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Abstract

The recent trend in Web services is fostering a computing scenario where loosely coupled

parties interact in a distributed and dynamic environment. Such interactions are sequences

of xml messages and in order to assemble parties – either statically or dynamically – it is

important to verify that the “contracts” of the parties are “compatible”.

The Web Service Description Language (wsdl) is a standard used for describing

one-way (asynchronous) and request/response (synchronous) interactions. Web Service

Conversation Language extends wscl contracts by allowing the description of arbitrary,

possibly cyclic sequences of exchanged messages between communicating parties. Unfor-

tunately, neither wsdl nor wscl can effectively define a notion of compatibility, for the

very simple reason that they do not provide any formal characterization of their contract

languages.

We define two contract languages for Web services. The first one is a data contract

language and allow us to describe a Web service in terms of messages (xml documents) that

can be sent or received. The second one is a behavioral contract language and allow us to

give an abstract definition of the Web service conversation protocol. Both these languages

are equipped with a sort of “sub-typing” relation and, therefore, they are suitable to be

used for querying Web services repositories. In particular a query for a service compatible

with a given contract may safely return services with “greater” contract.
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Chapter 1
Introduction

1.1 Web services

Initially, most middleware platforms were designed to work on a single Local Area Network

(LAN). As the number of LANs within companies started to grow, and different branches

of the same company implemented their own middleware-based systems, the need arose for

different middleware platforms to communicate with each other. When such interactions

take place across company boundaries, they are called businnes-to-businnes exchanges and

their purpose is to fully automate interactions between companies. Technically, implement-

ing this kind of interaction requires the ability to invoke services residing in a different

company. Conceptually, this is relatively easy to do, and thus there is a strong temptation

to implement Internet-wide integration using a simple extension of conventional communi-

cation protocols (as corba [Gro04a] does). The problem is that assumptions underlying

this rarely hold when the interaction occurs across the Internet. For example companies

may be protected by firewalls which impose significant restrictions on communications.

Furthermore components must agree on interface definitions and data formats to be used

by the two applications. Finally, a directory server is required to enable service discovery,

and, especially in inter-organizational settings, it may not be clear where this server should

reside and who should manage it. These problems are a big part of what Web services try

to solve.

Web services technology is a way to expose the functionality of an information system

and make it available through Web standards. Web services and their technologies are
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Service Discovery and Publication

UDDI, WSIL

Service Description (Contract)

WSDL, WSCL, SSDL, MEP

Message Protocol

XML-RPC, SOAP, REST, IIOP, ...

Network

HTTP, SMTP, FTP, BEEP, ...

Services Process

BPEL4WS, BizTalk, J2EE, .NET, PiDuce, ...

Figure 1.1: The Web service stack.

being developed with one specific use in mind: that of being entry point to the local

information system. Thus, the primary use of a Web service is that of exposing – through

the Web service interface – the functionality performed by internal systems and making

it discoverable and accessible through the Web in a controlled manner. Web services are

therefore analogous to sophisticated wrappers that encapsulate one or more applications

by providing a unique interface and a Web access. The use of standard technologies is

a key point because it allows to cope with heterogeneity, facilitating integration between

different applications. In particular Web services are based on standards built over xml

that, in the last ten years, has become a universally used meta-language for platform

independent data representation.

The w3c [Gro04d](the Web Service Activity Group) defines a Web service as a “soft-

ware system identified by a URI, whose public interfaces and bindings are defined and

described using XML. Its definition can be discovered by other software systems. These

systems may then interact with the Web service in a manner prescribed by its definition,

using XML based messages conveyed by Internet protocols”. The definition hints at how

Web services should work. Web services must be able of being defined, described, in-



1.2. WEB SERVICES AND CONTRACTS 5

voked, and discovered in a way that can be automatically processed by other machines.

Although these problems were addressed for conventional middleware, solutions have been

reconsidered for Web services that are autonomous and loosely coupled systems. Having

homogeneous components considerably reduces the difficulties of integration. This is also

true for Web services, which are indeed wrappers and are homogeneous, in the sense that

they interoperate through Web standards. As such, Web services constitute the base on

which we can construct middleware supporting application integration on the Web by

allowing designers to avoid the problems generated by the lack of standardization typical

of previous approaches. Actually, what generated the need for Web services, is essentially

the necessity of facilitating b2b integrations.

The Web service stack and some of the related standard is shown in Figure 1.1. Invoca-

tions are performed over standard network protocols – http, smtp, ftp, beep – sending

xml messages packaged using one messaging protocol such as soap [Gro03], rest, iiop and

xml-rpc. The description of the service is base on standardized xml oriented languages –

wsdl [Gro, BL06], wscl [BBB+02], ssdl [SP], mep [CHL+06] – and service discovery and

service publication are also standardized in uddi [Spe02] and wsil [BBM+01]. Service

process – based on several architecture J2ee [Sun06], .Net [Mic06], PiDuce [CLP06],

bpel [CGK+02] – support this stack in a way that it is transparent to the user.

1.2 Web services and contracts

The recent trend in Web services is fostering a computing scenario where loosely coupled

parties interact in a distributed and dynamic environment. Such interactions are typically

sequences of messages that are exchanged between parties. The environment, being dy-

namic, makes it not always feasible to define or assemble parties statically. In this context,

it is fundamental for clients to be able to search, also at run-time, services with the required

capabilities, namely the format of the exchanged messages, and the protocol – or contract

– required to interact successfully with the service. In turn, services are required to publish

such capabilities in some known repository. Thereafter clients may query the repository

asking for servers compatible with a certain contract. Internet industry leaders such as

Amazon, eBay, Google, and FedEx offer publicly-available Web services as apis into de-

sirable data and familiar functionality: Amazon offers Web services for its product search,
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cart system, and wish lists, eBay Web services expose item search, bidding, and auction

creation, Google Web services offer access to Web search, cache, and spelling applications,

and FedEx Web services connect to its package shipping and tracking systems. Such func-

tionalities are described by public interfaces that can be interpreted by humans and other

Web services. Such interfaces can be also published in public repositories. The Web Service

Description Language (wsdl) [Gro, CMRW06, CHL+06] provides a standardized technol-

ogy for describing the interface exposed by a service. Such description includes the service

location, the format (or schema) of the exchanged messages, the transfer mechanism to

be used (i.e. soap-rpc, or others), and the data contract. The data contract defines the

set of xml documents accepted by the service. Traditional programming language do not

provide a native support to xml therefore they cannot prevent – statically – run-time

type errors during invocations. For instance, a java [Mic05] program interacting with a

Web service operation may be written in two ways. The first way is to manually build the

string containing the xml and send it to the server. The second way is to use some tool

for importing the service. Such tools map the xml document that can be sent into a tree

of java classes. The programmer may use the available methods for setting the value of

the fields. When the service operation is invoked such class is serialized into an xml byte-

stream representing the request. Both the approaches are not very satisfactory. In first

case it is easy to make errors while building the xml document. In the second case the gap

between the two type systems (xml schemas and classes) prevents only some run-times

errors. For these kind of reasons, in these years, some programming languages for xml pro-

cessing have been proposed [ACE+04, Com04, HP03, BCF03, Cha03, ACJ04, GLPS04].

The contract language we propose is an extension of one of such a the type system –

the one used in XDuce – with Web service references and it has been prototyped in

PiDuce [BLM05, CLP06, CLM05] – a programming language for experimenting Web

service related technologies.

wsdl contracts are basically limited to one-way (asynchronous) and request/response

(synchronous) interactions. For instance in a wsdl interface it is not possible to specify

that an operation must be called before another operation. Therefore wsdl interfaces do

not currently address the problem of how a service can define the sequences of legal mes-

sage exchanges it supports. An attempt of specifying this behavioral contract is the Web

Service Conversation Language (wscl) [BBB+02]. It extends wsdl contracts by allow-
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ing the description of arbitrary, possibly cyclic sequences of exchanged messages between

communicating parties. Thus, wscl defines the conversation protocol implemented by the

service. Both wsdl and wscl documents can be published in repositories [BKL01, CJ04]

so that they can be searched and queried.

The use of a contract in a repository immediately poses an issue related to the com-

patibility between different published contracts. It is necessary to define precise notions of

contract similarity and compatibility and use them to perform service discovery in the same

way as, say, type isomorphisms are used to perform library searches [Rit93, Cos95]. Unfor-

tunately, neither wsdl nor wscl can effectively define these notions, for the very simple

reason that they do not provide any formal characterization of their contract languages.

This cries out for a mathematical foundation of contracts and the formal relationship

between clients and contracts.

In this thesis we define two contract languages for Web services. The first one is a

data contract language that allows us to describe a Web service in terms of messages (xml

documents) that can be sent or received. The second contract language is a behavioral

contract language that allows us to give an abstract definition of the Web service conver-

sation protocol. Both these languages are equipped with a compatibility relation so that

they are suitable to be used for querying Web services repositories. A query for a service

compatible with a given contract may safely return services with a greater contract.

1.3 Structure of the thesis

Chapter 2 In Chapter 2, that is an extended version of the conference paper at ESOP’06

[CL06], we design a data contract language – a schema language – for representing xml

documents containing references to remote services. Such a language is equipped with

a subschema relation that allows us to verify whenever a services is used according to

its contract: sending and receiving the proper data. Since the subschema relation com-

putes tree language containment, it turns out to be computationally expensive. To avoid

run-time degradations of Web services technologies, we impose a language restriction to

diminish the cost of the subschema relation.

Chapter 3 In Chapter 3 the expressiveness of the schema language we have designed in

Chapter 2 is compared with the two standards used for describing Web service operations:
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xml-schema and wsdl. In particular we show how to encode interfaces written using

these two standards in our schema language.

Chapter 4 In Chapter 4, that extends the conference paper at WSFM’06 [CCLP06], we

define a calculus for behavioral contracts along with a subcontract relation, and we formal-

ize the relationship between contracts and processes (that is clients and services) exposing

a given contract. Contracts are made of actions to be interpreted as either message types

or communication ports. Actions may be combined by means of two choice operators:

+ represents the external choice, meaning that the interacting part decides which one of

alternative conversations to carry on; ⊕ represents the internal choice, meaning that the

choice is not left to the interacting part. Then we devise a compliance relation that can

be used for querying Web services repositories: a query for a service with a given con-

tract may “safely” return services with complying contract. By safely we mean that the

client will complete its protocol even if the interaction may result into unused interaction

capabilities on the server side. We then extrapolate contracts out of processes, that are a

recursion-free fragment of ccs. We finally demonstrate that a client completes its inter-

actions with a service provided the corresponding contracts comply. The expressiveness

of our contract language is gauged by encoding wsdl message exchange patterns into our

contract language. Because of the � relation between contracts, we are able to draw some

interesting considerations about similar exchange patterns, and order them according to

the client’s needs.

Chapter 5 In Chapter 5 we extend the contract language of Chapter 4 with recursive

contracts. We lift the notions of subcontract and compliance to recursive contracts and

we show how to extrapolate contracts out of regular ccs processes. As regards non-

regular processes two relations – called overestimation and underestimation – are defined.

Overestimation is used to approximate the conversation protocol implemented by clients

with a “more demanding” protocol. Similarly, underestimation is used to approximate the

conversation protocol implemented by (non-regular) services with a “simpler” protocol.

We then verify that, whenever a client is overestimated with a contract σ and a server is

overestimated with a contract σ′ such that σ and σ′ comply, then the two processes also

comply. For this reason overestimation can be used by clients for querying repositories

and underestimation can be used by service providers for publishing their contracts.
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In the recursive case, to show the expressiveness of our recursive contract language,

an encoding of two wscl conversations is given. As for wsdl message exchange pattern,

thanks to the � relation between contracts, we are able to order wscl conversations with

respect to the client’s needs.

Chapter 6 Chapter 6 draws our conclusion and hints at some future works.
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Chapter 2
The Schema Language

In this chapter we design a basic schema language for describing xml documents with

references to Web services and to their operations. The assessment that references are used

according to their capabilities is given by a subschema relation. We give two definitions of

our subschema relation: one as a form of schema simulation, defined coinductively, and one

by means of inference rules. Then we prove that the algorithm derived from the inference

rules is sound and complete with respect to the coinductive definition. Since the subschema

relation turns out to be computationally expensive and this may be problematic in the

Web service context where the relation is often used at runtime, we study a restriction of

the schema language to reduce the cost of the subschema relation.

Structure of the chapter. Section 2.1 introduces xml and xml schema languages.

Section 2.2 refers to some related work; Section 2.3 presents the schema language and

Section 2.4 defines the subschema relation. Section 2.5 shows an extension of the schema

language with base types. Section 2.6 defines the algorithmic version of the subschema

relation and proves its correctness. Section 2.7 studies a restriction of the schema language

having a polynomial subschema relation. Section 2.8 concludes with some final remarks.

2.1 Introduction

The Extensible Markup Language xml [Gro04f] is a concrete syntax used for representing

abstract trees in textual form. xml trees contains nodes called elements that are labeled
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by a tag (a name), and that may contain either characters or an arbitrary number of

children. An example of xml document is:

< doSpellingSuggestion >

< key > xxxxxxxxx < /key >

< phrase > data behavioral contact web services < /phrase >

< /doSpellingSuggestion >

where < . . . > and < / . . . > define the beginning and the end of an element respectively

(intentionally we wrote contact instead of contract). The main constraint in writing

xml document is that they have to be well-formed. This means that if an element starts

in the content of an element, it also finishes in the content of the same element. Said

otherwise, elements, delimited by start and end tags, nest properly within each other. It

is this constraint that allows to view an xml document as a tree. For instance the xml

above is represented by the following tree:

doSpellingSuggestion

uujjjjjjjjjjjjjjjjj

++WWWWWWWWWWWWWWWWWWWWWWW

key

��

phrase

��
xxxxxxxxx data behavioral contact ...

Since the choice of the element names is left to users, xml provides a syntactic founda-

tion for the creation of custom markup languages through definition of schemas. Indeed,

the abstract syntax of xml documents is rigid in the sense that they must adhere to the

general rules of xml. This rigidity assures that all xml-aware software can parse and in-

terpret the information within them. The schema specifies a set of additional constraints

on the structure of the documents. Schemas may restrict element names and their content

in such a way that only some elements with specific names and in a certain order and with

a certain arity may appear.

The simplicity of xml and the fact that it is essentially a human readable and platform-

independent representation of information are the main motivations for its use in business

to business applications. In particular Web services are strongly based on xml-related

technologies because, being standard, are guaranteed to be interoperable. Indeed, data

exchanged between Web services are just xml documents. For instance the document

above (< doSpellingSuggestion > ...) may be sent to the Google Web service located at
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http://api.google.com/search/beta2 receiving back another xml document as:

< return > data behavioral contract web services < /return >

containing the spelling suggestion for the sent phrase. In our notation – borrowed from

Hosoya et al. [HVP00a] – we say that the Google Web service accepts documents of schema

doSpellingSuggestion[key[String],phrase[String] ]

and returns documents of schema return[String].

Web services technologies also require the possibility to express and communicate ref-

erences to remote services [Vin04, GNO03, Gro04e]. In facts, these requirements are rec-

ognized in the new specification of the Web Service Description Language (wsdl) [BL06],

which extends the schemas with Web service references. This is a must in many busi-

ness to business applications where interactions are typically asynchronous or in batch

mode. Rather than direct invocations, requests are batched and routed through queues

and responses are handled in the same way (systems based on EDIFACT [Uni] and

SWIFT [fWIFT] are typical loosely coupled architectures working in this way). However,

the implementation of asynchronous interactions require, at least, the communication of

the callback address. These asynchronous interactions are also used in other settings. For

instance if the followingxml document

< appID > firefox < /appID >

< query > wsdl < /query >

< region > it < /region >

< language > it < /language >

< output > json < /output >

< callback > http : //www.foo.com/service/format < /callback >

is sent to the Yahoo Web service, the result of the search of the word query will be sent

to the service which address specified by the callback address (a uri) corresponding to the

formatting service. In our notation the value above may have the schema

appId[String],query[String],region[String],

language[String],output[String],〈Result〉O

meaning that the value is a sequence finishing with a reference that must be used by

the server only for outputting document of schema Result (the syntax of reference has
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been borrowed from Pierce and Sangiorgi [PS93]). This is not enough for describing Web

services that are logical grouping of operations and not just single operations. For instance

the Yahoo interface allow – as callback address – a service with two operations result

and noresult, one to be called whenever there are some result and another one to be

called when no results are available. In this case the schema of the reference may be

{result :〈Result〉O noresult : 〈()〉O}.

The communication of references requires the ability to verify that the receiver uses

them according to their contract: sending proper data and performing the permitted

operations. Therefore a mechanism for comparing schemas with references should be

provided. For instance a client must be allowed to send to the Yahoo Web service a

callback which is able to process, not only documents with schema Result, but a larger

set of documents. Similarly, the client must be allowed to send to the Yahoo Web service

a reference to a service which provide more operations (instead of result and noresult

only). This is what we call subschema relation. In a nutshell the subschema relation allows

to compare schemas in terms of xml documents they describe. As in [HVP00a] it reduces

to tree set containment when values do non contain references and therefore we claim that

it is appropriate for describing xml documents exchanged between Web services.

2.2 Related works

Several schema languages have been recently proposed for describing the tree-structure of

xml documents. We recall dtd [Gro04f] and xml-schema [Gro04c] proposed by the w3c,

Relax-NG [CM01] by Clark and Murata, and XDuce regular expression types [HVP00b]

by Hosoya and Pierce. We refer to [MLM01] for an analysis of their expressiveness.

These schema languages, and specifically xml-schema, are used in wsdl [Gro, BL06]

documents that are interfaces of Web services describing the messages sent and/or received

by the services and the information for reaching the services (location, transport protocol,

etc.). However the new specification of wsdl [BL06], that is now a w3c Proposed Rec-

ommendation, allows to describe Web services exchanging documents containing typed

references. It stands that schema languages need to be extended in order to deal with

such reference values.

The schema language studied in this chapter is an extension of XDuce types with
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references and is similar to those introduced in languages extending pi-calculus with xml

datatypes [AB05, BLM05, CNV05]. The design of the schema language of [BLM05] has

been strongly affected by this study. As a minor difference, reference schemas – called

channel schemas in [BLM05] – only have output capabilities and record schemas have

not been introduced. The schema language of [AB05] includes abstractions, that we do

not consider, and for the rest is simpler than the one we present here. In particular the

subschema relation is not as powerful as the one we define. For instance, unions do not

distribute over sequences – S,S′+S′′ is not subschema of S,S′+S,S′′ – and over labelled

constructors – a[b[ ] + c[ ] ] is not subschema a[b[ ] ] + a[c[ ] ].

The types in [CNV05] include channels with capabilities, union, product, intersection

and negation. The definition of subschema is semantic, by means of a set-inclusion on

a set-theoretic model. Our schema language is simpler than [CNV05] and the notion

of subschema is quite different. For example, in our case, top and bottom are derived

schemas and channel schemas may be nested at wish, while this is problematic in presence

of recursion and intersection. The contribution [CNV05] overlooks the restrictions for

reducing the computational complexity of the subschema relation that turns out to be

hyperexponential.

2.3 Schemas with references

We use three disjoint countably infinite sets: the tags, ranged over by a, b, . . . ∈ L, the

fields ranged over by m1, m2 . . . ∈ M, and the schema names, ranged over by U, V, . . . ∈ N .

The term κ is used to range over I, O, and IO. The syntax of our language includes the

categories of labels and schemas defined by the rules in Table 2.1.

Labels. Labels specify collections of tags. The semantics of labels is defined by the

following function ·̂ :

â = {a} ~̂ = L L̂ + L′ = L̂ ∪ L̂′ L̂ \ L′ = L̂ \ L̂′

(~ represents the whole sets of tags). The intersection operator on labels is derived in

terms of difference and union as: L ∩ L′ def
= ~ \ ((~ \ L) + (~ \ L′)).
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Table 2.1: The schema language

L ::= label

a (tag)

~ (any label)

L + L (union)

L \ L (difference)

S ::= schema

() (void schema)

〈S〉κ (reference schema)

{(mh:Sh)h∈H} (record schema)

L[S] (labelled schema)

S,S (sequence schema)

S + S (union schema)

U (schema name)

Schemas. Schemas describe (xml) documents that are structurally similar. The schema

() describes the empty document. The schema 〈S〉κ describes references (channels) that

carry messages of schema S and that may be used with capability κ ∈ {I, O, IO}. The

capabilities I, O, IO mean that the channel can be used for performing inputs, outputs, and

both inputs and outputs, respectively. For example 〈Int〉O describes the set of channel

literals that may be invoked with integers. The schema {(mh:Sh)h∈H} describes a record

with fields mh and schema Sh. We assume fields to have different names and H to be

finite. In the following we identify records up to fields commutativity (e.g. {m1 : S1 m2 :

S2} = {m2 : S2 m1 : S1}). The schema L[S] describes documents made of an element with

a tag in L and containing a document of schema S. The schema S,S′ describes sequences

starting with a document of schema S and finishing with a document of schema S′. In

what follows we may omit () appearing in sequences. Therefore L[()], (),S and S,()

are shortened into L[ ], S, and S, respectively. The schema S +S′ describes the – possibly

non-disjoint – set of documents belonging to either S or to S′. In what follows we assume

the following precedence between operators: “,”>“+”.

Schemas include schema names that are bound by finite maps E from schema names

to schemas such that, for every U ∈ dom(E), the schema names in E(U) belong to dom(E).

Maps E are well-formed according to the definition below. Let tls(S) – the set of the top

level names in S – be the least set of schema names such that:

tls(S) =






{U} ∪ tls(E(U)) if S = U

tls(T ) ∪ tls(T ′) if S = T + T ′ or S = T,T ′

∅ otherwise
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Let also ntail(S) be the least set such that:

ntail(S) =






{U} ∪ tls(E(U)) if S = U

ntail(T ) ∪ ntail(T ′) if S = T + T ′

tls(T ) ∪ ntail(T ′) if S = T,T ′

∅ otherwise

Then E is well-formed if, for every U ∈ dom(E), U 6∈ ntail(E(U)). This definition is an

immediate adaptation of that in [HVP00a] and together with the finiteness of the domain

of E guarantees that schemas only define regular tree languages. Such languages retain a

decidable sub-language relation [CDG+97]. For instance the schema E(U) = a[ ],U,b[ ]+()

– describing the non regular tree language a[ ]nb[ ]n – is invalid: U ∈ ntail(E(U)). On the

contrary, the schemas E(V) = a[b[ ],V,c[ ] ] + () and E(U) = V,U are regular and valid.

It is worth to remark that vertical and horizontal recursion are provided by means of

constant schema names. Then we can derive the “∗” operator to describe arbitrary long

sequences by means of a proper recursive definition. Indeed, S∗ = U with E(U) = S,U+().

Examples. We illustrate the syntax by means of few, but significant, sample schema

name definitions. Let Bool, Blist, Btree, and Empty be such that

E(Bool) = true[ ] + false [ ]

E(Blist) = Bool,Blist+ ()

E(Btree) = () + val [Bool],left [Btree],right [Btree]

E(Empty) = a[Empty]

The name Bool defines booleans that are encoded as tags true and false with an empty

content (). The name Blist defines any flat sequence of labelled documents containing

booleans; Btree defines documents that are binary trees of booleans. The name Empty

defines an empty set of documents because this set is the least solution of the equation

Empty = a[Empty].

As regards references schemas, 〈Bool〉O describes references to operations that may be

invoked with booleans; 〈Bool〉IO contains references that may be invoked with booleans

and may receive notifications carrying booleans. The name NCbool defined as

E(NCbool) = 〈Bool〉O + 〈NCbool〉O



20 2.3. SCHEMAS WITH REFERENCES

describes the references to be invoked with booleans or with references to be invoked with

booleans, etc., till some finite but not bound depth. (The nesting of channel constructors

in [CNV05] is always bound.) We observe that a service querying a repository for refer-

ences of schema 〈Bool〉O may get back a service of schema 〈Bool〉IO or of schema NCbool.

Conversely, if the query is about references of schema 〈Bool〉IO then the repository will

never return references of schema 〈Bool〉O nor NCbool. Indeed on 〈Bool〉O and NCbool

input cannot be performed.

Record schemas may be used for describing references to remote services. For instance

the name TreeService defined as

E(TreeService) = {flatten : 〈Btree,〈Blist〉O〉O tree : 〈Blist,〈Btree〉O〉O}

describes a Web service with two operations: flatten and tree. The first one takes a

Btree and a reference where the list of booleans it contains should be sent; the second

one takes the list of booleans and the reference where the tree of booleans should be sent.

Remark. The subschema language without references and records is closed under union,

difference, and intersection. This means that given two schemas we can define their union,

difference and intersection in terms of another schema of our language [HVP00b]. Union

closure is a consequence of the presence of non-deterministic union schemas. Then it is

possible to define the union of two schemas even if they describe common values. For

instance, xml-schema is not closed under union even if it provides for a union operator.

Indeed, since union is limited to disjoint schemas a[Int]+b[String] is allowed, but a[Int]+

a[String+Int] is not. Difference closure S\T follows by the fact that labels are represented

as sets. For example L[S],S′ \ L′[T ],T ′ is (L \ L′)[S],S′ + L[S \ T ],S′ + L[S],S′ \ T ′.

Intersection S ∩ T may be defined in terms of difference as (S + T ) \ (S \ T ) \ (T \ S).

This sublanguage has a decidable algorithm testing the emptiness of a schema. Thereafter

S <: T may be implemented as an emptiness test on S \ T . Channel schemas does not

preserve the closures under difference: the schema 〈a[ ]〉O \ 〈b[ ]〉O cannot be written in our

schema language. For this reason these operators are primitive in [CNV05].
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2.4 The subschema relation

The semantic definition of subschema in [HP03] does not adapt well to our language. In

that paper, a language for values was introduced and a schema S was considered a sub-

schema of T if the set of values described by S was contained in the set of values described

by T . In our case values should contain references that do not carry any “structural”

information about their schema. Therefore, in order to verify that a reference belongs to a

schema S, we should verify the schema of the reference is a subschema of S. To circumvent

this circularity we use an “operational” definition – a simulation relation – in the style

of [AC93, PS93].

The subschema relation uses handles to manifest all the branches of the syntax tree of

a schema.

Definition 2.1 (Handle) Let S ↓ R, read S has handle R, be the least relation over

schemas such that

() ↓ ()

〈S〉κ ↓ 〈S〉κ,()

{(mh:Sh)h∈H} ↓ {(mh:Sh)h∈H},()

L[S] ↓ L[S],() if L 6= ∅ and, for some R, S ↓ R

S,S′ ↓ R if S ↓ () and S′ ↓ R

S,S′ ↓ R,S′ if S ↓ R and R 6= () and, for some R′, S′ ↓ R′

S + S′ ↓ R if S ↓ R or S′ ↓ R

U ↓ R if E(U) ↓ R

We observe that Empty has no handle. The schema a[ ],Empty has no handle as well;

the reason is that a sequence has a handle provided that every element of the sequence

has a handle. We also remark that channel schemas and service schemas always retains a

handle. Let handles(S)
def
= {R | S ↓ R}. We say that a schema S is not-empty if and

only if handles(S) 6= ∅; it is empty otherwise.

Proposition 2.1 handles(S) is finite.
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Proof: Let h(S) be the function defined as

h(S)X =






0 if S is empty

1 if S = () or S = 〈T 〉κ or S = {(mh:Sh)h∈H}

1 if (S = L[T ],T ′ or S = {(mh:Sh)h∈H},T ′ or S = 〈T 〉κ,T ′)

and S is not-empty

0 if S = U and U ∈ X

1 + h(E(U))X∪{U} if S = U and U 6∈ X and S is not-empty

h(T )X + h(T ′)X if S = T,T ′ and S is not-empty

h(T )X + h(T ′)X if S = T + T ′ and S is not-empty

It is easy to verify that h(S)∅ is finite for every schema. The proof proceeds by induction

on h(S)∅. The base case is obvious. The inductive case is by cases on the structure

of S. We discuss the subcases S = U and S = S′,S′′. We observe that, by definition,

handles(U) = handles(E(U)). By inductive hypothesis handles(E(U)) is finite; therefore

handles(U) is finite as well. If S = S′,S′′ then there are several subcases depending on

the structure of S′. If S′ = () then handles(S) = handles(S′′) and we conclude by the

inductive hypothesis. If S′ is either a channel or a service or a labelled schema then we

immediately conclude. If S = U then handles(S) = handles(E(U),S′′) and we conclude by

the inductive hypothesis. 2

Definition 2.2 (Subschema) Let ≤ be the least partial order on capabilities such that

IO ≤ I and IO ≤ O. A subschema R is a relation on schemas such that S R T implies:

1. S ↓ () implies T ↓ ();

2. S ↓ 〈S′〉κ,S′′ implies T ↓ 〈Ti〉
κi,T ′

i , for 1 ≤ i ≤ n, with κ ≤ κi, S′′ R
∑

1≤i≤n T ′
i ,

and, for every 1 ≤ i ≤ n, one of the following conditions holds:

(a) either κi = O and T ′
i R S′,

(b) or κi = I and S′ R T ′
i ,

(c) or κi = IO and S′ R T ′
i and T ′

i R S′;

3. S ↓ {(mh:Sh)h∈H},S′ implies T ↓ {(mj :Tj)
j∈Ji},T ′

i , for 1 ≤ i ≤ n, with S′ R
∑

1≤i≤n T ′
i ,

and, for every 1 ≤ i ≤ n, Ji ⊆ H, and, for every j ∈ Ji, Sj R Tj ;

4. S ↓ L[S′],S′′ then one of the following conditions holds:
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(a) either T ↓ L′[T ′],T ′′ with L̂ ∩ L̂′ 6= ∅, L̂ 6⊆ L̂′, (L \ L′)[S′],S′′ R T , and

(L ∩ L′)[S′],S′′ R T ;

(b) or T ↓ Li[Ti],T
′
i , for 1 ≤ i ≤ n, with L̂ ⊆

⋂
i∈{1,...,n} L̂i and, for every J ⊆

{1, . . . , n}, either S′ R
∑

i∈J Ti or S′′ R
∑

i∈{1,...,n}\J T ′
i .

Let <: be the largest subschema relation. We write S ≈ T if S <: T and T <: S.

The definition of subschema is commented upon below.

Item 1 constraints greater schemas to manifest a void handle if the smaller one retains

such a handle.

Item 2 deals with channel schemas 〈S〉κ,S′. A set of handles 〈Ti〉
κi,T ′

i of the greater

schema is selected such that S′ is smaller than the union of the T ′
i ’s and, in order to check

the subschema relation between 〈S〉κ and 〈Ti〉
κi , the capability κ must be smaller than κi.

Additionally, in case κi = O the subschema is inverted on the arguments (contravariance);

in case κi = I the subschema is the same for the arguments (covariance), in case κi = IO

the relation reduces to check the equivalence of the arguments (invariance). For instance

we may verify the following relations

(i) 〈a[ ] + b[ ]〉O,(c[ ] + d[ ]) <: 〈a[ ]〉O,(c[ ] + d[ ]);

(ii) 〈a[ ] + b[ ]〉O,(c[ ] + d[ ]) <: 〈a[ ]〉O,c[ ] + 〈b[ ]〉O,d[ ];

We note that, in the example (ii), since c[ ] + d[ ] 6<: c[ ] and c[ ] + d[ ] 6<: d[ ], both

the handles of 〈a[ ]〉O,c[ ] + 〈b[ ]〉O,d[ ] must be selected. Indeed a value with schema

〈a[ ] + b[ ]〉O,(c[ ] + d[ ]) is a sequence starting with a reference of schema 〈a[ ] + b[ ]〉O and

finishing with a document of either schema c[ ] or schema d[ ]. Thus, if the tail has schema

c[ ] the value has schema 〈a[ ] + b[ ]〉O,c[ ] and, by contravariance of 〈·〉O, we conclude

〈a[ ] + b[ ]〉O,c[ ] <: 〈a[ ]〉O,c[ ]. By similar arguments, if the tail has schema d[ ], the value

has 〈a[ ] + b[ ]〉O,d[ ] and we conclude 〈a[ ] + b[ ]〉O,c[ ] <: 〈b[ ]〉O,c[ ]. Said otherwise,

unions distribute over sequences i.e. S,(S′ + S′′) ≈ S,S′ + S,S′′ (cfr. rule (s-dist-rcd)

of [BP00]).

Item 3 deals with records. Similarly to item 2, a set of handles {(mj :Tj)
j∈Ji},T ′

i of

the greater schema is selected. This set must be such that S′ is smaller than the union

of the T ′
i ’s. Furthermore the subschema relation between {(mh:Sh)h∈H} and {(mj :Tj)

j∈J}
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is verified by checking that the operations provided by {(mj :Tj)
j∈J} are also provided

{(mh:Sh)h∈H} with a compatible schema. It follows that

{flatten :〈Btree,〈Blist〉O〉O tree :〈Blist,〈Btree〉O〉O} <: {tree :〈Blist,〈Btree〉O〉O}

{flatten :〈Btree,〈Blist〉O〉O} <: {flatten :〈Btree+ Blist,〈Blist〉O〉O}

Item 4 is the most involved one. It deals with handles L[S′],S′′. There are two cases:

(a) either the greater schema has a handle L′[T ′],T ′′ with L̂ ∩ L̂′ 6= ∅ and L̂ 6⊆ L̂′, or

(b) the greater schema manifests a set of handles Li[T
′
i ],T

′′
i with L̂ ⊆ L̂i. The case (a)

accounts for subschema relations between (a+ b)[S],T and a[S],T + b[S],T . According to

4.a, the relation may be reduced to the check whether a[S],T and b[S],T are subschema

of a[S],T + b[S],T (which is trivial in this case). As in [HVP00a], to discuss the item

4.b, let us admit a schema intersection operator ∩ such that S ∩ T describes the values

that belong both to S and T . Then L[S],T may be rewritten as L[S],Any ∩ Any,T using

the fact that Any is the greatest schema (see Proposition 2.2.5). For example:

L1[S1],T1 + L2[S2],T2 =(L1[S1],Any ∩ Any,T1) + (L2[S2],Any ∩ Any,T2)

=(L1[S1],Any + L2[S2],Any) ∩ (Any,T1 + Any,T2)

∩ (L1[S1],Any + Any,T2) ∩ (Any,T1 + L2[S2],Any)

where the last equality follows by distributivity of ∩ with respect to union. Therefore, if one

intends to derive that L[S],T is a subschema of L1[S1],T1 +L2[S2],T2 when L̂ ⊆ L̂1 ∩ L̂2,

it is possible to reduce to:

for every J ⊆ {1, 2} either S R
∑

j∈J

Sj or T R
∑

j∈{1,2}\J

Tj

This is exactly the item 4.b when I = {1, 2}. A particular case is when I = {1}. For

example verifying that a[S],T is a subschema of (a + b)[S′],T ′. In this case the subsets

of I are ∅ and {1} and one is reduced to prove (we let
∑

j∈∅ Sj = Empty):

(
S R Empty or T R T ′

)
and

(
S R S′ or T R Empty

)

That is, when S and T are not subschema of Empty, we are reduced to S R S′ and

T R T ′.
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The schemas AnyChan, AnyRecord and Any defined as:

E(AnyChan) = 〈Empty〉O + 〈Any〉I

E(AnyRecord) = { }

E(Any) = (~[Any] + AnyChan+ AnyRecord),Any+ ()

own relevant properties. AnyChan collects all the reference schemas, no matter what they

can carry; AnyRecord collects all the record schema; Any collects all the documents, namely

possibly empty sequences of documents, including channel schemas, no matter how they

are labelled. We observe that 〈Empty〉O and 〈Any〉O are very different. 〈Empty〉O collects

every reference to remote operations with either capability “O” or “IO”, 〈Any〉O refers only

to operations where arbitrary data can be sent. For instance 〈a[ ]〉O is a subschema of

〈Empty〉O but not of 〈Any〉O. The channel schemas 〈Any〉I and 〈Empty〉I are different as

well. 〈Any〉I refers to references that may receive arbitrary data; 〈Empty〉I refers to a

reference that cannot receive anything.

We also remark about differences between labelled schemas and channel schemas. Let

S = a[Blist] + a[Btree] and S′ = a[Blist + Btree]. Then S ≈ R′. However T =

〈Blist〉κ + 〈Btree〉κ is not subschema-equivalent to T ′ = 〈Blist + Btree〉κ. Let us

discuss the case κ = I that is similar to L[·] because covariant. It is possible to prove that

T <: T ′. However the converse is false because references in T may be invoked only with

documents that are lists of booleans or only with documents that are trees of booleans.

Channels in T ′ may be invoked with documents belonging either to Blist or to Btree.

Proposition 2.2 A few properties of <: are in order:

1. (Contravariance of 〈·〉O) S <: T if and only if 〈T 〉O <: 〈S〉O;

2. (Covariance of 〈·〉I) S <: T if and only if 〈S〉I <: 〈T 〉I;

3. (Invariance of 〈·〉IO) S <: T and T <: S if and only if 〈S〉IO <: 〈T 〉IO;

4. If S is empty then S <: Empty;

5. For every S, Empty <: S <: Any and 〈S〉κ <: AnyChan and 〈Any〉IO <: 〈S〉O and

〈Empty〉IO <: 〈S〉I and {(mh:Sh)h∈H} <: AnyRecord.
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Proof: We demonstrate item 5 (other items are straightforward). Let R be the least

relation containing the identity and the pairs:

(Empty, S), (S, Any), (〈S〉κ, AnyChan), (〈Any〉IO, 〈S〉O), (〈Empty〉IO, 〈S〉I)

({(mh:Sh)h∈H}, AnyRecord), (S, (AnyRecord+ AnyChan+ ~[Any]),Any+ ())

The proof that R is a subschema relation is straightforward, except for the pairs (S, Any)

and (S, (AnyRecord + AnyChan + ~[Any]),Any + ()). We analyze the first pair, the other

being similar. We show that every R such that S ↓ R is simulated by Any. The inter-

esting case is when R = L[S′],S′′. In this case Any ↓ ~[Any],(AnyRecord + AnyChan +

~[Any]),Any+() and we are in case 4.b of Definition 2.2. Since S ↓ R then S is not-empty,

similarly for Any. Therefore we are reduced to (S′, Any), (S′′, (AnyRecord + AnyChan +

~[Any]),Any+ ()) ∈ R, which hold by definition. 2

Lemma 2.1 <: is reflexive and transitive.

Proof: Reflexivity is straightforward. As regards transitivity, let R+ be the least relation

that contains R and closed under the following operations:

1. if S R+ T then S R+ T + R;

2. if S R+ T and S′ R+ T then S + S′ R+ T ;

3. if S R+ T and S ↓ L[S′],S′′ then L′[S′],S′′ R+ T with L̂′ ⊆ L̂;

It is not difficult to verify that, if R is a subschema relation, then R+ is a subschema, as

well.

Let R and S be two subschema relations such that S RT and T S R. We prove that

T = {(S,R) | S R+ T and TS+R}

is a subschema relation. Let S T R. The critical case is when S ↓ L[S′],S′′. According

to the definition of T , there exists T such that S R+ T and TS+R. By Definition 2.2,

T ↓ L′[T ′],T ′′ with L̂ ∩ L̂′ 6= ∅. There are two cases:

(a) T ↓ L′[T ′],T ′′ with L̂ 6⊆ L̂′ and L̂ ∩ L̂′ 6= ∅. We are reduced to (L ∩ L′)[S′],S′′ T R

and (L \ L′)[S′],S′′ T R, which are immediate by definition of T .



2.4. THE SUBSCHEMA RELATION 27

(b) T ↓ Li[T
′
i ],T

′′
i with i ∈ I and L̂ ⊆

⋂
i∈I L̂i and, for every K ⊆ I:

either S′ R
∑

k∈K

T ′
k or S′′R

∑

k∈I\K

T ′′
k . (2.1)

There are two subcases:

(b1) R ↓ M [R′],R′′ with L̂ ∩ M̂ 6= ∅ and L̂ 6⊆ M̂ . In this case we must prove

(L∩M)[S′],S′′ T R and (L\M)[S′],S′′ T R, which are immediate by definition

of T .

(b2) R ↓ Mj [R
′
j],R

′′
j with j ∈ J and L̂ ⊆

⋂
j∈J M̂j . There are again two subcases:

(b2.1) there are i, k such that L̂i 6⊆ M̂k; (b2.2) the contrary of (b2.1). In case

(b2.1) we apply the simulation case 4.(a): it must be (Li ∩ Mk)[T
′
i ],T

′′
i S R

and (Li \ Mk)[T
′
i ],T

′′
i S R. As far as (Li ∩ Mk)[T

′
i ],T

′′
i S R is concerned,

there are two remarks: (i) L̂ ⊆ L̂i ∩ M̂k and (ii) there exists a set Ji such that

R ↓ Mj [R
′
j ],R

′′
j with j ∈ Ji and L̂i ⊆

⋂
j∈Ji

M̂j and, for every K ′ ⊆ Ji:

either T ′
i S

∑

k∈K ′

R′
k or T ′′

i S
∑

k∈Ji\K ′

R′′
k (2.2)

Let J contain all the Ji that correspond to case (b2.1). Let K ⊆ J . Since

L̂ ⊆
⋂

j∈J M̂j, we must prove:

either S′ T
∑

k∈K

R′
k or S′′ T

∑

k∈J\K

R′′
k (2.3)

For every i ∈ I, the constraint (2.2) implies

either T ′
i S

+
∑

k∈J

R′
k or T ′′

i S+
∑

k∈J\K

R′′
j (2.4)

where the relation is S+. Let HK = {h ∈ I | T ′
h S+

∑
k∈K R′

k}. By definition

HK ⊆ I and T ′′
h′ S+

∑
k∈J\K R′′

k for every h′ ∈ I \ HK . The constraint (2.1)

implies

either S′ R+
∑

h∈HK

T ′
h or S′′ R+

∑

h∈I\HK

T ′′
h (2.5)

The constraint (2.3) follows from (2.5) and (2.4).

The case (b2.2) is similar to (b2.1) but we apply the simulation case 4.(b) 2
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Lemma 2.2 S,(S1 + S2) <: S,S1 + S,S2.

Proof: Let

R= {(T,(T1 + T2), T,T1 + T,T2), (T, T ) : T and T1 and T2 are schemas}.

We verify that R is a subschema relation. We only need to verify pairs of the shape

(T,(T1 + T2), T,T1 + T,T2). We distinguish two cases.

– If T ↓ (), by definition of handle if T,(T1 + T2) ↓ R with either T1 ↓ R or T2 ↓ R

then T,T1 + T,T2 ↓ R. Tince (R,R) ∈R, we conclude.

– If T ↓ R,T ′ – with R either R = 〈R′〉κ or R′ = {(mh:Sh)h∈H} or R = L[R′] –

by definition of handle T,(T1 + T2) ↓ R,T ′,(T1 + T2), and T,T1 ↓ R,T ′,T1, and

T,T2 ↓ R,T ′,T2. Then by Definition of <:, item 2, item 3, or item 4.b we have to

verify that (T ′,(T1 + T2), T ′,T1 + T ′,T2) ∈R. This holds by definition of R. 2

2.5 Primitive types

The extension of our schema language with primitive types is not difficult. Consider the

new syntax:

B ::= primitive types

n (integer constant)

s (string constant)

Int (integers)

String (strings)

S ::= schema

· · ·

B (primitive types)

The primitive types n, s, Int, and String respectively describe a specific integer, a specific

string, the set of integers, and the set of strings. For example, the schema that collects

integers and strings is Int + String; the schema that collects references with integer

messages is 〈Int〉i + 〈Int〉o. As regards the subschema relation, the handles are extended

with B ↓ B,(). Let ≤b be the least partial order on primitive types such that n ≤p Int

and s ≤p String. To define the subschema relation for the new language it sufficies to

extend Definition 2.2 with
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5. S ↓ B,S′ implies T ↓ B′i,T
′
i , for 1 ≤ i ≤ n, with B ⊑ B′i and S′ R

∑
1≤i≤n T ′

i ;

Then a set of handles Bi,T
′
i of the greater schema is selected such that B is smaller

than Bi and S′ is smaller than the union of the T ′
i ’s. It follows that 1 + Int <: Int, and

5,(S + S′) <: Int,S + 5,S′, and a[1 + "bye"] <: a[1] + a["bye"] (the proofs are left to

the reader).

Remark. The algorithm for computing the subschema relation is similar to the one

developed for XDuce [HVP00a]. It is computationally expensive: the cost of the algorithm

for subschema is exponential in the sizes of the schemas.

2.6 The algorithmic subschema

Table 2.2 illustrates the algorithmic version of <:. In this case the subschema relationship

between S and T is demonstrated by a proof tree with a conclusion S �A T ⇒ A′, where

A = ∅. In this proof tree A is filled with pairs (S, T ) (called assumptions) meaning that

the subschema relation between S and T has been proved or is being proved. Since S

and T are regular (i.e. finite state) this ensures the termination of the algorithm (see

Section 2.6.1 for the formal proof). Following Brand and Henglein [BH97], the resulting

set of pairs A′ is used for building the remaining proof tree. We remark that the algorithm

may be simplified omitting A′ (which is tedious to keep in the formalization). However

this simplification yields an less efficient procedure because it does not remember pairs of

schemas across the recursive calls [AC93].

Rules (void), (chan), (split), and (lseq) correspond to items 1, 2.1, 2.2, 2.3, 4.1,

and 4.2 of <:. In order to have a more readable rule, item 3 of <: is implemented by two

rules: (record) and (record-aux) where schemas are records. (union) distributes the

union schema on top of a sequence verifying that both the components S,S′′ and S′,S′′

are subschema of T . (nameh) expands the constant schema name to its definition adding

a new assumption in A. (namel) closes the proof tree when a prove have been already

done. (empty) takes into account the case when S does not have any handle returning

success. This is necessary, for instance, for proving U �∅ b[ ] with E(U) = a[U] where –

after an application of (nameh) – (lseq) fails because of the false premise â ⊆ b̂. We note

that, strictly speaking, the algorithm is not syntax directed because of this last rule that
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Table 2.2: The algorithmic subschema (arguments of shape 〈S〉κ are always replaced by

〈S〉κ,(). Similarly for L[S], U, S∗, {(mh:Sh)h∈H} and S + S′. Arguments (),S are always

replaced by S).

(void)

T ↓ ()

() �A T ⇒ A

(empty)

handles(S) = ∅

S �A T ⇒ A
(chan)

(T ↓ 〈Ti〉
κi,T ′

i )
i∈1..n κ ≤ κi


κi = O implies Ti �Ai−1

S ⇒ Ai

κi = I implies S �Ai−1
Ti ⇒ Ai

κi = IO implies S �Ai−1
Ti ⇒ A′i and Ti �A

′

i
S ⇒ Ai




i∈1..n

S′ �An

∑
i∈1..n T ′

i ⇒ An+1

〈S〉κ,S′ �A0
T ⇒ An+1

(record)

T ↓ ({(mj :Tj)
j∈Ji},T ′

i )
i∈{1,...,n}

({(mh:Sh)h∈H} �Ahi−1
{(mj :Tj)

j∈Ji} ⇒ Ahi
)i∈{1,...,n} S′ �Ahn

∑
i∈{1,...,n} T ′

i ⇒ Ahn+1

{(mh:Sh)h∈H},S′ �Ah0
T ⇒ Ahn+1

(record-aux)

{h1, . . . , hn} = J ⊆ H (Shi−1
�Ahi−1

Thi
)i∈{1,...,n}

{(mh:Sh)h∈H},() �Ah0
{(mj :Tj)

j∈J},() ⇒ Ahn

(split)

T ↓ L′[T ′],T ′′ L̂ 6⊆ L̂′ L̂ ∩ L̂′ 6= ∅

(L \ L′)[S],S′ �A T ⇒ A′ (L ∩ L′)[S],S′ �A′ T ⇒ A′′

L[S],S′ �A T ⇒ A′′

(lseq)

(T ↓ Li[Ti],T
′
i )

i∈{1,...,n} L̂ ⊆
⋂

i∈{1,...,n} L̂i{J1, . . . , Jm} = P({1, . . . , n})
(
S �Ak−1

∑
i∈Jk

Ti ⇒ Ak or S′ �Ak−1

∑
i∈{1,...,n}\Jk

T ′
i ⇒ Ak

)k∈1..m

L[S],S′ �A0
T ⇒ Am

(union)

S,S′′ �A T ⇒ A′ S′,S′′ �A′ T ⇒ A′′

(S + S′),S′′ �A T ⇒ A′′

(nameh)

A′ = A ∪ {(U,S, T )} E(U),S �A′ T ⇒ A′′

U,S �A T ⇒ A′′

(namel)

(S, T ) ∈ A

S �A T ⇒ A



2.6. THE ALGORITHMIC SUBSCHEMA 31

can be always applied and because of the two rules for records. An implementation would

first verify the schema to have some handles proceeding with one of the syntax-directed

rules applying (record-aux) instead of (record) when it is possible.

2.6.1 Properties of the algorithmic subschema

We note that the rules in Table 2.2 defines a program, called the �-program, that takes a

triple (S, T, A) and attempts to build the proof tree by recursively analyzing the structure

of S and the set A. The program returns a set A′ if the attempt succeeds, returns a failure

otherwise. In this section we prove basic properties of S �A T ⇒ A′ such as soundness,

termination and completeness.

Soundness The relation � is sound with respect to <:. To demonstrate this property

we consider the subschema relation made by pairs in the derivation tree of S �∅ T ⇒ A.

Lemma 2.3 (Soundness) If S �∅ T ⇒ A then S <: T .

Proof: Let R be the relation containing

1. pairs (S′, T ′) such that a subtree S′ �A′ T ′ ⇒ A′′ exists in the tree S �∅ T ⇒ A;

2. if (B, T ′) ∈ R then (B,(), T ′) ∈ R, too. Similarly for pairs (〈S′〉κ, T ′), (〈S′〉κ, T ′),

(L[S′], T ′), ({(mh:Sh)h∈H}, T ′), (S′ + S′′, T ′), and (U, T ′).

To check that R is a subschema relation, let (S′, T ′) ∈ R and S′ ↓ R. By induction on the

structure of the proof S′ ↓ R it is easy to show that (R,T ) ∈ R, too. 2

Termination The �-program terminates. To demonstrate this property we start with

some prelimars. Let subt(S), called the set of subterms of S, be the smallest set satisfying

the following equations:

t(()) = {()}

t(U) = {U} ∪ {U,()} ∪ {t(E(U))}

t(〈S〉κ) = {〈S〉κ} ∪ {〈S〉κ,()} ∪ t(S)

t(L[S]) = {L[S]} ∪ {L[S],()} ∪ subt(S)

t({(mh:Sh)h∈H}) = {{(mh:Sh)h∈H}} ∪ {{(mh:Sh)h∈H},()} ∪
⋃

h∈H t(Sh)

t(S,S′) = {T,S′ | T ∈ subt(S)}

t(S + T ) = {(S + T ),()} ∪ t(S) ∪ t(T )
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Let also anames(S)
def
= {U,T : U,T ∈ t(S)} and lsubt(S, T ) be the smallest set containing

t(S), t(T ) and closed under the following properties:

• if L[Q],Q′ ∈ lsubt(S, T ) and L′[Q′′],Q′′′ ∈ lsubt(S, T ) and L̂ 6⊆ L̂′ then (L \

L′)[Q],Q′ ∈ lsubt(S, T ) and (L ∩ L′)[Q],Q′ ∈ lsubt(S, T );

• if S,S′ ∈ t(S) and T,T ′ ∈ t(S) then S′ + T ′ ∈ t(S).

It is easy to see that t(S) is finite and, consequentially, lsubt(S, T ) is also finite. Finally,

let ‖S‖∅, called the size of S, be the function inductively defined as:

‖S‖X =






0 S = U ∈ X

1 S = ()

‖E(U)‖X∪{U} S = U 6∈ X

1 + ‖T‖X S = 〈T 〉κ or S = L[T ]

1 + ‖T‖X + ‖T ′‖X S = T,T ′ or S = T + T ′

1 +
∑

h∈H ‖Th‖ S = {(mh : Th)h∈H}

In the following ‖S‖∅ will be shortened into ‖S‖. We note that ‖S‖ and | t(S) | are

different. For instance ‖S + S‖ = 2 × ‖S‖ + 1 whilst | t(S + S) |=| t(S) | +1.

Lemma 2.4 (Termination) The �-program terminates.

Proof: Let nS,T,A =| (anames(S) ∪ anames(T )) × lsubt(S, T ) \ A | (the subtrees of

T are considered because of the contravariance of 〈·〉O). We note that A is contained

into (anames(S) ∪ anames(T )) × lsubt(S, T ). We demonstrate that every invocation of

S �A T ⇒ A′ in the premises of the rules of Table 2.2 decreases the value (nS,T,A, ‖S‖+‖T‖)

(the order is lexicographic) of the conclusion. In particular (void), (empty) and (namel)

do not generate any new judgment. (nameh) increases the cardinality of the set of as-

sumptions thus decreasing the structure of the pair. In case of (chan), (lseq), (union)

and (record-aux) ‖S‖ + ‖T‖ diminish leaving unchanged the set of assumption. There

are two problematic cases: when the �-program trys to apply (split) and (record). In

this case, the value (nS,T,A, ‖S‖+ ‖T‖) for the two premises is equal to that of the conclu-

sion. However, after a finite number of application of (split) – corresponding (in worst

case) to the number of labelled handles of T , which are finite by (1) – (split) reduces to

(lseq). In (lseq) the value (nS,T,A, ‖S‖+ ‖T‖) decreases, thus guaranteeing termination.
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In case of (record), at most in two steps requiring (record-aux), ‖S‖ + ‖T‖ diminish

and we conclude. This says that the algorithm terminates. 2

Completeness The relation � is complete with respect to <:. To demonstrate this

basic property of the �-program we show that the algorithm cannot fail when it is in-

voked on schemas related by <:. This, together with the termination property guarantees

completeness.

Definition 2.3 We say that a judgment S �A T ⇒ A′ is correct if and only if: (1) S <: T

and (2) S <: T for every (S, T ) ∈ A.

Proposition 2.3 If S �A T ⇒ A′ is correct then S′ <: T ′ for every (S′, T ′) ∈ A′.

Proof: We reason by induction on the derivation of S �A T ⇒ A′. The only interesting rule

is (nameh) because it augments with the pair (U,S, T ) the set of assumptions. U,S <: T

follows immediately by the correctness of the current judgment. 2

Proposition 2.4 If S �A T ⇒ A′ is correct then one of rule in Table 2.2 applies and the

judgments corresponding to the premise are correct.

Proof: If handle(S) = ∅ then (empty) applies and no judgments are generated. Oth-

erwise, we distinguish several cases depending on the structure of S. If S = () then

(void) applies generating no judgements. If S = B,S′ then (base) applies generating

the judgement S′ �A

∑
i∈{1,...,n} Ti ⇒ A′ that is correct by the hypotheses on A and by

S <:
∑

i∈{1,...,n} Ti. If either S = 〈S′〉κ,S′′ or S = L[S′],S′′ or S = {(mh:Sh)h∈H} then

either (chan) or (split) or (lseq) or (record) or (record-aux) can by applied. The

correctness of the new judgements follows by the hypothesis S <: T and by Proposition 2.3.

If S = (S′ + S′′),S′′′ then the rule (union) applies and we obtain two judgements: a)

S′,S′′′ �A T ⇒ A′, and b) S′′,S′′′ �A′ T ⇒ A′′. By the hypothesis S <: T and by definition

of handle we obtain S′,S′′′ <: T and S′′,S′′′ <: T . Hence, by Proposition 2.3, we conclude

that a) and b) are correct.

If S = U,S′ and (S, T ) 6∈ A then either (nameh) or (namel) can be applied. In case of

(nameh), the correctness of the new judgement follows by the correctness of the current

judgement. In case of (namel), no new judgement is generated. 2
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Lemma 2.5 (Completeness) If S <: T then S �∅ T .

Proof: We consider the derivation produced by the algorithm S �∅ T . Since S �∅ T

is correct, by Proposition 2.4, only correct judgments are created and the algorithm can

only proceed or return success. Therefore the algorithm cannot fail when started with

a correct input. Since, by Lemma 2.4, the algorithm is terminating, we conclude that it

succeeds. 2

2.7 Label-determined schemas

It is clear that rule 4.b of <: – implemented by (lseq) – yields an exponential algorithm

because it requires a universal quantification over the set of subset of handles. Indeed – if

we omit references – the relation <: computes tree language containement, that turns out

to be computationally expensive – it has an exponential cost with respect to the sizes of the

schemas [CDG+97]. This is an issue in Web-services, where data coming from untrusted

parties, such as wsdl documents (containing the schema of a service), might be validated

at run-time before processing. While validation has a polynomial cost with respect to the

size of the datum in current schema languages, this is not so when data carry references.

In these cases, validation has to verify that the schema of the reference conforms with some

expected schema, thus reducing itself to the subschema relation. It is worth to notice that

in XDuce run-time subschema checks are avoided because programs are strictly coupled

and typechecking guarantees that invalid values cannot be produced. In CDuce there is

the possibility of using pattern matching on function value that requiring the subschema

relation at run-time, but this feature is never used in CDuce programs [Cas06].

To avoid significative run-time degradations of Web-services technologies, we impose

a language restriction to diminish the cost of the subschema relation. The restriction

prevents unions of schemas having a common starting tag and is similar to the restriction

used in single-type tree grammars [MLM01]. Specifically, similarly to xml-schema, we

constrain schemas to retain a deterministic model as regards tag-labeled transitions. The

model is still nondeterministic with respect to other transitions. For the resulting schemas,

called label-determined, the subschema relation can be implemented in polynomial time

with respect to the size of the schemas. We proceed by showing a simplification of the

subschema relation – the determined subschema relation – and then we show that it is
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equivalent, for determined schemas to <:. Then we demonstrate that it has a polynomial

cost with respect to the sizes of the schemas. This result extends to reference schemas

the computational complexity of language difference for deterministic tree automata (and

xml schemas) computed in [CDG+97].

Definition 2.4 The set ldet of label-determined schemas is the greatest set of schemas

such that:

() ∈ ldet

〈S〉κ ∈ ldet if S ∈ ldet

{(mh:Sh)h∈H} ∈ ldet if, for every h, Sh ∈ ldet

L[S] ∈ ldet if S ∈ ldet

S,T ∈ ldet if S ∈ ldet and T ∈ ldet

S + T ∈ ldet if S ↓ L[S′],S′′ and T ↓ L′[T ′],T ′′ implies L̂ ∩ L̂′ = ∅

and S ∈ ldet, T ∈ ldet

U ∈ ldet if E(U) ∈ ldet

By the definition a[S] + (~ \ a)[T ] and ~[S] + 〈S〉κ + 〈T 〉κ
′

are label-determined schemas

whilst a[ ] + (a + b)[ ] and 〈a[ ] + ~[ ]〉κ are not label-determined. It is worth to emphatize

that every empty schema – the schema that does not retain any handle – is in ldet and

that schemas like a[ ] + a[Empty] are also label-determined.

A determined subschema relation is a simplification of the item 4 of the subschema

relation <:. Other items are left unchanged. We show that the determined subschema

relation is equivalent to <: for label-determined schemas and that it can be implemented

by a polynomial algorithm.

Definition 2.5 A determined subschema D is a relation on schemas such that SDT

implies:

1. S ↓ () implies T ↓ ();

2. S ↓ 〈S′〉κ,S′′ implies T ↓ 〈Ti〉
κi,T ′

i , for 1 ≤ i ≤ n, with κ ≤ κi, S′′D
∑

1≤i≤n T ′
i ,

and, for every 1 ≤ i ≤ n, one of the following conditions holds:

(a) either κi = O and T ′
i R

− S′,

(b) or κi = I and S′DT ′
i ,



36 2.7. LABEL-DETERMINED SCHEMAS

(c) or κi = IO and S′DT ′
i and T ′

iDS′;

3. S ↓ {(mh:Sh)h∈H},S′ implies T ↓ {(mji
:Tji

)ji∈Ji},T ′
i , for 1 ≤ i ≤ n, with S′D

∑
1≤i≤n T ′

i ,

and, for every 1 ≤ i ≤ n Ji ⊆ H, and, Sji
DTji

for every ji ∈ Ji;

4. S ↓ L[S′],S′′ implies T ↓ Li[T
′
i ],T

′′
i , for 1 ≤ i ≤ n with L̂∩L̂i 6= ∅, L̂ ⊆

⋃
i∈{1,...,n} L̂i,

S′DT ′
i , and S′′DT ′′

i .

Let <:d be the largest determined subschema relation.

Proposition 2.5 If S <:d T then S <: T .

Proof: Let D a determined subschema relation and let D′ be the least relation containing

D and closed under the following operations:

1. (L[S],S′, T ) ∈ D′ and T ↓ L′[T ′],T ′′ implies

(
(L \ L′)[S],S′, T

)
∈ D′ and

(
(L ∩ L′)[S],S′, T

)
∈ D′

2. (S, T ) ∈ D′ implies (S, T + T ′) ∈ D′.

We prove that D′ is a subschema relation. Since items 1, 2, 3 are the same, we reduce

to prove that condition 4 of D implies item 4 of R. Let (S, T ) ∈ D′ with S ↓ L[S′],S′′ and

T ↓ Li[T
′
i ],T

′′
i . We distinguish two cases:

1. if there exists T ↓ L′[T ′],T ′′ with L̂ ∩ L̂′ 6= ∅ and L̂ 6⊆ L̂′ we need to verify that

(
(L \ L′)[S′],S′′, T

)
∈ D′

(
(L ∩ L′)[S′],S′′, T

)
∈ D′

which follows by definition of D′ (closure 1).

2. if L̂ ⊆
⋂

i∈{1,...,n} L̂i we need to verify that for every J ⊆ {1, . . . , n}

(S′,
∑

j∈J

T ′
j) ∈ D′ or (S′′,

∑

j∈{1,...,n}\J

T ′′
j ) ∈ D′

Since (S′, T ′
i ) ∈ D′ and (S′′, T ′′

i ) ∈ D′ we conclude by definition of D′ (closure 2). 2

Lemma 2.6 Let S ∈ ldet and T ∈ ldet. S <: T if and only if S <:d T .
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Proof:

(⇒) Follows immediately by Proposition 2.5.

(⇐) By the hypothesis S ∈ ldet and T ∈ ldet, item 4.(b) of Definition 2.2 <: applies with

n = 1 thus reducing item 4 to:

(4) S ↓ L[S′],S′′ then one of the following conditions holds:

(a) either T ↓ L′[T ′],T ′′ with L̂ ∩ L̂′ 6= ∅, L̂ 6⊆ L̂′, (L \ L′)[S′],S′′ R T , and

(L ∩ L′)[S′],S′′ R T ;

(b) or T ↓ L′[T ′],T ′′ with L̂ ⊆ L̂′ and S′ R T ′ and S′′ R T ′′.

We now show that 4.(a) and 4.(b) are equivalent to condition 4 of D. 4.(a) re-

duces the subschema relation to verify L′
1[S

′],S′′ R T , . . . , L′
n[S′],S′′ R T with

⋃
j∈{1,...,n} L̂′

j = L̂. This, by item 4.(b), reduces to demonstrate that, for every

j ∈ {1, . . . , n}, T ↓ L[T ′],T ′′ and L̂′
j ⊆ L̂ and S′ R T ′ and S′′ R T ′′. It follows that

T ↓ Li[T
′
i ],T

′′
i and L̂ ⊆

⋃
i∈{1,...,n} L̂i and S′DT ′

i and S′DT ′′
i for some i. That is item

4 of D. 2

A consequence of Lemma 2.6 is that the algorithm S �A T ⇒ A′, can be simplified into

S �d

A
T ⇒ A′ where rules (split) and (lseq) are replaced by the rule:

(lab)

(T ↓ Li[Ti],T
′
i )

i∈{1,...,n} L̂ ⊆
⋃

i∈1,...,n L̂i (L̂ ∩ L̂i 6= ∅)i∈{1,...,n}

S �d

Ai−1
Ti ⇒ A′i S′ �d

A
′

i
T ′

i ⇒ Ai

L[S],S′ �d

A0
T ⇒ An

This diminishes significantly the computational complexity of the algorithm which can be

proved to be quadratic in the size of the schemas S and T .

2.7.1 The code and its computational complexity

The pseudo-code of the algorithm for S �d

A
T ⇒ A′ is shown in Table 2.3. It is a boolean

function using two associative tables At, and Af. At, similarly to A, stores schemas whose

subschema relation is either verified or is being verified. Af stores schemas whose sub-

schema relation have been already verified to be false. This improves the efficiency by
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preventing that the same subschema relation is verified twice. Finally, an auxiliary func-

tion Handles returning the set of handles of a given schema handles(S) is used. We do

not detail its implementation because it is immediate by Definition 2.1. However we notice

that the complexity of a naive implementation is O(‖R‖).

The algorithm is initially invoked with every entry of At and Af set to false, – it

computes S �d

∅ T . It primarily verifies either if the subschema relation has been already

computed (checking At[S][T] and Af[S][T]) or if the schema S does not retain any

handle (Handles(S) = ∅); in these cases returns immediately. Then, if Handles(T = ∅,

since Handles(S) 6= ∅, it answers false. Otherwise At[S][T] is set to true, meaning

that the pair (S,T ) is being verified, and begins the syntax-directed case analysis of the

schemas as explained in Table 2.2. If the verification fails At[S][T] is replaced by false

and Af[S][T] is set to false. The following Proposition shows that the algorithm is

polynomial in the size of the schemas.

Proposition 2.6 SubSchema terminates in polynomial time.

Proof: Let t(S) be the set of subterms of a schema S and let | · | be the cardinality

function. The dimensions of the arrays At and Af is (2× | t(S) ∪ t(T ) |)2. The reason is

due to the following facts:

1. the contravariance of 〈·〉o may reduce S <: T to T ′ <: S′ where T ′ ∈ t(T ) and

2. for any subterm in t(S) ∪ t(T ) we may need a new term – a union schema Q =

T1 + · · · + Tn – where every Ti is a subterm of either S or T .

Let ⌈true⌉ = 1 and ⌈false⌉ = 0. Let Ati and Afi denote the arrays At and Af when one

of them has been modified exactly i times. The following invariants are preserved at the

end of every line of SubSchema:

1. for every S,T : (At[S][T] == false) or (Af[S][T] == false), that is true is

never stored both in Af[S][T] and in At[S][T];

2. for every S,T : if (Afi[S][T] == true) then (Afi+1[S][T] == true), that is true

is never deleted from Af;

3.
∑

S,T
⌈Ati[S][T]⌉+⌈Afi[S][T]⌉ ≤

∑
S,T

⌈Ati+1[S][T]⌉+⌈Afi+1[S][T]⌉ (i.e. the

total number of trues either grows or remains the same)
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4. if
∑

S,T
⌈Ati[S][T]⌉ + ⌈Afi[S][T]⌉ =

∑
S,T

⌈Ati+1[S] [T]⌉ + ⌈Afi+1[S] [T]⌉

then
∑

S,T
⌈Afi[S] [T]⌉ < ⌈Afi+1[S][T]⌉ (i.e. when the total number of trues

remains the same then the trues in Af strictly increase).

We observe that, in the worst case, the algorithm terminates when
∑

S,T
⌈At[S] [T]⌉+

⌈Af[S][T]⌉ is equal to (2× | t(S) ∪ t(T ) |)2. Invariants 3 and 4 guarantee terminations

(the number of trues either grows or remains the same for at most (2× | t(S) ∪ t(T ) |)2

times before terminating). Invariants 1 and 2 state that true is never set in the same entry

twice and it is never assigned to the same entry of the two arrays. Therefore, there may be

at most (2× | t(S)∪ t(T ) |)2 stores of true into At and each true may be “moved” at most

once into Af. The cost of this movement is linear in the complexity of computing the set

of handles of a schema. Since such a computation is in O(| subt(S) |) (Proposition ??),

the total cost of SubSchema is O(| t(S) ∪ t(T ) |3). 2

2.8 Conclusion

The schema language and its subschema relation, have been implemented in PiDuce –

a concurrent language with native xml data types and pattern matching. In particular,

the design of the PiDuce datatype and pattern languages, as well as most of the algo-

rithms regarding these features, have been strongly influenced by the XDuce and CDuce

prototypes – two functional languages with native xml datatypes. Similarly to XDuce

and CDuce, the PiDuce compiler performs a semantic analysis guaranteeing that invalid

documents can never be produced. For instance the following PiDuce program

import Google {

doSpellingSuggestion: 〈key[string],phrase[string],〈return[string]〉O〉O

} location="http://api.google.com/GoogleSearch.wsdl"

in new stdout : 〈return[string]〉O

in Google.doSpellingSuggestion!( key["xxxxxx"],phrase["heello"],stdout )

imports the operation doSpellingSuggestion of the GoogleWebService and prints the

result of the invocation – that is < return > hello < /return > – to the standard output.

At compile time – the typechecker – downloads the wsdl interfaces located at the speci-

fied uri and verifies that the service provides the requested operation with a compatible
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Table 2.3: The Subschema Algorithm for determined schemas

1 bool SubSchema(S, T, At, Af) //Assume E globally defined

2 bool res = false;

3 if At[S][T] res:= true;

4 else if Af[S][T] res:= false;

5 else if Handles(S) = ∅ res:= true;

6 else if Handles(T ) = ∅ res:= false;

7 else

8 At[S][T]:= true;

9 match S with

10 () → res:= () ∈Handles(T );
11 R + R′ → res:= SubSchema(R, T, At, Af)∧SubSchema(R′, T, At, Af)

12 (R + R′),R′′ → res:= SubSchema(R,R′′, T, At, Af)

13 ∧SubSchema(R′,R′′, T, At, Af)

14 U → res:=SubSchema(E(U), T, At, Af)

15 U,S → res:=SubSchema(E(U),S, T, At, Af)

16 〈R〉O,R′ → let {T1, . . . , Tn}:= {T ′ | 〈Q〉κ, T ′ ∈Handles(T )∧ κ ≤ O

17 ∧ SubSchema(Q, R, At, Af)}
18 in let Q:= T1 + · · · + Tn

19 in res:= SubSchema(R′, Q, At, Af);

20 〈R〉I,R′ → let {T1, . . . , Tn}:= {T ′ | 〈Q〉κ, T ′ ∈Handles(T ) ∧ κ ≤ I

21 ∧ SubSchema(R, Q, At, Af)}
22 in let Q:= T1 + · · · + Tn

23 in res:= SubSchema(R′, Q, At, Af);

24 〈R〉IO,R′ → let {T1, . . . , Tn}:= {T ′ | 〈Q〉κ, T ′ ∈Handles(T ) ∧ κ ≤ IO

25 ∧ SubSchema(Q, R, At, Af)

26 ∧ SubSchema(R, Q, At, Af)}
27 in let Q:= T1 + · · · + Tn

28 in res:= SubSchema(R′, Q, At, Af);

29 {(mh:Sh)h∈H}, R′ → let {T1, . . . , Tn}:=
30 {T ′ | {(nj:Tj)

j∈J}, T ′ ∈Handles(T ) ∧
31 ∀nj∃mh : nj = mh ∧ SubSchema(Sh, Tj, At, Af)}
32 in let Q:= T1 + · · · + Tn

33 in res:= SubSchema(R′, Q, At, Af);

34 L[R],R′ → let {L1[Q1],Q
′
1
, . . . , Ln[Qn],Q′

n}:=
35 {L′[Q],Q′ | L′[Q],Q′ ∈Handles(T ) and L ∩ Li 6= ∅}
36 in res:= L ⊆

⋃
i∈{1,...,n} Li ∧

∧
i=1..n (SubSchema(R,Ri, At, Af)

37 ∧SubSchema(R′,Qi, At, Af));

38 //default is for 〈S〉κ, {(mh:Sh)h∈H}, L[S]
39 default → res:= SubSchema(S,(), T, At, Af)

40 if (¬res) At[S][T]:= false; Af[S][T]:= true;

41 return res;

schema. Thus the typechecker verifies the schema of the xml value

key[”xxxxxx”],phrase[”heello”],stdout.print
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to be a subschema of the schema that can be accepted by the selected operation.

With respect to XDuce and CDuce, a major technical difficulty in the PiDuce

datatype language is that values, as in xml, may contain references that are uris where

values can be sent. A reference is represented by the wsdl interface describing the schema

of the values it accepts. The semantics rules of PiDuce expose an environment that is

partially supplied by local service declarations and partially by the global environment.

The maintenance of this environment means that communications also gather information

about the schemas of the references contained in the message. A related problem is found in

the algorithm matching a document against a pattern (pattern matching). The algorithm

checks if the document conforms with the schema specified in the pattern and returns

a set of variable bindings. As in XDuce, pattern matching in PiDuce is implemented

using top-down tree automata, but the presence of references inside values increases the

complexity of the algorithm. In particular, verifying that a reference matches a pattern

reduces to checking whether the schema of the reference is a subschema of the one specified

in the pattern or not. This, in general, requires exponential time in the size of the tree

automata of the pattern and may significantly degrade the run-time efficiency of possible

implementations. To alleviate this problem we have shown a reasonable restriction bearing

a polynomial algorithm. As an example, consider the PiDuce fragment:

new PrinterWebService { printJPeg : 〈(〈Pdf〉O + 〈JPeg〉O), JPeg〉O }

in PrinterService.printJPeg?*( printer:(〈Pdf〉O + 〈JPeg〉O), fileJPeg:JPeg)

in match printer with

〈JPeg〉O → printer!( fileJPeg )

| 〈Pdf〉O → printer!( convertToPdf(fileJPeg) )

It defines the PiDuce printer Web service that provides one operation printJPeg that

is waiting for pairs containing the printer service and the image to be printed (the * says

that the input on the reference printJPeg is replicated). Depending on the schema of

the printing service – bound to the variable printer – one of the two branches is selected

converting the image to a Pdf if needed. It stands that, in order to select the proper

branch, the wsdl of the received reference is downloaded and the subschema relation is

invoked.

We also note that PiDuce is only an example of how to use our schema language

and our subschema relation. Other programming languages, such as bpel and wscdl
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implementations, may be equipped with a similar type system in order to obtain statically

typed Web services and statically typed programs interacting with Web services.



Chapter 3
Encoding of wsdl interfaces

In this chapter we compare the expressivity our schema language with state of art tech-

nologies for describing Web services interfaces: wsdl and xml-schema. In particular we

provide an encoding of wsdl and xml-schema in our schema language. It stands that the

subschema relation is suitable to be used in querying services repositories: a query asking

for a service accepting a certain schema may safely returns any service with a “greater”

schema.

Structure of the chapter Section 3.1 introduces services interfaces and services repos-

itories. Section 3.2 introduces wsdl defining its syntax and presenting the encoding in

our schema language. Similarly, Section 3.3 introduces xml-schema, its syntax and the

encoding in our schema language. Some final remarks are given in Section 3.4.

3.1 Introduction

Web services are described by public interfaces written in the Web Services Description

Language (wsdl). Through wsdl, a designer describes the programming interface of a

Web service. This interface is specified in terms of operations supported by the Web

service, where each operation could take one message as input and eventually return

another message as output. A wsdl file describing an interface can be compiled into

appropriate programming language to generate intermediate layers, called stubs, that

make calls to the Web services transparent. Stubs establish the connection to the Web
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Figure 3.1: Interaction with a uddi registry.

service selecting the appropriate communication protocol (typically http) and selecting

the appropriate message protocol (typically soap).

Once services have been described and can be invoked, services may be published

in a repository. In this way requesters can look for services of interest and understand

their properties i.e. their wsdl interface and the uri at which they are made available

(Figure 3.1). Hence, a basic step toward having a functional Web services architecture is to

standardize the Web service registry. Such a standardization is taking place as part of the

Universal Description, Discovery, and Integration (uddi) [Spe02] project. The registry

is the place where service descriptions are published in catalogs that can be searched

by users. The standardized uddi apis determine how to publish a service, and how to

query the registry. uddi registries maintain different access points uris and different apis

for requesters, publishers, and other registries (uddi registry may interact each other for

replication and custody purposes).

Another attempt to standardize service repositories is wsil [BBM+01, Cov02]. Both

wsil and uddi assist in the publishing and discovery of services, but their models are

distinctly different. uddi implements service discovery using a centralized model of one
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Figure 3.2: The structure of a wsdl.

or more repositories containing information on multiple business entities and the services

they provide (uddi is a sort of Yellow Pages service where multiple businesses are grouped

and listed with a description of the goods or services they offer and how to contact them).

wsil approaches service discovery in a decentralized fashion, where service description

information can be distributed to any location using a simple extensible xml document

format. Unlike uddi, wsil does not concern itself with business entity information, nor

does it specify a particular service description format. wsil works under the assump-

tion that you are already familiar with the service provider, and relies on other service

description mechanisms such as wsdl.

Either uddi and wsil repositories may be queried by clients looking for services with

specific functionalities [CJ04]. The current search mechanism can focus on several criteria.

One these criteria is the service schema but a schema name matching is applied. With this

respect our subschema relation is anatural way for adding more flexibility to this search

mechanism.
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3.2 wsdl interfaces

The Web Services Description Language (wsdl) is an xml format for describing Web

services. Version 1.1 is currently widely used even if it has not been endorsed by the w3c.

Version 2.0, for which several drafts have been released, is expected to become a w3c

Recommendation and now it is in the Proposed Recommendation state. wsdl represents

a contract between the service requester and the service provider, in much the same way

that a java interface represents a contract between client code and the actual java object.

The crucial difference is that wsdl is platform and language independent. A client can

locate a Web service and invoke any of its publicly available functions. With wsdl-aware

tools, it is possible to automate this process, enabling applications to easily integrate new

services with little or no manual code. wsdl therefore represents a cornerstone of the

web service architecture, because it provides a common language for describing services

and a platform for automatically integrating those services. It enables one to separate

the description of the abstract functionality offered by a service from concrete details of a

service description such as “how” and “where” that functionality is offered.

As shown by Figure 3.2, every wsdl interface consists of two parts. An abstract part

that defines the set of operations supported by the service; a concrete part: which binds

every operation to a concrete network protocol and to a concrete location (uri). The

abstract part is made of schemas and interfaces (ports in wsdl1.1). Schemas are defined

using xml-schema; interfaces are logical groupings of operations that are defined by a

name, an interaction pattern, and the schema of messages for invoking the operations and

receiving back results and faults. For instance a service with a single input-only operation

(we are omitting some details of the wsdl document) may be described by the wsdl in

Table 3.1. Indeed it defines the service specifying both abstract and concrete information.

In this case the service is located at http://example.com/ser- viceInOnly and that it

provides an operation called opInOnly. Such an operation can be invoked with documents

of schema InvokeScm and it implements the In-Only interaction pattern. This means that

opInOnly only accepts messages without sending back any result.
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Table 3.1: A simplified wsdl interface.

< description >

< type >

< element name = ”InvokeScm” type = ”string”/ >

< /type >

< interface name = ”serviceInOnly” >

< operation name = ”opInOnly” pattern = ”In-Only" >

< input Label = ”In” element = ”InvokeScm”/ >

< /operation >

< /interface >

< service name = ”serviceInOnly” >

< interfaces name = ”opInOnly” protocol = ”http”/ >

< endpoint location = ”http : //example.com/serviceInOnly”/ >

< /service >

< /description >

3.2.1 Syntax of wsdl interface definitions

We now formally define the syntax of wsdl and we show wsdl interfaces can be encoded

in our schema language. The syntax assumes a infinite set of interface names ranged over

by I, I1, . . . , an infinite set of operation names ranged over by op, op1, . . . . For simplicity

sake, we also assume a schema environment E . Such an environment is defined in the type

part of the wsdl document by means of a xml-schema declaration. In Section 3.3 we

show how to encode xml-schema in our schema language thus obtaining the proper E . A

wsdl service is defined by the grammar in Table 3.2.

There are two syntactic categories. Interfaces have a name, specified by the attribute

name, and contain a list of supported operations. Operations may use one of the eight

predefined interaction patterns [CHL+06]. Four interaction patterns are used for describ-

ing interaction started by clients and four are used for describing interactions started by

servers. Whilst the utility of first kind of patterns is obvious we remark that also the sec-

ond kind of interactions patterns are quite useful in practice. Indeed they are often used by

Web-services, for describing how they will interact with clients especially in asynchronous

communication. For instance, a server, may accept references where it is possible to notify

messages of a given schema. Such a notification is then specified by an interaction pattern

describing the communication from the perspective of the server.
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Table 3.2: Grammar of wsdl interfaces.

Interface ::= < interface name = ”I” > service interface

Operation . . . Operation

< /interface >

Operation ::= service operation

< operation name = ”op” pattern = ”In-Only” >

< input Label = ”In” element = ”U”/ >

< /operation >

| < operation name = ”op” pattern = ”Robust-In-Only” >

< input Label = ”In” element = ”U”/ >

< outfault Label = ”OutFault” element = ”U”/ >

< /operation >

| < operation name = ”op” pattern = ”In-Out” >

< input Label = ”In” element = ”U”/ >

< output Label = ”Out” element = ”U”/ >

< outfault Label = ”OutFault” element = ”U”/ >

< /operation >

| < operation name = ”op” pattern = ”Out-Opt-In” >

< input Label = ”In” element = ”U” >

< output Label = ”Out” element = ”U” >

< /operation >

| < operation name = ”op” pattern = ”Out-Only” >

< output Label = ”Out” element = ”U”/ >

< /operation >

| < operation name = ”op” pattern = ”Robust-Out-Only” >

< output Label = ”Out” element = ”U”/ >

< outfault Label = ”OutFault” element = ”U”/ >

< /operation >

| < operation name = ”op” pattern = ”Out-In” >

< output Label = ”Out” element = ”U”/ >

< input Label = ”In” element = ”U”/ >

< infault Label = ”InFault” element = ”U”/ >

< /operation >

| < operation name = ”op” pattern = ”Out-Opt-In” >

< output Label = ”Out” element = ”U” >

< input Label = ”In” element = ”U” >

< infault Label = ”InFault” element = ”U”/ >

< /operation >
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We now describe interaction patterns one-by-one.

1. The In-Only pattern consists of exactly one asynchronous message sent by the client

to the server for invoking the operation (it corresponds to the one-way pattern of

wsdl1.1).

2. The Robust-In-Only pattern consists of one asynchronous message for invoking the

operation. Differently from the In-Only pattern that cannot raise any fault, the

invocation message may trigger a fault. Then a further schema for describing the

fault message is used.

3. The In-Out pattern consists of two messages: one for invoking the operation and

one for receiving back the message returned by the invocation. In case of faults

the returned message may be replaced by the a fault message (it corresponds to the

request-response pattern of wsdl1.1).

4. The In-Opt-Out pattern consists of two messages: one for invoking the operation

and one for receiving back the result of the invocation. This pattern differs from

the previous one because the returning message may be either missing or a fault

triggered by the client invocation.

5. The Out-Only pattern consists of exactly one asynchronous message sent from the

server to the client (it corresponds to the notification pattern of wsdl1.1).

6. The Robust-Out-Only pattern consists of one asynchronous message sent from the

server to the client. Since such an invocation message may trigger a fault, a further

schema for describing the fault message sent back to the server is used.

7. The Out-In pattern consists of two messages: one from the server to the client and

another one from the client to the server. In case of faults the message returned

by the client may be replaced by the a fault message (it corresponds to the solicit-

response pattern of wsdl1.1).

8. The Out-Opt-In pattern consists of two messages: one from the server to the client

and another one from the client to the server. As in the In-Opt-Out, the last

message may be either missing or replaced by a fault message triggered by the

server invocation.
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It follows that there are two kind of faults. Those triggered by a message – that are

used by the pattern Robust-In-Only, Robust-Out-Only, In-Opt-Out and Out-Opt-In

– and those replacing the return message – that are used by the pattern In-Out and

Out-In (Out-Only and In-Only cannot raise any fault). In case of triggered faults, a

different communication channel may be used for sending the fault message. In case of

fault replacing messages, the communication channel where the fault is send is the same

channel used for receiving other messages. For instance, if an error occurs in an operation

implementing the interaction pattern In-Opt-Out, a fault is sent to the client. However,

the fault is not necessarily sent on the same communication channel of the output message

and two different channels may be used. This differs from the pattern In-Out where, in

case of faults, the fault message replaces the output message thus requiring the same

channel to be used for results and faults. In the following section we will see how this

aspect influences the encoding.

3.2.2 Encoding of wsdl interfaces

We now detail the encoding of wsdl interface definitions with our schema language. The

encoding has been also implemented – for wsdl1.1 – in the current prototype of PiDuce.

At this moment PiDuce encodes wsdl1.1 interfaces because it is the version of wsdl cur-

rently used by Web-services. This allows real experimentations of the PiDuce language

and architecture. However, in this section, we discuss the encoding of the new wsdl spec-

ification for two reasons: wsdl2.0 will replace in the near future wsdl1.1; and wsdl1.1

can be considered as a subset of wsdl1.1 (even if the syntax is quite different).

We assume E such that U ∈ dom(E) for any schema U appearing in the wsdl interface

and In, Out, InFault, OutFault to be valid labels.

Encoding the In-Only interaction pattern An In-Only operation is encoded as:







< operation name = ”op” pattern = ”In-Only” >

< input Label = ”In” element = ”U”/ >

< /operation >





 = 〈In[U]〉O

Technically, the tag < input message = ”S”/ > in the wsdl must be interpreted as a

schema constructor collecting references that may be invoked with values of schema S, or

with subsets of such values. Said otherwise, the constructor < inputmessage = ” . . . ”/ >
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behaves contravariantly with respect to the argument schema. In our notation the opera-

tion op has schema 〈U〉O. The capability “O” constrains the client to use the reference for

outputs only.

Encoding the Robust-In-Only interaction pattern A Robust-In-Only operation is

encoded as:







< operation name = ”op” pattern = ”Robust-In-Only” >

< input Label = ”In” element = ”U1”/ >

< infault Label = ”InFault” element = ”U2”/ >

< /operation >







= 〈In[U1],〈InFault[U2]〉
I〉O

In this case, if an error occurs, a fault message is sent back to the client. Operationally,

this is equivalent to delivering, together with the message of schema In[U1] a fresh reference

of schema 〈InFault[U2]〉
I where the client reads for faults. Thus we obtain the schema

〈In[U1],〈InFault[U2]〉
I〉O where the capability “O” constraints the client to use the reference

for sending data and the capability “I” constrains the client to use the fresh reference for

only for receiving fault messages.

Encoding the Out-Only interaction pattern An Out-Only operation is encoded as:







< operation name = ”op” pattern = ”Out-Only” >

< output Label = ”Out” element = ”U”/ >

< /operation >





 = 〈Out[U]〉I

The intended meaning of this pattern is that the remote service is communicating the

schema of the messages it will send back. To receive this message, the client service has

to create a reference whose schema is (greater than) 〈Out[U]〉I.

Encoding the Robust-Out-Only interaction pattern A Robust-Out-Only operation

is encoded as follows:






< operation name = ”op” pattern = ”Robust-In-Only” >

< output Label = ”Out” element = ”U1”/ >

< outfault Label = ”OutFault” element = ”U2”/ >

< /operation >







= 〈Out[U1],〈OutFault[U2]〉
O〉I
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In this case, if an error occurs sending the message, a fault is sent back to the server. This

is equivalent to delivering, together with the message of schema Out[U1], a fresh reference

of schema 〈OutFault[U2]〉
I where the server reads for faults.

Encoding the In-Out interaction pattern An In-Out operation is encoded as fol-

lows:






< operation name = ”op” pattern = ”In-Out” >

< input Label = ”In” element = ”U1”/ >

< output Label = ”Out” element = ”U2”/ >

< outfault Label = ”OutFault” element = ”U3”/ >

< /operation >







= 〈In[U1], 〈Out[U2] + OutFault[U3]〉
I〉O

In this case the service may be interpreted as a function. Then, together with the message

of schema In[U] is also delivered a channel with schema 〈Out[U2] + OutFault[U3]〉
I where

both, output messages and fault messages can be sent. The server triggers the client

sending the proper data over such a reference while the client reads either return messages

and faults.

Encoding the In-Opt-Out interaction pattern An In-Opt-Out operation is encoded

as follows:







< operation name = ”op” pattern = ”In-Opt-Out” >

< input Label = ”In” element = ”U1”/ >

< output Label = ”Out” element = ”U2”/ >

< outfault Label = ”OutFault” element = ”U3”/ >

< /operation >







= 〈In[U1],〈Out[U2]〉
I,〈OutFault[U3]〉

I〉O

This case is similar to the previous one but two different channels can be used for reading

the output message and the fault message. It is worth to notice the, thanks to our sub-

schema relation, clients may safely communicate the same reference of schema 〈Out[U2] +

OutFault[U3]〉
I for reading both outputs and faults. Indeed 〈Out[U2] + OutFault[U3]〉

O is

a subschema of both 〈Out[U2]〉
O and 〈OutFault[U3]〉

O.
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Encoding the Out-In interaction pattern An Out-In operation is encoded as fol-

lows: 





< operation name = ”op” pattern = ”Out-In” >

< output Label = ”Out” element = ”U1”/ >

< input Label = ”In” element = ”U2”/ >

< infault Label = ”InFault” element = ”U3”/ >

< /operation >







= 〈Out[U1],〈In[U2] + InFault[U3]〉
O〉I

Also in this case two references are created during the connection. The first reference is

for receiving solicitations and the second is for responses. Therefore, together with the

message of schema Out[U], a fresh reference of schema 〈In[U2]+InFault[U3]〉
O is delivered.

The client will trigger the server sending the proper data over such a fresh reference.

Encoding the Out-Opt-In interaction pattern An Out-Opt-In operation is encoded

as follows:







< operation name = ”op” pattern = ”Out-Opt-In” >

< input Label = ”Out” element = ”U1”/ >

< output Label = ”In” element = ”U2”/ >

< infault Label = ”InFault” element = ”U3”/ >

< /operation >







= 〈Out[U1],〈In[U2]〉
O,〈InFault[U3]〉

O〉I

This case is specular to the case In-Opt-Out. Therefore two different channels can be used

for messages and faults. As in the pattern In-Opt-Out, the same reference – with schema

〈In[U2] + InFault[U3]〉
O – may be used by the server for both return messages and faults.

This is safe because 〈In[U2] + InFault[U3]〉
O <: 〈In[U2]〉

O and 〈In[U2] + InFault[U3]〉
O <:

〈InFault[U2]〉
O.

Encoding the service Let opName(I) be the function returning the value of the at-

tribute name of the interface I. A service interface is encoded as:







< interface name = ”int” >

I0 . . . In

< interface/ >





 = {op(I0) : [[I0]] . . . op(In) : [[In]]}
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3.3 xml-schema

xml-schema is probably the most used schema language. It is a w3c recommendation

and it is widely used for defining wsdl interfaces. In this section we introduce xml-

schema giving some simple examples including only the features which are relevant in the

Web service context. For this reason:

• xml attributes have been ignored because they would have entangled our schemas

without giving any substantial contribution to their semantic relevance;

• features such as keys, references, and facets have been ignored because they are used

mainly for validation rather than for typechecking.

In both cases such features are unused in the description of existing Web services (in

particular in the xml-schemas of the exchanged messages), hence omitting their treatment

does not impede actual experimentation of our schema language. For simplicity sake we

also omit substitution groups, element references and restriction on base types. However

it is quite easy to deal with these aspects. The current prototype of PiDuce provides for

their implementation.

Like all xml schema languages, xml-schema expresses sets of rules to which a xml

document must conform in order to be considered valid. In particular xml-schema uses a

xml syntax to define type of xml documents in terms of constraints upon what elements

may appear, their relationship to each other, what types of data may be in them. For

instance

< element name = ”a ”type = ”int”/ >

defines documents having a as root and containing integers. Elements may be combined

in sequences and choices. The xml-schema

< sequence minOccurs = ”1” maxOccurs = ”unbounded” >

< element name = ”a ”type = ”int”/ >

< /sequence >

defines a non empty sequence of a-labelled documents containing integers and

< choice minOccurs = ”0” maxOccurs = ”unbounded” >

< element name = ”a ”type = ”int”/ >

< element name = ”b ”type = ”string”/ >

< /choice >
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defines any sequence of either a or b labelled documents containing integers and strings

respectively. Thus the document <a> 1 < /a><b> two < /b><a> 3 < /a> is valid for

such a schema. Names can be assigned to definitions by using complex types. For instance

< complexType name = ”U” >

< element name = ”a ”type = ”int”/ >

< /complexType >

assigns the name U to the element a.

xml-schema provides two derivation mechanisms – extension and restriction – that

are used for deriving schemas from other schemas. The derivation by extension is used

for deriving schemas from other schemas appending elements. As an example consider the

xml-schema fragment

< complexType name = ”U” >

< element name = ”a ”type = ”int”/ >

< /complexType >

< element name = ”b” >

< extension base = ”U” >

< element name = ”c ”type = ”string”/ >

< /extension >

< /element >

It says that an element b is valid only if it contains a document of schema U followed by an

element c containing strings. Then, the content of the element b has not schema U. Indeed

a value <a> 5 < /a><c> hello < /c> is not valid for U because of the element c. The

derivation by restriction restricts the content of the base schemas. A schema derived by

restriction is similar to its base schema, except that its declarations are more limited than

the corresponding declarations in the base type. In other words, the values represented

by the new schema are a subset of the values represented by the base schema (as is the

case with restriction of simple types). Therefore an application prepared for the values of

the base type would not be surprised by the values of the restricted type. For example

the definition

< complexType name = ”U” >

< sequence minOccurs = ”0” maxOccurs = ”1” >

< element name = ”a” type = ”int”/ >

< /sequence >

< /complexType >
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< element name = ”b” >

< restriction base = ”U” >

< sequence minOccurs = ”1” maxOccurs = ”1” >

< element name = ”a” type = ”int”/ >

< /sequence >

< /restriction >

< /element >

says that an element b is valid only if it contains a document labeled with a and containing

integers. The content of b restricts the schema U because, in U, the element a is required

whilst in b it is optional. Differently from the derivation by extension, in derivation by

restriction the content of b is valid for the schema U. Indeed the documents with a as

root and containing integers are always valid for U. Hence, we have that in derivation by

restriction we obtain a schema which is in a subschema relation with its base schema. This

is not true for derivations by extension.

3.3.1 Syntax of xml-schema

We assume two disjoint countably infinite sets: the tags, ranged over by a, b, · · · ∈ L, and

the xml-schema names, ranged over by U, V, · · · ∈ N . We also assume B as base types

(Int, String, n, s). The syntax of xml-schema definitions are defined by the grammar in

Table 3.3 A xml-schema definition Xsd is a, possibly empty, sequence of either: element

definitions E or complex type definitions. Complex types definitions are defined by a

unique name U and a content model X. For instance

< complexType name = ”U” >

< element name = ”a” type = ”int”/ >

< /complexType >

assigns the schema name U to its content model: the element a containing integers.

Elements E can have different contents: a simple content specified by a base type B; a

complex content specified by the complex type U; an inner defined complex content X; a

reference content specified by a Web-service interface definition. This last possibility was

introduced in wsdl2.0 and allows to communicate typed references. However, the finer

entity that can be communicated, is the service and not the single operation.

The content models X are sequences of contents, choices of contents, single elements,

repetitions, extensions, and restrictions. The repetition allow us to define sequences spec-
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Table 3.3: Grammar of xml-schema definitions.

Xsd ::= definition

| ǫ (empty

| E Xsd (element)

| < complexType name = ”U” >X< /complexType > Xsd (complex type)

E ::= element

| < element name = ”a ”type = ”B” > (base)

| < element name = ”a ”type = ”U”/ > (complex ref)

| < element name = ”a ” >X< /element > (complex)

| < element name = ”a ” >Interface< /element > (interface ref.)

X ::= content

| ǫ (empty)

| E (element)

| < sequence >X1 . . . Xn< /sequence > (sequence)

| < choice >X1 . . . Xn< /choice > (choice)

| < particle minOccurs = ”n” maxOccurs = ”m” > (repetition)

| X< /particle> particle ∈ {sequence, choice}

| < extension base = ”U” >X< /extension > (extension)

| < restriction base = ”U” >X< restriction > (restriction)

ifying the occurrences of the content through the attributes minOccurs and maxOccurs.

Of course the value of the attribute minOccurs must be less then the value of the attribute

maxOccurs (n ≤ unbounded for every n).

We note that, in xml-schema, non-regular languages cannot be defined because con-

stant schema names are always underneath an element constructor. However, with this

syntactic constraint, horizontal recursion cannot be defined using schema names. For this

reason xml-schema provide the “∗” operator through repetition schemas with maxOccurs

set to unbounded.

3.3.2 Encoding of xml-schema

The correspondence between our schema language and xml-schema is established by

suitable encoding function. This function is important because, as we said, xml-schema

is the w3c schema language that is used in wsdl interfaces. The encoding is defined in
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Table 3.4: Decoding of xml-schema.
[[ǫ]]E = E

[[< complexType name = ”U” >X = [[Xsd]]E+[U 7→ [[X]] ]

< /complexType > Xsd]]E

[[< element name = ”a ”type = ”B”/ >]] = a[B]

[[< element name = ”a ”type = ”U”/ >]] = a[U]

[[< element name = ”a ” >X< /element >]] = a[ [[X]] ]

[[< element name = ”a ” >Interface< /element >]] = a[ [[Interface]] ]

[[ǫ]] = ()

[[< sequence >X1 . . . Xn< /sequence >]] = [[X1]], . . . ,[[Xn]]

[[< choice >X1 . . . Xn< /choice >]] = [[X1]] + . . . + [[Xn]]

[[<particle minOccurs = ”m” maxOccurs = ”n” >X = [[X]]m,n

< /particle>]]

[[< extension base = ”U” >X< /extension >]] = U,[[X]]

[[< restriction base = ”U” >X< /restriction >]] = [[X]]

where:

S0,0 = ()

S0,n+1 = () + S,S0,n

Sm+1,n+1 = S,Sm,n

S0,unbounded = S∗

Sm+1,unbounded = S,Sm,unbounded

Table 3.4 where

(E + [U 7→ S])(V)
def
=





E(V) if V 6= U

S otherwise

Thus, the encoding is a function [[ · ]] : (Xsd, E) → E taking a xml-schema definition and a

schema environment as inputs and returning a new environment E containing the complex

types defined in the Xsd. The encoding function is quite straightforward. xml-schema

elements are encoded as elements of our schema language. Sequences and choices are

encoded with the correspondent operators “,” and “+”. Repetitions are encoded using an

auxiliary repetition operator over schema Sn,m. For instance a[ ]0,0 = (), a[ ]1,unbounded =

a[ ],a[ ]∗, and a[ ]1,2 = a[ ], (a[ ] + ()). It is worth to notice that expanding a[ ]1,2 with

a[ ] + a[ ],a[ ] is also reasonable but it leads to a non labeled-determined schema.

In case of extensions the encoding of the content is appended to the encoding of
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the base schema. Since the complex type U is guarded the resulting schema is valid

(ntail(U) = ∅). In case of restrictions the encoded schema is the encoding of the content.

By the xml-schema specification [Gro04c] (paragraph 2.2.1.1) restrictions might include

narrowed ranges or reduced alternatives. Whilst it is clear that reduced alternatives imply

the schemas to be in the subschema relation (S <: S + T ) it may be not clear that the

same holds for narrowed ranges. This is what the next Lemma 3.1 states.

Lemma 3.1 If n < n′ then Sm,n <: Sm,n′

.

Proof: We prove the Lemma by induction m.

– if (m = 0) we proceed by induction on n. If n = 0 we have to show that S0,0 <: S0,n′

with S0,0 = (). We distinguish two cases. If n′ = unbounded then S∗ = U with

E(U) = S,S∗ + () and we conclude. If n′ 6= unbounded then S0,n′

= () + S0,n′−1

and we conclude.

If n > 0 we have to show that S0,n <: S0,n′

with S0,n = () + S,S0,n−1 . We

distinguish two cases. If n′ = unbounded then S∗ = U with E(U) = S,S∗ + ().

We conclude by the inductive hypothesis S0,n−1 <: S∗. If n′ 6= unbounded then

S0,n = ()+ S0,n−1 and S0,n′−1 = ()+ S0,n′−1 we conclude by inductive hypothesis.

– if (m > 0), since m < n, we also have n > 0. We distinguish two cases. If n′ =

unbounded, we have to show Sm,n <: Sm,unbounded with Sm,n = S,Sm−1,n−1. Since

S∗ = U with E(U) = S,S∗+() we conclude by the inductive hypothesis Sm−1,n−1 <:

S∗. If n′ 6= unbounded, we have to show that Sm,n <: Sm,n′

with Sm,n = S,Sm−1,n−1

and Sm,n′

= S,Sm−1,n′−1. We conclude by the inductive hypothesis Sm−1,n−1 <:

Sm−1,n′−1. 2

Label-Determined schemas In xml-schema, when a particle contains identically

named element declarations, the type definitions of those declarations must be the same.
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For example the definition:

< element name = ”a” >

< choice >

< sequence >

< element name = ”b ”type = ”U”/ >

< element name = ”c ”type = ”int”/ >

< /sequence >

< element name = ”b ”type = ”V”/ >

< /choice >

< /element >

is valid only if U = V. The encoding of these kind of declarations is the only way

of producing non label-determined schemas. Indeed we obtain a[b[U],c[Int] + b[V],() ]

that it is not labelled-determined. However, since U = V, by Lemma 2.2 of Chapter 2

we can always rewrite such schemas into an equivalent label-determined schema that is

b[U],(c[Int] + ()) in the example above.

3.4 Conclusions

The encoding of wsdl and xml-schema have been implemented in the current prototype

of PiDuce and experimentation with many Web services such as Google, MSN, and

Amazon have been successfully performed. Indeed, one of the main purpose of the PiDuce

project is to design an distributed machine running applications that may be exported to

the Web (Web services) and that may import and compose external Web services. Thus

interoperability is one of the main effort in the implementation. PiDuce imports wsdl

and the related xml-schema converting them into the PiDuce type system that is the

schema language and the subschema relation of the Chapter 2. This operation is used at

compile time and at runtime. At compile time, the wsdl is encoded for typechecking. This

ensures that external Web services are invoked with the proper data thus avoiding runtime

type errors. At runtime the encoding is used for validating xml documents coming from

other parties and for pattern matching purposes. Indeed, every time that a xml document

is received it is verified that it conforms with the schema of the reference and, in negative

case, the document is discarded. This conformity check amounts to infer the schema of the

document and to verify that it is a subschema of the schema of the reference. In case of

document containing references, the schema of the document is determined downloading
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the wsdl interface of the references therein. In order to keep low the cost of subschema

relation invoked at runtime, the PiDuce compiler gives a warning whenever a non labeled-

determined schema is used for references. If no warnings are given then the subschema

relation will be invoked on label-determined schemas only, thus reducing to the algorithm

in Table 2.3 of Chapter 2 and guaranteeing a polynomial complexity.
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Chapter 4
The Finite Contract Language

In this chapter we define a formal – finite – contract language along with subcontract and

compliance relations. We then extrapolate contracts out of processes, that are recursion-

free fragment of ccs. We finally demonstrate that a client completes its interactions with a

service provided the corresponding contracts comply. Our contract language may be used

as a foundation of Web services technologies, such as wsdl message exchanges patterns

and wscl.

Structure of the chapter. Section 4.1 is an introduction to the contract language. Sec-

tion 4.2 referes to some related works. Section 4.3 formally defines the contract language

along with subcontract and compliance relations. In Section 4.4 we relate the language

with wsdl message exchange patterns that are used to to specify simple service protocols.

Our notion of compliance between contracts is lifted to a notion of compliance between

processes in Section 4.5 and the correspondence between the two relations is shown.

4.1 Introduction

Web services are loosely coupled software systems exchanging sequence of messages in a

distributed and dynamic environment. In this context, it is fundamental for clients to

be able to search – also at run-time – services with the required capabilities, namely the

format of the exchanged messages, and the protocol – or behavioral contract – required
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to interact successfully with the service. In turn, services are required to publish such

capabilities in some known repository.

As we said in Chapter 3, the Web Service Description Language provides a standardized

technology for describing the interface exposed by a service in terms of: physical location,

the schema of the exchanged messages, the transport protocol to be used (i.e. http, smtp,

or others), the message protocol (i.e. soap), and the interaction pattern. The subschema

relation of Chapter 2 verifies the compatibility of data exchanged during communications.

However the subschema relation does not take into account the conversation protocol

implemented by the service. Indeed, wsdl interaction patterns are specifications of sim-

ple conversation protocols. A Web service operation specified by the In-Out interaction

pattern, defines a conversation protocol where an input message on a certain name is per-

formed and then either a fault message or the output message is sent back to the client.

Thus, clients implementing the Out-In interaction pattern are compatible, in the sense

that they complete their protocol. Similarly, clients implementing the Out interaction

pattern are compatible because they also complete their protocol (even if the server does

not). This kind of protocol compatibility is not considered by the subschema relation.

In this chapter we define a calculus for (behavioral) contracts along with a subcontract

relation, and we formalize the relationship between contracts and processes (that is clients

and services) exposing a given contract. Contracts are made of actions to be interpreted

as either message types or communication ports. Actions may be combined by means

of two choice operators: + represents the external choice, meaning that the interacting

part decides which one of alternative conversations to carry on; ⊕ represents the internal

choice, meaning that the choice is not left to the interacting part. As a matter of facts,

contracts are behavioral types of processes that do not manifest internal moves and the

parallel structure. They are acceptance trees in Hennessy’s terminology [Hen85, Hen88].

Then we devise a subcontract relation � such that a contract σ is a subcontract of σ′

if σ manifests less interacting capabilities than σ′. The subcontract relation can then be

used for querying (Web services) repositories. A query for a service with contract σ may

safely return services with contract σ′ such that σ � σ′. It is possible that interaction with

a service that exposes a contract that is bigger than the client requires may result into

unused capabilities on the server side. We argue that this is safe, because we are interested

in the client’s ability to complete the interaction. Such client completion property inspires
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a relationship between client contracts and service ones – the contract completion – that

may be defined in terms of � and an appropriate complement operation over contracts.

To illustrate our contracts at work we consider a recursion-free fragment of the Calculus

of Communicating Systems (ccs [Mil82]). We define a compliance relation between pro-

cesses such that a process – the client – interacting with another – the service – is guaran-

teed to complete. For instance the clients (a.b | a)\a and (a.b | a.c | a)\a respectively com-

ply with the services b and b | c; the two clients do not comply with c. We then extrapolate

a contract out of a process by means of a type system defined using the expansion theorem

in [NH87]. For instance, we are able to deduce a.b | a ⊢ (a.(b.a+a.b)+a.(a.b+b.a)+b)⊕b.

Finally we prove our main result: if the contract of a client complies with the contract of

a service, then the client complies with the service.

4.2 Related work

The use of formal models to describe communication protocols is not new. For instance

the soap Service Description Language (ssdl) [Sav05] is a xml language for describing

Web Services contracts in terms of soap messages and protocols. The primary goal of a

ssdl contract is to provide the mechanisms for service architects to describe the structure

of the soap messages a Web Service supports. Once the messages of a Web Service have

been described, the ssdl protocol framework – that is based on csp [Hoa04] and on the

π-calculus [Mil91] – can be used to combine the messages into protocols that expose the

messaging behaviour of that Web service.

The stuck free conformance relation developed by Fournet et al. in [FHRR04, RR02]

is inspired by the theory of refusal testing [Phi87] and is based on the notion of stuck-

freedom system. Stuck-freedom formalizes the property that a communicating system

cannot get stuck, either by ending in deadlock waiting for messages that are never sent, or

by sending messages that are never received. Starting from the notion of stuck-freedom,

the notion of stuck-free conformance is a refinement relation on ccs processes with the

property that specifications can safely be substituted for implementations with respect to

the stuck-freedom.

Session types developed by Honda et al. [THK94, HVK98] is an advanced type system

where types – given to (session) channels – specify the sequence of message types sent
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and received. Messages might be choices between a range of possibilities and such choices

might be either internal or external, thus types have a branching structure. For instance

&{l1 : ρ1, . . . , ln : ρn} waits with n options, and behaves as type ρi if the i-th action is

selected (external choice). Similarly, ⊕{l1 : ρ1, . . . , ln : ρn} represents the behavior which

would select one of li and then behaves as ρi (internal choice). Gay and Hole in [GH99]

add subtyping to session types and show the application of the resulting type system to

client-server interactions. Carbone et al. in [CHYa, CHY+b] present two paradigms of

description of communication behavior – one focusing on global message flows and another

on endpoint behaviors, as formal calculi based on session types.

The contract language we present is inspired by “ccs without τ” [NH87] and by Hen-

nessy’s model of acceptance trees [Hen85, Hen88]. To the best of our knowledge the

subcontract relation � is original. It is incomparable with may testing preorder and it is

less discriminating than the must testing preorder [NH84]. The stuck free conformance

relation and the session type subtyping relation [GH99] are also more demanding than our

subcontract relation. For instance 0 is not related with a in [FHRR04] whilst 0 � a.

It is worth noticing that must testing is preserved by any ccs context without +, and

stuck free conformance is preserved by all ccs contexts thus allowing modular refinement.

This is not true for �. For instance a � a + b so one might think that a service with

contract a can be replaced by a service with contract a + b in any context. However, the

context C = b | b.a | [ ] distinguishes the two services (a+ b can get stuck while a cannot).

The point is that the context C, representing a client, does not comply with a, since it

performs the actions b and b which are not allowed by the contract a.

4.3 The finite contract language

The syntax of contracts uses an infinite set of names N ranged over by a, b, c, . . . , and a

disjoint set of co-names N ranged over by a, b, c, . . . . We let a = a. Contracts σ are defined

by the grammar in Table 4.1. Contracts are abstract definitions of conversation protocols

between communicating parties. The contract 0 defines the empty conversation; the input

prefix a.σ defines a conversation protocol whose initial activity is to accept a message on

the name a and continuing as σ; the output prefix a.σ defines a conversation protocol

whose initial activity is to send a message to the name a and continuing as σ. Contracts
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Table 4.1: The finite contract language.

σ ::= contracts

0 (void)

a.σ (input prefix)

a.σ (output prefix)

σ + σ (external choice)

σ ⊕ σ (internal choice)

σ +σ′ and σ⊕σ′ define conversation protocols that follow either the conversation σ or σ′;

in the former ones the choice is left to the remote party, in the latter ones the choice being

made locally. For example, Login.(Continue + End) describes the conversation protocol

of a service that is ready to accept Logins and will Continue or End the conversation

according to client’s request. This contract is different from Login.(Continue ⊕ End)

where the decision whether to continue or to end is taken by the service.

In what follows, the trailing 0 is always omitted, α is used to range over names and co-

names, and
∑

i∈1..n σi and
⊕

i∈1..n σi abbreviate σ1+· · ·+σn and σ1⊕· · ·⊕σn, respectively.

4.3.1 Subcontract relation and dual contracts

Contracts retain an obvious compatibility relation that relates the conversation protocols

of two communicating parties: a contract σ of a party complies with σ′ of another party

if the corresponding protocols match when they interact. Such a definition of subcontract

would require the notions of communicating party, which is a process, and of contract

exposed by it. We partially explore this direction in Section 4.5; here we give a direct

definition by sticking to a structured operational semantics style. We begin by defining

two notions that are preliminary to compliance: subcontract and dual contract.

Let σ ↓ α be the least predicate on contracts such that

α.σ ↓ α

σ ⊕ σ′ ↓ α if σ ↓ α or σ′ ↓ α

σ + σ′ ↓ α if σ ↓ α or σ′ ↓ α

We write σ 6↓ α if σ ↓ α is false. For instance a ⊕ b 6↓ c.
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Definition 4.1 (Transition
α

7−→) The transition relation of contracts, noted
α

7−→, is the

least relation satisfying the rules:

α.σ
α

7−→ σ

σ1
α

7−→ σ′
1 σ2

α
7−→ σ′

2

σ1 + σ2
α

7−→ σ′
1 ⊕ σ′

2

σ1
α

7−→ σ′
1 σ2 6↓ α

σ1 + σ2
α

7−→ σ′
1

σ1
α

7−→ σ′
1 σ2

α
7−→ σ′

2

σ1 ⊕ σ2
α

7−→ σ′
1 ⊕ σ′

2

σ1
α

7−→ σ′
1 σ2 6↓ α

σ1 ⊕ σ2
α

7−→ σ′
1

and closed under mirror cases for external and internal choices.

The relation
α

7−→ is different from standard transition relations for ccs processes [Mil82].

For example, there is always at most one contract σ′ such that σ
α

7−→ σ′, while this is not

the case in ccs (the process a.b + a.c has two different a-successor states: b and c). This

mismatch is due to the fact that contract transitions define the evolution of conversation

protocols from the perspective of the communicating parties. Thus a.b + a.c
a

7−→ b ⊕ c be-

cause, once the activity a has been done, the communicating party is not aware of which

conversation path has been chosen. On the contrary, ccs transitions define the evolution

of processes from the perspective of the process itself.

Proposition 4.1
α

7−→ is deterministic (for every contract σ, there is always at most one

contract σ′ such that σ
α

7−→ σ′).

We write σ(α) for the unique continuation of σ after α, that is the contract σ′ such

that σ
α

7−→ σ′. We also define the set of traces of a contract σ, written traces(σ), as

traces(σ)
def
= {α1 · · ·αn : σ

α17−→ · · ·
αn7−→}. It is easy to see that traces(σ) ⊆ traces(σ′)

implies traces(σ(α)) ⊆ traces(σ′(α)).

Definition 4.2 (Ready sets) Let r range over finite sets of names and co-names, called

ready sets. σ ց r is the least relation such that:

0 ց ∅

α.σ ց {α}

(σ + σ′) ց r ∪ r′ if σ ց r and σ′ ց r′

(σ ⊕ σ′) ց r if either σ ց r or σ′ ց r
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Ready sets define the sets of names and co-names where the contract may be waiting the

interacting party. For instance the contract a + b has ready set {a, b} because describes

a protocol where the party is waiting on both a and b. On the other hand the contract

a⊕ b has two ready sets {a} and {b} because the party can wait on one of the two names.

Finally, the contract (a⊕b)+c has two ready sets {a, c} and {b, c} because either (a⊕b)+c

evolves in a + c or (a ⊕ b) + c evolves in b + c. It is worth to notice that the definition of

ready sets and the definition of transition induce on contract a Moore automaton structure

where the outputs are the set of ready sets and the transition function is given by 7−→.

This formulation has been used by Boreale and Gadducci in [BG06].

Definition 4.3 (Subcontracts) A subcontract relation S is a relation on contracts such

that σ1Sσ2 implies:

1. if σ2 ց r2 then σ1 ց r1 with r1 ⊆ r2,

2. if σ1
α

7−→ σ′
1 and σ2

α
7−→ σ′

2 then σ′
1 � σ′

2.

Let � be the largest subschema relation. Let σ1 ≃ σ2, called contract equivalence, if both

σ1 � σ2 and σ2 � σ1.

The relation σ � σ′ verifies whether the external non-determinism of σ′ is greater than

the external non-determinism of σ and that this holds for every α-successor of σ and σ′,

provided both have such successors. For example a.(b ⊕ c) ≃ a.b + a.c ≃ a.b ⊕ a.c and

a.b ⊕ b � b and b � b + a.c. It is worth to remark that � is not transitive: the last two

relations do not entail a.b⊕ b � b+ a.c, which is false. This transitivity failure is not very

problematic because σ and σ′ are intended to play different roles in σ � σ′, as detailed by

the compliance relation. However, transitivity of � holds under lightweight conditions.

Lemma 4.1 If σ1 � σ2 and σ2 � σ3 and either (a) traces(σ1) ⊆ traces(σ2) or (b)

traces(σ3) ⊆ traces(σ2) then σ1 � σ3.

Proof: Let S1 and S2 the two subcontract relations such that (σ1, σ2) ∈ S1 and (σ2, σ3) ∈

S2. Let S3 be the least relation such that (σ1, σ3) ∈ S3 if

– there exists σ2 such that (σ1, σ2) ∈ S1 and (σ2, σ3) ∈ S2 and either:

traces(σ′
1) ⊆ traces(σ′

2) or traces(σ′
3) ⊆ traces(σ′

2)
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We prove that S3 is a subcontract relation. As regards (1) we have to show that σ3 ց r3

implies σ1 ց r1 with r1 ⊆ r3. By (σ2, σ3) ∈ S2 there exists r2 such that σ2 ց r2 and

r2 ⊆ r3. By (σ1, σ2) ∈ S1 there exists r1 such that σ1 ց r1 and r1 ⊆ r2. The item

follows by transitivity of ⊆. As regards (2) we have to show that σ1
α

7−→ σ′
1 and σ3

α
7−→ σ′

3

implies (σ′
1, σ

′
3) ∈ S3. By either traces(σ1) ⊆ traces(σ2) or traces(σ3) ⊆ traces(σ2)

we obtain σ2
α

7−→ σ′
2 with (σ′

1, σ
′
2) ∈ S1 and (σ′

2, σ
′
3) ∈ S2. Then we conclude (σ′

1, σ
′
3) ∈ S3.

2

Proposition 4.2 σ ⊕ σ′ � σ.

Proof: Let S = {(σ⊕σ′, σ), (σ, σ) : σ, σ′ are contracts}. We show that S is a subcontract

relation. Pairs (σ, σ) are immediate. As regards as pairs (σ⊕σ′, σ), by definition of ready

set σ ց r and σ⊕σ′ ց r. Thus item 1 of � holds. Moreover, σ
α

7−→ σ(α) and σ⊕σ′ α
7−→ σ′′

implies either σ′′ = σ(α) or σ′′ = σ(α) ⊕ σ′′′ for some σ′′′. In both cases (σ′′, σ(α)) ∈ S.

2

Proposition 4.3 If σ � σ′ ⊕ σ′′ then σ � σ′ and σ � σ′′.

Proof: By the hypothesis, there is a subcontract relation S such that (σ, σ′ ⊕ σ′′) ∈ S.

Let

R = {(σ, σ′), (σ, σ′′) : (σ, σ′ ⊕ σ′′) ∈ S} ∪ S.

We show that R is a subcontract relation. Since S is a subcontract relation we have:

σ′ ⊕ σ′′ ց r ⇒ σ ց r′ ⊆ r (4.1)

σ
α

7−→ σ(α) and σ′ ⊕ σ′′ α
7−→ (σ′ ⊕ σ′′)(α) ⇒ σ(α)S(σ′ ⊕ σ′′)(α) (4.2)

We demonstrate the items.

• As regards ready sets we immediately conclude by (4.1)

• As regards transitions we discuss σ′ α
7−→ (in case of σ′′ α

7−→ we proceed in the same

way). We have to show that σ′ α
7−→ σ′(α) and σ

α
7−→ σ(α) implies (σ(α), σ′(α)) ∈ R.

We have two cases: (a) σ′′ 6↓ α, and (b) σ′′ ↓ α. In case (a), σ′ ⊕ σ′′ α
7−→ σ′(α) and

we conclude (σ(α), σ′(α)) ∈ R by (4.2) and by S ⊆ R. In case (b), σ′ ⊕ σ′′ α
7−→

σ′(α) ⊕ σ′′(α) and, by definition of R, (σ(α), σ′(α)) ∈ R, (σ(α), σ′′(α)) ∈ R. Thus

we conclude. 2
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The relation � is incomparable with may testing semantics [Hen88]: we have a⊕0 � b,

while these two processes are unrelated by may testing; conversely, a ⊕ b and a + b are

may-testing equivalent, while a + b 6� a ⊕ b. The relation � is less discriminating than

must testing semantics [Hen88]: a and a+ b are unrelated in must testing while a � a+ b.

The notion of dual contract is used to revert the capabilities of conversation protocols.

Informally, the dual contract is obtained by reverting actions with co-actions, + with ⊕,

and conversely. For example the dual contract of a⊕ b is a+ b. However, this näıve trans-

formation is fallible because in the contract language some external choices are actually

internal choices in disguise. For example, a.b+a.c ≃ a.(b⊕c) but their naively constructed

dual contracts are respectively a.b ⊕ a.c and a.(b + c), and they tell very different things.

In the first one, the communicating party cannot decide which action to perform after a,

whereas this possibility is granted in the second one. To avoid such misbehavior, we define

dual contracts on contracts in normal form. We use the same forms introduced in [Hen88].

Let the normed contract of σ, noted nc(σ), be

nc(σ)
def
=

⊕
σցr

∑
α∈r α.nc(σ(α)) .

For example

nc((a.b ⊕ b.c) + (a.b.d ⊕ c.b)) = a.b.(0 ⊕ d)

⊕ (a.b.(0 ⊕ d) + c.b)

⊕ (a.b.(0 ⊕ d) + b.c)

⊕ (b.c + c.b)

The following proposition is an immediate consequece of the definition of normed contract

and is a preliminar for Lemma 4.2 which shows that a contract is subcontract equivalent

to its normal form.

Proposition 4.4

1. σ ց r if and only if nc(σ) ց r

2. σ
α

7−→ σ(α) if and only if nc(σ)
α

7−→ nc(σ(α))

Lemma 4.2 σ ≃ nc(σ) and traces(σ) = traces(nc(σ)).
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Proof: The subcontract relation equating σ and nc(σ) is R = {(σ, nc(σ)), (nc(σ), σ) :

σ is a contract}. The fact that R is a subcontract relation follows immediately by Propo-

sition 4.4. 2

Notice that � is not a pre-congruence. For example a.b � a.b + b.a but a.b + b.c 6�

a.b + b.a + b.c because a.b + b.c
b

7−→ c and a.b + b.a + b.c
b

7−→ a⊕ c and c 6� a⊕ c. Similarly

a � a + b.a but a⊕ b.c 6� (a + b.a)⊕ b.c because a + b.c
b

7−→ c and (a + b.a)⊕ b.c
b

7−→ a⊕ c

and c 6� a ⊕ c.

Now, to obtain the dual of a contract σ we first normalize it and then exchange actions

with co-actions, ⊕ with +, and vice-versa. All these transformations are summarized by

the following definition.

Definition 4.4 (Dual contracts) The dual contract of σ, noted σ, is defined as

σ
def
=

∑
σցr

⊕
α∈r α.σ(α)

where, by convention, we have
⊕

σ∈∅ σ = 0.

The following propositions hold

Proposition 4.5

1. σ ց r if and only if {r1, . . . ,rn} = {r′ : σ ց r′}, r =
⋃

i∈1..n αi, αi ∈ ri;

2. if σ ց ∅ then σ ց r implies r = ∅;

3. if σ
α

7−→ σ(α) then σ
α

7−→ σ(α).

Every item is an immediate consequence of the definition of dual. In particular, item 2

follows by the fact that the dual contract is an external choice of internal choices. Thus,

if we have σ ց ∅ then every
⊕

α∈r α.σ(α) ց ∅. This implies r = ∅.

The dual operator is not contravariant with respect to �. For example, a � a.b, but

a.b = a.b 6� a. For similar reasons, contract compatibility is not preserved. For example,

0 ≃ 0 ⊕ a but 0 = 0 6≃ 0 + a = 0 ⊕ a. However a limited form of contravariance, which

will result fundamental in the following, is satisfied by the dual operator.

Lemma 4.3 σ � σ ⊕ σ′.
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Proof: Let

R = {(σ, σ ⊕ σ′), (σ, σ) : σ, σ′ are contracts}.

We show that R is a subcontract relation:

• As regards ready sets, by Proposition 4.5 applied to σ ⊕ σ′ and by definition of ready

set of ⊕, σ ⊕ σ′ ց r′ implies {r1, . . . ,rn, s1, . . . , sm} = {r : σ ց r} ∪ {s : σ′ ց

s}, r′ =
⋃

i∈{1,...,n} αi ∪
⋃

j∈{1,...,m} βj with αi ∈ ri,βj ∈ sj . By Proposition 4.5

applied to σ, since σ ց r′′ with {r1 . . .rn} = {r : σ ց r}, r′′ =
⋃

i∈1..n αi, αi ∈ ri.

Thus we conclude r′′ ⊆ r′.

• As regards transitions, by Proposition 4.5 we have σ
α

7−→ σ(α) and σ ⊕ σ′ α
7−→

(σ ⊕ σ′)(α). We must show that (σ(α), (σ ⊕ σ′)(α)) ∈ R. We have two cases:

σ′ ↓ α and σ′ 6↓ α. In the first case (σ ⊕ σ′)(α) = σ(α) ⊕ σ′(α). In the latter case

(σ ⊕ σ′)(α) = σ(α). Then in both cases we conclude by definition of R. 2

4.3.2 Contract compliance

Every preliminary notion has been set for the definition of contract compliance.

Definition 4.5 (Contract compliance) A contract σ complies with σ′, noted σ ≬c σ′,

if and only if σ � σ′.

The notion of contract compliance is meant to be used for querying a Web service

repository. A client with contract σ will interact successfully with every service with

contract σ′ provided σ ≬c σ′. For example, consider a client whose conversation protocol

states that it intends to choose whether to be notified either on a name a or on a name b.

Its contract might be a⊕ b. Querying a repository for compliant services means returning

every service whose conversation protocol is a+b, or a+b+a, or a.c+b, etc. The guarantee

that we provide (see Section 4.5) is that, whatever service returned by the repository is

chosen, the client will conclude his conversation. This asymmetry between the left hand

side of � (and of ≬c ) and the right hand side is the reason of the failure of transitivity.

More precisely, in a.b ⊕ b � b and in b � a.c + b, we are guaranteeing the termination of
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clients manifesting the two left hand sides contracts with respect to services manifesting

the two right hand side contracts. This property is not transitive.

Another case is when clients query the repository with 0⊕σ. Any such client must be

able to complete immediately, because it is not possible to distinguish between a service

that has decided to behave as 0 and one that has decided to behave as σ, but it is very

slow in performing the next action.

4.3.3 Contract structural equivalence

Definition 4.6 The contract structural equivalence is the least relation over contracts

closed and under the rules in Table 4.2

Table 4.2: Axioms for =.

σ + σ = σ σ ⊕ σ = σ

σ + σ′ = σ′ + σ σ ⊕ σ′ = σ′ ⊕ σ

σ + (σ′ + σ′′) = (σ + σ′) + σ′′ σ ⊕ (σ′ ⊕ σ′′) = (σ ⊕ σ′) ⊕ σ′′

σ + 0 = σ

α.σ + α.σ′ = α.(σ ⊕ σ′) α.σ ⊕ α.σ′ = α.(σ ⊕ σ′)

σ + (σ′ ⊕ σ′′) = (σ + σ′) ⊕ (σ + σ′′) σ ⊕ (σ′ + σ′′) = (σ ⊕ σ′) + (σ ⊕ σ′′)

Proposition 4.6 If σ = σ′ then σ ≃ σ′.

Proof: Let S = {(σ, σ′) : σ = σ′}. We show that S is a subcontract relation. Let

(σ, σ′) ∈ S, as regard s ready sets, every equivalence preserve the set of ready sets except

the distributivity law σ ⊕ (σ′ + σ′′) = (σ ⊕ σ′) + (σ ⊕ σ′′). We show that in this case

condition 1 of the subcontract relation holds. We have that:

• σ ⊕ (σ′ + σ′′) ց r implies either: σ ց r or σ′ ց r′, σ′′ ց r′′, and r = r′ ∪ r′′

• (σ ⊕ σ′) + (σ ⊕ σ′′) ց r implies either: σ ց r or σ ց r′, σ′′ ց r′′, and r = r′ ∪ r′′

or σ′ ց r′, σ ց r′′, and r = r′ ∪ r′′ or σ′ ց r′, σ′′ ց r′′, and r = r′ ∪ r′′.

Then it is easy to see that for every ready set of σ ⊕ (σ′ + σ′′), (σ ⊕ σ′) + (σ ⊕ σ′′) owns a

smaller ready set, and vice-versa. Thus we conclude. 2
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4.4 Message exchange patterns in wsdl

The Web Service Description Language (wsdl) Version 1.1 [Gro] permits to describe and

publish abstract and concrete descriptions of Web services. Such descriptions include the

schema [Gro04b] of messages exchanged between client and server, the name and type

of operations that the service exposes, as well as the locations (urls) where the service

can be contacted. In addition, it defines four interaction patterns determining the order

and direction of exchanged messages. For instance, the request-response pattern is used

to describe a synchronous operation where the client issues a request and subsequently

receives a response from the service.

The second version of wsdl [BL06, CHL+06, CMRW06] allows users to agree on mes-

sage exchange patterns (mep) by specifying in the required pattern attribute of operation

elements an absolute uri that identifies the mep. It is important to notice that these uris

act as global identifiers (their content is not important) for meps, whose semantics is

usually given in plain English.

In particular, wsdl2.0 [CHL+06] predefines four message exchange patterns (each

pattern being uniquely identified by a different uri) for describing services where the

interaction is initiated by clients (four further meps are provided for interactions initiated

by servers). Let us shortly discuss how the informal plain English semantics of these

patterns can be formally defined in our contract language. Consider the wsdl 2.0 fragment

(without schemas)

< operation name = ”o1” pattern = ”In-Only” >

< input Label = ”In”/ >

< /operation >

< operation name = ”o2” pattern = ”Robust-In-Only” >

< input Label = ”In”/ >

< outfault Label = ”Fault”/ >

< /operation >

< operation name = ”o3” pattern = ”In-Out” >

< input Label = ”In”/ >

< output Label = ”Out”/ >

< outfault Label = ”Fault”/ >

< /operation >
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< operation name = ”o4” pattern = ”In-Opt-Out” >

< input Label = ”In”/ >

< output Label = ”Out”/ >

< outfault Label = ”Fault”/ >

< /operation >

which defines four operations named o1, o2, o3, and o4. The first two operations are

asynchronous by accepting only an incoming message labeled In. The last two operations

are synchronous by accepting an incoming message labeled In and replying with a message

labeled Out. In the o2 operation a fault message can occur after the input. The o3 operation

always produces an output message (see In-Out in its pattern attribute), unless a fault

occurs. In the o4 operation the reply is optional, as stated by the In-Opt-Out exchange

pattern attribute, and again it may fail with Fault.

We can encode the contract of the pattern of the o1 operation in our contract language

as

inOnly = In.End

that is an input action representing the client’s request followed by a message End that is

sent from the service to notify the client that the interaction has completed.

The o2 operation can be encoded as

robustInOnly = In.(End⊕ Fault.End)

where after the client’s request, the interaction may follow two paths, representing suc-

cessful and faulty computations respectively. In the former case the end of the interaction

is immediately signaled to the client. In the latter case a message Fault is sent to the

client, followed by End. The use of the internal choice for combining the two paths states

that it is the service that decides whether the interaction is successful or not. This means

that a client compliant with this service can either stop after the request or it must be

able to handle both the End and Fault messages: the omission of handling, say, Fault

would result into an uncaught exception.

The need for an explicit End message to signal a terminated interaction is not im-

mediately evident. In principle, the optional fault message could have been encoded as

In.(0⊕Fault). A client compliant with this service must be able to receive and handle the
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Fault message, but it must also be able to complete the interaction without further com-

munication from the service. The point is that the client cannot distinguish a completed

interaction where the service has internally decided to behave like 0 from an interaction

where the service has internally decided to behave like Fault, but it is taking a long time

to respond. By providing an explicit End message signaling a completed interaction, the

service tells the client not to wait for further messages. By this reasoning, the End message

after Fault is not strictly necessary, but we write it for uniformity.

By similar arguments the contract of the o3 operation can be encoded as

inOut = In.(Out.End⊕ Fault.End)

and the contract of the o4 operation as

inOptOut = In.(End⊕ Out.End⊕ Fault.End)

It is worth noticing how these contracts are ordered according to our definition of

�. We have inOptOut � robustInOnly and robustInOnly � inOnly. Indeed, a client

compliant with inOptOut must be able to complete immediately after the request, but

it is also able to handle a Out message and a Fault message. The robustInOnly can

only produce an End message or a Fault message, hence it is “more deterministic” than

inOptOut. Similarly, inOnly is more deterministic than robustInOnly since it can only

send an End message after the client’s request. Finally, note that inOptOut � inOut also

holds.

By combining contracts we can express the compound contract exported by the service

as

o1.In.End

+ o2.In.(End⊕ Fault.End)

+ o3.In.(Out.End⊕ Fault.End)

+ o4.In.(End⊕ Out.End⊕ Fault.End)

where the external choice makes it explicit that the choice among o1, o2, o3 and o4 must

be made by the client.

4.5 Process Compliance

Compliance relates a client process with a service process. A client is compliant with

a service if the client terminates (i.e. it has no more interactions to perform) for every
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possible interaction with the service. That is, compliance induces a completion property

for the client but not for the service. In order to formalize compliance we define processes

and their dynamics. Then we demonstrate that it is possible to associate a contract to

a process such that (process) compliance follows by the compliance of the corresponding

contracts.

In this chapter, processes are finite ccs terms. For the sake of simplicity we do not

include choice and relabeling operators. We note that, omitting choice, there are contracts

that cannot be associated to any process (i.e. a + b, a⊕ b). However we show hot to deal

with choices in the next Chapter, where recursive ccs processes are also considered.

The transition relation is standard; therefore we omit comments.

Definition 4.7 Finite ccs processes P are defined by the following grammar:

P ::= 0 | a.P | a.P | P \ a | P | P

Let µ range over N ∪N ∪ {τ}. The transition relation of processes, noted
µ

−→, is the

least relation satisfying the rules:

(in)

a.P
a

−→ P

(out)

a.P
a

−→ P

(res)

P
µ

−→ Q µ 6∈ {a, a}

P \ a
µ

−→ Q \ a

(par)

P
µ

−→ Q

P | R
µ

−→ Q | R

(com)

P
α

−→ P ′ Q
α

−→ Q′

P | Q
τ

−→ P ′ | Q′

The transitions of P | Q have mirror cases that have been omitted.

We write
τ

=⇒ for
τ

−→
∗

and
α

=⇒ for
τ

−→
∗ α
−→

τ
−→

∗
.

The compliance of a client process with a service is defined as follows.

Definition 4.8 (Compliance) Let P ‖Q −→ P ′ ‖Q′ be the least relation such that:

• if P
τ

−→ P ′ then P ‖Q −→ P ′ ‖Q;

• if Q
τ

−→ Q′ then P ‖Q −→ P ‖Q′;

• if P
α

−→ P ′ and Q
α

−→ Q′ then P ‖Q −→ P ′ ‖Q′.
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Let P ≬p Q, read P complies with Q, if one of the following holds:

1. P X
µ

−→, or

2. P ‖Q −→ P ′ ‖Q′ and P ′ ≬p Q′.

Process compliance has been noted in the same way as contract compliance in Sec-

tion 4.3. This abuse is justified because the two notions are strongly related, as we will

prove shortly.

Processes expose (principal) contracts. This is defined by an inference system that

uses two auxiliary operators over contracts:

1. σ \ a is defined by induction on the structure of σ:

0 \ a = 0

(α.σ) \ a =





0 if α ∈ {a, a}

α.(σ \ a) otherwise

(σ + σ′) \ a = σ \ a + σ′ \ a

(σ ⊕ σ′) \ a = σ \ a ⊕ σ′ \ a

2. The operator “|” is commutative with 0 as identity, such that σ | (σ′ ⊕ σ′′) = (σ |

σ′) ⊕ (σ | σ′′), and σ | (σ′ + (σ′′ ⊕ σ′′′)) = σ | ((σ′ + σ′′) ⊕ (σ′ + σ′′′)). This

allows us to define σ | σ′ when σ and σ′ are external choices of prefixes. Our

definition corresponds to the expansion law in [NH87]. Let σ =
∑

i∈I αi.σi and

σ′ =
∑

j∈J α′
j.σ

′
j , then

σ | σ′ def
=






∑
i∈I αi.(σi | σ′) +

∑
j∈J α′

j .(σ | σ′
j)

if αi 6= α′
j for every i ∈ I, j ∈ J

(∑
i∈I αi.(σi | σ′) +

∑
j∈J α′

j .(σ | σ′
j) +

⊕
αi=α′

j
(σi | σ′

j)
)

⊕
⊕

αi=α′

j
(σi | σ′

j) otherwise

Proposition 4.7

1. σ � σ′ implies σ \ a � σ′ \ a;

2. σ � σ′ implies σ \ a � σ′ \ a.
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Proof: As regards 1, let

S = {(σ \ a, σ′ \ a) : σ � σ′}.

We show that S is a subcontract relation. By the hypothesis σ � σ′, σ′ ց r′ and σ ց r

and r ⊆ r′. By definition of “\”, σ′ ց r′ \ a and σ ց r \ a. Hence we conclude

r \ a ⊆ r′ \ a. By the hypothesis σ � σ′, we also have σ(α) � σ′(α). By definition of “\”,

σ \ a
α

7−→ σ(α) \ a and σ′ α
7−→ σ′(α) \ a. Hence we conclude (σ(α) \ a, σ′(α) \ a) ∈ S.

As regards 2, let

S = {(σ \ a, σ′ \ a) : σ � σ′}.

We show that S is a subcontract relation. By definition of dual contract we have

σ \ a =
∑

σցr\{a}

⊕
α∈r\{a} α.σ(α) \ a

σ′ \ a =
∑

σ′ցr\{a}

⊕
α∈r\{a} α.σ′(α) \ a

Thus, condition 1 of �, is immediate. To show condition 2 of � we must prove that

(σ(α) \ a, σ′(α) \ a) ∈ S. This follows by σ(α) � σ′(α). 2

Definition 4.9 Let P ⊢ σ be the least relation such that

0 ⊢ 0
P ⊢ σ

a.P ⊢ a.σ

P ⊢ σ

a.P ⊢ a.σ

P ⊢ σ

P \ a ⊢ σ \ a

P ⊢ σ Q ⊢ σ′

P | Q ⊢ σ | σ′

For instance we have a | b ⊢ a.b+b.a and a | a ⊢ (a+a⊕0)⊕0. As anticipated, compliance of

processes may be inferred from compliance of the corresponding contracts. This property,

formalized in Theorem 4.1, requires few preliminary statements. However, we note that the

converse does not hold: if two processes comply then the correspondent contract may be

not compliant. For instance a | a ≬p 0 but (a+a⊕0)⊕06≬c 0 ((a + a ⊕ 0) ⊕ 0 = a⊕a � 0).

Lemma 4.4 Let P ⊢ σ, P
µ

−→ P ′, and P ′ ⊢ σ′

(a) if µ = τ then σ � σ′, σ′ � σ, and traces(σ′) ⊆ traces(σ);

(b) if µ = α then σ(α) � σ′, σ′ � σ(α), and traces(σ′) ⊆ traces(σ(α)).

Proof: We proceed by induction on the derivation of P
µ

−→ P ′.

The base case corresponds to the application of either (in) or (out). Since P has

the form α.P ′ we have σ(α) = σ′. Therefore we conclude σ(α) � σ′, σ′ � σ(α), and

traces(σ′) = traces(σ(α)).

In the inductive case there are several sub-cases corresponding to the last rule that has

been applied.
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• (com) implies P = Q | R with Q
α

−→ Q′ and R
α

−→ R′. Let Q ⊢ σ1, Q′ ⊢ σ′
1, R ⊢ σ2,

and R′ ⊢ σ′
2. By definition of “|”, we have σ1 | σ2 =

⊕
i∈I σ′′

i with σ′′
j = σ′

1 | σ′
2 for

some j ∈ I. Hence σ1 | σ2 � σ′
1 | σ′

2 follows by definition of � and σ′
1 | σ′

2 � σ1 | σ2

follows by Lemma 4.3. It remains to show traces(σ′
1 | σ′

2) ⊆ traces(σ1 | σ2). This

is a straightforward consequence of the definition of “|” and traces(·).

• (res) implies P = Q \ a, Q
µ

−→ Q′. Let σ = σ1 \ a, Q ⊢ σ1, and Q′ ⊢ σ′
1.

– If µ = τ the lemma follows by Proposition 4.7 and by the hypotheses we

conclude σ1 � σ′
1 and σ′

1 � σ1.

– If µ = α the lemma follows by Proposition 4.7 and by the hypotheses we

conclude σ1(α) � σ′
1 and σ′

1 � σ1(α).

• (par) implies P = Q | R with Q
µ

−→ Q′ and Q ⊢ σ1, R ⊢ σ2, and Q′ ⊢ σ′
1.

– If µ = τ , by definition of “|”, we have σ1 =
⊕

i∈I σ′′
i with σ′′

j = σ′
1 for some j ∈ I.

Then σ1 | σ2 = (
⊕

i∈I σ′′
i ) | σ2 =

⊕
i∈I(σ

′′
i | σ2) and σ1 | σ2 � σ′

1 | σ2 follows by

Proposition 4.2 while σ′
1 | σ2 � σ1 | σ2 follows by Lemma 4.3. By definition of

traces(·) we also conclude that traces(σ′
1 | σ2) ⊆ traces(σ1 | σ2).

– If µ = α, by the inductive hypothesis we have σ1(α) � σ′
1 and σ′

1 � σ(α).

Since Q
α

−→ Q′, by definition of “|” we have that σ1 | σ2 = ρ1 ⊕ (ρ2 + α.(σ′
1 |

σ2)+ ρ3)⊕ ρ4. Hence (σ1 | σ2)(α) =
⊕

i∈I σi with σi = (σ′
1 | σ2) for some i ∈ I.

Then (σ1 | σ2)(α) � σ′
1 | σ2 follows by definition of � and σ′

1 | σ2 � (σ1 | σ2)(α)

by Lemma 4.3. By definition of traces(·) we also conclude that traces(σ′
1 |

σ2) ⊆ traces((σ1 | σ2)(α)). 2

Theorem 4.1 If P ⊢ σ, Q ⊢ σ′, and σ ≬c σ′ then P ≬p Q.

Proof: A maximal computation of the system P ‖Q is a sequence of systems P1 ‖Q1, . . . , Pn ‖Qn

such that P1 = P , Q1 = Q, for every i = {1, . . . , n − 1} we have Pi ‖Qi −→ Pi+1 ‖Qi+1,

and Pn ‖Qn X−→. The proof is by induction on n.

If n = 0, then P ‖Q X−→. We have two possibilities: if P X
µ

−→ then by definition P ≬p Q.

So let us suppose, by contradiction, that whenever P
α

−→ we have Q X
α

−→. Since P ⊢ σ
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and Q ⊢ σ′ this means that for any ready set r of σ there is no ready set s of σ′ such that

r ∩ s 6= ∅. From P
α

−→ and P ⊢ σ we know that σ ց r and α ∈ r for some ready set r.

That is, σ has at least one nonempty ready set. Thus, from the definition of σ, we know

that every ready set of σ is not empty. By definition of contract compliance we know that

σ � σ′ and from the definition of � we have that any ready set s of σ′ shares at least an

action with r for some ready set r of σ, which is absurd.

If n > 0, assume that the theorem is true for any computation of length n − 1. We

have three cases:

(P
τ

−→ P ′) Assume P ′ ⊢ σ′′, then from Lemma 4.4(a) we know that σ′′ � σ and traces(σ′′) ⊆

traces(σ), hence by Proposition 4.1 we have σ′′ � σ′ that is σ′′ ≬c σ′. By the induc-

tion hypothesis we conclude that P ′ ≬p Q hence P ≬p Q.

(Q
τ

−→ Q′) Assume Q′ ⊢ σ′′, then from Lemma 4.4(a) we know that σ′ � σ′′ and

traces(σ′′) ⊆ traces(σ′), hence by Proposition 4.1 we have σ � σ′′ that is σ ≬c σ′′.

By the induction hypothesis we conclude that P ≬p Q′ hence P ≬p Q.

(P
α

−→ P ′ and Q
α

−→ Q′) Assume that P ′ ⊢ σ′′ and Q′ ⊢ σ′′′. From Lemma 4.4(b) know

that σ′′ � σ(α) and traces(σ′′) ⊆ traces(σ(α)), and by definition of dual contract

we have σ(α) = σ(α). Again from Lemma 4.4(b) we know that σ′(α) � σ′′′ and

traces(σ′′′) ⊆ traces(σ′(α)). By Proposition 4.1 we have σ′′ � σ′′′ that is σ′′ ≬c σ′′′.

The computation starting from P ′ ‖Q′ has length n−1, by the induction hypothesis

we have P ′ ≬p Q′ so we conclude P ≬p Q. 2



Chapter 5
The Recursive Contract Language

In this chapter we extend the finite contract language with recursive contract definitions.

According to that the subcontract and the compliance relations are also extended. As in

the finite case, contracts are used to describe conversation protocol implemented by pro-

cesses. In this case we consider ccs processes with recursion. Since ccs allows to define

infinite states protocols whilst contracts are finite states, we provide two relations, called

underestimation and overestimation, for verifying that a given contract overestimates the

client’s capabilities and that a contract underestimates the server’s capabilities. Then we

demonstrate that if a contract overestimates the client process and a contract underesti-

mates the server process and the two contracts comply, then the processes also comply. In

case of regular processes – that are processes without parallel composition and restriction

– we show how to extrapolate contracts out of processes.

Structure of the chapter. Section 5.1 formally defines the recursive contract language

along with subcontract and compliance relations. In Section 5.2 we show how to express

conversation protocols defined by the Web Service Conversation Language wscl in the

contract language. Section 5.3 extends to recursive processes, the notion of process com-

pliance defined in the previous chapter. Section 5.4 defines how processes can be estimated

by contracts. It concludes demonstrating that complying approximations imply compliant

processes. In Section 5.5 we show how to extrapolate a contract out of regular (finite state)

processes.
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5.1 Recursive contracts

The syntax of contracts uses an infinite set of names N ranged over by a, b, c, . . . , a

disjoint set of co-names N ranged over by a, b, c, . . . , and an infinite set of recursion

variables X ranged over by x, y, . . . . We let a = a. Recursive contracts σ are defined by

the grammar in Table 5.1.

Table 5.1: The recursive contract language.

σ ::= contracts

0 (empty)

a.σ (input prefix)

a.σ (output prefix)

σ + σ (external choice)

σ ⊕ σ (internal choice)

rec x. σ (recursive definition)

x (variable)

Recursive contracts extends finite contracts with contract variables x and recursive

definitions rec x. σ. This allow us to express infinite conversations having a regular struc-

ture. As usual we inductively define the set of free variables of a contract σ – fv(σ)

– as: fv(0) = ∅, fv(a.σ) = fv(σ), fv(a.σ) = fv(σ), fv(σ + σ′) = fv(σ) ∪ fv(σ′),

fv(σ ⊕ σ′) = fv(σ) ∪ fv(σ′), fv(rec x. σ) = fv(σ) \ {x}, fv(x) = {x}. We say that

a contract σ is closed if and only if fv(σ) = ∅. In what follows, if it is not explicitly

specified, we always assume that contracts are closed.

The contracts 0, a.σ, a.σ, σ + σ, and σ ⊕ σ′ are as in the finite case. The contract

rec x. σ defines a recursive contract. It allows to define arbitrarily long (and also infi-

nite) conversation protocols between communicating parties. For instance the contract

rec x. Login.(Invalid.x ⊕ (Continue+ End) describes the conversation protocol of a ser-

vice accepting Logins. In case of a successful authentication the choice of either Continue

or End is left to the client. In case of an unsuccesful authentication an error message

Invalid is sent and the server becomes available for another Login. It is worth to remark

that protocols σ are always regular. For instance is not possible to define a protocol such



5.1. RECURSIVE CONTRACTS 87

as Loginn.Logoutn where the number of Logins and Logouts is the same for an unbound

number n.

The syntax of recursive contracts also includes contracts such as rec x. x. Such ex-

pressions, where the bound variable is not guarded by a prefix a. or a. – unguarded

recursion – are problematic because the correspondent equation has no finite solutions.

We do not impose any restriction on the contract language because, when contracts are

used to describe conversation protocol implemented by a ccs processes, unguarded con-

tract may be necessary. For instance the (regular) ccs process (rec x. a.x | rec x. a.x) \ a

implements the conversation protocol described by the contract rec x. x. In the following

we let Ω
def
= rec x. x and, for each definition, we discuss how it behaves with respect to

unguarded recursions.

As in the finite case, we use α to range over names and co-names and we omit the

trailing 0.

5.1.1 Subcontract relation

We now extend the transition relation on contracts (Definition 4.1 of Chapter 4). Let

σ ↓ α be the least predicate on open contracts such that

α.σ ↓ α

σ ⊕ σ′ ↓ α if σ ↓ α or σ′ ↓ α

σ + σ′ ↓ α if σ ↓ α or σ′ ↓ α

rec x. σ ↓ α if σ ↓ α

We write σ 6↓ α when σ ↓ α is false. For example a.x ⊕ b ↓ a and a.x ⊕ b 6↓ c. Also x 6↓ a

and Ω 6↓ a for every a.

Definition 5.1 (Transition
α

7−→) The transition relation of contracts, noted
a

7−→, is the
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least relation satisfying the rules:

α.σ
α

7−→ σ

σ1
α

7−→ σ′
1 σ2

α
7−→ σ′

2

σ1 + σ2
α

7−→ σ′
1 ⊕ σ′

2

σ1
α

7−→ σ′
1 σ2 6↓ α

σ1 + σ2
α

7−→ σ′
1

σ1
α

7−→ σ′
1 σ2

α
7−→ σ′

2

σ1 ⊕ σ′
1

α
7−→ σ2 ⊕ σ′

2

σ1
α

7−→ σ′
1 σ2 6↓ α

σ1 ⊕ σ2
α

7−→ σ′
1

σ
α

7−→ σ′

rec x. σ
α

7−→ σ′{rec x. σ/x}

and closed under mirror cases for external and internal choices.

This transition relation extends the one of Chapter 4 to recursive terms. We remark that

the transition relation of recursive contracts is defined by induction on the structure of the

contract. In particular, the transition relation is also defined on open terms. For example

a.x ⊕ b
a

7−→ x and x ⊕ a.b
a

7−→ b. Other examples follow:

Example:

1. rec x. a.b.x + Ω
a

7−→ b.rec x. a.b.x

2. rec x. a ⊕ x
a

7−→ 0

3. rec x. a.b.x + rec x. a.c.x
a

7−→ b.rec x. a.b.x ⊕ c.rec x. a.c.x

4. rec x. (a.b + x) + rec x. (a.c + x)
a

7−→ b ⊕ c

5. rec x. (a.b.x + a.x)
a

7−→ b.rec x. (a.b.x + a.x) ⊕ rec x. (a.b.x + a.x)

In the third example, the contract rec x. a.b.x+rec x. a.c.x transits with a into b.rec x. a.b.x⊕

c.rec x. a.c.x. The situation is similar to finite contracts and describes the fact that when

the activity a has been done, the communicating party is not yet aware of which part of

the conversation has been selected. In ccs, the process rec x. a.b.x + rec x. a.c.x has two

transitions rec x. a.b.x + rec x. a.c.x
a

−→ b.rec x. a.b.x and rec x. a.b.x + rec x. a.c.x
a

−→

c.rec x. a.c.x.



5.1. RECURSIVE CONTRACTS 89

Proposition 5.1
α

7−→ is deterministic (for every contract σ, there is always at most one

contract σ′ such that σ
α

7−→ σ′).

We write σ(α) for the unique σ′ such that σ
α

7−→ σ′. As in the finite case, we also

define the set of traces of a contract σ, written traces(σ), has traces(σ)
def
= {α1 · · ·αn :

σ
α17−→ · · ·

αn7−→}. It is easy to see that traces(σ) ⊆ traces(σ′) implies traces(σ(α)) ⊆

traces(σ′(α)).

Definition 5.2 (Contract Convergence) Let σ ⇓, read σ converges, be the least pred-

icate over contracts such that:

0 ⇓

α.σ ⇓

σ + σ′ ⇓ if σ ⇓ and σ′ ⇓

σ ⊕ σ′ ⇓ if σ ⇓ and σ′ ⇓

rec x. σ ⇓ if σ{rec x. σ/x} ⇓

We write σ 6⇓, read σ diverges, if not σ ⇓.

The definition of contract convergence verifies whether a contract is unguarded or not.

Unguarded contracts describe possibly divergent conversation protocols i.e. protocols that

may loop forever without performing any action. For instance a⊕ Ω 6⇓ and rec x. x + a 6⇓

because they describe conversations where either an input on a is offered or “nothing” is

offered.

It stands that
α

7−→ is insensitive to divergence. For instance Ω and 0 have no transitions

and rec x. a + x and a have the same transition
a

7−→ with 0 as successor. This is because
α

7−→ describes the conversation from the perspective of the interacting party, which cannot

observe the divergence. However there is an important difference between the contract

a and the contract rec x. a + x: a always perform the action a, whilst rec x. a + x may

diverge without offering any action. That is, a + Ω and a ⊕ Ω are equivalent to a ⊕ 0 in

the sense that everyone may accept a message on a. We take into account this aspect in

the following definition of ready sets.
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Definition 5.3 (Ready sets) Let σ ց r, read σ has ready set r, be the least relation

such that:

0 ց ∅

α.σ ց {α}

(σ + σ′) ց r ∪ r′ if σ ց r and σ′ ց r′

(σ ⊕ σ′) ց r if either σ ց r or σ′ ց r

rec x. σ ց r if σ{rec x. σ/x} ց r

σ ց ∅ if σ 6⇓

The definition of ready sets in the recursive case is the extension of the one of the finite

contract language (Definition 4.2 of Chapter 4) with two clauses. The first clause says a

contract has a ready set r only if its unfolding has the ready set r. The second clause says

that diverging contracts always have also an empty ready set because they may diverge

without offering any action to the parties. For instance, (rec x. a.x) + b has {a, b} as

unique ready set; rec x. a.x⊕ rec y. b.y has ready sets {a} and {b}. As regards unguarded

recursion, Ω ց ∅ and Ω ⊕ a has two ready sets: {a} and ∅. Similarly, rec x.Ω + a.x ց ∅

and rec x.Ω + a.x ց {a}.

Definition 5.4 (Subcontracts) A subcontract relation S is a relation on contracts such

that σ1Sσ2 implies:

1. if σ2 ց r2 then σ1 ց r1 with r1 ⊆ r2,

2. if σ1
α

7−→ σ′
1 and σ2

α
7−→ σ′

2 then σ′
1Sσ′

2.

Let � be the largest subcontract relation. Let σ1 ≃ σ2, called contract equivalence, if both

σ1 � σ2 and σ2 � σ1.

The definition of subcontract is the same as for the finite case. We recall it for readability

sake. The above definition takes into account divergence in the first item. For instance

one may verify that a+Ω � rec x. a+x and a � rec x. a+x because of the rec x. a+x ց ∅.

One may also verify the following relations:

1. rec x. a.x ≃ rec x. a.a.x

2. Ω ≃ 0

3. Ω � σ
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4. a ⊕ 0 ≃ a + Ω ≃ rec x. a + x ≃ a ⊕ Ω

5. rec x. a.x ⊕ b.x � rec x. a.b.x

6. rec x. a.b.x � rec x. a.x + b.x

As in the finite case, � is not transitive. For instance we notice that rec x. a.x⊕b.c.x �

rec x. a.x and rec x. a.x � rec x. a.x + b.x do not entail rec x. a.x⊕ b.c.x � rec x. a.x + b.x.

However transitivity holds if traces are included. The following Lemma and Propositions

correspond to Lemma 4.1, Proposition 4.2, and Proposition 4.3 of Chapter 4. The proof

are identical thus omitted.

Lemma 5.1 If σ1 � σ2 and σ2 � σ3 and either (a) traces(σ1) ⊆ traces(σ2) or (b)

traces(σ3) ⊆ traces(σ2) then σ1 � σ3.

Proposition 5.2 σ ⊕ σ′ � σ.

Proposition 5.3 If σ � σ′ ⊕ σ′′ then σ � σ′ and σ � σ′′.

The notion of dual contract in the recursive case is an extension of the one of the

previous chapter. Therefore in order to avoid fallible transformations we first need to

rewrite the contract in normal form and then we extrapolate the dual contract by inverting

inputs and outputs, internal choices and external choice. In what follows we let A be an

injective mapping from contracts to names with the following operation:

A + [σ 7→ x] =





A if σ ∈ dom(A)

A ∪ {(σ, x)} if σ 6∈ dom(A) and x 6∈ cod(A)

We also assume that the name x, related to the contract σ, is unique and uniquely deter-

mined by σ.

Definition 5.5 (Normed Contract) Let

ncA(σ) =






rec x.
⊕

σցr

∑
α∈r α.ncA′(σ(α)) if A′=A+[σ 7→ x], x ∈ fv(ncA′(σ(α)))

⊕
σցr

∑
α∈r α.ncA′(σ(α)) if A′=A+[σ 7→ x], x 6∈ fv(ncA′(σ(α)))

A(σ) if σ ∈ dom(A)

where, by convention, we have
∑

α∈∅ = 0. The normed contract of σ, noted nc(σ), is

defined as nc∅(σ)
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The normed contract of σ, is defined as in the finite case using ready sets and the transition

relation
α

7−→. The two cases of the definition account for the need of the recursion for the

normed contract of the continuation. Then, a recursive contract rec x. is introduced

when necessary and the map σ 7→ x is added to A. After that, the normed contract of the

continuation σ(α) is computed. If the normed contract of σ has been already met – A(σ)

is defined – we close returning its name A(σ). We note that the existence of the normal

form of a contract is due to the fact that the transition system of
α

7−→ has finitely many

different states. Said otherwise the inductive parameter is the number of distinct states of

the transition relation 7−→ We also note that – in case of finite contracts – this definition

of normed contract coincides with the one in Chapter 4.

Example:

1. nc(Ω) = 0

2. nc(rec x. a + x) = a ⊕ 0

3. nc(a.b + rec x. a.c.x) = a.(b ⊕ c.rec x. a.c.x), indeed

nc∅(a.b + rec x. a.c.x)= a.(nc[σ1 7→y](b ⊕ c.rec x. a.c.x))

= a.(b ⊕ c.nc[σ1 7→y,σ2 7→z](rec x. a.c.x))

= a.(b ⊕ c.rec x. a.nc[
σ1 7→ y, σ2 7→ z,

σ3 7→ x

](c.rec x. a.c.x))

= a.(b ⊕ c.rec x. a.c.nc[
σ1 7→ y, σ2 7→ z,

σ3 7→ x, σ4 7→ w

](rec x. a.c.x))

= a.(b ⊕ c.rec x. a.c.x)

with σ1 = a.b+rec x. a.c.x, σ2 = b ⊕ c.rec x. a.c.x, σ3 = rec x. a.c.x, σ4 = c.rec x. a.c.x

4. nc(rec x. a.b.x + rec y. a.c.y) = a.(b.rec x. a.b.x ⊕ c.rec x. a.c.x)

To show, as in the finite case, the correspondance between σ and its normed contract

we need the following preliminar.

Proposition 5.4 Let σ′ 6∈ dom(A). ncA+[σ 7→x](σ
′){ncA(σ)/x} = ncA(σ′).

Proof: We proceed by induction on the structure of ncA+[σ 7→x](σ
′). The case ncA+[σ 7→x](σ

′) =

0 is immediate. In case of ncA+[σ 7→x](σ
′) = x, by definition of ncA(·), σ′ = σ and we con-

clude. In case of ncA+[σ 7→x](σ
′) = y 6= x, by definition of ncA(·), A(σ′) = y and σ′ 6= σ.
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Then ncA+[σ 7→x](σ
′){ncA(σ)/x} = y and ncA(σ′) = y. Hence we conclude. In the inductive

case, by definition of ncA+[σ 7→x](·), we distinguish two subcases depending on which rule

of ncA+[σ 7→x](σ
′) has been applied.

– If ncA+[σ 7→x](σ
′) =

⊕
σ′ցr

∑
α∈r α.σ′′ with σ′′ = ncA+[σ 7→x]+[σ′ 7→y](σ

′(α)) and y 6∈

fv(σ′′) then, by the inductive hypothesis, σ′′{ncA(σ)/x} = ncA+[σ′ 7→y](σ
′). By

σ′ 6∈ dom(A) we have y 6∈ fv(σ′′{ncA(σ)/x}) thus y 6∈ fv(ncA+[σ′ 7→y](σ
′)) and

ncA(σ′) =
⊕

σ′ց

∑
α∈r α.ncA+[σ′ 7→y](σ

′(α)). We conclude by the inductive hypoth-

esis.

– If ncA+[σ 7→x](σ
′) = rec y.

⊕
σ′ցr

∑
α∈r α.σ′′ with σ′′ = ncA+[σ 7→x]+[σ′ 7→y](σ

′(α)) and

y ∈ fv(σ′′) then, by the inductive hypothesis, σ′′{ncA(σ)/x} = ncA+[σ′ 7→y](σ
′). By

y ∈ fv(σ′′), y ∈ fv(σ′′{ncA(σ)/x}) and y ∈ fv(ncA+[σ′ 7→y](σ
′)) and

ncA(σ′) = rec y.
⊕

σ′ց

∑
α∈r α.ncA+[σ′ 7→y](σ

′(α)). We conclude by the inductive

hypothesis. 2

Proposition 5.5

1. nc(σ) ⇓;

2. σ ց r if and only if nc(σ) ց r;

3. σ
α

7−→ σ(α) if and only if nc(σ)
α

7−→ nc(σ(α)).

Proof: Item 1 follows because nc always introduces variables underneath a prefix α. .

Item 2 states that σ and its normed contract have the same ready sets and it is also

an immediate consequence of the definition.

Item 3 (⇐) is immediate. As regards (⇒), by the hypothesis σ
α

7−→ σ(α) we have σ ց

r∪{α}. Then, by definition of ncA(·), we have two cases. The first case implies nc(σ)
α

7−→

nc[σ 7→x](σ(α)) with x 6∈ fv(nc[σ 7→x](σ(α))). Hence we conclude nc[σ 7→x](σ(α)) = nc(σ(α)).

The second case is nc(σ)
α

7−→ nc[σ 7→x](σ(α)){nc(σ)/x} with x ∈ fv(nc[σ 7→x](σ(α))). Hence,

by Proposition 5.4, nc[σ 7→x](σ(α)){nc(σ)/x} = nc(σ(α)) and we conclude. 2

As in the finite case the equivalence between a contract and its normal form follows

by Proposition 5.5.



94 5.1. RECURSIVE CONTRACTS

Lemma 5.2 σ ≃ nc(σ) and traces(σ) = traces(nc(σ))

Definition 5.6 (Dual contract) Let

σA =






rec x.
∑

σցr

⊕
α∈r α.σ(α)A′ if A′=A+[σ 7→ x], x ∈ fv(σ(α)A′)

∑
σցr

⊕
α∈r α.σ(α)A′ if A′=A+[σ 7→ x], x 6∈ fv(σ(α)A′)

A(σ) if σ ∈ dom(A)

where, by convention, we have
⊕

α∈∅ = 0. The dual contract of σ, noted σ, is defined as

σ∅

The dual contract is defined similarly to the normal form but inverting internal choices

with external choices and inputs with outputs. Then, two cases of the definition depend

on the need of the recursive definition for the dual of the continuation. Also for the dual

contract, it is easy to see that – in case of finite contracts – this definition coincides with

the one in Chapter 4.

Example:

1. Ω = 0

2. a + Ω = a ⊕Ω = a ⊕ 0 = rec x. a + x = a + 0

3. (a + b) ⊕ Ω = a + b + Ω = a ⊕ b + 0

4. Let σ = rec x. a.b.x + a.c.x.

σ = rec x. a.(b.σ ⊕ c.σ[σ 7→x])

= rec x. a.(b.σ[σ 7→x] + c.σ[σ 7→x])

= rec x. a.(b.x + c.x)

a + σ = a.(0 ⊕ b.σ ⊕ c.σ)

= a.(0 + b.σ + c.σ)

= a.(0 + b.σ + c.σ

= a.(0 + b.rec x. a.(b.x + c.x) + c.rec x. a.(b.x + c.x)

Examples 1,2,3 show the duals of diverging contracts. Since σ 6⇓ implies σ ց ∅, the dual

of a diverging contract is either 0 (example 1) or an external choice with 0 (examples
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2,3). In the example 3, we remind that (rec x. a + x)(a) = 0. It follows that the dual of a

divergent contract is convergent. This is not surprising, since the dual of a contract is used

to obtain an abstract description of the server’s protocol, a divergent client is assimilable

to an inactive client 0 because both do not require any particular behavior to the server.

Example 4 shows the dual of two recursive contracts where the map A is used to ensure

termination. In particular, the termination is due to the finiteness of the set of states

generated from a contract by 7−→.

Similarly to the finite case (see Proposition 4.5), the following propositions hold:

Proposition 5.6

1. σ ⇓;

2. σ ց r if and only if {r1, . . . ,rn} = {r′ : σ ց r′}, r =
⋃

i∈1..n αi, αi ∈ ri;

3. if σ ց ∅ then σ ց r implies r = ∅;

4. if σ
α

7−→ σ(α) then σ
α

7−→ σ(α).

Proof: Items 1, 2, 3 are immediate by definition of σ. The proof of item 4 is a straight-

forward adaptation of the proof of Proposition 5.5.3. 2

Lemma 5.3 σ � σ ⊕ σ′.

Proof: See Chapter 4 Lemma 4.3. 2

5.1.2 Contract compliance

Every preliminary notion has been set for the definition of contract compliance for recursive

contracts.

Definition 5.7 (Contract compliance) σ ≬c σ′ if and only if σ � σ′.

The notion of compliance is the same of the finite case. A client with contract σ will

interact successfully with every service with contract σ′ provided σ ≬c σ′. In the finite

case, the communication is successful only if the client termination is guaranteed. In the

infinite case the termination constraint is relaxed and we require clients to progress. That

is, querying a repository for services compliant with rec x. a.x ⊕ b.x, may return services
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implementing the conversation protocols rec x. a.x + b.x, rec x. a.x + b.x + c.x etc. . . . On

the contrary rec x. a.x ⊕ b.x cannot be returned. Indeed,

rec x. a.x ⊕ b.x = rec x. a.x + b.x

and rec x. a.x + b.x � rec x. a.x + b.x + c.x

but rec x. a.x + b.x � rec x. a.x ⊕ b.x

When a client with contract Ω queries the repository, every service can be returned. Indeed

Ω = 0 and 0 � σ for every σ. This is because the client protocol does not need to interact

at all with the service thus no particular capability is required at all.

Another case is when a client with contract Ω⊕σ queries the repository. We note that

any client with contract Ω⊕σ either diverges – that from the perspective of the interacting

party is equivalent to be inactive – or behaves as σ. According to our definition of dual,

we have Ω⊕ σ = 0⊕ σ = σ thus the repository returns services compliant with σ.

A slightly different case is when the client has contract Ω+σ. Indeed, Ω+σ describes a

client that behaves either as Ω or as σ according to the server’s choice. In our definition of

dual contract also Ω + σ = σ thus requiring service to be compliant with σ. For instance if

σ = a then a, a + b are compatible, whilst services such as 0 and b are not compliant with

Ω + a. In Section 5.3 we will see that the process implementing Ω + a (i.e. rec x. τ.x + a)

is compliant with 0. Thus, as in the finite case, the notion of contract compliance is more

demanding than process compliance.

Proposition 5.7 If σ ≬c σ′ and σ
α

7−→ and σ′ α
7−→ then σ(α) ≬c σ′(α).

Proof: By the hypotheses we have σ � σ′ and σ
α

7−→ σ(α). Since σ′ α
7−→ σ′(α) we must

have σ(α) � σ′(α). Hence we conclude. 2

Proposition 5.8 The following proposition hold:

1. if σ ⊕ σ′ ≬c σ′′ then σ ≬c σ′′ and σ′ ≬c σ′′;

2. if σ ≬c σ′ ⊕ σ′′ then σ ≬c σ′ and σ ≬c σ′′.

Proof: In case 1 we have to prove σ � σ′′ and σ′ � σ′′. By Lemma 5.3 σ � σ ⊕ σ′ and

σ′ � σ ⊕ σ′. Since traces(σ) ⊆ traces(σ ⊕ σ′), we conclude by Proposition 5.4. Case 2

is an immediate consequence of Proposition 5.3. 2
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in: Logout

[PurchaseAcceptedRS]
[InvalidPaymentRS]

[InvalidLoginRS]

out: CatalogRS

in: QueryRQ

out: InvalidLoginRS

out: ValidLoginRS

[OutOfStockRS]

in: LoginRQ

in: PurchaseRQ

out: PurchaseAcceptedRS

out: OutOfStockRS

out: InvalidPaymentRS

[ValidLoginRS]

Figure 5.1: Contract of a simple e-commerce service as a wscl diagram.

5.2 Conversations in wscl

The wsdl message exchange patterns cover only the simplest forms of interaction be-

tween a client and a service. More involved forms of interactions, in particular stateful

interactions, cannot be captured if not as informal annotation within the wsdl interface.

The Web service conversation language wscl [BBB+02, BKL01] provides a more general

specification language for describing complex conversations between two communicating

parties, by means of an activity diagram. The diagram is basically made of interactions

which are connected with each other by means of transitions. An interaction is a basic

one-way or two-way communication between the client and the server. Two-way commu-

nications are just a shorthand for two sequential one-way interactions. Each interaction

has a name and a list of document types that can be exchanged during its execution. A

transition connects a source interaction with a destination interaction. A transition may

be labeled by a document type if it is active only when a message of that specific document

type was exchanged during the previous interaction.

A finite wscl diagram

Below we encode the contract σ of a simplified e-commerce service (Figure 5.1) where the

client is required to login before it can issue a query and thus receive a catalog. From

this point on, the client can decide whether to purchase an item from the catalog or to

logout and leave. In case of purchase, the service may either report that the purchase was
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successful, or that the item is out-of-stock, or that the client’s payment was refused:

σ = LoginRQ.(InvalidLoginRS.End⊕ ValidLoginRS.QueryRQ.CatalogRS.(

Logout.End + PurchaseRQ.(

PurchaseAcceptedRS.End⊕ InvalidPaymentRS.End⊕ OutOfStockRS.End)))

Notice that unlabeled transitions in Figure 5.1 correspond to external choices in σ, whereas

labeled transitions correspond to internal choices. It is also interesting to notice that wscl

explicitly accounts for a termination message (called “empty” in the wscl specification,

the final interaction on the right end in Figure 5.1) that is used for modeling the end of

a conversation. The presence of this termination message finds a natural justification in

our formal contract language, as explained above.

Now assume that the service is extended with a booking capability, so that after looking

at the catalog the client may book an item to be bought at some later time. The contract

of the service would change to σ′ as follows:

σ′ def
= . . . Logout.End + Book.End + Purchase.(. . . )

We notice that σ � σ′ and traces(σ) ⊆ traces(σ′), that is σ′ offers more capabilities

than σ.

An infinite wscl diagram

The finite contract language allows us to encode wsdl message exchange pattern that

define finite conversation protocols. However the finite contract language is not powerful

enough to encode wscl’s activity diagrams containing cycles. Figure 5.2 describes the

complete example presented in [BKL01]. It is clear that this diagram, and actually any

wscl activity diagram, having a finite number of states defines a regular behavior thus

suitable to be encoded in our language. We only need to create recursive definitions for

those states that are part of a cycle. (Let us use italic font for contracts, typewriter for
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actions.)

σ = Registration + Login

Registration = RegistrationRQ.RegistrationRS.Login

Login = rec x. LoginRQ.(InvalidLoginRS.(Registration + x)⊕

ValidLoginRS.(CatalogInquiry + Purchase))

CatalogInquiry = rec y. CatalogRQ.(CatalogRS.y + Quote + Logout)

Quote = QuoteRQ.QuoteRS.(CatalogInquiry+ Purchase + Logout)

Purchase = rec z. PurchaseRQ.(PurchaseAcceptedRS.Shipping⊕

InvalidPaymentRS.(z + End)⊕

OutOfStockRS.End)

Shipping = OutShippingInformation.End

Logout = LogoutMessage.End

5.3 Process Compliance

Process compliance relates clients and service processes. A client is compliant with a

service if the client cannot deadlock interacting with the service. Therefore, as in the

finite case compliance induce a satisfiability property for the client. In order to formalize

compliance we extend finite ccs processes with recursive definitions and we define their

dynamics. Then we show how to verify that a contract properly describes the protocol

implemented by a certain process. In particular two relations are presented. The first

one, called understimation, is used to verify that a contract is an under-specification of

the process behavior. The second one, called overestimation, verifies that a contract is an

over-specification of the process behavior. Indeed either an overestimation of the server’s

capabilities or an underestimation of the client capabilities may clearly jeopardize the

client satisfaction.

Approximations are needed because ccs with recursion, parallel composition and hid-

ing is Turing complete [BGZ04] – a ccs process can simulate the Random Access Machines

– whilst contracts cannot. Indeed, since contracts can only describes regular behaviors,

the contract of a non-regular process must estimate the protocol implemented by the pro-

cess. Such an estimation must be safe in the sense that it must guarantee the termination
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out: RegistrationRS out: ValidLoginRQ
out: InvalidLoginRQ

in: RegistrationRQ in: LoginRQ

[InvalidLoginRQ]

out: CatalogeRS

out: QuoteRS

in: Logout

[PurchaseAcceptedRS]

out: ShippingInformation

[InvalidPaymentRS]
[OutOfStockRS]

in: PurchaseRQ
out: PurchaseAcceptedRS
out: InvalidPaymentRS
out: OutOfStockRS

[InvalidPaymentRS]

in: CatalogRQ

in: QuoteRQ

[InvalidLoginRQ]

Figure 5.2: Contract of a e-commerce service as a wscl diagram with cycles.
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of clients. For regular processes, we can derive contracts without approximations. As in

the finite case, we extrapolate contracts out of (regular) processes and we show that the

resulting contract is both an overestimation and an underestimation of the conversation

protocol implemented by the server. For this reason such a derivation is suitable to be

used for querying and publishing services.

Definition 5.8 Recursive ccs processes P are defined by the following grammar:

P ::= processes

0 (inaction)

µ.P (action)

P \ a (hiding)

P | P (parallel)

P + P (choice)

rec x. P (definition)

x (variable)

µ ::= actions

a (input)

a (output)

τ (silent)

The transition relation of processes, noted
µ

−→, is the least relation satisfying the rules:

(act)

µ.P
µ

−→ P

(res)

P
µ

−→ Q µ 6∈ {a, a}

P \ a
µ

−→ Q \ a

(par)

P
µ

−→ Q

P | R
µ

−→ Q | R

(com)

P
α

−→ P ′ Q
α

−→ Q′

P | Q
τ

−→ P ′ | Q′

(rec)

P{rec x. P/x}
µ

−→ P ′

rec x. P
µ

−→ P ′

(choice)

P
µ

−→ P ′

P + Q
µ

−→ P ′

The transitions of P | Q and P + Q have mirror cases that have been omitted.

We write
τ

=⇒ for
τ

−→
∗
,

α
=⇒ for

τ
−→

∗ α
−→

τ
−→

∗
and P X

µ
−→ if there not exist P ′ such that

P
µ

−→ P ′.

As usual we inductively define the set of free variables of a process fv(P ) as: fv(0) = ∅,

fv(α.P ) = fv(P \ a) = fv(P ), fv(P + Q) = fv(P | Q) = fv(P ) ∪ fv(Q), fv(rec x. P ) =

fv(P ) \ {x}, and fv(x) = {x}. A process P is closed if fv(P ) = ∅, and is guarded if any

variable appears underneath a prefix a, a, and τ . In what follows we assume closed and

guarded processes.
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Definition 5.9 (Process convergence) Let ⇓, read P converges, be the least predicate

over processes such that:

0 ⇓

α.P ⇓

τ.P ⇓ if P ⇓

P \ a ⇓ if P ⇓

P + Q ⇓ if P ⇓ and Q ⇓

P | Q ⇓ if P ⇓ and Q ⇓ and P
α

−→ P ′, Q
α

−→ Q′ implies P ′ | Q′ ⇓

rec x. P ⇓ if P{rec x. P/x} ⇓

We write P 6⇓ if not P ⇓.

For instance rec x. τ.x + a 6⇓ and rec x. a.x | rec y. ay 6⇓.

Definition 5.10 (Process ready set) Let r range over finite sets of names and co-

names, called ready sets. Let P ց r, ready P has ready set r, be the least relation such

that:

0 ց ∅

α.P ց {α}

τ.P ց r if P ց r

P \ a ց r \ {a, a} if P ց r

P + Q ց r1 ∪ r2 P ց r1 and Q ց r2

P + Q ց r if either P
τ

−→ P ′ ց r or Q
τ

−→ Q′ ց r

P | Q ց r if P
α

−→ P ′, Q
α

−→ Q′ and P ′ | Q′ ց r

P | Q ց r1 ∪ r2 ∪ r3 if P ց r1 and Q ց r2 and P
α

−→ P ′, Q
α

−→ Q′, P ′ | Q′ ց r3

P | Q ց r1 ∪ r2 if P ց r1 and Q ց r2 and P
α

−→ implies Q X
α

−→

rec x. P ց r if P{rec x. P/x} ց r

P ց ∅ if P 6⇓

As in the definition of ready set of contracts, the ready sets of a process P collect set of

visible actions where the process may be waiting for the interacting party. For instance

the process τ.a + τ.b has three ready sets {a}, {b} and {a, b}. Indeed in the initial state

both a and b are potentially available, however, by means of internal moves, it may reduce

to either a or b. In case of process with synchronizations we have to take into account the
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ready set of the continuation. Then a.b | a has {b} and {a, a, b} as ready sets. Indeed the

process may internally choose to perform the synchronization, thus becoming available on

b, or to wait for the interacting party in the initial state a.b | a. In this second case, we

note that the process is also ready b (not only on a, a) because it keeps the possibility of

showing b to interacting parties. To strengthen this aspects, we remark that the process

b interacts successfully with a.b | a, then the name b is always available (if a branch does

not show b then b would deadlock). As regards ready sets for recursive process, we note

that (rec x. a.x) | (rec x. a.x) has {a, a} and ∅ as unique ready sets. The presence of the

ready set ∅ is because the process may diverge.

We remark that Definition 5.9 and Definition 5.10 are undecidable for non-regular

processes [BGZ03, BGZ04]. In particular the undecidability of Definition 5.10 follows by

the undecidability of the property “P has barb α” for ccs with recursion (the property

is decidable in ccs with replication [BGZ04]). On the contrary, both the definitions are

decidable for regular processes because their evaluation amounts to verify the finitely many

states of the process.

Proposition 5.9 If P
τ

−→ P ′ then P ′ ց r implies P ց r

Proof: We proceed by induction on the derivation of P
τ

−→. The base case is P = τ.Q

and is immediate, P and Q have the same ready sets. The inductive cases are:

P = Q \ a and Q
τ

−→ Q′. By the inductive hypothesis, Q′ ց r implies Q ց r and,

by definition of ready set, if Q′ ց r and Q ց r then Q′ \ a ց r \ {a, a} and

Q \ a ց r \ {a, a}. We conclude Q′ \ a ց r implies Q \ a ց r.

P = Q | Q′ and Q
τ

−→ Q′′. By the inductive hypothesis, Q′′ ց r implies Q ց r By

definition of ready set of parallel, we conclude Q | Q′′ ց r implies Q′ | Q′′ ց r.

P = rec x.Q and Q{P/x}
τ

−→ Q′. By the inductive hypothesis, Q′ ց r implies Q{P/x} ց

r then, by definition of ready sets P and Q{P/x} have the same ready sets. Thus

we conclude Q′ ց r implies P ց r.

P = Q + Q′ and Q
τ

−→ Q′′. Since Q′ ց r implies Q ց r then, by definition of ready

sets, Q′ + Q′′ ց r implies P ց r. 2

We now formally define when a process P complies with a process Q.
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Definition 5.11 (Compliance) Let P ‖Q −→ P ′ ‖Q′ be the least relation such that:

• if P
τ

−→ P ′ then P ‖Q −→ P ′ ‖Q;

• if Q
τ

−→ Q′ then P ‖Q −→ P ‖Q′;

• if P
α

−→ P ′ and Q
α

−→ Q′ then P ‖Q −→ P ′ ‖Q′.

C is a compliance relation if and only if PCQ implies

1. either P X
µ

−→,

2. (a) P X
τ

−→ implies Q ⇓,

(b) and P ‖Q −→ P ′ ‖Q′ with P ′CQ′.

Let ≬p be the largest compliance relation. We say that P complies with Q if P ≬p Q.

Process compliance extends the definition of Chapter 4 with clause 2.a. According to

the new definition, P complies with Q if either P is inactive or for every transition of

P ‖Q −→ P ′ ‖Q′, P ′ complies with Q′. We note that condition 2.a together with 2.b

verifies that, whenever P needs to interact on some name, Q must offer such a name.

Example: Let P = rec x. τ.a.x + b.x and Q = rec x. a.x + b.a.x. P ≬p Q. As regards

transitions we have:

P ‖Q

zzuuuuuuuuu

%%KK
KK

KKK
KKK

a.P ‖Q

22

P ‖ a.Q

��
a.P ‖ a.Q

OO

It is easy to see that C = {(P,Q), (a.P,Q), (P, a.Q), (a.P, a.Q)} is a compliance relation.

Example: τ.a + rec x. τ.x ≬p a. As regards transitions we have:

τ.a + rec x. τ.x ‖ a

wwoooooooooooo

��
0 ‖0 rec x. τ.x ‖ a

VV

We choose C = {(τ.a + rec x. τ.x, a), (0,0), (rec x. τ.x, a)} as compliance relation.
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Example: For every Q, a + rec x. τ.x ≬p Q. Let

C = {(a + rec x. τ.x,Q), (0, P ), (rec x. τ.x,R) : Q,P,R are processes}

We have either: (a) a+ rec x. τ.x ‖Q −→ 0 ‖P with (0, P ) ∈ C or (b) a+ rec x. τ.x ‖Q −→

rec x. τ.x ‖R with (rec x. τ.x,R) ∈ C. We note that 2.a of Definition 5.11 is always verified

because the premise fails.

Example: rec x. a + τ.x ≬p a

rec x. a + τ.x ‖ a

wwpppppppppppp VV

0 ‖0

It is easy to verify that C = {(rec x. a + τ.x, a), (0,0)} is a compliance relation. We also

note that a6≬p rec x. a + τ.x because, by condition 2.a of Definition 5.11, a
a

−→, a X
τ

−→ and

rec x. a + τ.x 6⇓.

Proposition 5.10 If P ≬p Q and P
α

=⇒ P ′ and Q
α

=⇒ Q′ then P ′ ≬p Q′

Proof: Follows by induction on the derivation of P
α

=⇒ and Q
α

=⇒. 2

5.4 Process Estimations

5.4.1 Contracts and processes

A contract is an abstract description of the communication protocol implemented by a

process. Of course, it is possible to abstract away from protocols details at wish. However

the abstraction process cannot be unconstrained in our case. Indeed, when a contract σ

is derived from a server Q we must verify that every client compliant with the process de-

scribed by σ (the canonical implementation of σ) is also compliant with Q. Symmetrically,

when a contract σ is derived from a client P we must verify that every server compliant

with the process described by σ is also compliant with P .

To introduce the definition we note that, when a contract has exactly one ready set, it

leaves to the interacting party the possibility of choosing the name for the communication.

When a contract has several ready sets then – after an internal choice – the set of names
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in one of these ready sets is available for communications to the interacting parties. For

instance, a contract having only one ready set {a, b} is implemented by the process a + b.

On the contrary, a contract having ready sets {a, b} and {a, c} is implemented by the

process τ.(a + b) + τ.(a + c). The following definition formalizes this concept.

Definition 5.12 Let R(σ) =
⋃

σցr{r}. The process rt(σ) is defined as rt∅(σ) where

rt
A
(σ)

def
=






∑
α∈r α.rt

A′
(σ(α)) if σ 6∈ dom(A), R(σ) = {r},

A′=A+[σ 7→x], x 6∈ fv(rtA′(σ(α)))

rec x.
∑

α∈r α.rt
A′

(σ(α)) if σ 6∈ dom(A), R(σ) = {r},

A′=A+[σ 7→x], x ∈ fv(rtA′(σ(α)))

∑
r∈R(σ) τ.

∑
α∈r α.rt

A′
(σ(α)) if σ 6∈ dom(A), | R(σ) |> 1,

A′=A+[σ 7→x], x 6∈ fv(rtA′(σ(α)))

rec x.
∑

r∈R(σ) τ.
∑

α∈r α.rt
A′

(σ(α)) if σ 6∈ dom(A), | R(σ) |> 1,

A′=A+[σ 7→x], x ∈ fv(rtA′(σ(α)))

A(σ) if σ ∈ dom(A)

The definition of rt
A
(σ) distinguishes five cases. The last case is for closing the contract

in case of recursion (we remind that in A′ = A+[σ 7→ x] x 6∈ cod(A)). The first two

cases correspond to contracts manifesting exactly one ready set (there are two different

cases because recursive contracts are created only where needed). For instance, since

R(Ω) = {∅}, we have rt(Ω) = τ.0. Similarly, since R(rec x. a.x + b.x) = {a, b}, we have

rt(rec x. a.x + b.x) = rec x. a.x + b.x. The third and the fourth cases correspond to

contracts manifesting more than one ready set. In such cases a τ move – implementing

the internal choice among ready sets – is prefixed to continuation. For instance, since

R(a⊕ b) = {{a}, {b}} and (a⊕ b)(a) = (a⊕ b)(b) = 0, we have rt(a⊕ b) = τ.a+ τ.b. Some

other examples are:

1. rt(c.a ⊕ c.b) = c.(τ.a + τ.b); indeed R(c.a ⊕ c.b) = {{c}} and (c.a ⊕ c.b)(c) = (a ⊕ b)

2. rt(rec x. a + x) = rt(rec x. a ⊕ x) = rt(a ⊕ 0) = τ.a + τ.0; indeed R(rec x. a + x) =

R(rec x. a ⊕ x) = R(a ⊕ 0) = {{a}, ∅}
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3. Let σ = rec x. a.x ⊕ rec y. a.b.y. rt(σ) = a.(τ.a.rec x. a.x + τ.b.rec y. a.b.y). Indeed

R(σ) = {{a}}, (σ)(a) = σ ⊕ b.rec y. .a.b.y and R(σ ⊕ b.rec y. .a.b.y) = {{a}, {b}},

(σ ⊕ b.rec y. a.b.y)(a) = σ, and (σ ⊕ b.rec y. a.b.y)(b) = rec y. a.b.y.

We note that the definition may be simplified creating a recursive definition rec x. .

at every step. Moreover, we also remark that the näıve definition by induction on the

structure of the contract: rt(0) = 0, rt(α.σ) = α.rt(σ), rt(σ + σ′) = rt(σ) + rt(σ′),

and rt(σ ⊕ σ′) = τ.rt(σ) + τ.rt(σ′), . . . . is fallible. Indeed, from (a ⊕ b) + c we obtain

τ.a + τ.b + c which does not implement the protocol described by the contract.

In order to show the strong relation between σ and rt(σ) we need the following pre-

liminary Proposition.

Proposition 5.11 rtA+[σ 7→x](σ
′){rtA(σ)/x} = rtA(σ′)

Proof: We proceed by induction on the structure of rtA+[σ 7→x](σ
′). The case rtA+[σ 7→x](σ

′) =

0 is immediate. In case of rtA+[σ 7→x](σ
′) = x, by definition of rtA(·), σ′ = σ and we con-

clude. In case of rtA+[σ 7→x](σ
′) = y 6= x, by definition of rtA(·), A(σ′) = y and σ′ 6= σ.

Then rtA+[σ 7→x](σ
′){rtA(σ)/x} = y and rtA(σ′) = y. Hence we conclude. As regards the

inductive cases we distinguish four cases depending on which rule of rtA+[σ 7→x] has been

applied. We discuss those having R(σ) = {r}, other two being similar.

– If rtA+[σ 7→x](σ
′) = P with P =

∑
α∈r α.Rα with Rα = rtA+[σ 7→x]+[σ′ 7→y](σ

′(α)) and

y 6∈ fv(Rα). By the inductive hypothesis Rα{rtA(σ)/x} = rtA+[σ′ 7→y](σ
′(α)). By

σ′ 6∈ dom(A), y 6∈ fv(rtA(σ)) and y 6∈ fv(Rα{rtA(σ)/x}). Hence y 6∈ fv(rtA+[σ′ 7→y](σ
′(α)))

and, by definition of rt(·), rtA(σ′) =
∑

α∈r α.rtA+[σ′ 7→y](σ
′(α)). We conclude by

the inductive hypothesis.

– If rtA+[σ 7→x](σ
′) = rec y.

∑
α∈r α.Rα with Rα = rtA+[σ 7→x]+[σ′ 7→y](σ

′(α)) and y ∈

fv(Rα). By the inductive hypothesis Rα{rtA(σ)/x} = rtA+[σ′ 7→y](σ
′(α)). By y ∈

fv(Rα), y ∈ fv(Rα{rtA(σ)/x}) and y ∈ fv(rtA+[σ′ 7→y](σ
′(α))). Hence, by definition

of rt(·), rtA(σ′) = rec y.
∑

α∈r α.rtA+[σ′ 7→y](σ
′(α)). We conclude by the inductive

hypothesis. 2

Proposition 5.12
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1. rt(σ) ⇓;

2. if rt(σ)
α

−→ Q then Q = rt(σ(α));

3. if rt(σ)
τ

−→ Q then σ ց r and Q =
∑

α∈r α.rt(σ(α));

4. if σ
α

7−→ σ(α) then rt(σ)
α

=⇒ rt(σ(α)).

Proof: Item 1 is immediate because, by definitions of rtA(σ), contracts names are always

under a prefix α.

Item 2 and item 3 are similar. In case of item 2 we proceed by induction on the

derivation of rt(σ)
α

−→ Q. The base case is when rt(σ) is due to (act). Then rt(σ) = α.P

and P = rt[σ 7→x]σ(α). In this case x 6∈ fv(rt[σ 7→x]σ(α)) therefore rt[σ 7→x]σ(α) = rt(σ(α))

and we conclude. In the inductive case we have two cases.

• The last rule used in the derivation of rt(σ)
α

−→ P ′′ is a (choice). Then rt(σ) = P+

P ′ and, by definition of rt(σ), P +P ′ =
∑

α∈r α.rt[σ 7→x](σ(α)), x 6∈ fv(rt[σ 7→x]σ(α)).

Hence we conclude by the inductive hypothesis P ′′ = rt(σ(α)).

• The last rule used in the derivation of rt(σ)
α

−→ P ′′ is a (rec). Then rt(σ) =

rec x. P
α

−→ P ′ and the premise of (rec) is P{rec x. P/x}
α

−→ P ′. By definition of

rt(·), P =
∑

α∈r α.rt[σ 7→x]σ(α). Thus P{rec x. P/x} = (
∑

α∈r α.rt[σ 7→x]σ(α)){rt(σ)/x}

that is, by Proposition 5.11,
∑

α∈r α.rt(σ(α)). Thus we conclude.

As regards item 4, the hypothesis σ
α

7−→ implies σ ց r and α ∈ r. Then, by definition

of rt(σ), either R(σ) = {r} or | R(σ) |> 1. In the first case, by item 2 and by definition

of rt(·), rt(σ)
α

−→ rt(σ(α)). In the second case, by item 3 and by definition of rt(·),

rt(σ)
τ

−→
α

−→ rt(σ(α)). 2

Lemma 5.4 If σ ≬c σ′ then rt(σ) ≬p rt(σ
′).

Proof: Let

R = {(rt(σ), rt(σ′)) : σ � σ′}.

We show that R is a process compliance relation. We distinguish two cases. If rt(σ) X
µ

−→

then we immediately conclude. If rt(σ)
µ

−→ then we have to prove that (a) rt(σ) X
τ

−→
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implies rt(σ′) ⇓ and (b) rt(σ) ‖ rt(σ′) −→ P ‖Q with (P,Q) ∈ R. By the hypothesis

σ � σ′ we have:

σ′ ց r′ implies σ ց r ⊆ r′ (5.1)

σ
α

7−→ σ(α), σ′ α
7−→ σ′(α) implies σ(α) � σ′(α) (5.2)

As regards (a), by Proposition 5.12 rt(σ′) ⇓.

As regards (b) there are several cases depending on the transition of rt(σ) ‖ rt(σ′).

rt(σ)
τ

−→ Q . By Proposition 5.12, Q =
∑

α∈r α.rt(σ(α)) and σ ց r. By Definition 5.12,
∑

α∈r α.rt(σ(α)) = rt(
∑

α∈r α.σ(α)). Therefore, we are reduced to demonstrate

that (Q, rt(σ′)) ∈ R, that is
∑

α∈r α.σ(α) � σ′. By Proposition 5.6.2, for every

α ∈ r,
∑

α∈r α.σ(α) ց {α} and σ ց r with {α} ⊆ r. By (5.1) and transitivity of

⊆, condition 1 of � is verified. By (5.2), condition 2 of � is also verified. Hence we

conclude
∑

α∈r σ(α) � σ′.

rt(σ′)
τ

−→ Q . By Proposition 5.12, Q =
∑

α∈r α.rt(σ(α)) and σ ց r. By Defi-

nition 5.12,
∑

α∈r α.rt(σ(α)) = rt(
∑

α∈r α.σ(α)). Therefore we are reduced to

demonstrate (rt(σ), Q) ∈ R, that is σ �
∑

α∈r α.σ(α). By definition of ready set
∑

α∈r α.σ′(α) ց r′′ implies σ′ ց r′′. Thus, by (5.1), condition 1 of � is verified.

By (5.2), condition 2 of � is also verified. Hence we conclude σ �
∑

α∈r σ′(α).

rt(σ)
α

−→ P, rt(σ′)
α

−→ Q . By Proposition 5.12, P = rt(σ(α)) and Q = rt(σ′(α)).

Then we are reduced to prove (rt(σ(α)), rt(σ′(α))) ∈ R, that is σ(α) � σ′(α). We

conclude by σ � σ′ and Proposition 5.7. 2

5.4.2 Underestimation

Underestimation is used for assigning proper contracts to service providers. Intuitively a

contract underestimating a process describes a protocol such that it is more difficult, for

clients, to be compliant with. In this section we first define the underestimation in a set

theoretic way and then we give an operational definition – a simulation – for verifying

whenever a contract underestimates the protocol implemented by a processes. Thus we

prove that the operational definition implies the set-theoretic one.



110 5.4. PROCESS ESTIMATIONS

Definition 5.13 (Set-Theoretic Underestimation) We say that σ underestimates Q

if and only if {Q : Q ≬p rt(σ)} ⊆ {Q : Q ≬p P}.

Definition 5.14 (Operational Underestimation) A relation over processes U is an

underestimation relation if PUσ implies

1. either σ ց ∅

2. or the following conditions hold:

(a) if P ց r then σ ց r′ with r′ ⊆ r

(b) if P
α

=⇒ P ′ then σ
α

7−→ σ′ with P ′Uσ′

Let ⊢u be the largest underestimation relation.

A contract σ underestimating a process P describes the protocol implemented by P in

more restricting way for clients. At first we note that a contract with an empty ready

sets underestimates any process. Indeed it means that the server may decide to do not

interact at all. Thus client’s protocols compliant with such a server cannot interact. If

σ does not have empty ready sets the contract must be less deterministic. Indeed, item

1 says that for any ready set of P – corresponding to choices left open to the interacting

party – there is a corresponding external choice on a smaller set of names. Item 2 deals

with transitions. If P
α

=⇒ P ′ we require σ to perform the same action with a successor σ′

that underestimates P ′ (for every P ′). For instance, we may verify that a + b ⊢u a ⊕ b,

and a.c + a.d + b ⊢u a + b. On the other hand, a + b 6⊢u a (because of the item 2.b) and

a 6⊢u a⊕ b because of the item 2.a. Indeed, the process a + b.c terminates interacting with

a but not with a+ b. We notice that, by item 2 we have that traces(P ) ⊆ traces(σ) and

by item 1 it is always possible to approximate with a contract having and empty ready

set. It follows that, until a certain depth n (the one having σ ց ∅), traces of σ include

traces of P .

Proposition 5.13

1. for every P , P ⊢u Ω and P ⊢u 0

2. α ⊢u α.P
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Proposition 5.14 If P ⊢u σ and P
τ

−→ P ′ then P ′ ⊢u σ

Proof: By Proposition 5.9 P
τ

−→ P ′ ց r implies P ց r. Moreover, if P ′ α
=⇒ P ′′ then

P
α

=⇒ P ′′. Therefore we conclude by the hypothesis P ⊢u σ. 2

Lemma 5.5 P ⊢u σ then σ underestimates P .

Proof: We have to show that if P ⊢u σ then Q ≬p rt(σ) implies Q ≬p P (that is {Q :

Q ≬p rt(σ)} ⊆ {Q : Q ≬p P}). This is equivalent to show that

R = {(Q,P ) : P ⊢u σ, Q ≬p rt(σ)}

is a compliance relation. By the hypothesis P ⊢u σ we have two cases. If σ ց ∅ then

Q ≬p rt(σ) implies Q Y
α

=⇒ and we conclude. Otherwise we have:

P ց r implies σ ց r′ with r′ ⊆ r (5.3)

P
α

=⇒ P ′ implies σ
α

7−→ σ′ with P ′ ⊢u σ′ (5.4)

We distinguish two cases (a) Q X
µ

−→ and (b) Q
µ

−→. In case (a) we conclude. In case (b)

we must show (b1) Q
α

−→ and Q X
τ

−→ implies P ⇓, and (b2) Q ‖P −→ Q′ ‖P ′ implies

(Q′, P ′) ∈ R.

As regards (b1), let assume P 6⇓. Then P ց ∅ and, by (5.3) σ ց ∅. By definition

of rt(σ), either rt(σ) = 0 or rt(σ) = τ.0. Hence, since we have Q
α

−→, we conclude

Q 6≬c rt(σ) which is absurd. Then P converges.

As regards (b2), we distinguish three subcases:

Q
τ

−→ Q′ By Q ≬p rt(σ) we have Q′ ≬p rt(σ). Thus we conclude (P,Q′) ∈ R.

P
τ

−→ P ′ By Proposition 5.14 we have P ′ ⊢u σ. Thus we conclude (P ′, Q) ∈ R.

Q
α

−→ Q′, P
α

−→ P ′ By (5.4) we have that σ
α

7−→ σ(α) with P ′ ⊢u σ(α). By Proposi-

tion 5.12, rt(σ)
α

=⇒ rt(σ(α)), and, by Proposition 5.10, Q′ ≬p rt(σ(α)). Thus we

conclude (Q′, P ′) ∈ R. 2

The following example show how a non-regular process can be underestimated.

Example: Let P = rec x. (a.x | b) and σ = rec x. a.x ⊕ b.x then P ⊢u σ.
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Proof: In this example we reason up to a structural congruence ≡ in order to rearrange

the order of parallel composed processes and to abstract away from the terminated process

0. We define ≡ as the least congruence relation satisfying the usual axioms P | Q ≡ Q | P ,

P | (Q | R) ≡ (P | Q) | R, and P | 0 ≡ P . Let

R = {(P, σ), (a.P, σ), (P |
∏

1..n b, σ)}

We define R+ as the smallest relation containing R that is closed under process equivalence

that is: if (P, σ) ∈ R+ and P ≡ Q then (Q,σ) ∈ R+. We demonstrate that R+ is an

underestimation relation. At first we note that σ has two ready sets {a}, {b} and that

σ
a

7−→ σ, σ
b

7−→ σ. Then we verify the pairs.

• In case of (P, σ) we have P ց {a, b} thus satisfying item 1 of Definition 5.14. As

regards transitions, either P
b

=⇒ a.P , σ
b

7−→ σ with (a.P, σ) ∈ R+, or P
a

=⇒ P | b,

σ
a

7−→ σ with (P | b, σ) ∈ R+. Then also item 2 of Definition 5.14 is verified. We

note that the same holds for pairs (Q,σ) with Q ≡ P . Indeed ≡ preserve process

transitions and ready sets.

• In case of (a.P, σ) we have P ց {a}. This satisfies item 1 of Definition 5.14. More-

over, a.P
a

=⇒ P , σ
a

7−→ σ and (P, σ) ∈ R+. This satisfies item 2 of Definition 5.14.

Similarly for (Q,σ) with Q ≡ a.P ).

• In case of (P |
∏

1..n b, σ) we have P |
∏

1..n b ց {a, b} thus satisfying item 1

of Definition 5.14. As regard as item 2 of Definition 5.14 we have two cases. If

P |
∏

1..n b
b

=⇒ P ′ then σ
b

7−→ σ and it is easy to see that (P ′, σ) ∈ R+. If

P |
∏

1..n b
a

=⇒ P |
∏

1..n+1 b then σ
b

7−→ σ and and (P |
∏

1..n+1 b, σ) ∈ R. Thus we

conclude. Similarly for (Q,σ) with Q ≡ P |
∏

1..n b). 2

5.4.3 Overestimation

Overestimation is used for giving proper contracts to protocols implemented by clients.

Then a contract overestimting describes a protocol requiring more in terms of server

interaction capabilities. As for the underestimation, in this section we first define the

overestimation in a set-theoretic way and then we give an operational definition. Finally

we show the correspondence between the two definitions.
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Definition 5.15 (Set-theoretic Overestimation) We say that σ overestimates P if

and only if {Q : rt(σ) ≬p Q} ⊆ {Q : P ≬p Q}.

Definition 5.16 (Operational Overestimation) A relation O is an overestimation re-

lation if POσ implies:

1. if P ց r 6= ∅ then σ ց r′ 6= ∅ with r′ ⊆ r

2. if P
α

=⇒ P ′ then σ
α

7−→ σ′ with P ′Oσ′.

Let ⊣o be the largest overestimation relation.

A contract σ overestimating a client protocol describes the process in more way that it

is more difficult for servers to be compliant. Item 1 says that for any ready set of P –

corresponding to open choices for the server – there is smaller choice on the contract. We

note that, for empty ready sets of P , we do not need to find the empty ready set also in

σ. Indeed, if the process decides to close the protocol, every contract is an overestimation.

Item 2 deals with transitions. If P
α

=⇒ P ′ we require σ
α

7−→ σ′ with σ′ that overestimates

P ′ (for every P ′). For instance, we may verify that a+b ⊣o a⊕b, and a+b ⊣o a.c+b.d. On

the other hand, we can also check that a | b 6⊢u a + b + c (because of the item 1) a | b 6⊢u a

(because of the item 2). Indeed, the process c is compliant with a + b + c but not with

a | b. Similarly a + b.c is compliant with a but not with a | b.

The following propositions hold.

Proposition 5.15 1. for every σ, rec x. τ.x ⊣o σ and 0 ⊣o σ

2. P ⊣o Ω implies P Y
α

=⇒

3. P ⊣o 0 implies P Y
α

=⇒

4. α.P ⊣o α implies P Y
α

=⇒

Proposition 5.16 If P ⊣o σ and P
τ

−→ P ′ then P ′ ⊣o σ

Proof: By Proposition 5.9 P
τ

−→ P ′ ց r implies P ց r. Moreover, if P ′ α
=⇒ P ′′ then

P
α

=⇒ P ′′. Therefore we conclude by the hypothesis P ⊣o σ. 2

Lemma 5.6 If P ⊣o σ then σ overestimates P
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Proof: We have to show that if P ⊣o σ then rt(σ) ≬p Q implies P ≬p Q (that is {Q :

rt(σ) ≬p Q} ⊆ {Q : P ≬p Q}). This is equivalent to demonstrate that

R = {(P,Q) : P ⊣o σ, rt(σ) ≬p Q}

is compliance relation. By the hypothesis P ⊣o σ we have

P ց r 6= ∅ implies σ ց r′ 6= ∅ with r′ ⊆ r (5.5)

P
α

=⇒ P ′ implies σ
α

7−→ σ′ with P ′ ⊣o σ′ (5.6)

We have two cases: (a) P X
µ

−→ and (b) P
µ

−→ Case (a) is immediate. In case (b) we must

show (b1) P
α

−→ and P X
τ

−→ implies Q ⇓, and (b2) Q ‖P −→ Q′ ‖P ′ implies (Q′, P ′) ∈ R.

As regards (b1) let assume Q 6⇓. By rt(σ) ≬p Q we obtain rt(σ) Y
α

=⇒ and, by (5.6),

P Y
α

=⇒. This contradicts the hypothesis P
α

−→. Hence Q ⇓.

As regards (b2) we distinguish several subcases:

Q
τ

−→ Q′ By the hypothesis rt(σ) ≬p Q we have rt(σ) ≬p Q′. Thus and we conclude

(P,Q′) ∈ R.

P
τ

−→ P ′ By Proposition 5.16 we have P ′ ⊣o σ. Thus we conclude (P ′, Q) ∈ R.

P
α

−→ P ′, Q
α

−→ Q′ By (5.6), we have σ
α

7−→ σ(α) with P ′ ⊣o σ(α). By Proposition 5.12,

rt(σ)
α

=⇒ rt(σ(α)), and, by Proposition 5.10, Q′ ≬p rt(σ(α)). Thus we conclude

(Q′, P ′) ∈ R. 2

The following theorem relates contract and process compliance. It states that if the

contracts approximating the client and of the server processes are compliant then provided

process also comply.

Theorem 5.1 If P ⊣o σ1, σ1 ≬c σ2, and Q ⊢u σ2 then P ≬p Q.

Proof: Let A = {Q′ : rt(σ1) ≬p Q′} and B = {P ′ : P ′ ≬p rt(σ2)}. By P ⊣o σ1 and

Lemma 5.6 we have

A ⊆ {Q′ : P ≬p Q′} (5.7)
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By Proposition 5.4 σ1 ≬c σ2 implies rt(σ1) ≬c rt(σ2). Thus rt(σ2) ∈ A and, by (5.7),

P ≬p tr(σ2) and P ∈ B. By σ2 ⊢u Q and Lemma 5.5

B ⊆ {P ′ : P ′ ≬p Q} (5.8)

By (5.8), P ∈ B implies P ∈ {P ′ : P ′ ≬p Q}. Hence we conclude P ≬p Q. 2

5.5 Regular Processes

Definition 5.17 Regular processes are – ccs – processes without restriction and parallel

composition.

P ::= 0 | µ.P | P + P | rec x. P | x

We now show how to extrapolate a contract out of a regular process. The function we use

is the one presented in [NH87] and we demonstrate that it is an overestimation and an

underestimation of the process’s protocol. Hence, it can be used for providing both server

and client contracts. It mainly leaves the language unchanged but it removes internal τ

actions introducing the proper internal choices. In particular we obtain internal choices

whenever we have a choice with τ actions. If the choice is among processes guarded by

prefixes α, only the external choice is used.

Definition 5.18 tr is a function from regular processes to contracts defined by structural

induction as follows:

tr(0) = 0

tr(τ.P ) = tr(P )

tr(α.P ) = α.tr(P )

tr(P + Q) =






tr(P ) + tr(Q) if P X
τ

−→ andQ X
τ

−→

(tr(P ) + tr(Q)) ⊕
⊕

P
τ

−→ P ′

Q
τ

−→ P ′

tr(P ′) otherwise

tr(rec x. P ) = rec x. tr(P )

tr(x) = x

For instance we may verify tr(τ.a + τ.b) = (a + b)⊕ (a⊕ b), tr(τ.a + b) = (a + b)⊕ a, and

tr(rec x. τ.a.x + rec y. b.y) = (rec x. a.x + rec y. b.y) ⊕ rec x. a.x. As regard as divergent

processes, tr(rec x. τ.x) = Ω, and tr(rec x. τ.x + a) = rec x. x + a.
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Proposition 5.17 If P ⇓ then tr(P ) ⇓.

Proof: The proof is by induction on the derivations of P ⇓. The base cases are for P = 0

and P = α.P ′. By definition of tr(·), tr(0) = 0 and tr(α.P ′) = α.tr(P ′). Hence we

conclude by 0 ⇓ and α.tr(P ′) ⇓. The inductive cases are:

P = τ.P ′ By definition of tr(·), tr(τ.P ′) = tr(P ′) and, by the inductive hypothesis,

tr(P ′) ⇓. Hence we conclude.

P = P ′ + P ′′ We distinguish two cases. If P ′
X
τ

−→ and P ′′
X
τ

−→ then tr(P ′+P ′′) = tr(P ′)+

tr(P ′′) and we conclude by the inductive hypothesis. Otherwise tr(P ′ + P ′′) =

(tr(P ′)+tr(P ′′))+⊕
⊕

P ′
τ

−→Q,P ′′
τ

−→Q
tr(Q). By the hypothesis P ′+P ′′ ⇓ it is easy

to see that P ′ ⇓ and P ′′ ⇓. This implies Q ⇓ for every Q. Thus we conclude by the

inductive hypothesis.

P = rec x. P ′ By the hypothesis P ⇓, we have P ′{P/x} ⇓ and, by the inductive hy-

pothesis, tr(P ′{P/x}) ⇓. Since tr(P ) = rec x. tr(P ′), we reduce to demonstrate

tr(P ′){tr(P )/x} ⇓. We conclude by tr(P ′){tr(P )/x} = tr(P ′{P/x}) and by the

inductive hypothesis. 2

Proposition 5.18 If P ց r then tr(P ) ց r.

Proof: The proof is by induction on the derivations of P ց r. In case of divergence

we conclude by Proposition 5.17. The base cases are for P = 0 and P = α.P ′. Since

tr(0) = 0 and tr(α.P ′) = α.tr(P ′) we conclude by definition of ready set. The inductive

cases are:

P = τ.P ′ By the definition of ready set of processes τ.P ′ ց r implies P ′ ց r. Since

tr(τ.P ′) = tr(P ′), by the inductive hypothesis we conclude tr(P ′) ց r.

P = P ′ + P ′′ We distinguish two cases. If P ′
X
τ

−→ and P ′′
X
τ

−→ then tr(P ′+P ′′) = tr(P ′)+

tr(P ′′) and we conclude by the inductive hypothesis. Otherwise tr(P ′ + P ′′) =

(tr(P ′) + tr(P ′′)) ⊕
⊕

P ′
τ

−→Q,P ′′
τ

−→Q
tr(Q). By definition of ready set of processes

P ′ +P ′′ ց r implies either (1) P ′ τ
−→ Q′ ց r or (2) P ′′ τ

−→ Q′ ց r or (3) P ′ ց r′,

Q′ ց r′′ with r = r′ ∪ r′′. In all the cases we conclude by the inductive hypothesis

and by definition of ready set of contracts.
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P = rec x. P ′ then by the hypothesis P ց r we have P ′{P/x} ց r. Since tr(P ) =

rec x. tr(P ′), we reduce to demonstrate tr(P ′){tr(P )/x} ց r. We conclude by

tr(P ′){tr(P )/x} = tr(P ′{P/x}) and by the inductive hypothesis. 2

The following Proposition is not immediate by the definition of
α

7−→ because the tran-

sition relation is defined by induction on the structure.

Proposition 5.19 Let σ = rec x. σ1. If σ1{σ/x}
α

7−→ σ2 then σ
α

7−→ σ2.

Proof: The Proposition follows by induction on the structure of σ1. 2

Proposition 5.20 If P
α

=⇒ P ′ then tr(P )
α

7−→
⊕

i∈I tr(Qi) with Qj = P ′ for some

j ∈ I.

Proof: The proof is by induction on the derivations of P
α

=⇒ P ′. The base case is

P = α.P ′. Then tr(α.P ′) = α.tr(P ′) and we conclude. The inductive case are:

P = τ.Q By P
α

=⇒ P ′ we have Q
α

=⇒ P ′. Since tr(P ) = tr(Q), we conclude by the

inductive hypothesis.

P = Q′ + Q′′ We distinguish two cases: (a) Q′
X
τ

−→, Q′′
X
τ

−→ and (b) either Q′ τ
−→ or

Q′′ τ
−→.

In case (a), tr(Q′ + Q′′) = tr(Q′) + tr(Q′′). By Q′ + Q′′ α
−→ P ′ we obtain either:

(a1) Q′ α
−→ P ′ or (a2) Q′′ α

−→ P ′. We discuss (a1), (a2) is similar. If tr(Q′′) X
α

7−→

then tr(Q′ + Q′′)
α

7−→
⊕

i∈I tr(Ri) and we conclude. If tr(Q′′)
α

7−→ σ′ then tr(Q′ +

Q′′)
α

7−→
⊕

i∈I tr(Ri) ⊕ σ′ and we conclude.

In case (b) tr(Q′+Q′′) = (tr(Q′)+tr(Q′′))⊕
⊕

Q′
τ

−→ R

Q′′
τ

−→ R

tr(R). We distinguish four

subcases: (b1) Q′ α
−→ P ′, (b2) Q′ τ

−→
α

=⇒ P ′, (b3) Q′′ α
−→ P ′, (b4) Q′′ τ

−→
α

−→ P ′.

Case (b1) and (b3) are similar to (a1) and (a2). We discuss (b2), (b4) is similar.

If tr(Q′′) X
α

7−→ then, by the inductive hypothesis, tr(Q′)
α

7−→
⊕

i∈I tr(Ri) with

Rj = P ′. Then tr(Q′ + Q′′)
α

7−→
⊕

i∈I tr(Ri) ⊕
⊕

i∈I tr(Ri) and we conclude. If

tr(Q′′) X
α

7−→ σ then tr(Q′ + Q′′)
α

7−→
⊕

i∈I tr(Ri) ⊕ σ and we conclude.
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P = rec x.Q By the inductive hypothesis, tr(Q{P/x})
α

7−→
⊕

i∈I tr(Qi) with Qj = P ′

for some j ∈ I. By tr(Q{P/x}) = tr(Q){tr(P )/x} and by Proposition 5.19, we

have tr(P ) = rec x. tr(Q)
α

7−→
⊕

i∈I tr(Q
′). Thus we conclude. 2

Lemma 5.7 (Soundness) P ⊢u tr(P ) and tr(P ) ⊣o P

Proof: As regard as P ⊢u tr(R) let

R = {(P, tr(P )) : P is a regular process}

and let R+ be the least relation containing R and closed under the following operation:

• if (P, tr(P )) ∈ R+ then (P, tr(P ) ⊕ σ′) ∈ R+

We show that R+ is an underestimation relation and an overestimation relation. We

distinguish two cases:

(P, tr(P )) By Proposition 5.18, condition 2.a of Definition 5.14 and condition 1 of Defini-

tion 5.16 are verified. By Proposition 5.20 if P
α

=⇒ P ′ then either tr(P )
α

7−→ tr(P ′)

or tr(P )
α

7−→ tr(P ′) ⊕ σ. We conclude by (P ′, tr(P ′)) and (P ′, tr(P ′) ⊕ σ).

(P, tr(P ) ⊕ σ) By Proposition 5.18, condition 2.a of Definition 5.14 and condition 1 of

Definition 5.16 are verified. By Proposition 5.20, if P
α

=⇒ P ′ then either tr(P ) ⊕

σ
α

7−→ tr(P ′) or tr(P ) ⊕ σ
α

7−→ tr(P ′) ⊕ σ. We conclude by (P ′, tr(P ′)) and

(P ′, tr(P ′) ⊕ σ). 2
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Chapter 6
Conclusions

In this thesis we have started an investigation aimed at the formal definition of a data

contract language for describing the data format of messages exchanged between Web

services and a simple behavioral contract language suitable for describing interactions of

clients with Web services.

Regarding the description of Web services interfaces with the schema language, it is

remarkable that wsdl 1.1 (already published as a w3c Note) does not consider service

references as first class values, that is natural in a distributed setting. This lack of expres-

sivity has been at least partly amended in wsdl 2.0 that, at the time of this writing, is

in a Proposed Recommendation status. Still, we note significant differences between our

approach and the way “Web services as values” are handled in wsdl 2.0. For example the

client receiving a service reference must eventually compare the schema of its wsdl with

some local schema before using it or forward it to a third party. While this comparison,

called subschema relation in our schema language, is fundamental to obtain the needed

flexibility, it has been overlooked in wsdl 2.0. Another difference is in the meaning of

service references. In wsdl 2.0, on the other hand, it is the whole Web service, not a

specific operation, that is communicated, and it is up to the receiver to invoke the de-

sired operation(s). In our schema language we have a finer granularity that allow us to

communicate also references to remote operations.

Few remarks about xml-schema are in order. First of all there is a large overlapping

between xml-schema and the our schema language, which has been formalized in Chap-

ter 3 Section 3.3. Apart from references, the other major departure from xml schema is
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the support for nondeterministic labeled schemas. These schemas make the computational

complexity of the subschema relation exponential, but they are important for the static se-

mantics of programming language. For instance in order to verify the exhaustiveness of the

pattern-matching statement in XDuce, CDuce, and PiDuce non-deterministic schemas

are used. Noticeably, the constraint of labelled-determinedness on channel schemas guar-

antees a polynomial cost for the subschema relation (and for the pattern matching) at

runtime.

The schema language is not adequate for describing conversation protocols. Thus,

we presented a formal contract language suitable for describing interactions of clients

with Web services. We have defined a precise notion of compatibility between services,

called subcontract relation, so that equivalent services can be safely replaced with each

other. This notion of compatibility is immediately applicable in any query-based system

for service discovery, as well as for verifying that a service implementation respects its

interface. To the best of our knowledge, this relation is original and it does not coincide

with either must, or may, or testing preorders. Based on the subcontract relation, we have

provided a formal notion of compliance, such that clients that are verified to be compliant

with a contract are guaranteed to successfully complete the interaction with any service

that exports that contract.

We leave to future works the design of more concrete algorithms for querying. A

straightforward implementation of our compliance relation in repositories will inspect any

service contract verifying the subcontract relation with the contract of the client. This

will be quite slow and several optimizations are possible. For instance the repository

can preorder contracts returning more than one contract with a single check. Since our

subcontract relation is not transitive it is not suitable for such an ordering. Probably the

best candidate for this purpose is the transitive closure of � [CGP07].

In this thesis, normal forms and dual contracts are simple functions applied to the

contracts. Their definition rely on the definitions of ready sets and on the transition

relation. Alternatively, it is possible to define the normed and the dual contracts through

a set of axioms. In particular, in [Hen88] the normal form of finite contracts is obtained

through the axioms in Chapter 4 Section 4.3.3. It would be interesting to extend Table 4.2

with axioms for dealing with recursive contracts and then verifying that the new axioms

allow the tranformation of a contract to its normal form.
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A limitation of our contract language is that channels cannot be communicated. The

passage from ccs-like formalism to a π-calculus formalism looks crucial for more than

one reason. First it will allow us to take into account and generalize the forthcoming

versions of wsdl. Also, it will more faithfully mimic wscl protocols which discriminate

on the content of messages. Besides, the type of these parameters could also be used to

define contract isomorphisms to improve service discovery. In particular we will study

provable isomorphisms, that is, isomorphisms for which it is possible to exhibit a process

that “converts” the two contracts: for instance, imagine that we search for a service that

implements the contract In(Int).In(Int), that is, a service that sequentially waits twice

for an integer on the port In; the query may return a reference to a service with a contract

isomorphic to it, say, In(Int×Int) together with a process that “proves” that these two

contracts are isomorphic, that is, in the specific case, a process that buffers the two inputs

and sends the pair of them on In: by composing this process with the original client

(written for the first contract) one obtains a client complying with the discovered service.

On the linguistic side we would like to explore new process constructions that could

take into account information available with contracts. For instance imagine a client

that wants to use a service exporting the contract (a + b) ⊕ a; in the process language,

client cannot specify that it wants to connect with b if available, and on a otherwise. We

want also to devise query languages for service discovery, in particular we aim to devise

a simple set-theoretic interpretation of contracts as sets of processes, use it to add union,

intersection, and negation operators for contracts, and subsequently use these as query

primitives.

A final issue brought by higher-order and whose exploration looks promising is that

higher-order channels will allow us to use a continuation passing style (CPS) of program-

ming. It is well-known that CPS can be used for stateless implementation of interactive

web-sessions [Que03], thus we plan to transpose such a technique to contracts and resort

to CPS to describe stateful interactions of services.
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