
Dottorato di Ricerca in Informatica
Universit̀a di Bologna, Padova

INF/01 INFORMATICA

A Model and an Algebra for Semi-Structured
and Full-Text Queries

Giacomo Buratti

March 2007

Coordinatore: Tutore:

Prof. Özalp Babaŏglu Prof. Danilo Montesi

Abstract

The need for a convergence between semi-structured data management and Information

Retrieval techniques is manifest to the scientific community. In order to fulfil this grow-

ing request, W3C has recently proposed XQuery Full Text, an IR-oriented extension of

XQuery. However, the issue of query optimization requires the study of important prop-

erties like query equivalence and containment; to this aim, a formal representation of

document and queries is needed. The goal of this thesis is to establish such formal back-

ground. We define a data model for XML documents and propose an algebra able to

represent most of XQuery Full-Text expressions. We show how an XQuery Full-Text ex-

pression can be translated into an algebraic expression and how an algebraic expression

can be optimized.

iii

Contents

Abstract iii

List of Tables vii

List of Figures viii

List of Algorithms xi

I Preliminaries 1

1 Introduction 3

1.1 Problem Statement .3

1.2 Our Proposal .5

1.3 Contributions . 5

1.4 Related Publications .6

1.5 Outline of the Thesis .6

2 Related Works 9

2.1 Query Languages for Semi-Structured Data9

2.1.1 XQuery . 9

2.1.2 XQuery Full-Text .20

2.2 Algebras for XML .25

iv

2.2.1 TAX .25

2.2.2 XAL .29

2.2.3 TAX and XAL: Features Comparison and Critical Points31

2.2.4 Other Algebras .32

2.3 Full-Text Algebras .34

II AFTX: an Algebra for Full Text Retrieval over XML Reposito-
ries 41

3 The AFTX Algebra 43

3.1 Motivating Examples .43

3.2 The Data Model .43

3.2.1 Informal Overview .44

3.2.2 Formal Definitions .49

3.2.3 A Comparison with XQuery (and XQuery Full-Text) Data Model57

3.3 Algebraic Operators .58

3.3.1 Informal Overview .58

3.3.2 Formal Definitions .85

4 Translating XQuery (Full-Text) Expressions 107

4.1 XQuery Translation Rules .107

4.1.1 Informal Overview .107

4.1.2 Formal Translation Algorithm121

4.2 XQuery Full-Text Translation Rules .161

4.2.1 Informal Overview .161

4.2.2 Formal Translation Algorithm164

4.3 Complex Translation Examples .170

4.3.1 XQuery Expressions .170

v

4.3.2 XQuery Full-Text Expressions183

4.4 About XML Updates .189

4.4.1 XQuery Update Facility .189

4.4.2 Expressing updates in AFTX .193

5 Query Optimization 195

5.1 Algebraic Properties of Interest .195

5.2 Relational-like Rules .198

5.2.1 Idempotency .198

5.2.2 Decomposition .200

5.2.3 Pushing Down .208

5.2.4 Distributivity .211

5.2.5 Associativity and Commutativity216

5.2.6 Derived Full-Text Operators Usage222

5.3 Nested Queries Rules .225

5.3.1 Product Elimination .225

5.3.2 Inner Join vs Outer Join .227

III Conclusions 229

6 Final Remarks 231

7 What is next 233

References 236

vi

List of Tables

3.1 Comparison between XQuery Data Model and AFTX Data Model.57

3.2 AFTX algebraic operators. .60

5.1 Relational-like optimization rules. .199

vii

List of Figures

2.1 An XML document. .12

2.2 Graphical representation of the XML document in Figure 2.1 using XDM.13

2.3 A working example of XML document.19

2.4 An example ofAllMatches. 21

2.5 Two TAX pattern trees. .26

2.6 An input tree (a) and the resulting witness trees (b) obtained applying the

pattern tree of Figure 2.5(a). .26

2.7 A TIX scored pattern tree. .35

3.1 Graphical representation of the XML document in Figure 2.3.44

3.2 An XML document with elements having mixed content.45

3.3 Tokenization of an XML document with mixed content.47

3.4 A tree (a), a complete subtree (b) and a non-complete subtree (c).54

3.5 Graphical representation of a forest. .56

3.6 The behavior of AFTX union operator.60

3.7 The behavior of AFTX difference operator.61

3.8 The behavior of relational projection operator (a) compared to AFTX pro-

jection operator (b). .62

3.9 Graphical representation of the result of a projection.63

3.10 The behavior of relational selection operator (a) compared to AFTX se-

lection operator (b). .64

viii

3.11 Graphical representation of the result of the expression in Example 3.8. .66

3.12 The behavior of relational product operator (a) compared to AFTX prod-

uct operator (b). .67

3.13 Graphical representation of the result of an algebraic expression involving

product. .68

3.14 Graphical representation of the expected result of a product.69

3.15 Two examples of deletion. .70

3.16 The result of an algebraic expression involving grouping.73

3.17 Graphical representation of the result of an algebraic expression involving

grouping. .73

3.18 The result of an algebraic expression involving duplicate elimination. . .74

3.19 Refinement of the result of an expression using grouping.75

3.20 The result of an algebraic expression involving ordering.76

3.21 The input forest for the tree construction operator of Example 3.16 (a)

and the result of the tree construction operation (b).79

4.1 The result of afor clause with 2 variable bindings, where the second

variable references the first one. .111

4.2 An input tree (a) and the tree that must be obtained (b).131

4.3 Graphical representation of the AFTX expression of Example 4.20.178

4.4 Graphical representation of the AFTX expression of Example 4.37.190

5.1 A sample forest (F), a contained forest (F ′), a similar forest (F ′′), and a

non-similar forest (F ′′′). .198

5.2 An XML document showing why selection decomposition is a contain-

ment rule. .203

5.3 Three sample input forests (a), the forest resulting fromF × (G1 ∪ G2)

(b), and the forest resulting from(F ×G1) ∪ (F ×G2) (c). 215

ix

5.4 Two sample input forests (a), the forests resulting fromF ×G (b), and the

forest resulting fromι“prod root”(null,null,(/prod root/2,/prod root/1))(G×F)

(c). .219

5.5 The tree resulting from (a)(T1 × T2)× T3 and (b)T1 × (T2 × T3). 220

x

List of Algorithms

1 Algorithm TreeConstruction .97

2 Algorithm SimpleSpecification .98

3 Function XQuery2AFTX .124

4 Function FLWORExpr .126

5 Procedure ForClause .128

6 Procedure SplitPathExpr .129

7 Procedure PathExpr .130

8 Procedure CreateProduct .131

9 Procedure CreateJoin .131

10 Function Predicate .132

11 Function UnaryExpr1 .133

12 Procedure LetClause .139

13 Procedure WhereClause .141

14 Function Predicate2 .143

15 Procedure CreateOuterJoin .144

16 Procedure OrderByClause .146

17 Function ReturnClause .149

18 Function PathExpr2 .150

19 Function DirElemConstructor .151

20 Function DirAttribute .152

21 Procedure AddChild .152

xi

22 Function Constructor .160

23 Changes to the procedure ForClause .166

24 Changes to the procedure PathExpr .166

25 Changes to the procedure LetClause .167

26 Changes to the procedure WhereClause167

27 Function FTSelection .169

xii

Part I

Preliminaries

1

Chapter 1

Introduction

In this chapter we present a synopsis of our doctoral work, which will serve as an intro-

duction to the contents of the thesis. The research problem we have addressed is stated

in Section 1.1. In Sections 1.2 and 1.3 we present our approach and main contributions.

Then, in Section 1.4 we list the publications where we have disseminated some of the con-

tents of the thesis and other related ideas. We conclude this introduction with the outline

of the thesis.

1.1 Problem Statement

The semi-structured data paradigm [ASB99, Bun97, Suc98, Abi97] has gained growing

attention in the last decade and XML [Con04] has become thede factostandard for ex-

changing information over the web and integrating heterogenous data sources. Several

query languages for XML have been proposed [AQM+97, BDHS96, CCD+99, DFF+99,

CRF00] until XPath [Con06a] and XQuery [Con06c] have received a general consensus,

becoming the standard query languages.

The study of semi-structured data and XML received in the last years a further boost

from a new trend: the integration of structured, semi-structured and unstructured data

into a more general framework [INE]. In the past, these three kinds of data have been

extensively studied as separated worlds, leading to incompatible models, languages and

systems. A convergence between these diverging theories is made necessary by the con-

4 Chapter 1. Introduction

sideration that many today’s applications, like biological data [BMBdlI05], have to cope

with data covering the entire spectrum.

For what concerns the integration of structured data management and Information

Retrieval techniques, some proposals, like BANKS [BHN+02] and DISCOVER [HP02],

aims at enabling IR-like searches over relational databases. However, they are typically

limited to simple keyword-based searches; no support for more complex queries (e.g.

involving constraints on position of searched terms) is present.

For what concerns the integration of semi-structured data and Information Retrieval,

XML plays a crucial role. In fact it permits to represent different kind of documents, rang-

ing from data-centricdocuments (i.e. highly structured documents) todocument-centric

documents (i.e. loosely structured documents) [BYRN99]. However, a problem arose

concerning the query language: while XQuery is suitable to query a data-centric XML

repository, searching relevant documents in a document-centric repository requires the

use of Information Retrieval techniques. The easiest solution could be that of designing a

system which accepts either XQuery expressions (managed by an XQuery engine) and IR-

like searches (managed by an IR engine); however, such a splitting would made difficult

expressing (and efficiently answering) queries that combines semi-structured and full-

text queries. These considerations led to the definition of many query languages for XML

with full-text capabilities [TG02, GSBS03, NDM+01, CMKS03, BG02, FG01]; lastly,

W3C has published a Working Draft (mainly based on the previously proposed language

TeXQuery [AYBS04]) for extending XQuery with Full-Text operators [Con06f].

While relational database systems and their language (SQL) were developed on a

solid formal background (namely, relational model and relational algebra [Cod70]), in the

semi-structured world efforts have been concentrated on practical problems, like defining

suitable languages, leaving aside theoretical aspects. Only in the last few years important

theoretical aspects, like the definition of a data model and an algebra for XML, have

been tackled; these are central points for studying relevant properties of a query, like

inclusion and equivalence, thus enabling the definition of rules for query optimization.

Many different proposals [JLST01, FHP02] covering this issue have been presented; very

few works [AKYJ03], however, deal with the further complexity introduced by the usage

Chapter 1. Introduction 5

of IR-like techniques in the semi-structured world. Moreover, in our opinion, none of

them fulfill all the requirements. Some, in fact, provide only simple XPath-like constructs,

though restructuring constructs are of great importance in the XML context; others are

based on concepts excessively diverging from classical relational algebra, thus making it

difficult to (partially) reuse the work done in the relational context; on the contrary, others

try to transform the problem of managing semi-structured data into that of managing

structured data, thus losing the peculiarities of XML.

1.2 Our Proposal

In this thesis we propose AFTX (Algebra for Full-Text retrieval over XML repositories),

a novel algebra for managing XML documents. It deeply integrates classical and full-text

features, proposing itself as a valid framework for studying optimization techniques for

XQuery Full-Text queries. The algebra is a natural extension of the relational algebra,

and is based on a simple data model in which trees and forests are the counterpart of

the relational tuples and relations; AFTX is quite intuitive and is able to represent many

XQuery FLWOR expressions, along with its full-text extensions.

The operators of our algebra enjoy some interesting algebraic properties, which are

used to discover equivalence and containment between queries. This leads to the def-

inition of rewriting rules for algebraic expression, whose purpose is to optimize query

evaluation.

The definition of an algebra would be useless if such an algebra is not able to repre-

sent at least a significant fragment of the standard query languages for XML, which are

XQuery and its IR extension XQuery Full-Text. Our algebra fulfills such a need.

1.3 Contributions

The contribution of our work is manifold:

• We present a new approach to the definition of a data model and an algebra for XML

repositories; our approach is as close as possible to the classical relational theory,

6 Chapter 1. Introduction

with the necessary adaptations for dealing with the semi-structured paradigm. The

data model and the algebra have a special emphasis on full-text retrieval capabili-

ties, which are perfectly integrated with standard manipulation tasks.

• We develop an automatic translation algorithm from XQuery Full-Text expression

to algebraic expressions. Numerous translation examples are presented, ranging

from simple expressions composed by a single clause to quite complex expressions

involving multiple variable bindings, nesting, content restructuring etc.

• We tackle the problem of efficient query evaluation by exploiting algebraic proper-

ties of our operators. This permits to study equivalence and containment of alge-

braic expressions and therefore to produce a set of rewriting rules aiming at trans-

forming an expression into an optimized one.

1.4 Related Publications

The idea of defining a unified model for semi-structured and unstructured data, with par-

ticular focus on biological data, was included in a perspective article appeared in IEEE

MMTC e-newsletter [BMBdlI05].

The AFTX algebra, which is the core of this thesis, has been presented in some pub-

lished articles. A first version of the data model and the algebra, with support for standard

XQuery-like queries has been presented in a paper accepted for the DEXA conference

[BM06a]. Full-text support has been added in a paper accepted for a WSEAS conference

[BM06c]. Query optimization issues have been tackled in a paper for the International

Advanced Database Conference [BM06d] and an extended version has been published on

a WSEAS journal [BM06b].

1.5 Outline of the Thesis

This thesis is organized in three main parts. The first part comprises this introduction

and a review of related works in the area of semi-structured data. In particular we first

Chapter 1. Introduction 7

introduce the standard language for XML documents manipulation, XQuery, and its ex-

tensions towards IR tasks, XQuery Full-Text; then we review previously proposed data

models and algebras, pointing out their strong points and weaknesses.

In the second part we present the core of our proposal, AFTX. Chapter 3 gives all

the details about the data model we use to represent XML repositories and the opera-

tors used to manipulate them; we also relate our basic concepts to that used in XQuery.

Chapter 4 shows how to translate an XQuery (Full-Text) expression into an AFTX ex-

pression; we first give informal hints for translation, then we present a formal algorithm

for such a translation. The final goal of our algebra is to provide a method for efficiently

evaluate queries; to this aim, in Chapter 5 we define interesting algebraic properties and

demonstrate how they can be used in order to transform an algebraic expression into an

optimized one.

Finally in the third part we draw out some conclusions and sketch future work.

Chapter 2

Related Works

In this chapter we do a survey of previous works that have significant connections with our

thesis. We first analyze the standard query languages for XML; this study is preliminary to

our work, because the algebra we propose to define must be able to express an expressive

fragment of such languages. Then we review previous proposed algebras for XML, with

and without full-text support. Their features are compared, and the critical points are

highlighted.

2.1 Query Languages for Semi-Structured Data

Although many query languages for semi-structured data have been proposed during the

last decade [AQM+97, BDHS96, CCD+99, DFF+99, CRF00], our work concentrates on

the W3C’s candidate standard XML query language XQuery [Con06c] and its full-text

extension XQuery Full-Text [Con06f]. Consequently, in this section we only review these

two languages, along with their corresponding data models.

2.1.1 XQuery

XQuery [Con06c] is the W3C’s candidate standard XML query language; it is derived

from a previous proposed language, Quilt [CRF00] and extends XPath 2.0 [Con06a].

10 Chapter 2. Related Works

The Data Model

The XQuery Data Model (XDM) [Con06d] is based on the concept ofsequence. A se-

quence is an ordered list of zero or moreitems; an item can be:

• anode; a collection of nodes forms a tree, which consists of a root node plus all the

nodes that are reachable directly or indirectly from the root node;

• an atomic value, i.e. a value of type atomic; an atomic type is a primitive simple

type or a type derived by restriction from another atomic type.

Each node has aunique identity, while atomic values do not have identity. Adocument

order is defined among all the nodes; document order is the order in which nodes appear

in the XML serialization of a document.

The supported types are those defined in XML Schema [Con01] (xs:string ,

xs:decimal , xs:datetime etc.) plus five additional types:xs:untyped (an el-

ement node that has not been validated),xs:untypedAtomic (an untyped atomic

value),xs:anyAtomicType (an atomic type that includes all atomic values),

xs:dayTimeDuration (derived fromxs:duration by restricting its lexical repre-

sentation to contain only the days, hours, minutes and seconds components) and

xs:yearMonthDuration (derived fromxs:duration by restricting its lexical rep-

resentation to contain only the year and month components).

There are seven kinds of nodes in the data model. The main kinds areDocument(an

entire XML document),Element(an XML element),Attribute (an XML attribute) and

Text(XML character content); the other kinds areNamespace(the binding of a namespace

URI to a namespace prefix),Processing Instruction(XML processing instructions) and

Comment(XML comments).

A set of properties (calledaccessors) is defined on each noden; among them the most

significant are:

• dm:children : the ordered list of child nodes ofn;

• dm:attributes : the attributes ofn; order of attributes of a node is implemen-

tation dependent;

Chapter 2. Related Works 11

• dm:node-name : the name ofn;

• dm:parent : the parent ofn;

• dm:string-value : the concatenation, in document order, of the string values

of all text nodes descendants ofn; for attributeandtextnodes, it corresponds to the

value of the node, because such nodes can not have descendants;

• dm:typed-value : the typed value ofn;

• dm:type-name : the schema type ofn.

Given those kinds of nodes and their accessors, adocumentis defined as a tree whose

root node is a Document Node; a tree whose root node is not a Document Node, i.e. a

subtree, is instead referred to as afragment.

Example 2.1 Consider the XML document in Figure 2.1, taken from [Con06d]. Figure

2.2 shows how the document is represented using XDM; for the sake of simplicity only

Document Nodes (Dx), Element Nodes (Ex), Attribute Nodes (Ax) and Text Nodes (Tx)

are included. The Document Node D1, which represents the entire document, has one

child Element Node (E1), corresponding to the XML elementcatalog . E1 has three

child Attribute Nodes (corresponding to the XML attributesxsi:schemaLocation ,

xml:lang andversion) and two child Element Nodes (corresponding to the XML

elementstshirt and album). Note that the textual content of an Element Node is

represented by a child Text Node (like T1, which corresponds to the content of the XML

elementtitle : “Staind: Been Awhile Tee Black (1-sided)”), while value of Attribute

Nodes is not. The value of thedm:string-value property for the Element Node D1

is the concatenation of the string values of all its descendant Text Nodes: “Staind: Been

Awhile Tee Black (1-sided) Lyrics from the hit song ’It’s Been Awhile’ are shown in white,

beneath the large ’Flock & Weld’ Staind logo. 25.00 It’s Been A While 10.99 Staind”.

The Language

The basic building block of XQuery is theexpression; the result of an expression is af-

fected by itsstatic context(information about namespaces and schemas, defined variables

12 Chapter 2. Related Works

<?xml version="1.0"?>

<catalog xmlns="http://www.example.com/catalog"

xmlns:html="http://www.w3.org/1999/xhtml"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example.com/catalog

dm-example.xsd"

xml:lang="en" version="0.1">

<tshirt code="T1534017" label=" Staind : Been Awhile "

xlink:href="http://example.com/0,,1655091,00.html"

sizes="M L XL">

<title> Staind: Been Awhile Tee Black (1-sided) </title>

<description>

<html:p>

Lyrics from the hit song ’It’s Been Awhile’

are shown in white, beneath the large

’Flock & Weld’ Staind logo.

</html:p>

</description>

<price> 25.00 </price>

</tshirt>

<album code="A1481344" label=" Staind : Its Been A While "

formats="CD">

<title> It’s Been A While </title>

<description xsi:nil="true" />

<price currency="USD"> 10.99 </price>

<artist> Staind </artist>

</album>

</catalog>

Figure 2.1: An XML document.

Chapter 2. Related Works 13

D1

E1

A1 A2 A3 E2

A4 A5 A6 A7 E3 E4 E6

T1 E5

T2

T3

E7

A8 A9 A10 E8 E9 E10 E11

T4 A11 A12 T5 T6

Figure 2.2: Graphical representation of the XML document in Figure 2.1 using XDM.

and functions, etc.) and by itsdynamic context: the context item (the item currently be-

ing processed), the context position (the position of the context item within the sequence

of items currently being processed), the context size (number of items in the sequence

processed), the variable values, etc.

Two phases of processing are defined: thestatic analysis phaseand thedynamic

evaluation phase. During the static analysis phase, the query is parsed into an internal

representation called theoperation tree, which is then normalized; static type checking is

performed. During the dynamic evaluation phase the value of the expression is computed;

it depends on the operation tree, on the input data and on the dynamic context.

An expression is composed by one or moresingle expressions connected by thecomma

operator, which is used to form a sequence. Typically a single expression is aFLWORex-

pression; the name FLWOR is an acronym for the keywordsfor , let , where , order

by andreturn . Thefor andlet clauses in a FLWOR expression generate an ordered

sequence of tuples of bound variables, called thetuple stream. The optionalwhere clause

serves to filter the tuple stream, retaining some tuples and discarding others. The optional

order by clause reorders the tuple stream. Thereturn clause constructs the result

of the FLWOR expression; it is evaluated once for every tuple in the tuple stream, after

filtering by thewhere clause, using the variable bindings in the respective tuples. The

result of the FLWOR expression is an ordered sequence containing the results of these

evaluations, concatenated as if by the comma operator.

14 Chapter 2. Related Works

The simplest example of afor clause contains one variable and an associated expres-

sion. For example the clause

for $d in fn:doc("depts.xml")/depts/deptno

iterates over all the departments in an input document, binding the variable$d to each de-

partment number in turn. The functionfn:doc reads the XML documentdepts.xml

and returns an XDM instance representing that document; then the path expression

/depts/deptno looks for a child element nameddeptno of a child element named

depts of the current item; initially the current item is the document node, that represents

the entire document.

A for clause may also define multiple variables. In this case, thefor clause iterates

each variable over its binding sequence; the resulting tuple stream contains one tuple for

each combination of values in the respective binding sequences. For example the clause

for $d in fn:doc("depts.xml")/depts/deptno,

$e in fn:doc("emps.xml")/employees/employee

returns a tuple stream containing one tuple for each (department number, employee) pair.

Each variable bound in afor clause may have an associatedpositional variablethat

is bound at the same time. The name of the positional variable is preceded by the keyword

at . As a variable iterates over the items in its binding sequence, its positional variable

iterates over the integers that represent the ordinal positions of those items in the binding

sequence, starting with 1. For example the clause

for $pet at $i in ("Cat", "Dog")

returns two tuples:(“Cat”, 1) and(“Dog”, 2) .

A let clause, like afor clause, binds one or more variables to a sequence; however,

a let clause binds each variable to the entire result of its associated expression, without

iteration. The variable bindings generated bylet clauses are added to the binding tuples

generated by thefor clauses. For example the expression

Chapter 2. Related Works 15

for $d in fn:doc("depts.xml")/depts/deptno

let $e:=fn:doc("emps.xml")/employees/employee

returns a tuple stream containing one tuple for each department number; that tuple will

contain the department number (bound to$d) and a sequence containing all the employ-

ees (bound to the variable$e).

A where clause serves as a filter for the tuples of variable bindings generated by the

for and let clauses. The expression in thewhere clause is evaluated once for each

tuple; if its boolean value istrue , the tuple is retained and its variable bindings are

used in an execution of thereturn clause; if the boolean value isfalse , the tuple is

discarded. For example the expression

for $pet at $i in ("Cat", "Dog")

where $i mod 2 = 0

returns the tuple(“Dog”, 2) ; the tuple(“Cat”, 1) is discarded because1 mod 2 6= 0.

An order by clause contains one or more ordering specifications. For each tuple

in the tuple stream, after filtering by thewhere clause, the ordering specifications are

evaluated, using the variable bindings in that tuple. The relative order of two tuples is

determined by comparing the values of their ordering specifications, working from left to

right until a pair of unequal values is encountered. For example the expression

for $e in $employees

order by $e/salary descending

returns employees in descending order by salary.

The return clause of a FLWOR expression is evaluated once for each tuple in the

tuple stream, and the results of these evaluations are concatenated, as if by the comma

operator, to form the result of the FLWOR expression. Areturn clause typically use

constructors, that create XML structures possibly referring to variables using enclosed

expressions. For example, suppose to bind a$b variable tobook elements having one or

moreauthor sub-elements; the clause

16 Chapter 2. Related Works

return <book isbn="{$b/isbn}">

<authors>{$b/author}</authors>

</book>

for each inputbook element does the following:

• create abook element;

• create aisbn attribute;

• set the value of theisbn attribute to the value of theisbn child element of the

inputbook element;

• create anauthors element, whose parent is thebook element;

• create a subtree of theauthors element for each subtree rooted atauthor of the

inputbook element.

In the previous examples we have seen that each clause usepath expressions. A

path expression consists of a series of one or moresteps, separated by “/ ” or “ // ”, and

optionally beginning with “/ ” or “ // ”. Each step generates a sequence of items and

then filters the sequence by zero or more predicates. A predicate can test the value of

an element (e.g./book[./price < 50] : find all books with a price less than 50),

the value of an attribute (e.g./book[@id = 1] : find all books with an attributeid

having value 1), the existence of an element (e.g./book[./author] : find all books

with at least one author), the existence of an attribute (e.g./book[@isbn] : find all

books with an attributeisbn), the context position (e.g./book/author[2] : find the

second author of each book).

Note that, in the expression/book[./price < 50] , anatomizationoperation is

first performed, i.e. the typed value of the elementprice is extracted; then a comparison

between such typed value and 50 is executed. XQuery provides three kinds of compari-

son expressions, calledvalue comparisons, general comparisons, andnode comparisons.

The difference between value comparisons (eq , ne , lt , le , gt , andge) and general

Chapter 2. Related Works 17

comparisons (=, != , <, <=, >, and>=) is that the first ones operate only on single val-

ues, while the second ones operate also on sequences of values following an existential

semantic; for example(1, 2) = (2, 3), because there is a pair of values from the first and

second sequence that are equal. Node comparisons are used to compare two nodes, by

their identity (is) or by their document order (<< and>>).

XQuery permits the usage offunctions, that must return an instance of XDM. The

built-in functions supported by XQuery are defined in [Con06g]; additional functions

may be declared in the prolog of the query, imported from a library module, or provided

by the external environment as part of the static context. Among the built-in function, we

cite:

• distinct-values : applied to a sequence of nodes, returns a sequence of atomic

values containing only the distinct values found in the input sequence;

• count : applied to a sequence, returns the number of items in the sequence;

• position : returns the context position of the context node.

XQuery supports a conditional expression based on the keywordsif , then , and

else . For example the expression

if ($widget1/unit-cost < $widget2/unit-cost)

then $widget1

else $widget2

returns the sequence bound to either$widget1 or $widget2 , depending on the satis-

faction of the test condition.

XQuery also supports universal and existential quantifiers. A quantified expression

begins with a quantifier, which is either the keywordsome or the keywordevery , fol-

lowed by one or morein-clausesthat are used to bind variables, followed by the keyword

satisfies and a test expression. Each in-clause associates a variable with an expres-

sion that returns a sequence of items; it generates tuples of variable bindings, including a

tuple for each item that satisfies the test expression. For example the expression

18 Chapter 2. Related Works

some $emp in /emps/employee satisfies

($emp/bonus > 0.25 * $emp/salary)

returns true if at least one employee satisfies the given comparison expression; moreover

it binds the variable$emp to the employees satisfying the condition.

XQuery allows expressions to be nested with full generality. For example, consider the

XML documentbook.xml, shown in Fig. 2.3, which will be further used in the following

chapters. The following query inverts the document hierarchy to transform a bibliography

into an author list in which each author’s name appears only once, followed by a list of

titles of books written by that author:

<authlist>

{

for $a in fn:distinct-values($bib/book/author)

order by $a

return

<author>

<name> {$a} </name>

<books>

{

for $b in $bib/book[author = $a]

order by $b/title

return $b/title

}

</books>

</author>

}

</authlist>

Chapter 2. Related Works 19

<bib>

<book year="1994">

<title>TCP/IP Illustrated</title>

<author><last>Stevens</last><first>W.</first></author>

<publisher>Addison-Wesley</publisher>

<price>65.95</price>

</book>

<book year="1992">

<title>Advanced Programming in the Unix environment</title>

<author><last>Stevens</last><first>W.</first></author>

<publisher>Addison-Wesley</publisher>

<price>65.95</price>

</book>

<book year="2000">

<title>Data on the Web</title>

<author><last>Abiteboul</last><first>Serge</first></author>

<author><last>Buneman</last><first>Peter</first></author>

<author><last>Suciu</last><first>Dan</first></author>

<publisher>Morgan Kaufmann Publishers</publisher>

<price>39.95</price>

</book>

<book year="1999">

<title>Technology and Content for Digital TV</title>

<editor>

<last>Gerbarg</last><first>Darcy</first>

<affiliation>CITI</affiliation>

</editor>

<publisher>Kluwer Academic Publishers</publisher>

<price>129.95</price>

</book>

</bib>

Figure 2.3: A working example of XML document.

20 Chapter 2. Related Works

2.1.2 XQuery Full-Text

The Data Model

The XQuery Data Model, based on the notion of sequence of nodes, is inadequate to

support full-text searches over XML documents, because full-text search requires more

information on the words contained in the document. In particular, at least the relative

position of the words is needed; moreover, it could be worth representing which paragraph

or sentence the word is contained in. XQuery Full-Text adds such information via a

structure calledAllMatches.

An AllMatchesdescribes the possible results of a full-text selection; it contains zero or

moreMatches, each of which describes one result of the full-text selection. EachMatch

contains zero or moreStringIncludeand zero or moreStringExclude, which describe the

query: aStringIncluderepresents a searched token (i.e. a token that must be found in

the document), aStringExcluderepresents an unwanted token (i.e. a token that must

not be contained in the document). Finally, eachStringInclude/StringExclude(known

collectively asStringMatch) has an associatedTokenInfo, that represents the word that

matches the condition specified in theStringMatch. A TokenInfois formed by a word, a

unique identifier (pos) that captures the relative position of the word in document order

and two more unique identifiers that represent the containing paragraph and sentence;

these information are available thanks to atokenizationprocess that must be carried out

before a full-text search can be evaluated.

Figure 2.4 shows an example ofAllMatches(taken from [Con06f]) relative to the full-

text selection “Ford Mustang”. There are two possible results, represented by the two

Matches. The firstMatchshows that the word “Ford” has been found at position 1 and the

word “Mustang” has been found at position 2; the secondMatch shows that the words

have been found at position 27 and 28.

Given their hierarchical nature,AllMatchesstructures can be represented as XML

documents; therefore it is possible to define formal XQuery functions that represent the

implementation of a full-text search condition. In this way full-text conditions can be

composed with standard XQuery search conditions.

Chapter 2. Related Works 21

Figure 2.4: An example ofAllMatches.

The Language

XQuery Full-Text extends XQuery and XPath by:

• adding a new expression calledFTContainsExpr;

• enhancing the syntax of FLWOR expressions in XQuery and path expressions in

XPath with optional score variables.

Wherever an XQuery comparison expression can be used, aFTContainsExprcan be

used. A simpleFTContainsExpris of the formftcontains FTSelection, whereFTSe-

lectionrepresents the full-text condition. For example the XQuery Full-Text expression

for $b in doc("bib.xml")/books/book

where $b ftcontains "dog"

return $b/author

return all authors of books that contain somewhere the worddog. Note that the word is

searched into the entire content of abookelement, including the value of its sub-elements.

The same full-text condition could also be included into a path expression; for example

the following XQuery Full-Text expression is equivalent to the previous one:

for $b in doc("bib.xml")/books/book[. ftcontains "dog"]

return $b/author

22 Chapter 2. Related Works

The full-text condition can also be composed by multiple basic conditions, connected

with the boolean operators&& (and) or|| (or). For example the XQuery Full-Text ex-

pression

for $b in doc("bib.xml")/books/book

where $b ftcontains "dog" && "cat"

return $b/author

return all authors of books that contain somewhere the worddogandcat.

Besides specifying a match of a full-text search as a boolean condition, full-text search

applications typically also have the ability to associatescoreswith the results; scores

express the relevance of those results to the full-text search conditions. XQuery Full-

Text extends XQuery and XPath further by adding optionalscore variables to thefor

and let clauses of FLWOR expressions. For example consider the XQuery Full-Text

expression:

for $b score $s in doc("bib.xml")/books/book

[. ftcontains "dog" && "cat"]

return <book>

<title>{$b/title}</title>

<score>{$s}</score>

</book>

The evaluation of the expression following thein keyword not only determines the

resulting sequence of the expression, i.e., the sequence of items which are iteratively

bound to thefor variable. It must also determine in each iteration the relevance score

value of the current item and bind the$s variable to that value. The result is therefore a

list of books containing somewhere the two searched words; for each book, the title and

the score value is output.

The calculation of relevance is implementation-dependent, but score evaluation must

follow these rules:

• score values are of typexs:double in the range [0, 1];

Chapter 2. Related Works 23

• for score values greater than 0, a higher score must imply a higher degree of rele-

vance.

Similarly to the way they are used in afor clause, score variables may be specified in

a let clause. A score variable in alet clause is also bound to the score of the expression

evaluation, but in thelet clause one score is determined for the complete result. The

let variable may be dropped from thelet clause, if the score variable is present. While

when using the score option in afor clause the expression following thein keyword has

the dual purpose of filtering, i.e., driving the iteration, and determining the scores, it is

possible to separately specify expressions for filtering and scoring by combining a simple

for clause with alet clause that uses scoring. For example consider the following

XQuery Full-Text expression:

for $b in doc("bib.xml")/books/book

let score $s := $b ftcontains "dog" && "cat"

order by $s descending

return <book>

<title>{$b/title}</title>

<score>{$s}</score>

</book>

This query returns all the books, without any filter. However, a score is calculated for

each book, and books are returned in descending order by score value.

Scoring may be influenced by addingweight declarationsto search tokens. For ex-

ample thelet clause

let score $s := $b ftcontains ("dog" weight 0.2)

&& ("cat" weight 0.8)

instructs the system to give a higher importance to the wordcatand a lower importance to

the worddog; however the exact effect of weights on the result score is implementation-

dependent.

24 Chapter 2. Related Works

Until now we have shown only basic full-text searches of single words. More com-

plex full-text conditions can be written in XQuery Full-Text. Among them we cite the

following possibilities:

• we can search for elements containing a phrase instead that a set of words (e.g.

/book[. ftcontains "Expert Reviews"]);

• we can search for elementsnot containing a word or phrase (e.g./book[.

ftcontains ! "usability"]);

• we can state that searched words must be found in the same order as in the query

(e.g. /book/title ftcontains ("web site" && "usability")

ordered : find those titles that contain the phraseweb siteand, later, the word

usability);

• we can state that searched words must be found in the same sentence or para-

graph (e.g./book ftcontains "usability" && "Marigold" same

sentence);

• we can state that searched words must be found at a certain maximal distance

(e.g./book ftcontains "web" && "site" distance at most 2

words);

• we can state that searched words must appear at leastn times (e.g. /book[.

ftcontains "usability" occurs at least 2 times]);

• we can specify a set of match options that affect the result of a query: case-sensitive

search, use of stemming, use of thesaurus, use of stopword etc. (e.g./book [.

ftcontains "usability" with stemming with thesaurus

default]).

Chapter 2. Related Works 25

2.2 Algebras for XML

Many different algebras for semi-structured data have been proposed in the last few years.

In this section we deeply analyze the two algebras that mainly influenced our work, TAX

[JLST01] and XAL [FHP02]. Then we describe in fewer details further interesting pro-

posals.

2.2.1 TAX

TAX [JLST01] (Tree Algebra for XML) is probably the most famous algebra for XML

documents. In TAX data model an XML document is represented by an ordered labeled

tree, which is the basic unit of information. Each node in a tree represents an XML

element; a node can have a list of attributes (corresponding to XML attributes) plus the

following special attributes:

• tag : the type of the element, i.e. its name;

• content : the value of the element;

• pedigree : it represents a sort ofhistory of where a node came from; it has a

different value for each element stored in an XML repository, but it is not a unique

identifier; in fact, if a node is copied then both the copy and the original have the

same pedigree, and when a new node is created it has a null pedigree.

Trees are grouped into collections; each TAX operator takes one or more collections

as input and produces a collection as output.

The main innovation in TAX is the concept ofpattern trees, which are essentially

trees representing nodes and attributes of interest for an operator, plus a selection formula.

Pattern tree nodes have a distinct integer as label; nodes are connected withpc (parent-

child) orad (ancestor-descendant) edges. The selection formula is a boolean combination

of predicates applicable to nodes.

Two examples of pattern trees are shown in Figure 2.5. Pattern (a) asks for books

published before 1988 and having at least one author; in fact it looks for an element

26 Chapter 2. Related Works

whose tag isbook , having a child element namedyear with value less than 1988, and a

descendant element namedauthor . Pattern (b) asks for books publisher by a publisher

whose name contains the string “Science” and written by Jack and Jill in that order.

$1
$1.tag = book &
$2.tag = year &
$2.content < 1998 &
$3.tag = authorpc

$2 $3

ad

(a)

$1
$1.tag = book &
$2.tag = publisher &
$2.content = “*Science*” &
$3.tag = author &
$4.tag = author &
$3 BEFORE $4 &
$3.content = “Jack” &
$4.content = “Jill”

pc

$2 $3

ad

(b)

$4

pc

Figure 2.5: Two TAX pattern trees.

Given a collection of trees and pattern tree, awitnesstree represents a possible map

from the pattern tree to an input tree. It contains the nodes, corresponding to the nodes in

the pattern tree, that satisfy the selection formula. Multiple witness tree can be obtained

from a single input tree, if the pattern tree can be mapped in multiple ways. For example,

consider the pattern tree in Figure 2.5(a); by applying it to the tree shown in Figure 2.6(a)

two different witness trees, shown in Figure 2.6(b), are obtained, because two mappings

exist from the pattern tree to the input tree.

book

year author

(a) (b)

author title

1980 Jack Jill A Dummy for
a Computer

book

year author

1980 Jack

book

year author

1980 Jill

Figure 2.6: An input tree (a) and the resulting witness trees (b) obtained applying the

pattern tree of Figure 2.5(a).

The notion of pattern tree is the basis for the definition of TAX operators, which are

the following:

Chapter 2. Related Works 27

• SelectionσP,SL(C): returns all possible witness trees corresponding to the pattern

treeP, enriched with all descendants of those nodes corresponding to pattern tree

nodes included in theadornment listSL; for example,σP,$1(C), whereP is the

pattern tree in Figure 2.5(a) andC is a collection containing only the tree in Figure

2.6(a), returns two copies of the input tree, because the adornment list specifies to

retain in the output the entire subtree rooted atbook .

• ProjectionπP,PL(C): for each witness tree, returns only those nodes which are in-

cluded in theprojection listPL, plus all descendants of those nodes corresponding

to pattern tree nodes included inPL with a “*”; for example, using the sameP and

C of the selection example,πP,$1∗(C) returns the same result ofσP,$1(C).

• ProductC×D: for each pair of treesTi ∈ C andTj ∈ D returns a new tree having a

root node namedtax prod root , whose left and right subtrees are a copy ofTi

andTj; join and outerjoin operators are derived by applying a selection condition

to the result of a product.

• Set Operators: union, intersection, and difference act as in classical set theory; two

trees are considered identical if all atttributes at corresponding nodes are identical.

• GroupingγP,GL,orfun(C): groups witness trees, obtained by applying the pattern tree

P to the trees inC, by the value of elements/attributes in thegrouping listGL; for

each group, an output tree is built, having a root element namedtax group root

with two subtrees: 1) atax grouping list element containing the nodes that

form the grouping basis; 2) atax group subroot element having as subtrees

the witness trees in the group, ordered by the functionorfun. Derived operators for

duplicate elimination and ordering can be obtained using grouping and projection.

• AggregationAaggAttr=f1($j.attr),pos(C): each input tree is returned unchanged, ex-

cept for the insertion of a newtax aggNode node, having an attributeaggAttr

whose value corresponds to the result of the aggregation functionf1 (min, max,

count, sum etc.); the new node is inserted in the position specified bypos.

28 Chapter 2. Related Works

• RenamingρP,RS(C): each witness tree is returned with some nodes or attributes

being renamed, according to therenaming specificationRS; for example

ρP,$2←published(C), whereP andC are the usual pattern tree and input tree, returns

the same tree shown in Figure 2.6(a), except that the elementyear is renamed

published .

• Reordering%P,f,RL(C): for each input tree, the subtrees rooted at the element speci-

fied in thereorder listRL are reordered on the basis of the result of the functionf

applied to those subtrees.

• Copy-and-PasteκP,CL,pos(C): for each input tree, the nodes specified in thecopy

list CL (or the subtrees rooted at those nodes, if the node name includes a “*”) are

copied in the position specified bypos.

• Value UpdatesvP,US(C): each input tree is returned unchanged, except that some

attribute values are changed, according to theupdate specificationUS; for example

vP,$2:content←$2.content+1(C), whereP andC are the usual pattern tree and input tree,

returns the same tree shown in Figure 2.6(a), except that the value of the element

year is raised by 1.

• Node DeletionδP,DS(C): each input tree is returned unchanged, except that the nodes

included in thedelete specificationDS(or the entire subtree rooted at those nodes)

are deleted.

• Node InsertionιP,IS(C): each input tree is returned unchanged, except that a list

of new nodes are inserted according to theinsert specificationIS ; for example

δP,<AfterLastChild($1)>(tag=”publisher”,content=”Morgan Kaufman”)(C) creates a new

publisher node, having the valueMorgan Kaufman , and insert as last child

of thebook node.

The authors claim that TAX is able to express any XQuery expression not involving

recursion, function calls or tag variables, and such that the variables bound in thelet

clause are bound to an aggregate expression; some XQuery facilities, like quantifiers, are

Chapter 2. Related Works 29

not expressible in TAX, but the XQuery expression can be rewritten into an equivalent

one not involving quantifiers. An informal procedure for the translation from XQuery to

TAX is presented.

2.2.2 XAL

XAL [FHP02] (XML AL gebra) represents an XML document as a rooted connected di-

rected graph with a partial order relation defined on its edges. Vertices are of typeelement

(i.e. containing sub-elements) orsimple (int, string, etc.); in the first case, thevalue

property is the vertex identifier, in the second case it is the element content. Element

containment edges model hierarchy between elements, and their name correspond to the

child element name; attribute edges connect an element to its attributes; data edges con-

nect an element to text data included in it. The order relation is defined only on element

containment and data edges.

Three kinds of operators are defined:extraction operators, meta-operatorsandcon-

struction operators. Extraction operators retrieve information from the input XML docu-

ments and return a collection of vertices; they are:

• Projectionπ[t, n](e): returns the collection of vertices that represent the targets of

edges of typet and namen originating from vertices ine; for example

π[E, painter](e) returns all target nodes of element containment edges, originating

from e, namedpainter.

• Selectionσ[cond](e): returns the collection of vertices that fulfill the condition

cond, in which constants and projection operators can be used; for example

σ[π[A, name] = “Dali”](e) returns all vertices that have an attribute calledname

with the value “Dali”.

• Distinct δ(e): removes duplicates from a collection.

• SortΣ[expr](e): sorts a collection based on the value of expressionexpr; for exam-

pleΣ[π[A, name]](e) orders the input vertices by the value of theirnameattribute.

30 Chapter 2. Related Works

• Join (x : expr1) on [cond](y : expr2) andProduct (x : expr1) × (y : expr2):

for each pair of vertices(x, y), wherex andy are obtained by, respectively,expr1

andexpr2, if the pair fulfills the selection conditioncond(or if the condition is not

present, which is the case of product) then a new vertex is created; such a vertex

has, as outgoing edges, first the outgoing edges ofx, then the outgoing edges of

y. For example(x : π[E, person(people)) on [π[A, id](x) = π[A, name](y)](y :

π[E, painter](painters)) pairs person and painter vertices based on the equality of

the id attribute of apersonand thenameattribute of apainter.

• Unionx ∪ y, Differencex− y, andIntersectionx ∩ y: these set operators have the

classical semantics; they preserve ordering, thus union is not commutative.

Meta-operators apply a function to each element of the input collection. They are:

• Map map[f](e): applies the functionf to each element ine and concatenates the

results in the output collection.

• Kleene Star∗[f, n](e): repeats the functionf n times starting with the inpute;

at each iteration the results of the function are added to the next function input;

if n is not present, the repetition continues (possibly infinite times) until a fix

point is reached. For example, suppose that an XML document containspainter

elements havingpainter sub-elements, these sub-elements having furtherpainter

sub-elements etc; thenπ[A, name](∗[π[E, painter]](root)) gives the names of all

painters.

Construction operators rearrange data previously extracted. They are:

• Create Vertexvertex [t](v): creates a new vertex of typet and valuev; for exam-

ple vertex [string](“Dali ”) creates a simple string element with valueDali, while

vertex [element](null) creates a complex element with null value.

• Create Edgeedge[t, n, p](c): adds to the graph an edge, namedn, of typet from p

to c; for exampleedge[E, painter , vertex [element](null)](vertex [string](“Dali ”))

creates an element containment edge with namepainter between the vertices cre-

ated in the previous example.

Chapter 2. Related Works 31

A set of optimization laws for XAL expressions is presented. Some of them are

based on similar relational algebraic optimization rules: selection decomposition, selec-

tion commutativity, projection and selection push-down, etc. Some useful optimization

rules, like product commutativity, are not directly applicable, because their usage would

change order between elements; however, there are cases when such order is not impor-

tant, for example because a subsequent re-ordering must be applied, and therefore such

query rewritings can be executed.

2.2.3 TAX and XAL: Features Comparison and Critical Points

In our opinion, TAX and XAL should be considered two very interesting proposals. TAX

operators have a clear semantics, that is well suited to represent typical operations on

semi-structured data, like those available using XQuery. On the other side XAL operators

are defined in a way more similar to classical relational operators, which results in an

easier definition of optimization rules. For what concerns the features exposed by the

operators, XAL has the advantage of enabling recursion through the Kleene Star operator;

on the other side, TAX is equipped with grouping and node deletion/update, which are not

present in XAL.

Though many valuable ideas can be found in these two proposals, we believe they also

have some important drawbacks.

For what concerns TAX, the concept of pattern trees (and the related concepts of

embeddingandwitness tree), besides being probably its main innovation, is in our opinion

not so intuitive; it represents a strong deviation from classical relational algebra, thus

making it difficult to (partially) reuse the well-known equivalence rules for optimization

purposes. Not surprisingly, the problem of query equivalence and containment is just

mentioned and no formal rule is present.

Another critical point can be found in the definition of selection and projection op-

erator. In relational algebra these two operators have a clear orthogonal semantics; in

TAX the distinction is much less sharp. In fact, some results can be obtained by applying

indifferently one of these two operators.

32 Chapter 2. Related Works

Finally, as already said, authors claim that almost any XQuery expression can be

translated into a TAX expression. However, the presented translation algorithm is quite

informal and not detailed, thus making it difficult to ratify such a claim; as an example, it

is not clear if queries having more than two levels of nesting can be translated. Moreover,

some limitations to the kind of XQuery expression that can be translated (like the fact

that variables bound in alet clause must be bound to aggregate expressions) are rather

severe.

For what concerns XAL, the main drawback is probably the fact that only extraction

operators are closed; in fact meta-operators result depends on the function they apply to

the input collection (for example, a list of simple values could be returned), while con-

struction operators, according to the definition, do not even take as input any collection.

Another serious problem of XAL is that sometimes operators are not clearly defined.

For example, it is not clear if projection retains only the vertices having a certain incoming

edge, or if it retains also their sub-elements. Moreover, it looks like projection searches

such vertices in the entire input collection, thusπ[E, painter](e) should be equivalent to

the path expression//painter ; what if we want to find only rootpainterelements? A

further example of non-rigorous definition is that of theDistinct operator: which notion

of equality does it use?

Finally, authors do not specify which part of XQuery can be expressed in XAL; at a

first sight, it seems however that only very simple queries can be translated. No translation

algorithm is present.

2.2.4 Other Algebras

The algebra presented in [SA02] uses apathoperator to extract information from an XML

database on the basis of a path expression, to build variable bindings and to store them in

a relational-like structure; basic operators (selection, join etc.) then manipulate these re-

lational structures and finally thereturn operator produces the resulting XML document.

The use of such a relational structure enables to use classical relational optimization rules;

however, a sorting operation is always needed before building the result, because the or-

dering of elements gets lost in the creation of the relational structure. Moreover, selection

Chapter 2. Related Works 33

operations, that could be interleaved with path expression evaluation, must be postponed

to the end of thepathoperation; this need prohibits the use of some classical optimization

rules, like selection push-down. This algebra shares many features with that presented in

[CCS00], which however does not deal with the ordering of elements.

SAL [BT99] is a general algebra for semi-structured data that works on edge-labeled

directed graphs; it is not specifically designed for handling XML features (e.g. it does not

support attributes) and does not provide powerful restructuring operators.

XAT [ZPR02] is the algebra used in the Rainbow [DSR] XML data management sys-

tem, which is based on XML views over relational data. Consequently, XAT optimization

rules concentrate on moving as much computation as possible to the underlying relational

engine, making it difficult to apply them to a more general framework.

The algebras we reviewed up to now fall into two camps; some of them are tuple-

based algebras, while others are tree-based algebras. The algebra proposed in [RSF06]

and used in the Galax XQuery engine [gal] borrows ideas from both camps. It is based

on a data model in which values can be either anXML value(i.e. an ordered sequence of

items) or atable (i.e. an ordered sequence of tuples containing XML values). Algebraic

operators fall into three categories:

• XML operators, i.e. operators working on XML values; they can be further subdi-

vided into:

– constructor operators: they create sequences, elements, atomic values etc.;

– navigation operators: they follow a path, possibly applying a node test;

– type operators: they perform casting, validation, and type matching;

– functional operators: they model function calls and conditional expressions;

– I/O operators: they parse or serialize documents.

• Tuple operators, i.e. operators working on tuples; they can be further subdivided

into:

– constructor operators: they create or concatenate tuples;

34 Chapter 2. Related Works

– relational operators: they perform typical relational operations (selection,

join, etc.);

– map operators: they perform functional map on tuples, i.e. apply some func-

tion on tuples;

– grouping and sorting: they group or sort tuples.

• XML / tuple operators: these operators sit at the boundary between the tuple part

or the algebra and XML part; they are used to transform tuples into items (and vice

versa) and to express existential and universal quantifiers.

The main interesting feature of this algebra is the full coverage of XQuery Core ex-

pressions; authors proposes a set of compilation rules for transforming an XQuery ex-

pression into an algebraic expression. Moreover, some rewriting techniques are used to

optimize the evaluation of a query, with particular emphasis on query un-nesting.

A different approach is followed in [MM06], which proposes to define logical database

models by instantiating a general abstract model. The abstract model is equipped with a

parametric algebra, which defines, in addition to standard operators like selection, pro-

jection etc., two distinctive operators: embedding, which extends objects with novel data,

and splitting, which decomposes a single object into many objects. Algebraic operators

work on collection of objects. The authors propose an instantiation of the abstract model

in order to manage XML documents and show how an XQuery FLWOR expression can

be translated in their algebra; however the model has some serious limitations: it can not

manage path expressions containing selection conditions and it does not represent order

between XML documents.

2.3 Full-Text Algebras

While there are a lot of proposals for algebras able to represent XQuery-like queries, to

our knowledge the only algebra which integrates structured search with full-text capabili-

ties is TIX [AKYJ03] (Text In XML). As the name suggests, TIX is an extension of TAX;

Chapter 2. Related Works 35

its data model is based on the concept ofscored tree, which is a TAX tree extended with

ascorenode attribute; the score of the root node represents the score of the tree.

A scored pattern treeis defined as a TAX pattern tree with the following extensions:

• besidespc (parent-child) andad (ancestor-descendant) edges, a newad* (self-or-

descendant) relationship between pattern tree nodes can exist;

• a set of formulas specifies how to calculate the score of some nodes involved in

IR-style search.

For example, consider the following query, expressed in natural language: “Find docu-

ment components that are part of an article written by an author with last name ‘Doe’and

are about ‘search engine’. Relevance to ‘internet’and ‘information retrieval’is desirable

but not necessary.”; the corresponding scored pattern tree is shown in Figure 2.7.

$1
$1.tag = article &
$2.tag = author &
$3.tag = sname &
$3.content = “Doe” pc

$2 $4

ad*

$3

pc

$4.score = ScoreFun(
 {“search engine”},
 {“internet”,
 “information retrieval”})
$1.score = $4.score

Figure 2.7: A TIX scored pattern tree.

Structural constraints (the presence of anarticle element having anauthor sub-

element containing asname sub-element) and value constraints (the last name of the

author) are represented as in TAX pattern trees. The element$4 , connected to$1 with

an ad* relationship, indicates that we are interested in articles or part of articles. The

first score formula defines that the score of the element$4 is calculated using a scoring

function namedScoreFun . Furthermore, scored pattern trees require that each element

having at least one sub-element involved in a scoring must also have a score; therefore

the second score formula defines that the score of$1 must be set to the same score value

of $4 .

36 Chapter 2. Related Works

Three TAX operators (selection, projection, and score) are redefined asscored opera-

tors; basically, their behavior is identical to that of the corresponding non-scored operator,

but score is also calculated as specified by the score formulas. Two brand-new operators

are also defined:thresholdandpick.

Threshold operatorτ ′P,TC(C) returns those scored trees that satisfy each threshold con-

dition in TC. A threshold condition refers to a node inP and asks for either 1) the score to

be higher than a thresholdV or 2) the rank to be higher thanK; a tree satisfies a threshold

condition if at least one of its referred nodes satisfies the condition.

Pick operatorρ′P,PC(C) is essentially a way to remove from the output those nodes

that are not expected to be relevant for the user. The pick conditions included inPC

are typically a call to a pick function, that bases its decision of whether to pick or not a

node on the scores of the node being considered and of some other node in the tree. For

example, a pick function could specify that a node is picked either if it has a score higher

than0.8 or if at most50% of its child elements have a score higher than0.8.

The main drawback we see in TIX is that there is no effort in formalizing an algorithm

for the translation of XQuery Full-Text expressions into TIX expressions. For example,

it is not clear how to differentiate cases when ascore variable is defined from cases

when theftcontains condition must be intended as mandatory. Actually, authors

follow an inverse approach: they propose an extended version of XQuery (quite different

from XQuery Full-Text) which is able to represent TIX expressions. Moreover, being an

extension of TAX, TIX suffers the same limitations previously discussed.

In [AYCD06] an interesting algebraic approach to the representation of full-text pred-

icates is presented. Starting from the observation that typical XML full-text languages

share a common semantics, the authors define an algebra called XFT. It is based on the

concept ofmatching table, which is a relational representation of the matchings found in

an XML document for a full-text query. Each tuple of the matching table contains the

node name where one or more matches have been found, the pattern (i.e. the searched

keywords that have been found) and a list of matches (i.e. the position in which the

keywords have been found). The defined algebraic operators works on matching tables:

• get: returns a table containing one tuple for each node with a non-empty set of

Chapter 2. Related Works 37

matches;

• or: returns the union of two matching tables;

• and: returns a matching table containing one tuple for each node found in both

input matching tables;

• minus: returns a matching table containing one tuple for each node found in the first

input forest and not found in the second input forest;

• times, ordered, window, dist: test various conditions (number of occurrences found,

order between matches, size of the window in which matches are found, distance

between each pair of adjacent patterns) on the matches.

Being based on a relational representation, the operators enjoy some of the well-

known relational algebra equivalence properties, like selection commutativity, selection

push-down etc. The article also presents:

• a scoring method, which permits to compute element scores incrementally from

their descendants;

• some examples of translation of XQuery Full-Text predicates and NEXI [TS04]

queries into XFT expressions;

• algorithms that implement the algebraic operators.

XFT is a powerful algebra for representing full-text search. However, it considers full-

text tasks as a stand-alone subject, without integrating them with structured XML search

tasks. Such an integration could be made difficult by the fact that XFT operators work on

relational structures instead of tree-like structures.

An interesting approach to extending relational algebra with full-text concepts is that

of FTA [BAYS06]. Like XFT, it does not integrate XML search tasks. It uses a data model

where the basic building block is the concept ofnode, which could be a text document,

and XML element, a relational tuple etc; each token in a node has an associated numeric

position.

38 Chapter 2. Related Works

FTA operators work onfull-text relations; each tuple in a full-text relation contains a

node and a list of positions, which intuitively represents the token positions that satisfy

the full-text condition. The operators are the following:

• Rt(n, p): it returns a full-text relation containing a tuple for each noden that con-

tains the searched tokent at positionp.

• πn,p1,p2,...pm(R): it is the classical projection operator over a full-text relationR; the

projection list should always include the noden.

• R1 on R2: it is the classical join operator, where the join condition isR1.n = R2.n;

it ensures that positions in the same tuple are in the same node.

• σpred(R): it is the classical selection predicate;pred represents an arbitrary position-

based predicate. FTA does not define any specific predicate, even if the authors

propose some examples (distance, ordered, etc.).

• R1 −R2, R1 ∪R2: they are the classical set operators.

As an example, the following FTA expression returns the nodes that contain the key-

words “assignment”, “district”, and “judge” in that order, where the keywords “district”

and “judge” occur right next to each other, and the keyword “judge” appears within 5

words of the keyword “assignment”:

πnode(σdistance(att2 ,att3 ,5)(σordered(att3 ,att1)(σordered(att1 ,att2)(σdistance(att1 ,att2 ,0)(

Rdistrict on Rjudge) on Rassignment))))

FTA (along with its equivalent calculus FTC) are used to define a notion ofcom-

pletenessfor full-text languages; according to this definition, authors show that typical

IR languages are not complete, as well as text region algebras [CM98]. Since a query

evaluation algorithm for FTC queries would be polynomial in the size of data and expo-

nential in the size of the query, authors propose a subset of FTC, including most common

full-text predicates, that can be evaluated in a single pass over inverted lists. This result

is obtained by observing that many full-text predicates (likedistanceandordered) are

true in a contiguous region of the position space; such predicates are defined aspositive

Chapter 2. Related Works 39

predicates. An efficient query evaluation algorithm for positive predicates is presented,

and experiments show that the performance of this algorithm scales linearly with the size

of the query and the number of the context nodes.

There are a lot of other proposals for full-text algebras; some of them are quite in-

teresting from an IR point of view, but lacks the powerful semi-structured constructs we

expect from an algebra underlying XQuery Full-Text. For example, the algebra proposed

in [PG04] contains a vague predicate,about, which defines a set of document parts within

an XML document that fulfill a IR-style query; such a predicate can be combined with

XPath-like expression, while there is no support for XQuery FLWOR expressions. As an-

other example, the algebra in [MHBA04] has the same limitations, but it is based on the

concept of region algebra and presupposes that XML documents are internally stored in

a relational DBMS. Such proposals and similar ones are sometimes source of interesting

ideas, but are too far away from our goal, so we do not treat them here in more details.

Part II

AFTX: an Algebra for Full Text

Retrieval over XML Repositories

41

Chapter 3

The AFTX Algebra

In this chapter we present the core of our proposal: a data model for representing XML

repositories and an algebra for data manipulation. In Section 3.1 we present two sample

XML documents, which will be used in the following examples. Section 3.2 defines the

data model, which is used by the algebraic operators shown in Section 3.3.

3.1 Motivating Examples

Throughout the rest of this chapter, we will use two working examples of XML docu-

ments. The first, shown in Figure 2.3 in textual form and graphically in Figure 3.1, is a

data-centric XML document taken from XQuery Use Cases [Con06b]; the second, shown

in Figure 3.2, is instead a document-centric XML document and comes from XQuery

Full-Text Use Cases [Con06e].

3.2 The Data Model

In this section we present the data model forming the basic framework of our algebra.

It is worth specifying that this data model should not be intended as the basis for an

implementation of an XML Database System; rather, it should be considered as a formal

description of the concepts that system is based on.

44 Chapter 3. The AFTX Algebra

bib

book

title author

Year = “1994”

publisher price

“TCP-IP
Illustrated”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

book

title author

Year = “1992”

publisher price

“Advanced
Programming

in the Unix
Environment”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

book

title author

Year = “2000”

publisher price

“Data on
the Web”

last first

“Abiteboul” “Serge”

“Morgan
Kaufmann

Publishers”

39.95

author

last first

“Buneman” “Peter”

author

last first

“Suciu” “Dan”

book

title editor

Year = “1999”

publisher price

“Technolo
gy and

Content for
Digital TV”

last first

“Gerbarg” “Darcy”

“Kluwer
Academic

Publishers”

129.95affiliation

“CITI”

Figure 3.1: Graphical representation of the XML document in Figure 2.3.

3.2.1 Informal Overview

In our data model an XML document is represented as a rooted, ordered, labeledtree. A

tree is composed by a set of vertices, orelements, connected with arcs.

Elements always have anameand anidentifier. The notion of element identifier is

similar to the notion ofpedigreeused in [JLST01]. It is not a “true” identifier; in fact

multiple copies of an element share the same identifier, and elements can have a null

identifier. However the identifier has the following properties:

• an element stored in an XML repository can not have a null identifier; when a tree

is stored in the repository, the DBMS is supposed to assign to each element an

identifier;

• two elements stored in an XML repository (in the same tree or in different trees)

can not have the same identifier;

• when an algebraic operator creates a new element, it has a null identifier;

Chapter 3. The AFTX Algebra 45

<book number="1">

<metadata>

...

</metadata>

<content>

...

<part number="1">

...

<chapter>

<title>Heuristic Evaluation</title>

<p>Expert reviewers critique an interface to

determine conformance with recognized

usability principles. <footnote>One of the

best known lists of heuristics is <citation

url="http://www.useit.com/papers/heuristic

/heuristic_list.html"> Ten Usability

Heuristics by Jacob Nielson</citation>. Another

is <citation url="http://usability.gov

/guidelines/index.html"> Research-Based Web

Design and Usability Guidelines</citation>

</footnote></p>

</chapter>

...

</part>

...

</content>

</book>

Figure 3.2: An XML document with elements having mixed content.

46 Chapter 3. The AFTX Algebra

• the algebraic operators do not change the element identifier; this means that, if an

algebraic expression creates multiple copies of an element, they all share the same

identifier.

Each element, except for the root element, also has aparentelement. Moreover, an

element can have avalueand a list ofattributes, where each attribute has a name and a

value.

Value of elements, i.e. the text contained in them, is represented as a list oftokens,

each of which is assigned a numeric position relative to the entire tree. Attributes values

are instead separately tokenized: each attribute’s first token has position 1. The choice

of leaving aside attribute values is motivated by the fact that XQuery Full-Text separately

manages element values and attribute values. In fact any XQuery Full-Text expression

must specify whether the full-text search of a word (or a phrase) has to be done over an

element (and its sub-elements) or an attribute.

In the process of tokenization, various techniques typical of the Information Retrieval

world can be used, like de-hyphenation, stopword elimination etc. In this dissertation we

do not deal with such issues, because they have no impact on the operators of our algebra.

An element can havemixed content, i.e. it can contain character data interspersed with

child elements. Such a situation is quite frequent in so-calleddocument-centricXML

documents, which are the main candidates for full-text retrieval. In order to manage such

situations, we must keep track, in the data model, of the position of child elements inside

the text of an element; we do it by numbering text tokens according to a preorder traversal

of their containing tree.

Example 3.1 Consider the XML document in Figure 3.2. The tokenization of the subtree

rooted atchapter is shown graphically in Figure 3.3; numeric position of tokens is

indicated in square brackets. As we can see, de-hypenation is used and punctuation is not

tokenized; these choices should not be considered as part of our model: they are instead

just an example of the rules that could be followed in the tokenization phase.

Note that token enumeration proceeds from the elementtitle to the elementp, then

to the elementfootnote ; the fact that the firstcitation element is mixed inside the

Chapter 3. The AFTX Algebra 47

text of footnote is represented assigning to its first token (Ten) the number immedi-

ately following the one assigned to the token (is) that precedescitation in the text

of footnote . The twourl attributes are separately tokenized, so their enumeration

always starts from 1.

chapter

“Heuristic[1]
Evaluation[2]”

title p

footnote

Expert[3] reviewers[4] critique[5] an[6]
interface[7] to[8] determine[9]

conformance[10] with[11]
recognized[12] usability[13] principles[14].

“One[15] of[16] the[17] best[18]
known[19] lists[20] of[21] heuristics[22]

is[23] . Another[30] is[31] ”

citation citation

“ Ten[24] Usability[25]
Heuristics[26] by[27]

Jacob[28] Nielson[29]”

“Research-Based[32]
Web[33] Design[34] and[35]
Usability[36] Guidelines[37]”

url = “http://
www.useit.com/
papers/heuristic/

heuristic_list.html[1]”

url = “http://
usability.gov/

guidelines/
index.html[1]”

Figure 3.3: Tokenization of an XML document with mixed content.

Given the above tokenization, we can define a new property for our elements: the

fulltext, which is the value of an element concatenated with the value of its sub-elements.

For example, the fulltext of thefootnote element in Figure 3.3 is“One[15] of[16]

the[17] best[18] known[19] lists[20] of[21] heuristics[22] is[23] Ten[24] Usability[25]

Heuristics[26] by[27] Jacob[28] Nielson[29]. Another[30] is[31] Research-Based[32]

Web[33] Design[34] and[35] Usability[36] Guidelines[37]”.

Ordering between elements is represented by a propertyo, whose value is an integer

ranging from 1 to the number of children of each element’s parent. For example if we

denote withe the title element in Figure 3.3 and withe′ thep element, thene.o = 1 and

e′.o = 2.

Given a tree, we can pick manysubtreesfrom it. The concept of subtree is based on the

48 Chapter 3. The AFTX Algebra

notion of elementsstrict equalityand on theorder preservationproperty. Informally, two

elements are strictly equal if they arethe sameelement. This means that two elements

having the same name, the same value and the same attribute list are not necessarily

strictly equal; contrariwise, if we define twoviewsover the same tree and an element is

retained (without modifications) in both views, the two views will contain two elements

which are strictly equal. The notion of strict equality is essential for the definition of some

operators of our algebra, like difference, and is very useful in other situations, e.g. when

we want to join a tree with itself. The order preservation property also plays a crucial

role; every operator of our algebra preserves ordering.

Trees are contained inforests, which are themselves ordered. In a certain way, trees

and forests are the counterpart of tuples and relations in the relational model: our al-

gebraic operators manipulate forests (that contain trees) and return a forest, in the same

way relational algebra manipulates relations (that contain tuples) and returns a relation.

However, some differences arise.

First of all, as already said, trees and forests are ordered: an order relationship between

sibling elements is defined (and represented in our data model by the element propertyo),

as well as between trees contained in a forest. In the relational world, on the other side,

tuples and relations are not ordered; in fact we have no way of extracting the first tuple

of a relation or the first attribute of a tuple, just because no order relationship is defined

between attributes or between tuples.

An even more important difference is that trees contained in a forest are not required

to share the same structure: forests are just ordered collection of trees, but there is no

constraint on the structure of the trees contained in a forest; this choice is coherent with

one of the distinguishing features of the semi-structured world: thevaguenessof the

schema. All the tuples contained in a relation have instead the same attribute list.

Provided that a tree is always contained in a forest, we can define for the root element

a countproperty, which represents the number of trees contained in the forest; the value

of such a property will obviously be the same for the root element of any tree contained

in a forest.

Many subforestscan be picked from a forest. As in the case of subtrees, the formal

Chapter 3. The AFTX Algebra 49

definition of subforests is based on the notion of tree strict equality (two trees are strictly

equal if they arethe sametree) and on the order preservation property. Informally, a forest

is a subforest of another forest if it contains only trees strictly equal to trees of the original

forest, and the relative order between pairs of trees remains unchanged. If a forestF is

a subforest ofG andG is a subforest ofF , then the two forests are strictly equal: they

contain the same trees in the same order.

3.2.2 Formal Definitions

We start with the definition of the basic building blocks of our data model: attributes and

elements.

Definition 3.1 (Attribute) An attributea is a pair (n, V), where:

1. n is the name of the attribute;

2. V is a (possibly empty) ordered list((t1, 1), (t2, 2), . . . , (tn, n)) of pairs, whereti is

a token;V represents the value (possibly null) of the attribute.

As already said, an attribute’s tokens are always enumerated from 1 ton, wheren is

the number of tokens. We refer to each component of the tuple with the notationa.x, i.e.

a.n is the name of the attribute anda.V is its value. With the notationa.V [1] we indicate

the first pair in the listV , while a.V [1].t represents the first token.

Definition 3.2 (Element) An elemente is a tuple(k, n, A, V, p), where:

• k is a possibly null identifier;

• n is the name of the element;

• A = {a1, a2, . . . , an} is the set (possibly empty) of the element’s attributes;

• V is a (possibly empty) ordered list of pairs(t, n), wheret is a token andn is an

integer value;V represents the value (possibly null) of the element;

• p is a pointer (possibly null) to its parent element.

50 Chapter 3. The AFTX Algebra

We refer to each component of the tuple with the notatione.x, e.g. e.n is the name

of the elemente. Attributes are referred to using the notatione.A[attname]; for example,

with e.A[id].V we indicate the value of theid attribute of the elemente. With the

notatione.V [1] we indicate the first pair in the listV , while e.V [1].t represents the first

token.

Now we define the concept of tree.

Definition 3.3 (Tree) A treeT is a set of pairs(e, o), where:

• e is an element;

• o is an integer value.

Each treeT satisfies the following properties:

• Let ET = {e | ∃(e, o) ∈ T} the set of elements inT ; then ∃!e ∈ ET such that

e.p = null ;

• For eache ∈ ET , let Se = {(e′, o) ∈ E | e′.p = e.p} andOSe = {o | (e′, o) ∈ Se};
thenOSe is the set of the integer values between 1 and|OSe|;

• Let e be the first element in a preorder trasversal of the tree such thate.V is not

null; thene.V [1].n = 1;

• LetN be the total number of tokens found in elements’ values ofT ; then each pair

(ti, ni) is such that1 ≤ ni ≤ N , and do not exist two pairs(ti, ni) and(tj, nj) such

thatni = nj;

• For eachV = ((t1, n1), . . . , (tm, nm)), if (ti, ni) precedes(tj, nj) thenni < nj;

• LetV = ((t1, n1), . . . , (tm, nm)) andV ′ = ((t′1, n
′
1), . . . , (t

′
m, n′m)) be the values of

two elementse ande′ such thate is the parent ofe′; then eithern1 < n′1 < n′m < nm

or n′1 > nm.

Chapter 3. The AFTX Algebra 51

The first condition in this definition states that a tree always has exactly one root

element; the second explains how order between elements is represented; the following

four describe tokens enumeration. Withroot(T) we denote the root element of the tree

T , i.e. the elemente such thate.p = null .

Example 3.2 Consider the XML document in Figure 2.3. In our data model, it is rep-

resented by the treeT = ((e1, 1), (e2, 2), . . . , (e36, 36)). In what follows we present the

elementsei; each element is of the formei = (n, A, V, p). The identifierk is omitted

(as stated, it can be thought of as a unique integer value assigned by the system to each

element stored in the repository); the pointer to the parent element is represented withej.

e1 = (“bib”, null, null, null)

e2 = (“book”, ((“year”, ((“1984”, 1)))), null,e1)

e3 = (“title”, null, ((“TCP-IP”, 1), (“Illustrated”, 2)),e2)

e4 = (“author”, null, null,e2)

e5 = (“last”, null, ((“Stevens”, 3)),e4)

e6 = (“first”, null, ((“W.”, 4)), e4)

e7 = (“publisher”, null, ((“Addison-Wesley”, 5)),e2)

e8 = (“price”, null, ((“65.95”, 6)),e2)

e9 = (“book”, ((“year”, ((“1992”, 1)))), null,e1)

e10 = (“title”, null, ((“Advanced”, 7), (“Programming”, 8), (“in”, 9), (“the”,

10), (“Unix”, 11), (“Environment”, 12)),e9)

e11 = (“author”, null, null,e9)

e12 = (“last”, null, ((“Stevens”, 13)),e11)

e13 = (“first”, null, ((“W.”, 14)), e11)

e14 = (“publisher”, null, ((“Addison-Wesley”, 15)),e9)

e15 = (“price”, null, ((“65.95, 16)),e9)

e16 = (“book”, ((“year”, ((“2000”, 1)))), null,e1)

e17 = (“title”, null, ((“Data”, 17), (“on”, 18), (“the”, 19), (“Web”, 20)),e16)

e18 = (“author”, null, null,e16)

e19 = (“last”, null, ((“Abiteboul”, 21)),e18)

52 Chapter 3. The AFTX Algebra

e20 = (“first”, null, ((“Serge”, 22)),e18)

e21 = (“author”, null, null,e16)

e22 = (“last”, null, ((“Buneman”, 23)),e21)

e23 = (“first”, null, ((“Peter”, 24)),e21)

e24 = (“author”, null, null,e16)

e25 = (“last”, null, ((“Suciu”, 25)),e24)

e26 = (“first”, null, ((“Dan”, 26)), e24)

e27 = (“publisher”, null, ((“Morgan”, 27), (“Kaufmann”, 28), (“Publishers”,

29)),e16)

e28 = (“price”, null, ((“39.95”, 30)),e16)

e29 = (“book”, ((“year”, ((“1999”, 1)))), null,e1)

e30 = (“title”, null, ((“Technology”, 31), (“and”, 32), (“Content”, 33), (“for”,

34), (“Digital”, 35), (“TV”, 36)), e29)

e31 = (“editor”, null, null, e29)

e32 = (“last”, null, ((“Gerbarg”, 37)),e31)

e33 = (“first”, null, ((“Darcy”, 38)), e31)

e34 = (“affiliation”, null, ((“CITI”, 39)), e31)

e35 = (“publisher”, null, ((“Kluwer”, 40), (“Academic”, 41), (“Publishers”,

42)),e29)

e36 = (“price”, null, ((“129.95”, 43)),e29)

For the sake of convenience, we also define two derived element properties: thetext

valueand thefull-text value. Both are obtained by ade-tokenizationof the textual content

of an element; the first refers to the value of a single element, the second to the value of

every element in a subtree. These two element properties are useful for the definition of

other concepts and algebraic operators.

Definition 3.4 (Element Text Value) Let e be an element and lete.V = ((t1, n1),

(t2, n2), . . . , (tm, nm)). The text value ofe (denotede.v) is the concatenation of the tokens

t1 . . . tm, separated by a white space.

Chapter 3. The AFTX Algebra 53

Definition 3.5 (Element Full-Text Value) Let e be an element; letfirsttokene = min(

{ni | ∃e′, descendant ofe, such that(ti, ni) ∈ e′.V }) and lasttokene = max ({ni | ∃e′,
descendant ofe, such that(ti, ni) ∈ e′.V }). The full-text value ofe (denotede.fulltext)

is the concatenation of the tokensti from firsttoken to lasttoken, separated by a white

space.

Example 3.3 Consider the elemente29 in Example 3.2. The value of the derived prop-

erty e.v is “Technology and Content for Digital TV”; the value of the derived property

e.fulltext is “Technology and Content for Digital TV Gerbarg Darcy CITI Kluwer Aca-

demic Publishers 129.95”.

Now we define the concept of subtree, which is based on the notion of elements strict

equality.

Definition 3.6 (Elements strict equality) Two elementse1 = (k1, n1, A1, V1, p1) ande2 =

(k2, n2, A2, V2, p2) are strictly equal (denotede1 ≡ e2) if and only if all their compo-

nents (except for parent element and tokens enumeration) are equal, i.e.e1.k = e2.k,

e1.n = e2.n, e1.A = e2.A, e1.v = e2.v.

In the previous definition, withe1.A = e2.A we mean that the two attribute sets must

be equal, i.e. each attribute in the first set must be present in the second set (with the same

value) and viceversa.

Definition 3.7 (Subtree) Given two treesT andT ′, let E = {e | (e, o) ∈ T} andE ′ =

{e | (e, o) ∈ T ′}. T ′ is a subtree ofT (denotedT ′ ⊂ T) if:

• ∀e′ ∈ E ′, ∃e ∈ E such thate′ ≡ e;

• ∀e′ ∈ E ′, let e ∈ E be an element such thate′ ≡ e; then eithere′.p = e.p or

e′.p = null ;

• ∀(e1, o1) ∈ T, (e2, o2) ∈ T such thate1.p = e2.p and o1 < o2, if ∃(e′1, o′1) ∈
T ′, (e′2, o

′
2) ∈ T ′ such thate′1 ≡ e1 ande′2 ≡ e2, theno′1 < o′2.

54 Chapter 3. The AFTX Algebra

Let T ′ ⊂ T and lete ∈ E such thate ≡ (root)(T ′). If, ∀ei ∈ E such thatei is a

descendant ofe in T , ∃e′i ∈ E ′ such thate′i ≡ ei, thenT ′ is a complete subtree ofT

(denotedT ′ ⊂∗ T).

The first condition says that each element of a subtree must come from the original

tree; the second says that hierarchy can not be changed, except that a non-root element

could become root of the subtree; the third states that order between elements must be

preserved. The difference between a complete subtree and a non-complete subtree is

shown in Figure 3.4: given the tree (a), the tree (b) is a complete subtree, while (c) is not

complete.

e1

e2

e3 e4

e5

(a) (b)

e2

e3 e4

e2

e3

(c)

Figure 3.4: A tree (a), a complete subtree (b) and a non-complete subtree (c).

The last concepts to be defined are those of forest and subforest; for the definition of

the subforest we need the notion of trees strict equality.

Definition 3.8 (Forest) A forestF = (T1, T2, ..., Tn) is an ordered list of distinct trees.

Definition 3.9 (Trees strict equality) Two treesT1 and T2 are strictly equal (denoted

T1 ≡ T2) if ∃f : T1 → T2 such that,∀(e, o) ∈ T1, f((e, o)) = (e′, o′) is such that:

• e′ ≡ e;

• e′.p = e.p;

• o′ = o.

Definition 3.10 (Subforest) Given two forestsF = (T1, T2, . . . , Tn) andF ′ = (T ′1,

T ′2, . . . , T
′
m), F ′ is a subforest ofF (denotedF ′ ⊂ F) if:

Chapter 3. The AFTX Algebra 55

• ∀T ′ ∈ F ′,∃T ∈ F such thatT ′ ≡ T ;

• ∀Ti, Tj ∈ F, i < j, if ∃T ′i′ , T ′j′ ∈ F ′ such thatTi ≡ T ′i′ andTj ≡ T ′j′, theni′ < j′.

The second condition in the last definition states that order between trees in a subforest

must be identical to that between trees in the original forest. If two forests contain the

same trees in the same order, then the two forests are said to be strictly equal.

Definition 3.11 (Forests strict equality) Two forestsF and F ′ are strictly equal (de-

notedF ≡ F ′) if:

• F ⊂ F ′;

• F ′ ⊂ F .

As already said, the basic building blocks in our data model are elements (possibly

with attributes), which are contained into trees, which are contained into forests. Some

element properties (like name and text value) do not depend on the tree the element is

contained in; on the contrary, other properties (like full-text value) do depend on the

tree the element is contained in. It is useful to define other two properties, which can

be thought of astree properties; they depend on the forest the tree is contained in. For

consistency, we define these properties as element properties, but they make sense only

for the root element of a tree.

Definition 3.12 (Element Count) Let e be the root element of a treeT and letF be the

forest that containsT . The count ofe (denotede.count) is the number of trees contained

into F .

Definition 3.13 (Element Position)Lete be the root element of a treeT and letF be the

forest that containsT . The position ofe (denotede.pos) is the position of the treeT in

the forestF .

It should be clear that the value of thecountproperty value will be the same for each

root element of the trees contained in a forest, while thepositionproperty value varies

from 1 ton, wheren is the number of trees in the forest.

56 Chapter 3. The AFTX Algebra

Example 3.4 Suppose to have a forest (shown in Figure 3.5) composed by the complete

subtrees rooted atbook that can be extracted from the XML document in Figure 2.3 (we

will see in Section 3.3 how to obtain such a forest using an operator of our algebra); in

this figure and in all the following figures representing a forest, trees are ordered from left

to right and from top to bottom. Lete be thebook element that corresponds to the book

“Advanced Programming in the Unix Environment”; thene.count = 4 ande.pos = 2.

book

title author

Year = “1994”

publisher price

“TCP-IP
Illustrated”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

book

title author

Year = “1992”

publisher price

“Advanced
Programming

in the Unix
Environment”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

book

title author

Year = “2000”

publisher price

“Data on
the Web”

last first

“Abiteboul” “Serge”

“Morgan
Kaufmann

Publishers”

39.95

author

last first

“Buneman” “Peter”

author

last first

“Suciu” “Dan”

book

title editor

Year = “1999”

publisher price

“Technolo
gy and

Content for
Digital TV”

last first

“Gerbarg” “Darcy”

“Kluwer
Academic

Publishers”

129.95affiliation

“CITI”

Figure 3.5: Graphical representation of a forest.

Finally, we define another element property: thescoreproperty. The value of this

property (initially set to a default value) will be changed by some full-text algebraic op-

erators of our algebra. We will discuss the meaning of this property in Section 3.3; here

we just define the possible values it can assume.

Definition 3.14 (Score)Lete be an element of a treeT . The score ofe (denotede.score)

is a value in the range[0, 1].

Chapter 3. The AFTX Algebra 57

3.2.3 A Comparison with XQuery (and XQuery Full-Text) Data Model

Our data model presents some differences with respect to the XQuery Data Model; such

differences (which are summarized in Table 3.1) result in a simplification of the data

model.

Table 3.1: Comparison between XQuery Data Model and AFTX Data Model.

Concept XQuery Data Model AFTX Data Model

Basic building block Items: nodes or atomic values Elements

Collection Sequences Forests

Types XML Schema types plus five ad-

ditional types

No type information

Identity Nodes have unique identity,

atomic values have not

Element identity through

identifier

Node kinds Document, Element, Attribute,

Text, Namespace, Processing In-

struction, Comment

Trees and elements (with

attributes and value)

Element properties dm:children ,

dm:attributes ,

dm:node-name ,

dm:string-value ,

dm:typed-value ,

dm:type-name

A, n, fulltext

In XDM, the basic concept is that of sequence, which is composed by nodes (i.e. a

single node or a tree formed by nodes) and atomic values. The concept of forest present

in our data model is equivalent to the XDM sequence, but forests contain only trees: we

do not consider the case of atomic values. XDM node identity concept corresponds to our

strict equality notion.

Every node in XDM has a type; in our data model we do not consider types. Like

XDM, we provide element identity, using the element identifierk.

58 Chapter 3. The AFTX Algebra

XDM nodes are of seven kinds. Document nodes correspond to our concept of tree,

while Element nodes correspond to our elements. The counterparts of Attribute and Text

nodes in our model are respectively the element propertiesA andv. We do not consider

namespaces, processing instructions and comments.

Every XDM node has a set of accessors, which represent the properties of the node.

There is a correspondence between some accessors and some element properties of our

model:dm:attributes corresponds toA, dm:node-name corresponds ton,

dm:string-value corresponds tofulltext . No correspondence exists fordm:typed-

value anddm:type-name , because our data model does not take types into account;

dm:children also is not present in our data model, even if a corresponding derived

property could be easily defined.

Like XQuery Full-Text Data Model, our data model is based on a tokenization of

the source document, that assigns a numeric value that represents the relative position of

the word in document order. We do not deal with paragraph and sentences enumeration,

because our algebraic full-text operators (which will be shown in Section 3.3) do not

provide such search options.

In the XQuery Full-Text Data Model score values are represented as a variable; it is

not clear, however, how the value of the score variable is bound to the sequence of items

that generate that score. In our data model score values are represented by an element

property; this gives an immediate and easy to understand correspondence between a tree

and its score value.

3.3 Algebraic Operators

3.3.1 Informal Overview

In this section we define the AFTX operators, which can be categorized intobasicopera-

tors (which cover classical data manipulation tasks) andfull-textoperators (which perform

IR-style queries). For each of them, we give an informal overview of the characteristics

and one or more basic examples; later we present the formal definitions.

Chapter 3. The AFTX Algebra 59

The operators of our algebra (which are summarized in Table 3.2) can be unary or

binary. Unary operators take in a forest and return a forest; their general form is

αP (F)

whereα is an operator,P is a predicate andF is the input forest. Binary operators take

in two forests and return a forest; their general form is

αP (F, G) .

In order to improve readability, binary operators can also be represented using the equiv-

alent infix notation

FαP G .

Sometimes we writeαP (T), whereT is a tree. This expression must be intended as

the application of the operatorα to a forest containing the single treeT .

The algebra isclosed: all the operators take in forest(s) and return a forest. Con-

sequently the operators can be composed with each other. In an algebraic expression,

wherever an input forest is expected, it is possible to find:

• an algebraic operator; for instance in the expressionα(α′(. . .)) the operatorα takes

in the output forest of the operatorα′;

• a new forest, obtained by reading an XML document; for instance in the expression

α(“docname”) the operatorα takes in the forest (containing a single tree) obtained

by reading the documentdocname.

Union

The union operator is quite similar to its relational counterpart; it takes in two forests and

returns a new forest composed by the trees contained in the two input forests. Union pre-

serves ordering: the output forest will contain the trees coming from the first input forest

(in the same order as they were in the input forest), followed by the trees coming from the

second input forest. This implies that union is not commutative; this is an unavoidable

deviation from relational algebra, due to the importance of order in semi-structured data

60 Chapter 3. The AFTX Algebra

Table 3.2: AFTX algebraic operators.

Operator Usage

Union F ∪ F ′

Difference F − F ′

Projection πλ(F)

Selection σλ[γ](F)

Product F × F ′

Join F onλ[γ] F ′

Deletion δλ[γ](F)

Grouping Σ((λ1p1,n1),(λ2p2,n2),...),(λ′1,λ′2,...)(F)

Duplicate elimination ν(λ1p1,n1),(λ2p2,n2),...(F)

Ordering oλ1p1 a1,λ2p2 a2,...(F)

Tree Construction ιe1,e2,...(F)

Full-Text Selection ςλa[γ,x,stem,thes,stop](F)

Full-Text Score Assignment ξλa[γ,x,stem,thes,stop]f (F)

Full-Text Selection with Score ςλa[γ,x,stem,thes,stop]f (F)

Top-K Full-Text Selection >λa[γ,x,stem,thes,stop]f,k(F)

Threshold Full-Text Selection ωλa[γ,x,stem,thes,stop]f,τ (F)

model. The behavior of the union operator is shown graphically in Figure 3.6; rounds

with labelTi represents trees.

T1

F

T2 T3

F’

T4∪∪∪∪ = T1 T2 T3 T4

Figure 3.6: The behavior of AFTX union operator.

Example 3.5 Suppose to have two XML documents, named “CSbooks.xml” and “Math-

books.xml”, with a structure similar to the XML document shown in Figure 2.3. The

Chapter 3. The AFTX Algebra 61

query

“CSbooks.xml” ∪ “Mathbooks.xml”

returns a forest containing two trees: the tree contained in “CSbooks.xml” followed by

the tree contained in “Mathbooks.xml”. In this example the two expected input forests

are obtained by reading two XML documents.

Difference

Like union, the difference operator is analogous to the relational difference operator. It

takes in two forests and returns a subforest of the first input forest, composed by those

trees which are not included in the second input forest. Difference is based on the strict

equality notion presented in Section 3.2.2: a tree from the first forest is retained in the

output if the second forest does not contain a strictly equal tree.

Difference preserves ordering between trees: it returns trees in the same order they

were in the first input forest. The behavior of the difference operator is shown graphically

in Figure 3.7; the fact that a tree in the second forest is strictly equal to a tree in the first

forest is indicated by using the same label (T2 in the example) for both trees.

T1

F

T2 T2

F’

T4- = T1 T3T3

Figure 3.7: The behavior of AFTX difference operator.

Example 3.6 Let A andB be two algebraic expressions that take in the XML document

shown in Figure 2.3 and return, respectively, a forest containing all the subtrees rooted at

bookand a forest containing all the subtrees rooted atbooksuch that the attributeyear

has the value“1992” (we will see later how to obtain such forests using projection and

selection operators). The query

A−B

returns all the books except those written in 1992.

62 Chapter 3. The AFTX Algebra

Projection

In relational algebra, projection performs avertical decomposition of the input relation:

every tuple is output, but only the attributes of interest are retained. AFTX projection

operator behaves in a similar way: every input tree contributes to the output, but only the

subtrees of interest are retained. A graphical representation of the behavior of the AFTX

projection operator compared to the relational counterpart is shown in Figure 3.8, where

grey parts of relations and trees are those retained after projection.

(a) (b)

Figure 3.8: The behavior of relational projection operator (a) compared to AFTX projec-

tion operator (b).

The subtrees of interest are specified in the projection predicate through apath expres-

sion λ. The concept of path expression is almost identical to that used in XPath: there

are child (“/”) and descendant (“//”) axis, while the elements to retrieve can be specified

by the name, the special string “*” (meaning “any name”) or by an integer specifying the

position of the element. For example the path expression/book/3//* retrieves any el-

ement that is descendant of the third child of abookelement; for each element satisfying

the path expression, the output will contain the complete subtree rooted at it.

The main difference between relational and AFTX projection is the cardinality of the

output: while in relational algebra each input tuple corresponds to exactly one output tu-

ple (and multiple tuples can collapse in a single output tuple), in AFTX projection each

input tree corresponds to zero, one or more output trees. The fact that an input tree can not

have a corresponding output tree is due to one of the main distinguishing characteristic of

the semi-structured model: thevaguenessof the schema; this consideration leads, in our

model, to an heterogeneity of the forests, as already noted in Section 3.2.1. Consequently,

Chapter 3. The AFTX Algebra 63

it is possible that a path expression can not be found in one input tree, thus excluding that

tree from the output of a projection. On the other side, an input tree can have multiple

corresponding trees in the projection output: while in the relational world a tuple con-

tains only one attribute with a given name, in the semi-structured world an element can

have multiple child elements with the same name. Moreover, multiple subtrees can be

obviously returned by a projection if the path expression contains a wildcard (“*”) or a

descendant axes (“//”).

The projection operator preserves order between elements and trees, i.e.:

• if a treeT1 precedes a treeT2 in the input forest, then each subtreeT i
1 of the treeT1

precedes each subtreeT j
2 of the treeT2 in the output forest;

• if an elemente1 precedes an elemente2 in an input treeT , then a subtreeT1 rooted

at e′1 ≡ e1 precedes a subtreeT2 rooted ate′2 ≡ e2 in the output forest.

Example 3.7 Consider the XML document in Figure 2.3. We want to retrieve the title of

all the books. The following expression answers to the query:

π/bib/book/title(“books.xml”) .

The result of the algebraic expression is shown graphically in Figure 3.9. Note that,

in this case, four output trees correspond to one input tree, because the input tree contains

four subtrees reachable by following the path/bib/book/title .

title

“TCP-IP
Illustrated”

title

“Advanced
Programming

in the Unix
Environment”

title

“Data on
the Web”

title

“Technolo
gy and

Content for
Digital TV”

Figure 3.9: Graphical representation of the result of a projection.

It is worth noticing that the evaluation of a path expression always starts from the root

element of each input tree. For example, suppose to perform a projection over the XML

document in Figure 2.3 using the predicate/bib/book ; now we have a forest of trees

64 Chapter 3. The AFTX Algebra

rooted atbook . Later, we want to project again this result in order to obtain trees rooted

at title ; the second projection predicate must be/book/title , that is interpreted as

“find those elements namedtitle having a parent root element namedbook ” . In this

case the same result would be obtained using the predicate//title ; using the predicate

/title would instead result in an empty forest, because there are no trees having a root

element namedtitle .

Selection

In relational algebra, selection performs ahorizontaldecomposition of the input relation:

only the tuples of interest are output, and every attribute of those tuples is retained. AFTX

selection operator behaves in a similar way: only the trees of interest contribute to the

output, and those trees are entirely retained. A graphical representation of the behavior

of the AFTX selection operator compared to the relational counterpart is shown in Figure

3.10; again, grey parts of relations and forests are those retained in the output.

(a) (b)

Figure 3.10: The behavior of relational selection operator (a) compared to AFTX selec-

tion operator (b).

The trees of interest are specified through a selection predicate, which is formed by

an optional path expressionλ and, enclosed in square brackets, an optionalselection

conditionγ. If present, the path expression locates, for each input tree, a set of subtrees;

in practice, it is used to generate a temporary projection on the input tree. Each subtree

belonging to the temporary projection result is then checked: if at least one of those

subtrees satisfies the selection condition, the original input tree belongs to the output of

the selection. If the selection condition is not present, the selection predicate must be

Chapter 3. The AFTX Algebra 65

intended like“find those trees having at least one subtree reachable following the path

expressionλ” . If the path expression is not present, the selection condition must be

checked against the original trees.

In relational algebra the selection condition can only refer to the value of some at-

tribute; in AFTX it can refer to any element property: its name and value, the name

and value of one of its attributes, plus the value of some aggregate functions; aggre-

gate functions are calculated considering each subtree belonging to the temporary pro-

jection result. For example, suppose to have an input forest composed by trees rooted

at abookelement (e.g. the result ofπ/bib/book(“books.xml”)); then the selection predi-

cate/book/author[.count > 2] means that all the books having more than two authors

should be returned. In fact the selection operator behaves according to the following steps:

1. considerT1, the first input tree;

2. build the forestF1 = π/book/author(T1);

3. count the number of trees inF1; if it is greater than 2, addT1 to the output;

4. repeat steps 1–3 for the other input trees.

Moreover, the selection condition can also refer to theidentityof a subtree, i.e. it is

possible to specify that a subtree must be strictly equal to another subtree for the input

tree to be returned. This feature is useful when we want to join a tree with itself (we will

see later how to perform a join operation and what this means).

It is worth noticing that not every subtree located by the path expression is required

to satisfy the selection condition for the tree to be returned. Instead, AFTX projection

has anexistentialsemantic: a tree is returned if at least one subtree located by the path

expression satisfies the selection condition. For example, consider the selection predicate

/book/author/last[.v = “Suciu”]; it means that each book having an author whose

last name is“Suciu” should be retained. Then, the book“Data on the Web” in Figure

2.3 satisfies the selection condition, because one of its authors is Dan Suciu, even if it has

two more authors with a different last name.

66 Chapter 3. The AFTX Algebra

Example 3.8 Consider the XML document in Figure 2.3. We want to retrieve all the

books whose price is greater than 50. The following expression answers to the query:

σ/book/price[.v>50](π/bib/book(“books.xml”)) .

The result of the algebraic expression is shown graphically in Figure 3.11.

book

title author

Year = “1994”

publisher price

“TCP-IP
Illustrated”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

book

title author

Year = “1992”

publisher price

“Advanced
Programming

in the Unix
Environment”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

book

title editor

Year = “1999”

publisher price

“Technolo
gy and

Content for
Digital TV”

last first

“Gerbarg” “Darcy”

“Kluwer
Academic

Publishers”

129.95affiliation

“CITI”

Figure 3.11: Graphical representation of the result of the expression in Example 3.8.

The inner projection returns a forest of trees rooted atbook; the selection retains those

whose price is greater than 50. As previously stated, the selection condition is optional;

thus, the following query

σ/book/price(π/bib/book(“books.xml”))

is valid and retrieves all the books which have an associated price (in this case, all the four

input trees).

Product

In relational algebra the product operator combines in every possible way tuples from

the first relation with tuples from the second relation; the resulting relation has all the

attributes of the first relation plus all the attributes of the second relation. AFTX product

operator behaves similarly: it combines in every possible way all the trees from the first

forestF with all the trees of the second forestF ′. The combination among two trees is

Chapter 3. The AFTX Algebra 67

obtained by creating a new root node calledprod root, whose left and right child will be,

respectively, the tree from the first input forest and the tree from the second input forest.

A graphical representation of the behavior of the AFTX product operator compared to its

relational counterpart is shown in Figure 3.12; in this case, grey coloring distinguishes the

first input tuple (or tree) from the second one.

(a)

(b)

X =

X

prod_root

=

Figure 3.12: The behavior of relational product operator (a) compared to AFTX product

operator (b).

The product operator preserves ordering, in the sense that the combination of trees

occurs following the order of the input forests. For example, ifF = (T1, T2) andF ′ =

(T ′1, T
′
2), then the first tree inF × F ′ will be the combination of the input treesT1 andT ′1.

Example 3.9 Consider the XML document in Figure 2.3. We want to retrieve, for each

author, its name and the books written by him. The following expression answers to the

query:

σ/prod root[/author≡/book/author](

π/bib/book/author(“books.xml”)× π/bib/book(“books.xml”))

The two projections return two forests containing, respectively, all the subtrees rooted at

author and all the subtrees rooted atbook . Then product combines each author with

each book. Finally selection retains only the pairs (author, book) such that the author is

one of the authors of the book; this is done using an identity test, which restricts the result

to those pairs (author, book) such that the tree rooted atauthor is a subtree of the tree

68 Chapter 3. The AFTX Algebra

rooted atbook . A partial result of the algebraic expression (limited to the author“W.

Stevens”) is shown graphically in Figure 3.13.

book

title author

Year = “1994”

publisher price

“TCP-IP
Illustrated”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

book

title
author

Year = “1992”

publisher price

“Advanced
Programming

in the Unix
Environment”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

author

last first

“Stevens” “W.”

prod_root

author

last first

“Stevens” “W.”

prod_root

book

title author

Year = “1994”

publisher price

“TCP-IP
Illustrated”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

author

last first

“Stevens” “W.”

prod_root

book

title
author

Year = “1992”

publisher price

“Advanced
Programming

in the Unix
Environment”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

author

last first

“Stevens” “W.”

prod_root

Figure 3.13: Graphical representation of the result of an algebraic expression involving

product.

The previous expression does not return the answer one probably wants. First of all,

each pair (author, book) is repeated as many times as the number of books written by that

author. For example,“W. Stevens”has written two books, then there are two subtrees

of the input tree reachable by following the path/bib/book/author , and these two

subtrees will be part of the result of the first projection; they will be combined with each

tree belonging to the result of the second projection (i.e. the subtrees rooted atbook), thus

resulting in two output trees for each pair (“W. Stevens”, book); the subsequent selection

removes unwanted pairs (i.e. pairs involving books not written by“W. Stevens”), but it

does not resolve the duplicates problem.

Moreover, one probably wants to retain only a part of the information relative to a

book (e.g. the title and the publisher), and the books written by an author should be some-

wheregrouped, so that the name of an author appears just once. Finally, theprod root

element should be probably eliminated or renamed. Figure 3.14 shows the result one

probably wants; we will see later how to reach this goal combining product with other

operators of our algebra.

Chapter 3. The AFTX Algebra 69

books

book

publisher

“TCP-IP
Illustrated”

title

“Addison-
Wesley”

name

last first

“Stevens” “W.”

author

book

title publisher

“Advanced
Programming

in the Unix
Environment”

“Addison-
Wesley”

Figure 3.14: Graphical representation of the expected result of a product.

Join

Having fixed the concept of product, the definition of the join operator is quite straightfor-

ward. As in the relational world, AFTX join is a derived operator that combines a product

and a selection. The selection condition compares a property value of an element of the

first tree with a property value of an element of the second tree; alternatively, the selection

condition can also be an identity condition.

Example 3.10 Consider the query of Example 3.9. Using the derived join operator, it can

be answered using the following expression:

π/bib/book/author(“books.xml”) on[/author≡/book/author]

π/bib/book(“books.xml”))

The result of the expression does not change, and is therefore that shown in Figure

3.13.

Deletion

All the operators presented until now have some similarity with the corresponding rela-

tional operators; we now introduce a brand-new operator. The deletion operator takes

in a forest and returns a new forest containing non-complete subtrees of the input trees,

obtained by pruning from the original trees those subtrees that satisfy a deletion predicate.

Why do we need this operator? Informally, it completes the features of the projection

and selection operators. Remember that the projection operator permits to identify one

70 Chapter 3. The AFTX Algebra

or more elements and returns the complete subtrees rooted at those elements; if we want

instead to freely delete a portion of a tree, we need the deletion operator. On the other

hand, introducing the selection operator we noticed that not every subtree located by the

path expression is required to satisfy the selection condition for the tree to be returned;

the deletion operator enables, if needed, the deletion of those subtrees that do not respect

the selection condition. Figure 3.15 shows graphically two input trees and, in grey, the

subtrees retained after deletion. It should be clear that the same results can not be achieved

using selection or projection.

Figure 3.15: Two examples of deletion.

Even if the deletion operator is able to transform the input forest in a way not obtain-

able using projection and selection, it is not a substitute for those operators. In fact:

• the root element can not be deleted, because such a deletion would delete the entire

tree; thus, there is no way to obtain the same result asπ/bib/book(“books.xml”)

using the deletion operator;

• deletion eliminates some subtrees of the input trees, but it does not filter trees: each

input tree is retained (with some modification) in the output.

Finally, it should be noticed that deletion preserves ordering, either between trees

(they appear in the output forest in the same order as they appear in the input forest) or

between elements of a tree (they appear in an output tree in the same order as they appear

in the corresponding input tree).

Example 3.11 Consider the XML document in Figure 2.3. We want to retrieve the last

name of the first author of each book. The following algebraic expression answers to the

Chapter 3. The AFTX Algebra 71

query:

π/book/author/last(δ/book/author[.pos>1](π/bib/book(“books.xml”))) .

It is worth noticing that the previous query can not be answered using the selection pred-

icate; in fact the query

π/book/author/last(σ/book/author[.pos=1](π/bib/book(“books.xml”)))

would return, for each book having at least one author, the last name of each author. This

is because the selectionσ/book/author[.pos=1](. . .) is interpreted as follows: “among all the

books, return only those which have at least one author satisfying the condition to be the

first author”; in practice, this is true for all the books having at least one author. On the

other hand the query

σ[.pos=1](π/bib/book/author(“books.xml”)))

would return only the very first author found in the document. This is because the se-

lectionσ[.pos=1](. . .) is a special case of selection, in which the selection predicate does

not contain a path expression; therefore theworking forestfor position check is the forest

resulting from inner projection, and selection is interpreted as follows: “among all the

authors, return only those who satisfy the condition to be the first author”; in practice, this

is true only for the first author in the input forest.

Grouping

Although relational algebra does not have a grouping operator, we decided to insert it into

AFTX. Grouping, in fact, is useful in many situations in the semi-structured world; for

example, it is a convenient way to express inversion of hierarchy.

AFTX grouping operator is a very powerful construct; through the grouping predicate

it is possible to specify a list of one or more element propertiesλipi: the value of those

properties drives the process of grouping. In fact, the output will contain a distinct tree

for each distinct combination of property values found in the input forest; for each of such

trees, the root element (calledgroup root) will have as many attributes as the number

of element properties in the grouping list, and the value of those attributes will represent

72 Chapter 3. The AFTX Algebra

the properties value for that group. For example, suppose we want to group the books in

Figure 2.3 by price and publisher. Then, the books“TCP-IP Illustrated” and“Advanced

Programming in the Unix Environment”will be grouped together in a single tree; the root

of the group tree will have two attributes:price with value65.95 andpublisher

with valueAddison-Wesley . Note that the name of the newly created attributes can

be specified in the grouping predicate using the parametersni.

In the example just proposed grouping is done on the basis of thevalueproperty of

the elements/book/price and/book/editor ; however, any element property can

be used in the grouping predicate, as shown in Example 3.12.

The grouping predicate also permits to establish which part of the input trees should

be retained in the group trees, through a list of path expressionsλ′i. For example, using

the path expression/book/title , only the title of each book will be retained in group

trees.

Grouping preserves ordering: group trees appear in the output forest in the same order

as the corresponding elements appear in the input forest.

Example 3.12 Consider the XML document in Figure 2.3. We want to retrieve all the

book titles, grouped by the number of authors of the book. The following expression

answers to the query:

Σ((/book/authors.count,“numAuthors”)),(/book/title)(π/bib/book(“books.xml”)) .

The result of the algebraic expression is shown in Figure 3.16 and graphically in Figure

3.17.

Duplicate Elimination

The problem of retrieving the different values of an element property in the input for-

est can be easily solved using the grouping operator previously defined. In fact, the

elimination of duplicate values of an element property (or a list of element properties)

corresponds to a grouping operation by that element property. Provided that the only in-

formation we want to retain is the list of values, we will specify an empty list of subtrees

to attach to the group trees.

Chapter 3. The AFTX Algebra 73

<group_root numAuthors="1">

<title>TCP/IP Illustrated</title>

<title>Advanced Programming in the Unix Environment</title>

</group_root>

<group_root numAuthors="0">

<title>Technology and Content for Digital TV</title>

</group_root>

<group_root numAuthors="3">

<title>Data on the Web</title>

</group_root>

Figure 3.16: The result of an algebraic expression involving grouping.

group_root

title

numAuthors
= “1”

“TCP-IP
Illustrated”

title

“Advanced
Programming

in the Unix
Environment”

group_root

title

numAuthors
= “0”

“Technolo
gy and

Content for
Digital TV”

group_root

title

numAuthors
= “3”

“Data on
the Web”

Figure 3.17: Graphical representation of the result of an algebraic expression involving

grouping.

For the sake of convenience, we define a derived duplicate elimination operator; it

is identical to the grouping operator, except that no list of path expressions identifying

subtrees is specified. Consequently, the resulting forest will contain trees composed by

the onlygroup root element; that element, as in the case of grouping, will have as

many attributes as the number of element properties of interest. The number of trees

in the output forest will be obviously equal to the number of combinations of element

properties’ different values found in the input forest.

Example 3.13 Consider the XML document in Figure 2.3. We want to retrieve the last

name and first name of all the authors; each author should appear just once in the result.

74 Chapter 3. The AFTX Algebra

The following expression answers to the query:

ν(/author/last.v,“last”),(/author/first.v,“first”)(π/bib/book/author(“books.xml”)) .

The result is shown in Figure 3.18.

<group_root last="Stevens" first="W."/>

<group_root last="Abiteboul" fist="Serge"/>

<group_root last="Buneman" fist="Peter"/>

<group_root last="Suciu" fist="Dan"/>

Figure 3.18: The result of an algebraic expression involving duplicate elimination.

Example 3.14 Consider again the query of Example 3.9. Using a product and a sub-

sequent selection (or, equivalently, a join), we obtained a result (shown in Figure 3.13

limited to the author“W. Stevens”) which is not in the form one probably wants. Using

duplicate elimination and grouping it is possible to obtain a result in which each author

appears just once and books written by an author are grouped. The following expression:

Σ((/prod root/group root/.A[last].v,“last”),(/prod root/group root/.A[first].v,“first”)),/prod root/book(

σ/prod root[/group root.A[last].v=/book/author/last.v AND /group root.A[first].v=/book/author/first.v](

ν(/author/last.v,“last”),(/author/first.v,“first”)(π/bib/book/author(“books.xml”))×
π/bib/book(“books.xml”)))

gives the result shown graphically (again limited to the author “W. Stevens”) in Figure

3.19.

Let us examinate the behavior of this expression, limited to the author “W. Stevens”.

The grouping operator searches all the possible combinations of values for

/author/last and/author/first in the trees resulting from the first projection

(i.e. subtrees rooted atauthor). For the authorStevensan output tree is built; that output

tree is composed by a root element namedgroup root , with two attributes named

last (with value “Stevens”) and first (with value “W.”). Such a tree is then combined

Chapter 3. The AFTX Algebra 75

book

title author

Year = “1994”

publisher price

“TCP-IP
Illustrated”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

last = “Stevens”group_root

book

title
author

Year = “1992”

publisher price

“Advanced
Programming

in the Unix
Environment”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

first = “W.”

Figure 3.19: Refinement of the result of an expression using grouping.

with all the books using product; then selection discard pairs containing a book not written

by Stevens. Finally, grouping groups again by first and last name; the second part of the

grouping predicate indicates that each subtree rooted atbook should be retained in the

output group trees.

Ordering

We have seen that every AFTX operator preserves ordering of trees and elements. Some-

times, however, we need to change the order of trees. To this aim we introduce the order-

ing operator: it takes in a forest and returns a new forest containing the same trees as the

original one, but arranged in a (possible) new order.

The ordering predicate is a list of ordering directives, each of which specifies the

element to consider (through a path expressionλ), the propertyp whose values must be

compared and the ordering directiona (ascending or descending).

Example 3.15 Consider again the query of Example 3.13. We now want the authors to

be in alphabetical order. The following expression answers to the query:

o/group root.A[“last”].v ASC,/group root.A[“first”].v ASC(

ν/author/last.v,/author/first.v(

π/bib/book/author(“books.xml”)))

The result is shown in Figure 3.20.

76 Chapter 3. The AFTX Algebra

<group_root last="Abiteboul" first="Serge"/>

<group_root last="Buneman" first="Peter"/>

<group_root last="Stevens" first="W."/>

<group_root last="Suciu" first="Dan"/>

Figure 3.20: The result of an algebraic expression involving ordering.

Tree Construction

The operators presented up to now permit, in various ways, to filter and modify the input

trees. What still lacks is a way to buildnewtrees, possibly using the data contained in the

input forest; the tree construction operator accomplishes this function.

The tree construction predicate enables to specify name and value of elements to

build, name and value of their attributes and the hierarchy of elements. It is in fact a

list (e1, . . . , en) of element constructionspecification, where each element construction

specification is formed by:

• the namen of the element;

• the valuev (possibly null) of the element;

• the listA (possibly empty) of attributes, where each attribute is, as one could expect,

a pair (name, value);

• the list(e′1, . . . , e
′
m) (possibly empty) of child elements, each of which is an element

constructor specification itself.

For example, if we want to create abook element with an attributepublishingYear

whose value is"1994" and a childtitle element whose value is"TCP-IP

Illustrated" , we do it using the tree construction predicate"book"(null,

(("publishingYear", "1994")), ("title"("TCP-IP Illustrated",

null, null))) .

In this example the tree construction predicate contains all the data needed to build

the output tree. In most cases, however, some of these data must be picked from the input

Chapter 3. The AFTX Algebra 77

forest; to this aim, the tree construction predicate can contain somereferenceto the input

forest. Such references are path expressions identifying some elements of the input forest,

possibly followed by the name of an element property. For example, suppose we want to

retrieve the year of publication and the title of the book from the input forest; in this case

we use the tree construction predicate"book"(null, (("publishingYear",

/book.A[year].v)), (/book/title)) .

Here the reference/book.A[year].v states that the value of the attribute

publishingYear should be set to the value of the attributeyear in the input tree; the

reference/book/title states the newly createdbook element should have as children

every/book/title element of the input tree. Note that, in this case, an element con-

struction specification (the one that builds the child elements of rootbook element) is not

of the formn(v, A, (e1, . . . , en)); it is instead of the formλ. This case is also possible for

the root element construction specification, i.e. it is perfectly legal to write an expression

like ι/book/author(A).

Usually the input forest contains more than a single tree. The tree construction opera-

tor is applied separately to each input tree, in the order they appear in the input forest. For

example, if the input forest in the previous example would contain five trees, the output

forest would contain five trees rooted atbook .

Typically one output tree is built for each input tree. There are however cases in which

no output tree is built for an input tree or more than one output tree is built for an input

tree.

Suppose to use the construction predicate/bib/book/title . If an input tree

does not contain such a path, no output tree corresponds to that input tree. On the other

side, if four /bib/book/title elements are found in an input tree, four output trees

correspond to that input tree. It should be clear, however, that this is a degenerate example:

the same result, in fact, could be obtained simply using the projection operator instead of

the tree construction operator.

There is another case in which an input tree can generate more than one output tree:

it can occur when the tree construction predicate states to build a root element whose

value must be picked from the input forest. For example, consider to project the XML

78 Chapter 3. The AFTX Algebra

document in Figure 2.3 using the projection predicate/bib/book , then to build the out-

put using the tree construction predicate"lastname"(/book/author/last.v,

null, null) ; if a book has more than one author, multiple values of

/book/author/last are found. In this case multiplelastname elements are built,

one for each last name found.

The tree construction predicate can also contain more than one outer element construc-

tion specification. For example the predicate"books"(...), "authors"(...)

means that, for each input tree, two kinds of output trees must be built: one rooted at a

books element, the other rooted at anauthors element.

Finally, if the tree construction specification does not contain any reference to the input

forest, the entire input forest is added to the newly created tree as child of the rightmost

leaf element. This feature is useful if we want the output forest to be composed by a single

tree, as shown in the following example.

Example 3.16 Consider the XML document in Figure 2.3. We want to retrieve the first

and last name of each author and return them as sub-elements of an element namedname,

which in turn should be sub-element of an element namedauthor . The following ex-

pression answers to the query:

ι“author”(null,null,“name”(null,null,(/author/first,/author/last)))(

π/bib/book/author(“books.xml”))

Here the input forest (i.e. the result of the projection operation) is composed by trees

rooted atauthor , as shown in Figure 3.21(a). An output tree is created for each input

tree, i.e. for each author. Suppose now we want the same result, but with anauthors

element containing all theauthor elements. If we indicate withA the previous algebraic

expression, the following expression answers to the modified query:

ι“authors”(null,null,null)(A) .

In this case the construction predicate does not contain any reference to the input for-

est; consequently the entire input forest is inserted in the output tree as child of the root

Chapter 3. The AFTX Algebra 79

authors element, as shown in Figure 3.21(b). It is important to notice that it is impos-

sible to obtain this result without nesting a construction predicate inside another; in fact

the expression

ι“authors”(null,null,“author”(null,null,“name”(null,null,(/author/first,/author/last))))(

π/bib/book/author(“books.xml”))

would return a forest containing as many trees (with a root element namedauthors) as

the number of trees in the projection result, i.e. the number ofauthor elements in the

input XML document.

authors

author

last first

“Stevens” “W.”

author

last first

“Stevens” “W.”

author

last first

“Abiteboul” “Serge”

author

last first

“Buneman” “Peter”

author

last first

“Suciu” “Dan”

name

last first

“Stevens” “W.”

author

name

last first

“Stevens” “W.”

author

name

last first

“Abiteboul” “Serge”

name

last first

“Buneman” “Peter”

name

last first

“Suciu” “Dan”

author author author

(a)

(b)

Figure 3.21: The input forest for the tree construction operator of Example 3.16 (a) and

the result of the tree construction operation (b).

Example 3.17 Consider again the query of Example 3.14. Having defined the tree con-

struction operator, we are ready to write an expression whose result is that shown (limited

to the authorStevens) in Figure 3.14:

ι“author”(null,null,(“name”(P1),“books”(P2)))(F)

where

P1 = null, null, (“last”(/group root.A[last].v, null, null),

“first”(/group root.A[first].v, null, null)) ,

P2 = null, null, (“book”(null, null,

(/group root/book/title, /group root/book/publisher))) ,

80 Chapter 3. The AFTX Algebra

andF is the algebraic expression of Example 3.14.

Full-Text Selection

Up to now, we have presented thebasicoperators of our algebra. Now we present the

full-text operators, starting with the full-text selection operator.

The full-text selection operator behaves in a way similar to that of basic selection

operator previously presented: it performs a horizontal decomposition of the input forest,

retaining only those trees having at least one subtree satisfying the full-text selection

predicate. Full-text selection operates according to abooleanmodel. This means that

a binary judgement (relevant / non-relevant) is made on every tree in the input forest:

relevant trees are retained, not relevant ones are discarded.

The full-text selection predicate allows to search one or more words or phrases (spec-

ified by the parameterγ, which is a list of words or phrases connected with boolean

operators) into the full-text value of an element (reachable from the root element by fol-

lowing the pathλ) or into the value of an attributea. Moreover, it supportsproximity

search, i.e. searching two or more words with a distance between one and another not

greater than a thresholdx. Finally, using the parametersstem, thes, andstop, the user

can instruct the system to use stemming, thesaurus, and stopwords.

Having a behavior similar to the selection operator, even full-text selection preserves

ordering. Moreover, it enjoys the same algebraic properties as selection; we will see this

in more details in Chapter 5.

Example 3.18 Consider the XML document in Figure 2.3. We want to retrieve all the

books with a title containing the wordsWebandDataat a distance not greater than 3. The

following expression answers to the query:

ς/book/title[“Web” AND “Data”, 3](π/bib/book(“books.xml”)) .

The previous query returns the book “Data on the Web”; in fact its title contains the

two searched words andpos(“Web”) − pos(“Data”) = 3. The same result would be

obtained using the following expression:

ς/book[“Web” AND “Data”, 3](π/bib/book(“books.xml”)) .

Chapter 3. The AFTX Algebra 81

In fact, even if nobook element contains the searched words, the thirdbook element

has a childtitle element that contains such words; therefore the full-text value of the

third book element contains the words. Anyway the two expressions are clearly not

equivalent, even if in this special case they yield the same result.

Full-Text Score Assignment

The full-text score selection performs a full-text search using thebooleanmodel: a tree

satisfies the selection condition or it does not satisfy the condition at all. If we want

to performranked retrieval over our forest we must use the full-text score assignment

operator.

This operator does not perform a selection: each input tree is returned, without fil-

tering. What it does is to assign to each tree ascorevalue, that represents the level of

satisfaction of the full-text condition. This score value is represented by the element

propertyscore, which is set for the root element.

The full-text condition is specified in the score assignment predicate, in the same way

as in the full-text selection predicate. However, aweightcan be assigned to each word

or phrase (within the parameterγ) in order to specify which words (or phrases) should

highly influence score calculation. The weight values must be in the range[0, 1], and

their sum must be equal to 1; if no weight is specified, the system should consider each

word as equally important. For example, if there are four searched words and no weight

is explicitly specified, each word should have a weight of0.25.

How is the score calculated? The score assignment predicate provides an extra pa-

rameterf , which can be thought of afunction pointer, i.e. a pointer to the function that

is in charge of score calculation; if the parameterf is not present in the score assignment

predicate, a default (implementation dependent) score function should be used. The avail-

ability of such parameter lets the user freely decide which technique to use among those

provided by its XML database system. It should be noted that the choice of defining a

parameterized operator provides a higher flexibility than that present in the W3C Working

Draft for XQuery Full-Text [Con06f], which just states that score values are in the range

82 Chapter 3. The AFTX Algebra

[0, 1] and a higher score must imply a higher degree of relevance, without any indication

about the techniques to use in the process of score calculation.

Example 3.19 Consider the XML document in Figure 2.3. Suppose we are looking for a

book about web programming written by Stevens. This informational need istranslated

into the task of assigning a score to each book on the basis of the containment, somewhere

in the book description, of the words“Web” , “Programming” and“Stevens”; the word

“Stevens”must have a weight of0.4, while the words“Web” and“Programming” must

have a weight of0.3. The following expression answers to the query:

ξ/book[0.4“Stevens” AND 0.3“Web” AND 0.3“Programming”]f(π/bib/book(“books.xml”)) .

In this example we left undefined the functionf used for score calculation. As pre-

viosly said, it should be chosen by the user among those provided by the system. For

example, a simple scoring function could be

root(T).score =
∑
i,j

tf ti,ej
∗ wi

where:

• T is the tree whose score we want to calculate;

• tf ti,ej
is theterm frequencyof the word (or phrase)ti (included in the query) relative

to the full-text value of the elementej, which is the root of a subtree reachable from

root(T) by following the pathλ;

• wi is the weight assigned in the query to the word (or phrase)ti.

Using this scoring function, the score value of the fourbookelements would be (ele-

ment names are those used in Example 3.2):

e2.score = 0.167 ∗ 0.4 + 0 + 0 = 0.067

e9.score = 0.1 ∗ 0.4 + 0 + 0.1 ∗ 0.3 = 0.07

e16.score = 0 + 0.071 ∗ 0.3 + 0 = 0.021

e29.score = 0 + 0 + 0 = 0

Chapter 3. The AFTX Algebra 83

Full-Text Selection with Score

We have seen that full-text selection and score assignment absolve two different needs:

the first is used to select those trees that satisfy a full-text selection condition, the second

is used to assign to each tree a score value. We may want to combine those two features;

informally speaking, we would like to select those trees that satisfy the condition, and

distinguish among them those that “better” satisfy the condition.

For example, suppose two documents contain the searched words; the first one con-

tains one occurrence ofs, while the second one contains ten occurrences ofs. Both the

documents satisfy the selection condition, but the second document is more likely to be

relevant.

The derived full-text selection with score operator behaves in the following way: first,

a full-text selection is done, thus removing those trees that do not satisfy the selection

condition; then, a score value is assigned to each retained tree.

Example 3.20 Consider again the informational need of Example 3.19. We now want to

express the fact that the book description must contain the word“Stevens” and at least

one of the words“Programming” and“Web” ; a score should be assigned to each book

and the three searched words should have the same weights as in the previous example.

The following expression answers to the query:

ς/book[0.4“Stevens” AND (0.3“Programming” OR 0.3“Web”)](π/bib/book(“books.xml”)) .

The score assigned to each book will not change; however, only the book“Advanced

Programming in the Unix Environment”will be returned, because the other three books

will be filtered out by the full-text selection condition.

Top-K and Threshold Full-Text Selection

Until now, we have presented two full-text operators dealing with score: score assignment

and selection with score. Both calculate a score, but they do not use in any way such a

score.

Typical full-text searches, instead, use scores in order to filter and order input trees.

There are two classical operations we want to deal with:

84 Chapter 3. The AFTX Algebra

• “find the k most relevant results and return them in score order”;

• “find all the results whose relevance is higher than a defined threshold and return

them in score order”.

.

In order to answer similar queries we define two ad-hoc derived operators: top-K full-

text selection and threshold full-text selection. An explicit definition of such operators can

be very useful for optimization purposes; in fact, specialized algorithms can be developed,

e.g. in order to limit the number of resulting trees interested by the expensive ordering

operation.

The top-K full-text selection operator takes in a forest, assigns each input tree a score

and returns a subset of the input forest, containing thek trees with higher score, ordered by

score value. Top-K selection combines a score assignment operation with a subsequent

ordering and a final selection of thek best results; the predicate is a score predicate,

augmented with ak stating the number or trees to return.

Example 3.21 Consider again the query of Example 3.19. We now want to retrieve only

the 2 most relevant books. The following expression answers to the query:

>/book[0.4“Stevens” AND 0.3“Programming” AND 0.3“Web”]f,2(π/bib/book(“books.xml”)) .

The threshold full-text selection operator takes in a forest, assigns each input tree a

score and returns a subset of the input forest, containing the trees with a score not less

than a specified thresholdτ , ordered by score value. Threshold selection combines a

score assignment operation with a subsequent selection of the most relevant trees and a

final ordering; the predicate is a score predicate, augmented with aτ stating the threshold

score under which trees should be discarded.

Example 3.22 Consider again the query of Example 3.19. We now want to retrieve only

the books with a score higher than0.05. The following expression answers to the query:

ω/book[0.4“Stevens” AND 0.3“Programming” AND 0.3“Web”]f,0.05(π/bib/book(“books.xml”)) .

Chapter 3. The AFTX Algebra 85

3.3.2 Formal Definitions

We now give the formal definitions for the operators informally presented in Section 3.3.1.

When necessary, we also give a conversational explaination of the definitions.

Set Operators

Our algebra is equipped with two set operators: union, which returns all the trees from the

first input forest followed by the trees from the second input forest, and difference, which

returns each tree from the first input forest that is not present in the second input forest.

Definition 3.15 (Union) Given two forestsF = (T1, T2, ..., Tn) andF ′ = (T ′1, T
′
2, ..., T

′
m),

the union operatorF ∪ F ′ returns the forestH = (T1, T2, ..., Tn, T
′
1, T

′
2, ..., T

′
m).

Definition 3.16 (Difference) Given two forestsF = (T1, T2, ..., Tn) andF ′ = (T ′1,

T ′2, ..., T
′
m), the difference operatorF − F ′ returns a forestG ⊂ F such that,∀Ti ∈ F , if

Ti 6∈ G then∃T ′ ∈ F ′ such thatT ′ ≡ T .

Projection

The projection operator returns all the subtrees of the input trees that can be reached

following a path expression. We first define the notion of path expression, which is used

by many other operators of our algebra, then the projection predicate and the projection

operator.

Definition 3.17 (Path expression)A path expressionλ is an expression of the form

α1β1α2β2 . . . αmβm

where:

• αi is either “/ ” or “ // ”;

• βi is either a string or an integer or the special string “* ”.

86 Chapter 3. The AFTX Algebra

Let T be a tree andλ = α1β1 a path expression. A complete subtreeT ′ ⊂∗ T is

reachable fromroot(T) by following the pathλ if one of the following conditions holds:

• α1 is “ / ” and one of the following conditions holds:

– β1 is a string androot(T).n = β1;

– β1 is the integer 1;

– β1 is the special string “* ”.

In this caseT ′ corresponds toT .

• α1 is “ // ” and one of the following conditions holds:

– β1 is a string androot(T ′1).n = β1;

– β1 is the integeri androot(T ′) is thei-th element (in pre-order enumeration)

of the treeT ;

– β1 is the special string “* ”.

Let T be a tree,λ = α1β1α2β2 . . . αm−1βm−1 a path expression andT ′ ⊂∗ T reach-

able fromroot(T) by following the pathλ . A subtreeT ′′ ⊂∗ T ′ is reachable fromroot(T)

by following the pathλαmβm if one of the following conditions holds:

• αm is “ / ”, root(T ′′).p = root(T ′), and one of the following conditions holds:

– βm is a string androot(T ′′).n = βm;

– βm is the integeri androot(T ′′).o = i;

– βm is the special string “* ”.

• αm is “ // ” and one of the following conditions holds:

– βm is a string androot(T ′′).n = βm;

– βm is the integeri androot(T ′′) is thei-th element (in pre-order enumeration)

of the treeT ′;

– βm is the special string “* ”.

Chapter 3. The AFTX Algebra 87

Definition 3.18 (Projection Predicate) A projection predicateP is a path expressionλ.

A subtreeT ′ ⊂∗ T satisfies the projection predicateP if it can be reached fromroot(T)

by following the pathλ.

Definition 3.19 (Projection) Given a forestF = (T1, T2, ..., Tn) and a projection pred-

icateP , the projection operatorπP (F) returns a forestG = G1 ∪ G2 ∪ . . . ∪ Gn such

that:

• ∀Gi = (T 1
i , T 2

i , . . . , Tm
i), T k

i ⊂∗ Ti,∀k;

• ∀T k
i ∈ Gi, T k

i satisfies the projection predicateP .

Note that projection preserves ordering between trees; in fact each subtree ofT1 satis-

fying the projection predicate will be inG1, and consequently will precede in the output

forest each subtree ofT2.

Selection

The selection operator returns each tree in the input forest that satisfies the selection pred-

icate. The selection predicate can check the value of different element properties and can

use different comparison operators. The element properties that can be checked are those

presented in Section 3.2.2. In what follows we define the available comparison operators;

then we define the selection predicate and the selection operator.

Definition 3.20 (Comparison Operators) Given two treesT1 andT2, two kinds of com-

parison operators betweenroot(T1) androot(T2) are defined:

• value comparison: given two element propertiesp1 andp2, the usual comparison

operators=<,>, 6= etc. are defined betweenroot(T1)p1 androot(T2)p2;

• strict equality comparison:root(T1) ≡ root(T2) is true ifT1 ≡ T2.

Definition 3.21 (Selection Predicate)A selection predicateP is an expression of the

formλ[γ], where:

88 Chapter 3. The AFTX Algebra

• λ is an optional path expression;

• γ is a list of zero or more base conditionsγ1, γ2, . . . , γn connected with boolean

operators (AND, OR, NOT); each base conditionγi is of one of following forms:

– λ′ ≡ λ′′, whereλ′ is an optional path expression andλ′′ is a path expression;

– λ′p′θx, where:

∗ λ′ is an optional path expression;

∗ p′ is an element property;

∗ θ is a value comparison operator;

∗ x is a constant or is of the formλ′′p′′, whereλ′′ is a path expression and

p′′ is an element property.

LetG be the forest of subtrees of a treeT that can be reached fromroot(T) by following

the pathλ, i.e. G = πλ(T) (if λ is omitted, thenG =T). The treeT satisfies the selec-

tion predicateP if ∃T1 ∈ G such thatroot(T1) satisfies the boolean expressionγ. The

evaluation of each base conditionγi is done as follows:

• if γi is of the formλ′ ≡ λ′′, γi is satisfied if∃T ′ ∈ G′ = πλ′(T1) andT ′′ ∈ G′′ =

πλ′′(T1) such thatroot(T ′) ≡ root(T ′′)

• if γi is of the formλ′p′θx andx is a constant,γi is satisfied if∃T ′ ∈ G′ = πλ′(T1)

such thatroot(T ′)p′θx;

• if γi is of the formλ′p′θx and if x is of the formλ′′p′′, γi is satisfied if∃T ′ ∈ G′ =

πλ′(T1), T
′′ ∈ πλ′′(T1) such thatroot(T ′)p′θroot(T ′′)p′′.

Definition 3.22 (Selection)Given a forestF = (T1, T2, ..., Tn) and a selection predicate

P , the selection operatorσP (F) returns a subforestG ⊂ F such that each tree in G

satisfies the selection predicateP .

Chapter 3. The AFTX Algebra 89

Product and Join

The product operator combines each tree from the first input forest with each tree from

the second input forest. The join operator is derived from product and selection.

Definition 3.23 (Product) Given two forestsF = (T1, T2, . . . , Tn) andF ′ = (T ′1, T
′
2, . . . ,

T ′m), the product operatorF ×F ′ returns a forestF ′′ = (T ′′11, T
′′
12, . . . , T

′′
1m, T ′′21, T

′′
22, . . . ,

T ′′2m, . . . , T ′′n1, T
′′
n2, . . . , T

′′
nm) such that, for eachi, j, T ′′ij is a tree built as follows:

• root(T ′′ij) = (null, prod root, null, null, null);

• root(T ′′ij) has two children;

• let L′′ij = πprod root/1(T
′′
ij) be the left subtree ofroot(T ′′ij); thenL′′ij ≡ Ti;

• let R′′ij = πprod root/2(T
′′
ij) be the right subtree ofroot(T ′′ij); thenR′′ij ≡ T ′j;

The formal definition of join predicate is quite similar to that of selection predicate;

the definition of the operator clarifies its derived nature.

Definition 3.24 (Join) Given two forestsF = (T1, T2, . . . , Tn) andF ′ = (T ′1, T
′
2, . . . , T

′
m)

and a join predicateP = λ[γ], the join operatorF onP F ′ returns a forestF ′′ =

(T ′′1 , T ′′2 , . . . , T ′′k) such that, for eachT ′′i :

• T ′′i ∈ F × F ′;

• T ′′i satisfies the selection predicateP ′ = /prod rootλ[γ].

Join is a derived operator; in fact the following equation holds:

F onP G = σP ′(F ×G) .

90 Chapter 3. The AFTX Algebra

Deletion

The deletion operator purges from each input tree those subtrees that satisfy the deletion

predicate.

Definition 3.25 (Deletion Predicate)A selection predicateP is an expression of the form

λ[γ], where:

• λ is an optional path expression;

• γ is a list of zero or more base conditionsγ1, γ2, . . . , γn connected with boolean

operators (AND, OR, NOT); each base conditionγi is of one of following forms:

– λ′ ≡ λ′′, whereλ′ is an optional path expression andλ′′ is a path expression;

– λ′p′θx, where:

∗ λ′ is an optional path expression;

∗ p′ is an element property;

∗ θ is a value comparison operator;

∗ x is a constant or is of the formλ′′p′′, whereλ′′ is a path expression and

p′′ is an element property.

LetG be the forest of subtrees of a treeT that can be reached fromroot(T) by following

the pathλ, i.e. G = πλ(T) (if λ is omitted, thenG = (T). The treeT satisfies the

deletion predicateP if ∃T1 ∈ G such thatroot(T1) satisfies the boolean expressionγ.

The evaluation of each base conditionγi is done as follows:

• if γi is of the formλ′ ≡ λ′′, γi is satisfied if∃T ′ ∈ G′ = πλ′(T1) andT ′′ ∈ G′′ =

πλ′′(T) such thatroot(T ′) ≡ root(T ′′)

• if γi is of the formλ′p′θx andx is a constant,γi is satisfied if∃T ′ ∈ G′ = πλ′(T1)

such thatroot(T ′)p′θx;

• if γi is of the formλ′p′θx and if x is of the formλ′′p′′, γi is satisfied if∃T ′ ∈ G′ =

πλ′(T1), T
′′ ∈ πλ′′(T) such thatroot(T ′)p′θroot(T ′′)p′′.

Chapter 3. The AFTX Algebra 91

The deletion predicate is almost equal to a selection predicate; however a slight but

important difference arise. When the second part of a base condition is not a constant (i.e.

it is of form λ or λp), the path expression must be evaluated considering as base forest

the input forest, instead of the forest resulting from the projection caused by the first path

expression of the predicate.

For example, consider the deletion predicateprod root/book/author[.v 6=
/prod root/author.v]. For each input tree T, the deletion operator operates as follows:

• calculateF = π/prod root/book/author(T)

• calculateG = π/prod root/author(T)

• for each treeT ′ ∈ F :

– if ∃T ′′ ∈ G such thatroot(T ′).v 6= root(T ′′).v, removeT ′ from T .

Definition 3.26 (Deletion) Given a forestF = (T1, T2, . . . , Tn) and a deletion predicate

P = λ[γ], the deletion operatorδP (F) returns a forestF ′ = (T ′1, T
′
2, . . . , T

′
n) such that:

• ∀i, T ′i ⊂ Ti;

• ∀i, if T k
i ⊂ Ti is reachable fromroot(Ti) by following the pathλ (i.e. T k

i ∈ πλ(Ti))

andT k
i satisfies the selection conditionγ, thenT k

i is not present inT ′i .

Grouping and Duplicate Elimination

The grouping operator creates an output tree for each possible combination of some prop-

erties values found in the input trees. Each output tree will have agroup root root

element, with as many attributes as the number of properties involved in grouping.

Definition 3.27 (Grouping predicate) A grouping predicate P is of the form

((λ1p1, n1), (λ2p2, n2), . . . , (λnpn, nn)), (λ′1, λ
′
2, . . . , λ

′
m)

where:

92 Chapter 3. The AFTX Algebra

• λi andλ′i are path expressions;

• pi is an element property;

• ni is a string.

Definition 3.28 (Grouping) Given a forestF and a grouping predicate

P = ((λ1p1, n1), (λ2p2, n2), . . . , (λnpn, nn)), (λ′1, λ
′
2, . . . , λ

′
m)

the grouping operatorΣP (F) returns a forestF ′ such that:

• ∀T ′ ∈ F ′, root(T ′) = (null, “group root”, A, null, null);

• root(T ′).A = (a1, a2, . . . , an), whereai.n = ni;

• ∀T ′ ∈ F ′,∃T ∈ F such that∃T ′′ ∈ FT = (. . . ((︸ ︷︷ ︸
(n−2) times

πλ1(T)×πλ2(T))×πλ3(T))×

. . .)× πλn(T) such that:

– root(T ′).A[n1].v = e1p1, where

e1 = root(πprod root/prod root/ . . . /prod root︸ ︷︷ ︸
(n−1) times

/1
(T ′′)) ;

– root(T ′).A[n2].v = e2p2, where

e2 = root(πprod root/prod root/ . . . /prod root︸ ︷︷ ︸
(n−1) times

/2
(T ′′)) ;

– root(T ′).A[n3].v = e3p3, where

e3 = root(πprod root/prod root/ . . . /prod root︸ ︷︷ ︸
(n−2) times

/2
(T ′′)) ;

– . . . ;

– root(T ′).A[nn].v = enpn, where

en = root(πprod root/2(T
′′)) ;

Chapter 3. The AFTX Algebra 93

– πgroup root/∗(T
′) = πλ′1

(T) ∪ πλ′2
(T) ∪ . . . ∪ πλ′m(T);

• ∀T ∈ F , let FT = (. . . ((︸ ︷︷ ︸
(n−2) times

πλ1(T)× πλ2(T))× πλ3(T))× . . .)× πλn(T); ∀T ′′ ∈

FT ,∃T ′ ∈ F ′ such that:

– root(T ′).A[n1].v = e1p1, where

e1 = root(πprod root/prod root/ . . . /prod root︸ ︷︷ ︸
(n−1) times

/1
(T ′′)) ;

– root(T ′).A[n2].v = e2p2, where

e2 = root(πprod root/prod root/ . . . /prod root︸ ︷︷ ︸
(n−1) times

/2
(T ′′)) ;

– root(T ′).A[n3].v = e3p3, where

e3 = root(πprod root/prod root/ . . . /prod root︸ ︷︷ ︸
(n−2) times

/2
(T ′′)) ;

– . . . ;

– root(T ′).A[nn].v = enpn, where

en = root(πprod root/2(T
′′)) ;

– πgroup root/∗(T
′) = πλ′1

(T) ∪ πλ′2
(T) ∪ . . . ∪ πλ′m(T);

• ∀T ′1, T ′2 ∈ F ′, root(T ′1) 6≡ root(T ′2).

This definition is quite complex and deserves an in-depth analysis. The first two con-

ditions explain how the root element of the trees resulting from grouping must be named

and which attributes they must have. The third condition says that the value of each

group root element’s attribute comes from the value of some properties of the input

trees; the product between multiple projection over a tree is needed in order to find each

possible combination of properties values. Moreover, the third condition explains that

some subtrees of the input trees are retained in the output as children of thegroup root

94 Chapter 3. The AFTX Algebra

element. The fourth condition is just the opposite of the third one, thus stating that each

possible combination of properties values is found in some output tree. Finally, the fifth

condition says that each possible combination of properties values is found just once in

the output trees.

The duplicate elimination operator derives from the grouping operation; in practice,

eliminating duplicate values of some element properties means grouping by that proper-

ties without returning any subtree of the input trees.

Definition 3.29 (Duplicate elimination predicate) A duplicate elimination predicateP

is of the form(λ1p1, n1), (λ2p2, n2), . . . , (λnpn, nn), where:

• λi is a path expression;

• pi is an element property;

• ni is a string.

Definition 3.30 (Duplicate elimination) Given a forestF and a duplicate elimination

predicateP = (λ1p1, n1), (λ2p2, n2), . . . , (λnpn, nn), the derived duplicate elimination

operatorνP (F) returns the forestF ′ = Σ(P),null(F).

Ordering

Formal definitions of ordering predicate and ordering operator are quite easy to under-

stand and are given in what follows.

Definition 3.31 (Ordering predicate) An ordering predicateP = P1, P2, . . . , Pn is of

the formλ1p1 a1, λ2p2 a2, . . . , λnpn an, where:

• λi is a path expression;

• pi is an element property;

• ai is eitherASCor DESC.

Chapter 3. The AFTX Algebra 95

Definition 3.32 (Ordering) Given a forestF and an ordering predicate

P = λ1p1, λ2p2, . . . , λnpn ,

the ordering operatoroP (F) returns a forestF ′ such that:

• ∀T ′ ∈ F ′, ∃T ∈ F such thatT ′ ≡ T ;

• ∀T ∈ F , ∃T ′ ∈ F ′ such thatT ≡ T ′;

• ∀T ′1, T ′2 ∈ F ′ such thatT ′1 precedesT ′2, ∃k, 1 ≤ k ≤ n such that:

– ∀j < k, if T ′′1 ⊂ T ′1 is reachable fromroot(T ′1) by following the pathλj

and T ′′2 ⊂ T ′2 is reachable fromroot(T ′2) by following the pathλj, then

root(T ′′1)pj = root(T ′′2)pj;

– if T ′′1 ⊂ T ′1 is reachable fromroot(T ′1) by following the pathλk andT ′′2 ⊂ T ′2

is reachable fromroot(T ′2) by following the pathλk, then:

∗ if ak is ASC, thenroot(T ′′1)pk < root(T ′′2)pk;

∗ if ak is DESC, thenroot(T ′′1)pk > root(T ′′2)pk.

Tree Construction

The tree construction operator is used for building new elements, possibly using parts of

the input trees. We give the formal definition of predicate and operator. Then, in order to

clarify the definition, we present an algorithm for tree construction.

Definition 3.33 (Tree Construction Predicate)A tree construction predicateP is of the

form e1, e2, . . . , en, where eachei (namedelement construction specification) can be:

• a path expression;

• an expression of the formn(v, A, (e′1, e
′
2, . . . , e

′
m)), where:

– n is a string;

– v is either a string or a path expression followed by an element property;

96 Chapter 3. The AFTX Algebra

– A is either a path expression followed by the property.A or an expression of

the formA = ((n1, v1), (n2, v2), . . . , (nn, vn)), where eachni is a string and

eachvi is either a string or a path expression followed by an element property;

– (e′1, e
′
2, . . . , e

′
m) is a list of element construction specifications.

Definition 3.34 (Tree Construction) Given a forestF = (T1, T2, . . . , Tn) and a tree

construction predicateP = e1, e2, . . . , en, the tree construction operatorιP (F) returns

a forestG = (G1, G2, . . . , Gn), where eachGi contains trees built according to the tree

construction specificationei as follows:

• if ei is an expression of the formn(v, ((n1, v1), (n2, v2), . . . , (nm, vm)), null) such

that n, v, eachni and eachvi are not path expressions, a single tree is built as

follows:

n

F

n1 = v1

v

n2 = v2

...

nn = vn

• if ei contains some path expression, a forestGk containing one or more trees is built

for each input treeTk as follows:

– if ei is a path expressionλ, Gk = πλ(Tk);

– if ei is an expression of the formn(v, A, (e′1, e
′
2, . . . , e

′
m)):

∗ an elementeo namedn is built;

∗ its value is set as follows:

· if v is a string,eo
i .v is set tov;

· if v is an expression of the formλp, as many copies ofeo.v as the

number of treesT ′ ∈ πλ(Tk) are created, and each copy is assigned

the value(root)(T ′)p;

Chapter 3. The AFTX Algebra 97

∗ for eacheo, its attribute list is set as follows:

· if A is of the form((a1, a2, . . . , am), for eachai = (ni, vi) ∈ A an

attribute is built; its name is set toni and its value is set tovi (if vi is

a string) orπλ(Tk)p (if vi is of the formλp1;

· if A is of the formλ.A, eo
i .A is set toλ.A2;

∗ the tree construction specificationse′1, e
′
2, . . . , e

′
m are treated as previ-

ously seen, and the elements built are made children of eacheo.

Algorithm 1 explains the behavior of the tree construction operator. It uses the proce-

dureSimpleSpecification, which is shown in Algorithm 2.

Algorithm 1 Algorithm TreeConstruction
Input: a forestF and a tree construction predicatee1, e2, . . . , en

Output: a forestF ′

F ′ ← () {F ′ is initialized to the empty list}
for all element construction specificationei do

for all treeTj ∈ F do

F ′ ← F ′ ∪ SimpleSpecification(ei, Tj)

if ei does not contain any path expressionthen

insertF as subtree of the rightmost leaf element ofF ′

Full-Text Selection

The full-text selection operator returns those trees having at least a subtree satisfying

the full-text selection condition. Such a condition, specified using the full-text selection

predicate, is a list of one or more words or phrases that must be found in the full-text

value of the root element of a subtree reachable following a path expression. It is also

possible to specify a window option, i.e. to constrain the searched words (or phrases) to

have a distance between one and another not greater than a specified value. Moreover,

stemming, thesaurus and stopwords can be used.

1This expression must return a single value.
2This expression must return a single value.

98 Chapter 3. The AFTX Algebra

Algorithm 2 Algorithm SimpleSpecification
Input: a treeT and an element construction specificatione

Output: a forestF

if e is of the formλ then

return πλ(T)

else{e is of the formn(v, A, (e1, e2, . . . , en))}
if v is a stringthen

build new elemente′; e′.n← n; e′.v ← v

else{v is of the formλp}
for all treeT ′ ∈ πλ(T) do

build new elemente′; e′.n← n; e′.v ← root(T ′)p

for all elemente′ just builtdo

if A is of the formλ.A then

T ′ ← πλ(T); e′.A← T ′.A

else{A is of the form((a1, v1), . . . (an, vn))}
for all pair (ni, vi) do

build new attributea and assign it toe′; a.n← ni

if vi is a stringthen

a.v ← vi

else{vi is of the formλp}
T ′ ← πλ(T); a.v ← root(T ′)p

for all sub-element construction specificationei do

F ← SimpleSpecification(T)

for all treeT ∈ F do

root(T).p = e′

return a forest of trees havinge′ as root element

Chapter 3. The AFTX Algebra 99

In what follows we give the formal definitions of full-text selection predicate and full-

text selection operator.

Definition 3.35 (Full-Text Selection Predicate)A full-text selection predicateP is an

expression of the formλa[γ, x, stem, thes, stop], where:

• λ is a path expression;

• a is optional and, if present, is of the form.A[attname] ;

• γ is a list of one or more base conditionsγ1, γ2, . . . , γn connected with boolean

operators (AND, OR, NOT); each base conditionγi is of the form “si”, where si is

a word or phrase;

• x is an optional integer value;

• stem, thes, andstop are optional.

LetF ′ be the forest of subtrees of a treeT that can be reached fromroot(T) by following

the pathλ, i.e. F ′ = πλ(T). The treeT satisfies the full-text selection predicateP if

∃T ′ ∈ F ′ such thatT ′ satisfies the boolean expressionγ and, if present, the window

optionx. If one or more of the parametersstem, thes, andstop are present, the full-

text selection satisfaction must be decided using, respectively, stemming, thesaurus, and

stopwords.

Let t = root(T ′)a.v if a is present, or lett = root(T ′).fulltext if a is not present; each

base conditionγi is satisfied ift contains the word or phrasesi.

Let S = {(t1, t2, . . . , tn) | ti is a token (or a list of consecutive tokens) present int

such thatti = si}. Letpos(ti[j]) be the position of thej-th token in the token listti (if ti is

a single token, onlyti[1] is defined).T ′ satisfies the window optionx if ∃(t1, t2, . . . , tn) ∈
S such that, for each pair(tk, tw) of elements contained in(t1, t2, . . . , tn) such that

pos(tk[1]) < pos(tw[1]), pos(tw[1]) − pos(tk[m]) ≤ x, wherem is the length of the

token listtk.

100 Chapter 3. The AFTX Algebra

In this definitiont represents thescopeof the full-text search. If the optionala is used,

it is the value of the attribute being checked; otherwise, it is the full-text value of the root

element of the subtree being checked.

The last part of the definition explains the meaning of the window option. Informally,

each pair of searched words is checked, confronting their position; if we are searching for

(say) two phrases instead that two single words, the position of the last word in the first

phrase is confronted with the position of the first word in the second phrase.

Definition 3.36 (Full-Text Selection) Given a forestF = (T1, T2, ..., Tn) and a full-text

selection predicateP , the full-text selection operatorςP (F) returns a subforestG ⊂ F

such that each tree inG satisfies the full-text selection predicateP .

Example 3.23 Suppose to have an AFTX expressionA returning a forest containing,

among the others, the treeT shown graphically in Figure 3.3. Let us write the following

expression:

ς/chapter[“Usability Heuristic” AND “Web Design” ,10,stem](A) .

We are looking for chapters containing the phrases “Usability Heuristic”and “Web

Design”, at a distance not greater than 10; stemming must be used. WhenT is checked,

only one subtree rooted atchapter is found; actually, it corresponds to the entire tree

T . The full-text value of the root element contains the searched phrases: the first one is

found at position 25–26, the second one at position 33–34; note that the element actually

contains the phrase “Usability Heuristics”instead of “Usability Heuristic”, but the usage

of stemming allows to consider it as a match. In order to check the satisfaction of the

window option the position of the last word in the first phrase (“Heuristics”) is confronted

with the position of the first word in the second phrase (“Web”); 34 − 26 = 8 ≤ 10,

therefore the subtree satisfies the selection condition.

Full-Text Score Assignment

The full-text score assignment operator calculates a score for each input tree, on the basis

of the full-text conditions specified in the predicate. It does not filter out any tree, it

Chapter 3. The AFTX Algebra 101

just calculates the score. The predicate is identical to that of full-text selection, with the

following exceptions:

• weights can be assigned to each searched word;

• the function to use for score calculation can be specified.

In what follows we give the formal definitions of predicate and operator.

Definition 3.37 (Full-Text Score Predicate)A full-text score predicateP is an expres-

sion of the formλa[γ, x, stem, thes, stop]f , where:

• λ is a path expression;

• a is optional and, if present, is of the form.A[attname] ;

• γ is a list of one or more base conditionsγ1, γ2, . . . , γn connected with boolean

operators (AND, OR, NOT); each base conditionγi is of the formwi“ si”, where:

– si is a word or phrase;

– wi is an optional decimal value representing the weight assigned to the word

(or phrase)s;

• x is an optional integer value;

• stem, thes, andstop are optional;

• f is a function pointer.

Definition 3.38 (Full-Text Score Assignment)Given a forestF = (T1, T2, ..., Tn) and

a full-text score assignment predicateP , the full-text score assignment operatorξP (F)

returns a forestG = (T ′1, T
′
2, ..., T

′
n) such that, for eachi, T ′i ≡ Ti, with the exception that

root(T ′).score has a new value calculated by the functionf considering the full-text

selection predicateλa[γ, x, stem, thes, stop] and the weightswi assigned to each word

or phrase included inγi.

102 Chapter 3. The AFTX Algebra

Full-Text Selection with Score

The full-text selection with score operator combines the features of full-text selection

and full-text score assignment: it filters out those trees that do not satisfy the selection

condition and assigns to each retained tree a score.

The full-text selection with score predicate is actually a full-text score predicate. Con-

sequently, we directly give the formal definition of the operator.

Definition 3.39 (Full-Text Selection with Score)Given a forestF = (T1, T2, ..., Tn) and

a full-text score predicateP = λa[γ, x, stem, thes, stop]f , the full-text selection with

score operatorςP (F) returns a forestF ′ such that, for each treeT ′ ∈ F ′:

• ∃Ti ∈ F such thatT ′ ≡ Ti, with the exception thatroot(T ′) has a new value of

score representing the level of satisfaction of the full-text score predicateP ;

• T ′ satisfies the full-text selection predicateP ′ = λa[γ′, x, stem, thes, stop], where

γ′ is obtained by removing weights fromγ.

The full-text selection with score operator is a derived operator; in fact the following

equation holds:

ςP (F) = ξP (ςP ′(F)) .

Top-K and Threshold Full-Text Selection

The top-K full-text selection is a derived operator: it applies to the input forest the score

assignment operator, thus assigning each tree a score value; then it orders the trees by the

score value just computed and retains only thek trees with highest score.

The top-K full-text selection predicate is identical to the score assignment predicate,

augmented with ak stating the number of trees to retain. Formal definitions of predicate

and operator follow.

Definition 3.40 (Top-K Full-Text Selection Predicate)A top-k full-text selection predi-

cateP is an expression of the formλa[γ, x, stem, thes, stop]f, k, where:

• λ is a path expression;

Chapter 3. The AFTX Algebra 103

• a is optional and, if present, is of the form.A[attname] ;

• γ is a list of one or more base conditionsγ1, γ2, . . . , γn connected with boolean

operators (AND, OR, NOT); each base conditionγi is of the formwi “ si”, where:

– si is a word or phrase;

– wi is an optional decimal value representing the weight assigned to the word

(or phrase)si;

• x is an optional integer value;

• stem, thes, andstop are optional;

• f is a function pointer;

• k is an integer representing the number of trees to return.

Definition 3.41 (Top-K Full-Text Selection) Given a forestF = (T1, T2, ..., Tn) and a

top-K full-text selection predicateP , the top-K full-text selection operator>P (F) returns

a forestG = (T ′1, T
′
2, ..., T

′
k) such that:

• ∀T ′i ∈ G, ∃T ′′j ∈ ξP ′(F) such thatT ′i ≡ T ′′j , whereP ′ is obtained fromP by

removingk;

• ∀T ′′j ∈ ξP ′(F) such thatT ′′j 6∈ G, root(T ′i).score ≥ root(T ′′j).score, for each

T ′i ∈ G;

• G is in descending order by the value of thescore property of the trees’ root ele-

ment.

The top-K full-text selection operator is a derived operator; in fact the following equa-

tion holds:

>P (F) = σ[.pos≤k](o/1.score DESC(ξP ′(F)))

whereP ′ is obtained fromP by removingk.

104 Chapter 3. The AFTX Algebra

The threshold full-text selection is also a derived operator: it applies to the input forest

the score assignment operator, thus assigning each tree a score value; then it selects the

trees with a score higher than a tresholdτ and returns them sorted by score.

The top-K full-text selection predicate is identical to the score assignment predicate,

augmented with aτ stating the score threshold under which trees must be discarded.

Formal definitions of predicate and operator follow.

Definition 3.42 (Threshold Full-Text Selection Predicate)A threshold full-text selec-

tion predicateP is an expression of the formλa[γ x, stem, thes, stop]f, τ , where:

• λ is a path expression;

• a is optional and, if present, is of the form.A[attname] ;

• γ is a list of one or more base conditionsγ1, γ2, . . . , γn connected with boolean

operators (AND, OR, NOT); each base conditionγi is of the formwi “ si”, where:

– si is a word or phrase;

– wi is an optional decimal value representing the weight assigned to the word

(or phrase)s;

• x is an optional integer value;

• stem, thes, andstop are optional;

• f is a function pointer;

• τ is a decimal value representing the minimum score of the trees to return.

Definition 3.43 (Threshold Full-Text Selection)Given a forestF = (T1, T2, ..., Tn) and

a threshold full-text selection predicateP , the threshold full-text selection operatorωP (F)

returns a forestG = (T ′1, T
′
2, ..., T

′
m) such that:

• ∀T ′i ∈ G, ∃T ′′j ∈ ξP ′(F) such thatT ′i ≡ T ′′j , whereP ′ is obtained fromP by

removingτ ;

Chapter 3. The AFTX Algebra 105

• ∀T ′i ∈ G, root(T ′i).score ≥ τ ;

• ∀T ′′j ∈ ξP ′(F) such thatT ′′j 6∈ G, root(T ′i).score < τ ;

• G is in descending order by the value of thescore attribute of the trees’ root ele-

ment.

The threshold full-text selection operator is a derived operator; in fact the following

equation holds:

ωP (F) = o/1.score DESC(σ/1[.score≥τ](ξP ′(F)))

whereP ′ is obtained fromP by removingτ .

Chapter 4

Translating XQuery (Full-Text) Expressions

In this chapter we show how an XQuery (Full-Text) expression can be translated into an

AFTX expression. In Section 4.1 we show how each clause of a FLWOR expression

(without full-text extensions) can be translated; informal translation rules, examples and

a formal translation algorithm are presented. Then in Section 4.2 we deal with full-text

extensions; again we provide an informal overview, translation examples and the trans-

lation algorithm. In Section 4.3 we translate more complex XQuery (Full-Text) expres-

sions, taken from W3C XQuery Use Cases [Con06b] and XQuery Full-Text Use Cases

[Con06e]. Finally in Section 4.4 we briefly introduce a proposed extension of XQuery

with update capabilities and informally discuss how the new XQuery expressions could

be translated into AFTX expressions.

4.1 XQuery Translation Rules

4.1.1 Informal Overview

The for Clause

A for clause with a single variable binding is of the form

for $i in doc(" docname") λ1[γ1]λ2[γ2] . . . λn[γn]

108 Chapter 4. Translating XQuery (Full-Text) Expressions

wheredocnameis the input XML document,λi is a path expression andγi is a condition.

A for clause with a single variable binding is translated into the following algebraic

expression:

σ/1[γn](π/1λn(. . . (σ/1[γ2](π/1λ2(σ/1[γ1](πλ1(“docname”))))))) .

Projection is used to follow a path, selection represents the filter predicates. For ex-

ample, the clause

for $i in doc("books.xml")/bib/book[@year=2000]/author

applies to the documentbooks.xml the path expression/bib/book , followed by

the condition@year=2000 , followed by the path expression/author . This clause is

translated into the following algebraic expression:

π/1/author(σ/1[.A[year].v=2000](π/bib/book(“books.xml”))) .

Remember that/1 is a special case of path expression, that selects the first child of

the current element. If such an expression is found in the first step of a path expression, it

selects the root element, therefore the previous query may equivalently be written as:

π/book/author(σ/book[.A[“year”].v=2000](π/bib/book(“books.xml”))) .

A for clause could contain the definition of a positional variable, through the use

of the reserved keywordat . The presence of a positional variable does not change the

algebraic expression associated with the for clause; if later in the query there is a reference

to the positional variable, that reference is translated using the element property.pos .

For example the clause

for $i at $p in doc("books.xml")/bib/book[@year=2000]

/author

is translated into the same algebraic expression as before.

A for clause can contains adistinct-values function calls, like the following:

for $i in distinct-values(doc("books.xml")//author/last)

Chapter 4. Translating XQuery (Full-Text) Expressions 109

This clause is translated using the duplicate elimination operator as follows:

ν(/last.v, “last”)(π//author/last(“books.xml”)) .

Conditions can be nested. Afor clause with a nested condition is of the form:

for $i in . . . λ[γ1 and [λ2γ2]]

Such a condition is translated into the following algebraic expression:

σλ[γ1 AND λ2γ2](A)

whereA is the algebraic expression representingfor $i in

A for clause with multiple variable bindings is of the form

for $ i1 in doc(" docname1") λ1
1[γ

1
1]λ

1
2[γ

1
2] . . . λ

1
n[γ1

n],

$i2 in doc(" docname2") λ2
1[γ

2
1]λ

2
2[γ

2
2] . . . λ

2
n′ [γ

2
n′],

. . . ,

$im in doc(" docnamem") λm
1 [γm

1]λm
2 [γm

2] . . . λm
n′′ [γ

m
n′′]

where ik is a variable name,docnamek is an input XML document,λk
i is a path

expression andγk
i is a condition. Afor clause with multiple variable binding is translated

in the following algebraic expression:

((((A1 × A2)× A3) . . .)× Am)

whereAk is the algebraic expression corresponding to thek-th variable binding, obtained

as seen in the case of afor clause with a single variable binding. For example the clause

for $i in doc("books.xml")/bib/book[@year=2000],

$j in doc("authors.xml")/authors/author[/first="John"]

is translated into the following algebraic expression:

σ/1[.A[year].v=2000](π/bib/book(“books.xml”))×
σ/1/first[.v=“John”](π/authors/author(“authors.xml”))

110 Chapter 4. Translating XQuery (Full-Text) Expressions

In a for clause with multiple variable bindings, a variable binding can refer to another

variable. A clause of the form
for $i in . . . ,

$j in $iλ[γ]

is translated into the following algebraic expression:

A onλ1[λ≡λ2] σ/1[γ](π/1λ(A)))

whereA is an algebraic expression representing the first variable binding andλ1 (respec-

tively λ2) is the path expression representing the variable$i (respectively$j). Informally

speaking, each tree resulting from the first binding is joined with those subtrees rooted at

λ that respect the selection conditionγ. For each resulting tree, the left subtree of the root

will represent the variable $i, while the right subtree will represent the variable $j. For

example, the clause

for $i in doc("books.xml")/bib/book[@year=2000],

$j in $i/author[./first="Serge"]

is translated in the following algebraic expression:

σ/1[.A[year].v=2000](π/bib/book(“books.xml”)) on/book[/author≡/author]

σ/1/first[.v=“Serge”](π/1/author(σ/1[.A[year].v=2000](π/bib/book(“books.xml”))))

The result of this expression, wherebooks.xml is the XML document of Figure 2.3,

is displayed in Figure 4.1. An efficient implementation of the algebra should first calculate

the left input forest for the join (σ/1[.A[year].v=2000](π/bib/book(“books.xml”))), then use this

partial result to calculate the right input forest (by applyingσ/1/first[.v=“Serge”](π/1/author

to the partial result), and finally calculate the join of the two forests.

The let Clause

A typical let clause is of the form

let $i := doc(" docname") λ1[γ1]λ2[γ2] . . . λn[γn]

Chapter 4. Translating XQuery (Full-Text) Expressions 111

<prod_root>

<book year="2000">

<title>Data on the Web</title>

<author>

<last>Abiteboul</last><first>Serge</first>

</author>

<author>

<last>Buneman</last><first>Peter</first>

</author>

<author>

<last>Suciu</last><first>Dan</first>

</author>

<publisher>Morgan Kaufmann Publishers</publisher>

<price>65.95</price>

</book>

<author>

<last>Abiteboul</last><first>Serge</first>

</author>

</prod_root>

Figure 4.1: The result of afor clause with 2 variable bindings, where the second variable

references the first one.

112 Chapter 4. Translating XQuery (Full-Text) Expressions

wheredocnameis the input XML document,λi is a path expression andγi is a condition.

Unlike a for clause, alet clause binds a variable to the result of its associated

expression, without iteration. This difference is also present in our algebra: while afor

clause is translated into an algebraic expression which returns a different tree for each

possible binding, alet clause is translated into an algebraic expression which returns a

single tree. This goal is achieved using the tree construction operatorι, which creates a

root node namedlet root ; the result of the expression associated with thelet clause

will be inserted as subtree of that root node. Alet clause with a single variable binding

is thus translated into the following algebraic expression:

ι“let root”(null,null,null)(

σ/1[γn](π/1λn(. . . (σ/1[γ2](π/1λ2(σ/1[γ1](πλ1(“docname”))))))))

Often alet clause is used in conjunction with afor clause. This case can be treated

in the same way as afor clause with multiple variable bindings: the expression rep-

resenting thefor clause is combined, using the product operator, with the expression

representing thelet clause. It must be pointed out, however, that the algebraic expres-

sion representing thelet clause will return a single tree, that will be the right subtree of

each root element resulting from the product operation. For example the (partial) query

for $a in doc("authors.xml")//author

let $b := doc("books.xml")//book

is translated into the following algebraic expression:

π//author(“authors.xml”)× ι“let root”(null,null,null)(π//book(“books.xml”)) .

Sometimes alet clause is used a simple “alias” for a complex expression; in this

case thelet clause is of the form

let $i := $j λ

whereλ is a path expression and$j is previously defined variable. Such a clause does

not need to be explicitly translated into an algebraic expression; in fact, when the variable

$i will be referred to (e.g. in areturn clause), that reference will be substituted with a

reference to$j λ. For example the query

Chapter 4. Translating XQuery (Full-Text) Expressions 113

for $b in doc("books.xml")/bib/book

let $c := $b/author

return <book>

{$b/title, <count>{ count($c) }</count>}

</book>

is translated into the following algebraic expression:

ι“book”(null,null,(/book/title,“count”(/book/author.count,null,null)))(π/bib/book(“books.xml”))) .

The where Clause

A simplewhere clause is of the form

where $i λγ

whereλ is a path expression andγ is a condition. Such clause is translated into the

following algebraic expression:

σλ′λ[γ](A)

where:

• A is the algebraic expression representing the input forest;

• λ′ is a path expression that locates the nodes bound to the variable $i.

A key point in the translation process is the need to keep track of the path expression

that locates the nodes bound to a variable. Whenever afor or let clause is translated,

the translator creates a new pair (variable, path), which will be later used when the vari-

able is referred in the XQuery expression. For example the (partial) query

for $i in doc("books.xml")/bib/book[@year=2000]

where $i/price > 50

114 Chapter 4. Translating XQuery (Full-Text) Expressions

is translated into the following algebraic expression:

σ/book/price[.v>50](σ/book[.A[year].v=2000](π/bib/book(“books.xml”))) .

After the translation of thefor clause, a pair ($i , /book) must have been created. The

meaning of this pair is: “whenever in the translation a reference to$i is found, it must be

substituted with the path expression/book ”. In fact, when the expression$i/price is

encountered, it is translated as/book/price .

A where clause can also refer to two variables; in this case the clause is of the form

where $i λ1p1θ$j λ2p2

whereλi is a path expression,pi is an element property andθ is a comparison operator.

Such a clause is translated into the following algebraic expression:

σλ0[λ′1λ1p1θλ′2λ2p2](A)

where:

• λ0 is the longest common path expression between the path expressions that locate

the nodes bound to the variables $i and $j;

• λ′1 andλ′2 are the path expressions that locate the nodes bound to the variables $i

and $j, excluding the common part considered inλ0;

• A is an algebraic expression representing the input forest.

For example the (partial) query

for $i in doc("books.xml")//book,

$j in doc("authors.xml")//author

where $i/author = $j/@id

is translated into the following algebraic expression:

σ/prod root[/book/author.v=/author.A[id].v](π//author(“authors.xml”)×π//book(“books.xml”)) .

Chapter 4. Translating XQuery (Full-Text) Expressions 115

This example shows that the path expression that locates the nodes bound to a vari-

able can change during the translation process. In particular, when a product operator is

inserted into the algebraic expression, the path expression that locates the nodes bound to

the variables involved in the product must be changed by adding a leading/prod root .

In this example, initially the two variable bindings in thefor clause are translated and

two pairs ($i , /book) ($j , /author) are created. Then a product must be inserted

between the two algebraic expressions; therefore at the end of thefor translation$i is

located by/prod root/book and$j is located by/prod root/author .

Since two variables are involved in the kind ofwhere clause we are considering, the

algebraic expressionA will necessarily contain a product operator; an alternative way

to express thewhere condition is to substitute, inA, the product operator with a join

operator. Therefore the previous expression could be rewritten as follows:

π//author(“authors.xml”) on/book/author[.v=/author.A[id].v] π//book(“books.xml”) .

Quantifiers can be used in awhere clause. Awhere clause involving an existential

quantifier is of the form

where some $i in $j λ1 satisfies ($iλ2γ)

whereλ1 and λ2 are path expressions andγ is a condition. Such awhere clause is

translated into the following algebraic expression:

σλ′λ1[λ2γ](A)

where:

• λ′ is a path expression that locates the nodes bound to the variable $j;

• A is the algebraic expression representing the input forest.

On the other side, awhere clause involving a universal quantifier is of the form

where every $i in $j λ1 satisfies ($iλ2γ)

116 Chapter 4. Translating XQuery (Full-Text) Expressions

where, as before,λ1 andλ2 are path expressions andγ is a condition. Such awhere

clause is translated into the following algebraic expression:

A− σλ′λ1[¬λ2γ](A)

whereA is the algebraic expression representing the input forest. Informally, in order to

check that every subtree reachable from $j following the pathλ1 satisfies the selection

predicateλ2γ, we subtract from the input forest those trees that have at least one sub-

tree reachable from $j following the pathλ1 that satisfies the inverted selection predicate

¬λ2γ. It is worth noticing that this translation is coherent with the semantics of XQuery

universal quantifier; in fact the resulting forest will also contain the trees that do not have

a subtree reachable following the pathλ1λ2, and this is exactly equal to the XQuery be-

havior.

The order by Clause

An order by clause is of the form

order by $ i1λ1x1 a1, $i2λ2x2 a2, . . ., $inλnxn an

where:

• $ik is a variable name;

• λk is a path expression;

• xk is one of the form @attname(indicating the value of the attribute namedat-

tname), .count (indicating the number of elements with namen, wheren is the

name of the current element) or the empty string (indicating the value of the current

element);

• ak is ASCENDINGor DESCENDING.

An order by clause is translated in the following algebraic expression:

oλ′1λ1p1 a1,λ′2λ2p2 a2,...,λ′nλnpn an(A)

where:

Chapter 4. Translating XQuery (Full-Text) Expressions 117

• A is the algebraic expression representing the input forest;

• λ′k is a path expression that locates the nodes bound to the variable $ik;

• pk is an element property;

• ak is ASCor DESC.

For example the (partial) query

for $i in doc("books.xml")/bib/book

order by $i/title ascending

is translated into the following algebraic expression:

o/book/title.v ASC(π/bib/book(“books.xml”)) .

As a more complex example, consider again the query of Example 3.9. We want to

retrieve, for each author, the last name and the books written by him; in addition, the

result should be sorted by author’s last name and book title. The XQuery expression

for $i in doc("books.xml")/bib/book/author/last,

$j in doc("books.xml")/bib/book

where $i=$j/author/last

order by $i ascending, $j/title ascending

is translated into the following algebraic expression:

o/prod root/last.v ASC,/prod root/book/title.v ASC(

σ/prod root[/last.v=/book/author/last.v](

π/bib/book/author/last(“books.xml”)×
π/bib/book(“books.xml”)))

118 Chapter 4. Translating XQuery (Full-Text) Expressions

The return Clause

The simplest form of areturn clause is the following:

return {$i λ}

where:

• $i is a variable name;

• λ is a path expression.

This clause does not actually build any new tree; what it does is to project the input forest

into the pathλ. Consequently it can be translated into the following algebraic expression:

πλ(A)

whereA is the algebraic expression representing the input forest. For example the query

for $i in doc("books.xml")/bib/book/author

order by $i/last, $i/first

return {$i/last}

is translated into the following algebraic expression:

π/author/last(o/author/last.v ASC,/author/first.v ASC(π/bib/book/author(“books.xml”)) .

As soon as thereturn clause contains more than one reference to the input forest,

it is necessary to use the tree construction predicate. Areturn clause that does not

contain element constructors is of the form

return {$i1λ1}{$i2λ2}. . .{$inλn}

and is translated into the following algebraic expression:

ιλ′1λ1,λ′2λ2,...,λ′nλn(A)

where:

Chapter 4. Translating XQuery (Full-Text) Expressions 119

• A is the algebraic expression representing the input forest;

• λ′k is a path expression that locates the nodes bound to the variable $ik.

For example the query

for $i in doc("books.xml")/bib/book

return {$i/author}{$i/editor}

that returns all the authors plus all the editors, is translated into the following algebraic

expression:

ι/book/author,/book/editor(π/bib/book(“books.xml”)) .

The construction predicate is obviously necessary when thereturn clause contains

an element constructor, even if there is only one reference to the input forest. For example

the query

for $i in doc("books.xml")/bib/book

return <book title={$i/title}></book>

that returns the title of all books as attribute of atitle element, is translated into the fol-

lowing algebraic expression:

ι“book”(null,((“title”,/book/title.v)),null)(π/bib/book(“books.xml”)) .

Sometimes areturn clause may refer more than one variable. Consider again the

query of Example 3.9. As before, we want to retrieve the last name of each author and the

books written by him, but the only information we want about books is the title. Moreover,

each pair (author,title) should appear just once and the name of the author should be an

attribute of the elementauthor. The corresponding XQuery expression

for $i in distinct-values(doc("books.xml")/bib/book

/author/last),

$j in doc("books.xml")/bib/book

where $i=$j/author/last

return <author name={$i}>

120 Chapter 4. Translating XQuery (Full-Text) Expressions

<book>{$j/title/text()}</book>

</author>

is translated in the following algebraic expression:

ι“author”(null,((“name”,/prod root/group root.A[last].v)),(“book”(/prod root/book/title.v,null,null)))(

σ/prod root[/group root.A[last].v=/book/author/last.v](

ν(/last.v,“last”)(π/bib/book/author/last(“books.xml”))×
π/bib/book(“books.xml”))) .

The previous XQuery expression, however, does not return the result one probably

wants; in fact, if an author wrote five books, the resulting forest will contain 5 trees with

the same author, one for each book written by him. Consider now the following nested

expression:

for $i in doc("authors.xml")/authors/author/last

return <author name={$i}>

{

for $j in doc("books.xml")/bib/book

where $j/author/last=$i

return <book>{$j/title/text()}</book>

} </author>

Thanks to the nesting, now each author is returned just once. This XQuery expression,

however, requires that each author present in the documentauthors.xmlmust be returned,

even if he has not written any book. A simple selection with a selection predicate like

/prod root/book/author/last.v = /prod root/author/last.v is therefore not us-

able, because, deleting any tree that does not respect the condition, it would cancel an

author that has not written any book. What we need is a sort ofleft outer join. This goal

can be reached using deletion and grouping:

Chapter 4. Translating XQuery (Full-Text) Expressions 121

ι“author”(null,((“name”,/group root/last.v)),(“book”(/group root/book/title.v,null,null))(

δ/group root/∗[.k=/group root.A[“treeIdentity”].v AND .pos>1](

Σ((/prod root/1.k,“treeIdentity”)),(/prod root/1,/prod root/2)(

δ/prod root/book[/author/last](

δ/prod root/book/author[/last.v 6=/prod root/author/last.v](

π/authors/author/last(“authors.xml”)×
π/bib/book(“books.xml”))))

Let us examine this expression, from the inner part to the outer part. The first deletion

prunes eachlast element in the right subtree whose value is not equal to that of the

last element in the left subtree. The second deletion prunes eachbook element in the

right subtree does not have a childauthor element having a childlast element. Now

a tree whose left subtree represents an author that has not written the book represented

by the right subtree has been reduced to a tree without abook subtree. When we group

by node identity of the left subtree root element (i.e.last elements), an author that has

not written any book is still present in the result, obviously without any associated book.

Finally the last deletion deletes multiplelast subtrees, retaining just the first one.

4.1.2 Formal Translation Algorithm

We have informally seen in Section 4.1.1 how most of XQuery expressions can be trans-

lated into AFTX expressions. We now want to formally state which part of XQuery can

be expressed into AFTX and how such a translation is carried out.

The fragment of XQuery expressible in our algebra is shown by the following gram-

mar:

Expr ::= ExprSingle ("," ExprSingle)*

ExprSingle ::= FLWORExpr | Constructor

FLWORExpr ::= (ForClause | LetClause | ForClause

LetClause) WhereClause?

OrderByClause? "return" Constructor

ForClause ::= "for" VarRef PositionalVar? "in"

122 Chapter 4. Translating XQuery (Full-Text) Expressions

ForLetContext ("," VarRef

PositionalVar? "in" ForLetContext)*

VarRef ::= "$" Name

PositionalVar ::= "at" VarRef

ForLetContext ::= DVFunction | DVContext

DVFunction ::= "distinct-values" "(" DVContext ")"

DVContext ::= DocFunction PathExpr

| VarRef PathExpr

DocFunction ::= "doc" "(" Literal ")"

LetClause ::= "let" VarRef ":=" ForLetContext

("," VarRef ":=" ForLetContext)*

WhereClause ::= "where" (ComparisonExpr |

QuantifiedExpr) ("and"

(ComparisonExpr | QuantifiedExpr))*

OrderByClause ::= "order" "by" OrderSpec

("," OrderSpec)*

OrderSpec ::= VarRef (AxisStep QName)* ("@" QName)?

("ascending" | "descending")?

AxisStep ::= "/" | "//"

QuantifiedExpr ::= ("some" | "every") VarRef "in"

VarRef PathExpr "satisfies" "("

ComparisonExpr ")"

ComparisonExpr ::= UnaryExpr GeneralComp UnaryExpr

UnaryExpr ::= (VarRef PathExpr) | Literal

| CountPosFunction

GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="

PathExpr ::= AxisStep RelativePathExpr

RelativePathExpr ::= StepExpr (AxisStep StepExpr)*

("/" FinalStepExpr)?

StepExpr ::= NameTest Predicate*

Chapter 4. Translating XQuery (Full-Text) Expressions 123

NameTest ::= QName | "*"

Predicate ::= "[" ComparisonExpr2 "]"

ComparisonExpr2 ::= UnaryExpr1 (GeneralComp UnaryExpr2)?

UnaryExpr1 ::= PathExpr | CountPosFunction

UnaryExpr2 ::= PathExpr | (VarRef PathExpr)

| Literal | CountPosFunction

FinalStepExpr ::= ("@" NameTest) | ("text" "(" ")")

CountPosFunction ::= "count" "(" ForLetContext ")"

| "position" "(" ")"

Constructor ::= DirElemConstructor | EnclosedExpr*

DirElemConstructor ::= "<" QName DirAttribute*

("/>" | (">" DirElemContent* "</"

QName ">"))

DirAttribute ::= (QName "=" DirAttributeValue)

DirAttributeValue ::= """ Literal """ | PathExpr2

DirElemContent ::= DirElemConstructor | EnclosedExpr

| Literal

EnclosedExpr ::= "{" (FLWORExpr | PathExpr2) "}"

PathExpr2 ::= VarRef (AxisStep QName)*

("/" FinalStepExpr)?

With respect to the XQuery specifications, our fragment has the following main limi-

tations:

• no prolog exists in a query;

• each single expression can only be a FLWOR expression or a constructor;

• nesting is permitted only inside areturn clause;

• no function calls are permitted, except for the functionscount , pos and

distinct-values ;

• the if-then-elseconstruct is not supported.

124 Chapter 4. Translating XQuery (Full-Text) Expressions

We now present, step by step, the formal translation algorithm. The main function is

XQuery2AFTX, presented in Algorithm 3. It checks every single expression in the query.

For each expression, if it is a FLWOR expression, the procedureFLWORExpris called.

Algorithm 3 Function XQuery2AFTX
Input: an XQuery expressione

Output: an AFTX expressionA

1: for all ExprSingleei ∈ e do

2: if ei is a FLWORExprthen

3: Ai ← ‘’; Vi ← emptylist

4: FLWORExpr(ei, Ai, Vi, true)

5: A← A + Ai

6: else{ei is a Constructor}
7: A← A + ‘ ιConstructor(ei)(’

8: for all FLWORExpre′i in ei do

9: Ai ← ‘’; Vi ← emptylist

10: FLWORExpr(e′i, Ai, Vi, true)

11: A← A + Ai

12: if e′i is the last FLWORExprthen

13: A← A + ‘)’

14: else

15: A← A +′ ∪′

16: if ei is not the last ExprSinglethen

17: A← A + ‘ ∪ ’

18: return A

If the expression is a constructor, the functionConstructoris called; we will analyze

this function later. If the constructor contains some inner FLWOR expressions, for each

of them the procedureFLWORExpris called, and the resulting AFTX expressions are fed

to the union operator. Note that this operation is done only for the outermost FLWOR ex-

pressions, because innermost FLWOR expressions are treated by the calledFLWORExpr

procedure; we mean that, if an XQuery expression is of the form

Chapter 4. Translating XQuery (Full-Text) Expressions 125

<tagname1> ...

{

for ...

return <tagname2>...{for ...}</tagname2>

}

</tagname1>

thenXQuery2AFTXfirst callsConstructor, then call just onceFLWORExpr, passing as in-

put the outer FLWOR expression. The inner FLWOR expression is managed byFLWOR-

Expr as we will see soon.

Finally, each AFTX expression representing a single expression (being either a FLWOR

expression or a constructor) is fed to the Union operator.

The procedureFLWORExpr, presented in Algorithm 4, takes as input the FLWOR

expression to manage, the AFTX expression built up to now, a variable binding list and

a boolean value. The variable binding list is a list (initially empty) of elements that asso-

ciate, to each variable used in the XQuery expression, the path expression that locates, in

the forest resulting from an AFTX expression, the elements bound to that variable; it is

populated when afor or let is managed, and it is used during the translation process.

The boolean value tells the procedure whether it must apply a tree construction operator

to the AFTX expression or it must only build a tree construction predicate and pass it back

to the calling procedure; it is set totrue when an outermost FLWOR expression is being

translated.

FLWORExprfirst calls the proceduresForClause, LetClause, WhereClause, andOr-

derByClause. Each procedure takes as input the clause of interest, the AFTX expression

built up to now, and the variable binding list; they modify the AFTX expression and the

variable binding list.

ThenFLWORExprcalls the functionReturnClause, which will return a tree construc-

tion predicate. If the boolean input parameteraddTreeConstris true, this predicate is used

in a tree construction operator which is added to the AFTX expression previously created;

in any case the predicate is returned to the calling procedure.

126 Chapter 4. Translating XQuery (Full-Text) Expressions

Algorithm 4 Function FLWORExpr
Input: a FLWOR expressione, an AFTX expressionA, a variable binding listV , a

booleanaddTreeConstr

Output: a tree constructor predicatet

1: if e contains a ForClauseF then

2: ForClause(F, A, V)

3: if e contains a LetClauseL then

4: LetClause(L, A, V)

5: if e contains a WhereClauseW then

6: WhereClause(W, A, V)

7: if e contains a OrderByClauseO then

8: OrderByClause(O,A, V)

9: t← ReturnClause(C, A, V) {C is the Constructor}
10: if addTreeConstr then

11: A← ‘ ιt(’ + A + ‘)’

12: return t

Chapter 4. Translating XQuery (Full-Text) Expressions 127

The procedureForClause, presented in Algorithm 5, cycles over each variable bind-

ing. For each one, a new element of the variable binding list is created.

The first thing to check is whether the associated expression contains a predicate

that references a previously defined variable; in this case such expression is split into

three parts: the part before the predicate, the predicate, and the part after the predicate.

For example, if the associated expression isdoc("bib.xml")/book[/author =

$a]/title , it is split into: 1) doc("bib.xml")/book ; 2) [/author = $a] ;

3) /title . Such a splitting is performed by the procedureSplitPathExpr, shown in

Algorithm 6.

If the first part of the associated expression (or the entire associated expression, if it

has not been split) starts withfn:doc , the algebraic expression corresponding to the

variable is initialized to the name of the XML document. Then the procedurePathExpr,

shown in Algorithm 7, is called.

It checks each step in the path expression and adds a projection to the AFTX expres-

sion. If there are some predicates in the step, for each of them a selection is added to

the AFTX expression; the selection predicate is created by calling thePredicatefunc-

tion, that we will analyze later. Note thatPathExpralso sets the path expression that

locates the elements bound to the variable defined in thefor clause; it is set to the last

NameTest found in the XQuery path expression. For example, if the clause isfor $t

in doc("bib.xml")/book[@year="1999"]/title , the variable binding list

will contain the pair ($t , /title).

Now ForClausechecks if adistict-values function is applied to the expression

just translated. If this is the case (and the expression has not been split), a leading dupli-

cate elimination operator is added to the AFTX expression, and the variable binding list

element is updated.

Finally, a call to the procedureCreateProduct, shown in Algorithm 8, is used in order

to introduce a product between the AFTX expression just created and the AFTX expres-

sion previously created.CreateProductalso updates the variable binding list by adding a

leading/prod root to each path expression.

Instead of starting with afn:doc , the first part of the expression associated with a

128 Chapter 4. Translating XQuery (Full-Text) Expressions

Algorithm 5 Procedure ForClause
Input: a for clauseF , an AFTX expressionA, a variable binding listV

1: for all variable binding inF relative to a variable$i do

2: V$i ← ‘’; SplitPathExpr(PE ,PE ′, P,PE ′′) {PE is the PathExpr in DVContext}
3: if PE ′ starts withfn:doc("docname") then

4: Ai ← ‘“ docname”’; PathExpr(PE ′, Ai, V)

5: if ForLetContext is a DVFunction andP is null then

6: Ai ← ‘ν(V$i+‘ .v,“’ +V$i without heading ‘/’+‘”)’ (’ + Ai + ‘)’

7: V$i ← ‘/group root.A[’ + V$i without heading ‘/’ + ‘]’

8: CreateProduct(Ai, A, V)

9: else{the expression starts with a reference to a variable$j }
10: Ai ← Aj; V$i ← V$j; PathExpr(PE ′, Ai, V); CreateJoin(Ai, A, V, V$j +

‘ [’ + concat. of (AxisStep + NameTest) inPE ′ + ‘ ≡ ’ + V$i + ‘]’)

11: if ForLetContext is a DVFunction andP is null then

12: A← ‘Σ((V$i+‘ .v,“’ +last NameTest inPE ′+‘”)),(/prod root/1)’ (’ + A + ‘)’

13: V$i ← ‘/group root.A[’ + last NameTest inPE ′ + ‘]’

14: for all variable bindingV$k in V excludingV$i do

15: replace initial ‘/prod root ’ in V$k with ‘ /group root ’

16: if P is not nullthen

17: A← ‘σPredicate(P,V)(’ + A + ‘)’

18: if PE ′′ is not nullthen

19: λ← ‘/prod root/2’+concatenation of all (AxisStep + NameTest) inPE ′′

20: if ForLetContext is a DVFunctionthen

21: A← ‘Σ((λ+‘ .v,“’ +last NameTest inλ+‘”),(/prod root/1.k,“nodeIdentity”)),(/prod root/1)’ (’

+A + ‘)’

22: V$i ← ‘/group root.A[’ + last NameTest inλ + ‘]’

23: for all variable bindingV$k in V excludingV$i do

24: replace initial ‘/prod root ’in V$k with ‘ /group root ’

25: else

26: A← ‘ ι“/prod root”(null,null,(/prod root/1,λ))(’ + A + ‘)’

27: V$i ← ‘/prod root/2’

Chapter 4. Translating XQuery (Full-Text) Expressions 129

Algorithm 6 Procedure SplitPathExpr
Input: a PathExprPE , a stringPE ′, a stringP , a stringPE ′′

1: if PE contains a predicate that reference a previously defined variable $jthen

2: P ← the predicate

3: PE ′ ← the part ofPE ′ before the predicate

4: PE ′′ ← the part ofPE ′ after the predicate

5: else

6: PE ′ ← PE

for clause could starts with a reference to another variable previously defined, i.e. the

for clause could be of the form$i in $j... . In this case the expression correspond-

ing to the referred variable is copied; then each step in the path expression is translated as

before and the resulting expression is joined with the expression corresponding to the pre-

vious variable bindings. The join, which is produced by the procedureCreateJoinshown

in Algorithm 9, is based on a strict equality comparison predicate.

If the reference to another variable is preceded by a calls todistinct-values

(i.e. thefor clause is of the form$i in distinct-values($j...)), we must

extract the distinct values from the root elements of the trees in the second forest, while

the first forest must be maintained unchanged. This result is obtained by adding a group-

ing operator; the group is done on the basis of the root elements’ value of the trees in

the second forest, and the subtrees/prod root/1 , corresponding to the trees from

the first forest, are retained in the output. Such subtrees, which were previously reach-

able by following the path/prod/root/... , are now reachable by following the path

/group root/... ; the variable binding list is accordingly updated.

If the expression contained in thefor clause has not been split (because no predicate

contains a reference to a previously defined variable), the translation is finished. Other-

wise, a selection representing the predicate ([/author = $a] in our example) is added to

the AFTX expression; also in this case the selection predicate is built by the function

Predicate. Such a selection must be done after the product or join, because it refers two

variables.

130 Chapter 4. Translating XQuery (Full-Text) Expressions

Algorithm 7 Procedure PathExpr
Input: a PathExprPE , an AFTX expressionAi, a variable binding listV

1: λ← V$i

2: for all Step inPE do

3: λ← λ + AxisStep+ NameTest

4: if there is some predicatethen

5: Ai ← ‘πλ(’ + Ai + ‘)’

6: V$i ← ‘/’ + NameTest

7: for all predicateP in Stepdo

8: Ai ← ‘σPredicate(P,V)(’ + Ai + ‘)’

9: λ← ‘/1’

10: if this is the last stepthen

11: V$i ← ‘/’ + NameTest

12: if no predicate has been found in the last stepthen

13: Ai ← ‘πλ(’ + Ai + ‘)’

Now, if the predicate is followed by a path expression (/title in our example), we

must check if adistinct-values function is applied to the entire expression. If it is

the case, a grouping operator is added. Grouping is based on the value of the expression

(the value oftitle in our example) and on the identifier of the first subtree, i.e. the

subtree that corresponds to AFTX expression built before starting to consider thefor

clause. This way a tree is built for each distinct pair (result of the previously built AFTX

expression, value of the variable binding being translated).

If there is not adistinct-values function call, the path expression following the

predicate is translated using the tree construction operator. In order to understand why

it is not possible to use a simple projection, we must consider the situation we are in,

which is shown graphically in Fig. 4.2. Tree (a) is an example of the result of the AFTX

expression built up to now; the path expression we must translate is intended to maintain

only the grey part of the right subtree (which is the subtree corresponding to the variable

binding we are translating), leading to the resulting tree (b). There is no way to obtain

Chapter 4. Translating XQuery (Full-Text) Expressions 131

Algorithm 8 Procedure CreateProduct
Input: an AFTX expressionAi, an AFTX expressionA, a variable binding listV

1: if A is the empty stringthen

2: A← Ai

3: else

4: A← ‘(’ + A + ‘ × ’ + Ai + ‘)’

5: for all variable binding$k in the variable binding listdo

6: V$k ← ‘/prod root’ + V$k

Algorithm 9 Procedure CreateJoin
Input: an AFTX expressionAi, an AFTX expressionA, a variable binding listV , a join

predicateP

1: A← ‘(’ + A + ‘ onP ’ + Ai + ‘)’

2: for all variable binding$k in the variable binding listdo

3: V$k ← ‘/prod root’ + V$k

such a result using projection; using tree construction, instead, it is possible to build a tree

having: 1) a root element namedprod root ; 2) a left subtree corresponding to the left

subtree of tree (a); 3) a right subtree corresponding to the grey part of the right subtree of

tree (b).

(a) (b)

prod_rootprod_root

Figure 4.2: An input tree (a) and the tree that must be obtained (b).

The functionPredicate, presented in Algorithm 10, must deal with two possible pred-

icates: a comparison predicate between element or attribute values, or a predicate that

checks the existence of an element or attribute. Its goal is to produce a selection predi-

cate.

132 Chapter 4. Translating XQuery (Full-Text) Expressions

Algorithm 10 Function Predicate
Input: a PredicateP , a variable binding listV

Output: a selection predicateγ

1: if UnaryExpr2 contains a reference to a variablethen

2: γ ← the longest common path expression between the path expressions

corresponding to the two variables+‘ [’; openCondition ← false

3: else

4: γ ← ‘’; openCondition ← true

5: if UnaryExpr1 is a PathExprPE then

6: γ ← γ + V$i (excluding the part already added in line 2)

+UnaryExpr1(PE , V, openCondition)

7: if there is a GeneralCompthen

8: γ ← γ + ‘ .v’

9: else{UnaryExpr1 is a CountPosFunction}
10: γ ← γ + V$i (excluding the part already added in line 2)

+UnaryExpr1(PE , V, openCondition) + ‘ .count’ or ‘ .pos’

11: if there is a GeneralCompthen

12: γ ← γ + GeneralComp

13: if UnaryExpr2 is a PathExprPE ′ then

14: γ ← γ + UnaryExpr1(PE ′, V, false) + ‘ .v’

15: else ifUnaryExpr2 is a VarRef PathExpr ($jPE ′) then

16: γ ← γ + V$j (excluding the part already added in line 2)

+UnaryExpr1(PE ′, V, false) + ‘.v’

17: else ifUnaryExpr2 is a Literalthen

18: γ ← γ + Literal

19: else{UnaryExpr2 is a CountPosFunction}
20: if the internal PathExpr starts with a variableV$j then

21: γ ← γ + V$j (excluding the part already added in line 2)

+UnaryExpr1(PE ′, V, false) + ‘ .count’ or ‘ .pos’

22: else

23: γ ← γ + UnaryExpr1(PE ′, V, false) + ‘ .count’ or ‘ .pos’

24: γ ← γ +′]′

25: return γ

Chapter 4. Translating XQuery (Full-Text) Expressions 133

The function, at line 5, checks the first unary expression; it can be:

• a path expression; functionUnaryExpr1, shown in Algorithm 11, adds axis and

name steps to the AFTX selection predicate, until a predicate is reached; then the

function is called recursively on that predicate;

• a count or position function; the inner path expression is translated as previ-

ously seen; a.count or .pos is concatenated.

Algorithm 11 Function UnaryExpr1
Input: a UnaryExprUE , a variable binding listV , a booleanopenCondition

Output: a partial selection predicateγ

1: γ ← ‘’

2: for all StepExprdo

3: γ ← γ + AxisStep+ NameTest

4: if there is some predicatethen

5: for all predicateP in UE do

6: γ ← γ + ‘ [’ + Predicate(P, V)

7: if P is not the last predicatethen

8: γ ← γ + ‘ AND ’

9: γ ← γ + ‘]’

10: if there is a FinalStepExprF then

11: if F is of the form ‘@’+ NameTestthen

12: if openCondition then

13: γ ← γ + ‘ [.A[’ + NameTest+ ‘]’

14: else

15: γ ← γ + ‘ .A[’ + NameTest+ ‘]’

16: else

17: if openCondition then

18: γ ← γ + ‘ [’

19: return γ

134 Chapter 4. Translating XQuery (Full-Text) Expressions

The unary expression can be followed by a comparison operator and a second unary

expression; in this case the comparison operator is concatenated to the predicate, then

the second unary expression is translated. That expression can be, other than a path

expression and acount or position function, the following:

• a literal; the literal is concatenated to the selection predicate;

• a reference to a variable followed by a path expression; the path expression is trans-

lated as previously seen; a leading path expression representing the referenced vari-

able is added, by reading from the list of variable bindings.

A special care must be dedicated to the case where the second unary expression is

a reference to a variable followed by a path expression. Consider first a predicate like

/price > 50 ; it can be translated using a selection with predicate ‘/book/price[.v>

50’] (supposing that the variable binding list element corresponding to the clause being

translated has the value/book , e.g. if the completefor clause isfor $b in

doc("bib.xml")/bib/book[/price > 50]). Consider now a predicate involv-

ing a variable, like/author = $a.name (supposing that the variable binding list

element for $b is/prod root/book and the variable binding list element for $a is

/prod root/author); if we use the same technique, we would obtain a predicate

‘/prod root/book/author[.v = prod root/author/name.v]’, but this solution is not

correct. In fact the selection operator would first perform a temporal projection using the

path expressionprod root/book/author, then it would search aprod root/author

/name path inside the obtained subtrees, thus leading to an empty result. In such cases,

the correct selection predicate is therefore ‘/prod root[/book/author.v = /author

/name.v]’; lines 1–4 ofPredicatetake care of this issue.

Example 4.1 Consider again the basicfor clause translation examples presented in Sec-

tion 4.1.1; we now see that the presented algorithm behaves as expected. Let us start with

the clause

for $i in doc("books.xml")/bib/book[@year=2000]/author

Chapter 4. Translating XQuery (Full-Text) Expressions 135

The functionForClauseis called. Here are how the AFTX expression is built step by

step; whenever the AFTX expression or some variable is modified, we show the function

name, the line number and the new value. Moreover we show function or procedure calls.

• ForClause, 2: V$i ← ‘’;

• ForClause, 2: calls toSplitPathExpr, obtainingPE ′ ← ‘doc(“books.xml”)/bib

/book[@year = 2000]/author’;

• ForClause, 4: A$i ← ‘“ books.xml”’;

• ForClause, 4: calls toPathExpr:

– PathExpr, 1: λ← ‘’;

– PathExpr, 3: λ← ‘/bib’;

– PathExpr, 3: λ← ‘/bib/book’;

– PathExpr, 5: A$i ← ‘π/bib/book(“books.xml”)’;

– PathExpr, 5: V$i ← ‘/book’;

– PathExpr, 7: calls toPredicate:

∗ Predicate, 4: γ ← ‘’

∗ Predicate, 6: calls toUnaryExpr1:

· UnaryExpr, 1: γ ← ‘’;

· UnaryExpr, 13: γ ← ‘ [.A[year];

· UnaryExpr, 19: returnγ to Predicate;

∗ Predicate, 6: γ ← ‘/book[.A[year]’

∗ Predicate, 8: γ ← ‘/book[.A[year].v’

∗ Predicate, 12: γ ← ‘/book[.A[year].v =’

∗ Predicate, 18: γ ← ‘/book[.A[year].v = 2000’

∗ Predicate, 24: γ ← ‘/book[.A[year].v = 2000]’

∗ Predicate, 25: returnγ to PathExpr;

136 Chapter 4. Translating XQuery (Full-Text) Expressions

– PathExpr, 8: A$i ← ‘σ/book[.A[year].v=2000](π/bib/book(“books.xml”))’;

– PathExpr, 9: λ← ‘/1’;

– PathExpr, 3: λ← ‘/1/author’;

– PathExpr, 11: V$i ← ‘/author’;

– PathExpr, 13: A$i ← ‘π/1/author(σ/book[.A[year].v=2000](π/bib/book(

“books.xml”)))’;

• ForClause, 11: calls toCreateProduct;

– CreateProduct, 2: A← ‘π/1/author(σ/book[.A[year].v=2000](π/bib/book(

“books.xml”)))’.

The translation has been completed, and the result is that expected. Moreover, the

variable binding list now contains one item, stating the variable $i is reachable following

the path/author .

Example 4.2 Consider now the followingfor clause, that involves two variable bind-

ings:

for $i in doc("books.xml")/bib/book[@year=2000],

$j in doc("authors.xml")/authors/author[/first="John"]

The two variable binding are translated in the same way as in the previous example, thus

leading to this partial result:

• A← ‘σ/book[.A[year].v=2000](π/bib/book(“books.xml”))’;

• V$i ← ‘/book’;

• A$j ← ‘σ
/author/first[.v=“ John”]

(π/authors/author(“authors.xml”))’;

• V$j ← ‘/author’.

Now at line 11ForClausecalls CreateProduct:

Chapter 4. Translating XQuery (Full-Text) Expressions 137

• CreateProduct, 4: A← (σ/book[.A[year].v=2000](π/bib/book(“books.xml”))×
σ

/author/first[.v=“ John”]
(π/authors/author(“authors.xml”)))’;

• CreateProduct, 6: V$i ← ‘/prod root/book’;

• CreateProduct, 6: V$j ← ‘/prod root/author’.

The translation has been successfully completed. Note that, after applying the product

operator, the paths in the variable binding list have been correctly updated by adding a

heading/prod root .

Example 4.3 Consider now the case of afor clause with multiple variable bindings

where a variable binding refers to another variable, like the following one:

for $i in doc("books.xml")/bib/book[@year=2000],

$j in $i/author[/first="Serge"]

The first variable binding is translated as usual; the second is translated as follows:

• ForClause, 13:A$j ← ‘σ/book[.A[year].v=2000](π/bib/book(“books.xml”))’;

• ForClause, 13: calls to PathExpr, that does the following:

– A$j ← ‘σ/author/first[.v=“Serge”](π/book/author(

σ/book[.A[year].v=2000](π/bib/book(“books.xml”))))’;

– V$j ← ‘/author’;

• ForClause, 13: calls toCreateJoin:

– CreateJoin, 1: A← ‘(σ/book[.A[year].v=2000](π/bib/book(“books.xml”))

on/book[/author≡/author] σ/author/first[.v=“Serge”](π/book/author(

σ/book[.A[year].v=2000](π/bib/book(“books.xml”)))))’;

– CreateJoin, 3: V$i ← ‘/prod root/book’;

– CreateJoin, 3: V$j ← ‘/prod root/author’.

138 Chapter 4. Translating XQuery (Full-Text) Expressions

Example 4.4 Consider now afor clause with adistinct-values , like the follow-

ing:

for $i in distinct-values(doc("books.xml")/bib/book/author

/last)

TheDVContext is translated as usual, leading to the partial result:

• A$i ← ‘π/bib/book/author/last(“books.xml”)’;

• V$i ← ‘/last’.

Then the translation goes on as follows:

• ForClause, 9: A$i ← ‘ν(/last.v,“last”)(π/bib/book/author/last(“books.xml”))’;

• ForClause, 10: V$i ← ‘group root.A[last]’;

• ForClause, 11: calls to CreateProduct, obtainingA← Ai.

The procedureLetClause, presented in Algorithm 12, is quite similar to the proce-

dureForClause. It should be noted, however, that line 9 adds a leading tree construction

operator, in order to create an AFTX expression that returns a single tree rooted at a

let root element; the same line also modifies the variable binding list element just

created, by adding a leading/let root .

Moreover, line 1 tells to cycle over each variable binding, except for those that sim-

ply build an alias for a complex expression. Finally, it must be pointed out that line 12

builds a copy of the expression corresponding to a referenced variable excluding a possi-

ble ι“let root”(null, null, null) leading expression.

Example 4.5 Consider the following partial query:

for $a in doc("authors.xml")//author

let $b := doc("books.xml")//book

Thefor clause is translated as usual, thus leading the following partial result:

Chapter 4. Translating XQuery (Full-Text) Expressions 139

Algorithm 12 Procedure LetClause
Input: a let clauseL, an AFTX expressionA, a variable binding listV

1: for all var. binding inL relative to a var.$i (not of the formlet $i:=$j/ λ) do

2: V$i ← ‘’ {create a new variable binding element}
3: if DVContext starts withfn:doc("docname") then

4: Ai ← ‘“ docname”’

5: PathExpr(PE , Ai, V) {PE is the PathExpr in DVContext}
6: if ForLetContext is a DVFunctionthen

7: Ai ← ‘ν(V$i+‘ .v,“’ +V$i without heading ‘/’+‘”)’ (’ + Ai + ‘)’

8: V$i ← ‘/group root.A[’ + V$i without heading ‘/’ + ‘]’

9: Ai ← ‘ ι“let root”(null,null,null)(’ + Ai + ‘)’; V$i ← ‘/let root’ + V$i

10: CreateProduct(Ai, A, V)

11: else{the expression starts with a reference to a variable$j }
12: Ai ← Aj {copy the AFTX expression built for $j, excludingι}
13: V$i ← V$j

14: PathExpr(PE , Ai, V)

15: λ′ ← concatenation of all AxisStep + NameTest inPE

16: CreateJoin(Ai, A, V, V$j + ‘ [’ + λ′ + ‘ ≡ ’ + V$i + ‘]’);

140 Chapter 4. Translating XQuery (Full-Text) Expressions

• A← ‘π//author(“authors.xml”)’;

• V$a ← ‘/author’.

Then the procedureLetClauseis called. The DVContext is initially translated as in case

of for clauses, leading to:

• A$b ← ‘π//book(“books.xml”)’;

• V$b ← ‘/book’.

Then line 9 adds the tree construction operator:

• A$b ← ‘ ι“let root”(null,null,null)(π//book(“books.xml”))’;

• V$b ← ‘/let root/book’.

Finally, a product is created as usual, leading to the final result:

• A← ‘(π//author(“authors.xml”)×ι“let root”(null,null,null)(π//book(“books.xml”)))’;

• V$a ← ‘/prod root/author’;

• V$b ← ‘/prod root/let root/book’.

The procedureWhereClause, shown in Algorithm 13, cycles over each single clause.

These clauses can be a comparison between two expressions or a quantified expression.

In the first case, if the comparison expression does not refer to a variable defined in

an outer FLWOR expression, the translation is done by simply applying a selection to

the AFTX expression built up to now. The selection predicate is returned by the function

Predicate2.

In the second case, the first thing to do is to create a new variable binding list element.

If the quantified expression contains an existential quantifier and the expression does not

refer to a variable defined in an outer FLWOR expression, a selection is then applied to

the AFTX expression built up to now. If the quantified expression contains instead a uni-

versal quantifier, a difference operator is applied between the AFTX expression built up to

Chapter 4. Translating XQuery (Full-Text) Expressions 141

Algorithm 13 Procedure WhereClause
Input: awhere clauseW , an AFTX expressionA, a variable binding listV

1: for all clausewi do

2: if the clause is a ComparisonExprCE then

3: if CE refers to a variable defined in an outer FLWOR expressionthen

4: CreateOuterJoin(CE , A, V)

5: else

6: A← ‘σPredicate2(CE ,V)(’ + A + ‘)’

7: else{the clause is a QuantifiedExprsome/every $i in $j λ}
8: V$i

← V$j + λ;

9: if the QuantifiedExpr is of the formsome $i in $j λ then

10: if CE refers to a variable defined in an outer FLWOR expressionthen

11: CreateOuterJoin(CE , A, V)

12: else

13: A← ‘σPredicate2(CE ,V)(’ + A + ‘)’

14: else{the QuantifiedExpr is of the formevery $i in $j λ}
15: A← ‘A− σPredicate2inv(CE ,V)(’ + A + ‘)’

142 Chapter 4. Translating XQuery (Full-Text) Expressions

now and the result of a selection on that expression, using an inverted selection predicate.

The functionPredicate2Inv, which builds such inverted predicate, is not shown. However

its behavior should be clear; for example, if the quantified expression isevery $a in

$b//author satisfies ($a/name = "John") , Predicate2Invcreate a predi-

cate corresponding toNOT $b//author/name = "John" .

Either if the clause is a comparison expression or if it is a quantified expression, the

expression could refer to a variable defined in an outer FLWOR expression, like in the

following example:

for $i in ...

...

return

{

for $j in ...

where $j/...=$i/...

...

}

In such cases translating the clause using the selection predicate is not correct; in

fact each element bound to$i should be part of the result, even if there are no elements

bound to$j that satisfy thewhere clause. What we need is a sort ofleft outer join. Such

a join is created, using the technique already discussed in Section 4.1.1, by procedure

CreateOuterJoin, shown in Algorithm 15.

The functionPredicate2, shown in Algorithm 14, is almost identical to the function

Predicatealready presented; consequently we do not discuss it here.

Example 4.6 Consider the partial query

for $i in doc("books.xml")/bib/book[@year=2000]

where $i/price > 50

Thefor clause is translated as usual, leading to the following partial result:

Chapter 4. Translating XQuery (Full-Text) Expressions 143

Algorithm 14 Function Predicate2
Input: a ComparisonExprCE , a variable binding listV

Output: a selection predicateγ

1: if both UnaryExpr are VarRef PathExpr or CountPosFunctionthen

2: γ ← the longest common path expression between the path expressions

corresponding to the two variables+‘ [’; openCondition ← false

3: else

4: γ ← ‘’; openCondition ← true

5: if the first UnaryExpr is a VarRef PathExpr ($iPE) then

6: γ ← γ + V$i (excluding the part already added in line 2)

+UnaryExpr1(PE , V, openCondition) + ‘ .v’

7: else ifthe first UnaryExpr is a CountPosFunctionthen

8: γ ← γ + V$i (excluding the part already added in line 2)

+UnaryExpr1(PE , V, openCondition) + ‘ .count’ or ‘ .pos’

9: else{the first UnaryExpr is a Literal}
10: γ ← γ + Literal

11: γ ← γ + GeneralComp

12: if the second UnaryExpr is a VarRef PathExpr ($jPE ′) then

13: γ ← γ + V$j (excluding the part already added in line 2)

+UnaryExpr1(PE ′, V, false) + ‘ .v’

14: else ifthe second UnaryExpr is a CountPosFunctionthen

15: γ ← γ + V$j (excluding the part already added in line 2)

+UnaryExpr1(PE ′, V, false) + ‘ .count’ or ‘ .pos’

16: else{the second UnaryExpr is a Literal}
17: γ ← γ + Literal

18: γ ← γ + ‘]’

19: return γ

144 Chapter 4. Translating XQuery (Full-Text) Expressions

Algorithm 15 Procedure CreateOuterJoin
Input: a ComparisonExprCE, an AFTX expressionA, a variable binding listV

1: if the first UnaryExpr refers to a variable $out defined in a outer FLWOR expression

then

2: UEOut ← first UnaryExpr;UEIn ← second UnaryExpr

3: else

4: UEOut ← second UnaryExpr;UEIn ← first UnaryExpr

5: for all StepExpr inUEIn do

6: if this is the last stepthen

7: γ′ ← γ + AxisStep+ NameStep

8: γ ← γ + ‘ [NOT’

9: γ ← γ + AxisStep+ NameStep

10: if UEIn is a VarRef PathExpr that uses an inner variable $inthen

11: γ ← V
$in + γ + ‘ .v’

12: else{UEIn is a CountPosFunction that uses an inner variable $in}
13: γ ← V

$in + γ + ‘ .count’ or ‘ .pos’

14: γ ← γ + GeneralComp

15: for all StepExpr inUEOut do

16: γ′′ ← γ′′ + AxisStep+ NameStep

17: if UEOut is a VarRef PathExprthen

18: γ ← γ + V$out + γ′′ + ‘ .v]’

19: else ifUEOut is a CountPosFunctionthen

20: γ ← γ + V$out + γ′′ + ‘ .count]’ or ‘ .pos’

21: g ← ‘((/prod root/1.k, “treeIdentity”)), (/prod root/1, /prod root/2)’

22: d← ‘/group root/ ∗ [.k = /group root.A[“treeIdentity”].vAND.pos > 1]

23: A← ‘δd(Σg(δV$in[γ′](δγ(’ + A + ‘)’

24: for all variable bindingV$k in V do

25: replace initial ‘/prod root’in V$k with ‘/group root’

Chapter 4. Translating XQuery (Full-Text) Expressions 145

• A← ‘σ/book[.A[year].v=2000](π/bib/book(“books.xml”))’;

• V$i ← ‘/book’ .

Thewhere clause is translated as follows:

• WhereClause, 6: calls toPredicate2;

– Predicate2, 4: γ ← ‘’;

– Predicate2, 6: calls toUnaryExpr1, that returns ‘/price[’;

– Predicate2, 6: γ ← ‘/book/price[.v’;

– Predicate2, 11: γ ← ‘/book/price[.v > ’;

– Predicate2, 17: γ ← ‘/book/price[.v > 50’;

– Predicate2, 18: γ ← ‘/book/price[.v > 50]’;

– Predicate2, 19: returnsγ to WhereClause

• WhereClause, 6:A← ‘σ/book/price[.v>50](σ/book[.A[year].v=2000](

π/bib/book(“books.xml”))).

The procedure OrderByClause, shown in Algorithm 16, creates an ordering predi-

cate by defining an AFTX ordering directive for each order specification. Each ordering

specification is composed by the path expression of the variable binding list element cor-

responding to a variable, followed by an optional path expression, followed by an optional

attribute name, followed by the element property.v, followed by the ordering direction

ASC or DESC. A heading ordering operator, using the ordering predicate just built, is

then added to the AFTX expression built before theorder by clause.

Example 4.7 Consider the partial query

for $i in doc("books.xml")/bib/book

order by $i/title ascending

Thefor clause is translated as usual. Theorder by clause is translated as follows:

146 Chapter 4. Translating XQuery (Full-Text) Expressions

Algorithm 16 Procedure OrderByClause
Input: aorder by clauseO, an AFTX expressionA, a variable binding listV

1: o← ‘’

2: for all OrderSpecOi in O that refers to a variable $ido

3: o← o + V$i

4: for all (AxisStep QName)do

5: o← o + AxisStep+ QName

6: if there is a (“@”QName)then

7: o← o + ‘ .A[’ + QName+ ‘]’

8: o← o + ‘ .v’

9: if ordering direction is “descending” then

10: o← o + ‘DESC’

11: else{ordering direction is “descending”or is not present}
12: o← o + ‘ASC’

13: if Oi is not the last OrderSpecthen

14: o← o + ‘ , ’

15: A← ‘o’ o + ‘(’ + A + ‘)’

Chapter 4. Translating XQuery (Full-Text) Expressions 147

• OrderByClause, 1:o← ‘’;

• OrderByClause, 3:o← ‘/book’;

• OrderByClause, 5:o← ‘/book/title’;

• OrderByClause, 8:o← ‘/book/title.v’;

• OrderByClause, 12:o← ‘/book/title.v ASC’;

• OrderByClause, 15:A← ‘o/book/title.v ASC(π/bib/book(“books.xml”))’;

Example 4.8 Consider the partial query

for $i in doc("books.xml")/bib/book/author/last,

$j in doc("books.xml")/bib/book

where $i=$j/author/last

order by $i ascending, $j/title ascending

Thefor clause is translated as usual, thus leading to the following partial result:

• A← ‘π/bib/book/author/last(“books.xml”)× π/bib/book(“books.xml”)’;

• V$i ← ‘/prod root/last’;

• V$j ← ‘/prod root/book’.

Now we show how thewhere andorder by clauses are translated:

• WhereClause, 6: calls toPredicate2

– Predicate2, 2: γ ← ‘/prod root[’;

– Predicate2, 6: calls toUnaryExpr1, which returns the empty string;

– Predicate2, 6: γ ← ‘/prod root[/last.v’;

– Predicate2, 11: γ ← ‘/prod root[/last.v =’;

– Predicate2, 13: calls toUnaryExpr1, which returns ‘/author/last’;

148 Chapter 4. Translating XQuery (Full-Text) Expressions

– Predicate2, 13: γ ← ‘/prod root[/last.v = /book/author/last.v’;

– Predicate2, 18: γ ← ‘/prod root[/last.v = /book/author/last.v]’;

– Predicate2, 19: returnγ to WhereClause;

• WhereClause, 6: A← ‘σ/prod root[/last.v=/book/author/last.v](

π/bib/book/author/last(“books.xml”)× π/bib/book(“books.xml”))’;

• OrderByClause, 1: o← ‘’;

• OrderByClause, 3: o← ‘/prod root/last’;

• OrderByClause, 8: o← ‘/prod root/last.v’;

• OrderByClause, 12: o← ‘/prod root/last.v ASC’;

• OrderByClause, 14: o← ‘/prod root/last.v ASC,’;

• OrderByClause, 3: o← ‘/prod root/last.v ASC, /prod root/book’;

• OrderByClause, 5: o← ‘/prod root/last.v ASC, /prod root/book/title’;

• OrderByClause, 8: o← ‘/prod root/last.v ASC, /prod root/book/title.v’;

• OrderByClause, 12: o← ‘/prod root/last.v ASC, /prod root/book/title.v

ASC’;

• OrderByClause, 15: A← ‘o/prod root/last.v ASC,/prod root/book/title.v ASC(

σ/prod root[/last.v=/book/author/last.v](

π/bib/book/author/last(“books.xml”)× π/bib/book(“books.xml”)))’.

The functionReturnClause, shown in Algorithm 17, first checks if the clause contains

some inner FLWOR expression. If this is the case, the functionFLWORExpris called,

passing as input:

• the inner FLWOR expression;

• the AFTX expression built up to now;

Chapter 4. Translating XQuery (Full-Text) Expressions 149

• the variable binding list;

• the boolean valuefalse, stating thatFLWORExprmust build a tree construction

predicate but it must not apply a tree construction operator.

Algorithm 17 Function ReturnClause
Input: a ConstructorC, an AFTX expressionA, a variable binding listV

Output: a tree constructor predicatet

1: if C contains somewhere some FLWOREXPRthen

2: for all FLWORExprei do

3: ti ← FLWORExpr(ei, A, V, false)

4: if C is a DirElemConstructorthen

5: t← DirElemConstructor(C, V, T){T is the list of computedti}
6: else{C is a list of EnclosedExpr}
7: for all EnclosedExprE do

8: if E is a PathExpr2then

9: t← t + PathExpr2(E, V, false)

10: else{E is the FLWORExprei}
11: t← t + ti

12: if E is not the last EnclosedExprthen

13: t← t + ‘ , ’

14: return t

Then the function checks if the constructor is a direct element constructor (e.g.

<result>...</result>) or a list of enclosed expressions (i.e. something of the

form {... }). In the first case the functionDirElemConstructoris called, passing as

input the constructor, the variable binding list, and the list of tree construction predicates

that have been built callingFLWORExprfor the inner FLWOR expressions. In the second

case, the enclosed expression can be:

• a path expression (e.g.{$b/title }): the functionPathExpr2, which is shown

in Algorithm 18, builds the corresponding tree construction predicate, which is ap-

pended to the predicate built up to now;

150 Chapter 4. Translating XQuery (Full-Text) Expressions

• a FLWOR expression: the tree construction predicate built by the previously called

FLWORExprfunction is appended to the predicate built up to now.

Algorithm 18 Function PathExpr2
Input: a PathExpr2P , a variable binding listV , a booleanisValue

1: s← VVarRef

2: for all (AxisStep QName)do

3: s← s + AxisStep+ QName

4: if there is a FinalStepExprthen

5: if FinalStepExpr is of the form “@”NameTestthen

6: s← s + ‘ .A[’ + NameTest+ ‘].v’

7: else{FinalStepExpr is of the form ‘/text()’}
8: s← s + ‘ .v’

9: else

10: if isValue then

11: s← s + ‘ .v’

12: return s

The functionDirElemConstructor, shown in Algorithm 19, first checks if the con-

structor contains some attributes. If this is the case, for each of them the functionDi-

rAttribute, which is shown in Algorithm 20, builds a string, which will be theA part of

the resulting tree construction operatorn(v, a, c). Remember thatn is the name of the

element,v is the value,a is the list of attributes, andc is the list of child elements.

ThenDirElemConstructoranalyzes the content of the constructor being translated. It

is a list of:

• direct element constructors: for each of them the functionDirElemConstructoris

called recursively, and its result is added, using the procedureAddChildshown in

Algorithm 21, to the listc of child elements;

• enclosed expressions: each of them can be:

Chapter 4. Translating XQuery (Full-Text) Expressions 151

Algorithm 19 Function DirElemConstructor
Input: a DirElemConstructorC, a variable binding listV , a list of tree construction

predicateT

Output: a tree constructor predicatet

1: if there is at least one DirAttributethen

2: for all DirAttribute D do

3: a← a + DirAttribute(D, V)

4: if DirAttribute is not the last onethen

5: a← a + ‘ , ’

6: a← ‘(’ + a + ‘)’

7: else

8: a← ‘null’

9: for all DirElemContentCi do

10: if Ci is a DirElemConstructorthen

11: AddChild(c, DirElemConstructor(Ci, A, V))

12: else ifCi is an EnclosedExprthen

13: if Ci is the FLWORExprei then

14: AddChild(c, ti)

15: else{Ci is a PathExpr2}
16: if Ci contains a FinalStepExprthen

17: v ← v + PathExpr2(Ci, V, false)

18: else

19: AddChild(c, PathExpr2(Ci, V, false))

20: else{Ci is a literal}
21: v ← v + Ci

22: if v is the empty stringthen

23: v ← ‘null’

24: if c is the empty stringthen

25: c← ‘null’

26: else

27: c← c + ‘)’

28: t← ‘“’ + QName+ ‘” (’ + v + ‘ , ’ + a + ‘ , ’ + c + ‘)’

29: return t

152 Chapter 4. Translating XQuery (Full-Text) Expressions

Algorithm 20 Function DirAttribute
Input: a DirAttributeD, a variable binding listV

Output: an attribute construction specificationa

1: if DirAttributeValue is a PathExpr2then

2: a← PathExpr2(DirAttributeValue, V, true)

3: else{DirAttributeValue is a Literal}
4: a← ‘“’ + Literal + ‘”’

5: a← ‘(“’ + QName+ ‘”,’ + a + ‘)’

– a FLWOR expression: the tree construction predicate resulting from the pre-

vious call toFLWORExprfor that FLWOR expression is added to the listc of

child elements;

– a path expression: the result ofPathExpr2is either added to the listc of child

elements (if the XQuery path expression results in an element) or appended to

the valuev of the element (if the XQuery path expression results in a value,

e.g. if it is{$b/title/text() });

• literals: each of them is appended to the valuev of the element.

Finally the complete tree construction predicate is built, using the valuesa, v, andc

just computed.

Algorithm 21 Procedure AddChild
Input: a child element list specificationc, a child element specificationc′

1: if c is an empty stringthen

2: c← ‘(’ + c′

3: else

4: c← c + ‘ , ’ + c′

Example 4.9 Consider the following XQuery expression:

for $i in doc("books.xml")/bib/book/author

Chapter 4. Translating XQuery (Full-Text) Expressions 153

order by $i/last, $i/first

return {$i/last}

The for andorder by clauses are translated as previously seen, leading to the partial

result

• A← ‘o/author/last.v ASC,/author/first.v ASC(π/bib/book/author(“books.xml”))’;

• V$i
← ‘/author’.

Now we show how thereturn clause is translated:

• FLWORExpr, 9: calls toReturnClause:

– ReturnClause, 9: calls toPathExpr2:

∗ PathExpr2, 1: s← ‘/author’;

∗ PathExpr2, 3: s← ‘/author/last’;

∗ PathExpr2, 12: returns to ReturnClause;

– ReturnClause, 9: t← ‘/author/last’;

– ReturnClause, 14: returnt to FLWORExpr;

• FLWORExpr, 9: t← ‘/author/last’;

• FLWORExpr, 11: A← ‘ ι/author/last(o/author/last.v ASC,/author/first.v ASC(

π/bib/book/author(“books.xml”)))’.

Note that the resulting AFTX expression is correct, even if, as already seen in Section

4.1.1, the same result could be obtained by using the projection operator instead of the

tree construction operator.

Example 4.10 Consider the following XQuery expression:

for $i in doc("books.xml")/bib/book

return {$i/author}{$i/editor}

Thefor clause is translated as usual, leading to the partial result

154 Chapter 4. Translating XQuery (Full-Text) Expressions

• A← π/bib/book(“books.xml”);

• V$i ← ‘/book’.

Now we show how thereturn clause is translated:

• FLWORExpr, 9: calls toReturnClause:

– ReturnClause, 9: calls toPathExpr2:

∗ PathExpr2, 1: s← ‘/book’;

∗ PathExpr2, 3: s← ‘/book/author’;

∗ PathExpr2, 12: returns to ReturnClause;

– ReturnClause, 9: t← ‘/book/author’;

– ReturnClause, 13: t← ‘/book/author,’;

– ReturnClause, 9: calls toPathExpr2:

∗ PathExpr2, 1: s← ‘/book’;

∗ PathExpr2, 3: s← ‘/book/editor’;

∗ PathExpr2, 12: returns to ReturnClause;

– ReturnClause, 9: t← ‘/book/author, /book/editor’;

– ReturnClause, 14: returnt to FLWORExpr;

• FLWORExpr, 9: t← ‘/book/author, /book/editor’;

• FLWORExpr, 11: A← ‘ ι/book/author,/book/editor(π/bib/book(“books.xml”))’.

Example 4.11 Consider the following XQuery expression:

for $i in doc("books.xml")/bib/book

return <book title={$i/title}></book>

The for clause as in the previous example. Now we show how thereturn clause is

translated:

• ReturnClause, 5: calls toDirElemConstructor:

Chapter 4. Translating XQuery (Full-Text) Expressions 155

– DirElemConstructor, 3: calls toDirAttribute:

∗ DirAttribute, 2: calls toPathExpr2, obtaininga← ‘/book/title.v’;

∗ DirAttribute, 5: a← ‘(“title” , /book/title.v)’

– DirElemConstructor, 3: a← ‘(“title” , /book/title.v)’;

– DirElemConstructor, 6: a← ‘((“title” , /book/title.v))’;

– DirElemConstructor, 23: v ← ‘null’;

– DirElemConstructor, 25: c← ‘null’;

– DirElemConstructor, 28: t← ‘“ book”(null, ((“title” , /book/title.v)),

null)’;

• ReturnClause, 5: t← ‘“ book”(null, ((“title” , /book/title.v)), null)’;

• FLWORExpr, 11: A← ‘ ι“book”(null,((“title” ,/book/title.v)),null)(π/bib/book(

“books.xml”))’.

Example 4.12 Consider the following XQuery expression:

for $i in distinct-values(doc("books.xml")/bib/book/author

/last),

$j in doc("books.xml")/bib/book

where $i=$j/author/last

return <author name={$i}>

<book>{$j/title/text()}</book>

</author>

The first variable binding is translated as seen in Example 4.4. The translation goes on as

follows:

• the second variable binding is translated as usual, thus leading to the partial result:

– A← ‘(ν(/last.v,“last”)(π/bib/book/author/last(“books.xml”))×
π/bib/book(“books.xml”))’;

156 Chapter 4. Translating XQuery (Full-Text) Expressions

– V$i ← ‘/prod root/group root.A[last]’;

– V$j ← ‘/prod root/book’;

• the where clause is translated as usual, leading to the partial AFTX expression

A← ‘σprod root[/group root.A[last].v=/book/author/last.v]((

ν(/last.v,“last”)(π/bib/book/author/last(“books.xml”))× π/bib/book(“books.xml”)))’;

• ReturnClause, 5: calls toDirElemConstructor:

– DirElemConstructor, 3: calls toDirAttribute:

∗ DirAttribute, 2: calls toPathExpr2, obtaining

a← ‘/prod root/group root.A[last].v’;

∗ DirAttribute, 5: a← ‘(“Name” , /prod root/group root.A[last].v)’;

– DirElemConstructor, 3: a← ‘(“Name” , /prod root/group root.A[last].v)’;

– DirElemConstructor, 6: a← ‘((“Name” , /prod root/group root.A[last].v))’;

– DirElemConstructor, 11: calls toDirElemConstructor, passing as input the

constructor<book> {$j/title/text() }</book> :

∗ DirElemConstructor, 8: a← ‘null’;

∗ DirElemConstructor, 17: calls toPathExpr2, obtaining

v ← ‘/prod root/book/title.v’;

∗ DirElemConstructor, 25: c← ‘null’;

∗ DirElemConstructor, 28: t← ‘“ book”(/prod root/book/title.v,

null, null)’;

∗ DirElemConstructor, 29: returnst to the callingDirElemConstructor;

– DirElemConstructor, 11: calls toAddChild, obtainingc← ‘(“book”(

/prod root/book/title.v, null, null)’;

– DirElemConstructor, 23: v ← ‘null’;

– DirElemConstructor, 27: c← ‘(“book”(/prod root/book/title.v, null,

null))’;

Chapter 4. Translating XQuery (Full-Text) Expressions 157

– DirElemConstructor, 28: t← ‘“ author”(null, ((“name” ,

/prod root/group root.A[last].v)), (“book”(/prod root/book/title.v,

null, null)));

– DirElemConstructor, 29: returnst to ReturnClause;

• ReturnClause, 5: t← ‘“ author”(null,

((“Name” , /prod root/group root.A[last].v)),

(“book”(/prod root/book/title.v, null, null)));

• ReturnClause, 14: returnst to FLWORExpr;

• FLWORExpr, 11: A← ‘ ιt(σprod root[/group root.A[last].v=/book/author/last.v]((

ν
(/last.v,“ last”)

(π/bib/book/author/last(“books.xml”))×π/bib/book(’“ books.xml”))))’.

Example 4.13 Consider the following XQuery expression:

for $i in doc("authors.xml")/authors/author/last

return <author name={$i}>

{

for $j in doc("books.xml")/bib/book

where $j/author/last=$i

return <book>{$j/title/text()}</book>

}

</author>

The outerfor clause is translated as usual, leading to a partial result

A← ‘π/authors/author/last(“authors.xml”)’

while V$i ← ‘/last’. The translation goes on as follows:

• at line 9, FLWORExprcalls ReturnClause, passing as input the outerreturn

clause ;

• at line 3,ReturnClausecallsFLWORExpr, passing as input the inner FLWOR ex-

pression;

158 Chapter 4. Translating XQuery (Full-Text) Expressions

• at line 2,FLWORExprcallsForClauseas usual, obtaining:

– A← ‘π/authors/author/last(“authors.xml”)× π/bib/book(“books.xml”)’;

– V$i ← ‘/prod root/last’

– V$j ← ‘/prod root/book’

• at line 6,FLWORExprcallsWhereClause, passing as input the clause$j/author

/last = $i ;

• at line 4,WhereClausecallsCreateOuterJoin, obtaining:

– A← ‘δ/group root/∗[.k=/group root.A[treeIdentity].v AND .pos>1](

Σ((/prod root/1.k,“treeIdentity”)),(/prod root/1,/prod root/2)(

δ/prod root/book[/author/last](

δ/prod root/book/author[NOT /last.v=/prod root/last.v](

π/authors/author/last(“authors.xml”)× π/bib/book(“books.xml”)))))’;

– V$i ← ‘group root/last’;

– V$j ← ‘group root/book’;

• at line 9,FLWORExprcalls ReturnClause, passing as input the inner constructor

<book> {$j/title/text() }</book> ;

• at line 5,ReturnClausecallsDirElemConstructor, obtaining a partial tree construc-

tor predicatet← ‘“ book”(/group root/book/title.v, null, null)’;

• ReturnClausepasses backt to FLWORExpr;

• FLWORExprpasses it back to the outerReturnClausewithout modifying the AFTX

expression (because the input parameteraddTreeConst is false);

• at line 5,ReturnClausecallsDirElemConstructor, passing as input the outer con-

structor (including the inner FLWOR expression) and a list of tree construction

predicates that now containst;

Chapter 4. Translating XQuery (Full-Text) Expressions 159

• at line 14,DirElemConstructorsetc to ‘“ book”(/group root/book/title.v,

null, null)’ (because the DirElemContent of the DirElemConstructor is a FLWOR-

Expr); the final value oft is therefore ‘“author”(null, ((“name” , group root

/last.v)), (“book”(/group root/book/title.v, null, null)))’;

• ReturnClausepasses backt to FLWORExpr;

• at line 11,ReturnClausebuilds the final AFTX expression:

ιt(δ/group root/∗[.k=/group root.A[treeIdentity].v AND .pos>1](

Σ
((/prod root/1.k,“ treeIdentity”)),(/prod root/1,/prod root/2)

(

δ/prod root/book[/author/last](

δ/prod root/book/author[NOT /last.v=/prod root/last.v](

π/authors/author/last(“authors.xml”)× π/bib/book(“books.xml”)))))’.

Up to now, we have seen what happens when the XQuery expression corresponds to

a FLWOR expression. However, there are cases when the XQuery expression is instead a

constructor, which includes an inner FLWOR expression; this is the case when we want to

include the result of a FLWOR expression in an enclosing XML element. In such cases,

the function XQuery2AFTX calls, at line 7, the functionConstructor, shown in Algorithm

22.

Constructoris a simplified version of the functionDirElemConstructoralready an-

alyzed. It also builds a tree construction predicate, but it ignores inner FLWOR expres-

sions; the result is therefore a predicate without any path expression.

XQuery2AFTXnow adds a tree construction operator using the predicate just created;

then it callsFLWORExprfor each enclosed FLWOR expression.

Example 4.14 Consider the following XQuery expression:

<authors>

{

for $a in doc("books.xml")//author

return {$a}

}

160 Chapter 4. Translating XQuery (Full-Text) Expressions

Algorithm 22 Function Constructor
Input: a ConstructorC

Output: a tree constructor predicatet

1: if there is at least one DirAttributethen

2: for all DirAttribute D do

3: a← a + ‘(“’ + QName+ ‘” , “’ + Literal + ‘”)’

4: if DirAttribute is not the last onethen

5: a← a + ‘ , ’

6: a← ‘(’ + a + ‘)’

7: else

8: a← ‘null’

9: for all DirElemContentCi do

10: if Ci is a DirElemConstructorthen

11: AddChild(c, Constructor(Ci))

12: else ifCi is a literalthen

13: v ← v + Ci

14: if v is the empty stringthen

15: v ← ‘null’

16: if c is the empty stringthen

17: c← ‘null’

18: else

19: c← c + ‘)’

20: t← ‘“’ + QName+ ‘” (’ + v + ‘ , ’ + a + ‘ , ’ + c + ‘)’

21: return t

Chapter 4. Translating XQuery (Full-Text) Expressions 161

</authors>

The translation is carried out as follows:

• XQuery2AFTX, at line 7, callsConstructor;

• Constructorbuilds the predicatet← ‘“ authors”(null, null, null)’;

• XQuery2AFTXbuilds the partial AFTX expressionA← ‘ ι“authors”(null,null,null)(’;

• XQuery2AFTX, at line 10, callsFLWORExprpassing as input the inner FLWOR

expression, obtaining the resultAi ← ι/author(π//author(“books.xml”));

• XQuery2AFTX, at line 13, obtains the final resultA← ‘ ι“authors”(null,null,null)(

ι/author(π//author(“books.xml”)))’.

4.2 XQuery Full-Text Translation Rules

4.2.1 Informal Overview

XQuery Full-Text provides two kinds of full-text search:

• boolean retrieval: an element satisfies the full-text condition or it does not satisfy

the condition at all;

• ranked retrieval: each element in the context is assigned a score reflecting the level

of satisfaction of the full-text condition.

Boolean retrieval is done by inserting aftcontains expression, either in a path

expression (of afor or let clause) or in awhere clause. Such expression is translated

into an AFTX expression using the full-text selection predicate. For example the partial

query

for $b in doc("bib.xml")/books/book

where $b ftcontains "dog"

162 Chapter 4. Translating XQuery (Full-Text) Expressions

is translated into the following AFTX expression:

ς/book[“dog”](π/books/book(“bib.xml”)) .

Thefor clause

for $b in doc("bib.xml")/books/book[. ftcontains "dog"]

is translated into the same AFTX expression; this is not surprising, because the second

XQuery expression is equivalent to the first one.

If the ftcontains expression is formed by two words (or phrases) connected with

a boolean operator, also the full-text selection operator will have a predicate composed by

two basic full-text conditions connected with a boolean operator. For example the partial

query

for $b in doc("bib.xml")/books/book

where $b ftcontains "dog" && "cat"

is translated into the following AFXT expression:

ς/book[“dog” AND “cat”](π/books/book(“bib.xml”)) .

Ranked retrieval is instead done by adding alet clause that defines a score variable.

Such alet clause is translated using the full-text score assignment operator. For example

the partial query

let score $s := $b ftcontains "dog" && "cat"

order by $s descending

is translated into the following AFTX expression:

o/1.score DESC(ξ/1[“dog” AND “cat”](A)) ,

whereA is the algebraic expression representing the variable $b. The score assignment

operator assigns a value to thescoreproperty of the root element of each input tree; the

subsequent ordering operator uses such score to order the forest.

Chapter 4. Translating XQuery (Full-Text) Expressions 163

If the score variable is in afor clause (that must contains aftcontains expres-

sion), a full-text selection must be executed; then each retained tree must be assigned

a score value. This is exactly the behavior of the derived full-text selection with score

operator. Therefore a clause like

for $b score $s in doc("bib.xml")/books/book

[. ftcontains "dog" && "cat"]

is translated into the following AFTX expression:

ς/book[“dog” AND “cat”](π/books/book(“bib.xml”)) .

Scoring may be influenced by addingweightspecifications to search tokens. If this is

the case, weights are added to the used AFTX operator, either if it is the score assignment

operator or if it is the full-text selection with score operator. For example thelet clause

let score $s := $b ftcontains ("dog" weight 0.2)

&& ("cat" weight 0.8)

is translated into the following AFTX expression:

ξ/1[0.2 “dog” AND 0.8 “cat”](A) ,

whereA is the algebraic expression representing the variable $b.

A ftcontains expression could state that searched words must be found at a certain

maximal distance between one and another. AFTX also provides such an option, thus the

translation is straightforward. For example a clause like

for $b in doc("bib.xml")//book

[. ftcontains "web" && "site" distance at most 2]

is translated into the following AFTX expression:

ς/book[“web” AND “site” ,2](π//book(“bib.xml”)) .

Finally, AFTX also permits to express part of the match options provided by XQuery

Full-Text, namely the usage of stemming, thesaurus and stopwords. For example the

clause

164 Chapter 4. Translating XQuery (Full-Text) Expressions

for $b in doc("bib.xml")//book [. ftcontains "the web site"

&& "usability" with stemming with thesaurus default

with default stop words]

is translated into the following AFTX expression:

ς
/book[“ the web site” AND “ usability” ,stem,thes,stop]

(π//book(“bib.xml”)) .

It should be noted that, in the translation examples involving score, we have never

inserted the parameterf , which defines the score function to use. This is because the

availability of such a parameter is an AFTX feature not present in XQuery Full-Text.

Therefore the default score function will be used when translating XQuery Full-Text ex-

pressions.

4.2.2 Formal Translation Algorithm

In Section 4.1.2 we have presented the partial XQuery grammar that can be expressed in

AFTX. That grammar must be expanded in order to represent full-text extensions:

ForClause ::= "for" VarRef PositionalVar?

FTScoreVar? "in" ForLetContext (","

VarRef PositionalVar? FTScoreVar?

"in" ForLetContext)*

LetClause ::= (("let" VarRef := ForLetContext)

| ("let" FTSCoreVar ":=" VarRef

(AxisStep NameStep)* "ftcontains"

FTSelection)) ("," VarRef ":="

ForLetContext)*

FTScoreVar ::= "score" VarRef

WhereClause ::= "where" (ComparisonExpr |

QuantifiedExpr | (VarRef PathExpr

"ftcontains" FTSelection)) ("and"

(ComparisonExpr | QuantifiedExpr

Chapter 4. Translating XQuery (Full-Text) Expressions 165

| (VarRef PathExpr "ftcontains"

FTSelection)))*

ComparisonExpr2 ::= (UnaryExpr1 (GeneralComp UnaryExpr2)?)

| (PathExpr "ftcontains" FTSelection)

FTSelection ::= FTOr (FTMatchOption)*

FTOr ::= FTAnd ("||" FTAnd)*

FTAnd ::= FTUnaryNot ("&&" FTUnaryNot)*

FTDistance?

FTUnaryNot ::= ("!")? Literal ("weight" Number)?

FTMatchOption ::= FTStemOption | FTThesaurusOption

| FTStopwordOption

FTStemOption ::= "with" "stemming"

FTThesaurusOption ::= "with" "thesaurus" "default"

FTStopwordOption ::= "with" "default" "stop" "words"

FTDistance ::= "distance" "at" "most" Number "words"

As we can see, thefor and let clauses now permit to define a score variable; in

a let clause, we can definenormal variables or score variables.ComparisonExpr

andComparisonExpr2 , that are used respectively in a predicate of afor /let clause

and in awhere clause, has been modified in order to provide, besidesnormalpredicates,

full-text predicates.FTSelection and all the following production rules define how a

full-text predicate can be formed.

With respect to the XQuery Full-Text specifications, our grammar has the following

limitations:

• a let clause cannot contain more than one score variable definition; if a single

clause defines a score variable, it cannot also define anormalvariable;

• the only supported match options are stemming, thesaurus and stop word;

• only the default thesaurus and the default list of stop words can be used;

• mild notoperator is not supported;

166 Chapter 4. Translating XQuery (Full-Text) Expressions

• distance option can only be of the typeat most;

• scope option is not supported;

• ignore option is not supported.

Algorithm 23 shows the only modification that must be done over the procedureFor-

Clause. Between lines 2 and 3 we add a conditional expression: if the clause contains the

definition of a score variable, a new element is added to the variable binding list. That

element will represent the score value.

Algorithm 23 Changes to the procedure ForClause
2.1: if DVContext contains a score variable $sthen

2.2: V$s ← ‘/1.score’;

The procedureForClause, as seen in Section 4.1.2, callsPathExprfor each variable

binding. PathExprcallsPredicatefor each predicate found in the path expression. How-

ever, if the predicate is a full-text predicate it must instead callFTSelection, that will be

analyzed soon, as shown in Algorithm 24. Then a full-text selection or a full-text selection

with score is added to the AFTX expression built up to now.

Algorithm 24 Changes to the procedure PathExpr
7.1: if P is a full-text predicatethen

7.2: λ← ‘/1’

7.3: for all (AxisStep NameStep)do

7.4: λ← λ + AxisStep+ NameStep

7.5: λ← λ + ‘ [’ + FTSelection(FT) + ‘]’ {FT is the full-text condition}
7.6: if the clause contains a score variablethen

7.7: A← ‘ ςλ(’ + A + ‘)’

7.8: else

7.9: A← ‘ ςλ(’ + A + ‘)’

7.10: else

7.11: continue with normal algorithm

Chapter 4. Translating XQuery (Full-Text) Expressions 167

Algorithm 25 shows the modifications that must be done over the procedureLet-

Clause. After line 1 we add a conditional expression: if the clause contains the definition

of a score variable a score assignment operator is added to the AFTX expression built up

to now, otherwise the clause is treated as in the original algorithm. The full-text predicate

is created by the functionFTSelection.

Algorithm 25 Changes to the procedure LetClause
2.1: if $i is a score variablethen

2.2: V$i ← ‘/1.score’

2.3: λ← VVarRef

2.4: for all (AxisStep NameStep)do

2.5: λ← λ + AxisStep+ NameStep

2.6: λ← λ + ‘ [’ + FTSelection(FT) + ‘]’ {FT is the full-text condition}
2.7: A← ‘ξλ(’ + A + ‘)’

2.8: else

2.9: continue with normal algorithm

Algorithm 26 shows the modifications that must be done over the procedureWhere-

Clause. After line 1 we add a new case to the if-then-else expression: the clause can be a

ftcontains expression. If this is the case, we add a full-text selection operator to the

AFTX expression built up to now; also in this case the full-text predicate is created by the

functionFTSelection.

Algorithm 26 Changes to the procedure WhereClause
1.1: if the clause is a FTContains expressionthen

1.2: λ← VVarRef

1.3: for all (AxisStep NameStep)do

1.4: λ← λ + AxisStep+ NameStep

1.5: λ← λ + ‘ [’ + FTSelection(FT) + ‘]’ {FT is the full-text condition}
1.6: A← ‘ ςλ(’ + A + ‘)’

1.7: else

1.8: continue with normal algorithm

168 Chapter 4. Translating XQuery (Full-Text) Expressions

The functionFTSelection, presented in Algorithm 27, build the full-text condition.

The translation process is quite straightforward, so we do not analyze it in more details.

Example 4.15 Consider the following partial query:

for $b in doc("bib.xml")/books/book

where $b ftcontains "dog" && "cat"

Thefor clause is translated as usual, thus leading to the following partial result:

• A← ‘π/books/book(“bib.xml”)’;

• V$b ← ‘/book’.

Then the procedureWhereClauseis called:

• WhereClause, 1.2:λ← ‘/book’;

• WhereClause, 1.5: calls toFTSelection:

– FTSelection, 7: γ ← ‘“ dog”’;

– FTSelection, 9: γ ← ‘“ dog” AND ’;

– FTSelection, 7: γ ← ‘“ dog” AND “cat”’;

– FTSelection, 21: returnsγ to WhereClause;

• WhereClause, 1.5:λ← ‘/book[“dog” AND “cat”]’;

• WhereClause, 1.6:A← ‘ ς/book[“dog” AND “cat”](π/books/book(“bib.xml”))’.

Example 4.16 Consider the following partial query:

for $b in doc("bib.xml")/books/book

let score $s := $b ftcontains ("dog" weight 0.2)

&& ("cat" weight 0.8)

The for clause is translated as in the previous example; then the procedureLetClauseis

called:

Chapter 4. Translating XQuery (Full-Text) Expressions 169

Algorithm 27 Function FTSelection
Input: a full-text selectionFT

Output: a partial full-text predicateγ

1: for all FTAnd in FTOrdo

2: for all FTUnaryNot in FTAnddo

3: if there is a ‘weight’then

4: γ ← γ + ‘Number’

5: if there is a ‘!’then

6: γ ← γ + ‘NOT’

7: γ ← γ + Literal

8: if this is not the last FTUnaryNotthen

9: γ ← γ + ‘AND’

10: if there is a FTDistancethen

11: γ ← γ + ‘ ,’ + Number

12: if this is not the last FTAndthen

13: γ ← γ + ‘OR’

14: for all FTMatchOption inFT do

15: if it is a FTStemOptionthen

16: γ ← γ + ‘ , stem’

17: else if it is a FTThesaurusOptionthen

18: γ ← γ + ‘ , thes’

19: else{it is a FTStopWordOption}
20: γ ← γ + ‘ , stop’

21: return γ

170 Chapter 4. Translating XQuery (Full-Text) Expressions

• LetClause, 2.2:V$s ← ‘/1.score’;

• LetClause, 2.3:λ← ‘/book’;

• LetClause, 2.6: calls toFTSelection:

– FTSelection, 4: γ ← ‘0.2’;

– FTSelection, 7: γ ← ‘0.2 “dog”’;

– FTSelection, 9: γ ← ‘0.2 “dog” AND ’;

– FTSelection, 4: γ ← ‘0.2 “dog” AND 0.8’;

– FTSelection, 7: γ ← ‘0.2 “dog” AND 0.8 “cat”’;

– FTSelection, 21: returnsγ to LetClause;

• LetClause, 2.6:λ← ‘/book[0.2 “dog” AND 0.8 “cat”]’;

• LetClause, 2.7:A← ‘ξ/book[0.2 “dog” AND 0.8 “ cat”](π/books/book(“bib.xml”))’.

4.3 Complex Translation Examples

4.3.1 XQuery Expressions

In this section we present a series of examples of translation of complex XQuery ex-

pressions into AFTX expressions. These examples are taken from W3C XQuery Use

Cases [Con06b] and demonstrate that almost any XQuery expression can be translated

into AFTX.

For each example, we present the query requirements (expressed in natural language),

the solution in XQuery and the solution in AFTX.

Example 4.17 [Use Case “XMP” Q1] List books published by Addison-Wesley after

1991, including their year and title.

XQuery solution:

Chapter 4. Translating XQuery (Full-Text) Expressions 171

<bib>

{

for $b in doc("bib.xml")/bib/book

where $b/publisher = "Addison-Wesley"

and $b/@year > 1991

return

<book year="{ $b/@year }">

{ $b/title }

</book>

}

</bib>

The query in this example and all the following has been slightly modified, by shortening

the name of the input XML document. This is done just for the sake of brevity and does

not affect in any way the translation process.

AFTX translation :

ι“bib”(null,null,null)(

ι“book”(null,((“year” ,/book.A[year].v)),(/book/title))(

σ/book[.A[year].v>1991](

σ/book[/publisher.v=“Addison−Wesley”](

π/bib/book(“bib.xml”))))

This example shows how awhere clause with conditions connected withAND is

translated: two subsequent selection operations are applied to the input forest.

Example 4.18 [Use Case “XMP” Q2] Create a flat list of all the title-author pairs, with

each pair enclosed in a “result” element.

XQuery solution:

<results>

{

for $b in doc("bib.xml")/bib/book,

$t in $b/title,

172 Chapter 4. Translating XQuery (Full-Text) Expressions

$a in $b/author

return

<result>

{ $t }

{ $a }

</result>

}

</results>

AFTX translation :

ι“results”(null,null,null)(

ι“result”(null,null,(/prod root/prod root/title,/prod root/author))(

((π/bib/book(“bib.xml”) on/book[/title≡/author]

π/book/title(π/bib/book(“bib.xml”))) on/prod root/book[/author≡/author]

π/book/author(π/bib/book(“bib.xml”)))))

Example 4.19 [Use Case “XMP” Q3] For each book in the bibliography, list the title and

authors, grouped inside a “result” element.

XQuery solution:

<results>

{

for $b in doc("bib.xml")/bib/book

return

<result>

{ $b/title }

{ $b/author }

</result>

}

</results>

AFTX translation :

ι“results”(null,null,null)(

Chapter 4. Translating XQuery (Full-Text) Expressions 173

ι“result”(null,null,(/book/title,/book/author))(

π/bib/book(“bib.xml”)))

Example 4.20 [Use Case “XMP” Q4] For each author in the bibliography, list the au-

thor’s name and the titles of all books by that author, grouped inside a “result” element.

XQuery solution:

<results>

{

for $last in distinct-values(doc("bib.xml")

//author/last),

$first in distinct-values(doc("bib.xml")

//author[last=$last]/first)

order by $last, $first

return

<result>

<author>

<last>{ $last }</last>

<first>{ $first }</first>

</author>

{

for $b in doc("bib.xml")/bib/book

where some $ba in $b/author satisfies

($ba/last = $last and $ba/first=$first)

return {$b/title}

}

</result>

}

</results>

The query in this example has been slightly modified in order to be consistent with the

grammar defined in Section 4.1.2. The original query had an initiallet clause binding a

174 Chapter 4. Translating XQuery (Full-Text) Expressions

variable $a to theauthors element.

AFTX translation :

ι“ results” (null,null,null)
(

ιt(

δ/group root/ ∗ [.pos > 1 AND .k = /group root.A[treeIdentity].v](

Σ((/prod root/1.k,“treeIdentity”)),(/prod root/1,/prod root/2)(

δ/prod root/book/author[NOT /last](

δ/prod root/book/author[NOT (P)](

ogroup root/group root.A[last].v,/group root.A[first].v(

Σ((/prod root/2/first,“first”),(/prod root/1.k,“treeIdentity”)),(/prod root/1)(

σ/prod root[/author/last.v=/group root.A[last].v](

ν(/last.v,“last”)(π//author/last(“bib.xml”))×
π//author(“bib.xml”))))× π/bib/book(“bib.xml”)))))))’

where

• t = ‘“ result”(null, null, (“author”(null, null,

(“last”(/group root/group root/group root.A[last], null, null),

“first”(/group root/group root.A[first], null, null))), group root/book/title))’;

• P = ‘/last.v = /prod root/group root/group root.A[last].v AND

/first.v = /prod root/group root.A[first].v.

This translation is quite complex and deserves an in-depth analysis. The final AFTX

expression, which is shown graphically in Figure 4.3, is obtained through the following

steps:

• the query starts with an element constructor, thus at line 7XQuery2AFTXcalls

Constructor, which creates the tree constructor predicate"results"(null,

null, null) ; the initial AFTX expression is therefore ‘ι“results”(null,null,null)(’;

• the constructor contains an inner FLWOR expression, thus at line 10XQuery2AFTX

callsFLWORExpr, which must build a completely unrelated AFTX expression;

• at line 2,FLWORExprcallsForClause;

Chapter 4. Translating XQuery (Full-Text) Expressions 175

• ForClausetranslates the first variable binding as usual, obtaining:

– A← ‘ν(/last.v,“last”)(π//author/last(“bib.xml”))’;

– V$last ← ‘/group root.A[last]’;

• the second variable binding contains a predicate that references$last , thusFor-

Clausetranslates the first part of the relative path expression, obtaining:

– A← ‘ν(/last.v,“last”)(π//author/last(“bib.xml”))× π//author(“bib.xml”)’;

– V$last ← ‘prod root/group root.A[last]’;

– V$first ← ‘prod root/author’;

• at line 20ForClausecalls Predicate, obtaining:

A← ‘σ/prod root[/author/last.v=/group root.A[last].v](

ν(/last.v,“last”)(π//author/last(“bib.xml”))× π//author(“bib.xml”))’;

• the for clause contains a call todistinct-values , thusForClauseat lines

24–27 obtains:

– A← ‘Σ
((/prod root/2/first,“first”),(/prod root/1.k,“treeIdentity”)),(/prod root/1)

(

σ/prod root[/author/last.v=/group root.A[last].v](

(ν(/last.v,“last”)(π//author/last(“bib.xml”))× π//author(“bib.xml”)))’;

– V$first ← ‘/group root.A[first]’;

– V$last ← ‘/group root/group root.A[last]’;

• at line 8FLWORExprcallsOrderByClause, obtaining:

A← ‘ogroup root/group root.A[last].v,/group root.A[first].v(

Σ((/prod root/2/first,“first”),(/prod root/1.k,“treeIdentity”)),(/prod root/1)(

σ/prod root[/author/last.v=/group root.A[last].v](

ν(/last.v,“last”)(π//author/last(“bib.xml”))× π//author(“bib.xml”))))’;

• at line 9FLWORExprcallsReturnClause;

176 Chapter 4. Translating XQuery (Full-Text) Expressions

• the constructor contains an inner FLWOR expression, thus at line 3ReturnClause

callsFLWORExprpassing as input the inner FLWOR expression;

• at line 2FLWORExprcallsForClause, that translates thefor clause as usual ob-

taining:

– A← ‘ogroup root/group root.A[last],/group root.A[first](

Σ((/prod root/2/first,“first”),(/prod root/1.k,“treeIdentity”)),(/prod root/1)(

σ/prod root[/author/last.v=/group root.A[last].v](

ν(/last.v,“last”)(π//author/last(“bib.xml”))× π//author(“bib.xml”))))×
π/bib/book(“bib.xml”)’;

– V$b ← ‘/prod root/book’;

– V$first ← ‘/prod root/group root.A[first]’;

– V$last ← ‘/prod root/group root/group root.A[last]’;

• at line 6FLWORExprcalls WhereClause, that translates thewhere clause using

CreateOuterJoinobtaining:

– A← ‘δ/group root/∗[.pos>1 AND .k=/group root.A[treeIdentity].v](

Σ((/prod root/1.k,“TreeIdentity”)),(/prod root/1,/prod root/2)(

δ/prod root/book/author[NOT /last](

δ/prod root/book/author[NOT (P)](

ogroup root/group root.A[last],/group root.A[first](

Σ
((/prod root/2/first,“ first”),(/prod root/1.k,“treeIdentity”)),(/prod root/1)

(

σ/prod root[/author/last.v=/group root.A[last].v](

ν(/last.v,“last”)(π//author/last(“bib.xml”))× π//author(“bib.xml”))))×
π/bib/book(“bib.xml”)))))’

whereP = ‘/last.v = /prod root/group root/group root.A[last].v AND

/first.v = /prod root/group root.A[first].v’;

– V$b ← ‘/group root/book’;

– V$first ← ‘/group root/group root.A[first]’;

Chapter 4. Translating XQuery (Full-Text) Expressions 177

– V$last ← ‘/group root/group root/group root.A[last]’;

• at line 9FLWORExprcallsReturnClause, which returnst← ‘group root/book

/title’;

• FLWORExprpasses backt to the callingReturnClause;

• ReturnClause, through multiple nested calls toDirElemConstructorand using the

previously builtt, builds a tree construction predicatet← ‘“ result”(null, null,

(“author”(null, null, (“last”(/group root/group root/group root.A[last],

null, null), “first”(/group root/group root.A[first], null, null))),

group root/book/title))’;

• ReturnClausepasses backt to the callingFLWORExpr, which build the AFTX

expression ‘ιt(A)’, wheret is the tree construction predicate just built andA is the

AFTX expression built until now;

• the control passes back to the callingXQuery2AFTX, which at lines 11–13 build the

final AFTX expression ’ι“results”(null,null,null)(A)’, whereA is the AFTX expres-

sion built in the previous step.

Example 4.21 [Use Case “XMP” Q5] For each book found at bothbstore1.example.com

andbstore2.example.com, list the title of the book and its price from each source.

XQuery solution:

<books-with-prices>

{

for $b in doc("bib.xml")//book,

$a in doc("reviews.xml")//entry

where $b/title = $a/title

return

<book-with-prices>

{ $b/title }

178 Chapter 4. Translating XQuery (Full-Text) Expressions

Figure 4.3: Graphical representation of the AFTX expression of Example 4.20.

Chapter 4. Translating XQuery (Full-Text) Expressions 179

<price-bstore2>{ $a/price/text() }</price-bstore2>

<price-bstore1>{ $b/price/text() }</price-bstore1>

</book-with-prices>

}

</books-with-prices>

AFTX translation :

ι“books−with−prices”(null,null,null)(ιt(σ/prod root[/book/title.v=/entry/title.v](

π//entry(“reviews.xml”)× π//book(“bib.xml”))))

wheret = “book-with-prices”(null, null, (/prod root/book/title,

“price-bstore2”(/prod root/entry/price.v, null, null),

“price-bstore1”(/prod root/book/price.v, null, null)))

Example 4.22 [Use Case “XMP” Q6]

For each book that has at least one author, list the title and first two authors.

XQuery solution:

<bib>

{

for $b in doc("bib.xml")//book

where count($b/author) > 0

return

<book>

{ $b/title }

{

for $a in $b/author[position()<=2]

return $a

}

</book>

}

</bib>

180 Chapter 4. Translating XQuery (Full-Text) Expressions

This query has been modified by removing theif -then -else construct, that is not

expressible in AFTX.

AFTX translation :

ι“bib”(null,null,null)(ι“book”(null,null,(/book/title,/book/author))(

δ/book/author[NOT .pos<=2](σ/book/author[.count>0](π//book(“bib.xml”)))))

Example 4.23 [Use Case “XMP” Q7] List the titles and years of all books published by

Addison-Wesley after 1991, in alphabetic order.

XQuery solution:

<bib>

{

for $b in doc("bib.xml")//book

where $b/publisher = "Addison-Wesley"

and $b/@year > 1991

order by $b/title

return

<book year={ $b/@year }>

{ $b/title }

</book>

}

</bib>

AFTX translation :

ι“bib”(null,null,null)(ι“book”(null,((“year” ,/book.A[year].v)),(/book/title))(

o/book/title.v ASC(

σ/book[.A[year].v>1991](σ/book/publisher[.v=“Addison−Wesley”](

π//book(“bib.xml”))))))

Example 4.24 [Use Case “XMP” Q11] For each book with an author, return the book

with its title and authors. For each book with an editor, return a reference with the book

title and the editor’s affiliation.

XQuery solution:

Chapter 4. Translating XQuery (Full-Text) Expressions 181

<bib>

{

for $b in doc("bib.xml")//book[author]

return

<book>

{ $b/title }

{ $b/author }

</book>

}

{

for $b in doc("bib.xml")//book[editor]

return

<reference>

{ $b/title }

{$b/editor/affiliation}

</reference>

}

</bib>

AFTX translation :

ι“bib”(null,null,null)(

ι“book”(null,null,(/book/title,/book/author))(

σ/book[/author](π//book(“bib.xml”))) ∪
ι“reference”(null,null,(/book/title,/book/editor/affiliation))(

σ/book[/editor](π//book(“bib.xml”))))

This example shows the translation process of a query consisting of a constructor with

two inner FLWOR expressions. Each internal FLWOR expression is translated indepen-

dently, and the resulting AFTX expressions are fed to the union operator. Finally a tree

construction operator is applied as usual, in order to build the outerbib element.

Example 4.25 [Use Case “R” Q3] Find cases where a user with a rating worse (alpha-

182 Chapter 4. Translating XQuery (Full-Text) Expressions

betically, greater) than ”C” is offering an item with a reserve price of more than 1000.

XQuery solution:

<result>

{

for $u in doc("users.xml")//user,

$i in doc("items.xml")//item

where $u/rating > "C"

and $i/reserve_price > 1000

and $i/offered_by = $u/userid

return

<warning>

{ $u/name }

{ $u/rating }

{ $i/description }

{ $i/reserve_price }

</warning>

}

</result>

This query has been slightly modified in order to be consistent with our accepted gram-

mar. The original query had twofor clauses instead that a single clause with two

variable bindings. Moreover, in order to improve expression readability, the tag names

user tuple anditem tuple have been substituted with the shorter onesuser and

item .

AFTX translation :

ι“result”(null,null,null)(

ι“warning”(null,null,(/1/user/name,/1/user/rating,/1/item/description,/1/iteme/reserve price))(

σ/prod root[/item/offered by.v=/user/userid.v](

σ/prod root/item/reserve price[.v>1000](

σ/prod root/user/rating[.v>“C”](

Chapter 4. Translating XQuery (Full-Text) Expressions 183

π//user(“users.xml”)×
π//item(“items.xml”))))))

4.3.2 XQuery Full-Text Expressions

In this section we present a series of examples of translation of complex XQuery Full-Text

expressions into AFTX expressions. These examples are taken from W3C XQuery Full-

Text Use Cases [Con06e] and demonstrate that almost any XQuery Full-Text expression

can be translated into AFTX.

For each example, we present the query requirements (expressed in natural language),

the solution in XQuery Full-Text and the solution in AFTX.

Example 4.26 [Use Case “ELEMENT” Q1] Find all book titles containing the word “us-

ability”.

XQuery Full-Text solution :

for $t in doc("full-text.xml")/books/book/metadata/title

[. ftcontains "usability"]

return {$t}

This query, like many others following, has been modified in order to be accepted by our

grammar: it has been transformed into a FLWOR expression.

AFTX translation :

ι/title(

ς/title[“usability”](

π/books/book/metadata/title(“full-text.xml”)))

Example 4.27 [Use Case “ELEMENT” Q2] Find all book subjects containing the phrase

“usability testing”.

XQuery Full-Text solution :

for $s in doc("full-text.xml")/books/book/metadata

/subjects/subject [. ftcontains "usability testing"]

return {$s}

184 Chapter 4. Translating XQuery (Full-Text) Expressions

AFTX translation :

ι/subject(

ς/subject[“usability testing”](

π/books/book/metadata/subjects/subject(“full-text.xml”)))

Example 4.28 [Use Case “ELEMENT” Q4] Find all books with “usability tests”in book

or chapter titles.

XQuery Full-Text solution :

for $book in doc("full-text.xml")

/books/book

let $title := $book/metadata/title

[. ftcontains "usability tests"]

or $book/content/part/chapter/title

[. ftcontains "usability tests"]

where count($title) > 0

return $book

This query cannot be automatically translated into AFTX using the presented translation

algorithms, because they do not support theor keyword inside alet clause. However

the query is expressible in AFTX, as shown by the following translation.

AFTX translation :

π/group root/book(

σ/group root[/title.count>0](

Σ(/prod root/book.k),(/prod root/book,/prod root/title)(

σ/prod root[/metadata/title≡/title OR /content/part/chapter/title≡/title(

π/books/book(“full-text.xml”)× (

ς/1[“usability tests”](π/1/metadata/title(π/books/book(“full-text.xml”))) ∪
ς/1[“usability tests”](π/1/content/part/chapter/title(π/books/book(

“full-text.xml”))))))))

Chapter 4. Translating XQuery (Full-Text) Expressions 185

Example 4.29 [Use Case “ELEMENT” Q6] Find all book titles which start with “im-

proving” followed within 2 words by “usability”.

XQuery solution:

for $book in doc("full-text.xml")/books/book

where $book/metadata/title ftcontains "improving"

&& "usability" distance at most 2 words

return $title

This query has been modified by removing the clausesordered andat start from

the ftcontains expression. It should be noted that, even if AFTX full-text operators

does not provide such options, they should be easily introduced, because the data model

already provides the necessary information for answering a query with those match op-

tions. Recall that the value of an element is a list of pairs (word, position); therefore,

it would be possible to check if the searched words are found in the same order as in

the query (by checking ifpos(“improving”) < pos(“usability”)) and if the title starts

with “improving” (by checking ifpos(“improving”) = firsttoken; as stated in Definition

3.5 of element full-text value,firsttoken is the position of the first token in the full-text

value of an element).

AFTX translation :

ι/book/title(

ς/book/metadata/title[“improving” AND “usability” ,2](

π/books/book(“full-text.xml”)

Example 4.30 [Use Case “ACROSS” Q1] Find all book chapters containing the phrase

“one of the best known lists of heuristics is Ten Usability Heuristics”.

XQuery Full-Text solution :

for $book in doc("full-text.xml")/books/book

where $book//chapter ftcontains "one of the best known

lists of heuristics is Ten Usability Heuristics"

return $book

186 Chapter 4. Translating XQuery (Full-Text) Expressions

This query has been slightly modified in order to be consistent with our grammar.

AFTX translation :

ς/1//chapter[“one of the best known lists of heuristics is Ten Usability Heuristics”](

π/books/book(“full-text.xml”)))

Example 4.31 [Use Case “OTHER” Q1] Find all books with “improve” “web” “usabil-

ity” in the short title.

XQuery Full-Text solution :

for $book in doc("full-text.xml")/books/book

where $book/metadata/title/@shortTitle ftcontains

"improve" && "web" && "usability" with stemming

distance at most 2 words

return $book/metadata/title

AFTX translation :

π/1/metadata/title(

ς/1/metadata/title.A[“shortTitle”][“improve” AND “web” AND “usability” ,2,stem](

π/books/book(“full-text.xml”)))

Example 4.32 [Use Case “OTHER” Q2] Find all books with the phrase “manuscript

guides” in the short title and the phrase “user profiling” in a component title.

XQuery Full-Text solution :

for $book in doc("full-text.xml")/books/book

where $book/metadata/title/@shortTitle ftcontains

"manuscript guides" with stemming

and $book//componentTitle ftcontains

"user profiling" with stemming

return $book/metadata/title

Chapter 4. Translating XQuery (Full-Text) Expressions 187

AFTX translation :

π/book/metadata/title(

ς/book//componentTitle[“user profiling”,stem](

ς/book/metadata/title.A[“shortTitle”][“manuscript guides”,stem](

π/books/book(“full-text.xml”))))

Example 4.33 [Use Case “THESAURUS” Q1] Find all introductions which quote some-

one.

XQuery solution:

for $book in doc("full-text.xml")/books/book

where $book//introduction ftcontains "quote"

with thesaurus default

return $book

This query has been slightly modified by using the default thesaurus and the default rela-

tionship between words.

AFTX translation :

ι/book(

ς/book//introduction[“quote” ,thes](

π/books/book(“full-text”)))

Example 4.34 [Use Case “STOP-WORD” Q1] Find all books with the phrase “planning

then conducting” in the text where “then” is treated as a stop word.

XQuery solution:

for $book in doc("full-text.xml")

/books/book

where $book//content ftcontains "planning then conducting"

with default stop words

return $book

188 Chapter 4. Translating XQuery (Full-Text) Expressions

AFTX translation :

ι/book(

ς/book//content[“planning then conducting” ,stop](

π/books/book(“full-text”)))

Example 4.35 [Use Case “LOGICAL” Q1] Find all books with the words “web” or “soft-

ware” in the text.

XQuery solution:

for $book in doc("full-text.xml")/books/book

where $book//content ftcontains "web" || "software"

return $book

AFTX translation :

ι/book(

ς/book//content[“web” OR “software”](

π/books/book(“full-text”)))

Example 4.36 [Use Case “PROXIMITY” Q1] Find all books with information on “soft-

ware developers”. The query must find multiple words in any order allowing up to three

intervening words.

XQuery Full-Text solution :

for $book in doc("full-text.xml")/books/book

where $book//content ftcontains

"software" && "developer" with stemming

distance at most 3 words

return $book

AFTX translation :

ι/book(

ς/book//content[“sofware” AND “developers” ,3,stem](

π/books/book(“full-text.xml”)))

Chapter 4. Translating XQuery (Full-Text) Expressions 189

Example 4.37 [Use Case “AXES” Q1] Find all books with paragraphs containing the

phrase “computer workstation” and footnotes within those paragraphs containing the

word “comfortable”.

XQuery solution:

for $book in doc("full-text.xml")/books/book

let $para := $book//p[. ftcontains "computer workstation"],

$fn := $para/footnote[. ftcontains "comfortable"]

where count($fn)>0

return $book/metadata/title, $para

AFTX translation :

ι/prod root/prod root/book,/prod root/prod root/let root/p(

σ/prod root/footnote[.count>0](

(π/books/book(“full-text.xml”) on/book[//p≡/let root/p]

ι“let root”(null,null,null)(ς/p[“computer workstation”](π/book//p(π/books/book(

“full-text.xml”))))) on/prod root/let root/p[/footnote≡/let root/footnote]

ι“let root”(null,null,null)(ς/footnote[“comfortable”](π/p/footnote(

ι“let root”(null,null,null)(ς/p[“computer workstation”](π/book//p(

π/books/book(“full-text.xml”)))))))))

This quite complex query is shown graphically in Figure 4.4. The figure shows that

some partial results can be built on the basis of previously calculated partial results.

4.4 About XML Updates

4.4.1 XQuery Update Facility

Recently W3C has published a working draft, called XQuery Update Facility [Con06h],

for extending XQuery with update capabilities. In particular, the XQuery Update Facility

provides facilities to perform any or all of the following operations on an instance of the

XQuery Data Model:

190 Chapter 4. Translating XQuery (Full-Text) Expressions

Figure 4.4: Graphical representation of the AFTX expression of Example 4.37.

• insertion of a node;

• deletion of a node;

• modification of a node by changing some of its properties while preserving its iden-

tity;

• creation of a modified copy of a node with a new identity.

Insertion of a node is performed through the expression

do insert NewNodes Where OldNode .

Chapter 4. Translating XQuery (Full-Text) Expressions 191

Its result is the insertion of the result of the XQuery expressionNewNodesin a posi-

tion specified byWherewith respect to the node resulting from the XQuery expression

OldNode. For example, the expression

do insert <year>2005</year>

after fn:doc("bib.xml")/books/book[1]/publisher

inserts a new element namedyear , with value2005 , as the following sibling of the

publisher sub-element of the firstbook sub-element of the root elementbooks .

Deletion of a node is performed through the expression

do delete OldNodes .

Its result is the deletion of the nodes resulting from the XQuery expressionOldNodes. For

example, the expression

do delete fn:doc("bib.xml")/books/book[1]/author[last()]

deletes the last author of the first book in a given bibliography.

Replacement of a node with a new sequence of zero or more nodes is performed

through the expression

do replace OldNode with NewNodes .

Its result is the replacement of the node resulting from the XQuery expressionOldNode

with the sequence resulting from the XQuery expressionNewNodes. For example, the

expression

do replace fn:doc("bib.xml")/books/book[1]/publisher

with fn:doc("bib.xml")/books/book[2]/publisher

replaces the publisher of the first book with the publisher of the second book. Using the

optional clausevalue of , the value of the node is modified while preserving its node

identity. For example, the expression

192 Chapter 4. Translating XQuery (Full-Text) Expressions

do replace value of fn:doc("bib.xml")/books/book[1]/price

with fn:doc("bib.xml")/books/book[1]/price * 1.1

increases the price of the first book by ten percent.

It is also possible to rename a node, using the expression

do rename OldNode as NewName .

Its result is the renaming of the node resulting from the XQuery expressionOldNodewith

the name resulting from the XQuery expressionNewName. For example, the expression

do rename fn:doc("bib.xml")/books/book[1]/author[1]

as $newname

renames the firstauthor element of the first book to the QName that is the value of the

variable$newname.

Finally, a transform expression can be used to create modified copies of existing nodes

in an XDM instance. The expression

transform copy VarName := OldNodes modify UpdateExpr return Expr

creates a copy (bound to the variableVarName) of the nodes resulting from the XQuery

expressionOldNodes, modifies the copy according to the update expressionUpdateExpr

and returns the result ofExpr. For example the expression

for $e in //employee[skill = "Java"]

return

transform

copy $je := $e

modify do delete $je/salary

return $je

returns a sequence consisting of allemployee elements that have Java as a skill, exclud-

ing theirsalary child-elements.

Chapter 4. Translating XQuery (Full-Text) Expressions 193

4.4.2 Expressing updates in AFTX

The definition of operators and translation techniques for expressing XQuery update oper-

ations into the AFTX algebra is beyond the scope of this thesis, and represents a valuable

future research direction. However, we want to present in this section some informal ideas

on how such a process could be carried out.

The first thing to notice is that a large part of the semantics of the update operations

can be expressed using the algebraic operators already defined. In particular:

• OldNodein the do insert expression is a query, therefore it can be translated

into an algebraic expression as explained in the previous sections of this chapter;

NewNodesis also a query, possibly including some element construction specifica-

tion, therefore it can be translated into an algebraic expression.

• OldNodesin thedo delete expression is a query, therefore it can be translated

into an algebraic expression.

• OldNodeand NewNodesin the do replace expression are queries, therefore

they can be translated into two algebraic expressions.

• OldNodein the do rename expression is a query, therefore it can be translated

into an algebraic expression.

• OldNodesin thedo transform expression is a query, therefore it can be trans-

lated into an algebraic expression.

Consequently, what should be done in order to express updates in AFTX is the defini-

tion of:

• an insertoperator, which takes as input a node (i.e. a forest formed by a single tree

including a single element) corresponding toOldNodeand a forest corresponding to

NewNodes; its predicate should indicate where to insert the new nodes with respect

to the old node;

194 Chapter 4. Translating XQuery (Full-Text) Expressions

• a replaceoperator, which again takes as input a node corresponding toOldNode

and a forest corresponding toNewNodes;

• a transformoperator, which takes as input a forest corresponding toOldNodes, an

AFTX expression corresponding toUpdateExprand an AFTX expression corre-

sponding toExpr.

For what concernsdo delete expressions, it seems evident that its semantics is

identic to that of the deletion operator defined in Chapter 3. Therefore its translation into

an AFTX expression should be quite straightforward.

Chapter 5

Query Optimization

One of the main motivations for the definition of an algebra is the possibility to study

optimization techniques that rely on some properties of the proposed algebra. In this

section we show the most important properties of our operators.

It is worth specifying that the kind of optimization we study in this chapter is alogical

optimization; the definition of performing algorithms that implement the algebraic oper-

ators, possibly using some access support structures, is beyond the scope of our doctoral

work. Anyway such aphysicaloptimization is unquestionably one the main interesting

challenges in the development of a working XML database system, and is therefore one

of the possible future research areas, as discussed later in Chapter 7.

We start in Section 5.1 by defining the kind of relations between algebraic expressions

we are interested in. In Section 5.2 we present the first block of rules, which resemble sim-

ilar well-known rules holding in relational algebra. In Section 5.3 we present rules which

are instead intended to optimize expressions resulting from the translation of XQuery

nested expressions.

5.1 Algebraic Properties of Interest

The goal of this chapter is to establish a set of rewriting rules which permit to substitute

an algebraic expressionA with an (hopefully more performing) algebraic expressionA′.

196 Chapter 5. Query Optimization

Some sort of relationship must exist betweenA andA′ for the rewriting to be worth. We

define three kinds of relationships:equivalence, containment, andsimilarity.

Equivalence rules (indicated with≡) state that the two involved algebraic expressions

always return two strictly equal forests. Equivalence is clearly the most attracting rela-

tionship, because the first expression can be safely transformed into the second one, in

order to improve performance.

Definition 5.1 (Expression Equivalence)Let x be a forest and letA(x) and B(x) be

two AFTX expressions.A andB are equivalent (denotedA ≡ B) if, for any input forest

x, they return two forestsFx = (T1, T2, . . . , Tn) and F ′x = (T ′1, T
′
2, . . . , T

′
n) such that

Fx ≡ F ′x.

Note that the kind of equivalence we consider isabsoluteequivalence: the result of

A(x) is equivalent to thatB(x), regardless of the input forestx; the same clarification

holds for containment and similarity rules.

Containment rules (indicated with⊂) state that the first algebraic expression always

returns a subforest of the forest returned by the second algebraic expression. Even if

the two expressions are not equivalent, it can be sometimes worth to substitute the first

expression with the second one, if it can be answered more quickly; while doing such

substitution, however, it should be taken into account the fact that a subsequent selection

is needed in order to eliminate false positives.

Definition 5.2 (Expression Containment)Let x be a forest and letA(x) and B(x) be

two AFTX expressions.A is contained intoB (denotedA ⊂ B) if, for any input forestx,

it returns a forestFx = (T1, T2, . . . , Tn) such thatFx ⊂ F ′x, whereF ′x = (T ′1, T
′
2, . . . , T

′
m)

is the forest returned byB(x).

The equivalence relationship previously defined states that two expressions return two

strictly equal forests. Remember that forest strict equality means that:

• the forests contain the same trees;

• the trees are in the same order.

Chapter 5. Query Optimization 197

Similarity rules (indicated with∼=), instead, state that the two involved algebraic ex-

pressions return two forests containing the same trees, but in a (possibly) different order.

In general order is significative in the semi-structured world, therefore such transforma-

tions can be done only if ordering is not a matter, for example if a subsequent ordering

operation must be performed.

Definition 5.3 (Expression Similarity) Let x be a forest and letA(x) andB(x) be two

AFTX expressions.A andB are similar (denotedA ∼= B) if, for any input forestx, they

return two forestsFx = (T1, T2, . . . , Tn) andF ′x = (T ′1, T
′
2, . . . , T

′
n) such that:

• ∀Ti ∈ Fx, ∃T ′j ∈ F ′x such thatTi ≡ T ′j;

• ∀T ′j ∈ F ′x, ∃Ti ∈ Fx such thatT ′j ≡ Ti.

Note that, for two expressions to be similar, order of trees can be different but order

of elements must be the same, otherwise tree would not be strictly equal.

Example 5.1 Consider the forestF in Figure 5.1. It could be obtained using the follow-

ing algebraic expressionA:

ι“book”(null,null,(/book/title,/book/price))(

σ/book[/publisher=“Addison−Wesley”](π/bib/book(“bib.xml”))) ,

wherebib.xml is the XML document in Figure 2.3. Consider now the forestsF ′, F ′′,

andF ′′′, also shown in Figure 5.1, and suppose they are obtained by three algebraic ex-

pressionsA′, A′′, andA′′′. Then:

• A′ ⊂ A: F ′ contains part of the trees contained inF , in the same order;

• A′′ ∼= A, butA′′ 6≡ A: F ′′ contains the same trees ofF , but in a different order;

• A′′′ 6∼= A, because the first tree inF ′′′ has not a corresponding strictly equal tree in

F .

Note that, for the inclusion and similarity properties to hold, the containment/similarity

relationship between resulting forests must be valid for any input forest.

198 Chapter 5. Query Optimization

book

title price

“TCP-IP
Illustrated”

65.95

book

title price

“Advanced
Programming

in the Unix
Environment”

65.95

book

title price

“TCP-IP
Illustrated”

65.95

book

title price

“Advanced
Programming

in the Unix
Environment”

65.95

book

title price

“TCP-IP
Illustrated”

65.95

F F’

F’’

book

titleprice

“TCP-IP
Illustrated”

65.95

book

title price

“Advanced
Programming

in the Unix
Environment”

65.95

F’’’

Figure 5.1: A sample forest (F), a contained forest (F ′), a similar forest (F ′′), and a

non-similar forest (F ′′′).

5.2 Relational-like Rules

The rules presented in this section and summarized in Table 5.1 are inspired by similar

rules holding in relational algebra. Such a similarity is one of the advantages of hav-

ing defined an algebra whose operators are inspired by relational algebra operators. The

rules can be used to leverage performances, either reducing the size of partial results or

permitting the usage of available auxiliary data structures, like indexes.

In what follows we analyze the relational-like rules. For each of them we present

an informal overview, the formal theorem (Theorem 5.x corresponds to Rulex), and the

proof of the theorem. Rewriting examples complete the treatment of the subject.

5.2.1 Idempotency

Rule 1 states that a projection involving a path expression composed by a single step of

the form/1 or /* can be safely removed. In fact both path expressions retrieve the root

element of each input tree, regardless its name, thus returning the input forest without any

changes.

Chapter 5. Query Optimization 199

Table 5.1: Relational-like optimization rules.

1. Projection Idempotency π/1(F) ≡ F , π/∗(F) ≡ F

2. Projection Decomposition πλ1λ2(F) ≡ π/1λ2(πλ1(F))

3. Selection Decomposition σλ[γ1 AND γ2](F) ⊂ σλ[γ2](σλ[γ1](F))

4. Full-Text (FT) Selection ςλ[γ1 AND γ2,stem,thes,stop](F) ⊂
Decomposition σλ[γ2,stem,thes,stop](σλ[γ1,stem,thes,stop](F))

5. Selection Disjunction σλ[γ1 OR γ2](F) ∼= σλ[γ1](F) ∪ (σλ[γ2](F)− σλ[γ1](F))

6. FT Selection Disjunction ςλa[γ1 OR γ2](F) ∼= ςλa[γ1](F) ∪ (ςλa[γ2](F)− ςλa[γ1](F))

7. Selection Push-Down σ/prod rootλ[γ](F ×G) ≡ F × (σλ[γ](G)) ,

σ/prod rootλ[γ](F onP G) ≡ F onP (σλ[γ](G))

8. FT Selection Push-Down ς/prod rootλa[γ,x](F ×G) ≡ F × (ςλa[γ,x](G)) ,

ς/prod rootλa[γ,x](F onP G) ≡ F onP (ςλa[γ,x](G))

9. FT Score Assignment ξ/prod root/λa[γ,x]f (F ×G) ≡ F × (ξλa[γ,x]f (G)) ,

Push-Down ξ/prod root/λa[γ,x]f (F onP G) ≡ F onP (ξλa[γ,x]f (G))

10. Selection Distributivity σP (F ∪G) ≡ σP (F) ∪ σP (G) ,

σP (F −G) ≡ σP (F)− σP (G)

11. FT Selection ςP (F ∪G) ≡ ςP (F) ∪ ςP (G) ,

Distributivity ςP (F −G) ≡ ςP (F)− ςP (G)

12. Projection Distributivity πP (F ∪G) ≡ πP (F) ∪ πP (G)

13. Deletion Distributivity δP (F ∪G) ≡ δP (F) ∪ δP (G) ,

δP (F −G) ≡ δP (F)− δP (G)

14. Product and Join F × (G1 ∪G2) ∼= (F ×G1) ∪ (F ×G2) ,

Distributivity F onP (G1 ∪G2) ∼= (F onP G1) ∪ (F onP G2)

15. Union Associativity (F1 ∪ F2) ∪ F3 ≡ F1 ∪ (F2 ∪ F3)

16. Union Commutativity F ∪G ∼= G ∪ F

17. Product and Join F ×G ∼= ιP (G× F) ,

Commutativity F onP G ∼= ιP2(G on′P F)

18. Product and Join (F1 × F2)× F3
∼= ιP (F1 × (F2 × F3)) ,

Associativity (F1 onP1 F2) onP2 F3
∼= ιP (F1 onP ′

1
(F2 onP ′

2
F3))

19. Selection Commutativity σP1(σP2(F)) ≡ σP2(σP1(F))

20. FT Selection ςP1(ςP2(F)) ≡ ςP2(ςP1(F))

Commutativity

200 Chapter 5. Query Optimization

Theorem 5.1 (Projection Idempotency)Let F be a forest. Then the following equiva-

lence relation holds:

π/1(F) ≡ F , π/∗(F) ≡ F (5.1)

Proof: The proof comes directly from Definition 3.17 of path expression and Definition

3.19 of projection. �

5.2.2 Decomposition

Rule 2 considers the application of the projection operator to a forest. The projection

predicate is a path expression that can be composed by multiple steps; that path expression

can bedecomposed, thus transforming a single projection operation in multiple projection

operations. Projection decomposition can speed up the evaluation of the query, because it

can permit to use access support structures such as path indexes.

Example 5.2 Consider the XML document in Figure 2.3 and suppose we want to extract

the last name of each author. The following AFTX expression answers the query:

π/bib/book/author/last(“bib.xml”) .

Suppose now an index structure is available, which permits a fast recovery of the

elements reachable following the path expression/bib/book/author . Then the pre-

vious AFTX expression can be optimized by using Rule 2, thus obtaining the following

expression:

π/1/last(π/bib/book/author(“bib.xml”)) .

Attention must be posed to the fact that, when splitting a path expression, the final

part must be preceded by a/1 step. In this example, the inner projection returnsauthor

elements; therefore the last part of the path expression (/last) must be headed by a

/author (or, equivalently,/1) step.

Theorem 5.2 (Projection Decomposition)Let F be a forest and letλ1λ2 be a path ex-

pression. Then the following equivalence relation holds:

πλ1λ2(F) ≡ π/1λ2(πλ1(F)) . (5.2)

Chapter 5. Query Optimization 201

Proof: We demonstrate the theorem by induction on the number of steps of the two path

expressions. As base case, letλ1 = α1
1β

1
1 andλ2 = α1

2β
1
2 be composed by a single step.

Depending on the kind ofα1
i andβ1

i , the following cases are possible:

1. λ1 = /1 andλ2 = /β1
2 . By Theorem 5.1π/1(F) = F ; thenπ/1λ2(πλ1(F)) =

π/1λ2(F) = πλ1λ2(F).

2. λ1 = /∗ andλ2 = /β1
2 . The proof is identical to that of case 1.

3. λ1 = /s1 andλ2 = /x, wheres1 is a string andx is an integer. By Definition

3.17π/s1(F) = {T ∈ F | root(T).n = s1} andπ/1/x(F) = {T ′ ⊂ T | T ∈ F ∧
root(T ′).o = x∧ root(T ′).p = root(T)}. Thenπ/1λ2(πλ1(F)) = π/1/x(π/s1(F)) =

{T ′ ⊂ T | T ∈ F ∧ root(T).n = s1 ∧ root(T ′).o = x ∧ root(T ′).p = root(T)} d
=

π/s1/x(F) = πλ1λ2.

4. λ1 = /s1 andλ2 = /∗, wheres1 is a string. By Definition 3.17π/s1(F) = {T ∈
F | root(T).n = s1} andπ/1/∗(F) = {T ′ ⊂ T | T ∈ F ∧ root(T ′).p = root(T)}.
Thenπ/1λ2(πλ1(F)) = π/1/∗(π/s1(F)) = {T ′ ⊂ T | T ∈ F ∧ root(T).n = s1 ∧
root(T ′).p = root(T)} d

= π/s1/∗(F) = πλ1λ2.

5. λ1 = /s1 andλ2 = /s2, wheres1 ands2 are strings. By Definition 3.17π/s1(F) =

{T ∈ F | root(T).n = s1} andπ/1/s2(F) = {T ′ ⊂ T | T ∈ F ∧ root(T ′).n =

s2 ∧ root(T ′).p = root(T)}. Thenπ/1λ2(πλ1(F)) = π/1/s2(π/s1(F)) = {T ′ ⊂
T | T ∈ F ∧ root(T).n = s1 ∧ root(T ′).n = s2 ∧ root(T ′).p = root(T)} d

=

π/s1/s2(F) = πλ1λ2 .

6. λ1 = //x andλ2 = /β1
2 , wherex is an integer. By Definition 3.17π//x(F) = {T ′ ⊂

T | T ∈ F ∧ root(T ′) is thex-th element (in pre-order enumeration) ofT}. Then

π/1λ2(πλ1(F)) = π/1/β1
2
(π//x(F)) = {T ′′ ⊂ T ′ ⊂ T | T ∈ F ∧ root(T ′) is thex-th

element (in pre-order enumeration) ofT ∧ root(T ′′).p = root(T ′) ∧ the condition

imposed byβ1
2 is satisfied} d

= π//x/β1
2

= πλ1λ2(F).

7. λ1 = //∗ andλ2 = /β1
2 . By Definition 3.17π//∗(F) = {T ′ ⊂ T | T ∈ F}. Then

π/1λ2(πλ1(F)) = π/1/β1
2
(π//∗(F)) = {T ′′ ⊂ T ′ ⊂ T | T ∈ F ∧ root(T ′′).p =

202 Chapter 5. Query Optimization

root(T ′) ∧ the condition imposed byβ1
2 is satisfied} d

= π//∗/β1
2

= πλ1λ2(F).

8. λ1 = //s1 andλ2 = /β1
2 , wheres1 is a string. By Definition 3.17π//s1(F) = {T ′ ⊂

T | T ∈ F ∧ root(T ′).n = s1}. Thenπ/1λ2(πλ1(F)) = π/1/β1
2
(π//s1(F)) = {T ′′ ⊂

T ′ ⊂ T | T ∈ F∧root(T ′).n = s1∧root(T ′′).p = root(T ′)∧ the condition imposed

by β1
2 is satisfied} d

= π//s1/β1
2

= πλ1λ2(F).

9. λ1 = //β1
1 andλ2 = /β1

2 . The proof is similar to that of cases 6–8, except that the

conditionroot(T ′′).p = root(T ′) is removed.

Now letλ1 = α1
1β

1
1 be composed by a single step and letλ2 = α1

2β
1
2α

2
2β

2
2 . . . αn

2βn
2 be

composed byn steps. By inductive hypothesis

πα1
1β1

1α1
2β1

2α2
2β2

2 ...αn−1
2 βn−1

2
(F) = π/1α1

2β1
2α2

2β2
2 ...αn−1

2 βn−1
2

(πα1
1β1

1
(F)) .

Depending on the kind ofαn
2 the following cases are possible:

• αn
2 = “/”. By Definition 3.17πλ1λ2(F) = {T ′ ⊂ T | T ∈ πα1

1β1
1α1

2β1
2α2

2β2
2 ...αn−1

2 βn−1
2

(F)∧
root(T ′).p = root(T)∧ the condition imposed byβn

2 is satisfied} = {T ′ ⊂ T | T ∈
π/1α1

2β1
2α2

2β2
2 ...αn−1

2 βn−1
2

(πα1
1β1

1
(F))∧root(T ′).p = root(T)∧ the condition imposed by

βn
2 is satisfied} d

= π/1α1
2β1

2α2
2β2

2 ...αn−1
2 βn−1

2 /βn
2
(πα1

1β1
1
(F)) = π/1λ2(πλ1(F)).

• αn
2 = “//”. By Definition 3.17πλ1λ2(F) = {T ′ ⊂ T | T ∈ πα1

1β1
1α1

2β1
2α2

2β2
2 ...αn−1

2 βn−1
2

(F)∧
the condition imposed byβn

2 is satisfied byroot(T ′)} = {T ′ ⊂ T | T ∈
π/1α1

2β1
2α2

2β2
2 ...αn−1

2 βn−1
2

(πα1
1β1

1
(F)) ∧ the condition imposed byβn

2 is satisfied by

root(T ′)} d
= π/1α1

2β1
2α2

2β2
2 ...αn−1

2 βn−1
2 //βn

2
(πα1

1β1
1
(F)) = π/1λ2(πλ1(F)).

�

Rules 3 and 4 state that an equivalence rule similar to that of Rule 2 does not hold for

selection and full-text selection; while in relational algebraσF1∧F2(E) ≡ σF1(σF2(E)), in

AFTX the following more general containment rules hold:

σλ[γ1 AND γ2](F) ⊂ σλ[γ2](σλ[γ1](F)) ;

ςλ[γ1 AND γ2,stem,thes,stop](F) ⊂ σλ[γ2,stem,thes,stop](σλ[γ1,stem,thes,stop](F)) .

Chapter 5. Query Optimization 203

This is due to the fact that, while in relational algebra every tuple resulting from

σF2(E) is guaranteed to satisfy the selection conditionF2, in AFTX a subtreeT ′ ∈
πλ(σλ[γ1](F)) (respectivelyT ′ ∈ πλ(ςλ[γ1,stem,thes,stop](F))) is not guaranteed to satisfy

the selection condition[γ1] (respectively[γ1, stem, thes, stop]). The key point is that

AFTX selection and full-text selection have an existential semantic: a tree satisfies a

(full-text) selection condition if at least one of its subtrees satisfies it. For example, given

an XML document named"books2.xml" , the book shown in Figure 5.2 would be

contained in the result of the query

σ/book/author[/first.v=“Serge”](σ/book/author[/last.v=“Abiteboul”](π/bib/book(“books2.xml”)))

because there is an author (the first one) whose last name isAbitebouland there is an

author (the second one) whose first name isSerge; contrariwise, such a book would not

be contained in the result of the query

σ/book/author[/last.v=“Abiteboul” AND /first.v=“Serge”](π/bib/book(“books2.xml”))

because there is no author whose last and first name are respectivelyAbiteboulandSerge.

<book year="2000">

<title>Data on the Web</title>

<author><last>Abiteboul</last><first>Peter</first></author>

<author><last>Buneman</last><first>Serge</first></author>

<author><last>Suciu</last><first>Dan</first></author>

<publisher>Morgan Kaufmann Publishers</publisher>

<price>65.95</price>

</book>

Figure 5.2: An XML document showing why selection decomposition is a containment

rule.

The selection decomposition containment rule is not valid in general if some basic

selection condition are of the form.pos= c or .count= c. In this case, in fact, the eval-

uation of the selection condition depends on the entire input forest: changing the input

204 Chapter 5. Query Optimization

forest (e.g. applying a selection predicate), the evaluation of such a selection condition

changes. For example, consider the XML document in Figure 2.3; the algebraic expres-

sion

σ[.pos=1 AND .count=4](π/bib/book(“books.xml”))

would return the book “TCP/IP Illustrated”, because it is the first book in a forest contain-

ing four books. That book, however, would not be returned by the algebraic expression

σ[.count=4](σ[.pos=1](π/bib/book(“books.xml”)))

because the forest resulting fromσ[.pos=1](π/bib/book(“books.xml”)) contains just one

book.

For what concerns the full-text decomposition, we have omitted the optional window

parameter which, if present, forces the searched words to be at a distance between one

and another not greater thanx; actually the rule is still valid even if such a parameter is

present, but it is discarded when atomizing the full-text selection. In fact the decomposi-

tion transforms searching for (say) two words into searching for one word then searching

for another word; clearly, the window parameter does not make sense when searching for

just one word.

Theorem 5.3 (Selection Decomposition)Let F be a forest,λ be a path expression,γ1

andγ2 be two selection conditions not using the element properties.count and .pos .

Then the following containment relation holds:

σλ[γ1 AND γ2](F) ⊂ σλ[γ2](σλ[γ1](F)) . (5.3)

Proof: Let T ∈ σλ[γ1 AND γ2](F); by Definition 3.22 of selection,∃T ′ ∈ πλ(T) such that:

• T ′ satisfies the selection conditionγ1: this means thatT ∈ σλ[γ1](F);

• T ′ satisfies the selection conditionγ2: this means thatT ∈ σλ[γ2](F);

Therefore,T ∈ σλ[γ2](σλ[γ1](F)). �

Chapter 5. Query Optimization 205

Theorem 5.4 (Full-Text Selection Decomposition)Let F be a forest,λ be a path ex-

pression,γ1 andγ2 be two full-text basic selection conditions. Then the following con-

tainment relation holds:

ςλ[γ1 AND γ2,stem,thes,stop](F) ⊂ σλ[γ2,stem,thes,stop](σλ[γ1,stem,thes,stop](F)) . (5.4)

Proof: The proof is identical to that of Theorem 5.3. �

Example 5.3 Consider the XML document in Figure 2.3 and suppose we want to retrieve

all the books written after 1995 whose price is not greater than 100. The following AFTX

expression answers the query:

σ/book[.A[“year”].v>1995 AND /price.v≤100](π/bib/book(“bib.xml”)) .

Using Rule 3, the previous expression can be rewritten into the following:

σ/book[/price.v≤100](σ/book[.A[“year”].v>1995](π/bib/book(“bib.xml”))) .

In this special case, the two expressions are equivalent: they both return the third

book (Data on the Web). Why such an equivalence, which does not hold in general,

is guaranteed? We should recall again the definition of selection:“a tree satisfies the

selection predicateλ[γ1 AND γ2 AND . . . AND γn] if exists at least one subtree reachable

following the pathλ that satisfies each base conditionγi” . What happens in general is

that, even if a treeT does not satisfy a composed selection predicate, that tree satisfies

the (say) two selection conditions obtained bysplitting the original composed selection

because:

• a subtreeT ′ satisfies the first selection condition;

• a different subtreeT ′′ satisfies the second selection condition.

Consequently, we can say that the equivalence rule

σλ[γ1 AND γ2](F) ≡ σλ[γ2](σλ[γ1](F))

206 Chapter 5. Query Optimization

holds if, for each input tree, there exists only one subtree over which the selection condi-

tion can be tested. Formally, the condition for the equivalence to hold is:

∀T ∈ F , F ′ = πλ(T) contains at most one tree.

This condition is obviously satisfied when, as in the previous example,λ is composed

by the single step “/ β”, whereβ is the root element name (or, equivalently,β = 1 or

β = ∗). In general, if the input XML document is conforming to an XML Schema

[Con01] andλ is such that the schema guarantees that at most one element can be reached

following such path, then the equivalence rule is guaranteed to hold.

Example 5.4 Consider a bibliographic XML document similar to that of Figure 2.3, with

the difference that each book has exactly one author. For such document, the following

equivalence holds:

σ/book/author[/first.v=“Serge”](σ/book/author[/last.v=“Abiteboul”](π/bib/book(“bib2.xml”))) ≡
σ/book/author[/last.v=“Abiteboul” AND /first.v=“Serge”](π/bib/book(“bib2.xml”))

Rules 5 and 6 state that a (full text) selection predicate containing two basic condi-

tions connected with theORoperator can be transformed into the union of two (full text)

selections.

Theorem 5.5 (Selection Disjunction)Let F be a forest,λ be a path expression,γ1 and

γ2 be two selection conditions. Then the following similarity relation holds:

σλ[γ1 OR γ2](F) ∼= σλ[γ1](F) ∪ (σλ[γ2](F)− σλ[γ1](F)) . (5.5)

Here we used the similarity relation∼= instead of the equivalence relation≡. This

indicates that the forest resulting from the left hand side expression is not exactly equal to

the forest resulting from the right hand side expression: the two forests contain the same

trees, but in different order. Recall that the union operator creates a new forest containing

the trees of the first forest, followed by the trees of the second forest; consequently a tree

which satisfies the selection conditionλ[γ1] always precedes (in the forest resulting from

the right hand side expression) a tree which instead satisfies the selection conditionλ[γ2],

even if the two trees were in reverse order in the input forest.

Chapter 5. Query Optimization 207

Example 5.5 Consider the XML document in Figure 2.3; the expression

σ
/book[/author/last.v=“ Abiteboul” OR .A[“ year”].v=1994]

(π/bib/book(“bib.xml”))

returns the booksTCP/IP Illustrated(because it satisfies the second condition) andData

on the Web(because it satisfies the first condition), in that order, i.e. the order in which

they are found in the input XML document. The expression

σ
/book[/author/last.v=“ Abiteboul”]

(π/bib/book(“bib.xml”)) ∪
(σ

/book[.A[“ year”].v=1994]
(π/bib/book(“bib.xml”))−

σ
/book[/author/last.v=“ Abiteboul”]

(π/bib/book(“bib.xml”)))

would instead return the same two books, but in reverse order. In factData on the Web

would be included in the result of the first selection, thus it would be included in the result

of the union before any result of the second selection.

Proof: Let T ∈ σλ[γ1 OR γ2](F). By Definition 3.22 of selection, eitherT ∈ σλ[γ1](F)

or T ∈ σλ[γ2](F). Then, by Definition 3.15 of union and Definition 3.16 of difference,

T ∈ σλ[γ1](F) ∪ (σλ[γ2](F)− σλ[γ1](F)).

Now let T ∈ σλ[γ1](F) ∪ (σλ[γ2](F) − σλ[γ1](F)). By definitions of union and dif-

ference eitherT ∈ σλ[γ1](F) or T ∈ σλ[γ2](F). Then, by definition of selection,T ∈
σλ[γ1 OR γ2](F). �

Theorem 5.6 (Full-Text Selection Disjunction)Let F be a forest,λ be a path expres-

sion,a (if present) be an attribute name,γ1 andγ2 be two basic full-text selection condi-

tions. Then the following similarity relation holds:

ςλa[γ1 OR γ2](F) ∼= ςλa[γ1](F) ∪ (ςλa[γ2](F)− ςλa[γ1](F)) . (5.6)

Note that, in this theorem and in all the following theorems regarding full-text oper-

ators, we omitted the optional parametersstem , thes , andstop . This is just for the

sake of simplicity; the theorem is still valid if one or more of such attributes are used.

Proof: The proof is identical to that of Theorem 5.5. �

208 Chapter 5. Query Optimization

5.2.3 Pushing Down

A common transformation in relational algebra is the push down of the selection operator

with respect to product or join. The same equivalence rules hold in AFTX for selection

(Rule 7) and full-text selection (Rule 8), provided thatλ is a path expression referred to

the forestG. This transformation can have a great impact on the performance, because it

reduces the size of forests passed as input to the product/join operator.

Theorem 5.7 (Selection Push-Down)Let F andG be two forests andγ be a selection

condition. Letλ be a path expression such that∀T ′ ∈ π/prod rootλ(F ×G) ∃T ∈ G such

thatT ′ ∈ πλ(T). Then the two following equivalence relations hold:

σ/prod rootλ[γ](F ×G) ≡ F × (σλ[γ](G)) , (5.7)

σ/prod rootλ[γ](F onP G) ≡ F onP (σλ[γ](G)) . (5.8)

Proof: Let us consider the product case. LetT ∈ σ/prod rootλ[γ](F × G) and letT ′ =

πprod root/2(T) be the right subtree of its root. By Definition 3.22 of selection,∃T ′′ ∈
π/prod rootλ(T) such thatroot(T ′′) satisfies the selection conditionγ. By hypothesis,

T ′′ ∈ πλ(T
′). Then, again by definition of selection,T ′′ ∈ σλ[γ](G). Then, by Definition

3.23 of product,T ∈ (F × (σλ[γ](G))).

Now letT ∈ (F × (σλ[γ](G))) and letT ′ = πprod root/2(T) be the right subtree of its

root. By definition of selection∃T ′′ ∈ πλ(T
′) such thatroot(T ′′) satisfies the selection

conditionγ. By definition of productT ′′ ∈ π/prod rootλ(F ×G). Then, again by definition

of selection,T ∈ σ/prod rootλ[γ](F ×G).

A similar proof can be used to demostrate the join case. �

Theorem 5.8 (Full-Text Selection Push-Down)LetF andG be two forests,a (if present)

be an attribute name,x (if present) be a window option, andγ be a full-text selection con-

dition. Letλ be a path expression such that∀T ′ ∈ π/prod rootλ(F ×G) ∃T ∈ G such that

T ′ ∈ πλ(T). Then the two following equivalence relations hold:

ς/prod rootλa[γ,x](F ×G) ≡ F × (ςλa[γ,x](G)) , (5.9)

ς/prod rootλa[γ,x](F onP G) ≡ F onP (ςλa[γ,x](G)) . (5.10)

Chapter 5. Query Optimization 209

Proof: The proof is identical to that of Theorem 5.7. �

Example 5.6 Consider the algebraic expression of Example 4.25:

ι“result”(null,null,null)(

ι“warning”(null,null,(/1/user/name,/1/user/rating,/1/item/description,/1/iteme/reserve price))(

σ/prod root[/item/offered by.v=/user/userid.v](

σ/prod root/item/reserve price[.v>1000](

σ/prod root/user/rating[.v>“C”](

π//user(“users.xml”)×
π//item(“items.xml”))))))

The outer selection compares two properties of elements found in the trees resulting

from the product; the first property is referred to an element of the left subtree, while the

second one is referred to an element of the right subtree. This is a typical join operation,

thus the first transformation we can do is the substitution of the product with a join:

ι“result”(null,null,null)(

ι“warning”(null,null,(/1/user/name,/1/user/rating,/1/item/description,/1/item/reserve price))(

σ/prod root/item/reserve price[.v>1000](

σ/prod root/user/rating[.v>“C”](

π//user(“users.xml”) on/user/userid[.v=/item/offered by.v]

π//item(“items.xml”)))))

The two remaining selections refer to, respectively, the left and right subtrees of the

trees resulting from the join. Then, using two times Rule 7, we obtain the following

optimized algebraic expression:

ι“result”(null,null,null)(

ι“warning”(null,null,(/1/user/name,/1/user/rating,/1/item/description,/1/item/reserve price))(

σ/user/rating[.v>“C”](π//user(“users.xml”)) on/user/userid[.v=item/offered by.v]

σ/item/reserve price[.v>1000](π//item(“items.xml”))))

A similar pushing down optimization can be used also for full-text score assignment

(Rule 9). In this case the advantage of the transformation consists in the fact that, for each

tree inG, the score is calculated just once.

210 Chapter 5. Query Optimization

Theorem 5.9 (Full-Text Score Assignment Push-Down)Let F and G be two forests,

a (if present) be an attribute name,x (if present) be a window option,γ be a full-text

selection condition, andf (if present) be a function pointer. Letλ be a path expression

such that∀T ′ ∈ π/prod rootλ(F × G) ∃T ∈ G such thatT ′ ∈ πλ(T). Then the two

following equivalence relations hold:

ξ/prod rootλa[γ,x]f (F ×G) ≡ F × (ξλa[γ,x]f (G)) , (5.11)

ξ/prod rootλa[γ,x]f (F onP G) ≡ F onP (ξλa[γ,x]f (G)) . (5.12)

Proof: The proof is identical to that of Theorem 5.7. �

It is worth considering the full-text score assignment push-down an equivalence rule;

however it must be noted that the two expressions are not exactly equivalent, because,

in the right hand side expression, the score property is set for the root element of the

right subtree of the tree root element. This slight difference between the first and the

second forest must be considered when applying such a transformation, modifying the

outer operators’ predicate as needed.

Example 5.7 Consider the following AFTX expression:

ιP (ξ
/prod root/book[“ XML”],f

(

π//author(“authors.xml”) on
/author[.A[“ id”].v=/book/author.v]

π//book(“books.xml”)))

whereP = “result”(null, null, (

“author”(/prod root/author/last, null, null),

“book”(/prod root/book/title, null, null),

“relevance”(/prod root.score, null, null)).

There are two input XML documents. The first (authors.xml) contains information

about authors, the second (books.xml) contains information about books. First two pro-

jections are executed, obtaining a forest of author (respectively book) trees. Then a join

combines each author with each book written by him. Then a full-text score is assigned by

searching for the wordXML into each book. Finally each pair (author, book) is returned,

including in the output: the author last name, the book title, the book score.

Chapter 5. Query Optimization 211

Suppose now to apply the full-text score assignment push-down rule. The expression

is rewritten as follows:

ιP ′(π//author(“authors.xml”) on
/author[.A[“ id”].v=/book/author.v]

ξ
/prod root/book[“ XML”],f

(π//book(“books.xml”)))

The score of each book, which was read by the tree construction operator using the

expression/prod root.score , is now reachable using the expressionprod root

/book.score . The tree construction predicateP must be therefore changed intoP ′ in

order to obtain an equivalent result:

P ′ = “result”(null, null, (

“author”(/prod root/author/last, null, null),

“book”(/prod root/book/title, null, null),

“relevance”(/prod root/book.score, null, null)).

5.2.4 Distributivity

In relational algebra, the selection operator is distributive with respect to union and dif-

ference. Rules 10 and 11 state that the same holds in AFTX for selection and full-text

selection, provided that (in the case of basic selection) the selection predicate does not

use the element properties.pos and.count . Also in this case, the goal of the transfor-

mation is to reduce the size of the partial results.

Theorem 5.10 (Selection Distributivity) Let F andG be two forests and letP be a se-

lection predicate not involving the element properties.pos and .count . Then the fol-

lowing equivalence relations hold:

σP (F ∪G) ≡ σP (F) ∪ σP (G) ; (5.13)

σP (F −G) ≡ σP (F)− σP (G) . (5.14)

Proof: Let us demonstrate the union case; a similar proof can be used to demonstrate the

difference case.

212 Chapter 5. Query Optimization

Let T ∈ σP (F ∪ G). By Definition 3.22 of selection,T ∈ (F ∪ G) and satisfies

the selection predicateP . By Definition 3.15 of union, eitherT ∈ F or T ∈ G. If

T ∈ F , thenT ∈ σP (F); if T ∈ G, thenT ∈ σP (G). Then, again by definition of union,

T ∈ σP (F) ∪ σP (G).

Now letT ∈ σP (F)∪σP (G). By definition of union eitherT ∈ σP (F) orT ∈ σP (G).

If T ∈ σP (F) (respectivelyT ∈ σP (G)), thenT satisfies the selection conditionP and

T ∈ F (respectivelyT ∈ G); consequentlyT ∈ (F ∪G) andT ∈ σP (F ∪G).

We have demonstrated that a similarity relation holds between the two expressions; in

order to demonstrate an equivalence relation, we must show that order between trees is

respected.

Let T ∈ σP (F ∪ G). By definition of selection,T ∈ (F ∪ G), then by definition of

union eitherT ∈ F or T ∈ G; suppose thatT ∈ F . Let T ′ ∈ σP (F ∪ G); two cases are

possible:

• T ′ ∈ F ; suppose thatT precedesT ′ in F . By definition of union,T precedesT ′ in

F ∪G. By definition of selection,T precedesT ′ in σP (F ∪G) andT precedesT ′

in σP (F). Then, again by definition of union,T precedesT ′ in σP (F) ∪ σP (G).

• T ′ ∈ G; thenT ∈ σP (F) andT ′ ∈ σP (G). By definition of unionT precedesT ′

in F ∪ G; then, by definition of selection,T precedesT ′ in σP (F ∪ G). Again by

definition of unionT precedesT ′ in σP (F) ∪ σP (G).

�

Theorem 5.11 (Full-Text Selection Distributivity) Let F andG be two forests and let

P be a full-text selection predicate. Then the following equivalence relations hold:

ςP (F ∪G) ≡ ςP (F) ∪ σP (G) ; (5.15)

ςP (F −G) ≡ ςP (F)− ςP (G) . (5.16)

Proof: The proof is identical to that of Theorem 5.10. �

For what concerns the projection operator, Rule 12 states that it is distributive with

respect to union. Like in relational algebra, projection is not distributive with respect to

difference.

Chapter 5. Query Optimization 213

Theorem 5.12 (Projection Distributivity) Let F be a forest and letP be a projection

predicate. Then the following equivalence relation holds:

πP (F ∪G) ≡ πP (F) ∪ πP (G) . (5.17)

Proof: Let T ∈ πP (F ∪ G). By Definition 3.19 of projection eitherT ∈ πP (F) or

T ∈ πP (G). Then by Definition 3.15 of unionT ∈ (πP (F) ∪ πP (G)).

Now let T ∈ (πP (F) ∪ πP (G)). By definition of union eitherT ∈ πP (F) or T ∈
πP (G). Then by definition of projectionT ∈ (πP (F) ∪ πP (G)).

We have demonstrated that a similarity relation holds between the two expressions; in

order to demonstrate an equivalence relation, we must show that order between trees is

respected. This can be done using a proof similar to that used in Theorem 5.10.�

Example 5.8 Consider the following AFTX expression:

σ/book/price[.v<100](π/bib/book(“csbooks.xml” ∪ “mathbooks.xml”)) .

Using Rule 12, we obtain the following equivalent expression:

σ/book/price[.v<100](π/bib/book(“csbooks.xml”) ∪ π/bib/book(“mathbooks.xml”)) .

Then, applying Rule 10, we obtain the final optimized expression:

σ/book/price[.v<100](π/bib/book(“csbooks.xml”))∪
σ/book/price[.v<100](π/bib/book(“mathbooks.xml”)) .

Rule 13 states that the deletion operator is distributive with respect to union and dif-

ference.

Theorem 5.13 (Deletion Distributivity) LetF andG be two forests and letP be a dele-

tion predicate. Then the following equivalence relations holds:

δP (F ∪G) ≡ δP (F) ∪ δP (G) (5.18)

δP (F −G) ≡ δP (F)− δP (G) . (5.19)

214 Chapter 5. Query Optimization

Proof: Let us demonstrate the union case; a similar proof can be used to demonstrate the

difference case.

Let T ∈ δP (F ∪G). By Definition 3.26 of deletion∃T ′ ∈ (F ∪G) such thatT ⊂ T ′.

By Definition 3.15 of union eitherT ′ ∈ F or T ′ ∈ G. Then eitherT ∈ δP (F) or

T ∈ δP (G). Then, again by definition of union,T ∈ (δP (F) ∪ δP (G)).

Now letT ∈ (δP (F)∪δP (G)). By definition of union eitherT ∈ δP (F) orT ∈ δP (G).

Then by definition of deletionT ∈ δP (F ∪G).

We have demonstrated that a similarity relation holds between the two expressions; in

order to demonstrate an equivalence relation, we must show that order between trees is

respected. This can be done using a proof similar to that used in Theorem 5.10.�

Example 5.9 Consider the following AFTX expression:

δ/book/author[NOT /country.v=“Italy”](π/bib/book(“csbooks.xml” ∪ “mathbooks.xml”)) .

Using Rule 12 (in the same way as in Example 5.8) and then Rule 13 we obtain the

following equivalent expression:

δ/book/author[NOT /country.v=“Italy”](π/bib/book(“csbooks.xml”))∪
δ/book/author[NOT /country.v=“Italy”](π/bib/book(“mathbooks.xml”)) .

Rule 14 states that the product and join operators are distributive with respect to union,

up to the order of trees. In order to understand why order is not respected, we must

remember how product (and join, which derives from it) combines trees from the two

input forests: it first combines the first tree from the first input forest with all the trees (in

the order in which they appear) from the second input forest, then the second tree of the

first input forest with all the trees from the second input forest, and so on. Figure 5.3(a)

shows three sample input forests; it can be noted that order between trees resulting from

F × (G1 ∪ G2) (Figure 5.3(b)) is different from that of(F × G1) ∪ (F × G2) (Figure

5.3(c)).

Example 5.10 Consider the following AFTX expression:

Chapter 5. Query Optimization 215

prod_root

T1 T3

(b)

(c)

prod_root

T1 T4

prod_root

T1 T5

prod_root

T1 T6

prod_root

T2 T3

prod_root

T2 T4

prod_root

T2 T5

prod_root

T2 T6

prod_root

T1 T3

prod_root

T1 T4

prod_root

T2 T3

prod_root

T2 T4

prod_root

T1 T5

prod_root

T1 T6

prod_root

T2 T5

prod_root

T2 T6

T1 T2 T3 T4 T5 T6

(a)

F G1 G2

Figure 5.3: Three sample input forests (a), the forest resulting fromF × (G1 ∪ G2) (b),

and the forest resulting from(F ×G1) ∪ (F ×G2) (c).

o/prod root/author/last.v ASC,/prod root/book/title.v ASC(

π//author(“authors.xml”) on/author[.A[“id”].v=/book/author.v] (

π//book(“csbooks.xml) ∪ π//book(“mathbooks.xml))) .

Using Rule 14, the expression can be rewritten as follows:

o/prod root/author/last.v ASC,/prod root/book/title.v ASC(

(π//author(“authors.xml”) on/author[.A[“id”].v=/book/author.v] π//book(“csbooks.xml)) ∪
(π//author(“authors.xml”) on/author[.A[“id”].v=/book/author.v] π//book(“mathbooks.xml))) .

Rule 14 is a similarity rules, not an equivalence; in fact the order of trees resulting

from join in the first expression is different from the order of trees resulting from union

of joins in the second expression. However we can safely apply such transformation,

because there is an outer ordering operator which makes unimportant order of its input

forest.

Theorem 5.14 (Product and Join Distributivity) Let F , G1 and G2 be three forests.

Then the following similarity relations hold:

F × (G1 ∪G2) ∼= (F ×G1) ∪ (F ×G2) ; (5.20)

F onP (G1 ∪G2) ∼= (F onP G1) ∪ (F onP G2) . (5.21)

216 Chapter 5. Query Optimization

Proof: Let us demonstrate the product case; a similar proof can be used to demonstrate

the join case.

Let T ∈ F × (G1 ∪G2). By Definition 3.23 of product:

• ∃T ′ ∈ F such thatπ/prod root/1(T) ≡ T ′;

• ∃T ′′ ∈ (G1 ∪G2) such thatπ/prod root/2(T) ≡ T ′′.

By Definition 3.15 of union eitherT ′′ ∈ G1 or T ′′ ∈ G2. Then, again by definition of

product, eitherT ∈ (F × G1) or T ∈ (F × G2). Then, again by definition of union,

T ∈ ((F ×G1) ∪ (F ×G2)).

Now let T ∈ ((F × G1) ∪ (F × G2)). By definition of union eitherT ∈ ((F × G1)

or T ∈ ((F ×G2); suppose thatT ∈ ((F ×G1). By definition of product:

• ∃T ′ ∈ F such thatπ/prod root/1(T) ≡ T ′;

• ∃T ′′ ∈ G1 such thatπ/prod root/2(T) ≡ T ′′.

If ∃T ′′ ∈ G1, by definition of unionT ′′ ∈ (G1 ∪G2). ThenT ∈ F × (G1 ∪G2). �

5.2.5 Associativity and Commutativity

Rule 15 states that, like in relational algebra, the union operator is associative. Therefore

we can safely write a union expression involving three or more input forests, likeF1 ∪
F2 ∪ F3.

Theorem 5.15 (Union Associativity)LetF1 F2 andF3 be three forests. Then the follow-

ing equivalence relation holds:

(F1 ∪ F2) ∪ F3 ≡ F1 ∪ (F2 ∪ F3) . (5.22)

Proof: The demonstration comes directly from Definition 3.15 of union. �

The relational union operator is also commutative; Rule 16 states that in our algebra

the union operator is commutative up to the order of trees. It should be clear why a

similarity relation holds instead of an equivalence relation. For example, suppose that

T ∈ F andT ′ ∈ G; thenT precedesT ′ in F ∪G, while T follows T ′ in G ∪ F .

Chapter 5. Query Optimization 217

Theorem 5.16 Let F and G be two forests. Then the following equivalence relation

holds:

A ∪B ∼= B ∪ A . (5.23)

Proof: The demonstration comes directly from Definition 3.15 of union. �

Example 5.11 Consider the following AFTX expression:

(π//book(“csbooks.xml”)∪π//book(“mathbooks.xml”))∪π//book(“physicsbooks.xml”) .

Using Rule 15 we can rewrite the expression into the following equivalent one:

π//book(“csbooks.xml”)∪(π//book(“mathbooks.xml”)∪π//book(“physicsbooks.xml”)) .

Therefore we can safely write the expression as follows:

π//book(“csbooks.xml”)∪π//book(“mathbooks.xml”)∪π//book(“physicsbooks.xml”) .

If we now rewrite the last expression, using Rule 16, as follows:

π//book(“mathbooks.xml”)∪π//book(“csbooks.xml”)∪π//book(“physicsbooks.xml”) .

we obtain a forest containing the same trees, but in different order.

The product and join operators are not commutative; this difference with respect to the

relational algebra is due to the fact that ordering of columns in a relation is not relevant,

while ordering of children of a node in an XML document is relevant. However, Rule 17

states that it is possible to obtain the same trees resulting from a product/join operation

between two forests by applying the tree construction operator to the result of the opposite

product/join operation.

Theorem 5.17 (Product and Join Commutativity) Let F and G be two forests. Then

the following similarity relations hold:

F ×G ∼= ι“prod root”(null,null,(/prod root/2,/prod root/1))(G× F) ; (5.24)

F onP G ∼= ι“prod root”(null,null,(/prod root/2,/prod root/1))(G onP ′ F) . (5.25)

HereP ′ is the opposite of predicateP , i.e. if P = λ1[p1θλ2p2], thenP ′ = λ2[p2θλ1p1].

218 Chapter 5. Query Optimization

Example 5.12 Consider the following AFTX expression:

π//author(“authors.xml”) on/author/last[.v=/book/author.v] π//book(“books.xml”) .

If we apply Rule 17, we obtain the following expression:

ι“prod root”(null,null,(/prod root/2,/prod root/1))(

π//book(“books.xml”) on/book/author[.v=/author/last.v] π//author(“authors.xml”))

The second expression returns a forest containing the same trees contained in the

output of the first expression, but in a different order.

Proof: Let us demonstrate the product case; a similar proof can be used to demonstrate

the join case.

Let T ∈ (F ×G). By Definition 3.23 of product:

• ∃T ′ ∈ F such thatπ/prod root/1(T) ≡ T ′;

• ∃T ′′ ∈ G such thatπ/prod root/2(T) ≡ T ′′.

Then∃T2 ∈ (G× F) such that:

• π/prod root/1(T2) ≡ T ′′;

• π/prod root/2(T2) ≡ T ′.

By Definition 3.34 of tree constructionι“prod root”(null,null,(/prod root/2,/prod root/1))(

T2) ≡ T . ThereforeT ∈ ι“prod root”(null,null,(/prod root/2,/prod root/1))(G× F).

Now letT ∈ (G× F). By definition of product:

• ∃T ′ ∈ G such thatπ/prod root/1(T) ≡ T ′;

• ∃T ′′ ∈ F such thatπ/prod root/2(T) ≡ T ′′.

Then∃T2 ∈ (F ×G) such that:

• π/prod root/1(T2) ≡ T ′′;

• π/prod root/2(T2) ≡ T ′.

Chapter 5. Query Optimization 219

By definition of tree constructionι“prod root”(null,null,(/prod root/2,/prod root/1))(T) ≡
T2. ThereforeT2 ∈ ι“prod root”(null,null,(/prod root/2,/prod root/1))(G× F). �

It is important to stress on the fact that, in both cases, the first algebraic expression

is not equivalent to the second one: the ordering of trees is different in the two cases, as

shown in Fig. 5.4.

prod_root

T1 T3

(b)

prod_root

T1 T4

prod_root

T2 T3

prod_root

T2 T4

(c)

prod_root

T1 T3

prod_root

T2 T3

prod_root

T1 T4

prod_root

T2 T4

T1 T2 T3 T4

(a)

F G

Figure 5.4: Two sample input forests (a), the forests resulting fromF × G (b), and the

forest resulting fromι“prod root”(null,null,(/prod root/2,/prod root/1))(G× F) (c).

The product and join operators are not associative, either. Again, this is due to the

relevance of ordering of children of a node in an XML document; moreover, each product

operation introduces a new root node calledprod root , leading to trees resulting from

(A × B) × C having a different hierarchical structure to that of trees resulting from

A × (B × C), as shown in Fig. 5.5. As previously seen for the commutative property,

Rule 18 states that it is possible to obtain(A × B) × C (up to the ordering of trees) by

applying the tree construction operator to the result ofA× (B × C).

Theorem 5.18 (Product and Join Associativity)Let F1, F2 andF3 be three forests; let

P1 andP2 be two join predicates. Then the following similarity relations hold:

(F1 × F2)× F3
∼= ιP (F1 × (F2 × F3)) (5.26)

220 Chapter 5. Query Optimization

prod_root

prod_root

T1 T2

T3

prod_root

prod_rootT1

T2 T3

(a) (b)

Figure 5.5: The tree resulting from (a)(T1 × T2)× T3 and (b)T1 × (T2 × T3).

(F1 onP1 F2) onP2 F3
∼= ιP (F1 onP ′

1
(F2 onP ′

2
F3)) (5.27)

In both relationsP = “prod root”(null, null, (“prod root”(null, null, (

/prod root/1, /prod root/prod root/1)), /prod root/prod root/2)). In the sec-

ond relation, ifP1 = λ1[p1θλ2p2] and P2 = /prod root/λ3[p3 = λ4p4], thenP ′1 =

λ1[p1θ/prod root/λ2p2] andP ′2 = λ3[p3θλ4p4].

Proof: Let us demonstrate the product case; a similar proof can be used to demonstrate

the join case.

Let T ∈ ((F1 × F2)× F3). By Definition 3.23 of product:

• ∃T ′ ∈ F1 such thatπ/prod root/prod root/1(T) ≡ T ′;

• ∃T ′′ ∈ F2 such thatπ/prod root/prod root/2(T) ≡ T ′′;

• ∃T ′′′ ∈ F3 such thatπ/prod root/2(T) ≡ T ′′′.

Then∃T2 ∈ (F1 × (F2 × F3)) such that:

• π/prod root/1(T2) ≡ T ′;

• π/prod root/prod root/1(T2) ≡ T ′′;

• π/prod root/prod root/2(T2) ≡ T ′′′.

By Definition 3.34 of tree constructionιP (T2) ≡ T , whereP is the tree construction

predicate defined in the theorem. ThereforeT ∈ ιP (F1 × (F2 × F3)).

Now letT ∈ (F1 × (F2 × F3)). By definition of product:

Chapter 5. Query Optimization 221

• ∃T ′ ∈ F1 such thatπ/prod root/1(T) ≡ T ′;

• ∃T ′′ ∈ F2 such thatπ/prod root/prod root/1(T) ≡ T ′′;

• ∃T ′′′ ∈ F3 such thatπ/prod root/prod root/2(T) ≡ T ′′′.

Then∃T2 ∈ ((F1 × F2)× F3) such that:

• π/prod root/prod root/1(T2) ≡ T ′;

• π/prod root/prod root/2(T2) ≡ T ′′;

• π/prod root/2(T2) ≡ T ′′′.

By definition of tree constructionιP (T) ≡ T2. ThereforeT2 ∈ ιP (F1× (F2×F3)). �

Finally, Rules 19 and 20 state that the commutative property is also valid for selection

and full-text selection. As in the case of Theorem 5.3, the selection predicate must not

make use of the element properties.count and.pos for the equivalence to be always

valid. For example, consider the algebraic expression

σ[.pos=3](σ[.count=4](π/bib/book(“books.xml”))) .

This expression retrieves the third book out of a forest containing exactly four books, and

no book if the forest contains a number of books different from four. If we change the

order of selections

σ[.count=4](σ[.pos=3](π/bib/book(“books.xml”))) .

we first select the third book of the input forest, thus obtaining a forest including just one

tree, then we check if the obtained forest contains exactly four books; it should be clear

that this expression always returns an empty forest.

Theorem 5.19 (Selection Commutativity)LetP1 andP2 be two selection predicates not

using the element properties.count and.pos . Then the following equivalence relation

holds:

σP1(σP2(F)) ≡ σP2(σP1(F)) (5.28)

222 Chapter 5. Query Optimization

Proof: Let T ∈ σP1(σP2(F)). By Definition 3.22 of selection,T satisfies both the selec-

tion conditionsP1 andP2. ThereforeT ∈ σP2(σP1(F)).

Using the same proof we can also demonstrate the inverse containment relationship,

thus proving the similarity relationship. �

Theorem 5.20 (Full-Text Selection Commutativity) Let P1 andP2 be two full-text se-

lection predicates. Then the following equivalence relation holds:

ςP1(ςP2(F)) ≡ ςP2(ςP1(F)) (5.29)

Proof: The proof is identical to that of Theorem 5.19. �

Example 5.13 Consider the XML document in Figure 2.3 and the following AFTX ex-

pression:

σ/book[.A[“year”].v>1995](σ/book/price[.v<100](π//book(“books.xml”))) .

Using Rule 14, the expression can be rewritten into the following:

σ/book/price[.v<100](σ/book[.A[“year”].v>1995](π//book(“books.xml”))) .

The two expressions are equivalent. In fact, they both return the bookData on the

Web.

5.2.6 Derived Full-Text Operators Usage

In Section 3.3 we have defined two useful derived operators, top-K and threshold full-

text selection. These operators have no equivalent XQuery Full-Text constructs; it is

therefore not surprising that they are never included in the AFTX expressions resulting

from XQuery automatic translation (see Chapter 4). However, if the system is able to

include, when appropriate, such operators in an algebraic expression, performances could

be leverages, because they can be implemented using specialized algorithms.

Chapter 5. Query Optimization 223

It is therefore important to understand when these operators can be used, i.e. we must

identify specialalgebraic patternswhich amount to a top-K (or threshold) operation. In

particular, consider an algebraic expression like

σ[.pos≤k](o/∗.score DESC(δ∗(σ∗(ξP (A)))))

where:

• A is any algebraic expression;

• σ∗ is a sequence zero or more selection (or full-text selections) operations;

• δ∗ is a sequence of zero or more deletion operations.

First of all, the selection (or full-text selection) operations can be pushed down with

respect to score assignment; deletion operations, instead, can be pushed up, because they

do not affect the outer ordering and selection operations. The expression can thus be

transformed into the following one:

δ∗(σ[.pos≤k](o/∗.score DESC(ξP (σ∗(A))))) .

It is now evident the pattern of a top-k operation: a full-text score assignment, fol-

lowed by an ordering by score value, followed by a selection by position. We can there-

fore introduce the ad-hoc operator and obtain the following final expression:

δ∗(>P ,k(σ∗(A))) .

A similar transformation can also be done in order to introduce the threshold operator.

Formally, we can state that the following equivalence rules hold:

σ[.pos≤k](o/∗.score DESC(δ
∗(S∗(ξP (A))))) ≡ δ∗(>P ,k(S

∗(A))) , (5.30)

o/∗.score DESC(σ/∗[.score≥τ](δ
∗(S∗(ξP (A))))) ≡ δ∗(ωP,τ (S

∗(A))) . (5.31)

Example 5.14 Consider the following XQuery Full-Text expression, which is a slightly

modified example taken from [Con06e]:

224 Chapter 5. Query Optimization

for $book in doc("full-text.xml")/books/book

let score $s := $book ftcontains "usability"

where $s >= 0.1

order by $s descending

return <focusedBook relevance="{$s}">

{$book/metadata/title/text()}

</focusedBook>

Using the translation algorithms presented in Chapter 4, it is translated into the fol-

lowing AFTX expression:

ι“focusedBook”(/book/metadata/title.v,((“relevance” ,/book.score)),null)(

o/book.score DESC(

σ/book[.score≥0.1](

ξ/book[“usability”](

π/books/book(“full-text”))))) .

In this algebraic expression we can find the algebraic pattern depicted by the left hand

side part of Expression 5.31:

• A is π/books/book(“full-text”);

• P is /book[“usability”];

• S∗ andδ∗ are the empty string;

• τ is 0.1.

By using the threshold operator the previous expression can therefore be rewritten into

the following one:

ι“focusedBook”(/book/metadata/title.v,((“relevance” ,/book.score)),null)(

ω/book[“usability”],τ (

π/books/book(“full-text”))) .

Chapter 5. Query Optimization 225

5.3 Nested Queries Rules

XQuery permits the nesting of a FLWOR expressions; in Chapter 4 we have seen how

such nested queries can be translated into AFTX expressions. There are however cases

in which interesting optimizations can be performed over the expression built using the

standard translation rules.

5.3.1 Product Elimination

A first case to consider is the presence in the expression of a product operation whose

right input forest contains trees which are subtrees of those contained in the left input

forest. Consider the following XQuery expression:

for $i in doc("books.xml")/bib/book

return <book title={$i/title/text()}>

{

for $j in $i/author

where $j/first="John"

return <author>{$j/last/text()}</author>

}

</book>

This query returns, for each book, the title and the last name of each author whose

first name isJohn. Following what already seen in Chapter 4, thefor clause in the inner

FLWOR expression, which refers to a variable defined in the outer FLWOR expressions,

must be translated using product and deletion in order to perform a left outer join. The

XQuery expression is then translated into the following algebraic expression:

ι“ book” (null,((“ title” ,/group root/book/title.v)),(“ author” (/group root/author/last.v,null,null)))
(

δ
/group root/∗[.k=/group root.A[“ treeIdentity”].v AND .pos>1]

(

Σ
((/prod root/1.k,“ treeIdentity”)),(/prod root/1,/prod root/2)

(

δ/prod root/author[NOT ≡/prod root/book/author](

226 Chapter 5. Query Optimization

π/bib/book(“books.xml”)×
σ/author/first[.v=“John”](π/bib/book/author(“books.xml”)))))) .

It is easy to notice that the right hand side expression of the product operation

σ/author/first[.v=“John”](π/bib/book/author(“books.xml”))

results in a forest whose trees are subtrees of those contained in the forest resulting from

the left hand side expression

π/bib/book(“books.xml”) .

In fact:

• the left projection predicate (/bib/book) is a subexpression of the right one

(/bib/book/author);

• no further operators are applied to the left expression, while only a selection oper-

ator is applied to the right one.

Such conditions let us apply a very impacting optimization: the complete elimina-

tion of the product operation, along with its right side expression. In more details, the

optimization is done as follows:

• the selection on authors is substituted with a deletion ofauthorsubtrees of the trees

resulting from the projection on books; the deletion predicate is the opposite of the

original selection predicate;

• the inner deletion is no more necessary, because there is no author coupled with

books not written by him;

• the grouping was done in order to group each book with its authors; it is therefore

no more necessary, because authors are already grouped (they are sub-elements of

the respectivebookelement);

• the outer deletion was done in order to eliminate duplicate book subtrees in the

trees resulting from the previous grouping; also this operation is clearly no more

necessary;

Chapter 5. Query Optimization 227

• the tree construction predicate is rewritten in order to be consistent with the new

structure of the input trees.

The previous algebraic expression is then rewritten as follows:

ι“ book” (null,((“ title” ,/book/title.v)),(“ author” (/book/author/last.v,null,null)))
(

δ
/book/author[NOT /first.v=“ John”]

(

π/bib/book(“books.xml”)) .

5.3.2 Inner Join vs Outer Join

Another interesting optimization involves expressions whose purpose is to invert hierar-

chy of elements. Consider the following XQuery expression:

for $i in distinct-values(doc("books.xml")/bib/book

/author/last)

return <author name={$i}>

{

for $j in doc("books.xml")/bib/book

where $i=$j/author/last

return <book>{$j/title/text()}</book>

}

</author>

Its purpose is to return, for each distinct author, the last name and the list of books

written by him. Using the presented translation algorithms, the following AFTX expres-

sion is built:

ι“ author” (null,((“ name” ,group root/group root.A[“ last”].v)),(“ book” (/group root/book/title.v,null,null)))
(

δ
/group root/∗[.k=/group root.A[“ treeIdentity”].v AND .pos>1]

(

Σ
((/prod root/1.k,“ treeIdentity”)),(/prod root/1,/prod root/2)

(

δ
/prod root/book[NOT /author/last.v=/prod root/group root.A[“ last”].v]

(

ν
(/last.v,“ last” (π/bib/book/author/last(“books.xml”))×

π/bib/book(“books.xml”)))))) .

228 Chapter 5. Query Optimization

In this case we note that the left hand side expression of the product

ν
(/last.v,“ last” (π/bib/book/author/last(“books.xml”))

results in a forest whose trees are built using data (authors’ last name) contained in the

forest resulting from the right hand side expression

π/bib/book(“books.xml”) .

It is not possible to completely eliminate the product operation, because it is needed

in order to revert the hierarchy of the document, but it is possible to substitute it and

the subsequent deletion with a join, in order to reduce the size of partial results. The

expression can thus be rewritten as follows:

ι“ author” (null,((“ name” ,/prod root/group root.A[“ last”].v)),(“ book” (/prod root/book/title.v,null,null)))
(

ν/last.v(π/bib/book/author/last(“books.xml”)) onP ′

π/bib/book(“books.xml”)))) ,

whereP ′ = /group root[.A[“last”].v = book/author/last.v]. In practice, the

outer join has been substituted by an inner join. This optimization has been made possible

by the consideration that the algebraic expression to the left of the join returns a forest

that cannot contain a tree not having a corresponding tree in the forest resulting from the

algebraic expression to the right of the join. Suppose now that the outerfor clause is

changed into the following:

for $i in distinct-values(doc("books.xml")//author/last)

Can we still optimize the algebraic expression as before? Unfortunately the an-

swer is not, because now it is not guaranteed that the left hand side path expression

(//author/last) is a subexpression of the right one (/bib/book). However, if we

have an XML Schema [Con01] specification stating that (1) anauthor element can ap-

pear only as child of abookelement and (2) abookelement can appear only as child of a

bib element, we can safely rewrite//author/last as/bib/book/author/last ;

consequently the rewriting rule is still valid and can be executed.

Part III

Conclusions

229

Chapter 6

Final Remarks

The integration of semi-structured data management and Information Retrieval techniques

poses serious challenges to database system developers. Nevertheless, such an integration

is recognized as a need from the scientific community, as testified by the definition of

a full-text extension of XQuery, the W3C candidate standard query language for XML

documents.

The definition of such a query language would be useless, if it is not coupled with a

formal algebraic framework underlying it. In fact, the implementation of the algorithms

needed for executing a query should be based on the definition of algebraic operators

which, carefully combined, are able to represent each query expressible in the query lan-

guage. Moreover, the availability of such an algebra facilitates the task of finding an

optimized query execution plan, by exploiting equivalence and containment properties of

algebraic expressions in order to formalize a set of query rewriting rules.

These considerations, along with the convincement that existing proposals on this

subject cannot be considered totally adequate, led us to the definition of a formal model

for representing XML documents and an algebra for querying instances of that model.

The data model represents XML databases through ordered trees contained into forests.

Special care is dedicated to the textual content: it is tokenized, and an ordinal value is as-

signed to each token. This permits to precisely represent either data-centric or document-

centric repositories. The data model we have presented has to be intended as aformal

model; an implementation of our framework could obviously choose a different internal

232 Chapter 6. Final Remarks

representation of trees and forests, provided that all the necessary properties of elements

and attributes are equally available.

AFTX, the proposed algebra, performs either standard queries and full-text queries;

it is able to represent many XQuery Full-Text expression. To our knowledge, AFTX is

one of the very few proposed algebras for XML covering the issue of full-text retrieval.

Moreover, in our opinion, it does not suffer of some limitations found in other proposals;

in fact:

• its data model is based on trees, the natural way to represent XML documents; no

transformation towards classical relational model is needed;

• its query capabilities are not limited to simple XPath-like constructs; it can represent

complex nested expressions and it can freely restructure the content of input trees;

• its full-text capabilities are comparable to that of XQuery Full-Text, rather, AFTX

provides a fine grained control over score evaluation through the availability of a

parameter that defines the function to use when calculating the full-text score of a

tree;

• its operators, being for the most part similar to classical relational operators, have a

precise and easy to understand semantics.

Another important contribution of our work is the definition of a series of equivalence,

containment and similarity rules. Some of them are adaptation of rules used in different

contexts, namely in relational algebra. Other rules deal with special characteristics of

queries over XML, like the possibility to nest expressions inside other expressions. Full-

text operators are also analyzed and a set of rules are targeted to those operators. In the

complex, the set of presented rewriting rules makes our framework a valuable starting

point for studying query optimization strategies.

Finally, a formal algorithm for the automatic translation of XQuery Full-Text expres-

sion into AFTX expressions has been developed. There are some limitations on the kind

of expressions that are recognized by the translation algorithm, but the accepted XQuery

fragment should be considered, in our opinion, quite expressive.

Chapter 7

What is next

This thesis poses the formal basis for the implementation of an efficient database system

for XML documents with Information Retrieval capabilities. The first future activity is

therefore the development of such a working system. To this purpose, what should be

realized is:

• an implementative model for storing XML documents; it must not be necessarily

equal to the presented formal model, but it should in any case expose all the prop-

erties of elements, trees, and forests defined in the formal model;

• efficient algorithms implementing the defined algebraic operators.

The rewriting rules presented in this thesis should then be used for finding efficient

query execution plans. This process presupposes the availability of:

• access support structures, like path indexes and value indexes, which should be

developed;

• statistics on the content of the XML repository.

Besides this evident future activity, we envisage two possible interesting extensions

to the algebra. The first deals with relaxed queries, a valid way to manage the structural

heterogeneity typical of XML repositories. The second is an attempt to consider data

mining tasks over XML documents just like one of the various manipulation tasks that

can be represented by an algebra.

234 Chapter 7. What is next

One of the main differences between structured and semi-structured paradigm is the

vaguenessof the schema. When dealing with structured data, the exact schema of re-

lations involved in a query is known in advance; this is not always the case for semi-

structured data. In fact the schema specifications for XML documents can leave an high

level of flexibility to document producers, for example defining some elements asop-

tional; moreover, it is perfectly legal for an XML document not to have an associated

schema at all. From a point of view, this flexibility is a great advantage; for example, it

facilitates the integration of heterogeneous data sources. On the other side, it poses some

problems for what concerns answering to a query that imposes constraints on the structure

of XML fragments to retrieve; it could be the case that such constraints are satisfied only

by a small part of source documents, thus leading to almost empty answers. Nevertheless,

there could be documents that are relevant to users, even if they do not closely respect

structure constraints expressed using XPath constructs.

A possible future research area is therefore aimed at incorporating into AFTX the

notion ofquery relaxation, i.e. the transformation of an algebraic expression into a less

restrictive one, following the ideas presented in [AYLP04, AYKM+05, MAYKS05]. A

relaxed version of some algebraic operators (selection, full-text selection and projection

are the main candidates) should be defined; such relaxed operators should be based on the

concept ofscore, i.e. a relaxed answer is assigned a score which reflects how exact is the

query that returns such an answer. In a certain way exact and approximate queries should

play the same role of boolean and ranked retrieval in classical Information Retrieval (and

of course in XQuery Full-Text): while exact queries classify each document fragment

as either relevant (i.e. fulfilling constraints imposed on the structure of a document and

the value of elements or attributes) or not relevant, relaxed queries should establish how

relevant such a fragment is.

For what concerns data mining, many works have been presented in the last few years

[BCC+02, WL00, AAK+02, Zak02, TRS02, ZA03, TSW03] trying to adapt concepts

from data mining over structured data to semi-structured repositories. However they typ-

ically consider data mining as a stand-alone subject, with poor connections with standard

manipulation operations. We believe instead that XML data mining tasks could be seen

Chapter 7. What is next 235

as the composition of basic manipulation tasks, which can be expressed by algebraic op-

erators working on forest of trees, like the ones present in AFTX. Clearly standard and

data mining operators would work of documents containing data at a different level of

abstraction, but they would share the same formal model. This extensions, along with the

support for approximate queries, would transform AFTX into a complete framework for

the management of semi-structured data.

References

[AAK +02] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa.

Efficient Substructure Discovery from Large Semi-Structured Data. InPro-

ceedings of the 2nd SIAM International Conference on Data Mining, pages

158–174, 2002.

[Abi97] Serge Abiteboul. Querying Semi-Structured Data. InProceedings of the

International Conference of Data Base Theory (ICDT), pages 1–18, Delphi,

Greece, 1997.

[AKYJ03] Shurug Al-Khalifa, Cong Yu, and H. V. Jagadish. Querying Structured

Text in an XML Database. InProceedings of the 2003 ACM SIGMOD

International Conference on Management of Data, pages 4–15, San Diego,

California, 2003. ACM Press.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and

Janet L. Wiener. The Lorel Query Language for Semistructured Data.In-

ternational Journal on Digital Libraries, 1(1):68–88, 1997.

[ASB99] Serge Abiteboul, Dan Suciu, and Peter Buneman.Data on the Web : From

Relations to Semistructured Data and XML. Morgan Kaufmann, 1999.

[AYBS04] Sihem Amer-Yahia, Chavdar Botev, and Jayavel Shanmugasundaram. TeX-

Query: A Full-Text Search Extension to XQuery. InProceedings of the

13th Conference on World Wide Web, pages 583–594, New York, NY, USA,

May 2004.

References 237

[AYCD06] Sihem Amer-Yahia, Emiran Curtmola, and Alin Deutsch. Flexible and Ef-

ficient XML Search with Complex Full-Text Predicates. InProceedings

of the 2006 ACM SIGMOD International Conference on Management of

Data, pages 575–586, Chicago, IL, USA, 2006.

[AYKM +05] Sihem Amer-Yahia, Nick Koudas, Aḿelie Marian, Divesh Srivastava, and

David Toman. Structure and Content Scoring for XML. InProceedings of

the 31st International Conference on Very Large Data Bases (VLDB 2005),

pages 361–372, Trondheim, Norway, August 2005.

[AYLP04] Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Shashank Pandit. FleX-

Path: Flexible Structure and Full-Text Querying for XML. InProceedings

of the ACM SIGMOD International Conference on Management of Data,

pages 83–94, Paris, France, June 2004.

[BAYS06] Chavdar Botev, Sihem Amer-Yahia, and Jayavel Shanmugasundaram. Ex-

pressiveness and Performance of Full-Text Search Languages. InProceed-

ings of the 10th International Conference on Extending Database Technol-

ogy (EDBT 2006), pages 349–367, Munich, Germay, March 2006.

[BCC+02] D. Braga, A. Campi, S. Ceri, M. Klemettinen, and P. L. Lanzi. A Tool

for Extracting XML Association Rules. InProceedings of IEEE Interna-

tional Conference on Tools with Artificial Intelligence (ICTAI), pages 57–

65, 2002.

[BDHS96] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A

Query Language and Optimization Techniques for Unstructured Data. In

Proceedings of the 1996 ACM SIGMOD International Conference on Man-

agement of Data, pages 505–516, 1996.

[BG02] Jan-Marco Bremer and Michael Gertz. XQuery/IR: Integrating XML Doc-

ument and Data Retrieval. InProceedings of the 5th International Work-

shop on the Web and Databases (WebDB), pages 1–6, June 2002.

238 References

[BHN+02] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti,

and S. Sudarshan. Keyword Searching and Browsing in Databases using

BANKS. In Proceedings of the 18th International Conference on Data En-

gineering (ICDE 2002), pages 431–440, San Jose, California, USA, Febru-

ary 2002.

[BM06a] Giacomo Buratti and Danilo Montesi. A Data Model and an Algebra for

Querying XML Documents. InProceedings of the 17th International Work-

shop on Database and Expert Systems Applications (DEXA 2006), pages

482–286, Krakow, Poland, September 2006. IEEE Computer Society.

[BM06b] Giacomo Buratti and Danilo Montesi. Equivalence and Containment of

XQuery Full-Text Expressions.WSEAS Transactions on Information Sci-

ence Applications, 3(10):1818–1825, October 2006.

[BM06c] Giacomo Buratti and Danilo Montesi. Full-Text Capabilities for Querying

XML Repositories: a Formal Model. InProceedings of the 10th WSEAS

International Conference on Computers, pages 738–743, Athens, Greece,

July 2006.

[BM06d] Giacomo Buratti and Danilo Montesi. XQuery Full-Text Optimization

through a Formal Algebra. InProceedings of the 2nd International Ad-

vanced Database Conference (IADC-2006), San Diego, California, June

2006.

[BMBdlI05] G. Buratti, D. Montesi, A. Bangham, and B. de la Iglesia. Data Model and

Query Languages for Biological Databases.IEEE Multimedia Communi-

cations Technical Committee e-Newsletters, 2(2):7–10, August 2005.

[BT99] Catriel Beeri and Yariv Tzaban. SAL: An Algebra for Semistructured Data

and XML. In Proceedings of the International Workshop on The Web and

Databases (WebDB), pages 37–42, Philadelphia, Pennsylvania, June 1999.

References 239

[Bun97] Peter Buneman. Semistructured Data. InProceedings of the 16th ACM

Symposium on Principles of Database Systems (PODS), pages 117–121,

Tucson, Arizona, 1997.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.Modern Information Re-

trieval. Addison-Wesley, 1999.

[CCD+99] Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Fraternali, Stefano Para-

boschi, and Letizia Tanca. XML-GL: A Graphical Language for Querying

and Restructuring XML Documents. InSistemi Evoluti per Basi di Dati,

pages 151–165, 1999.

[CCS00] Vassilis Christophides, Sophie Cluet, and Jérǒme Sim̀eon. On wrapping

Query Languages and Efficient XML Integration. InProceedings of the

2000 ACM SIGMOD International Conference on Management of Data,

pages 141–152, 2000.

[CM98] Mariano P. Consens and Tova Milo. Algebras for Querying Text Regions:

Expressive Power and Optimization.Journal of Computer and System Sci-

ences (JCSS), 57(3):272–288, 1998.

[CMKS03] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic Search

Engine for XML. InProceedings of the International Conference on Very

Large Databases, pages 45–56, 2003.

[Cod70] Edgar F. Codd. A Relational Model of Data for Large Shared Data Banks.

Communications of the ACM (CACM), 13(6):377–387, 1970.

[Con01] World Wide Web Consortium. XML Schema, W3C Recommendation.

http://www.w3.org/XML/Schema/ , May 2001.

[Con04] World Wide Web Consortium. Extensible Markup Language (XML) 1.1,

W3C Recommendation.http://www.w3.org/TR/xml11/ , Febru-

ary 2004.

240 References

[Con06a] World Wide Web Consortium. XML Path Language (XPath) 2.0, W3C

Candidate Recommendation.http://www.w3.org/TR/xpath20/ ,

June 2006.

[Con06b] World Wide Web Consortium. XML Query Use Cases, W3C Work-

ing Draft. http://www.w3.org/TR/xquery-use-cases/ , June

2006.

[Con06c] World Wide Web Consortium. XQuery 1.0: An XML Query Lan-

guage, W3C Candidate Recommendation.http://www.w3.org/TR/

xquery/ , June 2006.

[Con06d] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model

(XDM), W3C Candidate Recommendation.http://www.w3.org/

TR/xpath-datamodel/ , July 2006.

[Con06e] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Full-

Text Use Cases, W3C Working Draft.http://www.w3.org/TR/

xmlquery-full-text-use-cases/ , May 2006.

[Con06f] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Full-Text, W3C

Working Draft. http://www.w3.org/TR/xquery-full-text/ ,

May 2006.

[Con06g] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and

Operators, W3C Candidate Recommendation.http://www.w3.org/

TR/xpath-functions/ , November 2006.

[Con06h] World Wide Web Consortium. XQuery Update Facility, W3C Working

Draft. http://www.w3.org/TR/xqupdate/ , July 2006.

[CRF00] Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: an XML

Query Language for Heterogeneous Data Sources. InProceedings of the

Third International Workshop on the Web and Databases (WebDB 2000),

pages 53–62, Dallas, Texas, USA, 2000.

References 241

[DFF+99] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan

Suciu. A Query Language for XML.Computer Networks (Amsterdam,

Netherlands: 1999), 31(11–16):1155–1169, 1999.

[DSR] DSRG. Rainbow: XQuery Processing System Using Relational Technol-

ogy. http://davis.wpi.edu/ ∼dsrg/rainbow/ .

[FG01] Norbert Fuhr and Kai Grosjohann. XIRQL: A Query Language for Infor-

mation Retrieval in XML Documents. InProceedings of the 24th Annual

International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, pages 172–180, New Orleans, USA, September 2001.

[FHP02] Flavius Frasincar, Geert-Jan Houben, and Cristian Pau. XAL: an Alge-

bra for XML Query Optimization. InProceedings of the thirteenth Aus-

tralasian Conference on Database Technologies, pages 49–56, 2002.

[gal] Galax: An Implementation of XQuery.http://www.galaxquery.

org/ .

[GSBS03] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked

Keyword Search over XML Documents. InProceedings of the 2003 ACM

SIGMOD Conference, pages 16–27, 2003.

[HP02] Vagelis Hristidis and Yannis Papakonstantinou. DISCOVER: Keyword

Search in Relational Databases. InProceedings of 28th International Con-

ference on Very Large Data Bases (VLDB 2002), pages 670–681, Hong

Kong, China, August 2002.

[INE] INEX. INitiative for the Evaluation of XML Retrieval.http://inex.

is.informatik.uni-duisburg.de/2006/ .

[JLST01] H. Jagadish, L. Lakshmanan, D. Srivastava, and K. Thompson. TAX: a Tree

Algebra for XML. In Proceedings of the International Workshop on Data

Bases and Programming Languages (DBPL’01), pages 149–164, Frascati,

Rome, Italy, September 2001.

242 References

[MAYKS05] Amélie Marian, Sihem Amer-Yahia, Nick Koudas, and Divesh Srivastava.

Adaptive Processing of Top-K Queries in XML. InProceedings of the 21st

International Conference on Data Engineering (ICDE 2005), pages 162–

173, Tokyo, Japan, April 2005.

[MHBA04] Vojkan Mihajlović, Djoerd Hiemstra, Henk Ernst Blok, and Peter M. G.

Apers. An XML-IR-DB Sandwich: Is it Better With an Algebra in Be-

tween? InThe First Workshop on the Integration of Information Retrieval

and Databases (WIRD04), 2004.

[MM06] Matteo Magnani and Danilo Montesi. A Unified Approach to Structured

and XML Data Modeling and Manipulation.Data & Knowledge Engineer-

ing, 59(1):25–62, October 2006.

[NDM+01] Jeffrey F. Naughton, David J. DeWitt, David Maier, Ashraf Aboulnaga,

Jianjun Chen, Leonidas Galanis, Jaewoo Kang, Rajasekar Krishnamurthy,

Qiong Luo, Naveen Prakash, Ravishankar Ramamurthy, Jayavel Shanmu-

gasundaram, Feng Tian, Kristin Tufte, Stratis Viglas, Yuan Wang, Chun

Zhang, Bruce Jackson, Anurag Gupta, and Rushan Chen. The Niagara In-

ternet Query System.IEEE Data Engineering Bulletin, 24(2):27–33, 2001.

[PG04] Benjamin Piwowarski and Patrick Gallinari. An Algebra for Probabilistic

XML Retrieval. In The First Twente Data Management Workshop, pages

59–66, Enschede, The Netherlands, June 2004. SIKS.

[RSF06] Christopher Ŕe, J́erôme Siḿeon, and Mary Ferńandez. A Complete and Ef-

ficient Algebraic Compiler for XQuery. InProceedings of the 22nd Inter-

national Conference on Data Engineering (ICDE 2006), page 14, Atlanta,

Georgia, USA, April 2006.

[SA02] Carlo Sartiani and Antonio Albano. Yet Another Query Algebra For XML

Data. InProceedings of the 2002 International Database Engineering and

Applications Symposium (IDEAS’02), pages 106–115, 2002.

References 243

[Suc98] Dan Suciu. Semistructured Data and XML. InProceedings of the Inter-

national Conference on Foundations of Data Organization (FODO), pages

1–12, Kobe, Japan, 1998.

[TG02] A. Theobald and G.Weikum. The Index-Based XXL Search Engine for

Querying XML Data with Relevance Ranking. InProceedings of the 8th

International Conference on Extending Database Technology, pages 477–

495, 2002.

[TRS02] A. Termier, M.C. Rousset, and M. Sebag. TreeFinder: a First Step towards

XML Data Mining. In Proceedings of International Conference on Data

Mining (ICDM), pages 450–457, 2002.

[TS04] A. Trotman and B. Sigurbjrnsson. NEXI: Now and Next. InINEX 2004

Proceedings, 2004.

[TSW03] M. Theobald, R. Schenkel, and G. Weikum. Exploiting Structure, Anno-

tation, and Ontological Knowledge for Automatic Classification of XML

Data. InProceedings of the 6th International Workshop on the Web and

Databases (WebDB), pages 1–6, 2003.

[WL00] K. Wang and H. Liu. Discovering Structural Association of Semistructured

Data. IEEE Transaction of Knowledge and Data Engineering, 12(2):353–

371, 2000.

[ZA03] M. J. Zaki and C. C. Aggarwal. XRules: An Effective Structural Classifier

for XML Data. In Proceedings of ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 316–325, 2003.

[Zak02] M. J. Zaki. Efficiently Mining Frequent Trees in a Forest. InProceedings

of ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 71–80, 2002.

[ZPR02] Xin Zhang, Bradford Pielech, and Elke A. Rundesnteiner. Honey, I Shrunk

the XQuery! — An XML Algebra Optimization Approach. InProceedings

244 References

of the 4th international workshop on Web information and data manage-

ment (WIDM’02), pages 15–22, 2002.

