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Introduction

This thesis treats the global existence of solutions of the system of nonlin-
ear elasticity, obtained as a perturbation of the linear system of crystal acous-
tics for tetragonal crystals. The system of crystal acoustics is a second-order
hyperbolic system, with constant coefficients, which describes the propaga-
tion of waves in a crystal. Crystals are homogeneous, elastic and anisotropic
solids, with a regular structure, characterized by a basic element: the unit
cell. By filling repetition, the entire volume occupied by the crystal can be
filled. It is well known from crystallography that there are seven crystal
classes. Each class is characterized by the invariance of the unit cell under
the action of some prescribed subgroup of @(3). In this thesis we will con-
sider crystals belonging to the tetragonal crystal class (cf. [M] and the first
chapter).

In the linear case we will take into account the Cauchy problem
3

Ofui(t,r) = > cijude Onuy(t,x) =123, (0.0.1)
ik =1

u;i(0,x) = fi(x) Oy (0, ) = g;i(x) i=1,2,3, (0.0.2)
where (t,2) € R x R3, w;(t, z) are the components of the displacement vec-
tor, fi, g; belong to C5°(R?) and cijr are the stiffness constants. We will
assume some conditions on ¢;j; such that system (0.0.1) will be hyperbolic.
Moreover, the symmetries of the tetragonal class are such there are at most

six stiffness constants different from zero.

We can obtain the previous system from the equations

Ofu;(t, x) = divey(e(t,z))  i=1,2,3, (0.0.3)

v
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if we apply Hooke’s law and the relation between the strain tensor and the
derivatives of the displacement vector (cf. [M], [Du] and chapter 1). Here
we denote the strain and stress tensors by € and o respectively. Moreover,
we recall that Hooke’s law is the following linear relation between stress and

strain
3

05 = Z Cz’jklgkl' (004)

k=1
Therefore, if we assume the following nonlinear relation between stress and

strain, instead of Hooke’s law,

3
0ij(€) = Z cijuer + Hij(e), (0.0.5)

k=1

H:RxR >R, Hye(t,z)=0(e][5), No>rk>4, (0.0.6)

we can state the nonlinear problem of crystal acoustics. In particular, we
will take into account the Cauchy problem formed by system (0.0.3) (where
0, is in the form (0.0.5)), and the initial data (0.0.2).

Thus, the first part of this thesis will be devoted to obtaining long time de-
cay estimates of the solutions of the linear Cauchy problem. These estimates
will have a key role in the second part of the thesis, where we will prove the

global existence of solutions of the nonlinear problem.

A few words on the history of these problems are in order. The study of the
propagation of elastic waves in a homogeneous solid began at the end of the
XIXth century, with the works of Poisson and Stokes. Duff was the first who
studied the same problem in the case of a homogeneous, but not isotropic,
solid. He gave a detailed and qualitative description of the solution of the
problem and he also studied the geometry of the wave surface associated with
the problem (cf. [Du]).

Obviously, the first equation for which decay properties were studied in a
systematic way was the wave equation (cf. e.g. [K2], [T1] and [Ho]). In
the three-dimensional case, the results obtained give a decay of type ct™!

1/2

when t tends to infinity, whereas a decay of order ct~/¢ is typical for the
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wave equation in two dimensions. Similar results have been obtained for a
number of related hyperbolic equations, such as the Klein-Gordon equation,
or, sometimes, for more general classes of constant-coefficient hyperbolic op-
erator or system (cf. e.g. [Su], [Sr], [Se], [G-L-Z]). All equations or systems
mentioned so far have in common the characteristic of constant multiplicity.
The case of crystal acoustics is different because the characteristic surface
has singularities and thus the system has changing multiplicity. In this case,
the study of the decays of solutions of Maxwell’s system for optically biax-
ial crystals (cf. [L5] and [L-Z]), of the system of crystal acoustics for cubic
crystals (cf. [L1]), of the system of crystal acoustics for exagonal crystals
and of the system of thermo-elasticity in cubic crystals in two-dimension (cf.
[R-W] and [W]) have been studied. Therefore, the study of the system of
crystal acoustics for tetragonal crystal seems a natural continuation, in this
direction.

As mentioned above, the study of the decay estimates of the solutions of the
linear system is necessary to prove the existence of the global solution of the
nonlinear system which is a perturbation of the linear one. In the cases of
the wave equation and other evolution equations, there are many well known
results (cf. e.g. [J1], [K1], [K-S], [K1], [Sh], [Sil] and [Si2]). In particular, in
this thesis, the general line of argument will be close to the one from Klainer-
man and Ponce (cf. [K-P]). In this paper it is proved the global existence of
solutions of nonlinear evolution equations, which are perturbations of linear
ones, provided that the initial data are sufficiently small.

Finally, we recall that the nonlinear problem of elasticity has been studied,
with different methods, from a variational point of view (cf. e.g. [E-N-S],
[F-K-R]) and that in the engineering literature there are many results in the

case of certain specific crystals.

Now, we give an overview of this thesis.
In the first chapter of this thesis, we will recall the standard notion of elas-
ticity, that will be useful in the rest of the work, we will state the problem

and we will write down explicitly the solution of the linear problem.
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As mentioned above, the first part of the thesis will be devoted to obtain-
ing the decay estimates of the solutions of the linear Cauchy problem (0.0.1),
(0.0.2). The main difficulties in this study come from the presence of isolated
singularities in the characteristic surface associated to the system. Thus, in
the second chapter of the thesis, we will give a detailed geometrical study
of the wave surface of tetragonal crystals. In particular, we will prove that
there are three different types of singular points: the so called uniplanar,
biplanar and conical points. The uniplanar and conical singular points are
also present on the wave surface of cubic crystals, whereas the biplanar sin-
gular points appear only in the tetragonal case, precisely when the following
relation for the stiffness constants holds: ¢1111 = ¢1212. The name biplanar
comes from the fact that the local second order approximation of the wave
surface in those singular points is the union of two planes (cf. section 2.4).
Moreover, we will prove that, in the case of tetragonal crystals, the singular
points are located in a more general position with respect to the cubic case,
where they are located only on the coordinate axes or on the space diag-
onals. Thus, the expressions which come up in the study of the nature of
the singularities and in the study of the curvatures of the wave surface are
more involved than in the cubic case. Moreover, in those calculations, in the
tetragonal case we have to take into account six different stiffness constants,
while in the cubic case there are only three.

The last part of the second chapter will be devoted to the study of the total
and mean curvatures of the wave surface. This study is necessary because we
want to use theorems about the decay of oscillatory integrals on surfaces in
order to obtain the desired decay estimates. The expressions which appear in
this study are very involved and thus a direct computation would seem very
difficult. Therefore, we will consider only tetragonal crystals which are near
(in some sense which will be clarified in the thesis) the cubic case. Indeed,
we will obtain satisfying results only for small perturbations of the cubic case
(cf. section 2.6).

In the third chapter of the thesis we will prove, with specific conditions on
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the stiffness constants, theorem (3.1), about the decay of the solutions of
the linear Cauchy problem (0.0.1), (0.0.2). In particular, we will obtain a

decay of type ct—1/?

, as in the case of cubic crystals. In order to do this, we
will first give a detailed study of the phase and amplitude functions of the
oscillatory integrals which appear in the solution of the system (cf. section
3.1) and secondly we will reduce the estimates of this integrals to estimates
of oscillatory integrals on the wave surface (cf. section 3.2). Then the prove
follows in a standard way with the study of many sub-cases depending on the
relative position of ¢, x, £ (the time variable, the space variable and the dual
variable respectively) and with the use of well known theorems about the
decay estimates of oscillatory integrals which live on surfaces (cf. sections
3.2 and 3.4). Finally, we will prove, in analogy with the theorem used in
section 3.4, theorem (3.15) about the decay estimate of oscillatory integrals
on surfaces with singular biplanar points. In particular, we will obtain a
decay of type c|¢|7*/?1og(1 + |€]).

In the fourth chapter we will treat the nonlinear problem. The main theorem

is the following.

Theorem 0.1. Assume that

0ij(€) = > cijrstrs + Higle),  Hij(e) = O(|[el|%,)-

k,s=1

Then we can find s € N and § > 0 such that if

Vo fll2s +[lgll2s <6
IV fll1079,s + 19]|1079,s <6

then there is a solution u € C([0, 00[, H**1(R3)) N C*([0, oo[, H*(R?)) of the
Chauchy’s problem

2,
%(t,x) = divoy;(c(t, ) i=1,2,3

Oy (0, ) = gi(x) i=1,2,3
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The prove is standard but quite technical and is close to the one from
Klainerman and Ponce (cf. [K-P]). At first, we will obtain energy estimates
(cf. sections 4.2 and 4.3), then we will transform the initial system into a
first-order, symmetric, hyperbolic and quasi-linear system. Thus, for this
kind of system we can apply well know theorems about the existence of local
solutions. Then, combining the energy estimates and the decay estimates
of the linear system, we will obtain an a priori estimate of the H*-norm of
the solution (cf. section 4.4). Finally, we will combine, using a boot-strap
argument, the a priori estimate and the result of the existence of the local

solution to conclude the prove.



Chapter 1
Tetragonal Crystal Acoustic

In this chapter we will consider the equations which describe the propa-
gation of waves in tetragonal crystals. In order to do this we will recall the
definition of tetragonal crystals, we will describe the physical properties of
crystals and we will introduce some kinematic and dynamical entities which
have a key role in the construction of the equations. Finally, we will write
explicitly the Cauchy Problem we will take into account and we will write

down its solution as an oscillatory integral.

1.1 Review of crystal structure

In this thesis we will treat a specific elastic material, the crystal, and
we will now describe exactly the kind of material we have in mind. We say
that some matter is in solid state if it is characterized by structural rigidity
and resistance to changes of shape or volume. In many cases such solids are
aggregates of small volumes which are identical in their structure. In these
cases we call them crystal solids. We can take as a model a regular infinite
and periodic lattice of points in R3. This model is a good approximation of
a crystal where the ions (or molecules), which form the solid, may be con-
sidered to be located, at their mean positions, in the points which constitute

the space lattice. As a result of the periodicity in the crystal structure, there
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exists an elementary and irreducible volume which characterizes any given
crystal: by space filling repetition, the entire volume occupied by the crystal
can be filled. We call this basic element of the structure the unit cell. Us-
ing operations such as translation, rotation, and inversion, the unit cell of a
crystal may be moved in such a way that it is brought into self-coincidence.
Points representing molecular sites are exactly in the same position with re-
spect to the molecular sites when the cell was in the original position. This
feature of the unit cell gives the crystal its particular symmetry.

We require two other conditions: homogeneity and anisotropy. We say that
a solid is homogeneous if its physical properties are invariant under transla-
tions. We say that a solid is anisotropic if its properties change with direction.
It’s easy to understand that the anisotropic quality of a crystal has its origin
in the symmetry properties of the unit cell.

The last hypothesis on the solid is elasticity. We say that a solid is elastic if
it returns to its original shape after the stress that causes some deformation
has been removed.

Finally, in this work we will discuss waves whose wavelengths are very large

compared with the intermolecular spacings or the dimension of the unit cell.

We now study with some details the structure and symmetry properties of

some crystals.

Definition 1.1. We call three-dimensional lattice a set of points p € R?
such that p = nya+nob+ngc wheren; € Z, 1 =1,2,3 and a, b, ¢ are linearly
independent vectors of R3, called primitive vectors.

We call unit cell the set of points of the lattice such that n; € {0,1} for all
1=1,2,3.

We want to classify the three-dimensional lattices with respect to the

symmetries of the unit cell. We have the following definition.

Definition 1.2. We denote by Q(3) the group of all isometries that leave the

origin fixed, or correspondingly, the group of orthogonal matrices. We call
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point group a subgroup of O(3).
We call crystal system or crystal lattice the set of three-dimensional lattices

which are invariant under the action of some prescribed point groups.

It’s well know in crystallography that there are seven classes of crystal
systems. In table (1.1) we enumerate the seven classes of crystal systems with
their prescribed symmetries and their corresponding unit cells. To describe
the unit cell we use the length of the primitive vectors and the measures
of the angles between them, with the following notation: (a,b,c,«,5,7v) €
R3 x [0, w]> where a, b, ¢ are the lengths of the three primitive vectors and

a, (3, v are the measures of angles between them.

crystal system | prescribed symmetries unit cell

Triclinic none (a,b,c,,3,7)
Monoclinic | 1 2-fold axis of rotation | (a,b,c,m/2,7/2,7)
Orthorhombic | 3 2-fold axis of rotation | (a,b,c,m/2,m/2,7/2)
Tetragonal | 1 4-fold axis of rotation | (a,a,c,m/2,7/2,7/2)
Trigonal 1 3-fold axis of rotation (a,a,a,0,0,x)
Hexagonal | 1 6-fold axis of rotation | (a,a,c,m/3,m/2,7/2)

Cubic 4 3-fold axis of rotation | (a,a,a,m/2,m/2,7/2)

Table 1.1: Crystal systems with prescribed symmetries and unit cell

Remark 1.1. We can associate with each crystal class the subgroups of the
isometries of R? (we call them space groups) which bring the crystal structure
to self-coincidence. However, we know that our primary interest is in the
point group symmetry of the crystal structure, since the tensors representing
macroscopic properties have to be invariant under the symmetry elements of

the point group.

As described above, we can model a crystal solid with a lattice with

molecules located in the points which form the space lattice, that is in the
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vertices of the unit cells which fill the crystal. It is possible for the molecules
of a crystal to be located not only in the vertices of the unit cells, but also
in the center of one or all faces or in the barycentre of the cells.

We distinguish the following four possible distributions of lattice points in

the unit cell:
(P) Primitive centering: lattice points on the cell vertices only.
(I) Body centered: one additional lattice point at the center of the cell.

(F) Face centered: one additional lattice point at the center of each face of
the cell.

(C) Single face centered: one additional lattice point at the center of one

of the cell faces and another one in the opposite face.

If we combine the seven crystal systems with the four possible distributions
of points in the unit cell we find 14 different classes of lattices: the so called
Bravais lattices (named after French physicist Auguste Bravais, 1811-1863).
We observe that there are in total 42 combinations of different classes of
lattices, but it can be shown that several of these are in fact equivalent
to each other. For example the monoclinic I lattice can be described by a
monoclinic C lattice by a different choice of primitive vectors.

Our main interest is the study of point groups associated with the cubic and

the tetragonal crystal classes.

Definition 1.3. Using the Schonflies notation for the point groups (for de-
tails see [Co|), we say that a three-dimensional lattice belongs to the cubic

class if it is invariant under the action of the following five subgroups of O(3):
T, T, O, Ty Op. (1.1.1)

We say that a three-dimensional lattice belongs to the tetragonal class if it is

wvariant under the action of the following seven point groups:

Cy, Sy, Cupy Dy, Cay, Dag, Dy (1.1.2)
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2
f
/v
a
Figure 1.1: The cubic P lattice and the tetragonal I lattice unit cells, with

relative primitive vectors.

Remark 1.2. In the Schonflies notation the letters O and 7" indicate that the
group has the symmetry of an octahedron and of a tetrahedron respectively.
The letters C,,, S,, and D,, indicate that the group has an n-fold rotation axis,
an n-fold rotation-reflection axis and an n-fold rotation axis plus a twofold
axis perpendicular to that axis, respectively. The subscript v and A indicate
that the group has the symmetry, in addition to the other symmetries, of
a mirror plane parallel or perpendicular to the axis of rotation. Moreover,
the subscript d indicate that the group has the symmetries of a improper

rotation.

Sometimes in the following, for simplicity, we may use the expression
cubic crystal and tetragonal crystal to denote a crystal in the cubic or the

tetragonal crystal class respectively.

1.2 The strain and stress tensors

To describe the wave propagation in crystals we have to study the me-
chanics of deformation in solids, that is the relationship between changes in

the volume and the shape of solids and the forces which induce them.
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Macroscopic deformation theory ignores the discrete-particle structure of
matter and considers a solid as a continuum. Consequently, a load is most
usefully expressed as force per unit area and it is also convenient to specify
deformation in terms of fractional displacement which, for a continuum, can
be written as partial derivatives.

Here we give the definition and a brief qualitative description of the strain
and stress tensors. We don’t intend to give a comprehensive treatment of
this subject, for more details see [M] and [Ci].

To begin, we consider a body € in R*® and denote by x = (1, 79, z3) the
coordinates of a generic point. We suppose that the body undergoes the

following linear transformation of R?
¢ : R = R3 o(x) =2" =2+ 71+ xz, (1.2.1)

where 7 € R? is a vector which represents the translational displacement of
the body and x € M3 is a 3 x 3 matrix which represents a change in orien-

tation and shape of the body.

Remark 1.3. We suppose, from the very beginning, that the general space
deformation is the same for all the line elements within the body. This im-
plies that the matrix y and the vector 7 do not depend on the space variables
X5

These kind of space deformations are called homogeneous affine space trans-
formations.

If 7 and y are not constant for all line elements within the body, the transfor-
mation is called inhomogeneous. It is not difficult to see that a variation in 7
may be incorporated into the variation in y. However, if we wish to represent
a deformable body, restrictions must be placed on the variation of x(z) with
the space variable x. This means that we must have some conditions on the
regularity of the transformation ¢(x).

We will examine these regularity conditions later on.
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Now suppose that the linear transformation preserves the length, that is
lp(y) —e(x)| =y — |, forallzyekC (1.2.2)

The squared length may now be written in two ways

ly —a* = lo(y) — o(@)* = [(y — 2) + x(y — 2)* =

3
=ly—2P+2> xiyly —@)(y —z) + R
ij=1

where R contains quadratic powers of x;;. So, neglecting I, we obtain

3
> iy — ) (y; — 25) =0,
ij=1
which implies
xi =0 and  xi; = — X
that is x is antisymmetric. It is clear that under hypothesis (1.2.2), € is

subject to a common translation and rotation.

Now let restriction (1.2.2) be lifted and consider

ly' =" P —ly—x* = 2x3; (yi—2i) (g5 —25) = O Hxs0) (i) (y—5). (1.2.3)

This shows that the change in length of a line element is related to the sym-
metric part of matrix y. Thus we can write y = € + w, where & = Symm(y)
and w = SkewSymm(y), and where the symmetric matrix ¢ contains all the
information about the deformation of any line element within a body sub-
jected to the transformation y, while the antisymmetric quantity w specifies

the rigid-body rotation. We give the following definition.

Definition 1.4. Let x € M3 be the matriz associated to a linear trasforma-

tion of R3. We call strain matrix the 3 x 3 symmetric matriz € = Symm(x).

We observe that a matrix is a 2-tensor and so we often call € the strain

tensor.
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We now investigate how the strain tensor changes if we change the basis of
R3. Let e;, 4 =1,2,3 and ¢}, i = 1,2,3 be two bases of R* and A € GL(3)
(here GL(3) is the group of 3 x 3 invertible matrices) the base changing

matrix, then it is a standard result of linear algebra that
g = AcA™?

where ¢’ is the strain tensor related to the deformation in the space with base
{€.};. Now, suppose that A € O(3), that is e; is mapped to €} by a rotation,

then we have the following relation
g = AeAT.

We can rewrite the last equation using the following tensor notation

3
e = Z ay;ax;€ij, (1.2.4)
ij=1
which will be useful in the following of this work (here A = (a;;);j=12,3).

Since ¢ is symmetric we can define its eigenvalues and eigenvectors.

Definition 1.5. We call principal axes of strain and principal strains the

eigenvectors and the eigenvalues of € respectively.

Now we want to give a brief geometrical interpretation of the strain. We
start considering a unit cube of material, whose edges are parallel to the
principal axes of the strain which is acting on the material. Suppose that

e = diag(ey1, €92,€33), T = 0 and w = 0, then () = x 4+ ex. Thus
plei) = e +ey, Vie{l,2,3}.

This means that the diagonal elements of the strain tensor indicate the dis-
placement along the principal axes, and so if € = diag(eq1, €92, £33) then it
represents exactly a dilatation and/or a contraction (according to the signs

of €;;). Consequently if we call V' the volume of the perturbed cube, we have

V =1+Tr(e) + O(?).
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Now suppose as before that the linear space transformation is precisely a
deformation such that ¢;; = 0 for all 75 # 23. Thus the edges of the unit

cube are transformed by

pler) =e1, @(ex) =es +eages,  (es) = eg + eazen.

This means that the (e, e3) face is changed to a rhomb with angles 7/242¢e93.
Nonzero strains €13 and e15 give rise to corresponding deformations of the
(e1,e3) and (e, e2) faces. But this change is also specified by the change in
the lengths of the diagonals from v/2 to v/2(1 & £3). Thus, it is possible to
calculate the strain with respect to the diagonals as principal axes e}, and e,

and we obtain the strain tensor

0 0 0
&J = 0 €23 0 )
0 0 —E93

so that the diagonals of the (eq, e3) face are seen to be the principal axes of
the strain, and the e; axis is the remaining member of the orthogonal triad.
Finally, consider a deformation such that e; # 0 for all 7, €53 # 0 and
€12 = €13 = 0. From the discussion above, the cube is deformed into a rect-
angular parallelepiped with the (eq, e3) face as a base. Thus, a strain tensor
with all nonzero elements transforms a cube into a parallelepiped, and it is
useful to note that the elements of the leading diagonal preserve the rect-
angular faces, while the other elements cause the change into parallelogram

faces.

Remark 1.4. Obviously, the definitions, properties and geometrical mean-
ings described above do not change if x and € depend on the space variable

Zj.

We suppose, for the remainder of this thesis, that the space transforma-

tion ¢ is inhomogeneous, that is x = x(z) and € = ().
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Definition 1.6. Let ¢ be as in (1.2.1), ¢ € C*(R3). We call space displace-

ment the vector field
u: R — R, u(r) = p(x) — .

In dealing with materials assumed to be continuous, we may expect to
obtain a relationship between the strain tensor and space derivative of the dis-
placement. To find it, we consider a line element ds of components dz; which
has length the square root of Zf’zl dz?. After the space transformation the
components of the transformed line element ds’ are dz, = da;i+Zj-:1 Oz uidx

and so we have

3

3 3
(ds')? = Z(dxi + Z O, wid ;) (d; + Z By, usday) =

i=1 j=1 k=1

3
= Z dl‘ldl’j [52] + axjui,j + aibiuj + axzukamjuk]

irj k=1
and
3
ds' —ds = Z dx;dx (0, u; + Op,tj + O, U0y Ui,
irj k=1
If we consider only the first-order term, according to (1.2.3), we can write

the strain tensor in terms of the displacement derivative
1
gij = 5(0u; i + Ouy)- (1.2.5)

Remark 1.5. The elements of the rotational matrix w;; are of course given
by the antisymmetric combination 1/2(0,,u; — 0,u;), but we will not use

this fact in the following.

Remark 1.6. From the assumption ¢ € C? in definition (1.6) it follows
that u € C3. This condition ensures that the transformation does not create
holes or voids in an originally continuous material, and that only one volume
element of the deformed material is assigned to a given volume element of
space. This regularity condition also implies that second derivatives of com-

ponents of rotations and of strain matrices exist. Moreover, relation (1.2.5)
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and the regularity of u give compatibility equations:
O wje = (On,Eij — 3xj€m),

2 _ 92
axixlek - aazla:iwjk’

2 2
aa;kacl €ij — aa:la:k

€ — 62 Eik + 82 Ekl = 0.

T T;T]

In the last equation each suffix may take the values 1,2,3, so we have 81
possible relations. However, symmetries of the suffixes render many of them

trivial, so they can be reduced to six non trivial relations.

Now, suppose that the body € is subjected to an equilibrated system
of external loads and, thereby, held in a state of deformation. We want to
examine the surface forces acting on the body, that is the forces acting on
an imaginary internal surface, that divides the body into two portions, as a
result of the mechanical interaction between both parts of the body at each
side of the surface, or similarly, the forces acting on the surface of a small
volume element due to external loads. According to the Euler-Cauchy stress
principle these forces can be represented by a vector field 7" (z), called the
stress vector, defined at each point x of the body and depending continuously
on the normal unit vector n at imaginary surfaces passing through x. The
state of stress at a point in the body is then defined by all the stress vectors
T associated with all the planes that pass through that point. It’s easy to see
that the stress vector on any plane passing through that point can be obtained
as the linear sum of three stress vectors on three mutually perpendicular
planes. In particular it can be obtained as the sum of three stress vectors on
the coordinate planes. Now, Cauchy’s stress theorem states that there exists

a second-order tensor field o(x), independent from n such that
T'(x) =0-n

where

T = 0;1€1 + 0;9€9 + 0;3€3, = 1, 2, 3
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and where e; are the vectors forming the base of R3.

This implies that the stress vector T, at any point x in a continuum asso-
ciated with a plane with normal vector n, can be expressed as a function of
the stress vectors on the planes perpendicular to the coordinate axes, i.e., in

terms of the components o;; of o.

Definition 1.7. We call stress tensor the 2-tensor o defined by Cauchy’s

stress theorem.

Using the momentum conservation law and the divergence theorem it’s
possible to prove that the stress tensor is a symmetric matrix, i.e. 0;; = 0j;,
for all 4,7 € {1,2,3}. We will not show this standard result here (see e.g.
[M] and [Ci]).

By analogy with the strain tensor, if A = (a;;)ij=123 € O(3) and a base
{ei}i—12 of R? is brought to {¢/};—123 by the transformation associated

with A, then
3

oy, = Z 1Ak O (1.2.6)

ij=1
where ¢’ is the stress tensor in the space with base €.

Again, by analogy with the strain tensor we have the following definitions.

Definition 1.8. We call principal axes of stress and principal stresses the

eigenvectors and eigenvalues of o respectively.

Finally, we will study the relation between stress and strain. It’s obvious
that the application of stress to a deformable body will result in the material
passing into a state of strain. Here we are concerned with the formation
and the propagation of waves of small displacements in anisotropic media.
We therefore adopt the most general linear relation, that is the generalized

Hook’s law. Such relation has the form

3
045 = Z Cijki€kl, (1-2-7)

k=1

where ¢;;i; is a real constant for all 4, j,k,1 = 1,2, 3.
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Definition 1.9. We call elastic stiffness tensor the 4-tensor

C = (Cijkl)i,j,k,lzl,Q,S-

Note that the stiffness tensors has 81 elements. The symmetries of the
stress and strain tensors imply that there are 6 independent choices for the

pairs of suffixes 75 and kl. This implies the following relations
Cijkt = Cjiki = Cijik = Cjilk- (1.2.8)

Another relation involving the strain energy W = 1/20;;64; and the internal
energy of a unit mass of material ®(¢) (for details see [M]) gives us the

following further symmetry:
Cijkl = Cklij- (1.2.9)

Hence, by (1.2.8) and (1.2.9), the stiffness tensor can have, at most, 21
independent elements.

Now it’s useful to write the transformation law for the 4-tensor c;;x;. Suppose
as before that A = (a;;); =123 € O(3) and that a base e; of R? is brought
to e} by the transformation associated to A. Then, using (1.2.4), (1.2.6) and
(1.2.7) we obtain

3 3
/
T = E :amianjaz‘j = E i QnjCijkERI =
i,j=1 ig,k,l=1
3 3
— !/ / /
= AmiGnjCijklQrkQsi€ys = ConnrsSrs
i,j,k,l,r,s:l T,Szl
so that
3
/
Crnrs = § Ay Qg Ak Qs Cijkl - (1210)
i:jka:l

We conclude this section with some useful remarks about notations concern-
ing the stiffness tensor. Indeed, the symmetries of the stiffness tensor allow
us to write it as a 6 X 6 symmetric matrix in the following way: we substitute

the first two indices and the second two indices of the 4-index notation with
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4-index notation

2-index notation

11

22

33
23 or 32
31 or 13
21 or 12

1

[ N R TV \V]

Table 1.2: relation between 4-index and 2-index notations

one index each, using the relations defined in table (1.2). We can use the

same relations to change a 2-index notation into a 1-index notation. Thus,

we can write the stress and strain tensors as six-vectors:

T
e = (51175227533,25237251372612)7

T
o = (011,022,033, 2023, 2013, 2012)

and so we can rewrite the generalized Hook’s law as

o="Ce

provided that o and ¢ are six-vectors, while C' is a 6 X 6 symmetric matrix,

called the elastic stiffness matrix.

1.3 Equations of motion

In this section we will derive the equations of motion for a typical volume

element of a crystal. Then we will write down explicitly the Cauchy problem

in the case of cubic and tetragonal crystal classes.

In the following we will consider the stress and strain tensors and the dis-

placement vector not only depending on the spatial coordinates x; of R3, but

also depending on the time ¢t € R, such that it make sense to consider the

time derivative, and so we will write the equation of motion.
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Consider a typical volume element V' of a homogeneous elastic crystal, bounded
by a surface S. Let p be the density of the solid, F' and o the body force
and the stress tensor acting on the volume element respectively. Let the
acceleration produced be 0%u, thus Euler’s equation of motion is expresses

as

3
/Zaijndeer/ Edvzp/ Pu;dV,  i=1,2,3 (1.3.1)
S5 1% v

where n is the outward normal to S. The regularity of o described in section
(1.2) allows us to use the Divergence Theorem and transform the surface
integral into a volume integral. Thus the expression (1.3.1) may be written
as
/ (div o; + pF; — pdju;) dV =0, i=1,2,3. (1.3.2)
1%

Remark 1.7. Here and in the following, with the notation div ¢; we indicate

. . 3
the divergence of the vector o; = (01, 042, 043), i.e. ijl O, 0ij.

Since V' contains continuous and homogeneous material, equation (1.3.2)
requires

div o; + pF; — pd?u; = 0, i=1,2,3, (1.3.3)

for every volume element, however small, and thus represents the differential

equation of motion.

Remark 1.8. It’s also possible to derive equation (1.3.3) directly considering

the forces acting on the unit volume of the crystal in each direction.

In the following we suppose that there are no body forces acting on the
crystal and that the density is constant equal one. With these assumptions

the equations (1.3.3) are reduced to
div o; = 0%u;  i=1,2,3. (1.3.4)

Now we want to write equations (1.3.4) in terms of the displacement. To do

this we recall the generalized Hook’s law (1.2.7) and the relationship between
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the strain tensor and the displacement derivative (1.2.5): thus we can write

3 3 3

1
Oi5 = Z Cijkl€kl = Z Cijkl§(axluk + axkul) = Z Cijklaxluka (1-3-5)
k=1 kl=1 k=1
where the last equality follows from the symmetries of the stiffness constants.
Now, substituting (1.3.5) in (1.3.4), we obtain a system of linear partial

differential equations of second order
82
S o = Py, i=1,2.3. (1.3.6)
‘T .

It’s clear that the nature of the equations of motion depends on the sym-
metries of the stiffness tensors, which depend on the nature of the solid, i.e.
on the crystal class. Thus, it’s convenient to refer stress and strain to the
symmetry axes of the crystal, and we will henceforth assume that the axes
of reference for the dynamical equations coincide with these axes.

Consider the tetragonal crystal class: it’s invariant under a four-fold rotation
around the zz-axis. Thus the stiffness constant in the equations of motion of
tetragonal crystals must be invariant under the action of the matrix R € O(3)

associated with the four-fold rotation. We can write R as

0 10
R=1-100
0 0

and we impose the invariance of ¢;j; under transformation law (1.2.10). Thus

we obtain the following conditions for the stiffness tensor
Cl4 = C15 = Coq = C25 = C34 = C35 = C36 = C45 = Ca6 = C56 = U, (1.3.7)

Cl1 = C22 C44 = C55 C13 = Ca3 Cig = —Ca6, (1.3.8)

where we used the two-index notation. If we apply all the symmetries of the

tetragonal class we obtain in addition the condition c;6 = 0, so the elastic
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stiffness matrix for the tetragonal crystal has 5 independent constants and it
is

cn iz a3 0
iz e ¢z 0
ci3 3 ¢33 0
0 0 0 cu
0 0 0 0 ey
0 0 0 0 0 -ce

Now we can explicitly write the system of linear elasticity for tetragonal

(1.3.9)

o O O O

0
0
0
0
0

crystals using the stiffness constants of (1.3.9) in (1.3.6). It has the following
form
Ofur = (e110%) + c66055 + c1a035)ur + (12 + co6)Otpua + (13 + C44)OF5us,
D2ug = (c12 + co6) it + (Co60% + 11035 + C1a033) Uz + (€13 + C44)O23us,

815211,3 == (013 + c44)8%3u1 + (613 + C44)6223U2 + (0448f1 + 644(9%2 + 633633)113.

(1.3.10)
Here, for simplicity, we used the notation 0;; instead of 0y,
With this system we now associate the initial conditions
Ou; (0, .
u;(0,2) =0, %ﬂc) = g:(z), i=1,2,3, (1.3.11)

where x € R? and we assume functions g¢;, i = 1,2, 3 are C*°-functions on R3

and have compact support.

Remark 1.9. Asis often done in similar situations, we can consider, without

loss of generality, the initial condition u;(0, z) = 0 instead of u;(0,z) = f;(x).

Now we want to explicitly write the solution of system (1.3.10) with the
initial data (1.3.11). First of all we assume several restrictions on constants
¢ij, which come from physical considerations, so that the system is hyper-
bolic. We will not write these conditions explicitly here, but we will assume
the following implicit condition on the stiffness tensor: we suppose that the

matrix

jl=1

3
A(§) = (Z Cijkl§j§l> (1.3.12)
ik=1,2,3
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is positive definite for all £ € R3.

Remark 1.10. Here and in the following, when we write expressions involv-

ing ¢;jx, we suppose that conditions (1.3.7) and (1.3.8) holds.

We recall that the characteristic polynomial of system (1.3.10) is given by
the determinant of P(7,€), where 7 € R, £ € R? and P(r,¢) is the following

matrix:

T2—c11€7 —ce6€2—cauall —(c12+ce6)€1&2 —(c13+ca4)€1€3
—(c12+ce6)€1&2 72—t —c11€3 —caall —(c13+ca4)€283
—(c13+ca4)61&3 —(c134ca4)€1€3 T2 —c44€2 —cya€3—c332

Moreover, the characteristic manifold associated with the system is
{(r,¢) € R*; detP(r,&) = 0}.
We give some additional remarks.

Remark 1.11. Since the system (1.3.10) is hyperbolic with constant coeffi-
cients, it is known to admit global solutions in R*. Moreover, if we assume
the initial conditions (1.3.11), the functions x + wu;(t, z) are compactly sup-

ported in z for any fixed t.

Remark 1.12. The matrix P(7,&) is equal to the matrix 721 — A(£), where
I is the identity matrix and A(¢)is the matrix defined in (1.3.12).

Remark 1.13. An easy computation shows that the characteristic polyno-

mial has the form

p(T, 5) =m (é)dQ (7—7 §)d3<7—7 §) + N2 (f)d?) (7-7 §)d1 (7—7 5)+
+ nB(é)dl (T7 £)d2(7—7 f) - dl (T7 £)d2<7—7 g)di’»(f),

where

§) = (c12+ CGﬁ)f%,

(
na (&) = (12 + 066)537
(c13 + Caa)?

n3(€) = —————&,

C12 + Ce6

ni
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and

dy(1,§) = T’ — di(§), dy(§) = C11§% + 066522 + C445§ — (c12 + 666)5%7
do(7,€) = T2 — dy(€), dy(§) = 0665? + 01155 + C44§§ — (c12+ 066)522,

d _ 2 dl dl o 2 2 2 (Cl3 + C44>2 2
3(1,8) =7 5(8),  d5(&) = caaly + canly + 335 — ———&5.
C12 + Cg6

With these notations the characteristic surface is given by p(, &) = 0.

This is often written in the so called “Kelvin’s form”:

n1(§) na(§) n3(&)
06 T dmo T ame

Remark 1.14. From the previous two remarks it follows immediately that

= 1. (1.3.13)

p(7,€) is a homogeneous polynomial of degree six. Thus, the condition on
hyperbolicity implies that for every fixed £ € R? the equation p(7,£) = 0 has
6 real roots, if multiplicities are counted, and it is obvious that for every fixed
¢ # 0 three of them are positive and three negative. We denote these roots
by 7,(€), p = 1,2,3,4,5,6, and label them in such a way that 0 < 71(§) <
72(&) < 13(8), (&) = —71(§), 15(§) = —72(E), 76(§) = —73(8)-

In particular, the quantities 75(5), with p = 1,2, 3 are, for each fixed &, the
eigenvalues of the matrix A(§) = (Zilzl Ciiki€€1)i k=1,2,3-

Finally, we note that the 7,(£) are roots of a homogeneous polynomial of

degree six in £ and so they are homogeneous of degree one in &.

With these assumptions it is easy to find the solution of the Cauchy
problem (1.3.10), (1.3.11) explicitly in terms of Fourier integrals involving the
Fourier transforms of the initial data. Indeed, by remark (1.11) it makes sense
to consider the partial Fourier transform in x of (1.3.6), with ¢ considered
as a parameter. Thus, after some calculations (for details see section (3.1)
of this thesis, [M], [Du] and [L1]), we obtain the solutions of the Cauchy

problem, in the form

6 3
witr) = [ S emOOT g d,  i=123 (1314)
R

p=1 j=1
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where ¢;(€) is the Fourier transform of the initial data g; and 7,(§) are the
roots of p(7, £) defined in remark (1.14). Furthermore, the map & — T;,;(§) is
a measurable function and it is possible to write it explicitly as a function of

the square root of the eigenvalues of A(£) and of their associated eigenvectors.

Remark 1.15. We observe that the formula (1.3.14) gives a solution for the
Cauchy problem of crystal acoustics (1.3.6), (1.3.11), for all crystal classes.

So, different functions & — T;,;(§) are defined for each crystal class.

Remark 1.16. Since ;(0,2) = 0 and (9/0t)u;(0,x) = g;(x), using (1.3.14)

we conclude that T;,; has the following properties

S i ()T (€) = (27) 26,

for all ¢, j, where ¢;; is the Kroneker delta.

Moreover, following the method described in [Du] and [L1], it is possible to
explicitly write the function 7;,;(£) as a rational function of the 7,(§) and
of the quantities n;(§), d;(¢), with i = 1,2, 3, defined in remark (1.13). In

particular, in the tetragonal case, for i, p, 7 = 1, 2, 3 it has the following form

(n:(§n; ()" (75(6) — dj1 ()(77(€) — djy5(S))

2im,(€)  (72(&) = di(©))(T2(E) — 2 () (T2(E) — T2,5(€))
(1.3.15)

where p+ 1, p+ 2 and j + 1, j + 2 are calculated modulo 3. In addition,
it follows from the properties of the 7,(§), that Tj4a);(§) = —Tip,(§) for

Tim’ =

p=1,2,3. Now, if we denote
2@ = [l ®mE©-n©)7
1<p<k<3

we see that the Tj,; may become singular only when ¥(¢) = 0. In particular,
where () vanishes the system has characteristics with changing multiplicity

and the functions { — 7;(§) become singular.
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Expression (1.3.15) is a little bit involved and we will not prove the properties
of the function 7;,; starting from it, even if it is possible. In section (3.1),
we will write Tj,; explicitly in another, simpler form and we will deduce from

that expression its regularity properties.

The aim of this thesis is to prove the existence of a global solution for the
non-linear system of crystal acoustic for tetragonal crystals. To do this, the
decay estimate of the solution of the linear system play a key role. Thus, we
are interested in the study of the decay for long time of the integral (1.3.14).
So, we will have to study the regularity and give an estimate of the quantity
Tpi(€), when 3(&) vanishes, which compare in the amplitude function of the
oscillatory integral (1.3.14). Moreover, to obtain a decay estimate for the
solution of the system we will take into account the oscillatory character of
the exponential exp[i,(§) +i < z,£ >], when (¢, ) tends to infinity (we will
show that, if ¢ remains bounded, it’s easy to find the desired estimate for the
integral) and we will reduce the estimates of integrals as in (1.3.14) to inte-
grals on the characteristic manifold intersected with the plane 7 = 1. Thus,
we are interested in examining the geometrical structure of the characteristic

manifold. The next chapter will be devoted to this.






Chapter 2

Geometrical properties of the

slowness surface

In this chapter we will study the geometrical properties of the character-
istic surface of the system of crystal acoustic for the tetragonal crystals. In
particular, we will find where the singular points of the surface are located
and we will describe their geometrical features. We will distinguish three
different types of singular points: the so called uniplanar, biplanar and coni-
cal points. Moreover, we will give some necessary conditions on the stiffness
constants ¢;; for hyperbolicity. Finally, we will study the curvature proper-
ties of the characteristic surface near its singular points and also away from
them.

Using the notation of the previous chapter, we give the following definition.

Definition 2.1. The surface S, defined by the condition p(§) = 0, where
p(&) = p(1,&), is called the slowness surface of the crystal.

Moreover, we define:

dl(g) = d1(17€)7 dg(f) = d2(17€)7 d3(§) = dg(l,f)

We observe that the slowness surface is essentially the intersection of the
characteristic surface with the plane 7 = 1.

As in the case of the characteristic manifold we say that the equation which

23
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define S the slowness surface is written in Kelvin’s form if the equation

p(§) = 0 is in the form

n(€)  ma(€)  nsl6)
0(E) | d) e

First of all we want to find the double roots of p(§) and we want to give some

=1

conditions on the stiffness constant in order to avoid triple roots. The way

in which we do this begin with the following proposition.

Proposition 2.1. Consider constants n; > 0,d;,© = 1,...,k and denote by

p the polynomial

k

k
p(t) = ni(t —dj1)(t = djpa) -+ (t—dypi) = [ (6 = dy), (2.0.1)
j=1 j=1
with indices calculated modulo k. If the d; are all mutually distinct then the
roots of the polynomial p are all simple and positive. Moreover, if we denote
the roots by t; and label them in such a way that t; < t;y1, and if 0 is a
permutation of the set {1,2,...,k} such that do;y < dg(it1), then we have

dg(l) <t < dg(g) <ty < da(g) << do(k) < Tp.

It follows that if p is a polynomial of form (2.0.1) for constantsn; > 0,d; > 0,
then it can have multiple roots only if some of the n; vanish or if some of
the d; coincide. Further, if d; = dy for two indices j and {, then t = d; is a
root of p, but if all other d; are distinct and if all n; > 0, then the roots are
still simple. Double roots can therefore only appear iof d; = dy = ds for three

indices j,0,s. In this case t = d; is a double root.

Proof. We write p(t) = 0 in Kelvin’s form ¢(¢) = 1, where

k

9(t) =+ fjd. (2.0.2)

J

J=1

In the interval (—o00, dy(1)), g is negative and vanishes at —oo, in the interval

(do(k), 00), it is positive, vanishes at 400 and tends to +o0o when ¢ tends to
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dy(r). Finally, in any interval of type (do(;),ds(i+1)), g tends to +oo when
t — dy(;) and tends to —oo when ¢t — dy(;41). The graph of g (see figure 2.1)
in the (¢, s)-plane must therefore intersect the line s = 1 k times, once in each
of the intervals (dy(i), do(i+1)), t = 1,..., k=1, (do(x), 00). This concludes the
proof of the first part of the proposition.

The remaining statements are proved in a similar way. ]
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Figure 2.1: Graph of the function (2.0.2), with k = 3, n, = /5, dy = —1/2,
dgzlanddgz?).

Now we return to the polynomial in the Kelvin’s form, which define the
slowness surface S of a tetragonal crystal. It follows from the previous result
that, if n;(§) > 0 and d'(§) > 0 for all £ € R3, we can have a double root at
¢ € R? only when

dy(§) = dy(§) = d5(E), (2.0.3)

or when

n(§)nz(§)ns(§) = 0. (2.0.4)
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Note that, with the previous assumptions, the condition n(§)ng(&)ns(§) =0
means that we are on a coordinate plane.
Now we observe that the points of intersection between the slowness surface

and the axes are

1 1 1
£ 0,0), (£——.0,0), (£——.0,0). 2.0.5
(£ 0.0) (5, 0.0) (0.0 205)
(0, £——0), (0, £——.0), (0, £—— 0) (2.0.6)
7 \/6—667 J Y \/@7 ? ? \/a? 9 i

1 1 1
0,0, +——),(0,0,£——), (0,0, £——). 2.0.7
(0,0,%—72), (0,0,4—2), 0,0, %) (207)

This gives the geometrical interpretation of the quantities c;;.
Also note that it follows from these expressions that we always have double
roots on the £3-axis. On the other hand, we have double roots on the other
two axes only when we have cgg = C44, Co6 = €11, OT €11 = Cyq.
So, considering this, the previous proposition and the condition on hyper-
bolicity of the system, we assume the following conditions on the stiffness

constants

ci >0, for ¢ = 1,3,4,6, cgs > C12, Cu 7é C13, (208)

(astcu) (2.0.9)

c11 —Cge — C12 >0, 33 — C12 F Coo

Moreover, in order to avoid triple roots on the axes, we assume
c33 # cqy  and  cq1, cgp, €44 NO all equal. (2.0.10)

Remark 2.1. Here we want to write down explicitly the relation between
the stiffness constant in the cubic case and in the tetragonal case. The cubic

case is when we have
C11 = €33, C44 = Cg6, C12 = C13.

With the conventions for the constants used in [L1] and [L2], the values of

the constants a, b, c are: a = ¢11 — ¢y, b = ¢12 + c44 and ¢ = cyy.
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Remark 2.2. There is an easy interpretation of the constants c¢; in terms
of plane waves. We call u = (uy, us, u3) a plane wave solution of the system
of crystal elasticity if we can find v = (vy,v9,v3) € R3, (7,€) such that
u(t, x1, x2, x3) = vexplitT + i(z,£)] is a solution of the system. Here & gives
the direction of propagation of the wave. When we consider propagation
in the direction of the zi-axis, then & = & = 0, and we can assume that
& = 1. The condition on 7 is that it be a solution of p(7,1,0,0) = 0, and v
must be some kind of eigenvector. The solutions of p(7,1,0,0) = 0 are given
by (2.0.5). The ¢; are thus related to the speeds of the plane waves in the
respective directions. This agrees with the fact that we must assume that
the quantities cq1, cu4, ces are positive. In a similar way we can justify the

assumption that css is positive.

It follows from conditions (2.0.3) and (2.0.4) that S has double points
only when we can write the sextic p(§) as the product of two homogeneous
polynomial of degree two and four respectively. Indeed, if n; = 0 for some
i €{1,2,3}, then

p(&) = di(nis1diyo + niyadipr — diy1diya),
whereas if d; = dy = d3, then
p(&) = di(ni + nigr + nigs — dy),

where in the previous two equations the indices are counted modulo three.
In the next section we will study quartics on the plane of the type which

appears in the factorization of p(§).

2.1 Double roots of special quartics in the

plane

In this section we will make some elementary remarks on plane quartics

of form G(x,y) = 0, where § is given by
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q(x,y) = a1zt + agy + azr?y? + b + bay® + ¢y, (2.1.1)

for some constants a;, b;, ¢; with a; > 0, ag > 0, ¢; # 0. Special emphasis
will be put on the case a; = ag, by = by, when ¢ = 0 can be reduced (after

dividing by a; and with obvious new constants) to the form
q(z,y) = (2* +y*)? + az?y® + b(2® +9°) +c, (2.1.2)

where ¢ # 0.

Plane sections with coordinate planes of the slowness surfaces for tetragonal
crystals which we consider in this thesis will have these form and in partic-
ular we need the results we mention here to study the singular points of our

surfaces on the coordinate planes.

Definition 2.2. A quartic on the plane is called of slowness type if each
ray starting from the origin has exactly (when counted with multiplicities)
two intersection points with the quartic. (Note that this means that each line
which passes through the origin intersects the quartic in four points, which is

the maximum possible number.)

First, we want to see what restrictions we have to impose on the constants

a; , bj and c; to make sure that G is of the slowness type.

Proposition 2.2. Let g(x,y) be a quartic of the form (2.1.1), if G(x,y) is of

the slowness type then the following conditions must be satisfied

b < 0, by < 0, ¢ >0, (213)
b% — 4@101 Z O, b% - 4a2C1 Z 0. (214)

Proof. Due to symmetry, it suffices to check the proposition in the first quad-
rant (x > 0,y > 0). The problem is simplified if we make the change of
variables (z,y) — (s,t), s = 2%, t = 3>

a132 + a2t2 + CL3St + b18 + bgt + C1.

¢ then transform to ¢(s,t) =
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Suppose that ¢ is of the slowness type. Then ¢(s,t) = 0 must intersect the
positive half-axes in two points. If we restrict ¢ on z = 0 and y = 0, we can
easily find, assuming a; > 0, as > 0, that the b;, and ¢; must be positive and
the conditions b? — 4ajc; > 0, b2 — 4asc; > 0 must be fulfilled.

]

Remark 2.3. Let ¢(s,t) be as in the proof of the previous proposition. If
we assume that ¢ is of the slowness type, then we can have three cases. In
the first case (s,t) is an ellipse which intersects each positive half-axis in
two points, i.e. ai — 4aja; < 0 and (2.1.3), (2.1.4) hold.

In the second case (s, t) is a parabola which intersects each positive half-axis
in two points, i.e. a3 — 4ajas = 0 and (2.1.3), (2.1.4) hold.

In the third case {(s,t) is a hyperbola (or a degenerate hyperbola, i.e. the
union of two lines) such that it intersects each positive half-axis in two points.
In this case a2 — 4a;a; > 0 and (2.1.3), (2.1.4) hold.

Finally, we observe that in the first and second case, the necessary conditions
for ¢ to be of the slowness type are also sufficient, whereas in the third case
they are only necessary. Indeed, it is possible to find a hyperbola with the
center in the first quadrant such that each branch intersects one of the posi-
tive semi-axis twice. Thus the equation ¢ = 0 associated with this hyperbola
fulfills the conditions a3 — 4ajas > 0, (2.1.3) and (2.1.4), but the associated

quartic ¢ is not of the slowness type.

Our main concern with quartics as above is with double points. First of

all we prove the following lemma.

Lemma 2.3. Let §(z,y) be a quartic of the form (2.1.1), then ¢(z,y) has
double points if and only if it is the product of two factors of degree two.

Proof. 1t is a simple and classical result (of G.Maclaurin, 1720), that the
number of double points for a non degenerate quartic in two variables can be
at most 3. (See [En], tome III, page 283 and [Sa].) Due to the symmetries our
quartics have, double points, if at all present, must come in multiples of four.

It follows that we can have double points only when they are degenerate. By
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degenerate we mean that ¢ is the product of two lower order factors. Since
we are only interested in the case when the quartic is of the slowness type,
and therefore in particular bounded, we have in the degenerate case exactly
two factors of degree 2 and the quartic is the union of two ellipses defined by
these factors. O]

Example 2.1. To give an example when the situation in lemma (2.3) effec-
tively occurs, assume that we are given two constants o > 0,8 > 0, # 3
and consider the polynomial (ax? + Py* — 1)(Ba? + ay® — 1). The set where
the polynomial vanishes is then the union of two ellipses which intersect at
?=y*=(a+p8)""

Starting from MacLaurin’s result, it is not difficult to give explicit condi-

tions on the coefficients of ¢ when it has real double points.

Proposition 2.4. Let §(z,y) be a quartic of the form (2.1.1) of the slowness
type. If G(z,y) has double points, these must lie on the axis, or else we have

the following conditions
a% — 4@1@2 > O, ( )
2bsa; — byaz > 0 (2.1.6)
2b1a2 — bQCLg 2 0, (217)
(a3b1 — 2[)2&1)2 = (b% — 4C1&1>(a§ — 4@2@1) ( )

with (2bsa; — bias)(2byas — boas) # 0. In this case §(x,y) has the following

form:

1 agby — 2a1b
~ 2 2 2 , (301 102

q(z,y) = [alﬂﬁ - 5(—6%3?/ — b +/ai — dazai (y” + 2 —dayay ))}

1 asby — 2a1b

2 2 2 2 |, a3by 102

——(- — b — —4 —))] .
[alx 2( asy 1 — /a3 — dazai (y” + @& —daray ))]

Proof. We assume that {(z,y) € R? G(z,y) = 0} is the union of two ellipses
which intersect. We denote 2% by s and 32 by t. Dividing by a; and after a

re-notation for the constants we write G(x,y) = 0 in the variables (s,t) as

s>+ (at +b)s + ct> + dt + e = 0. (2.1.9)
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This equation will have (one or two) positive solutions in s for any given

t > 0 if the following two conditions are simultaneously satisfied (for ?):
i) at+b<0or/D(t) > (at+0) >0
i) D(t) = (at +b)? —4(ct* +dt +¢) > 0.

In order to obtain a double real root we need of course i) and that D(t)
vanishes. Assume that this happens at some positive t° > 0 and denote
y® = (t°)%. Since our quartic is the union of two ellipses, D(¢) must then
be nonnegative in the interval [0,t°]. Moreover, the graph of the function
t — s = D(t) is a parabola which lies for ¢ € [0,t°] on the upper half plane

s > 0. Two situations could now arise in principle:

a) D(t) has negative values to the right of t°. In this case, our quartic
must lie completely in the region {(z,y) € R%y € [-4°,¢"]}. This is
a case in which the double points occur precisely when y = ° and are
easy to find since this situation corresponds to a double root on the y

axis.

b) The parabola has a minimum at ¢ = t° and the values of D(t) are
everywhere else strictly positive. In particular, we must have D(t) =
62(t — t9)? for some real constant § # 0 and the values of §,t° are

respectively
6§ =Va%—4c, t°=—(ab—2d)/(a® — 4c).

In particular, a? — 4c and t° must be positive. This implies that con-
ditions (2.1.5) and (2.1.6) hold. The condition for D(t) to be equal to
62 (t — %)% is

52(19)2 = (ab — 2d)? _

- = 2 —
10 b? — de. (2.1.10)

If this is satisfied we can write s+ (at +b)s+ct? +dt +e as [s — (1/2)(—at —
b+6(t—1t9))[s — (1/2)(—at —b—§(t —tY))].
Now, if at® —b < 0, then (2.1.9) has positive solutions. This condition implies
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2bc — da > 0, i.e. (2.1.7). Back in the variables (x,y), the condition (2.1.10)
is exactly (2.1.8) and the form of ¢ is then

G(x,y) = [2° = (1/2)(—ay® —=b+d(y* —t°)][2° — (1/2)(—ay* —b—d(y* —°))].
which is precisely the form we were looking for. O]

Remark 2.4. From the expression of §(z,y) follows that it has four double
points of the form (+x,+y), where

— 0 — _ab—2d
y= Vi a’> — 4ac

_ [2bc—ad
TN W e
Here we used the notations of the above proof.

Remark 2.5. We observe that, in case b) of the previous proof, when D(t) >
0 for all t > 0, t # tg, there exist t; > ty such that for all £ > ¢;, the quantity
at + b is non negative. In fact, if at +b < 0 for all ¢, the quartic is not of the

slowness type.

Remark 2.6. Since the expressions we have obtained are not simple, it might
be useful to observe that they just say that the leading coefficient of D(t),

which is a? — 4c, is positive and that D(t) has a positive double root.

We will now make some comments concerning quartics of type (2.1.2),
since this case is simpler and the conditions are easier to understand. In
addition to being biquadratic, the polynomial ¢ is also symmetric in the

variables (z,y).

Proposition 2.5. Let q(z,y) be a quartic of the form (2.1.2) of the slowness
type. If q(x,y) has double points, these must either lie on an axis or on a

diagonal.

Proof. 1f P = (2°,4°) is a real double root of ¢, it follows that P must either
lie on an axis or on a diagonal: otherwise we get by symmetries 7 additional
real double points, which is too many, even in the case when the quartic is

the union of two ellipses which intersect. O
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A first information on ¢ can be obtained by restricting ¢ to the axis
y = 0, and to the diagonal y = x. We thus obtain the polynomials ¢(x,0) =
' + bx? + ¢ and q(z,2) = (4 + a)z* + 20z* + ¢ respectively. Thus, the

conditions for these polynomials to have two positive roots are
c>0, b<0, b —4c>0,

a+4>0 b —(a+4)c>0.

The conditions (2.1.13), (2.1.14) are thus necessary conditions for ¢ to be
of the slowness type. As will be clear from our discussion, they are also
sufficient.

We observe that, when 0? — 4c = 0, then we can write that q(x,y) = (z* +
y* + % —Vazy)(z* + y? + % + /axy), which gives ¢ as the product of two
second order polynomials, which define two ellipses.

Further, when 0* — (a+ 4)c = 0, then we have double roots on the diagonals.
To decompose ¢ into the product of two second order factors, we first write

(@* + )" + az’y® = (aa® + By*) (B2” + ay?), (21.11)

for suitable constants «, 3. This is in fact easy to achieve: if 7 is a root of
the polynomial t* + (a + 2)t + 1, e.g.,
—a—2++Va?+4a
2 )
then 1/7 is the other root. Now we set « = y/—7 and § = 1/« and (2.1.11)

is easily checked. This implies the relation

T =

(a+B)2=—-1—-1/T+2=0a+4 (2.1.12)
If we now set v = —b/(a + (), then it follows that
(ax® + By* —7)(B2° + o — ) = (¢ +1°)* + ax®y® + b(z® + v*) ++°.

This is precisely (2.1.2) if we have v* = b?/(a + )? = ¢. In view of (2.1.12),
(a+ )? = a+4, so the condition on v is exactly the one for which b — (a +
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4)c = 0.

We can conclude this section with the following proposition.

Proposition 2.6. Let q(x,y) be of the form (2.1.2). If q(x,y) is of the

slowness type, then the following conditions must hold:

b<0, ¢>0, bB2—dc>0, (2.1.13)
a+4>0, - (a+4)c>0. (2.1.14)

Moreover q(x,y) = 0 has double points if and only if either b* — 4c = 0 or
b —(a+4)c=0.
Ifb*—4c = 0, then q(x,y) has one double point on each azis and it is possible

to write 1t in the following form as the product of two ellipses:
2 2 b 2 ) b
a(z,y) = (2° +9° + 5 = Vary) (@ + o + 5 + Vazy).

If o> — (a+4)c = 0, than q(z,y) has one double point on each semi-diagonal
and it is possible to write it in the following form as the product of two

ellipses:
q(z,y) = (aa® + By — ) (Ba* + ay? — ),

where (a + f)* = a+4, v = ~b/(a+f) and v* = c.

2.2 Double points of the slowness surface in

the coordinate planes

In this section we will study the location of the double points on the
sextics which appear when we restrict the slowness surface of a tetragonal
crystal to the coordinate planes. If we now restrict to the coordinate plane
{€ € R3¢ = 0} for some i € {1,2,3}, then the terms in p(¢) which contain

n;(£) as a factor vanish, and we obtain the curve

{¢e R% ¢ =0,d; = 0ju{¢ e R?: & = 0,ni1divo +Niyadis — dip1die = 0},
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with indices calculated modulo 3. Our restriction is thus the union of an
ellipse with a bounded quartic. Real double points can appear then in prin-
ciple in two ways: if we intersect the ellipse with the quartic, or if the quartic
itself has double points.

We observe that p(£) is completely symmetric in the variable & and &. So,
we will only study what happens on the planes & = 0 and & = 0.

Our first concern is to understand for which values of the constants c;; we
can have double points on the quartic. In fact, as we have already seen in the
previous section, the quartic can have double points only if it is the union of

two ellipses which intersect.

2.2.1 Double points of the quartic in the coordinate

planes

Assume at first that & = 0. Then the restriction of p to & = 0 factors into
the form d;(nods + nszds — dods). This means that {(&,&3); (0,62, &3) = 0}
is the union of the two curves C; = {(£,£3);d1(0,£2,&3) = 0} and Cy =
{(£2,63); (nads + nsdy — dads)(0, £, €5) = 0}. €y is the ellipse s1(Ey, &) = 0,

where

s1(&2,&5) =1 — ce6&3 — caaés, (2.2.1)

whereas G, is the quartic given by ¢1(&2,&3) = 0, where

q1 (527 53) = 01104453L + 033644§§ - (0%3 — C11C33 + 2013044)5353?

— cusbs — s — c3385 —enés + 1. (2.2.2)

Following the proof of proposition (2.4) of the previous section we can write
01(&2,63) as X& + Y (§)63 + Z(&2), where

X = C44C33,

Y (&) = (—2c13¢44 + C11C33 — C13)E3 — c33 — Caa

Z(&) = cricasy — (e11 + ca)és + 1.
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We denote by D(&;) the quantity Y (&)* —4X Z(&,;). We have seen in remark
(2.6) that a necessary condition for the quartic (2.2.2) to have double points
is that D(&) have positive double roots and its leading coefficient be positive.

After some calculations, we can write D(&;) as
D(&) = A& + B&G +C
with
A = (criess — 2c130u0 — ¢15)° — Aciyessen,
B = —2(c33 + ca1)(c11033 — 21344 — €5) + 4caacss(caa + c11),
C =iy + 3y — 2cyyCs3.

We can therefore have double roots only if D; = B? — 4AC = 0. The

expression for D; is quite long, but it factors conveniently to
Dy = 16¢a4c33(c13 + €4a)* (T3 + 201340 + CaaCa3 — C33¢11 + Caacry),
and so we have D; = 0 if and only if
Dy = (i3 + 2¢13¢44 + CaaCs3 — C33¢11 + Caacry) = 0. (2.2.3)

Note that cs3cyy is strictly positive and i3 + c44 # 0 by conditions (2.0.8).
Moreover we have that the double root of D(&,) is positive if and only if

B = —2(633 + C44)(611633 — 2613644 — C%g) + 4644033(644 + 011) S 0. (224)

A further condition for the quartic (2.2.2) to have double points is that A > 0,
le.

(cr1c33 — 2¢13C44 — C13)* — 4c3ycz3cry > 0. (2.2.5)
If we denote by & the double root of D, the last condition for the quartic
(2.2.2) to have double points is that (&) < 0, i.e.

(011 + 044)(611633 — 2613044 — 633) — 2(633 + C44)611C44 Z 0. (226)

Remark 2.7. We observe that the conditions (2.2.3), (2.2.4), (2.2.5) and
(2.2.6) correspond to the conditions (2.1.8), (2.1.6), (2.1.5) and (2.1.7) re-

spectively.
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Remark 2.8. Here and in the following we assume another condition on
the stiffness constants. This condition comes from physics and numerical
examples of stiffness constants for tetragonal crystals agree with it. We

assume that c¢yo and c¢y3 are small when compared with ¢;;, for i =1, 3,4, 6.

With the assumption of the previous remark the conditions (2.2.3), (2.2.4),
(2.2.5) and (2.2.6) are reduced to the following

C44C33 — C33¢11 + a1y = 0, (2.2.7)
c11c33 > 4¢3y, (2.2.8)
c11(ess — caq) > 263, (2.2.9)
cs3(c1y — caq) > 263, (2.2.10)

From (2.2.7) follows that ¢;; = ¢33¢44/(c33 — c44) and, taking into account
this condition, conditions (2.2.8), (2.2.9) and (2.2.10) yield ¢33 < c4q. But if
¢33 < C44, then c¢1; must be negative and so we can conclude that ¢;(&2,&3)
can have double points only on the axes.

We can now understand whether or not the quartic ¢; = 0 can have double
points on the axes. We recall from (2.0.7) that the points on the positive

¢3-axis are

1 1 1
0, —), (0, 0, —)
\/Ca4 v/ C44 V€33

Since the first one is a point on the ellipse (2.2.1), it follows that the double

(0,0, ) and (0,

point on the positive £3-axis is the result of the fact that the ellipse and the

quartic touch. The points on the positive &;-axis are

1 1 1
(07 :l:—a 0)7 (07 j:—a O)a (07 +——
v/ Ce6 V €44 V€11

Since the first one is a point on the ellipse (2.2.1), it follows that we have

,0).

double points on the positive &s-axis when ¢1; = cy4.

Thus, we have proved the following proposition.

Proposition 2.7. Let q1(&2,&3) = 0 be the quartic defined by (2.2.2). It has
double points if and only if c1y = cag. In this case q1(£2,&3) = 0 has two
double points of coordinates (0,£1/,/c44,0), on the &-axis.
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We now deal with the restriction to £3 = 0. Since the restriction of p to
this plane factors into ds(nids + nedy — dids) = 0, we then have to look at
the ellipse

53(51752) = d3(§17£27 0) =0 (22].1)
and the quartic ¢3(&1,&2) = 0, where

33(&1, &) = =& & + 1618 — ené&l — cnél — cee&s — Coséi

+ cr1¢66€] — 2¢126666185 + Criceels + 1. (2.2.12)

Our first concern is to understand whether or not the quartic can have double
points. We have seen in the previous section that such double points can only
lie on the axes or on the diagonals. The double points on the axes are known
from the relations (2.0.5)and will exist when ¢1; = ¢g6. The points on the
positive principal diagonal & = &, & > 0 of the quartic are on the other
hand
( 1 | 1 0, 1 ’ 1 ’
Ve — ¢z Ve — Ve + ez +2c66 Ve + cia + 266

It follows from this that the quartic has double points only in the case when

C11 — C12 = €11+ €12+ 2¢46, 1.€., when ¢19+cgg = 0. Since we assume that cqy is
small compared with cgg, there will thus be no double points on the quartic
and the double points of p(£1,£2,0) = 0 must come from the intersection
of the ellipse with the quartic which we will now compute. Thus, we have

proved the following proposition.

Proposition 2.8. Let g3(&1,&2) = 0 be the quartic defined by (2.2.12).
It has double points if and only if c11 = cg6. In this case q3(&1,&2) = 0 has

four double points, two on the & -axis, and two on the &-axis, of coordinates
(£1/4/C66,0,0) and (0, £1/,/cqs,0) respectively.

2.2.2 On the intersection of the ellipses with the quar-

tics in the coordinate planes

As before, we assume at first that & = 0. We have the following propo-

sition.
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Proposition 2.9. Let s1(£2,&3) and ¢1(&2,&3) be the polynomials defined in
(2.2.1) and (2.2.2) respectively. We denote

2
ég B (c13 + caa)” + (caq — c33)(Cc11 — Co6)
2 = 2 2 2
C11C3y + 2C13C44Ce6 + C3C66 — C11C33C66 + C33CEg
(044 - 066)(011 - 666)
2 2 7
C11C1y + 2C13Ca4Ce6 + CT3C66 — C11C33C66 + C33CEg

&
If the stiffness constants c;; are such that & and & are positive and ¢y #

Ces 7 Caa, then s1(&,&3) = 0 intersects q1(&2,&3) = 0 in siz points of coordi-

(0,0,i\/z>, (07 :tg%:l:g?))'
Ca4

If the stiffness constants c;; are such that & and & are not positive, then

s1(€2,&3) = 0 intersects q1(&2,&3) = 0 only in the points (0,0, % CT}A)-

nates:

Figure 2.2: Restrictions of S on the plane & = 0 with (¢q1, ¢33, €44, Co6, C12, C13)
equal to (4,3,1,2,—1/2,1/5) and (1,3,4,2,—1/2,1/5) respectively.

Proof. We denote P = (0,&,,&3). P’ = (&,&3) then corresponds to an inter-

section between s; = 0 and ¢; = 0 if we have simultaneously

d1 (P) = 0, (n2d3 + n3d2 — deg)(P) = O,
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with the usual notation. The condition d;(P) = 0 means that P’ = (&, &3)
lies on the ellipse

1—- 066§§ - C44f§ =0,
which gives

1 — 2
&2 =g(&) = ch@

We have to insert the value of £2 given in (2.2.13) into the equation (nadsz +

(2.2.13)

nsdy — dads)(P) = 0, and to solve the resulting equation for &;. Calculations
are simplified if we make the following preliminary remarks: the values of ds,
ny — do, and ds, for & = 0 and &3 given by (2.2.13) are

dg = (—011 + 2666 + 012)55,

ng — dy = (011 - C66)€%7

Ci2 +Ce6  Ci2 + Ces 9, C33 9 9
= — caa§y + —(1 — ce6&3)) + 1 — ce6€3)-
C13+Cia  C13+ 044( 2 044( 2)) ( 2)

After some calculations, it follows that [n3ds + d3(ns — d2)](0, &, g(&2)), is
divisible by £2 and that we have

[n3dy + ds(ng — do)](0, &2, g(&2)) _
&

C13 1 Ca4
ds —_—

(c13 + caa) (1 — c66&3) (—c11 + 2c66 + C12)
Cq4q

c12 + ces 1
Bt L (o (e + e (1 cautd)

+(c13 + caa) (1 — c66€3)) (c11 — ces) -

In particular, we see that & = 0 is a solution of [nzda+dz(ne—ds)](0, &2, g(&)) =
0 with multiplicity 2. When & = & = 0, the value of & for which we have
the intersection is 1/c44. Thus, the first part of the proposition is proved.
The other solutions of [ngdy + ds(ny — d2)](0,&s, g(&2)) = 0 are also easy to
calculate, since [nzdy + d3(ne — d2)](0, &2, g(£2))/€2 is linear in the variable
s = &. We obtain
C33C66 — C1aCop + 2C13Ca1 — C11C33 + Cig + €y + C11Cu

C11€3, + 2 C13C44Ce6 + Ci3Ces — C11C33C66 + C33C56

2
(c13 4 €44)” + (caa — €33)(c11 — Co6)
B) 2 2
C11C1 T 2¢13C44C66 + Ci5C66 — C11C33C66 + C33C56

g =

(2.2.14)
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Inserting this in s;(&s, &3), we obtain the value of &3 corresponding to & given
by (2.2.14):

2 (044 - 066)(011 - 066)

3= B) 2 2
C11C1 T 2¢13C44C66 + Ci3C66 — C11C33C66 + C33C56

We now deal with the restriction to 3 = 0.

Proposition 2.10. Let s3(&1,&) and g3(&1, &) be the polynomials defined in
(2.2.11) and (2.2.12) respectively. We denote

C12 + 2c4q — c11)(c12 + 2¢66 — 2¢44 + C11)

R=!
(12 + c11)(c12 — €11 + 2¢66)

If the stiffness constants c;; are such that 0 < R < 1 and ci11 # Caa 7 Ce6,
then s3(&1, &) intersects q3(&1,&2) in eight points of coordinates

(LY Ryyz (Lo VRys )

C4q C4q
1— \/E 1/2 1+ \/E 1/2
(F(Emg N5 CEe) 7 0)
Proof. We proceed as in the proof of proposition (2.9). We denote P =
(£1,£2,0). P' = (&1,&) then corresponds to an intersection between s; = 0

and ¢; = 0 if we have simultaneously
d3(P) =0, (nids+ nody — dide)(P) =0.
The condition d3(P) = 0 means that P’ = (£, &) lies on the circle
1 — caaéf — caali =0,

which gives

1
£2=—-¢, (2.2.15)
Cy4

Inserting the value of &2 given by (2.2.15) into the equation (nidy + nod; —
didy)(P) = 0, we obtain the following expression for £3:

B++vD

2 __
51_ 24
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X |
ols - -
&
*’ j/
Figure 2.3: Restrictions of S on the plane {3 = 0 with (¢q1, ¢33, €44, Co6, C12, C13)
equal to (2,3,1,4,—1/2,1/5) and (4, 3,2,1,—1/2,1/5) respectively.

)

where

A = (c12+ c11) (12 — c11 + 2 ce6) Caa,
B = (c12 + c11) (c12 — 11 + 2 ¢e6)
D = (c12+c11) (c12+2c4a —c11) (c12 — €11 + 2 ¢o6) (c12 + 2 ce6 — 2 Caa + €11) -

We conclude that

1 (c12 + 2¢44 — c11) (12 + 2¢66 — 2€44 + C11)
G=+—[1+
2cy4 (c12 + e11) (cr2 — en1 + 2ce6)
Finally, the value of & is obtained by inserting the value of & into (2.2.15).
]

1/2

Remark 2.9. We have seen that, if ¢;; = ¢4, then the quartic ¢;(&2,&3)
has two double points on the coordinate &;-axis and we note that the ellipse
e3(&1, &) intersects the quartic g3(&1,&2) in the coordinate axes. Similarly, if
c11 = cg6, then the quartic g3(&;, &) has four double points on the coordinate
axes and the ellipse e; (&2, &3) intersects the quartic ¢;(&,, &) in the coordinate

ég-aXiS.
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Moreover, we note that, if cy = cg6, the quartics ¢, (&2, &3) and ¢3(&1,&2) do
not have double points, but the ellipses e; (&2, &3) and e3(&;, &) intersect the
quartics ¢1 (&2, &3) and g3(&1, &) respectively, on the & -axis and on the £3-axis.

2.3 Double points of the slowness surface near

the diagonal

In this section we will study the location of double points of the slowness
surface of a tetragonal crystal, which do not lie in the coordinate planes. As
shown above, singular points é which do not lie in the coordinate planes can
only occur when dy(€) = do(€) = ds(€). Now, suppose that this condition
holds and dl(é) £ 0, then £ must be a double point of (nq +n2+n3—d1)(§) =0,
but this is absurd because, given our assumptions on c¢;;, (nq + ng + ng —

d1)(€) = 0 is an ellipse in R?. Conversely, if we know that

di(€) = da(€) = ds(€) = 0,
for some point é , then é is a double point of S. Thus we have the following

lemma.

Lemma 2.11. Singular points & of the slowness surface, which do not lie on

the coordinate planes, can occur if and only if dy(€) = da(&) = ds(&) = 0.

A first remark is that di(§) = dy(§) implies £ = &2, Inserting this
information into d;(£) = ds(£) shows that &} and €2 must be related by the

condition
o (e oot 2cu)(cin +ces) o

o (c13 + 044)2 + (c12 + co6)(Caa — C33) !

Using &2 = €2 and (2.3.1), p(€) = 0 reduces to a third-degree polynomial in

(2.3.1)

t = &2, which will have a double root.

Solving this equation we then obtain the following value for &2

5% _ (c13 4 ca4)* + (c12 + co6)(Caa — C33) (232)

(c13 4 caa)?(c12 — c11) + (c12 + co6)(C33c11 — Crac33 — 2¢3,)
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This gives the following value for &3

(2¢44 + c12 — c11)(c12 + Co6)
(c13 + 044)2(012 —c11) + (€12 + ce6) (C33¢11 — Cr2C33 — 204214)

=
Thus we have the following proposition.

Proposition 2.12. Let S be the slowness surface for the tetragonal crystal

system. We denote

£2 = (c13 + caa)® + (c12 + Co6) (Cas — C33)

! (c13 + caa)?(c12 — c11) + (c12 + co6) (Cazcr1 — c12es3 — 2¢1y)
&2 _ (2¢44 + c12 — c11) (12 + Co6)

2=

(c13 + 044)2(012 —c11) + (€12 + cg6) (33011 — CraC33 — 204214)‘

If the stiffness constants c;; are such that ff and fg are positive, then S has
eight double points, four on each plane {(£1,&,&) € R3 1 & = &}, of

coordinates:
(gl7glaig3)7 (_glv _glaig?:)'
(517 _élaié?))a (_élvélaigiS)'

&i=&

Figure 2.4: Restriction of S on the plane & = & with (¢11, ¢33, ca4, Ce6, C12, C13)
equal to (4,3,1,2,—1/2,1/5).
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Remark 2.10. In the case of cubic crystals the condition d; = dy = d3
implies that we must have & = & = &2. So, if we call the eight lines
defined by these conditions the space diagonals, in the cubic case we have
eight double points, one on each space diagonal. Denote F' = (—cy1 + ¢10 +
2¢44) (12 + co6) — (€13 + caa)? — (c12 + c66)(caa — c33). Then, in the tetragonal
case, we have double points on the space diagonals if F' = 0. Further, we can

decompose F' as

F = (—c11 + 12 + caa + c33)(c12 + o6 — c13 — Caa)

+ (c13 + caa)(—c13 — €11 + 12 + ¢33).

It follows in particular that F' = 0 if ¢10 + cg6 — €13 — caqa = 0 and —c13 — c11 +
c12 + ¢33 = 0 simultaneously . To put the conditions into a symmetric form

we can also write them as
Cgg — C44 — C13 — C12 = C33 — C11.- (233)

Note however that these conditions are only sufficient to guarantee that the
double points lie on the diagonals. The nice thing about the conditions in
(2.3.3) is that the three quantities cgg — c44, €13 — 12, C33 — €11 measure the
“distance” to the cubic case. These conditions therefore say that the three
quantities which determine this distance are equal, but do not necessarily
vanish. Thus, if we are near the cubic case, we can expect the double points
of tetragonal crystal on the planes {(£1,&,&) € R® 1 & = &} to be near
the space diagonal.

We will explain later on what we mean with “distance to the cubic case” and

“near the cubic case” (see e.g. remarks (2.1) and (2.16) and definition (2.4)).

2.4 Tetragonal crystals when ci; = cg

Here and in the remainder of this section we will assume that the stiflness
constants cy; and cgg are equal. In this case not only do we have some

simplifications in the calculations, but also a particular type of double point
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appears on the slowness surface. We will call it a “biplanar” double point
(see definition (2.3)). It is a type of double point which does not appear in
the cubic case, thus, it seems to be interesting to prove a theorem for the
decay of oscillatory integrals on surfaces with double points such as this (see
section (3.5)).

We begin the study of tetragonal crystal when we have c¢1; = cgg with the
description of where the double points of the slowness surface are located.

The results of the previous two sections yield the following proposition.

Proposition 2.13. Assume ci1 = cg and let c;; be such that the conditions
(2.0.8), (2.0.9), (2.0.10) are satisfied and c;;, with i # j, is small compared
with c;;. Moreover, let S be the slowness surface for the tetragonal crystal

system. Then S has siz double points, one on each semi-azxis, of coordinates
1 1 1

—,0,0), (0,% ,0), (0,0, £——).

v/ C66 ) ( v/ C66 ) ( \/044)

In addition, if (c19+ 2¢44 — co) (C12 + 3ces — 2¢44) > 0, then S has eight double
points on the plane {(£1,&,&) € R : & = 0}, of coordinates

(LY Ryyz (LoVRys o)

(+

2c44 Cq4
1— VRy\1/2 1+ VR
(T DY R (5275 2,0),

where all combinations of signs are allowed and

(c12 + 2¢44 — co6)(C12 + 3o — 2¢a4)
(c12 + c66)? '

Finally, if & > 0 and & > 0, then S has four double points on each of the
planes {(&1,&,&3) € R3 : &2 = €2} of coordinates

(517 éla :l:£3)7 (_éla _éh :tég),
(glv_élaié3)7 (_517517:*:53)’

R:

where
gz _ (c13 + caa)® + (12 + co6) (caa — c33)
(13 + caa)?*(c12 — co6) + (12 + co) (c33¢66 — Cracs3 — 2¢3,)
&2 _ (2¢44 + €12 — co6) (12 + Co6)

(c13 + ca4)*(c12 — co6) + (12 + Co6)(C33C66 — 12033 — 2¢14)
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Figure 2.5: Restrictions of S on the plane & = 0 and & = 0,
with  (e11, €33, Caa, Co6, C12,C13)  equal  to  (4,3,1,4,—1/2,1/5) and
(1,2,5/7,1,—1/7,1/2) respectively.

Remark 2.11. We observe that there exist admissible values of the stiffness
constants such that the conditions él > 0, with7 = 1,3, and R > 0 of the pre-
vious proposition can be either both satisfied or both not satisfied or one sat-
isfied and the other not satisfied. Indeed if we choose (¢33, C44, Co6, C12, C13) =
(2,5/7,1,—1/7,1/2) we have & >0,& >0, R>0. If we choose

(¢33, Cas Cog, Cr2, C13) = (3,11/7,1,—1/7,1/2) we have & > 0, & > 0, but R <
0. If we choose (cs3, ca4, Co6, C12, C13) = (7,9/7,1,—1/7,1/2) we have R > 0,
but &5 < 0. Finally, if we choose (€33, C44, Co6, C12, C13) = (6/5,3/7,1,—1/7,1/2)
we have R < 0 and ég, < 0.

Now we want to classify the double points of S into three different types,
depending on their geometrical features. To do so, we need the following

definitions.

Definition 2.3. Let S be a surface in R® on which linear coordinates are
denoted by & = (&1,&2,&3). We assume that P € S and that in a neighborhood
U of P, S is defined by an equation of form {{ € W : f(§) = 0} for some
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function f € C*(U). We assume that V f(§) = 0 precisely when & = P and
denote by Jif(€) = Z|a|:k(1/a!)8§‘f(P)§“ the homogeneous part of degree k
in the Taylor expansion of f at P.

(i) We say that P is a conical singularity if for some suitable choice of
linear coordinates Jof has the form Jof (§) = & — & — £2.

(i) We say that P is a uniplanar singularity if it is possible to find linear
coordinates for which Jof (€) = &3 and if f =0 is locally equivalent to

&4+ A(&,&)& + B(é1,&) =0

with A(Py, P,) =0, B(P,,P,) =0, VAP, P,) = 0, for some smooth
function A, B.
Moreover, we assume that if we denote by A the quantity A = A2 —4B,

then we have A(&y, &) = O(|€1, &[*) for (&1,&) — (P, Pa).

(11i) We say that P is a biplanar singularity if the following happens: for

some suitable choice of linear coordinates Jof () = &% — &£2.

T
oo
SR
-»*'f'."e!'-?— D
SN

A

o

Figure 2.6: The biplanar double point at the origin of the surface defined by
the equation 22 — (1/2)z? + 2y2% — 2222 + 2% + 22%9* + (1/2)y* = 0.
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In the next three subsections, we will prove the following proposition
about the nature of the singular points of the slowness surface for the tetrag-

onal crystal system, when we have ¢y, = cgq.

Proposition 2.14. Let S be the slowness surface for the tetragonal crystal
system.

The double points of S on the &3-axis are uniplanar singularities.

The double points of S on the & -axis and &x-axis are biplanar singularities.
If S has double points on the plane {(&1,&,&3) € R3 : & = 0}, then they
are conical singularities. If S has double points on the planes {(&1,&2,E&3) €
R3 : &2 =&Y, and cgg — cau = €13 — C19 = 33 — C11, then they are conical

singularities.

2.4.1 Hessian at the singular points on the axes

In this sections we suppose that the assumptions on the stiffness constants
made the proposition (2.13) hold.
We begin with a study of the singularity on the £3-axis. We have the following

result.

Proposition 2.15. Let S be the slowness surface for the tetragonal crystal
system defined by the condition p(§) = 0.
Then the points (0,0,x1/\/caa) € S are uniplanar singularities.

Proof. We denote P = (0,0,1/,/cqs). We will prove that Vp(P) = 0,
(0/06:)20(P) # 0, (9% /96:06,)*p(P) = 0ifi € {1,2}, j € {1,2,3}, (9/0€)"p(P) =
0 if |a| = 3 and the order of derivations in (&, &) is odd.

The gradient of p at P vanishes since P is a double point of the slowness
surface.

The following remarks help us simplify the calculations of second order

derivatives:

(i) the factors ny, ny vanish twice at P.
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(ii) The expressions d; vanish at P for ¢ = 1,2 (but not necessarily for

i=3).

(iii) When we derivate one of the d;, i = 1,2,3, in one of the variables ;,
Jj = 1 or 2, then we obtain a factor &;, and therefore this derivative will

vanish at P.
(iv) (9/9&)ns =0, (0%/0&0¢;)ns = 0 for « = 1,2, whatever j is.

We conclude from these remarks, that the terms nidads, nadsd; vanish of
order 3 at P. Therefore, they will not contribute to the Hessian of p at P.
Moreover, when we calculate second order derivatives of type (9?/9&0¢;)
of (n3 — ds)dids, then, in order to have a nontrivial contribution, we must
derivate each one of the factors d; and ds, since these factors vanish at P.
However, first order derivatives of d,d, again vanish at P, so we do not
have enough derivations to obtain a nontrivial contribution. In a similar
way we conclude that derivatives of form (9/9¢;)(0/0&3) p(P) vanish when
ie{1,2}, k>2.

We next calculate (0/9&3)?p(P). Again, only (n3 — d3)didy can give a non-
trivial contribution. We must of course derivate each of the factors d;
and dy once, to get a nontrivial contribution. Therefore (9/0&3)*p(P) =
(ng — ds)(P)(0/0&1)dy (P)(0/0&1)da(P). After some calculations we obtain

0? 8(c33 — caa)(c12 + Co6)
= (P =
(9532,]0( ) €13 + Caa

By assumption on the stiffness constants this is non vanishing.
We still have to say something about third order derivatives. If we derivate
once in &3 and the remaining derivatives are in the variables &;, &, then the

result may be non vanishing. O]

We now turn to the case of the & -axis and of the &;-axis. The two cases

are of course symmetric.

Proposition 2.16. Let S be the slowness surface for the tetragonal crystal
system defined by the condition p(&) = 0.



2.4 Tetragonal crystals when ¢y, = cgq

Then the points (+1/,/¢g6,0,0) € S and (0,£1/,/ce6,0) € S are biplanar

singularities.

Proof. We denote P = (1/,/cg6,0,0). As in the case of proposition (2.15)we

can simplify the calculations with some preliminary remarks. We now have:
(i) mg, ng vanish of order 2 at P.
(ii) dy vanishes at P.

(iii) The first order derivatives of the d;, i = 1,2,3, in the variables &, &3

vanish at P.
(iv) ny — dy vanishes at P.

We first prove that

p(P)  8(ci2 + cos)(cas — o)
&} a C13 + Caq

9°p(P) o 2(c12 + c66)®(caa — Co6)
& cgs(C13 + caa)

rp(P) _
083 '

It follows, by the assumptions on the stiffness constants, that (9/9¢;)*p(P)
and (9/0&;)*p(P) have opposite signs.
To calculate the second derivatives in &;, we notice that the terms containing
n1,ny will not give any contribution: they contain factors of type &2, &2 and
these factors are like constants if we derivate them in &;. Since dy and n; —d;
vanish at P, we have

0? 0 0

g2l P) = g5, @(P) g, (mds = dds)(P).

After some calculations, we obtain the result in the statement referring to

(0/0&1)*p(P).
When we calculate (0/9&)?p(P), the term nzd,ds gives no contribution due
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to the factor ng, which behaves like a constant under derivations in &. We

may thus write that

0? 0? 0?

6_§§p(P) = a_ég[(nl — dy)dad3)(P) + di (P)d3(P )852 na(P).
Since (n; — dy) and ds both vanish at P, we have
0? 0 0
8—55[(”1 — dy)dyd3](P) = d3(P )652( 1= dl)(P)a—&@(P)
However, (0/0&;)ds(P) = 0. Therefore,
0? 0?
(")_{’%p(P) = d1<P)d3(P)a_§§n2(P)~

It follows after some calculations that (0/0&;)*p(P) is as stated in the lemma.
To calculate (9/9&3)?p(P) we note that the term containing ny will give no
contribution. The same is true for the term nsd;dy: here we use the fact that

nzds vanishes of order 3 at P. We are left with

32
a—€§[<n1 — d1>d2d3](P)
Since (n; — dy), dy both vanish at P, we must have that
0? 0 0

(n1 — di)dad3|(P) = d3(P)[ 5~ (n1 — di)(P)|[5-da(P)].

g 06y 06y
We use again that (0/0¢3)dy(P) = 0 and, in the end, we obtain 0.

Now we prove that

82
(‘351852])(]3) = 0,
82
aglaggp(P) = 0,
02
g5 = 0

To calculate (0?/0€,0&)p(P), we note that the terms with ny and nj give
no contribution. Thus,
02 02
p(P) =
06106, 06108

[(n1 — di)dads] (P).
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We can now argue as above. The evaluation of (0?/9&,0&3)p(P), (0*/0&30&3)p(P)
is done in exactly the same way.
If we proceed as above, it is not difficult to prove that third order derivatives
of p which contain odd order derivatives in one of the variables &, or &3 vanish
at P, i.e., we have
9% 0 9 0 9% 0 0% 0
8_5%8_52]9(})) = a—ﬁa—&p(m = a—éga—&p(P) = 8_£§6_§2p<P) =0,

8 a a 83 83
v 9 9 _ o _ P
0&1 0, 3€3p(P) 85329(]3) 8§§p( ) =0

Finally, after some calculations, we can prove in the same way that

ok (c12 + co6)(—3cas + cos)
—p(P) =24,/
ag?p( ) o C13 + Caa 7
a—2ip(P) _ _4(012 + ce6) ((c13 + caa)? + 2¢44(co6 — Caa))
0E2 0&, V/Ce6(C13 + Caa) ’
9> 0 _ A(c1z + ce6)(2c12(Caaces — CoC12 + CaaCra) + Cop(Cra — Ce6)%)
90 P = : |
035 06, vV CGs(c13 + caa)
a—4p(P) _ _24(012 + co6)caa((c13 + 044)2 + caa(co6 — Ca4))
8§§‘ ce6(C13 + Ca4) '

]

Remark 2.12. The localization polynomial of S at P = (1/,/cg,0,0) is

thus
8(c12 + co6)(Caa — Co)
€13 + Cy4

. 2(c12 + Co6)*(Caa — Co6) .o
' cgs(c13 + caa) ’

The tangent set at S in P is then given by

8 - 2 3(ca —
(ve RE: (c12 + co6)(caa CGG)U% B (c12 + ¢66)°(Cas 066)U§ — 0,uv5 € R}

2
C13 + Cy4 cge(c1s + caa)

We have two planes and this is the reason to call them “biplanar”.
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AW

Figure 2.7: The biplanar double point of the surface defined by the equation
22— (1/2)2% 4 2y2? — 2222 + 2* + 22%y* + (1/2)y* = 0, and its tangent set
defined by (z — z)(z + z) = 0.

2.4.2 Hessian at the singular points in the coordinate

planes, but not on the axes

We have to consider the singular points on the plane {3 = 0. Let P be

one of these points, e.g., ((1 —Qi_cf))lﬁ, (1 5024/?)1/2,0). Here we want to

calculate the determinant of the Hessian of p(¢) in P. Recall that P satisfies

simultaneously

d3(P) =0, fs(P) =0, (2.4.1)

where we denote f3 = nidy + nedy — dids. Relation (2.4.1) can be used to
simplify the calculation of the Hessians. Indeed, (9?/0¢2)p(P) is very easy

to calculate. This is based on the following remarks:

(i) in view of (2.4.1)

0? 0 0
——|ds(nids+ned; —dids)|[(P) = 2——ds(P)—(nyds+nsd; —dyds) (P).
gz s oty —dia))(P) = 255 (P) - (mad nady o) (P)
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(ii) If we derivate d3, m3 or nidy + ned; — dydy just once in &3, then the
expression which we obtain will be a multiple of &3 and will therefore

vanish on our coordinate plane.

It follows that
92
02

It is then clear that

[d3(P)(nyds + nady — dyds)(P)] = 0.

0? d*ns3
a—&%p(P) = a—gg(P)dl(P)ﬁb(P) =
(613 + C44)2
=2—""_"7 d,(P)dy(P) =
C12 + Ce6 1( ) 2( )
_ o (eas + caa)*(ean — cos) (a2 + 2¢a1 — coo) (2.4.2)

c2,(cra + cep)

Remark 2.13. Mixed derivatives of p which contain just one derivation in

&3 will vanish. This is proved with an argument similar to the one just used
for the calculation of (9/9&3)*p(P).

We are now left with derivatives of form (9?/9¢;0¢;) where i,j € {1,2}.
It is obvious that (0%/0&0¢;)(n3dids)(P) = 0. Now, we can again argue as

above and conclude that

a5.0g, (BP) = geds(P) g (P) + 5o ds(P) e

The situation is further simplified by noting that (0/0¢;)ds is divisible by &;
and (0/0&;)(n1ds +nady — dydy) is divisible by &;. In (2.4.3) we can therefore

divide out a factor &&;. If we also take into account that

£(P).  (24.3)

1 Ods 1 0ds

= = —2044

§0¢  &0¢

then we obtain that

2
%agj(dgfs)(]g) = —2cy4 [fifj (

Lof, | 1og,
qo5 g aaj)] (7).
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An elementary calculation gives
— o f3(6) = —4cgell + 2(cTy — oo + 2c12666)E65 — Acescands + Acss,
ga_&f?)(é) = —4cgs&s +2(Cly — Chg + 2¢12066)E7 — dcesCanls + Acgs.

It also follows from this that the determinant of the Hessian in the variables

gl) 52 18

g, (116105 (105 105’
4€185¢1 (4& 0&, & 0&y <f2 08 +fl 851) )

10 10
— gl (732 - 230

2

We are now ready to prove the following proposition

Proposition 2.17. The double points of the slowness surface on the plane

{(&,6,8&) € R? : &3 = 0} are conical singularities.

Proof. Let P = ((%ﬁ))lﬂ, (#)1/2,0) be one of the double points

in the plane £ = 0, with the standard notation. From (2.4.4), (2.4.2) and
remark (2.13), follows that the Hessian of p = 0 in P has the form

A 0
R = d%p ,
0 8_§§(P)

where the determinant of A is negative. Thus, P is a conical singularity. For

the other singular points on the plane {3 = 0 we can argue as above. [

2.4.3 Hessian at the singular points in the planes
& =8

In principle it is not difficult to calculate the Hessian of p at these points.
For the explicit numerical constants c;; this is a simple arithmetic calculation,
but for general constants the expressions which one obtains are not as easy

to understand. We now begin our discussion recalling that, if P is a double
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point on the planes £ = &2, then d;(P) = 0 for ¢ = 1,2,3. Then, the part
didyds of p will vanish of third order at P, and will not contribute to the

Hessian at P. It is also clear that we have

0*(n;d;j1dj10) (P) _
9&:0&
9, 9, 0 0

=n,;(P) (a_gidj-i-l(P)a_&dj—&-Z(P) + 8_&dj(P)8_§idj+2(P)) :

where the indices are calculated modulo 3, since d;;1d; 2 vanishes of order
two at P. Calculations are quite complex and we will only discuss what
happens under the additional assumption cgs — c44 = €13 — 12 = ¢33 — 11 (see
remark (2.10)). In this case, if we set ¢13+c4q = 12+ o6 and ¢33 = 2¢66 — Cua,
then the double points lie on the space diagonal. In particular they have the

following coordinates
(£ (cas + cos — c12) ™2, E(cas + o6 — c12) 2, Ecas + co — c12)"?).
Moreover the n;(P) have the same values and

di(§) = 1 — ce6&F — ce685 — Caa€l + (cr2 + co6)E,
da(&) = 1 — ca6ét — o6& — casls + (12 + co6)E3,
d3(§) = 1 — caa€} — caa€l — (2c66 — Caa)&3 + (c12 + co6)E3-
Denoting ¢ = dydy + dodz + dsd, it follows that
1 *p(P)  &q(P)
ni(P)&&; 06,08 — 0608,
The Hessian of p at P is then proportional to the matrix

¢ 0% 9q
0 0608 061083
9°q 9%q 9%q

i=1,23.

[\

q
9086 0606 OE
We can easily obtain

10d(P) _,  10d(P) ., 10dy(P)
& 96 ST TN

= 2C44 + 2C12 — 20667
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and
ladl(P) = —2¢¢6 iadl—(m = —2cp lad2—<P) = —2¢¢6
S 06 T & 06 SIS ’
1 9ds(P) 1 dds(P) 1 0d3(P)
- = — , — = -2 y - = -2 )
& o6 M g os wogTen ™

Finally, explicit calculations give

09? ,
(644 + Ces — C12)a—;2](P) = 8(—012066 + C44Ce6 — 044012), 1=1,2,
0%q
(Caa + Co6 — 012)6—52(}7) = 8c44(2¢66 — 212 — C44),
3
0%q 5
(Caa + co6 — 012)85 ¢ (P) = 4((c12 + co6)” + 2(—Cc12C66 + CaaCe6 — CaaC12)),
1062
d%q ) ) .
(Caa + co6 — Clz)m(P) = 4((c12 = cg6) +2c3), i=1,2.

Remark 2.14. Let A be a matrix of the following form:

a b ¢
A= b a c¢ . (2.4.5)

c ¢ d

where a, b, ¢ and d are real numbers. We observe that the eigenvalues of A
are a — b, (1/2)(a+b+d++/(a+b—d)?+8c2).

We note that the Hessian of p at P has the same form of (2.4.5) and so

its eigenvalues are
A(c1z + ca6)®,  —8(caa + cos — c12)?, 42041 — co + C12)”. (2.4.6)
Moreover, the determinant of the Hessian is equal to
128(c1g + c66)*(cas + o6 — C12)?(2c44 — Cg6 + C12)>. (2.4.7)

Thus, if we assume 2c44 — cg6 + c12 # 0, using the symmetries between &; and

&9, it is easy to prove the following proposition.
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Proposition 2.18. Assume, in addition to all the conditions on the stiffness
constants used in the previous sections, that ci13 + ¢y = €19 + Cgg, C33 =
2c66 — Caq and 2cyy — cg6 + c12 # 0. Then, the double points of the slowness
surface on the planes {(£1,&,&) € R : &8 = €2} lie on the space diagonals

and are conical singularities.

Remark 2.15. We recall that in [L2] the quantity b — a, denoted by d, is
the measure of the anisotropy of the crystal. In particular, when d = 0 the
slowness surface of the cubic crystals is reduced to the union of a double
sphere with another different sphere. In the same work a property which
holds when |b — bo| + |¢ — ¢o| + |d| < ¢, for fixed by, ¢y and positive ¢ is said
to hold in the nearly isotropic case. Moreover, the singular points on the &3-
axis and on the diagonal have coordinates (0,0, c™'/2) and ((3c—d)~"/2, (3¢ —
d)~12, (3¢ — d)~1/?).

Using the notations of this thesis (see also remark (2.1)) and considering
the assumption on the stiffness constants made in this section, we have d =
2C44 — Cgg + Cc12. So, it is possible to write the coordinates of the singular
points on the &3-axis and on the space diagonal precisely as in the cubic case,
because 3¢ — d = c44 + cg6 — c12. Moreover, if d = 0, the slowness surface of
the tetragonal crystal does not become degenerate as in the cubic case but,
in view of (2.4.6) and (2.4.7), it is easy to observe that the double points on
the space diagonals become biplanar singular points. Indeed, if d = 0, then
2¢44 — g6 + c12 = 0 and so the determinant of the Hessian is zero and its two
eigenvalues different from zero have opposite sign.

Thus, if the stiffness constants are such that d is small, i.e. we are in the
nearly isotropic case, the conical singularities on the space diagonals, are

near the biplanar case.

2.5 Hessian of singular points when c;; # cg

In the previous section we studied the nature of the singular points which

appear on the slowness surface, in the case when we have c¢;; = cg6. Using
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exactly the same arguments it is possible to verify the nature of the singular
points in the case when c¢1; # cg5. We observe that the main difference
between these two cases is that, if ¢;; = cg6, then the slowness surface has four
biplanar singular points, one on each {;-semi-axis, with ¢ € {1,2}, whereas if
c11 # cgg, then the slowness surface does not have biplanar singular points,
but it may have eight more singular points on the planes & = 0, with ¢ €
{1,2}, as proposition (2.9) shows. Thus, with similar calculations, even if a

little bit more involved, it is possible to prove the following proposition.

Proposition 2.19. Let S be the slowness surface associated with the tetrag-
onal crystal system. Assume that the stiffness constants c;; satisfy the as-

sumptions made in the previous sections and, in addition, suppose ci11 # cgg-
Then:

(i) The double points of S on the 3-axes are uniplanar singularities.

(i) The double points of S on the plane & = 0, which do not lie on the

coordinate axes are conical singularities.

(i5i) If, in addition, we assume that c;3 — ¢33 = €19 — €13 = Caq — Cgg, then

the double points of S on the planes £ = &2 are conical singularities.

Now we are left with the double points of S which lie on the planes & = 0,
with ¢ € {1,2}, but not on the axes. It is possible to prove the following

statement.

Proposition 2.20. Let S be the slowness surface associated with the tetrag-
onal crystal system. Assume that the stiffness constants c;; satisfy the as-
sumptions made in the previous sections and, in addition, suppose c11 # Cgg-
Then the double points of S which lie on the planes & = 0, with i € {1,2},

but not on the axes, are conical singularities.

Proof. We proceed exactly as in subsection (2.4.2). Moreover, we recall that
we can prove the proposition only in the case of the double points on the plane

&1 = 0, because on the plane & = 0 the situation is completely symmetric.
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Let P be one of the double points of S on the plane & = 0, with coordinates
(0, &5, &3) defined in proposition (2.9). We denote by f; the quantity nads +
nsdy — dads, and we recall that dy(P) = fi1(P) = 0. In view of this

2
aaé_l [dl(ngdg + ngdg d2d3)] (P) = 282_ d (P) ail

and if we derivate di, nqy or f; just once in &;, then the expression which we

fi(P)

obtain will be a multiple of & and will therefore vanish in our coordinate

plane. It is then clear that

82 82711
Y (P) =
ez P) = 5a

(P)do(P)d3(P) =
= 2(c13 + caa)*(cas — co6)(c11 — 12 — 2¢66)°E2,

and that the mixed derivatives of p which contain just one derivation in &;
will vanish. We can argue as above (see also section (2.4.2)) and we can

conclude that

0? 0 0 0

a&a&(dlfl)( ) = a@dl( )agjﬂp) 8_£Jd1( )651

Thus, recalling that(0/0¢;)d; is divisible by & and (9/09¢;) f1 is divisible by
gjv that (8/8{2)d1 = _266652 and that (8/3§3)d1 = —2044537 we obtain

awd%P%:ﬁ&&< oh1 . 9fi1 )uv

f1(P).

06,065 e, Mg &
Pdify ofi 1
g )= acnge g
9d, f Ofi 1

g () = TGeuge o

So the determinant of the Hessian in the variable &5, &3 is

of; 1 %_)
OO & Mg &

This concludes the proof. O

ﬂ%£<
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Remark 2.16. We observe that the previous two propositions hold for
generic tetragonal stiffness constants ¢;; (Here we call tetragonal stiffness
constants some constants c;; such that the associated crystal system is hy-
perbolic and tetragonal, in particular ¢;; must satisfy all the necessary con-
ditions on the hyperbolicity of the system stated in the previous sections).
It is not difficult to show that, if we consider the tetragonal system in the
nearly cubic case, i.e. if we assume c¢1; — ¢33 = €19 — €13 = C44 — Ce6 = €, With

le| sufficiently small, then the previous propositions still remain valid.

Now, we want to investigate the case when c1; # cgg, but cyy = cg5. We
have seen that, in this case, the slowness surface has four double points, one
on each semi-axis of the coordinate plane &5 = 0. We have the following

results about the nature of these double points.

Proposition 2.21. Let S be the slowness surface associated with the tetrag-
onal crystal system. Assume that the stiffness constants c;; satisfy the as-
sumption made in the previous sections and, in addition, suppose c11 # Cgg,
but cys = cgs. Then the four double points of coordinate (£1/./c1,0,0) and
(0,£1/y/c11,0) are uniplanar singularities.

Proof. We denote P = (1/,/c44,0,0). We will prove that Vp(P) = 0,
(0/0&:)?p(P) # 0, (0%/06:0¢;)*p(P) = 0if i € {2,3}, j € {1,2,3}, (9/0¢)*p(P) =
0 if || = 3 and the order of derivations in (&2, &3) is odd.

The gradient of p at P vanishes since P is a double point of the slowness
surface.

The following remarks help us simplify the calculations of second order

derivatives:

(i) the factors ny, ng vanish twice at P.

(ii) The expressions d; vanish at P for ¢ = 2,3 (but not necessarily for
i=1).

(iii) When we derivate one of the d;, i = 1,2, 3, in one of the variables ¢;,
Jj = 2 or 3, then we obtain a factor §;, and therefore this derivative will

vanish at P.
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(iv) (9/0&)n1 =0, (0%/0&0¢;)ny = 0 for « = 2,3, whatever j is.
We can argue precisely as in the proof of proposition (2.15) and conclude that
derivatives of form (9/9&0¢;)*p(P), and (9/9¢;)(0/0& )*p(P) vanish when
i,7 € {2,3}, k > 2. Moreover, after some calculations we obtain
92
8_5%]0

By assumption on the stiffness constants this is non vanishing.

(P) = 8(C11 — C44).

We still have to say something about third order derivatives. If we derivate
once in &3 and the remaining derivatives are in the variables &1, &, then the

result may be non vanishing. O]

We conclude this section with a proposition about the nature of the sin-
gular points on the plane £ = £2 in the case when they are near the diagonal.
Indeed, as we have observed in the previous section, it seems difficult to cal-
culate the Hessian of p at these points in the general situation, whereas if
€11 — C33 = C19 — C13 = C44 — Cgg, the singular points lie on the space diagonals
and it is easy to establish the conical nature of these singularities. Now,
we will prove that, if these singular points remain near the space diagonals,
then they still remain of conical type. In particular we will assume ¢4y = cgp,
¢33 —c11 = ey and ¢13 — ¢12 = e3., with |e;], ¢ = 1,3 small. The choice of this
assumption will become easy to understand in the following sections, when

we will discuss the curvature properties of the slowness surface (cf. also the
remarks (2.16) and (2.1) and definition (2.4)).

Proposition 2.22. Let S be the slowness surface associated with the tetrag-
onal crystal system. Assume that the stiffness constants c;; satisfy the as-
sumptions made in the previous sections and, in addition, suppose ci1 # Cgg,
either c1o — c13 = ¢44 — o6 = 0 and c11 — C33 = €, 0T Cyq = Cop, C33 — C11 = €1
and c13 — c1o = e3. Then, if |e;|, i = 1,3 and |e| are sufficiently small, the

double points of S on the planes £ = &2 are conical singularities.

Proof. We prove the proposition with the assumption ¢jo —c13 = ¢44 —cg6 = 0

and c¢11 — ¢33 = e. The proof in the case when cyy = cg6, ¢33 — 11 = €1 and
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c13 — 19 = e3 is exactly the same, with the expressions of f, and f3 a little
bit more involved.
We recall that, if ¢10 — ¢13 = ¢4 — g6 = ¢11 — ¢33, then the double points have

the following coordinates
(£(caq + 11 — 012)_1/27 +(cga + 11 — 012)_1/27 +(cgq + 11 — 012)_1/2)-

Now, if we assume ¢1o — c13 = 44 — 66 = 0 and ¢11 — ¢33 = e, it is not difficult

to see that the double points have coordinates

(62, +65, £E3) (2.5.1)
where
2 _ —1 + efa(ciy) 52 = —1 +efs(cij)
2 ey ten— o Y 5 ey ten— e Y
and
Folcss) = Cag + 2011 — 2012
2(Cij) =
! (cag + 11 — c12)((c11 — €12)? — (c11 — c12)(cag — €) — 2¢34)
fa(ci) = i

(cas + 11 — c12)((e11 — €12)? = (c11 — c12)(cas — €) — 2¢3,)

Thus, as above, it is possible to write the quantities (9%¢/9&,0&;)(P), with
1 = 1,2,3, as the same quantities in the case when c;5 — ¢13 = c44 — g6 =
c11 —c33 plus e times a rational function of the stiffness constants ¢;; (here and
in the following of the proof, P will be one of the singular points in (2.5.1)).
So, we can argue in the same way and prove that, if e is small enough, the
signs of the eigenvalues of the Hessian of p at P and of the determinant of
the Hessians when we assume cjo — ¢13 = ¢44 — cg6 = €11 — €33, do not change
if we assume cj3 — ¢13 = caqa — cg6 = 0 and c¢1; — ¢33 = e. This concludes the

proof. O

2.6 Curvature properties of the slowness sur-

face

In order to obtain a decay estimate for the solutions of the system of crys-

tal acoustics, it is necessary to study the curvature of the slowness surface. In



2.6 Curvature properties of the slowness surface

65

fact, we want to apply some theorems which assure a decay estimate for oscil-
latory integrals defined on a surface, assuming that the surface satisfies some
prescribed curvature properties. Thus, in the following subsections, we will
study the curvature properties of the slowness surface of tetragonal crystals

near the uniplanar singularities and far from all different singularities.

2.6.1 Curvature properties near the uniplanar singu-

larities

We denote by P = (0,0, 0241/ 2) the double point of the slowness surface
S on the positive £3-semi-axis. We recall that the slowness surface is defined
by the equation p(§) = 0 and that from the definition of uniplanar double
point we have p(P) = Vp(P) =0, Vp(§) #0if £ € U\ {P}, where U is a
small neighborhood of P, and (9/0&3)*p(P) # 0. Thus it is possible to write
p near P in the form

p(6)(& + al€)és +b(E))

for some smooth functions ¢, a and b, where p(P) # 0 and &' = (&,&2). Now

we consider the sets
I ={¢ eR*: —ha(¢) £/ JIA(E) = 1}, (2.6.1)

where we denote by A the quantity a?(¢’) — 4b(¢’) and where the expression
Jy.f is defined (2.3). We want to prove that the curves I'* are smooth and of
nowhere vanishing Gaussian curvature. To do that, first of all we recall the

following results obtained in [L2].
Proposition 2.23. Assume that
B>0, v+1>0, a—B>0 2a°>p3(y+1).

Then the curve

{(51,52) ER: (& + &) + B/ + NExE + € = 1}
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has no inflection points. Furthermore, the curve

{@b@MHW:Mﬁ+f®—ﬁ¢&+2%%%+$:1}
will have inflection points, only if

(@ =py)(—ayv2+2y+ 53 —7)) =2 0.

Now we will calculate Joa and J4A. To do this we parametrize S near
P by £ and assume that the three sheets of S are given in a neighborhood
of the &s-axis by the graph of the functions p;(£'), j = 1,2,3. We label j in

such a way that
pr(0) = pa(0) = c?  and  ps(0) = 5577 (2.6.2)

Now, we observe that if we write p(&) = @(&)(&3 + a(£)& + b(¢')), then
@(P) # 0, 50 & +a(§)& +b(&) = (& — p1(€))(& — p2(£')) and this yields
—a(&’) = p1(&) + p2(&).

Moreover, it is possible to write

p(&) = Ao(€)&5 + A1(€)&5 + Az(€)E5 + As(E),

where A; are functions of ¢7 and &5 (here we recall that p is a homogeneous
polynomial of order six). Thus, using Cardano’s formula it is possible to write
p2(¢') as a function of £ and &3. So, using the properties of polynomials of
order three, we have p + p3 + p3 = —(A;1/Ay) and we have that p? + p3 is
again a function of & and &3. We can conclude that Jya(¢') = a&? + 8€3 and
it is clear by symmetry that a = (.

Thus, we need to calculate a. To do this, we consider p(&1,0, p(&1)). We have

p(§1,0, p(61)) = d2(&1,0, p(61)) (n1d3 + nzdy — didz) (61,0, p(61))

and from dy (1,0, p(&1)) = 0 we obtain the smooth root

(&) = 0241/2\/ 1 — cee?.
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Thus v1(0) = 0241/2, v1(0) = 0 and /(0) = —066/04114/12. In order to take into
account the remaining sheet which passes through the singular point, we

consider the smooth solution 15(&;) of

(n1d3 + n3d1 - dldg)(§1, 0, ,0(51)) = 0, (263)

which satisfies 15(0) = 0241/ ? It’s clear that 1/4(0) = 0, so we want to compute

v4(0). To do this we can just derivate (2.6.3) twice in & and then set & = 0.

It follows, after some calculations, that

(c13 + ca4)? — c11(css — caa)

\/044(033 - 044)
Now, we observe that v4(&;) + 12(&1) = p1(&1,0) + p2(&1,0) and so we will
have (9/0¢1)?(p1(0,0) + p2(0,0)) = v/(0) + v4(0). Thus we conclude that

v5(0) =

(c13 + C44)2 —ci1(cs3 —caa) 66 (c13 + ca4)® — (c11 + Ce6)(C33 — Caa))

\/044(033 - 044) Cq4 B \/044(033 - 044)

We now turn to the calculation of J;A. From the above discussion it follows

that A = a®>—4b = (p; — p2)?. Furthermore, we denote by D the discriminant
of the polynomial q(t) = Agt® + A1t + Ast + As. D can be written in terms

of the coefficient of the polynomial g as
AZAZ — 4AGAS — 4A3 A3 — 2TA — 02 A2 + 18Ag A Ay As, (2.6.4)
and also in terms of the roots of ¢ as
AL (02 = 3) (P} = o) (03 — PD)]

(it is obvious that p; is a root of p(€) if and only if p? is a root of ¢(t)). Thus

we can conclude that

JA = AgpJyD
where
p=[(p1+ p2)*(0)(p¥ — p3)*(0) (P — £5)*(0)].
So it is easy to calculate p if we take into account (2.6.2). We obtain

4 (033 — 044)4 _ 4(c33 — cag)?

1 5
C33C44 C33C44
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The expression of D can be calculated explicitly using (2.6.4). Here all the
coefficients depend explicitly on &7, €2 and thus they do not directly depend
on &1, &. We conclude that J; D is a polynomial in 2, £2 and we can calculate

it using Maple. In particular we have

2
Ay = Cy4C33,

A1 (&) = (ess(cr + ces) — (c13 + 644)2 + 01214))044(5% + 522)

— (44 + 2¢33) 44,

As(E') = 2c4s + 33 + [(013 + c14)” — (caa + c33)(c11 + co6) — 204214} (& +&)
+ (—2c11¢75 + 4eppChy — CiaCa3 — 233C66C12
+ 20120%3 + 201264214 + 20660%3 —4dcyici3c44 + 4C12013C44 + AC66C13C4 + 0%1033)5%53

+ (€11Ce6C33 — Co6Cag + CaqC11 — 2Ce6C13Ca4) (€] + E5),

As(€) = [ences(€1 + &) — (ces + 1) (€ + &)
(), — €y — 2019666) 6163 ] [caa(€7 +635) — 1],

and

D = 2¢3,0(82 + €2) — 22 e€362,

where € and 0 are polynomials in ¢;;. In the general tetragonal case these
expressions are quite involved, and thus it is quite difficult to study the
curvature of I'*. Therefore we will only consider the nearly cubic case, i.e.

we introduce the following relations on the stiffness constant
C11 — €33 = C44 — Cgp = C12 — (13,

and we assume € = ¢j;] — C33 = Caa — Ceg = C12 — C13 to be small. We
observe that, if e = 0, we are precisely in the cubic case. We also return to

the notations used for the cubic case. In particular, we set ci3 = c12 + €,
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Cos = Caate,c33=ci1teand cyy =c¢, c;19=b—cand ¢;; =c+b—d. With
these notations we can write
JuD = (e +b— d)*(2e* + 2eb — d* 4+ 2bd)*(£] + £5) — (e + b — d)?
(4€?b* + 8eb®d + 2b%d* + 8e®b — 8bd*e + 8e?bd — 4bd® 4 d* — 6e2d” + 4e)E1ES
= [d*(b— d)*(2b — d)* + ec® D1 ] (&} + &)
— [Pd?*(20* + d® — 4bd) (b — d)* + e’ D] €165, (2.6.5)

where

D, = (2d* — ed® — 6bd* + 4b*d — 2e%d + 4e*b + 2eb* + 2¢%)
(—d* + 2b* — 2ed + 4eb + 2¢?)

and

Dy = 4¢° +16¢e*b—8e*d+24e3b? — 16e3bd — 23 d? — 28¢%bd? +16€%b> + 1262 d®
— 48eb*d? — Hed* + 32ebd® + 16eb®d + 4eb* — 2003d? + 12b%d® + 2bd*
— 2d° + 8b'd.

Thus, if we assume d # 0, it is possible to write JyD = d*J; D, where

JiD = [*(b—d)*(2b— d)* + ed > D] (& + &)
— [2(20° + d* — 4bd) (b — d)* + ed*c*D,) €3,

We observe that, if we set e = 0 in (2.6.5), we find exactly the expression of
J4D in the case of a cubic crystal (see [L2], page 185). Moreover, with this

notation, we have

4(b+e—d)* 4(b—d)*
JA = JyD = ————J4D +eD3J,D, 2.6.6
4 c3(c—|—b+e—d)34 03(c+b—d)34 +el3dy ( )

where D3 is an opportune rational homogeneous polynomial of order —5 in

the variable b,c,d,e. We can rewrite the constant « calculated above, in

terms of b, ¢, d and e. We have
_ (e+b)?®  2c4+b-d+3
~ Vele+b—d) Ve

_ _oi—d

2b+2e—d

DR
2 — d d\/c

Jeb—d) e —dr teelv—d)

(2.6.7)
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As before, we observe that, if we set e = 0 in (2.6.7) and (2.6.6), again we
find precisely the constants of the cubic case. Furthermore, we note that
c+b—d=cy >0 and that, if b —d = ¢;3 — ¢44 = 0, (here we are still
assuming e = 0) then « tends to infinity and J4A vanishes of order five
and so proposition (2.23) is easily satisfied. Thus, we have shown that the
quantities —Joa + +/J4A are of form

— Joa £ /A = 23/c(&] 4+ 63) + dQ1 (&1, &2, d) 4 €Qa (61,62, d e)
+ ||/ Q3(&1, &, d) + eQu(&1, & dye), (2.6.8)

where (1 and ()2 are polynomials of order two, and ()3 and )4 are polyno-
mials of order four in (£2,£3), with coefficients which are analytic in d and e.
We recall that the sets I't are defined in terms of —.Jsa + /4 A.

We recall that, if e = 0, then

—Joa t /A = 21/c(& + &) + dQ1 (&1, &, d) £ |d|/Qs(&1, &2, d), (2.6.9)

and it is well known that there exist constants b, ¢ and d, such that the

curves, defined by

2/c(& +&3) +dQi (&1, &, d) £ |d|/Q3(61, &, d) =1

have Gaussian curvature different from zero everywhere (for detail see [L1],
pages 17-20). In particular, this means that there exists a cubic crystal for
which the required curvature properties near the uniplanar singularities hold.

Now, we rewrite expression (2.6.9) in the form

a(€ + &) + B/ + ks + &4,

whereas we rewrite expression (2.6.8) in the form

o€+ )+ B €+ 2 v &,

where a, 3, v, o/, 5" and v are opportune functions of b, ¢, d and e. We are

ready to state the following proposition.
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Proposition 2.24. Let b, ¢ and d be fized and such that o, 5 and ~ satisfy
the hypothesis of proposition (2.23) and the condition

(= By)(—ay/2+ 27+ (3 —7)) <0.

Then, there exists a small real number e such that o/, 5" and ~" still satisfy

the hypothesis of proposition (2.23) and the condition
(o =) (=d'\/2+29 +5(3—7)) <.

Proof. The proof is trivial because the hypothesis of the proposition (2.23)
and the condition (a— 7)(—ay/2 + 27+ (3—7)) < 0 define an open subset
A of R? and we can write, in view of (2.6.6), (2.6.7) and (2.6.8), &' = a+eD,,
p'=p+eDgand v = y+eD., where D,, Dg and D., are smooth functions
of b, ¢, d and e. Thus, if (o, 5,7) € A, then there exists a small e such that
(o, 5,9 € A. ]

From this proposition follows the desired result.

Proposition 2.25. Assume c13 = ciate€, ¢33 = ci1+€ and cgg = caa+e. Then
there exist stiffness constants cia, ca4, c11 and a small real number e such that

the sets T are smooth and of nowhere vanishing Gaussian curvature.

Remark 2.17. It is easy to see (cf. proposition (2.22)) that, if we assume
C44 = Cgp, C11 — C33 = €1, and c13 — ¢13 = e3, the quantities —Joa £/ J4A are

of form

2\/E(f% + 53) +dQ1 (&1, &2, d) + 61@2(51752, d,eq,e3) + 63@3(517527 d,eq,es)
i‘d\\/(h(fbfm d) + 61@5(51752, d,eq,e3) + 63@6(§1a527 d,eq,e3),

where Q1, Qa, Qs are polynomials of order two and Qu, Qs, Qg are polyno-
mials of order four in (&, &), with coefficients which are analytic in d, e; and
es.

Indeed, if we consider Jya and J4A as functions of (e, e3), we have that, if
(e1,e3) tends to (0,0), then Jya(ey, e3) £/ JsA(eq, e3) tends to (2.6.9). Thus,
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if we use the Taylor expansion of Jya(e,es) and JyA(eq, e3) when (eq,es)
tends to (0,0), we obtain the desired result, with Qy = 9., J>a(0,0) + O(e?),
Qs = ey J2a(0,0) 4+ O(e3), Qs = 0o, JIA(0,0) + O(€2), Qg = 0y JAA(0,0) +
O(e2) and Qu(&1, &, d) = Q3(&1, &, d). Moreover, it is not difficult to write
down the expressions of the Q;, but they are quite involved and since we will
not need to use them later, we will not write them here.

Thus, in this case, it is possible to prove a proposition similar to (2.24) and
so the result of corollary (2.25) still remains valid if we assume cyq = cg,

ci1 — ¢33 = €1 and ¢ — ¢i13 = e3.

We conclude this section proving that the total curvature near the uni-

planar singularities of the external sheet of the slowness surface is positive.

Proposition 2.26. Assume cqyy = cgg, 11 — €33 = €1 and ¢ — ¢13 = e3. 1If
leil, i = 1,3 are sufficiently small, then the total curvature of the external

sheet of the slowness surface is positive near the uniplanar singularities.

Proof. We prove the proposition for the uniplanar singularity on the £3-semi-
axis. As before, we denote by P = (0,0, 0241/2) the double point of the
slowness surface S on the positive £3-semi-axis. It follows from our study of
the local discriminant that the defining equation for the two sheets which

pass through P can be written locally in the form:

6;? =Q1+eQy+esQs3+ fL £ ’d|\/Q4+€1@5 + e3Q6 + [

where the functions Q;, Q;, with i = 2,3,4,5,6 and fj, with j = 1,2, have

the following properties:

(i) @1 is a positive definite quadratic form in the variable (&;,&;) with

coefficients which depend in a C'*° way on d.

(ii) Q;, with i = 2,3 are functions of (&1,&2,d, €1, €2) and are homogeneous
polynomials of order two in the variable (&, &) with coefficients which

depend in a C* way on d, ey, e3.
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(iii) There exist constants ¢;, with i = 1,2, 3 such that Q; > ¢1(£ +£3) and
Qi > (& + &) fori=1,2.

(iv) Qy is a polynomial of order four in the variable (&1, &) with coefficients
which depend in a C'*° way on d, whereas Q;, with i = 5,6 are homoge-
neous polynomials of order four in the variable (&1, &;) with coefficients

which depend in a C* way on d ,e;, and es.
(v) There exist constants ¢; such that Q; > ¢;| (&1, &)|* for i = 4,5, 6.

(vi) f; with 7 = 1,2 are C*™-functions of (&1,&s,d, e1,€z), defined in a
neighborhood of zero, such that 8?18é2f1(0) =0 for k+1 < 2 and
8k18l2f2(0) =0for k+1<4.

We also know that in the cubic case, i.e. if e; = e3 = 0, there exists a
small d such that the total curvature of & calculated for (&1, &) near (0,0)
is positive. Now, we fix such d and we consider the total curvature of & as
a continuos function F' of (ey, e3) which is positive in the origin. Indeed, we

recall that the total curvature of & is given by
2 492 ot 2 2
8515153 8525253 B (8515253 )

which is a continuous function of (eq,e3), in view of the previously enumer-
ated properties. Thus, by continuity, there exists a neighborhood U of (0, 0)
such that, if (e, e3) € U, then F(ey,e3) > 0. This concludes the proof. [

2.6.2 Curvature properties near the conical singulari-

ties and in the regular regions

The aim of this section is to prove three main results. The first result is
that, if we denote by S the slowness surface of some tetragonal crystal and
if P € S is sufficiently away from the double points of S, then the Gaussian
curvature of S at P is strictly positive. The second one is the following: if
P € S is a regular point for which the Gaussian curvature vanishes, then the

mean curvature of S at P does not vanish. The third one is that, generically,
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there are no planes which are tangent to S along entire nontrivial curves. To
prove these results we will use a perturbative argument. In fact, the slowness
surface associated with a cubic crystal satisfies these curvature properties and
so, by continuity, the slowness surface associated with a tetragonal crystal
will also fulfill the same properties if we are in a nearly cubic case.

These three results on the curvature of S are crucial because we want to use,
in the following of this work, some well known theorems which assure a decay
estimate for oscillatory integrals on S, if the previous curvature properties
are satisfied.

We start with the following definition which clarifies the notion of nearly
cubic crystal, which we already used in the previous part of this work (cf.

remark (2.15), proposition (2.22) and the previous section).

Definition 2.4. We denote the first octant in R by O = {£& > 0,0 =
1,2,3}.

Let K be a cubic crystal associated with the constants a = ¢y — C44,0 =
C12 + Cyq, ¢ = cy44. We denote by e; = c33 — 11, €3 = Cgg — Cqq, €3 = C13 — C12.
We call the quantities e; the tetragonal excess of the crystal and if all e; are
small, we say that the tetragonal crystal is nearly cubic.

This is justified by the fact that when e; =0 fori =1,2,3, we have ¢11 = cyq,
Caa = Cgg, C12 = C13, which means that the crystal is cubic (if we already know
that it is tetragonal).

Also we denote by QQ(e1, ea, e3) the tetragonal crystal associated with the con-
stants cg3 = €11 + €1, Cop = Caa + €2, C13 = C12 + €3.

Finally, we denote by S(eq,es, e3) the slowness surfaces of Q(eq, ez, e3), and
by Se(er,e2,e3), Sm(er, e, e3), Si(er, ez, es) the exterior, middle and inner

sheets of S(eq, es, €3).

In this section we start from a cubic crystal K with slowness surface given
as in (1.3.13). We recall that in (1.3.13), K is associated with the constants
a, b, c, defined in the previous definition, and that we denote the quantity

b — a by d. The following result has been proved in [L2]:
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Theorem 2.27. Assume that d = b— a is sufficiently small (compared to c),
b > 0, and denote by S the slowness surface of the crystal defined in (1.3.13).

Then the following conclusions hold:

a)
b)

d)

f)

There is no plane which is tangent to S along an entire curve.

The total (Gaussian) and mean curvatures never vanish simultaneously

in the smooth portion of S.

Let T be an open cone in R® which does not contain the 14 singular
points of the slowness surface S and such that if (§1,&2,&3) € S, then
there exist i € {1,2,3} such that || > ¢;|(&i41,&i12)| (here the indices
are counted modulo 3) for some constant ¢; > 2742, Then the total

curvature of S does not vanish in SN1T.

IfT is fized as in c), then the three sheets S, Sy, Si of K stay at positive

distance from one another in SNT.

If we denote by P = ((3c—d)~/2, (3c—d)~V/2, (3c—d)~'/?) the conically
singular point of S in the first octant, then there is a small open cone
IV which contains P, such that the total curvature of S, is negative in
I.

If P is one of the points of K on an axis, then there is a conic neigh-
borhood I' of P such that the total curvature of P is strictly positive for
smooth points in Se N 1T.

The main result in this section is that statements similar to theorem

(2.27) hold for a tetragonal crystal if this is sufficiently close to the crystal

K. We may roughly say that K is nearly isotropic and that the tetragonal

crystals which we study are nearly cubic. We should say that the argument

in [L2] gives a direct proof of our result for tetragonal crystals which are just

nearly isotropic (Of course the tetragonal crystals which we consider are close

to the isotropic case, but closeness is defined in a two-step approach: firstly,

d has to be small and then, once d is fixed, the d; must be even smaller, with
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smallness defined in terms of d).

Since we have no new contributions with respect to [L2], we think that it is
not necessary to repeat the argument found in [L2] for tetragonal crystals (in
order to extract all information which one can obtain by arguing directly for
a given tetragonal crystal, rather than considering tetragonal crystals which
are small perturbations of cubic crystals), and hope that better results can
be obtained with a completely different approach.

Now we are ready to state the first result.

Proposition 2.28. We fix open cones I',T" such that (1,1,1) e I' cC ' C
O, and such that the distance between the sheets of the slowness surface of
the crystal K is positive in U'\T". IfT" is small (it suffices to have that I" does
not intersect the &3 = 0 plane), these sheets can be represented as graphs of
functions (&1,&) — &3(&1,&) in . Assume |e;| < 0.

Then if 6 is small enough, the singular point P(eq,es,e3) of S(ey,ea,e3) in
O will stay in I'. Moreover, the distance between the sheets S.(eq,es,e3),
Sm(e1, e, e3), Si(e1,ea,e3) in T'\ IV will be bigger than 5>0 for some con-
stant 0 which does not depend on the e;. In particular, the curvatures of
Si(eq, e, e3) will depend in a continuous way on the constants e; and there-
fore the total and mean curvatures cannot vanish simultaneously in T' \ T if

0 is small enough.

Proof. The first statement follows from the expressions in proposition (2.12)
(see also proposition (2.22)), which give the conically singular points near the
diagonals of a tetragonal crystal. As for the second statement, we already
know that the sheets of S(0,0,0) stay at a positive distance from one another
in '\ I". If [ is not too large, the sheets of the surfaces Si(ey, e, e3) can
be represented in I' as graphs of some functions in the variables (£, &), too.
Again after assuming 0 to be small, we may assume that these functions are
smooth when their graphs stay in T' \ TV and depend in a continuous way
on the constants e;, since they are given by Cardano’s formulas and we are
staying away from the singularities (which correspond to the points where

the discriminant in the Cardano’s formulas vanishes). Thus, by continuity,
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there exists a neighborhood U of the origin in R? such that, if (ey, es,¢3) € U,
then the sheets of S(eq, e, €e3) stay at a positive distance from one another
in I"'\ I". Using the same argument it is possible to prove the last part of
the proposition, because the total curvature of S(0,0,0) is strictly positive
and the expressions of the total curvatures of the sheets of S(ey, e, €3) are

continuous functions of (ey, es, e3). (See also the proposition (2.26)). O

Proposition 2.29. Let I' be an open cone in R® with the properties of point
c) in proposition (2.27), i.e. T' does not contain the singular directions of
the slowness surface and it is not on the space diagonals, then the total cur-
vature of the slowness surface S(ey,eq,e3) is strictly positive for all points
¢ € S(ey,ea,e3) NI

Proof. We note that the total curvature of S(0,0,0) is strictly positive for
all points £ € S(ey,e2,e3) NT. Thus the proof is precisely as in the second

part of the previous proposition. O]

Remark 2.18. Now we would state a proposition similar to (2.28), in the
case of singular points near the &-axes, ¢ = 1,2. The main difference is
that, in the cubic case, we have uniplanar singularities on the axes, whereas
when we move to the tetragonal case each uniplanar singularity gives rise
to two conical singularities which lie near the axes. First it doesn’t seem
difficult to prove a proposition like the previous one in this case, but there
are some problems when we want to prove that there are no planes which
are tangent to the slowness surface along an entire curve. Indeed, passing
from a uniplanar to a conical singularities, the sign of the curvature near the
singular point changes from positive to negative and so we cannot exclude
the possibility that the tangency of a plane in one point became tangency
along an entire curve.

Thus, we assume in the following that cqyy = cgg, i.6. ea = 0. In fact, in this
case, it is easy to see that the double points on the coordinate plane &3 = 0
lie on the axes (see (2.0.5) and (2.0.6)) and that these singularities are of
uniplanar type (see the proof of proposition (2.20)).



78

2. Geometrical properties of the slowness surface

With this assumption, using arguments similar to those used in the proof
of the previous proposition, it is possible to prove the desired curvature

properties.

Proposition 2.30. We assume here that b > 0 and pick an open cone I'
which contains an axis. If the e; are sufficiently small, then the singular
points of S(eq, eq, e3) close to the chosen azis stay in T'. Moreover, the total
curvature of Se(e1,0,e3) in a neighborhood of the uniplanar singularities is

strictly positive.

Remark 2.19. It is possible to prove the same result with b < 0 if we replace
Se with ;. For details see [L2].

Proof. If we now take a tetragonal crystal Q(ey, ez, e3) with ey, eq, €3 suffi-
ciently small, and if we fix an open cone I' which contains the axes, then it
follows, by an argument similar to the one used in the previous proof, that
the singular points of the surfaces S, (e, e, e3) near the axes have to stay
in I' if |e;] < § and § is small. In the case when e; = 0, i.e. ¢4y = cgg,
we have seen that the singular points in question are uniplanar and lie on
the coordinate axes. Thus, the second part of the statement follows from

proposition (2.26). O
We now come to the main result in this section.

Theorem 2.31. Let K be a cubic crystal as in theorem 2.27. If § > 0 1is
sufficiently small and |e;| < 0, then there is no plane which is tangent to

S(e1,0,e3) along an entire curve.

The proof of theorem (2.31) will be given later in this section. We start
by recalling the following result from [L2].

Proposition 2.32. Let f be a real-valued polynomial on R? of degree six such
that, except for a finite number of points P',... P* € S ={£ € R3; f(§) =
0}, we have that f(§) = 0 implies Vef(§) # 0. We also assume that S is

bounded and that there is a plane ¥ which is tangent to S along a smooth
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curve I,
Then ¥ is tangent to S along an ellipse which contains I'. In addition to this
ellipse of tangency, there can at most be finite additional points at which %

is tangent to S.

Now, before we start the proof of theorem (2.31), we will make some
additional consideration.
We then assume that for every j > 0 there are |¢]| < 1/4,]e}] < 1/, ]e}] <
1/7, and ellipses 77 C S(e), el eg) such that for each j there is a common
tangent plane Z (e, es, e3) to S(e), €}, e}) for all points in 47/, Our aim is to
show that a subsequence of these ellipses tends to an ellipse v C S which has
the property that there is a plane Z which is tangent to S at all points of ~.
Here S is of course the slowness surface of the cubic crystal K from which we
started. The meaning of the statement that v/ — ~ will be explained later.
One of the problems with this approach is that we must exclude that the
ellipses 7/ in the subsequence shrink until the limit set is a point. We do this
by obtaining some preliminary information on the location of the ellipses +7
when the eg are small. We first observe that (by symmetry) we may assume
that all 4/ have points in © and that they can not have points on parts of the
S(el, e), el) where the total curvature is non vanishing. (See e.g., proposition
8.2 in [L2].) In particular, they can have no points on the inner sheets. (This
is also clear by elementary considerations on the number of points in which
a line in the tangent plane to S(e}, €}, e}) along 47 intersects S(e], €}, €}).)
Further information can be obtained by studying the suitable plane curves
in S(eq, ez, e3). We fix some singular point P(eq, ez, e3) in S(eq, €2, €3) in the
closure of and denote the coordinates of the projection of P(ey, ey, €3) in the
&3-plane by £9,£9. Also denote by £(a, 3) the curves

L(a, B) = {£ € Seler, e2,e3) U Sp(er, ez, €3);
a(e—&)=p&—-8),&6>0,i=1,23}

with a, B € R, o?+3% = 1. Arguing as in [L2] it follows that these curves have

no inflection points when the crystal K is sufficiently close to the isotropic
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case and |e;| < ¢ with 0 sufficiently small.

Lemma 2.33. Assume that we are given some ellipse v C S(eq, ea,€3) such
that there is a plane which is tangent to S(eq, eq,e3) at all points of . Then
v must lie completely in a small conic neighborhood of some singular conical

point. Moreover, it has to lie on the outer sheet Se(ey, ez, e3).

Proof. We know that v is a curve of vanishing total curvature, so it must
lie in a neighorhood of a conical singular point. Now consider the curves
L(a, B) associated with this point. Since smooth branches of L(a, 8) have
non vanishing plane curvatures, v cannot intersect L£(a, ) on one single
smooth branch, and in fact one point of the intersection must be on one
smooth branch, the other on another smooth branch. This is only possible if
the two branches both lie on the outer sheet of S(ey, e, e3) and both branches
must lie in O.

In the case of a conical singularity it implies at least that both points have

to lie on the outer sheet of S(ey, e, e3). (See [L2] for a similar situation.) [J

Lemma 2.34. Let § > 0 and IV C T' be small open conic neighborhoods
of the space diagonal, as in proposition (2.28), and assume that the conical
singular point in O of Sc(e1, e, e3) which is close to the space diagonal stays
in I' and that the total curvature of S.(ey,eq, e3) is strictly positive when we
stay outside I' in O. Also assume that it is strictly negative in I".

If v C S(eq, ez, e3) is an ellipse in I such that the points of vy have a common
tangent plane, and if |e;| < § with & small enough, then v C T'\ T” and = is

a curve which encircles the space diagonal.

Proof. -~y cannot contain points where the total curvature S(ey, g, €3) is van-
ishing. It must then lie completely in I' \ I'. The fact that - encircles the
space diagonal follows then from the fact that it must contain for every «, 3
as above, points from different smooth branches of £(«, 3). This shows that
7 encircles the singular direction in I (see the picture in section 9 of [L2])

and therefore also the space diagonal, since it has no points in I". O]
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Before we continue, we must specify now what we mean by stating that

a family of ellipses tends to another ellipse.

Definition 2.5. Let ¥ C R? be a plane and consider an ellipse v C X with
center P € R3.

We call “mazimal diagonal” and “minimal diagonal” the line segment in X
which passes through P, and has end points on the ellipse and its length
is maximal and minimal respectively, among the lenghts of all line segments
which pass through the center P and have endpoints on . (We tacitly assume
that v is not a circle. If it is, then there is no need for our terminology.)
Now, let ¥9 € X7 be a family of plane ellipses. We say that 77 tends to
the plane ellipse v € X if the planes X7 in which the +7 lie tend in the
Grassmanian topology to the plane X, the centers of the ellipses 77 tend to
the center of v and the end points of the maximal and minimal diagonals in
the ellipses ' tend respectively to the end points of the mazimal and minimal

diagonals on .

Lemma 2.35. We consider two open cones I' CC T such that (1,1,1) € I".
We also fiz P € TV \ {0} and consider the plane ellipses 47 C T'\ I which
encircle I'". Moreover let 6 > 0 be small enough and such that the distances
in the set I' \ I between the plane orthogonal to the diagonal which passes
through P and the planes X7 which contain ~7 are smaller then §. Then there
exists a subsequence ji and a plane ellipse v of center P such that the ellipses

Ak tend to v in the sense of the previous definition.

Proof. The condition that P € I'"\ {0} together with the assumption on the
distance between the planes and the fact that the 47 encircle I implies that
the size of the minimal diagonal of the 7/ remains bounded from below. The
assumption 7/ C T'\ I"”, on the other hand, shows that the maximal diagonal
of the 4/ remains bounded from above.

The statement now follows from compactness. ]

We are now ready to conclude the proof of the main theorem.
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Proof. (of theorem (2.31)). We proceed by contradiction and we assume that
the conclusion of the theorem is false. We will then show that there is a curve
v on the slowness surface S of K such that the points of v admit a common
tangent plane to S.

We pick two open cones IV CC I' in O. Let Q(e{,O,eg) be a sequence of
tetragonal crystals with ef — 0 when 7 tends to infinity and for which we
can find plane curves 47 in S(e, 0, €}) which have (for each fixed j) a common
tangent plane. We observe that S(e/,0, e}) always have uniplanar singular-
ities on the coordinate axes. We know that these curves are ellipses and
lemma (2.33) states that the curves 77 lie in a conical neighborhood of the
conical singular points of the planes £ = ¢2 and that they lie on the outer
sheet S.(e],0,¢}). Moreover, lemma (2.34) shows that 7; C T'\ I” and that
the v; encircle IV. We also know from lemma (2.35) that a subsequence of
these ellipses tends to a nontrivial ellipse v in I' \ [". By what we have seen
above, the surfaces S(e],0,¢}) depend in T'\ I” in a smooth way on the pa-
rameters €] and e} if these are small enough. It follows that the limit ellipse
7 lies on S (which is the S(dy,0,ds) with d; = 0) and that there is a plane

which is tangent to all points of 7, which is a contradiction. ]



Chapter 3

Decay estimate for the

solutions of the linear system

The main result of this section will be the following decay estimate for

the solution (1.3.14) of the system of crystal acoustic for tetragonal crystals.
Theorem 3.1. Assume that the stiffness constants c;; satisfy the conditions:
ci >0, i=1,3,4,6, Caq 7 C33, Cia # C11,

c11 — ce6 — C12 > 0 cs3(cia + co6) — (13 + caq)® > 0,

C12, c13 small when compared with c;;, fori=1,3,4,6,
together with
C44 = C6, C33 = C11 T €1, Ci13 = C12 + €3,

with |e;| sufficiently small for i = 1,3. Then, there is a constant C, such
that

3
ut. ) < G+ )Y S (eEhlh + g ). (o)
J=1 |a|<k

for all (t,x) € R*, for any solution of the Cauchy problem of the system
(1.3.10), with the initial data u;(0,2) = f;(z), O, (0,2) = g;(z), j =1,2,3,

where f; and g; are smooth functions on R®* and have compact support.
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The overall strategy for proving results like this one is well established
and is in particular similar with the one used in the related case of crystal
acoustics for cubic crystals in [L1] and in the case of crystal optics in [L5].
We recall (as we have already observed in the first chapter) that the solution

of the Cauchy problem

o° : ia
@ul(t,x) = Z Cijklmuk(t,l'> 1 = 1,2,3. (302)
jk =1 j
0 .
u;(0,2) =0, aui(o,x) = gi(x) i=1,2,3 (3.0.3)
where z € R3 and ¢;, i = 1,2,3 are C®-functions on R3 with compact

support, admits an explicit representation in terms of oscillatory integrals
involving the Fourier transform of the Cauchy data. In particular we have
that the solution of the Cauchy problem can be written in the following form,

already described in the first chapter:

6 3

wi(w, 1) = / YO et OHEOT (6)gi(&)dE i=1,2,3.  (3.04)

R 1 j=1

Thus, first of all, in order to obtain the desired decay it is essential to have
some information about the regularity of the amplitude function, i.e. the
function T;,;(£)g;(§). In particular, we want to find an explicit representation
of the function £ — T;,;(§) and we want to know as much as we can about its
regularity. We will discuss the properties of the function 7;,;(§) in the first
section of this chapter. In the same section, we will also see that the regularity
of the amplitude function is sufficient in order to obtain the estimate (3.0.1)

when ¢ remains bounded.

Remark 3.1. In fact the function §;(€) is the Fourier transform of the initial
data and so its properties are easily established. In particular, the functions
g;(€) are in 8(R?). in order to understand the singularities of the function
T (£)g; (&) it will then suffice to study the factor T;,;(£). In a similar way
the decay properties of T},;(£)g;(§) are easily read derived those of Tj,;(€).
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It follows that, when we prove (3.0.1), we may assume that t is large.
Indeed, to obtain the actual decay, we will take into account the oscillatory
character of the exponential ¢**7(©)+%#:) when (¢, ) tends to infinity and the
way in which we will do this will depend on the relative position of z, t, .
Actually, using the fact that the function £ — 7,(£) +i(x, §) is homogeneous
in £, we can reduce estimates of the integrals in (3.0.4) to integrals on the
slowness surface. We will perform this reduction in section (3.3).

As we have discussed in great detail in the second chapter, the slowness
surface is a three-sheeted surface and the three sheets are smooth surfaces
except for a finite number of double points, i.e. points where two of the
three sheets touch each other. Thus, during the proof, it will be convenient
to separate the contributions coming from the singular points of the slowness
surface from those coming from the regular points. Thus, it will be possible
to use well known theorems about the estimate for Fourier transforms of
surface carried densities. We will use different theorems, depending on the
geometrical properties of the slowness surface. We will discuss all these cases
in section (3.4).

In order to achieve this, we consider some direction & € R3\ {0} and a

smooth function y of R?\ {0} with the following properties:

(i) x(A&) = x(&) for all positive A.

(ii) There exists a conic neighborhood I'¢, of & such that, x(§) = 0 for all
5 eR? \ FEO'

(iii) There exists a conic neighborhood I'y CC I'¢, of & such that, x(§) =1
for all £ € T, .

Therefore, rather than directly estimating the solution of the Cauchy prob-

lem, we will estimate the expressions

g = | e OTEIT (i) (305)

for some fixed i = 1,2,3, p=1,2,3,4,5,6 and j = 1,2,3. If we can do this

for every &, thereby obtaining an estimate as in (3.0.1) for I;,;, we will also

Dj>
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have proved theorem (3.1). It is clear that the cases p = 4, 5,6 will be similar
to the cases p = 1,2, 3, so we shall deal only with the latter.

To conclude the chapter, we will prove, in analogy with the theorem used in
section (3.4), a theorem, about the decay estimate of oscillatory integrals on
surfaces with singular biplanar points. Indeed, once we prove this theorem,
we will be able to estimate the expressions (3.0.5), when & is the direction
of a biplanar singular point of the slowness surface for tetragonal crystals,
provided that the amplitude function is sufficiently regular. In particular, we
recall that the slowness surface for a tetragonal crystal has biplanar double

points on two coordinate axes when the relation c¢1; = cg6 is fulfilled.
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3.1 Estimate of the amplitude function

The aim of this section is to prove an estimate for the amplitude function
Tp;, which appears in the expression of the amplitude function of the solution
of the Cauchy problem for the system of crystal acoustics (3.0.4) and to study
what kind of regularity it has. Here we put ourselves in a more general contest
with respect to the case of the tetragonal crystal acoustics in a 3-space. We
compare the following system, which generalizes the system of tetragonal
crystal acoustics in R?, with the case of some formally similar systems in R".
They have the form

2 n 92
W%’(f,?ﬂ) = Z cijkgmuk(t,x), i=1,...,n. (3.1.1)
Jok =1
for x € R™ and for some constants ¢;jr, which satisfy the following property
(compare with (1.3.12))

n

A(f) = (Z Cijszj&)i,k:L...,m

j,.l=1

is symmetric and positive definite for all £ € R". Moreover, in analogy with

the case of R?, we associate with (3.1.1) and £ € R" the polynomial matrix

QN &) =N — A(E), (3.1.2)

and its characteristic polynomial P(\, &) = det Q(),&). We also associate
Cauchy conditions as in (3.0.3) with the system and write the solutions of

the Cauchy problem in a form similar to (3.0.4)

2n n
ui($at):/ SN et Ot (€)gi(6)ds  i=1,2,....n. (3.1.3)
Rn

p=1 j=1

for suitable functions 7;,;. The main estimate of the expression T;,; is given

in the following proposition.

Proposition 3.2. We assume that the eigenvalues of the matrixz A are simple

except for a finite number of directions & and that there is a constant Cy > 0
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such that |\(§)| > Cy if |{] = 1. Let T;,;(&) be the function in (3.1.3). Then,
the function T;,;(§) is a smooth function of & where the discriminant of the
polynomial P(\,€) in the variable X is different from zero and there exists a

constant C3 such that
T (€)] < Csle] ™ (3.1.4)
for alli,p,j € {1,...,n}.

The proof of proposition (3.2) will be given later in this section. We
start by recalling some facts about the solution of the Cauchy problem in
question.

By assumption, Q(A,§) is a symmetric positive definite matrix for every
¢ € R, Tt follows that it has n positive eigenvalues A;(€), ..., A\ (€) with

n associated orthonormal eigenvectors v!(€),...,v"(£). The components of
the vP(§) are denoted vf(§), i = 1,...,n. We now denote 7,(§) = /A,(&),
and 7,4,(§) = —/A\p(§), with p = 1,. .., n, where the square roots are taken

to be non negative. Moreover, we can suppose, at least after a permutation
of the indices p, that 71(§) < --- < 7,(£). Thus, if we consider the function
exp [i(z, &) + it,(£)], using the fact that

A(OVF(E) = ) cijne&i€nt(€)

Jokl=1
foralli=1,...,n and £ € R", it follows that we have

82 W{x itT i(x it
@e (x,6)+it p(s)UZp(g) — @) +it p(f)/\p(f)vf(ﬁ) =

i(x it - - 82 i(x it
— _pimg)titmy(€) Z CisneE(E) = Z HE T E)P (&)

Cijke
Jht=1 Pyt

forallé,p € {1,...,n}. This means that the function exp [i{x, §) + it7,(£)]vP(€)
satisfies the system (3.1.1). We now consider the Cauchy problem associated
with (3.1.1) at t = 0,

o? B 0?

@ul(t,x) = Z Cijkgmuk(t,l'>,

jk,e=1

0
u;(0,x) = 0, aui(o,m) = g;(x).
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for i = 1,...,n. If we assume here that the g; are in C§°(R"), then we
can make a partial Fourier transform in z and then have to solve, with the
notation ¢;(§) = g;(§), the problem

0 - .
5atilt:€) = Y cipeiein(t, €), (3.1.5)
Jokt=1
. 0 .
1;(0,£) = 0, aui(07€> = ;(£). (3.1.6)
for e =1,...,n, where u; denotes the partial Fourier transform of u;. Thus,

a solution to this problem can be chosen in the form
2n
w(t,€) = Y (O™ O (e), i=1,....m,
p=1

provided that the scalar functions ¢, satisfy the conditions:

D ep(l(©) =0, (3.1.7)

2n
Y im(©@p(I(€) = ¥il€), (3.1.8)
p=1

fori = 1,...,n and where the functions v?"" (&) are precisely the v (€) for all

p,i € {1,...,n}. The ¢; are uniquely defined by (3.1.7), so it makes sense
to guess part of them. Since 7,,, = —7, and v?"" (&) = v?(€), the second set

of equations can for example be written as
> im(€)(p = pen) ()L (€) = ¥i(€)-
p=1

It is clear that (3.1.7) will hold if we assume, at least where the eigenvalues

are simple, and choosing eigenvectors of norm one for every &, that

wp(&) = 5 ((€),v"(€)), (3.1.9)
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for all p = 1,...,n and ¢ € R". Note that by assuming |[v”(£)| = 1, then

there exists a positive constant ¢; such that

(€ < ¢

for all p,i € {1,...,n}. Moreover, it follows from (3.1.9) that

n

1
= P ; 1.1
2(6) = D 5y OO (3.1.10)
7j=1
for all p=1,...,n. Thus, it is not difficult to find an explicit expression for

Ty (€) in terms of the eigenvalues and eigenvectors of A(§). We note that

(t.2) / ng el @Oty (Eydg, i=1,...,n.

Thus, using the relation (3.1.10), it is possible to write the solution in the
form (3.0.4) and obtain the desired explicit expression for T;,;(£). Indeed,
we can conclude that

n

S%Uf(g):%;(g) (Z ACILES > ZTlm LES

Jj=1

where

Tosl6) = gim g HOE) (3.1.11)

Thus, in view of (3.1.11), in order to obtain the desired result on the regular-
ity of Tj,;, we have to study the regularity of the eigenvectors and eigenvalues
of A(§). The following two lemmas will allow us to find an explicit expression

for the eigenvectors and give us some information about their regularity.

Lemma 3.3. Consider a polynomial n x n matrix M in the variable . As-
sume that we are given a locally defined smooth function & — \(&) of simple
eigenvalues of the matriz.

Then the eigenvector v(€) associated with the eigenvalue A(§) can be chosen

of form (q1(§,A(€)), ..., qn(&,A(€)), where (§,\) = q;(§,\) are polynomials
in the variables (§,\).
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Proof. We denote by M7(\, &), j € {1,...,n} the columns of M(£) — AI.
Then

- H(OM(A(E).€) = MA(©).©) (3112)

for functions p(€) which are uniquely defined since the A\(§) are simple eigen-
values: the eigenvector associated with A(§) is then (u1(), ..., un—1(£),1).
(Here we suppose that it is possible to write the nth-column in terms of the
first n — 1. This is always possible up to a permutation of the columns of
M) — AI).

We recall that the solution of a linear system of form Ax = b where x and b
are n-vectors and A is an n x n matrix is given by the Cramer’s rule in the

following form:

 detA

where we denote by A; the matrix formed by replacing the i-th column of

Z; 1= 1,...,Nn,

A by the column vector b. We can now calculate p;(£) with Cramer’s rule
from the (n — 1) x (n — 1) system obtained from (3.1.12) by eliminating a
row such that the remaining system is determined. We assume for simplicity
that the last row has this property. It follows that the p;(&) are of form
Q;(&,N(€))/R(E,A(€)) for some polynomials @;, R, in the variables (&, ).

The vector

v(§) = (Q1(&A(E)), - -, @m-1(& AE)), —R(&, AE)))

is then an eigenvector associated with A(§) of the desired form. (Here
(&N =Qi(&N) for j=1,...,n—1and g, = —R(£,\).) O

Lemma 3.4. Let M be an n X n symmetric polynomial matriz in the vari-
able &, homogenous of degree two in & and positive defined. Assume that its
eigenvalues A\, (&) are all simple for £ in an open cone I' C R™. Then they

are smooth functions of & in I', homogenous of degree two.

Proof. Smoothness follows from the implicit function theorem and homo-

geneity is obvious. O]
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Using the previous lemmas, we can now find an explicit expression for
the eigenvectors of A(§) and give additional information on their regularity.
Since we work with normalized eigenvectors, we should first normalize the
eigenvectors obtained in lemma (3.3), which leads, with obvious notations,

to

e 2(E M)
M T @EN©), - AENEDIT

for all £ such that the discriminant of P(\,&) does not vanish. We observe
that in the case of the system (3.1.1), the entries of the matrix A(&) are

(3.1.13)

homogeneous of degree two in £ and so it follows from the proof of lemma (3.3)
that the polynomials ¢;(&,A\?), with 4 = 1,...,n are homogeneous of degree
2(n — 1) as a function of (£, \). Moreover, it follows from lemma (3.4), that
the eigenvalues \,(§) are smooth functions and thus the ¢;(&, A\(§)) are also
smooth functions of ¢ for all ¢ = 1,...,n. This implies that the eigenvectors
vP(€) are smooth functions of £ # 0, as long as the discriminant of P(),¢)
does not vanish.

We are now ready to prove proposition (3.2).

Proof. (of proposition (3.2)). We recall that there exists a positive constant
¢ such that [v/(€)] < ¢ for all 4,p € {1,...,n}, and that the 7,(¢) are
homogeneous of degree one. Thus, from the expression (3.1.11) it follows

that the T;,; are homogeneous of degree —1 and satisfy the estimate

T (O] < Cslél™" ¥V d,p,j € {1,2,3}.

Here we have also used the assumption that |7,(§)| > C > 0 if [{| = 1.

Finally, we have that, when ¢ is such that the discriminant of P(\,¢&) is
different from zero, we can write the v¥(£) in the form (3.1.13) which are a
smooth functions of €. From the fact that the 7,(£) are also smooth functions
of ¢ and are different from zero for all £ € R", we can prove the first part of

the statement and conclude the proof. O]

We continue this section with one more remark about the explicit form

of the amplitude function 7,;. In fact, it is possible to find another explicit
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expression (and so prove using another way the proposition (3.2)) for the
amplitude function which is a function only of the eigenvalues and that it is

such like the formula written in remark (1.16).

Remark 3.2. We start by associating with the system (3.1.1) a scalar equa-
tion of order 2n. In fact, if we denote by A, the n x n partial differential
operator on the right hand side of (3.1.1) and if we calculate the formal de-
terminant of 921 — A,, then we get the scalar operator P(d;,d,) and the u;
satisfy P(0;, 0,)u; = 0 for every i. P corresponds of course to the determi-
nant of Q(A,€) in (3.1.2).

Now, let v be a solution of P(d;,d,)v = 0 in C°(R*") such that for every
t the support in z of the function  — v(t, z) is compact. If we denote by
0(t,€) the partial Fourier transform of v in the variable z, then it follows

that we can find functions x; such that

2n—1

B(t,€) =) xp(&) exp [t ()]

The y; are easily determined from the Cauchy data djv(0,2) = ¢;, i =
0,...,2n — 1. If we denote by ~; the Fourier transfors of the g;, then the

Cauchy conditions give

2n—1

ZXp(f)T;(f) = %(£), V i=0,...,2n— 1.
=0

This is a linear system of the form x©; ;... 2n—1 = I', where x and I' are the

'''''

vectors of components x,(£) and 7;(§) respectively and ©; ¢, 2,—1 is the

-----

matrix of components T;(f ). It follows that the y, have the form

2n—1

pi(10(§), - - - T2n-1(§))
Xp(§) = %i(§),
where D(€) is the determinant of ©; ,—¢ . 2,—1 and p;(71(£), ..., T2,(§)) is the
polynomial equal to (—¢)P* times the determinant of the matrix obtained by
on—1. We note that

deleting the ¢-th column and the p-th row from ©;,—

.....
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D(¢) is a homogeneous polynomial of order n(2n — 1) in &, whereas p;(§) is
homogeneous of order n(2n — 1) —i in £ , such that the order of homogeneity
of p;i/D is precisely —i.

In order to apply these considerations for the system (3.1.1), we need to write
down the Cauchy conditions of order v, v < 2n, for the single components u;
of the solutions of (3.1.5). In order to obtain them, we derivate the system by
(0/0t)” for v =1,...,2n — 1. Next, we restrict the system and the relations
obtained after these derivations, to ¢ = 0. We then obtain by also using the
Cauchy conditions (3.1.6)

82k a?k-l—l L
8t2k (0 5) at2k+1 (O 5) Agwa

for all Kk = 0,...,n—1and i = 1,...,n. By putting these calculations

together, we obtain

oI (€) = Tl Aku(e)  Vipe {L,....n}.

This implies

5 (76, - T(€)AE(E)
D

V2 (€);(8),

<.

for all 7,p € {1,...,n}. Thus, T;,; must have the following structure:

Qipj(§7 7—1(6)7 ce ’Tn(g))
D(¢) ’

where Qip; (€, 71,...,7,) is a homogeneous polynomial in the variables (£, 7)

(3.1.14)

Tipj (f) =

of total degree of homogeneity n(2n — 1) — 1. In fact, we observe that A’g
is a homogeneous function of order 2k in £ and p; is homogeneous of order
2n(2n —1) — (2k+1) in £, so pAfv? has order of homogenity n(2n—1) —1.
Moreover we note that the set of £ € R" such that D(§) = 0 is precisely the
same set as when the discriminant of P(), ) vanishes. This means that the
discriminant of P(\,§) and D(§), are equal up to a multiplicative constant,

since they are two polynomials of the same degree and with the same roots.
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It is then clear that the T;,;(§) are smooth homogeneous functions of order
—1 where the discriminant of P(\, &) is different from zero, and we also have
the estimate |T;,;(£)| < C3]€] ™!, already obtained above.

We conclude this section with the following estimate of the solution of the

three dimensional system of the crystal acoustic when ¢ remains bounded.

Proposition 3.5. Let u(t, z) be the solution defined in (3.0.4) of the Cauchy
problem (3.0.2), (3.0.3). If t remains bounded, then we have the following
estimate:

3

b)) < €Y | s O+ 3 Nzl | (3.1.15)

j=1 l|<5
Proof. We start by considering the expression (3.0.4). We note that estimate

(3.1.4) implies the local integrability of the function T;,;(§). Thus, using the
estimate (3.1.4) and the fact that ¢ is bounded, we obtain

3
‘ 19;1 19;€)I )
luxt,x)lsz}(@/ﬂg § 5+c2/|£|21 ) <

1=

<2 (Cs sup |;(€)] + ¢ [:|>1<1+|§|)| (€ )|d€>

=\ st

3
< cs sup |g; Co 1 d
_;<%3MM+A(HW(HQ

IN

l€1<1 £ER3

<> (03 sup [g;(§)] + casup (1 + |€|)5|§j(§)|>

3
< Z ¢z sup [g;()] 4 ¢4 Z/ |07 9;(x)|dz | <

< 652 |S§F<pl|§j(f)| + > l195gll
=1 \[¢I=

la] <5
We observe that the supremum of (1 + [£])?|g;(€)| exists because the g; are

smooth functions with compact support and so §(§) belongs to the Schwartz

space 8§(R?). Summing in i, we now obtain the statement. O
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Obviously, the relation (3.1.15) is an estimate of type (3.0.1) when ¢ re-
mains bounded. It follows in particular that when we want to prove theorem
(3.1), we may assume that ¢ is large. This is of interest in that in some
of the partial results which we shall use one needs to apply the method of
stationary phase with the phases t7,(£) + (z, ), which works best for large

parameters.

3.2 The case when [t| dominates |z]|

As we mentioned at the beginning of this chapter, in order to obtain the
desired decay for the solution of the system of crystal acoustic when ¢ is
large, we have to take into account the relative position of the variables ¢, x,
€. In this section we will prove the estimate (3.0.1), when |t| dominates |z|,
i.e. when |t| > ¢i|x| for some large constant ¢;. We can obtain the decay in
a rather elementary way. In this section, we want to estimate the expression
ILip; (see (3.0.5)), of which is essential to write the solutions, as an oscillatory
integral with parameter ¢ large and phase function & — ¢7,(§) + (z,§) and
at the same time we can argue for any fixed &g, 7, p, j. In order to simplify
notation we will change coordinates linearly in such a way as to have &, =
(0,0,1), but of course this does not necessarily mean that &, is a singular
direction. We can essentially estimate I;,; by using partial integration in
the variable &3. Before we state the main proposition, we will make some
preliminary remarks.

We assume that

Supp(x) - {5 eR’: |€z| < &30 = 1’2}'

Thus, in the support of y, we have that &5 # 0 and so we can consider the
change of variable F' which maps (1, &2, &3) into (wy, we, &3), where w; = §; /&3
with ¢ = 1,2. Thus, we have that |w| < 1 and det VF~! = ¢2. We observe
that in the new coordinates we can write £ as &(w, 1). Moreover, since 7,(§)

is homogeneous of order one, we have that in the new coordinates we write
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(&) as §37p(w, 1),
Now we are ready to state the main result, observing that the estimate we

will prove is stronger than what is needed for theorem (3.1).

Proposition 3.6. Let u(t,x) be the solution of the Cauchy problem (3.0.2),
(3.0.3) defined in (3.0.4) and let I;,; be the oscillatory integral defined in
(3.0.5). When there exist a large constant ¢y such that |t| > ci|z|, then

| Lips| < Cslt]™" sup <(1 +1EN*> |3§“§j(€)|> , (3.2.1)
geRr? a<l1
for alli,p,j € {1,2,3}.

Proof. If we use the change of variable F' defined above, then the integral

I;,; becomes

I, (t,2) :/ /0 T DT, (€0 €4y (€3, )0 (Ex0, E)E2dE o,

We note that for |t| > ¢i|x| and for ¢; sufficiently large, there exist a positive

constant ¢y such that
|0, (137 (w, 1) + i&s(z, (w, 1)))] = [it7p(w, 1) +i(z, (w, 1))] = coft].

Therefore, with these assumptions, the phase function is non-stationary as a
function of £3. We can now integrate partially in & the integral I;;;, using

the identity

. 1 . 1
agseztfsrp(% V+i€s{x,(w,1)) _ pitéarp(w,)+i€s(a,(w,1))

itrp(w, 1) + (2, (w, 1))

Now we observe that, in the previous integral, the integration in the variable
&3 is only in the region {3 > 0. Moreover, as a function of &3, g; belongs to the
space 8(R?), Ty, (&w, &3) = & ' Tipi(w, 1) and x(&w, &3) = x(w, 1), since they
are homogeneous function of degree —1 and zero respectively. Moreover,

no boundary terms at &5 = 0 appear after the partial integration, due to
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the presence of the factor £2 in the integral and the previous considerations.

Thus, after integration by parts, we have to estimate the following integral
zt£37-p w,1)+i€3(z,(w,1))
zpj B // tTp W, ]' <£L‘, ((U, 1)>)

Tipj(w, 1)0g, (x(§3w, &3) G5 (§aw, £3)&3) dEsdw.

Now we recall that:
(1) [t7(w, 1) + (z, (w, )] < eslt] ™,
(i) Tjpj(w,1) < egl(w,1)]7! < ¢5 because & /& < 1, with i = 1,2,
(ifl) Ogyx(§aw, &) < c6lé] 7,
(iv) Ix(O < 1.
Using these remarks, we can conclude the proof in the following way:

+o00o
il <l [ [ 106 (G 1)y €0, Ve dadr <
<l [ (1301 + 1063l <
R3

< Cﬂﬂ”gullg ((1 +1ED> !3?%(6)0 :

a<1

O

Remark 3.3. It is well known how an estimate of type (3.2.1) implies an
estimate of type (3.0.1). We will prove this fact in Appendix A.

In the following we will make no further comment about this fact and we

will prove, in almost all cases, estimates of type (A.0.1) in order to obtain

the desired result in the main theorem.

3.3 Reduction of the estimate to the slowness

surface

In this section we will show that it will suffice to study the decay of an

integral defined on the slowness surface in order to obtain an estimate of the
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integral I;,;. To do this we will adapt the argument used in [L1] to the case
of tetragonal crystals in R3.

We start by considering the integral

Iy = / GTOTRAT, | (€)x ()3 (€)de,

with the standard notations and 4, p, j fixed. Here I' is an open cone such
that the function y(§) vanishes outside I'. Without loss of generality we can

assume, at least after a linear change of variable, that

P={{ e R [(&. &) < e}

for some positive constant € but we shall feel free to shrink ¢ if needed (note
that we are free to shrink the support of y too). As seen in section (3.1),
the integrand has a singularity at £ = 0, so we will cut off to £ # 0. More
precisely, we consider a smooth function ¢ : R™ — [0, 1] which vanishes for
|€] < 1/]z| and is identically one for |£| > 2/|z|. Moreover, in order to control
the derivative in |£| of ¢ when x is large and £ is small, we make the following

additional assumption on . For any fixed x we assume

(&) = V(|=ll€])

for some smooth function ¥(¢), ¢ : R™ — R, which is, of course, identically
one for ¢ > 2 and vanishes for ¢ € [0, 1]. Now, we observe that, if 9¢ () # 0,
with a # 0, then we have 1 < |z||¢| < 2, because elsewhere the function ¢
is constant. This implies that, if agga(f) # 0, then there exist some positive
constants ¢; and ¢y such that ¢1|¢] < |z|7! < |¢]. In addition, if we compute

2p(§) we have

080()] < 199(t)|0g 2| |¢] < cs 3 Jar|IPlfe et

BLa

Thus, if we fix s > 0 and x, then there is a constant ¢4 such that

08| < cale]T* for af < (3.3.1)
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Now we write [;;,(t,x) = I1(t,x) + I5(t, z) where I1(t,x) and I5(¢,x) are the

integrals

Li(t,x) = L H l<2e"”ﬂf)““’@nm(£>x<£>§j<£><1—so(f))ds,
Lt,z) = / FTOHEOT, (€)(€)35(E)p(E)de.
[€]|z|>1

Is it now easy to estimate |I1(¢,z)|. In fact we recall that |x(&)| < 1, |(1 —
0(&)] <1, 19;(€)] is bounded and |T;,; ()| < Csl¢]~1. Tt follows that

M@MS%/‘ €71 de < cola] 2

€| <2

Furthermore, we observe that, in view of what we have proved in the previous
section, we may assume that |t| < c¢;|z|, for some constant ¢; > 0 and
therefore the above estimate of I; is stronger then the estimate we want to
obtain in our main theorem. Thus, we will essentially have to deal with I5.
Now, we want to define an opportune C'-diffeomorphism F from {(v,0) €
R3 : v > 0,]0] < e} to a conic neighborhood of (0,0,1), such that we can
pass in the integral I5(¢, z) to the coordinates (v, 0).

To do this, we recall that, for each fixed p, the equation 7,(§) = 1 defines a
sheet S, of the slowness surface and 7,,(§) # 0if £ # 0. It follows that on every
half-ray lying in I" there is precisely one point in \S,. In addition, we denote
by & the 2-vector (&1, &) and we introduce the function p, : {¢' € R? : |¢]| <
e} — R such that 7,(¢, pp(£')) = 1. Now we consider a parametrization 7 of
the surface S, near the point (0, p,(0)) € I" (see the figure (3.1) below). In
particular we define n(§') = (&', p,(¢’)). With these definitions we are ready
to define the diffeomorphism

F:{(v,0) eRxR*: |0 <e,v >0} - R F(v,0) = vn(0).

In [L1] it is proved, in a more general context, that the function F is really a
C'-diffeomorphism and that the determinant of the Jacobian of F is equal to
v2L(6) where L(0) = (9g,7,(0, pp(0))) ™" and it is different from zero if |§] < e.
(Moreover we recall that the homogenity of 7, implies that Jg,7,(§) # 0 in
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§s

Figure 3.1: Local parametrization of the sheet S,.

[, and then L(6) is well defined). Now we are ready to pass in the integral
I; to the coordinates (v,0). In particular, we can thus write I5(t,z) in the

form

“+o00
L(t,z) = / / elpr(Vﬂ(9))+Z(z,un(9)>Tipj(,/n(g))
0 |0|<e

(x350) (vn(0))v* L(0)dbdv =

+oo
[ e | T 0(0) (i) o @) L), (332)

where we use the homogenity of 7, and T;,;, i.e. the fact that T;,;(vn(0)) =
v T, (n(0)) and 7,(vn(0)) = v,(n(d)) = v. We recall that we are inter-
ested in the decay of Iy when |z| dominates ¢. In this case, we will prove
that the decay of I, must come from the integral in 6, and in fact from the
oscillatory character of exp (izsvp,(0) +iv(2’,6)), taking |vz| as a large pa-
rameter. Indeed in (3.3.2), p(vn(6)) # 0 implies [vn(0)| > |z|~'. In addition,
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since 1(0) = (0, p,(0)) # 0, if |#] < ¢ there is a positive constant cg such that
|n(0)] > cs. Therefore, these facts imply that in the integral (3.3.2) we have
lvw| > cg', because we are in the support of . Thus, |vz| can not be very
small.

These considerations allow us to write I, in the form
+oo
I(t, x) :/ e vI(vr)dy (3.3.3)
0

where I(vx) is the inner integral in (3.3.2) which is an oscillatory integral
associated with the phase function § — (x3vp,(0) + (2'v, 0)), with v|z| as a
large parameter.

Now we emphasize the fact that 7 is a parametrization of S, near the point
(0,p(0)) € I', i.e. when |f| < e. Thus, if we denote the variable on S, by

p=mn(0), va by y and (xg;¢)(vn(0)) by k(p,v), we obtain

/ (1) Tip; (N)k(ﬂa )L(n‘l(u)) do (), (3.3.4)
S \/1 + 9p, 2 (01 (1)) + Do, P2 (1 (1))

where the surface element do on 5, is

do = \/1 + 09, p2(0) + Doy p2(0)d0.

We conclude this section with the following proposition which shows in which

way we can obtain the desired estimate of (3.3.3) from the estimate of (3.3.4).

Proposition 3.7. Assume that for some Cg, s and sy the following estimate

15 valid:
1I(y)| < Co(1+|y|) (1 + u>*3§uﬂg > le192a(9)] (3.3.5)
R Jaj<s:
|B1<s2

for all g € C*(R3). Then we also have

Lt 2)] < Co(1+ |z) " sup | Y 1611079 |

3
SR Jaf<ss

|B]<s2

for all g € C5°(R3).
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Proof. The statement is also valid for more general exponents, but we state
it in this form which we will use in the next section. In view of (3.3.3), the

only estimate we have to prove is the following
o
/ v(1+vjz)) M1 +v)Pdy < (1 + |z|)7!
0

We distinguish a number different cases. First of all we suppose |z| < 1. In

this case the proof is easy because we have:

/ v(L+vlz) ' (1 +v)Pdr <
0

< k) [ g S el D)

Now we suppose |z| > 1 and we consider three sub-cases. When v € [0, 1/|z|],

v e [1/]|z],1] and v > 1. We have respectively

1/|z] V /]| v
/ dv < / ——dr <
0 (1+v)3(1+ v|z|) 0 (1+v)3

<ecnlr|™? <ep(l+ 27t

1 1
/ v dv < / Adu =
el L+ +viz)) = Sy (L+v]z])

ol
= ’:(:|2/ 11 ZdZ S 613(1 -+ |$D71,
1

/OO v dv <
1%
1 (v +wle])
< v
<(1 -t ———dv < 1 -1
—( +l/|l’|) [ (1+V)3 l/_014< +V|[E|)

This conclude the proof. O

Thus, we will now study the integral (3.3.5) and we will separately discuss

the cases when (0, p,(0)) is a singular or a regular point.
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3.4 End of proof of theorem 3.1

In this section we will conclude the proof of the main theorem (3.1) by
discussing the cases in (3.0.5) not considered until now. In particular we
will estimate the oscillatory integral (3.0.5) when &, is a singular or regular
direction and |z| dominates |t|.

In order to do this, we need to recall some results on estimate of Fourier
transforms of densities which live on surfaces. We start with some notational
remarks.

Let S be a surface in R3  as defined in definition (2.3). We denote by
(£1,&9,&3) the coordinates in R3. If P € S is a uniplanar singularity, we

recall the definition of the curves I'* given in (2.6.1):
I ={¢ eR?: —Jya(¢) £ /JLA(E) =1},

with the notation used in definition (2.3). Now, suppose that we change
variable and we pass from & to (v, ) as in the previous section and let p(6)
be such that (0, p(f)) is a local parametrization of S near P if |f| is small
enough. Now we make another change of variable and we pass from 0 € R?
to (r,a), with r > 0, « € U C [0,27] in such a way that p(6) — p(0) = r?
and with U being an open subset of [0, 27| such that ((r, ), p(r, «)) is a local
parametrization of S near P if 0 < r < ¢ and a € U, for an appropriate

small . With these notations we have the following theorem.

Theorem 3.8. Assume that S has a uniplanar singularity at 0 and that the
curves I'F introduced above are smooth and of nowhere vanishing curvature.
If h: S — R is such that h(r, a) is smooth up tor =0 and h(§) =0 if € S,

€| > € for a sufficiently small €, then there is a constant Cy such that

/ e-z‘@’@h(s)da(@] < a1+ ).

We start by using the previous theorem to estimate the integral (3.3.4)
in the case when &, is the direction of a uniplanar singularity. In order to

apply the theorem, we need some additional assumptions about the support
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of the amplitude function Tj,;xg;oL and some information concerning its
regularity.

For this purpose we fix &y such that it is the direction of a uniplanar singu-
larity P, and p such that .S, is one of the two sheets of S with P € S,. First
of all we have to make sure that the amplitude function vanishes outside
the set || < e, where ¢ is given by the theorem. We just choose the conic
neighborhood T'¢, of § where x is supported, such that if £ € T'¢; NS, then
§l <e.

Secondly, we consider the absolute value of the integral (3.3.4) in the variable

6.

[1(y)] = | e br O e OO, 5 (0(6)) (g ) (vn(8))L(6) B
|0]<e
(3.4.1)
where we use the fact that |I(y)| = |e™*3»©) [(y)|. Thus, we can pass from

6 to the new coordinates (r, «), introduced at the beginning of this section,
such that p,(0) — p,(0) = r2.

Now, if we want to apply theorem (3.8), we have to check that the amplitude
function Tj,;xg;¢L in the new coordinates (r,«) are smooth up to r = 0.

This is immediate due to the following two lemmas.

Lemma 3.9. (a) The change of variable (r,a) — 0(r,«) is smooth up to

r = 0 and the same is true for the surface element do of S,.
(b) Vop, is smooth up to r =0 as a function of (r, ).

(c) Let f be a smooth function in the variable £ defined near P. Then
fO(r,a), py,(8(r,a))) is smooth in (r,a) up to r = 0.

Proof. The proofs are immediate and based on simple calculations. For de-
tails see [L1] and [L4]. O

Lemma 3.10. (a) L(0) is smooth up to r = 0 in the coordinates (r,c).

(b) The functions T;,;(n(6)) are smooth up to r = 0 in the coordinates

(r,a).
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(c) Fix s,e >0, ¢ small. Then there is a c¢; such that, for £ #0

18705, (x0) (v (B(r, 2)))| < 1

if 7+l <sandr<e acl.

(d) For v >0, the function §;(vn(0(r,«))) is smooth up to r = 0 and for

Proof.  (a) It is possible to write L in the form L(0) =

(b)

any given s, o, there is a constant co, such that forr <e, a € U

(1 +)710]0,3; (vn(6(r, 0)))] < ez sup (1 + [€])** 107 g;(€)]

[v1<s
EER3

if 940 <s.

pp(€) (& Vepp(£))
(see for details [L1]). We can then apply (a) and (b) of lemma (3.10).

We use the expression (3.1.14) of T,; and we note that the denominator
vanishes only when the discriminant of the characteristic polynomial
vanishes, i.e. when (7;(¢) — 7;(€))? vanishes, with 4,5 € {1,2,3} such
that S; and S; touch each other forming the uniplanar singularity under

consideration. For a small r, we can write

(1:(€) — 75(€))* = & |7(€ /1&s], 1) — 75(€' /185, DI =
= %3+ 0(€)) = r*(ca + O(r)).

Moreover, from proposition (3.2), we know that the T;,; are uniformly

2 at nomi-

bounded near » = 0, then we must have a factor of order r
nator. Thus, we can divide out the factor r? and the resulting function

must be smooth up to r = 0.

We know that there is a constant cs, such that |9]x(£)| < csl€|M,
because x is a smooth function which is homogeneous of degree zero
function. Furthermore, in section 3.3 we proved the estimate (3.3.1) for

the absolute value of the derivative of ¢. Now, for instance, we have

10: (xe0) (n(0(r, a)))| = |0 (xp)v0en0, 0] < csl] ™ vercs < co,
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because v < c¢1plé| and because the change of variables n and 6 is
smooth. Thus, we can proceed in a similar way to estimate
|020° (x)(vn(0(r, «)))| using the Fad di Bruno’s formula.

(d) The proof is similar to case (¢). We again use the Fad di Bruno’s

formula and we have, if we fix admissible r, «

04,; (v (6( Z Z Z 9. gi(vn(r,a)) foy(r,)  (3.4.2)
Isqss  |yl=q
where f,,(r, a) are appropriate smooth functions in » > 0 up to r = 0.

In addition, since |v| < ¢q1|vn(r, )|, we have
(14 )70 < cra(1 + lvn(r, a)])7H

and we note that (1 + [vn(r,a)])7"0;g;(vn(r,a))| < supecgs(l +
€1)77919] g;(€)|.  Therefore, if we multiply the inequality (3.4.2) by
(14 v)? we easily obtain the desired estimate.

]

The last hypothesis to check before we use theorem (3.8) is that the curves
I'* must be smooth and of nowhere vanishing curvature. But this is precisely
what we proved in proposition (2.25) of section 2.6.1 (note that proposition
(2.25) holds if we assume that the hypotheses on the stiffness constant of
theorem (3.1) are fulfilled, cf. remark (2.17)).
We have now checked that all the assumptions needed to apply theorem
(3.8) for the integral (3.4.1) are satisfied. We apply the theorem, with v as
a parameter, in a such way that allow us to write the estimate of |I(y)| in
the form (3.3.5) (for the precise form of the estimate cf. section 5 in [L4]).
In particular, we obtain, for suitable constants c;3, s,

()| < cis(L+ |y))™" sup |80 (Tipixeds) (vn(r, a))l.

r<e,acU
J+H<s

The following lemma shows how we can obtain an estimate of type (3.3.5)

from the one above.
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Lemma 3.11. Let s be fized. There is a constant c14 such that

10105 (Tipixpd;) (v (r, )| < cra(14v)™™ gsqu(l +1ED)™ 107 g;(6)I,
€
Iv<s

for [yl + 4] < s and some positive m.

Proof. We use again lemma (3.10). In fact, from point () it follows that all
the derivatives of T;,;(vn(r, a)) are bounded when r is small. In addition we
have, from point (c¢) that the derivatives of xp are bounded by a constant.

Now, we write
(020,95 (vn(r, @))] = (1 +v) 7" (1+ v)™8059;(vn(r, )]

and we estimate (1 + v)™|920%9;(vn(r,«))| using point (d) of lemma (3.10).
[

Thus, we have concluded the proof of theorem (3.1) as far as the contri-
bution of the uniplanar singularities is concerned.
We continue our proof of the main theorem by looking at the contribution of
the parts of the slowness surface near conical singularities. As above, we first
recall the relevant theorem on estimates of Fourier transforms of densities
which live on surfaces. Let S be a surface in R? as described at the begin-
ning of this section. We again pass from the coordinate 6 € R? to (r,a), but
in this case (r,a) are precisely the polar coordinates in the &’-plane. With

these assumptions we have the following theorem.

Theorem 3.12. Let zero be a conical singularity of S. If h* : S — R are
such that h*(r,a) are smooth up tor =0 and h(§) =0 if £ € S, [£] > ¢

for a sufficiently small €', then there are some constants Cy and s such that

/ e IRE(€)do(§)| < Col1+[2))™" sup |90LA*(r,a)],
g ngj_’,téGU
JISS

where we used the superscript + to emphasize the fact that h* can be calcu-

lated in terms of h and the two functions which define the sheets of S near
P.
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We use the previous theorem to estimate the integral (3.3.4) in the case
when &, is the direction of a conical singularity. Thus, we fix & such that
it is a direction of a conical double point P and p such that S, is one of
the two sheets of the slowness surface S which contain the conical double
point. As before, we choose the conic neighborhood I'¢, of § where x is
supported, such that if £ € T'gy NS, then || < ¢’. We introduce in the
¢’-plane the polar coordinates £ = Py + rcosa, & = P + rsina (here we
denote P = (Py, P, P3)). Moreover, it is possible to prove that the amplitude
function (T, x¢g;)(vn(#))L(0) is smooth in the new coordinates up to r = 0,
precisely as in the uniplanar case. Thus, it is possible to use theorem (3.12)
to obtain an estimate of the integral I(y) of type (3.3.5), again with the aid
of lemma (3.11).

We are left with the cases when either &, is a regular direction or it is the
direction of a singular point, but we are going study the contribution of a
sheet S, of S which has no singular points on the ray with direction &°.
In these cases we need to use some further results on estimates of Fourier
transforms of densities on surfaces.

First of all we, fix §, and we suppose that the total curvature of S, at P does

not vanish for all P € I'¢;N.S,,. In this case we can use the following theorem
of Hlawka.

Theorem 3.13 (Hlawka, 1950). Let S C R™ be a smooth compact surface
with nowhere vanishing total curvature. Also let h : S — C be a smooth
function on S. Then there is a constant Cyy > 0 such that the Fourier

transform I(x) of hdo, do being the surface element on S, defined by

1) = [ ¢9h©a(e
s
satisfies the estimate
[1(y)| < Cro(L+ [y]) 72,

Once more, we use this theorem to estimate the integral (3.3.4), with &,

fixed as above. We observe that, in view of what we have proved in the
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second chapter of this thesis, the fact that the total curvature of S does not
vanish means that we are far away from the double points of the slowness
surface. Thus, it is easy to prove that the amplitude function is smooth in
the support of x and therefore all the hypotheses of the theorem of Hlawka
are satisfied. Consequently, arguing as before, we obtain
[1(y)] < eis(L+ [y)) (1 + )7 sup €107 g;(€)].
s

Secondly, we fix {; and we suppose that there exists P € I'¢,N.S, such that the
Gaussian curvature of S, vanishes at P. We recall that, with our assumptions
on the stiffness constants, the total curvature and the main curvature cannot
vanish simultaneously (cf. proposition (2.28)). Moreover, we know from
theorem (2.31) that there are no planes which are tangent to S, along entire
non trivial curves. Thus, in this situation, in order to estimate the integral

(3.3.4) we can use the following result, proved in [L2].

Proposition 3.14. Let S C R?® be a smooth algebraic surface given by a
polynomial equation S = {£ € R® : p(§) = 0}, let U' cC U C R? be open and

bounded and assume that the following assumptions are satisfied:

(1) Vep(&) # 0 for £ € SNU and the mean curvature of SN U does not

vanish.

(ii) There is no plane tangent to S along an entire curve.

Moreover, let h : S — C be a smooth function such that h(§) = 0if& > U'NS.
If we denote by I(x) the following integral

I(z) = / &0 o (j1)dor (1),

where we denoted by do the surface element on S, then there exists a natural
number k > 2 and constants Cy1, s such that
[I(@)] < Cra(1+ [)) 725 sup [97A(u)].
[v|<s,u€S
(The derivatives of h are calculated locally in a suitably chosen coordinate
set.)
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Thus, again arguing as before, the previous result now gives

()] < ers(1+ [y)) 2751+ 1) 72 sup [€]*1079;(€)]-

[vI<s
EER3

This concludes the proof of the theorem (3.1).

Remark 3.4. The natural number k, which shows up in the statement of
proposition (3.14), depends on the nature of the curvature in the points of
S in which the total curvature vanishes. Unfortunately, the proof of this is

based on qualitative arguments and thus we have no estimate for the value
of k.

3.5 Estimate for Fourier transforms of sur-
face carried densities on surfaces with bi-

planar singular points

We conclude this chapter with the study of the decay estimate for Fourier
transforms of surfaces carried densities on surface with biplanar singular
points. We recall that the definition of biplanar singular points is given in
definition (2.3) and that this kind of singularity appears in the case of the
slowness surface of a tetragonal crystal, if we assume that the stiffness con-
stant cq; is equal to cgg. Actually, in this case, we have four biplanar singu-
larities, two on each semi-axis of the coordinate plane {3 = 0 (cf. proposition
2.13).

Therefore, it seems interesting to try to obtain a result similar to theorems
3.8 and 3.12, in the case when the surface taken under consideration has a
biplanar singularity.

We next describe the setting of our problem. We shall study decay estimates

for Fourier transforms of densities which live on surfaces of form

S = {(:U,y,z);z = g(x7y)7 <x7y) € U}
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where U is a neighborhood of the origin, g : U — R is for some constants

a,b,c, ai, by, cy,d, afunction of form

az® + 2bzy + ey + g1 (z,y) + 6/ a12? 4 2b1zy2 + 1yt + go(z, 7).

Here g1,9, : U — R are two functions in C*°(U). In addition, we suppose

that:
(i) g1(x,y) = O(|(x,y)*), for (z,y) — 0,
(i) go(z,y) = o(|(z* 4+ y*)]), for (z,y) — 0,

(iii) the functions (z,y) — az? + 2bzy + cy?, (x,t) = ayz* + 2byxt + ¢ t?
are strictly positive for (z,y) # 0, (x,t) # 0,

(iv) max(|al, [b], |c|]) < 1, max(|a1],|b1], |c1]) < 1 and 6 is small and positive.

Al

A

(R EEY
(AR

Figure 3.2: The two sheets of the surface defined by the equation 22 —

(1/2)2% + 2y2% — 2222 + 2* + 22%9* + (1/2)y* = 0 with a biplanar double

point at the origin.
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Remark 3.5. Condition (iv) means that, if we denote a} = &%ai,b] =
62by, ¢, = 6%cy, then the constants a}, b, are small compared with the
constants a,b,c. As for the constant  we shall assume it to be small. In-

deed, what we need is that the second derivatives of the function

§v/a12? + 2bjzy? + c1y* + go(z,y) be small when compared with the second
derivatives of the terms ax? + 2bxy + cy?® + g1(x, y).

Furthermore, the estimates which we will obtain later on will depend on 4,
but must not depend on aq, by, ;.

Finally, the assumption (iii) implies in particular that |az? + 2bxy + cy?| >

c1|(x,y)|? and |ay2? + 2byat + c1t?| > cof(x,t)|?, for some constants ¢y, co.

Remark 3.6. The conditions that we assume on S are sufficient but not
necessary to have a biplanar singularity in the origin.

However, we note that the singular biplanar double points of the slowness
surface of the tetragonal crystals in the case when c;; = cg6 satisfy the

hypothesis made on S (cf. the proof of proposition 2.16).

Remark 3.7. The condition on g, implies that we can find some C*°- func-
tions G;, © = 1,2, 3,4 such that

g2z, y) = 2°Gi(z,y) + 2yGa(z,y) + 2y°G(z,y)s + ¥’ Ga(z,y).  (3.5.1)

Thus, S has a singular point at 0 € R3 and the singularity is biplanar there.

The integrals which we consider are of form
I(&n,7) = / exp [iTg(z,y) + i€z + iny] f(z,y, 2)do.
S

The function f is defined on S, or, for convenience, in a neighborhood of
S. We will assume that it vanishes outside some small neighborhood of 0,
say, for |(z,y)| > p for some small p. As for regularity, f will be assumed
to be regular outside 0, but may have a singularity at 0. In view of future
applications we shall study the following situation (cf. theorems 3.8 and 3.12,
section 3.1, [Ba-Li] and [L4]).

We assume that f is of form f(z,y) = fi(z,y)h(x,y) where f; is C* in
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polar coordinates up to r = 0 and h is C'*° (]RQ) and homogeneous of degree
—1. It follows that in polar coordinates rf(r cos «,rsin«) is bounded in a
neighborhood of r = 0.

Before we state the main theorem of this section, we will give some additional
remarks on the properties of the functions which we will consider in the

following.

Remark 3.8. (i) In polar coordinates the surface element do of S is of

form r&(r, a)drdo, with

o(r,a) = \/1 + g2(rcosa, rsina) + g2(r cos o, 7 sin ).
In particular, ¢ is easily seen to be C*° up to r = 0.

(ii) Let h be a function in C*°(R?) which is homogeneous of degree —F,
where k is some natural number or 0. Then 7%h(r cos o, r sin ) is C°

up to r = 0.

iii) Let f € C°(R?) be a function which is C* up to » = 0 in polar
0

coordinates. Then we have the estimate

Ve f@,y)] < el ()7
This follows by writing V f in polarcoordinates.
The main result of this section is the following proposition.

Proposition 3.15. Assume that S and f are as above. If & and p are small

enough, then the integral
1€n.7) = [ explirg(e.) + i€x + iny) f(o. v)do
S
satisfies the estimate

[1(&n,7)| < Cra(1+ (& m, 7)) In(L + (€, 7. 7)),

for some positive constant C15.
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As in many arguments used to prove estimates for Fourier transforms
for densities we have to discuss a number of cases according to where the
variables (£, 7, 7) are placed and how they relate to (x,y) € U. In particular
we distinguish two cases: when |7] > ¢4(|¢|+|n]) and when |7| < e5(|€]+n]),
for some, possibly large, constants ¢4 < c¢5. In the more elaborate parts of
the argument we will employ the polar coordinates (z = rcosf,y = rsinf).

The integral defining I then becomes

I(¢,n,1) —/ / exp [ig(r cos 0, rsin )] (r f (r cos 0, 7 sin 0))d6dr,
[0,27] /[0,p]
(3.5.2)

where

gz, y) =1g(z,y) + & +yn and  flz,y) = f(z, y)\/l +g2(z,y) + g5 (2, y)

Thus, the factor \/ 1+ g2(z,y) + g2(,y), which comes from the surface ele-
ment is a factor in f. We now observe that

]sgp %(rf(rcos@,rsin@)ﬂ < cgrt. (3.5.3)

We now start to study the first case.

Case A We assume at first that |7| > ¢4(|¢] + |n|) for some large constant cy.
We fix 7 and we split the integral into the regions |(z,y)| < ||/ and
|(x,y)| > |7|~"/2. For |(z,y)| < |7|7"/? we use a very rough estimate.
The oscillatory character of the exponential is not taken into account
in the argument and we estimate the integrand by its absolute value.
The assumptions show that | f(z,y)| < c;r~t, therefore passing to polar

coordinates r, #, we can estimate

/ @)l y)
[(@y)|<T—1/2

21 plr|m1/2
C?/ / drdf = cs|7|7V>.
0 0
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For the case |(z,y)| > |7|7*/? we use polar coordinates, as well. We

shall argue on the curves x = rcosf,y = rsinf, z = g(rcos,rsinf),

1(&m,7) =/ 11(&,m,7)d0
[0,27]
where I1(£,n,7) is defined by

writing

/ exp [iTg(r cos 0,7 sin 0) + iré cos 6 + irnsin 0] f(r cos 0,7 sin 0)dr.
0<r<p

All the decay which we can obtain when |7| dominates |£| + |v| will
come from the inner integral I1, the one in the variable r. It will in
fact suffice to show that the function /1 satisfies

1I1(E,m,7)| < eo(1+ (&, 7)) In(1 + [(&,m, 7)),

with constants uniform in 6.

We will prove this by using the following lemma.

Lemma 3.16 (Stein). Let ¢ be a real-valued function on the interval
la,b] which is k times differentiable. Assume that k > 2 and that
) (x)] > 1. Also consider 1 € C'[a,b]. Then it follows that

|/ @y (x)dx| < Cigt™/* {]w H—/ Y (x |d:c] fort >0,
for some constant Cy3, which does not depend on ¢, ¥, a and b.

The main step in the argument is to show that the hypotheses of the

previous lemma are satisfied, in particular we will prove that

[Tg(rcosB,rsin®) + r& cos @ + rnsin 9}‘ > (|| + ] + |7)),
(3.5.4)
uniformly in 6 for |7] > ¢(|¢] + |n|) and c sufficiently large . Since the

2
dr?

terms containing &, 7 are linear in r and since |7| dominates [£| + |7],
3.5.4 follows from |(d/dr)*g(r cos@,rsinf)| > c;;. We denote cos by
k and sin @ by m. Then we write

d?g(rk,rm)

02 =L+ L+ I3+ 14
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where

d*qg,(rk,rm)
dr? ’
201 km? + 3cyrm® + (d/dr)[ga(rk, rm) /2]

I, = 2ak®+ 4bkm + em? +

IQ = )
Vaik? + 2birkm?2 + cir2m* + go(rk, rm) /r?
L - " (2b1km?2 + 2cyrm* + (d/dr)[ga(rk, rm) /r2])?
4 (ark? 4 2bikm? + cir®m* + go(rk, rm) /r?]3/?
LT (0/dr Ploalrk, rm)

2 Vairk? + 2birkm? + cir?m* + go(rk, rm)/r2'

We shall denote a1 k? +2b1rkm? +cir?m* + go (rk, rm) /72 by g3(r, k, m).
Thus, we have the following inequalities in which all estimates are uni-

form in k, m, provided k% +m? = 1:

Remark 3.9. (i) |[;] > cif r < p and p is small enough. Indeed,
|I}| = |2ak* + 4bkm + 2em?| > 2c19(k* + m?) = 2c¢py by the
assumptions on the polynomial az? + 4bxy + 2cy? and the fact
that k2 + m? = 1 and (d/dr)%g, is as small as we want in the
region r < p.

(i) [(d?/dr*)gi(rk,rm)| < ci3r since g; vanishes of order 3 at 0.

(iii) |aik® +2b1rkm? + cir®m?| > ca(k2 +1r?m?), for k> +m? = 1, with
an argument as in (i).

(iv) |ga(r,k,m)| > c15(k* + r?*m?), since |go(rk,rm)/r?| < O(r(k* +
r’m?)), for r — 0,

(V) |ark? + 201rkm? + c1r®m* + go(rk, rm) /r|3/? > cig(|k| + rm?)? =
cir(|k? 4+ 3rk®m? + 3r?|k|m* + r3m?)

It is clear from this remark that the denominators in [;, with ¢ = 2, 3, 4,
are small if k& and rm? are simultaneously small. Conversely, if some
term contains a factor of type k or rm?, then we can estimate it by

v/g3. We can now state the following lemma.

Lemma 3.17. (vi) [2bikm?| < cig|gs(r, k, m)|'/?,



118

3. Decay estimate for the solutions of the linear system

(vii) in a trivial way, |2cyrm?| < ciglgs(r, k, m)|'/?,

(viii) r*m® < eyl ga(r, k,m)[*/?,

(ix) |(d/dr)ga(rk,rm)/r?] < ca\/gs(r, k,m),

() [(d/dr)(ga(rk,rm)/r)[> < cxa(k? +r°m*)r® < caslgs(r, k,m)[P/2,
(i) r|(d/dr)*(g2(rk,rm)/r?)| < caa/Igs(r, k,m)|.

Proof. We begin with the proof of (iz) and (z). We use (3.5.1) and
have then that go(rk,rm)/r* = k3rGi(rk,rm) + k*mrGa(rk,rm) +
km3r2Gs(rk,rm) + m5r3Gy(rk,rm). This gives

|(d/dr)gs(rk,rm) /r?| < E*|G1| + E*m|Ga| +2km>r|Gs| 4+ 3m°r?|Gy|+
+r(K*'GY) + E°mGY) + rk*mGY + rk*m*GY + r*k*m? G+
+ 2 km* Gy + P km’ G + r*mGY,
where G, = (0/0x)G;(rk,rm) and G! = (0/0y)G;(rk,rm), i =1,2,3,4.
All the terms in this sum are easily seen to be estimable by c(|k|+rm?),
given that |k| < 1, |m| < 1. This gives (iz). The argument for (z) is
similar. Now we prove (zi). The terms in (d/dr)*[g,/r?] all contain
either factors of type k, or of type rm?. These factors can be estimated
by /g3. Finally, (vi) easily follows from (iv) of the previous remark,

wherease (vii) and (viii) are trivial. O

We now return to the proof of proposition 3.15. Since I; is relatively
large, while I;, with ¢ = 2, 3, 4 are small quantities, we have now proved
(3.5.4). If we also use (3.5.3) it follows from Stein’s lemma that we have,

if ¢ is large enough,

| AP I (0 ) drdy] =
|(z,y)|>|r|~1/2

_ ’ / eiT‘P(T’a’g’T)T];(T cos o, r Sin Oé)d/rda’
‘T|—1/2§7«§p,a€[0,2ﬂ']

< 625|7'|_1/2/ rtdr,
I7|=1/2<r<p
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since we may assume that f (pcosa, psina) = 0 for every a. This

concludes the argument in this case.

Case B We now may assume that |7| < ¢5(|€| 4 |n]) for some large constant c;
and, as before, we split the integral into the regions |(z,y)| < (|¢| +
)2 and [(z,)] > (€] + ). For [(z,9)] < (] + o) ™2 we
argue precisely as in case A. This gives an estimate by cog(|¢] + |1]) 71/
for the contribution of this region. As for the remaining region we now

denote by L, using a standard argument, the operator

<v(x,y) (Tg(l’, y) + §x + 77?/); V(x,y))

L pr—
\V(ay) (T9(z,y) + & + ny)|?

such that

Lexp [i(tg(z,y) + {x + ny)] = iexp[i(g(z,y) + &z + ny)).
Thus L = A(z,y,&,n,7)(0/0x) + B(x,y,&,n,7)(0/Jy) with

_ (9/0x)(rg(w,y) + Ex + ny)
Az, y,6,n,7) = 'V (w) (Tg(x,y) + Ex + ny) |2

and

_(0/oy)(Tg(x,y) + Ex +ny)
Blew &nm) = g~ e y) & s )P

Now, we have [V (4, (Tg(x,y) + &x +ny)| = [(€;0)] = [TV @yg(z,y)|-
Since |V(z)9(x,y)| is as small as we want if p and § are sufficiently

small, it follows that

IV (@ (T9(2,y) + Ex +ny)| > (1/2)](&,n)]- (3.5.5)

From this and the explicit expressions of A and B we have |A(z,y,&,n,7)| <
cor|(€,m, 7))t and | B(x,y,&,n,7)] < ess|(€,m, 7). Moreover, since
the Hessian in (x,y) of T7g(z,y) + £x + ny can be estimated by cag|T],

it follows from (3.5.5) that we have

\(8/833)%1(33, Y, 57 , T)’ S C30|(§7 7, 7_)|_17
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\((’9/33;)3(1:, Y, 57 n, T)l < C31|(£7 , T)|71'
Further, let p > 0 be such that suppf C B(0, p), and write

/ exp [i(7g(z,y) + £Ex + ny)]
|(2,9)] > (€] + ) ~1/2

[y, 9(x,y))dvdy =

—iL (exp [i(Tg(x,y) + &E&x + ny)])

/<s|+|n|>—1/2S|(m,y>|Sp
flz,y, g(z,y))dzdy =

= 2/ exp [i(Tg(z,y) + &z + ny)]
(1€1+In)=1/2<](z,9)|<p

L* (f(z,y,9(z,y))) drdy + boundary term

where L* is the formal adjoint of L, i.e.,

L* = Az, y,&n,7)(0/0x) + B'(z,y,&,1,7)(0/0y) + C'(x,y,&,n,7T)

It is immediate that A’ = —A, B’ = —B and that

, 9A OB
C (xayaéaan) - %(93,?/;&7777) + a_y(xaya§77777—)'

Now, we pass to polar coordinates, and we observe that the boundary
term is associated with the boundary set » = (|¢] + [n|)~/? and it
is given by the product of the functions A, f, exp [i(Tg + &x + ny)]
plus the product of the functions B, f and exp [i(Tg + &x 4+ ny)]. We
use the following observation: A and B can be estimated by (|¢] +
In|)~!, whereas f can be estimated by |(x, y)|"!. Therefore, since in the
boundary region r = (|&] + |n|)~/2, f can be estimated by (|¢|+ |n])'/2.
We then integrate the products A f and Bf over a circle of length
27 (€] + |n|)~Y/2. This shows that the boundary term is of order of
magnitude (|| + [n|)~".

Thus, we are left with the integral

27
/ / 6i(rg(r,a)+.£r cosa—i—nrsina)L* (f(r, Ot)) dOédT, (356)
0 (€l+nh—1/2<r<p
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and we have to estimate L*(f(r,a)). If we write it down explicitly, we
find

e A B, B
L(f) = —Ag f = By [+ f5 A+ 3B

In the following lemma we summarize the partial estimates which we

have proved above:

Lemma 3.18. If§ and p are small enough, we have, for suitable con-
stants ¢; and for |(z,y)| < p:
(i) |A(z,y, &m0, 7)| < ear|(§,m, 7)1
(ii) |B(z,y,&n,7)| < eas|(€m,7) 7,
(iii) |(0/0x)A(x,y, &, 7) < cs0l(§,m, 7)1,
(iv) |(0/0y)B(w,y, &, 7) < ezl (§,m, 7).
(v) |f] < el ()71,
(vi) [VJ| < enl(zy)7,

The previous lemma shows that we have the following estimate

[ ()] < eaal (€m )7 (2, )] 72,

thus, the absolute value of the integral (3.5.6) can be estimated by

2w P
/ / eaal (€., 7)| " drda <
0 (1€]+|n))—1/2
< esl(&m, ) log (L +[(€,n, 7))

This is an estimate of the desired type.

Remark 3.10. It seems difficult to apply this result to the study of the
decay estimates of solutions of the tetragonal crystal system in the case
when ci1 = cgg, i.e. in the case when the slowness surface has biplanar
double points.

Indeed, in the general case, we are not able to obtain results on the curvature
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properties near biplanar points using the same approach employed in the
second chapter. In addition, a more specific study on the regularity properties
of the amplitude function, which appears in the solution of the system in the

case when cy; = cgg, is needed.



Chapter 4

Global existence of small
solutions to nonlinear systems

of crystal acoustics

In this chapter we will study the long-time existence of solutions to the
nonlinear system of crystal acoustics which is a perturbation of classical lin-
ear system. Apart from the technical complications in the case at hand, we
will follow the extensive literature on long-time existence for nonlinear wave
equations initiated by F. John and S. Klainerman (cf. [J1], [J2], [J3], [K1],
[Sh]). In particular the general line of argument here is close to the one in
Klainerman and Ponce (cf. [K-P]). Our method of proof consists in combin-
ing the classical local existence theorem for quasilinear symmetric hyperbolic
systems in L?-norm with an a priori estimate for the solution of the nonlinear
system in an appropriate LP-norm in which the asymptotic properties of the
solution are the same as those of the unperturbed equations. Since we have
a worse decay estimates for the fundamental solution of the linear system of
crystal acoustic with respect to the wave equation in R?, and since here we
don’t have any kind of null condition (cf. [Si2]), it seems natural that our

assumptions on the nonlinearity of the system must be weaker then those
taken in [K-P| and [Si2].

123
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We will start our discussion by describing the main framework of the non-
linear acoustic, that is the assumptions on the nonlinearity and by writing
down exactly the form of the nonlinear system of crystal acoustic. Then, we
will define the energy function of the system, we will check its conservation
in time and we will define and estimate the high order energy in terms of
L*>-norm of the strain tensor. Later, we will prove the a priori estimate
for the solution of the nonlinear system and we will rewrite the system as a
quasilinear symmetric system. Finally, we will combine the previous results

and we will conclude the proof.

4.1 Nonlinear Elasticity

In the following we will consider a solid that behaves like a crystal with
the same physical properties which we have described for the linear case (cf.
section 1.1).

In this section we want to write down exactly the nonlinear equation of
crystal acoustic and we want make our assumptions on the stress and strain
tensors precise.

We start by recalling some notations and facts about the crystal acoustic.
We denote by v = (u1, us, ug) the displacement vector and by € = (€;5)i j=1,23

the strain tensor of some elastic body (cf. section 1.2). We recall that, by

e — 1 (9ul i 8uj
Yo 2 al'j 8331 ’

thus in particular, € is symmetric.

definition

Remark 4.1. In fact, the matrix built with the ¢;; is just the symmetric
part of the Jacobian in x of the map (¢, z) — u(t, ) (see section 1.2 and the
relation (1.2.5) ).

Moreover, we recall that in the linear theory the symmetric stress tensor

0 = (04;)ij=123 is related to the strain tensor by the generalized Hooke’s law
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(ct. (1.2.7))

Uij(5> = Z Cijkl€kL,

k=1
where the c;;,s are the elastic coefficients, called stiffness constants. We
shall only consider homogeneous bodies such that the ¢;;,, are constant. In

addition, we know that the ¢; ;x5 satisfy the following symmetry relations (cf.
(1.2.8) and (1.2.9)):

Cijkl = Cklij = Cjikl, Vo op,gqrse{l,2,3}

Therefore, out of the 81 possible degrees of freedom for p,q,r, s € {1,2,3},
we are left with 21 independent constants. In addition, we must also assume
that the strain energy

W = g % Cijki€ijEkl,
where p is the density of the body, is a positive definite quadratic form in
gi; for symmetric tensors . This is a physical condition, in that the strain

energy should be given by

3
P
W = §Zgij(€>€ij, (411)
ij=1
and this should be positive definite for symmetric components ¢;; = ¢j;, if
ij = €ji # 0. It follows from the assumption on strain energy that for each

y the matrix

Aily) = Z CijklY5 Y1
gl

is a positive definite symmetric matrix (cf. (1.3.12) and see [Du] for more
details).

In the absence of body forces, the linear equations of motion are (cf. e.g.,
[M] and (1.3.6)),

Pu; O
v . m(cijkluk>,

J,k, =1
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where the u;, © = 1,2,3, are the components of the elastic displacement
vector. Accordingly, the energy contained in some measurable set U C R3

at the moment ¢ is

EU(t):% /U (Zui(t,x)m(t,:c)—i— > ciiklaxjui(tx)@zluk(t,x)) da.

i7j7k7l:1

We recall that the equation (1.3.6) come, using the generalized Hooke’s law,
from the relation (1.3.3), when there are no body forces. Thus, in the nonlin-
ear case, it is possible to write the equation of motion in that form, showing
the dependence of o on . Here this dependence will not be linear as in
Hooke’s law. Thus, again assuming the absence of body forces, we obtain
0?u;(t, x)

o = divoy(e(to)  i=123 (4.1.2)

Here we will assume that the stress-strain relation is only mildly nonlinear,
i.e. of form:

3

0ij(€) = Z cijmer + Hij(e), (4.1.3)
k=1

H:RxR >R Hy(e(t,z) = O(||e]|%). (4.1.4)

Remark 4.2. In the previous equation we assume that € is small This means
that we take into account only small perturbations of the body. Actually,
keeping ¢ small during time-evolution is one of our main concerns in the
arguments below. We may also assume as a consequence that |o;;(¢)| < C
for some constant C, but this assumption depends on wether or not we can

control the size of ¢.

Remark 4.3. The number x here is chosen x > 4. This choice is due to
technical reasons. In fact in the isotropic case, and in the presence of so-called
null conditions, good results can be obtained already when xk = 2 (see [Sil]).
In the present case, there is no known replacement for the null-conditions,
and we will lose one order of vanishing of the nonlinear perturbation, when

compared with the isotropic situation as a consequence of the fact that the
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decay estimates for the linear systems of elasticity is weaker than the decay

estimate in the isotropic case.

Remark 4.4. We explicitly mention that (4.1.3) implies 0;;(0) = 0 and
Cijks = (a/agks)aij (0)

Of course we need some relations to replace the symmetry of the matrix
of elastic stiffnesses and the positivity of the energy function. The method
for formulating these conditions has been indicated by Green, who asked
for the energy function to be a function of the state. Actually, what Green

postulated is that the differential form
3
Z O'ij(S)dEij (415)
ij=1

be exact. Here we must also take into account that €;; = ¢; and that we
also assume that o;; = 0.
We may then consider 0;; as a function of €4, and the condition of exactness
is then
0 0
8€kl i = 85,']‘ Tkt

It follows that we can find a function F'(¢), such that

3

Z oij(e)des; = dF(e) = )

if € is small. Here F'(¢) should be the non linear strain energy (cf. (4.1.1)),

and it is determined up to a constant. We can normalize it to F'(0) = 0 and
it is reasonable to assume that the strain energy is bigger than F'(0) when
e # 0, ie, F(e) > 0. Now, if we differentiate F'(¢) with respect to ¢;; we

obtain
OF (¢)

857;]'

Again, if the strain is zero, we can reasonably expect the stress in the body

to be zero, too. Therefore,

oF
857;]'

(0) = 5(0) = 0.
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If we differentiate F twice with respect to e, we obtain

82F(5) o 80'1']'(8)

851585;61 &gkl

and thus, if ||e|| is small, we can write

3
aO'i'
F(e) = Z ?}iﬂjekl"_o(HeHi})v

1,5,k,1=1

where

is a positive quantity due to the symmetry of ¢, and the fact that F' has a
minimum at 0 if € # 0. It follows that

allel3 < F(e) < eollell% (4.1.7)

for some constant ¢; and ¢y, if ||¢]|o is small.

Thus, we have written the nonlinear equation for the crystal acoustic (4.1.2),
we have replaced the generalized Hooke’s law with the nonlinear relation
(4.1.3), and finally we have assumed the exactness of the differential form
(4.1.5) such that we could define the non linear strain energy F(e), which
is positive by (4.1.7). In the next section we will prove the conservation of

energy for the nonlinear system.
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4.2 Conservation of energy

In this section we will define the functional of energy for the nonlinear
system of crystal acoustics in R® and we will check that it is constant in
time.

For simplicity, and without loss of generality, we can assume p = 1. We

define the energy at the time t as

E(t) = /Rg G ;u?(t,x) + F(a(t,m))) dz.

In the following proposition we will prove that the energy we have defined is

constant in time.

Proposition 4.1. Assume that u is a solution of
0*u
X
fort € [0,T]. We assume thatu “dies out” at infinity sufficiently rapidly, i.e.
o3|+ 0,051 < C, for allt, such that |u;(t,x)|+ |0y, (t, z)| < e(1+]z|)~37,
for some 6 > 0.

= divo

Then E(t) is constant in time.

Proof. We derivate E in time and we have

dp t) = /R Z(umi)(t,x) +y gi (s(t,x))%szj(t,x)dm

7]:1

arjuﬂraxiuj
AN LS
3,0=1 3,7=1
/ Z@x]ulaw Z aem e(t,)) 8xjuldx
3,7=1 1,j=1
F
/ Z Ou; Ui (a (e(t,x)) — gij(e)) dx =0,
= Oeij

e (e(t.2)) = i e(t.0))

in view of (4.1.6) and so E(t) = E(0). O
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We note that, with the aid of (4.1.7), there exist some constants ¢; and

¢y such that

g
=
v

a(lla®)]); + lle®)ll3) (4.2.1)
E©0) < e(|la0)] +[le(0)]3)- (4.2.2)

We conclude, based on the conservation of energy that

[a@)]]2 + le(®)]l2 < es(([a(0)]]2 + [[e(0)]]2) < ca([la(0)]|2 + [[Vu(0)[]2),
(4.2.3)

for some constants cs, ¢4, which do not depend on t.

Remark 4.5. We recall that

Op i + 0. u;
2 __ 2 o i) z; %19
T S S
<c52/ 0,2 = ||V 2.

i,j=1

This prove the the right hand side of (4.2.3).

On the left hand side of (4.2.3) we want to replace £(t) by V,u(t), chang-
ing, if needed, the constants c3, c4. The fact that this is possible is well known

and goes under the name of Korn’s inequality, i.e.: if v = (vq, vy, v3), then

ov; ov ov ov ov ov 61}
||W||2<01[Z|| 2+ 15> : —1||2 +ll- : —1||2 +llo . ;sz

(4.2.4)
if v satisfies the condition of the previous proposition (4.1). Now, in order to
obtain what we want it suffices to estimate Hg—;}Jng, when ¢ # j, by the right
hand side of (4.2.4). We then observe that

81}12 82]22 .
/'a@’ G2 e =

Jvy vy c%l vy
— [ |+ 2P
R3 |8$2 * 8x1’ @xg (91:1
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since

—Zdr= | —L=-2d
/Ra 61‘2 8x1 v /R:s a’El (’)xg -

Thus, we can conclude from the conservation of energy that

(@2 + [[Vau@®)l2 < Cr([[a(0)]]2 + [[Vau(0)]]2)- (4.2.5)

4.3 High order energy estimate

We are now interested in seeing to what extent we can estimate ||u(t)||2.s
and ||Vu(t)||s,s for s > 1 by ||@(0)]|2,s and ||[Vu(0)||2,s. As before, it will
suffice to estimate ||@(t)||2,s and ||e(t)|]2.s, but the estimate itself is more

complicated. Let us first observe that we can write 8%. 0;; in the form

Op.0ii = g —0;
S 8Ekl ”8%

k=1

for small e.Thus, the equation (4.1.2) becomes

3
(90”
—_— 4.3.1
at2 Z Bep axj oH (43.1)

=1

e — l 8UZ 4 auj
Yo 2 8.17]' 63:1 .

This suggests considering, for a fixed multi-indiex «, with |a| # 0, the fol-

again with

lowing high order energy:
- )
—/ [Z p(e)(0%u Z 5 ——0,i(€)0%;;0” skl] dx.
S k=1 Kl
Remark 4.6. Since we do not expect conservation of higher order energies,

there is some freedom in defining them.

Remark 4.7. Here and in the following, if there is no subscript, we denote by

0% the derivative in the variables x of order «, where « is a fixed multi-indiex.
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We will again assume p(¢) = 1 and we obtain

3

3
0
o, \2 . o A
I,(t) = /}R3 [E (0%0;)" + E 8€kl0w(5)3 ;0% | dz.

i=1 ki j=1

It follows, by analogy with (4.2.1) and (4.2.2), that

L(t) > a(lo®u®)]}+10%®)]) (4.3.2)
L(0) < ex(||0"w(0)][ +[[0°=(0)]]3) (4.3.3)

for some constants ¢; and ¢y which do not depend on t, as long as ||e(t)]]x
remain small.
Our next concern is to study the time evolution of I,. The rest of this section

will be devoted to prove the following result.

Proposition 4.2. Let s € N be fixed and assume that

3
0ij(e) = D Cimotns + Hiyjle)  with  Hij(e) = O(|e]|%.),

k,s=1

for some integer k. Then there are some constants C,Cs,0 such that if u is
a solution on [0,T] x R3 of the system (4.1.2) which has compact support in

x for every t and for which

e()lloos/2 1, [IE(H)]|oe < 1,
lle(®)]|oo < 0,  forallt €[0,T]

then

a(@)l]2,s + lle(®)]]2,s <

< Cy(([(0)| s + 112(0)]a.s) explC / (7|2 ).

As a preparation, we calculate 0%0;; with Faa Di Bruno’s formula. In

fact we have that ,

o 90ij o
oy =Y 5z, O"eu + R, (4.3.4)
k=1
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where R, is a remainder term which shall be specified later on. It is a sum
of terms which contain products of derivatives 9°¢ with 8 < a and |3 < |a/:

see the expression (4.3.7) later on.
Remark 4.8. Of course, the term R, vanishes for |a| = 1.

If u is a solution of (4.3.1) for ¢t € [0,T], with compact support in x for

any fixed ¢, then we have

/ Z 8t z —
/ Z 20%u,;0%U;dr = / Z 20%u,;0“ Z Op,05dx =
R R

3 3
=1 =1

/ Z 20°0,,1,0° iy = — / Z 200y, Z g“” O epada—

€
i,j=1 i,j=1 k=1 kil

3
/ > 20%0,,1; Rada.
R3

ij=1

On the other hand, from (4.1.3) it follows that
0? 0?
i) = ———H,:(2).
8t85kl i (<€) 8tagkl J (8)
We conclude that

[e% aal] le} 6
/RS Z 20"yt 0% ld:v—/RS Z 207011 Rodar+

,5,k,l=1 i,j=1
3 82
/Rg Z (m}[m(éf)) 8aaij8°‘€pqu+
k,l,i,j=1
3
Jo;
/ Z UJ Sijaaa?kl + 8a€'klaa€ij) dr =
RS p1ij=1

3

/ Z Joij 0% (20%€;; — 20%0,, ;) dx+

Oe
=1 ok

3

62H” fe fe” o4
/ > atag,d( £)0ci;0 skldx—/ Z 200, t1; Roda =
RS i k=

i,j=1
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3
/ Z 0%en 0 (0% + 0% Ot — 2070 s ) dar+
R3

k=1 92

3

0% H,,;
Ao 9%, dp—
/R32 ,% ) 0101, (€)0%e;j0%epdx

/ 223%‘9 ;i Roydx =T —II, (4.3.5)

3,7=1

with the following obvious notations

I = 0% dr,
/w,;latﬁskl €] AT
I = / Zzaaa W Rode.
2,7=1

Now we have to estimate the two integrals I and I1. We recall that we can
write H;;(¢) in the form (4.1.4) and so, because our assumptions assure that
lle]loo < 0 is small and |[|£()||c < 1, there exist some constants ¢z and ¢4
such that

1] < esllel|2M10% 15 < callells 2, [ Ooalls + Y N10%ll5 ] . (4.3.6)
1BI<s

Here and in the following, we denote |a| by s.

Remark 4.9. If |o| = 1, then, as observed in remark (4.8), I/ = 0. This

gives the estimate
dl,

dt
which, when combined with (4.3.2) leads to

dl, B
’ < cglle] |5 I

< osllell5?l10l[3,

When we apply Gronwall’s inequality to this we obtain
7o (t)] < c71a(0) exp [||e][57¢] -

This is the desired estimate for I,(t), provided we already know that ||¢||s

is small.
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We now consider the case || > 1. Of course the estimate for I is still
the same as above. In order to estimate /1 we write R, explicitly as a sum

in 4,7, k,{, Vi, Vpg of terms:

3 3
) Vi )
H H Cijklvrivpg (E) Oij (8 pquq)upq ) (437)

p,g=1k,l=1

where v € N, 1 < 30 v =7 < |af, ppg € N (or zero), 32, fipg = 7,
where the v, are multi-indices such that |v,e| < [a] =7, >0 fipgVpq = @ and
where the ¢;jxi,,.,, are natural numbers, not all different from zero, which in
principle can be calculated explicitly. (The terms with > v, = 1 are already
taken care of in the first term on the right hand side of (4.3.4). We explicitly
mention that when f,, = 0, then we set (0"71¢,,)"** = 0. Moreover we do
not specify the exact form of the constants cijiy,,.,,, since we shall only use
the properties of the g, fipq, Y1 mentioned above.)

As before we observe that (we implicitly assume that we deal with terms for
which Cijkl’ykll/pq 7é 0)

a Ykl 0
(o) o = Olllzeso—), (133)
k.l

)

Now, we write /] as the sum of two integrals /11 and IV where 11 contains

exactly the terms with derivatives of order two of . Therefore, we have

3 3
111 = O(||2]15-2) /R IO LR DD DI A CWR ST

i,j=1 artog=a, A,
a1 70,0270 p1,p2=1
It follows in particular for the indices a; that |o;| < |a| — 1, with one of them

smaller than or equal to |«|/2. We integrate by parts and we obtain

11T = O(||ell%?) /Rg,Zaau,-Zaxj SN 0Men 0% e, | do,

i=1 j=1 aitaz=a, A1\,
041750,&2750 H1,042
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and therefore there exist some constants cg, cg and ¢ such that

3
I < csllelld D 0%kl ellollo™ellz <

=1 acitaz=a+tej,

a17#0,a27#0
collellity D (10%lls]|0%%¢]2) <
o2 | <|a
cuollellS o (10%all3+ > [10%ll3), (4.3.9)

oz | <[]

where we have assumed that |a;| < |as| such that || < s/2 and therefore
[|10% €|l < 1. We now consider the terms in IV. We again use the relation

(4.3.8) and the fact that ||¢|| is small, in order to estimate IV .

|a|

11V < O(lello)™"
r=3

/ | Z 8aul Z Z aoug)\lul . aaT€A7»uT-dvI|
=1

)‘17 7)\'r a1+ tar= o’
M1, 7,“47‘—1 aﬁéOVz
where 1 < a; < |a] — 2 and o is such that |o/| = |a| + 1 (the length of o/ is
|a| + 1 since we have also included in o’ the derivative in (9/0z;)), with at
most one of |a;| bigger than |a|/2. Here we suppose that x > r. Thus, there

exists a constant ¢;; such that

|al

V] < en ST 10™ o - [07-1] o

r=3
3
le' o)
/ E 0 uz E 0 TE,\ZTMT dx
1=1 ALy sty =1
where [y, ..., [, is a permutation of 1,. .. r such that |« £

and |oy,| < |y, | if I; < 1.

, # r and thus [|0%ie

lo <1 for all i # r.
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Therefore we have, for some constants ¢;,

la

3 3
VI eallelnl, Y [ (Yo% 3T e, |dr<
r=3 YR® g

Al =1
lo| 3 3

013||6||§;§/QZZ Z /R3 |07 w0 en, | dv <

r=3 =1 X\, ,p, =1
la| 3 3

cullellicye DY D N0%wllallo®r e, ll2 <

r=3 i=1 X\, ,p, =1

||

crsllellStn Y [10%l[o][0% e |5 <
r=3

|af

crollell s Y (107alf3 + [[0%ell3) <

r=3

crllelliodys [ Nlovalls + Y 110%l15 |, (4.3.10)
Bl<s

where we used the fact that

|al la

D el 0% el oo - -+ 11071l loo < 18 > Nlellinr | < callel by o
r=3 r=3

Now, if we combine (4.3.6), (4.3.9) and (4.3.10), in view of (4.3.5), we obtain

the following estimate of I, for all fixed a:

dIa K— Qe
" 0] < cullliZ, (vl + X 0% (13.11)

1BI<s

Now, if we fix an integer s and we define

Js(t> - Z [Oé(t)a

laf<s
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from estimate (4.3.11) and relation (4.3.2), it follows that

d d
—Js(t)| < — I, (t
0] < X | ) <

la]<s

S enllelliye | ool + 32 0% | <

lo|<s 1B1<|e|

enllellfn2, D> (lovall3 + [|ovel3) <
la<s
022”5“:;52/2 Zla(t) <

la<s

< Cyllel5 2, Tu(8)],

and using Gronwall’s inequality we obtain

()] < 1(0)] exp|Cs / ()12 7).

The inequality just obtained conclude the proof of proposition (4.2).

Remark 4.10. As before, we can replace £(t) by V,u(t). Indeed we can use
Korn’s inequality to estimate the L?norm of ¢ from below and the fact that
lle()]]oo < c23]|Vau(t)||oo to estimate the norm under the sign of integral.

Thus, there are constants Cy, Cs such that

Hu(t)HZ,s + Hvxu(t)HZ,s S

t
< Gs([[a(0)[2.s + !Iqu(O)Ilz,s)exp[C4/0 Va5 5 207] (4.3.12)

Thus, using energy estimates, we control ||V u(t)|]2,s in terms of ||V u(7)||oo,s/2-
We are also able to control ||V ul|s,s/2 With ||Vullq.s, for a suitable choice
of ¢ and §', using Sobolev’s inequality. Therefore we can use a bootstrap
argument to prove the existence of a global solution for the Cauchy problem
(4.1.2) with initial conditions w;(z,0) = fi(z), dwui(x,0) = g;(x) (here f; and
g; are smooth functions with compact support) with i = 1,2,3, if we can

estimate ||V u(t)||ys in terms of ||V u(t)]|2,s.



4.4 An a priori estimate in the H’-norm for the solution 139

4.4 An a priori estimate in the H*-norm for

the solution

This step of the proof is the key of our argument. As a first step, we
rewrite the inhomogeneous problem as a perturbation problem of the lin-
earized equation. Indeed, if we recall the relation (4.1.3), we can write (4.1.2)

as

2, 3
0 Wi (t,x) — Z Cijkl%(t; JZ) = leHZ](Z-:) 1= 1, 2, 3. (441)
J

Let us now denote by U(t) the solution operator of the Cauchy problem

0%u; 3 Ouy,

— E N = =1,2 4.4.2
012 (t,l’) = C”klé?a:lé?:cj (t,l’) 0 1 ) 73 ( )
u;(0,2) = fi(x), Ow;(0,x) =g;(x), =123, (4.4.3)

i.e., let for any given f and g, U(t)(f,g9) = (u(t,x),u(t,x)), where u(t,x)

satisfies (4.4.2), (4.4.3) and f = (f1, fa, f3), 9 = (91, 92, 93)-
We also introduce the notation V(¢)(f,g) = (V,u(t,x),a(t, z)). In the case

of cubic and tetragonal crystal classes studied (for details see e.g. [L1] and
the chapter 3 of this thesis) we have the L' — L° decay estimate for the
solution of the homogeneous system. In particular, there are a constant c;

and a positive integer r such that

U@ (f, D)oo < er(L+ )2l + gl
From this we also obtain the estimate

VO 9)llse < c2(L+ )2 fllrrr + gl

For the solution U(t)(f, g) also holds the inequality (4.2.5), and in particular

from that relation it follows

V@) (92 < es([IVafll2 + lgll2)-
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Here we are now interested in a combination of the previous two inequalities
as given by interpolation theory. We apply the Riesz-Thorin inequality (for
detail see [Be-Lo]) with the following choices

X = A0, 929 at<r1 107 F, 07 9) ot <r il Lo}
Vo= {(ha, ho) : [[(ha, ha)lle }

and T : X — Y, with

T f,059)|a1<r+1) = V()(f, 9)

and the pairs (s = co,p = 1),(s = 2,p = 2). The following remark then

follows from the theorem of Riesz-Thorin.

Remark 4.11. There is a constant ¢, which does not depend on t such that

IV, 9)lg < eall+ 829 i + g lpri1) (4.4.4)
provided that ¢ > 2 and 1/p+1/¢q = 1.

As a second step, we can write the solution u(t, z) of the nonlinear Cauchy
problem (4.4.1), (4.4.3), by using Duhamel’s principle. In fact, with the

previous notations, we have

u(t, ) = U (f, g) + /0 Ut — 7)(0, divH)dr

where divH is the vector (divHy;, divHy;, divHs;). Since the same relation
holds for the partial derivative of u, we can easily obtain the following equa-
tion:

Vou(t,x) =V () (f,g) + /Ot V(t)(0,divH )dr.

Thus, if we consider the L7%-norm of V,u(t,x), we can apply the estimate
(4.4.4), and we have

IVau(t,2)lly < ca(L+ )29V fllpsr + lgllpr)+

¢
+ 04/ (I1+t— T)_1/2+1/q|’diVHHp,rdT.
0
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As before, if we consider the W?* -norm, we obtain
[[Vau(t, )||g,s < es(1+ t)_1/2+1/q(||vxf||p,8’+r + 19lp,s++)+
t
+ ¢ / (1 4+t —7) V2V divH||p oy edr. (4.4.5)
0

Note that

3 3
OH;; O
diVHZ'j = Z Z Y pq.
=1 pa=1 c%pq (9xj
Therefore, using the relation (4.1.4), and the same argument used in the

estimate of IV in the previous section, we can prove that there exists a

constant cg such that

r—1
3 3
0H,;; 0
7 (53 5 <o 5 o) [ 5 0]
i=1 pg=1 9°Pa 9L 1B1<[al+1 18<[al/2

if |le]|oc < ¢ and ||€]|oo a2 < 1. Now, using Hélder’s inequality, we obtain

the following estimate of (p, s’ + r)-norm of divH:

|divH [[p,e4r < crlle]|2.0r11]le] (4.4.6)

k—1
.8’ /2+7/2
where ¢7 is a suitable constant, provided that 1/p =1/2+ (k — 1)/q. From
remark (4.11) we also have the condition 1/p+ 1/q = 1. This implies that p
and ¢ must be equal to 2k/(2k — 1) and 2k, respectively.

Now we use estimate (4.4.6) in the right hand side of inequality (4.4.5) and

thus we have proved the following proposition.

Proposition 4.3. Let s € N, k > 3 integer, p = 2k/(2k — 1) and q = 2k
fized. Then there are constants §, r, cg and cg with the following property:
assume u(t, z) is a solution of (4.4.2), (4.4.3) on [0, T| xR3 which has compact

support on x for every t and
||qu(tux)||oo < 6; Hvxu(t’x)’loo,s’/Z—l-r/Q < 1
for allt € [0,T]. Then it follows that
[[Vau(t, ©)|lg,s < cs(1+ t)_1/2+1/q(||vxf||p,8’+r + 19lp,s++)+

t
- 09/ (1+t— T)_1/2+1/’1H5
0

dr (4.4.7)

2.5 rilEllny)
ST q,s'/2+r/2
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for all t €10,T).

Now, in order to prove the existence of a global solution of the Cauchy

problem, we give two elementary results as preparation.

Lemma 4.4. We define, for some integers q and s

Ms(t) = oiugt(l + 7)1/2_1/q||vxu(x, T)Hq,s-

If ¢ > 6, there exist constants cig and cq1 such that
t
/ V()| dr < M), (4.4.8)
0
and
t
/ (L4t — 7)YV u(r)|[3 dr < en(L+)"V2VMAE).  (4.4.9)
0

Proof. We have

/ V()2 o = / (14 7)Y/23/9(1 4 7)=3/243/4) | ()| <
t
< M3(t) / (14 7)73/*3gdr <
0
< Mg’(t)/ (1+ 7')_3/2+3/qd7' < cloMS?’(t),
0

because ¢ > 6 implies —3/2 4+ 3/q < —1. Moreover

t
/(1+t—7)—1/2+1/q||v$u( I dr <
0

t
< MZ(t) / (1+t— 7')*1/2+1/q(1 + 7')*2+4/da <
0
< e (14t~ YEVapri.

In order to prove the last line, we must show that

t
/(1+t_7_)_1/2+1/q(1+T)_2+4/qd7—§611<1+t)_1/2+1/q.
0
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In order to do this we discuss separately the two cases |t — 7| < (1/3)t and
|t — 7| > (1/3)t. In the first case ¢ ~ 7 and in the second |t — 7| ~ (t + 7).
We obtain for |t — 7| < (1/3)t that (1 + 7)72¥4/4 ~ t=2¥4/4 and therefore
that fg(l—l—t—T)_l/?H/q(l 7)Y aqr < ¢ f(f(l -t — )"V a2+ agr <
A1+t — 7)t/2+Va)i4=2+4/a < (1 4 ¢)~3/2+5/4, Thus, it remains to observe
for this case that —3/2 +5/¢ < —1/2+ 1/q when ¢ > 6. In the remaining
case, i.e., when |t — 7| > (1/3)t, we can estimate the integral by cfot(l +
£) =121 4 1) =2 adr < o(141) 7V 0 since [ (147) 72 9dr < 0. O

Remark 4.12. We recall that, by Sobolev embedding theorem, if o > 3/q,

there exists a constant ¢;o such that

[[Veu(t, 2)||oo,s/2 < cr2||Vault, )|[q.s 240

Lemma 4.5. Let g be fived and r the same as in proposition (4.3). It is then
possible to choose s’ and n such that the conditions ||V u(t,z)||ss < 1 and
92t 2)llm1 < 1 il iplic
[ Vou(t, z)|[ <4,
[Vt @) <1
||vmu(tax)||oo7s’/2+r/2+1/2 S 17
||vxu<tax)||oo,s’/2+r/2 <1

Proof. 1t is sufficient to choose s’ > s'/2+r/2+3/q+1/2 and the argument
easily follows from remark (4.12). O

Proposition 4.6. Let k =5, r, p=10/9, ¢ = 10 as in (4.3), s’ and n as in

the previous lemma. Suppose that

Ve fll109,5m4r + 9] [10/9,5 17 < O, (4.4.10)
HvszZ,sUrrJrl + H9H2,3'+r+1 < 5/, (4.4.11)
li][10, + [[Voult,z)[[10s <n, Vt€0,T] (4.4.12)

where f and g are the initial data, &' is a small positive quantity and u(t, x)

is a solution of (4.4.2), (4.4.3) on [0,T] x R3, with compact support in x for
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all fired t. Then My (t) is bounded by some constant My which is independent
of T, for all t € [0,T].

Proof. By lemma (4.5) it’s easy to check that all hypoteses of proposition
(4.2) are satisfied. Thus, if we consider the H**"*! norm of V,u, then
we can, at first, use the estimate (4.3.12) and then the Sobolev embedding
theorem (to estimate the 1W°%2/5¥7/2¥1/2 norm of the V,u under the sign of

integral) to obtain

||v$u(t7 x)”s’—&-r—l—l S

t
cs([Vaf|lsrin + ||9||sf+r+1)exp[cl4/ e[ Vau(T)l 3o, 7).
0

Now we use the inequality (4.4.8) of lemma (4.4) to estimate the integral in

the exponential and we have

IVou(t, 2)||syri1 < cis([Vafllsrin + 9]ls 1) explersciocrs Mg (1))
(4.4.13)

As before, lemma (4.5) ensures that all conditions in proposition (4.3) hold.
Therefore, we can consider inequality (4.4.7) and use (4.4.13) to estimate the

H*-norm of the gradient of u. We obtain

[|Vau(t, z)||10,s <
< es(1+ )YV, flloge,r + 1gll10/9,540)+
+ cocr6(| Vo fllsrrir + 19llsr1) expleraciocss M ()]
/t(l b)Y V()| [
0

Now we use the hypoteses (4.4.10), (4.4.11) and the inequality (4.4.9) of

lemma (4.4) to obtain
My (t) < 178" (14 M2 (t) expleis M3 (1)]). (4.4.14)

for a suitable choice of the constant ¢. We can conclude from this that M (t)

must be smaller than M if ¢’ is sufficiently small. Indeed, let f(z) = ¢d'(1+
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x* exp[cz®]) — z, then there exists x = My > 0 such that f(My) = 0, provided
that ¢’ is sufficient small. Now, if &' < M, then, by Sobolev’s inequality, the
conditions on the initial data imply that My (0) < M,. Moreover, let ¢ be
such that My = My (t), then ¢t > T. Indeed, if we suppose, by absurd, that
t < T, then there exist £ < t < T such that f(z) < 0 which is absurd because
(4.4.14) is true for all ¢ € [0,7]. Thus, we can conclude that My (t) < M,
for all t € [0, T]. The proof is therefore complete. O

Remark 4.13. In the previous proposition we chose k = 5. Note that it is
the smallest possible choose for k. Indeed if we take k = 4 we can not obtain
estimates as in lemma (4.4) and so the whole proof come down.

Moreover we observe that in the case of the nonlinear wave equation (cf.
[Si2]) the existence of the global solution is proved in R? for x = 2. Thus,
in the case of crystal acoustic we lose three degrees of linearity. This is due
to the following three facts. The first is that in the linear system of crystal
acoustic we have a weaker estimate for the decay of the solution, than in the
case of the wave equation. The second is that we don’t have any kind of null
conditions for the nonlinear equation. The third is that we have a worse high
order energy estimate, than in the case of the wave equation: in particular,
the exponent of the supremum norm in the estimate (4.3.12) is K — 2 and it

can’t be better, due to the estimate (4.3.6).

Now we can obtain an a priori estimate in the H*-norm of the gradient
of the solution of the nonlinear problem (4.4.1), (4.4.3).
Indeed, let " > s/2 4+ 3/10, thus we can argue as in previous proof and we

obtain:
[a(t, )]s + [[Veu(t, z)|]s <
¢
< (|| Vaflls + llglls) eXP[C2o/ I Vau(T)|[%, o jd)T <
0

< c19(||Vaflls + llgl]s) expleancizers M3 (T)] <
< c19(||Vaflls + llglls) expleaociocis M. (4.4.15)

We are now ready to prove the following theorem.
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Theorem 4.7. Given a solution u of the nonlinear problem (4.4.1), (4.4.3)
in a time interval [0, T| with compact support in x for all fized t, there exist

a 0 > 0 sufficiently small and n > 0 such that if

IV fll10/9,5 + 119111079, < 6, (4.4.16)
IVaflls +llglls <9, (4.4.17)
[a[10,5 + [|Veult, z)[[10,s <n, Vt€[0,T] (4.4.18)

then
lalt, )]s + [[Vault, 2)lls < K (Vo flls + llglls)  forall t€10,T],
where K is a constant independent from T', provided that the conditions

' > 5/2+3/10 (4.4.19)
s>s +r+1 (4.4.20)
§>8/2+r/2+4/5 ( )
( )

5,8, r>0
hold.

Proof. The condition s > s’ +r + 1 assures that the hypothesis of smallness
on the initial data imply the hypothesis of proposition (4.6). The condition
s > /2 +r/2+ 4/5 assures that we can use lemma (4.5) with condition
(4.4.18). Moreover, the condition s’ > s/2 + 3/10 assures that the estimate
(4.4.15) holds. O

Remark 4.14. We observe that the conditions

s’ >s/2+3/10, s>s +r+1,
s >8/24r/2+4/5, s,8,r >0

can be satisfied simultaneously.
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4.5 Reduction to a symmetric quasilinear hy-

perbolic system

The next step in order to prove the existence of a global solution of (4.4.1),
(4.4.3) is to transform the second order system of three equations into a first

order system of bigger dimension.

Remark 4.15. To avoid misunderstanding, in this section we will denote

the vectors with a bold letter.

In order to do this we denote u = (uq,ug, us), thus we can write the

system (4.4.1) in the following form:
3
0ju - Cyu=divH. (4.5.1)
lj=1

We recall that divH is a vector which depends only on Vu, and we denote

it by g(Vu). We also denote W = (ug, uy, ug, uz), where
uy = dyu w,=0,,u i=1,2,3.

In this way, we obtain a first-order system of twelve equations for W, namely

3

ouy = Z C1j0:,0; + g(Vu) (4.5.2)
=1

ou; =y j=1,2,3,

which is a system of the form
3
oW =Y " Cl0, W+ F(W). (4.5.3)
j=1

It is well known that the previous system is a symmetrizable hyperbolic
system provided there exists a matrix Cp, positive definite, such that CoC’; =
A; are all symmetric (for details see [T2]).

Note that, if Cj; have the form ¢;;I (here ¢;; € R and [ is the identity
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matrix), then we can choose Cy = diag(1,1,C~!), where C~! is the inverse
of the matrix C' = ¢;;. In this case Cy is positive definite as long as C is and,
under these hypotheses , (4.5.3) is symmetrizable.

After some easy calculations, we can find that the C7 are the following 12x 12

matrices:

0|B;|D\E 0|D|By|F
, I 00 , 0/0] 010

01: , 6’2:
0 00 1|0 0
0 00 00 0

0| FE|F|Bs

0[{0](0]|0

Ci =
0000
11000

Here 0 is the 3 x 3 matrix where all the elements equal zero, I is the 3 x 3

identity matrix and A;, B, D and E are the following 3 x 3 matrices:

C11 0 O Ce6 0 O Cqq 0 O
B, = 0 ce6 0 , By= 0 cnn O , Bs3= 0 cua O )
0 0 Cqq 0 0 Cq4 0 0 C33
0 C12 1+ Ces 0 0 0 C13 ;‘ Cq4
D= | €127 Ces o ol E= 0o 0 0 ;
2 €13 + C44
0 0 0 — 0 0
0 0 0
r_|o 0 C13 ‘; C44
C13 + Caq
0 — 0
2

Now it is easy to find the matrix Cy such that CoC} = A; are all symmetric.

It has the form
010]0

B, D|E
D|By| F
E | F|Bs

Co

o e R
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Moreover, Cy is positive definite if and only if its right lower corner 9 x 9
sub-matrix is. Thus it is possible to prove that Cj is positive definite if the

following conditions hold:

ce6 — C12 > 0

3cee + c12 > 0

2¢11 — ¢66 — C12 > 0
cgqa —C13 > 0

3cyy +c13 > 0

2c11 + 2c33 + ce6 + c12 > \/(2011 — 2¢33 + Co6 + C12)% + 8(c13 + €44)?

Note that these conditions hold if the hyperbolic conditions on the initial
system are fulfilled (cf. chapter 2). Thus, if the system (4.5.3) has a local
solution W, it is possible to prove that the system (4.5.1) also has a local

solution. We prove this result in the following proposition.

Proposition 4.8. Suppose that the hyperbolicity conditions on (4.4.1) hold,
fi € H}(R?), g; € H*Y(R?), fori =1,2,3 and s > 3/2 + 1, then the system

(4.4.1) with initial conditions (4.4.3) has a unique local solution
we C(I,H*(R*) N CH(I, H1(R?)).

Proof. We consider the solution W = (ug, uy, up, u3) of the system (4.5.3)

with initial data

u(0) =g, u;(0) = 0,1 (4.5.4)

The system (4.5.3) is a symmetrizable hyperbolic system, thus, if we take
the previous initial data, it is a standard result (see [T2] for details) that it
has a unique local solution W € C(I, H*7'(R3)).

Now, we define u(0, z) = f(x) and dyu(t, x) = uy(t, x). These definitions and
initial data (4.5.4) yield d,,u(0,z) = u;(0,2) and J,u(0,z) = g(x). More-
over this implies that u € C*(I, H*™!), because uy € C'(I, H*™1).

It is remain to prove that u satisfies the system (4.4.1) and belongs to
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C(I,H?®). In order to do this we will prove that the existence of W im-
plies that u; = d,,u on I x R?. Note that this condition yields 9,,u; =
8§ﬂju = ijxiu = 0p,u; on I X R?,

Let v; = u; — 0;u, applying 0, to each side we obtain
(9th = (9tuj — amqu =0

by the second line of (4.5.2) and the definition of dyu(t,z). Now, by the
previous considerations, u;(0) = 9,,u(0). It follows that v;(t) = 0 for all
t € I. This proves that u; = d,,u on I x R3. Now, if we take d,u for uy
and J,;u for u; in the middle line of (4.5.2), we have that u solve the desired
system (4.4.1).

Finally, since u; € C(I, H*'), we have V,u € C(I, H*') and consequently
u € C(I, H®). This concludes the proof. O

The following corollary is a version of the theorem of existence of local
solution for quasi-linear symmetric hyperbolic systems which will we useful

in the sequel.

Corollary 4.9. Given the initial data Wy = (g, V.f) € H*(R?), with s >
3/2+ 1, and || Wylla,s < 8, with 0 sufficiently small, there exist a finite time
interval I = [0,T] and a positive number n (which depends on T') such that
the unique solution W € C(I,H®) N CYI, H*™') of (4.4.1), (4.4.3) is such
that || W(t)|l2,s <n for allt € I.

We note that [|[W(t)||p.s = [|@(t)]||p.s + [|V2u(t)|]ps, so the previous theo-

rems allows us to state the following corollary.

Corollary 4.10. There exists a 6 > 0 sufficiently small such that if
|| Woll2,s + || Wolliose,s <6,

s> s +6/5 and s > 5/2, then
WL, )20 < K| Wol|2,s

for allt € [0,T], where K is a constant independent from T
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Proof. In order to prove the statement we want to apply theorem (4.7). Thus,
we have to check that all hypotheses of that theorem are fulfilled.

Let W be the solution of (4.4.1), (4.4.3) which exists with the properties
stated in the corollary (4.9) because s > 5/2 and ||[Wy||s < §. Moreover,
since s > s’ + 6/5 we can use the Sobolev imbedding theorem and the fact
that [|[W(¢)||2s < n for all t € [0,T], to prove that |[W||is < n for all
t € [0,7]. This condition and the hypothesis of smallness on W assure
that the hypotheses of the theorem (4.7) are satisfied. Finally, remark (4.16)
assure that the conditions (4.4.19), (4.4.20), (4.4.21), (4.4.22) on s,s" and r

are satisfied. Thus we can apply it and conclude the proof. O

Remark 4.16. Note that the conditions
s’ >s/2+3/10, s'>5/24r/2+4/5,
>0, r>0 s>s+r+1,
s>s4+6/5 s>05/2,

can be satisfied simultaneously. In particular, they are equivalent to the

following;:

s >9/5
s'+6/5<s<2s—3/5

0<r<s—s —1

Thus, we can re-apply the local existence corollary (4.9) with initial data
with time close to 7', in order to obtain the desired global solution. We can

now prove the following main theorem.

Theorem 4.11. Assume that
3

Uij(ﬁ) = Z Cijks€ks T Hij(5)7 Hij(e) = O(||5||io)

k,s=1

Then we can find s and 6 such that if

||V:L“.ﬂ|2,s + Hg||2,s S 5
IV fll10/0.s + 11gl]1079.s < 6
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then there is a solution u € C([0, 0o[, H*T'(R?)) N C*(]0, co[, H*(R?)) of the
Chauchy’s problem

0%u;

6—;(15,3:) = divoy(e(t, 7)) i = 1,2,3
u;(0,z) = fi(z) i=1,2,3"
Oy (0, ) = gi(x) i=1,2,3

Proof. The condition ||Vf||; + ||g||s < J, corollary (4.9) and theorem (4.8)

imply that there exists a solution of the Cauchy’s problem
w e C(0,7), 1 (R?) 0 C1([0, T), H*(R).

The conditions ||V f|[s + |[g|ls <6, |[VEl]10/9,s + ||8]]10/0,s < 0 and corollary
(4.10) imply that ||V u(t, z)||s + |[a(t, z)||s < K d, where K is a constant
independent of T, for all t € [0,7]. In ¢ is sufficiently small, we can re-
apply the corollary (4.9) with initial data ||V, u(t, z)||s + |[a(t, z)||s < K0,
where ¢ is close to T. Thus, there exist a solution of the Cauchy’s problem
u € C([0,T], HH(R3)) N CY([0,T], H*(R?)), with T > T if £ is sufficiently
close to T'. We can iterate this process because K does not depend on T’

and thus we obtain the desired global solution. O]
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Proposition A.1. Let f : R" Xx R — R be a scalar function solution of a
Cauchy Problem with initial data f(x,0), which belongs to C*(R™) and has
compact support for all fized t. If there exist 7 and k such that

1f(@, )]l < citsup > |E°0CF(E,0)]]oc (A.0.1)

3
SR 0] 181<k

where ]? 1s the Fourier transform of f in the variable x, then the following

inequality holds:
£, 8)|loe < eot™ Y |05 f(2,0)]]1. (A.0.2)
loo| <k

Proof. Using standard results on Fourier transform and integration by parts

it is easy to see that
> a0 @, 0)[ls 2 sup Y [[€*F(E 0]l
¢ER3
laf,|8|<k laf,|8I<k
and thus (A.0.1) implies
£ Ol < cst™ 57 1102 f(2,0)]l (A.0.3)
laf,|8|<k

Now, we observe that, if the support of f is a subset of the unit sphere, then
(A.0.3) trivially implies (A.0.2). Moreover, using translation invariance in
the space variable of the Cauchy problem, (A.0.3) implies (A.0.2) also in the

cases when the diameter of the supports of the initial data are smaller then
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two. We can now consider the case when no restriction is imposed on the
supports of the initial data with the aid of a suitable partition of unity.

In fact, let h; a partition of unity in R*® with the following properties:
(i) the diameter of the support of h; is smaller then two for all i.
(ii) |0%hi| < ¢, for all i.

(iii) There is no point zy € R? such that it lies in the support of h; for more

then d different indices 3.

Thus, we have

1/ (@)oo < ext™ Y > N10F (haf (2,0))]11 <

ieN |a|<k

<c5tJZZ/ |00 f(x,0)|dx <

i€A |a|<k supph;
< ¢t JZ/ |0 f(x,0)|dx

1<k

where A is a subset of N which contain the indices for which the support of

h; has a nontrivial intersection with the support of f(z,0). O
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Notation

Geometric notation

e R" = n-dimensional real Euclidean space, R = R!.

e ¢, =(0,...,0,1,...,0) = i-th standard coordinate vector.

e A typical point in R" is x = (z1,...,2,).
We will also, depending upon the context, regard x as a row or column
vector.

e A point in R"™! will be often be denoted as (t,z) = (¢,x1,...,r,), and

we usually interpret ¢ = time.
A point x € R” will sometimes be written x = (2/,z,) for 2/ =

(T1,...,Tpq) € R,

U and V usually denote open subset of R". We write U CcC V if
UcUcV,and U is compact, and say U is compactly contained in

V. T" usually denote open cone in R".

e OU = boundary of U, U = U U 9U = closure of U.

155
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o If v =(xy,...,2,) and y = (1, ..., yn) belong to R™,
. . 1/2
<xyy >= Za:iyi, |z = (Z a?) :
i=1 i=1

e N = set of natural number.
7 = group of integer number.

C = complex plane.

Notation for matrices

o We write A = (a;;); =1

entry a;;.

» to mean A is an n X n matrix with (4, j)—th

.....

o We write A = (aijki)ijki=1,..n to mean A is an four tensor with (4, j, k, [)—th

-----

entry a;jk;.
e A diagonal matrix is denoted diag(dy,...,d,).
e Tr(A) = trace of the matrix A.
e det A = determinant of the matrix A.
e AT = transpose of the matrix A.
e A~! = inverse of the matrix A.

e Symm(A) = (1/2)(A+ AT) denote the symmetric part of the matrix A
and SkweSymm(A) = (1/2)(A — AT) denote the skew-symmetric part
of the matrix A.

e M3 = space of real n X n matrices.
O(3) = space of real orthogonal 3 x 3 matrices.

GL(3) = space of real 3 x 3 invertible matrices.
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o If A= (aij)ij=1,.nisanXxn matrix, then
" 1/2
- ()
ij=1

o If A= (a;j)ij=1,. nisanxnmatrix and z € R", then A-z = standar

matrix product.

Notation for functions

o If u:U — R, we write u(z) = u(xy,...,z,), with z € U. We say u is

smooth provided w is infinitely differentiable.
e The support of a function u is denoted supp(u).
e 4(§) = the Fourier transform of u.

o If u:U — R™, we write u(x) = (uy(x),...,un(z)), with x € U. The
function wuy, is the k—th component of u, k=1,...,m.

In the last section of chapter four, we denote u the previous function.

e If S is a smooth surface in R?, we write

/S fds

for the integral of f over S, with respect to 2—dimensional surface

measure. If V is a open subset of R?® we sometimes write

/Vde

for the integral of f over V., with respect to the standard Lebesgue

measure.

e We write

f=0(g) as r — o,
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provided there exist a constant C' such that |f(x)| < Clg(z)| for all =

sufficiently close to xg.

o We write
f=o(9) as T — X,
provided
£(@)] _
w0 |g()]

e We write f ~ g as © — xo, if and only if (f — g) = o(g) as z — x.

The expression O(g) ( or o(g)) is not itself defined. There must always be
an accompanying limit, for examples as © — o above, although this limit is

often implicit.

Notation for derivatives

Assume u: U - R, x € U.

ou u(z+he;)—u(x)

° 87(20) = lim,_,o =, provided this limit exist.

e We usually write d,,u or dyu for 2“(z).

. . 2
e Similarly, %8“%_ = 0,,0z,u = Ojju.

e A vector of the form a = (ay,...,,), where each component «; is a
nonnegative integer, is called a multiindiez of orde |a| = ay + - + .
Given a multiindex «, define

e
0%u(x) : 0“u(z)

= a1
Dayt - - O

= 00 ().

o Vu=(0yu,...,0,,u) = gradient vector.

o We sometimes employ a subscript attached to the symbols 0, V, etc.
to denote the variables being differentiated. For exemple if u = u(t, ),

(t,z) € R™™ then V,u = (0,1, ..., 0y, u) and dyu = limy, g w
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We sometimes denote 0yu by 1.

Ifnowm > 1, u:U — R™ x € U we define 0% = (0%uy,...,0%y,)

for each muliindex a.

We denote with ! the inverse function of w.

e We write
axlul e 81‘nu1
Vu = : : = gradient matrix
8w1um e axnum

e If m = n we have divu :=Tr(Vu) = Y7 | 0,,u; = divergence of u.

o If A= (aij)i,jzl » 1S a n X n matrix, we denote

77777

divA = leAl = (Z @Ujalj, ey Z 836]@7”)
=1 j=1

Function spaces

C(U)={u:U — R : u continuous}.

CHU) ={u:U — R : u is k-times continuously differentiable}.
C=(U) = (20 CHD).

C3°(U) denotes these functions in C*°(U) with compact support.

e §(U) denotes the Schwartz space of rapidly decreasing functions.

The spaces C(U,R™), C*(U,R™), etc. consist of those functions
uw:U — R™ u=(uy,..., uy,) with u; € C(U),C*U), etc.,

1=1,...,m.

LP(U) ={u:U — R: uis a Lebesgue measurable, ||u||, < oo} where

1/p
fully = ([ 1abae) "L 1<p<oc
U
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L>*(U) = {u : U — R : uis a Lebesgue measurable, ||u||, < oo}
where

] oo = €55 supyul.

LP

loc

(U)={u:U—R:ue LP(V) for each V CC U}.

e The spaces LP(U,R™), L>°(U,R™), 1 < p < oo consist of those functions
u:U—=R™ u=(uy,...,uy,) with u; € L*(U),L>*U),i=1,...,m,

respectively and

m 1/p m l/p
ull, = (Zuung) - (Z / |ui|pda:> ,
=1 =1

=1,...,

o WPs(U)={u:U—=R:ue L. (U),0% € LP(U), for each multi index «,
with |a] < s}, with 1 < p < 0o and s a nonnegative integer. Moreover,

we define

1/
(fU Z|a|§s |aa“|pd$) " 1<p< o

> laj<s €58 SUpy[0%ul - p =00

[[ullp,s =

o H*(U) :=W?*(U), s=0,1,....

e The spaces WP*(U,R™), H*(U,R™), W**(U,R™), consist of those func-
tionsu : U — R™ u = (uy,...,uy) withu; € WP*(U), H*(U), W5(U),

1 =1,...,m, respectively and

m 1/p
ullp,s = <Z Huillﬁ,s> :
i=1

[[ulloc,s := max [|ui[sc,s-
i=1,....m

o If I = [0,7] C R, the spaces C(I, H*(R™)), and C*(I, H*(R")) con-
sist of those continuous, respectively C1(I), functions with values in
H*(R™).
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