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Chapter 1

Introduction

While imprecision and incompleteness are pervasive in many real life sce-
narios which include issues regarding preferences, most of the artificial intel-
ligence (AI) methods for handling preferences have overlooked such crucial
aspects. Soft constraints are undeniably one of the most successful AI ap-
proaches to preferences.

The aim of this Ph.D. thesis is to extend the soft constraint formalism
to handle both incomplete or imprecise preferences. We achieve this by
providing new theoretical frameworks equipped with solving machineries that
exploit both systematic and local search approaches.

Motivated by the success of our local search methods in the context of
soft constraints, we study the impact of local search in a specific class of
problems (stable marriage problems) where incompleteness and imprecision
have a specific meaning and up to now have been tackled with different
techniques.

1.1 Motivation and main goal

Preferences are intrinsic in almost all real life contexts. In psychology, pref-
erences could be conceived of as an individual’s attitude towards a set of
objects, typically reflected in an explicit decision-making process or to mean
evaluative judgment in the sense of liking or disliking an object. In artificial
intelligence, preferences help to capture agents’ goals. In databases, pref-
erences help in expressing user’s queries and filtering the desired items. In
mathematical decision theory, preferences (often expressed as utilities) are
used to model people’s economic behavior.

During the past decades, in computer science many frameworks and mod-
els have been developed to make possible some form of automated preference
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reasoning. In AI and in particular in the Constraint Programming (CP)
area, many frameworks have the expressive power to represent preferences in
forms of costs, weights, probability, etc. [6, 7, 64, 24].

However, there are situations in which the user of an automated system
may have his preferences but does not want to reveal all of them, due to
privacy issues or communication or elicitation costs. This is the case, in an
artificial environment, like Internet where there are many distributed applica-
tions based on multi-agent systems in which agents have to share knowledge
in order to achieve their tasks. In this settings, it might be the case that
some agents don’t want to share information for free and they require others
to pay a fee to reveal the desired data. On the other hand, data may be
available in subsequent times, but we want to have a desirable solution as
soon as possible. In other real-life situations, the size or the complexity of
the problem may prevent the user to actually be able to express completely
and precisely all of his preferences. For example, in the case of on-line shops,
asking the user for too many preferences may result in him leaving the web
site. Also, often preferences may be specified with a certain degree of im-
precision. For instance, different sensors may have different tolerance levels
when they provide data. In this thesis we study how to model these situa-
tions and how to reason in these contexts. More precisely, we will consider
semiring-based soft constraints as a starting preference reasoning framework
[6, 7] and we will extend it to model missing and imprecise preferences by
providing algorithms to solve such kind of problems.

An example of problem where preferences are crucial, and where incom-
pleteness and imprecision may be present, is the stable marriage problem
(SM) [26, 36, 54]. In the classical formulation, n men and n women express
their preferences (via a strict total order) over the members of the other sex.
Solving a SM problem means finding a stable marriage where “stable” means
that there are no man and woman who are not married to each other, who
would both prefer each other to their partners. The stable marriage problem
has a wide variety of practical applications, ranging from matching resident
doctors to hospitals, to matching students to schools, or more generally to
any two-sided market. The agent’s preference lists may be incomplete (to
say that some agents are not accepted) and may admit ties or incompara-
bility, allowing for some form of imprecision. We will provide algorithms
to find stable matchings and we will evaluate their efficiency and sampling
capabilities.
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1.2 Main results

In the past years, several frameworks have been proposed to allow for model-
ing preferences in automated reasoning systems. Given a well-defined prefer-
ence representation, the goal is to find the best solution. Thus, the problem
is not a satisfaction problem as in classical CSP (where a solution has to
“simply“ satisfy all the constraints), but it becomes an optimization prob-
lem (where each solution has an associated level of preference).

The field of AI has greatly contributed in this context to the development
of many formalisms to represent qualitative and quantitative preferences. For
instance, CP-Nets [9] is a qualitative framework that can be used to handle
conditional preference statements, which are expressed over values of given
features which are used to decompose the space of outcomes.

In this thesis we focus on quantitative preference representation and, in
particular, on soft constraints [6, 7]. A soft constraint is a classical constraint
(where a constraint may be satisfied or not) with a way to associate a value
(interpreted as a preference, a cost, a probability, etc.) to the entire con-
straint or to a combination of values assigned to the variables involved in
that constraint. In general in a problem there are several soft constraints,
therefore, a way to decide the values given by different constraints is needed
in order to compute the level of preference of a global assignment (i.e., a so-
lution). Moreover, it is also necessary to have a method to compare different
solutions in order to decide which is the best one.

Many formalisms to represent soft constraints have been developed. For
example, valued CSPs [24] extend the basic CSP framework by assigning a
preference value to each constraint, in order to deal with over-constrained
problems. As another example, Fuzzy CSPs [64] assign a value between 0
and 1 to represent a preference level associated to each constraint assignment.
Another widely used modeling of soft constrains are the Weighted CSPs
where a cost between 0 and +∞ is assigned to each constraint assignment.
In the fuzzy case the goal is to maximize the minimal global preference
whereas, the goal in solving weighted CSPs is to minimize the global cost.
In this thesis, we will consider the general framework based on c-semirings
[6, 7]. This framework is based on the algebraic structure of a c-semiring,
where the elements of a set, used to represent preferences, can be combined
and compared via the operators associated to the c-semiring. According to
chosen c-semiring, this framework can model the classes of soft constraints
just presented, as well as others.
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Incomplete soft constraints

We extend the c-semiring framework to express the possibility of having
some missing preferences. By admitting missing preferences, solving this new
kind of optimization problems, that we call Incomplete Soft CSPs (ISCSPs),
becomes a different task. In fact, the new goal is to find robust solutions, i.e.,
solutions which are the best ones independently of the missing preferences.
With this in mind, we define new notions of optimality: the possibly optimal
solutions, which are be the best in at least one way of revealing the missing
preferences and the necessary optimal solutions, which are optimal no matter
what the missing preferences are.

Since the notion of necessary optimal solution is a strong notion of opti-
mality, it may happen that an ISCSP instance has no such solutions. How-
ever, elicitation of some preferences may make some solution necessarily op-
timal. We characterize the sets of necessarily and possibly optimal solutions
and we define a scheme that combines search and preference elicitation. Such
a scheme has a large number of different instantiations, each corresponding
to a concrete algorithm to find necessarily optimal solutions. In particular,
we interleave systematic and local search with an elicitation phase. The aim
is to ask the user as few preferences as possible during search before finding
a necessarily optimal solution.

In our systematic search approach, we exploit a modified version of the
classical branch and bound scheme and we consider different elicitation strate-
gies which differ from what is elicited, when the elicitation takes place, and
who guides the search. The experiments, on randomly generated incomplete
soft constraint problems (fuzzy and weighted), as well as on problems with
hard constraints and on fuzzy temporal constraints, demonstrate that some
of the algorithms are very good at finding necessarily optimal solutions, with-
out eliciting too many preferences. More precisely, we compute the amount
of elicited preferences, as well as the user’s effort. This may be much larger
than the number of elicited preferences, as it contains all the preference val-
ues the user may have to compute to be able to respond to the elicitation
requests. For example, suppose we ask the user for the worst preference value
among k missing ones. The user will communicate only one value, but he
may have to compute and consider all k of them. The number of elicited
preferences is important when the concern is to communicate as little infor-
mation as possible. The user’s effort, on the other hand, measures the hidden
work the user has to do to be able to communicate the elicited preferences.
Our best algorithms need to elicit as little as 10% of the missing preferences,
and require the user to consider around 20-30% of the missing preferences.

Our local search approach performs elicitation at each search step. Also
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in this case different elicitation strategies have been considered. The ex-
periments on the local search approach, on randomly generated fuzzy and
weighted incomplete soft constraint problems, show that this approach is
promising in terms of solution quality, elicited preferences, and scaling ca-
pabilities. In particular, as local search is not a complete method, we show
that the distance between the preference of the returned solution by the local
search algorithms and that of the necessarily optimal solution returned by
our best branch and bound algorithm, is very small. In terms of elicited
preferences, our best local search algorithm asks for more preferences than
our best systematic algorithm (25% in the fuzzy case) but it scales better on
bigger problems.

Interval-based soft constraints

We also extend the c-semiring framework to model the imprecision that is
often present in real-life problems. In particular, we extend soft constraints
to allow for preference intervals. These intervals can contain a single element
(and in this case we are in the usual soft constraint formalism), or the whole
range of preference values (when there is complete ignorance about the pref-
erence value), or a strict subset of the preference values. We call Interval
Valued CSPs such problems. Working with intervals makes the global so-
lution preference an interval itself, hence, the c-semiring operators have to
be redefined accordingly to combine intervals. Moreover, to compare two or
more solution intervals, we have to consider different situations depending
on the relative positions of those intervals. For example, one interval may
be contained into another, or they may be disjoint, and so on. Therefore,
we consider several notions of optimal solutions based on intervals and we
provide algorithms to find such optimal solutions, and also to test whether
a given solution is optimal.

By selecting a specific preference value from each interval, different sce-
narios may arise. For instance, if we select the lower bound of every interval,
we are considering the worst possible scenario. If we eliminate the uncer-
tainty by considering a specific scenario, this scenario is a soft constraint
problem which can be solved with off the shelf algorithms. Thus, if we are
operating in a context where a pessimistic approach is useful, we can ob-
tain the optimal solutions of the worst scenario and we are sure that such
solutions outperform the other assignments in that scenario.

We then pass to more general notions of optimality, which do not refer
to intervals but to more general ideas that apply whenever we have several
scenarios to consider. Similarly to the case of ISCSPs, we consider necessar-
ily optimal solutions, which are optimal in all scenarios, or possibly optimal
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solutions, which are optimal in at least one scenario. We also consider solu-
tions that guarantee a certain level of preference in all (resp., some) scenarios,
and we aim to find those that guarantee the highest level. By relating these
general notions of optimal solutions to the specific ones based on intervals,
we are then able to provide algorithms to find or test optimal solutions ac-
cording to these notions. We also show that a level of precision greater than
a single interval does not add useful information when looking for an optimal
solution.

We test our algorithms on a version of the meeting scheduling problem
[65] which contains preference intervals. In our experiments we show the
execution time to find all the kinds of optimal solutions we defined. The
necessary optimal solutions are certainly the most attractive, as they are the
best ones in every scenario, but they need more time to be found (if they
exist) than other notions. Thus, in some cases, for instance in time-critical
situations, one can look for solutions that guarantee a preference level in all
scenarios and that are faster to be found.

Matching problems

Furthermore, we consider matching problems, where the concept of incom-
pleteness and imprecision in preference representation is naturally allowed.
For instance, a generalization of the Stable Marriage problem (SM) [26, 36,
47] models unacceptability of certain men by allowing women to give incom-
plete preference lists (and vice versa) [45, 54]. Another widely used gener-
alization of the SM problem, that usually cohexists with incomplete lists,
is the use of ties in preference lists to express some kind of imprecision or
indifference between two or more options [45, 54].

We start by studying the classical stable marriage problem. It is known
that a stable marriage can be found in polynomial time by applying the Gale-
Shapley algorithm [26]. The drawback of this algorithm is that it has a bias
towards one gender. More precisely, it finds two specific stable marriages,
called male and female optimal, that favour one gender over the other one.
Male-optimality (and also female-optimality) may be considered too much
unfair between the two genders: although stability is assured, only one of
the genders is as happy as possible. The set of all stable marriages for a
given instance of the classical stable marriage problem forms a distributive
lattice with the male and female optimal stable marriages representing the
two extreme elements of the lattice [47].

We investigate fairness of stable marriage procedures by considering a
local search approach that finds a random marriage in the stable marriage
lattice. We start from a randomly generated marriage and we pass from a
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marriage to another, hopefully closer to stability, by marrying a man and a
woman that would prefer each other to their current partners. The process
terminates when a stable marriage is reached. This simple algorithm has
been proven to be effective in both speed (it takes very few steps to reach
stability) and in sampling the lattice of all stable marriages of a given problem
instance.

After having verified the usefulness of our local search algorithms applied
on the classical problem, we move further to consider stable marriage prob-
lems with ties and incomplete lists (SMTIs). In [54] Manlove et al. show
that, given an instance of an SMTI problem, it may have stable marriages
with different sizes. Hence, the goal is to find a maximal cardinality stable
marriage and so the problem becomes an optimization task. Moreover, it is
formally proved that this task is NP-hard [54]. Using our experience on the
classical problem, we provide a local search algorithm for SMTI problems
which is both fast and effective at finding maximal stable marriages for large
problems. The algorithm is in fact able to obtain a very good solution after
a small amount of steps. We then propose a different local search method
that initial breaks ties of the given SMTI obtaining a stable marriage prob-
lem with incomplete lists (SMI). Then, it passes from an SMI to another by
swapping one tie of the initial SMTI problem. Also this algorithm has shown
good performance.

Finally, we consider male optimality and uniqueness of stable marriages
with ties. We give an algorithm to find stable marriages that are male optimal
and we provide sufficient conditions on the preferences which guarantee the
uniqueness of a stable marriage.

1.3 Publications

Most of the results described in this thesis are contained, although in a
shorter form, in the following papers:

• Journal papers:

– Elicitation Strategies for Soft Constraint Problems with Missing
Preferences: Properties, Algorithms and Experimental Studies,
Mirco Gelain, Maria Silvia Pini, Francesca Rossi, K. Brent Ven-
able, Toby Walsh, Artificial Intelligence Journal, vol. 174, issues
3-4, March 2010, Elsevier.

– Interval-valued Soft Constraint Problems, M. Gelain, M. S. Pini, F.
Rossi, K. B. Venable, and N. Wilson, Annals of Mathematics and
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Artificial Intelligence, special issue for ISAIM 2008, B. Chouery
and B. Givan eds., Springer, to appear.

• Conference papers:

– Dealing with Incomplete Preferences in Soft Constraint Problems,
Mirco Gelain, Maria Silvia Pini, Francesca Rossi, and K. Brent
Venable, in proc. of the 13th International Conference on Princi-
ples and Practice of Constraint Programming (CP 2007), Springer
Verlag, LNCS 4741, 2007.

– Elicitation strategies for fuzzy constraint problems with missing
preferences: algorithms and experimental studies, Mirco Gelain,
Maria Silvia Pini, Francesca Rossi, K. Brent Venable, and Toby
Walsh, in proc. of the 14th International Conference on Princi-
ples and Practice of Constraint Programming (CP 2008), Springer
Verlag, LNCS 5202, 2008.

– Male optimality and uniqueness in stable matching problems with
partial orders, Maria Silvia Pini, Francesca Rossi, Toby Walsh,
Mirco Gelain, Kristen Brent Venable, in proc. of the 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2010), IFAAMAS Press, 2010, short paper.

– Local search algorithms on the Stable Marriage Problem: Exper-
imental Studies, M. Gelain, M. S. Pini, F. Rossi, K. B. Venable,
T. Walsh, in proc. of the 19th European Conference on Artificial
Intelligence (ECAI 2010), IOS Press, 2010, short paper.

– Local search for stable marriage problems with ties and incomplete
lists, M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, T. Walsh, in
proc. of the 11th Pacific Rim International Conference on Artifi-
cial Intelligence (PRICAI 2010), Byoung-Tak Zhang and Mehmet
A. Orgun eds., Springer, LNCS 6230, 2010.

– Local search approach to solve incomplete fuzzy and weighted CSPs,
M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, T. Walsh, in proc.
of the 3rd International Conference on Agents and Artificial In-
telligence (ICAART 2011), poster paper, to appear.

– Male optimal and unique stable marriages with partially ordered
preferences, M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T.
Walsh, in proc. of the International Workshop on Collaborative
Agents - REsearch and development (CARE 2009/2010), Springer
LNAI 6066, to appear.
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• Workshop papers:

– Imprecise Soft Constraint Problems, Mirco Gelain, Maria Silvia
Pini, Francesca Rossi, Kristen Brent Venable and Nic Wilson, in
proc. of the 9th Workshop on Preferences and Soft Constraints
(SofT’08), Sydney, Australia, September 2008.

– Male optimal and unique stable marriages with partially ordered
preferences, M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T.
Walsh, in proc. of the International Workshop on Collaborative
Agents – REsearch and Development (CARE 2009), Melbourne,
Australia, December 2009.

– Local search approach to solve incomplete fuzzy and weighted CSPs,
M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, T. Walsh, in
proc. of the 10th Workshop on Preferences and Soft Constraints
(SofT’10), St. Andrews, Scotland, September 2010.

– Local search for stable marriage problems, M. Gelain, M. S. Pini,
F. Rossi, K. B. Venable, T. Walsh, in proc. of the 3rd Inter-
national Workshop on Computational Social Choice (COMSOC
2010), Dusseldorf, Germany, September 2010.

1.4 Structure of the thesis

The thesis is organized as follows. In Chapter 2 we introduce the basic no-
tions to better understand the content of the thesis. In particular, we review
the fundamental aspects of soft constraint problems, stable marriage prob-
lems, and search. In Chapter 3, we present an extension of the soft constraint
framework to deal with incompleteness. After characterizing new notions of
optimality, we provide solving methods, based on both systematic and local
search, to find solutions that are optimal according to the new notions. An
experimental study comparing the different methods concludes the chapter.
Imprecision in soft constraint is the focus of Chapter 4, in which we propose
a new formalism which models imprecision via intervals. We define new op-
timality notions based on such intervals and we propose algorithms to find
solutions which are optimal according to the defined criteria. We also pro-
vide an experimental evaluation on randomly generated meeting scheduling
problems where we allow for imprecision. We then turn our attention to the
more specific class of stable marriage problems (Chapter 5). We start by
considering the standard version of the problem and we show how a local
search approach can be effectively used to fairly generate a stable marriage.
In Chapter 6 we move to a more general setting where the stable marriage
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problem allows for both incomplete preference lists and ties. In this context,
where marriages may have different sizes, we provide a local search method
to find a stable marriage of maximal cardinality. Such a method is also
experimentally evaluated on randomly generated problems. Another inter-
esting question in this context is the existence of a stable marriage maximally
satisfying one of the genders. On this issue we provide both theoretical and
experimental results. We conclude this thesis summarizing the results and
suggesting new lines for future research (Chapter 7).



Chapter 2

Background

In this chapter we introduce some background notions which will be useful to
understand the remainder of the thesis. In particular, we will first introduce
soft constraints. Moreover, we will present stable marriage problems, showing
the role of preferences in such problems. Finally, we will give some notions
of the main search techniques we will use in the remainder of the thesis.

2.1 Soft constraints satisfaction problems

Constraints [61, 17] are useful to model real-life problems when it is clear
what should be accepted and what should be forbidden. For example, con-
straint problems are used to model cognitive tasks in vision, language com-
prehension, default reasoning, diagnosis, scheduling, temporal and spatial
reasoning. Constraint Programming (CP) is the study of computational sys-
tems based on constraints. In CP a problem is represented with a set of
variables, each with a domain of values, and a set of constraints. More for-
mally, a Constraint Satisfaction Problem CSP is a tuple < X, D, C > where
X = x1, .., xn is the set of variables, D = {D1, ..., Dn} is the set of variables’
domains and C = {c1, ..., cm} is the set of constrains. Each constraint ci

involves a subset of the variables, called the scope of the constraint, and
specifies the allowable combinations of values for that subset.
A solution of a CSP is an assignment to all variables consistent with all
constraints. Constraint satisfaction problems on finite domains are typically
solved using a form of search. The most used techniques are variants of con-
straint propagation, systematic search algorithm (see Section 2.3), and local
search (see Section 2.4).
Several modifications of the basic CSP definition have been proposed to adapt
the model to a wide variety of problems, for instance Dynamic CSPs [56] are
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useful when the original formulation of a problem is altered in some way,
typically because the set of constraints to consider evolves because of the
environment. Furthermore, in Distributed CSPs [19], a set of variables is
distributed among agents. The variables are connected by constraints which
define the constraints network among the agents. As a result, the search
algorithm for solving these problems is a distributed algorithm. Another
specialization of CSPs are the Temporal CSPs [48] which are useful for rep-
resenting and answering queries about temporal occurrences and temporal
relations between them.
There are real life scenarios that need a more flexible way to be modeled
than standard constraints can do. Such scenarios are, for example, situ-
ations where the knowledge is not precise or where it is not complete, or
situation where the preferences of the user are a central part of the problem.
For these reasons, the formalism of CSPs can be naturally extended to rep-
resent not only the allowed subset of values the variables can take but, also,
which is the degree of preference they are permitted.
In general, it is difficult to express the users’ specification with classical con-
straints and so, in many cases, his requirements lead to an over-constrained
problem. If the problem is over-constrained, the user has to relax some con-
straints, permitting some solutions. There are other situations in which it is
not enough to have any solution, but we might need a solution that is “bet-
ter” than others. Soft constraints [7, 8, 6] provide a mechanism to establish
which constrains has to be relaxed, or which constraints are more important
than others, and provide a metrics to rank the solutions.

In all cases where the expressiveness of classical constraints is not enough
and/or when we want to find an optimal solution (or the best ones), soft
constraints can be useful. A Soft Constraint Satisfaction Problem [7] (soft-
CSP) is a CSP with preference (or weight, or cost) values associated to each
constraint taken from a partially or totally ordered set. There are many ap-
proaches to soft constraints. In valued CSP [24] a value, chosen among the
elements of a totally ordered set, is associated to each constraint; in Proba-
bilistic CSP [23], each constraint has an associated probability that has to be
maximized; in Fuzzy CSP [64], each tuple (so, not the entire constraint) has
an associated value between 0 and 1, and the aim is to maximize the value
of a complete assignment.
Assigning preference values to each constraints’ tuple [7] (and also to domain
values of a variable that can be seen as unary constraints on the variable
itself), needs a way to combine preferences of an assignment to compute
a global preference. It is also necessary a method to compare two prefer-
ences, for example to decide if a solution is better than another one. To
this end, Bistarelli, Montanari, Rossi in [7] introduced a formalism based on
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c-semirings, which are sets with two operators, one used to combine prefer-
ences and the other used to compare them.

Definition 1 (semiring and c-semiring). A semiring is a tuple 〈A, +,×, 0, 1〉
such that:

• A is a set and 0, 1 ∈ A;

• + is commutative, associative and 0 + a = a = a + 0 where a ∈ A, i.e.
0 is the neutral element;

• × is associative, distributes over +, 1 is the neutral element and 0 is
the absorbing element ( a× 0 = 0 = 0× a).

A c-semiring is a semiring 〈A, +,×, 0, 1〉 such that:

• + is defined over (possibly infinite) sets of elements of A as follows:

– for all a which are elements of A, +({a}) = a;

– +(∅) = 0 and +(A) = 1;

– +(∪Ai, i ∈ S) = +({+(Ai), i ∈ S}) for all sets of indices of S
(flattening property).

• × is commutative.

Consider the relation ≤S on A such that, for a, b ∈ A, a ≤S b if and only
if a + b = b. Is it possible to show that:

• ≤S is a partial order;

• + and × are monotone over ≤S;

• its minimum 0 and its maximum is 1;

• 〈A,≤S〉 is a complete lattice and, for every a, b ∈ A, a + b = lub(a, b).
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Figure 2.1: c-semiring

Furthermore, if × is idempotent, 〈A,≤S〉 is a complete distributive lattice
and × is its greatest lower bound (glb). Informally speaking, the relation
≤S gives a way to compare two preferences, in fact if a ≤S b then b is better
than a. The situation is showed in Figure 2.1.
Starting from the definition of the c-semiring, in [7] they defined in a para-

metric way the notion of Constraint System (CS), constraint and constraint
problem.

Definition 2 (constraint system). A Constraint System is a tuple CS =
〈S, D, V 〉 where, S is a c-semiring, D is a finite set and V is an ordered set
of variables.

A constraint in a CS specify the involved variables and their allowed
values. Each tuple of values (in D) of involved variables in the constraint
(i.e. variables in the scope of the constraint) has an associated element a ∈ A
(the carrier of the S). This element can be considered as a weight of the tuple,
a preference, a cost, a level of confidence or other. The meaning assigned to
those elements will define, as we will see, the choice of the c-semiring to be
used.

Definition 3 (soft constraints). Given a constraint system CS = 〈S, D, V 〉,
where S = 〈A, +,×, 0, 1〉 is a c-semiring, a soft constraint is a couple 〈def, con〉
where con ⊆ V and def : D|con| → A.

Therefore a soft constraint problem is a set of soft constraints in a con-
straint system, plus a selected set of variables (the variables of the problem)
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of which we want to find an assignment compatible with all constraints.

Definition 4 (semiring-based CSP). Given a constraint system CS = 〈S, D, V 〉,
a semiring-based CSP (SCSP) on CS is a couple P = 〈C, con〉, where C
is a set of constraints on CS, and con ⊆ V . We assume also that, if
〈def1, con

′〉 ∈ C and 〈def2, con
′〉 ∈ C then def1 = def2.

In a SCSP, the values specified for the tuple of each constraint are used to
compute corresponding values for the tuples of values of the variables in con,
according with the c-semiring operations: the multiplicative operator (×) is
used to combine the values of the tuples of each constraint to get the value of
a tuple for all the variables, and the additive operator (+) is used to obtain
the value of the tuples of the variables of interest. More precisely, we can
define the operations of combination ⊗ and projection ⇓ over constraints.

Definition 5 (combination). Given two constraints c1 = 〈def1, con1〉 and
c2 = 〈def2, con2〉, their combination, written c1 ⊗ c2, is the constraint c =
〈def, con〉, with con = con1∪con2 and def(t) = def1(t ↓con

con1
)×def2(t ↓con

con2
)1.

The combination operator ⊗ can be easily extended to more than to
arguments, say C = c1, ..., cm, by performing c1⊗ c2⊗ ...⊗ cm, which will be
sometimes denote by

⊗

C.

Definition 6 (projection). Given a constraint c = 〈def, con〉 and a subset I
of V , the projection of c over I, written c ⇓I, is the constraint 〈def

′

, con
′〉

with con
′

= con ∩ I and def
′

(t
′

) =
∑

t|t↓con
I∩con

=t
′ def(t).

Now, using the previous definitions, we can define the notion of solution
of an SCSP.

Definition 7 (solution). Given an SCSPP = 〈C, con〉 over a constrain
system CS, the solution of P is a constraint defined as Sol(P ) = (

⊗

C) ⇓c

on.

So, a solution of a SCSP is a the constraint induced on the variables in
con by the whole problem. A solution is also a complete assignment, i.e., an
assignment to all the variable in the problem.

Definition 8 (preference of an assignment). Given an assignment s to all the
variables of an SCSP P , its preference is defined as: pref(P, s) = Π〈def,con〉∈C

def(s↓con) where Π refers to the × operation of the c-semiring and s↓con is
the projection of tuple s on the variables in con.

1With t ↓X
Y

we denote the projection of a tuple t, defined over a set of variables X ,
over a subset of variables Y ⊆ X .
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In words, pref(P, s), is obtained by combining the preferences associated
by each constraint to the subtuples of s referring to the variables of the
constraint.

Definition 9 (optimal solution). Given an SCSP P and an assignment s to
all the variables in P , s is an optimal solution if there is no other complete
assignment s′ with pref(P, s) <S pref(P, s′). The set of optimal solutions of
an SCSP P will be written as Opt(P ).

Many classes of constraint satisfaction or optimization problems can be
represented using the c-semiring framework, by choosing the appropriate
operators:

CSPs To model the classical CSP framework the s-semiring
SCSP = 〈{false, true} ,∨,∧, false, true〉 can be used.
The only two preferences that can be assigned are false and true to
denote a disallowed and allowed tuple respectively. Preferences are
combined with the logic operator and and compared with the logic
operator or. Each complete assignment with a preference equal to true
is optimal.

fuzzy CSPs To model the classical CSP framework the s-semiring
SFCSP = 〈[0, 1] , max, min, 0, 1〉 can be used.
Preferences ranges from 0 to 1, are combined using min and compare
using max operator. The goal is to maximize the minimal preference.

weighted CSPs This framework can be seen as the following instance of
the c-semiring framework: SWCSP = 〈ℜ+, min, +, +∞, 0〉.
The values of the carrier are interpreted as costs and are real numbers
starting from 0 to +∞. Since we want to minimaze the global cost, we
combine them with the sum and compare them with min.

probabilistic CSPs In this case the appropriate c-semiring is SPCSP =
〈[0, 1] , max,×, 0, 1〉.
Preferences are interpreted as probability values from 0 to 1 and so are
combined using the usual multiplication over reals and compared using
max. The aim is to maximize the joint probability.

Figure 2.2 shows an example of an SCSP based on the fuzzy c-semiring.
The problem is depicted as a graph where nodes are the variables and edges
represents the constraints. Each constraint tuple has an associated preference
in [0, 1]. The possible assignments are:
< a, a > with preference min(0.9, 0.8, 0.9) = 0.8;
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Figure 2.2: A fuzzy CSP.

< a, b > with preference min(0.9, 0.2, 0.5) = 0.2;
< b, a > with preference min(0.1, 0, 0.9) = 0;
< b, b > with preference min(0.1, 0, 0.5) = 0.
The optimal solution is the assignment with maximal preference that is <
a, a >.

2.2 Stable marriage problems

A classical mathematical problem in which preferences play a central role is
the stable marriage problem (SM), that was first introduced by D. Gale and
L. S. Shapley in [26]. Possible practical applications of SM are the assign-
ment of medical students to hospitals (for internships), where students list
hospitals in order of preference and hospitals do the same with the students.
Another application is helping negotiation processes in electronic commerce.
The negotiation processes can be viewed as the process where a number
of autonomous agents carry out different tasks, and the concept of stable
marriage can be applied when the coordination and stability of the system
becomes critical.
The stable marriage problem is formally defined as follows: a certain com-
munity consists in n men and n women (n is called the size of the problem).
Each person ranks the persons of opposite sex in accordance to his/her pref-
erences for a marriage partner. The goal is to find a satisfactory way of
marrying off all the members of the community. From now, with marriage
we mean a set of n marriages (m, w) where m is a man and w is a woman.

Definition 10 (profile). Given n men and n women, a profile is a sequence
of 2n strict total orders (i.e., transitive and complete binary relations), n
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over the men and n over the women.

Definition 11 (marriage). Given an SM P of size n, a marriage M is a
one-to-one matching of the men and the women. If a man m and a woman
w are matched in M , we write M(m) = w and M(w) = m.

The following definitions can clarify the the concept of a “satisfactory”
marriage.

Definition 12 (blocking pair). Given a marriage M , a pair (m, w), where
m is a man and w is a woman, is a blocking pair if m and w are not partners
in M , but m prefers w to M(m) and w prefers m to M(w).

Definition 13 (stable marriage). A marriage M is stable if it has no blocking
pairs.

Definition 14 (feasible partner). Given an SM P , a feasible partner for a
man m (resp., a woman w) is a woman w (resp., a man m) such that there
is a stable marriage for P where m and w are married.

Consider the following example:

men’s lists women’s lists
1: 1 2 3 1: 2 3 1
2: 2 3 1 2: 3 1 2
3: 3 1 2 3: 1 2 3

Man m1 ranks w1 first, w2 second and w3 third, while w1 ranks m2 first, m3

second, and m1 third, etc.
In the example, there are six possible marriages, three of these are stable.
One of these is: 3 1 2. With this notation we intend that the woman in first
position (w3) is married with m1, the woman in second position is married
with m2 and so on, the woman in ith position is married with mi. The other
two stable marriages are: [1, 2, 3] and [2, 3, 1]. All the other marriages are
not stable.

Now, the first question that arise is: ”For any pattern of preferences, is
it possible to find a stable marriage?”. The following theorem answer this
question.

Theorem 1 ([26]). There always exists a stable marriage.
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The Gale-Shapley [26] (see GS algorithm) is an iterative procedure that
finds a stable marriage. At the start of the algorithm, each person is free
and becomes engaged during the execution of the algorithm. Once a woman
is engaged, she never becomes free again (although to whom she is engaged
may change), but men can alternate between being free and being engaged.
The following step is iterated until all men are engaged: choose a free man
m, and let m propose to the most preferred woman w on his preference list,
such that w has not already rejected m. If w is free, then w and m become
engaged. If w is engaged to man m’, then she rejects the man (m or m’)
that she least prefers, and becomes, or remains, engaged to the other man.
The rejected man becomes, or remains, free. When all men are engaged, the
engaged pairs are a male optimal stable marriage.

This algorithm needs a number of steps that is quadratic in n (that is, the
number of men), and it guarantees that, if the number of men and women
coincide, and all participants express a strict order over all the members of
the other group, everyone gets married, and the returned marriage is stable.
Since the input includes the profiles, the algorithm is linear in the size of the
input.

Algorithm 1: GS algorithm

Input: a set of men M ; a set of women W ;
Output: a stable matching
Initialize all m ∈M and w ∈W to free;
while ∃ free man m do

w ← m’s highest ranked such woman;
if w is free then

(m, w) become engaged

else
some pair (m′, w) already exists;
if w prefers m to m′ then

(m, w) become engaged;
m′ becomes free;

else
(m′, w) remain engaged;

This algorithm guarantees that:

• If the number of men and women coincide, and all participants express
a linear order over all the members of the other group, everyone gets
married.
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• The marriages are stable.

The Extended Gale-Shapely algorithm [36] is a version of the GS algorithm
[26] where, whenever the proposal of a man m to a woman w is accepted, in
w’s preference list all men less desirable than m are deleted, and w is deleted
from the preference lists of all such men. This means that, every time that a
woman receives a proposal from a man, she accepts since only most preferred
men can propose to her.

Obviously, nothing prevent us to swap the roles of the two groups, with
women that propose to men. If we run the GS algorithm swapping the
genders to the same problem the results will not generally be the same, more
precisely where men propose to the women the result will be optimal for the
men, when the women propose, it is optimal for them. So the algorithm
returns not only a stable marriage, but a marriage that is also optimal for
applicants.

Definition 15 (male (resp., female) optimal marriage). Given an SM P ,
a marriage is male (resp., female) optimal iff every man (resp., woman) is
paired with his (resp., her) highest ranked feasible partner in P . We write
Mm (resp., Mw) for the male (resp., female) optimal.

For a given SM instance, we can define a partial order relation on the set
of stable marriages.

Definition 16 (dominance). Let M and M ′ two stable marriages. M dom-
inates M ′ if every man has a partner in M which is at least as good as the
one he has in M ′.

It is known that the set of stable marriages forms a distributive lattice
under this partial order and that the male- (resp. female-) optimal marriage
is the top (resp. bottom) of this lattice [36]. A clear way to represent this
lattice is a Hasse diagram representing the transitive reduction of the partial
order relation. Such a diagram can be easily built using exposed rotations
[41], which are cyclic sequences of pairs (m1, w1), ..., (mk, wk) used to define
a spouse swapping from one stable marriage to another.

Definition 17 (successor). Let M be a stable marriage of a given SM in-
stance. Then, for each man m such that M(m) 6= Mw(m), the successor
woman of m relative to M , denoted sM(m) is the first woman w in m’s pref-
erence list, following M(m), such that w prefers m to her current partner in
M (i.e. M(w)).
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men’s preference lists women’s preference lists
1: 5 7 1 2 6 8 4 3 1: 5 3 7 6 1 2 8 4
2: 2 3 7 5 4 1 8 6 2: 8 6 3 5 7 2 1 4
3: 8 5 1 4 6 2 3 7 3: 1 5 6 2 4 8 7 3
4: 3 2 7 4 1 6 8 5 4: 8 7 3 2 4 1 5 6
5: 7 2 5 1 3 6 8 4 5: 6 4 7 3 8 1 2 5
6: 1 6 7 5 8 4 2 3 6: 2 8 5 4 6 3 7 1
7: 2 5 7 6 3 4 8 1 7: 7 5 2 1 8 6 4 3
8: 3 8 4 5 7 2 6 1 8: 7 4 1 5 2 3 6 8

Table 2.1: An example of an SM of size 8.

Definition 18 (rotation). Let M be a stable marriage of a given SM instance.
A rotation exposed in M is a cyclic sequence of pairs ρ = (m0, w0), ..., (mr−1,
wr−1) such that M(mi) = wi and sM(mi) = wi+1 for all i, i+1 taken modulo
r.

When we pair mi with wi+1 for all mi (i + 1 taken modulo r as usual) in
the exposed rotation ρ and otherwise leave the pairs unchanged, we say that
we eliminate ρ from M . By eliminating ρ from M we obtain a new marriage
M/ρ. These rotations are called woman-improving rotation because, after
eliminating such a rotation, each woman has the same partner or she is mar-
ried with a man she prefers to the previous one. man-improving rotations are
defined similarly by exchanging genders in all of these definitions. Moreover,
it can be shown that, after performing a rotation improving one gender, the
inverse is a rotation improving the other. In the following, we will use the
term rotation to indicate woman-improving rotations.

Figure 2.3 shows the Hasse diagram of the example in Table 2.1.

As before, the number in position i of each list of numbers indicates the
woman married to man i in that marriage. For example, in the marriage 5
3 8 6 7 1 2 4, man 1 is married with woman 5, man 2 with woman 3, man
3 with woman 8, and so on. Each edge indicates that the marriage above
dominates the one below the edge. For example, marriage 5 3 8 6 7 1 2 4
(which is also the top of the lattice) dominates 8 3 5 6 7 1 2 4. Thus, by
transitivity, considering a path from the top to the bottom of the lattice,
each marriage in the path dominates the ones below it in the same path. It
is known that any path from the top to the bottom of the stable marriage
lattice has the same length [35].

Moreover, each edge of the marriage lattice correspond exactly to allow-
able rotations [36]. For example, to pass from 8 3 1 6 7 5 2 4 to 3 6 1 8 7 5
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Figure 2.3: The Hasse diagram of the set of all stable marriages for the SM
in Table 2.1.

2 4, rotation (m1, w8), (m2, w3) has to be eliminated.

Definition 19 (rotation precedence [40]). Let π and ρ two distinct rotations.
Rotation π precedes ρ if, in order to obtain a stable marriage in which ρ is
exposed, rotation π must be eliminated.

The set of rotations under the partial order, induced above by Definition
19, is known as rotation poset. A subset S of the rotation poset whit the
property that ρ ∈ S, δ ≺ ρ ⇒ δ ∈ S is called closed.

Theorem 2 ([40]). For a given SM instance, there is a one-to-one corre-
spondence between the stable marriages and the closed subset of the rotation
poset.

Rotations and Hasse diagram of the stable marriage lattice have some
interesting properties:

1. Every stable matching M 6= Mw has at least one rotation [41].

2. Every stable matching can be obtained starting from the male-optimal
and successively eliminating a sequence of exposed rotations. Each
stable matching is characterized by the set of rotations that must be
eliminated to reach it [40].

3. In any path P in the Hasse diagram H from the man-optimal to the
female-optimal marriage, two consecutive marriages differ by a single
rotation, and the set of the rotations between marriages along P con-
tains all rotations exactly once. This means that all the paths in H
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from the man-optimal to the woman-optimal marriage have the same
length [35].

Variants of the stable marriage problem

There are many variants of the stable marriage problem. Some of the most
widely used present either incompleteness or imprecision, or both.

SMs with incomplete preference lists

The stable marriage problem with incomplete lists (SMI) [36, 44, 39] is a
generalization the classical stable marriage problem. In SMIs, each person
may rank only a few member of the other group so, a person p is acceptable
to another person q if p is in the preference list of q, otherwise it is not
acceptable. In this case, incompleteness is used to model the unacceptability
of one on more element of one set by one element of the opposite set. Given
an instance I of an SMI, a matching is a one-to-one correspondence between
a subset of men and a subset of women such that each person finds the other
acceptable. Given the concept of unacceptability, the definition of blocking
pair has to be revised.

Definition 20 (blocking pair in a SMI). A blocking pair in a SMI M is
a pair (m, w), each of whom is either unmatched in M and finds the other
acceptable, or prefers the other to his/her partner in M .

Since a stable matching in I has no blocking pair, it need not be a complete
matching. Moreover, all stable matchings in I have the same size, and involve
exactly the same men and women [27].

The GS algorithm can be easily modified to deal with incomplete lists
leading to a polynomial-time algorithm to find a stable matching [36]. In fact,
it is only need to change the condition of while loop to deal with incomplete
lists as follows: “while exists a free man who still has a woman to propose to
do”.

SMs with ties

Another widely studied relaxation of the stable marriage problem admits
ties in the preference lists (SMT) [36] to model some sort of imprecision. In
fact, the user may have no idea of the precise ranking of the elements of the
opposite group and so, he do not need to rank all members in strict order.

Because of ties, the definition of blocking pairs as to be changed accord-
ingly.
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men’s preference lists women’s preference lists
1: 2 1 1: 3 1 (2 4)
2: 2 (3 4) 2: 1 4 2
3: (1 2 3 4) 3: (1 2) (4 3)
4: (3 2) 1 4 4: (3 2 4)

Table 2.2: An example of a SMTI problem of size 4.

Definition 21 (blocking pair in a SMT). A blocking pair in a SMT M is
a pair (m, w), each of whom strictly prefers the other to his/her partner in
M .

Also in this context, a marriage M is said to be stable if it does not have
blocking pairs in accordance with Definition 21. This definition (which we
will use) of stability is referred in [39] as weak stability. Other stronger notions
of stability are used in the context of SMTs [39]. A matching is strongly stable
if there is no couple (m, w) such that m strictly prefers w to his/her partner,
and w either strictly prefers m to his/her partner or is indifferent between
them. A matching is super-stable if there is no couple each of whom either
strictly prefers the other to his/her partner or is indifferent between them.

SMTs are not significantly difficult problems and it is known (by Gusfield
and Irwing [36]) that there exists a polynomial-time algorithm to find a stable
matching. In fact, by breaking ties in an arbitrary way we can transform an
instance I of an SMT in an instance I ′ of an SM and then we can apply the
GS algorithm to I ′. Clearly, a stable marriage in I ′ is also stable in I and
the all the stable marriages in I have the same size.

SMs with both ties and incomplete lists

An SMTI is an SM with both ties and incomplete lists. An example of
a SMTI problem with four men and women is shown in Table 2.2, where
preference lists may contain less than four elements and brackets are used to
indicate ties. For instance, by writing 2 : 2 (3 4) among the men’s preference
lists we mean that man m2 strictly prefers woman w2 to women w3 and w4,
that are equally preferred.

By allowing ties and incomplete lists to the SM, we have to update the
definition of blocking pair to formalize the concept of stability in SMTIs
(Stable Marriage Problems with Incomplete lists and Ties) [36, 45, 30].

Definition 22 (blocking pair in a SMTI). A blocking pair in a SMT M is
a pair (m, w), each of whom is either unmatched in M and finds the other
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acceptable, or strictly prefers the other to his/her partner in M .

We know from the previous sections that, in a given instance of an SMI,
all the stable marriages have the same size (involves the same persons but
are not necessarily complete, i.e. not all persons may be matched). We also
know that, in the SMT case, all marriages are complete (and therefore of the
same size). However, we can not say the same for SMTIs. In fact, in [54]
Manlove et al. show that a given SMTI instance may admit stable marriegs
with different sizes and thus the problem is now to find a stable marriage
with the maximum (or minimum) size.

SMTIs are proved to be NP-complete by Iwata et al.[45]. Manlove et
al. [54] have shown that, for a given instance of an SMTI, finding a stable
matching of maximum, or minimum, size is NP-hard, even in the case where
the ties occur at the tails of lists and on one side only, there is at most one
tie per list, and each tie is of length 2.

2.3 Systematic search

Solving a CSP means finding a consistent assignment to all the constraints.
A naive search method is the generate-and-test method. This method gen-
erates a complete assignments and tests if all constraints are satisfied. If
not, it generates another assignment and repeats the test until a either all
constraints are satisfied (a solution is found) or all possible assignment are
generated (the problem has no solution). Backtracking search [15, 25] in-
stead incrementally attempts to extend a partial assignment that specifies
consistent values for some of the variables, toward a complete assignment, by
repeatedly choosing a value for another variable consistent with the values
in the current partial solution. During the backtracking search, variables
are instantiated sequentially and, as soon as all the variables relevant to a
constraint are instantiated, the validity of the constraint is checked. If a par-
tial assignment violates any of the constraints, backtracking is performed to
the most recently instantiated variable that still has alternatives available.
The late detection of inconsistency is a disadvantage of the backtracking
search technique. Several consistency notions can be used in backtracking
algorithms to early detect inconsistencies. The most known are node consis-
tency, arc consistency, and path consistency.

Local consistency notions [2] are properties of constraint satisfaction prob-
lems related to the consistency of subsets of variables or constraints, and may
help in discovering inconsistencies easier. In general, local consistency no-
tions require that every consistent assignment can be consistently extended to
another variable. For example, a CSP is node-consistent if the domain values
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of each variable are allowed by all the unary constraint on it. Arc-consistency
instead says that a binary constraint is arc-consistent if every value in each
domain has a support in the other domain; a value a has a support value b if
the pair (a, b) satisfies the constraint. For example, consider two variables x
and y and their domains D(x) = {1, 5} and D(y) = {−1, 2, 4}, and a binary
constraint x < y. Value 1 for x has support in the domain of y (values 2 and
4 for y), but there is no support for x = 5 (and also for y = −1). So, after
enforcing the arc-consistency we will obtain the following result: x = {1} and
y = {2, 4}. Constraint propagation for CSP has been extended and adapted
to soft constraints in [55].

Consistency techniques are usually used in conjunction with backtrack-
ing. More precisely, a backtracking procedure traverse an implicit search tree
where each internal node is a partial assignment and there is an edge from a
node x to another node y if y was created extending the partial assignment in
x. Solutions are the leafs of the tree. Backtracking search performs a depth-
first visit of the search tree. At each node c, the algorithm checks whether
c has some chance of being completed to a valid solution. If it cannot, the
whole sub-tree rooted at c is skipped (pruned). Otherwise, the algorithm
checks whether c itself is a valid solution, and if so reports it to the user; and
recursively enumerates all sub-trees rooted at c. At each node of the search
tree, a constraint propagation procedure may be ran on the current problem.
Since it reduces the cardinality of the variable domains, it reduces the search
space, avoiding some branches with no solutions.

A widely used constraint propagation method applicable to search tree
algorithms is forward checking. Forward checking revises each domain of a
future variable xi by taking into account the constraints involving xi with
each already instantiated variable (called past variables) and with the current
variable. For example, if there are two variables and their domains, x =
{3, 4, 5, 6, 7} and y = {2, 4, 5}, and a binary constraint x > y, and the
current instantiation is y = 5, then forward checking will prune values 3, 4
and 5 from x’s domain.

The Branch and Bound (BB) [51] search algorithm uses a similar tree
structure as backtracking, but it is used in optimization problems where
an objective function needs to be maximized. BB is based on a heuristic
function used to compute, at each node of the search tree, an upper bound
of the value of the objective function for the leafs of the subtree rooted at the
current node. The upper bound is used for determining if it is a promising
partial assignment (if the bound is better than the value of the best solution
found so far) or not. If we are in a promising node, the algorithm expands
the subtree beyond the node. Otherwise, the subtree rooted at the current
node is pruned from the search.
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It is important to notice that, in all search tree based algorithms, when-
ever a domain is reduced, it have to be restored upon backtracking.

2.4 Local search

Local search [38, 67] is one of the fundamental paradigms for solving compu-
tationally hard combinatorial problems, including the constraint satisfaction
problem. Local search methods in many cases represent the only feasible way
for solving these large and complex instances. Moreover, they can naturally
be used to solve optimization problems.

Given a problem instance, the basic idea underlying local search is to start
at an initial search position (typically a randomly or heuristically generated
candidate solution, which may be infeasible, sub-optimal or incomplete), and
to iteratively improve this candidate solution by means of typically minor
modifications. In each search step the search process moves to a position
selected from the local neighborhood (typically based on a heuristic evaluation
function). This process is iterated until a termination criterion is satisfied.
Different local search methods varying in the way in which improvements
are achieved, and in particular, in the way in which situations are handled
when no direct improvement is possible. To ensure that the search process
does not stagnate in unsatisfactory candidate solutions, most local search
methods use randomization; they are called stochastic local search (SLS)
methods. SLS are often conceptually simple, easy to implement and very
flexible in that it can be very easily adapted to changes in the specification of
the problem. This makes them a very popular choice for solving conceptually
complex application problems that are sometimes not fully formalized at the
beginning of a project.

The search space of almost all local search algorithms for CSP consists
of all complete variable assignments of the given CSP instance, and the so-
called 1-exchange neighborhood is used. This neighborhood relation says that
two complete variable assignments are direct neighbors if and only if they
differs at most in the value assigned to one variable.

In most cases the initial position is determined generating uniformly a
random variable assignment and the termination criterion is usually satisfied
if a solution is found or if a predetermined number of steps is reached (other
variants may stop the search after a predefined amount of time).

What differ from the various local search algorithm for CSPs (but also
for SAT and other classes of combinatorial problems) is their step function,
which is usually an heuristic guidance in the form of an evaluation function.
This function typically maps the current candidate solution to a real number
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such that its local minima correspond to a solution of the given problem
instance. Hence, the evaluation function is used to select the most preferred
neighbor. For example, in CSPs, the commonly used evaluation function,
given a complete assignment, counts the number of violated constraints.

The simplest local search algorithm is called Iterative Improvement (also
known as hill climbing) which, at each step, selects an improving position a′

from the set of neighbors N(a), of a given assignment a, such that, for an eval-
uation function f , f(a′) < f(a). There are various commonly used heuristics
for selecting such an improving neighborhood. In Iterative best-improvement,
a neighbor s′ with minimal value of f(s′) within N(s) is chosen. In Iterative
first-improvement, on the other hand, the neighborhood is evaluated in a
given order, and the first improving neighbor is selected as the next search
position. The main limitation of the iterative improvement algorithms is
that they can get stuck in a local minima of the given evaluation function.
A simple way to avoid this problem is to select a non-improving search step.
There are various techniques to achieve this, many of these uses a randomized
decision to select a new search position.

Randomized Iterative Improvement (RII) is an extension of Iterative Im-
provement where in each step, with a fixed probability p, a new search po-
sition is selected uniformly at random from the current neighborhood; this
is called Random Walk step. The usual local search step is performed with
probability (1 − p). When run arbitrarily long, RII will find a solution to
any soluble problem instance with probability approaching one. Algorithms
with this property are called probabilistically approximately complete (PAC).

Another general heuristic method (also called meta-heuristic) which is
applicable to a wide range of different combination problem, is Tabu Search
(TS) [32]. The main idea of TS is to use a short-term memory to escape
from local minima and typically uses an aggressive local search that in each
step tries to make the best possible move to a neighbor solution even if that
move worsens the evaluation function value. To prevent local search to im-
mediately return to a previously visited solution and to avoid cycling, in TS
moves to recently visited solutions are forbidden. This can be implemented
by explicitly memorizing previously visited solutions and forbidding moving
to those. More commonly, reversing recent search step is prevented by for-
bidding the re-introduction of solution components (such as assignments of
individual CSP variables) which have just been removed from the current
candidate solution. A parameter called Tabu Tenure determines the number
of search steps for which these restrictions apply. As an undesirable side-
effect, the tabu conditions may be too restrictive and they may forbid moves
to attractive, unvisited solutions. Therefore, many tabu search algorithms
make use of a so called aspiration criterion, that is used to override the tabu
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status of certain moves and to avoid such situations. Most commonly, the as-
piration criterion drops the tabu status of moves leading to a better solution
than the best candidate solution seen throughout the search process.

Another possible extension of the Iterative Improvement algorithms to
escape from a local minima of a given evaluation function is to modify the
evaluation function when the search process is about to stagnate in a local
minimum [53]. Penalty weights are associated to solutions components or to
other features of solutions. Penalty algorithms modify these weights during
the search following the intuition that some components of the solution are
more important than other and so local minima might be eliminated.
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Chapter 3

Incompleteness in soft

constraints

In this chapter we consider semiring-based soft constraints [6, 7] and how
preferences are modeled in this framework, with the aim to extend such a
modeling to allow for missing preferences. In this context, we study how to
find an optimal solution without having to wait for all the preferences. In
particular, we define algorithms that interleave search and preference elicita-
tion, to find such optimal solutions with the aim to elicit as few preferences
as possible.

Some of the results in this chapter are included in the following articles:

• Elicitation Strategies for Soft Constraint Problems with Missing Prefer-
ences: Properties, Algorithms and Experimental Studies, Mirco Gelain,
Maria Silvia Pini, Francesca Rossi, K. Brent Venable, Toby Walsh, Ar-
tificial Intelligence Journal, vol. 174, issues 3-4, March 2010, Elsevier.

• Dealing with Incomplete Preferences in Soft Constraint Problems, Mirco
Gelain, Maria Silvia Pini, Francesca Rossi, and K. Brent Venable, in
proc. of the 13th International Conference on Principles and Practice
of Constraint Programming (CP 2007), Springer Verlag, LNCS 4741,
2007.

• Elicitation strategies for fuzzy constraint problems with missing prefer-
ences: algorithms and experimental studies, Mirco Gelain, Maria Silvia
Pini, Francesca Rossi, K. Brent Venable, and Toby Walsh, in proc. of
the 14th International Conference on Principles and Practice of Con-
straint Programming (CP 2008), Springer Verlag, LNCS 5202, 2008.

• Local search approach to solve incomplete fuzzy and weighted CSPs, M.
Gelain, M. S. Pini, F. Rossi, K. B. Venable, T. Walsh, in proc. of
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the 3rd International Conference on Agents and Artificial Intelligence
(ICAART 2011), poster paper, to appear.

• Local search approach to solve incomplete fuzzy and weighted CSPs, M.
Gelain, M. S. Pini, F. Rossi, K. B. Venable, T. Walsh, in proc. of
the 10th Workshop on Preferences and Soft Constraints (SofT’10), St.
Andrews, Scotland, September 2010.

3.1 Motivations

Traditionally, tasks such as scheduling, planning, and resource allocation
have been tackled using several techniques, among which constraint reasoning
is one of the most promising. The task is represented by a set of variables,
their domains, and a set of constraints, and a solution of the problem is
an assignment to all the variables in their domains such that all constraints
are satisfied. Preferences or objective functions have been used to extend
this formalism and allow for the modelling of constraint optimization, rather
than satisfaction, problems. In all these approaches, the data (variables,
domains, constraints) are completely known before the solving process starts.
However, the increasing use of web services and in general of multi-agent
applications demands for the formalization and handling of data that is only
partially known when the solving process works, and that can be added later,
for example via elicitation [70, 71]. In many web applications, data may
come from different sources, which may provide their piece of information at
different times. Also, in multi-agent settings, data provided by some agents
may be voluntarily hidden due to privacy reasons, and only released if needed
to find a solution to the problem.

Here we consider these issues focusing on constraint optimization prob-
lems where we look for an optimal solution. In particular, we consider prob-
lems where constraints are replaced by soft constraints, in which each assign-
ment to the variables of the constraint has an associated preference coming
from a preference set [7]. We assume that variables, domains, and constraint
topology are given at the beginning, while the preferences are partially spec-
ified and are elicited during the solving process.

There are several application domains where this might be useful. One
regards the fact that quantitative preferences, needed in soft constraints, may
be difficult and tedious to provide for a user. Another one concerns multi-
agent settings, where agents agree on the structures of the problem but they
may provide their preferences on different parts of the problem at different
times. Finally, some preferences can be initially hidden because of privacy
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reasons.
Formally, we take the soft constraint formalism and we allow for some

preferences to be left unspecified. In our setting, users may know all the
preferences but are willing to reveal only some of them at the beginning.
Although some of the preferences can be missing, it could still be feasible
to find an optimal solution. If not, we ask the user to provide some of the
missing preferences and we start again from the new problem. We consider
two notions of optimal solution: possibly optimal solutions are assignments
to all the variables that are optimal in at least one way in which the currently
unspecified preferences can be revealed, while necessarily optimal solutions
are assignments to all the variables that are optimal in all ways in which
the currently unspecified preferences can be revealed. This notation comes
from multi-agent preference aggregation [52, 59, 58], where, in the context of
voting theory, some preferences are missing but still one would like to declare
a winner.

Given an incomplete soft constraint problem (ISCSP), its set of possibly
optimal solutions is never empty, while the set of necessarily optimal solutions
can be empty. Of course what we would like to find is a necessarily optimal
solution, to be on the safe side: such solutions are optimal regardless of
how the missing preferences are specified. Unfortunately, such a set may be
empty. In this case there are two choices: either we may be satisfied with
a possibly optimal solution, or we can elicit some of the missing preferences
from the user and see if the new ISCSP has a necessarily optimal solution.

We follow this second approach and we repeat the process until the current
ISCSP has at least one necessarily optimal solution. In order to do that, we
exploit a modified version of the classical branch and bound scheme and we
consider different elicitation strategies. In particular, we define a general
algorithm scheme that is based on three parameters: when to elicit, what to
elicit, and who chooses the value to be assigned to the next variable. For
example, we may only elicit missing preferences after running branch and
bound to exhaustion, or at the end of every complete branch, or even at
every node in the search tree. Also, we may elicit all missing preferences
related to the candidate solution, or we might just ask the user for the worst
preference among some missing ones. Finally, when choosing the value to
assign to a variable, we might ask the user, who knows or can compute (all
or some of) the missing preferences, for help.

We test all possible instances of the scheme, obtained by selecting different
elicitation strategies, on randomly generated soft constraint problems (fuzzy
and weighted). By varying the number of variables, the tightness and density
of constraints as well as the percentage of missing preferences, we produce
a diversified and meaningful test set. The experiments demonstrate that
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some of the algorithms are very good at finding necessarily optimal solutions
without eliciting too many preferences. We also test some of the algorithms
on problems with hard constraints and on fuzzy temporal constraints. Our
experimental study on randomly generated problems permits us to filter out
algorithms with a poor performance and, thus, to identify those that are
more promising for future testing on real-life scenarios. We conclude our
experimentation with an evaluation of our algorithms on an adaptation of
the meeting scheduling problem to allow for soft constraints and missing
preferences.

In our experiments, we compute the elicited preferences, that is, the miss-
ing values that the user has to provide to the system because they are re-
quested by the algorithm. Providing these values usually has a cost, either
in terms of the computational effort, or in terms of a decrease in privacy, or
in terms of the communication bandwidth. Whilst knowing how many pref-
erences are elicited is important, we also compute a measure of the user’s
effort. This may be much larger than the number of elicited preferences,
as it contains all the preference values the user may have to compute to be
able to respond to the elicitation requests. For example, suppose we ask
the user for the worst preference value among k missing ones. The user will
communicate only one value, but he may have to compute and consider all k
of them. Knowing the number of elicited preferences is important when the
concern is to communicate as little information as possible. The user effort,
on the other hand, measures the hidden work the user has to do to be able
to communicate the elicited preferences. This user’s effort is therefore also
an important measure.

As a motivating example, recommender systems give suggestions based
on partial knowledge of the user’s preferences. Our approach could improve
performance by identifying some key questions to ask before giving recom-
mendations. Privacy concerns regarding the percentage of elicited preferences
are motivated by eavesdropping. User’s effort is instead related to the burden
on the user.

3.2 Basic notions

Although the SCSP framework is very expressive and powerful it can not
model situations where preferences are missing. For example, in situations
where privacy is critical the goal may be solving a problem knowing less
preferences as possible. Moreover, in other real life context computing a
preference may be costly in terms of money and/or time.
For these reasons, we extend the SCSP framework to deal with problems
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with missing preferences. We call such kind of problems incomplete SCSPs,
written ISCSPs.

Informally, an incomplete SCSP, is an SCSP where the preferences of
some tuples in the constraints, and/or of some of the values in the domains,
are not specified. In detail, given a set of variables V with finite domain
D, and c-semiring S = 〈A, +,×, 0, 1〉, we extend the SCSP framework to
incompleteness by the following definitions.

Definition 23 (incomplete soft constraint). Given a set of variables V with
finite domain D, and a c-semiring 〈A, +,×, 0, 1〉, an incomplete soft con-
straint is a pair 〈idef, con〉 where con ⊆ V is the scope of the constraint and
idef : D|con| −→ A ∪ {?} is the preference function of the constraint. All
tuples mapped into ? by idef are called incomplete tuples.

In an incomplete soft constraint, the preference function can either specify
the preference value of a tuple by assigning a specific element from the carrier
of the c-semiring, or leave such preference unspecified. Formally, in the
latter case the associated value is ?. A soft constraint is a special case of an
incomplete soft constraint where all the tuples have a specified preference.

Definition 24 (incomplete soft constraint problem (ISCSP)). An incomplete
soft constraint problem is a pair 〈C, V, D〉 where C is a set of incomplete soft
constraints over the variables in V with domain D. Given an ISCSP P , we
will denote with IT (P ) the set of all incomplete tuples in P .

Definition 25 (completion). Given an ISCSP P , a completion of P is an
SCSP P ′ obtained from P by associating to each incomplete tuple in every
constraint an element of the carrier of the c-semiring. A completion is partial
if some preference remains unspecified. We will denote with C(P ) the set
of all possible completions of P and with PC(P ) the set of all its partial
completions.

In Example 1, we show how the ISCSP framework can be used to model
a problem with missing preferences.

Example 1. A travel agency is planning Alice and Bob’s honeymoon. The
candidate destinations are the Maldives islands or the Caribbean, and they
can decide to go by ship or by plane. To go to Maldives, they have a high pref-
erence to go by plane and a low preference to go by ship. For the Caribbean,
they have a high preference to go by ship, and they don’t give any preference
on going there by plane.

Assume we use the fuzzy c-semiring 〈[0, 1], max, min, 0, 1〉. We can model
this problem by using two variables T (standing for Transport) and D (stand-
ing for Destination) with domains D(T ) = {p, sh} (p stands for plane and
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sh for ship) and D(D) = {m, c} (m stands for Maldives, c for Caribbean),
and an incomplete soft constraint 〈idef, con〉 with con = {T, D} and prefer-
ence function as shown in Figure 3.1. The only incomplete tuple in this soft
constraint is (p, c).

Also, assume that for the considered season the Maldives are slightly
preferable to the Caribbean. Moreover, Alice and Bob have a high prefer-
ence for plane as a means of transport, while they don’t give any preference
to ship. Moreover, as far as accommodations, which can be in a standard
room, a suite, or a bungalow, assume that a suite in the Maldives is too ex-
pensive while a standard room in the Caribbean is not special enough for a
honeymoon. To model this new information we use a variable A (standing
for Accommodation) with domain D(A) = {r, su, b} (r stands for room, su
for suite and b for bungalow), and three constraints: two unary incomplete
soft constraints, 〈idef1, {T}〉, 〈idef2, {D}〉 and a binary incomplete soft con-
straint 〈idef3, {A, D}〉. The definition of such constraints is shown in Figure
3.1. The set of incomplete tuples of the entire problem is IT (P ) = {(sh),
(p, c), (su, c), (b, c), (r, m), (su, m)}. 2

idef2(c) = 0.7
idef2(m) = 0.9

idef1(p)=0.8
idef1(sh) = ?

D

idef3(r, c) =  0.3
idef3(su, c) = ?
idef3(b, c) = ?
idef3(r, m) = ?

idef3(b, m) = 0.2
idef3(su, m) =  ?

idef(p,m) = 0.7

idef(sh,c)  = 0.8

idef(sh,m) = 0.1

idef(p, c) = ?

T

A

Figure 3.1: An ISCSP.

Definition 26 (preference of an assignment, incomplete tuples). Given an
ISCSP P = 〈C, V, D〉 and an assignment s to all its variables, we de-
note with pref(P, s) the preference of s in P and with DEF(P,s) the set of
soft constraints with no s-related missing preferences, that is, DEF (P, s) =
< idef, con >∈ C|idef(s↓con) 6=?. In detail, pref(P, s) = Π<idef,con>∈DEF (P,s)

idef(s↓con). Moreover, we denote by it(s) the set of all the projections of s
over constraints of P which have an unspecified preference.

The preference of an assignment s in an incomplete problem is thus ob-
tained by combining the known preferences associated with the projections
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of the assignment, that is, of the appropriated sub-tuples in the constraints.
The projections which have unspecified preferences, that is, those in it(s),
are simply ignored.

Example 2. Consider the two assignments s1 = (p, m, b) and s2 = (p, m, su)
for the problem in Figure 3.1. We have that pref(P, s1) = min (0.8, 0.7, 0.9,
0.2) = 0.2, while pref(P, s2) = min (0.8, 0.7, 0.9) = 0.7. However, while
the preference of s1 is fixed, since none of its projections is incomplete, the
preference of s2 may become lower than 0.7 depending on the preference of
the incomplete tuple (su, m). 2

As shown by the example, the presence of incompleteness partitions the
set of assignments into two sets: those which have a certain preference
which is independent of how incompleteness is resolved, and those whose
preference is only an upper bound, in the sense that it can be lowered in
some completions. Given an ISCSP P , we will denote the first set of as-
signments as Fixed(P ) and the second with Unfixed(P ). In Example 2,
Fixed(P ) = {s1}, while all other assignments belong to Unfixed(P ).

In SCSPs, an assignment is an optimal solution if its global preference is
undominated. This notion can be generalized to the incomplete setting. In
particular, when some preferences are unknown, we will speak of necessarily
and possibly optimal solutions, that is, assignments which are undominated
in all (resp., some) completions.

Definition 27 (necessarily and possibly optimal solution). Given an ISCSP
P = 〈C, V, D〉, an assignment s ∈ D|V | is a necessarily (resp, possibly) op-
timal solution iff ∀Q ∈ C(P ) (resp., ∃Q ∈ C(P )) ∀s′ ∈ D|V |, pref(Q, s′) 6>
pref(Q, s).

Given an ISCSP P , we will denote with NOS(P ) (resp., POS(P )) the
set of necessarily (resp., possibly) optimal solutions of P . Notice that, while
POS(P ) is never empty, in general NOS(P ) may be empty. In particular,
NOS(P ) is empty whenever the available preferences are not sufficient to
establish the relationship between an assignment and all others.

Example 3. In the ISCSP P of Figure 3.1, we can easily see that NOS(P ) =
∅ since, given any assignment, it is possible to construct a completion of P
in which it is not an optimal solution. On the other hand, POS(P ) contains
all assignments not including tuple (sh, m). 2

3.3 Characterizing optimal solutions

In this section we characterize the set of necessarily and possibly optimal
solutions of an ISCSP given the preferences of the optimal solutions of two
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of the completions of P . All the results are given for ISCSPs defined on
totally ordered c-semirings. In particular, given an ISCSP P defined on the
c-semiring 〈A, +,×, 0, 1〉, we consider:

• the SCSP P0 ∈ C(P ), called the 0-completion of P , obtained from P
by associating preference 0 to each tuple of IT (P ).

• the SCSP P1 ∈ C(P ), called the 1-completion of P , obtained from P
by associating preference 1 to each tuple of IT (P ).

Let us indicate respectively with pref0 and pref1 the preference of an
optimal solution of P0 and P1. Due to the monotonicity of ×, and since
0 ≤ 1, we have that pref0 ≤ pref1.

Example 4. Consider the problem shown in Figure 3.1. We have that
pref0 = 0.2 and pref1 = 0.7. 2

We will now give some lemmas that will be useful to show the following
theorems.

Lemma 1. Given an ISCSP P and the completion P1 ∈ C(P ) as defined
above, we have that pref(P, s) = pref(P1, s).

Proof. Follows immediately from the definition of pref(P, s) and from the
fact that in a c-semiring 1 is the unit element. 2

Lemma 2. Given an ISCSP P and the completion P1 ∈ C(P ) as defined
above, there always exists an assignment s such that pref(P, s) = pref1.

Proof. Follows from Lemma 1 and choosing any s ∈ Opt(P1). 2

Lemma 3. Given an ISCSP P , the completions P0, P1 ∈ C(P ) as defined
above, and another completion P ′ ∈ C(P ), then, ∀s ∈ Opt(P ′), pref0 ≤
pref(P ′, s) ≤ pref1.

Proof. Due to monotonicity, for any solution s we have that pref(P ′, s) ≤
pref(P1, s) ≤ pref1, since pref1 is the optimal preference of P1. Assume
there is a solution s ∈ Opt(P ′) such that pref(P ′, s) < pref0. Then, for
any solution s0 ∈ Opt(P0), we have, by monotonicity, pref(P ′, s) < pref0 =
pref(P0, s0) ≤ pref(P ′, s0). Thus, we have a contradiction, since s is an
optimal solution of P ′. 2

Lemma 4. Given an ISCSP P and the completion P1 ∈ C(P ) as defined
above, if pref1 > pref0, then Opt(P1) ⊆ Unfixed(P ).
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Proof. Assume there is a fixed solution s such that s ∈ Opt(P1). Then we
would have that pref(P0, s) = Pref(P1, s) = pref1 and thus pref(P0, s) >
pref0 which is a contradiction, since pref0 is the optimal preference in P0.
2

Lemma 5. Given an ISCSP P , we have that NOS(P ) = ∩P ′∈C(P )Opt(P ′).

Proof. Any solution s ∈ ∩P ′∈C(P )Opt(P ′) satisfies the definition of necessar-
ily optimal. Consider now s ∈ NOS(P ) and a completion P ′ of P . Then,
by Definition 27, s cannot be dominated by another solution s′, and thus
s ∈ Opt(P ′). 2

In the following theorem we will show that, if pref0 > 0, there is a
necessarily optimal solution of P iff pref0 = pref1, and in this case NOS(P )
coincides with the set of optimal solutions of P0.

Theorem 3. Given an ISCSP P and the two completions P0, P1 ∈ C(P ) as
defined above, if pref0 > 0 we have that NOS(P ) 6= ∅ iff pref1 = pref0.
Moreover, if NOS(P ) 6= ∅, then NOS(P ) = Opt(P0).

Proof. Since we know that pref0 ≤ pref1, if pref0 6= pref1 then pref1 >
pref0. We prove that, if pref1 > pref0, then NOS(P ) = ∅. Let us consider
any assignment s of P . Due to the monotonicity of ×, for all P ′ ∈ C(P ), we
have pref(P ′, s) ≤ pref(P1, s) ≤ pref1.

• If pref(P1, s) < pref1, then s is not in NOS(P ) since P1 is a completion
of P where s is not optimal.

• If instead pref(P1, s) = pref1, then, s ∈ Opt(P1) and, by Lemma 4
we have that s ∈ Unfixed(P ). Thus we can consider completion P ′

1

obtained from P1 by associating preference 0 to the incomplete tuples
of s. In P ′

1 the preference of s is 0 and the preference of an optimal
solution of P ′

1 is, due to the monotonicity of ×, at least that of an
optimal solution of P0, that is pref0 > 0 Thus s 6∈ NOS(P ).

Next we consider when pref0 = pref1. From Lemma 5 follows that
NOS(P ) ⊆ Opt(P0). We will show that NOS(P ) 6= ∅ by showing that any
s ∈ Opt(P0) is in NOS(P ). Let us assume, on the contrary, that there is
s ∈ Opt(P0) such that s 6∈ NOS(P ). Thus there is a completion P ′ of P with
an assignment s′ with pref(P ′, s′) > pref(P ′, s). By construction of P0, any
assignment s ∈ Opt(P0) must be in Fixed(P ). In fact, if it had some incom-
plete tuple, its preference in P0 would be 0, since 0 is the absorbing element
of ×. Since s ∈ Fixed(P ), pref(P ′, s) = pref(P0, s) = pref0. By construc-
tion of P1 and monotonicity of ×, we have pref(P1, s′) ≥ pref(P ′, s′). Thus
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the contradiction pref1 ≥ pref(P1, s′) ≥ pref(P ′, s′) > pref(P ′, s) = pref0.
This allows us to conclude that s ∈ NOS(P ) = Opt(P0). 2

In the theorem above we have assumed that pref0 > 0. The case in which
pref0 = 0 needs to be treated separately. We consider it in the following
theorem.

Theorem 4. Given ISCSP P = 〈C, V, D〉 and the two completions P0, P1 ∈
C(P ) as defined above, assume pref0 = 0. Then, if pref1 = 0, NOS(P ) =
D|V |. If pref1 > 0, NOS(P ) = {s ∈ Opt(P1)|∀s′ ∈ D|V | with pref(P1, s

′) >
0 we have it(s) ⊆ it(s′)}.
Proof. We prove the two items separately.

• If pref0 = pref1 = 0, then, from Lemma 3 follows that the preference
level of the optimal solution of SCSP P ′ is 0. Thus all assignments have
always the same preference equal to 0. Thus they are all necessarily
optimal solutions.

• Let us now assume that 0 = pref0 < pref1. From Lemma 5, only
assignments in Opt(P1) can be in NOS(P ) since all other assignments
are not optimal in P1. Let us now consider s ∈ Opt(P1). By Lemma 4
we have that it(s) 6= ∅. If there exists s′ ∈ D|V |, with pref(P1, s

′) > 0,
such that it(s) 6⊆ it(s′) then we can construct a completion of P ,
say P ′ where s is not optimal. It is sufficient to set the preference
of the tuples in it(s′) to 1 and the tuples in it(s) \ it(s′) to 0. We
have that pref(P ′, s) = 0, since 0 is the absorbing element of ×,
and pref(P ′, s′) = pref(P1, s

′). Thus, in P ′ we have pref(P ′, s′) =
pref(P1, s

′) > pref(P ′, s) = 0.

We will now show that, if given s ∈ Opt(P1) there is no s′ ∈ D|V | with
pref(P1, s

′) > 0 such that it(s) 6⊆ it(s′), then s ∈ NOS(P ).

First notice that, since 1 is the unit element of×, ∀P ′ ∈ C(P ) pref(P ′, s)
= pref(P1, s) × it-pref(P ′, s) and pref(P ′, s′) = pref(P1, s

′) × it-
pref(P ′, s′) where it-pref(P ′, s) (resp. it-pref(P ′, s′)) is the combi-
nation of the preferences associated in P ′ to the incomplete tuples in
it(s) (resp. it(s′)).

Since for every s′ ∈ D|V | with pref(P1, s
′) > 0 we are assuming that

it(s) ⊆ it(s′), then ∀P ′ ∈ C(P ), it-pref(P ′, s) ≥ it-pref(P ′, s′), due to
the intensive property of×. Moreover, since s ∈ Opt(P1), pref(P1, s) =
pref1 > pref(P1, s

′). Thus, for every P ′ ∈ C(P ), ∀s′ ∈ D|V | (trivially
for those with pref(P1, s

′) = 0) we have that pref(P ′, s) ≥ pref(P ′, s′).
This allows us to conclude that s ∈ NOS(P ). 2
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Intuitively, if the tuples of s are not a subset of the incomplete tuples
of some assignment s′, then we can make s′ dominate s in a completion by
setting all the incomplete tuples of s′ to 1 and all the remaining incomplete
tuples of s to 0. In such a completion s is not optimal. Thus s is not a
necessarily optimal solution. However, if the tuples of s are a subset of the
incomplete tuples of all other assignments, then it is not possible to lower
s without lowering all other tuples even further. This means that s is a
necessarily optimal solution.

We now turn our attention to possible optimal solutions. Given a c-
semiring 〈A, +, ×, 0, 1〉, it has been shown in [8] that idempotency and
strict monotonicity of the × operator are incompatible, that is, at most one
of these two properties can hold. In the following two theorems we show
that the presence of one or the other of such two properties plays a key role
in the characterization of POS(P ) where P is an ISCSP. In particular, if ×
is idempotent, then the possibly optimal solutions are the assignments with
preference in P between pref0 and pref1. If, instead, × is strictly monotonic,
then the possibly optimal solutions have preference in P between pref0 and
pref1 and dominate all the assignments which have as set of incomplete tuples
a subset of their incomplete tuples.

Theorem 5. Given an ISCSP P defined on a c-semiring with idempotent
× and the two completions P0, P1 ∈ C(P ) as defined above, if pref0 > 0 we
have that: POS(P ) = {s ∈ D|V ||pref0 ≤ pref(P, s) ≤ pref1}.
Proof. First we show that any s such that pref0 ≤ pref(P, s) ≤ pref1 is in
POS(P ). Let us consider the completion of P , P ′, obtained by associating
preference pref(P, s) to all the incomplete tuples of s and 0 to all other
incomplete tuples of P . For any other assignment s′ we can show that it
never dominates s:

• s′ ∈ Fixed(P ) and thus pref(P ′, s′) = pref(P0, s
′) ≤ pref0 ≤ pref(P, s);

• s′ ∈ Unfixed(P ) and

– it(s′) 6⊆ it(s), then pref(P ′, s′) = 0 since in P ′ the incomplete
tuples in it(s′) which are not in it(s) have been associated with
preference 0;

– it(s′) ⊆ it(s). By construction of P ′ and since × is idempo-
tent and associative we have that: pref(P ′, s) = (pref(P, s) ×
(Π|it(s)|pref(P, s))) = pref(P, s) and pref(P ′, s′) = (pref(P, s′)×
(Π|it(s′)|pref(P, s))) = pref(P, s′) × pref(P, s). Since × is in-
tensive, pref(P ′, s′) = (pref(P, s′) ×pref(P, s)) ≤ pref(P, s) =
pref(P ′, s).
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Thus in P ′ no assignment dominates s. This means that s ∈ POS(P ).
We will now show that if s ∈ POS(P ), pref0 ≤ pref(P, s) ≤ pref1. If

s ∈ POS(P ), then s ∈ Opt(Q) form some Q ∈ C(P ). Thus we can conclude
by Lemma 3. 2

Informally, given a solution s such that pref0 ≤ pref(P, s) ≤ pref1, it can
be shown that it is an optimal solution of the completion of P obtained by
associating preference pref(P, s) to all the incomplete tuples of s, and 0 to
all other incomplete tuples of P . On the other hand, by construction of P0

and due to the monotonicity of ×, any assignment which is not optimal in
P0 cannot be optimal in any other completion. Also, by construction of P1,
there is no assignment s with pref(P, s) > pref1.

Theorem 6. Given an ISCSP P defined on a c-semiring with a strictly
monotonic × and the two completions P0, P1 ∈ C(P ) as defined above, if
pref0 > 0 we have that: s ∈ POS(P ) iff pref0 ≤ pref(P, s) ≤ pref1 and
pref(P, s) = max{ pref(P, s′)| it(s′) ⊆ it(s)}.

Proof. Let us first show that if assignment s is such that pref0 ≤ pref(P, s) ≤
pref1 and pref(P, s) = max{pref(P, s′)|it(s′) ⊆ it(s)} it is in POS(P ).
We must show there is a completion of P where s is undominated. Let
us consider completion P ′ obtained by associating preference 1 to all the
tuples in it(s) and 0 to all the tuples in IT (P ) \ it(s). First we notice that
pref(P ′, s) = pref(P, s), since 1 is the unit element of ×. Let us consider
any other assignment s′. Then we have one of the following:

• it(s′) = ∅, which means that s′ ∈ Fixed(P ) and thus pref(P ′, s′) =
pref(P0, s′) ≤ pref0 ≤ pref(P, s) = pref(P ′, s);

• it(s′) 6⊆ it(s), which means that there is at least one incomplete tuple
of it(s′) which is associated with 0. Since 0 is the absorbing element
of ×, pref(P ′, s′) = 0 and thus pref(P ′, s′) < pref0 ≤ pref(P ′, s);

• it(s′) ⊆ it(s), in this case pref(P ′, s′) = pref(P, s′) since all tuples
in it(s′) are associated with 1 in P ′. However since pref(P, s) =
max{pref(P, s′)|it(s′) ⊆ it(s)}, pref(P ′, s′) ≤ pref(P ′, s).

We can thus conclude that s is not dominated by any assignment in P ′.
Hence s ∈ POS(P ).

Let us now prove the other direction by contradiction. If pref(P, s) <
pref0 then we can conclude by Lemma 2. We must prove that if pref0 ≤
pref(P, s) ≤ pref1 and pref(P, s) < max{pref(P, s′)|it(s′) ⊆ it(s)} then s
is not in POS(P ). In any completion P ′ of P we have that pref(P ′, s) =
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pref(P, s) × it-pref(P ′, s) and pref(P ′, s′) = pref(P, s′) × it-pref(P ′, s′)
where it-pref(P ′, s) (resp. it-pref(P ′, s′)) is the combination of the prefer-
ences associated to the incomplete tuples in it(s) (resp. it(s′)). Since it(s′) ⊆
it(s), for any completion P ′ we have that it-pref(P ′, s) ≤ it-pref(P ′, s′).
Moreover, let s′′ be such that pref(P, s′′) = max{pref(P, s′)|it(s′) ⊆ it(s)}.
Then we have that for any completion P ′, pref(P ′, s′′) > pref(P ′, s) since
pref(P, s′′) > pref(P, s) and it-pref(P ′, s′′) ≥ it-pref(P ′, s) and × is
strictly monotonic. Thus, if pref0 ≤ pref(P, s) ≤ pref1 and pref(P, s) <
max{pref(P, s′)| it(s′) ⊆ it(s)}, then s is not in POS(P ). 2

The intuition behind the statement of this theorem is that, if assignment s is
such that pref0 ≤ pref(P, s) ≤ pref1 and pref(P, s) = max{pref(P, s′)|it(s′)
⊆ it(s)}, then it is optimal in the completion obtained associating preference
1 to all the tuples in it(s) and 0 to all the tuples in IT (P ) \ it(s). On the
contrary, if pref(P, s) < max{pref(P, s′)|it(s′) ⊆ it(s)}, there must be an-
other assignment s′′ such that pref(P, s′′) = max{pref(P, s′)|it(s′) ⊆ it(s)}.
It can then be shown that, in all completions of P , s is dominated by s′′.

In contrast to NOS(P ), when pref0 = 0 we can immediately conclude
that POS(P ) = D|V |, independently of the nature of ×, since all assignments
are optimal in P0.

Corollary 6.1. Given an ISCSP P = 〈C, V, D〉, if pref0 = 0, then POS(P ) =
D|V |.

For ease of clarity, the results shown in this section can be summarized
as follows:

• when pref0 = pref1 = 0

– NOS(P ) = D|V | (by Theorem 4);

– POS(P ) = D|V | (by Corollary 6.1) ;

• when 0 = pref0 < pref1

– NOS(P ) = {s ∈ Opt(P1)|∀s′ ∈ D|V | with pref(P1, s
′) > 0 we

have it(s) ⊆ it(s′)} (by Theorem 4);

– POS(P ) = D|V | (by Corollary 6.1);

• when 0 < pref0 = pref1

– NOS(P ) = Opt(P0) (by Theorem 3);

– if × is idempotent: POS(P ) = {s ∈ D|V ||pref0 ≤ pref(P, s) ≤
pref1} (by Theorem 5);
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– if× is strictly monotonic: POS(P ) = {s ∈ D|V ||pref0 ≤ pref(P, s)
≤ pref1, pref(P, s) = max{ pref(P, s′)|it(s′) ⊆ it(s)}} (by Theo-
rem 6);

• when 0 < pref0 < pref1

– NOS(P ) = ∅ (by Theorem 3);

– POS(P ) as for the case when 0 < pref0 = pref1.

3.4 Solving incomplete soft constraints via a

systematic search

In this section we first describe a general schema for solving ISCSPs based
on interleaving branch and bound search with preference elicitation. Such
a general schema is instantiated to different elicitation strategies generating
several concrete algorithms. A computational analysis of the algorithms is
provided both in terms of the number of elicited preferences and of the user
effort for revealing some of the missing preferences.

The solver schema and its instances

The solving strategy which we propose for ISCSPs is based on the idea of
combining a branch and bound search (B&B) with elicitation steps in which
the user is asked to provide some type of missing information. In general,
B&B proceeds by considering the variables in some order, by choosing a value
for each variable in the order, and by computing, using some heuristics, an
upper bound on the global preference of any completion of the current partial
assignment. B&B also stores the highest preference (assuming the goal is to
maximize) of a complete assignment found so far. If at any step the upper
bound is lower than the preference of the current best solution, the search
backtracks.

When some of the preferences are missing, as in ISCSPs, the agent may
be asked for some preferences or other information regarding the preferences
in order to know the true preference of a partial or complete assignment or in
order to choose the next value for some variable. Preferences can be elicited
after each run of B&B or during a B&B run while preserving the correctness
of the approach. For example, we can elicit preferences at the end of every
complete branch (that is, regarding preferences of every complete assignment
considered in the branch and bound algorithm), or at every node in the search
tree (thus considering every partial assignment). Moreover, when choosing
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the value for the next variable to be assigned, we can ask the user (who
knows the missing preferences) for help. Finally, rather than eliciting all
the missing preferences in the possibly optimal solution, or the complete or
partial assignment under consideration, we can elicit just some of the missing
preferences.

For example, with incomplete fuzzy constraint problems (IFCSPs), elicit-
ing just the worst preference among the missing ones is sufficient, since only
the worst value is important to the computation of the overall preference
value. Instead, with incomplete weighted constraint problems (IWCSPs), we
need to elicit as many preference values as needed to decide whether the
current assignment is better than the best one found so far.

More precisely, the algorithm schema we propose is based on the following
parameters:

1. WHO chooses the value of a variable:

(a) the algorithm, using one of the following heuristics:

i. values are picked in decreasing order w.r.t. their preference
values in the 1-completion. The order is maintained dynami-
cally. We denote this heuristic with dp;

ii. values are picked in decreasing order w.r.t. the preferences
in the 0-completion of the initial ISCSP. The order is thus
static. We denote this heuristic with dpi.

(b) The user, revealing the value that he prefers according to one of
the following criteria:

i. the value is the most preferred among those in the domain
which haven’t been considered yet (lazy user, lu for short);

ii. the value is the most preferred among those which haven’t
been considered yet given the constraints involving the current
variable and the past variables in the search order (smart user,
su for short);

2. WHAT must be elicited:

(a) the preferences of all the incomplete tuples of the current assign-
ment (denoted with all);

(b) for IFCSPs, only the preference of the worst tuple of the cur-
rent assignment, if it is worse than the known ones (denoted with
worst);

(c) for IWCSPs:
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• the worst missing cost (that is, the highest) until either all the
costs are elicited or the current global cost of the (possibly
partial) assignment is higher than the optimum found so far.
This strategy is denoted by WW.

• the best (i.e. the minimum) cost until either all the costs
are elicited or the current global cost of the (possibly partial)
assignment is higher than the optimum found so far. This
strategy is denoted by BB.

• the best and the worst cost in turn. This strategy is denoted
by BW.

3. WHEN elicitation should take place:

(a) at the end of the branch and bound search (at tree level).

(b) during the search, when we have a complete assignment to all the
variables (i.e., when we have reached a leaf of the search tree, and
thus when we are at the end of a branch). We will refer to such a
heuristics, by saying “at branch level”.

(c) during search, whenever a new value is assigned to a variable. We
will refer to such a heuristics, by saying “at the node level”.

Summarizing, we have three features which we call who, what and when.
There are four possible choices for who: dp, dpi, lu, and su. If we work with
IFCSPs, there are two possibilities for what: all and worst. Instead, with
IWCSPs, there are four options: all, WW, BB, and BW. Finally, there are
three options for when: tree, branch, and node. If when = tree, elicitation
takes place only when the search is completed. This means that the B&B
search can be performed more than once. In contrast, if when = branch or
when = node, the B&B search is performed only once and the elicitation is
done either at every node of the search tree or at every leaf.

By choosing a value for each of the three parameters above in a consistent
way, we obtain, for IFCSPs, a total of 16 different algorithms, as summarized
in Figure 3.2.

If instead we work with IWCSPs, we have a total of 32 algorithms, as can
be seen in Figure 3.3.

The pseudocode of our general solver, which we call ISCSP-SCHEME, is
shown in Algorithms 2 and 3. Every point in Figure 3.2 and Figure 3.3 rep-
resents an instantiation of ISCSP-SCHEME to specific values for parameters
who, what and when.

ISCSP-SCHEME takes in input an ISCSP P and the values for the three
parameters: who, what, and when. It returns an ISCSP Q, a complete



3.4 Solving incomplete soft constraints via a systematic search 51

Figure 3.2: The algorithms for IFCSPs.

Figure 3.3: The algorithms for IWCSPs.

assignment s and a preference p. In Theorems 7 and 9 we will show that Q
is a partial completion of P and s is a necessarily optimal solution of Q with
preference p. As a first step, ISCSP-SCHEME computes the 0-completion
of P , called P0, and finds one of its optimal solutions, say smax, and its
preference, say prefmax, by applying a standard branch and bound procedure
(denoted by B&B). Next, procedure BBE is called. If BBE succeeds, it
returns a partial completion of P , one of its necessarily optimal solutions,
and its associated preference. Otherwise, it returns a solution equal to nil.
In the first case the output of ISCSP-SCHEME coincides with that of BBE,
otherwise ISCSP-SCHEME returns P0 and one of its optimal solutions with
the corresponding preference.

Procedure BBE takes as input the same values as ISCSP-SCHEME and,
in addition, a solution sol and a preference lb representing the current lower
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Algorithm 2: ISCSP-SCHEME

Input: an ISCSP P , a parameter who indicating the method of values
instantiation, a parameter what indicating the elicitation policy, a
parameter when indicating the level at which the elicitation must be
done
Output: an ISCSP Q, an assignment s, a preference p
compute P0

Q← P0

smax, prefmax ← B&B(P0)
Q′,s1,pref1 ← BBE(P, 0, who, what, when, smax, prefmax)
if s1 6= nil then

smax ← s1

prefmax ← pref1

Q← Q′

return Q, smax, prefmax

bound of the optimal preference level. Solution sol′ and preference pref ′ are
initialized to such values at the beginning of BBE. Procedure nexV ariable
applied to the 1-completion of the ISCSP in input (denoted by P [?/1]) al-
lows to assign to currentV ariable the next variable to be assigned. The
algorithm then assigns a value to this variable. If the Boolean function
nextV alue returns true (if there is a value in the domain), we select a value
for currentV ariable according to the value of parameter who.

The computation of the upper bound for the preference that can be ob-
tained by any completion of the current partial assignment is performed by
procedure UpperBound. In general, any kind of upper bound can be used.
However, we have chosen to estimate it by combining the preferences of the
constraints involving only variables that have already been instantiated. For-
mally, let t be the current partial assignment to variables in {v1, . . . , vk} ⊆ V ,
and let ci = 〈defi, coni〉 be a constraint, such that coni ⊆ {v1, . . . , vk}. Then,
the value ub returned by UpperBound is:

ub =
k

∏

i=1

defi(t ↓coni
),

where
∏

is the combination operator of the semiring.
We will now describe procedure BBE by considering the various values

for parameter when. This corresponds to consider the algorithms in Figures
3.2 and 3.3 divided into the three horizontal planes obtained fixing the value
on the when-axis.
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Algorithm 3: BBE

Input: an ISCSP P , the number of currently instantiated variables
nInstV ar, a parameter who indicating the method of values
instantiation, a parameter what indicating the elicitation policy, a
parameter when indicating the level at which the elicitation must be
done, a reference to a solution sol, lb lower bound
Output: an ISCSP P , a solution sol and its preference pref
sol′ ← sol
pref ′ ← lb
currentV ariable← nextV ariable(P [?/1])
while nextV alue(currentV ariable, who) do

if when = node then
P, pref ← Elicit@Node(what, P, currentV ariable, lb)

ub← UpperBound(P [?/1], currentV ariable)
if ub >S lb then

if nInstvar = number of variables in P then

if when = branch then
P, pref ← Elicit@branch(what, P, lb)

if pref >S lb then
sol ← getSolution(P [?/1])
lb← pref(P [?/1], sol)

else
BBE(P, nInstV ar + 1, who, what, when, sol, lb)

if when=tree and nInstV ar = 0 then

if sol = nil then
sol ← sol′

pref ← pref ′

else
P, pref ← Elicit@tree(what, P, sol, lb)
if pref >S pref ′ then

BBE(P, 0, who, what, when, sol, pref)
else

BBE(P, 0, who, what, when, sol′, pref ′)
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• If when = tree, elicitation is handled by procedure Elicit@tree and
takes place only at the end of the search over the 1-completion. The
user is not involved in the value assignment steps within the search and
thus there are only two possible values for variable who, i.e. dp and dpi.
At the end of the search, if a solution is found, the user may be asked
to reveal all the preferences of the incomplete tuples in the solution (if
what = all). If we work with IFCSPs, we could also ask for just the
worst one among the missing preferences if it is worst than the known
ones (if what = worst). If instead we work with IWCSPs, preferences
can be asked in decreasing (what = BB), increasing (what = WW),
or alternating order (what = BW) until we have enough information.
If the preference of this solution is better than the best found so far,
BBE is called recursively with the new best solution and preference,
otherwise the recursive call is done with the old solution and preference.

• If when = branch, B&B is performed only once and not several times
as in the previous case. The user may be asked to choose the next
value for the current variable being instantiated. Preference elicita-
tion, which is handled by function Elicit@branch, takes place during
search, whenever all variables have been instantiated. As above, the
user can be asked either to reveal the preferences of all or some of
the incomplete tuples depending on the value of what. In all cases
the information gathered is sufficient to compare the preference of the
current assignment against the current lower bound.

• If when = node, preferences are elicited every time a new value is
assigned to a variable, and it is handled by procedure Elicit@node.
The tuples to be considered for elicitation are those involving the value
which has just been assigned and belonging to constraints between the
current variable and already instantiated variables. The value of what
determines whether one or all or some preference values involving the
new assignment are asked to the user. With the information given by
the user, the preference of the current partial assignment is updated
in order to determine if the subtree rooted at the current node can be
pruned.

Termination and correctness

We will now prove that algorithm ISCSP-SCHEME, when given an ISCSP
in input, always terminates generating a completion of the ISCSP and one
of its necessarily optimal solutions.
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Theorem 7. Given an ISCSP P and when = tree, if

• what = all, or

• what = worst and P is an IFCSP, or

• (what = WW or what = BB or what = BW) and P is an IWCSP,

algorithm ISCSP-SCHEME always terminates and returns an ISCSP Q such
that Q ∈ PC(P ), an assignment s ∈ NOS(Q), and its preference in Q.

Proof. Clearly ISCSP-SCHEME terminates if and only if BBE terminates.
If we consider the pseudo-code of procedure BBE shown in Algorithm 3, we
see that if when = tree, BBE terminates when sol = nil. This happens
only when the search fails to find a solution of the current problem with
a preference strictly greater than the current lower bound, i.e., when the
condition pref >S lb is never satisfied. Let us denote with Qi and Qi+1

respectively the ISCSPs given in input to the i-th and (i+1)-th recursive call
of BBE. First we notice that only procedure Elicit@tree modifies the ISCSP
in input by possibly adding new elicited preferences. Moreover, whatever the
value of parameter what is, the returned ISCSP is either the same as the one
in input or it is a (possibly partial) completion of the one in input. Thus we
have Qi+1 ∈ PC(Qi) and Qi ∈ PC(P ). Since the search is always performed
on the 1-completion of the current ISCSP, we can conclude that for every
solution s, pref(Qi+1, s) ≤S pref(Qi, s). Let us now denote with lbi and
lbi+1 the lower bounds given in input respectively to the i-th and (i + 1)-th
recursive call of BBE. It is easy to see that lbi+1 ≥S lbi. Thus, since at every
iteration the preferences of solutions cannot increase and the bound cannot
decrease, and since we have a finite number of solutions, we can conclude
that BBE always terminates.

The reasoning that follows relies on the fact that value pref returned by
function Elicit@tree is the final preference after elicitation of assignment sol
given in input. This is true since either what = all and thus all preferences
have been elicited and the overall preference of sol can be computed, or only
the worst preference has been elicited but in a fuzzy context where the overall
preference coincide with the worst one, or we are in a IWCSP and we have
elicited enough preferences to discover that the current solution is worst then
the optimum found so far or we have elicited all its costs.

If called with when = tree ISCSP-SCHEME exits when the last branch
and bound search has ended returning sol = nil. In such a case sol and pref
are updated to contain the best solution and associated preference found so
far, i.e. sol′ and pref ′. Then, the algorithm returns the current ISCSP, say
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Q, and sol and pref . Following the same reasoning as above done for Qi, we
can conclude that Q ∈ PC(P ).

At the end of a while loop execution of the first call of BBE (the bot-
tom of the call stack), assignment sol either contains an optimal solution
sol of the 1-completion of the current ISCSP or sol = nil. sol = nil iff
there is no assignment with preference higher than lb in the 1-completion of
the current ISCSP. In this situation, sol′ and pref ′ are an optimal solution
and preference of the 1-completion of the current ISCSP. However, since the
preference of sol′, pref ′ is fixed and since, due to monotonicity, the optimal
preference value of the 1-completion is always better than or equal to that
of the 0-completion, we have that sol′ and pref ′ are an optimal solution and
preference of the 0-completion of the current ISCSP as well.

By Theorems 3 and 4, we can conclude that NOS(Q) is not empty. If
pref = 0, then NOS(Q) contains all the assignments and thus also sol. The
algorithm correctly returns the same ISCSP given in input, assignment sol
and its preference pref . If instead 0 < pref , again the algorithm is correct,
since by Theorem 3 we know that NOS(Q) = Opt(Q[?/0]), and we have
shown that sol ∈ Opt(Q[?/0]). 2

Moreover, if parameter when = tree, then no useless work is done since
we only elicit preferences of assignments that occur in an optimal solution of
some completion of the current incomplete problem.

Theorem 8. If ISCSP-SCHEME is given in input when = tree, then only
preferences of tuples of solutions in POS(P ) are elicited.

Proof. If when = tree then, during the execution of ISCSP-SCHEME, prefer-
ences are elicited only by procedure Elicit@tree. A call to such a procedure,
such as Elicit@tree (what, P, sol, lb), depending on the value of parameter
what, elicits all or a subset of the preferences of the incomplete tuples of
assignment sol, returning the (eventually) new global preference of sol, pref
and the completion of P obtained adding the new elicited preferences. Dur-
ing the execution of ISCSP-SCHEME, Elicit@tree is called on the current
partial completion of the ISCSP given in input, P and on an optimal solution
of its 1-completion, sol. By Theorems 5 and 6, any optimal solution of the
1-completion of the current partial completion of P is a possibly optimal
solution of such a partial completion. 2

We will now consider other values for parameter when.

Theorem 9. Given a fuzzy or weighted ISCSP P and (when = branch
or when = node), Algorithm ISCSP-SCHEME always terminates, and it
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returns an ISCSP Q such that Q ∈ PC(P ), an assignment s ∈ NOS(Q),
and its preference in Q.

Proof. In order to prove that the algorithm terminates, it is sufficient to show
that BBE terminates. Since the domains are finite, the labelling phase pro-
duces a number of finite choices at every level of the search tree. Moreover,
since the number of variables is limited, then, we have also a finite number of
levels in the tree. Hence, BBE considers at most all the possible assignments,
that are a finite number. At the end of the execution of ISCSP-SCHEME,
sol, with preference pref is one of the optimal solutions of the current
P [?/1]. Thus, for every assignment s′, pref(P [?/1], s′) ≤S pref(P [?/1], sol).
Moreover, for every completion Q′ ∈ C(P ) and for every assignment s′,
pref(Q′, s′) ≤S pref(P [?/1], s′). Hence, for every assignment s′ and for every
Q′ ∈ C(P ), we have that pref(Q′, s′) ≤S pref(P [?/1], sol). In order to prove
that sol ∈ NOS(P ), now it is sufficient to prove that for every Q′ ∈ C(P ),
pref(P [?/1], sol) = pref(Q′, sol). This is true, since sol ∈ Fixed(P ) both
when eliciting all the missing preferences, and when eliciting only the worst
one for fuzzy ISCSPs, and when eliciting via BB, BW, or WW in weighted
ISCSPs. In fact, in both cases, the preference of sol is the same in every com-
pletion. To show that the final problem Q returned by BBE is in PC(P ), it is
sufficient to note that only the procedures Elicit@node and Elicit@branch
modify the ISCSP in input by possibly adding some missing preferences.
Thus, the returned ISCSP is in PC(P ). 2

3.5 Solving incomplete soft constraints via a

local search

A local search approach has been defined in [1] to find an optimal solution
in a soft constraint problem. This approach starts from a randomly chosen
assignment to all the variables, say s, and at each step it moves to a new
assignment which is obtained by changing the value of one variable. Such
a variable is one of those whose local preference is minimal in s. The local
preference of a variable in an assignment s is the combination of the prefer-
ences identified by s in all constraints involving the variable. The new value
for the chosen variable is the one (in its domain) with the best local pref-
erence immediate value, that is, the value for which the global assignment
preference is the best.

Consider the example in Figure 3.4 which shows an example of an IFCSP
with three variables A, B, and C, with domains D(A) = {a, b, c}, D(B) =
{d, e}, and D(C) = {r, s}. The presence of the question marks identifies
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the missing preference values. In this example, the preference of the variable
assignment 〈A = a, B = e, C = r〉 is min(0.3, 0.4, 1, 0.9) = 0.3. Since this
variable assignment involves some missing preferences, such as the one for
the tuple 〈A = a, B = e〉, its preference should be interpreted as an upper
bound of the actual preference for this assignment.

Figure 3.4: An example of ISCSP.

Now consider the problem in Figure 3.4 where all missing preferences are
set to 1. This is a classical fuzzy constraint problem. Consider now the
assignment 〈A = a, B = d, C = r〉. In this assignment, the local preference
of variable A is min(0.3, 0.4, 0.9) = 0.3, while it is 0.4 for B and 0.9 for C.
Thus, variable A would be chosen by the local search algorithm.

Once the variable, say x, is chosen, its new value is identified by comput-
ing, for each new value v, the preference of the new assignment (that is, s
with the new value v for x). The value which gives the best preference for
the new assignment is chosen.

Consider again the example in Figure 3.4 where all missing preferences
are set to 1, and assignment 〈A = a, B = d, C = r〉. This assignment has
preference 0.3. Variable A can be changed to values b or c. With A = b, the
new assignment has preference 0.6, while with A = c, the new assignment
has preference 0.5, Thus the algorithm would move to the assignment 〈A =
b, B = d, C = r〉 what has preference 0.6.

In the following we adapt this algorithm to deal with incompleteness.
To start, we randomly generate an assignment of all the variables. To

assess the quality of such an assignment, we compute its preference. However,
since some missing preferences may be involved in the chosen assignment, we
ask the user to reveal them.
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In each step, when a variable is chosen, its local preference is computed
by setting all the missing preferences to the best preference value (which is
1 for fuzzy constraints and 0 for weighted constraints). In other words, if
there are missing preferences, they are not considered in computing the local
preference of a variable in a given assignment (since the best value is the
neutral element for the combination).

Consider again the example in Figure 3.4 and the assignment 〈A =
a, B = e, C = r〉. In this assignment, the local preference of variable A
is min(0.3, 0.4, 0.9) = 0.3, while for B is 0.4, and for C is min(0.9, 1) = 0.9.
Thus our algorithm would choose variable A.

To choose the new value for the selected variable, we compute the pref-
erences of the assignments obtained by choosing the other values for this
variable. Since some preference values may be missing, in computing the
preference of a new assignment we just consider the preferences which are
known at the current point. We then choose the value which is associated to
the best new assignment. If two values are associated to assignments with
the same preference, we choose the one associated to the assignment with
the smaller number of incomplete tuples. In this way, we aim at moving to
a new assignment which is better than the current one and has the fewest
missing preferences.

In the running example above, from assignment 〈A = a, B = e, C = r〉,
once we know that variable A will be changed, we compute pref(〈A = b, B =
e, C = r〉) = 0.4 and pref(〈A = c, B = e, C = r〉) = 0.3. Thus we would
select the value b for A.

Since the new assignment, say s′, could have incomplete tuples, we ask
the user to reveal enough of this data to compute the actual preference of s′.
Of course, asking for all the missing preferences is always a correct strategy;
we call ALL the elicitation strategy that elicits all the missing preferences
associated to the tuples obtained projecting s′ on the constraints. However,
depending on the class of soft constraints considered, asking for less than all
the preferences could be sufficient. For fuzzy constraints, we also consider
an elicitation strategy, called WORST, that asks the user to reveal only
the worst preference among the missing ones, if it is less than the worst
known preference. This is enough to compute the actual preference of s′

since the preference of an assignment coincides with the worst preference in
its constraints.

For weighted constraints, we consider the following three strategies (be-
sides ALL):

• WW: we elicit the worst missing cost (that is, the highest) until either
all the costs are elicited or the current global cost of the assignment is
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higher than the preference of the best assignment found so far;

• BB: we elicit the best (i.e., the minimum) cost with the same stopping
condition as for WW;

• BW: we elicit the best and the worst cost in turn, with the same stop-
ping condition as for WW.

As in many classical local search algorithms, to avoid stagnation in local
minima, we employ tabu search and random moves. Our algorithm has two
parameters: p, which is the probability of a random move, and t, which
is the tabu tenure. When we have to choose a variable to re-assign, the
variable is either randomly chosen with probability p or, with probability (1-
p), we perform the procedure described above. Also, if no improving move
is possible, i.e., all new assignments in the neighborhood are worse than or
equal to the current one, then the chosen variable is marked as tabu and not
used for t steps.

While in classical local search scenarios the underlying problem is always
the same, and we just move from one of its solutions to another one, in our
scenario we also change the problem via the elicitation strategies. Since the
change involves only the preference values, the solution set remains the same,
although the preferences of the solutions may decrease over time.

During search, the algorithm maintains the best solution found so far,
which is returned when the maximum number of allowed steps is exceeded.
In the ideal case, the returned solution is a necessarily optimal solution of
the initial problem with the preferences added by the elicitation. However,
there is no guarantee that this is so: via elicitation we can reach a problem
with necessarily optimal solutions, but the algorithm may fail to find one
of those. However, we will show later that, even in this case, the quality of
the returned solutions is not very far from that of the necessarily optimal
solutions.

3.6 Problem generator and experimental de-

sign

In this section we present the test environments we defined to test our algo-
rithms. Then, we show and discuss the experimental results.
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Randomly generated incomplete soft constraint prob-

lems

To test the performance of these different algorithms, we created Fuzzy ISC-
SPs using a generator which is a simple extension of the standard random
model for hard constraints to soft and incomplete constraints. The generator
has the following parameters:

• n: number of variables;

• m: cardinality of the variable domains;

• d: density, that is, the percentage of binary constraints present in the
problem w.r.t. the total number of possible binary constraints that can
be defined on n variables;

• t: tightness, that is, the percentage of tuples with preference 0 in each
constraint and in each domain w.r.t. the total number of tuples (m2

for the constraints, since we have only binary constraints, and m in the
domains);

• i: incompleteness, that is, the percentage of incomplete tuples (that is,
tuples with preference ?) in each constraint and in each domain.

Given values for these parameters, we generate IFCSPs as follows. We first
generate n variables and then d% of the n(n−1)/2 possible constraints. Then,
for every domain and for every constraint, we generate a random preference
value in (0, 1] for each of the tuples (that are m for the domains, and m2

for the constraints); we randomly set t% of these preferences to 0; and we
randomly set i% of the preferences as incomplete.

For example, if the generator is given in input n = 10, m = 5, d = 50,
t = 10, and i = 30, it generates a binary IFCSP with 10 variables, each with
5 elements in the domain, 22 constraints (that is 50% of 45 = 10(10−1)/2), 2
tuples with preference 0 (that is, 10% of 25 = 5×5) and 7 incomplete tuples
(that is, 30% of 25 = 5 × 5) in each constraint, and 1 missing preference
(that is, 30% of 5) in each domain. Notice that we use a model B generator:
density and tightness are interpreted as percentages, and not as probabilities
[29].

We also generate random IWSCSPs using the same parameters as for
IFCSPs, with costs in [0, 10] ∪ {+∞}.

Our experiments measure the percentage of elicited preferences (over all
the missing preferences) as the generation parameters vary. Since some of
the algorithm instances require the user to suggest the value for the next
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variable, or ask for the worst value among several, we also show the user’s
effort in the various solvers, formally defined as the percentage of missing
preferences the user has to consider to give the required help.

Besides the 16 instances of the scheme for IFCSPs described above, we
also considered a ”baseline” algorithm that elicits preferences of randomly
chosen tuples every time branch and bound ends. All algorithms are named
by means of the three parameters. For example, algorithm DPI.WORST.
BRANCH has parameters who = dpi, what = worst, and when = branch.
For the baseline algorithm, we use the name DPI.RANDOM.TREE.

For every choice of parameter values, 100 problem instances are generated.
The results shown are the average over the 100 instances. Also, when it is not
specified otherwise, we set n = 10 and m = 5. However, for IFCSPs, we have
similar results for n = 5, 8, 11, 14, 17, and 20. All our experiments have
been performed on an AMD Athlon 64x2 2800+, with 1 Gb RAM, Linux
operating system, and using JVM 6.0.1.

Regarding the experimental tests for local search algorithms, we executed
them using a step limit of 100000, a random walk probability of 0.2 and tabu
tenure of 1000. All results are an average over 100 problem instances also in
this case.

A structured problem: the incomplete meeting schedul-

ing problem

The meeting scheduling problem is a benchmark for CSPs [65], and we have
adapted it to allow also for missing preferences.

A meeting scheduling problem (MSP) is informally the problem of schedul-
ing some meetings by allowing the participants to attend all the meetings
they are involved in. More formally, a MSP can be described by

• a set of agents;

• a set of meetings, each with a location and a duration;

• a set of time slots where meetings can take place;

• for each meeting, a subset of agents that are supposed to attend such
a meeting;

• for each pair of locations, the time to go from one location to the other
one.
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Typical simplifying assumptions concern having the same duration for all
meetings (one time slot), and the same number of meeting for each agent.
To solve a MSP, we need to allocate each meeting in a time slot in a way
that each agent can participate in his meetings. The only way that an agent
cannot participate has to do with the time needed to go from the location of
a meeting to the location of his next meeting.

The MSP can be easily seen as a CSP: variables represent meetings and
variable domains represent all time slots. Each constraint between two meet-
ings models the fact that one or more agents must participate in both meet-
ings, and it is satisfied by all pairs of time slots that allow the participation
to both meetings according to the time needed to pass between the corre-
sponding locations. For this reason, it is often used as a typical benchmark
for CSPs.

For our purposes, we consider a generalization of the MSP, called IMSP,
where constraints are replaced by preferences and each agent may give only
some of the preferences over the meetings he would like to attend. The pref-
erences given by the agents over the time slots of each meeting are collected
and then, for each time slot, the system assigns the average preference value
if the majority of agents express a preference, otherwise it marks that prefer-
ence as unknown. For each combination of time slots in binary constraints,
the system sets as unknown the preference of a tuple if one of the values has
an associated incomplete preference, otherwise it takes the average prefer-
ence. The problem of solving an IMSP concerns finding time slots for the
meetings such that all agents can participate and, among all possible solu-
tions, to choose an optimal one according to some optimality criteria. In this
context, given an IMSP P , necessarily optimal solutions (i.e., solutions in
NO(P )) are meeting schedulings that are optimal no matter how the miss-
ing preferences are revealed. Thus, if there is at least one of such solutions,
this is certainly preferred to any other.

We randomly generate meeting scheduling problems according to the fol-
lowing parameters:

• m: number of meetings (default 12);

• n: number of agents (default 5);

• k: number of meetings per agent (default 3);

• l: number of time slots (fixed to 10);

• min and max: minimal (default 1) and maximal (default 2) distance
in time slots between two locations;
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• i: percentage of incomplete preferences (default 30%).

Given such parameters, we generate an IMSP with m variables, represent-
ing the meetings, each with domain in {1 . . . l} to represent the time slots
from 1 to l. Such time slots are assumed to be all corresponding to one time
unit and to be adjacent to each other. Given two time slots a and b, they
can be used for two meetings only if the distance between their locations is
b− a− 1 or more.

For each of the n agents, we generate randomly k integers between 1 and
m, representing the meetings he needs to participate in. Also, for each pair
of time slots, we randomly generate a integer between min and max that
represents the time needed to go from one location to the other one. This
will be called the distance table.

Given two meetings, if there is at least one agent who needs to participate
in both, we generate a binary constraint between the corresponding variables.
Such a constraint is satisfied by all pairs of time slots that are compatible
according to the distance table.

We then generate the preferences over the domain values according to
parameter i. We then set the preference of each compatible pair in the
binary constraints by assigning the average preference that the values in the
pair have in their domain when both preferences are known. Otherwise, we
assign an unknown preference.

As an example, assume to have m = 5, n = 3, k = 2, l = 5, min = 1,
max = 2, and i = 30. According to these parameters, we generate an IMSP
with the following features:

• 5 meetings: m1, m2, m3, m4, and m5;

• 3 agents: a1, a2, and a3;

• 5 time slots: t1, . . . , t5;

• agents’ participation to meetings: we randomly generate 2 meetings for
each agent, for example

– a1 must participate in meetings m1 and m2;

– a2 must participate in meetings m4 and m5;

– a3 must participate in meetings m2 and m3;

• distance table: we randomly generate its values, for example as in Table
3.1;
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Table 3.1: Distance between meeting locations.

1 2 3 4 5

1 0 1 2 1 2
2 1 0 2 1 2
3 2 2 0 1 1
4 1 1 1 0 2
5 2 2 1 2 0

• we randomly generate the preferences associated to the variable values
in a way that 30% of the preferences are missing. Then, we compute
the preferences of the compatible pairs in binary constraints as stated
before.

3.6.1 Results for the systematic search approach

In this section we summarize and discuss our experimental comparison of the
different algorithms. We first focus on Fuzzy ISCSPs. We then consider two
special cases: incomplete CSPs where all constraints are hard, and incomplete
fuzzy temporal problems. Furthermore, we consider incomplete weighted
CSPs. Finally we show how algorithms perform on the incomplete meeting
scheduling problem. In all the experimental results, the association between
an algorithm name and a line symbol is shown in Figure 3.5.

Figure 3.5: Algorithm names and corresponding line symbols.

Incomplete fuzzy CSPs

We first described the experiments on incomplete fuzzy CSPs. Figures 3.6
3.7 and 3.8 show the percentage of elicited preferences when we vary the in-
completeness, the density, and the tightness, respectively. We show only the
results for specific values of the parameters. However, the trends observed
here hold in general. It is easy to see that the best algorithms are those that
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elicit at the branch level. In particular, algorithm SU.WORST.BRANCH
elicits a very small percentage of missing preferences (less than 5%), no mat-
ter the amount of incompleteness in the problem, and also independently
of the density and the tightness. This algorithm outperforms all others, but
relies on help from the user. The best algorithm that does not need such help
is DPI.WORST.BRANCH. This never elicits more than about 10% of the
missing preferences. Notice that the baseline algorithm is always the worst
one, and needs nearly all the missing preferences before it finds a necessarily
optimal solution. Notice also that the algorithms with what = worst are
almost always better than those with what = all, and that when = branch
is almost always better than when = node or when = tree.

Figure 3.9 shows the user’s effort as incompleteness varies. As could be
predicted, the effort grows slightly with the incompleteness level, and it is
equal to the percentage of elicited preferences only when what = all and
who = dp or dpi. For example, when what = worst, even if who = dp or
dpi, the user has to consider more preferences than those elicited, since to
identify the worst preference value the user needs to check all of them (that is,
those involved in a partial or complete assignment). DPI.WORST.BRANCH
requires the user to look at 60% of the missing preferences at most, even when
incompleteness is 100%.

Figure 3.10 shows the user’s effort as density varies. Also in this case,
as expected, the effort grows slightly with the density level. In this case
DPI.WORST.BRANCH requires the user to look at most 40% of the missing
preferences, even when the density is 80%.

All these algorithms have a useful anytime property, since they can be
stopped even before their end obtaining a possibly optimal solution with
preference value higher than the solutions considered up to that moment.
Figure 3.11 shows how fast the various algorithms reach optimality. The y
axis represents the solution quality during execution, normalized to allow for
comparison among different problems. The algorithms that perform best in
terms of elicited preferences, such as DPI.WORST.BRANCH, are also those
that approach optimality fastest. We can therefore stop such algorithms
early and still obtain a solution of good quality in all completions.

Figure 3.12 (a) shows the percentage of elicited preferences (white part of
the bar) over all the preferences (white + grey part), as well as the user’s ef-
fort (black part) for DPI.WORST.BRANCH. Even with high levels of incom-
pleteness, this algorithm elicits only a very small fraction of the preferences,
while asking the user to consider at most half of the missing preferences. For
example, with incompleteness at 60%, the user effort is at less than 30% and
the elicited preferences are at less than 10%

Figure 3.12 (b) shows results for LU.WORST.BRANCH, where the user
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is involved in the choice of the value for the next variable. Compared to
DPI.WORST.BRANCH, this algorithm is better both in terms of elicited
preferences and user’s effort (while SU.WORST.BRANCH is better only for
the elicited preferences). We conjecture that the help the user gives in choos-
ing the next value guides the search towards better solutions, thus resulting
in an overall decrease of the number of elicited preferences.
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Figure 3.6: Percentage of elicited preferences in incomplete fuzzy CSPs, vary-
ing incompleteness (d=50%, t=10%).

Incomplete CSPs

We also tested these algorithms on incomplete hard CSPs. In this case,
preferences are only 0 and 1, and necessarily optimal solutions are complete
assignments which are feasible in all completions. The problem generator
is adapted accordingly. The parameter what now has a specific meaning:
what = worst means asking if there is a 0 among the considered missing
preferences. If there is no 0, we can infer that all the considered missing
preferences are 1s.

Figures 3.13, 3.14 and 3.15 show the percentage of elicited preferences
in terms of amount of incompleteness, density, and tightness respectively.
Notice that the scale on the y axis varies to include the highest values. The
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Figure 3.7: Percentage of elicited preferences in incomplete fuzzy CSPs, vary-
ing density (t=35%, i=30%).
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Figure 3.8: Percentage of elicited preferences in incomplete fuzzy CSPs, vary-
ing tightness (d=50%, i=30%).
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Figure 3.9: Incomplete fuzzy CSPs: user’s effort varying incompleteness
(d=50%, t=10%).
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Figure 3.10: Incomplete fuzzy CSPs: user’s effort varying density (t=10%,
i=30%).
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Figure 3.11: Incomplete fuzzy CSPs: solution quality.

best algorithms are those with what = worst, where the inference explained
above about missing preferences can be performed. It is easy to see a phase
transition at tightness about 35% , which is when problems pass from being
solvable to having no solutions. However, the percentage of elicited prefer-
ences is below 20% for all algorithms even at the peak.

Figure 3.16 shows the user’s effort in terms of amount of incompleteness
and in terms of density. Overall, the best algorithm is again DPI.WORST.
BRANCH, whose percentage of elicited preferences and users effort are shown
in Figure 3.17 in detail. In this figure we also show the percentage of 1s that
are inferred by the system (light grey area). It is possible to note that also
with the 100% of missing preferences the user’s effort is below 22%.

Incomplete temporal fuzzy CSPs

We also performed some experiments on fuzzy simple temporal problems [46].
In such problems variables represent instantaneous events and constraints
model time intervals for durations and distances of such events. Moreover,
it is possible to associate a fuzzy preference to each possible duration or
distance. Thus, a fuzzy temporal constraint on variables X and Y has the
form 〈[a, b], f〉 where [a, b] is an interval such that a ≤ Y −X ≤ b and f is a
preference function associating a preference in [0,1] to each value in [a, b].
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(a) d=50%, t=10%

(b) d=50%, t=10%

Figure 3.12: Incomplete fuzzy CSPs: best algorithms.
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Figure 3.13: Percentage of elicited preferences in incomplete CSPs, varying
incompleteness (d=50%, t=10%).
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Figure 3.14: Percentage of elicited preferences in incomplete CSPs, varying
density (t=10%, i=30%).
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Figure 3.15: Percentage of elicited preferences in incomplete CSPs, varying
tightness (d=50%, i=30%).

Fast consistency-based solvers have been developed for a tractable sub-
class of such problems, where all the preference functions are semi-convex[46].
Such solvers are however unable to deal with missing preferences since they
make the problems intractable in general. We have thus decided to experi-
ment on this class of problems our branch-and-bound-based techniques. In
fact, in addition to the value of testing on problems with such a specific
structure, the large amount of information required by the specification of
such problems makes missing preferences very likely to appear in practice.

We have generated classes of such problems following the approach in [46],
adapted to consider incompleteness. Figure 3.18 shows that even in this do-
main it is possible to find a necessarily optimal solution by asking about 10%
of the missing preferences, for example via algorithm DPI.WORST.BRANCH.

Incomplete weighted CSPs

We considered incompleteness also on weighted CSPs (WCSPs). WCSPs
model optimization problems where the goal is to minimize the total cost
(time, space, number of resources, etc...) of the proposed solution. To
handle these problems, we instantiated our general framework using the
〈A, min, +, +∞, 0〉 c-semiring. In a similar way as in IFCSPs, in Incom-
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 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  15  20  25  30  35  40  45  50  55  60  65  70  75  80

us
er

’s
 e

ffo
rt

density
(b) t=10%, i=30%

Figure 3.16: Incomplete CSPs: user’s effort.
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(a) d=50%, t=10%

Figure 3.17: Incomplete CSPs: best algorithm.
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Figure 3.18: Percentage of elicited preferences in incomplete fuzzy temporal
CSPs.
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Figure 3.19: Algorithms for IWCSPs.

plete Weighted CSPs (IWCSPs) some costs, associated with each tuple, are
missing. In this case the multiplicative operator is not idempotent (as in
the fuzzy setting) and thus, we have to know all the missing costs associated
with a given assignment to obtain its global cost.

To adapt our algorithms to deal with IWCSPs, it is necessary to develop
new elicitation strategies optimized for this new environment. We defined
three different ways to ask the user for the missing costs. The resulting
strategies, as already defined in Section 3.4, are identified with the following
values for the what parameter: WW, BB, and BW. Notice that, with WW,
we elicit the worst missing cost (that is, the highest) until either all the costs
are elicited or the current global cost of the (possibly partial) assignment
is higher than the optimum found so far. By doing this, we know if the
global cost exceeds the optimum as early as possible. With BB, we elicit
the best (i.e. the minimum) cost until either all the costs are elicited or the
current global cost of the (possibly partial) assignment is higher than the
optimum found so far. Knowing the best cost of a given assignment allows
the system to infer that all the other missing costs are at least as high as
the last one elicited. This inference allows us to update the 1-completion
during the search by lowering the upper bound of the missing costs. In
this way, we overestimate the real value of the unknown costs. Let P 1

∗

the 1-completion updated with the inferred costs. Given an assignment s,
pref(P1, s) ≥S pref(P 1

∗, s) ≥S pref(P ′, s) where P ′ is P in which all the
incomplete tuples of s are elicited. With BW, we elicit in turn the best and
the worst cost. In this case we want to test empirically if the combination of
the previous two strategies is better in practice.

In all the experimental results, the association between an algorithm name
and a line symbol is shown in Figure 3.19.

We tested our algorithms on randomly generated IWCSPs, and we used
the what = all method as a baseline because it is the most general elicitation
strategy that can be applied in every possible setting: Hard CSPs, Fuzzy
ISCSPs, etc.

The randomly generated IWCSPs have the same default parameter values
as in the IFCSPs experiments, except for the tightness that has a default
value of 25%. We choose this value because it is near to the middle of the
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interval from 0 to 40%, where we will see a phase transition in the percentage
of elicited tuples (Figure 3.22). We recall that each cost has a value in
[0, 10] ∪ {+∞}.

Figures 3.20, 3.21 and 3.22 show the percentage of elicited preferences as
we vary density, incompleteness and tightness respectively. As expected, the
number of elicited tuples increases with the incompleteness of the problem
(see Figure 3.20). As we vary the tightness (Figure 3.22), we can observe
a phase transition at t=40%. At that point, most of the problems have an
optimal solution with infinite cost, thus the algorithms do not need more
information to find that extreme solution.

When the density increases (Figure 3.21), the percentage of elicited costs
tends to decrease slightly. This may be surprising, since, increasing the
number of constraints, the number of incomplete tuples increases, thus the
percentage of elicited costs should increase. However, the number of infinite
costs increases together with the incompleteness. In this particular case,
using t=25% and i=30%, the number of infinite cost values increases enough
to make the problem easier to solve, thus it requires less elicitation. We
performed other experiments decreasing the default tightness value to t=10%.
In this case the percentage of elicited values increases slightly, because there
are not enough infinite costs to make the problem easier to solve. On the
other hand, the number of incomplete tuples increases with density, making
the problem harder to solve (thus requiring more elicitation). Summarizing,
increasing density, both incompleteness and tightness increase. When t=25%
the contribution of the tightness is more important than incompleteness and
the problems become easier to solve. On the contrary, when t=10%, the
contribution of the incompleteness is greater and thus the problems becomes
harder.

It easy to see that the best algorithms are those with when = branch and
who = su. These algorithms ask for only around 30% of the costs needed
to solve a totally incomplete problem. The parameter who = su forces the
user to select the value to instantiate, which implies an additional effort by
the user. This behavior is depicted in Figure 3.24(b) where the algorithm
elicits a very small number of tuples but the user has to check almost all the
incomplete tuples every time.

Among the algorithms where the user does not help the system in the
value instantiation, the algorithm that elicits less values is DPI.BW.TREE
(see Figure 3.23(a)).

DPI.BW.TREE elicits less that half of the unknown costs on 100% of
incompleteness, requiring the user to look at 70% of incomplete tuples to
answer the system’s query. All our experiments shown that iteratively asking
the user for the best and the worst preference of a given assignment is the
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Figure 3.20: Percentage of elicited preferences in incomplete weighted CSPs,
varying incompleteness (d=50%, t=25%).
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Figure 3.21: Percentage of elicited preferences in incomplete weighted CSPs,
varying density (t=25%, i=30%).
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Figure 3.22: Percentage of elicited preferences in incomplete weighted CSPs,
varying tightness (d=50%, i=30%).

best compromise when the value instantiation is totally done by the system.
On the other hand, it forces the user to consider more than 70% of the
incomplete tuples.

In situations where we want to minimize the user effort, the best choice is
the LU.ALL.BRANCH algorithm (see Figure 3.23(b)). As shown in Figure
3.25, the user does less work with LU.ALL.BRANCH than with the other
algorithms when the incompleteness is varying. We obtain the same result
when the density or the tightness is varying (see Figures 3.26, 3.27). If we
want a balance between the percentage of elicited costs and the user effort,
the best compromise is LU.BB.BRANCH. Figure 3.24(a) shows that, on
IWCSPs with no initial costs, it elicits 40% of incomplete tuples with a user
effort of about 60%.

Summarizing, SU.WW.BRANCH (Figure 3.24(b)) is the algorithm which
elicits less tuples but, if we want the user to just answer the elicitation queries,
the best algorithm is DPI.BW.TREE. The algorithm that minimizes the user
effort is LU.ALL.BRANCH, whereas the best compromise between user effort
and elicitation is LU.BB.BRANCH.
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(a) t=25% and d=50%

(b) t=25% and d=50%

Figure 3.23: Best algorithms for incomplete weighted CSPs.
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(a) t=25% and d=50%

(b) t=25% and d=50%

Figure 3.24: Best algorithms for incomplete weighted CSPs.
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Figure 3.25: User’s effort in incomplete weighted CSPs, varying incomplete-
ness (d=50%, t=25%).
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Figure 3.26: User’s effort in incomplete weighted CSPs, varying density
(t=25%, i=30%).
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Figure 3.27: User’s effort in incomplete weighted CSPs, varying tightness
(d=50%, i=30%).

Incomplete meeting scheduling problems

In this section we consider incomplete meeting scheduling problems with
fuzzy preferences in order to evaluate our algorithms on problems with more
structure w.r.t. randomly generated problems. Hence, to deal with such
problems, we have instantiated our framework using the fuzzy c-semiring
(〈A, +,×, 0, 1〉). We randomly generate IMSPs by varying the number of
meetings m from 5 to 14, the number of agents n from 4 to 10, the number
of meetings per agent k from 2 to 5, and the percentage of incompleteness i
from 10% to 100%.

We measure the percentage of the elicited tuples and the user’s effort.
Figures 3.28, 3.29, 3.30 and 3.31 show the percentage of elicited preferences as
we vary the number of agents, the number of meetings per agent, the number
of meetings, and the amount of incompleteness respectively. As expected, as
the incompleteness in the problem rises, the percentage of elicited tuples
tends to increase slightly (see Figure 3.28). The algorithms that elicit less
tuples in this context are SU.WORST.BRANCH and LU.WORST.BRANCH
(less than 1% of incomplete tuples), among the ones that need the user’s help
to choose the values to instantiate, and DPI.WORST.BRANCH (less than
5% of incomplete tuples) among the others. The common features of these
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Figure 3.28: Percentage of elicited preferences in IMSPs, varying incomplete-
ness (m=12, n=5, k=3, l=10, min=1, max=2).
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Figure 3.29: Percentage of elicited preferences in IMSPs, varying the number
of agents (m=12, k=3, i=30%, l=10, min=1, max=2).
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Figure 3.30: Percentage of elicited preferences in IMSPs, varying the meet-
ings per agent (m=12, n=5, i=30%, l=10, min=1, max=2).
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Figure 3.31: Percentage of elicited preferences in IMSPs, varying the number
of meetings (n=5, k=3, i=30%, l=10, min=1, max=2).
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algorithms are that they elicits the worst preference every time they reach a
complete assignment.

If we vary the number of agents (Figure 3.29) we see that, for the best
algorithms, the percentage of elicited preference does not vary as the number
of agents increases. Furthermore, the two best algorithms mentioned before
are among the bests also when we vary the number of agents.

Figure 3.30 shows the percentage of elicited preferences as we vary the
meetings per agent. If we consider the best algorithms found so far (i.e.
SU.WORST.BRANCH, LU.WORST.BRANCH and DPI.WORST.BRANCH),
they tend to elicit less tuples as the meetings per agent rises. They reach
practically the 0% at 5 meetings per agent because, in that setting, the op-
timal preference is 0 and so, they need to ask only for the preferences to fix
the lower bound in the first branch and then they do not reach a complete
assignment again. Finally, we can see from Figure 3.31 that our best algo-
rithms need more or less the same amount of elicitation (in percentage) as
the number of meetings increases.

Summarizing, the best algorithms, in terms of elicited tuples, are the ones
with when = branch and who = su or lu if we allow the user to instantiate
values, and who = dpi if the instantiation is done by the system.
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Figure 3.32: User’s effort in IMSPs, varying incompleteness (m=12, n=5,
k=3, l=10, min=1, max=2).
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Figure 3.33: User’s effort in IMSPs, varying the number of agents (m=12,
k=3, i=30%, l=10, min=1, max=2).
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Figure 3.34: User’s effort in IMSPs, varying meetings per agent (m=12, n=5,
i=30%, l=10, min=1, max=2).
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Figure 3.35: User’s effort in IMSPs, varying the number of meetings (n=5,
k=3, i=30%, l=10, min=1, max=2).

To better understand which are the best algorithms when we have to deal
with meeting scheduling problems, we also measure the amount of tuples the
user has to consider to answer the queries of the system.

Figure 3.32 shows the user’s effort when the incompleteness is varying.
The algorithms with parameter who = lu or su need an effort that increases
less rapidly than the effort done by the users with algorithms with who = dpi
or dp. Among our candidates for the best algorithm, LU.WORST.BRANCH
is the best and DPI.WORST.BRANCH has to take into consideration as
well.

When we vary the number of agents (see Figure 3.33), we can notice
a clear distinction among the algorithms with when = node or who = su
which need a user’s effort greater than 20% and the others. Moreover,
the algorithms with when different from node or who different from su,
need an effort that decreases as the agents increase. Also in this settings,
LU.WORST.BRANCH and DPI.WORST.BRANCH are among the best al-
gorithms. The algorithms with when different from node or who different
from su need less effort than the others also when we vary the meetings per
agent (Figure 3.34) and such an effort decreases as the meeting per agents
increases.
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Finally, we measure the user’s effort varying the number of meetings (see
Figure 3.35). Considering the best algorithms, the effort does not increase as
the meetings rises and LU.WORST.BRANCH and DPI.WORST.BRANCH
are still among the best ones. We have identified two algorithms that show

Figure 3.36: LU.WORST.BRANCH varying incompleteness (m=12, n=5,
k=3, l=10, min=1, max=2) in IMSPs.

good results in both elicitation and effort asked to the user. Figure 3.36
shows the results of LU.WORST.BRANCH. It elicits a very small amount
of preferences also in totally incomplete settings. The elicitation is always
less than 1% and the user has to consider only around 10% of the incom-
plete tuples to give the preferences asked by the system. This behaviour is
due to the fact that the search is guided by the user that chooses the value
to instantiate. If we are working in settings where only the system can in-
stantiate the domain values, the best algorithm is DPI.WORST.BRANCH
(see Figure 3.37). DPI.WORST.BRANCH elicits more preferences than
LU.WORST.BRANCH but the percentage remains always under 5% so it
gives very good results as well. Also the effort required to the user is very
small: it is at most 23% even if the incompleteness is 100%.

Summarizing, the best compromise between elicitation and user’s effort
is the LU.WORST.BRANCH algorithm. In situation where the system has
to carry our the value instantiation, DPI.WORST.BRANCH has to be pre-
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Figure 3.37: DPI.WORST.BRANCH varying incompleteness (m=12, n=5,
k=3, l=10, min=1, max=2) in IMSPs.

ferred.

3.6.2 Results for the local search approach

Incomplete Fuzzy CSPs

We tested the performance of our algorithm using both the ALL and the
WORST elicitation strategy. We also compared the result with one of the
best algorithms in Section 3.6.1, called here FBB (which stands for fuzzy
branch and bound). In Section 3.6.1, this algorithm corresponds to the one
called DPI.WORST. BRANCH.

We first considered the quality of the returned solution. To do this, we
computed the distance between the preference of the returned solution and
that of the necessarily optimal solution returned by algorithm FBB. Such a
distance is measured as the percentage over the whole range of preference
values. For example, if the preference of the solution returned is 0.4 and the
one of the solution given by FBB is 0.5, the preference error reported is 10%.
A higher error denotes a lower solution quality.

Figures 3.38, 3.39, 3.40 and 3.41 show the preference error when density,
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Figure 3.38: Solution quality varying the number of variables (m=5, d=50%,
i=30%, t=10%) in incomplete fuzzy CSPs.
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Figure 3.39: Solution quality varying density (n=10, m=5, i=30%, t=10%)
in incomplete fuzzy CSPs.
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Figure 3.40: Solution quality varying incompleteness (n=10, m=5, d=50%,
t=10%) in incomplete fuzzy CSPs.
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Figure 3.41: Solution quality varying tightness (n=10, m=5, d=50%, i=30%)
in incomplete fuzzy CSPs.
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incompleteness, tightness, and the number of variables vary (please notice
that the y-axis ranges from 0% to 10%). We can see that the error is always
very small and its maximum value is 3.5% when we consider problems with
20 variables. In most of the other cases, it is below 1.5%. We also can notice
that the solution quality is practically the same for both elicitation strategies.
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Figure 3.42: Percentage of elicited tuples varying the number of variables
(m=5, d=50%, i=30%, t=10%) in incomplete fuzzy CSPs.

If we look at the percentage of elicited tuples (Figures 3.42, 3.43, 3.44,
3.45), we can see that the WORST strategy elicits always less tuples than
ALL, eliciting only 20% of incomplete tuples in most of the cases. When
tightness is above 40%, WORST elicits very few tuples since the algorithm
discovers soon that there are no solutions. The FBB algorithm elicits about
half as many preferences as WORST. Thus, with 10 variables, FBB is bet-
ter than our local search approach, since it guarantees to find a necessarily
optimal solution while eliciting a smaller number of preferences.

We also tested the WORST strategies varying the number of variables
from 10 to 100. In Figure 3.46(a) we show how the elicitation varies up
to 100 variables. It is easy to notice that with more than 70 variables the
percentage of elicited tuples decreases. This is because the probability of
a complete assignment with a 0 preference rises (since density remains the
same). Moreover, we can see how the local search algorithms scale better
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Figure 3.43: Percentage of elicited tuples varying density (n=10, m=5,
i=30%, t=10%) in incomplete fuzzy CSPs.
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Figure 3.44: Percentage of elicited tuples varying incompleteness (n=10,
m=5, d=50%, t=10%) in incomplete fuzzy CSPs.
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Figure 3.45: Percentage of elicited tuples varying tightness (n=10, m=5,
d=50%, i=30%) in incomplete fuzzy CSPs.

than the branch and bound approach. In Figure 3.46(b) the FBB reaches a
time limit of 10 minutes with just 25 variables, while the WORST algorithm
needs the same time to solve instances of size 100.

We also investigated the runtime behavior of our local search algorithm.
Surprisingly, the algorithm elicits almost all the tuples it needs within the
first 10000 steps. Moreover the distance from the necessarily optimal prefer-
ence decreases significantly during the first 20000 steps and then it decreases
slightly until the end of the search. This behavior is the same no matter
which parameter is varying. Hence we can stop our algorithm after 20-30000
steps whilst still ensuring a good solution quality.

Incomplete Weighted CSPs

We tested the performance of our algorithm using the ALL, BB, WW and
BW elicitation strategies. We also compared the result with one of the best
algorithms in Section 3.6.1 for solving incomplete weighted CSPs, which we
call WBB here (in Section 3.6.1 it was called DPI.BW.TREE).

Figures 3.51, 3.52, 3.53, 3.54 shows the solution quality, in terms of the
preference error, which is measured similarly to the fuzzy context but with
a specific treatment to deal with +∞. More precisely, the error is the per-
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Figure 3.46: WORST strategy on incomplete fuzzy CSPs. Values of the fixed
parameters: m=10, d=35%, i=30%, t=5%.
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Figure 3.47: Runtime behavior of WORST varying the number of variables
(m=5, d=50%, i=30%, t=10%) in incomplete fuzzy CSPs.
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Figure 3.48: Runtime behavior of WORST varying density (n=10, m=5,
i=30%, t=10%) in incomplete fuzzy CSPs.



3.6.2 Results for the local search approach 99

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20000  40000  60000  80000  100000

pe
rc

en
ta

ge
 o

f e
lic

ite
d 

pr
ef

er
en

ce
s

steps

i=10
i=20
i=30
i=40
i=50
i=60
i=70
i=80
i=90

i=100

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0  20000  40000  60000  80000  100000

di
st

an
ce

 to
 n

ec
es

sa
ry

 o
pt

im
al

steps

i=10
i=20
i=30
i=40
i=50
i=60
i=70
i=80
i=90

i=100

(b)

Figure 3.49: Runtime behavior of WORST varying incompleteness (n=10,
m=5, d=50%, t=10%) in incomplete fuzzy CSPs.
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Figure 3.50: Runtime behavior of WORST varying tightness (n=10, m=5,
d=50%, i=30%) in incomplete fuzzy CSPs.
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Figure 3.51: Solution quality varying the number of variables (m=5, d=50%,
i=30%, t=10%) in incomplete weighted CSPs.
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Figure 3.52: Solution quality varying density (n=10, m=5, i=30%, t=10%)
in incomplete weighted CSPs.
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Figure 3.53: Solution quality varying incompleteness (n=10, m=5, d=50%,
t=10%) in incomplete weighted CSPs.
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Figure 3.54: Solution quality varying tightness (n=10, m=5, d=50%, i=30%)
in incomplete weighted CSPs.
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centage difference between the solution preference found by the local search
algorithm and the one found by WBB over the preference range. Notice that,
with costs in [0, 10] ∪ +∞, solutions have preferences that may be between
0 and (((n ∗ (n− 1))/2) + n) ∗ 10, or +∞. When the returned preference is
+∞ and the correct preference is different, we report an error of 100%. For
example, with 10 variables and preferences in [1, 10]∪+∞, if the local search
algorithm returns a solution with preference 120 and the necessarily optimal
preference is 100, then the error is (120-100)*100/550 = 3.64%.

In most cases, all the local search algorithms find a solution with a pref-
erence very close to the necessarily optimal one. The peaks at 17 variables in
Figure 3.51, at d = 80% in Figure 3.52, and at t = 40% in Figure 3.54 show
a phase transition where the number of solutions with infinite cost increase
significantly. This affects the quality of the solutions found by local search,
while the branch and bound approach is able to find an optimal solution with
a finite cost.

As in the fuzzy case, we measured the percentage of elicited tuples. As
before, the local search approach elicits more preferences than our branch
and bound based algorithms. However, the difference is fairly small and
independent of the amount of incompleteness (see Figure 3.57). Moreover, it
is small also with density is below 60%, or when tightness is less than 30%
or greater than 65% (Figure 3.56). Among the local search algorithms, as
expected, the algorithms BB, WW, and BW elicit less preferences than ALL.

To study the runtime behavior of our local search approach, we focused
on algorithm BB, which is one of the best algorithms. We empirically study
how the percentage of elicited tuples and the distance from the necessarily
optimal preference vary as the execution proceeds. From Figures 3.59(a),
3.60(a), 3.61(a) and 3.62(a) we can see that the elicitation process takes
place mainly in the first 10000 steps. This behavior does not depend on the
parameter that is varying.

Furthermore, if we consider the distance from the necessarily optimal
preference, we can see that the algorithm finds the best solution in the first
20000 steps (see Figures 3.59(b), 3.60(b), 3.61(b) and 3.62(b)). Exceptions
occur around the peaks of Figures 3.51, 3.52, 3.53, 3.54. For example, in
Figure 3.59(b) with n = 17 or n = 20 the solution preference is improved
during the whole execution and not only in the first steps. Other examples
are for d = 80% in Figure 3.60(b) and for t = 40% in Figure 3.62(b).

As in the fuzzy case, we tested our local search algorithms (using the BW
strategy in this case) on instances up to 100 variables. From Figure 3.63(a)
we can see that the algorithm elicits around 30% of incomplete preferences
from 10 to 90 variables. From 90-100 variables, the instances start to have
solutions equal to +∞ and the algorithm elicits more preferences. In Figure
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3.63(b) we measured the execution time of BW compared with WBB. The
branch and bound algorithm reaches the time limit of 10 minutes per instance
with just 15 variables so we stopped the execution at 30 variables. On the
other hand, the local search algorithm, can solve instances up to 90 variables
taking less time.
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Figure 3.55: Percentage of elicited tuples varying the number of variables
(m=5, d=50%, i=30%, t=10%) in incomplete weighted CSPs.

Summarizing, we can see that our local search approach finds a solution
with a quality which is very close (with an error of at most 2%) to the quality
of the necessarily optimal ones. Moreover, such a quality can be obtained
also if execution is stopped after only 10000 steps.

Incomplete meeting scheduling problems

We tested the performance of our local search algorithm, instantiated with
both ALL and WORST elicitation strategies, on incomplete meeting schedul-
ing problems as defined in Section 3.6. We compared our local search algo-
rithms with DPI.WORST.BRANCH which has shown very good performance
in the same test set. In this section we call FBB the DPI.WORST.BRANCH
algorithm.

First we consider the quality of the returned solution compared with the
necessarily optimal solutions’ preference. We recall that the quality of the
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Figure 3.56: Percentage of elicited tuples varying density (n=10, m=5,
i=30%, t=10%) in incomplete weighted CSPs.
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Figure 3.57: Percentage of elicited tuples varying incompleteness (n=10,
m=5, d=50%, t=10%) in incomplete weighted CSPs.
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Figure 3.58: Percentage of elicited tuples varying tightness (n=10, m=5,
d=50%, i=30%) in incomplete weighted CSPs.

solution is shown in terms of the preference error, i.e., the distance, in per-
centage over the whole range of preference values, between the preference of
the solution returned by local search and the necessarily optimal preference.

We start showing solution quality when we vary the amount of incom-
pleteness in the problem (see Figure 3.64). Surprisingly, the preference error
is very small, and always less than 2.5% both for ALL and WORST elicitation
strategies.

Figures 3.65, 3.66 and 3.67 show the preference error varying agents,
meetings and meetings per agent, respectively. In all cases the preference
error rises as the varying parameter increases. For 5 meetings per agent
in Figure 3.67 the problems has almost all solution preferences equal to 0
and so the error is 0 as well. Note the phase transition at 4 meetings per
agent. These figures also show that the WORST elicitation strategy returns
solutions with comparable or better quality in all settings. Finally, we have
to notice that the preference error in the worst case is always less than 1%.

We now consider the percentage of elicited preferences. Figures 3.68,
3.69, 3.70, and 3.71 show the comparison between the WORST strategy and
the FBB algorithm varying incompleteness, number of agents, number of
meetings, and meetings per agent respectively. We omit the results of ALL
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Figure 3.59: Runtime behavior of BB varying the number of variables (m=5,
d=50%, i=30%, t=10%) in incomplete weighted CSPs.
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Figure 3.60: Runtime behavior of BB varying density (n=10, m=5, i=30%,
t=10%) in incomplete weighted CSPs.
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Figure 3.61: Runtime behavior of BB varying incompleteness (n=10, m=5,
d=50%, i=30%, t=10%) in incomplete weighted CSPs.
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Figure 3.62: Runtime behavior of BB varying tightness (n=10, m=5, d=50%,
i=30%, t=10%) in incomplete weighted CSPs.
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Figure 3.63: BW strategy on incomplete weighted CSPs. Values of the fixed
parameters: m=10, d=35%, i=30%, t=5%.
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Figure 3.64: Solution quality varying incompleteness (m=10, n=5, k=3,
l=10, min=1, max=2) in IMSPs.
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l=10, i=30%, min=1, max=2) in IMSPs.
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Figure 3.66: Solution quality varying the number of meetings (n=5, k=3,
l=10, i=30%, min=1, max=2) in IMSPs.
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Figure 3.67: Solution quality varying meetings per agent (m=10, n=5, l=10,
i=30%, min=1, max=2) in IMSPs.
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Figure 3.68: Percentage of elicited tuples varying incompleteness (m=10,
n=5, k=3, l=10, min=1, max=2) in IMSPs.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4  5  6  7  8  9  10

pe
rc

en
ta

ge
 o

f e
lic

ite
d 

pr
ef

er
en

ce
s

agents

WORST
FBB

Figure 3.69: Percentage of elicited tuples varying the number of agents
(m=10, k=3, l=10, i=30%, min=1, max=2) in IMSPs.
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Figure 3.70: Percentage of elicited tuples varying the number of meetings
(n=5, k=3, l=10, i=30%, min=1, max=2) in IMSPs.
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Figure 3.71: Percentage of elicited tuples varying meetings per agent (m=10,
n=5, l=10, i=30%, min=1, max=2) in IMSPs.
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Figure 3.72: Execution time varying the number of meetings (n=5, k=3,
l=10, i=30%, min=1, max=2) in IMSPs.

strategy as it elicits from 60% to 80% of the incomplete preferences. In all
settings, the WORST strategy elicits more preferences than FBB. This is
because, in general, the branch and bound search approach used in FBB is
more efficient in finding the way to reach a solution than local search. The
local search approach is more efficient in terms of execution time when the
number of meetings (i.e., the variables in our modeling) rises. In Figure 3.72
we can easily see that, for more than 11 meetings, FBB takes much more
time than the WORST and ALL local search strategies.

To complete our treatment of incomplete meeting scheduling problems
via a local search approach, we consider the runtime behavior of the best
local search strategy that we found, that is, WORST. As for other classes
of incomplete soft constraint problems, WORST elicits all the preferences
needed to reach a solution the during the first steps. Moreover, the distance
to the necessarily optimal preference decreases very rapidly during the first
20000 steps and then decreases slightly as the search continues. This behavior
is the same no matter which parameter is varying. Thus we could stop the
algorithm after only 20-30000 steps whilst still ensuring good solutions and
faster execution time. Finally, we have to notice that the particular structure
of the meeting scheduling problems does not influence the runtime of our
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Figure 3.73: Runtime behavior of WORST varying incompleteness (m=10,
n=5, k=3, l=10, min=1, max=2) in IMSPs.
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Figure 3.74: Runtime behavior of WORST varying the number of agents
(m=10, k=3, l=10, i=30%, min=1, max=2) in IMSPs.
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Figure 3.75: Runtime behavior of WORST varying the number of meetings
(n=5, k=3, l=10, i=30%, min=1, max=2) in IMSPs.
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Figure 3.76: Runtime behavior of WORST varying meetings per agent
(m=10, n=5, l=10, i=30%, min=1, max=2) in IMSPs.
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algorithm.

3.7 Related work

Open settings in CSPs was addressed in past years by both Open Constraint
Satisfaction Problems (OCSPs) [20, 22] and Interactive CSPs [16] where do-
mains can be partially specified.

Open constraint programming

Instead of restricting to a closed world scenarios as classical CSPs, the OCSP
framework can be used to model open world settings where domains and
constraints are incrementally discovered through the network. In fact, tra-
dictionaly, variables, domains and constraints are completely known before
the search process starts. In OCSPs values are missing and so, most CSPs
techniques (such as arc consistency for example) no longer work because they
are based on the complete knowledge of the problem. With this in mind, the
aim of OCSP algorithms is to solve problems by asking (through a mediator)
only a fraction of the values. The mediator is simply a directory that indexes
the informations available in different servers.

More precisely, an OCSP is a, possibly unbounded, partially ordered set
{CSP (0), CSP (1), ...} of constraint satisfaction problems. The set is ordered
by the relation ≺ where CSP (i) ≺ CSP (j) if and only if (∀k ∈ [1, ..., n])
dk(i) ⊆ dk(j) and (∃k ∈ [1, ..., n]) dk(i) ⊂ dk(j).

A solution of an OCSP is an assignment to all variables such that all
constraints as satisfied for some instance CSP (i) and any instance CSP (j) ≻
CSP (i).

Since in the OCSP framework new information represents additional op-
tions and thus enables additional solutions, the algorithms gather new values
until a solution is found.

To simplify the algorithm, authors make the assumption that all domain
are discrete, and all constraints are encoded using the hidden variable encod-
ing [62, 66]. This means that constraints are represented with additions vari-
ables with tuple-valued domains representing the corresponding constraints
relations.

Instead of asking new values at random, the algorithms focus on those
parts of the problem that cause failure. In fact, it will not be possible to create
a solution by information gathering unless values are added to variables and
relations of that subproblem. Thus, the idea is to find a variable that must
be part of an unsolvable subproblem as a promising candidate for adding
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extra values. To do this, a backtrack search algorithm is used to find an
inconsistent variable. Then the variable is passed to the mediator, which will
search for relevant information on the network. When there are no additional
values for this variable other variables are then considered.

Therefore, the algorithm does the following:

1. Use a backtracking procedure to find, if any, a variable xk that has no
consistent value in its domain. If it finds a solution, returns it and exit.

2. If there are no other possible values to ask for, exits with failure.

3. Otherwise, asks more consistent values for xk.

4. Restart from step 1 with reordered variable such that xk becomes x1

(xk is instantiated first).

An important thing to notice is that the set of unsolvable subproblems in
successive instances of an OCSP is monotonically non-increasing and so, as
the information is gathered, the number of unsolvable subproblem does not
increase and, if an OCSP is solvable, eventually the algorithm asks for all
the undefined values and finds a solution.

OCSP are then extended by Faltings et al. in [21, 22] to Open Constraint
Optimization (OCOP). They made the constraint soft by assigning a cost
to each tuple. To solve such a problems in an open setting they show that
is required an additional assumption that the variable domains and relations
are revealed in non-decreasing order of preference/cost, presenting a variety
of algorithms for solving OCOP in the probabilistic and weighted model.

To solve OCOP the authors use the same approach used for OCSP that
is, finds conditions that guarantee that a solution of an instance COP (i) is
also optimal for all COP (j), COP (i) ≺ COP (j). Moreover, similar to the
constraint satisfaction case, the hidden-variable encoding is used to tranform
the problem into one where only variable domains are open.

Interactive constraint satisfaction

In [16] Cucciara et. al, propose the Interactive Constraint Satisfaction (ICSP)
model, in which some (or all) domains can be partially defined. They propose
this framework mainly to deal with problems in which retrieving new infor-
mation is computationally expensive and so, their aim is the performance and
not, for example, minimizing the number of values requested to the user.

The ICSP model deals with the incompleteness of the domains by adding
new constraints on undefined parts of domains. These new constraints can
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be added incrementally to the problem, acquiring new information without
restarting a constraint propagation process from scratch each time new infor-
mation is available. Hence, in ICSPs domains can be partially defined when
the constraint satisfaction process starts.

Each domain Di of variable xi has a defined part named Defi and an
undefined part called UnDefi. To model the undefined part the authors use
a domain variable representing the information which is not yet available.

In [50] Cucciara et. al propose a variant of forward checking algorithm
applied to ICSP (called Interactive Forward Checking, IFC ). At every step
they interleave a search phase with a value acquisition phase guiding the
search and the value acquisition with new acquired knowledge expressed in
form of new constraints on the yet unknown part of the domains.

Experimental results on randomly generated CSPs and for 3D object
recognition showed the effectiveness of the ICSP approach with a speedup
ranging between 2 and 8 respect to CSPs approach.

Expected cost-based interactive constraint satisfaction

problems

Another different way to deal with incomplete problems is to take the elic-
itation cost into account. In [72] Wilson et al. use the cost to model the
difficulty that could be rise to do constraint check in certain situation like,
for example, when we need to pay for an option to be available. So they
consider algorithms which take these costs into account and the target is to
minimize the total cost.

Constraints may be initially incomplete: it may be unknown whether
certain tuples satisfy the constraint or not. It is assumed that such an un-
known tuple can be determined, but doing so incurs a known cost, which may
vary between tuples. They also assume that they know the probability of an
unknown tuple satisfying a constraint. These problems are called Expected
Cost-based Interactive CSP (ECI CSP).

The authors use a set of variables U , which they call the set of unknowns.
Variables in U are boolean and uncertain and there is no control over them.
To model the incompleteness of the problem each constraint tuple has an
associated unknown.

To evaluate an assignment, the idea is to delay determining an unknown,
in order to find out if it is worth doing so, starting from the ones that are less
expensive and with less probability to be equal to 1. It is because is better
to fail as soon as possible avoiding a fail with an high cost.

The same idea is also behind an algorithm developed to solve ECI CSP.
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It performs a series of depth-first backtree-like search using a variable Q,
interpreted as the cost that the algorithm is currently prepared to incur to
find a solution, that is used in the backtracking condition and is incremented
with each new search. At each leaf of the search tree, we can no longer delay
determining unknowns, so we determine each current unknown until we fail,
or until all have been determined successfully. If an unknown is determined
unsuccessfully, then there is no solution beneath this node.

3.8 Conclusions

We have considered soft constraint problems with missing preferences. We
have extended the soft constraint formalism to handle such a form of incom-
pleteness. More precisely, we have defined two new notions of optimality: the
possibly optimal solutions are solution which are optimal in at least one way
of revealing missing preferences, while the necessarily optimal solutions are
optimal in all ways of revealing the missing preferences. We have also char-
acterized the sets of these optimal solutions. Moreover, we have presented
an algorithmic schema, based on an branch & bound approach, that can be
instantiated in several ways depending on who elicits, what to elicit, and
when to elicit. We compared our algorithms, both on incomplete fuzzy CSPs
and on weighted CSPs, by measuring the percentage of elicited preferences
and the user’s effort to answer the elicitation queries. For fuzzy problems,
the percentage of elicited preferences for the best algorithms is below 10%.
As expected, weighted problems are more difficult to handle, due to their
additive nature. However, the best solvers need to elicit at most 30% of the
missing preferences. In addition, we have considered incomplete CSPs, where
the soft constraints are indeed hard constraints. Experimental results have
shown a trend which is similar to the one registered for incomplete fuzzy
CSPs. We have also considered structured problems, such as fuzzy simple
temporal problems and meeting scheduling problems. In the temporal prob-
lem context, the experimental results show that, to find a necessarily optimal
solution, it is sufficient to ask about 10% of the missing preferences. Con-
cerning the meeting scheduling problems, the best algorithms elicit about 5%
(and even less) of the missing preferences.

We then have focused our attention on solving larger instances of incom-
plete soft constraint problems. To do this, we have developed a local search
algorithm to find necessarily optimal solutions, and we have tested it on both
incomplete fuzzy and weighted CSPs. We have considered several elicitation
strategies. In both test sets, our best strategies have shown good results
compared with our systematic search algorithms in terms of the quality of
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the solutions. Moreover, our local search approach has also shown a much
better scalability behaviour than the branch & bound method.
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Chapter 4

Imprecision in soft constraints

In this chapter we extend the semiring-based soft constraints [6, 7] in order
to allow for imprecise preferences. More precisely, we allow for a preference
interval instead of a single preference value. In this context, we study how
to find an optimal solution according to several optimality notions. We also
define algorithms to find such optimal solutions and to test whether a solution
is optimal.

Some of the results in this chapter are included in the following articles:

• Interval-valued Soft Constraint Problems, M. Gelain, M. S. Pini, F.
Rossi, K. B. Venable, and N. Wilson, Annals of Mathematics and Ar-
tificial Intelligence, special issue for ISAIM 2008, B. Chouery and B.
Givan eds., Springer, to appear.

• Imprecise Soft Constraint Problems, Mirco Gelain, Maria Silvia Pini,
Francesca Rossi, Kristen Brent Venable and Nic Wilson, in proc. of the
9th Workshop on Preferences and Soft Constraints (SofT’08), Sydney,
Australia, September 2008.

4.1 Motivations

Constraints [61] are useful to model real-life problems when it is clear what
should be accepted and what should be forbidden. Soft constraints [55] ex-
tend the constraint notion by allowing several levels of acceptance. This
allows one to express preferences and/or costs rather than just strict require-
ments.

In soft constraints, each instantiation of the variables of a constraint
must be associated to a precise preference or cost value. Sometimes it is not
possible for a user to know exactly all these values. For example, a user may
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have a vague idea of the preference value, or may not be willing to reveal his
preference, for example for privacy reasons.

In this chapter we consider these forms of imprecision, and we handle
them by extending soft constraints to allow users to state an interval of
preference values for each instantiation of the variables of a constraint.

This interval can contain a single element (in this case we have usual soft
constraints), or the whole range of preference values (when there is complete
ignorance about the preference value), or it may contain more than one
element but a strict subset of the set of preference values. We call such
problems interval-valued soft CSPs (or also IVSCSPs).

In an elicitation procedure there will typically be some degree of impre-
cision, so attributing an interval rather than a precise preference degree can
be a more reliable model of the information elicited. Also, linguistic descrip-
tions of degrees of preference (such as ”quite high” or ”low” or ”undesirable”)
may be more naturally mapped to preference intervals, especially if the pref-
erences are being elicited from different experts, as they may mean somewhat
different things by these terms.

Two examples of real world application domains where preference inter-
vals can be useful or necessary are energy trading and network traffic analysis
[73], where the data information is usually incomplete or erroneous. In en-
ergy trading, costs may be imprecise because they may evolve due to market
changes; in network traffic analysis, the overwhelming amount of information
and measurement difficulties force the use of partial or imprecise information.
Many other application domains that are usually modelled via hard or soft
constraints could benefit by increased expressed power of preference intervals.
To give a concrete example we consider the meeting scheduling problem, that
is a typical benchmark for CSPs, and we allow the specification of preference
intervals. This benchmark will be used both to clarify notions related to
IVCSPs and to run experimental tests.

Given an IVSCSP, we consider several notions of optimal solutions. We
first start with general notions of optimality, which apply whenever we have
several scenarios to consider. For example, as done in Chapter 3, we consider
necessarily optimal solutions, which are optimal in all scenarios, or possibly
optimal solutions, which are optimal in at least one scenario. We then pass
to interval-based optimality notions, that define optimality in terms of the
upper and lower bounds of the intervals associated to the solution by the
constraints.

Since IVSCSPs generalize soft constraint problems, the problem of find-
ing an optimal solution in an IVSCP (according to any of the considered
optimality notions) is at least as difficult as finding an optimal solution in a
soft constraint problem and thus it is NP-hard.



4.2 Interval-valued soft constraints 129

We provide algorithms to find solutions according to all the notions de-
fined, and also to test whether a given solution is optimal. In most of the
cases, finding or testing an optimal solution amounts to solving a soft con-
straint problem. Thus, even if our formalism significantly extends soft con-
straints, and gives users much more power in modelling their knowledge of
the real world, in the end the work needed to find an optimal solution (or to
test if it is optimal) is not more than that needed to find an optimal solution
in a soft constraint problem. This claim is supported by the experimental
results we present, obtained by extensive tests over instances of the meeting
scheduling problem.

We also show that for some classes of IVSCSPs the optimality notions
would not produce different results if users were allowed to use multiple dis-
joint intervals rather than a single one. This means that a level of precision
greater than a single interval does not add any useful information when look-
ing for an optimal solution.

4.2 Interval-valued soft constraints

Soft constraint problems require users to specify a preference value for each
tuple in each constraint. Sometimes this is not reasonable, because a user
may have a vague idea of what preferences to associate to some tuples. In
Chapter 3 we give generalization allowed users to specify either a fixed pref-
erence (as in usual soft constraints) or the complete [0, 1] interval. Thus an
assumption of complete ignorance was made when the user was not able to
specify a fixed preference. Here we generalize further by allowing users to
state any interval over the preference set.

Definition 28 (interval-valued soft constraint). Given a set of variables V
with finite domain D and a totally-ordered c-semiring S = 〈A, +,×, 0, 1〉,
an interval-valued soft constraint is a pair 〈int, con〉 where con ⊆ V is the
scope of the constraint and int: D|con| −→ A×A specifies an interval over A
by giving its lower and upper bound. If int(x) = (a, b), it must be a ≤S b.

In the following we will denote with l(int(x)) (resp., u(int(x))) the first
(resp., second) component of int(x), representing the lower and the upper
bound of the preference interval.

Definition 29 (IVSCSP). An interval-valued soft constraint problem (IVSCSP)
is a 4-tuple 〈V, D, C, S〉, where C is a set of interval-valued soft constraints
over S defined on the variables in V with domain D.
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Figure 4.1 shows an IVSCSP P defined over the fuzzy c-semiring 〈[0, 1],
max, min, 0, 1〉, that contains three variables X1, X2, and X3, with domain
{a, b}, and five constraints: a unary constraint on each variable, and two
binary constraints on (x1, x2) and (x2, x3).

Figure 4.1: An IVSCSP over fuzzy semiring.

In an IVSCSP, a complete assignment of values to all the variables can be
associated to an interval as well. The lower bound (resp., the upper bound)
of such an interval is obtained by combining all the lower bounds (resp., the
upper bounds) of the preference intervals of the appropriate subtuples of this
assignment in the various constraints.

Definition 30 (preference interval). Given an IVSCSP P = 〈V, D, C, S〉
and an assignment s to all its variables over D, the preference interval of
s in P is [L(s), U(s)], where L(s) = Π<int,con>∈Cl(int( s↓con)) and U(s) =
Π<int,con>∈Cu(int(s↓con)), and Π is the combination operator of the c-semiring
S.

Figure 4.2 shows all the complete assignments of the IVSCSP in Figure
4.1, together with their preference interval and the computation details for
s1.

Figure 4.2: Solutions of the IVSCSP shown in Figure 4.1.

Once we have an IVSCSP, it is useful to consider specific scenarios arising
from choosing a preference value from each interval.
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Definition 31 (scenario). Given an IVSCSP P , a scenario of P is an SCSP
P ′ obtained from P as follows: given any constraint c = 〈int, con〉 of P , we
insert in P ′ the constraint c′ = 〈def, con〉, where def(t) ∈ [l(int(t)), u(int(t))]
for every tuple t ∈ D|con|.

We will denote with Sc(P ) the set of all possible scenarios of P .

Definition 32 (best and worst scenario). Given an IVSCSP P , the best
scenario (bs(P )) (resp., the worst scenario (ws(P ))) of P is the scenario
obtained by replacing every interval with its upper (resp., lower) bound.

We will denote with lopt and uopt the optimal preferences of the worst and
best scenario.

The preference interval of a complete assignment is a good way of repre-
senting the quality of the solution in all scenarios, as stated by the following
theorem.

Theorem 10. Consider an IVSCSP P over a c-semiring S and a com-
plete assignment s of its variables. Then, for all Q ∈ Sc(P ), pref(Q, s) ∈
[L(s), U(s)]. Also, for p ∈ {L(s), U(s)}, there exists a Q ∈ Sc(P ) such
that p = pref(Q, s). If the c-semiring S is idempotent, then for all p ∈
[L(s), U(s)], there exists a Q ∈ Sc(P ) such that p = pref(Q, s).

Proof: pref(Q, s) ∈ [L(s), U(s)] follows by monotonicity. If p = L(s) (resp.,
p = U(s)), it is possible to build a scenario where p = pref(Q, s), by fixing
all the tuples of s to their lower bound (resp., to their upper bound). If the c-
semiring is idempotent, since we are considering totally ordered c-semirings,
the operator × is minimum (with respect to the total order), so there exists
some interval-valued constraint 〈int, con〉 in P such that l(int(s↓con)) = L(s).
We must also have u(int(s↓con)) ≥ U(s). Let p be an element of [L(s), U(s)].
Define a scenario Q by replacing this interval-valued constraint with any soft
constraint which assigns the tuple s↓con the preference value p, and replacing
any of the other elements of P with soft constraints which assign preference
value U(s) to the appropriate projection of s. We then have p = pref(Q, s).

2

This means that, in general, the upper and lower bounds of the solution
preference interval always model preferences of solutions in some scenarios.
In the idempotent case we have more: the whole interval, and not just the
bounds, represents all and only the preferences coming from the scenarios.
Intuitively, if × is idempotent (let us consider min for simplicity): given an
assignment s, for every element x in [L(s), U(s)], we can construct a scenario
where s has preference x by fixing preference x on at least one tuple (that



132 Chapter 4. Imprecision in soft constraints

has x in its interval) and by fixing all other preferences of tuples in s to their
upper bound.

4.3 Necessary and possible optimality

We will now consider general notions of optimality, that are applicable to any
setting where the lack of precision gives rise to several possible scenarios.
First we define optimal solutions that guarantee optimality in some or all
scenarios (i.e., the possibly and the necessarily optimal solutions we see in
Chapter 3), and then we will define solutions that guarantee a certain level
of preference in some or all scenarios.

Definition 33 (necessarily optimal). Given an IVSCSP P = 〈V, D, C, S〉
and an assignment s to the variables in V , s is necessarily optimal iff it is
optimal in all scenarios.

Given an IVSCSP P , the set of its necessarily optimal solutions will be
denoted by NO(P ). Necessarily optimal solutions are very attractive because
they are very robust: they are optimal independently of the uncertainty of
the problem. Unfortunately, NO(P ) may be empty, as in the IVSCSP P of
Figure 4.1.

Definition 34 (possibly optimal). Given an IVSCSP P = 〈V, D, C, S〉 and
an assignment s to the variables in V , s is possibly optimal iff it is optimal
in some scenario.

Given an IVSCSP P , the set of possibly optimal solutions of P will be
denoted by PO(P ). In the IVSCSP P of Figure 4.1 we have PO(P ) =
{s1, s2, s3, s4, s6}. PO(P ) is never empty. However, the possibly optimal
solutions are less attractive than the necessarily optimal ones, in fact they
guarantee optimality only for a specific completion of the uncertainty.

We assume now to want to guarantee a certain level of preference in some
or all the scenarios.

Definition 35 (necessarily of at least preference α). Given an IVSCSP P =
〈V, D, C, S〉 and an assignment s to the variables in V , s is necessarily of at
least preference α iff, for all scenarios, its preference is at least α.

The set of all solutions of an IVSCSP P with this feature will be de-
noted by Nec(P, α). In our running example, if we consider α = 0.5, we
have Nec(P, 0.5) = {s1, s2, s4, s6}. If α is a satisfactory preference level, ele-
ments in Nec(P, α) are ideal, because they guarantee such a preference level
independently of the uncertainty of the problem.
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Definition 36 (possibly of at least preference α). Given an IVSCSP P =
〈V, D, C, S〉 and an assignment s to the variables in V , s is possibly of at
least preference α iff, for some scenario, its preference is at least α.

The set of all solutions of an IVSCSP P with this feature will be denoted
by Pos(P, α). In the IVSCSP P of Figure 4.1, if we take α = 0.3, we have
Pos(P, 0.3) = {s1, s2, s3, s4, s6, s7}.

4.4 Interval-based optimality notions

In an IVSCSP, uncertainty is specified via the preference intervals. Depend-
ing on how one decides to deal with this form of uncertainty, different notions
of optimality can be given. Here we will consider interval-based optimality
notions, and we will relate them to the necessarily and possibly optimal
solutions.

Interval-dominant assignments

In the attempt to characterize the necessarily optimal solutions, we can con-
sider the following notion.

Definition 37 (interval-dominant). Given an IVSCSP P = 〈V, D, C, S〉 and
an assignment s to the variables in V , s is interval-dominant iff, for every
other complete assignment s′, L(s) ≥ U(s′).

Interval-dominant assignments are better than or equal to all others in
all scenarios, and thus are very robust w.r.t. uncertainty. We denote with
ID(P ) the set of the interval dominant assignments of P . The IVSCSP P of
Figure 4.1 has ID(P ) = ∅.

Proposition 1. If ID(P ) 6= ∅, either ID(P ) contains a single solution, or
all the solutions in ID(P ) have their lower bound equal to their upper bound,
and all these bounds are equal to the same value. Given an IVSCSP P ,
ID(P ) may be empty.

Proof: ID(P ) may be empty as in the IVSCSP P of Figure 4.1.
We now show, by contradiction, that if ID(P ) 6= ∅, either ID(P ) con-

tains a single solution, or several solutions all with the lower bound equal to
the upper bound, and all equal to the same value. If ID(P ) contains two
solutions, say s1 and s2, with different values of lower and upper bounds,
then L(s1) < U(s1) and L(s2) < U(s2). Since s1 ∈ ID(P ), then for
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any other solution s′, L(s1) ≥ U(s′) and thus also L(s1) ≥ U(s2). Simi-
larly, since s2 ∈ ID(P ), then for any other solution s′, L(s2) ≥ U(s′) and
thus L(s2) ≥ U(s1). Therefore, L(s1) ≥ U(s2) > L(s2) ≥ U(s1) and so
L(s1) > U(s1), that is a contradiction. 2

It is possible to show that the interval-dominant optimality notion is
stronger than the necessary optimality notion. More precisely:

Proposition 2. Given an IVSCSP P , we have that ID(P ) ⊆ NO(P ). Also,
if ID(P ) 6= ∅, then ID(P ) = NO(P ).

Proof: We first show that ID(P ) ⊆ NO(P ). If a solution is in ID(P ),
its preference is always greater than or equal to the upper bounds of all the
other solutions, hence it is optimal in all the scenarios.

We now prove that, if ID(P ) 6= ∅, then ID(P ) = NO(P ). We have
already shown that ID(P ) ⊆ NO(P ). It remains to prove that NO(P ) ⊆
ID(P ). Let us denote with s∗ a solution of ID(P ). If a solution s of P is not
in ID(P ) and ID(P ) 6= ∅, then s is not in NO(P ). In fact, if L(s∗) 6= U(s∗),
then U(s∗) > L(s∗) ≥ U(s), and so s is not optimal in the best scenario. If
L(s∗) = U(s∗), since s 6∈ ID(P ), L(s) < L(s∗) and so s is not optimal in the
worst scenario. 2

Weakly-interval-dominant assignments

A more relaxed interval-based optimality notion is the following one.

Definition 38 (weakly-interval-dominant). Given an IVSCSP P = 〈V, D, C, S〉
and an assignment s to the variables in V , s is weakly-interval-dominant iff,
for every other complete assignment s′, L(s) ≥ L(s′) and U(s) ≥ U(s′).

Weakly-interval-dominant assignments are better than or equal to all oth-
ers in both the worst and the best scenario. We denote with WID(P ) the
set of the weakly interval dominant assignments of P . The IVSCSP P of
Figure 4.1 has WID(P ) = {s1}.

Proposition 3. Given an IVSCSP P , WID(P ) may be empty. Moreover,
ID(P ) ⊆WID(P ).

Proof: WID(P ) may be empty. For example, one can construct an IVSCSP
over fuzzy c-semiring with only three solutions, say s1, s2, and s3, with the

following lower and upper bounds: L(s1) = 0.2, U(s1) = 0.6, L(s2) = 0.3,
U(s2) = 0.8, L(s3) = 0.4, and U(s3) = 0.7.
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We now show that ID(P ) ⊆ WID(P ). If s ∈ ID(P ), then L(s) ≥ U(s′)
for every other s′. Hence, since U(s) ≥ L(s) and U(s′) ≥ L(s′) for every
other s′, we have U(s) ≥ L(s) ≥ U(s′) ≥ L(s′) for every other s′, that is,
U(s) ≥ U(s′) and L(s) ≥ L(s′) for every other s′, hence s ∈WID(P ). 2

The weakly-interval-dominant optimality notion is weaker than the nec-
essary optimality notion. In fact, NO(P ) ⊆WID(P ) and for some IVSCSP
P (for example, the IVSCSP of Figure 4.1) this inclusion is strict. More
precisely:

Proposition 4. Given an IVSCSP P , we have that ID(P ) ⊆ NO(P ) ⊆
WID(P ).

Proof: By Proposition 2, we know that ID(P ) ⊆ NO(P ).
We now show that NO(P ) ⊆ WID(P ). If s ∈ NO(P ), then s must

be optimal in every scenario and so also in the best and in the worst sce-
nario. Given that s is optimal in the worst scenario, then L(s) ≥ L(s′)
for every other solution s′. Moreover, as s is optimal in the best scenario,
then U(s) ≥ U(s′) for every other solution s′. Therefore, L(s) ≥ L(s′) and
U(s) ≥ U(s′) for every other solution s′. This allows us to conclude that
s ∈WID(P ). 2

Since ID(P ) ⊆ NO(P ) ⊆WID(P ), ID(P ) and WID(P ) can be seen as
lower and upper approximations of NO(P ).

Lower and upper optimal assignments

Until now we have considered how to characterize, via interval-based op-
timality notions, the necessarily optimal solutions. In particular, we have
found lower and upper approximations of these optimal solutions. We now
move to consider possibly optimal solutions via new interval-based optimality
notions.

Definition 39 (lower and upper optimal). Given an IVSCSP P = 〈V, D, C, S〉
and an assignment s to the variables in V , s is lower-optimal (resp., upper-
optimal) iff, for every other complete assignment s′, L(s) ≥ L(s′) (resp.,
U(s) ≥ U(s′)).

A lower-optimal (resp., an upper-optimal) assignment is better than or
equal to all other complete assignments in the worst scenario (resp., in the
best scenario). Lower-optimal (resp., upper-optimal) assignments are useful
in pessimistic (resp., optimistic) approaches to uncertainty, because they
outperform the other assignments in the worst (resp., in the best) case. We
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denote with LO(P ) (resp., UO(P )) the set of the lower (resp., upper) optimal
assignments of P . The IVSCSP P of Figure 4.1 has LO(P ) = {s1, s4} and
UO(P ) = {s1, s2}.

Lower and upper optimal solutions are never empty. Moreover, they
are related to weakly-interval-dominant and interval-dominant solutions as
follows.

Proposition 5. Given an IVSCSP P , and the optimal preference lopt (resp.,
uopt) of ws(P ) (resp., bs(P )),

• LO(P ) and UO(P ) are never empty;

• UO(P ) ∩ LO(P ) = WID(P );

• if lopt = uopt, then ID(P ) = LO(P );

• if lopt < uopt, and |UO(P )| ≥ 2, then ID(P ) = ∅;

• if |UO(P )| = 1, let us call s this single solution. If L(s) 6= lopt then
ID(P ) = ∅.

Proof: LO(P ) is never empty because it is always possible to find the
solutions with the lower bound greater than or equal to all the other solutions.
A similar argument shows that UO(P ) is never empty.

We now show that UO(P ) ∩ LO(P ) = WID(P ). We first show that
UO(P ) ∩ LO(P ) ⊆ WID(P ). If s ∈ UO(P ) ∩ LO(P ), then, by definition
of UO(P ), U(s) ≥ U(s′) for every other s′ and, by definition of LO(P ),
L(s) ≥ L(s′) for every other s′, therefore s ∈ WID(P ). We now show that
WID(P ) ⊆ UO(P ) ∩ LO(P ). If s ∈ WID(P ), by definition of WID(P ),
U(s) ≥ U(s′) and L(s) ≥ L(s′) for every other s′, hence both s ∈ LO(P ) and
s ∈ UO(P ), therefore s ∈ LO(P ) ∩ UO(P ).

To show that, if lopt = uopt, then ID(P ) = LO(P ), it is sufficient to
show that lopt = uopt implies LO(P ) ⊆ ID(P ), as ID(P ) ⊆ LO(P ) follows
from Theorem 2. In fact, if s ∈ ID(P ), then s ∈ Opt(ws(P )) and thus, by
Theorem 2, s ∈ LO(P ). If s ∈ LO(P ) then L(s) = lopt. Moreover, since
lopt = uopt, L(s) = uopt, and so L(s) ≥ U(s′), for every other solution s′, that
is s ∈ ID(P ).

We now prove, by contradiction, that, if lopt < uopt and |UO(P )| ≥ 2,
then ID(P ) = ∅. Suppose ID(P ) 6= ∅. Let us denote with s one of the
solutions of ID(P ). Then, by definition of ID(P ), L(s) ≥ U(s′), for every
other solution s′. Since |UO(P )| ≥ 2, we are sure that there is a solution
s′′ 6= s such that U(s′′) = uopt. Hence, L(s) ≥ U(s′′) = uopt > lopt, and so
L(s) > lopt, that is a contradiction, because, by the definition of lopt, lopt is
greater than or equal to the lower bound of every solution.
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Assume that |UO(P )| = 1 and let us call s this single solution. We now
show, by contradiction, that, if L(s) 6= lopt, then ID(P ) = ∅. Let us denote
with s1 one of the solutions with L(s1) = lopt. Suppose that ID(P ) 6= ∅, and
let s′ be an element of ID(P ). If s′ 6= s then U(s′) ≥ L(s′) ≥ U(s), which
implies that s′ ∈ UO(P ), a contradiction. Hence s′ = s. But then s′ 6= s1, so
L(s′) ≥ U(s1) ≥ L(s1) = lopt, which contradicts L(s) 6= lopt. 2

As every lower (resp., upper) optimal solution is optimal in the worst
(resp. best) scenario, then LO(P ) ⊆ PO(P ), UO(P ) ⊆ PO(P ), and these
inclusions may be strict, because there may be solutions that are optimal
only in scenarios that are different from the best and the worst scenario.

Proposition 6. Given an IVSCSP P , we have that LO(P ) ∪ UO(P ) ⊆
PO(P ).

Proof: Let s be a complete assignment to the variables of P .
LO(P ) ⊆ PO(P ). In fact, if s ∈ LO(P ), then s is optimal in the worst

scenario and so s ∈ PO(P ).
UO(P ) ⊆ PO(P ). In fact, if s ∈ UO(P ), then s is optimal in the best

scenario and so s ∈ PO(P ).
Therefore, LO(P ) ∪ UO(P ) ⊆ PO(P ). 2

Therefore, the lower and upper optimality notions are stronger than the
possible optimality notion.

The lower and upper optimal assignments are also related to the neces-
sarily and possibly of at least preference α assignments as follows.

Proposition 7. Given an IVSCSP P and the optimal preference lopt of
ws(P ),

• Nec(P, α) 6= ∅ iff α ≤ lopt;

• if α ≤ lopt, LO(P ) ⊆ Nec(P, α);

• let α∗ be the maximum α such that there exists a solution in Nec(P, α),
then α∗ = lopt and Nec(P, α∗) = LO(P ), and so Nec(P, α∗) ⊆ PO(P ).

Proof: Let us show the first item of the theorem. To show that Nec(P, α)
6= ∅ iff α ≤ lopt, we first prove that, if Nec(P, α) 6= ∅, then α ≤ lopt. If
Nec(P, α) 6= ∅, then there is a solution, say s, such that pref(Qi, s) ≥ α
for every scenario Qi of P and so also for the worst scenario. Hence, lopt ≥
pref(ws(P ), s) ≥ α. Therefore, lopt ≥ α. We now show that, if α ≤ lopt, then
Nec(P, α) 6= ∅. If Nec(P, α) = ∅, then for every solution s we have that
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pref(Qi, s) < α for some scenario Qi. This holds also for any solution, say
s∗, such that pref(ws(P ), s∗) = lopt, and so lopt = pref(ws(P ), s∗) < α.

We now show the second item of the theorem: given α ≤ lopt, LO(P ) ⊆
Nec(P, α). If LO(P ) 6⊆ Nec(P, α), then there is a solution, say s, such that
s ∈ LO(P ) \ Nec(P, α). Since s ∈ LO(P ), pref(ws(P ), s) = lopt. Since
s 6∈ Nec(P, α), then pref(Qi, s) < α for some scenario Qi, and so, as ws(P )
is the worst scenario, lopt = pref(ws(P ), s) ≤ pref(Qi, s) < α. Therefore,
lopt < α.

We now show, by contradiction, that α∗ = lopt. If α∗ > lopt, then, by the
previous part of the proof, Nec(P, α∗) = ∅, that is a contradiction because
α∗ is the maximum α such that Nec(P, α) 6= ∅. If α∗ < lopt, then α∗ is not
the maximum α such that Nec(P, α) 6= ∅, since such a value is lopt, and so
we have a contradiction.

We now prove that, if α∗ = lopt, then Nec(P, α∗) = LO(P ). Let s be a
complete assignment to the variables of P . If s ∈ Nec(P, lopt), then for every
scenario Q, pref(Q, s) ≥ lopt and so also for the worst scenario. Therefore,
as lopt is the optimal preference of the worst scenario, s ∈ LO(P ). If s ∈
LO(P ), then pref(ws(P ), s) = lopt. Since for every scenario Q, pref(Q, s) ≥
pref(ws(P ), s) = lopt, then s ∈ Nec(P, lopt).

Since Nec(P, α∗) = LO(P ) and since, by Proposition 6, LO(P ) ⊆ PO(P ),
then Nec(P, α∗) ⊆ PO(P ). 2

Thus, in general, Nec(P, α) is not empty only if α is at most the optimal
preference of the worst scenario, and in such a case every lower-optimal
solution is in Nec(P, α). Moreover, if we consider a particular value of α,
also the converse holds. Therefore, in this case the necessarily of at least
preference α solutions are lower-optimal solutions and thus they are possibly
optimal solutions.

Moreover, a solution is in Pos(P, α) only if α is at most the optimal
preference of the best scenario, and in such a case, for a particular value
of α, the possibly of at least preference α solutions coincide with the upper
optimal solutions, and thus they are possibly optimal solutions.

Proposition 8. Given an IVSCSP P and an assignment s to the variables
of P ,

• s is in Pos(P, α) if and only if α ≤ U(s);

• let α∗ be the maximum α such that Pos(P, α) is not empty, then Pos(P,
α∗) = UO(P ), and so Pos(P, α∗) ⊆ PO(P ).

Proof: We first show that s is in Pos(P, α) if and only if α ≤ U(s). If
s ∈ Pos(P, α), then there is a scenario where pref(Q, s) ≥ α. By Theorem 10,
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we know that U(s) is the highest preference associated to s in any scenario,
then U(s) ≥ pref(Q, s) and so U(s) ≥ α. If α ≤ U(s), then, by Theorem
10, there is a scenario Q, where pref(Q, s) = U(s). Since U(s) ≥ α, then
s ∈ Pos(P, α).

We now show that Pos(P, α∗) = UO(P ). If s ∈ Pos(P, α∗), then there is
a scenario Q where pref(Q, s) ≥ α∗. Since α∗ is the maximum α such that
Pos(P, α) 6= ∅, then, α∗ = uopt, where uopt is the optimal preference in the
best scenario. Hence, s ∈ UO(P ). If s ∈ UO(P ), then pref(Q, s) = uopt,
hence in the best scenario pref(bs(P ), s) = uopt and thus s ∈ Pos(P, α∗),
where α∗ = uopt.

Since by Proposition 6, UO(P ) ⊆ PO(P ), then Pos(P, α∗) ⊆ PO(P ). 2

Lower and upper lexicographically-optimal assignments

We now introduce two optimality notions that refine the lower and upper
optimal notions.

Definition 40 (Lower and upper lexicographically-optimal). Given an
IVSCSP P = 〈V, D, C, S〉 and an assignment s to the variables in V , s is
lower (resp., upper) lexicographically-optimal iff, for every other complete
assignment s′, either L(s) > L(s′) (resp., U(s) > U(s′)), or L(s) = L(s′)
and U(s) ≥ U(s′) (resp., U(s) = U(s′) and L(s) ≥ L(s′)).

Lower (resp., upper) lexicographically-optimal assignments are those op-
timal assignments of the worst scenario (resp., best scenario) that are the
best ones in the best scenario (resp., in the worst scenario). We denote with
LLO(P ) (resp., ULO(P )) the set of the lower (resp., upper) lexicographically-
optimal assignments of P . The IVSCSP P of Figure 4.1 has LLO(P ) =
ULO(P ) = {s1}.
Proposition 9. Given an IVSCSP P ,

• LLO(P ) ⊆ LO(P ) and so LLO(P ) is never empty;

• ULO(P ) ⊆ UO(P ) and so ULO(P ) is never empty;

• ID(P ) ⊆ (LLO(P ) ∩ ULO(P )) = WID(P ).

Proof: We show that LLO(P ) ⊆ LO(P ). The relation ULO(P ) ⊆ UO(P )
can be shown similarly. If s ∈ LLO(P ), then, by definition of LLO(P ),
L(s) > L(s′) or (L(s) = L(s′) and U(s) ≥ U(s′)) for every other s′, hence
L(s) ≥ L(s′) for every other s′ and so s ∈ LO(P ).
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Since LLO(P ) is contained in LO(P ) and, by Proposition 5, LO(P ) is
never empty, then LLO(P ) is never empty. Similarly, it is possible to show
that ULO(P ) is never empty.

We now prove that (LLO(P ) ∩ULO(P )) = WID(P ). We first show
that (LLO(P ) ∩ULO(P )) ⊆ WID(P ). If s ∈ (LLO(P ) ∩ ULO(P )), then,
by definition of LLO(P ), L(s) ≥ L(s′) for every other s′ and, by definition
of ULO(P ), U(s) ≥ U(s′) for every other s′, hence s ∈ WID(P ). We now
show that WID(P ) ⊆ (LLO(P ) ∩ ULO(P )). If s ∈ WID(P ), then, by
definition of WID(P ), L(s) ≥ L(s′) and U(s) ≥ U(s′) for every other s′.
It could happen that (L(s) > L(s′) and U(s) > U(s′)) or (L(s) > L(s′)
and U(s) = U(s′)) or (L(s) = L(s′) and U(s) > U(s′)) or (L(s) = L(s′)
and U(s) = U(s′)) for every other s′. If L(s) > L(s′) and U(s) > U(s′) for
every other s′, then s ∈ LLO(P ) ∩ ULO(P ) by the first part of the defini-
tions of LLO(P ) and ULO(P ). If L(s) > L(s′) and U(s) = U(s′) for every
other s′ , then s ∈ LLO(P ) ∩ ULO(P ) by the first part of the definition of
LLO(P ) and by the second part of the definition of ULO(P ). If L(s) = L(s′)
and U(s) > U(s′) for every other s′, then s ∈ LLO(P ) ∩ ULO(P ) by the
second part of the definition of LLO(P ) and by the first part of the defini-
tion of ULO(P ). If L(s) = L(s′) and U(s) = U(s′) for every other s′, then
s ∈ LLO(P )∩ULO(P ) by the second part of the definitions of LLO(P ) and
ULO(P ). 2

Since lower and upper lexicographically-optimal solutions are refinements
of lower and upper optimal solutions, they are possibly optimal solutions as
well. However, the converse does not hold in general.

Proposition 10. Given an IVSCSP P , (LLO(P ) ∪ ULO(P )) ⊆ PO(P ).

Proof: We know, by Proposition 9, that LLO(P ) ⊆ LO(P ) and ULO(P ) ⊆
UO(P ). Since, by Proposition 6, LO(P ) and UO(P ) are contained PO(P ),
then also LLO(P ) and ULO(P ) are contained in PO(P ). 2

Interval-optimal assignments

Until now we have considered optimality notions that are stronger than the
possibly optimal notion. In the attempt to fully characterize possibly optimal
solutions, we now consider an interval-based optimality notion that is weaker
than the lower and upper optimality notions.

Definition 41 (interval-optimal). Given an IVSCSP P = 〈V, D, C, S〉 and
an assignment s to the variables in V , s is defined to be interval-optimal iff,
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for every other complete assignment s′, L(s) ≥ L(s′) or U(s) ≥ U(s′).

An interval-optimal assignment is a complete assignment with either a
higher or equal lower bound, or a higher or equal upper bound, w.r.t. all
other assignments. This means that, for every other complete assignment, it
must be better than, or equal to it in either the worst or the best scenario.
We denote with IO(P ) the set of the interval optimal assignments of P . The
IVSCSP P of Figure 4.1 has IO(P ) = {s1, s2, s4}.

Proposition 11. Given an IVSCSP P , (UO(P )∪LO(P )) ⊆ IO(P ) and so
IO(P ) is never empty.

Proof: Let s be a complete assignment to the variables of P . Suppose
that s ∈ UO(P ) ∪ LO(P ). There are two cases, (i) s ∈ UO(P ), and (ii)
s ∈ LO(P ). Suppose (i) that s ∈ UO(P ). Then U(s) ≥ U(s′) for every other
complete assignment s′ and so s ∈ IO(P ). Similarly, (ii) if s ∈ LO(P ) then
L(s) ≥ L(s′) for every other s′, hence s ∈ IO(P ).

Since (UO(P ) ∪ LO(P )) ⊆ IO(P ) and, by Proposition 5, LO(P ) and
UO(P ) are never empty, then IO(P ) is never empty. 2

The interval-optimal solutions are possibly optimal solutions, but the
converse does not hold in general, as shown in the following proposition.
Therefore, also the interval-optimality notion is stronger than the possible
optimality notion.

Proposition 12. Given an IVSCSP P , if the c-semiring is strictly mono-
tonic or idempotent, then IO(P ) ⊆ PO(P ). Moreover, PO(P ) 6⊆ IO(P ).

Proof: Let s be a complete assignment to the variables of P .

Let us consider a strictly monotonic c-semiring. We know, by Theorem
19, that s ∈ PO(P ) iff s ∈ Opt(Qs), where Qs is the scenario where all the
preferences of tuples in s are set to their upper bound and all other tuples
are associated to the lower bound of their preferences. We now show that, if
s ∈ IO, then s ∈ Opt(Qs) and so, by Theorem 19, s ∈ PO(P ). Assume that
s 6∈ Opt(Qs), we will show that s 6∈ IO(P ). If s 6∈ Opt(Qs), then there is a
solution s′ such that pref(Qs, s′) > pref(Qs, s).

• If s has no tuples in common with s′, then, by construction of Qs,
pref(Qs, s′) = L(s′) and pref(Qs, s) = U(s). Since pref(Qs, s′) >
pref(Qs, s), and for every solution its lower bound is lower than or
equal to its upper bound, then U(s′) ≥ L(s′) > U(s) ≥ L(s) and so
U(s′) > U(s) and L(s′) > L(s), that implies that s 6∈ IO(P ).
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• If s has some tuple in common with s′, then, pref(Qs, s′) = λ × u,
and pref(Qs, s) = µ × u, where λ (resp., µ) is the combination of the
preferences of the tuples that are in s′ but not in s (resp., in s but not
in s′), and u is the combination of the preferences of the tuples that
are both in s and in s′. By hypothesis, pref(Qs, s′) > pref(Qs, s), i.e.,
λ× u > µ× u. By construction of Qs, U(s′) ≥ λ× u > µ × u = U(s),
and so U(s′) > U(s). Moreover, since the combination operator is
monotonic, if λ × u > µ × u, then λ > µ. In fact, if λ ≤ µ, by
monotonicity, λ × u ≤ µ × u. Let us denote with u′ (resp., µ′) the
combination of the lower bounds of the preferences of the tuples that
are both in s and in s′ (resp., in s but not in s′). Then, by strict
monotonicity and by construction of Qs, L(s′) = λ × u′ > µ × u′ ≥
µ′ × u′ = L(s), and so L(s′) > L(s). Therefore, if s has some tuple in
common with s′, then U(s′) > U(s) and L(s′) > L(s), i.e., s 6∈ IO(P ).

Let us now consider an idempotent c-semiring. We want to show that
if s ∈ IO(P ), then s ∈ PO(P ). We will show that, if s ∈ IO(P ), then
s ∈ Opt(Q∗), where Q∗ is the scenario such that all the preferences of the
tuples of s are set to U(s), if U(s) is contained in their preference interval,
and to their upper bound, if U(s) is not contained in their preference interval,
and all other tuples are associated to the lower bound of their preferences.
First, we show that pref(Q∗, s) = U(s). Then, we show that pref(Q∗, s) ≥
pref(Q∗, s′), for every other solution s′ that has no tuples in common with s
and for every solution s′ that has some tuple in common with s.

• pref(Q∗, s) = U(s), by construction of Q∗, by Theorem 10 and by
idempotency. In fact, by Theorem 10, pref(Q∗, s) ≤ U(s). Moreover,
pref(Q∗, s) 6< U(s). In fact, we now show that pref(Q∗, s) is given by
the combination of the preferences that are all greater than or equal to
U(s). By construction of Q∗ we have two results. (1) Every tuple of
s in Q∗ with preference interval that contains U(s) is assigned to U(s)
and, by definition of U(s) and by idempotency, there must be at least
one of these preferences. (2) Every tuple with preference interval that
does not contain U(s) is assigned to its upper bound that must be a
value greater than U(s), since, by definition of U(s), the upper bound
of every tuple of s must be greater than or equal to U(s), otherwise
the upper bound of s is not U(s) but a value lower than U(s), that is a
contradiction. Therefore, pref(Q∗, s) 6< U(s) and so pref(Q∗, s) = U(s).

• If s has no tuples in common with s′, then, by construction of Q∗,
pref(Q∗, s′) = L(s′) and pref(Q∗, s) = U(s). Since s ∈ IO(P ), then
L(s) ≥ L(s′) or U(s) ≥ U(s′). If L(s) ≥ L(s′), then pref(Q∗, s) =



4.4 Interval-based optimality notions 143

Figure 4.3: Relation among optimality sets.

U(s) ≥ L(s) ≥ L(s′) = pref(Q∗, s′). If U(s) ≥ U(s′), then pref(Q∗, s) =
U(s) ≥ U(s′) ≥ L(s′) = pref(Q∗, s′).

• If s has some tuple in common with s′, then, by construction of Q∗

pref(Q∗, s′) ≤ U(s) = pref(Q∗, s).

Therefore, for every solution s′, pref(Q∗, s′) ≤ U(s) = pref(Q∗, s). Hence,
s is optimal in Q∗ and so s ∈ PO(P ).

PO(P ) 6⊆ IO(P ). In fact, assume to have an IVSCSP over a fuzzy c-
semiring, where there is only one variable x with three values in its domain,
say x1, x2, and x3, with preference intervals respectively [0.4, 0.6], [0.5, 0.7],
and [0.5, 0.8]. Then, x1 6∈ IO(P ), because L(x1) < L(x2) and U(x1) <
U(x2). However, x1 ∈ PO(P ), because x1 is optimal in the scenario where
we associate to x1 the value 0.6 and to x2 and x3 the value 0.5.

2

Summary of the various notions of optimality and of

their relations

The various notions of optimality defined above are summarized in Table 4.1.
For each notion, we refer to a solution s and we describe compactly when s
belongs to each of the optimality sets.

The set-based relations between the various optimality notions are de-
scribed in Figure 4.3.
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Table 4.1: Optimality notions.

Optimality
notions Definition

NO(P ) s ∈ Opt(Q), ∀Q ∈ Sc(P )
PO(P ) s ∈ Opt(Q), ∃Q ∈ Sc(P )

Nec(P, α) pref(Q, s) ≥ α, ∀Q ∈ Sc(P )
Pos(P, α) pref(Q, s) ≥ α, ∃Q ∈ Sc(P )
ID(P ) L(s) ≥ U(s′), ∀s′ ∈ Sol(P )

WID(P ) L(s) ≥ L(s′) and U(s) ≥ U(s′), ∀s′ ∈ Sol(P )
LO(P ) L(s) ≥ L(s′), ∀s′ ∈ Sol(P )
UO(P ) U(s) ≥ U(s′), ∀s′ ∈ Sol(P )
LLO(P ) L(s) > L(s′) or (L(s) = L(s′) and U(s) ≥ U(s′)), ∀s′ ∈ Sol(P )
ULO(P ) U(s) > U(s′) or (U(s) = U(s′) and L(s) ≥ L(s′)), ∀s′ ∈ Sol(P )
IO(P ) L(s) ≥ L(s′) or U(s) ≥ U(s′), ∀s′ ∈ Sol(P )

An example: imprecise meeting scheduling problems

To better explain how to use the various optimality notions introduced in
the previous sections, we consider an example of a class of problems, related
to meeting scheduling. The meeting scheduling problem (MSP) is a bench-
mark for CSPs [65] we previously adapted to allow for missing preferences
in Chapter 3. Here we adapt it to allow for preference intervals. In the
following we recall what are MSPs and how such problems can be modeled
in constraint programming. Then, we present our generalization to allow for
imprecise preferences.

A meeting scheduling problem can be described by

• a set of agents;

• a set of meetings, each with a location and a duration;

• a set of time slots where meetings can take place;

• for each meeting, a subset of agents that are supposed to attend such
a meeting;

• for each pair of locations, the time to go from one location to the other
one.
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Typical simplifying assumptions concern having the same duration for all
meetings (one time slot), and the same number of meeting for each agent.
A solution of a meeting scheduling problem is an allocation of each meeting
in a time slot in a way that each agent can participate in his meetings. The
only way that an agent cannot participate has to do with the time needed to
go from the location of a meeting to the location of his next meeting.

A CSP model of a MSP involves variables representing meetings and
variable domains representing all time slots. Each constraint between two
meetings models the fact that one or more agents must participate in both
meetings, and it is satisfied by all pairs of time slots that allow the par-
ticipation to both meetings according to the time needed to travel between
the corresponding locations. For this reason, it is often used as a typical
benchmark for CSPs.

For our purposes, we consider a generalization of the MSP, called IVMSP,
where there is a chair, who is in charge of the meeting scheduling, and who
declares his preferences over the variable domains and over the compatible
pairs of time slots in the binary constraints. The preferences over the variable
domains can model the fact that the chair prefers some time slots to others
for a certain meeting. On the other hand, the preferences in the binary
constraints can model a preference for certain feasible pairs of time slots,
over others, for the two meetings involved in the constraint.

Such preferences can be exact values when the chair works with complete
information. However, at the time the meeting scheduling has to be done,
it may be that some information, useful for deciding the preferences, is still
missing. For example, the chair could have invited agents to meetings, but
he does not yet know who will accept his invitations. As other examples,
weather considerations or the presence of other events in the same time slots
may affect the preferences. Because of this uncertainty, some preferences
may be expressed by using an interval of values, which includes all preference
values that are associated to all possible outcomes of the uncertain events.

Since MSPs can be expressed as CSPs, it is thus clear that IVMSPs can be
expressed as IVSCSPs. The problem of solving an IVMSP concerns finding
time slots for the meetings such that all agents can participate and, among
all possible solutions, to choose an optimal one according to some optimality
criteria. We will now consider several of the optimality notions defined above
and describe their use in this class of problems.

In this context, given an IVMSP P , necessarily optimal solutions (i.e.,
solutions in NO(P )) are meeting schedulings that are optimal no matter how
the uncertainty is resolved. Thus, if there is at least one of such solutions,
this is certainly preferred to any other. By working with the optimality
notions defined over intervals, to find a solution in NO(P ), we may try to
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find a solution in ID(P ), given that solutions in ID(P ), if any, coincide with
solutions in NO(P ). Otherwise, if ID(P ) is empty, and given that NO(P ) is
included in WID(P ), we may look for a solution in WID(P ). We recall that
solutions in ID(P ) are meeting schedulings where the preference interval of
the optimal solution is above the preference intervals of all other solutions,
while solutions in WID(P ) have the upper bound of their preference interval
above the upper bounds of the preference intervals of all other solutions, and
the same for the lower bound.

Solutions in Nec(P, α∗) are also attractive, because they guarantee a pref-
erence level of α∗ in all scenarios. Since LO = Nec(P, α∗), we may find a
solution in LO(P ), that is, a solution which is optimal in the worst scenario.
This solution will guarantee the chair against the uncertainty of the problem
by assuring a certain level of overall preference. This notion can be useful if
the chair is pessimistic, because such solutions provide a preference guaran-
tee over all scenarios. However, such a guaranteed preference level may be
very low.

If instead the chair is optimistic, he may ask for a solution in Pos(P, α∗),
that is, a solution with the highest preference level in some scenario. Since
UO(P ) = Pos(P, α∗), we may find a solution in UO(P ), that is, a solution
which is optimal in the best scenario.

When looking for solutions in LO(P ) and UO(P ), we may want to be
as close as possible to solutions in NO(P ), as NO(P ) is included in LO(P )
and UO(P ). To do this, we can try to find solutions in LLO(P ) or ULO(P ),
respectively. For example, solutions in LLO(P ) are solutions in LO(P ) that
have the highest upper bound of their preference interval. This means that,
depending on how the uncertainty is resolved, they give more hope of achiev-
ing a higher level of preference.

4.5 Finding and testing optimal assignments

In this section we analyze how to determine if a complete assignment is one
of the different kinds of optimal assignments previously defined in Section
4.4, and how to find such optimal assignments. These results will be useful
to find and test possibly and necessarily optimal solutions.

Lower and upper optimal assignments

It is easy to show that, by following directly the definitions of lower and upper
optimal assignments, the lower (resp., upper) optimal solutions coincide with
the optimal elements of the worst (resp., best) scenario.
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Theorem 11. Given an IVSCSP P , LO(P ) = Opt(ws(P )) and UO(P ) =
Opt(bs(P )).

Proof: We show that LO(P ) = Opt(ws(P )). Let s be a solution of P . If
s ∈ LO(P ), then L(s) ≥ L(s′) for every other solution s′, hence if we con-
sider ws(P ), i.e., the worst scenario of P , that is the scenario where we fix
all the preference intervals to their lower bound, then pref(ws(P ), s) = L(s)
and so pref(ws(P ), s) ≥ pref(ws(P ), s′) for every other solution s′, hence
s ∈ Opt(ws(P )). If s ∈ Opt(ws(P )), then pref(ws(P ), s) ≥ pref(ws(P ), s′)
for every other solution s′ of P , that is, by definition of worst scenario,
L(s) ≥ L(s′) for every s′ and so s ∈ LO(P ). Similarly, it is possible to show
that UO(P ) = Opt(bs(P )). 2

A lower-optimal solution is a complete assignment whose lower bound is
greater than or equal to the lower bound of every other complete assignment.
Thus, it is a complete assignment that is better than or equal to all other
assignments in the scenario obtained by replacing every interval with its lower
bound, i.e., the worst scenario.

Thus, finding a lower-optimal (resp. upper-optimal) solution is as com-
plex as solving an SCSP. This holds also for testing if an assignment s is in
LO(P ) (resp. in UO(P )), since it is enough to solve the SCSP representing
the worst or the best scenario and to check if the preference of the optimal
solution coincides with L(s) (resp. U(s)).

Interval optimal assignments

To find an interval optimal assignment, it is sufficient to find a lower-optimal
solution or an upper-optimal solution, because (UO(P ) ∪ LO(P )) ⊆ IO(P ),
and neither UO(P ) nor LO(P ) can be empty. Thus, finding assignments of
IO(P ) can be achieved by solving an SCSP.

To test if a solution is interval optimal, if the c-semiring is idempotent,
we can exploit the preference levels of the best and worst scenarios, as stated
by the following theorem.

Theorem 12. Given an IVSCSP P defined over an idempotent c-semiring,
and an assignment s, we have s ∈ IO(P ) iff the CSP obtained by joining1

scutL(s)(ws(P )) and scutU(s)(bs(P )) has no solution.

Proof: Let us denote with Q the CSP defined in the theorem. We first show
that, if Q has no solution, then s ∈ IO(P ). Suppose that s /∈ IO(P ). Then

1The join of two CSPs P1 and P2 is the CSP whose set of variables (resp., constraints)
is given by the union of the sets of variables (resp., constraints) of P1 and P2.
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there exists some complete assignment s′ with L(s′) > L(s) and U(s′) > U(s).
Then pref(ws(P ), s′) = L(s′) > L(s) and pref(bs(P ), s′) = U(s′) > U(s),
so s′ is a solution of Q. We now show that, if s ∈ IO(P ), then Q has no
solution. If Q has a solution, say s∗, then, by definition of Q, L(s∗) > L(s)
and U(s∗) > U(s), and so s 6∈ IO(P ). 2

In fact, all and only the solutions of such a CSP strictly dominate s with
respect to both the lower and the upper bound. Thus, testing membership
in IO(P ) when the semiring is idempotent amounts to solving a CSP.

More generally (that is, even if the combination operator is not idempo-
tent), we can test interval optimality by checking if a suitably defined SCSP
has solutions with preference above certain threshold.

Theorem 13. Given an IVSCSP P and an assignment s, let lopt and uopt be
the optimal preferences of the worst and best scenario. Then, s ∈ IO(P ) iff
at least one of the following conditions holds: (1) L(s) = lopt; (2) U(s) = uopt;
(3) the SCSP Q with the same variables, domains, and constraint topology
as P , defined on the c-semiring 〈(A×A), (+, +), (×,×), (0, 0), (1, 1)〉, where
the preference of each tuple in each constraint is set to the pair containing the
lower and upper bound of its interval in P , has no solution s′ with preference
pair (L(s′), U(s′)) pointwise greater than (L(s), U(s)), i.e., such that L(s′) >
L(s) and U(s′) > U(s).

Proof: We first show that if L(s) = lopt, U(s) = uopt, or Q has no solution
with preference greater than (L(s), U(s)), then s ∈ IO(P ). If L(s) = lopt

(resp., U(s) = uopt), then L(s) ≥ L(s′) (resp., U(s) > U(s′)) for every other
solution s′, hence s ∈ LO(P ) (resp., s ∈ UO(P )) and so, since LO(P ) ∪
UO(P ) ⊆ IO(P ), s ∈ IO(P ). If Q has no solution with preference greater
than (L(s), U(s)), then s ∈ IO(P ). In fact, if s 6∈ IO(P ), then there is a
solution, say s∗, such that L(s∗) > L(s) and U(s∗) > U(s), and so Q has a
solution with preference greater than (L(s), U(s)).

We now show, that if s ∈ IO(P ), then L(s) = lopt, U(s) = uopt, or
Q has no solution with preference greater than (L(s), U(s)). If L(s) 6= lopt,
U(s) 6= uopt and Q has a solution s∗ with preference greater than (L(s), U(s)),
then, by definition of Q, the preference of (L(s∗), U(s∗)) is greater than the
preference of (L(s), U(s)), hence L(s∗) > L(s) and U(s∗) > U(s) and so
s 6∈ IO(P ). 2

The first two conditions simply check if s is either lower or upper optimal.
The second condition is satisfied when there is no solution better than s on
both bounds. Notice that this can be checked for example by running branch
and bound on Q with a strict bound equal to (L(s), U(s)). Therefore, testing
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membership in IO(P ) with any c-semiring can be achieved by solving at most
three SCSPs.

Lower and upper lexicographically optimal assignments

To find the lower-lexicographically optimal solutions of an IVSCSP P we con-
sider the optimal solutions of a suitable SCSP, as described by the following
theorem.

Theorem 14. Given an IVSCSP P over a strictly monotonic c-semiring S,
let us consider the SCSP Q with the same variables, domains, and constraint
topology as P , and defined over the c-semiring 〈A×A, maxlex, (×,×), (0, 0),
(1, 1)〉. The binary operation maxlex is defined to be the maximum with
respect to the ordering �lex defined as follows: for each (a, a′), (b, b′) ∈ (A×
A), (a, a′) �lex (b, b′) iff a >S b or a = b and a′ ≥S b′. For each tuple in
each constraint of Q, its preference is set to the pair containing the lower
and upper bound of its interval in P . Then, LLO(P ) = Opt(Q).

Proof: We first show that LLO(P ) ⊆ Opt(Q). If s ∈ LLO(P ), then
s ∈ Opt(Q). In fact, if s 6∈ Opt(Q), then, there is a solution, say s′, of Q
such that pref(Q, s′) > pref(Q, s), that is, by definition of preference given
in the theorem, (L(s′), U(s′)) ≻lex (L(s), U(s)), that is, by definition of ≻lex,
either L(s′) > L(s) or (L(s′) = L(s) and U(s′) > U(s)), and so s 6∈ LLO(P ).

We now show that Opt(Q) ⊆ LLO(P ). If s ∈ Opt(Q), then pref(Q, s′) ≥
pref(Q, s), for every s′, that is, (L(s′), U(s′)) �lex (L(s), U(s)), for every
other s′, that is, for every other s′, either L(s′) > L(s) or (L(s′) = L(s) and
U(s′) ≥ U(s)), and so s ∈ LLO(P ).

Note that the assumption of strict monotonicity of S guarantees that the
structure defined in the theorem 〈A × A, maxlex, (×,×), (0, 0), (1, 1)〉 is a
c-semiring. If we don’t make this assumption, then distributivity property
does not hold and so the structure above is not a c-semiring. 2

In words, the first component of the pairs in the semiring of Theorem 14
is the most important, and the second one is used to break ties. To find the
upper-lexicographically optimal solutions, it is sufficient to consider the same
SCSP as defined above except for the ordering which considers the second
component as the most important. Thus, finding assignments in LLO(P )
and ULO(P ) can be achieved by solving one SCSP.

To test if a solution s is in LLO(P ), it is enough to find the preference
pair, say (p1, p2), of an optimal solution of the SCSP defined above and to
check if (L(s), U(s)) = (p1, p2). Similarly to test if a solution is in ULO(P ).
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Weakly interval dominant assignments

We know that WID(P ) = LO(P ) ∩ UO(P ). Thus a straightforward, but
costly, way to find a solution in WID(P ) is to compute all the optimal
solutions of the best and the worst scenario and to check if there is a solution
in the intersection of the two sets. However, if the c-semiring is idempotent,
this is not necessary, as shown by the following theorem.

Theorem 15. Given an IVSCSP P defined over an idempotent c-semiring,
and lopt and uopt as defined above, an assignment s is in WID(P ) iff it is a
solution of the CSP obtained by joining cutlopt

(ws(P )) and cutuopt
(bs(P )).

Proof: Let us denote with Q the CSP described in the theorem. We first
show that, if s is a solution of Q, then s ∈WID(P ). If s is a solution of Q,
then, by definition of Q, s is a solution of the CSP cutlopt

(ws(P )) obtained
from the worst scenario by allowing only the tuples with preference greater
than or equal to lopt, hence, by definition of lopt, L(s) ≥ L(s′) for every other
solution s′. Moreover, by definition of Q, s is also a solution of the CSP
cutuopt

(bs(P )) obtained from the best scenario by allowing only the tuples
with preferences greater than or equal to uopt. Hence, by the definition of
uopt, U(s) ≥ U(s′), for every other s′. Therefore, if s is a solution of Q, then
L(s) ≥ L(s′) and U(s) ≥ U(s′) for every other s′, and so s ∈WID(P ).

We now show that, if s ∈ WID(P ), then s is a solution of Q. If s is
not a solution of Q, then L(s) < lopt or U(s) < uopt. If L(s) < lopt (resp.,
U(s) < uopt), then L(s) < L(s′) (resp., U(s) < U(s′)) for any solution s′

such that pref(ws(P ), s′) = lopt (resp., pref(bs(P ), s′) = uopt). Therefore,
s 6∈WID(P ). 2

In words, any solution of the join CSP is optimal both in the worst
and in the best scenario and this implies that it is undominated on both
bounds. Thus, if the c-semiring is idempotent, finding a weakly interval
dominant solution amounts to solving two SCSPs and one CSP. Moreover, to
test whether a solution s is in WID(P ), it is sufficient to check if L(s) = lopt

and U(s) = uopt, which amounts to solving two SCSPs.

Interval dominant assignments

To find an assignment in ID(P ), we can use Proposition 5. Thus, if lopt =
uopt, then it is sufficient to find a lower-optimal solution. If instead lopt <
uopt then, if |UO(P )| ≥ 2, then we know that ID(P ) = ∅. Moreover, if
|UO(P )| = 1 (let us call s this single solution), if L(s) 6= lopt then we know
that ID(P ) = ∅.
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If the c-semiring is idempotent, cuts can be exploited in the same style
as above, to build a suitably defined CSP, leading to a sound and complete
procedure to find an assignment, if any, in ID(P ).

Theorem 16. Given an IVSCSP P over an idempotent c-semiring, and lopt

as defined above, if scutlopt
(bs(P )) has no solution, then ID(P ) = LO(P ). If

scutlopt
(bs(P )) has one solution, say s, and L(s) = lopt, then this solution is

the only one in ID(P ). Otherwise, ID(P ) = ∅.

Proof: Let us denote with Q the CSP scutlopt
(bs(P )). We first show that if

Q has no solution, then ID(P ) = LO(P ). If Q has no solution, then, since
Q is the CSP obtained by the best scenario by allowing only tuples with
preference greater than lopt, there is no solution with upper bound greater
than lopt, that is, for all the solutions s′ of P , lopt ≥ U(s′). To show that
ID(P ) = LO(P ) it is sufficient to show that LO(P ) ⊆ ID(P ), since Theorem
2 implies that ID(P ) ⊆ LO(P ). Let s be a solution of P . If s ∈ LO(P ),
then L(s) = lopt and thus, by the reasoning above, L(s) ≥ U(s′) for every
other s′, hence s ∈ ID(P ).

If Q has a solution, say s, then U(s) > lopt ≥ L(s′) for all solutions s′,
and so ID(P ) is either empty or equal to {s}. Therefore if Q has more than
one solution then ID(P ) is empty. Suppose that Q has exactly one solution,
s. If L(s) < lopt then L(s) < L(s′) for any solution s′ with L(s′) = lopt,
and so L(s) < U(s′), which implies that s /∈ ID(P ) and so ID(P ) = ∅. If
L(s) = lopt then for any other solution s′ we have U(s′) ≤ lopt (since Q has
only one solution), and so L(s) ≥ U(s′) which implies that s ∈ ID(P ) and
so ID(P ) = {s}. 2

Performing a strict cut of the best scenario at the optimal level of the
worst scenario means isolating solutions that have an upper bound higher
than lopt. If there is no such solution, then the upper bound of the lower-
optimal solutions must coincide with their lower bound (lopt). Thus, lower-
optimal solutions coincide with interval dominant solutions. If, instead, such
a CSP has only one solution, all other solutions must have an upper bound
which is at most lopt. This means that, if this solution is also lower-optimal,
then it is the only interval dominant solution. Finally, if there is more than
one solution with an upper bound above lopt, then there cannot be any solu-
tion whose lower bound dominates the upper bound of all others and, thus,
ID(P ) is empty.

Summarizing, when the c-semiring is idempotent, to find a solution in
ID(P ) we need to solve an SCSP and then one CSP. Proposition 5 and
Theorem 16 can also be used to test if a solution is interval dominant.
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4.6 Finding and testing necessarily and pos-

sibly optimals

We will now show how to test if an assignment is possibly or necessarily opti-
mal (or of at least preference α) and how to find these kinds of assignments.
To do that, we will exploit the relation between possibly and necessarily opti-
mal assignments and the various kinds of interval-based optimal assignments,
shown in Section 4.4.

Necessarily optimal solutions

To find a necessarily optimal solution, we exploit the results shown in Propo-
sitions 2 and 4 (i.e., if ID(P ) 6= ∅ then NO(P ) = ID(P ), and ID(P ) ⊆
NO(P ) ⊆ WID(P )), and thus we perform the following steps:

1. If ID(P ) 6= ∅, then return s ∈ ID(P );

2. If WID(P ) = ∅, then NO(P ) = ∅;

3. Otherwise, return the first solution in WID(P ) that is necessarily op-
timal. If none, NO(P ) = ∅

Testing if a solution is necessarily optimal when ID(P ) 6= ∅ coincides
with testing if it is in ID(P ). Otherwise, we need to test if it is an optimal
solution of some suitably defined SCSPs, as shown by the following theorem.

Theorem 17. Consider an IVSCSP P and an assignments s. Let Qs (resp.,
Qs) be the scenario where every preference associated to a tuple of s is set to
its lower bound (resp., upper bound) and the preferences of all other tuples
are set to their upper bound (resp., lower bound). The following results hold:

• If s ∈ NO(P ), then s ∈ Opt(Qs). Moreover, if the c-semiring is strictly
monotonic, the converse holds as well: s ∈ NO(P ) ⇐⇒ s ∈ Opt(Qs).

• If s ∈ NO(P ) then, for every s′, s ∈ Opt(Qs′). If the c-semiring is
idempotent, the converse holds as well: s ∈ NO(P ) ⇐⇒ for every s′,
s ∈ Opt(Qs′).

Proof: We first show that, if s ∈ NO(P ), then s ∈ Opt(Qs). If s ∈ NO(P ),
then it is optimal in all scenarios and so also in Qs.

We now show that, if the c-semiring is strictly monotonic and if s ∈
Opt(Qs), then s ∈ NO(P ). If s ∈ Opt(Qs), then pref(Qs, s) ≥ pref(Qs, s

′)
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for every other solution s′. For every other s′, let λ (resp., µ) be the combi-
nation of the preference values of tuples associated to s but not to s′ (resp.,
associated to s′ but not to s) in Qs, and let u be the combination of the
preference values of tuples associated to both s and s′ in Qs. Since, for every
s′, pref(Qs, s) ≥ pref(Qs, s

′), then for every s′, λ×u ≥ µ×u that implies that
λ ≥ µ. In fact, if λ < µ, then, by strict monotonicity of ×, then λ×u < µ×u.
For every scenario Qi, for every s′, let λi (resp., µi) be the combination of
the preference values of tuples associated to s′ but not to s (resp., associated
to s′ but not to s) in Qi and let ui be the combination of the preference
values of tuples associated to both s and s′ in Qi. Since Qs is the least fa-
vorable scenario for s, then for every scenario Qi, λi×u ≥ λ×u that implies
λi ≥ λ. In fact, if λi < λ, then, by strict monotonicity, λi × u < λ × u.
Since Qs is the most favorable scenario for the tuples in s′ but not in s,
then µ ≥ µi for every scenario Qi. Therefore, for every scenario Qi, for ev-
ery s′, we have that λ ≥ µ, λi ≥ λ and µ ≥ µi, hence, by monotonicity,
pref(Qi, s) = λi × ui ≥ λ × ui ≥ µ × ui ≥ µi × ui = pref(Qi, s

′), hence s is
optimal in every scenario and so s ∈ NO(P ).

If s ∈ NO(P ), then s is optimal in all the scenarios and so, for every s′, s is
optimal in Qs′. If the c-semiring is idempotent and, for every s′, s ∈ Opt(Qs′),
then s ∈ NO(P ). In fact, assume that s 6∈ NO(P ), then there is a scenario
Q, where s is not optimal, i.e., there is s′ such that pref(Q, s) < pref(Q, s′).
We want to show that this holds also in the scenario Qs′. If we consider the
scenario Q1 obtained from Q by putting the preference value of any tuple
that is in s but not in s′ to its lower bound, then, the preference of s de-
creases or remains the same, by monotonicity, and the preference of s′ does
not change. Hence, pref(Q1, s) ≤ pref(Q, s) < pref(Q, s′) = pref(Q1, s

′), and
so pref(Q1, s) < pref(Q1, s

′). If we consider the scenario Q2 obtained from
Q1 by setting the preference value of any tuple that is in s′ but not in s to
its upper bound, then the preference of s′ increases or remains the same, by
monotonicity, and the preference of s does not change. Hence, pref(Q2, s) =
pref(Q1, s) < pref(Q1, s

′) ≤ pref(Q2, s
′) and so pref(Q2, s) < pref(Q2, s

′). If
we consider the scenario obtained from Q2 by setting the preference value
of the tuples that are in s and s′ to their upper bound, then we have the
scenario Qs′. The preferences of the tuples that are in s and s′ does not
modify pref(Q2, s) and pref(Q2, s

′). In fact, since the c-semiring is idempo-
tent, then pref(Q2, s) (resp., pref(Q2, s

′)) is given by the tuple with the worst
preference of s (resp., s′), and, since pref(Q2, s) < pref(Q2, s

′), pref(Q2, s)
and pref(Q2, s

′) must be given by different tuples, otherwise pref(Q2, s) =
pref(Q2, s

′). Hence, pref(Qs′ , s) = pref(Q2, s) < pref(Q2, s
′) = pref(Qs′, s).

Therefore, there is a solution s′ such s′ 6∈ Opt(Qs′). 2
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The intuition behind this theorem is that, in order for a solution to be
necessarily optimal, it must be optimal also in its least favorable scenario,
when the c-semiring is strictly monotonic, and it must be optimal in the most
favorable scenario of every other solution, when the c-semiring is idempotent.

Necessarily above threshold α

By Proposition 7, we know that s ∈ Nec(P, α) if and only if α ≤ L(s).
Thus, testing whether a solution s is in Nec(P, α) amounts at checking this
condition that takes linear time.

To find a solution in Nec(P, α), we know, by Proposition 7, that Nec(P, α)
is not empty only if α is at most the optimal preference of the worst scenario,
and in such a case any lower-optimal solution is in Nec(P, α). This amounts
to solving one SCSP. However, if the c-semiring is idempotent, it is sufficient
to solve one CSP, as shown by the following theorem.

Theorem 18. Given an IVSCSP P , if the c-semiring is idempotent, then
Nec(P, α) coincides with the set of solutions of cutα(ws(P )).

Proof: Let us denote with SL the set of the solutions of cutα(ws(P )). We
first show that Nec(P, α) ⊇ SL and then we show that Nec(P, α) ⊆ SL. Let
be s a solution of P . If s ∈ SL, then, since cutα(ws(P )) is the CSP obtained
from the worst scenario of P by allowing only tuples with preference greater
than or equal to α, pref(ws(P ), s) ≥ α, by idempotence. Since ws(P ) is the
worst scenario of P , then pref(Qi, s) ≥ pref(ws(P ), s) ≥ α for every scenario
Qi and so s ∈ Nec(P, α). Therefore, Nec(P, α) ⊇ SL. If s ∈ Nec(P, α),
then pref(Qi, s) ≥ α for every scenario Qi and so also for the worst scenario.
Hence, pref(ws(P ), s) ≥ α and so, by definition of cutα(ws(P )), s ∈ SL.
Therefore, Nec(P, α) ⊆ SL. 2

By Proposition 7, we know that Nec(P, α∗) = LO(P ). Therefore, to
find a solution in Nec(P, α∗), it is sufficient to find a solution of the worst
scenario, and thus to solve one SCSP.

Possibly optimal solutions

To find a solution in PO(P ), we can observe that LO(P ), UO(P ), LLO(P ),
and ULO(P ) are all contained in PO(P ) (Propositions 6 and 10) and they
are never empty (Propositions 5 and 9).

To test if a solution is in PO(P ), it is sufficient to test if s is optimal in
one of the two scenarios defined in the following theorem. This amounts to
solving an SCSP.
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Theorem 19. Given an IVSCSP P and an assignment s to the variables of
P , let Qs be the scenario where all the preferences of tuples in s are set to
their upper bound and all other tuples are associated to the lower bound of
their preferences, and let Q∗ be the scenario where all the preferences of the
tuples of s are set to U(s), if U(s) is contained in their preference interval,
and to their upper bound otherwise, and all other tuples are associated to the
lower bound of their preferences. Then,

• if the c-semiring is strictly monotonic, s ∈ PO(P ) ⇐⇒ s ∈ Opt(Qs);

• if the c-semiring is idempotent, s ∈ PO(P ) ⇐⇒ s ∈ Opt(Q∗).

Proof: We first show that, if s ∈ Opt(Qs), then s ∈ PO(P ). If s ∈ Opt(Qs),
then s is optimal in the scenario Qs, and so s ∈ PO(P ). We now show that,
if s ∈ PO(P ) then s ∈ Opt(Qs). If s ∈ PO(P ), then there is a scenario,
say Qi, where s is optimal, that is, pref(Qi, s) ≥ pref(Qi, s

′), for every other
solution s′. Assume to use the same notations used in the proof of Theorem
17. Using these notations, since pref(Qi, s) ≥ pref(Qi, s

′), for every other
solution s′, then, for every other s’, λi×ui ≥ µi×ui in the scenario Qi. This
implies that, for every other s’, λi ≥ µi. In fact, if λi < µi, then, by strict
monotonicity, λi × ui < µi × ui. Since Qs is the most favorable scenario for
s, then for every scenario and so also for the scenario Qi, by monotonicity,
λ×u ≥ λ×ui ≥ λi×ui, that implies λ ≥ λi. In fact, if λ < λi, then, by strict
monotonicity, λ×ui < λi×u. Since Qs is the least favorable scenario for the
tuples in s′ but not in s, then µi ≥ µ for every scenario and so also for Qi.
Hence, since for every s′, λ ≥ λi, λi ≥ µi, and µi ≥ µ, then, by monotonicity,
for every s′, pref(Qs, s) = λ × u ≥ λi × u ≥ µi × u ≥ µ × u = pref(Qs, s′),
hence s is optimal in the scenario Qs.

If s ∈ Opt(Q∗), then s ∈ PO(P ). We now show that, if s ∈ PO(P ),
then s ∈ Opt(Q∗). If s 6∈ Opt(Q∗), then there is a solution s′ such that
pref(Q∗, s′) > pref(Q∗, s). By construction of Q∗, by Theorem 10 and by
idempotency, we have that pref(Q∗, s) = U(s). In fact, by Theorem 10,
pref(Q∗, s) ≤ U(s). Moreover, pref(Q∗, s) 6< U(s). In fact, we now show
that pref(Q∗, s) is given by the combination of the preferences that are all
greater than or equal to U(s). By construction of Q∗ we have two results.
(1) Every tuple of s in Q∗ with preference interval that contains U(s) is as-
signed to U(s) and, by definition of U(s) and by idempotency, there must
be at least one of these preferences. (2) Every tuple with preference interval
that does not contain U(s) is assigned to its upper bound that must be a
value greater than U(s), since, by definition of U(s), the upper bound of
every tuple of s must be greater than or equal to U(s), otherwise the upper
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bound of s is not U(s) but a value lower than U(s), that is a contradic-
tion. Therefore, pref(Q∗, s) 6< U(s) and so pref(Q∗, s) = U(s). If s and s′

have tuples in common, by construction of Q∗, pref(Q∗, s′) ≤ U(s). In such
a case, since we have shown above that pref(Q∗, s) = U(s), and since we
are assuming that there is a solution s′ such that pref(Q∗, s′) > pref(Q∗, s),
then U(s) ≥ pref(Q∗, s′) > pref(Q∗, s) = U(s), and so we have a contra-
diction. If s and s′ have no tuples in common, then, for every scenario Q,
pref(Q, s′) ≥ L(s′) = pref(Q∗, s′) > pref(Q∗, s) = U(s) ≥ pref(Q, s), and so
s 6∈ PO(P ). 2

In Theorem 19 we have characterized possibly optimal solutions for IVSC-
SPs with idempotent c-semiring and for IVCSPs with strictly monotonic c-
semiring. The characterization of possibly optimal solutions for IVSCSPs
with a c-semiring that is neither idempotent nor strictly monotonic is an
open question.

Possibly above threshold α

We know, by Proposition 8, that, given an IVSCSP P and an assignment s,
s is in Pos(P, α) if and only if α ≤ U(s). Thus, to test whether a solution is
in Pos(P, α), it is enough to check this condition, that takes linear time.

If the c-semiring is idempotent, to find a solution in Pos(P, α) it is suffi-
cient to solve one CSP, as shown in the following theorem.

Theorem 20. Given an IVSCSP P over an idempotent c-semiring and an
assignment s, s ∈ Pos(P, α) iff it is a solution of cutα(bs(P )).

Proof: We first show that, if s is a solution of cutα(bs(P )), then s ∈
Pos(P, α). If s is a solution of cutα(bs(P )), then, since cutα(bs(P )) is the
CSP obtained from the best scenario by allowing only tuples with preference
greater than or equal to α, pref(bs(P ), s) ≥ α. Hence, in the best scenario s
has preference greater than or equal to α, hence s ∈ Pos(P, α).

To conclude the proof, we show that if s ∈ Pos(P, α), then s is a so-
lution of cutα(bs(P )). If s ∈ Pos(P, α), then there is a scenario, say Qi,
where pref(Qi, s) ≥ α. Hence, since the preference of a solution in a scenario
is always lower than or equal to its preference in the best scenario, then
pref(bs(P ), s) ≥ pref(Qi, s) ≥ α, and so s is a solution of cutα(bs(P )). 2

By Proposition 8, we know that Pos(P, α∗) = UO(P ). Therefore, to find
a solution in Pos(P, α∗), it is sufficient to find an optimal solution of the best
scenario of P , i.e., a solution in UO(P ), and thus to solve one SCSP.
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Table 4.2: Finding and testing optimal solutions.

Optimality
notion c-semiring Finding Testing

LO(P ) generic 1 SCSP 1SCSP
UO(P ) generic 1 SCSP 1SCSP

IO(P )
generic 1 SCSP 3 SCSPs

idempotent 1SCSP 1CSP
LLO(P ) strictly monotonic 1 SCSP 1 SCSP
WID(P ) idempotent 2 SCSPs + 1 CSP 2SCSPs

ID(P )
generic 2 SCSPs 2 SCSPs

idempotent 1 SCSP + 1 CSP 1 SCSP + 1 CSP

NO(P )
idempotent 2 SCSPs + 2 CSPs 2 SCSPs + 1 CSP

strictly monotonic 1 SCSP 1 SCSP

Nec(P, α)
generic 1 SCSP linear time

idempotent 1 CSP linear time
Nec(P, α∗) generic 1 SCSP linear time

PO(P )
idempotent 1 SCSP 1 SCSP

strictly monotonic 1 SCSP 1 SCSP
Pos(P, α) idempotent 1 CSP linear time
Pos(P, α∗) generic 1 SCSP linear time

Finding and testing optimality notions: summary of the

results

We have provided algorithms to find solutions according to the various opti-
mality notions and also to test whether a given solution is optimal. In most
of the cases, these algorithms amounts to solving a soft constraint problem
as shown in Table 4.2.

4.7 Necessary and possible dominance

Besides finding or testing for optimality, it may sometimes be useful to know
if a solution dominates another one. We will consider four notions of domi-
nance, which are related to the general optimality notions defined above.

Definition 42 ((strictly) dominance). Given a scenario Q, a solution s
strictly dominates (resp., dominates) a solution s′ if and only if pref(Q, s) >
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pref(Q, s′) (resp.,pref(Q, s) ≥ pref(Q, s′)) in the ordering of the considered
c-semiring.

Definition 43 (necessarily (strictly) dominance). Given an IVSCSP P and
two solutions s and s′ of P , s necessarily strictly dominates (resp., necessar-
ily dominates) s′ if and only if, in all scenarios, s strictly dominates (resp.,
dominates) s′. We will denote with NDTOP (P ) (resp., NSDTOP (P )) the
undominated elements in the binary relation given by the necessarily domi-
nance (resp., strictly necessarily dominance).

Definition 44 (possibly (strictly) dominance). Given an IVSCSP P and two
solutions s and s′ of P , s possibly strictly dominates (resp., possibly domi-
nates) s′ if and only if there is at least one scenario where s strictly dom-
inates (resp., dominates) s′. We will denote with with PDTOP (P ) (resp.,
PSDTOP (P )) the undominated elements of the binary relation given by the
possibly dominance (resp., strictly possible dominance).

In the IVSCSP P of Figure 4.1, s1 necessarily strictly dominates s8. In
the best scenario, s2 strictly dominates s4, while in the worst scenario s4

strictly dominates s2. Thus s2 possibly strictly dominates s4, and vice versa.

Theorem 21. Consider an IVSCSP P . The following results hold:

• NO(P ) ⊆ NDTOP (P ) ⊆ NSDTOP (P ).

• NSDTOP (P ) ⊇ PO(P ).

• If the c-semiring is strictly monotonic or idempotent, then NDTOP (P ) ⊆
PO(P ).

• If the c-semiring is strictly monotonic, NSDTOP (P ) = PO(P ).

• The sets PSDTOP (P ) and PDTOP (P ) may be empty.

• If PDTOP (P ) 6= ∅, then |PDTOP (P )| = 1.

• PDTOP (P ) ⊆ PSDTOP (P ) = NO(P ).

Proof: Let s be a solution of P .
We first show that NO(P ) ⊆ NDTOP (P ). If s 6∈ NDTOP (P ), then

there a solution s′ that necessarily dominates s, and so there is a scenario Q
where s′ strictly dominates s, that is, pref(Q, s′) > pref(Q, s). Hence, s is
not optimal in that scenario and so s 6∈ NO(P ).

We now show that NDTOP (P ) ⊆ NSDTOP (P ). If s 6∈ NSDTOP (P ),
then there is a solution s′ that necessarily strictly dominates s and so s′

necessarily dominates s and thus s 6∈ NDTOP (P ).
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We now show that PO ⊆ NSDTOP (P ). If s 6∈ NSDTOP (P ), then
there is a solution s′ that necessarily strictly dominates s, hence, for every
scenario Q, s′ strictly dominates s, that is, for every scenario Q, pref(Q, s′) >
pref(Q, s), hence for every scenario Q, s is not optimal, hence s 6∈ PO(P ).

To prove that NDTOP (P ) ⊆ PO(P ) when P is idempotent, we will show
that if s ∈ NDTOP (P ) then s is optimal in the scenario Qs, where every
tuple in s is set to its maximum preference value and all other tuples are
set to their minimum preference value. This then implies that s is possibly
optimal, and hence in PO(P ), as required.

Suppose, that s ∈ NDTOP (P ) is not optimal in the scenario Qs, so
there exists some solution s′ with pref(Qs, s′) > pref(Qs, s). Since s ∈
NDTOP (P ) there exists a scenario Q with pref(Q, s) > pref(Q, s′) or else
s′ would necessarily dominate s. We have pref(Qs, s′) > pref(Q, s′). Since
the combination is minimum, this means that the preference value of the
worst tuple of s′ (i.e., of the worst constraint) is worse in Q than it is in
Qs. The definition of Qs means that this tuple is also in s′ (i.e., s and s′

agree on the scope of the worst constraint). This implies that pref(Q, s) ≤
pref(Q, s′), which contradicts pref(Q, s) > pref(Q, s′), completing the proof
that NDTOP (P ) ⊆ PO(P ) when P is idempotent.

If the c-semiring is strictly monotonic, NSDTOP (P ) = PO(P ). We
have already shown that NSDTOP (P ) ⊇ PO(P ). We now show that
NSDTOP (P ) ⊆ PO(P ). If s ∈ NSDTOP (P ), then there is no solu-
tion s′ such that for every scenario Qi, pref(Qi, s

′) > pref(Qi, s). Hence,
for every s′, there is a scenario Qi where pref(Qi, s

′) ≤ pref(Qi, s). By
following the same reasoning done above, it is possible to show that, ∀s′,
pref(Qs, s′) ≤ pref(Qs, s). Therefore, s is optimal in Qs and so s ∈ PO(P ).

Furthermore, if the c-semiring is strictly monotonic, then we have
NDTOP (P ) ⊆ PO(P ) since NDTOP (P ) ⊆ NSDTOP (P ) = PO(P ).

PSDTOP (P ) and PDTOP (P ) may be empty, because there can be
cycles in the possibly dominates and possibly strictly dominates relations.

Let us consider the solutions s2 and s4 in the running example. s2 has
preference interval [0.5, 0.9] and s4 has preference interval [0.6, 0.8]. Then, s2

possibly strictly dominates (and so possibly dominates) s4, since s2 strictly
dominates s4 in the best scenario, and s4 possibly strictly dominates (and so
possibly dominates) s2, since s4 strictly dominates s2 in the worst scenario.

If PDTOP (P ) 6= ∅, then |PDTOP (P )| = 1. In fact, assume that
PDTOP (P ) contains two complete assignments s1 and s2. If s1 and s2

are in PDTOP (P ), then s1 does not possibly dominate s2 and s2 does not
possibly dominate s1. Since s1 does not possibly dominate s2, then for every
scenario Q of P , pref(Q, s1) < pref(Q, s2), and, since s2 does not possibly
dominate s1, then for every scenario Q of P , pref(Q, s2) < pref(Q, s1), that
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is a contradiction.
PSDTOP (P ) = NO(P ). In fact, s ∈ PSDTOP (P ) iff there is no solu-

tion s′ such that s′ possibly strictly dominates s, iff there is no solution s′

that strictly dominates s, iff there is no solution s′ such that pref(Q, s′) >
pref(Q, s) for some scenario Q, iff for every solution s′, pref(Q, s) ≥ pref(Q, s′)
for every scenario Q, iff s ∈ NO(P ).

PDTOP (P ) ⊆ PSDTOP (P ). In fact, if s 6∈ PSDTOP (P ), then there
is a solution s′ that possibly strictly dominates s and thus s′ possibly domi-
nates s and so s 6∈ PDTOP (P ). 2

Summarizing, given an IVSCSP P with an idempotent or a strictly mono-
tonic c-semiring, we have the following inclusions, that are shown in Figure
4.4: PDTOP (P ) ⊆ PSDTOP (P ) = NO(P ) ⊆ NDTOP (P ) ⊆ PO(P ) ⊆
NSDTOP (P ). Moreover, when the c-semiring is strictly monotonic, we have
also NSDTOP (P ) = PO(P ). Therefore, the set of the necessarily optimal
solutions of P coincides with the set of the undominated elements of the
binary relation given by the possibly strictly dominance over P , both if the
c-semiring is strictly monotonic and if it idempotent. Moreover, the set of
the possibly optimal solutions of P coincides with the set of the undominated
elements of the binary relation given by the necessarily strictly dominance
over P , if the c-semiring is strictly monotonic.

Figure 4.4: Relation between undominated elements of the binary relation
given by the (strictly) necessarily dominance and the undominated elements
of the binary relation given by the (strictly) possibly dominance for an
IVSCSP P defined over an idempotent or a strictly monotonic c-semiring.

To test if s possibly strictly dominates (resp., possibly dominates) s′ we
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can set each interval associated with s but not with s′ to its upper bound; let
λ be the combination of these values. Then we set each interval associated
with s′ but not with s to its lower bound; let µ be the combination of these
values. Finally, we compare the preference values of s and s′, by testing if
the condition λ×u1×· · ·×uk > µ×u1×· · ·×uk (resp., λ×u1×· · ·×uk ≥
µ×u1×· · ·×uk ) holds for any selections of values u1, . . . , uk in the intervals of
both s and s′. If we have strict monotonicity, testing this condition amounts
to testing if λ > µ (resp., λ ≥ µ). If we have idempotence, we can replace
each ui with its upper bound, and then test the condition.

To test if s necessarily dominates s′, we first check if s possibly strictly
dominates s′. Then:

• If s possibly strictly dominates s′, then there is a scenario where s
strictly dominates s′ and so s′ does not necessarily dominate s. Then,
we check if s′ possibly strictly dominates s. If so, then there is a scenario
where s′ strictly dominates s, hence s does not necessarily dominate s′.
Therefore, s and s′ are incomparable w.r.t. the necessarily dominance
relation and so we conclude negatively. Otherwise, if s′ does not possi-
bly strictly dominates s, then, for every scenario, s dominates s′ and,
since, by hypothesis, there is a scenario where s strictly dominates s′,
then s necessarily dominates s′ and so we conclude positively.

• If s does not possibly strictly dominate s′, then, for every scenario, s′

dominates s, i.e., for every scenario Q, pref(Q, s′) ≥ pref(Q, s). Then,
we check if s′ possibly strictly dominates s. If so, then s′ necessarily
dominates s and so we conclude negatively. Otherwise, if s′ does not
possibly strictly dominates s, then, for every scenario, s dominates
s′, i.e., for every scenario Q, pref(Q, s) ≥ pref(Q, s′), and so, since
by the hypothesis above pref(Q, s′) ≥ pref(Q, s), we have that, for
every scenario Q, pref(Q, s) = pref(Q, s′), hence s does not necessarily
dominates s′ and so we conclude negatively.

To test if s necessarily strictly dominates s′, we follow a reasoning similar
to the one presented above, but we consider the possibly dominance rela-
tion instead of the possibly strictly dominance relation. Moreover, when s
does not possibly dominate s′ (i.e., the second item above), we can conclude
immediately negatively, since in this case s′ necessarily strictly dominates s.

4.8 Multiple intervals

One may wonder if IVSCSPs would be more expressive if we allowed not just
a single preference interval for each assignment, but a set of such intervals.
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For example, instead of giving us the interval [0.1, 0.8], a user could be more
precise and give us [0.1,0.5] and [0.7,0.8]. This would reduce the uncertainty
of the problem. We will now show that all the interval-based optimality no-
tions and all the scenario-based optimality notions that guarantee a certain
level of preference would give the same set of optimals in this more general
setting. Moreover, when the c-semiring is strictly monotonic, also the pos-
sibly and necessary optimality notions give the same set of optimals. Also,
when the c-semiring is idempotent, the necessary optimality notions give the
same set of optimals. In the other cases, we are however able to find approx-
imations of the possibly and necessarily optimal solutions. More precisely,
we have the following results, that are also summarized in Table 4.3.

Theorem 22. Consider an IVSCSP P . Take now a new problem P ′ with
the same variables, domains, and constraint topology as P , where, for each
interval [l, u] in P , there is a set of intervals [l, u1], [l2, u2], . . . , [ln, u] such
that ui < li+1 for i = 1, . . . , n− 1. Then:

• X(P ) = X(P ′) for X ∈ {LO, UO, IO, LLO, ULO, WID, ID}.

• Nec(P, α) = Nec(P ′, α) for all α.

• Pos(P, α) = Pos(P ′, α) for all α.

• NO(P ′) ⊇ NO(P ).

• PO(P ′) ⊆ PO(P ).

• If the c-semiring is strictly monotonic, NO(P ) = NO(P ′) and PO(P ) =
PO(P ′).

• If the c-semiring is idempotent, NO(P ) = NO(P ′).

Proof: To show that X(P ) = X(P ′) for X ∈ {LO, UO, IO, LLO, ULO,
WID, ID}, it is sufficient to recall that all solutions in {LO, UO, IO, LLO,
ULO, WID, ID} are computed by considering for every tuple associated
with interval [l, u] only the lower bound l and the upper bound u that, by
construction of P ′, are the same in P and P ′.

Let s be a complete assignment of P . Let us consider a generic α. To show
that Nec(P, α) = Nec(P ′, α), we first show that Nec(P, α) ⊆ Nec(P ′, α). If
s ∈ Nec(P, α), then, for every scenario Q of P , pref(Q, s) ≥ α. Since
the set of the scenarios of P is a superset of the scenarios of P ′, this holds
also for every scenarios of P ′. Therefore, s ∈ Nec(P ′, α). We now show
that Nec(P ′, α) ⊆ Nec(P, α). If s 6∈ Nec(P, α), then pref(Q, s) < α for
some scenario Q of P and this holds also for the worst scenario, since
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pref(ws(P ), s) ≤ pref(Q, s) < α. Since the worst scenario is one of the
scenario of P ′, then s 6∈ Nec(P ′, α).

To show that Pos(P, α) = Pos(P ′, α), we first show that Pos(P ′, α) ⊆
Pos(P, α). If s ∈ Pos(P ′, α), then for some scenario Q of P ′, pref(Q, s) ≥ α.
Since every scenario of P ′ is also a scenario of P , then s ∈ Pos(P, α). We now
show that Pos(P, α) ⊆ Pos(P ′, α). If s ∈ Pos(P, α), then pref(Q, s) ≥ α
for some scenario Q of P , and this holds also for the best scenario, since
pref(bs(P ), s) ≥ pref(Q, s) ≥ α. Since the best scenario is one of the scenar-
ios of P ′, then s ∈ Pos(P ′, α).

Since the set of the scenarios of P is a superset of the scenarios of P ′,
then NO(P ) ⊆ NO(P ′). In fact, if s ∈ NO(P ), then it is optimal for every
scenario of P and also for every scenario of P ′.

Moreover, PO(P ′) ⊆ PO(P ). In fact, if s ∈ PO(P ′), then there is
a scenario of P ′ where s is optimal and, as every scenario of P ′ is also a
scenario of P , then s ∈ PO(P ).

If the c-semiring is strictly monotonic, then NO(P ) = NO(P ′). By
Theorem 17, we know that, if the c-semiring is strictly monotonic, then
s ∈ NO(P ) iff s ∈ Opt(Qs), where Qs is the scenario where every preference
associated to a tuple of s is set to its lower bound and the preferences of all
other tuples are set to their upper bound. Since Qs is one of the scenarios of
P ′, it is possible to show that s ∈ NO(P ′) iff s ∈ Opt(Qs), by following the
same proof of Theorem 17. Hence, NO(P ′) = NO(P ).

Similarly, if the c-semiring is strictly monotonic, then PO(P ) = PO(P ′).
By Theorem 19, we know that, if the c-semiring is strictly monotonic, then
s ∈ PO(P ) iff s ∈ Opt(Qs), where Qs is the scenario where all the preferences
of tuples in s are set to their upper bound and all other tuples are associated
to their lower bound. Since Qs is one of the scenarios of P ′, it is possible
to show, by following the same proof of Theorem 19, that s ∈ PO(P ) iff
s ∈ Opt(Qs).

If the c-semiring is idempotent, NO(P ) = NO(P ′). In fact, by Theorem
17, we know that s ∈ NO(P ) iff for every s′, s ∈ Opt(Qs′), where Qs′ is the
scenario where we put every tuple of s′ to its upper bound and every other
tuple to its lower bound. Since, for every s′, Qs′ is a scenario of P ′, then by
following the same proof of Theorem 17, we can show that s ∈ NO(P ′) iff
for every s′, s ∈ Opt(Qs′), Hence, NO(P ′) = NO(P ). 2
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Table 4.3: Comparison of the optimality sets of problems P (with single
intervals) and P ′ (with multiple intervals), as defined in Theorem 22.

Optimality notion c-semiring Comparison

LO generic LO(P ) = LO(P ′)
UO generic UO(P ) = UO(P ′)
IO generic IO(P ) = IO(P ′)

LLO generic LLO(P ) = LLO(P ′)
ULO generic ULO(P ) = ULO(P ′)

Nec(α) generic Nec(P, α) = Nec(P ′, α)
Pos(α) generic Pos(P, α) = Pos(P ′, α)

NO
generic NO(P ) ⊆ NO(P ′)

idempotent NO(P ) = NO(P ′)
strictly monotonic NO(P ) = NO(P ′)

PO
generic PO(P ) ⊇ PO(P ′)

strictly monotonic PO(P ) = PO(P ′)

4.9 Experimental results

Instance generator

We randomly generated fuzzy IVMSPs (as defined in Section 4.4) according
to the following parameters:

• m: number of meetings (default 12);

• n: number of agents (default 5);

• k: number of meetings per agent (default 3);

• l: number of time slots (default 10);

• min and max: minimal (default 1) and maximal (default 2) distance
(in time slots) between two locations;

• i: percentage of preference intervals (default 30%).

Given such parameters, we generate an IVSCSP with m variables, repre-
senting the meetings, each with domain of size l. The domain values 1, . . . , l
represent the time slots, that are assumed to all have the same length equal
to one time unit, and to be adjacent to each other. Thus, for example, time
slot i ends when time slot i+1 starts. Given two time slots i and j > i, they
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can be used for two meetings only if the distance between their locations (see
later) is at most j − i− 1.

For each of the n agents, we generate randomly k integers between 1 and
m, representing the meetings he needs to participate in. Also, for each pair
of time slots, we randomly generate a integer between min and max that
represents the time needed to go from one location to the other one. This
will be called the distance table.

Given two meetings, if there is at least one agent who needs to participate
in both, we generate a binary constraint between the corresponding variables.
Such a constraint is satisfied by all pairs of time slots that are compatible
according to the distance table.

We then generate the preferences over the domain values and the com-
patible pairs in the binary constraints, by randomly generating a number in
(0, 1] or an interval over (0, 1], according to the parameter i.

As an example, assume to have m = 5, n = 3, k = 2, l = 5, min = 1,
max = 2, and i = 30. According to these parameters, we generate a IVMSP
with the following features:

• 5 meetings: m1, m2, m3, m4, and m5;

• 3 agents: a1, a2, and a3;

• 5 time slots: t1, . . . , t5;

• agents’ participation to meetings: we randomly generate 2 meetings for
each agent, for example

– a1 must participate in meetings m1 and m2;

– a2 must participate in meetings m4 and m5;

– a3 must participate in meetings m2 and m3;

• distance table: we randomly generate its values, for example as in Table
4.4;

• we randomly generate the preferences associated to domain values and
compatible pairs in the constraints, in a way that 30% of the preferences
are preference intervals contained in (0, 1] and 70% of the preferences
are single values in (0, 1].

In this example, a feasible meeting scheduling is obtained by assigning the
following time slots to meetings: (m1, t3), (m2, t1), (m3, t5), (m4, t2), (m5, t5).
The preference interval for such a scheduling will depend on the preference
values in the domains and constraints. More precisely, as we use preference
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Table 4.4: Distance between meeting locations.

1 2 3 4 5

1 0 1 2 1 2
2 1 0 2 1 2
3 2 2 0 1 1
4 1 1 1 0 2
5 2 2 1 2 0

values between 0 and 1 and we adopt the fuzzy criteria, the preference interval
will be [l, u], where l (resp., u) is the minimum among all the lower (resp.,
upper) bounds of the preference intervals selected by this assignment in the
constraints.

Experimental tests

We implemented our algorithms using a Java (version 1.6.0 07) c-semiring
based framework and the Choco constraint programming toolkit (version
1.2.06). Experiments were run on AMD Opteron 2.3GHz machines with
2GB of RAM.

We used 4 different test sets, each one generated varying in turn n, m, k,
and i, while fixing the others to their default values. Moreover, α, i.e., the
minimum level of preference used in Pos(P, α) and Nec(P, α), is always 0.5.2

Each data point is the average of the execution on 50 problem instances.
Figure 4.5(a) shows the execution time (measured in milliseconds) of the

algorithms to find a solution, belonging to each type of the interval-based
optimality notions, as a function of the number of agents. We can notice that
there is a peak when the number of agents is 8, which represents problems
with a small number of solutions. With more agents, the problems have no
solution, while with a smaller number of agents there are many solutions. In
both such cases, it is easy to find a feasible meeting scheduling.

For the more general optimality notions, Figure 4.5(b) shows that the
behavior is the same except for POS(0.5) and NEC(0.5) because, in these
algorithms, we need to solve a CSP, while in the other algorithms we solve
at least one SCSP. In fact, POS(0.5) and NEC(0.5) takes approximately the
same time no matter the number of agents in the problem.

Figures 4.6(a) and 4.6(b) show the performance of the algorithms for all
optimality notions, as a function of the number of meetings per agent. Since

2In the following figures, we will omit writing P in the names of the algorithms.
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Figure 4.5: Execution time (msec.) as a function of number of agents.
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Figure 4.6: Execution time (msec.) as a function of meetings per agent.
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Figure 4.7: Execution time (msec.) as a function of the number of meetings.
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Figure 4.9: Existence of WID, ID, and NO solution, varying agents and
meetings per agent.
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Figure 4.10: Existence of WID, ID, and NO solution, varying meetings and
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LO(P ) = Nec(P, α∗) and UO(P ) = Pos(P, α∗), these curves in the two
graphs coincide. The lines corresponding to the WID algorithm in Figure
4.6(a) and to the NO algorithm in Figure 4.6(b) are similar, and are above
the others in both figures, because the WID algorithm needs to find the
lower and upper optimal preference, to perform two cuts, and to solve the
CSP obtained combining the cuts, while the other algorithms (expect NO)
only need to solve an SCSP. Moreover, the WID algorithm is a sub-routine
of the NO algorithm.

Notice that finding solutions in NO, Nec(P, α∗), or POS(P, α∗) is more
expensive than finding solutions in Nec(P, 0.5), or POS(P, 0.5), as expected
since α∗ and α∗ are the best preference levels that one can reach.

The peak at 4 meetings per agents, shown in Figures 4.6(a) and 4.6(b),
corresponds to problems which are more difficult to solve because they have
very few solutions. This is analogous to what we have noticed in Figures
4.5(a) and 4.5(b) with the peak at 8 agents.

Figures 4.7(a) and 4.7(b) show that the execution time increases expo-
nentially when the number of meetings (i.e., the number of variables in the
problem) arises. In this case, the execution time is mainly influenced by the
size of the problems, no matter which algorithm is used.

Figures 4.8(a) and 4.8(b) show that the execution time is not influenced
by the amount of intervals in the problem. As in all the other graphs, finding
a WID or an NO solution is more expensive than finding other kinds of
solutions. The two peaks at 20% and 60% of intervals are due to two very
hard problems inside the test set.

Figure 4.9(a) and Figure 4.9(b) consider those optimality sets that can
be empty (that is, WID, ID, and NO) and show the percentage of times a
solution of a certain kind exists. Clearly, when there is no solution, WID,
ID and NO contain all assignments and coincide. This is the case when the
number of meetings per agents is larger (more than 3 meetings per agent in
our settings). When we consider less constrained problems with 2-3 meetings
per agent, as expected, we have more WID solutions than ID and NO solu-
tions. Notice that the size of WID, ID and NO varies very little when the
number of agents is between 4 and 8 (Figure 4.9(b)). However, when such a
number is between 8 to 10, the size of the solution sets is larger because there
are more instances with no solution. If we vary the number of meetings, we
can see in Figure 4.10(a) that the number of such a kind of solutions tends to
decrease slightly as the number of variables (i.e. meetings) arises. In fact, a
larger number of variables may imply a larger number of constraints, which
may imply a smaller number of WID, ID, and NO solutions.

In figure 4.10(b) we consider instances where we vary the percentage of
intervals from 10 to 100%. When incompleteness is higher than 40%, most



174 Chapter 4. Imprecision in soft constraints

of the instances don’t have WID, ID, and NO solutions. This is predictable,
because a larger number of intervals makes it less probable the existence of
solutions that are optimal in all scenarios, since the number of scenarios is
larger.

4.10 Related work

Previous approaches to uncertainty in soft constraint problems assumed ei-
ther a complete knowledge of the preference value, or a complete ignorance.
In other words, a preference value in a domain or a constraint was either
present or not [22, 33, 72]. Then, the solver was trying to find optimal solu-
tions with the information given by the user or via some form of elicitation of
additional preference values. Here instead we consider a more general setting
where the user may specify preference intervals. Also, we assume that the
user has given us all the information he has about the problem, so we do
not resort to preference elicitation (or the elicitation phase is over with the
user being unable or unwilling to give us more precise information). Another
work that analyzes the impact of the uncertainty in soft constraint problems
is shown in [57]. However, while we assume to have only preference intervals,
in [57] it is assumed that all the preferences are given and some of them
are tagged as possibly unstable and are provided with a range, of possible
variations, around their value. The work by Petit, Regin and Bessiere can-
not model the problems we consider since costs are single values and not
intervals.

Other papers consider preference intervals, such as the work in [12]. How-
ever, these lines of work focus on specific preference aggregation mechanisms
(such as the Choquet integral) and of modelling issues without addressing the
algorithmic questions related to finding optimal solutions according to differ-
ent risk attitudes. We are instead interested in providing efficient algorithms
to find optimal solutions according to different risk attitudes (that we call
pessimistic and optimistic), besides the modelling concerns. For this reason,
we model imprecise problems within an extension of soft constraints that
allows us to exploit the existing machinery to solve soft constraint problems
to obtain optimal solutions in the presence of preference intervals.

4.11 Conclusions

Given an IVSCSP P , the solutions in NO(P ) are certainly the most at-
tractive, as they are the best ones in every scenario. However, if there is
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none, we can look for solutions in Nec(P, α∗) (which coincide with solutions
in LO(P )), which guarantee a preference level α∗ in all scenarios. If α∗ is
too low, we can consider other notions of optimality; for example, if we feel
optimistic, we can consider the solutions in Pos(P, α∗)(which coincide with
solutions in UO(P )): they guarantee that it is possible to reach a higher level
of preference, although not in all scenarios.

If we allow users to associate to each partial assignment in the constraints
not just a single interval, but a set of multiple intervals, this would reduce
the uncertainty of the problem. However, when the c-semiring is strictly
monotonic (resp., idempotent), this added generality does not change the set
of the optimal solutions in any of the considered notions (resp., in any of the
considered notions with the exception of the possibly optimal notions). This
means that a level of precision greater than a single interval does not add
useful information when looking for an optimal solution.
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Chapter 5

Local search for stable

marriage problems

In this chapter we consider the stable marriage problem and we study the
effectiveness of a local search approach in finding a stable marriage and sam-
pling the lattice of all stable marriages. The intent is to develop fair procedure
to find stable marriages.

Some of the results in this chapter are included in the following articles:

• Local search algorithms on the Stable Marriage Problem: Experimental
Studies, M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, T. Walsh, in
proc. of the 19th European Conference on Artificial Intelligence (ECAI
2010), IOS Press, 2010, short paper.

• Local search for stable marriage problems, M. Gelain, M. S. Pini, F.
Rossi, K. B. Venable, T. Walsh, in proc. of the 3rd International
Workshop on Computational Social Choice (COMSOC 2010), Dussel-
dorf, Germany, September 2010.

5.1 Motivations

Gale and Shapley give a quadratic time algorithm to solve the stable marriage
problem, based on a series of proposals of men to women (or vice versa) [26].
The problem has received a great deal of attention also from the constraint
programming community. Various CP models have been proposed [28] and
used in both centralized [69, 68] and distributed solving schemes [10].

However, such approaches aim to find a stable but “extreme” marriage
(either the male-optimal or the female-optimal) by favouring one gender at
the expense of the other. In this chapter we are interested in finding a
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“fairer” approach to find stable marriages which samples well the set of all
stable marriages. This means not to find a marriage in the middle of the
lattice with the same distance from the top and from the bottom, but a
method to find stable marriages that does not favour one particular gender
during the search. To do this, we will employ a local search approach because
its intrinsic randomness can be useful to guarantee the fairness of the search
process and because it can be easily extended to deal with stable marriage
problems with ties and incomplete lists which is NP-hard (see Chapter 6 for
more details).

Our local search approach follows a simple schema: we start from a ran-
domly chosen marriage and, at each step, we move to a neighbor marriage
by minimizing the distance to stability, which is measured by the number of
blocking pairs. To avoid redundant computation due to the possibly large
number of blocking pairs, we consider only those that are undominated, since
their elimination minimizes the distance to stability. Random moves are also
used, to avoid stagnation in local minima. The algorithm stops when it finds
a stable marriage, or when a given limit on the number of steps is reached.

5.2 A local search approach

We adapt the classical local search schema to SMs as follows. Given an SM
instance P , we start from a randomly generated marriage M . Then, at each
search step, we compute the set BP of blocking pairs in M and we compute
the neighborhood, which is the set of all marriages obtained obtained by
removing one of the blocking pairs in BP from M . More precisely, let M a
marriage, bp = (m, w) a blocking pair in M , m′ = M(w), and w′ = M(m).
Then, removing bp from M (written M\bp) means obtaining a marriage
M ′ in which m is married with w and m′ is married with w′, leaving the
other pairs unchanged. To select the neighbor M ′ of M to move to, we
use an evaluation function that counts the number of blocking pairs in all
neighboring marriages, and we move to the one with the smallest number of
blocking pairs.

To avoid stagnation in a local minimum of the evaluation function, at
each search step we perform a random walk with probability p (where p is
a parameter of the algorithm), which removes a randomly chosen blocking
pair in BP from the current marriage M .

The algorithm terminates if a stable marriage is found or when a maximal
number of search steps or a timeout is reached. The pseudocode of our
algorithm, called SML, is shown in Algorithm 4.

Notice that in line 4 of algorithm SML we compute all blocking pairs in



5.2 A local search approach 179

Algorithm 4: SML

Input : a marriage problem P of size n, a timeout max time, a
maximal number of steps max steps, a probability p

Output: a stable marriage M

M ← random marriage1

steps← 02

repeat3

BP ← blocking pairs in M4

if |BP | = 0 then5

return M6

if rand() ≤ p then7

select randomly a blocking pair bp in BP8

M ← M\bp9

else10

minbp← n ∗ (n− 1)11

foreach blocking pair b in BP do12

M ′ ← M\b13

nbp← number of blocking pairs in M ′
14

if nbp < minbp then15

bestbp ← b, minbp← nbp16

M ← M\bestbp17

steps← steps + 118

until steps ≥ max steps or current time > max time ;19

the current marriage. The number of such blocking pairs may be very large.
Also, some of them may be useless, since their removal would surely lead to
new marriages that will not be chosen by the evaluation function. This is
the case for the so-called dominated blocking pairs. We will modify SML to
consider only undominated blocking pairs.

Definition 45 (dominance in blocking pairs). Let m be a man and (m, w)
and (m, w′) two blocking pairs. Then (m, w) dominates (from the men’s point
of view) (m, w′) if m prefers w to w′. A similar reasoning can be done from
the women’s point of view.

Definition 46 (undominated blocking pair). A men- (resp., women-) un-
dominated blocking pair is a blocking pair such that there is no other blocking
pair that dominates it from the men’s (resp., women’s) point of view. When
the point of view (men or women) is clear or not important, we will omit it.



180 Chapter 5. Local search for stable marriage problems

men’s preference lists women’s preference lists
1: 5 7 1 2 6 8 4 3 1: 5 3 7 6 1 2 8 4
2: 2 3 7 5 4 1 8 6 2: 8 6 3 5 7 2 1 4
3: 8 5 1 4 6 2 3 7 3: 1 5 6 2 4 8 7 3
4: 3 2 7 4 1 6 8 5 4: 8 7 3 2 4 1 5 6
5: 7 2 5 1 3 6 8 4 5: 6 4 7 3 8 1 2 5
6: 1 6 7 5 8 4 2 3 6: 2 8 5 4 6 3 7 1
7: 2 5 7 6 3 4 8 1 7: 7 5 2 1 8 6 4 3
8: 3 8 4 5 7 2 6 1 8: 7 4 1 5 2 3 6 8

Table 5.1: An example of an SM of size 8.

It is easy to see that, if M is an unstable marriage, (m, w) an undominated
blocking pair in M , m′ = M(w), w′ = M(m), and M ′ = M\(m, w), there
are no blocking pairs in M ′ in which m and w are involved. This property
would not be true if we remove a dominated blocking pair. This is why we
would like to focus on the removal of undominated blocking pairs to pass
from one marriage to another one in our local search algorithms.

Consider the problem in Table 5.1 and the marriage 2 7 4 8 6 3 5 1. The
blocking pair (m8, w4) dominates (from the men’s point of view) (m8, w2). If
we remove (m8, w2) from the marriage, (m8, w4) will remain. On the other
hand, removing (m8, w4) also eliminates (m8, w2). Thus, removing (m8, w4)
is more useful than removing (m8, w2).

In algorithm UB1, we find the undominated blocking pairs from the men’s
point of view and, among those, we keep only the undominated blocking
pairs from the women’s point of view. This is done using array upb which,
after lines 2-10, contains, for each woman w, a man m such that (m, w) is an
undominated blocking pair from both women’s point of view and men’s point
of view, if it exists. At the end of algorithm UB1, the set BP of blocking
pairs returned contains at most one undominated blocking pair for each man
and woman.

We call SML1 the algorithm obtained from SML by using algorithm UB1
to compute the blocking pair set BP in line 4 of SML. Notice that, by using
the undominated blocking pairs instead of all the blocking pairs, we also limit
the size of the neighborhood, since each man or woman is involved in at most
one of the undominated blocking pairs found by UB1, thus we have at most
2n neighboring marriages to evaluate.

Let us now analyze more carefully the set of blocking pairs obtained
by procedure UB1. Consider the case in which a man mi is in two blocking
pairs, say (mi, wj) and (mi, wk), and assume that (mi, wj) dominates (mi, wk)
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Algorithm 5: UB1

Input : a marriage problem P of size n, a marriage M
Output: a set BP of blocking pairs.

BP ← ∅1

ubp← array of length n with indices w1, . . . , wn2

foreach wi, i = 1..n do ubp[wi]← null3

foreach mj, j = 1..n do4

found← false5

foreach (wi in mj’s list better than M(mj)) and (!found)6

do

if (mj , wi) is a blocking pair then7

if ubp[wi] = null or wi prefers mj to ubp[wi] then8

ubp[wi]← mj9

found← true10

foreach wi, i = 0..n do11

if ubp[wi] 6= null then12

BP ← BP ∪ {(ubp[wi], wi)}13

return BP14

from the men’s point of view. Then, let wj be in another blocking pair,
say (mz, wj), such that (mz, wj) dominates (mi, wj) from the women’s point
of view. In this situation, UB1 returns (mz, wj). The elimination of this
blocking pair automatically eliminates (mi, wj) from the marriage, since it
is dominated by (mz, wj); however, it does not eliminate the blocking pair
(mi, wk). We would like to obtain a new algorithm that will also return
the blocking pair (mi, wk), so to avoid having to consider it again in the
subsequent step of the local search algorithm. This is the rationale underlying
algorithm UB2.

In UB2, blocking pairs are found by scanning the men’s preference lists.
At each step of such a scan, array pos is used to contain, for each man, the
position of the next woman in men’s preference lists. The Boolean array
fnd tells us, for each man, if he is in an undominated blocking pair from the
men’s point of view. Finally, array ubp contains, for each woman w, the man
m such that (m, w) is an undominated blocking pair from the point of view
of w.

The set of blocking pairs returned by UB2 is larger than that returned by
UB1; however, it still contains at most one blocking pair for each man. Some
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Algorithm 6: UB2

Input : a marriage problem P of size n, a marriage M
Output: a list BP of undominated blocking pairs.

pos← array of length n with the men as indices.1

fnd← boolean array of length n with the men as indices.2

ubp← array of length n with the women as indices.3

R(mj , M(mj))← position of woman M(mj) in mj ’s preference4

list.
for i=0 to n do ubp[wi]← null, pos[mi]← 1,5

fnd[mi]← false
finished← false, BP ← ∅6

while !finished do7

foreach mj, j = 1..n do8

for i = pos[mj] to R(mj , M(mj)) and !fnd[mj ] do9

if (mj , wi) is a blocking pair then10

if ubp[wi] = null or wi prefers mj to ubp[wi]11

then

if wi prefers mj to ubp[wi] then12

fnd[ubp[wi]] = false13

ubp[wi]← mj14

fnd[mj]← true15

pos[mj ]← i + 116

finished← true17

foreach mi, i = 0..n do18

if !fnd[mi] and pos[i] < R(mi, M(mi)) then19

finished← false20

for i=0 to n do21

if ubp[i] 6= null then22

BP ← BP ∪ {(ubp[wi], wi)}23

return BP24

of the added blocking pairs involve men that are not involved in the blocking
pairs of UB1, while other added blocking pairs improve the blocking pairs in
UB1 from men’s point of view. We call SML2 the algorithm obtained from
SML by using UB2 to compute BP in line 4.

Since dominance between blocking pairs is defined from one gender’s point
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of view, at each search step we change the role of the two genders. For
example, in UB1, in one step we find the undominated blocking pairs from
the men’s point of view and, among those, we keep only the undominated
blocking pairs from the women’s point of view, and in the following step we
do the opposite: we find the undominated blocking pairs from the women’s
point of view and, among those, we keep only the undominated blocking
pairs from the men’s point of view.

In line 14 of Algorithm SML, the evaluation function counts the number of
blocking pairs in each neighboring marriage, to select the most promising one
(i.e., the one with smallest number of blocking pairs). Notice that computing
the blocking pairs of a SM of size n takes O(n2) time for every neighbor
obtained removing a blocking pair from the current (unstable) marriage.

Summarizing, we have defined three algorithms, called SML, SML1, and
SML2, to find a stable marriage for a given SM instance. These algorithms
differ only in the set of blocking pairs considered when defining the neigh-
borhood. Due to their ability to restart, our algorithms have the PAC (prob-
abilistically approximate complete) property [37]. That is, as their runtime
goes to infinity, the probability that the algorithm does not return an optimal
solution goes to zero. Starting from the initial marriage, the algorithm per-
forms one or more steps in which we remove a blocking pair. This sequence
of blocking pair removal have been shown to converge to a stable marriage
with non-zero probability in the context of SMs with incomplete preference
lists [63].

5.3 Experimental evaluation

We tested our algorithms on randomly generated sets of SM instances. We
generated stable marriage problems of size n using the impartial culture
model (IC) [34] which assigns to each man and to each woman a preference
list uniformly chosen from the n! possible total orders of n persons. This
means that the probability of any particular ordering is 1/n!.

Experimental results

We measured the performance of our algorithms in terms of number of search
steps. For these tests, we generated 100 SMs for each of the following sizes:
100, 200, 300, 400 and 500. In Figure 5.1, we can see that SML2 always takes
fewer search steps than SML1 and the difference becomes larger as problem
size increases. We do not show results for SML since it is much worse than
the others even for small sizes. Thus, from now on, we will focus on SML2.
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Figure 5.1: Average number of steps for SML1 and SML2.

Figure 5.2 shows the runtime distribution of SML2. We can see that it
is able to find a stable marriage for all the problems in the test set within
about 3000 steps (notice that, for convenience, we used a logarithmic scale
in the x axis). Figure 5.2 also shows that, for each set of problems of the
same size, the probability to find a stable marriage grows very fast within a
small interval of search steps. This means that it is possible to predict the
amount of steps needed by SML2 to find a stable marriage with a reasonable
precision. For example, we can say that, given an SM instance of size 100,
and running SML2 for 300 steps, we are almost sure that it will find a stable
marriage. We also study how fast SML2 converges to a stable marriage, by
measuring the ratio between the number of blocking pairs and the size of
the problem during the execution. Figure 5.3 shows that SML2 has a very
simple scaling behavior. Let us denote by 〈b〉 the average number of blocking
pairs of the marriage found by SML2 for SMs of size n after t steps. Then
the experimental results shown in Figure 5.3 show a very good fit with the
function

〈b〉 = an22
−bt
n (5.1)

where a and b are constants computed empirically (a ≈ 0.25 and b ≈ 5.7).
In fact, Figure 5.3 shows that the analytical function 〈b〉 has practically the
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same curve as the experimental data. The figure shows also that the average
number of blocking pairs, normalized by dividing it by n, decreases during
the search process in a way that is independent from the size of the problem.

We can use function 〈b〉 Equation (5.1) to conjecture the runtime behavior
of our local search method. Consider the median number of steps, tmed, taken
by SML2. Assume this occurs when half the problems have one blocking pair
left and the other half have zero blocking pairs. Thus, 〈b〉 = 1

2
. Substituting

this value in the equation in (5.1), we get:

1

2
= an22

−btmed
n

solving for tmed, and grouping constant terms, we get

tmed = cn(d + 2log2(n)) (5.2)

Hence, we can conclude that tmed grows as O(nlog(n)).
We then fit the equation for tmed to the experimental data (using c ≈ 0.26

and d ≈ −5.7). The result is shown in Figure 5.4, where we can see that the
experimental data have the same curve as function tmed. This means that
we can use such an equation to predict the number of steps our algorithms
needs to solve a given SM instance.
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Sampling the stable marriage lattice

We now evaluate the sampling capability of SML2 over the lattice of stable
marriages of a given SM. To do this, we randomly generated 100 SM instances
for each size between 10 and 100, with step 10. Then, we ran the SML2
algorithm 500 times on each instance.

To evaluate the sampling capabilities of SML2, we first measure the dis-
tance of the found stable marriages (on average) from the male-optimal mar-
riage (the one that would be returned by the GS algorithm).

Given an SM P , consider a stable marriage M for P . The distance of
M from Mm is the number of arcs from M to Mm in the Hasse diagram
of the stable marriage lattice for P , and will be denoted by dm(M, P ). We
will instead denote with dmw(P ) the distance between the male and female
optimal for P . For each SM instance, we compute the average normalized
distance from the male-optimal marriage considering 500 runs. Notice that
normalizations is needed since different SM instances with the same size
may have a different number of stable marriages in their lattice. Then, we
compute the average Dm of these distances over all the 100 problems with
the same size, which is therefore formally defined as follows:

Dm =
1

100

100
∑

j=1

1

500

500
∑

i=1

dm(Mi, Pj)

dmw(Pj)
(5.3)

If Dm is equal to 0, it means that all the stable marriages returned co-
incide with the man-optimal marriage. On the other extreme, if Dm = 1,
it means that all stable marriages returned coincide with the female-optimal
one. Figure 5.5 shows that, for the stable marriages returned by algorithm
SML2, the average distance from the male-optimal is around 0.5. This is
encouraging but not very informative, since also an algorithm which always
returns the same stable marriage, with distance 0.5 from the male-optimal,
would have Dm = 0.5. The same is for an algorithm that returns the male-
optimal half the times and the female-optimal the other half.

To have more informative results on the sampling capabilities of SML2,
we consider the entropy of SML2, that is, the uncertainty associated with
the outcomes of the algorithm. Let f(Mi) the frequency that SML2 finds a
marriage Mi for an SM instance P , that is:

f(Mi) =
1

500

500
∑

j=1

1Mi
(cj) (5.4)

where 1Mi
is the indicator function that returns 1 if in the c-th execution

the algorithm finds Mi, and 0 otherwise. The entropy E(P ) for each SM
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instance P (i.e., for each lattice) of size n is then:

E(P ) = −
∑

i=1∈{1..|S|}

f(Mi)log2(f(Mi)) (5.5)

where S is the set of all possible stable marriages of P . In an ideal case,
when each node in the stable marriage lattice has a uniform probability of
1/|S| to be reached, the entropy is log2(|S|). On the other hand, the worst
case is when it is returned always the same stable marriage, and the entropy
is thus 0. Since we want a measure that is independent of the problem’s size,
we consider a normalized entropy, that is E(P )/log2(|S|), which is in [0,1].

As we have 100 different problems for each size, we compute the average
of the normalized entropies for each class of problems with the same size:

En =
1

100

100
∑

i=1

E(Pi)/log2(|Si|) (5.6)

where Si is the set of stable marriages of Pi.
Figure 5.6 shows that SML2 is not far from the ideal behavior. In fact,

the normalized entropy starts from a value of 0.85 at size 10, decreasing to
above 0.6 as the problem’s size grows.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

av
er

ag
e 

no
rm

al
iz

ed
 d

is
ta

nc
e

problem’s size

Dm

Figure 5.5: Average normalized distance Dm for SML2.



5.3 Experimental evaluation 189

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

av
er

ag
e 

no
rm

al
iz

ed
 e

nt
ro

py

problem’s size

SML2

Figure 5.6: Entropy of SML2.

Considering both Figures 5.5 and 5.6, we can claim that SML2 samples
the stable marriage lattice very well. In fact, the entropy tells us that the
uncertainty to find a specific stable marriage is very high. Considering also
the distance Dm (Figure 5.5), the possible outcomes appear to be equally
distributed along the paths from the top to the bottom of the lattice.

Comparing to a Markov chain approach

Markov chain Monte Carlo methods [3] are a class of algorithms for sampling
from probability distributions based on constructing a Markov chain with
the desired distribution as its equilibrium distribution. A Markov chain is a
discrete random process with the property that, given the present state, the
future does not depend on the past.

Roughly speaking, the principle is to build a succession of states, and
once convergence is reached, the consecutive states are assumed to be drawn
from the target probability distribution. With these methods, it is possible
to sample from general probability distributions.

The difficult task in sampling using such methods is not constructing
the Markov chain but instead is to determine how many steps are needed
to converge to the stationary distribution within an acceptable error. If
the chain reaches the desired distribution quickly starting from an arbitrary
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state, the chain is said to have a rapid mixing time. The mixing time τ(ǫ) of
a Markov chain is the time to come within ǫ total variation distance (that is
the largest possible difference between the probabilities that two probability
distributions can assign to the same event) of its stationery distributions (i.e.
the desired distribution to converge to). A Markov chain is rapidly mixing
if the mixing time is upper bounded by a polynomial. If the mixing time is
exponential, the chain is slowly mixing. In [4], Bhatnagar et al. use a Markov
chain approach to sample the stable marriage lattice for different families of
allowable preference sets.

Since the aim is to sample the stable marriage lattice with uniform prob-
ability, they define the Markov chain by using rotations exposed in each
stable marriage. More precisely, suppose that Mi is current marriage. Then
the next marriage Mi+1 is computed follows:

• with probability 1/3: it randomly chooses a man and, if he is part of a
woman-improving rotation ρ, it moves to Mi+1 = Mi/ρ;

• with probability 1/3: it randomly chooses a man and, if he is part of a
man-improving rotation ρ, it moves to Mi+1 = Mi/ρ;

• with probability 1/3, it moves to Mi+1 = Mi.

Since a rotation and its inverse contain the same people, and the proba-
bility of picking a particular rotation is proportional to the number of couples
it contains, this Markov chain is reversible. Since this chain is aperiodic (i.e.,
returns to state i can occur at irregular times) and irreducible (i.e., it con-
nects the state space of the stable marriages), it converges to the uniform
distribution over the stable marriages.

In [4] the authors show that this Markov chain approach has an exponen-
tial convergence time in their test sets.

We compared algorithm SML2 with the Markov chain random walk al-
gorithm (MC) just defined. We first plot the entropy and distance from the
male-optimal (in Figures 5.7 and 5.8 respectively) of MC computed on ex-
ecutions varying the number of steps from 10 to 200. We can see the the
entropy of MC increases quite rapidly but the distance from the top of the
lattice increases more slowly.

For each problem instance in the test set, we started the MC algorithm
from the male optimal marriage and took the stable marriage returned by
MC after exactly the same number of steps needed by SML2 to find a stable
marriage for that instance. Then we measured the entropy and the distance
from the male optimal for MC, and compared it to those of SML2. The
results are shown in Figure 5.9, where we can see that the entropy of MC is
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roughly the same as that of SML2. On the other hand, if we consider the
distance from the male-optimal, the marriages reached by MC are closer to
the top of the lattice than the ones found by SML2. In fact, the average
distance from the male-optimal marriage of MC is 0.2, while it is 0.5 for
SML2.

Summarizing, we can say that SML2 has sampling capabilities compara-
ble with the Markov chain approach considering the same number of steps,
and may even perform slightly better considering the distance measured from
the top or bottom of the lattice.
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Figure 5.7: Average runtime entropy of MC.

5.4 Related work

In this chapter we consider the fairness of the methodology to generate sta-
ble marriages. Other works have considered the fairness with the meaning of
finding a stable marriages where the overall happiness of the persons is max-
imized. One kind of fairer stable marriage that have been considered, is the
minimum regret stable marriage [47, 35]. The regret for each person is the
position in his/her preference list of the persons to whom he/she is married.
The regret of a marriage M is the maximum regret of any person. Another
way characterize the overall happiness of a marriage is to consider sum the
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regret of every person. The egalitarian stable marriage [42] minimize the to-
tal sum of the regrets. Both minimum regret and egalitarian stable marriage
can be found in polynomial time [35, 42].

In [63] Roth and Vande Vate show that, beginning from an arbitrary
marriage, and removing a blocking pair at random, we will eventually reach
a stable marriage with probability one. Our local search approach exploit
this result by building sequence of blocking pairs removal that rapidly lead
to stability thanks to the use of undominated blocking pairs.

5.5 Conclusions

In this chapter we presented a local search approach to fairly generate stable
marriages. Removing undominated blocking pairs has increased the conver-
gence speed to stability. Exploiting the use of undominated blocking pairs,
our algorithm has a size independent behaviour which appears to scale well.
Moreover, it is able to find a stable marriage in a number of steps which
grows as O(nlog(n)). We have also shown that our approach is able to sam-
ple the stable marriage lattice reasonably well, also when compared with a
Markov chain approach.

Finally we have to notice that the algorithms proposed in this chapter
can be adapted to stable marriage problems with ties and stable marriage
problems with incomplete lists very easy. In fact, the only thing to do is using
the appropriate the definition of blocking pair and the whole algorithmic
skeleton remain the same.
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Chapter 6

Incompleteness and imprecision

in stable marriages

In this chapter we consider variants of the stable marriage problem where
some form of imprecision and incompleteness is allowed for modeling agents
preferences. At the light of the results of the previous chapter, we study
the effectiveness of a local search approach in finding a maximum cardinality
stable marriage. Furthermore, we study male optimality and uniqueness of
stable marriages in stable marriage problems with ties. In particular, we
give an algorithm to find stable marriages that are male optimal and we give
sufficient conditions on the preferences which guarantee the uniqueness of a
stable marriage.

Some of the results in this chapter are included in the following articles:

• Local search for stable marriage problems with ties and incomplete lists,
M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, T. Walsh, in proc.
of the 11th Pacific Rim International Conference on Artificial Intelli-
gence (PRICAI 2010), Byoung-Tak Zhang and Mehmet A. Orgun eds.,
Springer, LNCS 6230, 2010.

• Local search for stable marriage problems, M. Gelain, M. S. Pini, F.
Rossi, K. B. Venable, T. Walsh, in proc. of the 3rd International
Workshop on Computational Social Choice (COMSOC 2010), Dussel-
dorf, Germany, September 2010.

• Male optimality and uniqueness in stable matching problems with par-
tial orders, Maria Silvia Pini, Francesca Rossi, Toby Walsh, Mirco
Gelain, Kristen Brent Venable, in proc. of the 9th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2010),
IFAAMAS Press, 2010, short paper.
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• Male optimal and unique stable marriages with partially ordered pref-
erences, M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh,
in proc. of the International Workshop on Collaborative Agents - RE-
search and development (CARE 2009/2010), Springer LNAI 6066, to
appear.

• Male optimal and unique stable marriages with partially ordered pref-
erences, M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh,
in proc. of the International Workshop on Collaborative Agents – RE-
search and Development (CARE 2009), Melbourne, Australia, Decem-
ber 2009.

6.1 Motivations

There are many variants of the traditional formulation of the stable marriage
problem. Some of the most useful in practice include incomplete preference
lists (SMI), that allow us to model unacceptability of one person for certain
members of the other sex, and preference lists with ties (SMT), that model
some king of vagueness or imprecision in preference ordering.

Unfortunately, when we allow for both ties and incomplete preference
lists, the problem, called stable marriage problem with ties and incomplete
lists (SMTI) becomes NP-hard [54]. Since there may be several stable mar-
riages of different sizes, solving such a problem means finding a stable mar-
riage of maximum size.

In this context we aim to investigate if a local search approach, similar
to the one used to solve the stable marriage problem in Chapter 5, which
exploits properties of the problem to reduce the size of the neighborhood and
to make local moves efficiently, is effective in solving such NP-hard problem.

In the context of centralized matching scheme, some participating hospi-
tals with many applicants have found the task of producing a strictly ordered
preference list difficult, and have expressed a desire to use ties [44]. Ties also
naturally occur when assigning students to schools, since many students are
indistinguishable from the point of view of a given school.

We also consider cases where men and women can express their prefer-
ences via partial orders allowing ties or saying that two or more people are
incomparable. More precisely, we study male optimality and uniqueness of
solution in this more general context. Male optimality can be a useful prop-
erty since it allows us to give priority to one gender over the other. For
example, in matching residents to hospitals in the US, priority is given to
the residents. We present an algorithm, based on an extended version of the
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Gale-Shapely algorithm, to find a male optimal solution in stable marriage
problems with partially ordered preferences (SMPs).

The uniqueness of a male optimal solution is another interesting concept.
For instance, it guarantees that the solution is optimal since it is as good as
possible for all the participating agents. Uniqueness is also a barrier against
manipulation. This is important as all stable marriage procedures can be
manipulated. In [18] sufficient conditions on the preferences are given, that
guarantee uniqueness of stable marriages when only strictly ordered pref-
erences are allowed. Such conditions identify classes of preferences that are
broad and of particular interest in many real-life scenarios [14]. We show that
it is possible to generalize these sufficient conditions for uniqueness to SMs
with partially ordered preferences, by considering in some cases uniqueness
up to indifference and incomparability.

6.2 Local search by removing blocking pairs

We adapt the classical local search schema to SMTI problems as follows.
Given a SMTI problem P , we start from a randomly generated marriage M
for P . At each search step, we move to a new marriage in the neighborhood
of the current one. For each marriage M , the neighborhood N(M) is the set
of all marriages obtained by removing one blocking pair from M . Consider
a blocking pair bp = (m, w) in M and assume m′ = M(w) and w′ = M(m).
Then, removing bp from M (written M\bp) means obtaining a marriage M ′

in which m is married with w and both m′ and w′ become single, leaving the
other pairs in the marriage M unchanged. Notice that, if M is stable, its
neighborhood is empty. Notice also that this notion of neighborhood is not
symmetric.

To select the neighbor to move to, we use an evaluation function f :
Mn → Z, where Mn is the set of all possible marriages of size n, and
f(M) = nbp(M) + ns(M). For each marriage M , nbp(M) is the number of
blocking pairs in M , while ns(M) is the number of singles in M which are
not in any blocking pair. The algorithm moves to a marriage M ′ ∈ N(M)
such that f(M ′) ≤ f(M ′′) ∀M ′′ ∈ N(M).

During the search, the algorithm maintains the best marriage found so
far, defined as follows: if no stable marriage has been found, then the best
marriage is the one with the smallest value of the evaluation function; oth-
erwise, it is the stable marriage with less singles.

To avoid stagnation in a local minimum of the evaluation function, at
each search step we perform a random walk with probability p (where p is a
parameter of the algorithm). In the random walk, we move to a randomly
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selected marriage in the neighborhood (we tried also to move to a generic
random marriage, but this gave worse behavior). If a stable marriage is
reached, its neighborhood is empty and a random restart is performed.

The algorithm terminates if a perfect marriage (that is, a stable marriage
with no singles) is found, or when a maximal number of search steps is
reached. Upon termination, the algorithm returns the best marriage found
during the search.

The pseudo-code of our algorithm, called LTI, is shown in Algorithm
7. In the pseudo-code, Mbest is the best marriage found so far, and fbest

its evaluation (number of blocking pairs plus number of singles). Function
best neighbor returns one of the best marriages in the neighborhood of the
current marriage, according to the evaluation function.

In addition to this simple local search algorithm which directly applies
standard local search approaches to SMTI problems, we have also designed a
more sophisticated algorithm which has been tailored to exploit the specific
features of SMTI problems. The main difference is in the definition of the
neighborhood, which refers to the notion of undominated blocking pairs that
we already seen in Chapter 5 and we recall here.

Definition 47 (dominance in blocking pairs). Let (m, w) and (m, w′) two
blocking pairs. Then (m, w) dominates (from the men’s point of view) (m, w′)
if m prefers w to w′. There is an equivalent concept from the women’s point
of view.

Definition 48 (undominated blocking pair). An men- (resp., women-) un-
dominated blocking pair is a blocking pair such that there is no other blocking
pair that dominates it from the men’s (resp., women’s) point of view. When
the point of view (men or women) is clear or not important, we will omit it.

For example, consider the SMTI problem in Table 6.1, the marriage 1
2 3 4, and two blocking pairs (m1, w2) and (m4, w2). Using the definitions
above, (m1, w2) dominates (m4, w2) from the women’s point of view. If we
remove (m4, w2) from the marriage, (m1, w2) will remain. On the other hand,
removing (m1, w2) also eliminates (m4, w2). Thus removing undominated
blocking pairs may reduce the number of blocking pairs more than eliminating
dominated pairs.

We call LTIU the algorithm LTI where the neighborhood is defined as the
set of marriages obtained from the current one by removing any dominated
blocking pair. More precisely, at each step we consider the undominated
blocking pairs from the men’s point of view which are also undominated
from women’s point of view. Then, in the next step, we swap genders and
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Algorithm 7: LTI

input : a SMTI problem P , an integer max steps
output: a marriage

M ← random marriage1

steps← 02

Mbest ←M3

fbest ← f(M)4

repeat5

if f(M) = 0 then6

return M7

if rand() ≤ p then8

M ← RandomWalk(M)9

else10

PAIRS ← blocking pairs in M11

if PAIRS is empty then12

perform a random restart13

else14

M ← best neighbor(M, PAIRS)15

if M is the first stable marriage found so far then16

fbest ← f(M)17

Mbest ←M18

if Mbest is not stable and fbest > f(M) then19

fbest ← f(M)20

Mbest ←M21

if both Mbest and M are stable and fbest > f(M) then22

fbest ← f(M)23

Mbest ←M24

steps← steps + 125

until steps ≥ max steps ;26

return Mbest27

do the same, to ensure gender neutrality in our algorithm1.

Due to their ability to restart, our algorithms have the PAC (probabilis-
tically approximate complete property) [37]. That is, as their runtime goes

1Gender neutrality is usually considered a desirable feature in a stable marriage proce-
dure.
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men’s preference lists women’s preference lists
1: 2 1 1: 3 1 (2 4)
2: 2 (3 4) 2: 1 4 2
3: (1 2 3 4) 3: (1 2) (4 3)
4: (3 2) 1 4 4: (3 2 4)

Table 6.1: An example of a SMTI problem of size 4.

to infinity, the probability that the algorithm returns an optimal solution
goes to one. If the algorithm starts at a stable marriage, the algorithms
will perform a random restart, which will end up in an optimal solution with
probability greater than zero. On the other hand, if the algorithm starts from
a non-stable marriage, we perform one or more steps in which we remove a
blocking pair. This sequences of blocking pair removal have been shown to
converge to a stable marriage with non-zero probability in the context of SMs
with incomplete preference lists [63]. The proof of this result can be adapted
to our context, as we have ties in the preference lists. Since a stable marriage
can be reached with non-zero probability, and as we have argued above that
from any stable marriage random restarting will reach an optimal solution
with non-zero probability, the PAC property holds.

6.3 Experimental evaluation

We tested our algorithms on randomly generated sets of SMTI instances. We
generated problems using the same method as in [30]. More precisely, the
generator takes three parameters: the problem’s size n, the probability of
incompleteness p1, and the probability of ties p2. Given a triple (n, p1, p2), a
SMTI problem with n men and n women is generated, as follows:

1. For each man and woman, we generate a random preference list of size
n, i.e., a permutation of n people;

2. We iterate over each man’s preference list: for a man mi and for each
women wj in his preference list, with probability p1 we delete wj from
mi’s preference list and mi from wj’s preference list. In this way we
get a possibly incomplete preference list.

3. If any man or woman has an empty preference list, we discard the
problem and go to step 1.
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4. We iterate over each person’s (men and women’s) preference list as
follows: for a man mi and for each woman in his preference list, in
position j ≥ 2, with probability p2 we set the preference for that woman
as the preference for the woman in position j−1 (thus putting the two
women in a tie).

Note that this method generates SMTI problems in which the acceptance
is symmetric. If a man m does not accept a woman w, m is removed from
w’s preference list as well. This does not introduce any loss of generality
because m and w cannot be matched together in any stable marriage.

Notice also that this generator will not construct a SMTI problem in
which a man (resp., woman) accepts only women (resp., men) who do not
find him (resp, her) acceptable. Such a man (resp., woman) will remain
single in every stable matching. A simple preprocessing step can remove
such men and women from any problem, giving a smaller instance of the
form constructed by our generator.

Moreover, we plan a test to see if Tabu search could be useful if applied to
our algorithms. We use a buffer to store the last 1000 marriages we touch and
we count how many times we hit a marriage in the buffer also distinguishing
if it is a local minima or not.

Experimental results

We run our experiments on 2 x Quad-Core AMD Opteron 2.3GHz CPU with
2GB of RAM. In practice we used ony one core because our algorithm is not
designed for multi threading.

We first analyzed the behavior of the base algorithm, LTI. Unfortunately
this algorithm fails to find a stable marriage in most of our test problems (see
Figure 6.1). In fact, LTI can find a stable marriage only for easy problems,
where there are many ties (that is, p2 high) and/or a lot of incompleteness
(that is, p1 high).

On the other hand, algorithm LTIU finds a stable marriage in 100% of
the runs. Since stability is essential in our context, from now on we will only
show the experimental results for algorithm LTIU.

We start by showing the average size of the marriages returned by LTIU.
In Figure 6.2 we can see that LTIU finds a perfect marriage (that is, a
stable marriage with no singles) almost always. Even in settings with a large
amount of incompleteness (that is, p1 = 0.7 - 0.8) the algorithm finds very
large marriages, with only 2 singles on average.

We also consider the number of steps needed by our algorithm. From
Figure 6.3(a), we can see that the number of steps is less than 2000 most
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Figure 6.1: Average number of stable marriages found by LTI.
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of the time, except for problems with a large amount of incompleteness (i.e.
p1 = 0.8). As expected, with p1 greater than 0.6, the algorithm requires
more steps. In some cases, it reaches the step limit of 50000. Moreover, as
the percentage of ties rises, stability becomes easier to achieve and thus the
number of steps tends to decrease slightly. We note that complete indifference
(i.e. p2=1) is a special case. In fact, in this situation, the number of steps
increases for almost every value of p1. This is because the algorithm makes
most of its progress via random restarts. In these problems every person (if
accepted) is equally preferred to all the others accepted. This means that the
only blocking pairs are those involving singles who both accept each other. In
this situation, after a few steps all singles that can be married are matched,
stability is reached, and the neighborhood becomes empty. The algorithm
therefore performs another random restart. It is therefore very difficult to
reach a perfect matching and the algorithm often runs until the step limit.

The algorithm is fast. It takes, on average, less than 40 seconds to give
a result even for problems with a lot of incompleteness (see Figure 6.3(b)).
As expected, with p2 = 1 the time increases for the same reason discussed
above concerning the number of steps.

Re-considering Figure 6.2 and the fact that all the marriages the algo-
rithm finds are stable, we notice that most of the marriages are perfect.
From Figure 6.4 we see that the average percentage of matchings that are
perfect is almost always 100% and this percentage only decreases when the
incompleteness is large.

We compared our local search approach to the complete method from
[30]. In their experiments, they measured the maximum size of the stable
marriages in problems of size 10, fixing p1 to 0.5 and varying p2 in [0,1]. We
did the same experiments (generating new instances), and obtained stable
marriages of a very similar size to those reported in [30]. This means that
although our algorithm is incomplete in principle, it always finds an optimal
solution in practice, and for small sizes it behaves as a complete algorithm in
terms of size of the returned marriage. However, we can also tackle problems
of much larger sizes (at least 100), still obtaining optimal solutions most of
the times.

We also considered the runtime behavior of our algorithm. In Figure 6.5
we show the average normalized number of blocking pairs and, in Figure 6.6,
the average normalized number singles of the best marriage as the execution
proceeds. Although the step limit is 50000, we only plot results for the first
steps because the rest is a long plateau that is not very interesting. We shows
the results only for p2 = 0.5. However, for greater (resp., lower) number of
ties the curves are shifted slightly down (resp., up). From Figure 6.5 we can
see that the average number of blocking pairs decreases very fast, reaching
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5 blocking pairs after only 100 steps. Then, after 300-400 steps, we reach a
stable marriage almost all the times for all values of p1. Considering Figure
6.6, we can see that the algorithm starts with more singles for greater values
of p1. This happens because, with more incompleteness, it is more unprobable
for a person to be accepted. However, after 200 steps, the average number
of singles becomes very small no matter the incompleteness in the problem.
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Figure 6.6: Normalized average number of singles (p2=0.5).

In order to test if the introduction of some diversity to the search would be
useful, we consider the choice of selecting undominated blocking pairs with a
probability u when we build the neighborhood. More precisely, at each search
step, with probability u we consider the neighborhood obtained by removing
undominated blocking pairs and, with probability 1 − u we consider the
neighborhood obtained by removing dominated blocking pairs. Comparing
Figures 6.5 and 6.7 we can see that, removing a dominated blocking pair
with probability 0.5 make the search a bit slower to converge to stability. In
fact, after 350-400 steps, the stability is not reached yet.

Looking at both Figures 6.5 and 6.6, we observe that, although we set a
step limit s = 50000, the algorithm reaches a very good solution after just
300-400 steps. In fact, after this number of steps, the best marriage found by
the algorithm usually has no blocking pairs nor singles. This appears largely
independent of the amount of incompleteness and the number of ties in the
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Figure 6.7: Normalized average number of blocking pairs (p2=0.5, u=0.5).

problems. Hence, for SMTI problems of size 100 we could set the step limit
to just 400 steps and still be reasonably sure that the algorithm will return
a stable marriage with a large size, no matter the amount of incompleteness
and ties.

Finally we test the effectiveness of the use of a short term memory (like
Tabu search techniques) to avoid stagnation in local minima. Figure 6.8
shows how many times one of the last 1000 marriages is encountered during
the search considering problems of size 50 and running LTIU on 100 problems
per size. We can see that we have hits only when the incompleteness is high.
In fact, with short lists, the number of possible matchings is not so high thus,
the probability of coming back in a n already visited position arises.

We count also the number of times LTIU the already visited marriage is
also a local minima (see Figure 6.9). The algorithm hits a local minima less
than 10 times (in average) in the last 1000 steps only with p1=0.7-0.8 and
considering problems of size 50. We run the same test also on problems of
size up to 150 observing that the number of hits is zero in practice. Hence,
we can conclude that the use of a short term memory is not needed in this
context.
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Figure 6.8: Average number of times one of the last 1000 marriages is hit by
LTIU (n=50).

6.4 Local search by swapping ties

In Section 6.2 we presented two local search algorithms which start from a
random marriage and try to converge to a stable marriage with maximum
size via a sequence of blocking pairs removal. In this section we present
another local search approach [60] to find the largest stable marriage of a
given SMTI instance I. This approach is based on the observation that, by
breaking all ties, I becomes an SMI, say I ′, and a stable marriage in I ′ is also
stable in I, since we are considering weak stability. Furthermore, we recall
that all stable marriages of a given SMI have the same size, and one of them
can be found in polynomial time using the Gale Shapley algorithm.

More precisely, we consider SMTIs with ties of length two, and we asso-
ciate a weight in [0,1] to each way of breaking a tie. Initially, such weights
are all set to 0.5.

Our approach works as follows: starting from an SMTI instance P , it
breaks ties in P obtaining an SMI P ′ and then it finds the male optimal stable
marriage of P ′ using the Gale Shapley algorithm. Then, in the first search
step, it moves to another SMI, with larger stable marriages (if possible).
To select the problem to move to, our approach considers the neighborhood
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Figure 6.9: Average number of times one of the last 1000 marriages, which
is also a local minima, is hit by LTIU (n=50).

made by the SMIs obtained from the current one by swapping the order of
two men (or women) which were in tie in the initial SMTI. Then it selects the
SMI with the largest stable marriages, say P ∗. If the stable marriages in P ∗

are larger than the maximal size found so far, the weight of the tie swapped to
obtain P ∗ is increased by 0.05, otherwise it is decreased by the same amount.
The pseudo-code of our local search method is shown in algorithm LST.

In LST, the procedure GS(Q) applies the Gale-Shapley algorithm to
the problem Q and returns the male optimal marriage. The procedure
swap tie(Q, ti) returns an SMI that is the SMI Q given in input where
the order of the persons in tie ti in P (the SMTI given in input to LST)
is swapped.

We can have different versions of the algorithm LST depending on the
meaning of the sentence allowed tie t in P in line 12. We consider “allowed”
the ties which have a weight greater than a fixed threshold or certain per-
centage of ties with highest weight. In this way we speed up the search by
reducing the size of the neighborhood. We call LSTt (where t is the thresh-
old) the algorithm that limits the neighborhood via a threshold and LSTk
(where k is the percentage of best ties considered) the other one.
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Algorithm 8: LST

input : a SMTI problem P , an integer max steps, a
probability p of random walk

output: a marriage

Q← breakties(P )1

steps← 02

max size← −13

max neigh size← −14

repeat5

M ← GS(Q)6

if M is a perfect matching then7

return M8

if rand() ≤ p then9

tie neighbest← a random tie in P10

else11

foreach allowed tie ti in P do12

R← swap tie(Q, ti)13

M ← GS(R)14

if size of M > max neigh size then15

max neigh size← size of M16

M neighbest← M17

tie neighbest← ti18

Q← swap tie(Q, tie neighbest)19

if max neigh size > max size then20

max size← max neigh size21

Mbest ← M neighbest22

increase weight of tie neighbest23

else24

decrease weight of tie neighbest25

steps← steps + 126

until steps ≥ max steps ;27

return Mbest28

6.5 Experimental evaluation

We generate SMTI problems as in Section 6.3 except for the probability of ties
(p2). For example, if we generate a problem of size n=100, with probability
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of incompleteness p1=0.1 and probability of ties p2=0.2, the average length
of preference lists will be 90, each one with about 9 ties of length 2. In fact,
p1=0.1 implies an approximate length of 90 for each list, and p2=0.2 (with
ties of length 2) implies about 9 ties.

We generate 100 problems for each combination of n, p1 and p2 varying
n in {10, 30, 50, 70, 90}, p1 in [0.1, 0.8] and p2 in [0.1, 1.0] and fixing a limit
of 20000 steps.

We run our algorithms LSTt and LSTk on this test set and we also
compare the results against our LTIU algorithm presented in Section 6.2.

We first measure the average size (normalized w.r.t. the size of the prob-
lem) of the stable marriages returned by our algorithms. All three algorithms,
find larger marriages when the number of ties increases and when the incom-
pleteness in preference lists decreases. In fact, with more ties and longer
preference lists, there is less probability of having a blocking pair and so
more chances for singles to get married.
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Figure 6.10: Normalized average size of marriages found by LSTk using
k = 50% on SMTIs of size 10.

For instance, Figure 6.10 shows the results for LSTk when n=10 and
k=50%. The results for LSTt and LTIU are very similar. Only for p1=0.7-
0.8 and high values of p2 LTIU finds slightly smaller marriages. Figure 6.11
shows a comparison of the three algorithms on problems of size 10 and 30.
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Figure 6.11: Normalized average size for LSTk, LSTt and LTIU on problems
of size 10 and 30. Fixing p1=0.8, k = 50% and t = 0.5.

For n=10, the size of the marriages vary at most of only 0.02 comparing
LSTk versus LSTt (LTIU gives practically the same results as LSTt) when
we vary the size of the problems. We can also notice that the size of the
marriages tends to increase when the size of the problems increases. For
instance, Figure 6.12 shows the results for LSTt and it easy to see that,
for the same values of the other parameters, it finds larger marriages as
n increases. The same results are obtained by the other algorithms. We
conjecture that the reason of this behavior is that, considering SMIs, the
probability of having a certain person in at least one preference list, say Pl,
is very high even with small sizes and a lot of incompleteness. More precisely,
the event of having a person p in at least one preference list in an SMI of size
n, denoted by Pl(n, p1), is 1− pn

1 . Moreover, the probability to be in exactly
k lists is:

[

(1− p1)
k · pn−k

1

]

(

n

k

)

(6.1)

Then, the probability to be in at least k lists is:

n
∑

i=k

{

[

(1− p1)
i · pn−i

1

]

(

n

i

)}

(6.2)
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Finally, since our generator rejects problems with empty preference lists, in
our test set each person is always in at least one preference list. Thus the
probability to be in at least k lists becomes:

P (n, p1, k) =

∑n

i=k

{[

(1− p1)
i · pn−i

1

] (

n

i

)}

1− pn
1

(6.3)

For example, Figure 6.13 shows how slowly P (n, p1, 5) decreases varying
p1 for different values of n. Thus, in general, the probability for a person to be
in more than one preference list rises with the size of the problem. Therefore,
having a perfect matching or a marriage with very high cardinality is more
probable in bigger problems than in smaller ones.
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Figure 6.12: Normalized average size for LSTt varying n and fixing p1=0.8
and t = 0.5.

We then focus our attention on the average number of steps needed by the
algorithms to finish their execution. As can be expected, the number of steps
increases as the incompleteness p1 rises. This happens for all algorithms and
all problems sizes, and it is more clear as n increases. This can be seen for
example in Figure 6.14 that shows the average steps for LSTt on problems
of size 10 and in Figure 6.15 that shows the results for n=30.

Figure 6.16 shows that the number of steps needed by LSTt for p1=0.8
decreases as n increases. Moreover, it decreases as the amount of ties (p2)
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Figure 6.15: Average number of steps for LSTt for n=30.

increases. This behavior is the same for the other algorithms and is due to
the increased probability of finding a perfect matching on larger problems.
For instance, Figure 6.17 shows how steps vary considering problems of size
n=30 and n=90.

We also measured the execution time of our algorithms. The execution
time is mainly influenced by the size and nature of the neighborhood that
has to be explored at each search step. The neighborhood used by LTIU
depends on blocking pairs and so it is larger in problems with few ties. On
the other hand, the neighborhoods defined for LSTt and LSTk are bigger
as the number of ties arises. For these reasons, the execution time of LTIU
tends to slightly decrease as p2 increases no matter the size of the problem for
fixed values of p1 (see Figure 6.18). Figures 6.19 and 6.20 show respectively
the execution time of LSTk and LSTt. In both cases the execution is longer
as p2 becomes larger. The difference is that the size of the neighborhood in
LSTt varies dynamically according the weights of the ties and the threshold
t. This speeds up drastically the algorithm and, as we can see, the execution
time of LSTt is about half of the execution time of LSTk.

Summarizing, both LSTk and LSTt are effective in terms of the size of
the returned marriages but, when we take into account also the execution
time, LSTt has to be preferred.
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Figure 6.16: Average number of steps for LSTk varying n and fixing p1=0.8
and k=50%.
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Figure 6.18: Average execution time for LTIU varying n for p1=0.8.
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Figure 6.19: Average execution time for LSTk varying n for p1=0.8 and
k=50%.
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Figure 6.20: Average execution time for LSTt varying n for p1=0.8 and t=0.5.

6.6 Male optimality

In the classical stable marriage problem, both men and women express a
strict order over the members of the other sex. We now consider a poten-
tially more realistic case, where men and women express their preferences
via partial orders, i.e., given a pair of men (resp., women), the women (resp.,
the men) can strictly order the elements of the pair, they may say that these
elements are in a tie, or that they are incomparable. This is useful in practi-
cal applications when a person may not wish (or be able) to choose between
alternatives, thus allowing ties in the preference list (or more generally, al-
lowing each preference list to be a partial order) [39]. For example, in the
context of centralized matching scheme, some participating hospitals with
many applicants have found the task of producing a strictly ordered pref-
erence list difficult, and have expressed a desire to use ties [44]. Ties also
naturally occur when assigning students to schools, since many students are
indistinguishable from the point of view of a given school. Another situation
where partial orders are useful is when preferences are elicited with a com-
pact preference representation formalism like soft constraints [7] or CP-nets
[9] that give partial orders. Another context where partial orders naturally
occur is when preferences are obtained via multi-criteria reasoning.

We study male optimality and uniqueness of solution in this more general



6.6 Male optimality 219

context. Male optimality can be a useful property since it allows us to give
priority to one gender over the other. For example, in matching residents to
hospitals in the US, priority is given to the residents. We present an algo-
rithm, based on an extended version of the Gale-Shapely algorithm, to find
a male optimal solution in stable marriage problems with partially ordered
preferences (SMPs). This algorithm is sound but not complete: it may fail to
find a male optimal solution even when one exists. We conjecture, however,
that the incompleteness is rare. We also give a sufficient condition on the
preference profile that guarantees to find a male optimal solution, and we
show how to find it. Uniqueness is another interesting concept. For instance,
it guarantees that the solution is optimal since it is as good as possible for all
the participating agents. Uniqueness is also a barrier against manipulation.
This is important as all stable marriage procedures can be manipulated. In
[18] sufficient conditions on the preferences are given, that guarantee unique-
ness of stable marriages when only strictly ordered preferences are allowed.
Such conditions identify classes of preferences that are broad and of particu-
lar interest in many real-life scenarios [14]. In particular, a class of preference
orderings that satisfy one of these conditions requires that all the agents of
the same sex have identical preferences over the mates of the opposite sex,
i.e., there is a common ordering over the mates. Another class of preference
orderings that satisfy one of these conditions of uniqueness requires that each
agent has a different most preferred mate, i.e., there is a subjective ranking
over the mates. We show that it is possible to generalize these sufficient
conditions for uniqueness to SMs with partially ordered preferences, by con-
sidering in some cases uniqueness up to indifference and incomparability.

Stable marriage problems with partial orders

We assume now that men and women express their preferences via partial
orders. The notions given in Section 2.2 can be generalized as follows.

Definition 49 (partially ordered profile). Given n men and n women, a
profile is a sequence of 2n partial orders (i.e., reflexive, antisymmetric and
transitive binary relations), n over the men and n over the women.

Definition 50 (SMP). A stable marriage problem with partial orders (SMP)
is just a SM where men’s preferences and women’s preference are partially
ordered.

Definition 51 (linearization of an SMP). A linearization of an SMP is an
SM that is obtained by giving a strict ordering to all the pairs that are not
strictly ordered such that the resulting ordering is transitive.
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Definition 52 (weakly stable marriage in SMP). A marriage in an SMP is
weakly stable if there is no pair (x, y) such that each one strictly prefers the
other to his/her current partner.

Definition 53 (feasible partner in SMP). Given an SMP P , a feasible part-
ner for a man m (resp., woman w) is a woman w (resp., man m) such that
there is a weakly stable marriage for P where m and w are married.

A weakly stable marriage is male optimal if there is no man that can get
a strictly better partner in some other weakly stable marriage.

Definition 54 (male optimal weakly stable marriage). Given an SMP P , a
weakly stable marriage of P is male optimal iff there is no man that prefers
to be married with another feasible partner of P .

In SMs there is always exactly one male optimal stable marriage. In
SMPs, however, we can have zero or more male optimal weakly stable mar-
riages. Moreover, given an SMP P , all the stable marriages of the lineariza-
tions of P are weakly stable marriages. However, not all these marriages are
male optimal.

Example 5. In a setting with 2 men and 2 women, consider the profile P :
{m1 : w1 ⊲⊳ w2 (⊲⊳ means incomparable); m2 : w2 > w1 (a > b means that
a is preferred to b) ; } {w1 : m1 ⊲⊳ m2; w2 : m1 ⊲⊳ m2; }. Then consider
the following linearization of P , say Q: {m1 : w2 > w1; m2 : w2 > w1; }
{w1 : m2 > m1; w2 : m1 > m2; }. If we apply the extended GS algorithm
to Q, we obtain the weakly stable marriage µ1 where m1 marries w2 and m2

marries w1. However, w1 is not the most preferred woman for m2 amongst all
weakly stable marriages. In fact, if we consider the linearization Q′, obtained
from Q, by changing m1’s preferences as follows: m1 : w1 > w2, and if we
apply the extended GS algorithm, we obtain the weakly stable marriage µ2,
where m1 is married with w1 and m2 is married with w2, i.e., m2 is married
with a woman that m2 prefers more than w1. Notice that µ2 is male optimal,
while µ1 is not. Also, µ1 and µ2 are the only weakly stable marriages for this
example. 2

Finding male optimal weakly stable marriages

We now present an algorithm, called MaleWeaklyStable, that takes as input
an SMP P and, either returns a male optimal weakly stable marriage for P ,
or the string ‘I don’t know’. This algorithm is sound but not complete: if
the algorithm returns a marriage, then it is weakly stable and male optimal;
however, it may fail to return a male optimal marriage even if there is one.
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Algorithm 9: MaleWeaklyStable

Input: p: a profile;1

Output: µ: a weakly stable marriage or the string ‘I don’t2

know’;
µ← ∅;3

L← list of the men of p;4

L← ComputeOrderedList(L);5

while Top((first(L)) contains exactly one unmarried woman)6

or (first(L) has a single top choice already married) do

m← first(L);7

if Top(m) contains exactly one unmarried woman then8

w ← UnmarriedTop(m);9

Add the pair (m, w) to µ;10

foreach strict successor m∗ of m on w’s preferences do11

delete m∗ from w’s preferences and w from m’s12

preferences ;

L← L \ {m};13

L← ComputeOrderedList(L);14

if m has a single top choice already married then15

w ← Top(m);16

m′ ← µ(w);17

Remove the pair (m′, w) from µ;18

Add the pair (m, w) to µ;19

foreach strict successor m∗ of m on w’s preferences do20

delete m∗ from w’s preferences and w from m’s21

preferences;

L← L ∪ {m′} \ {m};22

L← ComputeOrderedList(L);23

if (L = ∅) or (AllDiffUnmarried(L)=true) then24

Add to µ AllDiffUnmarriedMatching(L);25

return µ26

else27

return ‘I don’t know’28
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We assume that the women express strict total orders over the men. If
they don’t, we simply pick any linearization.

The algorithm exploits the extended GS algorithm [36], and at every step
orders the free men by increasing number of their current top choices (i.e.,
the alternatives that are undominated). List L contains the current ordered
sequence of free men.

More precisely, our algorithm works as follows. It takes in input an SMP
P , and it computes the list L of free men. At the beginning all the men are
unmarried, and thus L contains them all. Then, we continue to check the
following cases on the man m which is the first element of L, until they do
not occur any longer:

• If the set of top choices of m contains exactly one unmarried woman, say
w, m proposes to w and, since we are using the extended GS algorithm,
the proposal is accepted. Then, all men that are strictly worse than
m in w’s preferences are removed from w’s preference list, and w is
removed from the preference lists of these men. Then, m is removed
from L and L is ordered again, since the top choices of some men may
now be smaller.

• If m has a single top choice, say w, that is already married, m proposes
to w, w accepts the proposal, and she breaks the engagement with her
current partner, say m′. Then, m is removed from L, m′ becomes free
and is put back in L, and L is ordered again.

When we exit from this cycle, we check if L is empty or not:

• if L is empty, the algorithm returns the current marriage. Notice that
the current marriage, say (mi, wi), for i = 1, . . . , n, is weakly stable,
since it is the solution of a linearization of P where, for every mi with
ties or incomparability in current set of top choices, we have set wi

strictly better than all the other women in the top choice. Also, the
returned marriage is male optimal since we have applied the extended
GS algorithm.

• If L is not empty, it means that the next free man in L has several
current top choices and more than one is unmarried.

– If there is a way to assign to the men currently in L different
unmarried women from their current top choices then these men
make these proposals, that are certainly accepted by the women,
since every woman receives a proposal from a different man. There-
fore, we add to the current marriage these new pairs and we return
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the resulting marriage. Such a marriage is weakly stable and male
optimal by construction.

– If it is not possible to make the above assignment, stops returning
the string ‘I don’t know’.

Example 6. Consider the profile {m1 : w1 ⊲⊳ w2 > w3; m2 : w1 ⊲⊳ w2 >
w3; m3 : w1 ⊲⊳ w2 > w3; } {w1 : m1 > m2 > m3; w2 : m1 > m2 > m3; w3 :
m1 > m2 > m3; }. The algorithm first computes the ordered list L = [m1,
m2, m3]. The elements of L are men with more than one top choice and all
these top choices are unmarried, but there is no way to assign them with dif-
ferent women from their top choices, since they are three men and the union
of their top choices contains only two women. However, in every lineariza-
tion, m3 will not be matched with w1 or w2, due to w1 and w2’s preferences.
In fact, m1 and m2 will choose between {w1, w2}, while m3 will always propose
to his next best choice, i.e., w3. Hence, the considered profile is one of the
profiles where only two of the three men with multiple top choices are feasible
with w1 and w2, i.e. m1 and m2, and there is a way to assign to these men
different unmarried women in their top choices. In such a case there are two
male optimal weakly stable solutions, i.e., {(m1, w1)(m2, w2)(m3, w3)} and
{(m1, w2)(m2, w1)(m3, w3)}. Our algorithm returns the first one. 2

Example 7. Consider the profile obtained from the profile shown in Example
6 by changing the preferences of w1 as follows: m1 > m3 > m2. We now
show that there is no male optimal solution. It is easy to see that in any
weakly stable marriage m1 is married with w1 or w2. In the weakly stable
marriage where m1 is married with w1, m2 must be married with w2 and m3

must be married with w3, while in the weakly stable marriage where m1 is
married with w2, m2 must be married with w3 and m3 must be married with
w1. Therefore, in any weakly stable marriage, exactly one of these conditions
holds: either m2 prefers to be married with w2, or m3 prefers to be married
with w2. Therefore, there is no male optimal solution. Our algorithm works
as follows. Since AllDiffUnmarried(L)=false and since we cannot remove
any unfeasible woman from the top choices of m1, m2, and m3, the algorithm
returns the string ‘I don’t know’. 2

The MaleWeaklyStable algorithm has a time complexity which is O(n
5

2 ).
In fact, the first part has the same complexity of the extended GS algorithm,
which is O(n2). The second part requires performing an all-different check
between the current set of free men and the union of their top choices. Since
there are at most n free men and n top choices for each man, we can build
a bipartite graph where nodes are men and women, and each arc connects a
man with one of his unmarried top choices. Performing the all-different check
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means finding a subset of the arcs which forms a matching in this graph and
involves all men. This can be done in O(m

√
n) where m is the number of

edges, which is O(n2).
The MaleWeaklyStable Algorithm is sound, but not complete, i.e., if it

returns a marriage, then such a marriage is male optimal and weakly stable,
but if it returns the string ’I don’t know’, we don’t know if there is a weakly
stable marriage that is male optimal. A case where our algorithm returns
the string ’I don’t know’ is when L is not empty and there is a free man with
more than one top choice and all his top choices are already married. We
conjecture that in this case there is a male optimal weakly stable marriage a
few times, since it seems there are some very specific circumstances for our
algorithm to mot return a male optimal weakly stable marriage (i.e., it has
to pass through all the conditions we test) when one exists.

As we noticed above, there are SMPs with no male optimal weakly stable
marriages. We now want to identify a class of SMPs where it is always
possible to find a linearization which has a male optimal stable marriage.

Definition 55 (male-alldifference property). An SMP P satisfies the male-
alldifference property iff men’s preferences satisfy the following conditions:

• all the men with a single top choice have top choices that are different;

• it is possible to assign to all men with multiple top choices an alternative
in their top choices that is different from the one of all the other men
of P .

Theorem 23. If an SMP is male-alldifferent, then there is a weakly stable
marriage that is male optimal and we can find it in polynomial time.

Proof. If an SMP satisfies the male-alldifference property, then, by Definition
55, we can easily build the marriage µ where all the men with a single top
choice are married with their first top choice and all the men with more than
one top choice are married with that alternative in their top choices that
satisfies the second hypothesis of Definition 55. This marriage is both weakly
stable and male optimal. It is is weakly stable, since it can be obtained by
applying men-proposing GS on one of the linearizations where, for all the
men mi with more than one top choice, we put µ(mi) strictly better than
all the other alternatives. Moreover, by construction, µ is male optimal, i.e.,
there is no other weakly stable marriage where a man can obtain a strictly
better partner. In fact, all the men with a single top choice are already
married in µ with their best woman, and thus they cannot obtain a better
result, and, by construction, all the men with more than one alternative in
their top are married with one of these alternatives, that is better than, in
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a ties with or incomparable to all the other alternatives, and thus also these
men cannot obtain a strictly better woman in any other marriage. 2

The MaleWeaklyStable Algorithm exploits this same sufficient condition,
plus some other sufficient condition. Notice that if an SMP satisfies the
male-alldifference property, then, not only is there at least one weakly stable
marriage that is male optimal, but there is an unique stable marriage up to
ties and incomparability.

A complete algorithm for male-optimality in SMPs

We have shown an incomplete algorithm to find a male-optimal weakly sta-
ble marriage in stable marriage problems where men may express partially
ordered preferences.

To measure the incompleteness of this algorithm, we need to know when
a male optimal weakly stable marriage exists. To do this, we define now a
complete algorithm, that we call GSTiesComplete, to find, when it exists, a
male-optimal weakly-stable marriage for these problems. It takes as input an
SMP P with n men and n women, where the women’s preferences are totally
ordered, and it returns a set R of weakly-stable marriages that are male-
optimal, i.e., such that no man prefers to be married with another feasible
woman.

First, it sets R to the empty set. Then, it instantiates an array C of
size n where every element is zero. During the execution, for each man mi,
C associates the current woman wj (C[mi] = wj) that has been matched
with mi, if any, otherwise it associates zero. Then, it calls algorithm GSties
with P , L, C, and R, as input, and it returns the set R returned by GSties.
The returned set R contains the weakly-stable marriages of P that are male-
optimal. Notice that at the end R may also be empty. This happens when
no male-optimal weakly-stable marriage exists.

Algorithm 10: GStiesComplete

Input: P : an SMP where the women’s preferences are totally1

ordered, Output: R: a set of marriages;
L← the list of the men of P ;2

R← ∅;3

C ← an array [0, . . . , 0] of size n;4

GSties(P,L,C,R);5

return R;6

Algorithm GSties(P, L, C, R) is a recursive algorithm that works as fol-
lows. First, it instantiates SW , that is, a set of women, to the empty set.
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Then, while the list L, that is the list of the free men, is not empty, it per-
forms the following sequence of steps. It considers m, i.e., the first man of
L, and it instantiates SW with the next set of women (that are in a tie or
incomparable), that are strictly worse than C[m] in m’s preferences in P .
C[m] is zero as m is a free man and so SW contains the top choices of m.
Then, there are two possible cases: |SW | = 1 or |SW | > 1.

• If |SW | = 1, there is only one woman in SW , i.e., the next woman
worse than C[m] in m’s preferences is unique. Then, we consider such
a woman, say w, and we marry m with w, i.e., we put w in C[m].
Then, we remove m from the list of the free men, we remove from the
w’s preferences in P every man that is strictly worse than m for w, and
we remove w from the preferences of these men. If there is a man, say
mk already married with w (i.e., C[mk] = w), then we put mk again in
the list of the free men L and so we put 0 in C[mk].

• If |SW | > 1, we build a new SMP P ′, obtained from P by putting
w strictly better than all the other women in SW in m’s preferences
and by removing every man that is worse than m in w’s preferences
as well as removing w from the preferences of these men. Moreover,
we compute a new array C ′, that is obtained from C by putting w in
C ′(m).

If there is a man, say mk, which is already married with w, we put
0 in C[mk] and we call recursively algorithm GSties with inputs P ′,
L−m + mk, C ′, and R, otherwise we call recursively algorithm GSties
with inputs P ′, L−m, C ′, and R.

When we exit from the while loop, the list of the free men L is empty, and
thus all men have been married. We call Mnew such a marriage. We put
Mnew in R and we denote with R∗ the new set. Then, for every marriage M
in R∗, we check if there is a man, say m, such that he prefers his partner in
M (resp., Mnew) more than his partner in Mnew (resp., M). If this happens,
we remove Mnew (resp., M) from R. Finally, we return R.

Algorithm GStiesComplete is sound and complete. In the worst case all
women are in tie and each man proposes to every woman so the while loop
is executed n2 times. In every loop we have n! ways to break ties in the
current top choice. Thus, the main loop complexity is O(n2 ∗ (n!)n). Then,
the last steps of the algorithm compare each marriage with the other found
so far and so, in the worst case, it is done (n!)2 times. Hence, the overall
complexity of the algorithm is O(n2 ∗ (n!)n + (n!)2).

Proposition 13. Given an SMP P where the women’s preferences are to-
tally ordered, Algorithm GStiesComplete applied to P always return a set of
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Algorithm 11: GSties

Input: P : an SMP where the women’s preferences are totally1

ordered, L: a list of n men, C: an array of n women, R: a set of
weakly-stable marriages of P ;
Output:R: a set of weakly-stable marriages of P ;2

SW ← ∅ ;3

while L 6= ∅ do4

m← first(L);5

SW ← next(m,P,C[m]);6

if |SW | = 1 then7

w ← el(SW );8

C[m]← w;9

L← L−m;10

foreach man m′ s.t. m >w m′ do11

remove m′ from P (w) and w from P (m′);12

if ∃ mk such that C[mk] = w then13

C[mk] = 0;14

add mk to L;15

else16

foreach woman w ∈ SW do17

foreach man a 6= m do18

P ′(a)← P (a);19

C ′(a)← C(a);20

foreach woman b do21

P ′(b)← P (b);22

P ′(m)← P (m) ∪{w >rest(SW,w)};23

C ′(m)← w;24

foreach man m′ s.t. m >w m′ do25

remove m′ from P ′(w) and w from P ′(m′);26

if ∃ mk such that C ′[mk] = w then27

C ′[mk] = 0;28

GSties(P ′, L−m + mk, C
′, R);29

else30

GSties(P ′, L−m,C ′, R);31

break;32

Mnew ← Marriage(P,C);33

if Mnew is not a complete marriage then34

return35

R← R ∪Mnew;36

R∗ ← R ∪Mnew;37

foreach marriage M in R∗ −Mnew do38

if there is a man m s.t. M(m) < Mnew(m) then39

R← R−M ;40

if there is a man m s.t. Mnew(m) < M(m) then41

R← R−Mnew;42

return R;43
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marriages that are weakly stable and male-optimal for P . When such a set
is empty, the SMP P does not have any weakly stable marriage that is male
optimal.

Notice that GStiesComplete algorithm is a more sophisticated version
of a naive algorithm that takes in input an SMP P where the women are
strictly ordered, and it applies the GS algorithm to every linearization of P ,
thus obtaining various weakly stable marriages, and among these marriages
it returns only the weakly stable marriages that are male optimal. Therefore,
it is easy to adapt Algorithm GStiesComplete to handle also generic SMPs,
where also the women can express partially ordered preferences.

Experimental evaluation
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Figure 6.21: Percentage of male optimal stable marriages returned as we vary
the amount of incomparability.

In Figure 6.21, we show the behaviour of the MaleWeaklyStable algorithm
on some SMPs generated randomly: each woman totally orders the men uni-
formly at random; each man totally orders the women uniformly at random;
with probability p, each neighboring pair in this total order is incomparable.
Hence, p = 0 means no incomparability, whilst p = 1 means that all woman
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are ranked incomparable by all men. In Figure 6.21, N is the total number of
agents. We tested 1000 stable marriage problems for N=10 to 60 in steps of
10, and p=0 to 1 in steps of 0.1. It can be seen that, for small instances, the
MaleWeaklyStable algorithm returns a male optimal weakly stable marriage
very often. For larger instances, it returns a male optimal weakly stable
marriage in a smaller percentage of cases. However, the percentage grows for
large p, as the chance that the top choices are all different increases.

We intend now to investigate the incompleteness of the MaleWeaklyStable
algorithm by comparing its behaviour to the one of the complete algorithm
GStiesComplete on randomly generated instances of SMPs where the women’s
preferences are totally ordered. In Table 6.2 we compare the MaleWeaklyStable
algorithm with the complete algorithm GStiesComplete showing how many
times MaleWeaklyStable does not find a male optimal weakly stable marriage
while GStiesComplete finds one. The comparison is performed on randomly
generated SMPs computing the average over 50 instances, and varying N
from 10 to 60 and p in {0.1, 0.2, 0.5, 0.7, 0.9}. We set a timeout for GSti-
esComplete and ’-’ means that the algorithm did not give a result. It is easy
to notice that the incompleteness of the MaleWeaklyStable algorithm is not
very large and it is always less than 25%.

N
incomparability

0.1 0.2 0.5 0.7 0.9
10 2% 10% 10% 2% 0%
20 6% 20% 8% 4% 0%
30 16% 18% 14% - 0%
40 20% 24% - - 0%
50 12% 24% - - 0%
60 24% 16% - - 0%

Table 6.2: Percentage of times MaleWeaklyStable does not found a male
optimal marriage when GStiesComplete does.

6.7 Uniqueness of weakly stable marriages

For strict total orders, [18] gives sufficient conditions on preference for the
uniqueness of the stable marriage. We now extend these results to partial
orders. Notice that, if there is an unique stable marriage, then it is clearly
male optimal. A class of preference profiles in [18] giving an unique stable
marriage, when the preferences are strict total orders, is defined as follows.
The set of the men and the set of the women are ordered sets, the preferences
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require that no man or woman prefers the mate of the opposite sex with the
same rank order below his/her own order. Given such a preference ordering,
by a recursive argument starting at the highest ranked mates, any other
stable marriage would be blocked by the identity marriage, i.e., the marriage
in which we match mates of the same rank.

Theorem 24. [18] Consider two ordered sets M = (mi) and W = (wi). If
the profile satisfies the following conditions:

∀wi ∈W : mi >wi
mj , ∀j > i (6.4)

∀mi ∈M : wi >mi
wj, ∀j > i (6.5)

then there is a unique stable marriage µ∗(wi) = mi, ∀i ∈ {1, 2, . . . , N
2
}.

Notice that the condition above is also necessary when the economies are
small, i.e., N = 4 and N = 6.

There are two particular classes of preference profiles that generate a
unique stable marriage, and that are commonly assumed in economic appli-
cations [18]. The first assumes that all the women have identical preferences
over the men, and that all the men have identical preferences over the women.
In such a case there is a common (objective) ranking over the other sex.

Definition 56 (vertical heterogeneity). [18] Consider two ordered sets M =
(mi) and W = (wi). A profile satisfies the vertical heterogeneity property iff
it satisfies the following conditions:

• ∀wi ∈W : mk >wi
mj , ∀k < j

• ∀mi ∈M : wk >mi
wj, ∀k < j

Example 8. An example of a profile that satisfies vertical heterogeneity for
N = 6 is the following. {m1 : w1 > w2 > w3; m2 : w1 > w2 > w3; m3 : w1 >
w2 > w3; } {w1 : m2 > m3 > m1; w2 : m2 > m3 > m1; w3 : m2 > m3 > m1.}
2

Corollary 24.1. [18] Consider two ordered sets M = (mi) and W = (wi)
and a profile P . If P satisfies the vertical heterogeneity property, then there
is a unique stable marriage µ∗(wi) = mi.

When agents have different preferences over the other sex, but each agent
has a different most preferred mate and in addition is the most preferred by
the mate, then the preference profile satisfies horizontal heterogeneity. In
this situation there is a subjective ranking over the other sex.
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Definition 57 (horizontal heterogeneity). [18] Consider two ordered sets
M = (mi) and W = (wi). A profile satisfies the horizontal heterogeneity
property iff it satisfies the following conditions:

• ∀wi ∈W : mi >wi
mj , ∀j

• ∀mi ∈ M : wi >mi
wj, ∀j

Example 9. The following profile over 3 men and 3 women satisfies hor-
izontal heterogeneity. {m1 : w1 > . . . ; m2 : w2 > . . . ; m3 : w3 > . . . }
{w1 : m1 > . . . ; w2 : m2 > . . . ; w3 : m3 > . . . .} 2

Corollary 24.2. [18] Consider two ordered sets M = (mi) and W = (wi)
and a profile P . If P satisfies the horizontal heterogeneity property, then
there is a unique stable marriage µ∗(wi) = mi.

We now check if the results given above for strictly ordered preferences
can be generalized to the case of partially ordered preferences. Theorem
24 holds also when the men’s preferences and/or women’s preferences are
partially ordered.

Theorem 25. In SMPs, if there is an ordering of men and women such that
the preference profile satisfies the conditions described in Theorem 24, then
there is a unique weakly stable marriage µ(wi) = mi, ∀i ∈ {1, 2, . . . , n}.

Proof. The proof is similar to the one used to show Theorem 26. More
precisely, to show that the marriage µ is unique, we show that in any lin-
earization the male optimal and the female optimal marriage coincide with
µ. For any linearization of p, we can compute the male optimal marriage
by using the men-proposing extending GS. First, m1 makes the proposal to
w1 that accepts, since m1 is her best man in her preferences all the other
men are removed from w’s preference ranking and w is removed from the
list of these men. Therefore, w will not receive any other proposal and thus
she remains with m1 until the end of the algorithm. Hence, µ(m1) = w1.
Similarly, we can show that µ(m2) = w2 and so on. Hence, the male optimal
stable marriage in every linearization of p is µ(mi) = wi, ∀i ∈ {1, 2, . . . , N

2
}.

To conclude that µ is unique, we can show with a reasoning similar to the
one performed above, but using the women-proposing extended GS, instead
of the men-proposing extended GS, that for every linearization of p also the
female optimal stable marriage is µ. 2

Notice that the condition above is also necessary when the economies are
small. For example, this holds when N = 6 (that is, three men and three
women).
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We now check if the vertical heterogeneity result (Corollary 24.1) holds
also when the preferences are partially ordered. We recall that vertical het-
erogeneity assumes that all the agents of the same sex have the same strict
preference ordering over the mates of the opposite sex. It is possible to see
that, even if there is only one incomparable element in the ordering given by
the men (or the women), then vertical heterogeneity does not hold and there
may be more than one weakly stable marriage, as shown in the following
example.

Example 10. Consider the following profile: {m1 : w1 > w2 ⊲⊳ w3; m2 :
w1 > w2 ⊲⊳ w3; m3 : w1 > w2 ⊲⊳ w3; } {w1 : m1 > m2 > m3; w2 :
m1 > m2 > m3; w3 : m1 > m2 > m3}. In this profile all the agents
of the same sex have the same preference ordering over the mates of the
opposite sex, however, there are two weakly stable marriages, i.e., µ1 =
{(m1, w1), (m2, w2), (m3, w3)} and µ2 = {(m1, w1), (m2, w3), (m3, w2)}. No-
tice however that these two weakly stable marriages differ only for incompa-
rable or tied partners. 2

It is possible to show that if all the agents of the same sex have the same
preference ordering over the mates of the opposite sex and there is at least
one incomparable or tied pair, then there is a unique weakly stable marriage
up to ties and incomparability.

Let us consider now Corollary 24.2 regarding the horizontal heterogeneity
property. From Theorem 25, it follows immediately that Corollary 24.2 holds
also when partially ordered preferences are allowed.

Corollary 25.1. In SMPs, if there is an ordering of men and women such
that the preference profile satisfies horizontal heterogeneity, there is a unique
weakly stable marriage µ(wi) = mi, ∀i ∈ {1, 2, . . . , n}.

Proof. It follows immediately from Theorem 25. 2

For partially ordered preferences, we can also guarantee uniqueness of
weakly stable marriages by relaxing the horizontal heterogeneity property as
follows.

Theorem 26. In an SMP, let us denote with mk is the first man with more
than one top choice, if he exists. If there is an ordering of men and women in
increasing number of their top choices such that the preference profile satisfies
the following conditions:

• ∀mi ∈M with mi < mk, wi >mi
wj, ∀j;

• ∀mi ∈M with mi ≥ mk,
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– (wi >mi
(or ⊲⊳mi

) wj), ∀j < i, and

– (wi >mi
wj), ∀j > i;

• ∀wi ∈W , with wi < wk, mi >wi
mj , ∀j;

• ∀wi ∈W , with wi ≥ wk,

– (mi >wi
(or ⊲⊳wi

) mj), ∀j < i, and

– (mi >wi
mj), ∀j > i,

there is a unique weakly stable marriage µ(wi) = mi, ∀i ∈ {1, 2, . . . , n}.

Proof. In order to show that that the marriage µ(wi) = mi, ∀i, is the unique
weakly stable marriage that can be obtained for any linearization of the given
profile, say p, we will show that in every linearization of p, the male optimal
marriage and the female optimal marriage coincide with the marriage µ.

To show that in every linearization of p the male optimal marriage is µ,
we apply the extended version of the men-proposing GS to p and we show
that the result is µ independently of how the non-ordered pairs are ordered.
If we apply the extended men-proposing GS algorithm, every man mi, for
i < k, makes a proposal to his best woman wi, that accepts since for her mi

is her best man, and all the other men of wi are deleted from her preference
list and wi is removed from these men’s preference ranking. This means,
that when wi accepts the proposal from mi, then all the remaining men
cannot propose to wi and thus wi remains with mi, and so, for every men
mi, with i < k, µ(mi) = wi. Since we are using the extended version of GS
and the sets of men and women are ordered, every man mi, for i ≥ k, will
not have in his preference ranking any woman wj for j < i, and thus, by
hypothesis, wi >mi

wj, ∀j > i. Therefore, every man mi, for i ≥ k, has in
his top choice only the woman wi and similarly every woman wi has in his
top choice mi. Hence, for every linearization of the p, the marriage returned
by the men-proposing GS, that, as we know, is male optimal, is µ(mi) = wi,
∀i.

Similarly, we can show that for every linearization of p the marriage re-
turned by the women-proposing GS, that, as we know, is female optimal, is
µ(wi) = mi, ∀i. Hence, we can conclude that µ is the unique weakly stable
marriage. 2

In words, the conditions above require that every man mi (resp., woman
wi) with a single alternative, i.e., wi (resp., mi) has as unique top choice
wi (resp., mi), and every mi (resp., wi) with more than one top choice has
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exactly one alternative that must be chosen in every weakly stable marriage,
that is, wi (resp., mi).

6.8 Related work

In [30] Gent and Prosser give an exhaustive empirical study of the stable mar-
riage problem with ties and incomplete lists, using a constraint programming
encoding of the problem. Then, the encoded problem can be solved using
on the shelf CP technology. They present results for the decision problem
“Is there a stable matching of size n?” and for the optimization problem of
finding a maximum or minimum cardinality stable marriage. In particular,
regarding the optimization problem of finding the largest stable marriage,
their complete method (based on the solution of the CP encoding of the
problem using Choco constraint programming toolkit [49]) finds stable mar-
riages of size 9.3 (in average) considering problems of size 10 with no ties.
When the amount of ties increases the size increases as well. Our local search
approach obtains very similar results using a test set generated in the same
way.

Gent and Prosser in [31] give a SAT encoding of the stable marriage prob-
lem with ties and incomplete lists. Using such an encoding they obtain very
good results in the decision problem of whether there is a perfect matching.
Even though in our experiments we often find a perfect matching we consider
a different problem from the one solved in [31].

In [11] Brito and Meseguer, propose a distributed approach to the sta-
ble marriage problem with ties and incomplete lists with the aim of keeping
preference lists private for privacy reasons. They extend some specialized
centralized algorithms (such as the Extended Gale Shapley algorithm) to the
distributed case. Moreover, they provide a generic distributed constraint pro-
gramming model. In their experimental evaluation, they consider the com-
munication effort and the computational cost (in terms of constraint checks)
which are not applicable to our centralized approach. However, they show
also the maximum cardinality of the marriages found by their algorithms
considering SMTIs. Considering problems of the same size, probability of
ties and, incompleteness they used, we obtain marriages of very similar car-
dinality.

In [43] Irving and Manlove present two heuristic approaches to find the
largest stable matching in the context of the hospital resident (HR) problems
with incomplete lists and ties only in the hospitals’ preference lists. One
of the algorithms is based on the hospital-oriented version of Gale-Shapley
algorithm and the other one is based on the resident version. Heuristics are
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used to decide how breaking ties in order to maximize the size of the returned
marriage. In fact, the ways in which ties are broken can significantly affect
the size of the stable matching found and, in the extreme case, there may
be two matchings of sizes one the double of the other [54]. When hospitals
have capacity equal to 1, the problem becomes an SMTI with ties on one
side only, thus the algorithms proposed in [43] can also be used to solve such
restricted SMTIs. Moreover, we do not have to deal with tie breaking issues
since in algorithm LTIU ties are implicitly handled via the notion of blocking
pair.

In [5] the authors give complexity and approximation results regarding
the problem of finding a maximum cardinality matching that admits the
smallest number of blocking pairs in an SMI. They show that such a problem
is NP-hard. Our experimental results show that our local search approach is
able to find marriages of large size and with a very small number of blocking
pairs within a small number of steps.

As in [39, 44], we permit non-strictly ordered preferences (i.e., preferences
may contain ties and incomparable pairs) and we focus on weakly stable mar-
riages. However, while in [39, 44] an algorithm is given that finds a weakly
stable marriage by solving a specific linearization obtained by breaking ar-
bitrarily the ties, we present an algorithm that looks for weakly stable mar-
riages that are male optimal, i.e., we look for those linearizations that favor
one gender over the other one. Moreover, since there is no guarantee that
a male optimal weakly stable marriage exists, we give a sufficient condition
on the preference profile that guarantees to find a weakly stable marriage
that is male optimal, and we show how to find such a marriage. Other work
focuses on providing sufficient conditions when a certain property is not as-
sured for all marriages. For example, in [13] a sufficient condition is given for
the existence of a stable roommate marriage when we have preferences with
ties.

6.9 Conclusions

We have presented two local search approaches for solving stable marriage
problems with ties and incomplete lists. Experimental results show that
our algorithms are both fast and effective at finding large stable marriages
for problems of sizes not considered before in the literature. Moreover, the
runtime behavior of the algorithms is not greatly influenced by the amount
of incompleteness or ties in the problem. The algorithms were usually able
to obtain a very good solution after a very small amount of time.

We have given an algorithm to find male-optimal weakly-stable marriages
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when the men’s preferences are partially ordered. This may seems in contrast
with what we do in Chapter 5, where we aim to develop a fair method to find
a stable marriage. What we do in Section 6.6 and in Chapter 5 are different
aspect of the general problem of matching elements of two sets. Sometimes
we need to have a method that does not favour one group at the expense of
the other to generate a stable marriage (which also may be the male or female
optimal). In other context we need to clearly favour one group, for example,
in the hospital resident problem, the goal is to find the best matching for
residents.

The algorithm is sound but not complete. We conjecture, however, that
incompleteness is rare, since very specific circumstances are required for our
algorithm not to return a male optimal weakly-stable matching when one
exists. We have then provided a sufficient condition, which is polynomial to
check, for the existence of male optimal weakly-stable matchings. We have
also analyzed the issue of uniqueness of weakly-stable matchings, providing
sufficient conditions, which are likely to occur in real life problems, that are
also necessary in special cases.



Chapter 7

Summary and future directions

In this chapter we summarize the results of this thesis and we propose a
number of research issues that could be considered in the future.

7.1 Summary

In this thesis we have considered how incompleteness and imprecision in
preference specification, which are aspect that are very common in real life
scenarios, can be handled in an automated reasoning environment. In par-
ticular, we have considered various contexts of AI where preferences have a
crucial role and we have provided a number of solutions that take into ac-
count the inherent difficulty in modeling and handling imprecise or missing
preferences.

We have started by extending the soft constraint framework in order to
model missing preferences. More precisely, we have modified the notion of
constraints to allow for an unknown preference value. In this context, we
have considered two notions of optimality: the possibly optimal solutions,
that are optimal in at least one way in which preferences can be revealed,
and the necessarily optimal solutions, that are optimal in all ways in which
preferences can be revealed. Additionally, we have designed a modified ver-
sion of the classical branch and bound algorithm which interleaves search
with preference elicitation in order to find a necessarily optimal solution
while eliciting as few preferences as possible. In particular, we have defined a
general algorithm scheme that is based on three parameters: when to elicit,
what to elicit, and who chooses the value to be assigned to the next variable.
We have tested and compared several instances of this general algorithm, by
measuring the percentage of the elicited preferences and the user’s effort (i.e.,
the amount of missing preferences that the user has to consider in order to
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respond to elicitation queries). The experimental studies have shown that a
necessarily optimal solution can be found by eliciting very few preferences
(from 5% to 30% of the missing preferences, depending on which c-semiring
is used).

We have also considered a local search approach to solve this same prob-
lem. Also in this case, we have developed an algorithmic schema where
different elicitation strategies can be plugged in. Our empirical results on
fuzzy and weighted soft constraint problems show that our local search ap-
proach returns solution of high quality when compared with our complete
algorithms, while showing better scaling properties.

We have then focus our attention on the extension of the concept of
soft constraints to allow for imprecise preferences. We have provided a new
formalism based on the modeling of preferences via a preference interval in-
stead of a single value. We have defined new optimality notions based on
intervals and we have developed algorithms to find such optimal solutions.
Furthermore, we have characterized possibly and necessarily optimal solu-
tions in terms of the notions of optimality based on intervals. Finally, we
have provided algorithms to find also such kinds of solutions.

We have then considered stable marriage problems, a class of problems
where preferences, often incomplete and/or imprecise, are crucial. We first
have considered the classical version of the problem and we have provided
a procedurally fair method to generate a stable marriage. We have used a
local search approach, based on the removal of undominated blocking pairs,
that has shown to have good sampling capabilities over the stable marriage
lattice. Furthermore, our local search approach has shown a size independent
behavior, which appears to scale well. It is, in fact, able to find a solution in
a number of steps which grows as little as O(nlog(n)).

Starting from the encouraging results of our local search approach on
classical stable marriage problem, we have then focused our attention to the
optimization problem of finding a stable marriage with maximum cardinality
in the context of stable marriage problems with ties and incomplete prefer-
ence lists. We have adapted our local search approach to the new setting
and experimental results have shown that our algorithm is both fast and
effective at finding large stable marriages for problems of large size. More-
over, we developed an alternative local search approach based on tie swaps.
However, since both our algorithms reach a solution with very few singles
in very few steps, we can conjecture that we could stop the algorithms very
soon guaranteeing a solution closer to the optimal.

Finally, we have studied male optimality in the context where men and
women express their preferences via partial orders. In particular, we have
provided an algorithm to find male optimal weakly stable marriages. Such an
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algorithm is based on an extended version of the Gale-Shapely algorithm able
to deal with partially ordered preferences. Our algorithm is sound but not
complete: it may fail to find a male optimal solution even when one exists.
We conjecture, however, that the incompleteness is negligible. Moreover, we
have given a sufficient condition on the preference profiles that guarantees to
find a male optimal solution, and we have shown how to find it.

7.2 Future directions

Starting from the results in this thesis, we have identified several lines of
work that we intend to pursue in the future.

We aim to extend the incomplete soft constraint framework in order to
model situations where different agents may have different computational or
transmission costs. In this context, it would be useful to add a cost function
specifying the cost of each preference elicitation query. This may lead to other
optimality notions based on the expected cost, that have to be combined with
the ones we already know.

We also would like to extend the interval-valued CSP framework with
probabilistic information. This will enhance the expressiveness of the frame-
work and will introduce other optimality notions that take into account the
probability of a solution to be optimal. For example, we could aim at finding
the best solutions among the most probable ones or, conversely, the most
probable solutions among the optimal ones. Moreover, we would like to
extend this framework to allow for an elicitation process that can be used
to elicit one or both of the bounds of an interval. From the algorithmic
point of view, we plan to develop incremental algorithms for imprecise soft
constraints, that could revise the solution after some of the imprecision is
resolved. An incremental algorithm may be applied when information is re-
fined over time, when an interval is elicited to a precise value, or when one (or
both) of its bounds becomes stricter. An application of these algorithms may
be in interactive systems, where the user may refine intervals with subsequent
feedback. Both incomplete and imprecise soft constraints could be applied
to the specific problem of recommender systems and/or search in structured
catalogs, to minimize the amount of queries to the end user while, at the
same time, to give him the best product while allowing for more freedom in
preference specification.

As far as stable marriage problems, we would like to use compact repre-
sentation of imprecision in preference specifications. Also, in the context of
stable marriage problems with ties and incomplete preference lists, it would
be interesting to allow for unknown preferences. In this setting, we will
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also need to understand the impact of different elicitation strategies which
may be applied during search. In this context, different scenarios may arise,
and therefore notions of necessarily stable or possibly stable marriage should
be considered. Finally, there are many other variants of the stable mar-
riage problem, such as the college admissions problem (also known as hos-
pitals/residents problem) where ”women” can be married to more than one
”man”, or the stable roommates problem, in which all participants belong to
a single pool. We plan to extend our approaches also to these problems.
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