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Abstract

The need for a convergence between semi-structured data management and Information
Retrieval techniques is manifest to the scientific community. In order to fulfil this grow-
ing request, W3C has recently proposed XQuery Full Text, an IR-oriented extension of
XQuery. However, the issue of query optimization requires the study of important prop-
erties like query equivalence and containment; to this aim, a formal representation of
document and queries is needed. The goal of this thesis is to establish such formal back-
ground. We define a data model for XML documents and propose an algebra able to
represent most of XQuery Full-Text expressions. We show how an XQuery Full-Text ex-
pression can be translated into an algebraic expression and how an algebraic expression
can be optimized.
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Chapter 1

Introduction

In this chapter we present a synopsis of our doctoral work, which will serve as an intro-
duction to the contents of the thesis. The research problem we have addressed is stated
in Section 1.1. In Sections 1.2 and 1.3 we present our approach and main contributions.
Then, in Section 1.4 we list the publications where we have disseminated some of the con-
tents of the thesis and other related ideas. We conclude this introduction with the outline

of the thesis.

1.1 Problem Statement

The semi-structured data paradigm [ASB99, Bun97, Suc98, Abi97] has gained growing
attention in the last decade and XML [Con04] has becomaléhfactostandard for ex-
changing information over the web and integrating heterogenous data sources. Several
guery languages for XML have been proposed [ACM, BDHS96, CCD 99, DFF 99,
CRFO0O0] until XPath [Con06a] and XQuery [Con06c] have received a general consensus,

becoming the standard query languages.

The study of semi-structured data and XML received in the last years a further boost
from a new trend: the integration of structured, semi-structured and unstructured data
into a more general framework [INE]. In the past, these three kinds of data have been
extensively studied as separated worlds, leading to incompatible models, languages and

systems. A convergence between these diverging theories is made necessary by the con-
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sideration that many today’s applications, like biological data [BMBdIIO5], have to cope

with data covering the entire spectrum.

For what concerns the integration of structured data management and Information
Retrieval techniques, some proposals, like BANKS [BHI®] and DISCOVER [HP02],
aims at enabling IR-like searches over relational databases. However, they are typically
limited to simple keyword-based searches; no support for more complex queries (e.g.

involving constraints on position of searched terms) is present.

For what concerns the integration of semi-structured data and Information Retrieval,
XML plays a crucial role. In fact it permits to represent different kind of documents, rang-
ing from data-centricdocuments (i.e. highly structured documentsjié@ument-centric
documents (i.e. loosely structured documents) [BYRN99]. However, a problem arose
concerning the query language: while XQuery is suitable to query a data-centric XML
repository, searching relevant documents in a document-centric repository requires the
use of Information Retrieval techniques. The easiest solution could be that of designing a
system which accepts either XQuery expressions (managed by an XQuery engine) and IR-
like searches (managed by an IR engine); however, such a splitting would made difficult
expressing (and efficiently answering) queries that combines semi-structured and full-
text queries. These considerations led to the definition of many query languages for XML
with full-text capabilities [TG02, GSBS03, NDM1, CMKS03, BG02, FGO01]; lastly,
W3C has published a Working Draft (mainly based on the previously proposed language
TeXQuery [AYBS04]) for extending XQuery with Full-Text operators [ConQ6f].

While relational database systems and their language (SQL) were developed on a
solid formal background (namely, relational model and relational algebra [Cod70]), in the
semi-structured world efforts have been concentrated on practical problems, like defining
suitable languages, leaving aside theoretical aspects. Only in the last few years important
theoretical aspects, like the definition of a data model and an algebra for XML, have
been tackled; these are central points for studying relevant properties of a query, like
inclusion and equivalence, thus enabling the definition of rules for query optimization.
Many different proposals [JLSTO01, FHPOZ2] covering this issue have been presented; very
few works [AKYJO03], however, deal with the further complexity introduced by the usage
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of IR-like techniques in the semi-structured world. Moreover, in our opinion, none of
them fulfill all the requirements. Some, in fact, provide only simple XPath-like constructs,
though restructuring constructs are of great importance in the XML context; others are
based on concepts excessively diverging from classical relational algebra, thus making it
difficult to (partially) reuse the work done in the relational context; on the contrary, others
try to transform the problem of managing semi-structured data into that of managing

structured data, thus losing the peculiarities of XML.

1.2 Our Proposal

In this thesis we propose AFTX (8ebra for Rull-Text retrieval over XL repositories),

a novel algebra for managing XML documents. It deeply integrates classical and full-text
features, proposing itself as a valid framework for studying optimization techniques for
XQuery Full-Text queries. The algebra is a natural extension of the relational algebra,
and is based on a simple data model in which trees and forests are the counterpart of
the relational tuples and relations; AFTX is quite intuitive and is able to represent many
XQuery FLWOR expressions, along with its full-text extensions.

The operators of our algebra enjoy some interesting algebraic properties, which are
used to discover equivalence and containment between queries. This leads to the def-
inition of rewriting rules for algebraic expression, whose purpose is to optimize query
evaluation.

The definition of an algebra would be useless if such an algebra is not able to repre-
sent at least a significant fragment of the standard query languages for XML, which are

XQuery and its IR extension XQuery Full-Text. Our algebra fulfills such a need.

1.3 Contributions

The contribution of our work is manifold:

e We present a new approach to the definition of a data model and an algebra for XML

repositories; our approach is as close as possible to the classical relational theory,
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with the necessary adaptations for dealing with the semi-structured paradigm. The
data model and the algebra have a special emphasis on full-text retrieval capabili-

ties, which are perfectly integrated with standard manipulation tasks.

e We develop an automatic translation algorithm from XQuery Full-Text expression
to algebraic expressions. Numerous translation examples are presented, ranging
from simple expressions composed by a single clause to quite complex expressions

involving multiple variable bindings, nesting, content restructuring etc.

e We tackle the problem of efficient query evaluation by exploiting algebraic proper-
ties of our operators. This permits to study equivalence and containment of alge-
braic expressions and therefore to produce a set of rewriting rules aiming at trans-

forming an expression into an optimized one.

1.4 Related Publications

The idea of defining a unified model for semi-structured and unstructured data, with par-
ticular focus on biological data, was included in a perspective article appeared in IEEE
MMTC e-newsletter [BMBdIIO5].

The AFTX algebra, which is the core of this thesis, has been presented in some pub-
lished articles. A first version of the data model and the algebra, with support for standard
XQuery-like queries has been presented in a paper accepted for the DEXA conference
[BMO6a]. Full-text support has been added in a paper accepted for a WSEAS conference
[BMO6¢c]. Query optimization issues have been tackled in a paper for the International
Advanced Database Conference [BM06d] and an extended version has been published on
a WSEAS journal [BMOG6b].

1.5 Outline of the Thesis

This thesis is organized in three main parts. The first part comprises this introduction

and a review of related works in the area of semi-structured data. In particular we first
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introduce the standard language for XML documents manipulation, XQuery, and its ex-
tensions towards IR tasks, XQuery Full-Text; then we review previously proposed data
models and algebras, pointing out their strong points and weaknesses.

In the second part we present the core of our proposal, AFTX. Chapter 3 gives all
the details about the data model we use to represent XML repositories and the opera-
tors used to manipulate them; we also relate our basic concepts to that used in XQuery.
Chapter 4 shows how to translate an XQuery (Full-Text) expression into an AFTX ex-
pression; we first give informal hints for translation, then we present a formal algorithm
for such a translation. The final goal of our algebra is to provide a method for efficiently
evaluate queries; to this aim, in Chapter 5 we define interesting algebraic properties and
demonstrate how they can be used in order to transform an algebraic expression into an
optimized one.

Finally in the third part we draw out some conclusions and sketch future work.






Chapter 2

Related Works

In this chapter we do a survey of previous works that have significant connections with our
thesis. We first analyze the standard query languages for XML, this study is preliminary to
our work, because the algebra we propose to define must be able to express an expressive
fragment of such languages. Then we review previous proposed algebras for XML, with
and without full-text support. Their features are compared, and the critical points are
highlighted.

2.1 Query Languages for Semi-Structured Data

Although many query languages for semi-structured data have been proposed during the
last decade [AQM97, BDHS96, CCD 99, DFF 99, CRF00], our work concentrates on

the W3C'’s candidate standard XML query language XQuery [Con06c] and its full-text
extension XQuery Full-Text [Con06f]. Consequently, in this section we only review these

two languages, along with their corresponding data models.

2.1.1 XQuery

XQuery [Con06¢c] is the W3C'’s candidate standard XML query language; it is derived
from a previous proposed language, Quilt [CRF00] and extends XPath 2.0 [Con06a].
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The Data Model

The XQuery Data Model (XDM) [Con06d] is based on the conceerfuence A se-

guence is an ordered list of zero or maesms an item can be:

¢ anode a collection of nodes forms a tree, which consists of a root node plus all the

nodes that are reachable directly or indirectly from the root node;

e anatomic valuei.e. a value of type atomic; an atomic type is a primitive simple

type or a type derived by restriction from another atomic type.

Each node hasuanique identitywhile atomic values do not have identity.ddcument
order is defined among all the nodes; document order is the order in which nodes appear
in the XML serialization of a document.

The supported types are those defined in XML Schema [Com81dt(ing
xs:decimal , xs:datetime  etc.) plus five additional typess:untyped (an el-
ement node that has not been validated)untypedAtomic (an untyped atomic
value),xs:anyAtomicType  (an atomic type that includes all atomic values),
xs:dayTimeDuration (derived fromxs:duration by restricting its lexical repre-
sentation to contain only the days, hours, minutes and seconds components) and
xs:yearMonthDuration (derived fromxs:duration by restricting its lexical rep-
resentation to contain only the year and month components).

There are seven kinds of nodes in the data model. The main kind¥oatenentan
entire XML document) Element(an XML element),Attribute (an XML attribute) and
Text(XML character content); the other kinds &femespacéhe binding of a namespace
URI to a namespace prefixprocessing InstructiofXML processing instructions) and
Commen{XML comments).

A set of properties (calledccessorkis defined on each node among them the most

significant are:
e dm:children : the ordered list of child nodes of

e dm:attributes . the attributes of; order of attributes of a node is implemen-

tation dependent;
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e dm:node-name : the name of:;

dm:parent : the parent of;

dm:string-value : the concatenation, in document order, of the string values
of all text nodes descendantsrgffor attributeandtextnodes, it corresponds to the

value of the node, because such nodes can not have descendants;

dm:typed-value : the typed value of;

dm:type-name : the schema type of.

Given those kinds of nodes and their accessodecaments defined as a tree whose
root node is a Document Node; a tree whose root node is not a Document Node, i.e. a

subtree, is instead referred to aagment

Example 2.1 Consider the XML document in Figure 2.1, taken from [Con06d]. Figure
2.2 shows how the document is represented using XDM,; for the sake of simplicity only
Document Nodes (B), Element Nodes (E), Attribute Nodes (A) and Text Nodes (F)

are included. The Document Node D1, which represents the entire document, has one
child Element Node (E1), corresponding to the XML elemeatialog . E1 has three
child Attribute Nodes (corresponding to the XML attributes:schemalocation ,
xml:lang andversion ) and two child Element Nodes (corresponding to the XML
elementsshirt  andalbum ). Note that the textual content of an Element Node is
represented by a child Text Node (like T1, which corresponds to the content of the XML
elementtitte  : “Staind: Been Awhile Tee Black (1-sidgd)while value of Attribute
Nodes is not. The value of tlam:string-value property for the Element Node D1

is the concatenation of the string values of all its descendant Text No8&snt: Been
Awhile Tee Black (1-sided) Lyrics from the hit song 'It's Been Awhile’ are shown in white,
beneath the large 'Flock & Weld’ Staind logo. 25.00 It's Been A While 10.99 Staind

The Language

The basic building block of XQuery is thexpressionthe result of an expression is af-

fected by itsstatic contex{information about namespaces and schemas, defined variables
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<?xml version="1.0"?>
<catalog xmlns="http://www.example.com/catalog"
xmlns:html="http://www.w3.0rg/1999/xhtml"
xmins:xlink="http://www.w3.0rg/1999/xlink"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.example.com/catalog
dm-example.xsd"
xml:lang="en" version="0.1">
<tshirt code="T1534017" label=" Staind : Been Awhile "
xlink:href="http://example.com/0,,1655091,00.htm|"
sizes="M L XL">
<title> Staind: Been Awhile Tee Black (1-sided) </title>
<description>
<html:p>
Lyrics from the hit song ’Ilt's Been Awhile’
are shown in white, beneath the large
'Flock &amp; Weld’ Staind logo.
</html:p>
</description>
<price> 25.00 </price>
</tshirt>
<album code="A1481344" label=" Staind : Its Been A While "
formats="CD">
<title> It's Been A While </title>
<description xsi:nil="true" />
<price currency="USD"> 10.99 </price>
<artist> Staind </artist>
</album>

</catalog>

Figure 2.1: An XML document.
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Figure 2.2 Graphical representation of the XML document in Figure 2.1 using XDM.

and functions, etc.) and by ith/namic contextthe context item (the item currently be-
ing processed), the context position (the position of the context item within the sequence
of items currently being processed), the context size (number of items in the sequence

processed), the variable values, etc.

Two phases of processing are defined: s$tegtic analysis phasand thedynamic
evaluation phaseDuring the static analysis phase, the query is parsed into an internal
representation called tlaperation treewhich is then normalized; static type checking is
performed. During the dynamic evaluation phase the value of the expression is computed;

it depends on the operation tree, on the input data and on the dynamic context.

An expression is composed by one or msirgle expressiaiconnected by theomma
operator, which is used to form a sequence. Typically a single expressiéihLWa@Rex-
pression; the name FLWOR is an acronym for the keywéwods, let , where , order
by andreturn . Thefor andlet clausesinaFLWOR expression generate an ordered
sequence of tuples of bound variables, calledulipée stream The optionalvhere clause
serves to filter the tuple stream, retaining some tuples and discarding others. The optional
order by clause reorders the tuple stream. Thaurn clause constructs the result
of the FLWOR expression; it is evaluated once for every tuple in the tuple stream, after
filtering by thewhere clause, using the variable bindings in the respective tuples. The
result of the FLWOR expression is an ordered sequence containing the results of these

evaluations, concatenated as if by the comma operator.
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The simplest example offar clause contains one variable and an associated expres-

sion. For example the clause

for $d in fn:doc("depts.xml")/depts/deptno

iterates over all the departments in an input document, binding the vatidiiteeach de-
partment number in turn. The functidm:doc reads the XML documerdepts.xml
and returns an XDM instance representing that document; then the path expression
/depts/deptno looks for a child element nametkptno of a child element named
depts of the current item; initially the current item is the document node, that represents
the entire document.

A for clause may also define multiple variables. In this casefaheclause iterates
each variable over its binding sequence; the resulting tuple stream contains one tuple for

each combination of values in the respective binding sequences. For example the clause

for $d in fn:doc("depts.xml")/depts/deptno,

$e in fn:doc("emps.xml")/employees/employee

returns a tuple stream containing one tuple for eaepértment numbeemployegpair.

Each variable bound infar clause may have an associapasitional variablethat
is bound at the same time. The name of the positional variable is preceded by the keyword
at . As a variable iterates over the items in its binding sequence, its positional variable
iterates over the integers that represent the ordinal positions of those items in the binding

sequence, starting with 1. For example the clause

for $pet at $i in ("Cat", "Dog")

returns two tuples(“Cat”, 1) and(“*Dog”, 2) .

Alet clause, like dor clause, binds one or more variables to a sequence; however,
alet clause binds each variable to the entire result of its associated expression, without
iteration. The variable bindings generateddly clauses are added to the binding tuples

generated by thior clauses. For example the expression
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for $d in fn:doc("depts.xml")/depts/deptno

let $e:=fn:doc("emps.xml")/employees/employee

returns a tuple stream containing one tuple for each department number; that tuple will
contain the department number (boundth and a sequence containing all the employ-
ees (bound to the variabge).

A where clause serves as a filter for the tuples of variable bindings generated by the
for andlet clauses. The expression in thwnere clause is evaluated once for each
tuple; if its boolean value isrue , the tuple is retained and its variable bindings are
used in an execution of theturn  clause; if the boolean value false , the tuple is

discarded. For example the expression

for $pet at $i in ("Cat", "Dog")
where $i mod 2 = 0

returns the tuplé€‘Dog”, 2) ; the tuple(“Cat”, 1) is discarded becaudemod 2 # 0.

An order by clause contains one or more ordering specifications. For each tuple
in the tuple stream, after filtering by tivehere clause, the ordering specifications are
evaluated, using the variable bindings in that tuple. The relative order of two tuples is
determined by comparing the values of their ordering specifications, working from left to

right until a pair of unequal values is encountered. For example the expression

for $e in $employees

order by $e/salary descending

returns employees in descending order by salary.

Thereturn clause of a FLWOR expression is evaluated once for each tuple in the
tuple stream, and the results of these evaluations are concatenated, as if by the comma
operator, to form the result of the FLWOR expressionrefurn  clause typically use
constructors that create XML structures possibly referring to variables using enclosed
expressions. For example, suppose to bid aariable tobook elements having one or

moreauthor sub-elements; the clause
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return <book isbn="{$b/isbn}">
<authors>{$b/author}</authors>
</book>

for each inpubook element does the following:

e create ébook element;
e create asbn attribute;

e set the value of thesbn attribute to the value of thisbn child element of the

inputbook element;
e create arauthors element, whose parent is tbeok element;

e create a subtree of tlmeithors element for each subtree rootechathor of the

inputbook element.

In the previous examples we have seen that each clauspatiseexpressia A
path expression consists of a series of one or rsteps separated by/*” or “// ", and
optionally beginning with /'” or “// ”. Each step generates a sequence of items and
then filters the sequence by zero or more predicates. A predicate can test the value of
an element (e.glbook[./price < 50] : find all books with a price less than 50),
the value of an attribute (e.gdbook[@id = 1] : find all books with an attributéd
having value 1), the existence of an element (ébgok][./author] . find all books
with at least one author), the existence of an attribute (fbgok[@isbn] : find all
books with an attributesbn ), the context position (e.gbook/author[2] : find the

second author of each book).

Note that, in the expressidhook][./price < 50] , anatomizationoperation is
first performed, i.e. the typed value of the elem@mte is extracted; then a comparison
between such typed value and 50 is executed. XQuery provides three kinds of compari-
son expressions, calle@lue comparisongeneral comparisong@ndnode comparisons

The difference between value comparisoeq,(ne, It , le , gt , andge) and general
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comparisons¥, != , <, <=, >, and>=) is that the first ones operate only on single val-

ues, while the second ones operate also on sequences of values following an existential
semantic; for examplél, 2) = (2, 3), because there is a pair of values from the first and
second sequence that are equal. Node comparisons are used to compare two nodes, by
their identity {s ) or by their document ordek& and>>).

XQuery permits the usage ddiinctions that must return an instance of XDM. The
built-in functions supported by XQuery are defined in [Con06g]; additional functions
may be declared in the prolog of the query, imported from a library module, or provided
by the external environment as part of the static context. Among the built-in function, we

cite:

o distinct-values : applied to a sequence of nodes, returns a sequence of atomic

values containing only the distinct values found in the input sequence;
e count : applied to a sequence, returns the number of items in the sequence;
e position : returns the context position of the context node.

XQuery supports a conditional expression based on the keywbrdshen , and

else . For example the expression

if ($widgetl/unit-cost < $widget2/unit-cost)
then $widgetl
else $widget2

returns the sequence bound to eitfieidgetl or $widget2 , depending on the satis-
faction of the test condition.

XQuery also supports universal and existential quantifiers. A quantified expression
begins with a quantifier, which is either the keywaa@me or the keywordevery , fol-
lowed by one or moren-clauseghat are used to bind variables, followed by the keyword
satisfies and a test expression. Each in-clause associates a variable with an expres-
sion that returns a sequence of items; it generates tuples of variable bindings, including a
tuple for each item that satisfies the test expression. For example the expression
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some $emp in /emps/employee satisfies
($emp/bonus > 0.25 * $emp/salary)

returns true if at least one employee satisfies the given comparison expression; moreover

it binds the variabl&emp to the employees satisfying the condition.

XQuery allows expressions to be nested with full generality. For example, consider the
XML documentbook.xm| shown in Fig. 2.3, which will be further used in the following
chapters. The following query inverts the document hierarchy to transform a bibliography
into an author list in which each author's name appears only once, followed by a list of

titles of books written by that author:

<authlist>
{
for $a in fn:distinct-values($bib/book/author)
order by $a
return
<author>
<name> {$a} </name>
<books>
{
for $b in $bib/book[author = $a]
order by $bititle
return $b/title
}
</books>
</author>

}

</authlist>
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<bib>

<book year="1994">
<title>TCP/IP lllustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>

<book year="1992">
<titte>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>

<book year="2000">
<titte>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>

<book year="1999">
<title>Technology and Content for Digital TV</title>
<editor>

<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>

</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>

</book>

</bib>

Figure 2.3 A working example of XML document.
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2.1.2 XQuery Full-Text
The Data Model

The XQuery Data Model, based on the notion of sequence of nodes, is inadequate to
support full-text searches over XML documents, because full-text search requires more
information on the words contained in the document. In particular, at least the relative
position of the words is needed; moreover, it could be worth representing which paragraph
or sentence the word is contained in. XQuery Full-Text adds such information via a

structure called\lIMatches

An AllIMatchesdescribes the possible results of a full-text selection; it contains zero or
moreMatches, each of which describes one result of the full-text selection. Hatth
contains zero or mor8tringIncludeand zero or mor&tringExcludewhich describe the
qguery: aStringlncluderepresents a searched token (i.e. a token that must be found in
the document), &tringExcluderepresents an unwanted token (i.e. a token that must
not be contained in the document). Finally, e&thngincludéStringExclude(known
collectively asStringMatch has an associateétbkeniInfg that represents the word that
matches the condition specified in t8&ingMatch A TokenlInfois formed by a word, a
unique identifier pog that captures the relative position of the word in document order
and two more unique identifiers that represent the containing paragraph and sentence;
these information are available thanks ttokenizatiorprocess that must be carried out

before a full-text search can be evaluated.

Figure 2.4 shows an exampleAliMatches(taken from [Con06f]) relative to the full-
text selection Ford Mustang. There are two possible results, represented by the two
Matches. The firsMatchshows that the wordFord” has been found at position 1 and the
word “Mustang” has been found at position 2; the secdnatch shows that the words

have been found at position 27 and 28.

Given their hierarchical naturéllMatchesstructures can be represented as XML
documents; therefore it is possible to define formal XQuery functions that represent the
implementation of a full-text search condition. In this way full-text conditions can be

composed with standard XQuery search conditions.
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ing: “Ford" g: "Mustang” | [ queryString: "Ford” | | queryString: "Mustang®
@

Figure 2.4 An example ofAllMatches

The Language

XQuery Full-Text extends XQuery and XPath by:

e adding a new expression calle@ContainsExpy

e enhancing the syntax of FLWOR expressions in XQuery and path expressions in

XPath with optional score variables.

Wherever an XQuery comparison expression can be uset@iCantainsExprcan be
used. A simpld=TContainsExpis of the formftcontains FTSelectionwhereFTSe-

lectionrepresents the full-text condition. For example the XQuery Full-Text expression

for $b in doc("bib.xml")/books/book
where $b ftcontains "dog"

return $b/author

return all authors of books that contain somewhere the wlogd Note that the word is
searched into the entire content di@okelement, including the value of its sub-elements.
The same full-text condition could also be included into a path expression; for example

the following XQuery Full-Text expression is equivalent to the previous one:

for $b in doc("bib.xml")/books/book]|. ftcontains "dog"]
return $b/author
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The full-text condition can also be composed by multiple basic conditions, connected
with the boolean operato&& (and) or|| (or). For example the XQuery Full-Text ex-

pression

for $b in doc("bib.xml")/books/book
where $b ftcontains "dog" && “cat"

return $b/author

return all authors of books that contain somewhere the \@oghndcat

Besides specifying a match of a full-text search as a boolean condition, full-text search
applications typically also have the ability to associstereswith the results; scores
express the relevance of those results to the full-text search conditions. XQuery Full-
Text extends XQuery and XPath further by adding opti@talre variables to thdor
andlet clauses of FLWOR expressions. For example consider the XQuery Full-Text

expression:

for $b score $s in doc("bib.xml")/books/book
[. ftcontains "dog" && "cat"]
return  <book>
<title>{$b/title}</title>
<score>{$s}</score>
</book>

The evaluation of the expression following time keyword not only determines the
resulting sequence of the expression, i.e., the sequence of items which are iteratively
bound to thefor variable. It must also determine in each iteration the relevance score
value of the current item and bind tBs variable to that value. The result is therefore a
list of books containing somewhere the two searched words; for each book, the title and
the score value is output.

The calculation of relevance is implementation-dependent, but score evaluation must

follow these rules:

e score values are of types:double  in the range [0, 1];
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e for score values greater than 0, a higher score must imply a higher degree of rele-

vance.

Similarly to the way they are used irfar clause, score variables may be specified in
alet clause. Ascore variableiniet clause is also bound to the score of the expression
evaluation, but in théet clause one score is determined for the complete result. The
let variable may be dropped from thet clause, if the score variable is present. While
when using the score option irfar clause the expression following tie keyword has
the dual purpose of filtering, i.e., driving the iteration, and determining the scores, it is
possible to separately specify expressions for filtering and scoring by combining a simple
for clause with det clause that uses scoring. For example consider the following

XQuery Full-Text expression:

for $b in doc("bib.xml")/books/book
let score $s := $b ftcontains "dog" && "cat"
order by $s descending
return <book>
<title>{$b/title}</title>
<score>{$s}</score>
</book>

This query returns all the books, without any filter. However, a score is calculated for

each book, and books are returned in descending order by score value.

Scoring may be influenced by addimgight declarationdo search tokens. For ex-

ample thdet clause

let score $s := $b ftcontains ("dog" weight 0.2)
&& ("cat" weight 0.8)

instructs the system to give a higher importance to the watdnd a lower importance to
the worddog however the exact effect of weights on the result score is implementation-

dependent.
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Until now we have shown only basic full-text searches of single words. More com-
plex full-text conditions can be written in XQuery Full-Text. Among them we cite the

following possibilities:

e we can search for elements containing a phrase instead that a set of words (e.g.

/book[. ftcontains "Expert Reviews"] );

e we can search for elementst containing a word or phrase (e #pook].
ftcontains ! "usability"] );

e We can state that searched words must be found in the same order as in the query
(e.g./book/title ftcontains ("web site" && "usability")
ordered : find those titles that contain the phraseb siteand, later, the word
usability);

e We can state that searched words must be found in the same sentence or para-
graph (e.g./book ftcontains "usability" && "Marigold” same

sentence );

e we can state that searched words must be found at a certain maximal distance
(e.g/book ftcontains "web" && "site" distance at most 2
words );

e We can state that searched words must appear at/#etstes (e.g. /book].

ftcontains "usability" occurs at least 2 times] );

e we can specify a set of match options that affect the result of a query: case-sensitive
search, use of stemming, use of thesaurus, use of stopword etc/b@og. .
ftcontains "usability” with stemming with thesaurus
default] ).
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2.2 Algebras for XML

Many different algebras for semi-structured data have been proposed in the last few years.
In this section we deeply analyze the two algebras that mainly influenced our work, TAX
[JLSTO1] and XAL [FHPO02]. Then we describe in fewer details further interesting pro-
posals.

2.2.1 TAX

TAX [JLSTO1] (Tree Agebra for XML) is probably the most famous algebra for XML

documents. In TAX data model an XML document is represented by an ordered labeled
tree, which is the basic unit of information. Each node in a tree represents an XML
element; a node can have a list of attributes (corresponding to XML attributes) plus the

following special attributes:
e tag : the type of the element, i.e. its name;
e content : the value of the element;

e pedigree : it represents a sort dfistory of where a node came from; it has a
different value for each element stored in an XML repository, but it is not a unique
identifier; in fact, if a node is copied then both the copy and the original have the

same pedigree, and when a new node is created it has a null pedigree.

Trees are grouped into collections; each TAX operator takes one or more collections
as input and produces a collection as output.

The main innovation in TAX is the concept phttern trees which are essentially
trees representing nodes and attributes of interest for an operator, plus a selection formula.
Pattern tree nodes have a distinct integer as label; nodes are connected \(pérent-
child) orad (ancestor-descendant) edges. The selection formula is a boolean combination
of predicates applicable to nodes.

Two examples of pattern trees are shown in Figure 2.5. Pattern (a) asks for books

published before 1988 and having at least one author; in fact it looks for an element
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whose tag i9ook , having a child element nameear with value less than 1988, and a
descendant element namaathor . Pattern (b) asks for books publisher by a publisher
whose name contains the string “Science” and written by Jack and Jill in that order.
$1.tag = book & $1.tag = book
@ $2.t:g = yggr & @ $;.:Zg = pﬁglisier &
$2.content < 1998 & $2.content = “*Science*” &

pc ad $3.tag = author pc ne ad $3.tag = author &
$4.tag = author &

$3 BEFORE $4 &
$3.content = “Jack” &

$4.content = “Jill

(@ (b)

Figure 2.5 Two TAX pattern trees.

Given a collection of trees and pattern treayitnesstree represents a possible map
from the pattern tree to an input tree. It contains the nodes, corresponding to the nodes in
the pattern tree, that satisfy the selection formula. Multiple witness tree can be obtained
from a single input tree, if the pattern tree can be mapped in multiple ways. For example,
consider the pattern tree in Figure 2.5(a); by applying it to the tree shown in Figure 2.6(a)
two different witness trees, shown in Figure 2.6(b), are obtained, because two mappings

exist from the pattern tree to the input tree.

cE5y Seiy

1980 Jack Jill A Dummy f°’ 1980 Jack 1980 Jill
a Computer

(a) (b)

Figure 2.6. An input tree (a) and the resulting witness trees (b) obtained applying the
pattern tree of Figure 2.5(a).

The notion of pattern tree is the basis for the definition of TAX operators, which are

the following:
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e Selectionop g (C): returns all possible witness trees corresponding to the pattern
tree’P, enriched with all descendants of those nodes corresponding to pattern tree
nodes included in thadornment listSL; for example,op ¢, (C), whereP is the
pattern tree in Figure 2.5(a) agds a collection containing only the tree in Figure
2.6(a), returns two copies of the input tree, because the adornment list specifies to

retain in the output the entire subtree rootet@ik .

e Projectionp e, (C): for each witness tree, returns only those nodes which are in-
cluded in theprojection listPL, plus all descendants of those nodes corresponding
to pattern tree nodes includedi. with a “*”; for example, using the same and

C of the selection example 5. (C) returns the same result op g (C).

e ProductC x D: for each pair of tree$; ¢ C andT; € D returns a new tree having a
root node namethx _prod _root , whose left and right subtrees are a copyl pf
andTj; join and outerjoin operators are derived by applying a selection condition

to the result of a product.

e Set Operatorsunion, intersection, and difference act as in classical set theory; two

trees are considered identical if all atttributes at corresponding nodes are identical.

e Grouping~yp qr..orfun (C): groups witness trees, obtained by applying the pattern tree
P to the trees irC, by the value of elements/attributes in ip@uping listGL; for
each group, an output tree is built, having a root element naaxedgroup _root
with two subtrees: 1) tax _grouping _list element containing the nodes that
form the grouping basis; 2) @x _group _subroot element having as subtrees
the witness trees in the group, ordered by the funatidan. Derived operators for

duplicate elimination and ordering can be obtained using grouping and projection.

o AggregationA geaser— 7, (sj.atr),p0s(C): €ACH input tree is returned unchanged, ex-
cept for the insertion of a netax _aggNode node, having an attributggAttr
whose value corresponds to the result of the aggregation fungtigmin, max,

count, sum etc.); the new node is inserted in the position specifipddy
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Renamingpps(C): each witness tree is returned with some nodes or attributes
being renamed, according to trenaming specificatioRS for example

PP s2—pubiishea(C), WhereP andC are the usual pattern tree and input tree, returns
the same tree shown in Figure 2.6(a), except that the eleyeamt is renamed

published

Reorderingop ;z1.(C): for each input tree, the subtrees rooted at the element speci-
fied in thereorder listRL are reordered on the basis of the result of the function

applied to those subtrees.

Copy-and-Pasteir 1. .5 (C): for each input tree, the nodes specified in topy
list CL (or the subtrees rooted at those nodes, if the node name includes a “*”) are

copied in the position specified Ipps

Value Updatesp ys(C): each input tree is returned unchanged, except that some
attribute values are changed, according toupédate specificatiotS for example

Up $2:content—$2.content+1(C ), WhereP andC are the usual pattern tree and input tree,
returns the same tree shown in Figure 2.6(a), except that the value of the element
year israised by 1.

Node Deletiodp ps(C): each input tree is returned unchanged, except that the nodes
included in thedelete specificatio®S (or the entire subtree rooted at those nodes)

are deleted.

Node Insertionp 15(C): each input tree is returned unchanged, except that a list
of new nodes are inserted according to theert specificationS ; for example

OP < AfterLastChild($1)> (tag="publisher” content="Morgan Kaufnan®) (C) Creates a new

publisher  node, having the valuklorgan Kaufman , and insert as last child

of thebook node.

The authors claim that TAX is able to express any XQuery expression not involving

recursion, function calls or tag variables, and such that the variables boundlat the

clause are bound to an aggregate expression; some XQuery facilities, like quantifiers, are
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not expressible in TAX, but the XQuery expression can be rewritten into an equivalent
one not involving quantifiers. An informal procedure for the translation from XQuery to

TAX is presented.

2.2.2 XAL

XAL [FHPO02] (XML AL gebra) represents an XML document as a rooted connected di-
rected graph with a partial order relation defined on its edges. Vertices are @l¢ypent
(i.e. containing sub-elements) smmple (int, string, etc.); in the first case, thalue
property is the vertex identifier, in the second case it is the element content. Element
containment edges model hierarchy between elements, and their name correspond to the
child element name; attribute edges connect an element to its attributes; data edges con-
nect an element to text data included in it. The order relation is defined only on element
containment and data edges.

Three kinds of operators are definagktraction operatorsmeta-operator@ndcon-
struction operatorsExtraction operators retrieve information from the input XML docu-

ments and return a collection of vertices; they are:

e Projectionr[t,n](e): returns the collection of vertices that represent the targets of
edges of type and name: originating from vertices ir; for example
m[E, painter](e) returns all target nodes of element containment edges, originating

from e, namedpainter.

e Selectiono[cond](e): returns the collection of vertices that fulfill the condition
cond in which constants and projection operators can be used; for example
o[n[A, name| = “ Dali”](e) returns all vertices that have an attribute caltedne

with the value Dali”.
e Distinctd(e): removes duplicates from a collection.

e SortX[ezpr](e): sorts a collection based on the value of expressiam, for exam-

ple X[r[A, name]](e) orders the input vertices by the value of theameattribute.
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e Join (z : exprl) X [cond|(y : expr2) andProduct(z : exprl) x (y : expr2):
for each pair of verticesr, y), wherez andy are obtained by, respectivelgxprl
andexpr2 if the pair fulfills the selection conditiooond (or if the condition is not
present, which is the case of product) then a new vertex is created; such a vertex
has, as outgoing edges, first the outgoing edges diien the outgoing edges of
y. For examplex : 7[E, person(people)) X [r[A,id](x) = w[A, name](y)](y :
7[E, painter|(painters)) pairs person and painter vertices based on the equality of

theid attribute of gpersonand thenameattribute of gpainter.

e Unionz Uy, Differencer — y, andintersectionz N y: these set operators have the

classical semantics; they preserve ordering, thus union is not commutative.
Meta-operators apply a function to each element of the input collection. They are:

e Map map[f](e): applies the functiorf to each element in and concatenates the

results in the output collection.

e Kleene Star<[f, n](e): repeats the functiorf n times starting with the input;
at each iteration the results of the function are added to the next function input;
if n is not present, the repetition continues (possibly infinite times) until a fix
point is reached. For example, suppose that an XML document cormgainter
elements havingainter sub-elements, these sub-elements having fupherter
sub-elements etc; ther{ A, name|(x[n[E, painter]|(root)) gives the names of all
painters.

Construction operators rearrange data previously extracted. They are:

e Create Vertexertez[t](v): creates a new vertex of tygeand valuev; for exam-
ple vertex[string](“ Dali”) creates a simple string element with valDali, while

vertex[element|(null) creates a complex element with null value.

e Create Edgexdgelt, n, p|(c): adds to the graph an edge, nameaf typet from p
to c¢; for exampleedge| E, painter, vertex[element](null)|(vertez [string|(“ Dali™))
creates an element containment edge with npeieter between the vertices cre-

ated in the previous example.



Chapter 2. Related Works 31

A set of optimization laws for XAL expressions is presented. Some of them are
based on similar relational algebraic optimization rules: selection decomposition, selec-
tion commutativity, projection and selection push-down, etc. Some useful optimization
rules, like product commutativity, are not directly applicable, because their usage would
change order between elements; however, there are cases when such order is not impor-
tant, for example because a subsequent re-ordering must be applied, and therefore such

guery rewritings can be executed.

2.2.3 TAX and XAL: Features Comparison and Critical Points

In our opinion, TAX and XAL should be considered two very interesting proposals. TAX
operators have a clear semantics, that is well suited to represent typical operations on
semi-structured data, like those available using XQuery. On the other side XAL operators
are defined in a way more similar to classical relational operators, which results in an
easier definition of optimization rules. For what concerns the features exposed by the
operators, XAL has the advantage of enabling recursion through the Kleene Star operator;
on the other side, TAX is equipped with grouping and node deletion/update, which are not

present in XAL.

Though many valuable ideas can be found in these two proposals, we believe they also

have some important drawbacks.

For what concerns TAX, the concept of pattern trees (and the related concepts of
embeddin@ndwitness treg besides being probably its main innovation, is in our opinion
not so intuitive; it represents a strong deviation from classical relational algebra, thus
making it difficult to (partially) reuse the well-known equivalence rules for optimization
purposes. Not surprisingly, the problem of query equivalence and containment is just

mentioned and no formal rule is present.

Another critical point can be found in the definition of selection and projection op-
erator. In relational algebra these two operators have a clear orthogonal semantics; in
TAX the distinction is much less sharp. In fact, some results can be obtained by applying

indifferently one of these two operators.
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Finally, as already said, authors claim that almost any XQuery expression can be
translated into a TAX expression. However, the presented translation algorithm is quite
informal and not detailed, thus making it difficult to ratify such a claim; as an example, it
is not clear if queries having more than two levels of nesting can be translated. Moreover,
some limitations to the kind of XQuery expression that can be translated (like the fact
that variables bound inlat clause must be bound to aggregate expressions) are rather
severe.

For what concerns XAL, the main drawback is probably the fact that only extraction
operators are closed; in fact meta-operators result depends on the function they apply to
the input collection (for example, a list of simple values could be returned), while con-
struction operators, according to the definition, do not even take as input any collection.

Another serious problem of XAL is that sometimes operators are not clearly defined.
For example, itis not clear if projection retains only the vertices having a certain incoming
edge, or if it retains also their sub-elements. Moreover, it looks like projection searches
such vertices in the entire input collection, tht{#, painter|(e) should be equivalent to
the path expressiatfpainter  ; what if we want to find only roopainterelements? A
further example of non-rigorous definition is that of thestinct operator: which notion
of equality does it use?

Finally, authors do not specify which part of XQuery can be expressed in XAL; at a
first sight, it seems however that only very simple queries can be translated. No translation

algorithm is present.

2.2.4 Other Algebras

The algebra presented in [SA02] usgsaghoperator to extract information from an XML
database on the basis of a path expression, to build variable bindings and to store them in
a relational-like structure; basic operators (selection, join etc.) then manipulate these re-
lational structures and finally threturn operator produces the resulting XML document.
The use of such arelational structure enables to use classical relational optimization rules;
however, a sorting operation is always needed before building the result, because the or-

dering of elements gets lost in the creation of the relational structure. Moreover, selection
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operations, that could be interleaved with path expression evaluation, must be postponed
to the end of th@athoperation; this need prohibits the use of some classical optimization
rules, like selection push-down. This algebra shares many features with that presented in
[CCSO00], which however does not deal with the ordering of elements.

SAL [BT99] is a general algebra for semi-structured data that works on edge-labeled
directed graphs; itis not specifically designed for handling XML features (e.g. it does not
support attributes) and does not provide powerful restructuring operators.

XAT [ZPRO02] is the algebra used in the Rainbow [DSR] XML data management sys-
tem, which is based on XML views over relational data. Consequently, XAT optimization
rules concentrate on moving as much computation as possible to the underlying relational
engine, making it difficult to apply them to a more general framework.

The algebras we reviewed up to now fall into two camps; some of them are tuple-
based algebras, while others are tree-based algebras. The algebra proposed in [RSFO06]
and used in the Galax XQuery engine [gal] borrows ideas from both camps. It is based
on a data model in which values can be eitheXafl value(i.e. an ordered sequence of
items) or atable (i.e. an ordered sequence of tuples containing XML values). Algebraic

operators fall into three categories:

e XML operatorsi.e. operators working on XML values; they can be further subdi-
vided into:
— constructor operatorsthey create sequences, elements, atomic values etc.;
— navigation operatorsthey follow a path, possibly applying a node test;
— type operatorsthey perform casting, validation, and type matching;
— functional operatorsthey model function calls and conditional expressions;
— 1/O operators they parse or serialize documents.

e Tuple operatorsi.e. operators working on tuples; they can be further subdivided

into:

— constructor operatorsthey create or concatenate tuples;
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— relational operators they perform typical relational operations (selection,

join, etc.);

— map operatorsthey perform functional map on tuples, i.e. apply some func-

tion on tuples;

— grouping and sortingthey group or sort tuples.

e XML / tuple operatorsthese operators sit at the boundary between the tuple part
or the algebra and XML part; they are used to transform tuples into items (and vice

versa) and to express existential and universal quantifiers.

The main interesting feature of this algebra is the full coverage of XQuery Core ex-
pressions; authors proposes a set of compilation rules for transforming an XQuery ex-
pression into an algebraic expression. Moreover, some rewriting techniques are used to

optimize the evaluation of a query, with particular emphasis on query un-nesting.

A different approach is followed in [MMO6], which proposes to define logical database
models by instantiating a general abstract model. The abstract model is equipped with a
parametric algebra, which defines, in addition to standard operators like selection, pro-
jection etc., two distinctive operators: embedding, which extends objects with novel data,
and splitting, which decomposes a single object into many objects. Algebraic operators
work on collection of objects. The authors propose an instantiation of the abstract model
in order to manage XML documents and show how an XQuery FLWOR expression can
be translated in their algebra; however the model has some serious limitations: it can not
manage path expressions containing selection conditions and it does not represent order

between XML documents.

2.3 Full-Text Algebras

While there are a lot of proposals for algebras able to represent XQuery-like queries, to
our knowledge the only algebra which integrates structured search with full-text capabili-
tiesis TIX [AKYJO3] (Text In XML). As the name suggests, TIX is an extension of TAX;
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its data model is based on the concepsadred treewhich is a TAX tree extended with
ascorenode attribute; the score of the root node represents the score of the tree.

A scored pattern trees defined as a TAX pattern tree with the following extensions:

e besidegpc (parent-child) anéd (ancestor-descendant) edges, a aeiv (self-or-

descendant) relationship between pattern tree nodes can exist;

e a set of formulas specifies how to calculate the score of some nodes involved in

IR-style search.

For example, consider the following query, expressed in natural languiige: docu-
ment components that are part of an article written by an author with last name ‘Doe’and
are about ‘search engine’. Relevance to ‘internet’and ‘information retrieval’is desirable
but not necessary.the corresponding scored pattern tree is shown in Figure 2.7.

$1.tag = article &
$2.tag = author &

$3.tag = sname &

pc ad* $3.content = “Doe”
$4.score = ScoreFun(
{“search engine™},
{“internet”,
pc “information retrieval’})

$1.score = $4.score

Figure 2.7: A TIX scored pattern tree.

Structural constraints (the presence obaticle  element having aauthor sub-
element containing aname sub-element) and value constraints (the last name of the
author) are represented as in TAX pattern trees. The elefdertonnected t&1 with
anad* relationship, indicates that we are interested in articles or part of articles. The
first score formula defines that the score of the elerfidnis calculated using a scoring
function namedscoreFun . Furthermore, scored pattern trees require that each element
having at least one sub-element involved in a scoring must also have a score; therefore
the second score formula defines that the scofglahust be set to the same score value
of $4.
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Three TAX operators (selection, projection, and score) are redefirsmbeed opera-
tors; basically, their behavior is identical to that of the corresponding non-scored operator,
but score is also calculated as specified by the score formulas. Two brand-new operators
are also definedhresholdandpick.

Threshold operatot;, - (C) returns those scored trees that satisfy each threshold con-
dition in TC. A threshold condition refers to a nodefhand asks for either 1) the score to
be higher than a threshold or 2) the rank to be higher thak; a tree satisfies a threshold
condition if at least one of its referred nodes satisfies the condition.

Pick operatorp} ,.(C) is essentially a way to remove from the output those nodes
that are not expected to be relevant for the user. The pick conditions include@ in
are typically a call to a pick function, that bases its decision of whether to pick or not a
node on the scores of the node being considered and of some other node in the tree. For
example, a pick function could specify that a node is picked either if it has a score higher
than0.8 or if at most50% of its child elements have a score higher tiah

The main drawback we see in TIX is that there is no effort in formalizing an algorithm
for the translation of XQuery Full-Text expressions into TIX expressions. For example,
it is not clear how to differentiate cases whesaore variable is defined from cases
when theftcontains condition must be intended as mandatory. Actually, authors
follow an inverse approach: they propose an extended version of XQuery (quite different
from XQuery Full-Text) which is able to represent TIX expressions. Moreover, being an
extension of TAX, TIX suffers the same limitations previously discussed.

In [AYCDO6] an interesting algebraic approach to the representation of full-text pred-
icates is presented. Starting from the observation that typical XML full-text languages
share a common semantics, the authors define an algebra called XFT. It is based on the
concept ofmatching tablewhich is a relational representation of the matchings found in
an XML document for a full-text query. Each tuple of the matching table contains the
node name where one or more matches have been found, the pattern (i.e. the searched
keywords that have been found) and a list of matches (i.e. the position in which the

keywords have been found). The defined algebraic operators works on matching tables:

e get returns a table containing one tuple for each node with a non-empty set of
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matches;
e or: returns the union of two matching tables;

e and returns a matching table containing one tuple for each node found in both
input matching tables;

e minus returns a matching table containing one tuple for each node found in the first

input forest and not found in the second input forest;

e times ordered window dist test various conditions (number of occurrences found,
order between matches, size of the window in which matches are found, distance

between each pair of adjacent patterns) on the matches.

Being based on a relational representation, the operators enjoy some of the well-
known relational algebra equivalence properties, like selection commutativity, selection

push-down etc. The article also presents:

e a scoring method, which permits to compute element scores incrementally from
their descendants;

e some examples of translation of XQuery Full-Text predicates and NEXI [TS04]

gueries into XFT expressions;
e algorithms that implement the algebraic operators.

XFT is a powerful algebra for representing full-text search. However, it considers full-
text tasks as a stand-alone subject, without integrating them with structured XML search
tasks. Such an integration could be made difficult by the fact that XFT operators work on
relational structures instead of tree-like structures.

An interesting approach to extending relational algebra with full-text concepts is that
of FTA [BAYSO06]. Like XFT, it does not integrate XML search tasks. It uses a data model
where the basic building block is the conceptaide which could be a text document,
and XML element, a relational tuple etc; each token in a node has an associated numeric
position.
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FTA operators work offull-text relations each tuple in a full-text relation contains a
node and a list of positions, which intuitively represents the token positions that satisfy

the full-text condition. The operators are the following:

e Ri(n,p): it returns a full-text relation containing a tuple for each nadiat con-
tains the searched tokemt positionp.

® T, m..om (R itis the classical projection operator over a full-text relatirthe

projection list should always include the node

e R; X Ry itis the classical join operator, where the join conditioltisn = Rs.n;

it ensures that positions in the same tuple are in the same node.

e 0,.4(R): itisthe classical selection predicaed represents an arbitrary position-
based predicate. FTA does not define any specific predicate, even if the authors

propose some exampledigtance ordered etc.).
e Ry — Ry, R1 U Ry: they are the classical set operators.

As an example, the following FTA expression returns the nodes that contain the key-
words “assignment”, “district”, and “judge” in that order, where the keywords “district”
and “judge” occur right next to each other, and the keyword “judge” appears within 5

words of the keyword “assignment”:

Tnode (U distance(att2,att3,5) (U ordered(att3,att1) (U ordered(att1,att2) (U distance(att1,att2,0) (
R aistrict ™ Rjudge) X Rassignment))))

FTA (along with its equivalent calculus FTC) are used to define a notiotoof-
pletenesdor full-text languages; according to this definition, authors show that typical
IR languages are not complete, as well as text region algebras [CM98]. Since a query
evaluation algorithm for FTC queries would be polynomial in the size of data and expo-
nential in the size of the query, authors propose a subset of FTC, including most common
full-text predicates, that can be evaluated in a single pass over inverted lists. This result
is obtained by observing that many full-text predicates (tlianceand ordereg are

true in a contiguous region of the position space; such predicates are defipesitase
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predicates An efficient query evaluation algorithm for positive predicates is presented,
and experiments show that the performance of this algorithm scales linearly with the size
of the query and the number of the context nodes.

There are a lot of other proposals for full-text algebras; some of them are quite in-
teresting from an IR point of view, but lacks the powerful semi-structured constructs we
expect from an algebra underlying XQuery Full-Text. For example, the algebra proposed
in [PGO04] contains a vague predicagdout which defines a set of document parts within
an XML document that fulfill a IR-style query; such a predicate can be combined with
XPath-like expression, while there is no support for XQuery FLWOR expressions. As an-
other example, the algebra in [MHBAO4] has the same limitations, but it is based on the
concept of region algebra and presupposes that XML documents are internally stored in
a relational DBMS. Such proposals and similar ones are sometimes source of interesting

ideas, but are too far away from our goal, so we do not treat them here in more details.
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Chapter 3

The AFTX Algebra

In this chapter we present the core of our proposal: a data model for representing XML
repositories and an algebra for data manipulation. In Section 3.1 we present two sample
XML documents, which will be used in the following examples. Section 3.2 defines the

data model, which is used by the algebraic operators shown in Section 3.3.

3.1 Motivating Examples

Throughout the rest of this chapter, we will use two working examples of XML docu-
ments. The first, shown in Figure 2.3 in textual form and graphically in Figure 3.1, is a
data-centric XML document taken from XQuery Use Cases [Con06b]; the second, shown
in Figure 3.2, is instead a document-centric XML document and comes from XQuery
Full-Text Use Cases [Con06e].

3.2 The Data Model

In this section we present the data model forming the basic framework of our algebra.
It is worth specifying that this data model should not be intended as the basis for an
implementation of an XML Database System; rather, it should be considered as a formal

description of the concepts that system is based on.
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@ Year = 1994"

@ Year = “1992" @ Year = “1999"
Programming Wesley" gy and Academic
in the Unix" Content for Publishers”
@ Year = “2000"
the Web"” Kaufmann

Publishers”

‘“Abiteboul" ‘ ‘ “Serge” ‘ ‘”Buneman”‘ ‘ “Peter” ‘ ‘ “Suciu” ‘ ‘ “Dan” ‘

Figure 3.1 Graphical representation of the XML document in Figure 2.3.

3.2.1 Informal Overview

In our data model an XML document is represented as a rooted, ordered, labeletl
tree is composed by a set of verticeset@mentsconnected with arcs.

Elements always haversameand anidentifier. The notion of element identifier is
similar to the notion opedigreeused in [JLSTO1]. It is not a “true” identifier; in fact
multiple copies of an element share the same identifier, and elements can have a null

identifier. However the identifier has the following properties:

e an element stored in an XML repository can not have a null identifier; when a tree
is stored in the repository, the DBMS is supposed to assign to each element an

identifier;

e two elements stored in an XML repository (in the same tree or in different trees)

can not have the same identifier;

e when an algebraic operator creates a new element, it has a null identifier;
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<book number="1">

<metadata>

</metadata>

<content>

<part number="1">

<chapter>
<title>Heuristic Evaluation</title>
<p>Expert reviewers critique an interface to
determine conformance with recognized
usability principles. <footnote>One of the
best known lists of heuristics is <citation
url="http://www.useit.com/papers/heuristic
/heuristic_list.html"> Ten Usability
Heuristics by Jacob Nielson</citation>. Another
is <citation url="http://usability.gov
/guidelines/index.htm|"> Research-Based Web
Design and Usability Guidelines</citation>
</footnote></p>

</chapter>

</part>

</content>

</book>

Figure 3.2 An XML document with elements having mixed content.
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e the algebraic operators do not change the element identifier; this means that, if an
algebraic expression creates multiple copies of an element, they all share the same

identifier.

Each element, except for the root element, also hparantelement. Moreover, an
element can havealueand a list ofattributes where each attribute has a name and a
value.

Value of elements, i.e. the text contained in them, is represented as atlidteol
each of which is assigned a numeric position relative to the entire tree. Attributes values
are instead separately tokenized: each attribute’s first token has position 1. The choice
of leaving aside attribute values is motivated by the fact that XQuery Full-Text separately
manages element values and attribute values. In fact any XQuery Full-Text expression
must specify whether the full-text search of a word (or a phrase) has to be done over an
element (and its sub-elements) or an attribute.

In the process of tokenization, various techniques typical of the Information Retrieval
world can be used, like de-hyphenation, stopword elimination etc. In this dissertation we
do not deal with such issues, because they have no impact on the operators of our algebra.

An element can havaixed content.e. it can contain character data interspersed with
child elements. Such a situation is quite frequent in so-cal@clment-centricKML
documents, which are the main candidates for full-text retrieval. In order to manage such
situations, we must keep track, in the data model, of the position of child elements inside
the text of an element; we do it by numbering text tokens according to a preorder traversal

of their containing tree.

Example 3.1 Consider the XML document in Figure 3.2. The tokenization of the subtree
rooted atchapter is shown graphically in Figure 3.3; numeric position of tokens is
indicated in square brackets. As we can see, de-hypenation is used and punctuation is not
tokenized; these choices should not be considered as part of our model: they are instead
just an example of the rules that could be followed in the tokenization phase.

Note that token enumeration proceeds from the eletitbnt to the elemenp, then
to the elementootnote ; the fact that the firstitation element is mixed inside the
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text of footnote is represented assigning to its first tokdmeii) the number immedi-
ately following the one assigned to the tokes ) that precedesitation in the text

of footnote . The twourl attributes are separately tokenized, so their enumeration
always starts from 1.

“Heuristic[1] Expert[3] reviewers[4] critique[5] an[6]
Evaluation[2]" interface[7] to[8] determine[9]
conformance[10] with[11]
recognized[12] usability[13] principles[14].

“One[15] of[16] the[17] best[18]
known[19] lists[20] of[21] heuristics[22]
is[Z% Another[30] is[31] " \

url = “http:// url = “http:/
www.useit.com/ @ usability.gov/
papers/heuristic/ guidelines/
heuristic_list.htmi[1]" index.html[1]"
“ Ten[24] Usability[25] “Research-Based[32]
Heuristics[26] by[27] Web[33] Design[34] and[35]
Jacob[28] Nielson[29]" Usability[36] Guidelines[37]"

Figure 3.3 Tokenization of an XML document with mixed content.

Given the above tokenization, we can define a new property for our elements: the
fulltext, which is the value of an element concatenated with the value of its sub-elements.
For example, the fulltext of thébotnote  element in Figure 3.3 i80ne[15] of[16]
the[17] best[18] known[19] lists[20] of[21] heuristics[22] is[23] Ten[24] Usability[25]
Heuristics[26] by[27] Jacob[28] Nielson[29]. Another[30] is[31] Research-Based[32]
Web[33] Design[34] and[35] Usability[36] Guidelines[37]’

Ordering between elements is represented by a propevyose value is an integer
ranging from 1 to the number of children of each element’s parent. For example if we
denote withe thetitle element in Figure 3.3 and wii#i the p element, ther.o = 1 and
e.o=2.

Given a tree, we can pick masybtreegrom it. The concept of subtree is based on the
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notion of elementstrict equalityand on theorder preservatiomproperty. Informally, two
elements are strictly equal if they atlee sameelement. This means that two elements
having the same name, the same value and the same attribute list are not necessarily
strictly equal; contrariwise, if we define twaewsover the same tree and an element is
retained (without modifications) in both views, the two views will contain two elements
which are strictly equal. The notion of strict equality is essential for the definition of some
operators of our algebra, like difference, and is very useful in other situations, e.g. when
we want to join a tree with itself. The order preservation property also plays a crucial

role; every operator of our algebra preserves ordering.

Trees are contained iorests which are themselves ordered. In a certain way, trees
and forests are the counterpart of tuples and relations in the relational model: our al-
gebraic operators manipulate forests (that contain trees) and return a forest, in the same
way relational algebra manipulates relations (that contain tuples) and returns a relation.

However, some differences arise.

First of all, as already said, trees and forests are ordered: an order relationship between
sibling elements is defined (and represented in our data model by the element pshperty
as well as between trees contained in a forest. In the relational world, on the other side,
tuples and relations are not ordered; in fact we have no way of extracting the first tuple
of a relation or the first attribute of a tuple, just because no order relationship is defined
between attributes or between tuples.

An even more important difference is that trees contained in a forest are not required
to share the same structure: forests are just ordered collection of trees, but there is no
constraint on the structure of the trees contained in a forest; this choice is coherent with
one of the distinguishing features of the semi-structured world: viigpienes®f the
schema. All the tuples contained in a relation have instead the same attribute list.

Provided that a tree is always contained in a forest, we can define for the root element
a countproperty, which represents the number of trees contained in the forest; the value
of such a property will obviously be the same for the root element of any tree contained

in a forest.

Many subforestsan be picked from a forest. As in the case of subtrees, the formal
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definition of subforests is based on the notion of tree strict equality (two trees are strictly
equal if they arehe samdree) and on the order preservation property. Informally, a forest
is a subforest of another forest if it contains only trees strictly equal to trees of the original
forest, and the relative order between pairs of trees remains unchanged. If affasest

a subforest of7 and G is a subforest of”, then the two forests are strictly equal: they

contain the same trees in the same order.

3.2.2 Formal Definitions

We start with the definition of the basic building blocks of our data model: attributes and
elements.

Definition 3.1 (Attribute) An attributea is a pair (n, V'), where:
1. nis the name of the attribute;

2. V is a (possibly empty) ordered ligtty, 1), (t2,2), .. ., (t,, n)) Of pairs, where; is

a token;V represents the value (possibly null) of the attribute.

As already said, an attribute’s tokens are always enumerated from,tberen is
the number of tokens. We refer to each component of the tuple with the notatiore.
a.n is the name of the attribute ad\ is its value. With the notation.V'[1] we indicate

the first pair in the list/, while a.V'[1].t represents the first token.
Definition 3.2 (Element) An element is a tuple(k,n, A, V, p), where:
e kis a possibly null identifier;

n is the name of the element;

A ={ay,aq,...,a,} is the set (possibly empty) of the element’s attributes;

V' is a (possibly empty) ordered list of paifs n), wheret is a token and: is an

integer value;V represents the value (possibly null) of the element;

p is a pointer (possibly null) to its parent element.
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We refer to each component of the tuple with the notation e.g. e.n is the name

of the element. Attributes are referred to using the notatior [attname]; for example,
with e.A[id].V we indicate the value of thil attribute of the element. With the

notatione.V'[1] we indicate the first pair in the lidt, while e.V'[1].t represents the first

token.

Now we define the concept of tree.

Definition 3.3 (Tree) A treeT is a set of pairge, o), where:

e cis an element;

e ois an integer value.

Each tre€l” satisfies the following properties:

Let Er = {e | 3(e,0) € T} the set of elements i; then3le € Er such that

e.p = null,

For eache € Er, letS. = {(¢/,0) € E | ¢.p=ep}andOs, = {0 | (¢/,0) € S.};
thenOg, is the set of the integer values between 1 aEng |;

Let e be the first element in a preorder trasversal of the tree suchdhatis not
null; thene.V[1].n = 1;

Let N be the total number of tokens found in elements’ valuds dien each pair
(ti,n;) is such thatt < n; < N, and do not exist two pairg;, n;) and(¢;, n;) such

thatnl = Ny,
ForeachV = ((t1,n1), ..., (tm,nm)), if (t;,n;) precedest;, n;) thenn; < n;;

LetV = ((t1,n1), ..., (tm, nm)) @ndV’ = ((t},n}),..., (t,,,n!.)) be the values of

m’'m

two elements ande’ such that is the parent o#’; then eithem; < n} <n/, <n,,

or ny > ny,.
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The first condition in this definition states that a tree always has exactly one root
element; the second explains how order between elements is represented; the following
four describe tokens enumeration. Wittt (7') we denote the root element of the tree

T, i.e. the element such that.p = null.

Example 3.2 Consider the XML document in Figure 2.3. In our data model, it is rep-
resented by the tre€ = ((e1, 1), (e2,2),. .., (e36,36)). In what follows we present the
elements;; each element is of the formy = (n, A,V,p). The identifierk is omitted

(as stated, it can be thought of as a unique integer value assigned by the system to each

element stored in the repository); the pointer to the parent element is represented with

e1 = (“bib”, null, null, null)

es = (“book”, ((“year”, ((“1984”, 1)))), null,e;)

ez = (“title”, null, (“TCP-IP”, 1), (“lllustrated”, 2)), e>)

e4 = (“author”, null, null, es)

es = (“last”, null, ((“Stevens”, 3))¢4)

e = (“first”, null, ("W.", 4)), e4)

er = (“publisher”, null, ((“Addison-Wesley”, 5))es)

es = (“price”, null, ((“65.95", 6)),e2)

eg = ("book”, ((“year”, ((*19927, 1)))), null,e;)

e1o = (“title”, null, (("Advanced”, 7), (“Programming”, 8), (“in”, 9), (“the”,
10), (“Unix”, 11), (“Environment”, 12))¢9)

e = (“fauthor”, null, null, eg)

e12 = (“last”, null, ((“Stevens”, 13))¢e11)

e13 = (“first”, null, ((“W.”, 14)), e11)

e1s = (“publisher”, null, (("Addison-Wesley”, 15)),)

e1s = (“price”, null, (("65.95, 16)),e9)

e1s = (“book”, ((“year”, ((“2000”, 1)))), null,e;)

e1r = (“title”, null, ((“Data”, 17), (“on”, 18), (“the”, 19), (“Web”, 20)),e16)
ez = (“author”, null, null, e¢)

e19 = (“last”, null, ((“Abiteboul”, 21)), e15)
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eqo = (“first”, null, ((“Serge”, 22)),e15)

e91 = (“author”, null, null,e4)

ego = (“last”, null, (“Buneman”, 23))¢,:)

ea3 = (“first”, null, ((“Peter”, 24)),e21)

eaq = (“author”, null, null,e4)

eas = (“last”, null, ((“Suciu”, 25)), e24)

ess = (“first”, null, ((“Dan”, 26)), es4)

esr = (“publisher”, null, (“Morgan”, 27), (“Kaufmann”, 28), (“Publishers”,
29)), e16)

ess = (“price”, null, ((“39.95”, 30)),e15)

ea9 = (“book”, ((“year”, ((“1999”, 1)))), null,e;)

eso = (“title”, null, ((“Technology”, 31), (“and”, 32), (“Content”, 33), (“for”,
34), (“Digital”, 35), (“TV”, 36)), ea9)

ez1 = (“editor”, null, null, ex)

esr = (“last”, null, (“Gerbarg”, 37)).51)

ess = (“first’, null, ((“Darcy”, 38)), e31)

ess = (“affiliation”, null, ((“CITI”, 39)), es1)

es; = (“publisher”, null, ((“Kluwer”, 40), (‘Academic”, 41), (“Publishers”,
42)), ea9)

es6 = (“price”, null, ((“129.95", 43)),e09)

For the sake of convenience, we also define two derived element propertigésxtthe
valueand thefull-text value Both are obtained by de-tokenizatiomf the textual content
of an element; the first refers to the value of a single element, the second to the value of
every element in a subtree. These two element properties are useful for the definition of
other concepts and algebraic operators.

Definition 3.4 (Element Text Value) Lete be an element and letV = ((¢1, ny),
(ta,n2), ..., (tm,nm)). The text value of (denoteck.v) is the concatenation of the tokens

t...t,,, separated by a white space.
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Definition 3.5 (Element Full-Text Value) Lete be an element; lefirsttoken, = min(
{n; | 3¢/, descendant of, such that(¢;,n;) € ¢.V}) and lasttoken, = maz({n; | 3¢,
descendant of, such that(t,,n;) € ¢'.V'}). The full-text value of (denotede. fulltext)
is the concatenation of the tokefisfrom firsttoken to lasttoken, separated by a white

space.

Example 3.3 Consider the element, in Example 3.2. The value of the derived prop-
erty e.v is “Technology and Content for Digital TV"the value of the derived property
e.fulltext is “Technology and Content for Digital TV Gerbarg Darcy CITI Kluwer Aca-
demic Publishers 129.95”

Now we define the concept of subtree, which is based on the notion of elements strict
equality.

Definition 3.6 (Elements strict equality) Two elements, = (ky,n1, A1, Vi, p1) andes =
(ka,ma, Aa, Vo, py) are strictly equal (denoted; = e,) if and only if all their compo-
nents (except for parent element and tokens enumeration) are equat; ke= e,.k,

e1.n = eq.n, e1.A =e3.A, e;.0 = ey.0.

In the previous definition, witlk;.A = e;. A we mean that the two attribute sets must
be equal, i.e. each attribute in the first set must be present in the second set (with the same

value) and viceversa.

Definition 3.7 (Subtree) Given two tree§” and7”, let £ = {e | (e,0) € T} and E’ =
{e| (e,0) € T'}. T" is a subtree of" (denoted!” C T) if:

e Ve¢' € E’', Jde € E such that’ = ¢;

e V¢! € F', lete € E be an element such that = ¢; then eithere’.p = e.p or

e'.p = null;

o V(ep,01) € T,(e2,09) € T such thate;.p = es.p and oy < oo, if 3(e},0]) €

T', (e}, 04) € T" such that] = e; ande, = ey, theno] < oj,.
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Let7” C T and lete € E such thate = (root)(T"). If, Ve; € E such thate; is a
descendant of in 7', Je; € E’ such thate, = e¢;, then7” is a complete subtree &f
(denotedl” c* 7).

The first condition says that each element of a subtree must come from the original
tree; the second says that hierarchy can not be changed, except that a non-root element
could become root of the subtree; the third states that order between elements must be
preserved. The difference between a complete subtree and a non-complete subtree is
shown in Figure 3.4: given the tree (a), the tree (b) is a complete subtree, while (c) is not

complete.

() (b) ()

Figure 3.4 A tree (a), a complete subtree (b) and a non-complete subtree (c).

The last concepts to be defined are those of forest and subforest; for the definition of

the subforest we need the notion of trees strict equality.
Definition 3.8 (Forest) A forestF’ = (14, 1s, ..., T,,) is an ordered list of distinct trees.

Definition 3.9 (Trees strict equality) Two treesT; and 7, are strictly equal (denoted
T, =Ty)if 3f : T1 — Ty such thatV(e,0) € T, f((e,0)) = (¢/,0') is such that:

o ¢ =g
e ¢'.p=cep;
e 0 =0

Definition 3.10 (Subforest) Given two forest$’ = (11,15, ...,7,) and F' = (17,
Ty, ..., T.), F'is a subforest of (denotedr” C F) if:
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o V1" € F' dT € F suchthatl” =T
o VI;,T; € Fyi < j,if 3T, T), € F' such thatl; = T}, andT; =T}, theni’ < j'.

The second condition in the last definition states that order between trees in a subforest
must be identical to that between trees in the original forest. If two forests contain the

same trees in the same order, then the two forests are said to be strictly equal.

Definition 3.11 (Forests strict equality) Two forestsF’ and F” are strictly equal (de-
notedf’ = F") if:

o FCF";
o " CF.

As already said, the basic building blocks in our data model are elements (possibly
with attributes), which are contained into trees, which are contained into forests. Some
element properties (like name and text value) do not depend on the tree the element is
contained in; on the contrary, other properties (like full-text value) do depend on the
tree the element is contained in. It is useful to define other two properties, which can
be thought of asree propertiesthey depend on the forest the tree is contained in. For
consistency, we define these properties as element properties, but they make sense only

for the root element of a tree.

Definition 3.12 (Element Count) Let e be the root element of a tréeé and letF’ be the
forest that containg". The count ot (denoteck. count) is the number of trees contained
into F.

Definition 3.13 (Element Position) Lete be the root element of a trééand letF’ be the
forest that containg". The position ot (denotede.pos) is the position of the tre&’ in
the forestF'.

It should be clear that the value of theuntproperty value will be the same for each
root element of the trees contained in a forest, whilegbsition property value varies

from 1 ton, wheren is the number of trees in the forest.
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Example 3.4 Suppose to have a forest (shown in Figure 3.5) composed by the complete
subtrees rooted &ook that can be extracted from the XML document in Figure 2.3 (we
will see in Section 3.3 how to obtain such a forest using an operator of our algebra); in
this figure and in all the following figures representing a forest, trees are ordered from left
to right and from top to bottom. Letbe thebook element that corresponds to the book

“Advanced Programming in the Unix Environmenthene.count = 4 ande.pos = 2.

Year = “1994"

“Advanced
Programming
in the Unix
Environment”

“Data on “Morgan
the Web” Kaufmann
Publishers”

“Technolo
gy and
Content for
Digital TV ‘“Gerbarg”‘ ‘“Darcy" ‘ ‘ TP ‘

“Kluwer

Publishers”

Figure 3.5 Graphical representation of a forest.

Finally, we define another element property: swreproperty. The value of this
property (initially set to a default value) will be changed by some full-text algebraic op-
erators of our algebra. We will discuss the meaning of this property in Section 3.3; here
we just define the possible values it can assume.

Definition 3.14 (Score) Lete be an element of a tréE. The score o (denoted:.score)

is a value in the rangg, 1].



Chapter 3. The AFTX Algebra 57

3.2.3 A Comparison with XQuery (and XQuery Full-Text) Data Model

Our data model presents some differences with respect to the XQuery Data Model; such
differences (which are summarized in Table 3.1) result in a simplification of the data

model.

Table 3.1 Comparison between XQuery Data Model and AFTX Data Model.
Concept XQuery Data Model AFTX Data Model

Basic building block| Items: nodes or atomic values | Elements

Collection Sequences Forests

Types XML Schema types plus five ad-No type information
ditional types

Identity Nodes have unique identity,Element identity through
atomic values have not identifier

Node kinds Document, Element, Attribute, Trees and elements (with

Text, Namespace, Processing |mattributes and value)

struction, Comment

Element properties | dm:children A, n, fulltext
dm:attributes ,
dm:node-name |,
dm:string-value ,
dm:typed-value

dm:type-name

In XDM, the basic concept is that of sequence, which is composed by nodes (i.e. a
single node or a tree formed by nodes) and atomic values. The concept of forest present
in our data model is equivalent to the XDM sequence, but forests contain only trees: we
do not consider the case of atomic values. XDM node identity concept corresponds to our

strict equality notion.

Every node in XDM has a type; in our data model we do not consider types. Like

XDM, we provide element identity, using the element identikier
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XDM nodes are of seven kinds. Document nodes correspond to our concept of tree,
while Element nodes correspond to our elements. The counterparts of Attribute and Text
nodes in our model are respectively the element prope#tiasdv. We do not consider

namespaces, processing instructions and comments.

Every XDM node has a set of accessors, which represent the properties of the node.
There is a correspondence between some accessors and some element properties of our
model: dm:attributes corresponds tal, dm:node-name corresponds ta,
dm:string-value corresponds tdulltext. No correspondence exists fim:typed-
value anddm:type-name , because our data model does not take types into account;
dm:children  also is not present in our data model, even if a corresponding derived

property could be easily defined.

Like XQuery Full-Text Data Model, our data model is based on a tokenization of
the source document, that assigns a numeric value that represents the relative position of
the word in document order. We do not deal with paragraph and sentences enumeration,
because our algebraic full-text operators (which will be shown in Section 3.3) do not

provide such search options.

In the XQuery Full-Text Data Model score values are represented as a variable; it is
not clear, however, how the value of the score variable is bound to the sequence of items
that generate that score. In our data model score values are represented by an element
property; this gives an immediate and easy to understand correspondence between a tree

and its score value.

3.3 Algebraic Operators

3.3.1 Informal Overview

In this section we define the AFTX operators, which can be categorizetasioopera-
tors (which cover classical data manipulation tasks)faltdextoperators (which perform
IR-style queries). For each of them, we give an informal overview of the characteristics

and one or more basic examples; later we present the formal definitions.
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The operators of our algebra (which are summarized in Table 3.2) can be unary or

binary. Unary operators take in a forest and return a forest; their general form is
Oép(F)

whereq is an operatorpP is a predicate and’ is the input forest. Binary operators take

in two forests and return a forest; their general form is
Oép(F, G) .

In order to improve readability, binary operators can also be represented using the equiv-
alent infix notation
FCJZPG .

Sometimes we writerp(7"), whereT' is a tree. This expression must be intended as
the application of the operatarto a forest containing the single trée

The algebra ixlosed all the operators take in forest(s) and return a forest. Con-
sequently the operators can be composed with each other. In an algebraic expression,

wherever an input forest is expected, it is possible to find:

e an algebraic operator; for instance in the expressi@ti(. . .)) the operator takes

in the output forest of the operataf;

e anew forest, obtained by reading an XML document; for instance in the expression
a(“docname”) the operatory takes in the forest (containing a single tree) obtained

by reading the documerdbcname

Union

The union operator is quite similar to its relational counterpart; it takes in two forests and
returns a new forest composed by the trees contained in the two input forests. Union pre-
serves ordering: the output forest will contain the trees coming from the first input forest
(in the same order as they were in the input forest), followed by the trees coming from the
second input forest. This implies that union is not commutative; this is an unavoidable

deviation from relational algebra, due to the importance of order in semi-structured data
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Table 3.2 AFTX algebraic operators.

Operator Usage
Union FUF'
Difference F—F
Projection m(F)
Selection oy (F)
Product F x F'
Join F oy FY
Deletion Oy (F)
Grouping S ((aprm),(epa,na), ), (0,0 (F)
Duplicate elimination V(aupr,n),(Aopzsma)sen. (F)
Ordering Ornp a1 aps asn.. (F)
Tree Construction Ley s, (F')
Full-Text Selection Sxafy,z,stem,thes,stop] (£)
Full-Text Score Assignment Exaly,z,stem,thes,stop] f (F)
Full-Text Selection with Score Chaly,z,stem thes,stop]f (F)
Top-K Full-Text Selection T xajy,z,stem,thes,stop] £,k (F)
Threshold Full-Text Selection  wxa[y,2,stem thes,stop] f,+ ()

model. The behavior of the union operator is shown graphically in Figure 3.6; rounds

with labelT; represents trees.

O@ @@ OEHE®®

Figure 3.6 The behavior of AFTX union operator.

Example 3.5 Suppose to have two XML documents, named “CSbooks.xml” and “Math-
books.xml”, with a structure similar to the XML document shown in Figure 2.3. The
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query
“CSbooks.xml” U “Mathbooks.xml”

returns a forest containing two trees: the tree contained in “CSbooks.xml” followed by
the tree contained in “Mathbooks.xml”. In this example the two expected input forests

are obtained by reading two XML documents.

Difference

Like union, the difference operator is analogous to the relational difference operator. It
takes in two forests and returns a subforest of the first input forest, composed by those
trees which are not included in the second input forest. Difference is based on the strict
equality notion presented in Section 3.2.2: a tree from the first forest is retained in the
output if the second forest does not contain a strictly equal tree.

Difference preserves ordering between trees: it returns trees in the same order they
were in the first input forest. The behavior of the difference operator is shown graphically
in Figure 3.7; the fact that a tree in the second forest is strictly equal to a tree in the first

forest is indicated by using the same lalBl in the example) for both trees.

DIOIONICIOINIOIS

Figure 3.7. The behavior of AFTX difference operator.

Example 3.6 Let A and B be two algebraic expressions that take in the XML document
shown in Figure 2.3 and return, respectively, a forest containing all the subtrees rooted at
bookand a forest containing all the subtrees rooteak such that the attributgear
has the valué1992” (we will see later how to obtain such forests using projection and
selection operators). The query

A-B

returns all the books except those written in 1992.
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Projection

In relational algebra, projection performsartical decomposition of the input relation:
every tuple is output, but only the attributes of interest are retained. AFTX projection
operator behaves in a similar way: every input tree contributes to the output, but only the
subtrees of interest are retained. A graphical representation of the behavior of the AFTX
projection operator compared to the relational counterpart is shown in Figure 3.8, where

grey parts of relations and trees are those retained after projection.

Figure 3.8 The behavior of relational projection operator (a) compared to AFTX projec-
tion operator (b).

The subtrees of interest are specified in the projection predicate thrquagh expres-
sion A\. The concept of path expression is almost identical to that used in XPath: there
are child (/") and descendant (“//") axis, while the elements to retrieve can be specified
by the name, the special string “*” (meaning “any name”) or by an integer specifying the
position of the element. For example the path expressiook/3//* retrieves any el-
ement that is descendant of the third child ddfaokelement; for each element satisfying
the path expression, the output will contain the complete subtree rooted at it.

The main difference between relational and AFTX projection is the cardinality of the
output: while in relational algebra each input tuple corresponds to exactly one output tu-
ple (and multiple tuples can collapse in a single output tuple), in AFTX projection each
input tree corresponds to zero, one or more output trees. The fact that an input tree can not
have a corresponding output tree is due to one of the main distinguishing characteristic of
the semi-structured model: tvaguenessf the schema; this consideration leads, in our

model, to an heterogeneity of the forests, as already noted in Section 3.2.1. Consequently,
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it is possible that a path expression can not be found in one input tree, thus excluding that
tree from the output of a projection. On the other side, an input tree can have multiple
corresponding trees in the projection output: while in the relational world a tuple con-
tains only one attribute with a given name, in the semi-structured world an element can
have multiple child elements with the same name. Moreover, multiple subtrees can be
obviously returned by a projection if the path expression contains a wildcard (“*”) or a
descendant axes (“/").

The projection operator preserves order between elements and trees, i.e.:

o if atreeT) precedes a treB, in the input forest, then each subtfEeof the treel;
precedes each subtrég of the treeT}, in the output forest;

e if an element; precedes an elemesyt in an input tre€l’, then a subtre&; rooted

ate] = e; precedes a subtrde rooted at’, = e, in the output forest.

Example 3.7 Consider the XML document in Figure 2.3. We want to retrieve the title of

all the books. The following expression answers to the query:

T /bib/book /title( DOOKS.Xxm1”) .

The result of the algebraic expression is shown graphically in Figure 3.9. Note that,
in this case, four output trees correspond to one input tree, because the input tree contains
four subtrees reachable by following the pAitb/book/title

“TCP-IP “Advanced “Data on “Technolo
lllustrated” Programming \—““e Web” gy and

in }he Unix Content for

Environment” Digital TV"

Figure 3.9 Graphical representation of the result of a projection.

It is worth noticing that the evaluation of a path expression always starts from the root
element of each input tree. For example, suppose to perform a projection over the XML
document in Figure 2.3 using the predicdié/book ; now we have a forest of trees
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rooted atbook . Later, we want to project again this result in order to obtain trees rooted
attitle ; the second projection predicate mustbeok/title , that is interpreted as

“find those elements nameile  having a parent root element nambdok " . In this

case the same result would be obtained using the preditdée  ; using the predicate

[title would instead result in an empty forest, because there are no trees having a root

element namettle

Selection

In relational algebra, selection performb@rizontaldecomposition of the input relation:

only the tuples of interest are output, and every attribute of those tuples is retained. AFTX

selection operator behaves in a similar way: only the trees of interest contribute to the

output, and those trees are entirely retained. A graphical representation of the behavior
of the AFTX selection operator compared to the relational counterpart is shown in Figure

3.10; again, grey parts of relations and forests are those retained in the output.

(@) (b)

Figure 3.1Q The behavior of relational selection operator (a) compared to AFTX selec-

tion operator (b).

The trees of interest are specified through a selection predicate, which is formed by
an optional path expressiok and, enclosed in square brackets, an opticedction
condition~. If present, the path expression locates, for each input tree, a set of subtrees;
in practice, it is used to generate a temporary projection on the input tree. Each subtree
belonging to the temporary projection result is then checked: if at least one of those
subtrees satisfies the selection condition, the original input tree belongs to the output of

the selection. If the selection condition is not present, the selection predicate must be
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intended like“find those trees having at least one subtree reachable following the path
expression\”. If the path expression is not present, the selection condition must be

checked against the original trees.

In relational algebra the selection condition can only refer to the value of some at-
tribute; in AFTX it can refer to any element property: its name and value, the name
and value of one of its attributes, plus the value of some aggregate functions; aggre-
gate functions are calculated considering each subtree belonging to the temporary pro-
jection result. For example, suppose to have an input forest composed by trees rooted
at abookelement (e.g. the result afy;y, moox ( “books.xml”)); then the selection predi-
cate/book/author|.count > 2| means that all the books having more than two authors
should be returned. In fact the selection operator behaves according to the following steps:

1. considerT, the first input tree;
2. build the forestty = T o0k /autnor (11);
3. count the number of trees i ; if it is greater than 2, add; to the output;

4. repeat steps 1-3 for the other input trees.

Moreover, the selection condition can also refer toitentity of a subtree, i.e. it is
possible to specify that a subtree must be strictly equal to another subtree for the input
tree to be returned. This feature is useful when we want to join a tree with itself (we will

see later how to perform a join operation and what this means).

It is worth noticing that not every subtree located by the path expression is required
to satisfy the selection condition for the tree to be returned. Instead, AFTX projection
has anexistentialsemantic: a tree is returned if at least one subtree located by the path
expression satisfies the selection condition. For example, consider the selection predicate
/book/author/last[.v = “Suciu”]; it means that each book having an author whose
last name is'Suciu” should be retained. Then, the botikata on the Web”in Figure
2.3 satisfies the selection condition, because one of its authors is Dan Suciu, even if it has

two more authors with a different last name.



66 Chapter 3. The AFTX Algebra

Example 3.8 Consider the XML document in Figure 2.3. We want to retrieve all the

books whose price is greater than 50. The following expression answers to the query:

O Jbook /price[.v>50] (T /bib/book ( “DOOks.xm1”)) .

The result of the algebraic expression is shown graphically in Figure 3.11.

Year = “1994"

Year = “1992"

“TCP-IP “Addison- 65.95 “Advanced
Illustrated” Wesley” Programming
in the Unix
Environment”

“Technolo “Kluwer

gy and Academic
Content for Publishers”
pigial v | [*Gerbarg” | [ Dary’ | [ cimr ]

Figure 3.11 Graphical representation of the result of the expression in Example 3.8.

The inner projection returns a forest of trees rootdubatk the selection retains those
whose price is greater than 50. As previously stated, the selection condition is optional;

thus, the following query

O /book/price (W/bib/book ( “pooks.xml” ))

is valid and retrieves all the books which have an associated price (in this case, all the four

input trees).

Product

In relational algebra the product operator combines in every possible way tuples from
the first relation with tuples from the second relation; the resulting relation has all the
attributes of the first relation plus all the attributes of the second relation. AFTX product
operator behaves similarly: it combines in every possible way all the trees from the first
forest F" with all the trees of the second forest. The combination among two trees is
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obtained by creating a new root node calpgdd_root, whose left and right child will be,

respectively, the tree from the first input forest and the tree from the second input forest.
A graphical representation of the behavior of the AFTX product operator compared to its
relational counterpart is shown in Figure 3.12; in this case, grey coloring distinguishes the

first input tuple (or tree) from the second one.

L T 17 [CI/ - T T T 7

(@

Figure 3.12 The behavior of relational product operator (a) compared to AFTX product

operator (b).

The product operator preserves ordering, in the sense that the combination of trees
occurs following the order of the input forests. For exampld; it (731,7T) and F’ =
(T7,T3), then the first tree id” x F” will be the combination of the input tred$ andT7.

Example 3.9 Consider the XML document in Figure 2.3. We want to retrieve, for each

author, its name and the books written by him. The following expression answers to the
query:

O /prod_root[/author=/book/author] (

T /bib/book /author ( “DOOKS.XM1™) X T pip /book ( “OOks.xm1”))

The two projections return two forests containing, respectively, all the subtrees rooted at
author and all the subtrees rootedfaok . Then product combines each author with

each book. Finally selection retains only the pairs (author, book) such that the author is
one of the authors of the book; this is done using an identity test, which restricts the result

to those pairs (author, book) such that the tree rootedidior is a subtree of the tree
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rooted atbook . A partial result of the algebraic expression (limited to the authér

Stevens) is shown graphically in Figure 3.13.

Figure 3.13 Graphical representation of the result of an algebraic expression involving

product.

The previous expression does not return the answer one probably wants. First of all,
each pair (author, book) is repeated as many times as the number of books written by that
author. For exampléW. Stevens”has written two books, then there are two subtrees
of the input tree reachable by following the pdlitb/book/author , and these two
subtrees will be part of the result of the first projection; they will be combined with each
tree belonging to the result of the second projection (i.e. the subtrees robteakagt thus
resulting in two output trees for each pdaiv, Stevens’ book); the subsequent selection
removes unwanted pairs (i.e. pairs involving books not writtefiilyStevens’, but it

does not resolve the duplicates problem.

Moreover, one probably wants to retain only a part of the information relative to a
book (e.g. the title and the publisher), and the books written by an author should be some-
wheregrouped so that the name of an author appears just once. Finallprdte _root
element should be probably eliminated or renamed. Figure 3.14 shows the result one
probably wants; we will see later how to reach this goal combining product with other

operators of our algebra.
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“Advanced “Addison-
Programming Wesley”
in the Unix
Environment”

Figure 3.14 Graphical representation of the expected result of a product.

Join

Having fixed the concept of product, the definition of the join operator is quite straightfor-
ward. As in the relational world, AFTX join is a derived operator that combines a product
and a selection. The selection condition compares a property value of an element of the
first tree with a property value of an element of the second tree; alternatively, the selection
condition can also be an identity condition.

Example 3.10 Consider the query of Example 3.9. Using the derived join operator, it can

be answered using the following expression:

¢ )
71-/bib/book/author( ‘books.xml ) X [/author=/book/author]

T /bib/book ( “DOOks.xm1”))

The result of the expression does not change, and is therefore that shown in Figure
3.13.

Deletion

All the operators presented until now have some similarity with the corresponding rela-
tional operators; we now introduce a brand-new operator. The deletion operator takes
in a forest and returns a new forest containing non-complete subtrees of the input trees,
obtained by pruning from the original trees those subtrees that satisfy a deletion predicate.
Why do we need this operator? Informally, it completes the features of the projection

and selection operators. Remember that the projection operator permits to identify one
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or more elements and returns the complete subtrees rooted at those elements; if we want
instead to freely delete a portion of a tree, we need the deletion operator. On the other
hand, introducing the selection operator we noticed that not every subtree located by the
path expression is required to satisfy the selection condition for the tree to be returned;
the deletion operator enables, if needed, the deletion of those subtrees that do not respect
the selection condition. Figure 3.15 shows graphically two input trees and, in grey, the
subtrees retained after deletion. It should be clear that the same results can not be achieved

using selection or projection.

Figure 3.15 Two examples of deletion.

Even if the deletion operator is able to transform the input forest in a way not obtain-

able using projection and selection, it is not a substitute for those operators. In fact:

e the root element can not be deleted, because such a deletion would delete the entire
tree; thus, there is no way to obtain the same result/as /oox( ‘books.xml”)

using the deletion operator;

e deletion eliminates some subtrees of the input trees, but it does not filter trees: each

input tree is retained (with some modification) in the output.

Finally, it should be noticed that deletion preserves ordering, either between trees
(they appear in the output forest in the same order as they appear in the input forest) or
between elements of a tree (they appear in an output tree in the same order as they appear
in the corresponding input tree).

Example 3.11 Consider the XML document in Figure 2.3. We want to retrieve the last

name of the first author of each book. The following algebraic expression answers to the
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query:
T /book/author/last (5/book/author[‘pos> 1] (Tr/bib/book( “books.xml” ))) .

It is worth noticing that the previous query can not be answered using the selection pred-

icate; in fact the query

T /book/author/last (O-/book/author[.poszl] (ﬂ-/bib/book ( “books.xml” ) ) )

would return, for each book having at least one author, the last name of each author. This
is because the selectiony,ox /autnor[pos=1] (- - -) IS interpreted as follows: “among all the
books, return only those which have at least one author satisfying the condition to be the
first author”; in practice, this is true for all the books having at least one author. On the
other hand the query

J[.pos:l} (W/bib/book/author( “pooks.xml” )))

would return only the very first author found in the document. This is because the se-
lection oy ,0s—1(. - .) i & special case of selection, in which the selection predicate does
not contain a path expression; thereforeweking forestfor position check is the forest

resulting from inner projection, and selection is interpreted as follows: “among all the
authors, return only those who satisfy the condition to be the first author”; in practice, this

is true only for the first author in the input forest.

Grouping

Although relational algebra does not have a grouping operator, we decided to insert it into
AFTX. Grouping, in fact, is useful in many situations in the semi-structured world; for
example, it is a convenient way to express inversion of hierarchy.

AFTX grouping operator is a very powerful construct; through the grouping predicate
it is possible to specify a list of one or more element propettips the value of those
properties drives the process of grouping. In fact, the output will contain a distinct tree
for each distinct combination of property values found in the input forest; for each of such
trees, the root element (callgdoup _root ) will have as many attributes as the number

of element properties in the grouping list, and the value of those attributes will represent
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the properties value for that group. For example, suppose we want to group the books in
Figure 2.3 by price and publisher. Then, the bo6kSP-IP lllustrated” and“Advanced
Programming in the Unix EnvironmentVill be grouped together in a single tree; the root
of the group tree will have two attributeprice with value65.95 andpublisher
with value Addison-Wesley . Note that the name of the newly created attributes can
be specified in the grouping predicate using the parameters

In the example just proposed grouping is done on the basis ofatlue property of
the elementgbook/price and/book/editor ; however, any element property can
be used in the grouping predicate, as shown in Example 3.12.

The grouping predicate also permits to establish which part of the input trees should
be retained in the group trees, through a list of path expresaforfsor example, using
the path expressiatbook/title , only the title of each book will be retained in group
trees.

Grouping preserves ordering: group trees appear in the output forest in the same order
as the corresponding elements appear in the input forest.

Example 3.12 Consider the XML document in Figure 2.3. We want to retrieve all the
book titles, grouped by the number of authors of the book. The following expression
answers to the query:

z:((/book/authors.<:oun1:,“nu.mAuthors”)),(/book/title) (W/bib/book( “books.xml” )) .

The result of the algebraic expression is shown in Figure 3.16 and graphically in Figure
3.17.

Duplicate Elimination

The problem of retrieving the different values of an element property in the input for-
est can be easily solved using the grouping operator previously defined. In fact, the
elimination of duplicate values of an element property (or a list of element properties)
corresponds to a grouping operation by that element property. Provided that the only in-
formation we want to retain is the list of values, we will specify an empty list of subtrees

to attach to the group trees.
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<group_root numAuthors="1">

<title>TCP/IP lllustrated</title>

<title>Advanced Programming in the Unix Environment</title>
</group_root>
<group_root numAuthors="0">

<title>Technology and Content for Digital TV</title>
</group_root>
<group_root numAuthors="3">

<titte>Data on the Web</title>

</group_root>

Figure 3.16 The result of an algebraic expression involving grouping.

numAuthors numAuthors
roup_root -
gor group-root ="0"

“TCP-IP “Advanced “Technolo
lllustrated” Programming gy and

in the Unix Content for

Environment” Digital TV”

numAuthors
group_ it

“Data on
the Web”

Figure 3.17 Graphical representation of the result of an algebraic expression involving

grouping.

For the sake of convenience, we define a derived duplicate elimination operator; it
is identical to the grouping operator, except that no list of path expressions identifying
subtrees is specified. Consequently, the resulting forest will contain trees composed by
the onlygroup _root element; that element, as in the case of grouping, will have as
many attributes as the number of element properties of interest. The number of trees
in the output forest will be obviously equal to the number of combinations of element

properties’ different values found in the input forest.

Example 3.13 Consider the XML document in Figure 2.3. We want to retrieve the last

name and first name of all the authors; each author should appear just once in the result.
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The following expression answers to the query:

« ”
V(/author/last.v,“1ast”),(/author/first.v,“first”)(W/bib/book/author( books.xml )) .

The result is shown in Figure 3.18.

<group_root last="Stevens" first="W."/>
<group_root last="Abiteboul" fist="Serge"/>
<group_root last="Buneman" fist="Peter"/>

<group_root last="Suciu" fist="Dan"/>

Figure 3.18 The result of an algebraic expression involving duplicate elimination.

Example 3.14 Consider again the query of Example 3.9. Using a product and a sub-
sequent selection (or, equivalently, a join), we obtained a result (shown in Figure 3.13
limited to the authofW. Stevens’) which is not in the form one probably wants. Using

duplicate elimination and grouping it is possible to obtain a result in which each author

appears just once and books written by an author are grouped. The following expression:

)3 ((/prod—_root/group_root/.A[last].v,“last”),(/prod_root/group_root/.A[first].v,"first")),/prod_root /book (
0 /prod_root[/group_root.A[last].v=/book/author/last.v AND /group_root.A[first].v=/book/author/first.v] (

1] ”
V(/author/last.v,“last”),(/author/first.v,“first”) (W/bib/book/author ( books.xml )) X

W/bib/book<“b00ks.xm1” )))

gives the result shown graphically (again limited to the auth@rSteveri$ in Figure
3.19.

Let us examinate the behavior of this expression, limited to the autho6teveris
The grouping operator searches all the possible combinations of values for
/author/last and/author/first in the trees resulting from the first projection
(i.e. subtrees rooted atithor ). For the authoBtevenan output tree is built; that output
tree is composed by a root element nangedup _root , with two attributes named

last (with value “Steveny andfirst  (with value “W."). Such a tree is then combined
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last = “Stevens”

“TCP-IP
lllustrated”

“Advanced
Programming
in the Unix
Environment”

Figure 3.19 Refinement of the result of an expression using grouping.

with all the books using product; then selection discard pairs containing a book not written
by Stevens. Finally, grouping groups again by first and last name; the second part of the
grouping predicate indicates that each subtree rooteéda@it should be retained in the
output group trees.

Ordering

We have seen that every AFTX operator preserves ordering of trees and elements. Some-
times, however, we need to change the order of trees. To this aim we introduce the order-
ing operator: it takes in a forest and returns a new forest containing the same trees as the

original one, but arranged in a (possible) new order.
The ordering predicate is a list of ordering directives, each of which specifies the

element to consider (through a path expressiprthe propertyp whose values must be
compared and the ordering directierfascending or descending).

Example 3.15 Consider again the query of Example 3.13. We now want the authors to

be in alphabetical order. The following expression answers to the query:

O /group_root.A[*last”].v ASC,/group_root.A[*first”].v ASC(
V/author/last‘v,/author/first.v(

T /bib/book/author (H books.xml” ) ) )

The result is shown in Figure 3.20.
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<group_root last="Abiteboul" first="Serge"/>
<group_root last="Buneman" first="Peter"/>
<group_root last="Stevens" first="W."/>

<group_root last="Suciu" first="Dan"/>

Figure 3.2Q0 The result of an algebraic expression involving ordering.

Tree Construction

The operators presented up to now permit, in various ways, to filter and modify the input
trees. What still lacks is a way to buitcewtrees, possibly using the data contained in the
input forest; the tree construction operator accomplishes this function.

The tree construction predicate enables to specify name and value of elements to
build, name and value of their attributes and the hierarchy of elements. It is in fact a
list (e, ...,e,) of element constructiospecification, where each element construction

specification is formed by:

the name. of the element;

the valuev (possibly null) of the element;

the listA (possibly empty) of attributes, where each attribute is, as one could expect,

a pair (name, value);

the list(e}, ..., e/,) (possibly empty) of child elements, each of which is an element

T m

constructor specification itself.

For example, if we want to creatdaok element with an attributeublishingYear

whose value i§1994" and a chilckitle element whose value 13 CP-IP

lllustrated"” , we do it using the tree construction predicdieok"(null,
(("publishingYear", "1994"), (“title"("TCP-IP Illustrated”,
null, null)))

In this example the tree construction predicate contains all the data needed to build

the output tree. In most cases, however, some of these data must be picked from the input
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forest; to this aim, the tree construction predicate can contain seferenceo the input

forest. Such references are path expressions identifying some elements of the input forest,
possibly followed by the name of an element property. For example, suppose we want to
retrieve the year of publication and the title of the book from the input forest; in this case
we use the tree construction predicdbmok"(null, (("publishingYear",

/book.Alyear].v)), (/book/title))

Here the referencbook.Alyear].v states that the value of the attribute
publishingYear should be set to the value of the attriby&ar in the input tree; the
referencebook/title states the newly creatédok element should have as children
every/book/title element of the input tree. Note that, in this case, an element con-
struction specification (the one that builds the child elements oflhook element) is not
of the formn(v, A, (e1, ..., e,)); itis instead of the form\. This case is also possible for
the root element construction specification, i.e. it is perfectly legal to write an expression
like ! /book/author (A).

Usually the input forest contains more than a single tree. The tree construction opera-
tor is applied separately to each input tree, in the order they appear in the input forest. For
example, if the input forest in the previous example would contain five trees, the output
forest would contain five trees rootedhaiok .

Typically one output tree is built for each input tree. There are however cases in which
no output tree is built for an input tree or more than one output tree is built for an input
tree.

Suppose to use the construction predidaib/book/title . If an input tree
does not contain such a path, no output tree corresponds to that input tree. On the other
side, if four/bib/book/title elements are found in an input tree, four output trees
correspond to that input tree. It should be clear, however, that this is a degenerate example:
the same result, in fact, could be obtained simply using the projection operator instead of
the tree construction operator.

There is another case in which an input tree can generate more than one output tree:
it can occur when the tree construction predicate states to build a root element whose

value must be picked from the input forest. For example, consider to project the XML



78 Chapter 3. The AFTX Algebra

document in Figure 2.3 using the projection predichtie’/book , then to build the out-
put using the tree construction predicékaestname"(/book/author/last.v,
null, null) ; if a book has more than one author, multiple values of
/book/author/last are found. In this case multiplastname elements are built,

one for each last name found.

The tree construction predicate can also contain more than one outer element construc-
tion specification. For example the predicab®oks"(...), "authors"(...)
means that, for each input tree, two kinds of output trees must be built: one rooted at a

books element, the other rooted at anthors element.

Finally, if the tree construction specification does not contain any reference to the input
forest, the entire input forest is added to the newly created tree as child of the rightmost
leaf element. This feature is useful if we want the output forest to be composed by a single

tree, as shown in the following example.

Example 3.16 Consider the XML document in Figure 2.3. We want to retrieve the first
and last name of each author and return them as sub-elements of an elememaared
which in turn should be sub-element of an element namétor . The following ex-

pression answers to the query:

L“author” (null,null,“name” (null,null,(/author/first,/author/last))) (

T /bib/book/author ( “pooks.xml” ) )

Here the input forest (i.e. the result of the projection operation) is composed by trees
rooted atauthor , as shown in Figure 3.21(a). An output tree is created for each input
tree, i.e. for each author. Suppose now we want the same result, but vatitreors
element containing all theuthor elements. If we indicate witA the previous algebraic

expression, the following expression answers to the modified query:

l“authors” (null,null,null) (A) .

In this case the construction predicate does not contain any reference to the input for-

est; consequently the entire input forest is inserted in the output tree as child of the root
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authors element, as shown in Figure 3.21(b). It is important to notice that it is impos-
sible to obtain this result without nesting a construction predicate inside another; in fact

the expression

L “authors” (null,null, “author” (null,null,“name” (null,null,(/author/first,/author/last)))) (

T /bib/book/author ( “books.xml” ) )

would return a forest containing as many trees (with a root element naatedrs ) as
the number of trees in the projection result, i.e. the numbeautiior elements in the
input XML document.

W. W,

‘ ‘Ablleboul ‘ ‘ “Serge” ‘ ‘Buneman ‘ ‘ “Peter” ‘ ‘ “Suciu” ‘ ‘ “Dan” ‘

‘“Stevens" ‘ ‘ W ‘ ‘“Stevens" ‘ ‘ W

‘“Stevens" ‘ ‘ W ‘ ‘“Stevens" ‘ ‘ W ‘ ‘“Abileboul" ‘ ‘ “Serge” ‘ ‘“Buneman“‘ ‘ “Peter” ‘ ‘ “Suciu” ‘ ‘ “Dan” ‘

(b)

Figure 3.21 The input forest for the tree construction operator of Example 3.16 (a) and

the result of the tree construction operation (b).

Example 3.17 Consider again the query of Example 3.14. Having defined the tree con-
struction operator, we are ready to write an expression whose result is that shown (limited

to the authoStevenkin Figure 3.14:

L*author” (null,null,(“name” (P),“books” (P2))) (F)

where
P, = null, null, (“last”(/group_root.A[last|.v,null, null),
“first”(/group_root.A[first|.v,null, null)) ,
Py = null, null, (“book” (null,null,
(/group_root/book/title, /group_root/book/publisher))) ,
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andF is the algebraic expression of Example 3.14.

Full-Text Selection

Up to now, we have presented thasicoperators of our algebra. Now we present the
full-text operators, starting with the full-text selection operator.

The full-text selection operator behaves in a way similar to that of basic selection
operator previously presented: it performs a horizontal decomposition of the input forest,
retaining only those trees having at least one subtree satisfying the full-text selection
predicate. Full-text selection operates according tmaleanmodel. This means that
a binary judgement (relevant / non-relevant) is made on every tree in the input forest:
relevant trees are retained, not relevant ones are discarded.

The full-text selection predicate allows to search one or more words or phrases (spec-
ified by the parametef;,, which is a list of words or phrases connected with boolean
operators) into the full-text value of an element (reachable from the root element by fol-
lowing the path)) or into the value of an attribute. Moreover, it supportgroximity
search i.e. searching two or more words with a distance between one and another not
greater than a threshold Finally, using the parametessen, thes, andstop, the user
can instruct the system to use stemming, thesaurus, and stopwords.

Having a behavior similar to the selection operator, even full-text selection preserves
ordering. Moreover, it enjoys the same algebraic properties as selection; we will see this

in more details in Chapter 5.

Example 3.18 Consider the XML document in Figure 2.3. We want to retrieve all the
books with a title containing the word¥ebandDataat a distance not greater than 3. The

following expression answers to the query:

45 b
S/book/title[“Web” AND “Data”, 3}(7T/bib/book( books.xml )) .

The previous query returns the book “Data on the Web”; in fact its title contains the
two searched words angbs(“Web”) — pos(“Data”) = 3. The same result would be

obtained using the following expression:

14 7
S/book[“Web” AND “Data’”, 3}(7T/bib/book( books.xml )) .
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In fact, even if nobook element contains the searched words, the thadk element
has a childitle element that contains such words; therefore the full-text value of the
third book element contains the words. Anyway the two expressions are clearly not

equivalent, even if in this special case they yield the same result.

Full-Text Score Assignment

The full-text score selection performs a full-text search usingotbt@eanmodel: a tree
satisfies the selection condition or it does not satisfy the condition at all. If we want
to performrankedretrieval over our forest we must use the full-text score assignment
operator.

This operator does not perform a selection: each input tree is returned, without fil-
tering. What it does is to assign to each tregcarevalue, that represents the level of
satisfaction of the full-text condition. This score value is represented by the element

propertyscore which is set for the root element.

The full-text condition is specified in the score assignment predicate, in the same way
as in the full-text selection predicate. Howevervaightcan be assigned to each word
or phrase (within the paramete) in order to specify which words (or phrases) should
highly influence score calculation. The weight values must be in the rgngg and
their sum must be equal to 1; if no weight is specified, the system should consider each
word as equally important. For example, if there are four searched words and no weight
is explicitly specified, each word should have a weight.ab.

How is the score calculated? The score assignment predicate provides an extra pa-
rameterf, which can be thought of function pointeyi.e. a pointer to the function that
is in charge of score calculation; if the paramefeas not present in the score assignment
predicate, a default (implementation dependent) score function should be used. The avail-
ability of such parameter lets the user freely decide which technique to use among those
provided by its XML database system. It should be noted that the choice of defining a
parameterized operator provides a higher flexibility than that present in the W3C Working

Draft for XQuery Full-Text [Con06f], which just states that score values are in the range
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[0, 1] and a higher score must imply a higher degree of relevance, without any indication

about the techniques to use in the process of score calculation.

Example 3.19 Consider the XML document in Figure 2.3. Suppose we are looking for a
book about web programming written by Stevens. This informational neteanslated

into the task of assigning a score to each book on the basis of the containment, somewhere
in the book description, of the wordgVeb”, “Programming” and“Stevens’, the word
“Stevens”must have a weight df.4, while the words'Web” and“Programming” must

have a weight 06.3. The following expression answers to the query:

[44 7
5/book[0.4“s*cevens” AND 0.3“Web” AND o.s“Programming”]f(W/bib/book( books.xml )) .

In this example we left undefined the functigrused for score calculation. As pre-
viosly said, it should be chosen by the user among those provided by the system. For

example, a simple scoring function could be

where:
e T'is the tree whose score we want to calculate;

e ify, ., is theterm frequencyf the word (or phrase) (included in the query) relative
to the full-text value of the element, which is the root of a subtree reachable from

root(T) by following the pathy;
e w; is the weight assigned in the query to the word (or phrgse)

Using this scoring function, the score value of the fbuaokelements would be (ele-

ment names are those used in Example 3.2):

ey.score = 0.167 % 0.4+ 0+ 0 = 0.067
eg.score = 0.1%x0.4+0+0.1%0.3=0.07
eg.score =0+ 0.071 % 0.3+ 0 = 0.021
eg9.5core =04+0+0=0
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Full-Text Selection with Score

We have seen that full-text selection and score assignment absolve two different needs:
the first is used to select those trees that satisfy a full-text selection condition, the second
is used to assign to each tree a score value. We may want to combine those two features;
informally speaking, we would like to select those trees that satisfy the condition, and
distinguish among them those that “better” satisfy the condition.

For example, suppose two documents contain the searchedsywiel first one con-
tains one occurrence of while the second one contains ten occurrences @oth the
documents satisfy the selection condition, but the second document is more likely to be
relevant.

The derived full-text selection with score operator behaves in the following way: first,
a full-text selection is done, thus removing those trees that do not satisfy the selection

condition; then, a score value is assigned to each retained tree.

Example 3.20 Consider again the informational need of Example 3.19. We now want to
express the fact that the book description must contain the t&isvens” and at least

one of the wordsProgramming” and“Web” ; a score should be assigned to each book
and the three searched words should have the same weights as in the previous example.

The following expression answers to the query:

= « )
S /book[0.4“Stevens” AND (0.3“Programming” OR 0.3“Web”)] (W/bib/book( books.xml )) .

The score assigned to each book will not change; however, only the*Bdeknced
Programming in the Unix EnvironmentRill be returned, because the other three books

will be filtered out by the full-text selection condition.

Top-K and Threshold Full-Text Selection

Until now, we have presented two full-text operators dealing with score: score assignment
and selection with score. Both calculate a score, but they do not use in any way such a
score.

Typical full-text searches, instead, use scores in order to filter and order input trees.

There are two classical operations we want to deal with:
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e “find the k most relevant results and return them in score orcgler”

o “find all the results whose relevance is higher than a defined threshold and return
them in score order’”

In order to answer similar queries we define two ad-hoc derived operators: top-K full-
text selection and threshold full-text selection. An explicit definition of such operators can
be very useful for optimization purposes; in fact, specialized algorithms can be developed,
e.g. in order to limit the number of resulting trees interested by the expensive ordering
operation.

The top-K full-text selection operator takes in a forest, assigns each input tree a score
and returns a subset of the input forest, containing tinees with higher score, ordered by
score value. Top-K selection combines a score assignment operation with a subsequent
ordering and a final selection of thebest results; the predicate is a score predicate,

augmented with & stating the number or trees to return.

Example 3.21 Consider again the query of Example 3.19. We now want to retrieve only

the 2 most relevant books. The following expression answers to the query:

[13 2
T/book[o.4“3tevens” AND 0.3“Programming” AND 0.3“Web”]f,2(W/bib/book( books.xml )) .

The threshold full-text selection operator takes in a forest, assigns each input tree a
score and returns a subset of the input forest, containing the trees with a score not less
than a specified threshold ordered by score value. Threshold selection combines a
score assignment operation with a subsequent selection of the most relevant trees and a
final ordering; the predicate is a score predicate, augmented wititeding the threshold

score under which trees should be discarded.

Example 3.22 Consider again the query of Example 3.19. We now want to retrieve only

the books with a score higher thar)5. The following expression answers to the query:

[44 7
W /book[0.4“Stevens” AND 0.3“Programming” AND 0.3“Web”}f,0.05(W/bib/book( books.xml )) .
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3.3.2 Formal Definitions

We now give the formal definitions for the operators informally presented in Section 3.3.1.
When necessary, we also give a conversational explaination of the definitions.

Set Operators

Our algebra is equipped with two set operators: union, which returns all the trees from the
first input forest followed by the trees from the second input forest, and difference, which

returns each tree from the first input forest that is not present in the second input forest.

Definition 3.15 (Union) Given two forest$’ = (11,75, ...,T,,) andF’ = (1}, T3, ..., T ),
the union operator’ U F” returns the forest! = (14, 1>, ..., T,,, 11,15, ..., T).).

Definition 3.16 (Difference) Given two forest$” = (73, Ty, ..., T,,) and F’ = (17,
Ty, ..., T!), the difference operatoF — F” returns a forestG C F such thatV7; € F, if
T, ¢ GthendT’ € F' suchthatl” =T.

Projection

The projection operator returns all the subtrees of the input trees that can be reached
following a path expression. We first define the notion of path expression, which is used
by many other operators of our algebra, then the projection predicate and the projection

operator.

Definition 3.17 (Path expression)A path expression is an expression of the form

0415104252 . . -Oémﬂm
where:
e «;iseither“/ "or"“ /Il 7;

e [3; is either a string or an integer or the special string™.
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Let T be a tree and\ = «a;3; a path expression. A complete subttEec* T is

reachable fromroot(T") by following the path\ if one of the following conditions holds:
e o4 is“/ " and one of the following conditions holds:
— [y is a string androot(T').n = (4;
— 0, is the integer 1,
— (31 is the special string *”.
In this cas€el” corresponds td".

e «yis*“/l " and one of the following conditions holds:

— (1 is a string androot(17).n = fi;

— [ is the integer and root(T") is thei-th element (in pre-order enumeration)
of the tre€T’,

— (31 is the special string *”.
LetT be atree\ = a151a20; ... ay_16,—1 @ path expression and’ c* T reach-

able fromroot(T) by following the path\ . A subtreel™ C* T is reachable fromroot(T)
by following the path\«a,,,3,, if one of the following conditions holds:

o o, is”/”, root(T").p = root(T"), and one of the following conditions holds:
— B, is astring androot(T").n = (,,;
— B is the integeti and root(T").0 = 1;

— B, is the special string *”.
e «,, is"“/l " and one of the following conditions holds:

— [y, is a string androot(1").n = B,,;

— B, is the integeri and root(7") is thei-th element (in pre-order enumeration)
of the tre€l”;

— (. is the special string * .
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Definition 3.18 (Projection Predicate) A projection predicate’ is a path expression.
A subtre€l” C* T satisfies the projection predicafe if it can be reached fromoot(T')
by following the path\.

Definition 3.19 (Projection) Given a forestF' = (13,75, ...,T,,) and a projection pred-
icate P, the projection operatorrp(F') returns a forestz = G; UGy U ... U G, such
that:

o VG, = (T}, T2,....T™), TF C* T}, Vk;
e VTF € G;, TF satisfies the projection predicafe.

Note that projection preserves ordering between trees; in fact each subiffesabi-
fying the projection predicate will be i&;, and consequently will precede in the output

forest each subtree @%.

Selection

The selection operator returns each tree in the input forest that satisfies the selection pred-
icate. The selection predicate can check the value of different element properties and can
use different comparison operators. The element properties that can be checked are those
presented in Section 3.2.2. In what follows we define the available comparison operators;

then we define the selection predicate and the selection operator.

Definition 3.20 (Comparison Operators) Given two tree§; andT5;, two kinds of com-

parison operators betweemot (1) androot(13) are defined:

e value comparison: given two element propertigsand p,, the usual comparison

operators=<, >, # etc. are defined betweenot(T})p, and root(13)ps;

e strict equality comparisonroot (1)) = root(13) is true if T} = Ts.

Definition 3.21 (Selection Predicate)A selection predicate”’ is an expression of the

form A[v], where:
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e )\ is an optional path expression;

e v is a list of zero or more base conditions, s, . . ., v, connected with boolean

operators AND OR NOT); each base condition; is of one of following forms:

— X = \X’, where) is an optional path expression and is a path expression;
— Nyp'0x, where:

x A\ is an optional path expression;
x p/ IS an element property;
x 0 is a value comparison operator;

x x IS a constant or is of the formV’p”, where)\” is a path expression and

p” is an element property.

Let G be the forest of subtrees of a tréethat can be reached fromvot(7") by following
the path), i.e. G = m\(7T) (if A is omitted, therG =T). The tre€l” satisfies the selec-
tion predicateP if 377 € G such thatroot(7;) satisfies the boolean expression The

evaluation of each base conditiofis done as follows:

e if ; is of the form)\ = \’, ~; is satisfied iFT" € G' = 7\(T}) andT” € G" =
v (T71) such thatroot(T") = root(T")

e if 7, is of the form\'p’0x andz is a constantyy; is satisfied i7" € G’ = m\ (1T1)
such thatroot(T")p'0z;

o if ; is of the form)\'p’fx and if z is of the form)\”p”, ; is satisfied iFT" € G’ =
v (Th), T" € my (T7) such thatroot(T")p'0root(T")p".

Definition 3.22 (Selection)Given a forest’ = (1}, Ts, ..., T,,) and a selection predicate
P, the selection operatos p(F') returns a subfores& C F' such that each tree in G

satisfies the selection predicate
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Product and Join

The product operator combines each tree from the first input forest with each tree from

the second input forest. The join operator is derived from product and selection.

Definition 3.23 (Product) Given two forest$’ = (73,75, ...,T,) andF’' = (1}, 15, . . .,

T!.), the product operato¥’ x F’ returns a forest” = (17}, 11, ..., 11, 13\, T, . . .,
Ty - Ty Ths -, T,) such that, for each, 7, T is a tree built as follows:
e r00t(T}};) = (null, prod root,null, null, null);

root(T}}) has two children;

let L}, = myroa_root/1(1};) b€ the left subtree obot (17}); then L}, = T;;

let B!, = Tyroa_root/2(1}}) be the right subtree afoot(T}}); then R, = T;

The formal definition of join predicate is quite similar to that of selection predicate;
the definition of the operator clarifies its derived nature.

Definition 3.24 (Join) Giventwo forest$” = (13,15, ...,T,) andF’ = (17,13, ....T),)
and a join predicateP = \[y|, the join operatorF" xp F’ returns a forestF” =
(17, Ty, ..., T}) such that, for eact”:

o T/ € FxF',

e T! satisfies the selection predical® = /prod_rootA[y].

Join is a derived operator; in fact the following equation holds:

FNPG:UPI(FXG) .



90 Chapter 3. The AFTX Algebra

Deletion

The deletion operator purges from each input tree those subtrees that satisfy the deletion

predicate.

Definition 3.25 (Deletion Predicate)A selection predicaté is an expression of the form
Alv], where:

e )\ is an optional path expression;

e 7 is a list of zero or more base conditions, s, . . ., 7, connected with boolean
operators AND OR NOT); each base condition; is of one of following forms:

— X = )X, where) is an optional path expression and is a path expression;
— Np'Ox, where:

x A\ is an optional path expression;

x p’ IS an element property;

x 0 Is a value comparison operator;

x x IS a constant or is of the form’p”, where)\” is a path expression and

p" is an element property.

Let G be the forest of subtrees of a tréethat can be reached fromvot(7") by following
the path), i.e. G = m,\(T) (if X is omitted, then? = (7'). The treeT satisfies the
deletion predicateP if 377 € G such thatroot(T}) satisfies the boolean expression

The evaluation of each base conditipnis done as follows:

o if ~; is of the form\' = )\, 4, is satisfied iBT" € G' = 7y(Ty) andT” € G" =
(1) such thatroot(T") = root(T")

e if 7, is of the form\'p’dx and z is a constantyy; is satisfied iF7" € G' = m\ (T1)
such thatroot(1")p'0z;

o if 7, is of the form\'p'fx and if z is of the form\”p”, ~; is satisfied iHT" € G' =
v (Th), T" € max(T) such thatroot (T")p'Oroot (T")p".
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The deletion predicate is almost equal to a selection predicate; however a slight but
important difference arise. When the second part of a base condition is not a constant (i.e.
it is of form A or \p), the path expression must be evaluated considering as base forest
the input forest, instead of the forest resulting from the projection caused by the first path
expression of the predicate.

For example, consider the deletion predigated root/book/author|.v #
/prod_root/author.v]. For each input tree T, the deletion operator operates as follows:

e calculatef’ = 71-/prod;root/book/author(7_7)
e calculateG = T /prod_root/author (T>
o foreachtred” c I

— if 37" € G such thatroot(T").v # root(T").v, removeT” from T

Definition 3.26 (Deletion) Given a forestF' = (11,75, ...,T,) and a deletion predicate
P = \[y], the deletion operatofp(F') returns a forest” = (17,715, ...,T)) such that:

o Vi, T! C T

e Vi, if TF C T; is reachable fromoot(T;) by following the path\ (i.e. TF € m\(T}))
andT} satisfies the selection conditignthenT} is not present ir7}.

Grouping and Duplicate Elimination

The grouping operator creates an output tree for each possible combination of some prop-
erties values found in the input trees. Each output tree will hageoap _root root

element, with as many attributes as the number of properties involved in grouping.
Definition 3.27 (Grouping predicate) A grouping predicate P is of the form

((/\1])1, nl), ()\2]?2, nz), cey (/\npna nn)), ()\/1, )\/2, e A;n>

where:



92 Chapter 3. The AFTX Algebra

e )\, and )\ are path expressions;
e p; is an element property;
e n, IS a string.

Definition 3.28 (Grouping) Given a forest” and a grouping predicate

P = (()\1])17 nl)a ()\2]927 n2)7 R ()‘npna nn))7 (/\/17 A/27 R A;n)
the grouping operatoE »(F') returns a forestF” such that:
o V1" € F', root(T") = (null, “group_root” A, null, null);
e r00t(T").A = (ay,aq,...,a,), wherea;.n = n;;
o VI" e ', 3T € FsuchthatT” € Fr = (...(( 7 (T)xm,(T)) xm,(T)) x
——
(n—2) times
...) x m,(T) such that:

— root(T").A[n1].v = e1p;, Where

— "y -
€1 = mOt(Wprod,root/prod,root/ ... /prod_root /1(T )

~~
(n—1) times

— root(T").A[ng].v = eapo, Where

— "y
€2 = mOt(Wprod,root/prod,root/ ... /prod_root /Q(T )

v
(n—1) times

— root(T").A[ns].v = esps, Where

_ Yy
€3 = mOt(Wprod,root/prod,root/ ... /prod_root /Z(T )

(.

(n—2) times

— root(T").A[n,).v = e,p,, Where

en = 100t (Tproa_root/2(T")) ;
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- 7T-group;root/*(CTI> = TN\ (T) U AP (T) U...Umy (T),

m

e VT € FletFr= (...(( mx(T) % mx(T)) x 1, (T)) % ...) x mr, (T); ¥T" €
~——

(n—2) times

Fr,3T" € F’ such that:

— root(T").A[n1].v = e1p1, Where

_ "y -
€= mOt(Wprod,root/prod,root/ ... /prod_root /1(T )

[

~~
(n—1) times

— root(T").A[ng].v = eapy, Where

— "y
€2 = mOt(Wprod,root/prod,root/ ... /prod_root /2(T )

~~
(n—1) times

— root(T").A[ns].v = e3ps, Wwhere

— " .
€3 = mOt(Wprod,root/prod,root/ ... /prod_root /2(T )

(.

~~
(n—2) times

— root(T").A[n,).v = e,p,, Where
en = 100t (Tproa_roor/2(1")) ;
— Tgroup_root/+(1") = Ta (T) Uy (T) U ... Umx (T);
o VT, T} € F', root(T}) # root(T}).

This definition is quite complex and deserves an in-depth analysis. The first two con-
ditions explain how the root element of the trees resulting from grouping must be named
and which attributes they must have. The third condition says that the value of each
group _root element’s attribute comes from the value of some properties of the input
trees; the product between multiple projection over a tree is needed in order to find each
possible combination of properties values. Moreover, the third condition explains that

some subtrees of the input trees are retained in the output as childrergodtipe _root
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element. The fourth condition is just the opposite of the third one, thus stating that each
possible combination of properties values is found in some output tree. Finally, the fifth
condition says that each possible combination of properties values is found just once in
the output trees.

The duplicate elimination operator derives from the grouping operation; in practice,
eliminating duplicate values of some element properties means grouping by that proper-
ties without returning any subtree of the input trees.

Definition 3.29 (Duplicate elimination predicate) A duplicate elimination predicat&

is of the form(A;p1,m1), (Aap2,m2), .. ., (AnPn, ), Where:
e )\; is a path expression;
e p, IS an element property;

e 1, is a string.

Definition 3.30 (Duplicate elimination) Given a forestF’ and a duplicate elimination
predicate P = (A\1p1,n1), (Aapa, n2), - .., (Anpn, nn), the derived duplicate elimination
operatorvp(F) returns the forest” = X py a1 (F).

Ordering

Formal definitions of ordering predicate and ordering operator are quite easy to under-

stand and are given in what follows.

Definition 3.31 (Ordering predicate) An ordering predicateP = P, P, ..., P, is of
the form)\lpl ai, )\ng as, ..., )\npn A s where:

e ), is a path expression;
e p; is an element property;

e ¢, is eitherASCor DESC
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Definition 3.32 (Ordering) Given a forest” and an ordering predicate

P = Xip1, Aap2, ..., A
the ordering operatobp(F') returns a forest” such that:
o V1" ¢ F', 3T € F suchthatl’ =T
o VI'e F,3T" € F' such thatl' = T7;
e VT, T, € F' such thatl| preceded?, 3k, 1 < k < n such that:

- Vj < k, it T{ C T7 is reachable fromroot(17) by following the path\;
and Ty C Tj is reachable fromroot(73) by following the path)\;, then
root(TY)p; = root (13 )p;;

— if T C T} is reachable fromroot(T7]) by following the path\, and 7y C T,

is reachable fromoot(T}) by following the path\;, then:

x if ap IS ASG thenroot (17 )pr. < root (T3 )px;
x if ay is DESG thenroot (T7)px > root(T4 )py.
Tree Construction

The tree construction operator is used for building new elements, possibly using parts of
the input trees. We give the formal definition of predicate and operator. Then, in order to
clarify the definition, we present an algorithm for tree construction.

Definition 3.33 (Tree Construction Predicate) A tree construction predicat®g is of the

formey, es, ..., e,, Where eacle; (namedelement construction specificatjoran be:
e a path expression;
e an expression of the form(v, A, (e}, e, ..., el,)), where:

— nis astring;

— v is either a string or a path expression followed by an element property;
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— Ais either a path expression followed by the properyor an expression of
the formA = ((ny,v1), (ng, v2), ..., (n,,v,)), where each; is a string and

eachw; is either a string or a path expression followed by an element property;

— (e, €e,,...,¢el,)is alist of element construction specifications.

Definition 3.34 (Tree Construction) Given a forestF’ = (T3,Ts,...,T,) and a tree
construction predicatéd® = ey, e, . .., ¢e,, the tree construction operatop (F') returns
a forestG = (G4, Ga, ..., G,), where eachz; contains trees built according to the tree

construction specificatios; as follows:

e if ¢; is an expression of the form(v, ((ny, v1), (N2, v2), ..., (Nm, Um)), null) such
that n, v, eachn; and eachv; are not path expressions, a single tree is built as

follows:

e if ¢; contains some path expression, a fol@gtcontaining one or more trees is built

for each input tredl’, as follows:

— if e; is a path expression, G, = mx(T%);
— if e; is an expression of the form(v, A, (¢}, €5, ...,¢..)):
* an element® namedn is built;
% Its value is set as follows:
- if vis a string,e?.v is set tov;
- if v is an expression of the fortp, as many copies af’.v as the

number of tree§” € m,(7}) are created, and each copy is assigned
the value(root)(T")p;
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x for eache?, its attribute list is set as follows:
- if A'is of the form((ay, as, ..., a), for eacha; = (n;,v;) € A an
attribute is built; its name is set to; and its value is set to; (if v; is
a string) ormy (7% )p (if v; is of the form\p?;
- if A'is of the form\. A, e2. A is set toX. A?;
* the tree construction specification$, ¢,, ..., e, are treated as previ-

T m

ously seen, and the elements built are made children of €ach

Algorithm 1 explains the behavior of the tree construction operator. It uses the proce-

dureSimpleSpecificatigrwhich is shown in Algorithm 2.

Algorithm 1 Algorithm TreeConstruction
Input: a forestF’ and a tree construction predicatges, . .., e,

Output: a forestFr”
F’' — () {F’ is initialized to the empty ligt
for all element construction specificatiendo
for all treeT; € F do
F" — F'U SimpleSpecificatiofe;, T7)
if e; does not contain any path expressiban

insertF' as subtree of the rightmost leaf elementFof

Full-Text Selection

The full-text selection operator returns those trees having at least a subtree satisfying
the full-text selection condition. Such a condition, specified using the full-text selection
predicate, is a list of one or more words or phrases that must be found in the full-text
value of the root element of a subtree reachable following a path expression. It is also
possible to specify a window option, i.e. to constrain the searched words (or phrases) to
have a distance between one and another not greater than a specified value. Moreover,

stemming, thesaurus and stopwords can be used.

1This expression must return a single value.
2This expression must return a single value.
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Algorithm 2 Algorithm SimpleSpecification

Input: atreel” and an element construction specification
Output: a forestF'
if e is of the form\ then
return m,(7")
else{e is of the formn(v, A, (e1,e2,...,¢€,))}
if vis a stringthen
build new element’; ¢'.n « n; e’.v — v
else{wv is of the formAp}
for all treeT” € 7,(T") do
build new element’; ¢'.n < n; ¢ .v <« root(T")p
for all element’ just builtdo
if Ais of the form\.A then
T —7m\(T); . A—T.A
else{A is of the form((ay,v1), ... (an,vn))}
for all pair (n;,v;) do
build new attribute: and assign it te’; a.n < n;
if v; IS a stringthen
a.V — v;
else{wv; is of the formAp}
T — 7)\(T); a.v < root(T")p
for all sub-element construction specificatigrdo
F — SimpleSpecificatiofi")
for all treeT € F do
root(T).p = €

return a forest of trees having as root element
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In what follows we give the formal definitions of full-text selection predicate and full-

text selection operator.

Definition 3.35 (Full-Text Selection Predicate)A full-text selection predicaté® is an

expression of the forma[y, z, stem, thes, stop|, where:

e )\ is a path expression;

a is optional and, if present, is of the forA[ atthamé ;

~ is a list of one or more base conditions, v, ..., , connected with boolean

operators AND OR NOT); each base condition; is of the form *s;”, where s; is

a word or phrase;

x is an optional integer value;

stem, thes, andstop are optional.

Let 7 be the forest of subtrees of a tréethat can be reached fromvot(T") by following
the path), i.e. I/ = m,(T). The treel satisfies the full-text selection predicateif
37" € F’ such that7” satisfies the boolean expressiorand, if present, the window
optionx. If one or more of the parameteesenm, thes, andstop are present, the full-
text selection satisfaction must be decided using, respectively, stemming, thesaurus, and
stopwords.

Lett = root(T")a.v if a is present, or let = root(T").fulltext if a is not present; each
base conditiony; is satisfied it contains the word or phrase.

LetS = {(t1,t2,...,t,) | t; is a token (or a list of consecutive tokens) present in
suchthat; = s;}. Letpos(t;[j]) be the position of the¢-th token in the token list (if ¢; is
a single token, only;[1] is defined)I” satisfies the window optionif 3(t1,ts,...,t,) €
S such that, for each paift;,t,) of elements contained if¥;,t,...,t,) such that
pos(ti[l]) < pos(tw[l]), pos(t,[l]) — pos(ty[m]) < =z, wherem is the length of the
token listt;,.
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In this definitiont represents thecopeof the full-text search. If the optionalis used,
it is the value of the attribute being checked; otherwise, it is the full-text value of the root
element of the subtree being checked.

The last part of the definition explains the meaning of the window option. Informally,
each pair of searched words is checked, confronting their position; if we are searching for
(say) two phrases instead that two single words, the position of the last word in the first

phrase is confronted with the position of the first word in the second phrase.

Definition 3.36 (Full-Text Selection) Given a forestF' = (T3, 75, ..., T,,) and a full-text
selection predicatd’, the full-text selection operatas-(F') returns a subforest: C F

such that each tree i&¥ satisfies the full-text selection predicate

Example 3.23 Suppose to have an AFTX expressidnreturning a forest containing,
among the others, the trdéshown graphically in Figure 3.3. Let us write the following

expression:

S/chapter[‘Usability Heuristic” AND “Web Design”,10,stem] (A) .

We are looking for chapters containing the phrasdsability Heuristicand “Web
Desigr, at a distance not greater than 10; stemming must be used. Wignhecked,
only one subtree rooted ahapter is found; actually, it corresponds to the entire tree
T. The full-text value of the root element contains the searched phrases: the first one is
found at position 25-26, the second one at position 33—34; note that the element actually
contains the phrasdJsability HeuristicSinstead of ‘Usability Heuristi¢, but the usage
of stemming allows to consider it as a match. In order to check the satisfaction of the
window option the position of the last word in the first phradedtiristics) is confronted
with the position of the first word in the second phras@/lti); 34 — 26 = 8 < 10,

therefore the subtree satisfies the selection condition.

Full-Text Score Assignment

The full-text score assignment operator calculates a score for each input tree, on the basis

of the full-text conditions specified in the predicate. It does not filter out any tree, it
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just calculates the score. The predicate is identical to that of full-text selection, with the

following exceptions:

e weights can be assigned to each searched word;

¢ the function to use for score calculation can be specified.
In what follows we give the formal definitions of predicate and operator.

Definition 3.37 (Full-Text Score Predicate)A full-text score predicaté’ is an expres-

sion of the form\a[y, =, stem, thes, stop| f, where:
e )\ is a path expression;
e ¢ is optional and, if present, is of the foriA[ atthamé;

e v is a list of one or more base conditions, 7., .. .,, connected with boolean

operators AND OR NOT); each base condition; is of the formw;" s;”, where:
— s;isaword or phrase;
— wj; is an optional decimal value representing the weight assigned to the word
(or phrase)s;
e 1 is an optional integer value;

e stem, thes, andstop are optional;

e fis a function pointer.

Definition 3.38 (Full-Text Score Assignment)Given a forestt’ = (13, Ts, ..., T,,) and
a full-text score assignment predicakg the full-text score assignment operatgr(F')
returns a foresti = (77,75, ..., T)) such that, for each, 7! = T, with the exception that
root(T").score has a new value calculated by the functigrconsidering the full-text
selection predicatea[y, z, stem, thes, stop] and the weightsy; assigned to each word

or phrase included iny;.
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Full-Text Selection with Score

The full-text selection with score operator combines the features of full-text selection
and full-text score assignment: it filters out those trees that do not satisfy the selection
condition and assigns to each retained tree a score.

The full-text selection with score predicate is actually a full-text score predicate. Con-

sequently, we directly give the formal definition of the operator.

Definition 3.39 (Full-Text Selection with Score)Given a forest’ = (11,15, ..., T,,) and
a full-text score predicatd® = a7, z, stem, thes, stop|f, the full-text selection with

score operatokp(F) returns a forest”’ such that, for each tre@” € F”:

e J7; € F such thatl” = T;, with the exception thatoot(7”) has a new value of

score representing the level of satisfaction of the full-text score predifate

e T’ satisfies the full-text selection predicdté= \a[y’, z, stem, thes, stop|, where

~" is obtained by removing weights from

The full-text selection with score operator is a derived operator; in fact the following

equation holds:
<p(F) =&plsp(F)) -

Top-K and Threshold Full-Text Selection

The top-K full-text selection is a derived operator: it applies to the input forest the score
assignment operator, thus assigning each tree a score value; then it orders the trees by the
score value just computed and retains onlykheees with highest score.

The top-K full-text selection predicate is identical to the score assignment predicate,
augmented with & stating the number of trees to retain. Formal definitions of predicate

and operator follow.

Definition 3.40 (Top-K Full-Text Selection Predicate) A top-k full-text selection predi-

cate P is an expression of the foriu|v, z, stem, thes, stop| f, k, where:

e )\ is a path expression;
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e ¢ is optional and, if present, is of the forA[ atthamé;

e v is a list of one or more base conditions, ., .. .,7, connected with boolean
operators ANDQ OR NOT); each base condition; is of the formw; “ s;”, where:
— s;isaword or phrase;

— wj; is an optional decimal value representing the weight assigned to the word

(or phrase)s;;

x is an optional integer value;

stem, thes, andstop are optional;

f is a function pointer;

k is an integer representing the number of trees to return.

Definition 3.41 (Top-K Full-Text Selection) Given a forestr’ = (73,75, ...,T,,) and a
top-K full-text selection predicat®, the top-K full-text selection operatdrp(F') returns
aforestG = (17,73, ..., T}) such that:

o VI] € G, 3T} € &p(F) such thatl] = T, where P’ is obtained fromP by

removingk;

o VI € &{p/(F) such thatl} & G, root(T}).score > root(T).score, for each
T! € G,

e (G isin descending order by the value of theore property of the trees’ root ele-

ment.

The top-K full-text selection operator is a derived operator; in fact the following equa-

tion holds:
Tp(F) = U[.posgk](o/l.score DESC(&P'<F)>)

whereP’ is obtained fromP by removingk.
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The threshold full-text selection is also a derived operator: it applies to the input forest
the score assignment operator, thus assigning each tree a score value; then it selects the
trees with a score higher than a tresholand returns them sorted by score.

The top-K full-text selection predicate is identical to the score assignment predicate,
augmented with a stating the score threshold under which trees must be discarded.

Formal definitions of predicate and operator follow.

Definition 3.42 (Threshold Full-Text Selection Predicate)A threshold full-text selec-

tion predicateP is an expression of the fordwu[y x, stem, thes, stop] f, 7, where:
e )\ is a path expression;
e ¢ is optional and, if present, is of the forA[ attnamé;

e v is a list of one or more base conditions, -, . .., 7, connected with boolean
operators AND OR NOT); each base condition; is of the formw; “ s;”, where:

— s; iIsaword or phrase;

— wj; is an optional decimal value representing the weight assigned to the word

(or phrase)s;

x is an optional integer value;

stem, thes, andstop are optional;

f is a function pointer;

7 is a decimal value representing the minimum score of the trees to return.

Definition 3.43 (Threshold Full-Text Selection) Given a fores¥' = (73,15, ..., T,,) and
athreshold full-text selection predicakg the threshold full-text selection operatop (F')
returns a forestz = (17,73, ..., T,) such that:

o VI € G, AT} € {pi(F) such thatT] = T, where P’ is obtained fromP by

removingr;
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o V1! € G, root(T}).score > T,
o VI € {pi(F) such thatly’ € G, root(T}).score < 7;

e (G is in descending order by the value of theore attribute of the trees’ root ele-

ment.

The threshold full-text selection operator is a derived operator; in fact the following

eqguation holds:

WP(F) = 0/1.score DESC(J/l[.scoreZT} (SP’(F)))

whereP’ is obtained fromP by removingr.






Chapter 4

Translating XQuery (Full-Text) Expressions

In this chapter we show how an XQuery (Full-Text) expression can be translated into an
AFTX expression. In Section 4.1 we show how each clause of a FLWOR expression
(without full-text extensions) can be translated; informal translation rules, examples and
a formal translation algorithm are presented. Then in Section 4.2 we deal with full-text
extensions; again we provide an informal overview, translation examples and the trans-
lation algorithm. In Section 4.3 we translate more complex XQuery (Full-Text) expres-
sions, taken from W3C XQuery Use Cases [Con06b] and XQuery Full-Text Use Cases
[Con06e]. Finally in Section 4.4 we briefly introduce a proposed extension of XQuery
with update capabilities and informally discuss how the new XQuery expressions could

be translated into AFTX expressions.

4.1 XQuery Translation Rules

4.1.1 Informal Overview
Thefor Clause

A for clause with a single variable binding is of the form

for $i in doc(" docnam® A [vi]Aa[v2] .- An[val
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wheredocnameas the input XML document); is a path expression angis a condition.
A for clause with a single variable binding is translated into the following algebraic

expression:

1l (T /100 (- (012 (/103 (91130 (M2, (“docname?™) ))))))

Projection is used to follow a path, selection represents the filter predicates. For ex-
ample, the clause

for $i in doc("books.xml")/bib/book[@year=2000]/author

applies to the documentooks.xml the path expressiofbib/book , followed by
the condition@year=2000 , followed by the path expressidauthor . This clause is
translated into the following algebraic expression:

T /1/author (0/1 [.A[year].v=2000] (W/bib/book (“ books.xml" ))) :

Remember thatl is a special case of path expression, that selects the first child of
the current element. If such an expression is found in the first step of a path expression, it

selects the root element, therefore the previous query may equivalently be written as:

T /book/author (U/book[.A[“year”].v:2000} (W/bib/book ( “books.xml” ) ) ) .

A for clause could contain the definition of a positional variable, through the use
of the reserved keywordt . The presence of a positional variable does not change the
algebraic expression associated with the for clause; if later in the query there is a reference
to the positional variable, that reference is translated using the element proyoesty
For example the clause

for $i at $p in doc("books.xml")/bib/book[@year=2000]
/author

is translated into the same algebraic expression as before.

A for clause can containsdastinct-values function calls, like the following:

for $i in distinct-values(doc("books.xml")//author/last)
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This clause is translated using the duplicate elimination operator as follows:

Y(Nlast.v, “Iast”)(W//author/IasQ“bOOKS-Xm|")) :

Conditions can be nested.f&r clause with a nested condition is of the form:
for $i in .. Aly and [Ma7s]]
Such a condition is translated into the following algebraic expression:

OAly1 AND A272] (A)

whereA is the algebraic expression represenfimg $i in
A for clause with multiple variable bindings is of the form
for $ 4, in doc(" docname;") Ay IAM[va] - AL,
$ip in doc(" docnames™) NViNi[va]... A% 42,
$i,, in doc("  docname,,") AT VTIAS S - A ]
wherei,, is a variable namedocname, is an input XML document)\’ is a path
expression ang is a condition. Afor clause with multiple variable binding is translated
in the following algebraic expression:

((((A1 x Ag) x A3)...) x Ap)

whereA, is the algebraic expression corresponding tokthie variable binding, obtained
as seen in the case of@ clause with a single variable binding. For example the clause

for $i in doc("books.xml")/bib/book[@year=2000],
$j in doc("authors.xml")/authors/author|[/first="John"]

is translated into the following algebraic expression:

0 /1].A[year].v=2000] (W/bib/book (u books.xml” ) ) X

0/1/first[.v="John"] (W/authors/author (“ authors.xml” ))
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Inafor clause with multiple variable bindings, a variable binding can refer to another

variable. A clause of the form
for $i in .

$jin $iA[7]
is translated into the following algebraic expression:

A X =) T/ (7T/1/\ (A4)))

whereA is an algebraic expression representing the first variable binding afrdspec-

tively \;) is the path expression representing the varidblgespectively$;). Informally
speaking, each tree resulting from the first binding is joined with those subtrees rooted at
A that respect the selection conditignFor each resulting tree, the left subtree of the root
will represent the variable $i, while the right subtree will represent the variable $j. For

example, the clause

for $i in doc("books.xml")/bib/book[@year=2000],
$j in Si/author[./first="Serge"]

is translated in the following algebraic expression:
0 /1[.A[year].v=2000] (W/bib/book(“.bOOks~Xm1” )) X /book[/author=/author]
0 /1/first[.v="Serge"] (7r/1/author (0_/1 [-A[year].v=2000] (W/bib/book (“ books.xml1” ) ) ) )

The result of this expression, whdreoks.xml is the XML document of Figure 2.3,
is displayed in Figure 4.1. An efficient implementation of the algebra should first calculate
the left input forest for the joinA1[ jyear].v=2000] (7 /bib/boox (“bo0ks.xm1"))), then use this
partial result to calculate the right input forest (by applying)/sirst|.v=*serge’] (7/1/autnor
to the partial result), and finally calculate the join of the two forests.

Thelet Clause

Atypicallet clause is of the form

let $i = doc(" docnam® A [vi]Aa[v2] .- An[val
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<prod_root>
<book year="2000">
<titte>Data on the Web</title>
<author>
<last>Abiteboul</last><first>Serge</first>
</author>
<author>
<last>Buneman</last><first>Peter</first>
</author>
<author>
<last>Suciu</last><first>Dan</first>
</author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>65.95</price>
</book>
<author>
<last>Abiteboul</last><first>Serge</first>
</author>

</prod_root>

Figure 4.1 The result of dor clause with 2 variable bindings, where the second variable

references the first one.
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wheredocnameas the input XML document); is a path expression angis a condition.

Unlike afor clause, det clause binds a variable to the result of its associated
expression, without iteration. This difference is also present in our algebra: wioite a
clause is translated into an algebraic expression which returns a different tree for each
possible binding, é¢et clause is translated into an algebraic expression which returns a
single tree. This goal is achieved using the tree construction operatbich creates a
root node nametkt _root ; the result of the expression associated withl#te clause
will be inserted as subtree of that root nodelef clause with a single variable binding

is thus translated into the following algebraic expression:

l“let_root” (null,null,null) (
/103 (T /100 (- -+ (0/11] (T /10 (01130 (T2, (“dOcname?™)) ))) )

Often alet clause is used in conjunction witH@ clause. This case can be treated
in the same way as r clause with multiple variable bindings: the expression rep-
resenting thdor clause is combined, using the product operator, with the expression
representing théet clause. It must be pointed out, however, that the algebraic expres-
sion representing thet clause will return a single tree, that will be the right subtree of

each root element resulting from the product operation. For example the (partial) query

for $a in doc("authors.xml")//author
let $b := doc("books.xml")//book

is translated into the following algebraic expression:

« » « ”
W//author( authors.xml ) X L“let,root”(null,null,null)(W//book( books.xml )) .

Sometimes det clause is used a simple “alias” for a complex expression; in this

case thdet clause is of the form
let $i = 3 A

where )\ is a path expression ar§j is previously defined variable. Such a clause does
not need to be explicitly translated into an algebraic expression; in fact, when the variable
$i will be referred to (e.g. in &eturn  clause), that reference will be substituted with a

reference t&j \. For example the query
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for $b in doc("books.xml")/bib/book
let $c := $b/author
return <book>
{$brtitle, <count>{ count($c) }</count>}

</book>
is translated into the following algebraic expression:

« »
L“book”(null,null,(/book/title,“count”(/book/author.count,null,null)))(ﬂ-/bib/book( books.xml ))) .

The where Clause

A simplewhere clause is of the form
where $i Ay

where )\ is a path expression angdis a condition. Such clause is translated into the

following algebraic expression:
O')\/)\h] (A)

where:

e Ais the algebraic expression representing the input forest;

e )\ is a path expression that locates the nodes bound to the variable $i.

A key point in the translation process is the need to keep track of the path expression
that locates the nodes bound to a variable. Wheneter aor let clause is translated,
the translator creates a new paiafiable path), which will be later used when the vari-
able is referred in the XQuery expression. For example the (partial) query

for $i in doc("books.xml")/bib/book[@year=2000]
where $i/price > 50
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is translated into the following algebraic expression:

0 /book /price[.v>50] (U/book[.A[year] v=2000] (W/bib/book( “books.xml” ) ) ) .

After the translation of théor clause, a pairdi , /book ) must have been created. The
meaning of this pair is:Whenever in the translation a referencefids found, it must be
substituted with the path expressimook ”. In fact, when the expressidbi/price  is
encountered, it is translated dmok/price

A where clause can also refer to two variables; in this case the clause is of the form
where $i A\ p10%$] \opo

where)\; is a path expressiom; is an element property artdis a comparison operator.
Such a clause is translated into the following algebraic expression:

U}\g [/\/1 A1p1 9)\’2 >\2p2] (A)
where:

e )\ is the longest common path expression between the path expressions that locate
the nodes bound to the variables $i and $j;

e )| and )\, are the path expressions that locate the nodes bound to the variables $i

and $j, excluding the common part considereddn
e Ais an algebraic expression representing the input forest.
For example the (partial) query

for $i in doc("books.xml")//book,
$j in doc("authors.xml")//author
where $i/author = $j/@id

is translated into the following algebraic expression:

0 /prod_root[/book/author.v=/author.A[id].v] (W//author (“ authors.xml” ) X 7r//book<“ books.xml” )) .
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This example shows that the path expression that locates the nodes bound to a vari-
able can change during the translation process. In particular, when a product operator is
inserted into the algebraic expression, the path expression that locates the nodes bound to
the variables involved in the product must be changed by adding a lef@dody _root .

In this example, initially the two variable bindings in ther clause are translated and
two pairs §i , /book ) ($j , /author ) are created. Then a product must be inserted
between the two algebraic expressions; therefore at the end fdrthéranslation$i is
located by/prod _root/book and$j is located byprod _root/author

Since two variables are involved in the kindwliere clause we are considering, the
algebraic expressiod will necessarily contain a product operator; an alternative way
to express thevhere condition is to substitute, ial, the product operator with a join

operator. Therefore the previous expression could be rewritten as follows:

T/ Jauthor (“ authors.xml” ) X /book/author[.v=/author.A[id].v] 7T//book(“ books.xml” ) .

Quantifiers can be used invehere clause. Awhere clause involving an existential

guantifier is of the form
where some $i in $ )\, satisfies  ($i\yy)

where \; and )\, are path expressions andis a condition. Such ahere clause is

translated into the following algebraic expression:
Ox A 2r] (A)
where:
¢ )\ is a path expression that locates the nodes bound to the variable $j;
e Ais the algebraic expression representing the input forest.
On the other side, @where clause involving a universal quantifier is of the form

where every $i in $j A, satisfies  ($i\yy)
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where, as before); and \, are path expressions andis a condition. Such ahere

clause is translated into the following algebraic expression:
A = ox e (4)

whereA is the algebraic expression representing the input forest. Informally, in order to
check that every subtree reachable from $j following the patkatisfies the selection
predicate\,y, we subtract from the input forest those trees that have at least one sub-
tree reachable from $j following the pat that satisfies the inverted selection predicate
—A97. Itis worth noticing that this translation is coherent with the semantics of XQuery
universal quantifier; in fact the resulting forest will also contain the trees that do not have
a subtree reachable following the path\,, and this is exactly equal to the XQuery be-

havior.

The order by Clause
An order by clause is of the form
order by $ i1 \zq ar, $is\oxs ao, .. ., $i oz, ay
where:
e $i; is a variable name;
e )\, is a path expression;

e 1, is one of the form @ttname(indicating the value of the attribute namatt
tnameg, .count (indicating the number of elements with namewheren is the
name of the current element) or the empty string (indicating the value of the current

element);

e a; ISASCENDINGr DESCENDING

An order by clause is translated in the following algebraic expression:

where:
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e Aisthe algebraic expression representing the input forest;
e )\, is a path expression that locates the nodes bound to the variable $
e p; is an element property;

e q; iISASCor DESC
For example the (partial) query

for $i in doc("books.xml")/bib/book
order by $i/title ascending

is translated into the following algebraic expression:
0 /book/title.v ASC (W/bib/book( “books.xml”)) .

As a more complex example, consider again the query of Example 3.9. We want to
retrieve, for each author, the last name and the books written by him; in addition, the

result should be sorted by author’s last name and book title. The XQuery expression

for $i in doc("books.xml")/bib/book/author/last,
$j in doc("books.xml")/bib/book
where $i=$j/author/last

order by $i ascending, $j/title ascending

is translated into the following algebraic expression:

O/prod_root /last.v ASC,/prod_root /book/title.v ASC(
0 /prod_root[/1last.v=/book/author/last.v] (
« ”»
W/bib/book/author/last( books.xml )X

T /bib/book ( D0OOks.xml1”)))
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Thereturn Clause

The simplest form of aeturn  clause is the following:
return  {$i \}
where:
e $iis a variable name;
e )\ is a path expression.

This clause does not actually build any new tree; what it does is to project the input forest

into the path\. Consequently it can be translated into the following algebraic expression:
mA(A)
whereA is the algebraic expression representing the input forest. For example the query

for $i in doc("books.xml")/bib/book/author
order by S$i/last, S$i/first
return {$i/last}

is translated into the following algebraic expression:

« ”
7"-/author/last(O/a1.11:.hor/1ast.v ASC,/author/first.v ASC(W/bib/book/author< books.xml )) .

As soon as theeturn  clause contains more than one reference to the input forest,
it is necessary to use the tree construction predicateetérn clause that does not

contain element constructors is of the form
return  {$i A H{$Sia Ao} . {$in A}
and is translated into the following algebraic expression:
L)\’l/\l,/\’z)\Q,...,)\LL)\n<A>

where:
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e Aisthe algebraic expression representing the input forest;
e )\ is a path expression that locates the nodes bound to the variable $
For example the query

for $i in doc("books.xml")/bib/book
return {$i/author}{$i/editor}

that returns all the authors plus all the editors, is translated into the following algebraic

expression:

« ”
L/book/author,/book/editor(W/bib/book( books.xml )) .

The construction predicate is obviously necessary wheretioen  clause contains
an element constructor, even if there is only one reference to the input forest. For example

the query

for $i in doc("books.xml")/bib/book
return <book title={$i/title}></book>

that returns the title of all books as attribute dfithe element, is translated into the fol-

lowing algebraic expression:

[44 7
L“book”(nu11,((“tit1e”,/book/title.v)),null)(W/bib/book( books.xml )) .

Sometimes aeturn clause may refer more than one variable. Consider again the
query of Example 3.9. As before, we want to retrieve the last name of each author and the
books written by him, but the only information we want about books is the title. Moreover,
each pair (author,title) should appear just once and the name of the author should be an

attribute of the elemeratuthor. The corresponding XQuery expression

for $i in distinct-values(doc("books.xml")/bib/book
/author/last),
$j in doc("books.xml")/bib/book

where $i=$j/author/last

return <author name={$i}>
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<book>{$j/title/text()}</book>

</author>

is translated in the following algebraic expression:

L“author” (null,((“name”,/prod_root/group_root.A[last].v)),( “book” (/prod_root /book/title.v,null,null))) (
0 /prod_root[/group_root.A[last].v=/book/author/last.v| (
« )
V(/1ast.v,“last”) (ﬂ-/bib/book/author/last ( books.xml )) X

T /bib/book ( “DOOks.xm1”))) .

The previous XQuery expression, however, does not return the result one probably
wants; in fact, if an author wrote five books, the resulting forest will contain 5 trees with
the same author, one for each book written by him. Consider now the following nested

expression:

for $i in doc("authors.xml")/authors/author/last
return <author name={$i}>
{
for $j in doc("books.xml")/bib/book
where $j/author/last=3$i
return <book>{$j/title/text()}</book>

} </author>

Thanks to the nesting, now each author is returned just once. This XQuery expression,
however, requires that each author present in the docuandimbrs.xmmust be returned,
even if he has not written any book. A simple selection with a selection predicate like
/prod_root/book/author/last.v = /prod.root/author/last.v is therefore not us-
able, because, deleting any tree that does not respect the condition, it would cancel an
author that has not written any book. What we need is a sdefiobuter join This goal

can be reached using deletion and grouping:
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L “author” (null,((“name”,/group_root/last.v)),(“book” (/group_root /book/title.v,null,null)) (
5/group,root/*[.k:/group,root‘A[“treeldentity”}.v AND .pos>1}(
D ((/prod_root/1.k,“treeldentity”)),(/prod_root/1,/prod_root/2) (
6/prod,root/book[/author/last] (
5/prod;toot/book/author[/last.v;é/prod,root/author/last.v] (
T /authors /author/last ( “authors.xml” ) X

T /bib/book ( “books.xml” ) ) ) )

Let us examine this expression, from the inner part to the outer part. The first deletion
prunes eaclast element in the right subtree whose value is not equal to that of the
last element in the left subtree. The second deletion prunesteaah element in the
right subtree does not have a chddthor element having a chilthst element. Now
a tree whose left subtree represents an author that has not written the book represented
by the right subtree has been reduced to a tree withbob& subtree. When we group
by node identity of the left subtree root element (last elements), an author that has
not written any book is still present in the result, obviously without any associated book.

Finally the last deletion deletes multidest  subtrees, retaining just the first one.

4.1.2 Formal Translation Algorithm

We have informally seen in Section 4.1.1 how most of XQuery expressions can be trans-
lated into AFTX expressions. We now want to formally state which part of XQuery can
be expressed into AFTX and how such a translation is carried out.

The fragment of XQuery expressible in our algebra is shown by the following gram-

mar:

Expr .= ExprSingle ("," ExprSingle)*
ExprSingle = FLWORExpr | Constructor
FLWOREXxpr ;= (ForClause | LetClause | ForClause

LetClause) WhereClause?
OrderByClause? "return" Constructor
ForClause = "for" VarRef PositionalvVar? "in"
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VarRef
PositionalVar
ForLetContext
DVFunction
DVContext

DocFunction

LetClause

WhereClause

OrderByClause

OrderSpec

AxisStep
QuantifiedExpr

ComparisonExpr

UnaryExpr

GeneralComp
PathExpr

RelativePathExpr

StepExpr

ForLetContext ("," VarRef
PositionalVar? "in" ForLetContext)*

o= "$" Name

= "at" VarRef

::= DVFunction | DVContext
.= "distinct-values" "(" DVContext ")"
::= DocFunction PathExpr
| VarRef PathExpr
.= "doc" "(" Literal ")"
"let" VarRef ":=" ForLetContext
("," VarRef ":=" ForLetContext)*
= "where" (ComparisonExpr |
QuantifiedExpr) ("and"
(ComparisonExpr | QuantifiedExpr))*

.= "order" "by" OrderSpec
(", OrderSpec)*
:= VarRef (AxisStep QName)* ("@" QName)?
("ascending” | "descending")?
=
= ("some" | "every") VarRef "in"
VarRef PathExpr "satisfies" "("
ComparisonExpr ")"
.= UnaryExpr GeneralComp UnaryExpr
.= (VarRef PathExpr) | Literal
| CountPosFunction
S I

.= AxisStep RelativePathExpr

= StepExpr (AxisStep StepExpr)*

("/" FinalStepExpr)?
.= NameTest Predicate*
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NameTest = QName | ™"

Predicate = "[" ComparisonExpr2 "]"
ComparisonExpr2 = UnaryExprl (GeneralComp UnaryExpr2)?
UnaryExprl = PathExpr | CountPosFunction

UnaryExpr2 PathExpr | (VarRef PathExpr)
| Literal | CountPosFunction
FinalStepExpr = ("@" NameTest) | ("text" "(" ")")

CountPosFunction

"count” "(" ForLetContext ")"

| "position” "(" ")"
Constructor = DirElemConstructor | EnclosedExpr*
DirElemConstructor ::= "<" QName DirAttribute*
("/>" | (">" DirElemContent* "</"
QName ">"))
DirAttribute = (QName "=" DirAttributeValue)
DirAttributeValue = ™" Literal "™ | PathExpr2
DirElemContent ::= DirElemConstructor | EnclosedExpr
| Literal
EnclosedExpr o= "{" (FLWORExpr | PathExpr2) "}"
PathExpr2 = VarRef (AxisStep QName)*

("/" FinalStepExpr)?

With respect to the XQuery specifications, our fragment has the following main limi-
tations:

e no prolog exists in a query;

each single expression can only be a FLWOR expression or a constructor;

nesting is permitted only insideraturn  clause;

no function calls are permitted, except for the functioonant , pos and

distinct-values :

theif-then-elseconstruct is not supported.
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We now present, step by step, the formal translation algorithm. The main function is
XQuery2 AFTXpresented in Algorithm 3. It checks every single expression in the query.
For each expression, if it is a FLWOR expression, the procefdivVéOREXxpiis called.

Algorithm 3 Function XQuery2AFTX
Input: an XQuery expression

Output: an AFTX expressiomd
1: for all ExprSinglee; € e do
2 if e; isa FLWOREXprtthen

3: A; " V; «— emptylist

4: FLWOREXpH(e;, A;, Vi, true)

5: A— A+ A

6: else{e; is a Constructar

7 A — A+ " tconstructofe;) (

8: for all FLWOREXxpre! in e; do

9: A; "V, «— emptylist
10: FLWOREXxpI(e,, A;, V;, true)
11: A— A+ A
12: if ¢, is the last FLWOREXxpthen
13: A—A+"y
14: else
15: A—A4+'V
16: if e; is not the last ExprSinglthen
17: A—A+"U’
18: return A

If the expression is a constructor, the functi@anstructoris called; we will analyze
this function later. If the constructor contains some inner FLWOR expressions, for each
of them the procedureLWOREXxpiis called, and the resulting AFTX expressions are fed
to the union operator. Note that this operation is done only for the outermost FLWOR ex-
pressions, because innermost FLWOR expressions are treated by thd=csUEdRExpr

procedure; we mean that, if an XQuery expression is of the form
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<tagnamel> ...
{
for ...
return <tagname2>...{for ...}</tagname2>

}

</tagnamel>

thenXQuery2AFTXirst callsConstructor then call just oncELWOREXxpy passing as in-
put the outer FLWOR expression. The inner FLWOR expression is manadeld/@R-

Expras we will see soon.

Finally, each AFTX expression representing a single expression (being either a FLWOR

expression or a constructor) is fed to the Union operator.

The procedurd-LWOREXpy presented in Algorithm 4, takes as input the FLWOR
expression to manage, the AFTX expression built up to now, a variable binding list and
a boolean value. The variable binding list is a list (initially empty) of elements that asso-
ciate, to each variable used in the XQuery expression, the path expression that locates, in
the forest resulting from an AFTX expression, the elements bound to that variable; it is
populated when &r orlet is managed, and it is used during the translation process.
The boolean value tells the procedure whether it must apply a tree construction operator
to the AFTX expression or it must only build a tree construction predicate and pass it back
to the calling procedure; it is set taue when an outermost FLWOR expression is being

translated.

FLWOREXxprfirst calls the procedurd®rClause LetClause WhereClausegandOr-
derByClause Each procedure takes as input the clause of interest, the AFTX expression
built up to now, and the variable binding list; they modify the AFTX expression and the
variable binding list.

ThenFLWOREXxprcalls the functiorReturnClausgwhich will return a tree construc-
tion predicate. If the boolean input parametddTreeConstis true, this predicate is used
in a tree construction operator which is added to the AFTX expression previously created;

in any case the predicate is returned to the calling procedure.



126 Chapter 4. Translating XQuery (Full-Text) Expressions

Algorithm 4 Function FLWOREXxpr
Input: a FLWOR expressior, an AFTX expressiod, a variable binding list/, a

booleanaddTree Constr

Output: a tree constructor predicate

if e contains a ForClausk then
ForClauséF, A, V)

if e contains a LetClausé then
LetClauséL, A, V)

if e contains a WhereClaus€& then
WhereClausgl, A, V)

if e contains a OrderByClause then
OrderByClausg), A, V)

t « ReturnClausg”, A, V') {C' is the Constructdr

. if addTreeConstr then

11: A—"y(+A+")

[N
o

12: return ¢
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The proceduréorClause presented in Algorithm 5, cycles over each variable bind-
ing. For each one, a new element of the variable binding list is created.

The first thing to check is whether the associated expression contains a predicate
that references a previously defined variable; in this case such expression is split into
three parts: the part before the predicate, the predicate, and the part after the predicate.

For example, if the associated expressiodas("bib.xml")/book[/author =

$a]/title , it is split into: 1) doc("bib.xml")/book ; 2) [/author = $a] ;
3) ftitle . Such a splitting is performed by the proced@plitPathExpy shown in
Algorithm 6.

If the first part of the associated expression (or the entire associated expression, if it
has not been split) starts wifin:doc , the algebraic expression corresponding to the
variable is initialized to the name of the XML document. Then the proceBatieExpt

shown in Algorithm 7, is called.

It checks each step in the path expression and adds a projection to the AFTX expres-
sion. If there are some predicates in the step, for each of them a selection is added to
the AFTX expression; the selection predicate is created by callingtbeicatefunc-
tion, that we will analyze later. Note th&athExpralso sets the path expression that
locates the elements bound to the variable defined iridiheclause; it is set to the last
NameTest found in the XQuery path expression. For example, if the clauk® i$t
in doc("bib.xml")/book|@year="1999")/title , the variable binding list
will contain the pair §t , /title ).

Now ForClausechecks if adistict-values function is applied to the expression
just translated. If this is the case (and the expression has not been split), a leading dupli-
cate elimination operator is added to the AFTX expression, and the variable binding list
element is updated.

Finally, a call to the procedui@reateProductshown in Algorithm 8, is used in order
to introduce a product between the AFTX expression just created and the AFTX expres-
sion previously createdCreateProductlso updates the variable binding list by adding a
leading/prod _root to each path expression.

Instead of starting with &n:doc , the first part of the expression associated with a
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Algorithm 5 Procedure ForClause
Input: afor clausef’, an AFTX expressioni, a variable binding list’

1: for all variable binding inF relative to a variablé: do

2: Vs; < “; SplitPathExp PE, PE’, P, PE") { PE is the PathExpr in DVContekt
3: if PE' starts withfn:doc("docname") then
4: A; < " docname™; PathExpri(PE’, A;, V)
5: if ForLetContext is a DVFunction ané is null then
6: Aj V(g4 v +Vi; without heading 7+ (* + A + )’
7: Vsi < */group_root.A[" + Vg, without heading /" + ‘|’
8: CreateProdu¢ty;, A, V)
o: else{the expression starts with a reference to a vari@ple
10: A; — Aj; Vg — Vg, PathExp(PE’, A;,V); CreateJoitd;, A, V, Vs; +
‘' + concat. of (AxisStep + NameTest) e’ +‘ =" + Vg; +]')
11: if ForLetContext is a DVFunction and is null then
12: A — "B((Vgi+ v, +last NameTest iPE/+ )),(/prod_root/1) T A +")’
13: Vi < ' /group_root.Al' + last NameTest iPE’ + ‘|
14: for all variable binding/s, in V' excludingVs; do
15: replace initial fprod _root ’in Vg, with ‘/group _root ’
16: if P is not nullthen
17: A — ‘opredicaer,v) (| + A+")
18: if PE" is not nullthen
19: A\ < ' /prod_root/2'+concatenation of all (AxisStep + NameTest)ii”
20: if ForLetContext is a DVFunctiothen
21: A "E((rt v, +last NameTestin+" ),(/prod_root /1.k, nodeIdent ity")),(/prod_root /1)’ (
+A+)
22: Vg < ' /group_root.A[" + last NameTest i\ + ‘]’
23: for all variable binding/s;, in V' excludingVs; do
24: replace initial fprod _root 'in Vg, with */group _root ’
25: else
26: A "14 J5rod_root” (nullnull,(/prod_root /1) (| + A+ )

27: Vsi < ‘' /prod_root /2’
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Algorithm 6 Procedure SplitPathExpr
Input: a PathExprPE, a stringPE’, a stringP, a stringPE"

1: if PE contains a predicate that reference a previously defined variatiier$;

2: P < the predicate

3 PE'" « the part of PE’ before the predicate
4: PE" « the part of PE’ after the predicate
5. else

6: PE' «+— PE

for clause could starts with a reference to another variable previously defined, i.e. the
for clause could be of the for@i in $;... . In this case the expression correspond-

ing to the referred variable is copied; then each step in the path expression is translated as
before and the resulting expression is joined with the expression corresponding to the pre-
vious variable bindings. The join, which is produced by the proceGueateJoinshown

in Algorithm 9, is based on a strict equality comparison predicate.

If the reference to another variable is preceded by a calliisiinct-values

(i.e. thefor clause is of the forn$i in distinct-values($;...) ), we must
extract the distinct values from the root elements of the trees in the second forest, while
the first forest must be maintained unchanged. This result is obtained by adding a group-
ing operator; the group is done on the basis of the root elements’ value of the trees in
the second forest, and the subtréeod _root/1 , corresponding to the trees from

the first forest, are retained in the output. Such subtrees, which were previously reach-
able by following the patlprod/root/... , are now reachable by following the path

/group _root/... ; the variable binding list is accordingly updated.

If the expression contained in th@ clause has not been split (because no predicate
contains a reference to a previously defined variable), the translation is finished. Other-
wise, a selection representing the predicate ([/author = $a] in our example) is added to
the AFTX expression; also in this case the selection predicate is built by the function
Predicate Such a selection must be done after the product or join, because it refers two

variables.
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Algorithm 7 Procedure PathExpr
Input: a PathExprPE, an AFTX expression;, a variable binding list/

1A — Vg

2: for all Step inPFE do

3 A — X\ + AxisStep+ NameTest

4 if there is some predicathen

5 A —'m(+A+")

6: Vsi < '/" + NameTest

7 for all predicateP in Stepdo

8 A; — "Opredicaer,yv) (| + A +)’

9 A—"/T

10: if this is the last stefhen

11: Vi < */" + NameTest

12: if no predicate has been found in the last stegm

13: A —'m( +A+")

Now, if the predicate is followed by a path expressifiilé in our example), we

must check if aistinct-values function is applied to the entire expression. Ifitis

the case, a grouping operator is added. Grouping is based on the value of the expression
(the value oftitle in our example) and on the identifier of the first subtree, i.e. the
subtree that corresponds to AFTX expression built before starting to considtarthe
clause. This way a tree is built for each distinct pa@s(lt of the previously built AFTX

expressionvalue of the variable binding being translajed

If there is not aistinct-values function call, the path expression following the
predicate is translated using the tree construction operator. In order to understand why
it is not possible to use a simple projection, we must consider the situation we are in,
which is shown graphically in Fig. 4.2. Tree (a) is an example of the result of the AFTX
expression built up to now; the path expression we must translate is intended to maintain
only the grey part of the right subtree (which is the subtree corresponding to the variable

binding we are translating), leading to the resulting tree (b). There is no way to obtain
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Algorithm 8 Procedure CreateProduct
Input: an AFTX expression;, an AFTX expressionl, a variable binding list’

1: if A is the empty stringhen

2: A— A

3: else

4: A—"(+A+"x "+ A +")

5: for all variable bindings% in the variable binding listio
6 Vs, < ' /prod_root’ + Vg

Algorithm 9 Procedure CreateJoin
Input: an AFTX expressiom;, an AFTX expressioni, a variable binding list’, a join

predicateP
LA—"(+A+"xp +A+")
2: for all variable bindingbk in the variable binding listlo

3: Vs < * /prod_root’ + Vg

such a result using projection; using tree construction, instead, it is possible to build a tree
having: 1) a root element nam@dod _root ; 2) a left subtree corresponding to the left
subtree of tree (a); 3) a right subtree corresponding to the grey part of the right subtree of
tree (b).

(a) (b)

Figure 4.2 An input tree (a) and the tree that must be obtained (b).

The functionPredicate presented in Algorithm 10, must deal with two possible pred-
icates: a comparison predicate between element or attribute values, or a predicate that
checks the existence of an element or attribute. Its goal is to produce a selection predi-
cate.
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Algorithm 10 Function Predicate
Input: a PredicateP, a variable binding list’

Output: a selection predicate
1: if UnaryExpr2 contains a reference to a variablen
2: ~ « the longest common path expression between the path expressions

corresponding to the two variables[’; openCondition — false

3 else

4: v« ", openCondition < true

5. if UnaryExprl is a PathExpPE then

6: v « v + Vi (excluding the part already added in line 2)
+UnaryExprl PE, V, openCondition)

7 if there is a GeneralContpen

8: yoe=y 4V

9: else{UnaryExprl is a CountPosFunctipn
10: ~v «— v+ Vg; (excluding the part already added in line 2)
+UnaryExprl PE, V, openCondition) + ‘.count’ or ‘.pos’
11: if there is a GeneralContpen

12: ~v « v + GeneralComp

13: if UnaryExpr2 is a PathExpPE’ then

14: v < v+ UnaryExprl PE’, V, false) + *.v’

15: else ifUnaryExpr2 is a VarRef PathExpr ($j£’) then

16: v« v+ Vs, (excluding the part already added in line 2)
+UnaryExprl PE', V, false) + .V’

17: else ifUnaryExpr2 is a Literathen

18: v < 7 + Literal

19: else{UnaryExpr2 is a CountPosFunctipn

20: if the internal PathExpr starts with a variabig then

21: v« v + Vs, (excluding the part already added in line 2)

+UnaryExprl PE’, V,false) + ‘.count’ or ‘ .pos’

22: else

23: v « v+ UnaryExpri PE’, V, false) + ‘.count’ or ‘ .pos’

24: y —y 4]

25: return «
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The function, at line 5, checks the first unary expression; it can be:

e a path expression; functiodnaryExprl shown in Algorithm 11, adds axis and
name steps to the AFTX selection predicate, until a predicate is reached; then the

function is called recursively on that predicate;

e acount orposition function; the inner path expression is translated as previ-

ously seen; acount or.pos is concatenated.

Algorithm 11 Function UnaryExprl
Input: a UnaryExprUE, a variable binding list/, a boolearvpenCondition

Output: a partial selection predicate
1y« "
2: for all StepExprdo
3 v « v + AxisStep+ NameTest
if there is some predicatben
for all predicateP in UFE do
v v+ ‘[ + PredicatéP, V)
if P is not the last predicatinen
vy +"AND’

© ® N o g &

Y=y +T
10: if there is a FinalStepExpr then

11: if Fis of the form @+ NameTesthen
12: if openCondition then

13: v v+ "‘[A + NameTest+ ‘|’
14: else

15: v v+ ".A[ + NameTest- ‘|’
16: else

17: if openCondition then

18: ye—v+

19: return vy
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The unary expression can be followed by a comparison operator and a second unary
expression; in this case the comparison operator is concatenated to the predicate, then
the second unary expression is translated. That expression can be, other than a path

expression and eount or position  function, the following:

e aliteral; the literal is concatenated to the selection predicate;

e areference to a variable followed by a path expression; the path expression is trans-
lated as previously seen; a leading path expression representing the referenced vari-
able is added, by reading from the list of variable bindings.

A special care must be dedicated to the case where the second unary expression is
a reference to a variable followed by a path expression. Consider first a predicate like
/price > 50 ; it can be translated using a selection with predicate ‘/book/price[.v
50’] (supposing that the variable binding list element corresponding to the clause being
translated has the valdieook , e.g. if the completéor clause idor $b in
doc("bib.xml")/bib/book][/price > 50] ). Consider now a predicate involv-
ing a variable, like/author = $a.name (supposing that the variable binding list
element for $b igprod _root/book  and the variable binding list element for $a is
/prod _root/author ); if we use the same technique, we would obtain a predicate
‘/prod._root/book/author|.v = prod_root/author/name.v|’, but this solution is not
correct. In fact the selection operator would first perform a temporal projection using the
path expressioprod root/book/author, then it would search prod root/author
/name path inside the obtained subtrees, thus leading to an empty result. In such cases,
the correct selection predicate is therefgtgrod root[/book/author.v = /author

/name.v]’; lines 1-4 ofPredicatetake care of this issue.

Example 4.1 Consider again the badiar clause translation examples presented in Sec-
tion 4.1.1; we now see that the presented algorithm behaves as expected. Let us start with

the clause

for $i in doc("books.xml")/bib/book[@year=2000]/author
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The functionForClauseis called. Here are how the AFTX expression is built step by
step; whenever the AFTX expression or some variable is modified, we show the function

name, the line number and the new value. Moreover we show function or procedure calls.

e ForClause 2: Vg, «

e ForClause 2: calls toSplitPathExpr obtaining PE’ < ‘doc(“books.xml”)/bib
/book[@Qyear = 2000]/author’;

e ForClause 4: Ag; <+ " books.xm1"™;
e ForClause 4: calls toPathExpr

— PathExpr 1. A «—

— PathExpr 3: A < * /bib’;

— PathExpt 3: A\ <+ * /bib/book’;

— PathEXpt 5: Ag; < ‘T jbib/boox (“books.xml")’;
— PathExpt 5: Vg; < * /book’;

— PathExpr 7: calls toPredicate

x Predicate 4: v —
x Predicate 6: calls toUnaryExprl
- UnaryExpr, 1: v < “;
- UnaryExpr, 13: v « ‘[.A[year];
- UnaryExpr, 19: returny to Predicate
* Predicate 6: 7 < ‘ /book][.A[year|’
x Predicate 8: 7 < ‘ /book|[.A[year|.v’
« Predicate 12:y < ‘ /book|[.Alyear]|.v =’
« Predicate 18: v < ‘ /book][.Alyear]|.v = 2000’
* Predicate 24: v <« * /book|.A[year].v = 2000]’

x Predicate 25: returny to PathExprg
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— PathEXpr 8: Ag; < ' 0 jvook|.alyear].v=2000] (T /bib/book (“DOOks.xm1"))";
— PathExpr 9: A « */17;

— PathExprt 3: A\ <+ ‘/1/author’;

— PathExpry 11: Vg, < * /author’;

— PathExpr 13: Ag; < “7/1 /author (T /book[ Afyear].v=2000] (T /bib /book
“books.xml”)))’;

e ForClause 11: calls toCreateProduct

— CreateProduGt2: A < *7/1 /author (0 /book[.Afyear].v=2000] (T /bib /book (
“books.xml”)))’.

The translation has been completed, and the result is that expected. Moreover, the
variable binding list now contains one item, stating the variable $i is reachable following
the pathauthor

Example 4.2 Consider now the followindor clause, that involves two variable bind-

ings:

for $i in doc("books.xml")/bib/book[@year=2000],
$j in doc("authors.xml")/authors/author[/first="John"]

The two variable binding are translated in the same way as in the previous example, thus
leading to this partial result:
® A "0 /poox] Afyear].v=2000] (T /bib/book (" DOOks.xm1”));
o Vg <« ‘/book’;
o Agj—'o /author/first[.v=" John”](”/authors/author(“ authors.xml”))’;

o Vg; < ‘/author’.

Now at line 11ForClausecalls CreateProduct:
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o CreateProduGtd: A «— (0 voox[.a[year].v=2000] (T /bib/book (DOOKS.XmMI”)) X

O-/author/first[.vz“ John' ] (W/authors/author (” authors.xml” ) ) ) 1;

e CreateProduct6: Vs; < ‘ /prod_root/book’;
e CreateProduct6: Vg; <« ' /prod_root/author’.

The translation has been successfully completed. Note that, after applying the product
operator, the paths in the variable binding list have been correctly updated by adding a
heading/prod _root .

Example 4.3 Consider now the case offar clause with multiple variable bindings

where a variable binding refers to another variable, like the following one:

for $i in doc("books.xml")/bib/book[@year=2000],
$j in $i/author[/first="Serge"]

The first variable binding is translated as usual; the second is translated as follows:
e ForClause, 134s; < ‘0pook| alyear].v=2000] (7 /bib/book (" POOks.xm1"))’;

e ForClause, 13: calls to PathExpr, that does the following:

]
- A$] — U/author/first[.v:“Serge"](W/book/author(

0 /book|.A[year].v=2000] (W/bib/book (“ books.xml” ) ) ) ) 5

— Vg; < ' /author’;
e ForClause 13: calls toCreateJoin

- CreatEJOII',l 1 A — ! (0/book[.A[year].v:2000] (W/bib/book(“bOOkS.Xmln ))
X /book[/author=/author| 7 /author/first|[.v="Serge] (W/book/author(

O Jvook[.A[year].v=2000] (7 /bib/book (" DOOks.xm1")))))";

— CreateJoin 3: Vs; < ‘ /prod_root/book’;

— CreateJoin 3: Vg; < ‘ /prod_root/author’.
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Example 4.4 Consider now dor clause with aistinct-values , like the follow-
ing:

for $i in distinct-values(doc("books.xml")/bib/book/author
/last)

TheDVContext is translated as usual, leading to the partial result:

® Ag; < ' T /bib/book /author/1ast ( boOks.xml”)’;
o Vg «— '/last’.
Then the translation goes on as follows:
e ForClause 9: Ag; ‘V(/last.v,“last”)(W/bib/book/author/last (“books.xml”))’;
e ForClause 10: Vs; < ‘group_root.A[last]’;

e ForClause 11: calls to CreateProduct, obtainidg— A;.

The proceduréd_etClause presented in Algorithm 12, is quite similar to the proce-
dureForClause It should be noted, however, that line 9 adds a leading tree construction
operator, in order to create an AFTX expression that returns a single tree rooted at a
let _root element; the same line also modifies the variable binding list element just
created, by adding a leadifigt _root .

Moreover, line 1 tells to cycle over each variable binding, except for those that sim-
ply build an alias for a complex expression. Finally, it must be pointed out that line 12

builds a copy of the expression corresponding to a referenced variable excluding a possi-

ble “let_root”(null, null, null) leading expression.
Example 4.5 Consider the following partial query:

for $a in doc("authors.xml")//author
let $b := doc("books.xml")//book

Thefor clause is translated as usual, thus leading the following partial result:
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Algorithm 12 Procedure LetClause
Input: alet clauseL, an AFTX expression, a variable binding list’

1: for all var. binding inL relative to a var$i (not of the formlet $i:=$j/ A) do
2: Vs < ' {create a new variable binding elemgnt

3 if DVContext starts witlin:doc("docname”) then

4: A; «— "“docname”

5: PathExp(PE, A;, V') { PE is the PathExpr in DVContekt

6: if ForLetContext is a DVFunctiothen

7: A "V(vg+ v, +Vy; without heading + ) ( + Ai + )

8: Vs; « * /group root.A[' + Vg without heading ) + ']’

9: A "11et _root (mullmuilenn) ( + Ai + )5 Vi < " /let root’ + Vg,
10: CreateProdu¢ty;, A, V)
11: else{the expression starts with a reference to a vari@ple
12: A; — A; {copy the AFTX expression built for $j, excluding
13: Vi < Vg
14: PathExp(PE, A;, V)
15: A« concatenation of all AxisStep + NameTesPifi
16: CreateJoit;, A, V, Vg, +'[ + N+ ="+ Vg +']');
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® A T aunor (“authors.xml”)’;
e Vs, < ‘/author’.

Then the procedureetClauses called. The DVContext is initially translated as in case

of for clauses, leading to:
o Ag, — '/ /voox(“books.xml”)’";
o Vg < ' /book’.

Then line 9 adds the tree construction operator:

o Ag — ‘L“let;foot"(null,null,null) (W//book(“bOOkS-Xmln))
o Vg < '/let_root/book’.
Finally, a product is created as usual, leading to the final result:

) A ! (W//author (“ authorS.Xml” ) X l*1et_root” (null,null,null) (W//book (“ bOOkS.Xml" )))’,
e V5, < '/prod_root/author’;

e Vg, < ' /prod root/let root/book’.

The procedur&VhereClausgshown in Algorithm 13, cycles over each single clause.
These clauses can be a comparison between two expressions or a quantified expression.

In the first case, if the comparison expression does not refer to a variable defined in
an outer FLWOR expression, the translation is done by simply applying a selection to
the AFTX expression built up to now. The selection predicate is returned by the function
Predicate2

In the second case, the first thing to do is to create a new variable binding list element.
If the quantified expression contains an existential quantifier and the expression does not
refer to a variable defined in an outer FLWOR expression, a selection is then applied to
the AFTX expression built up to now. If the quantified expression contains instead a uni-

versal quantifier, a difference operator is applied between the AFTX expression built up to
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Algorithm 13 Procedure WhereClause
Input: awhere clauselV, an AFTX expression, a variable binding list

1: for all clausew; do

2 if the clause is a ComparisonEx@¥ then
3 if CFE refers to a variable defined in an outer FLWOR expresgien
4 CreateOuterJo{iCE, A, V)
5: else
6 A — ' Opredicatepcr,v)( +FA+")
7 else{the clause is a QuantifiedExpome/every $i in $j A}
8 Vs, — Vgj + A
9 if the QuantifiedExpr is of the forrsome $i in $j A then
10: if CFE refers to a variable defined in an outer FLWOR expresien
11: CreateOuterJo(iCE, A, V)
12: else
13: A «— ' Opredicaepcr,v)( FA+")
14: else{the QuantifiedExpr is of the forravery $i in $j A}

15: Ae—"'A— UPredicateZin(JC’E,V)(’ + A+ ‘>1
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now and the result of a selection on that expression, using an inverted selection predicate.
The functionPredicate2Inywhich builds such inverted predicate, is not shown. However
its behavior should be clear; for example, if the quantified expressieveiy $a in
$b//author satisfies ($a/name = "John") , Predicate2Inwcreate a predi-
cate corresponding tdOT $b//author/name = "John"

Either if the clause is a comparison expression or if it is a quantified expression, the
expression could refer to a variable defined in an outer FLWOR expression, like in the

following example:

for $i in ...

return

{
for $j in ...

where $j/...=$il...

In such cases translating the clause using the selection predicate is not correct; in
fact each element bound $ should be part of the result, even if there are no elements
bound to$j that satisfy thevhere clause. What we need is a sortleft outer join Such
a join is created, using the technique already discussed in Section 4.1.1, by procedure
CreateOuterJoinshown in Algorithm 15.

The functionPredicate2 shown in Algorithm 14, is almost identical to the function
Predicatealready presented; consequently we do not discuss it here.

Example 4.6 Consider the partial query

for $i in doc("books.xml")/bib/book[@year=2000]
where $i/price > 50

Thefor clause is translated as usual, leading to the following partial result:
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Algorithm 14 Function Predicate2
Input: a ComparisonExp€'E, a variable binding list’

Output: a selection predicate
1: if both UnaryExpr are VarRef PathExpr or CountPosFundtiem
2: ~ « the longest common path expression between the path expressions
corresponding to the two variables[’; openCondition — false
else
v« ; openCondition « true
if the first UnaryExpr is a VarRef PathExpr (BF) then

~v «— v+ Vg; (excluding the part already added in line 2)

+UnaryExprl PE, V, openCondition) + * .v’
7: else ifthe first UnaryExpr is a CountPosFunctithren
8: ~v «— v+ Vg; (excluding the part already added in line 2)
+UnaryExprl PE, V, openCondition) + ‘.count’ or ‘.pos’
9: else{the first UnaryExpr is a Literal
10: v < 7 + Literal
11: v « v + GeneralComp
12: if the second UnaryExpr is a VarRef PathExpr £%’) then
13: v < v+ Vg; (excluding the part already added in line 2)
+UnaryExprl PE', V, false) + * .v'
14: else ifthe second UnaryExpr is a CountPosFunctizen
15: v < 7 + Vs, (excluding the part already added in line 2)
+UnaryExprl PE’, V, false) + ‘.count’ or ‘ .pos’
16: else{the second UnaryExpr is a Litetal
17: v« 7 + Literal
18: v — v+
19: return -~y
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Algorithm 15 Procedure CreateOuterJoin

Input: a ComparisonExpf'E/, an AFTX expressiom, a variable binding list’
1

if the first UnaryExpr refers to a variable $out defined in a outer FLWOR expression

then
UEOut « first UnaryExpr;UEIn < second UnaryExpr
else
UEOut «— second UnaryExprt/EIn — first UnaryExpr
for all StepExpr inUEIn do
if this is the last stethen
v < 7 + AxisStep+ NameStep
v v+ ' [NOT’
v « v + AxisStep+ NameStep

. if UEIn is a VarRef PathExpr that uses an inner variablet$en

Ve Voin Tyt

. else{ UEIn is a CountPosFunction that uses an inner variablg $in

v < Vi + 7 + ".count’ or * .pos’

: v < v + GeneralComp
: for all StepExpr inUEOut do

~" «— ~" 4+ AxisStep+ NameStep

- if UEOQOut is a VarRef PathExpthen

v 5+ Vsout+" + V]

. else if UEOwut is a CountPosFunctiatmen

v — v+ Vsout+ 7" + ‘.count]’ or *.pos’

: g < "((/prod_root/1.k, “treeldentity”)), (/prod_root/1, /prod root/2)’
. d « ' /group_root/ *x [k = /group_root.A[*treeIdentity”|.vAND.pos > 1]

P A= 005 (v by (05 + A+
: for all variable binding/s,. in V' do

replace initial /prod_root’in Vg with * /group root’
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® A "0 voox] Afyear].v=2000] (T /bib/book (“ DOOks.xm1"))’;
o Vg < '/book’.

Thewhere clause is translated as follows:
e WhereClausg6: calls toPredicate2

— Predicate24: v — “;

— Predicate2 6: calls toUnaryExprl that returns /pricel’;
— Predicate26: v <« ‘ /book/price[.v’;

— Predicate211: v « ‘ /book/price[.v >,

— Predicate217:v < ‘ /book/price[.v > 50’

— Predicate218: v <« ‘ /book/price[.v > 50]’;

— Predicate2 19: returnsy to WhereClause

e WhereClause, 62 < ‘0 voox /price[.v>50] (T /book[.Alyear] v=2000] (

T /bib/book (" DOOksS.xm1"))).

The procedure OrderByClause, shown in Algorithm 16, creates an ordering predi-
cate by defining an AFTX ordering directive for each order specification. Each ordering
specification is composed by the path expression of the variable binding list element cor-
responding to a variable, followed by an optional path expression, followed by an optional
attribute name, followed by the element propertyfollowed by the ordering direction
ASC or DESC. A heading ordering operator, using the ordering predicate just built, is
then added to the AFTX expression built before tihder by clause.

Example 4.7 Consider the partial query

for $i in doc("books.xml")/bib/book
order by S$if/title ascending

Thefor clause is translated as usual. Tdrder by clause is translated as follows:
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Algorithm 16 Procedure OrderByClause
Input: aorder by clauseO, an AFTX expressiom, a variable binding list’

1. 0+
2: for all OrderSpe®; in O that refers to a variable $io
3: 0— o+ Vg

4 for all (AxisStep QNamedlo

5 o < o + AxisStep+ QName

6: if there is a (@"QName)then

7 0« o+ ".Al + QName+ ‘|

8 o—o+" 0

9

if ordering direction isdescending” then

10: 0 < o+ ‘DESC’

11: else{ordering direction is descending”or is not present
12: 0 < 0+ "ASC’

13: if O; is not the last OrderSpehen

14: o—o+"’

15: A%‘O’O—f—‘(’—'—A—I—‘)’
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e OrderByClause, 1o «— ;

OrderByClause, 30 < * /book’;

OrderByClause, 50 < * /book/title’;

OrderByClause, 8> < * /book/title.v’;

OrderByClause, 12 « ‘ /book/title.v ASC’;

OrderByClause, 154 «— ‘O/book/title.v ASC(W/bib/book(“bOOkS'Xml”))’;

Example 4.8 Consider the partial query

for $i in doc("books.xml")/bib/book/author/last,
$j in doc("books.xml")/bib/book
where $i=$j/author/last

order by $i ascending, $j/title ascending
Thefor clause is translated as usual, thus leading to the following partial result:
o A "T0 /bib,/book /author /Last (“books.xml”) X 7T/bib/book(“bOOkS-Xml”)’;
e Vg « ‘/prod_root/last’;
e V4 « ' /prod_root /book’.

Now we show how thevhere andorder by clauses are translated:

e WhereClause6: calls toPredicate2

— Predicate22: v « ‘ /prod_root/[’;

— Predicate? 6: calls toUnaryExprl which returns the empty string;
— Predicate26: v <« ‘ /prod_root[/last.v’;

— Predicate211: v « ‘ /prod_root[/last.v =

— Predicate2 13: calls toUnaryExprl, which returns /author/last’;
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— Predicate213: vy < ‘ /prod_root[/last.v = /book/author/last.v’;
— Predicate218: vy < ‘ /prod_root|[/last.v = /book/author/last.v]’;

— Predicate2 19: returny to WhereClausg

L4 WhereCIausy%: A — ‘O-/prod;root[/last.v:/book/author/last.v](

7T/bib/book/author/las,t(“bOOkS-XIﬂln) X W/bib/book(“bOOkS-Xmln))

e OrderByClausel: o «+— “;
e OrderByClause3: o < ‘ /prod_root/last’;

e OrderByClause8: o < ‘ /prod_root/last.v’;

e OrderByClausel2: 0 « ‘ /prod root/last.v ASC’;

e OrderByClausel4: o < ‘ /prod_root/last.v ASC,’;

e OrderByClause3: o <+ ‘ /prod_root/last.v ASC, /prod_root/book’;

e OrderByClause5: o < ‘ /prod_root/last.v ASC, /prod_root/book/title’;
e OrderByClause8: o < ‘ /prod_root/last.v ASC, /prod_root/book/title.v’;

e OrderByClausel2: o « ‘ /prod_root/last.v ASC, /prod_root/book/title.v
ASC’,

d OrderByC|aUSel53 A — ‘O/prodjoot/lastv ASC,/prod_root /book/title.v ASC(

0 /prod_root[/last.v=/book/author/last.v] (

W/bib/book/author/last(“bOOkS-Xml”) X W/bib/book(“bOOkS'Xml”)))

The functionReturnClausgshown in Algorithm 17, first checks if the clause contains
some inner FLWOR expression. If this is the case, the fundtio?WOREXxpris called,

passing as input:
e the inner FLWOR expression;

e the AFTX expression built up to now;
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¢ the variable binding list;

e the boolean valudalse stating thatFLWOREXxprmust build a tree construction

predicate but it must not apply a tree construction operator.

Algorithm 17 Function ReturnClause
Input: a Constructo”, an AFTX expressiom, a variable binding list/

Output: atree constructor predicate
1: if C' contains somewhere some FLWOREXBRN
2: for all FLWOREXxpre; do

3: t; — FLWOREXxp(e;, A, V, false)

4: if C'is a DirElemConstructathen

5: t «— DirElemConstructaiC, V, T'){T is the list of computed; }
6: else{C is a list of EnclosedExgr

7 for all EnclosedExp# do

8: if £'is a PathExpr2hen

9: t «— t + PathExpr2E, V, false)
10: else{ F is the FLWOREXxp; }
11: t—t+t
12: if E is notthe last EnclosedExgnen
13: t—t+")’
14: return ¢

Then the function checks if the constructor is a direct element constructor (e.qg.
<result>...</result> ) or a list of enclosed expressions (i.e. something of the
form {... }). In the first case the functioDirElemConstructoris called, passing as
input the constructor, the variable binding list, and the list of tree construction predicates
that have been built callingLWOREXxptfor the inner FLWOR expressions. In the second
case, the enclosed expression can be:

e a path expression (e.d.$bftitle }): the functionPathExpr2 which is shown
in Algorithm 18, builds the corresponding tree construction predicate, which is ap-

pended to the predicate built up to now;
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e a FLWOR expression: the tree construction predicate built by the previously called

FLWOREXxprfunction is appended to the predicate built up to now.

Algorithm 18 Function PathExpr2
Input: a PathExpr2P, a variable binding list’, a booleans Value

1: 5 < VarRef

2: for all (AxisStep QNamegio

3 s < s + AxisStep+ QName

4: if there is a FinalStepExphen

5 if FinalStepExpr is of the form@”NameTesthen
6: s < s+ ".A + NameTest+ ‘|.v’

7 else{FinalStepExpr is of the formtext()’}

8 s—s+"‘v

9: else
10: if isValue then
11: S s+".v
12: return s

The functionDirElemConstructoy shown in Algorithm 19, first checks if the con-
structor contains some attributes. If this is the case, for each of them the fubation
rAttribute, which is shown in Algorithm 20, builds a string, which will be tAepart of
the resulting tree construction operatdw, a,c). Remember that is the name of the

elementy is the valueg is the list of attributes, andis the list of child elements.

ThenDirElemConstructoranalyzes the content of the constructor being translated. It

is a list of:

e direct element constructors: for each of them the funcbBmiklemConstructors
called recursively, and its result is added, using the procefldd€hild shown in
Algorithm 21, to the list of child elements;

e enclosed expressions: each of them can be:
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Algorithm 19 Function DirElemConstructor
Input: a DirElemConstructo”, a variable binding list/, a list of tree construction

predicatel’
Output: atree constructor predicate
1: if there is at least one DirAttributeen
2: for all DirAttribute D do

3 a < a + DirAttribute(D, V)
4 if DirAttribute is not the last onthen
5 a—a+",’
6: a—"'(4+a+")
7. else
8 a <« ‘null’
9: for all DirElemContent’; do
10: if C; is a DirElemConstructathen
11: AddChild(c, DirElemConstructgiC;, A, V'))
12: else ifC; is an EnclosedExphen
13: if C; is the FLWOREXpr; then
14: AddChild(c, t;)
15: else{C; is a PathExprp
16: if C; contains a FinalStepExpien
17: v« v + PathExpr2C;, V, false)
18: else
19: AddChild(c, PathExpr2C;, V, false))
20: else{C; is a literal}
21: v— v+ Cj

22: if v is the empty stringhen
23: v« ‘null’

24: if cis the empty stringhen

25: ¢+ ‘null’
26: else
27: c—c+")

28:t<—“”+QName+”,(,+’U+‘,,+a+‘,’+c+‘),
29: return ¢
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Algorithm 20 Function DirAttribute
Input: a DirAttribute D, a variable binding list’

Output: an attribute construction specificatian
1: if DirAttributeValue is a PathExprthen

2: a < PathExpr2DirAttributeValue V, true)
3: else{DirAttributeValue is a Litera}
4: a— " + Literal 4"

5: a/% i(l“ +QName+ “”1 +a+‘)’

— a FLWOR expression: the tree construction predicate resulting from the pre-
vious call toFLWORExpifor that FLWOR expression is added to the liif

child elements;

— a path expression: the resultldéthExpr2is either added to the listof child
elements (if the XQuery path expression results in an element) or appended to
the valuev of the element (if the XQuery path expression results in a value,
e.g. ifit is {$bftitle/text() H;

e literals: each of them is appended to the valud the element.

Finally the complete tree construction predicate is built, using the valuesandc

just computed.

Algorithm 21 Procedure AddChild
Input: a child element list specificatian a child element specificatian

1: if ¢is an empty stringhen

2: c—"'(+c
3: else
4: c—c+"', +¢

Example 4.9 Consider the following XQuery expression:

for $i in doc("books.xml")/bib/book/author
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order by S$i/last, $iffirst
return {$i/last}

Thefor andorder by clauses are translated as previously seen, leading to the partial
result

o A« ‘O/author/last.v ASC,/author/first.v ASC (W/bib/book/author (“books.xml”))
o V5, « '/author’.

Now we show how theeturn clause is translated:
e FLWOREXpr 9: calls toReturnClause

— ReturnClausg9: calls toPathExpr2

x PathExpr21: s < ‘/author’;
* PathExpr2 3: s < ‘/author/last’;
x PathExpr2 12: returns to ReturnClausg

— ReturnClausg9: t < * /author/last’;

— ReturnClausgl4: returnt to FLWOREXpr

e FLWORExpr9: ¢ « ‘/author/last’;

i FLWOREpr 11: A ‘L/author/last(O/author/last.v ASC,/author/first.v ASC(

7T/bib/book/author(“.bOOkS-XIn]-” )))

Note that the resulting AFTX expression is correct, even if, as already seen in Section
4.1.1, the same result could be obtained by using the projection operator instead of the
tree construction operator.

Example 4.10 Consider the following XQuery expression:

for $i in doc("books.xml")/bib/book
return {$i/author}{$i/editor}

Thefor clause is translated as usual, leading to the partial result
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® A T /pinpook (“books.xml”);
o Vg « ‘/book’.

Now we show how theeturn  clause is translated:
e FLWOREXpr 9: calls toReturnClause

— ReturnClausg9: calls toPathExpr2

x PathExpr21: s < ‘ /book’;

* PathExpr2 3: s < ‘ /book/author’;

x PathExpr2 12: returns to ReturnClausg
— ReturnClausg9: t < * /book/author’;
— ReturnClausgl3:t < * /book/author,’;
— ReturnClausg9: calls toPathExpr2

* PathExpr21: s < ‘ /book’;

* PathExpr2 3: s < ‘ /book/editor’;

x PathExpr2 12: returns to ReturnClausg
— ReturnClausg9: ¢ < * /book/author, /book/editor’;

— ReturnClausgl4: returnt to FLWOREXpr
e FLWOREXpr9: t < ‘/book/author, /book/editor’;
b FLWOREXprll A — ‘L/book/author,/book/editor(W/bib/book(“bOOkS‘Xml”))’-

Example 4.11 Consider the following XQuery expression:

for $i in doc("books.xml")/bib/book
return <book title={S$i/title}></book>

Thefor clause as in the previous example. Now we show howetien clause is
translated:

o ReturnClausgb: calls toDirElemConstructor
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— DirElemConstructor 3: calls toDirAttribute:

« DirAttribute, 2: calls toPathExpr2 obtaininga < * /book/title.v’;

« DirAttribute, 5: a «+ ‘(“title”, /book/title.v)’
— DirElemConstructor3: a « ‘(“title”, /book/title.v)’;
— DirElemConstructoy6: a < ‘((“title”, /book/title.v))’;
— DirElemConstructoy23: v «— ‘null’;
— DirElemConstructoy25: ¢ « ‘null’;
— DirElemConstructoy28:t < * book” (null, ((“title”, /book/title.v)),
null)’;

e ReturnClausg5: ¢ < “book” (null, ((“title”, /book/title.v)), null)’;

e FLWOREXpril: A « ‘L“book"(null,(("title",/book/title.v)),null) (W/bib/book(
“books.xml”))’".

Example 4.12 Consider the following XQuery expression:

for $i in distinct-values(doc("books.xml")/bib/book/author
/last),
$j in doc("books.xml")/bib/book
where $i=$j/author/last
return <author name={$i}>
<book>{$j/title/text()}</book>

</author>

The first variable binding is translated as seen in Example 4.4. The translation goes on as

follows:

¢ the second variable binding is translated as usual, thus leading to the partial result:

- A ‘(V(/last.v,“last")(ﬂ-/bib/book/author/last<“b00ks~xm1”)) X

T /bib/book ( DOOKsS.xm1"))’;
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— Vg; < ' /prod_root/group_root.A[last|

— Vg; < */prod_root/book’;

e thewhere clause is translated as usual, leading to the partial AFTX expression

1
A — Oprod_root[/group_root.A[last].v=/book/author/last.v] ( (

V(/last.v,“last") (Tr/bib/book/author/last (“books.xml" )) X 7.‘-/bib/book(“bOOkS~Xm]-" )))

e ReturnClausgb: calls toDirElemConstructor

— DirElemConstructoy 3: calls toDirAttribute:
« DirAttribute, 2: calls toPathExpr2 obtaining
a < ‘/prod_root/group_root.A[last].v’;

« DirAttribute, 5: a <+ ‘(“Name”, /prod_root/group_root.A[last|.v)’;
— DirElemConstructor3: a < ‘(“Name”, /prod_root/group_root.A[last].v)’;
— DirElemConstructor6: a < ‘((“Name”, /prod_root/group_root.A[last].v))’;

— DirElemConstructoy 11: calls toDirElemConstructoy passing as input the
constructoxbook> {$j/title/text() }</book> :
x DirElemConstructoy8: a < ‘null’;

x DirElemConstructoy17: calls toPathExpr2 obtaining
v « ‘/prod_root/book/title.v’;

* DirElemConstructor25: ¢ «+ ‘null’;

« DirElemConstructoy28: ¢ < *“ book”(/prod_root/book/title.v,
null null)’;

x DirElemConstructoy 29: returng to the callingDirElemConstructor

— DirElemConstructoyr11: calls toAddChild obtaininge < ‘(“book” (
/prod_root/book/title.v,null, null)’;

— DirElemConstructor23: v «+ ‘null’;

— DirElemConstructoy27: ¢ < ‘' (“book” (/prod_root /book/title.v,null,
null))’;
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— DirElemConstructor28: ¢ < “ author” (null, ((“name”,
/prod_root/group _root.A[last].v)), (“book”(/prod_root/book/title.v,
null null)));

— DirElemConstructoy29: returng to ReturnClausp

e ReturnClausgb: ¢ < “ author” (null,

((“Name”, /prod_root/group_root.A[last].v)),
(“book” (/prod_root/book/title.v,null, null)));

e ReturnClausgl4: returng to FLWOREXpr

hd FLWOREprll A — ‘Lt(O-prod,root[/group,root.A[last].v:/book/author/last.v]((

V(/last.v,“ 1ast”) ('/T/bib/book/author/last (ubOOkS.Xm].” )) X T(/bib/book<m bOOkS.Xml" ))))
Example 4.13 Consider the following XQuery expression:

for $i in doc("authors.xml")/authors/author/last

return <author name={$i}>

{
for $j in doc("books.xml")/bib/book

where $j/author/last=$i
return <book>{$j/title/text()}</book>

}

</author>
The outerfor clause is translated as usual, leading to a partial result
A T /authors /author /1ast (" aUthors.xml”)’
while V5; — * /1ast’. The translation goes on as follows:

e at line 9, FLWOREXxprcalls ReturnClausg passing as input the outeeturn

clause ;

e at line 3,ReturnClausealls FLWOREXpy passing as input the inner FLWOR ex-

pression;



158 Chapter 4. Translating XQuery (Full-Text) Expressions

e atline 2,FLWORExprcallsForClauseas usual, obtaining:

- A ‘W/authors/author/last(“ authors.xml") X 71-/bib/book(“.bOOkS-XIn]—”)’;
— Vg < " /prod_root/last’
— Vg; < */prod_root/book’

¢ atline 6,FLWORExprcallsWhereClausgpassing as input the clau$gauthor
Nlast = $i

¢ atline 4,WhereClausealls CreateOuterJoinobtaining:

- A 5/group;root/*[.k:/group,root.A[treeIdentity] .v AND .pos>1] (
b ((/prod_root/1.k,“treeIdentity”)),(/prod_root/1,/prod_root/2) (
5/prodJoot/book[/author/last] (
5/prod;root/book/author[NDT /last.v=/prod_root/last.v] (

T Jauthors/author/last (“ aUthorS-Xm]-”) X W/bib/book(“books.xml”)))))’;
— Vg; < ‘group_root/last’;
— Vg; < ‘group_root/book’;

e at line 9,FLWOREXxprcalls ReturnClausgpassing as input the inner constructor
<book> {$j/title/text() }</book> ;

e atline 5,ReturnClauseallsDirElemConstructoyobtaining a partial tree construc-

tor predicate < “ book”(/group_root/book/title.v,null, null)’
e ReturnClausgasses backto FLWOREXxpr

e FLWOREXpipasses it back to the outeeturnClausavithout modifying the AFTX

expression (because the input parametii’receConst is false);

e at line 5,ReturnClausealls DirElemConstructoy passing as input the outer con-
structor (including the inner FLWOR expression) and a list of tree construction

predicates that now contains
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e at line 14,DirElemConstructoisetc to “book” (/group_root /book/title.v,
null, null)’ (because the DirElemContent of the DirElemConstructor is a FLWOR-
Expr); the final value of is therefore “author” (null, ((“name”, group_root
/last.v)), (“book” (/group_root/book/title.v,null, null)))’;

e ReturnClauseasses backto FLWOREXxpr

e atline 11,ReturnClausduilds the final AFTX expression:
Lt(5/group,root/>k[.k:/group,root.A[treeIdentity].V AND .pos>1] (
E((/prod,root/l.k,“ treeIdentity” )),(/prod_root/1,/prod_root/2) (
5/prod,root/book[/author/last] (

5/prod,root/book/author [NOT /last.v=/prod_root/last.v] (

Tl Jauthors /author /last (- AUEHOTS.Xm1") X T /bip /oo DOOks.xm1")))))".

Up to now, we have seen what happens when the XQuery expression corresponds to
a FLWOR expression. However, there are cases when the XQuery expression is instead a
constructor, which includes an inner FLWOR expression; this is the case when we want to
include the result of a FLWOR expression in an enclosing XML element. In such cases,
the function XQuery2AFTX calls, at line 7, the functi@onstructor shown in Algorithm
22.

Constructoris a simplified version of the functioBirElemConstructoralready an-
alyzed. It also builds a tree construction predicate, but it ignores inner FLWOR expres-
sions; the result is therefore a predicate without any path expression.

XQuery2AFTXhow adds a tree construction operator using the predicate just created;
then it callsFLWORExpifor each enclosed FLWOR expression.

Example 4.14 Consider the following XQuery expression:

<authors>

{

for $a in doc("books.xml")//author

return {$a}
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Algorithm 22 Function Constructor
Input: a Constructor”

Output: atree constructor predicate
1: if there is at least one DirAttributben
2: for all DirAttribute D do

3: a«—a+"'(" +QName+ ™ “ + Literal+ ™)’
4 if DirAttribute is not the last onthen
5: a<—a+",’

6: a—"'("+a+")

7: else

8: a + ‘null’

9: for all DirElemContent; do
10: if C; is a DirElemConstructathen
11: AddChild(c, ConstructofC;))
12: else ifC; is a literalthen
13: v — v+ Cj

14: if v is the empty stringhen
15: v+ ‘null’

16: if cis the empty stringhen

17: ¢+ ‘null’
18: else
19: ce—c+"')

20:t<—“”—l—QName+",(’+U—|—‘,'—|—a—{—‘,’—|—c—|—‘)’
21: return ¢
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</authors>
The translation is carried out as follows:

e XQuery2AFTXat line 7, calls<Constructor

Constructorbuilds the predicaté <— *“ authors” (null,null, null)’

XQuery2AFTXouilds the partial AFTX expressiof « ‘tautnors’ (nu11,nu11,0u11) (5

XQuery2AFTXat line 10, callsFLWOREXxprpassing as input the inner FLWOR

expression, obtaining the resulf < ¢ /autnor (7 /autnor (“books.xml”));

XQuery2AFTXat line 13, obtains the final result < * - aythors” (nu11,nu11,mu11) (

L /author (T / /autnor (“ DOOKsS.xm1")))".

4.2 XQuery Full-Text Translation Rules

4.2.1 Informal Overview

XQuery Full-Text provides two kinds of full-text search:

e boolean retrieval an element satisfies the full-text condition or it does not satisfy

the condition at all;

e ranked retrieval each element in the context is assigned a score reflecting the level

of satisfaction of the full-text condition.

Boolean retrieval is done by insertingftaontains expression, either in a path
expression (of éor orlet clause) orin avhere clause. Such expression is translated

into an AFTX expression using the full-text selection predicate. For example the partial
query

for $b in doc("bib.xml")/books/book
where $b ftcontains "dog"
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is translated into the following AFTX expression:

g/book[“dog"](W/books/book(“bib.Xml”)) .
Thefor clause
for $b in doc("bib.xml")/books/book]|. ftcontains "dog"]

is translated into the same AFTX expression; this is not surprising, because the second
XQuery expression is equivalent to the first one.

If the ftcontains expression is formed by two words (or phrases) connected with
a boolean operator, also the full-text selection operator will have a predicate composed by

two basic full-text conditions connected with a boolean operator. For example the partial

query

for $b in doc("bib.xml")/books/book

where $b ftcontains "dog" && "cat"

is translated into the following AFXT expression:

S/book[*dog” AND “cat”] (Tr/books/book(“bib‘xml”)) .

Ranked retrieval is instead done by addingta clause that defines a score variable.
Such det clause is translated using the full-text score assignment operator. For example

the partial query

let score $s := $b ftcontains "dog" && "cat"

order by $s descending

is translated into the following AFTX expression:

O/1.score DESC (é/l[“dog” AND “cat”] (A)) ’

where A is the algebraic expression representing the variable $b. The score assignment
operator assigns a value to tbeoreproperty of the root element of each input tree; the

subsequent ordering operator uses such score to order the forest.
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If the score variable is in or clause (that must containsftaontains expres-
sion), a full-text selection must be executed; then each retained tree must be assigned
a score value. This is exactly the behavior of the derived full-text selection with score

operator. Therefore a clause like

for $b score $s in doc("bib.xml")/books/book

[. ftcontains "dog" && "cat"]

is translated into the following AFTX expression:

E/book[“dog" AND “cat”] (W/books/book(”bib-xmlu)) .

Scoring may be influenced by addingightspecifications to search tokens. If this is
the case, weights are added to the used AFTX operator, either if it is the score assignment

operator or if it is the full-text selection with score operator. For exampléetheclause

let score $s := $b ftcontains ("dog" weight 0.2)
&& ("cat" weight 0.8)

is translated into the following AFTX expression:

5/1[0.2 “dog” AND 0.8 “cat”] (A> )

whereA is the algebraic expression representing the variable $b.
A ftcontains expression could state that searched words must be found at a certain
maximal distance between one and another. AFTX also provides such an option, thus the

translation is straightforward. For example a clause like

for $b in doc("bib.xml")//book
[. ftcontains "web" && "site" distance at most 2]

is translated into the following AFTX expression:

S /book[*web” AND *site”,2] (T//book (“Pib.xm1")) .

Finally, AFTX also permits to express part of the match options provided by XQuery
Full-Text, namely the usage of stemming, thesaurus and stopwords. For example the

clause
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for $b in doc("bib.xml")//book [. ftcontains "the web site"
&& "usability" with stemming with thesaurus default

with default stop words]

is translated into the following AFTX expression:

“ ” “ ” (7‘(’ (“blb Xml” ))
g/book[ the web site AND usability ,stem,thes,stop] //Pook : :

It should be noted that, in the translation examples involving score, we have never
inserted the parametgi, which defines the score function to use. This is because the
availability of such a parameter is an AFTX feature not present in XQuery Full-Text.
Therefore the default score function will be used when translating XQuery Full-Text ex-

pressions.

4.2.2 Formal Translation Algorithm

In Section 4.1.2 we have presented the partial XQuery grammar that can be expressed in

AFTX. That grammar must be expanded in order to represent full-text extensions:

ForClause = "for" VarRef PositionalVar?
FTScoreVar? "in" ForLetContext ("
VarRef PositionalVar? FTScoreVar?
"in" ForLetContext)*

LetClause = (("let" VarRef := ForLetContext)
| ("let" FTSCoreVar ":=" VarRef
(AxisStep NameStep)* “ftcontains”
FTSelection)) ("," VarRef ":="

ForLetContext)*
FTScoreVar ;= "score" VarRef
WhereClause = "where" (ComparisonExpr |

QuantifiedExpr | (VarRef PathExpr
"ftcontains” FTSelection)) ("and"

(ComparisonExpr | QuantifiedExpr
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| (VarRef PathExpr "ftcontains"

FTSelection)))*
ComparisonExpr2 := (UnaryExprl (GeneralComp UnaryExpr2)?)
| (PathExpr "ftcontains” FTSelection)
FTSelection = FTOr (FTMatchOption)*
FTOr = FTAnd ( "||" FTAnd )*
FTANd = FTUnaryNot ( "&&" FTUnaryNot )*
FTDistance?
FTUnaryNot = ("I'")? Literal ("weight" Number)?
FTMatchOption == FTStemOption | FTThesaurusOption
| FTStopwordOption
FTStemOption = "with" "stemming"
FTThesaurusOption = "with" "thesaurus" "default"
FTStopwordOption = "with" "default” "stop" "words"
FTDistance = "distance"” "at" "most” Number "words"

As we can see, thior andlet clauses now permit to define a score variable; in
alet clause, we can defineormal variables or score variable€omparisonExpr
andComparisonExpr2 , that are used respectively in a predicate @ra/let clause
and in awhere clause, has been modified in order to provide, besidesal predicates,
full-text predicatesFTSelection  and all the following production rules define how a
full-text predicate can be formed.

With respect to the XQuery Full-Text specifications, our grammar has the following
limitations:

e alet clause cannot contain more than one score variable definition; if a single

clause defines a score variable, it cannot also defim@m@malvariable;
e the only supported match options are stemming, thesaurus and stop word,;
e only the default thesaurus and the default list of stop words can be used,;

e mild notoperator is not supported,;
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e distance option can only be of the typemost
e scope option is not supported;
e ignore option is not supported.

Algorithm 23 shows the only modification that must be done over the procédure
Clause Between lines 2 and 3 we add a conditional expression: if the clause contains the
definition of a score variable, a new element is added to the variable binding list. That

element will represent the score value.

Algorithm 23 Changes to the procedure ForClause
2.1: if DVContext contains a score variabletign

2.2: Vss < ' /1.score’;

The proceduréorClause as seen in Section 4.1.2, caltathExprfor each variable
binding. PathExprcalls Predicatefor each predicate found in the path expression. How-
ever, if the predicate is a full-text predicate it must instead [Eabelectionthat will be
analyzed soon, as shown in Algorithm 24. Then a full-text selection or a full-text selection

with score is added to the AFTX expression built up to now.

Algorithm 24 Changes to the procedure PathExpr
7.1: if P is a full-text predicatehen

7.2 Ae—"/r

7.3: for all (AxisStep NameStepjo

7.4 A — A\ + AxisStep+ NameStep

7.5 A — A+ ‘[ + FTSelectiofFT) + ‘' { F'T is the full-text conditior}
7.6: if the clause contains a score variatblen

7.7 A—"S(C+A+")

7.8: else

7.9: A—"o(+A+")

7.10: else

7.11: continue with normal algorithm
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Algorithm 25 shows the modifications that must be done over the procedtre
Clause After line 1 we add a conditional expression: if the clause contains the definition
of a score variable a score assignment operator is added to the AFTX expression built up
to now, otherwise the clause is treated as in the original algorithm. The full-text predicate

is created by the functioRT Selection

Algorithm 25 Changes to the procedure LetClause
2.1: if $iis a score variabléthen

2.2 Vsi < '/1.score’

2.3 A < WarRet

2.4: for all (AxisStep NameStepjo

2.5 A — X\ + AxisStep+ NameStep

2.6: A — A+ [ + FTSelectioi#'T') + ‘|' { FT is the full-text conditior}
2.7 A—"L(C+A+YY
2.8: else

2.9: continue with normal algorithm

Algorithm 26 shows the modifications that must be done over the proc&dhese-
Clause After line 1 we add a new case to the if-then-else expression: the clause can be a
ftcontains expression. If this is the case, we add a full-text selection operator to the
AFTX expression built up to now; also in this case the full-text predicate is created by the

function FTSelection

Algorithm 26 Changes to the procedure WhereClause
1.1: if the clause is a FTContains expressiloan

12 A <« VVarRef
1.3: for all (AxisStep NameStepjo
1.4: A — A\ + AxisStep+ NameStep

1.5: A — A+ [ + FTSelection#'T) +‘|' { FT is the full-text conditior}
1.6: A—"(+A+")
1.7: else

1.8: continue with normal algorithm
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The functionFTSelection presented in Algorithm 27, build the full-text condition.

The translation process is quite straightforward, so we do not analyze it in more details.

Example 4.15 Consider the following partial query:

for $b in doc("bib.xml")/books/book

where $b ftcontains "dog" && “cat"
Thefor clause is translated as usual, thus leading to the following partial result:
® A T /pooks /boox(Dib.xml”)’;
o Vg, < ‘' /book’.
Then the procedurd/hereClausés called:
e WhereClausgel.2: A < * /book’;
e WhereClausgl.5: calls toFTSelection

— FTSelection7: v < * dog™;
— FTSelection9: v < * dog” AND ',
— FTSelection7: v < * dog” AND “cat”;

— FTSelection21: returnsy to WhereClausge

e WhereClausgl.5: \ « * /book[“dog” AND “cat”]’;

o WhereC|aUS,616 A — ‘g/book[“dog” AND “Cat"](ﬂ-/books/book(“bib'Xmln)) .

Example 4.16 Consider the following partial query:

for $b in doc("bib.xml")/books/book
let score $s := $b ftcontains ("dog" weight 0.2)
&& ("cat" weight 0.8)

Thefor clause is translated as in the previous example; then the prodesi@auseas

called:
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Algorithm 27 Function FTSelection

Input: a full-text selectiont'T’

Output: a partial full-text predicate
1: for all FTAnd in FTOrdo

2:

10:
11:
12:
13:

for all FTUnaryNot in FTAnddo
if there is a ‘weightthen
v < v+ ‘Number’
if there is a ‘I'then
7 < v+ ‘NOT’
v «— v+ Literal
if this is not the last FTUnaryNahen
7y v+ ‘AND’
if there is a FTDistanctnen
v —v+" + Number
if this is not the last FTAnthen
v v+ ‘0OR’

14: for all FTMatchOption inF'T do

15:
16:
17:
18:
19:
20:

if it is a FTStemOptiorthen
v+, stem’

else ifitis a FTThesaurusOptiaimen
v «— v+ "', thes’

else{itis a FTStopWordOptioh
v+, stop’

21: return -~
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e LetClause2.2: Vg, < ‘/1.score’;
e LetClause2.3: \ < ‘ /book’;
e LetClause?2.6: calls toFTSelection

— FTSelection4: v «— *0.27;

— FTSelection7: v « ‘0.2 “dog™;

— FTSelection9: v <+ ‘0.2 “dog” AND ’;

— FTSelection4: v < '0.2 “dog” AND 0.8’;

— FTSelection7: v <+ ‘0.2 “dog” AND 0.8 “cat”;

— FTSelection21: returnsy to LetClause
e LetClause2.6: A < ‘/book[0.2 “dog” AND 0.8 “cat”]’;

o LetClause2.7: A — 'f/book[o.z “dog” AND 0.8 * cat”](ﬂ-/books/book(“bib-Xm]-”>>,-

4.3 Complex Translation Examples

4.3.1 XQuery Expressions

In this section we present a series of examples of translation of complex XQuery ex-
pressions into AFTX expressions. These examples are taken from W3C XQuery Use
Cases [Con06b] and demonstrate that almost any XQuery expression can be translated
into AFTX.

For each example, we present the query requirements (expressed in natural language),
the solution in XQuery and the solution in AFTX.

Example 4.17 [Use Case “XMP” Q1] List books published by Addison-Wesley after
1991, including their year and title.
XQuery solution:
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<bib>
{

for $b in doc("bib.xml")/bib/book

where $b/publisher = "Addison-Wesley"
and $b/@year > 1991

return
<book year="{ $b/@year }'>

{ $brtitle }

</book>

}
</bib>

The query in this example and all the following has been slightly modified, by shortening
the name of the input XML document. This is done just for the sake of brevity and does
not affect in any way the translation process.
AFTX translation :
L*bib” (null,null,null) (
L*book” (null,((*year”, /book.Alyear].v)),(/book/tit1e)) (
0 /book|.A[year].v>1991] (

O /book[/publisher.v="Addison—Wesley”] (

W/bib/book("bib.xml"))))
This example shows how @&here clause with conditions connected wigNDis

translated: two subsequent selection operations are applied to the input forest.

Example 4.18 [Use Case “XMP” Q2] Create a flat list of all the title-author pairs, with
each pair enclosed in a “result” element.

XQuery solution:

<results>
{
for $b in doc("bib.xml")/bib/book,
$t in $bititle,
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$a in $b/author
return
<result>
{ $t}
{ $a }
</result>

}

</results>

AFTX translation :

l*results” (null,null,null) (
l*result” (null,null,(/prod_root/prod_root/title,/prod_root/author)) (
13 . ”
((W/bib/book( bib.xml”) X /book|/title=/author]
13 b . b 1”
T Jpook/title (W/bib/book( 1b.Xm ))) N /prod_root /book|/author=/author]

7T-/book/author (ﬂ-/bib/book<“bib-xm1” )))))

Example 4.19 [Use Case “XMP” Q3] For each book in the bibliography, list the title and
authors, grouped inside a “result” element.
XQuery solution:

<results>
{
for $b in doc("bib.xml")/bib/book
return
<result>
{ $bititle }
{ $b/author }
</result>

}

</results>

AFTX translation :

l*results” (null,null,null) (
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l*result” (null,null,(/book/title,/book/author)) (

ﬂ-/bib/bookC‘bib'XInl” )))

Example 4.20 [Use Case “XMP” Q4] For each author in the bibliography, list the au-
thor's name and the titles of all books by that author, grouped inside a “result” element.

XQuery solution:

<results>
{
for $last in distinct-values(doc("bib.xml")
/lauthor/last),
$first in distinct-values(doc("bib.xml")
/lauthor[last=$last]/first)
order by $last, $first
return
<result>
<author>
<last>{ $last }</last>
<first>{ $first }</first>
</author>
{
for $b in doc("bib.xml")/bib/book
where some $ba in $b/author satisfies
($bha/last = $last and $ba/first=$first)
return {$bititle}
}

</result>

}

</results>

The query in this example has been slightly modified in order to be consistent with the

grammar defined in Section 4.1.2. The original query had an ittial clause binding a



174 Chapter 4. Translating XQuery (Full-Text) Expressions

variable $a to thauthors element.

AFTX translation :
L results” (null,null,null) (

Le(
d/group_root/ * [.pos > 1 AND .k = /group_root.A[treeIdentity].v](
Y ((/prod_root 1.k, “treeIdentity”)),(/prod_root /1, /prod_root/2)
0 /prod_root /book /author[NOT /1ast] (
8 /prod_root /book /author[at (P)] (
Ogroup_root /group_root.A[last].v,/group_root.Altirst].v(
Z((/prod,root/z/first,“first”),(/prodjoot/1.k,“*creeldentity")),(/prod,root/l) (

O /prod_root[/author/last.v=/group_root.A[last].v] (
V(/1ast.v,"1ast”) (ﬂ-//author/last (“ bib.xml" )) X

T/ Jauthor (" D1D.XM1")))) X T /pip ook (“0ib.xm1")))))))’
where

e { ="“result”(null, null, (“author”(null,null,
(“last”(/group_root/group_root/group root.A[last|,null, null),
“first”(/group_root/group_root.A[first],null, null))), group_root/book/title))’;

e P ="/last.v = /prod_root/group_root/group root.A[last|.v AND

/first.v = /prod root/group root.A[first].v.

This translation is quite complex and deserves an in-depth analysis. The final AFTX
expression, which is shown graphically in Figure 4.3, is obtained through the following
steps:

e the query starts with an element constructor, thus at lin€Quiery2AFT Xcalls
Constructor which creates the tree constructor predicagsults"(null,

null, null) ; the initial AFTX expression is therefore ;esuits” (mu11,0u11,0u11) (s

e the constructor contains an inner FLWOR expression, thus at lix&l@ry2 AFTX
callsFLWOREXxpr which must build a completely unrelated AFTX expression;

e atline 2,FLWORExprcallsForClause
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e ForClausetranslates the first variable binding as usual, obtaining:

- A~ ‘V(/last.v,“last")(W//author/last(“bib'xml”))’;

— Vi1ast < ' /group_root.A[last]

¢ the second variable binding contains a predicate that refer&hasts , thusFor-

Clausetranslates the first part of the relative path expression, obtaining:

- A ‘V(/last.v,“last")(W//author/last (ubib-xmln)) X 71-//author(ubib-xmln>’;

— Vi1ast < 'prod_root/group _root.A[last|’;

— Visirst < 'prod_root/author’;

¢ atline 20ForClausecalls Predicate, obtaining:

1
A — 0 /prod_root[/author/last.v=/group_root.A[last].v] (

V(/1ast.v,"1ast”) (W//author/last (“bib.xml” )) X T/ /author (“bib'Xml” ))’l

e thefor clause contains a call tdistinct-values , thusForClauseat lines
2427 obtains:

—A—'Y

((/prod_root/2/first,“first”),(/prod_root/1.k,“treeldent ity” )),(/prod_root/1) (

O /prod_root[/author/last.v=/group_root.A[last].v] (

(V(/last.v,“last”)(ﬂ_//author/last(“bib-xml”)) X W//author("bib.xml")))’;
— Visirst < ' /group root.A[first|’;

— Vi1ast < '/group_root/group_root.A[last]

¢ atline BFLWOREXxprcalls OrderByClausgobtaining:

]
A — Ogrouploot/group,root.A[last].v,/group,root‘A[first].v(
E((/prod,root/Z/first,“first”),(/prod,root/1.k,“treeIdentity”)),(/prod,root/i) (

0 /prod_root[/author/last.v=/group_root.A[last].v] (

V(/1ast.v,“1ast”) (ﬂ-//author/last <“bib~Xml” )) X 71-//author(“}:)j-b'xm]-” ))))11

e at line 9FLWOREXxprcallsReturnClausg
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e the constructor contains an inner FLWOR expression, thus at IRet@rnClause

callsFLWOREXxpipassing as input the inner FLWOR expression;

e at line 2FLWOREXxprcalls ForClause that translates thior clause as usual ob-

taining:

]
- A« Ogroup,root/group,root.A[last],/group,root.A[first}(
2((/prod;root/Q/first,“first" ),(/prod_root/1.k,“treeldentity”)),(/prod_root/1) (

O /prod_root[/author/last.v=/group_root.A[last].v] (
V(/1ast.v,"1ast”) (ﬂ—//author/last (“ bib.xml" )) X T/ /author (“ bib.xml" )))) X

T /bib/book (" Dib.xm1")’;
— Vg < ' /prod_root/book’;
— Visirst < ' /prod_root/group_root.A[first|’;

— Vi1ast < ' /prod_root/group_root/group_root.A[last]’;

e at line 6 FLWOREXxprcalls WhereClausgthat translates thethere clause using

CreateOuterJoirobtaining:

- A 5/group;root/*[.pos>1 AND .k=/group_root.A[treeldentity].v] (
b ((/prod_root/1.k,“TreeIdentity”)),(/prod_root/1,/prod_root/2) (
5/prod4‘oot/book/author[NDT /last] (

8 /prod_root /book /author[aT (P)]

Ogroup_root/group_root.A[last],/group_root.A[first] (

by

((/prod;coot/2/first,“ first” ),(/prod_root/1.k,“treeldentity”)),(/prod_root/1) (

O /prod_root[/author/last.v=/group_root.A[last].v] (
V(/last.v,“last”) (ﬂ-//author/last (“ bib.xml” )) X T/ Jauthor (“ bib.xml” )))) X

W/bib/book(“bib.xmlﬂ)))))’
whereP = ‘ /last.v = /prod_root/group_root/group_root.A[last].v AND

/first.v = /prod_root/group_root.A[first].v’;
— Vg, < ' /group_root/book’;

— Visirst < ' /group_root/group root.A[first]’;
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— Vi1ast < '/group_root/group_root/group_root.A[last]

e at line 9FLWORExprcalls ReturnClausgewhich returng « ‘group_root/book
/title’;

¢ FLWOREXxpipasses backto the callingReturnClausg

e ReturnClausgthrough multiple nested calls @irElemConstructorand using the
previously builtt, builds a tree construction predicdte- “ result” (null,null,
(“author”(null,null, (“last”(/group_root/group_root/group root.A[last],
null null),“first”(/group_root/group root.A[first|, null, null))),
group_root/book/title))’;

e ReturnClausepasses back to the callingFLWOREXxpr which build the AFTX
expression:;(A)’, wheret is the tree construction predicate just built afids the

AFTX expression built until now;

e the control passes back to the calli@Query2 AFTXwhich at lines 11-13 build the
final AFTX expression resuits’ (nu11,nu11,0u11) (4)", Where A is the AFTX expres-

sion built in the previous step.

Example 4.21 [Use Case “XMP” Q5] For each book found at bdistorel.example.com
andbstore2.example.cartist the title of the book and its price from each source.

XQuery solution:

<books-with-prices>
{

for $b in doc("bib.xml")//book,
$a in doc("reviews.xml")//entry

where $bi/title = S$altitle

return
<book-with-prices>

{ $bititle }
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Figure 4.3 Graphical representation of the AFTX expression of Example 4.20.



Chapter 4. Translating XQuery (Full-Text) Expressions 179

<price-bstore2>{ $a/price/text() }</price-bstore2>
<price-bstore1>{ $b/price/text() }</price-bstorel>
</book-with-prices>

}

</books-with-prices>

AFTX translation :

l*books—with—prices” (null,null,null) (Lt (U/prod,root[/book/title.vz/entry/title.v} (
T/ Jentry(“TeViews.xml”) X 7/ /poox(“bib.xml”))))

wheret = “book-with-prices”(null,null, (/prod_root/book/title,
“price-bstore2”(/prod root/entry/price.v,null, null),

“price-bstorel”(/prod_root/book/price.v,null,null)))

Example 4.22 [Use Case “XMP” Q6]
For each book that has at least one author, list the title and first two authors.

XQuery solution:

<bib>
{
for $b in doc("bib.xml")//book
where count($b/author) > 0
return
<book>
{ $bititle }
{
for $a in $b/author[position()<=2]
return $a

}

</book>

</bib>
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This query has been modified by removing the-then -else construct, that is not
expressible in AFTX.

AFTX translation :

L*bib” (null,null,null) (b“book" (null,null,(/book/title,/book/author)) (

6/book/author[N0T .pos<=2] (U/book/author[.count>0] (7T//book<“ bib.xml” )))))

Example 4.23 [Use Case “XMP” Q7] List the titles and years of all books published by
Addison-Wesley after 1991, in alphabetic order.
XQuery solution:

<bib>
{
for $b in doc("bib.xml")//book
where $b/publisher = "Addison-Wesley
and $b/@year > 1991
order by $bftitle

return

<book year={ $b/@year }>
{ $bititle }
</book>

}
</bib>

AFTX translation :

L*bib” (null,null,null) (L“book" (null,((“year”,/book.A[year].v)),(/book/title)) (
O/book/title.v Asc(

O /book[.A[year].v>1991] (U/book/publisher[.v:“ Addison—Wesley”] (

T/ /oo (“Dib.xm1"))))))

Example 4.24 [Use Case “XMP” Q11] For each book with an author, return the book
with its title and authors. For each book with an editor, return a reference with the book
title and the editor’s affiliation.

XQuery solution:



Chapter 4. Translating XQuery (Full-Text) Expressions 181

<bib>
{
for $b in doc("bib.xml")//book[author]
return
<book>
{ $bttitle }
{ $b/author }
</book>
}
{
for $b in doc("bib.xml")//book[editor]
return
<reference>
{ $bititle }
{$b/editor/affiliation}
</reference>
}
</bib>
AFTX translation :

L*bib” (null,null,null) (
L“book” (null,null,(/book/title,/book/author)) (
0 /book[/author] (ﬂ-//book(“ bib.xml” ))) U

l*reference” (null,null,(/book/title,/book/editor/affiliation)) (

0 /book[/editor] (W//book(“bib'xml” ))))

This example shows the translation process of a query consisting of a constructor with
two inner FLWOR expressions. Each internal FLWOR expression is translated indepen-
dently, and the resulting AFTX expressions are fed to the union operator. Finally a tree
construction operator is applied as usual, in order to build the tilterelement.

Example 4.25 [Use Case “R” Q3] Find cases where a user with a rating worse (alpha-
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betically, greater) than "C” is offering an item with a reserve price of more than 1000.

XQuery solution:

<result>
{
for $u in doc("users.xml")//user,
$i in doc("items.xml")//item
where $u/rating > "C"
and S$i/reserve_price > 1000
and $i/offered_by = S$u/userid
return
<warning>
{ $u/name }
{ $u/rating }
{ Si/description }
{ Si/reserve_price }
</warning>

}

</result>

This query has been slightly modified in order to be consistent with our accepted gram-
mar. The original query had twfor clauses instead that a single clause with two
variable bindings. Moreover, in order to improve expression readability, the tag names
user _tuple anditem _tuple have been substituted with the shorter onssr and
item .
AFTX translation :
l*result” (null,null,null) (
l*yarning’ (null,null,(/1/user /name,/1/user /rating,/1/iten/description,/1/itene/reserve_price))
0 /prod_root[/item/offered _by.v=/user/userid.v] (
O /prod_root/item/reserve_price[.v>1000] (

O /prod_root /user/rating[.v>"C"] (
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T/ juser (“Users.xml”) x

T/ /iven(“1tems.xml”))))))

4.3.2 XQuery Full-Text Expressions

In this section we present a series of examples of translation of complex XQuery Full-Text
expressions into AFTX expressions. These examples are taken from W3C XQuery Full-
Text Use Cases [Con06e] and demonstrate that almost any XQuery Full-Text expression
can be translated into AFTX.

For each example, we present the query requirements (expressed in natural language),
the solution in XQuery Full-Text and the solution in AFTX.

Example 4.26 [Use Case “ELEMENT” Q1] Find all book titles containing the word “us-
ability”.

XQuery Full-Text solution:

for $t in doc("full-text.xml")/books/book/metadata/title

[. ftcontains "usability"]
return {$t}

This query, like many others following, has been modified in order to be accepted by our
grammar: it has been transformed into a FLWOR expression.
AFTX translation :

L/title(
S/title['usability”] (

T /books /book/metadata/title (u full-text.xml” )))

Example 4.27 [Use Case “ELEMENT” Q2] Find all book subjects containing the phrase
“usability testing”.

XQuery Full-Text solution:

for $s in doc("full-text.xml")/books/book/metadata
/subjects/subject [. ftcontains "usability testing"]
return {$s}
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AFTX translation :
L/subject(
S/subject[“usability testing’] (

T /books /book/metadata/subjects/subject (u full-text.xml” )))

Example 4.28 [Use Case “ELEMENT” Q4] Find all books with “usability tests”in book
or chapter titles.
XQuery Full-Text solution:

for $book in doc("full-text.xml")
/books/book
let $title := $book/metadataltitle
[. ftcontains "usability tests"]
or $book/content/part/chapter/title
[. ftcontains "usability tests"]
where count($title) > 0

return $book

This query cannot be automatically translated into AFTX using the presented translation
algorithms, because they do not supportdhekeyword inside det clause. However
the query is expressible in AFTX, as shown by the following translation.
AFTX translation :
7T/g;roup,root/book(
0 Jgroup_root[/tit1e.count>0] (
2 (/prod_root /book.k),( /prod_root /book, /prod_root /title) (
O /prod_root[/metadata/title=/title OR /content/part/chapter/titleE/title(
T /books /book (* Tull-text.xml”) X (
S/1[usability tests’] (/1 /metadata /tit1e (7 /books ook (" Tull-text.xml”))) U

$/1[“usability tests”] (ﬂ-/l/content/part/chapter/title (W/books/book(

“full-text.xml”))))))))
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Example 4.29 [Use Case “ELEMENT” Q6] Find all book titles which start with “im-
proving” followed within 2 words by “usability”.

XQuery solution:

for $book in doc("full-text.xml")/books/book
where $book/metadatal/title ftcontains "improving"
&& "usability" distance at most 2 words

return S$title

This query has been modified by removing the clausdsred andat start  from

the ftcontains expression. It should be noted that, even if AFTX full-text operators
does not provide such options, they should be easily introduced, because the data model
already provides the necessary information for answering a query with those match op-
tions. Recall that the value of an element is a list of pawerd, position); therefore,

it would be possible to check if the searched words are found in the same order as in
the query (by checking ipos(“improving”) < pos(“usability”)) and if the title starts

with “improving” (by checking ifpos(“improving”) = firsttoken; as stated in Definition

3.5 of element full-text valuefirsttoken is the position of the first token in the full-text
value of an element).

AFTX translation :

L/book/title (
S/book/metadata/title[*improving” AND “usability",?](

T Jbooks /book (* Tull-text.xml”)

Example 4.30 [Use Case “ACROSS” Q1] Find all book chapters containing the phrase
“one of the best known lists of heuristics is Ten Usability Heuristics”.

XQuery Full-Text solution:

for $book in doc("full-text.xml")/books/book
where $book//chapter ftcontains "one of the best known
lists of heuristics is Ten Usability Heuristics"

return $book
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This query has been slightly modified in order to be consistent with our grammar.
AFTX translation :

§/1//chapter[“one of the best known lists of heuristics is Ten Usability Heuristics"](

T /books /book (“ full-text.xml” )))

Example 4.31 [Use Case “OTHER” Q1] Find all books with “improve” “web” “usabil-
ity” in the short title.
XQuery Full-Text solution:

for $book in doc("full-text.xml")/books/book

where $book/metadatal/title/@shortTitle ftcontains
“iImprove" && "web" && "usability" with stemming
distance at most 2 words

return $book/metadataltitle

AFTX translation :

T'/1/metadata/title (

$/1/metadata/title.A[shortTitle”][“improve” AND “web” AND “usability",?,stem](

T /books /book (- full-text.xml”)))

Example 4.32 [Use Case “OTHER” Q2] Find all books with the phrase “manuscript
guides” in the short title and the phrase “user profiling” in a component title.
XQuery Full-Text solution:

for $book in doc("full-text.xml")/books/book
where $book/metadata/title/@shortTitle ftcontains
"manuscript guides” with stemming
and $book//componentTitle ftcontains
"user profiling" with stemming
return $book/metadataltitle
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AFTX translation :

T /book/metadata/title (
S/book//componentTitle[“user profiling” stem| (

S/book/metadata/title.A[“shortTitle”][“manuscript guides” stem] (

T fbooks /book ( “Tull-text.xml”))))

Example 4.33 [Use Case “THESAURUS” Q1] Find all introductions which quote some-
one.

XQuery solution:

for $book in doc("full-text.xml")/books/book

where $book//introduction ftcontains "quote"
with thesaurus default

return $book

This query has been slightly modified by using the default thesaurus and the default rela-
tionship between words.

AFTX translation :

L/book(

S/book//introduction[“quote” thes] (

Tr/books/book(“ full-text” )))

Example 4.34 [Use Case “STOP-WORD” Q1] Find all books with the phrase “planning
then conducting” in the text where “then” is treated as a stop word.

XQuery solution:

for $book in doc("full-text.xml")
/books/book

where $book//content ftcontains “"planning then conducting”
with default stop words

return $book
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AFTX translation :

L/book(

S/book//content[“planning then conducting”,stop] (

7T/books/book(“ full-text” )))

Example 4.35 [Use Case “LOGICAL” Q1] Find all books with the words “web” or “soft-
ware” in the text.

XQuery solution:

for $book in doc("full-text.xml")/books/book
where $book//content ftcontains "web" || "software"

return $book

AFTX translation :

L/book(

S/book//content[“web” OR “software”] (

7T/books/book(“ full-text” )))

Example 4.36 [Use Case “PROXIMITY” Q1] Find all books with information on “soft-
ware developers”. The query must find multiple words in any order allowing up to three
intervening words.

XQuery Full-Text solution:

for $book in doc("full-text.xml")/books/book
where $book//content ftcontains
"software" && "developer" with stemming
distance at most 3 words
return $book

AFTX translation :

L /book(
S/book//content[*sofware” AND “developers”,3,stem] (

T /books ook ( “full-text.xml”)))
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Example 4.37 [Use Case “AXES” Q1] Find all books with paragraphs containing the
phrase “computer workstation” and footnotes within those paragraphs containing the
word “comfortable”.

XQuery solution:

for $book in doc("full-text.xml")/books/book

let $para := $book//p[. ftcontains "computer workstation"],
$fn = $para/footnote[. ftcontains "comfortable"]
where count($fn)>0

return $book/metadata/title, $para

AFTX translation :

L/prodJoot/prod;coot/book,/prod,root/prod,root/let,root/p(
0 /prod_root/footnote[.count>0] (
« ”
(W/books/book( full-text.xml ) N /book|//p=/1et _root /p]
L*1et_root” (null,null,null) (g/p[“computer workstation”] (W/book//p (W/books/book(
« »
full-text.xml ) ) ) ) ) X /prod_root/let_root/p[/footnote=/let_root/footnote]
l*1et_root” (null,null,null) (g/footnote[“comfortable"] (ﬂ-/p/footnote (

l*1et_root” (null,null,null) (§/p[“ computer workstation”| (’/T/book//p(

T Jbooks book ( “Tull-text.xml”)))))))))
This quite complex query is shown graphically in Figure 4.4. The figure shows that

some partial results can be built on the basis of previously calculated partial results.

4.4 About XML Updates

4.4.1 XQuery Update Facility

Recently W3C has published a working draft, called XQuery Update Facility [Con06h],
for extending XQuery with update capabilities. In particular, the XQuery Update Facility
provides facilities to perform any or all of the following operations on an instance of the
XQuery Data Model:
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Figure 4.4 Graphical representation of the AFTX expression of Example 4.37.

e insertion of a node;
e deletion of a node;

e modification of a node by changing some of its properties while preserving its iden-

tity;
e creation of a modified copy of a node with a new identity.

Insertion of a node is performed through the expression

do insert NewNodes Where OldNode .
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Its result is the insertion of the result of the XQuery expresdi@mvNodesn a posi-
tion specified bywherewith respect to the node resulting from the XQuery expression

OldNode For example, the expression

do insert <year>2005</year>
after fn:doc("bib.xml")/books/book[1]/publisher

inserts a new element namgdar , with value2005, as the following sibling of the
publisher  sub-element of the firéiook sub-element of the root elemdmoks .

Deletion of a node is performed through the expression
do delete OldNodes .

Its result is the deletion of the nodes resulting from the XQuery expre€daiodes For

example, the expression
do delete fn:doc("bib.xml")/books/book[1]/author[last()]

deletes the last author of the first book in a given bibliography.
Replacement of a node with a new sequence of zero or more nodes is performed

through the expression
do replace OldNode with NewNodes .

Its result is the replacement of the node resulting from the XQuery expreSsiiNode
with the sequence resulting from the XQuery expresdiewNodes For example, the

expression

do replace fn:doc("bib.xml")/books/book[1]/publisher
with fn:doc("bib.xml")/books/book[2]/publisher

replaces the publisher of the first book with the publisher of the second book. Using the
optional clausevalue of , the value of the node is modified while preserving its node

identity. For example, the expression
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do replace value of fn:doc("bib.xml")/books/book[1]/price
with fn:doc("bib.xml")/books/book[1]/price * 1.1

increases the price of the first book by ten percent.

It is also possible to rename a node, using the expression
do rename OldNode as NewName .

Its result is the renaming of the node resulting from the XQuery expreSiaisodewith

the name resulting from the XQuery expressewNameFor example, the expression

do rename fn:doc("bib.xml")/books/book[1]/author[1]

as $newname

renames the firduthor element of the first book to the QName that is the value of the
variable$newname.
Finally, a transform expression can be used to create modified copies of existing nodes

in an XDM instance. The expression
transform copy VarName := OldNodes modify UpdateEzpr return FEzpr

creates a copy (bound to the variablErName@ of the nodes resulting from the XQuery
expressiorOldNodes modifies the copy according to the update expresSiptateExpr
and returns the result &xpr. For example the expression

for $e in //lemployee[skill = "Java']
return
transform
copy $je = $e

modify do delete $je/salary

return $je

returns a sequence consisting ofatiployee elements that have Java as a skill, exclud-

ing theirsalary child-elements.
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4.4.2 EXxpressing updates in AFTX

The definition of operators and translation techniques for expressing XQuery update oper-
ations into the AFTX algebra is beyond the scope of this thesis, and represents a valuable
future research direction. However, we want to present in this section some informal ideas

on how such a process could be carried out.

The first thing to notice is that a large part of the semantics of the update operations

can be expressed using the algebraic operators already defined. In particular:

e OldNodein thedo insert  expression is a query, therefore it can be translated
into an algebraic expression as explained in the previous sections of this chapter;
NewNodess also a query, possibly including some element construction specifica-

tion, therefore it can be translated into an algebraic expression.

e OldNodesn thedo delete expression is a query, therefore it can be translated

into an algebraic expression.

e OldNodeand NewNodesn the do replace expression are queries, therefore

they can be translated into two algebraic expressions.

e OldNodein thedo rename expression is a query, therefore it can be translated

into an algebraic expression.

e OldNodedn thedo transform  expression is a query, therefore it can be trans-

lated into an algebraic expression.

Consequently, what should be done in order to express updates in AFTX is the defini-
tion of:

e aninsertoperator, which takes as input a node (i.e. a forest formed by a single tree
including a single element) correspondingXmiNodeand a forest corresponding to
NewNodesits predicate should indicate where to insert the new nodes with respect
to the old node;
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e areplaceoperator, which again takes as input a node correspondi@jdidode

and a forest corresponding kewNodes

e atransformoperator, which takes as input a forest correspondir@ltéNodes an
AFTX expression corresponding tdpdateExprand an AFTX expression corre-

sponding tcExpr.

For what concernslo delete expressions, it seems evident that its semantics is
identic to that of the deletion operator defined in Chapter 3. Therefore its translation into

an AFTX expression should be quite straightforward.



Chapter 5

Query Optimization

One of the main motivations for the definition of an algebra is the possibility to study
optimization techniques that rely on some properties of the proposed algebra. In this

section we show the most important properties of our operators.

It is worth specifying that the kind of optimization we study in this chapterlageal
optimization; the definition of performing algorithms that implement the algebraic oper-
ators, possibly using some access support structures, is beyond the scope of our doctoral
work. Anyway such ghysicaloptimization is unquestionably one the main interesting
challenges in the development of a working XML database system, and is therefore one

of the possible future research areas, as discussed later in Chapter 7.

We start in Section 5.1 by defining the kind of relations between algebraic expressions
we are interested in. In Section 5.2 we present the first block of rules, which resemble sim-
ilar well-known rules holding in relational algebra. In Section 5.3 we present rules which
are instead intended to optimize expressions resulting from the translation of XQuery

nested expressions.

5.1 Algebraic Properties of Interest

The goal of this chapter is to establish a set of rewriting rules which permit to substitute

an algebraic expressiofi with an (hopefully more performing) algebraic expression
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Some sort of relationship must exist betweeand A’ for the rewriting to be worth. We
define three kinds of relationshipsquivalencecontainmentandsimilarity.

Equivalence rules (indicated with) state that the two involved algebraic expressions
always return two strictly equal forests. Equivalence is clearly the most attracting rela-
tionship, because the first expression can be safely transformed into the second one, in

order to improve performance.

Definition 5.1 (Expression Equivalence)Let = be a forest and letd(x) and B(z) be
two AFTX expressionsd and B are equivalent (denoted = B) if, for any input forest
z, they return two forest$’, = (71,75,...,T,) and F, = (1],T5,...,T}) such that
F,=F..

Note that the kind of equivalence we consideaisoluteequivalence: the result of
A(x) is equivalent to thaB3(x), regardless of the input forest the same clarification
holds for containment and similarity rules.

Containment rules (indicated with) state that the first algebraic expression always
returns a subforest of the forest returned by the second algebraic expression. Even if
the two expressions are not equivalent, it can be sometimes worth to substitute the first
expression with the second one, if it can be answered more quickly; while doing such
substitution, however, it should be taken into account the fact that a subsequent selection

is needed in order to eliminate false positives.

Definition 5.2 (Expression Containment) Let « be a forest and letA(x) and B(x) be
two AFTX expressionsd is contained intaB (denotedA C B) if, for any input forestr,
it returns a forestt, = (71,1, ..., T,) such thatF,, C F., whereF, = (1},15,...,T)))
is the forest returned byg(x).

The equivalence relationship previously defined states that two expressions return two

strictly equal forests. Remember that forest strict equality means that:
e the forests contain the same trees;

e the trees are in the same order.
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Similarity rules (indicated wit¥), instead, state that the two involved algebraic ex-
pressions return two forests containing the same trees, but in a (possibly) different order.
In general order is significative in the semi-structured world, therefore such transforma-
tions can be done only if ordering is not a matter, for example if a subsequent ordering

operation must be performed.

Definition 5.3 (Expression Similarity) Letx be a forest and letl(z) and B(x) be two
AFTX expressions4d and B are similar (denotedd = B) if, for any input forest:, they
return two forestd’, = (73, 1s,...,T,) and F. = (1}, T;,...,T") such that:

o VT; € F,, 3T} € F, suchthatl; = T7;

e VI € F,,3T; € F, such thatl; = T,.

Note that, for two expressions to be similar, order of trees can be different but order

of elements must be the same, otherwise tree would not be strictly equal.

Example 5.1 Consider the foresk’ in Figure 5.1. It could be obtained using the follow-
ing algebraic expressio:
L*book” (null,null,(/book/title,/book/price)) (

0 /book|[/publisher="Addison—Wesley”] (W/bib/book (“ bib.xml” ) ) ) )

wherebib.xml is the XML document in Figure 2.3. Consider now the fordstsF”,
and F"”, also shown in Figure 5.1, and suppose they are obtained by three algebraic ex-
pressionsd’, A”, andA”. Then:

e A’ C A: I’ contains part of the trees containedHnin the same order;
o A= A butA” £ A: F” contains the same trees Bf but in a different order;

o A" 22 A, because the first tree iii” has not a corresponding strictly equal tree in
F.

Note that, for the inclusion and similarity properties to hold, the containment/similarity

relationship between resulting forests must be valid for any input forest.
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“TCP-IP 65.95 “Advanced 65.95 “TCP-IP 65.95
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Figure 5.1 A sample forest ¥'), a contained forestH’), a similar forest {), and a

non-similar forest £”).

5.2 Relational-like Rules

The rules presented in this section and summarized in Table 5.1 are inspired by similar
rules holding in relational algebra. Such a similarity is one of the advantages of hav-
ing defined an algebra whose operators are inspired by relational algebra operators. The
rules can be used to leverage performances, either reducing the size of partial results or
permitting the usage of available auxiliary data structures, like indexes.

In what follows we analyze the relational-like rules. For each of them we present
an informal overview, the formal theorem (Theorem Borresponds to Rule), and the

proof of the theorem. Rewriting examples complete the treatment of the subject.

5.2.1 Idempotency

Rule 1 states that a projection involving a path expression composed by a single step of
the form/1 or/* can be safely removed. In fact both path expressions retrieve the root
element of each input tree, regardless its name, thus returning the input forest without any

changes.
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Table 5.1 Relational-like optimization rules.
1. Projection Idempotency Th(F)=F , m,(F)=F
2. Projection Decomposition T (F) = T/, (ma, (F))
3. Selection Decomposition O A o] (F1) C o) (O] (F))
4. Full-Text (FT) Selection SA[y1 AND ~2,stem,thes,stop] (£) C
Decomposition O \[ya,stem thes,stop] (TA[y1 stem thes,stop] (F))
5. Selection Disjunction O 0R o] (F) = 0y (F) U (0apo) (F) — 0] (F))
6. FT Selection Disjunction| <xajy, or vs](F) = Sxapy] (F) U (g\ahz](F) — Saf] (F))
7. Selection Push-Down 0 jprod_rootapy] (£ X G) = F x (05 (G))
0 fprod_rootAly] (£ X p G) = F xp (03,)(G))
8. FT Selection Push-Down S/prod_rootraly,z] (F X G) = F X (Saay,2)(G))
S/prod_rootrafya] (F Mp G) = F Xp (Saafy,a] (G))
9. FT Score Assignment € /proa_root /aafy.alf (I X G) = F X (§rafy,217(G))
Push-Down § Jprod_root afyalf (F' Mp G) = F Xp (Exapya)f(G))

10. Selection Distributivity

op(FUG)=0p(F)Uop(G)
op(F —G) =o0p(F)—op(G)

11. FT Selection
Distributivity

p(FUG) =¢p(F)Ucp(G)
CP(F - G) = §P(F) - §P(G)

12. Projection Distributivity

mp(FUG) = 7p(F)Unp(G)

13. Deletion Distributivity

5P(F U G) = 5P<F) U 5P(G) s
op(F'— G) = 6p(F) — 0p(G)

Associativity

14. Product and Join Fx (GiUGy) = (FxG)U(F xGs)
Distributivity Fxp (GiUGy) = (F xp Gp)U(F xp Gs)

15. Union Associativity (FLUFy) U Fy = Fy U (FyU Fy)

16. Union Commutativity FUGZGUF

17. Product and Join FxG=up(GXF) ,
Commutativity Fxp G=up,(G )y F)

18. Product and Join (F1 X Fy) X F3 2 1p(Fy X (Fy X F3))

(Fl X p, FQ) X p, F3 LP(F1 Np/ (F2 Np/ Fg))

19. Selection Commutativity

op (UP2<F)) =0p, (UPI (F))

20. FT Selection

Commutativity

Py (ng(F» =P, (gpl (F>>
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Theorem 5.1 (Projection Idempotency)Let F' be a forest. Then the following equiva-
lence relation holds:
th(F)=F , nu(F)=F (5.1)

Proof: The proof comes directly from Definition 3.17 of path expression and Definition
3.19 of projection. O

5.2.2 Decomposition

Rule 2 considers the application of the projection operator to a forest. The projection
predicate is a path expression that can be composed by multiple steps; that path expression
can bedecomposedhus transforming a single projection operation in multiple projection
operations. Projection decomposition can speed up the evaluation of the query, because it

can permit to use access support structures such as path indexes.

Example 5.2 Consider the XML document in Figure 2.3 and suppose we want to extract
the last name of each author. The following AFTX expression answers the query:

T /bib/book/author /1ast <“ bib.xml” ) .

Suppose now an index structure is available, which permits a fast recovery of the
elements reachable following the path expres#oio/book/author . Then the pre-
vious AFTX expression can be optimized by using Rule 2, thus obtaining the following
expression:

7T/1/1ast (ﬂ-/bib/book/author ("bib.xml" )) .

Attention must be posed to the fact that, when splitting a path expression, the final
part must be preceded byh step. In this example, the inner projection retusaghor
elements; therefore the last part of the path expresdgiast ( ) must be headed by a

/author  (or, equivalently/1 ) step.

Theorem 5.2 (Projection Decomposition)Let F' be a forest and leh; A\, be a path ex-

pression. Then the following equivalence relation holds:

7T>\1/\2(F) = 7T/1)\2(7T)\1 (F)) . (52)
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Proof: We demonstrate the theorem by induction on the number of steps of the two path

expressions. As base case,\et= i3] and)\, = o33 be composed by a single step.

Depending on the kind af! andg}, the following cases are possible:

1.

. A1 = /s1and), = /sy, Wheres; ands, are strings. By Definition 3.1%,, (F)

M = /land), = /B;. By Theorem 5.1t (F) = F; thenm i, (m, (F)) =
T /122 (F) = 7T)\1>\2<F)'

A1 = /x and\, = /3;. The proof is identical to that of case 1.

.\ = /sy and s = [z, wheres; is a string andr is an integer. By Definition

3177/ (F) ={T € F | root(T).n = s1} andm o (F) = {T" C T |T € F A
root(T").0 = x Aroot(1").p = root(T)}. Thenm i, (mx, (F)) = 7j1/2(m)s, (F)) =
{T"CT|T € FNroot(T).n = s, Aroot(T").o = x A root(T").p = root(T)} <
T sy /a(F) = Trag-

A1 = /sy andX, = /%, wheres, is a string. By Definition 3.17%,, (F') = {T €
F|root(T).n = s} andn . (F) ={T" C T |T € F Aroot(T").p = root(T)}.
Thenm 1, (my, (F)) = 7116, (F)) ={T" C T |T € F Aroot(T).n = s1 A
root(T").p = root(T')} < T sy /s (F) = Ta;xg-

{T € F|root(T)n = s1} andny,(F) = {T" C T |T € F A root(T").n =
sy A root(T").p = root(T)}. Thenm iy, (my, (F)) = 7j1/6, (75, (F)) = {T"
T|T € F Aroot(T)n = s1 A root(T").n = so A root(T").p = root(T)}

I~ N

7T/81/S2(F) = T2t

. A1 = //zand)\, = /3;, wherez is an integer. By Definition 3.17,,,(F) = {T" C

T |T € F A root(T") is thez-th element (in pre-order enumeration)of. Then
T/1xa (T, (F) = 7)1y1 ()0 (F)) = {T" CT" C T |T € F A root(T") is thez-th
element (in pre-order enumeration)BiA root(T").p = root(T") A the condition

imposed by3! is satisfied < T/ /)8t = Tans (F).

. A1 = //+xand), = /G;. By Definition 3.17x,,.(F) ={T" C T | T € F}. Then

T/ (T (F) = 7wy (mypu(F) = {T" CT"C T[T € F A root(T").p =
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root(T") A the condition imposed by, is satisfied & T/ gt = Tan (£

8. \i = //s1andX, = /(3;, wheres, is a string. By Definition 3.1%,, (F) = {T" C
T|T € F Aroot(T").n = si}. Thenm iy, (ma, (F)) = 71,61 (7)6, (F)) = {T" C
T CT|T € FAroot(T").n = syAroot(T").p = root(T")A the condition imposed
by 3} is satisfied < 7., /s = T, (F).

9. \; = //Bt andX, = /B3. The proof is similar to that of cases 6-8, except that the
conditionroot(T").p = root(1") is removed.

Now let\; = i3] be composed by a single step andlet= alB3ias5; ... a5 3y be
composed by: steps. By inductive hypothesis

Tatptadpiadsi..apton—t (F) = Tnaasnazes. .ap—1ap1 (Ta g (£)) -
Depending on the kind af} the following cases are possible:

o oy ="/". ByDefinition 3.17my,, (F) = {T" C T | T € To1 3 0151a352...an—1gn—1 (F)A
root(T").p = root(T)A the condition imposed by? is satisfied = {T" C T'|T €
T Lol Blad 2. .al~ 153_1(wam%(F))/\mot(T’).p = root(T")A the condition imposed by
By is satlsfle(} = T j1a3sla3s...an— gt oy (Taipr (F) = 7 (ma, (F)).
o oy ="//" By Definition 3.17m5, (F) ={T" C T'|T € To15101510363...a3— g7 (F)A
the condition imposed by} is satisfied byroot(T")} = {T" C T | T €
T adslazz..an—tar— (Taip (F)) A the condition imposed by is satisfied by
root(T')} = 4 T a3 giazz..ar—1 00"y (Tadpt (1) = Ty, (T, (F)).
O
Rules 3 and 4 state that an equivalence rule similar to that of Rule 2 does not hold for

selection and full-text selection; while in relational algebfa. r, (E) = op, (05, (E)), In

AFTX the following more general containment rules hold:
Oxin a1 7o) (£7) € 0o} (07 ] (F)) 5

SA[y1 AND 72,stem,thes,stop}(F> C O—A['yg,stem,thes,stop](U)\[fyl,stem,thes,stop}(F)) .
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This is due to the fact that, while in relational algebra every tuple resulting from
or,(F) is guaranteed to satisfy the selection conditién in AFTX a subtreel” <
TA(OAp ] (F)) (respectivelyl” € 7 (Sapy, stemthes,stop] (£7))) iS NOt guaranteed to satisfy
the selection conditiofry;| (respectively[y;, stem, thes, stop|). The key point is that
AFTX selection and full-text selection have an existential semantic: a tree satisfies a
(full-text) selection condition if at least one of its subtrees satisfies it. For example, given
an XML document nametbooks2.xml" , the book shown in Figure 5.2 would be

contained in the result of the query

« ”
O-/book/author[/first.v:“Serge”](U/book/author[/last.v:“Abiteboul”](W/bib/book( books2.xml )))

because there is an author (the first one) whose last naiitisbouland there is an
author (the second one) whose first nam8easge contrariwise, such a book would not

be contained in the result of the query

@ ”
0 /book/author[/last.v="“Abiteboul” AND /first.v:“Serge”}(W/bib/book< books2.xml ))

because there is no author whose last and first name are respegbitelyoulandSerge

<book year="2000">
<titte>Data on the Web</title>
<author><last>Abiteboul</last><first>Peter</first></author>
<author><last>Buneman</last><first>Serge</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>65.95</price>

</book>

Figure 5.2 An XML document showing why selection decomposition is a containment

rule.

The selection decomposition containment rule is not valid in general if some basic
selection condition are of the formpos= c or.count= c. In this case, in fact, the eval-

uation of the selection condition depends on the entire input forest: changing the input
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forest (e.g. applying a selection predicate), the evaluation of such a selection condition
changes. For example, consider the XML document in Figure 2.3; the algebraic expres-
sion

O[.pos=1 AND .count=4] (W/bib/book( “books.xml” ))

would return the book “TCP/IP lllustrated”, because it is the first book in a forest contain-

ing four books. That book, however, would not be returned by the algebraic expression

Ol count=4] (O] pos=1] (7 /bib/book ( “DOOks.xm1”)))

because the forest resulting froff,,s—1](7 /bib ook ( ooks.xml”)) contains just one
book.

For what concerns the full-text decomposition, we have omitted the optional window
parameter which, if present, forces the searched words to be at a distance between one
and another not greater thanactually the rule is still valid even if such a parameter is
present, but it is discarded when atomizing the full-text selection. In fact the decomposi-
tion transforms searching for (say) two words into searching for one word then searching
for another word; clearly, the window parameter does not make sense when searching for

just one word.

Theorem 5.3 (Selection Decomposition).et F' be a forest,\ be a path expression;
and~, be two selection conditions not using the element propext@msnt and.pos .

Then the following containment relation holds:
O 400 12} (F)) € Oya) (O] (F)) (5.3)
Proof: LetT" € oy}, mp +,](£); by Definition 3.22 of selectiorgT” € 7, (T") such that:

o 7" satisfies the selection condition: this means thal’ € o, (F);

o 7" satisfies the selection conditign: this means thal’ € oy, (F);

Therefore,l" € o, (orp(F)). O
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Theorem 5.4 (Full-Text Selection Decomposition)et £’ be a forest,A be a path ex-
pression,y; and~, be two full-text basic selection conditions. Then the following con-

tainment relation holds:
g)\['yl AND 'yg,stem,thes,stop](F) C O—)\['yg,stem,thes,stop](O—A['yl,stem,‘ches,stop}(F)) . (54)

Proof: The proof is identical to that of Theorem 5.3. O

Example 5.3 Consider the XML document in Figure 2.3 and suppose we want to retrieve
all the books written after 1995 whose price is not greater than 100. The following AFTX
expression answers the query:

O /book[.A[*year”].v>1995 AND /price.vgloo](W/bib/book(“bib-xml”)) .

Using Rule 3, the previous expression can be rewritten into the following:
0 /book[/price.v<100] (U/book[.A[“year"].v> 1998] (W/bib/book(“bib‘xml” ))) .

In this special case, the two expressions are equivalent: they both return the third
book (Data on the Wep Why such an equivalence, which does not hold in general,
is guaranteed? We should recall again the definition of selectmitree satisfies the
selection predicate\[y; AND , AND ... AND | if exists at least one subtree reachable
following the path) that satisfies each base conditigfi . What happens in general is
that, even if a tred’ does not satisfy a composed selection predicate, that tree satisfies
the (say) two selection conditions obtaineddplitting the original composed selection

because:
e a subtred” satisfies the first selection condition;
e a different subtre@"” satisfies the second selection condition.

Consequently, we can say that the equivalence rule

Oy A o] (F7) = O] (00 (F))
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holds if, for each input tree, there exists only one subtree over which the selection condi-

tion can be tested. Formally, the condition for the equivalence to hold is:
VT € F, F' = 7\(T) contains at most one tree.

This condition is obviously satisfied when, as in the previous exampsegcomposed
by the single step/“s”, where 3 is the root element name (or, equivalently= 1 or
6 = ). In general, if the input XML document is conforming to an XML Schema
[Con01] and\ is such that the schema guarantees that at most one element can be reached
following such path, then the equivalence rule is guaranteed to hold.

Example 5.4 Consider a bibliographic XML document similar to that of Figure 2.3, with
the difference that each book has exactly one author. For such document, the following
equivalence holds:

0 /book/author[/first.v="Serge"] (U/book/author[/last.v:“Abiteboul”] (W/bib/book(“ bib2.xml"))) =

13 > ”
O /book/author|[/last.v="Abiteboul” AND /first‘v:“Serge"](W/bib/book( bib2.xml ))

Rules 5 and 6 state that a (full text) selection predicate containing two basic condi-
tions connected with th®Roperator can be transformed into the union of two (full text)

selections.

Theorem 5.5 (Selection Disjunction)Let F' be a forest\ be a path expression; and

~2 be two selection conditions. Then the following similarity relation holds:

Tl o 7] (F) = 0y (F) U (0o (F) — oapa] (F)) (5.5)

Here we used the similarity relatiod instead of the equivalence relatien This
indicates that the forest resulting from the left hand side expression is not exactly equal to
the forest resulting from the right hand side expression: the two forests contain the same
trees, but in different order. Recall that the union operator creates a new forest containing
the trees of the first forest, followed by the trees of the second forest; consequently a tree
which satisfies the selection conditiaft, | always precedes (in the forest resulting from
the right hand side expression) a tree which instead satisfies the selection colditjpn

even if the two trees were in reverse order in the input forest.
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Example 5.5 Consider the XML document in Figure 2.3; the expression

o “ n “«_» (7 /s (“bib.xml”))
/book[/author/last.v= Abiteboul OR .A[ year |.v=1994] /oib/book :

returns the book$ CP/IP Illustrated(because it satisfies the second condition) Bath

on the Wel{because it satisfies the first condition), in that order, i.e. the order in which
they are found in the input XML document. The expression

U/book[/author/last.v:“ Abiteboul”] (W/bib/book (“ bib.xml” )) U

(U/book[.A[“ year’ |.v=1994] (T o1/pock (“Pib.xml")) —

O-/book[/author/last.v:“ Abiteboul” ] <7T/bib/b°°k (“ bib.xml” ) ) )

would instead return the same two books, but in reverse order. IiDftet on the Web
would be included in the result of the first selection, thus it would be included in the result
of the union before any result of the second selection.

Proof: LetT € o, or ) (F). By Definition 3.22 of selection, eithél € o,,,)(F)
or T € o), (F). Then, by Definition 3.15 of union and Definition 3.16 of difference,
T € 0xjy,)(F) U (0rpo] (F) = oap] (F)).

Now let T € o, (F) U (0o (F) — o (F)). By definitions of union and dif-
ference eithefl’ € o0y},,)(F) or T' € oy, (F). Then, by definition of selectiori <
T o o] (F). O

Theorem 5.6 (Full-Text Selection Disjunction) Let F' be a forest,\ be a path expres-
sion, a (if present) be an attribute name, and~, be two basic full-text selection condi-

tions. Then the following similarity relation holds:

Sxan 0 42] (F) = Saapm] (F) U (Sxaya) (F) = Saapya) (F1)) - (5.6)

Note that, in this theorem and in all the following theorems regarding full-text oper-
ators, we omitted the optional parametstsm , thes , andstop . This is just for the

sake of simplicity; the theorem is still valid if one or more of such attributes are used.

Proof: The proof is identical to that of Theorem 5.5. O
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5.2.3 Pushing Down

A common transformation in relational algebra is the push down of the selection operator
with respect to product or join. The same equivalence rules hold in AFTX for selection
(Rule 7) and full-text selection (Rule 8), provided thais a path expression referred to

the forestz. This transformation can have a great impact on the performance, because it

reduces the size of forests passed as input to the product/join operator.

Theorem 5.7 (Selection Push-Down) et F' and G be two forests and be a selection
condition. Let\ be a path expression such théf” € 7 /504 roora (£ X G) 3T € G such
that7” € 7, (T"). Then the two following equivalence relations hold:

O'/prodloot/\['y](F X G) =F x (O‘)\M(G)) s (57)
U/prod,root)\[’y](F X p G) =F X p (UA[A{](G)) . (58)

Proof: Let us consider the product case. RtE 0 /proq rootrjy(F X G) and letT” =
Terod_root/2(17) D€ the right subtree of its root. By Definition 3.22 of selectigi)’ <
T /prod_rootr (1) SUCH thatroot(T") satisfies the selection condition By hypothesis,
T" € my\(T"). Then, again by definition of selectiofi;’ € oy,)(G). Then, by Definition
3.23 of product]” € (F x (o(G)))-

Now letT" € (F' x (oxp(G))) and letT” = myr0a root/2(17) be the right subtree of its
root. By definition of selectio@7” € m,(7") such thatroot(7") satisfies the selection
condition. By definition of productl™ € 75104 roota (F' X G). Then, again by definition
of selection,]” € 0 /proa_rootrp] (£ X G).

A similar proof can be used to demostrate the join case. O

Theorem 5.8 (Full-Text Selection Push-Down)Let F' andG be two forests; (if present)
be an attribute name; (if present) be a window option, andoe a full-text selection con-
dition. Let\ be a path expression such thél” € 75104 rooea (£ x G) 3T € G such that

T" € m\(T). Then the two following equivalence relations hold:

g/prod,root)\a['y,x](F X G) =Fx (g)\a['y,m](G)) ’ (59)

g/prod;coot/\a['y,z](F Np G) =F xp (gAa['y,x}(G)) . (510)
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Proof: The proof is identical to that of Theorem 5.7. O

Example 5.6 Consider the algebraic expression of Example 4.25:
l“result” (null,null,null) (
Lyarning” (nullmull,(/1/user /name,/1 /user /rating,/1/iten/description,/1/iteme /reserve_price)) (
O /prod_root[/item/offered_by.v=/user/userid.v] (
O /prod_root/item/reserve_price[.v>1000] (

0 /prod_root /user/rating[.v>“C”] (

T/ juser( “users.xml”) X
T/ /1ten( “items.xml”))))))

The outer selection compares two properties of elements found in the trees resulting
from the product; the first property is referred to an element of the left subtree, while the
second one is referred to an element of the right subtree. This is a typical join operation,
thus the first transformation we can do is the substitution of the product with a join:
l“result” (null,null,null) (

Léyarning’ (null,null,(/1/user /name,/1/user /rating,/1/iten/description,/1/iten/reserve_price)) (
O /prod_root/item/reserve_price[.v>1000] (
0 Jprod_root /user /ratingl.v>“c"] (
7T//user( “users.xml”) X /user /userid|.v=/item/offered_by.v]
T/ iten( “items.xml”)))))

The two remaining selections refer to, respectively, the left and right subtrees of the
trees resulting from the join. Then, using two times Rule 7, we obtain the following
optimized algebraic expression:
l“result” (null,null,null) (

Lyarning’ (null,null,(/1/user /name,/1/user /rating,/1/iten/description,/1/iten/reserve_price)) (
O Juser /rating.v>“c’] (T/ juser (“US€TS.XM1”)) X jyser /userid.v—item/offered by.v]

O /item/reserve_price[.v>1000] (7T//item( “items.xml” ))))

A similar pushing down optimization can be used also for full-text score assignment
(Rule 9). In this case the advantage of the transformation consists in the fact that, for each
tree inGG, the score is calculated just once.
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Theorem 5.9 (Full-Text Score Assignment Push-Down).et ' and G be two forests,
a (if present) be an attribute name, (if present) be a window option; be a full-text

selection condition, and (if present) be a function pointer. Latbe a path expression
such thatvl” € 7 /proq rootr(F' x G) 3T € G such thatT” € (7). Then the two

following equivalence relations hold:

g/prod;root/\a['y,a:}f(F X G) =[x (Sz\a['y,a:]f(G)) ) (511)
f/prod,root)\a['y,a:]f(F X p G) =F X p (éAa[’y,:ﬂ]f(G)) . (512)
Proof: The proof is identical to that of Theorem 5.7. O

It is worth considering the full-text score assignment push-down an equivalence rule;
however it must be noted that the two expressions are not exactly equivalent, because,
in the right hand side expression, the score property is set for the root element of the
right subtree of the tree root element. This slight difference between the first and the
second forest must be considered when applying such a transformation, modifying the
outer operators’ predicate as needed.

Example 5.7 Consider the following AFTX expression:

Lp(g/prod;root/book[“ XML”],f<

T/ /author (" @uthors.xml”) x “books.xml”)))

/author[.A[“ id” ].v=/book/author.v] 7T//book(

whereP = “result”(null,null, (
“author”(/prod_root/author/last,null,null),
“book”(/prod_root/book/title,null, null),

“relevance”(/prod_root.score,null,null)).

There are two input XML documents. The firstuthors.xml contains information
about authors, the secondlopks.xm)l contains information about books. First two pro-
jections are executed, obtaining a forest of author (respectively book) trees. Then a join
combines each author with each book written by him. Then a full-text score is assigned by
searching for the worML into each book. Finally each pair (author, book) is returned,

including in the output: the author last name, the book title, the book score.
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Suppose now to apply the full-text score assignment push-down rule. The expression
is rewritten as follows:

Lp (W//author (“ authors.xml” ) s /author[.A[“ id”].v:/book/author.v}

é/prod;root/book[“ xML” l.£ (ﬂ-//book (“ books.xm1” ) ) )

The score of each book, which was read by the tree construction operator using the
expressiorprod _root.score , is now reachable using the expresspwad _root
/book.score . The tree construction predicatemust be therefore changed inkin
order to obtain an equivalent result:

P’ ="result”(null,null, (
“author”(/prod_root/author/last,null,null),
“book”(/prod_root/book/title,null, null),

“relevance”(/prod_root/book.score,null, null)).

5.2.4 Distributivity

In relational algebra, the selection operator is distributive with respect to union and dif-
ference. Rules 10 and 11 state that the same holds in AFTX for selection and full-text
selection, provided that (in the case of basic selection) the selection predicate does not
use the element propertiggs and.count . Also in this case, the goal of the transfor-

mation is to reduce the size of the partial results.

Theorem 5.10 (Selection Distributivity) Let /' and G be two forests and le® be a se-
lection predicate not involving the element propertiggs and.count . Then the fol-

lowing equivalence relations hold:
op(FUG)=0p(F)Uop(G) ; (5.13)
O’p(F—G) EUP(F) —O'P(G) . (514)

Proof: Let us demonstrate the union case; a similar proof can be used to demonstrate the

difference case.
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Let T € op(F UG). By Definition 3.22 of selection]” € (F U @) and satisfies
the selection predicat®. By Definition 3.15 of union, eithel” € ForT € G. If
T € F,thenT € op(F);if T € G, thenT € op(G). Then, again by definition of union,

T € op(F)Uop(G).

Now letT" € op(F)Uop(G). By definition of union eithel” € op(F) or T € op(G).
If T € op(F) (respectivelyl’ € op(G)), thenT satisfies the selection conditidn and
T € F (respectivelyl’ € G); consequentlyf” € (FFUG) andT € op(F UG).

We have demonstrated that a similarity relation holds between the two expressions; in
order to demonstrate an equivalence relation, we must show that order between trees is
respected.

LetT € op(F U G). By definition of selection]” € (F' U G), then by definition of
union either” € F or T € G; suppose thal’ € F. LetT’ € op(F U G); two cases are
possible:

e T’ € F; suppose thdl’ preceded” in F'. By definition of union,I" preceded” in
F U G. By definition of selection]” preceded” in op(F' U GG) andT preceded”
in op(F). Then, again by definition of uniofi; preceded” in op(F) U op(G).

o I € G; thenT € op(F) andT” € op(G). By definition of unionT’ precedeg”
in F' U G; then, by definition of selectiory; preceded” in op(F U G). Again by
definition of unionT" precedeq” in op(F) U op(G).

O

Theorem 5.11 (Full-Text Selection Distributivity) Let /' and G be two forests and let

P be a full-text selection predicate. Then the following equivalence relations hold:

p(FUG) =¢p(F)Uop(G) ; (5.15)
§p(F—G> EQP(F) —§p(G> . (516)
Proof: The proof is identical to that of Theorem 5.10. OJ

For what concerns the projection operator, Rule 12 states that it is distributive with
respect to union. Like in relational algebra, projection is not distributive with respect to
difference.
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Theorem 5.12 (Projection Distributivity) Let /' be a forest and le’ be a projection

predicate. Then the following equivalence relation holds:
WP(FUG) E?Tp(F)U?Tp(G) . (517)

Proof: LetT € mwp(F U G). By Definition 3.19 of projection eithel’ € np(F') or
T € wp(G). Then by Definition 3.15 of unioft” € (7p(F) U mp(G)).
Now letT € (mp(F) U mp(G)). By definition of union eithefl” € 7p(F) or T €
7p(G). Then by definition of projectiofi’ € (7p(F) U mp(G)).
We have demonstrated that a similarity relation holds between the two expressions; in
order to demonstrate an equivalence relation, we must show that order between trees is

respected. This can be done using a proof similar to that used in Theorem 5.10.0J

Example 5.8 Consider the following AFTX expression:
O Jvook /price].v<100] (T /bib/book (* CSbOOks.xm1” U “mathbooks.xml”)) .
Using Rule 12, we obtain the following equivalent expression:
0 Jbook /price[.v<100] (T /bib/book (" CSLOOKS.XmM1”) U T /pip /book (“mathbooks.xml”)) .
Then, applying Rule 10, we obtain the final optimized expression:

O /book/price[.v<100] (W/bib/book (“ csbooks.xml” ) ) U

O /book/price[.v<100] (W/bib/book (“ mathbooks.xml” ) ) .

Rule 13 states that the deletion operator is distributive with respect to union and dif-

ference.

Theorem 5.13 (Deletion Distributivity) Let F' andG be two forests and le® be a dele-

tion predicate. Then the following equivalence relations holds:
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Proof: Let us demonstrate the union case; a similar proof can be used to demonstrate the
difference case.

LetT € §p(F UG). By Definition 3.26 of deletiod7” € (F U G) such thatl’ C T".
By Definition 3.15 of union eitheff” € F or 7" € G. Then eitherl’ € §p(F) or
T € 6p(G). Then, again by definition of unioff, € (0p(F') U dp(G)).

Now letT" € (6p(F)Udp(G)). By definition of union eithel” € §p(F) orT € 6p(G).
Then by definition of deletiofi’ € 0p(F U G).

We have demonstrated that a similarity relation holds between the two expressions; in
order to demonstrate an equivalence relation, we must show that order between trees is

respected. This can be done using a proof similar to that used in Theorem 5.10.00

Example 5.9 Consider the following AFTX expression:
5/book/author[N0T /country.v="Italy"] (Tr/bib/book(“ csbooks.xml” U “matthOkS-Xml”)) .

Using Rule 12 (in the same way as in Example 5.8) and then Rule 13 we obtain the

following equivalent expression:

5/book/author[NOT /country.v="Italy"] (ﬂ-/bib/book(“ csbooks.xml” ))U

0 /book/author[NOT /country.v="Ttaly"] (W/bib/book(“matthOkS-Xml" ) -

Rule 14 states that the product and join operators are distributive with respect to union,
up to the order of trees. In order to understand why order is not respected, we must
remember how product (and join, which derives from it) combines trees from the two
input forests: it first combines the first tree from the first input forest with all the trees (in
the order in which they appear) from the second input forest, then the second tree of the
first input forest with all the trees from the second input forest, and so on. Figure 5.3(a)
shows three sample input forests; it can be noted that order between trees resulting from
F x (G U G2) (Figure 5.3(b)) is different from that off” x G;) U (F' x G) (Figure
5.3(c)).

Example 5.10 Consider the following AFTX expression:
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Gy
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(
)
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(c)

Figure 5.3 Three sample input forests (a), the forest resulting fiom (G; U Gs) (b),
and the forest resulting froif¥’ x G1) U (F' x G3) (C).

a)

O/prod_root /author/last.v ASC,/prod_root/book/title.v ASC(

T/ Jauthor (“ authors.xml” ) X /author[.A[*id"].v=/book/author.v| (

T/ fbook (" CSD0OOkS.Xm1) U 7/ /poox (“mathbooks.xml))) .
Using Rule 14, the expression can be rewritten as follows:
O/prod_root /author/last.v ASC,/prod_root/book/title.v Asc(
(7 /autnor (“authors.xml” ) M /author| A[*id"].v=/book/author.v] T7//book(" CSbOOks.xm1)) U

(W//author (“ authors.xml” ) X /author[.A[*1d"].v=/book/author.v| W//book(“mathboc’ks-Xml))) .

Rule 14 is a similarity rules, not an equivalence; in fact the order of trees resulting
from join in the first expression is different from the order of trees resulting from union
of joins in the second expression. However we can safely apply such transformation,
because there is an outer ordering operator which makes unimportant order of its input

forest.

Theorem 5.14 (Product and Join Distributivity) Let F, G; and G be three forests.

Then the following similarity relations hold:
Fx (GiUGs) = (FxGp)U(F xGs) ; (5.20)

FNP (G1UG2)g(F X p Gl)U(F X p GQ) . (521)
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Proof: Let us demonstrate the product case; a similar proof can be used to demonstrate
the join case.
LetT € F x (G U Gy). By Definition 3.23 of product:

e J1" € F such thatr /pr0q root/1(1) =175
o J1" € (G1 U Gs) such thatr /preq root/2(1) = 1.

By Definition 3.15 of union eithe?” € G, or T” € G5. Then, again by definition of
product, eithefl’ € (F x Gy) orT € (F x GG3). Then, again by definition of union,
T e ((FxG)U(F xGy)).

Now letT € ((F x G1) U (F' x G2)). By definition of union eithefl” € ((F' x G)
orT € ((F x Gq); suppose thal’ € ((F' x G;). By definition of product:

e J7" € F such thatr /proq root/1(1) = 17,
o J1" € G such thatr /proq_root/2(1) = 1.

If 37" € G4, by definition of unionl™ € (G, U Gs). ThenT € F x (G U Gs). O

5.2.5 Associativity and Commutativity

Rule 15 states that, like in relational algebra, the union operator is associative. Therefore
we can safely write a union expression involving three or more input forestsfJike
Fy U F.

Theorem 5.15 (Union Associativity) Let F; F; and F3 be three forests. Then the follow-

ing equivalence relation holds:

Proof: The demonstration comes directly from Definition 3.15 of union. O

The relational union operator is also commutative; Rule 16 states that in our algebra
the union operator is commutative up to the order of trees. It should be clear why a
similarity relation holds instead of an equivalence relation. For example, suppose that
T € FandT’ € G; thenT precedeqd” in FU G, whileT follows 7" in G U F.
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Theorem 5.16 Let F' and G be two forests. Then the following equivalence relation
holds:
AUBBUA . (5.23)

Proof: The demonstration comes directly from Definition 3.15 of union. O

Example 5.11 Consider the following AFTX expression:

(7 /poox (* c8DOOks. XML" )UT / pook (“mathbooks.xml”) )UT ) meox (“physicsbooks.xml”) .
Using Rule 15 we can rewrite the expression into the following equivalent one:

T/ ook (" €8b00ks. xm1” )U(T/ /pook (“mathbooks.xml” )UT mook (“physicsbooks.xml”)) .
Therefore we can safely write the expression as follows:

T Joook (" €SD0OkS.Xm1” ) U T/ ook (“mathbooks.xml”) U ook (“physicsbooks.xml”) .
If we now rewrite the last expression, using Rule 16, as follows:

T/ ook (“Mathbooks.xml” ) U/ ook (“ csbooks.xml” ) U poox (“ physicsbooks.xml”) .

we obtain a forest containing the same trees, but in different order.

The product and join operators are not commutative; this difference with respect to the
relational algebra is due to the fact that ordering of columns in a relation is not relevant,
while ordering of children of a node in an XML document is relevant. However, Rule 17
states that it is possible to obtain the same trees resulting from a product/join operation
between two forests by applying the tree construction operator to the result of the opposite

product/join operation.

Theorem 5.17 (Product and Join Commutativity) Let /' and G be two forests. Then
the following similarity relations hold:

FxG= L“prod,root”(null,null,(/prodJoot/Z/prodJoot/1))(G X F) ; (524)

F xp G= L“prod,root”(null,null,(/prod,root/2,/prod;root/1))(G N pr F) . (525)

Here P’ is the opposite of predicatg, i.e. if P = A\ [p10\ap2], thenP’ = \y[pa0 X1 p].
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Example 5.12 Consider the following AFTX expression:

T/ Jauthor (“ authors.xml” ) X /author/last[.v=/book/author.v] 7T//book (“ books.xml” ) .

If we apply Rule 17, we obtain the following expression:

Léprod_root” (null,null,(/prod_root/2,/prod_root/1)) (
7T//book<“b00ks~xm1”) X /book/author[.v=/author/last.v] 7T//author (“ authors.xml” ))

The second expression returns a forest containing the same trees contained in the

output of the first expression, but in a different order.

Proof: Let us demonstrate the product case; a similar proof can be used to demonstrate
the join case.
LetT € (F x ). By Definition 3.23 of product:

e J1" € F such thatr /preq root/1 (1) =17,
e J1" € G such thatr /preq root/2(1) =17,
Then3T; € (G x F) such that:

° 7T/prod,root/1(TQ) =T

® T/prod root/2(12) =T

By Definition 3.34 of tree conStruction;oq root” (nul1,null,(/prod_root /2, /prod_root /1)) (

TQ) = T. Thereforel’ € Léprod_root” (null,null,(/prod,root/2,/prod,root/1))(G X F)
Now letT € (G x F). By definition of product:

e 37" € G such thatr /preq root/1 (1) =17,
e J1" € F such thatr /pr0q root/2(1) = 1.
Then3T;, € (F x G) such that:

° 7T/prod,root/1(TQ) =T

hd W/prod,root/Z(Tz) =T
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By definition of tree CoNStruCtion;;oq root” (nu11,null,(/prod_root /2, /prod_root/1)) (1) =
T>. Thereforel, € tuproq_root” (null mull,(/prod_root/2,/prod_root/1)) (G X F). O

It is important to stress on the fact that, in both cases, the first algebraic expression
is not equivalent to the second one: the ordering of trees is different in the two cases, as

shown in Fig. 5.4.

W@ @

@
(b)
(©)

Figure 5.4 Two sample input forests (a), the forests resulting frbnx G (b), and the

forest reSUIting from“prod;root” (null,null,(/prod,root/Q,/prod,root/l))(G X F) (C)

The product and join operators are not associative, either. Again, this is due to the
relevance of ordering of children of a node in an XML document; moreover, each product
operation introduces a new root node caliedd _root , leading to trees resulting from
(A x B) x C having a different hierarchical structure to that of trees resulting from
A x (B x C), as shown in Fig. 5.5. As previously seen for the commutative property,
Rule 18 states that it is possible to obtéi x B) x C (up to the ordering of trees) by

applying the tree construction operator to the resulof (B x C).

Theorem 5.18 (Product and Join Associativity)Let F;, F5> and F3 be three forests; let

P, and P, be two join predicates. Then the following similarity relations hold:

(F1 X Fy) x F3 = 1p(Fy x (Fy x F)) (5.26)
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Figure 5.5 The tree resulting from (&)[7 x 1) x T3 and (b)T} x (T3 x T3).

(F1 X p, Fg) X p, F3 = LP(F1 Npll (F2 NPQ’ Fg)) (527)

In both relationsP = “prod_root” (null, null, (“prod_root” (null,null, (
/prod_root/1, /prod_root/prod root/1)), /prod_root/prod root/2)). In the sec-
ond relation, if P, = Ai[p10Xspo] and P, = /prod_root/A3[ps = Aps), then P =
A1[p10/prod_root/Asps] @and Py = A3[psfAypyl.

Proof: Let us demonstrate the product case; a similar proof can be used to demonstrate
the join case.
LetT € ((Fy x Fy) x F3). By Definition 3.23 of product:

e J7" € F such thatr /proq root /proa_root/1(1) = 17,
o J1" € F, such thatr /preq root /prod_root/2(1) = 17,
o J1"" € F3 such thatr proq root/2(1) = 1.
Then3T;, € (F x (Fy x F3)) such that:

b 7T/p:md,root/1(TQ) =T,

® T /prod_root /prod_root/1(12) = 1",

—
hd 7T/prod,roo1:/p1rod,root/2(7ﬁ2) =T1".

By Definition 3.34 of tree construction-(7,) = T, whereP is the tree construction
predicate defined in the theorem. Therefdre 1p(F) x (Fy X F3)).
Now letT" € (F; x (F, x Fj)). By definition of product:
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e J1" € Fy such thatr prq roor/1 (1) = 17,

e 7" € F, such thatrprea root/proa_reot/1 (1) = 1"
o J1"" € F3 such thatt /pro4_root /prod_root/2(1) = 1",
Then3T;, € ((F x F») x F3) such that:

® T /prod_root /prod_root/1(12) = 1",

® T /prod_root /prod_root/2(12) = 1",

® T /prod_root/2(12) = T".

By definition of tree constructiorp(7T") = T». Thereforel, € v1p(Fy x (Fy X F3)). O

Finally, Rules 19 and 20 state that the commutative property is also valid for selection
and full-text selection. As in the case of Theorem 5.3, the selection predicate must not
make use of the element propertiesunt and.pos for the equivalence to be always

valid. For example, consider the algebraic expression

O[.pos=3] (U[.count:4] (ﬂ-/bib/book<“ books.xml” ))) .

This expression retrieves the third book out of a forest containing exactly four books, and
no book if the forest contains a number of books different from four. If we change the

order of selections

O[.count=4] (a[.pos:3] (W/bib/book<“ books.xml” ))) .

we first select the third book of the input forest, thus obtaining a forest including just one
tree, then we check if the obtained forest contains exactly four books; it should be clear

that this expression always returns an empty forest.

Theorem 5.19 (Selection Commutativity) Let P, and P, be two selection predicates not
using the element propertiessount and.pos . Then the following equivalence relation
holds:

op (UPZ(F)) = 0P2(0P1 (F)) (528)
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Proof: LetT" € op,(op,(F')). By Definition 3.22 of selectiori]’ satisfies both the selec-
tion conditionsP; and P,. Thereforel" € op,(op, (F)).

Using the same proof we can also demonstrate the inverse containment relationship,
thus proving the similarity relationship. OJ

Theorem 5.20 (Full-Text Selection Commutativity) Let P, and P, be two full-text se-
lection predicates. Then the following equivalence relation holds:

Spy (gPQ (F)) =P (gpl (F)) (529)

Proof: The proof is identical to that of Theorem 5.19. OJ

Example 5.13 Consider the XML document in Figure 2.3 and the following AFTX ex-
pression:

O /book|.A[“year”].v>1995] (U/book/price[.v< 100] (W//book(“ books.xml” ))) .
Using Rule 14, the expression can be rewritten into the following:
0 /book /price[.v<100] (U/book[.A[“year”].v>1995] (W//book(“ books.xml” ))) .

The two expressions are equivalent. In fact, they both return the batk on the
Weh

5.2.6 Derived Full-Text Operators Usage

In Section 3.3 we have defined two useful derived operators, top-K and threshold full-
text selection. These operators have no equivalent XQuery Full-Text constructs; it is
therefore not surprising that they are never included in the AFTX expressions resulting
from XQuery automatic translation (see Chapter 4). However, if the system is able to
include, when appropriate, such operators in an algebraic expression, performances could
be leverages, because they can be implemented using specialized algorithms.
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It is therefore important to understand when these operators can be used, i.e. we must
identify specialalgebraic patternsvhich amount to a top-K (or threshold) operation. In

particular, consider an algebraic expression like

O[.pos<x] (0/*.score DESC((S* (U* (fP(A)))))
where:
e Ais any algebraic expression;
e 0, is a sequence zero or more selection (or full-text selections) operations;
e §, is a sequence of zero or more deletion operations.

First of all, the selection (or full-text selection) operations can be pushed down with
respect to score assignment; deletion operations, instead, can be pushed up, because they
do not affect the outer ordering and selection operations. The expression can thus be

transformed into the following one:

0+(0.pos<i] (0/x.score bESC(EP(04(A))))) -

It is now evident the pattern of a top-k operation: a full-text score assignment, fol-
lowed by an ordering by score value, followed by a selection by position. We can there-

fore introduce the ad-hoc operator and obtain the following final expression:
0.(Trx(0.(4))) -

A similar transformation can also be done in order to introduce the threshold operator.

Formally, we can state that the following equivalence rules hold:

Ol pos<] (0/w.score Esc (0" (S7(EP(A))))) = (T px(S*(A4))) (5.30)
0/s.score DESC(0 /[ score>7] (07 (5™ (Ep(A))))) = 0" (wp-(57(A))) - (5.31)

Example 5.14 Consider the following XQuery Full-Text expression, which is a slightly

modified example taken from [Con06e]:
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for $book in doc("full-text.xml")/books/book
let score $s := $book ftcontains "usability"
where $s >= 0.1
order by $s descending
return <focusedBook relevance="{$s}">
{$book/metadata/title/text()}
</focusedBook>

Using the translation algorithms presented in Chapter 4, it is translated into the fol-
lowing AFTX expression:
L“focusedBook” (/book/metadata/title.v,((“relevance”,/book.score)),null) (

O /book.score DE‘.SC(
O /book[.score>0.1] (
& Jbook[usability’] (
7T/boc>1<s,/1>oc>1<(“fUll'teth))))) :
In this algebraic expression we can find the algebraic pattern depicted by the left hand

side part of Expression 5.31:

o A |S '/T/books/book(“full'text”);
e Pis /book[*usability”];
e S*andé* are the empty string;

e 7is0.1.

By using the threshold operator the previous expression can therefore be rewritten into
the following one:
l*focusedBook” (/book/metadata/title.v,((“relevance”,/book.score)),null) (

W /book[*usability”],T (

W/books/book(“ ful 1'teXt” ))) .
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5.3 Nested Queries Rules

XQuery permits the nesting of a FLWOR expressions; in Chapter 4 we have seen how
such nested queries can be translated into AFTX expressions. There are however cases
in which interesting optimizations can be performed over the expression built using the

standard translation rules.

5.3.1 Product Elimination

A first case to consider is the presence in the expression of a product operation whose
right input forest contains trees which are subtrees of those contained in the left input

forest. Consider the following XQuery expression:

for $i in doc("books.xml")/bib/book
return <book title={S$i/title/text()}>
{
for $j in $i/author
where $j/first="John"
return <author>{$j/last/text()}</author>

}

</book>

This query returns, for each book, the title and the last name of each author whose
first name isJlohn Following what already seen in Chapter 4, tbe clause in the inner
FLWOR expression, which refers to a variable defined in the outer FLWOR expressions,
must be translated using product and deletion in order to perform a left outer join. The

XQuery expression is then translated into the following algebraic expression:

L yook” (null,((“ title” ,/group,root/book/title.v)),(“ author’ (/group_root/author/last.v,null,null))) (

5/groupJoot/*[.k:/group,root.A[“ treeIdentity”].v AND .pos>1]<

E((/prod,root/l‘k,“ treeIdentity” )),(/prod_root/1,/prod_root/2) (

6/prodjoot/author[NOT =/prod_root/book/author] (
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T /bib/book ( “DOOks.xm1”™) X

O /author/first[.v="“John”] (W/bib/book/author ( “books.xml” ) ) ) ) ) ) .

It is easy to notice that the right hand side expression of the product operation

14 2
O Jauthor/first[.v="“John”] (W/bib/book/author( books.xml ))

results in a forest whose trees are subtrees of those contained in the forest resulting from
the left hand side expression

T /bib/book ( DOOks.xm1”) .
In fact:

o the left projection predicate/lfib/book ) is a subexpression of the right one
(/bib/book/author );

¢ no further operators are applied to the left expression, while only a selection oper-
ator is applied to the right one.

Such conditions let us apply a very impacting optimization: the complete elimina-
tion of the product operation, along with its right side expression. In more details, the

optimization is done as follows:

e the selection on authors is substituted with a deleticeufior subtrees of the trees
resulting from the projection on books; the deletion predicate is the opposite of the
original selection predicate;

¢ the inner deletion is no more necessary, because there is no author coupled with

books not written by him;

¢ the grouping was done in order to group each book with its authors; it is therefore
no more necessary, because authors are already grouped (they are sub-elements of
the respectivéookelement);

e the outer deletion was done in order to eliminate duplicate book subtrees in the
trees resulting from the previous grouping; also this operation is clearly no more
necessary;
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e the tree construction predicate is rewritten in order to be consistent with the new

structure of the input trees.

The previous algebraic expression is then rewritten as follows:

M pook” (null,((“ title" ,/book/title.v)),(“ author (/book/author/last.v,null,null))) (

J

/book/author[NOT /first.v:“ John”] (

W/bib/book( “books.xml” )) .

5.3.2 Inner Join vs Outer Join

Another interesting optimization involves expressions whose purpose is to invert hierar-

chy of elements. Consider the following XQuery expression:

for $i in distinct-values(doc("books.xml")/bib/book
/author/last)
return <author name={$i}>
{
for $j in doc("books.xml")/bib/book
where $i=$j/author/last
return <book>{$j/title/text()}</book>
}

</author>

Its purpose is to return, for each distinct author, the last name and the list of books
written by him. Using the presented translation algorithms, the following AFTX expres-

sion is built:

L author” (null,((“name” ,group,root/groupg:oot.A[“ last” ] .v)),(“book” (/group_root /book/title.v,null,null))) (
(5 @ om (
/group_root/+[.k=/group_root.A[ treeldentity |.v AND .pos>1]
Z [ . ” (
((/prod_root/1.k, treeldentity )),(/prod_root/1,/prod_root/2)
6 113 ” (
/prod_root/book[NOT /author/last.v=/prod_root/group_root.A[ last ].v]

b
V(/1ast.v“1ast” (7/bib/book/author/1ast ( “DOOKsS.xm1”)) X

T /bib/book ( “DoOks.xm1”)))))) .
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In this case we note that the left hand side expression of the product

V(/last.v,“ last (W/bib/book/author/last( “books.xml” ))

results in a forest whose trees are built using data (authors’ last name) contained in the

forest resulting from the right hand side expression
T /bib/book ( “DOOks.xm1”) .

It is not possible to completely eliminate the product operation, because it is needed
in order to revert the hierarchy of the document, but it is possible to substitute it and
the subsequent deletion with a join, in order to reduce the size of partial results. The
expression can thus be rewritten as follows:

L4 suthor” (null,((“name” ,/prod_root /group_root.Al" last” |.v)),(“ book” (/prod_root /book/title.v,null,null))) (

V/last.v (T‘-/bib/book/author/last (“ books.xml” )) X pr

T /bib/book (" DOOksS.xm1")))) |
where P’ = /group_root[.A[“last”].v = book/author/last.v]. In practice, the

outer join has been substituted by an inner join. This optimization has been made possible
by the consideration that the algebraic expression to the left of the join returns a forest
that cannot contain a tree not having a corresponding tree in the forest resulting from the
algebraic expression to the right of the join. Suppose now that the fasterclause is

changed into the following:
for $i in distinct-values(doc("books.xml")//author/last)

Can we still optimize the algebraic expression as before? Unfortunately the an-
swer is not, because now it is not guaranteed that the left hand side path expression
(//author/last ) is a subexpression of the right onbib/book ). However, if we
have an XML Schema [Con01] specification stating that (1aathor element can ap-
pear only as child of @ookelement and (2) hookelement can appear only as child of a
bib element, we can safely rewritiauthor/last as/bib/book/author/last ;

consequently the rewriting rule is still valid and can be executed.
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Chapter 6

Final Remarks

The integration of semi-structured data management and Information Retrieval techniques
poses serious challenges to database system developers. Nevertheless, such an integration
is recognized as a need from the scientific community, as testified by the definition of

a full-text extension of XQuery, the W3C candidate standard query language for XML

documents.

The definition of such a query language would be useless, if it is not coupled with a
formal algebraic framework underlying it. In fact, the implementation of the algorithms
needed for executing a query should be based on the definition of algebraic operators
which, carefully combined, are able to represent each query expressible in the query lan-
guage. Moreover, the availability of such an algebra facilitates the task of finding an
optimized query execution plan, by exploiting equivalence and containment properties of

algebraic expressions in order to formalize a set of query rewriting rules.

These considerations, along with the convincement that existing proposals on this
subject cannot be considered totally adequate, led us to the definition of a formal model

for representing XML documents and an algebra for querying instances of that model.

The data model represents XML databases through ordered trees contained into forests.
Special care is dedicated to the textual content: it is tokenized, and an ordinal value is as-
signed to each token. This permits to precisely represent either data-centric or document-
centric repositories. The data model we have presented has to be intendéatrasla

model; an implementation of our framework could obviously choose a different internal
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representation of trees and forests, provided that all the necessary properties of elements
and attributes are equally available.

AFTX, the proposed algebra, performs either standard queries and full-text queries;
it is able to represent many XQuery Full-Text expression. To our knowledge, AFTX is
one of the very few proposed algebras for XML covering the issue of full-text retrieval.
Moreover, in our opinion, it does not suffer of some limitations found in other proposals;
in fact:

e its data model is based on trees, the natural way to represent XML documents; no

transformation towards classical relational model is needed:;

e its query capabilities are not limited to simple XPath-like constructs; it can represent

complex nested expressions and it can freely restructure the content of input trees;

o its full-text capabilities are comparable to that of XQuery Full-Text, rather, AFTX
provides a fine grained control over score evaluation through the availability of a
parameter that defines the function to use when calculating the full-text score of a

tree;

e its operators, being for the most part similar to classical relational operators, have a
precise and easy to understand semantics.

Another important contribution of our work is the definition of a series of equivalence,
containment and similarity rules. Some of them are adaptation of rules used in different
contexts, namely in relational algebra. Other rules deal with special characteristics of
gueries over XML, like the possibility to nest expressions inside other expressions. Full-
text operators are also analyzed and a set of rules are targeted to those operators. In the
complex, the set of presented rewriting rules makes our framework a valuable starting
point for studying query optimization strategies.

Finally, a formal algorithm for the automatic translation of XQuery Full-Text expres-
sion into AFTX expressions has been developed. There are some limitations on the kind
of expressions that are recognized by the translation algorithm, but the accepted XQuery

fragment should be considered, in our opinion, quite expressive.
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What is next

This thesis poses the formal basis for the implementation of an efficient database system
for XML documents with Information Retrieval capabilities. The first future activity is
therefore the development of such a working system. To this purpose, what should be

realized is:

e an implementative model for storing XML documents; it must not be necessarily
equal to the presented formal model, but it should in any case expose all the prop-

erties of elements, trees, and forests defined in the formal model;

¢ efficient algorithms implementing the defined algebraic operators.

The rewriting rules presented in this thesis should then be used for finding efficient

guery execution plans. This process presupposes the availability of:

e access support structures, like path indexes and value indexes, which should be
developed;

e statistics on the content of the XML repository.

Besides this evident future activity, we envisage two possible interesting extensions
to the algebra. The first deals with relaxed queries, a valid way to manage the structural
heterogeneity typical of XML repositories. The second is an attempt to consider data
mining tasks over XML documents just like one of the various manipulation tasks that

can be represented by an algebra.
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One of the main differences between structured and semi-structured paradigm is the
vaguenes®f the schema. When dealing with structured data, the exact schema of re-
lations involved in a query is known in advance; this is not always the case for semi-
structured data. In fact the schema specifications for XML documents can leave an high
level of flexibility to document producers, for example defining some elementp-as
tional; moreover, it is perfectly legal for an XML document not to have an associated
schema at all. From a point of view, this flexibility is a great advantage; for example, it
facilitates the integration of heterogeneous data sources. On the other side, it poses some
problems for what concerns answering to a query that imposes constraints on the structure
of XML fragments to retrieve; it could be the case that such constraints are satisfied only
by a small part of source documents, thus leading to almost empty answers. Nevertheless,
there could be documents that are relevant to users, even if they do not closely respect

structure constraints expressed using XPath constructs.

A possible future research area is therefore aimed at incorporating into AFTX the
notion of query relaxationi.e. the transformation of an algebraic expression into a less
restrictive one, following the ideas presented in [AYLP04, AYK®5, MAYKSO05]. A
relaxed version of some algebraic operators (selection, full-text selection and projection
are the main candidates) should be defined; such relaxed operators should be based on the
concept ofscore i.e. a relaxed answer is assigned a score which reflects how exact is the
guery that returns such an answer. In a certain way exact and approximate queries should
play the same role of boolean and ranked retrieval in classical Information Retrieval (and
of course in XQuery Full-Text): while exact queries classify each document fragment
as either relevant (i.e. fulfilling constraints imposed on the structure of a document and
the value of elements or attributes) or not relevant, relaxed queries should establish how

relevant such a fragment is.

For what concerns data mining, many works have been presented in the last few years
[BCC*T02, WLOO, AAKT02, Zak02, TRS02, ZA03, TSWO03] trying to adapt concepts
from data mining over structured data to semi-structured repositories. However they typ-
ically consider data mining as a stand-alone subject, with poor connections with standard

manipulation operations. We believe instead that XML data mining tasks could be seen
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as the composition of basic manipulation tasks, which can be expressed by algebraic op-
erators working on forest of trees, like the ones present in AFTX. Clearly standard and
data mining operators would work of documents containing data at a different level of
abstraction, but they would share the same formal model. This extensions, along with the
support for approximate queries, would transform AFTX into a complete framework for

the management of semi-structured data.
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