiol 

1999;16(3):204-13. 

Gevins A, Le J, Martin N, Brickett P, Desmond J, Reutter B. High resolution EEG: 124-

channel recording, spatial deblurring and MRI integration methods. Electroenceph 

clin Neurophysiol 1994;39:337–58. 

Gevins A, Brickett P, Reutter B, Desmond J. Seeing through the skull: advanced EEGs use 

MRIs to accurately measure cortical activity from the scalp. Brain Topogr. 1991;4: 

125-131. 

Gevins A, Brickett P, Costales B, Le J, Reutter B. Beyond topographic mapping: towards 

functional–anatomical imaging with 124-channel EEG and 3-D MRIs. Brain Topogr 

1990;1:53–64. 

Gevins AS, Cutillo BA, Bressler SL, Morgan NH, White RM, Illes J, Greer DS. Event-related 

covariances during a bimanual visuomotor task. II. Preparation and feedback. 

Electroencephalogr. Clin. Neurophysiol. 1989a;74, 147–160. 

Gevins A. Dynamic functional topography of cognitive task. Brain Topography 1989b;2:37–

56. 

Granger CWJ. Investigating causal relations by econometric models and cross-spectral 

methods. Econometrica 1969;37, 424–438.  

Grave de Peralta Menendez R, Gonzalez Andino SL. Distributed source models: standard 

solutions and new developments. In: Uhl, C. (ed): Analysis of neurophysiological 

brain functioning. Springer Verlag, pp.176-201, 1999. 

Gross J, Kujala J,, Hämäläinen M, Timmermann L, Schnitzler A, Salmelin R. Dynamic 

imaging of coherent sources: studying neural interactions in the human brain. Proc. 

Natl. Acad. Sci. USA 98 2 2001;694–699. 

Gross J, Timmermann L, Kujala J, Salmelin R, Schnitzler A. Properties of MEG tomographic 

maps obtained with spatial filtering. NeuroImage 2003; 19: 1329-1336. 



                                                                                                              SECTION I – REFERENCES 

 71

Hadjipapas A, Hillebrand A, Holliday IE, Singh KD, Barnes GR. Assessing interactions of 

linear and nonlinear neuronal sources using MEG beamformers: a proof of concept, 

Clin Neurophysiol. 2005 Jun;116(6):1300-13. Epub 2005 Mar 28 

Hansen PC. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review 

1992a;34, 561-580. 

Hansen PC. Numerical tools for the analysis and solution of Fredholm integral equations of 

the first kind. Inverse Problems 1992b;8, 849-872. 

He B, Lian J. Spatio-temporal Functional Neuroimaging of Brain Electric Activity. Critical 

Review of Biomedical Engineering 2002;30-283-306. 

He B, Zhang Z, Lian J, Sasaki H, Wu S, Towle VL. Boundary Element Method Based 

Cortical Potential Imaging of Somatosensory Evoked Potentials Using Subjects’ 

Magnetic Resonance Images. NeuroImage 2002;16: 564-576. 

He B, Wang Y, Wu D. Estimating cortical potentials from scalp EEG’s in a realistically 

shaped inhomogeneous head model. IEEE Trans Biomed Eng 1999;46:1264–8. 

Horwitz B. The elusive concept of brain connectivity. Neuroimage 2003;19, 466-470. 

Inouye T., Iyama, A., Shinosaki, K., Toi, S. and Matsumoto, Y., 1995. Inter-site EEG 

relationships before widespread epileptiform discharges. Int. J. Neurosci. 82, pp. 

143–153. 

Huang, M.X., Shih, J., Lee, R.R., Harrington, D.L., Thoma, R.J., Weisend, M.P., Hanlon, 

F.M., Paulson, K.M., Li, T., Martin, K., Miller, G.A., &  Cañive, J.M. (2004). 

Commonalities and differences among vectorized beamformers in electromagnetic 

source imaging. Brain Topography, 16, 139-158. 

Kaminski M, Blinowska K. A new method of the description of the information flow in the 

brain structures. Biol. Cybern. 1991;65: 203-210. 

Kaminski M, Ding M, Truccolo WA, Bressler S. Evaluating causal relations in neural 

systems: Granger causality, directed transfer function and statistical assessment of 

significance. Biol. Cybern. 2001;85, 145-157. 

Kay M.S. , "Modern Spectral Estimation" Prentice Hall, 1988. 

Korzeniewska A, Manczak M., Kaminski M., Blinowska K., Kasicki S. Determination of 

information flow direction between brain structures by a modified Directed Transfer 

Function method (dDTF) Journal of Neuroscience Methods 125, 195-207, 2003 



                                                                                                              SECTION I – REFERENCES 

 72

Kus R, Kaminski M, Blinowska KJ Determination of EEG activity propagation: pair-wise 

versus multichannel estimate. IEEE Trans Biomed Eng. Sep;51(9):1501-10, 2004. 

K Jöreskog and D. Sörbom, LISREL 8.53, software, December 2002. Scientific Software 

International, Inc. Available: http://www.ssicentral.com 

Jancke L, Loose R, Lutz K, Specht K, Shah NJ. Cortical activations during paced finger-

tapping applying visual and auditory pacing stimuli. Brain Res.Cogn Brain Res. 

2000; 10(1-2):p. 51-66 

Le J, Gevins A. A method to reduce blur distortion from EEG’s using a realistic head model. 

IEEE Trans Biomed Eng 1993;40:517–28. 

Lee L, Harrison LM, Mechelli A. The functional brain connectivity workshop: report and 

commentary, Neuroimage 2003;19, 457-465. 

Liu A.K., “Spatiotemporal brain imaging,” PhD dissertation, Massachusetts Institute of 

Technology, Cambridge, MA, 2000. 

Liu A.K., Belliveau J.W., Dale A.M., “Monte Carlo simulation studies of EEG and MEG 

localization accuracy,” Hum Brain Mapp., 16:47– 62, 2002. 

Liu A.K., Belliveau, J.W., and Dale, A.M., 1998, Spatiotemporal imaging of human brain 

activity using functional MRI constrained magnetoencephalography data: Monte 

Carlo simulations, Proc.  Nat. Acad. Sc., 95(15):8945-50. 

Marple S.L. "Digital Spectral Analysis with Applications" Prentice Hall, 1987 

McIntosh AR, Gonzalez-Lima F. Structural equation modeling and its application to network 

analysis in functional brain imaging. Hum.Brain Mapp 1994; 2p. 2-22. 

Milham, M.P., Banich, M.T. & Barad, V. Competition for priority in processing increases 

prefrontal cortex's involvement in top-down control: An event-related fMRI study of 

the Stroop Task.  Cognitive Brain Research, 2003, 17, 212-222. 

Moretti DV, Babiloni F, Carducci F, Cincotti F, Remondini E, Rossini PM, Salinari S, 

Babiloni C. Computerized processing of EEG-EOG-EMG artifacts for multi-centric 

studies in EEG oscillations and event-related potentials. Int J Psychophysiol. 2003 

Mar;47(3):199-216.  

 Nunez PL. Neocortical dynamics and human EEG rhythms, Oxford University Press, New 

York 1995.  



                                                                                                              SECTION I – REFERENCES 

 73

Nunez PL, Silberstein RB, Cadiush PJ, Wijesinghe J, Westdorp AF,Srinivasan R. A 

theoretical and experimental study of high resolution EEG based on surface 

Laplacians and cortical imaging. Electroenceph. clin Neurophysiol 1994;90:40–57. 

Nunez P. Electric fields of the brain. New York: Oxford University Press; 1981. 

Pascual-Marqui RD. Reply to comments by Hamalainen, Ilmoniemi and Nunez. In ISBET 

Newsletter N.6, December 1995. Ed: W. Skrandies., 16-28. 

Pfurtscheller G, Lopes da Silva FH.  Event-related EEG/MEG synchronization and 

desynchronization: basic principles. Clin Neurophysiol. 1999 Nov;110(11):1842-57. 

Picard N and Strick PL (1996): Imaging the premotor areas. Curr Opin Neurobiol 11(6): 663-

672. 

Pollok, B Gross, J. Muller,K , Aschersleben,G and Schnitzler A. The cerebral oscillatory 

network associated with auditorily paced finger movements, NeuroImage 24 (2005) 

646– 655 

Pollok, B Gross, J. Muller,K , Aschersleben,G and Schnitzler A. The oscillatory network of 

simple repetitive bimanual movements, Cognitive Brain Research 25 (2005) 300 – 

311 

Quian Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, “Performance of different 

synchronization measures in real data: a case study on electroencephalographic 

signals,” Phys. Rev., E 65, 041903, 2002 

Regan D. Human Brain Electrophysiology. Evoked Potentials and Evoked Magnetic Fields in 

Science and Medicine, New York: Elsevier Press, 1989. 

Rizzolatti G, Luppino G, Matelli M. The organization of the cortical motor system: new 

concepts. Electroencephalogr.Clin.Neurophysiol. 1998; 106(4):p. 283-96 

Roulston MS. Estimating the errors on measured entropy and mutual information. Physica D 

1999;125, 285– 294. 

Rosenblum, M.G., Pikovsky, A.S., 2001. Detecting direction of coupling in interacting 

oscillators. Phys. Rev., E Stat. Nonlinear Soft Matter Phys. 64, 045202 

Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD. Stimulation of the human motor 

cortex through the scalp. Exp.Physiol 1991; 76(2):p. 159-200 

Schack B, Chen ACN, Mescha S, Witte H. Instantaneous EEG coherence analysis during the 

Stroop task. Clin Neurophys 1999a;110:1410_/26. 



                                                                                                              SECTION I – REFERENCES 

 74

Schlögl A., 2003 Comparison of Multivariate Autoregressive Estimators. Available online at: 

http://www.dpmi.tugraz.ac.at/~schloegl/publications/TR_MVARcomp201.pdf 

Schlosser R, Gesierich T, Kaufmann B, Vucurevic G, Hunsche S, Gawehn J, Stoeter P. 

Altered effective connectivity during working memory performance in 

schizophrenia: a study with fMRI and structural equation modeling. Neuroimage. 

2003; 19(3):p. 751-63 

Sekihara K, Scholz B. Generalized Wiener estimation of three-dimensional current 

distribution from biomagnetic measurements. IEEE Trans.Biomed.Eng 1996; 

43(3):p. 281-91 

Sekihara, K. Nagarajan, S. Poeppel D. and Marantz, A.  Performance of an MEG adaptive-

beamformer technique in the presence of correlated neural activities: effects on 

signal intensity and time-course estimates, IEEE Trans Biomed Eng 49 (2002), pp. 

1534–1546 

Stam CJ, Breakspear M, van Cappellen van Walsum AM, van Dijk BW. Nonlinear 

synchronization in EEG and whole head MEG recordings of healthy subjects. Hum. 

Brain Mapp. 2003;19(2), 63– 78. 

Stam CJ, van Dijk BW. Synchronization likelihood: an unbiased measure of generalized 

synchronization in multivariate data sets. Physica,D 2002;163, 236– 251. 

Stam, J.P. Pijn, P. Suffczynski, F.H. Lopes da Silva, “Dynamics of the human alpha rhythm: 

evidence for non-linearity,” Clin. Neurophysiol., 110, 1801–1813, 1999 

Taniguchi M, Kato A, Fujita N, Hirata M, Tanaka H, Kihara T, Ninomiya H, Hirabuki N, 

Nakamura H, Robinson SE, Cheyne D, Yoshimine T. Movement-related 

desynchronization of the cerebral cortex studied with spatially filtered 

magnetoencephalography. Neuroimage. 2000; 12(3):p. 298-306 

Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD. Testing for nonlinearity in time 

series: the method of surrogate data. Physica D 1992; 58p. 77-94 

Tononi G, Sporns O, Edelman GM. A measure for brain complexity: relating functional 

segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U. S. A. 

1994;91, 5033– 5037. 



                                                                                                              SECTION I – REFERENCES 

 75

Urbano A, Babiloni C, Onorati P, Babiloni F. Dynamic functional coupling of high resolution 

EEG potentials related to unilateral internally triggered one-digit movements. 

Electroencephalogr Clin Neurophysiol. 1998;106(6):477-87. 

VanVeen, B.D. vanDrongelen, W. Yuchtman M. and Suzuki, A Localization of brain 

electrical activity via linearly constrained minimum variance spatial filtering, IEEE 

Trans Biomed Engl 44 (1997), pp. 867–880. 

Wendling F., Bartolomei F., Bellanger J.J.,Chauvel P., Epilepsy fast activity can be explained 

by a model of impaired GABAergic dendritic inhibition, Eur. J. Neurosci., May, 

15(9), 1499-1508, 2002. 

West R, Bell MA. Stroop-color word interference and electroencephalogram activation: 

evidence for age-related decline of the anterior attention system. Neuropsychology 

1997;11:421-7. 

 

 
 



SECTION II – ESTIMATION OF TIME-VARYING CONNECTIVITY 

 76

SECTION II. 

THE INSTANTANEOUS ESTIMATION OF THE TIME-VARYING 

CORTICAL CONNECTIVITY BY ADAPTIVE MULTIVARIATE 

ESTIMATORS 

INTRODUCTION 

As described in the section I of the present thesis, among the multivariate methods, the 

Directed Transfer Function (DTF) (Kaminski, 1991, 2001) and the Partial Directed Coherence 

(Baccalà, 2001) are estimators characterizing, at the same time, direction and spectral properties of 

the interaction between brain signals, and require only one MVAR model to be estimated from all 

the time series. However, the classical estimation of these methods requires the stationarity of the 

signals; moreover, with the estimation of a unique MVAR model on an entire time interval, 

transient pathways of information transfer remains hidden. This limitation could bias the 

physiologic interpretation of the results obtained with the connectivity technique employed. 

 To overcome this limitation, different algorithms for the estimation of MVAR with time 

dependent coefficients were recently developed. Ding et al. (Ding, 2000) used a short-time windows 

technique, which requires the stationarity of the signal within short-time windows. Moeller et al 

(Moeller, 2001) proposed an application to MVAR estimation of the extension of the recursive least 

squares (RLS) algorithm with a forgetting factor. This estimation procedure allows for the 

simultaneous fit of one mean MVAR model to a set of single trials, each one representing a 

measurement of the same task. In contrast to short-window techniques, the multi-trial RLS 

algorithm does not require the stationarity of the signals, and involves the information of the actual 

past of the signal, whose influence decreases exponentially with the time distance to the actual 

samples. The advantages of this estimation technique are an effective computation algorithm and a 

high adaptation capability. It was demonstrated in (Moeller, 2001) that the adaptation capability of 

the estimation (measured by its adaptation speed and variance) does not depend on the model 

dimension. Simulations on the efficacy of time-variant Granger causality based on AMVAR 

computed by RLS algorithm were also provided (Hesse, 2003).  



SECTION II – ESTIMATION OF TIME-VARYING CONNECTIVITY 

 77

In this section of the thesis I propose the use of the adaptive multivariate approach to define 

time-varying multivariate estimators based on DTF and PDC, thus making such estimators able to 

follow rapid changes in the connectivity between cortical areas during an experimental task. 

In this section, the performances of time-varying DTF and PDC were studied by means of 

simulations, performed on the basis of a predefined connectivity scheme linking three cortical areas. 

Cortical connections between the areas were retrieved by the estimation process under different 

experimental conditions. The results obtained for the different methods were evaluated by a 

statistical analysis, with particular attention to the adaptation speed and precision of the pattern 

retrieved. The simulation study was based on the following questions:  

 1) What are the performances of the proposed time-varying estimators in retrieving the rapid 

changes in time of the cortical connectivity pattern?  

 2) What is the effect of different factors affecting the recordings, like the signal to noise 

ratio and the amount of trials at disposal?  

 3) What is the influence of the adaptation constant C on the performances, and which can be 

a criterion for the choice of its optimum value? 

 4) Which of the two connectivity estimators applied (i.e PDC and DTF) is the most effective 

in reconstructing a connectivity model, under the conditions usually met in linear inverse 

estimations? 

Finally, according to the results of the simulation study, an application to real data is 

proposed, in order to offer an example of the results that can be obtainable by this body of 

technique. For this purpose, patterns of cortical connectivity between human brain areas involved in 

a simple motor task are presented. I applied the time-varying DTF/PDC techniques to the cortical 

activity estimated in particular regions of interest (ROIs) of the cortex, obtained from high 

resolution EEG recordings during the execution of a combined foot-lips movement.  

 

METHODS  

 
Time-varying multivariate connectivity estimation 
 

 The Directed Transfer Function (DTF) and the Partial Directed Coherence (PDC) estimators 

have been fully introduced in the previous section of the present thesis.  

 In this part of the thesis  an adaptive formulation of DTF and PDC, based on an adaptive 

MVAR (AMVAR) model, is proposed and tested. The time dependent parameter matrices were 
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estimated by means of the recursive least squares (RLS) algorithm with forgetting factor, as 

described in (Moeller, 2001). In particular, the RLS algorithm represents a particular variant of the 

Kalman Filter. This recursive estimator for the AMVAR-parameter is characterized by a more 

universal practicability since it requires less computational effort and it is possible to extend this 

approach to the presence of multiple realisations of the same process. The extension to multiple 

trials was introduced by Möller et al (Moeller, 2001). The fitting procedure of the AR parameters, 

exploits the RLS technique with the use of a forgetting factor. It is based on the minimization of the 

sum of exponentially weighted prediction errors of the process past. Thereby, the weighting 

depends on an adaptation constant 0 <= c < 1 which controls the compromise between adaptation 

speed and the quality of the estimation. Values close to zero result in a slower adaptation with more 

stable estimations and vice versa. A mean MVAR model was fit to a set of trials, each one 

representing the measurement of the same task. A comprehensive description of the algorithms may 

be found in (Moeller, 2001; Hesse, 2003). 

 

The Simulation Study 
 

The simulation was designed in order to test the capability of the two methods to follow rapid 

changes in the cortical connectivity as well as the precision of the estimation performed, under 

different levels of the factors of interest. Test signals simulating cortical average activations in 

different regions of the cortex were generated in order to fit an imposed coupling scheme, involving 

three cortical areas (shown in Fig. 2.1a). Simulated signals with different levels of Signal to Noise 

Ratio (SNR) and different number of trials have been systematically generated, in order to evaluate 

the influence of these factors on the estimates produced by the two methods. 

 Signal x1 was the average activity of a cortical region of interest, obtained by a linear inverse 

estimation procedure from a real EEG recording. The frequency spectrum of x1 follows the very 

typical appearance of the EEG signal, with a shape resembling the standard 1/f function, being f the 

EEG frequency, with a light peak in the alpha band (8-12 Hz).  The other signals were generated as 

shown in the following:  

∑
=

+−⋅=
N

1i
jjiijij )t(n)t(x)t(a)t(x τ

                                  (2.1) 

for j = 2, …, N 

where: 

- N is the number of ROIs 

- τji is the constant delay in the propagation from the ith to the jth area, expressed in samples; 
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)b,t(ˆ ijσ

- aji(t) is the time dependent amplitude of the connection between the ith and the jth area; 

- nj(t) is the residual representing the part of the jth area activation not depending from other 

areas, here playing the role of noise simulated with a uncorrelated Gaussian white noise. In 

particular, the SNR levels were obtained as the ratio between the power of the signals and the power 

of the noise signal. This was obtained by adjusting the amplitude of the white Gaussian noise 

superimposed to the data, in order to match the desired level of SNR. Delays applied were of 1 and 

2 samples, corresponding to delays of 4 and 8 msec, respectively, at a sampling rate of 256 Hz.  

All procedures of signal generation were repeated under the following conditions: 

    SNR factor levels = [1, 5, 10]; 

    TRIALS factor levels = [1, 2, 3, 5, 10, 20, 40, 80] each of 1000 samples, at a sampling 

frequency of 256 Hz. 

     Adaptation constant C factor levels = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 

0.10] 

The levels chosen for both SNR and TRIALS factors cover the typical range for the cortical 

activity estimated with high resolution EEG techniques. 

The results obtained by the two estimators were evaluated in four frequency bands, Theta (4-7 

Hz), Alpha (8-12 Hz), Beta1 (13-22 Hz) and Beta2 (23-30 Hz). 

To evaluate both the adaptation speed and the precision of the connectivity patterns estimated 

by the two methods, two different indices of the performances were defined. 

The first index was the times at settling, or ts, defined as the first instant following the 

transition after which the error is below the ε% of the transition amplitude (in our case, ε=10), 

corresponding to the following condition: 

      

(2.2) 

 Where b represents the generic frequency band,  σij(t,b) and     are the theoretical 

and the estimated average values of the time-frequency function (DTF or PDC), in each cortical 

band b;  Δk
ij is the time average computed during the kth transition interval (in the results here 

presented, there is only a transition in the simulated data, and k = 1) and ε is the percentage of the 

transition amplitude desired. The values of the DTF or PDC functions analyzed in this study were 

obtained by averaging the values of DTF or PDC for each frequency belonging to the band 

considered. 

The second index, used to evaluate the precision of the estimation performed, is the average 

error in each time interval during which the values of connection strengths are kept constant after 

the transition, and is defined as follows: 

s
k
ijijij tt,kt,100)b()b,t()b,t(ˆ >∈∀≤− Δεσσ



SECTION II – ESTIMATION OF TIME-VARYING CONNECTIVITY 

 80

t

ijij

tk
ij )b,t()b,t(ˆ)b(E σσ −=

 

    

(2.3) 

Simulations were performed by repeating for 50 times each generation-estimation procedure, 

in order to increase the robustness of the successive statistical analysis.  

 

 

Statistical analysis 

 The results obtained were subjected to separate Analysis of Variance (ANOVA).  The main 

factors of the ANOVAs were the SNR (3 levels: [1, 5, 10]) the number of TRIALS jointly used for 

the estimation (8 levels: [1, 2, 3, 5, 10, 20, 40, 80]), the adaptation constant C (10 levels: [0.01, 

0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10], each of 1000 samples, at a sampling frequency 

of 256 Hz) and the frequency BAND (with four levels: THETA= 4-7 Hz; ALPHA= 8-13 Hz; 

BETA1= 14-22 Hz; BETA2= 23-30 Hz). Separate ANOVAs for each frequency band were also 

performed on the error indexes defined in the previous paragraph (Relative Error, Time at Settling). 

In all the evaluated ANOVAs, the correction of Greenhouse-Gasser for the violation of the 

spherical hypothesis was used. The post-hoc analysis with the Duncan test at the p = 0.05 statistical 

significance level was then performed. 

 

Application to Real Data 

 
Experimental Design and EEG recordings 

Five right-handed healthy subjects (mean age 24.1 ± 1.5) participated to the study after the 

informed consent was obtained. Subjects were seated comfortably in an armchair with both arms 

relaxed and resting on pillows. They were asked to perform a brisk protrusion of their lips (lip 

pursing) while they were performing a right foot movement. The task was repeated every 6-7 

seconds, in a self-paced manner, and the 100 single trials were recorded. A 58-channel EEG system 

(BrainAmp, Brainproducts GmbH, Germany) was used to record electrical potentials by means of 

an electrode cap, accordingly to an extension of the 10-20 international system. Structural MRIs of 

the subject’s head were taken with a Siemens 1.5T Vision Magnetom MR system (Germany). The 

surface electromyographic (EMG) activity of the muscle was also collected. The onset of the EMG 

response served as zero time. All data were visually inspected, and trials containing artifacts were 

rejected. A semi-automatic supervised threshold criteria for the rejection of trials contaminated by 

ocular and EMG artifacts was used, as described in details elsewhere (Moretti, 2003). After the 

EEG recording, the electrode positions were digitized using a 3D localization device with respect to 
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the anatomic landmarks of the head (nasion and two preauricular points). The analysis period for 

the potentials time-locked to the movement execution was set from 1500 ms before to 0 time (EMG 

trigger). 

 

Head and cortical models 

The generation of the head and cortical models as well as the estimation of the cortical activity 

in the particular region of interest (ROIs) of the obtained model has been adequately treated in the 

part I of the this thesis and will not be repeated here.  

 
Regions of interest (ROIs)  

The particular cortical regions of interest (ROIs) employed in the study were drawn by an 

expert neuroradiologist on the computer-based cortical reconstruction of the individual head models 

of the five subjects. 12 ROIs, thought to be involved in the preparation and execution of simple self-

generated movements, were defined on the cortical model. In details, the supplementary motor area  

proper (SMAp) left and right; the caudal cingulate motor area (CMAc) from the left and right 

hemispheres; the primary motor foot (MI-foot) representational area and the primary motor lip (MI-

lip) representational area, both from the left and right hemisphere; the superior parietal cortex, SP 

and the pre-motor dorsal cortex, PMd, both in the left and right hemispheres. 

RESULTS 

 
Simulation study 
 

Simulated data representing the activations in 3 cortical areas were generated as described by 

Eq. (2.1), in order to fit a time-varying connectivity pattern, shown in Fig. 2.1a. The procedure was 

repeated under all the different conditions of number of trials and SNR. An adaptive MVAR of 

order p=3 was fitted to each set of simulated data. The model order p was chosen by means of a 

method proposed in (Schack, 1999). The multivariate Akaike Criterion was applied on each time 

interval and the maximum order obtained was then adopted for all the recursive estimation. 

The estimation of MVAR models with time-varying parameters was repeated with values of 

the adaptation constant C ranging from 0.01 to 0.1. Time varying DTF and PDC were then 

computed, and the Analysis of Variance (ANOVA) was performed on the indices of performances 

described in Eq. (2.2) and (2.3), in order to evaluate in a statistically rigorous manner the capability 

of the method to retrieve the correct connectivity pattern. 
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Figure 2.1: a) Connectivity pattern imposed between different regions of the cortex during simulation. The 
values of the connection strengths aij are time dependent, and are represented by the blue plots near each 
connectivity arrow. τij represents the constant delay in the propagation from area j to area i, expressed in 
samples. τ21=1, τ31=2 and τ32=1 (Corresponding to 4, 8 and 4 ms, respectively). Fig. 1 b) and c) show an 
example of theoretical and estimated time-frequency distribution of the time-varying DTF function for the 
three significant arcs in the model. Fig. 1 d) and e) show the theoretical and the estimated distribution for 
the time-varying PDC function. 
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Figs. 2.1 b) and c) show an example of theoretical and estimated time-frequency distribution 

of the time-varying DTF function, for the connections imposed to simulated signals (1->2, 1->3 and 

2->3). Figs. 2.1 d) and e) show the theoretical and the estimated distribution for the time-varying 

PDC function. 

 

The statistical factors analyzed were the SNR, the number of trials jointly used for the 

estimation of the AMVAR (TRIALS), and the adaptation factor C. Different ANOVAs addressed 

the behavior of the indexes in the different frequency bands analyzed. However, the results obtained 

are invariant with respect to the frequency band employed. For this reason, we reported the results 

in alpha band (8-12 Hz). 

 The first ANOVA (dependent variable: time at settling) revealed a strong statistical 

influence of the factors SNR, TRIALS and C (p<0,0001). In particular, the plots of means for 

different values of C, TRIALS, and for the two-ways interaction between the two factors are shown 

in Fig. 2.2. It can be noted from Fig. 2.2a that, for both DTF and PDC, there is a minimum in the 

time at settling for a certain value of C, which is equal to 0.02. This can be explained with a trade-

off between the adaptation speed (which decreases for low values of C) and the variance of the 

estimation (which decreases with high values of C). Moreover, the adaptation speed of DTF is 

higher than PDC. From Fig. 2.2b it can be also noted that an high number of trials makes the time at 

settling decrease. This leads to Fig. 2.2c, where it can be seen that an increase of the number of 

trials makes the minimum of the time at settling shift to higher values of the forgetting factor C. 

This means that, in practical applications, a higher value of C, and consequently a higher adaptation 

speed, can be reached if the number of trials at disposal increases. 
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Figure 2.2:  Results of ANOVA performed on the time at settling (10% of the transition amplitude) for 
different values of the factors C and TRIALS. a) plot of means in function of the adaptation factor C used in 
the estimation of the AMVAR. A minimum can be noted for values of 0.02 for DTF and 0.02-0.03 for PDC. 
b) effect of different number of trials used for the recursive estimation. A better adaptation speed is shown 
for higher number of trials. c) two-ways interaction between factors C and TRIALS. It can be noted that for 
higher number of trials the minimum shifts to values of c comprised between 0.01 and 0.04. Results in the 
ALPHA band (8-12 Hz).  

 

The second index of performance analyzed was the average error in each time interval during 

which the values of connection strengths are kept constant after the transition.  

The ANOVA performed revealed a strong influence of the factors SNR, TRIALS, C in all the 

frequency bands analyzed. In Fig. 2.3 the effect of different levels of SNR and TRIALS is shown. It 

can be noted that there is a decrease for higher values of SNR, as well as for higher number of trials, 

for both time-varying DTF and PDC. Moreover, such error is higher for DTF than for PDC in all 

conditions. 

 

Figure 2.3:  Results of ANOVA performed on the average error on the arrow 1->3 of the model of Fig. 1a, 
in the second time interval (values of connection strengths constant after the transition) on each connectivity 
arc of the model. F(4, 196)=836.44, p<0.00001.   
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In order to appreciate the comparison with the performances of the classic methods, the results 

of the application of DTF and PDC based on the estimation of MVAR models are also presented. 

Fig. 2.4 shows the results obtained by the time varying methods and by the classic MVAR 

estimation on simulated data with time dependent connectivity, generated according to the model 

shown in Fig. 1. In black, the time course of the theoretical values of DTF (left column) and PDC 

(right column), averaged in theta band (4-7 Hz). In blue, the mean value, in the same band, of the 

results obtained by time-varying DTF and PDC. In red, the mean results, in the same band, obtained 

by classic DTF and PDC. Only the connection imposed in the generation model are shown (1->2, 1-

>3 and 2->3).  
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Figure 2.4:  Comparison of the performances obtained by the time varying methods and the classic MVAR 
estimation, on simulated data with time dependent connectivity. The simulated signals were generated 
according to the model shown in Figure 1. In black, the time course of the theoretical values of DTF (left 
column) and PDC (right column) in theta band, for the three connections present in the model. In blue, the 
mean value, in the same band, of the results obtained by time-varying DTF and PDC. In red, the mean 
results, in the same band, obtained by classic DTF and PDC. 
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Application to high resolution EEG recordings 
 

 By means of the linear inverse procedure, the estimation of the current density waveforms in 

the ROIs employed was performed for the 5 subjects, according to the Eqs. (1.33)-(1.36) of the 

previous section. Relevant cortical activity was different from baseline in the supplementary motor 

area  proper (SMAp), in the caudal cingulate motor area (CMAc), in the primary motor foot (MI-

foot), the primary motor lip (MI-lip), the superior parietal cortex, SP and pre-motor dorsal cortex, 

PMd. On such cortical waveforms, connectivity estimations were performed by the time-varying 

PDC/DTF procedure as described in the Methods section. The adaptation constant C was set to 

0.02, according to the results of the simulation study. The model order was rather stable for all the 

subjects investigated; for four of them we selected the order 16 and for the last one the order 17.

 Figs. 2.5 and 2.6 show the time-frequency distribution of the instantaneous PDC and DTF 

respectively, obtained for a representative subject from the set of cortical waveforms estimated in 

the 12 ROIs considered. The time interval is relative to the 1500 milliseconds preceding the EMG 

onset, which served as zero time, while the frequency range is between 0 and 50 Hz (see the legend 

at the bottom of the figure). The figure should be read from column (areas originating the causal 

influence) toward the rows ((target of the causal influence). The first 50 milliseconds reflect the 

adaptation epoch of the model. Both methods (PDC and DTF) presented comparable results. High 

values of connectivity can be noted in particular in the alpha and gamma bands, and involved 

mainly the PMd areas from the left and right hemispheres, the M1F left and right, the SMAp left 

and right and the CMAc left and right.  

 Fig. 2.7 shows the time-varying connectivity patterns in the alpha band, extracted at -500, -

250 and 0 milliseconds before the movement onset, provided for the same representative subject of 

the previous figures. Results are presented on the realistic reconstruction of the head and cortex of 

the subject, obtained from sequential MRIs. The different Regions of Interest selected are depicted 

in different colors and described by the labels. The connectivity links are represented by arrows, 

pointing from one cortical area (“the source”) toward another one (“the target”). The color and size 

of the arrows code for the interaction strength (see colorbar on the right of the figure). From these 

results, it is possible to note some time-invariant patterns as well as some changes during the period 

of the movement preparation. In particular, it can be observed that the connections between the 

PMd_Right area and the M1F_Rigth area, between the PMd_Left to the M1Lips_Left and between 

the SMA_Left and M1F_Left, reveal a strong increase in their strength during the movement 

preparation, for both DTF and PDC. On the other side, some connectivity links remain constant 

during the interval. In particular, strong connections are observed from the PMd_R area to  
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Figure 2.5: Time-frequency distribution of the instantaneous PDC obtained for a representative subject, 
from the set of cortical waveforms estimated in the 12 ROIs considered. On the x axis, the time interval 
(1500 milliseconds preceding the EMG onset, which served as zero time). On the y, the frequencies ranging 
from 0 to 50 Hz (see the legend at the bottom of the figure). The figure should be read from column (areas 
originating the causal influence) toward the rows (areas to which the causal influence is directed). The first 
50 milliseconds reflect the adaptation epoch of the model. The colour bar on the right of the figure 
represents the intensity of the time-varying connectivity. 
 

the M1Lips_R area, from the CMA_R to the M1F_R and to the SMA_R, for both DTF and 

PDC and throughout the period examined.  

Some differences can be detected between the connectivity networks elicited by the two 

connectivity estimators employed (i.e. DTF and PDC). In particular, it can be observed that DTF 

showed the existence of a stable connection between the cortical premotor areas (PMd) of both 

hemispheres, as well as a direct link between the right premotor areas (PMd_R) and the left primary 

motor area for the lips (MILips_L) during all the observed time interval whereas by using the PDC 

estimator these links are not observed at all. In these cases, it could be noted that often the cortical 

network estimated with the DTF that differs from the PDC networks also admit an alternative path 
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connecting such areas. In particular, the link  between the right PMd area and the MILips_L 

can be also replaced by a path that starts from PMd_R area, arrives on the SMA_L area and from 

there toward the PMd_L. In addition, the same path with another step connects the PMd_R with the 

MILips_L.   

 Fig. 2.8 shows the timecourses of interaction strength between selected regions of interest 

from all 5 subjects analysed, computed with the PDC estimator. The waveforms in different colors 

refer to the connectivity strengths computed for each particular subject of the group. The thick black 

line is the average timecourse of connectivity strengths for all the population. Time is expressed in 

msec from the EMG onset, which served as zero time. The waveforms were normalized to allow 

comparison between signals with different power spectra, by subtracting their mean values and 

dividing by their standard deviations. The ROIs presented are the Brodmann area 6 of the left 

hemisphere (PMd_L), the cingulated motor area left (CMA_L), the primary motor area for the foot 

movement right and left (MIF_R and MIF_L), the primary motor area for the lips, right (A4lip_R). 

Figure 2.6: Time-frequency distribution of the instantaneous DTF obtained for a representative subject, 
from the set of cortical waveforms estimated in the 12 ROIs considered. Same conventions than in figure 2.4. 
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It is possible to recognize a substantial agreement between the subjects, across the average 

connectivity waveform in the framework of the biological variability. In particular, it is of  

Figure 2.7: Time-varying connectivity patterns in the alpha band, extracted at -500, -250 and 0 milliseconds 
before the movement onset. First row: results obtained with time-varying DTF. Second row: results of time-
varying PDC. Reconstruction of the head and cortex of the subject, obtained from sequential MRIs. The 
different Regions of Interest selected are depicted in different colors and described by the labels. The color 
and size of the arrows code for the interaction strength (see color bar on the right). Similarities can be seen 
between the results obtained with the two methods, as well as an evolution in time of the connectivity during 
the movement preparation. 
 

interest the behavior of the primary motor area of the foot (MIF_R and MIF_L) whose 

connectivity strengths towards the primary area of the lips (A4Lips) increases starting from 250 ms 

before the EMG onset. A decrease of connectivity strengths is also observed during the period of 

time comprises from 500 ms to the 250 ms before the EMG onset between the foot motor area and 

the cingulated motor area.   
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Figure 2.8:  Time-courses of connectivity strength between selected regions of interest, obtained for the 5 
subjects participating to the study, in the alpha frequency band, by the time varying PDC. Each colored 
waveform refers to the connectivity strengths computed for a particular subject of the analysed group. The 
thick black line is the average across subjects of the time-varying connectivity strengths. Time is expressed 
in msec from the EMG onset (0 time). The waveforms were normalized to allow comparison despite 
different powers. The ROIs analyzed are the Brodmann area 6 of the left hemisphere (PMd_L), the 
cingulated motor area left (CMA_L), the primary motor area for the foot movement right and left (MIF_R 
and MIF_L), the primary motor area for the lips, right (A4lip_R).  
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DISCUSSION 

 
 
Methodological considerations 
 

In this section of the present PhD thesis I propose an evaluation of the performances of two 

adaptive, multivariate estimators of the cortical connectivity, based on methods usually applied to 

stationary signals (i.e. PDC and DTF), and to the estimation of an AMVAR with a RLS method. 

The extension of the RLS algorithm with forgetting factor to MVAR estimation was originally 

proposed by Moeller et al (Moeller, 2001). The advantages of this estimation technique are an 

effective computation algorithm and a high adaptation capability. Simulations on the efficacy of 

time-variant Granger causality based on AMVAR computed by RLS algorithm were provided 

previously by (Hesse, 2003). It has been demonstrated (Moeller, 2001) that the adaptation capability 

of the estimation (measured by its adaptation speed and variance) does not depend on the model 

dimension.  

   The simulations addressed also the effect of different factors usually met in the recordings 

on the performances of the two estimators and the better choice of the appropriate forgetting factor 

C under different conditions. The performances of the two estimators were evaluated with particular 

attention to two aspects: the capability to follow rapid changes in the connectivity patterns 

(adaptation speed) and the precision in the estimation of connectivity strengths (average error). I 

performed a series of simulations where test signals were generated to simulate the average 

electrical activity of cerebral cortical regions, as it can be estimated from high resolution EEG 

recordings gathered under different conditions of noise and length of the recordings. Time-varying 

connectivity was imposed on the simulated signals. The effects of different factors affecting the 

EEG recordings, together with the influence of different choices of the forgetting factor, were 

inferred from statistical analysis (ANOVA and Duncan post hoc tests on the Time at Settling and 

the Average Error). I also presented the comparison between the performances of the classic and the 

time varying formulation of the two estimators, which allows appreciating the improvement 

obtained with respect to classical methods, for non-stationary data.  

 

The results of the simulation study suggested an answer to the questions elicited in the 

Introduction of this second section of the thesis: 
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1) The proposed time-varying estimators are effective in retrieving the rapid changes in 

time of the cortical connectivity pattern. If the operative conditions are properly set, the 

connectivity pattern can be accurately recovered; 

2)  The signal to noise ratio and the amount of trials at disposal have a statistically significant 

effect on the performances, both on the side of the adaptation speed and on the side of the accuracy 

of the estimation. A signal to noise ratio of at least 5 is sufficient to obtain a good accuracy, since 

higher values do not show a significant improvement in the performances. A high number of trials 

(20 or more) resulted to be highly significant, both for improving the accuracy of the estimation and 

for increasing the adaptation speed. 

3)  There is an optimum value for the choice of the adaptation constant C, which varies 

with the experimental conditions, between 0.01 and 0.04. In particular, a large amount of trials at 

disposal can increase the value of the optimum choice, thus allowing to have a higher adaptation 

speed without loosing the estimation accuracy. From simulation results, a number of trials not 

smaller than 20 is required in order to obtain a satisfactory adaptation speed. 

4)  About the comparison between the time-varying DTF and PDC, the DTF method 

showed better performances on the side of the adaptation speed, with lower values of the time at 

settling. On the other hand, the PDC provided better results on the side of the estimation accuracy, 

with lower values of the average error. The choice between the two methods should take into 

account the above mentioned properties, according to the nature of the signals to be examined and 

of the performances desired, i.e. if a rapidly changing connectivity is expected or not. It should also 

be considered that, on the basis of its mathematical formulation, the DTF is unable to discriminate 

between direct connectivity patterns between areas and indirect links mediated by other areas   

(Baccalà, 2001, Winterhalder, 2005, Kus, 2004, Astolfi, 2005, 2006). Anyway, for a general 

purpose, when the interest is in studying which areas originate the information flow toward the 

others during a task or a pathological situation, this distinction could be not crucial and DTF could 

be preferred in order to obtain a higher adaptation speed. Another aspect to be considered is the fact 

that DTF requires an higher computational effort with respect to PDC, as it involves the inversion 

of the transfer matrix of the MVAR. So, in order to obtain a faster, more accurate estimation of 

direct causality links, PDC should be used. This consideration could play a role in the use of these 

connectivity pattern estimators for on-line applications, such as for instance in the Brain Computer 

Interface studies. 

In conclusion, the statistical results here obtained (by ANOVA integrated with the Duncan 

post-hoc tests at p< 0,05) indicated an influence of different levels of the main factors SNR, 

TRIALS and C on the efficacy of the estimation of time-varying cortical connectivity via time-
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varying DTF and PDC. In particular, a SNR equals to 5 and at least 20 trials are necessary to 

decrease significantly the errors on the indexes of quality adopted. These conditions are generally 

obtained in many standard EEG recordings of event-related activity in humans, usually 

characterized by values of SNR ranging from 3 (movement related potentials) to 10 (sensory 

evoked potentials) (Regan, 1989).  

 

 
Application to real data 

 

After being tested by the simulation study, the methods analysed were applied to the cortical 

activity estimated in some regions of the cortex of the five subjects under examination, in order to 

highlight the possibilities of the methods. The information obtained by the simulation study were 

used to evaluate the applicability of this method to actual event-related recordings. The gathered 

ERP signals related to the combined foot-lips movement showed a SNR between 3 and 5. The trials 

at disposal for each experimental subject after the artifact rejection were about 100. According to 

the simulation results, I applied the time-varying PDC/DTF methods on the estimated cortical 

current density data expecting a limited amount of errors in the estimation of cortical connectivity 

patterns.  

The problem of the linearity of the coupling between the activities in different areas was also 

addressed. The evaluation of several methods for the computation of the functional connectivity 

between couple of EEG/MEG signals was recently performed (David, 2004). It has been concluded 

that although nonlinear methods, as mutual information, nonlinear correlation and generalized 

synchronization (Roulston, 1999; Stam, 2002, 2003), might be preferred when studying EEG 

broadband signals which are sensitive to dynamic coupling and nonlinear interactions expressed 

over many frequencies, the linear measurements are still convenient since they afford a rapid and 

straightforward characterization of functional connectivity. A recent study (Winterhalder, 2005) 

applied time-varying DTF and PDC to simulated data with nonlinear coupling (generated by a 

stochastic Roessler system), demonstrating that the PDC and the DTF are sensitive in detecting 

interactions in nonlinear multivariate systems, and that high model orders (as those employed in this 

study) are required to describe the nonlinear system sufficiently with a linear MVAR model.  

The simple motor task, the preparation to the execution of a foot-lips movement, was chosen 

as it is well known and studied in literature. In particular, the time period represented in Figs. 2.7 

and 2.8 is not casual. The literature related to the self-paced movement indicate that at the 500 msec 

there is on average a brisk increase of the potential negativity over the scalp surface in 

centroparietal regions (last phase of the Bereitschaft potential, BP) and at 250 on average there is a 



SECTION II – ESTIMATION OF TIME-VARYING CONNECTIVITY 

 96

further increase over the central scalp region (Negative Slope, NS). Furthermore, it has been also 

shown that at the EMG onset (0 time) the maximum activity is observed on the primary motor area 

of both hemisphere. Fig. 2.8 shows the time varying PDC connectivity strengths in the population 

analyzed for a selected couple of ROIs. The average connectivity waveforms (thick black line) 

showed a consistent pattern of increasing values approaching the EMG onset, suggesting a general 

increase of connectivity strength between the primary motor areas related to the movement of foot 

and lips. The observed variability across the population analyzed seems reasonably small, and the 

same qualitative results were also obtained by computing the time-varying connectivity with the 

DTF estimator. The physiological results obtained are similar in the 5 experimental subjects, and 

seem rather consistent and could integrate those already present in literature on the same movement. 

The analysis performed with the aid of the time-varying connectivity estimators here derived 

suggested the existence of two different cortical networks, subserving the preparation and the 

execution of the joint movement of lip and foot.  

In particular, one network is time-invariant during the preparation of the movement involves 

the PMd, CMA, SMA, M1Lips and M1F ROIs located on the right hemisphere. It is worth of note 

that both the connectivity estimators employed (i.e PDC and DTF) returned the same information. 

Results obtained suggest that such links connect cortical ROIs that are rather involved in the 

resource allocation for the behavioural task performed instead of in the monitoring of the actual 

execution of the joint movement. In this respect, the cortical network depicted by such time-

invariant links does not change its activation state during the preparation of the joint movements of 

lips and foot. In fact, PMd and CMA are ROIs that are activated continuously during the 

preparation of the movement and generate the sequence of generic activation command towards the 

primary motor areas responsible for the activation of the specific motoneurons that will trigger the 

movement for lips and foots. 

The second network of cortical areas involved in the preparation and generation of the joint 

movements is instead dependent on the time-course of the task. In particular, the results suggested 

the existence of a network that increases in strength during the few hundreds of milliseconds 

preceding the actual execution of the movement. Such network involves connections between the 

PMd_Right area and the M1F_Rigth area, between the PMd_Left to the M1Lips_Left and between 

the SMA_Left and M1F_Left. Once again, it is worth of note that such increase in connectivity 

strengths has been detected by both the connectivity estimators applied, i.e. both PDC and DTF.  

Differences between the cortical networks estimated by the DTF when compared to the PDC are 

related to the existence of alternative paths between the same cortical areas, that can be modelled by 

the DTF with also a direct link. This property of the DTF has been established on the base of its 
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mathematical formulation, as described above. However, it must be said that there also exists 

cortical paths estimating with the PDC that are not estimated with the DTF. For these discrepancies, 

which are relative to a few connections on the total amount of the estimated cortical networks, 

possible explanations are relative to the different sensitivities of such algorithms to the amount of 

noise present on the data. The global conclusion, however, is that the cortical networks estimated by 

these two methods are rather similar, and allows to conclude positively about the applicability of 

these estimators on real EEG recordings. It is worth of note that the information on the increasing 

connectivity strength in the second cortical network would be loose with the application of the 

standard connectivity estimators which assumes the stationarity of the analyzed data.   

 

CONCLUSION OF THE SECTION II ON THE ESTIMATION OF CORTICAL 

CONNECTIVITY FROM NON STATIONARY EEG SIGNALS 

 
In this section of the thesis I presented two multivariate causality estimators to retrieve rapidly 

changing cortical connectivity. Simulations suggest that the methods were adequate to estimate 

cortical connectivity under a large range of SNR and TRIALS factors, normally encountered in the 

standard practice of the high resolution EEG recordings. A SNR of 5 and a number of trials of at 

least 20 provide a good accuracy in the estimation. The results pointed out that the DTF estimator 

can assure a higher adaptation speed than PDC, but on the other hand PDC ensures a better 

accuracy in the estimation of connectivity strengths. Possible values for the optimum choice of the 

adaptation factor C have been proposed, according to the different operative conditions. The results 

of the application of the two methods to a real data in a group of subjects revealed time-varying 

cortical connections during the execution of the task. In particular, two different cortical networks, 

one constant across the task and the other evolving during the preparation of the joint movement 

have been detected with the proposed methodology. It is worth of note that the information on the 

increasing connectivity strength in the second cortical network would be loose with the application 

of the standard connectivity estimators which assumes the stationarity of the analyzed data.   

In conclusion, this study opens the way to the application to cortical estimations, in order to 

study detailed time-frequency patterns describing the evolution of cortical connectivity. 
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